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Abstract—The properties of the nonlinear Boltzmann collision integral for the axisymmetric velocity distribu-
tion are studied. Expansions in spherical Hermitian polynomials orthogonal to the Maxwellian weighting func-
tion are employed. It is shown that the nonlinear matrix elements of the collision operator are related to each
other by simple relations, which are valid for arbitrary cross sections of particle interaction even if a preferential
direction exists. The relations are derived from the invariance of the collision operator under the choice of basis
functions or, more precisely, under both temperature and the mean velocity of the Maxwellian weighting func-
tion. The recurrent relations found allow one to calculate the matrix elements at large values of indices. This
makes it possible to construct exact solutions to complicated kinetic problems. © 2002 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

Polynomial expansions are widely used in the
kinetic theory of gases. In the case of the linearized
Boltzmann equation, such an expansion forms the basis
for the well-known Chapman–Enskog method [1]. For
the nonlinear case, this method was extended by Bur-
nett [2] and Grad [3]. The complete system of the non-
linear moment equations with the Gred condition satis-
fied is equivalent to the nonlinear Boltzmann equation.
As Kumar noted [4], the most compact expansion is
that in spherical Hermitian polynomials, which are the
product of spherical harmonics and Sonine polynomi-
als.

The basic challenge impeding the development of
the nonlinear moment method is the calculation of the
interaction matrix corresponding to the moments of the
nonlinear collision integral. In recent years, some
progress has been made in both calculating isotropic
matrix elements (MEs) and solving relaxation prob-
lems for an isotropic (in terms of velocities) distribution
function (DF) [5–9]. In [5, 6], analytical formulas
(including multiple summations) for nonlinear isotro-
pic MEs have been derived. In [7–9], recurrent relations
for calculating MEs have been found. These relations
have made it possible to substantially advance into the
range of large indices. For example, it would take 9 ×
104 years for a computer to calculate the MEs for N0 =
128, where N0 is the number of DF expansion coeffi-
cients, with the formulas in [5], whereas the same com-
putation using the recurrent relations lasts a half an
hour. It was shown [9] that a change from N0 = 15 to
1063-7842/02/4705- $22.00 © 20513
N0 = 128 makes it possible to pass from 2–3 to 8–10
thermal velocities in the exact description of the DF.

We emphasize that these relations between the MEs
are based on the invariance of the collision integral
under choice of basis functions. The recurrent relations
found in [7–9] turn out to be very simple. Each nonlin-
ear ME is determined from those found previously with
the help of four arithmetic operations, all nonlinear ME
being determined via the given linear ones. In the case
of cross sections that have an arbitrary angular depen-
dence and a velocity dependence corresponding to
power potentials, simple formulas for the linear MEs
are available [8].

The relations between the MEs obtained in [8, 9] for
an isotropic (in terms of velocities) DF have made a
substantial improvement in calculating both the nonlin-
ear MEs of the collision integral and the DF during iso-
tropic relaxation. The aim of this paper is to derive sim-
ilar recurrent relations in the axisymmetric case. Here,
the DF will depend on two velocity variables. In the iso-
tropic case, the invariance of the Maxwellian weighting
function under temperature T was used. In the axisym-
metric case, we will employ the invariances under both
T and the mean velocity u of the Maxwellian weighting
function to find relations between MEs.

Note that in the recurrent relation hierarchy, it is the
construction of MEs in the axisymmetric case that is of
vital importance. Switching to the three-dimensional
case is rather simple.
002 MAIK “Nauka/Interperiodica”
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1. TRANSFORMATION FROM BASIS
(u0, T0) TO BASIS (u1, T1) 

The functions Hj of form

will be referred to as real unnormalized spherical Her-
mitian polynomials. Here, j covers four indices: i, r, l,

and m. The functions (Θ, ϕ) (i = 0, 1) are real
unnormalized spherical harmonics. These harmonics
are defined as follows:

(1)

(2)

The functions (x) are associated Legendre poly-
nomials. Sonine polynomials, in their turn, are defined
as [1]

(3)

In the axisymmetric (with respect to velocities) case
(m = 0 and i = 0), the spherical Hermitian polynomials
depend only on two indices:

(4)

Here, Θ is the angle between the velocity vector c and
the axis of symmetry z and PlcosΘ are the Legendre
polynomials

(5)

The polynomials Hr, l are orthogonal to the Max-
wellian weighting function having the mean velocity u
directed along the z axis and temperature T:

(6)

The normalizing factor gr, l has the form

(7)

H j Ylm
i Θ ϕ,( )clSl 1/2+

r( ) c2( )=

Ylm
i

Ylm
0 Θ ϕ,( ) Pl

m Θcos( ) mϕ  m 0 1 … l, , ,=( ),cos=

Ylm
1 Θ ϕ,( ) Pl

m Θcos( ) msin ϕ  m 0 1 … l, , ,=( ).=

Pl
m

Sl 1/2+
r( ) x( ) aq r,

l xq,
q 0=

r

∑=

aq r,
l 1–( )q 2l 2r 1+ +( )!!

2l 2q 1+ +( )!!q! 2r 2q–( )!!
--------------------------------------------------------------------.=

Hr l, clPl Θcos Sl 1/2+
r c2( ),=

c2 m
2kT
--------- v x

2 v y
2 v z u–( )2+ +( ).=

Pl x( ) = bk l, xl 2k– , bk l,

k 0=

l/2[ ]

∑  = 
1–( )k 2l 2k– 1–( )!!
2k( )!! l 2k–( )!

------------------------------------------------.

Hr1 l1, Hr2 l2,,( ) M T c,( )Hr1 l1, c( )Hr2 l2, c( )d3v∫=

=  δr1 r2, δl1 l2, gr1 l1, ,

M T c,( ) m
2kT
--------- 

 
3/2

e c
2– .=

gr l,
2r 2l 1+ +( )!!

2r( )!!2l 2l 1+( )
--------------------------------------.=
In the case under consideration, the velocity v is
defined by two variables, for instance, by c = |c| and the
angle Θ. 

We express the axisymmetric DF in the form of the
expansion

(8)

With this approach, the Boltzmann equation for the
DF f(c, Θ) turns to a set of related equations for the
coefficients Cr, l:

(9)

Here, D/Dt is the differential operator representing the
left-hand sides of the moment equations, which have
been considered in detail in [2, 10]. In this paper, we
will concentrate on constructing the MEs of the colli-
sion integral, assuming that the Boltzmann equation is
spatially uniform. An axisymmetric ME has the form

(10)

In the isotropic (in terms of velocities) case, the sim-
ple relations between the MEs were obtained [9] based
on the invariance of the collision integral under basis.
The bases considered differed in temperatures of the
Maxwellian weighting functions, i.e., in units of mea-
sure for velocity. In the axisymmetric case, the bases
differ not only in temperatures T of the Maxwellian
weighting functions but also in their mean velocities u.
As a rule, we will characterize the basis by indexed
variables, e.g., u0 and T0, u1 and T1, etc.

Let us expand the DF in the basis (u0,T0). In this
basis, the velocity coordinates c and Θ are denoted by
c0 and Θ0, respectively. Then, expansion (8) takes the
form

In going from one basis to another, it is convenient
to use the α–u representation of the Boltzmann equa-
tion [11]. With this representation, an axisymmetric DF
is expanded in terms of Maxwellian functions with
arbitrary temperatures and mean velocities:

(11)

For the function ϕ(α, u), the equation equivalent to
the Boltzmann equation has been derived [10]. If we

pass to the variable  = 1/α and denote the couple u

f c Θ,( ) M T c,( ) Cr l, Hr l, c Θ,( ).
r l,
∑=

D n0 z t,( )Cr l,( )
Dt

------------------------------------ n0
2 Kr1 l1 r2 l2, , ,

r l, Cr1 l1, Cr2 l2, .
r1 l1 r2 l2, , ,
∑=

Kr1 l1 r2 l2, , ,
r l, 1

gr l,
------- Hr l, Î M Hr1 l1, MHr2 l2,, ,( )d3v .∫=

f c0 Θ0,( ) M T0 c0,( ) Cr l, Hr l, c0 Θ0,( ),
r l,
∑=

c0
2 m

2kT0
------------ v x

2 v y
2 v z u0–( )2+ +( ).=

f v( ) M u α v, ,( )ϕ α u,( ) u α .dd

0

∞

∫
∞–

∞

∫=

T̂
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and  by W, this equation in the spatially uniform case
can be written in the form

(12)

In going from α, u to u, , the same notation ϕ
holds for the DF. Then, instead of (11), we have

(13)

The kernel A(W, W1, W2) is the map of the collision
integral of two Maxwellian functions JM(v, W1, W2) =

(M(W1, v), M(W2, v)) into the u–T space:

In the Appendix, it is shown that the biorthogonal

system of the functions  and  in the α–u repre-
sentation corresponds to the system of the polynomials
Hr, l that is orthogonal to the Maxwellian weighting
function. In the basis W0, for the right and left systems

of the functions  and , we have

(14)

(15)

respectively. Here, bp, l are the coefficients of Legendre

polynomial (5); ', those of Sonine polynomial (3);
and gr', l', normalizing factor (7). Using the expansion of

the DF in the right functions ,

and integrating Eq. (12) with respect to W with , we
arrive at a set of moment equations for Cr, l that coin-

T̃

∂ϕ W t,( )
∂t

----------------------

=  n0 A W W1 W2, ,( )ϕ W1 t,( )ϕ W2 t,( ) W1 W2.dd∫
T̃

f v( ) M u T̃ v, ,( )ϕ u T,( ) u T̃ .dd

0

∞

∫
∞–

∞

∫=

Î

JM v W1 W2, ,( ) M W v,( )A W W1 W2, ,( ) W .d

0

∞

∫
∞–

∞

∫=

hr' l',
L hr l,

R

hr l,
R hr l,

L

hr l,
R W W0,( ) T̃0

r l/2+ bp l,

2l 2 p–
------------δ l 2 p–( ) u u0–( )

p 0=

l
2
---

∑=

× δ r p+( ) T̃ T̃0–( )
r!

----------------------------------,

hr' l',
L W W0,( )

aq r',
l'

gr' l',
--------- 1 T̃

T̃0

-----– 
 

r' q–

q 0=

r'

∑=

× u u0–( )l' 2q+ 1

T̃0
q l' /2+

---------------,

aq r',
l'

hr l,
R

ϕ W z t, ,( ) Cr l, z t,( )hr l,
R W W0,( ),

r l,
∑=

hr' l',
L
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cides with (9) and obtain the new representation

(16)

for coefficients  (10).

After substituting expressions (14) and (15) into

(16), the calculation of  for a given kernel
A(W, W1, W2) is reduced to multiple integrations and
differentiations. Thus, the algorithm for deriving direct
formulas for the MEs can be constructed with the α–u
representation. However, formulas obtained from (16)
turn out to be so awkward that the calculation of the
MEs for large values of indices is practically impossi-
ble.

We continue considering the transition from one
basis to another. Let the initial basis be characterized by

the mean velocity u0 and temperature  and the tran-
sition be performed to a new basis with the mean veloc-

ity u1 and temperature . We also assume that u0 and
u1 are directed along the axis of symmetry z. The same
DF ϕ(W) can be expressed in two bases W0 and W1:

(17)

Here, each of the indices k and j denotes the couple of
indices corresponding to the indices of the Hermitian
polynomials in the axisymmetric case. From the defini-

tion of the functions  and , it is clear that relations
(17) are invariant under transformation from the α–u
space to the v  space. In this case, one has to replace

each of the functions  and  with M(W0, v )Hk(c0)
and M(W1, v )Hj(c1), respectively.

In order to find a relation between the vectors C0 and

C1, we multiply both parts of (17) by (W, W1) and
integrate with respect to W. Then, using the orthonor-
mality property of biorthogonal system (A21), we
obtain

(18)

where elements D(W1, W0) of the matrix of transition
from one basis to another are expressed via the scalar
product,

(19)

Kr1 l1 r2 l2, , ,
r l, W0( ) hr l,

L W W0,( )A W W1 W2, ,( )∫∫∫=

× hr1 l1,
R W1 W0,( )hr2 l2,

R W2 W0,( ) W1 W2dWdd

Kr1 l1 r2 l2, , ,
r l,

Kr1 l1 r2 l2, , ,
r l,

T̃0

T̃1

ϕ W( ) Ck
0hk

R W W0,( )
k 0=

∞

∑ C j
1h j

R W W1,( ).
j 0=

∞

∑= =

h j
R h j

L

hk
R h j

R

h j
L

C j
1 D j k, W1 W0,( )Ck

0,
k 0=

∞

∑=

D j k, W1 W0,( ) h j
L W W1,( )hk

R W W0,( ) Wd

0

∞

∫=

=  h j
L W W1,( ) hk

R W W0,( ),( ),
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and the basis elements (Hermitian polynomials) are
transformed as follows:

(20)

The inverse operator  and its matrix elements
have the form

The collision integral is invariant under basis.
Therefore, 

(21)

Here, (W0) and (W1) are the MEs in the bases
W0 and W1, respectively. If we express the coefficients

 and the functions (W,W0) in terms of  and

(W,W1), respectively [using (18) and (20)], and take
into account the arbitrariness of the expansion coeffi-

cients  and  and also orthogonality properties
(A21), we obtain from (21)

(22)

From the operator form of this formula, it follows
that to each of the MEs in the new basis W1, there cor-

responds the operator , which is related to the oper-

ator  in the initial basis W0 as follows:

(23)

Before proceeding further, we will dwell on the
study of the D matrix.

2. THE TRANSITION MATRIX
AND ITS DERIVATIVES

In order to calculate the transition matrix, we will

use the definition of an ME of operator  (19), substi-

h j
R W W1,( ) Dk j, W0 W1,( )hk

R W W0,( ).
k 0=

∞

∑=

D̂
1–

D̂
1–

W1 W0,( ) D̂ W0 W1,( ),=

D̂
1–

W1 W0,( )( )ij Dij W0 W1,( ).=

Ck'
1 C j'

1 Kk' j',
i' W1( )hi'

R W W1,( )
i'

∑
k' j',
∑

=  Ck
0C j

0 Kk j,
i W0( )hi

R W W0,( ).
i

∑
k j,
∑

Kk j,
i Kk' j',

i'

Ck
0 hk

R Ck
1

hk
R

Ck'
1 C j'

1

Kk' j',
i' W1( ) Di' i, W1 W0,( )

i

∑=

× Kk j,
i W0( )Dk k', W0 W1,( )D j j', W0 W1,( ).

k j,
∑

K̂'ˆ

K̂̂

K̂'ˆ W1( )

=  D̂ W1 W0,( ) K̂̂ W0( ) D̂ W0 W1,( ) D̂ W0 W1,( ),( ).

D̂

tute the explicit form of the functions  and  [(14)
and (15)], and perform integration with respect to u and

. Taking into account the properties of δ function
derivatives, we find

(24)

where

(25)

Using (24) and (25), we will prove the orthonormal-
ity of the Hermitian polynomials and calculate the first
derivatives with respect to u and T for W1 = W2. From
the form of expression (24), it is clear that at W1 = W0,
the MEs Dj'j(W0, W0) are nonzero if and only if

(26)

As a result, the double sum in (24) is reduced to the
sum over the single index p. Since ρ < l/2 (26), the
upper limit in this sum equals ρ:

(27)

Therefore, Dj', j(W0, W0) = b0, ll!/2l at ρ = 0.

Using expressions (5) and (3) for bp, l and , respec-
tively, and taking into account (26), we come to

(28)

at ρ = 0.

In the case of arbitrary ρ, using (27), (5), and (3),
one can find

(29)

where

Here, the expression Qρ – 1(p) at ρ > 0 is a (ρ – 1)th
degree polynomial in p. For sums with binomial coeffi-

hr l,
R hr l,

L

T̃

D j' j, W1 W0,( ) T̃0
r l/2+

T̃1
r' l' /2+

---------------
bp l, ãq r',

l'

2l 2 p–
-----------------

q 0=

r'

∑
p 0=

l
2
---

∑=

×
l' 2q+( )! r' q–( )! u0 u1–( )l' l– 2ρ+ T̃1 T̃0–( )r' r– ρ–

l' l– 2ρ+( )! r' r– ρ–( )!r!
------------------------------------------------------------------------------------------------------------------,

ρ p q.+=

ρ r' r– l l'–( )/2, q ρ p 0,≥–= = =

p ρ.≤

D j' j, W0 W0,( ) ãρ p– r ρ+,
l 2ρ– bp l,

2l 2 p–
------------

p 0=

ρ

∑=

× r ρ p–+( )! l 2ρ– 2 p+( )!/r!.

ã0 r,
l

aq r,
l

Dr l r l, , , W0 W0,( ) 1=

D j' j, W0 W0,( ) r ρ+( )! 2l 4ρ– 1+( )
2ρr!

--------------------------------------------------S,=

S
1
ρ!
-----

ρ
p 

  1–( )pQρ 1– p( ),
p 0=

ρ

∑=

Qρ 1– p( ) 2l 2 p– 1–( )!!
2l 2 p– 2 ρ 1–( ) 1––( )!!

-------------------------------------------------------------.=
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cients, it is well known [12, p. 608] that

(30)

for t < ρ. Hence, both the function S and expression (29)
vanish at ρ ≠ 0. Thus,

(31)

which was to be proved. This means that the matrix D
is a unit matrix for W1 = W0. On the other hand, this
property reflects the orthonormality of the biorthogonal
system of the Hermitian polynomials in the u–T repre-
sentation.

Now, let us calculate the derivatives of the D matrix.
First, we will find the derivative dDj', j(W1, W0)/du1 for
W1 = W0 using (24). It is clear that the first equality from
(26) is replaced by

(32)

As a result, we have

(33)

where

(34)

With expression (5) for bp, l, expression (3) for ,
and equality (32), we arrive at

(35)

(36)

where

(37)

In going from (33) to (36), a = ρ is taken to be the
upper limit. In the case l' ≠ 0, this choice is evident from
(32) and (34). For l' = 0, (32) and (34) yield a = [l/2] =
ρ – 1 and l is an odd number. However, at l' = 0, a = ρ
can always be used as the upper limit of the sum in (36),
since the corresponding term in (36) vanishes with p =
ρ = (l + 1)/2.

Let us show that S1 vanishes for ρ > 1. At ρ = 2, the
function Qρ – 2(p) = 1, i.e., is a zero-degree polynomial
in p. At ρ = 3, the function Qρ – 2(p) = 2l – 2p – 1 is a
first-degree polynomial in p. At ρ = 2 + k, the function

ρ
p 

  1–( )p pt

p 0=

ρ

∑ 0=

Dr' l' r l, , , W0 W0,( )

=  hr ,'l'
L W W0,( ) hr l,

R W W0,( ),( ) δr r', δl l', ,=

ρ r' r– l l'– 1+( )/2.= =

d
du1
-------- Dr' l' r l, , , W1 W0,( )( ) W1 W0=

1

T̃0
1/2

--------
bp l,

2l 2 p–
------------

p 0=

a

∑–=

× ãρ p– ρ p+,
l 1 2ρ–+ l' 2ρ 2 p–+( )! r' ρ– p+( )!

r!
---------------------------------------------------------------- B

T̃0
1/2

--------,=

a min l/2[ ] ρ,( ).=

aq r,
l

B
2r'! 2l 4ρ– 3+( )

2ρr!
----------------------------------------S1,–=

S1
1
ρ!
----- 1–( )p ρ+ ρ

p 
  Qρ 2– p( ) l 2 p– 1+( ),

p 0=

ρ

∑=

Qρ 2– p( ) 2l 2 p– 1–( )!!
2l 2 p– 2ρ– 3+( )!!

------------------------------------------------= .
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Qρ – 2(p) will be the kth-degree polynomial in p and the
product Qρ – 2(p)(l – 2p + 1) in (36), a (k + 1)th-degree
polynomial. Hence, for ρ > 1, the degree of the polyno-
mial is always less than ρ, and according to (30), S1 = 0.
From (32), it follows that, for ρ = 0, only the equalities
r = r' and l = l' – 1 are possible, and for ρ = 1, r = r' + 1
and l = l' + 1.

At ρ = 0, sum (36) is reduced to the only term cor-
responding to p = 0, so that

From (35)–(37), it follows that

(38)

at ρ = 1.

Substituting (38) into (33) yields

(39)

The function Dr, l, r', l'(W0, W1) at  =  is a poly-
nomial in (u1 – u0). The coefficients of this polynomial
differ from those of Dr', l ', r, l(W1, W0) by the changes
r  r', l  l', and W0  W1. Finally, we have

(40)

Before differentiating this equation with respect to
temperature, we will simplify the expression for transi-
tion matrix (24). First, we interchange the orders of
summation in (24), taking into account (26):

(41)

Here, a = max(0, [(l – l')/2]) and b = min(ρ, [l/2]). Sub-

stituting expression (3) for  and expression (5) for

S1
l 1+

2l 1+( ) 2l 3+( )
--------------------------------------, B

2 l 1+( )
2l 1+( )

-------------------.–= =

S1
2l

2l 1–( ) 2l 1+( )
--------------------------------------, B– 2l r 1+( )

2l 1+( )
---------------------= =

d
du1
-------- Dr' l' r l, , , W1 W0,( )( ) W1 W0=

2

T̃0

--------- 1
2l 1+( )

-------------------=

× – l 1+( )δr' r, δl' l 1+, l r 1+( )δr' r 1+, δl' l 1–,+( ).

T̃1 T̃0

d
du1
-------- Dr l r' l', , , W0 W1,( )( ) W1 W0=

2

T̃0

--------- 1
2l' 1+( )

--------------------=

× l' 1+( )δr r', δl l' 1+,  – l' r' 1+( )δr r' 1+, δl l' 1–,( ).

D j' j, W1 W0,( ) 1–( )l r r'+ + T̃0
r l/2+

r!T̃1
r' l' /2+

--------------------------------------=

×
u0 u1–( )l' l– 2ρ+ T̃1 T̃0–( )r' r– ρ–

l' l– 2ρ+( )! r' r– ρ–( )!
------------------------------------------------------------------------

p a=

r' r–

∑

× bp l, aq r',
l' 1–( )ρ l' 2q+( )! r' q–( )!.

p 0=

b

∑

aq r,
l
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bp, l into (41), we find after straightforward calculations

(42)

where

Let u1 = u0 in (42). Then, following the same reason-

ing as in proving (31), we obtain  = δρ, 0δl, l'/(2l + 1)
and (42) takes the form

(43)

Note that this formula coincides with that for the

isotropic case [9] up to the factor ( / )l/2. It is evi-

dent that differentiating (43) with respect to  and

putting  =  yields

(44)

Substituting the parameters r for r', l for l', and 

for  in Dj', j(W1, W0 , we get

(45)

3. RELATIONS BETWEEN THE MATRIX 
ELEMENTS OF THE COLLISION INTEGRAL

Consider relation (23) once again. We will show that
the relation between the MEs in a given basis, e.g., in
W0, can be found by differentiating these equality with

respect to the basis parameters u and . It is in the way
that the relations between the MEs in the isotropic case
have been deduced by differentiating with respect to
temperature [9].

We will begin with the differentiation with respect
to u. Let us differentiate (23) with respect to u1 and set

u1 = u0 and  = , i.e., W1 = W0. In the right-hand

side of (23),  is independent of u1; hence, we have to

D j' j, W1 W0,( ) 1–( )r r'+ r'!T̃0
r l/2+

2l' 1+( )
2l l'– r!T̃1

r' l' /2+
-----------------------------------------------------------=

×
u0 u1–( )l' l– 2ρ+ T̃1 T̃0–( )r' r– ρ–

2ρ

l' l– 2ρ+( )! r' r– ρ–( )!ρ!
-----------------------------------------------------------------------------Bl l',

ρ ,
ρ a=

r' r–

∑

Bl l',
ρ 1–( )p ρ

p 
  2l 2 p– 1–( )!! l' 2ρ 2 p–+( )!

l 2 p–( )! 2l' 2ρ 2 p– 1+ +( )!!
-----------------------------------------------------------------------.

p 0=

b

∑=

Bl l',
ρ

D j' j, W1 W0,( ) u1 u0=

=  
1–( )r r'+ r'!

r!
------------------------

T̃0
r l/2+

T̃1
r' l/2+

--------------
T̃1 T̃0–( )r' r–

r' r–( )!
-----------------------------δl l', .

T̃0 T̃1

T̃1

T̃1 T̃0

T̃0
d

dT̃1

--------- Dr' l' r l, , , W1 W0,( )( ) W1 W0=

=  δl' l, – r' l'/2+( )δr' r, r'δr' r 1+,+( ).

T̃0

T̃1 ) u1 u0=

T̃0
d

dT̃1

--------- Dr l r' l', , , W0 W1,( )( ) W1 W0=

=  δl' l, r l/2+( )δr' r, rδr r' 1+, .–

T̃

T̃1 T̃0

K̂̂

differentiate only the operators . Obviously, the MEs
of the matrix K(W) do not depend on the velocity u if
the cross section is independent of this velocity. As a
rule, the cross section does not depend on the center-of-
mass velocity of colliding particles, and hence, is inde-
pendent of the reference frame velocity. Such a depen-
dence may take place only in exotic cases when strong
external electric and magnetic fields are present or at
relativistic velocities of the particles. Thus, omitting
such rare cases from consideration, we can argue that
the derivative with respect to u1 in (22) is equal to zero.
Eventually, we have

(46)

Then, using derivatives (39) and (40) of the transi-
tion matrices with respect to the velocity (see the previ-
ous section) in the matrix form, we come to

Performing summations with the Kronecker sym-

bols, removing primes, and canceling by 2/ , we
finally obtain

(47)

D̂

0
dD̂ W1 W0,( )

du1
------------------------------ 

 
W1 W0=

K̂̂ Ê Ê,( )=

+ ÊK̂̂
dD̂ W0 W1,( )

du1
------------------------------ 

 
W1 W0=

Ê, 
 

+ ÊK̂̂ Ê
dD̂ W0 W1,( )

du1
------------------------------ 

 
W1 W0=

, 
  .

0 Kr1' l1' r2' l2', , ,
r l,

r l,
∑=

×
2 – l 1+( )δr' r, δl' l 1+, l r 1+( )δr' r 1+, δl' l 1–,+( )

2l 1+( ) T̃0

--------------------------------------------------------------------------------------------------------

+ Kr1 l1 r2' l2', , ,
r' l',

r1 l1,
∑

×
2 l1' 1+( )δr1 r1', δl1 l1' 1+,  – l1' r1' 1+( )δr1 r1' 1+, δl1 l1' 1–,( )

2l1' 1+( ) T̃0

---------------------------------------------------------------------------------------------------------------------

+ Kr1' l1' r2 l2, , ,
r' l',

r2 l2,
∑

×
2 l2' 1+( )δr2 r2', δl2 l2' 1+,  – l2' r2' 1+( )δr2 r2' 1+, δl2 l2' 1–,( )

2l2' 1+( ) T̃0

---------------------------------------------------------------------------------------------------------------------.

T̃0

0 –
l

2l 1–
-------------Kr1 l1 r2 l2, , ,

r l 1–, l 1+( )r
2l 3+

------------------Kr1 l1 r2 l2, , ,
r 1– l 1+,+=

+
l1 1+

2l1 1+
----------------Kr1 l1 1+ r2 l2, , ,

r l, l1 r1 1+( )
2l1 1+

----------------------Kr1 1+ l1 1– r2 l2, , ,
r l,–

+
l2 1+

2l2 1+
----------------Kr1 l1 r2 l2 1+, , ,

r l, l2 r2 1+( )
2l2 1+

----------------------Kr1 l1 r2 1+ l2 1–, , ,
r l, .–
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Here, we have omitted the argument of the ME, since
this equality is valid in any given basis. We rewrite (47)
in the more compact form

where 

These relations are supplemented by those between
the MEs that result from the differentiation of (23) with

respect to  at W1 = W0. Applying the operator d/d
to expression (23) in the matrix form at W1 = W0, taking

into account that the operator  in the right-hand side

is independent of , and using derivatives (44) and
(45) of the transition matrices with respect to tempera-
ture (see the previous section), we obtain

(48)

where

(49)

In (48), T0 is replaced by , because this relation,
like (47), is valid in any basis. Formulas (47) and (48)
are the basic equations relating all the MEs in the axi-
symmetric case.

Equation (48) relates the MEs at fixed values l, l1,
and l2. In the particular case l = l1 = l2 = 0, (48) and (49)
yield the relation deduced in [8] for the isotropic case.
Relations (47) and (48) obtained by us are valid for any
kind of particle interaction.

As has been noted in [8, 9], for power interaction
potentials, the cross section is factorized into an angular
dependence and a power dependence on the relative
velocity g. For the power dependence on g, the ME is
proportional to T µ irrespective of the form of the angu-
lar dependence, where µ is constant (µ = 0 for Max-
wellian molecules and µ = 0.5 for solid spheres). Thus,
in the case of power potentials (to be more precise, in
the case of power dependence of the cross section on
the velocity), (48) has the form

0 β l 1–( )Kr1 l1 r2 l2, , ,
r l 1–, γ r 1– l 1+,( )Kr1 l1 r2 l2, , ,

r 1– l 1+,+=

– β l1( )Kr1 l1 1+ r2 l2, , ,
r l, γ r1 l1,( )Kr1 1+ l1 1– r2 l2, , ,

r l,–

– β l2( )Kr1 l1 r2 l2 1+, , ,
r l, γ r2 l2,( )Kr1 l1 r2 1+ l2 1–, , , ,–

β l( ) l 1+
2l 1+
--------------, γ r l,( )–

r 1+( )l
2l 1+

------------------.= =

T̃1 T̃1

K̂̂

T̂1

T̃
d

dT̃
-------Kr1 l1 r2 l2, , ,

r l, T̃( ) RKr1 l1 r2 l2, , ,
r l, T̃( ) rKr1 l1 r2 l2, , ,

r 1– l, T̃( )+=

– r1 1+( )Kr1 1+ l1 r2 l2, , ,
r l, T̃( ) r2 1+( )Kr2 1+ l2 r1 l1, , , T̃( ),–

R r1 r2 r–
l1 l2 l–+

2
---------------------.+ +=

T̃

R µ–( )Kr1 l1 r2 l2, , ,
r l, T̃( ) rKr1 l1 r2 l2, , ,

r 1– l, T̃( )+

– r1 1+( )Kr1 1+ l1 r2 l2, , ,
r l, T̃( ) r2 1+( )Kr1 l1 r2 1+ l2, , ,

r l, T̃( )–  = 0.
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Analysis has shown that in the axisymmetric case,
relations (47) and (48) constitute a complete set of
equations relating the MEs. Higher order derivatives

(including mixed) with respect to u and  do not result
in additional relations. A similar property for the isotro-

pic case (upon differentiating with respect to ) was
discussed in detail in [8, 9].

Thus, recurrent relations for the axisymmetric MEs

 have been obtained from the invariance of the

collision integral under basis. These relations are
always valid; in particular, they hold in the presence of
a preferred spatial direction. Even in this case, using
Eqs. (47) and (48) as recurrent relations, nonlinear MEs
can be found from given isotropic and axisymmetric
linear MEs. The use of these recurrent relations
decreases the dimension of ME calculation by many
orders of magnitude, making possible their application
to solving problems requiring immense computational
resources with the standard approach.

In the next paper, we will show that a series of addi-
tional relations between the MEs appears in the case of
nondirectional particles, i.e., in the conventional kinetic
theory of gases, where the collision integral has extra
symmetry (Hecke theorem) [13]. This makes it possible
to express any nonlinear ME via isotropic MEs through
simple recurrent relations.

APPENDIX: AXISYMMETRIC HERMITIAN 
POLYNOMIALS IN α–u REPRESENTATION

For the axisymmetric case in the v  space, the spher-
ical Hermitian polynomials have the form of (4) and
(5). In the basis (u0,α0), with regard for c0cosΘ = c0z,
expressions (4) and (5) can be represented in the form

(A1)

The distribution function f(v) in the v  space is
related to its α–u representation by formula (11). In the

α–u space, the expression F( ) , where F( ) is
an arbitrary function of the velocity magnitude c0, is
given by

(A2)

T̃

T̃

Kr1 l1 r2 l2, , ,
r l,

Hr l, c0 c0z,( ) Sl 1/2+
r( ) c0

2( ) bk l, c0
2kc0z

l 2k– .
k 0=

l/2[ ]

∑=

c0
2 c0

2kc0z
j c0

2

F c0
2( )c0

2kc0z
j{ } α{ } u

=  
1–( ) je

α u u0–( )2

δ j( ) u u0–( )
2α( ) jα3/2α0

k j /2+( )–
----------------------------------------------------------- dk

dα k
--------- α3/2ϕ α( )( ).
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Here, δ(j)(x) denotes the jth derivative of the δ function;
double braces denote the representation of the function
in the α–u space; and ϕ(α) is the α representation of the

function F( ):

(A3)

Formula (A2) can easily be proven by substituting
(A2) into (11) and integrating first with respect to u and
then with respect to α by parts.

Two generalized functions are considered to be
equal if their integration with an arbitrary finite func-
tion ψ yields the same result. Then, using the formula
for the jth derivative of the product of two functions and

the formula for a higher derivative of  [14], one can
show that the following equality is valid:

(A4)

Substituting (A4) into (A2), we find

(A5)

Using (4) and (5), we have from (A5)

(A6)

Substituting p for k + p and interchanging the orders
of summation, we obtain from (A6) 

(A7)

where the function Ap, l has the form

(A8)

c0
2

F c0
2( ) α

π
--- 

 
3/2

e

α
α0
------c0

2–

ϕ α( ) α .d

0

∞

∫=

eαx
2

e
α u u0–( )2

δ j( ) u u0–( ) qp j, α pδ j 2 p–( ) u u0–( ),
p 0=

j /2[ ]

∑=

qp j,
j!

p! j 2 p–( )!
---------------------------.=

F c0
2( )c0

2kc0z
j{ } α{ } u α0

k j /2+ 1–( ) j

2α( ) j
-------------=

×
qp j, δ j 2 p–( ) u u0–( )

α– p 3/2+
--------------------------------------------

p 0=

j /2[ ]

∑ dk

dα k
--------- α3/2ϕ α( )( ).

F c0
2( )c0

l Pl Θcos( ){ } α{ } u bk l,
1–( )lα0

l/2

2α( )l 2k–
---------------------

k 0=

l/2[ ]

∑=

×
qp l 2k–, δ l 2 k p+( )–( ) u u0–( )

α– p 3/2+
------------------------------------------------------------ dk

dα k
--------- α3/2ϕ α( )( ).

p 0=

l
2
--- k–

∑

F c0
2( )c0

l Pl Θcos( ){ } α{ } u

=  
1–( )lδ l 2 p–( ) u u0–( )α0

l/2

2
l

--------------------------------------------------------Ap l, ,
p 0=

l/2[ ]

∑

Ap l,
bk l, qp k– l 2k–, 22k

α l k– p– 3/2+
------------------------------------- dk

dα k
--------- α3/2ϕ α( )( ).

k 0=

p

∑=
Let us substitute expression (5) for bk, l and expres-
sion (A4) for qp, j into (A8) and make use of the formula

Setting n = p – k and m = l – p + 1, we get

(A9)

Substituting (A9) into (A7), in the α–u representa-
tion, we finally find

(A10)

In the isotropic part of (A10), one may pass from the

v  space to the , instead of α, space. In this case, the
formula

(A11)

takes place instead of (A3).

It is clear that

(A12)

Let a function in the u–T representation be denoted
as {{}T}u. Evidently,

(A13)

It can be shown [15] that the equality

(A14)

is valid in the sense of generalized functions.

2m 2n 3–+( )!! 1–( )n

2m 3–( )!!2nαm n 1/2–+
----------------------------------------------------

dn

dαn
--------- 1

αm 1/2–
--------------- 

  .=

Ap l,
1–( )p2p 2l 2 p– 1–( )!!α p 1–

p! l 2 p–( )!
-------------------------------------------------------------------=

×
p

k 
  d p k–

dα p k–
--------------- 1

α l p– 1/2+
------------------- 

  dk

dα k
--------- α3/2ϕ α( )( )

k 0=

p

∑

=  22 pbp l, α p 1– d p

dα p
--------- ϕ α( )

α l p– 1–
---------------- 

  .

F c0
2( )c0

l Pl Θcos( ){ } α{ } u α0
l/2 bp l,

p 0=

l/2[ ]

∑=

×
1–( )lδ l 2 p–( ) u u0–( )α p 1–

2l 2 p–
----------------------------------------------------------- d p

dα p
--------- ϕ α( )

α l p– 1–
---------------- 

  .

T̃

F c0
2( ) 1

T̃π
------- 

  3/2

e

c0
2

α0T̃
----------–

ϕ̃ T̃( ) T̃ , T̃
1
α
---= 

 d

0

∞

∫=

ϕ α( ) T2ϕ̃ T̃( ).=

 { } α{ } u T̃
2

 { } T{ } u.=

α p 1– d p

dα p
--------- ϕ α( )

α l p– 1–
---------------- 

  T̃
2 d p

dT̃
p

--------- ϕ̃ T̃( )T̃
l( )=
TECHNICAL PHYSICS      Vol. 47      No. 5      2002



RELATIONS BETWEEN MATRIX ELEMENTS 521
Taking into account (A13) and (A14) and canceling

by , we have the formula

(A15)

in the u–T representation, along with α–u representa-
tion (A10).

Consider the product of Sonine polynomial (3) and

the Maxwellian function as the function F( ). As has
been noted [16], a Sonine polynomial can be repre-
sented in the form

It is easy to see that after substituting y for 1 – s in
this formula, the following relation is valid:

In the T space, we accordingly have

(A16)

This can be shown by setting ( ) = ( , ) in
(A11) and using the properties of δ function deriva-
tives.

After the substitution of (A16) into (A15), the 
dependence of the terms in (A15) takes the form

(A17)

Denoting the right map of the Hermitian polynomi-

als in the u–T space by , combining (A15)–(A17),
and using (4), we finally have

(A18)

Here, bp, l are coefficients of the Legendre polynomials
(5). The Hermitian polynomials in the v space have

T̃
2

F c0
2( )c0

l Pl Θcos( ){ } u{ } T

=  
1–( )l

T̃0
l/2

------------ bp l,
δ l 2 p–( ) u u0–( )

2l 2 p–
---------------------------------- d p

dT̃
p

--------- ϕ̃ T̃( )T̃
l( )

p 0=

l/2[ ]

∑

c0
2

Sl 1/2+
r( ) x( ) 1

r!
---- dr

dsr
------- 1

1 s–
----------- 

 
l 3/2+ xs

1 s–
-----------– 

 exp 
 

s 0=

.=

α0

π
----- 

 
3/2

e
c0

2–
Sl 1/2+

r( ) c0
2( )

=  
1–( )r

r!
------------T̃0

l r+ dr

dyr
-------- 1

yl
---- 1

πy
------ 

 
3/2

e
v u0–( )2/y–

 
 

y T̃0=

.

s̃r l,
R T̃ T̃0,( ) M T̃0 c0,( )Sl 1/2+

r( ) c0
2( ){ }=

=  
T̃0

l r+

r!
----------

δ r( ) T̃ T̃0–( )
T̃

l
----------------------------.

ϕ̃ T̃ s̃r l,
R T̃ T̃0

T̃

d p

dT̃
p

--------- s̃r l,
R T̃ T̃0,( )T̃

l( ) T̃0
l r+

r!
----------δ p r+( ) T̃ T̃0–( ).=

hr l,
R

hr l,
R W W0,( ) M W0 v,( )Hr l, c0

2 c0z,( ){ } u{ } T=

= 
1–( )lT̃0

r l/2+

r!
--------------------------

bp l,

2l 2 p–
------------δ l 2 p–( ) u u0–( )δ p r+( ) T̃ T̃0–( ).

p 0=

l/2[ ]

∑
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orthogonal property (6). The functions  and Hi are
related by the formula

(A19)

Let us substitute (A19) in (6) and interchange the
orders of integration. Then, the inner integral with
respect to v divided by the normalizing factor gi will be
referred to as the left mapping of the Hermitian polyno-

mials into the u–  space. We denote it by (W, W0):

(A20)

Formulas (A19), (A20), and (6) specify the bior-
thonormality of the Hermitian polynomials in the u–T
representation:

(A21)

The functions  =  have the form

(A22)

Here,  are the coefficients of Sonine polynomial (3).
At small values of the indices, the validity of formula
(A22) can be verified by directly integrating formula
(A20). In the general case, in order to prove the validity
of (A22), it is sufficient to show that orthonormality
condition (A21) is satisfied with such a definition of the
left maps of the Hermitian polynomials. The proof is
given in Section 2.
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Abstract—A nonperturbative theory of energy loss by relativistic composite heavy highly charged ions collid-
ing with atoms is developed. A simple formula for effective stopping is derived. By composite ions, we mean
partially ionized atoms of heavy elements consisting of the ion core and several bound electrons that incom-
pletely neutralize the ion core charge. Such ions, which have, as a rule, a high charge (for example, partly
stripped uranium atoms), are used in many experiments performed with modern heavy ion accelerators. © 2002
MAIK “Nauka/Interperiodica”.
INTRODUCTION

In calculations of ionization losses suffered by
charged relativistic particles colliding with atoms, the
particles are usually assumed to be point. To such
objects, the perturbation theory is applied (see, e.g., [1–
3]), which requires the inequality Z/v  ! 1 to be fulfilled
(where Z is the charge of a projectile and v  is the rela-
tive impact velocity). Hereafter, we use atomic units
" = e = me = 1, where " is the Planck constant and e and
me are the charge and the mass of an electron, respec-
tively. In recent experiments, the charges of the ions
were so high that the Born approximation for them
becomes, strictly speaking, invalid [4] even if v  ≈ c (c is
the speed of light, which equals ≈137 in terms of atomic
units), because Z/v  is often ≈1 (see [5–9] and Refs.
therein). A nonperturbative theory of decelerating bare
relativistic heavy ions by free electrons has recently
been put forward [10]. In experiments, however, partly
stripped ions are often used. In addition, when an ion
moves in a medium, it acquires an equilibrium charge
that is smaller than the charge of the bare ion core
because of charge exchange processes and electron
losses. When the impact parameter is small (large) or
the momentum transfer is high (low), the ion behaves as
a bare unscreened (screened) charge. In other words, it
seems that an ion should be considered not as a point
particle but as an extended composite particle of size
comparable to the size of the electron shells occupied
by electrons when the ion acquires the equilibrium
(steady-state) charge. Such effects have been discussed
in terms of the perturbation theory [11–14]. However,
to adequately taking into account the presence of the
electron coat of a relativistic heavy ion, a nonperturba-
tive approach is needed.

In this work, we develop a nonperturbative theory of
energy losses suffered by relativistic composite heavy
1063-7842/02/4705- $22.00 © 20523
highly charged ions colliding with atoms. A simple for-
mula for effective stopping is derived.

1. INELASTIC CROSS SECTIONS

To calculate mean energy losses, we must know the
cross sections of inelastic processes accompanying col-
lisions between relativistic heavy ions with atoms. The
application of the perturbation theory for describing
collisions between highly charged ions and atoms,
when Z/v  ~ 1, is, strictly speaking, invalid because the
Born approximation fails in this case. Since the domain
of applicability of the Born approximation loses unitar-
ity, the probability exceeds unity [15]. Note that if the
charge of the ions is sufficiently high, the Born approx-
imation remains invalid even for collision energies as
high as desired. Nonperturbative approaches have been
discussed in [16–19] (the sudden perturbation approxi-
mation), [20–22] (the eikonal approximation and its
modifications), [23] (the numerical solution of the
Dirac temporal equation), and [24, 25] (the exact solu-
tion of the Dirac equation in the ultrarelativistic limit).
A nonperturbative approach that generalizes the
Glauber approximation [26–29] for the case of inelastic
relativistic ion–atom collisions has been suggested in
[30–32]. According to [30, 31], the cross section of the
transition of an N-electron atom from the state |0〉  (with
an energy ε0) to the state |n〉  (with an energy εn) when
the atom meets a relativistic ion is given by

(1)

σn d2b n| 1
i
v
---- XU X b; ra{ },( )d∫–

 
 
 

exp–∫=

× γ N– S 2– i
xav

c2
--------- εn ε0–( )

a

∑ |0exp

2

,
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where γ = 1 , S–2 = , and Sa is the
Lorentz transformation matrix for the wave function
that acts on the bispinor indices of an atomic electron
with a number a (related Dirac matrices are aa). Note

that  = γ(1 – vaa/c) [15]. The scattering potential U=
U(X, b; {ra}) is a function of the ion coordinate R =
(X, b) and the positions of atomic electrons {ra} (a =
1, …, N), ra = (xa, ya, za). The product d 2b in the inte-
grand means that integration is over the impact param-
eter plane; specifically, in the polar coordinate system,
d 2b = bdbdϕ, where ϕ is the polar angle of the vector b
in the impact parameter plane.

The designations X, b, and s are explained in Fig. 1.
The integrand in (1) is treated as the probability that an
atom colliding with an impact parameter b passes from
the state |0〉  to the state |n〉 . In the ultrarelativistic limit,
this probability thus represented is obviously coinci-
dent with the probability that is obtained upon using the
exact expression for the transition amplitude in the
ultrarelativistic case [24] and has a standard [26] non-
relativistic limit. For collisions between relativistic ions
and nonrelativistic atoms, when |0〉  and |n〉  in (1) are
double-component spinors, one can assume that
γ−NS−2 = 1 and exp[i xa(εn – ε0)/c2] = 1, so that for-
mula (1) takes the simpler form

(2)

2. ENERGY LOSSES IN COLLISIONS
WITH INDIVIDUAL ATOMS

Mean energy losses due to collisions are character-
ized by the effective stopping κ [26]. For simplicity, let

1 v 2/c2– Sa
2–

a 1=
N∏

Sa
2–

v
a∑

σn = d2b n 1
i
v
---- XU X b; ra{ },( )d∫–

 
 
 

exp– 0

2

.∫

x

y

z

X Atomic nucleus

Ion

y

b R r

s
e–

Fig. 1. Collision between an ion moving with a velocity v
and a one-electron atom whose nucleus is placed at the ori-
gin. The x axis is aligned with the vector v and the plane yz
is perpendicular to v and parallel to the impact parameter b,
so that the dashed rectangle lies in the impact parameter
plane. Thus, the radius vector R of the ion is represented as
R = (X, b), where X is the projection of R onto the x axis.
The vector r is the radius vector of the atomic electron l–,
and the projection of r onto the impact parameter plane is
represented by the vector s.
us consider first the collision of a relativistic multiply
charged ion with a hydrogen atom. As in [22], we
divide the range 0 < b < ∞ of the parameter b into three
subranges:

(3)

which correspond to small, moderate, and large values
of the impact parameters. We will calculate κ in each of
them and find the effective stopping by adding the par-
tial contributions. The exact values of the extremes of
the subranges are of minor significance, since the
dependence of κ on the parameters b0 and b1 turns out
to be logarithmic in each of the subranges and we can
correctly join together the contributions from adjacent
subranges and, accordingly, find the dependence of κ
on the joining parameters b1 and b0. (The domain of
applicability for such an approach is discussed below in
Section 3.)

(A) The subrange of small impact parameters, 0 <
b < b0. In collisions with a small impact parameter or a
high momentum transfer, atomic electrons can be
assumed to be free and at rest prior to scattering [1] and
the ion can be represented as a bare unscreened charge Z.
Then, we can take advantage of the results obtained in
[10]. According to numerical calculations [10], for
γ ≤ 10 and the ion charges ≤92, energy losses can be
expressed (with an accuracy of ≈1%) as

(4)

where

(5)

γ = 1/ , β = v /c, and η = 1.781, and the correc-
tions ∆LBloch and ∆LMott are essentially nonzero [10]
only if the impact parameter is small.

The Bloch correction [33] is given by

(6)

where ψ(z) is the logarithmic derivative of the gamma
function [34].

If ∆LBloch = 0 (Z/v  ! 1), the perturbation theory
applies. The case ∆LBloch = ln[v /(Zη)] corresponds to
the classical collision conditions (Z/v  @ 1), since
ψ(1) = –lnη and Reψ(1 + iZ/v )  –ln(Z/v ). The so-
called Mott correction [35], ∆LMott, arises because of
the difference between the Rutherford cross section and
the exact cross section of quantum relativistic scatter-
ing [36] in the Coulomb field. The Mott correction
value can be obtained only numerically; in applica-
tions, however, it is conveniently approximated (with

(A) 0 b b0; (B) b0 b b1; (C) b1 b ∞,< << << <

κ b b0<( ) 4πZ2

v 2
------------ Lpert ∆LBloch ∆LMott+ +( ),=

Lpert b0γv η( )ln
1
2
---β2,–=

1 β2–

∆LBloch Reψ 1 i
Z
v
----+ 

  ψ 1( ),+–=
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an accuracy of ≈1% for the charge of the colliding ion
Z ≤ 92 and γ ≤ 10) as [29, 37] ∆LMott = lnf(Z, v ), where

(7)

(B) The subrange of moderate impact parameters,
b0 < b < b1. Let us restrict our consideration to colli-
sions of an ion with light (the atomic nucleus charge
Za ! Z) nonrelativistic atoms. In this case, as in [11–
14], we can neglect the excitation of the electronic shell
of the ion and treat the striking composite ion as an
extended charge. In this subrange, it is assumed that an
atomic electron gains a momentum !c as a result of the
collisions, so that it can be viewed as nonrelativistic
both before and after the collisions (the related values
of b0 and b1 are evaluated in Section 3). Then, we can
use formula (2) for the cross section with the potential
in the Coulomb static form. Following [11–14, 38], we
assume that the core of the striking ion has a charge Z
and its Ni electrons are distributed around the core with
a density

where λ is the screening parameter.

The Coulomb interaction of an ion located at a point
R with an atomic electron located at a point r is
described as

where ν = Ni/Z is the relative number of electrons of the
ion.

In calculating the eikonal phase, the coordinates of
the electron and the ion are usually written in terms of
the parameters b and s, where b is the impact parameter
and s is the projection of the radius vector r = (x, s) of
the atomic electron on the impact parameter plane R =
(X, b). The standard expedient [16, 29] used for calcu-
lating the eikonal phase for the Coulomb potential is as
follows: U(R, r) = U((X, b); (x, s)) is replaced by
U'((X, b); (x, s)) = U((X, b); (x, s)) – U((X, b); (x, 0))
and the prime in the integral of U'dX is omitted. Integra-
tion yields

(8)

f Z v,( ) 1 0.222592β 0.042948β2–[+=

+ 0.6016 5.15289β 3.73293β2–+( )α

– 0.52308 5.71287β 8.11358β2–+( )α2 ]2
,

α Z/c.=

ρ r( )
N i

4πλ3
------------λ

r
--- r

λ
--- ,exp–=

U R, r( ) –
Z 1 ν–( )

r R–
-------------------- Zν

r R–
--------------- 1

λ
--- r R–– 

  ,exp–=

i
v
---- U Xd

∞–

+∞

∫ 2i
Z*
v
------ b s–

b
--------------ln=

+ 2iν Z
v
---- K0 b s–

1
λ
--- 

  K0
b
λ
--- 

 – ,
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where Z* = Z(1 – ν ) and K0(x) and K1(x) are the Mac-
donald functions.

A specific feature of collisions between multiply
charged ions and atoms is that the inelastic cross sec-
tions are, as a rule, rather large and far exceed atomic
sizes. With this in mind, we assume that s/b ! 1. Then,
expression (8) can be recast as

(9)

where the vector

(10)

obviously has the meaning of the momentum gained by
the atomic electron colliding with the ion at a given
impact parameter b (in (9) qs is the scalar product). The
limit values of q have the clear physical meaning:
q  2Z(1 – ν )b/(v b2) at b  ∞ corresponds to scat-
tering by a screened ion of charge Z(1 – ν), while q 
2Zb/(v b2) at b  0 corresponds to scattering by a
bare ion of charge Z. Note that the vector q can alterna-
tively be represented through the effective impact-
parameter-dependent ion charge Z(b):

Thus, inelastic cross section (2) for orthogonal |n〉
and |0〉  takes the form

where f0n = 〈n|exp(–iqr)|0〉  is the generalized form
factor.

The effective stopping is given by

(11)

where f = exp(–iqr).
According to [26], one easily finds that

(12)

where ∇  = ∂/∂r; then, according to (10),

(13)
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Therefore, the effective stopping in the subrange b0
< b < b1 is represented as

(14)

where

(15)

We will also assume (see Section 3) that

(16)

The asymptotics of the Macdonald functions are as
follows.

At small x,

at large x, 

Kν(x)  exp(–x).

Therefore, with conditions (16) met, we have

Substituting these values into formula (14), one
finds the contribution to the effective stopping from the
subrange of moderate impact parameters:

(17)
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(C) The subrange of large impact parameters, b1 <
b < ∞. Here, ion–atom interaction can be considered in
terms of the perturbation theory. At large impact param-
eters, the atom experiences the field of the screened ion;
that is, the apparent charge of the ion equals Z* = Z(1 – ν).
The related effective stopping is [22]

(18)

Following [1, Sec. 82], we have introduced the
“mean atomic energy” I:

(19)

The total stopping is obtained by adding the contri-
butions from the three subranges:

Eventually,

(20)

This formula can conventionally be generalized for
collisions between heavy relativistic composite ions
and complex atoms [26]: its left-hand side is multiplied
by the number Na of atomic electrons, and characteris-
tics (19) are calculated for the complex atom. More-
over, it is easy to see that, within this approach, one can
directly take into account the fact that the number Ni of
ion electrons (and hence v) becomes dependent on the
target parameters, ion charge, and relative impact
velocity if capture and losses are included into consid-
eration.

3. THE APPLICABILITY DOMAIN
OF THE APPROACH

The extremes of subranges (3) and the validity of the
approach need additional comments. The small param-
eter subrange 0 < b < b0 is the domain of applicability
for the Lindhard–Sorensen approach [10], which is
valid when the angular momentum l0 = v γb0 @ 1 (i.e.,
b0 @ 1/(v γ)). The subrange of moderate impact param-
eters b0 < b < b1 is the domain of applicability for the
eikonal approximation, which is valid only if atomic
electrons remain fixed for a collision time τ [26–30]
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(τ ≈ b /v  [29, 30]). In other words, the collision
time must be much less than the characteristic atomic
time (τ ! 1). In this case, the impact parameter is

bounded from above: b1 ! v / . Moreover, the
eikonal approximation in the form of (2) applies [29–31]
if an atomic electron, having collided with a relativistic
ion, remains nonrelativistic; i.e., its velocity increases
by ∆v  ! c in the Coulomb field (∆v  ≈ 2Z/(v b). From
this condition, we find that the impact parameter is
bounded from below as b0 @ 2Z/(v c). Thus, the
extremes of the subranges satisfy the following ine-
qualities:

(21)

Since the correct joining implies that the extremes
of the subranges are rejected from formula (20), we
required that inequalities (16), which can now be recast
in the more convenient form

(22)

be satisfied.

It is easy to see that inequalities (21) and (22) are
compatible and can be satisfied in many practical cases
where collisions between heavy relativistic ions and
nonrelativistic light (Za ! Z) atoms are investigated
(including the case Z ≤ 92 and γ ≤ 10 touched upon in
this work). It should also be noted that, although ine-
quality (22) holds in a wide range of the screening
parameter λ, it does not allow one to directly pass to the
limit λ  0 or λ  ∞ in formula (20).

4. ESTIMATES

Thus, the total effective stopping κ of a composite
ion with a charge Z* = Z(1 – ν) containing Ni = νZ elec-
trons and having a core charge Z can be found by for-
mula (20). Note that the ion was considered as an
extended charge. We introduce a correction for ion
charge extent δκ = κ – κpoint and a relative correction
χ = (κ – κpoint)/κpoint, where κpoint is the effective stop-
ping [3] of the point core with a charge Z*:

(23)

The behavior of the relative correction χ is shown in
Fig. 2. The need for the nonperturbative computing
method at large Z is illustrated in Fig. 3, where the val-
ues of δκ/(δκ)Born are plotted. Here, (δκ)Born is the value
of δκ calculated in the Born approximation [that is, with
formulas (20) and (23) at ∆LBloch = 0 and ∆LMott = 0]. In the

1 β2–

1 β2–

b0 @ 1/ v γ( ); b0 @ 2Z/ v c( ); b1 @ v γ.

1/ γv( ) ! λ  ! γv ; γ 1/ 1 β2– ,=
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=  
4π Z*( )2

v 2
-------------------- 2v 2

I 1 β2–( )
--------------------- β2– ∆LBloch ∆LMott+ +ln 

  .
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calculations, the screening parameter λ was calculated
by the formula [12, 14]

where a is the Bohr radius (basically, a can be consid-
ered as the parameter taking into account the effective
size of an ion in the presence of excited electronic
shells).

In commonly encountered cases Z @ 1 and Z* @ 1
(ν ! 1), we can leave only terms linear in ν; then,

(24)

where ∆LBloch and ∆LMott and their derivatives are calcu-
lated, as in (23), for the point charge Z*. Here, the first
term is the effective stopping of a point ion of charge
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Fig. 2. Relative correction χ vs. striking ion energy for the
ion core charge Z = 92. Figures at the curves stand for the
number Ni of screening electrons.
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Z*, while the second one is the correction for ion size
finiteness. Thus, with the extent of an ion taken into
account, the effective stopping κ of the ion rises notice-
ably compared with the stopping κpoint for a point ion of
the same charge Z*. The order of the energy loss can be
estimated as (κ – κpoint)/κpoint ≥ ν. For example, an atom
of uranium with ten bound electrons experiences stop-
ping about 10% stronger than a bare point core of
charge 82 and of the same mass.
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Abstract—Free vibration of a flexible plate floating on the free surface of a perfect incompressible finite-depth
heavy liquid are studied. The problem is solved in the shallow water approximation. Conditions for the exist-
ence of discrete frequencies below the waveguide cutoff frequency and associated localized (nonpropagating)
liquid vibration modes in the plate–liquid system are determined. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the last decade, a variety of works devoted to the
dynamic contact interaction of thin flexible plates with
the liquid surface has appeared. The need for solving
such problems arises in the analysis of the dynamics of
extended floating platforms (floating airfields). Con-
structions of this type have been examined, e.g., in [1–4].
Resonance structure–liquid interaction has received the
bulk of attention. Another issue of interest is the local-
ization of wave processes in the liquid near the contact
with a floating construction [2]. The latter problem
seems to be topical, since when the structure vibration
is localized in the surrounding volume of the liquid, the
vibration amplitude is maximal because of the lack of
radiation into the environment. It has been shown [4]
that such localized processes are absent for the case of
a round floating plate: its vibration is accompanied by
energy removal in the form of waves propagating over
the liquid surface.

The problem of the existence of localized vibration
modes in an infinite continuum in the presence of elas-
tically deformable body has been the subject of much
investigation [5–7]. It has been shown that the problem
is reduced to the existence of a discrete real spectrum of
vibration natural frequencies. This work is aimed at
confirming the fact that a model of floating structures in
the form of thin plates in contact with the liquid surface
in a finite-depth flat-bottom channel results in practi-
cally unfeasible conditions for resonant vibration
described above if the shallow water approximation is
used. The effect of bottom relief, as well as the choice
of another model of a floating structure, demands spe-
cial attention.

STATEMENT OF THE PROBLEM

Let a flexible plate of infinite length and width 2a
float on the surface of a channel of finite depth H. The
1063-7842/02/4705- $22.00 © 0529
channel is filled with a perfect incompressible heavy
liquid. The statement of the problem is linear. Let the
origin be at the bottom of the channel, and the y axis be
directed along the plate length. The z axis is directed
upward through the center of the plate (see the figure).
We consider small-amplitude vibrations of the liquid
and the plate. The motion of the plate is specified by the
function W(x, y, t) and is described by the equation

(1)

where W(x, y, t) is the displacement of the plate surface
from the equilibrium position, M = ρ0δ is the mass of
the plate per unit area, D = Eδ3/12 is the modulus of
rigidity, ρ0 is the material density, δ is the plate thick-
ness, E is Young’s modulus, and P is the pressure the
liquid exerts on the plate.

The boundary conditions to be met at the edges of
the plate are the absence of the bending moment and

M
∂2W

∂t2
---------- D

∂4W

∂x4
---------- ∂4W

∂x2∂y2
---------------- ∂4W

∂y4
----------+ + 

 + P x y t, ,( ),=

0 x

y

z

1

2

3

a–a H

λ

Flexible plate on the liquid surface: (1) plate; (2) free liquid
surface; and (3) channel bottom. λ is the wavelength.
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shear force:

(2)

where µ is Poisson’s ratio of the plate material.
The motion of the liquid is assumed to be potential,

that is, defined by the velocity potential Φ(x, y, z, t) that
satisfies the Laplace equation

(3)

with the boundary conditions

(4)

at the channel bottom (z = 0) and

(5)

on the free surface of the liquid (z = H), where g is the
gravitational acceleration.

The pressure experienced by the plate is given by

(6)

where ρ is the density of the liquid.
A solution will be sought in the form of surface

waves propagating along the y axis and decaying along
the x axis; that is,

(7)

at x  ±∞.
To find the motion of the plate floating on the sur-

face, it is necessary to know the distribution of the
hydrodynamic pressure acting on the plate.

HYDRODYNAMIC FORCES ACTING
ON THE PLATE

A solution to Eqs. (1)–(7) will be sought in the form
of waves propagating along the y axis with a wave num-
ber m and an arbitrary frequency ω:

(8)

Substituting (8) into Eqs. (1)–(7) yields the bound-
ary-value problem for ϕ(x, z) and w(x):

(9)

(10)

∂2W

∂x2
---------- µ∂2W

∂y2
----------+ 0, x a,±= =

∂3W

∂x3
---------- 2 µ–( ) ∂3W

∂x∂y2
--------------+ 0, x a,±= =

∇ 2Φ 0=

∂Φ
∂z
------- 0=

∂Φ
∂z
-------

∂W
∂t

--------  ( x a),
∂Φ
∂z
-------≤ 1

g
---∂2Φ

∂t2
----------  ( x a),>–= =

P x y t, ,( ) ρ∂Φ
∂t
-------

z H=

ρgW ,––=

Φ x y z t, , ,( ) 0

Φ x y z t, , ,( ) Re ϕ x z,( ) i my ωt–( )[ ]exp{ } ,=

W x y t, ,( ) Re w x( ) i my ωt–( )[ ]exp{ } .=

∂2ϕ
∂x2
--------- ∂2ϕ

∂z2
---------+ m2ϕ ,=

∂ϕ
∂z
------ 0, z 0,= =
(11)

(12)

Here, ϕ  0 at x  ∞. The pressure p(x) is given by

(13)

Boundary conditions (2) are written in the form

(14)

Applying Fourier transformations to (9)–(11) with
respect x, we obtain

(15)

where

(16)

The solution to boundary problem (15) has the form

The backward Fourier transformation of ϕF(z) with
respect to k at z = H with the use of convolution yields

(17)

where the function G(x) has the form

(18)

∂ϕ
∂z
------ φ x( )

iωw, x a≤–

ω2

g
------ϕ , x a>

z







H ,= = =

D
∂4w

∂x4
--------- 2m2∂2w

∂x2
--------- m4w+– Mω2w– p x( ).=

p x( ) ρ iωϕ gw–( ).=

∂2w

∂x2
--------- µm2w– 0, ∂3w

∂x3
--------- 2 µ–( )m2∂w

∂x
-------– 0,= =

x a.±=

∂2ϕF

∂z2
----------- k2 m

2
+( )ϕF– 0,=

∂ϕF

∂z
--------- 0, z 0,= =

∂ϕF

∂z
--------- φF k( ), z H ,= =

ϕF k z,( ) ϕ x z,( ) ikx–( )exp x,d

∞–

∞

∫=

φF k( ) φ x( ) ikx–( )exp x.d

∞–

∞

∫=

ϕF z( ) z k2 m2+( )1/2( )cosh

k2 m2+( )1/2
H k2 m

2
+( )

1/2
( )sinh

----------------------------------------------------------------------------φF k( ).=

ϕ x m H, ,( ) φ ξ( )G x ξ–( ) ξ ,d

∞–

∞

∫=

G x( ) 1
2π
------ H k2 m2+( )1/2( )cosh

k2 m2+( )1/2
H k2 m

2
+( )

1/2
( )sinh

----------------------------------------------------------------------------

∞–

∞

∫=

× ikx( )dk.exp
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Let us substitute the function φ(x), defined by (11),
into expression (17). Then, assuming that the liquid
flow and the plate vibrations are symmetric about the y
axis, we will come to the integral relationship

(19)

Here, the potential ϕ(x, m, H) equals ϕ1 for |x| < a and
ϕ2 for |x| > a. Relationship (19) is an integral equation
for the potential ϕ2(x, m, H) outside the plate. Having
found ϕ2(x, m, H), one can determine the potential
ϕ1(x, m, H) under the plate.

Now let us find the explicit form of the function
G(x), given by (18). We will integrate the right-hand
side of (18) over the complex plane using the residue
theorem. The integrand in (18) has first-order poles at
points k = ±ikn (n = 0, 1, 2, …), where kn satisfy the
equality

(20)

After integration, we obtain

(21)

Thus, the boundary-value problem (9)–(14) has
been reduced to the joint solution of integral equation (19)
and differential equations (12)–(14), which relate the
potential ϕ and the plate bend w. In the general case,
these equations are solved only numerically. Therefore,
we will assume that mH ! 1; that is, we will take
advantage of the shallow water approximation. In this
case, the second term in (21) becomes negligibly small
compared with the first one, since the quantities kn

[see (20)] tend to infinity for any n if H  0. Then, the
function G(|x |) can be approximated as

(22)

The same expression can be obtained from formula
(18). At small H, the integrand is represented as [H(k2 +
m2)]–1exp(ikx). The integral of this function gives
expression (22). Then, Eq. (19) with the function
G(|x |), defined by (22), takes the form

ϕ1 2, x m H, ,( ) iω w ξ m,( )G x ξ–( ) ξd

a–

a

∫–=

+
ω2

g
------ ϕ2 ξ m H, ,( ) G x ξ+( ) G x ξ–( )+[ ] ξ .d

a

∞

∫

kn
2 m2 πn

H
------ 

 
2

.+=

G x( ) m x–( )exp
2mH

----------------------------
kn x–( )exp

knH
----------------------------.

n 1=

∞

∑+=

G x( ) m x–( )exp
2mH

----------------------------.≈

ϕ1 2, x m H, ,( ) iω
2mH
------------ w ξ m,( ) m x ξ––[ ]exp ξd

a–

a

∫–=
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(23)

Let us find the potential ϕ2(x, m, H) outside the
plate. Doubly differentiating Eq. (23), we reduce it to
an equation for ϕ2(x, m, H) in the form

(24)

A solution to (24) that satisfied the condition
ϕ2(x, m, H)  0 at x  ∞ is represented in the form

(25)

The constant B will be found below.
For waves not propagating along the coordinate x to

exist, the condition γ2 > 0 or

(26)

must be met, where ω1 is the waveguide cutoff fre-
quency in the shallow water approximation.

If ω > ω1, the solution will involve waves transfer-
ring the energy to infinity. In this case, the problem of
finding a real discrete spectrum becomes radically dif-
ferent. Namely, it transforms to the problem of finding
a discrete spectrum along the axis of the continuous one
[8, 9]. Such a problem is beyond the scope of this work.

The constant B in (25) is found by substituting
expression (25) into (23) at x = a:

(27)

Now one can find the potential ϕ1(x, m, H) under the
plate (|x| < a) from Eq. (23) using the value of
ϕ2(x, m, H) (|x| > a). Substituting (25) into (23) yields

(28)

where

+
ω2

2mgH
--------------- ϕ2 ξ m H, ,( )

a

∞

∫
× m x ξ+–[ ]exp m x ξ––[ ]exp+( )dξ .

∂2ϕ2

∂x2
----------- γ2ϕ2– 0, γ2 m2 ω2

gH
-------.–= =

ϕ2 x m H, ,( ) B γ x–( ), xexp a.>=

ω ω1, ω1 = m gH<

B
iω γa( )exp

2H m am( )sinh γ am( )cosh+( )
---------------------------------------------------------------------------–=

× w ξ m,( ) mξ( )exp ξ .d

a–

a

∫

ϕ1 x m H, ,( ) iω
2mH
------------ w ξ m,( ) m x ξ––[ ]exp ξd

a–

a

∫–=

∫ + ∆ m ω,( )Y w( ) mx( )cosh ,

∆ m ω,( ) m γ–( ) am–( )exp
m am( )sinh γ am( )cosh+
--------------------------------------------------------------,=

Y w( ) w ξ m,( ) mξ( )exp ξ .d

a–

a

∫=
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Thus, relationship (28) defines the velocity potential
through the plate bend in the range |x | < a. Substituting
(28) into formula (13) for the pressure, one arrives at an
expression for the pressure experienced by the plate on
the side of the liquid:

(29)

DISCRETE SPECTRUM OF VIBRATION 
NATURAL FREQUENCIES

Consider first the case of a wide plate, for which
ma @ 1. Expression (29) for the pressure can be simpli-
fied in this case. Applying the definition

zexp(−z |x |)] = 2δ(x) for the delta function [10] to

the integral in the first term of (29), we will obtain the
approximate expression

(30)

Substituting expression (29) for p(x, m) into Eq. (12)
in view of (30), we come to an equation for the free
vibrations of the plate on the surface of the liquid:

(31)

Here,

A solution to (31) must satisfy boundary conditions
(14). Equation (31) is similar to the differential equa-
tion for forced vibrations of a beam that lies on an elas-
tic support with a stiffness coefficient K and is stretched
by a force N. It is known that the spectrum of the natural
frequencies for such a beam always lies above the cut-

off frequency  = K/Mq [9]. Then, the spectrum of the

p x m,( ) ρω2

2mH
------------ w ξ m,( ) m x ξ––[ ]exp ξd

a–

a

∫=

∫ + ∆ m ω,( )Y w( ) mx( )cosh ρgw x m,( ).–

[
z ∞→
lim

w ξ m,( ) m x ξ––[ ]exp ξd

a–

a

∫ 2w x m,( )
m

----------------------.≈

D
∂4w

∂x4
--------- N

∂2w

∂x
2

--------- K ω2Mq–( )w+– F x( ).=

N 2m2D, K Dm4 ρg, Mq+ M
ρ

m2H
-----------+ ,= = =

F x( ) ρω2

2mH
------------∆ m ω,( )Y w( ) mx( ).cosh=

ω2
2

natural frequencies of the plate lying on the surface of
the liquid is above the value

(32)

On the other hand, the desired spectrum must lie
below the waveguide cutoff frequency ω1 (see (26)).
Thus, the natural frequencies satisfy the inequalities

(33)

Inequalities (33) are the necessary condition for the
existence of the spectrum of natural frequencies.

A solution to Eq. (31) for plate vibrations symmetric
about x = 0 has the form

(34)

where
α1 = (m2 + (m4 + Ω2)1/2)1/2,

α2 = (–m2 + (m4 + Ω2)1/2)1/2,

Ω2 = (ω2Mq – K)/D.
The substitution of solution (34) into boundary con-

ditions (14) yields a set of equations for the unknown
constants C1 and C2:

(35)

where

This set of equations is homogeneous, since the
right-hand side involved the integral Y(w), which, in its
turn, is expressed in terms of C1 and C2. In fact, having
integrated (34) with respect of x from –a to a, we
express Y(w) through C1 and C2. Substituting the
expression found for Y(w) into (35), we come to a
homogeneous algebraic set of equations for C1 and C2.
Equating its determinant to zero, we will find an equa-
tion for the natural frequencies of the starting problem.
For a wide plate (ma @ 1), the frequency equation is
given by

ω2
Dm4 ρg+

M ρ/ m2H( )+
---------------------------------

1/2

.=

ω2 ω ω1.< <

w x m,( ) = C1 α1x( )cosh C2 α2x( )cos
F x( )

m4 Ω2+
-------------------,–+

C1 α1
2 µm2–( ) α1a( )cosh C2 α2

2 µm2+( ) α2a( )cos–  = A,

C1 α1
3 2 µ–( )m2α1–( ) α1a( )sinh

+ C2 α2
3 2 µ–( )m2α2+( ) α2a( )sin m am( )A,tanh–=

A
m2 1 µ–( )F a( )

m4 Ω2+
------------------------------------= .
(36)α2a( )tan
Q α2

2 µm2+( )2α1 m3 1 µ–( ) α2
2 µm

2
+( )α1 1 µ–( )2m6+ +

Q α1
2 µm2–( )2α2 m3 1 µ–( ) α1

2 µm
2

–( )α2 – 1 µ–( )2m4α1α2+
-----------------------------------------------------------------------------------------------------------------------------------------------------,–=
where

Q m4 Ω2+( )1/2 1
4m
------- mHD m4 Ω2+( ) m γ+( )

ρω2 m γ–( )
---------------------------------------------------------+ .=
Equation (36) characterizes the discrete spectrum of
the plate vibration natural frequencies. As follows from
calculations, roots of Eq. (36) appear in a very narrow
range of plate and channel parameters. Only a single
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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root has been found. This result agrees with that
obtained in [11], where the only natural frequency close
to the cutoff frequency ω1 has been found by numeri-
cally analyzing the initial equations for wide floating
plates. For vibrations asymmetric about x = 0, a fre-
quency equation similar to (36) (here omitted) has no
roots. It should be noted that, for a plate at the channel
bottom, a range of parameters where a spectrum of
eigenvalues may appear is rather wide and the number
of eigenvalues may differ [12]. In what follows, we will
consider reasons for such a substantial difference in the
natural frequency spectra of plates located on the sur-
face of the liquid and at the bottom of the channel. To
this end, it is convenient to consider plate vibrations on
the surface in the absence of flexural waves along the
coordinate x.

PLATE VIBRATIONS WITHOUT FLEXURAL 
WAVES ALONG THE COORDINATE x

Consider a plate for which flexural waves along the
coordinate x are absent. Let such a plate be called
“rigid.” This situation can be realized, e.g., if the plate
has ribbed stiffeners running normal to the y axis. In
this case, the plate vibration has a form of a flexural
wave propagating only in the y direction. Equation (12)
describing the propagation of such a wave is given by

(37)

Here, p(x, m, ω) is the pressure and w is a constant. The
amplitude of the pressure p(x, m) calculated by formu-
la (29) is expressed as

(38)

Substituting expression (38) into (37) yields the fre-
quency equation

or

(39)

where Ma(ω) is the associated mass of the liquid:

–Mω2 Dm4+( )w
1

2a
------ p x m ω, ,( ) x.d

a–

a

∫=

p x m,( )

=  
ρω2w

m2H
-------------- 1 γ mx( )cosh

m am( )sinh γ am( )cosh+
--------------------------------------------------------------– ρgw.–

Dm4 ρg+

=  ω2 M
ρ

m2H
----------- 1 γ ma( )tanh

ma m am( )tanh γ+( )
--------------------------------------------------–+

 
 
 

ω2 Dm4 ρg+
M Ma ω( )+
----------------------------,=

Ma ω( ) ρ
m2H
----------- 1 γ am( )tanh

am m am( )tanh γ+[ ]
--------------------------------------------------–

 
 
 

.=
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Equation (39) is a transcendental equation for fre-
quency ω. For given system parameters, its solution
specifies the natural frequency of a localized vibration
mode. Note that Ma depends on ω, since γ2 = m2 –
ω2/gH. The maximal value of the associated mass is
reached at large ma: Ma ≈ ρ/m2H. Thus,

and the range where the spectrum of vibration natural
frequencies may exist must meet the inequalities

(40)

Let us compare expression (39) for plate vibration
frequency with the cutoff frequency of operator (31)
(see (32)). It is easy to see that the frequencies coincide
at large ma. Consequently, we can conclude that the
range where the spectrum of vibration natural frequen-
cies ω of a plate deformed along the coordinate x can
exist is also defined by inequalities (40). In (40), the
upper limit ω1 specifies the waveguide cutoff frequency
and the lower one ω2, vibration frequency of the rigid
plate. It is obvious that the inequality

may be satisfied for certain plate and channel parame-
ters. In this case, the natural frequency spectrum for a
plate deformed along the coordinate x does not exist.
The condition ω2 < ω1, which is necessary for the spec-
trum to exist, can be represented as

or

where c is the velocity of sound in the plate.
Let us estimate the range of ω, varying according

(40). Ignoring higher order infinitesimals, we have

Obviously, this quantity is small: ∆ = O(m2H2).
Hence, it becomes clear why the solution to (36) gives
the only eigenvalue very close to the cutoff frequency
ω1. In turn, the solution to frequency equation (39) for
vibrations of a plate undeformable along the x axis
shows that this equation always has the single real root
ω∗  ≈ ω1. To this root, there corresponds a free vibration
mode localized with respect to the x axis and propagat-
ing along the y axis with a wave number m.

Physically, this result means that a thin flexible plate
on the liquid surface virtually copies the motion of the
surface itself (by virtue of boundary conditions (5)).

ω2
Dm4 ρg+

M ρ/ m2H( )+
---------------------------------

1/2

ω<=

ω2 ω ω1.< <

ω2 ω1,>

Dm2

gHM
------------- 1<

c2

12gH
-------------- δ

H
---- 

 
2

mH( )2 1,<

∆ ω1 ω2–( ) H/g
ρ0δ
ρH
-------- mH( )2.≈=
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This is because the force experienced by the plate on
the side of the liquid, which depends on the product
−ρgw and the inertial force Maω2w, far exceeds elastic
and inertial forces exerted by the plate itself. Thus, with
a flexible thin-walled structure floating on the surface,
the surface wave pattern remains almost unchanged.
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Abstract—An expression for the space charge limiting current of an electron beam in a vacuum coaxial drift
chamber is obtained in the strong field approximation. The expression is an analogue of the Bogdankevich–
Rukhadze interpolation formula for a cylindrical drift chamber. The space charge limiting currents in the coax-
ial and cylindrical chambers are compared. The space charge limiting current in the vacuum coaxial chamber
is numerically calculated and compared to analytical predictions. © 2002 MAIK “Nauka/Interperiodica”.
To increase the power of relativistic vacuum micro-
wave devices, it is necessary to solve the electron beam
transport problem. At high currents, the space self-
charge of an electron beam affects its motion signifi-
cantly. There exists a threshold current above which the
electrons of the beam are trapped in the drift chamber.
The laminar motion of the electron flow fails, and a so-
called virtual cathode forms. The threshold current for
this phenomenon is usually estimated with the
Bogdankevich–Rukhadze interpolation formula [1, 2]
or with the more exact Genoni–Proctor formula [3]. In
the works cited, electron beam transport through a
cylindrical channel in a vacuum was considered.
Approximate formulas derived in [1–3] are in good
agreement with direct numerical simulations, espe-
cially at relativistic beam energies.

In recent years, considerable research has been con-
centrated on high-power microwave devices with a
coaxial transport channel [4–8]. Currents injected into
the interaction chamber of these devices have a limit,
which is qualitatively similar to that imposed on elec-
tron beams injected into a cylindrical drift chamber.
The problem of critical current is particularly signifi-
cant for a coaxial ubitron [4, 5], which uses high-cur-
rent beams with a significant azimuth velocity and a
coaxial virtual cathode [8]. The effect of virtual cathode
on transport in a coaxial has not been analyzed quanti-
tatively although this is a key issue to be solved by a
designer of any coaxial microwave device with external
electron beam injection. Below, we will derive an
expression for the space charge limiting current in a
coaxial vacuum drift chamber following the formalism
developed in [1].

In the strong magnetic field approximation, we can
neglect the Larmor gyration and assume that the elec-
trons move along the magnetic field lines. Then, the
1063-7842/02/4705- $22.00 © 20535
potential produced by a hollow electron beam in a
coaxial can be found from the Poisson equation

(1)

where ρ and R are the inner and outer radii of the coax-
ial, respectively; r0 is the beam outer radius; ri is the
inner beam radius; j is the current density; and v || is the
beam longitudinal velocity.

Boundary conditions for Eq. (1) imply that the
potential vanishes on the metallic surfaces of the coax-
ial cylinders and is continuous, along with its deriva-
tives, at the inner and outer boundaries of the beam:

(2)

A solution to Eq. (1) subject to boundary conditions (2)
for the current density constant across the beam has the
form

(3)

(4)

(5)
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where

(6)

Superscripts I, II, and III in expressions (3)–(5) refer to
domains inside (r < ri) in (ri < r < r0), and outside

(r > r0) the beam, respectively; I0 = πj[  – ] is the
beam total current.

In a cylindrical drift chamber, the potential well
depth is maximum at the inner surface of the electron
beam. In a coaxial drift chamber, the maximum is
observed inside the electron beam. As follows from for-
mula (4), its position is given by 

(7)

G 1 2 R
r0
---- 2

ri
2

r0
2 ri

2–
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ri

r0
----.ln+ln+=
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rmax ri 1
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34

Fig. 1. Normalized current i of the electron beam in a coax-
ial drift chamber versus injection current for the transverse
electron beam velocity βw = 0.1 (1), 0.2 (2), 0.28 (3), and
0.5 (4). The drift chamber parameters are R = 15.2 cm, ρ =
6.7 cm, γ = 2, ri = 9.2 cm, and r0 = 12.6 cm.
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Fig. 2. Space charge limiting current imax = Imax/J0 of the
electron beam in a coaxial versus radius ρ of the inner con-
ductor. (1) Direct calculation and (2) approximate formula (11)
with γ = γ|| = 2. The remaining parameters are the same as in
Fig. 1.
and its value is

(8)

To find the space charge limiting current of the elec-
tron beam, it is necessary to consider the potential
dependence of v || in expression (8) and maximize the
current by differentiating with respect to beam potential
[9]. This procedure must use the integrals of electron
motion in the space charge field and in a strong mag-
netic field [1]:

(9)

(10)

where v ⊥ 0 and v ||0 are the transverse and longitudinal
velocities of the electrons at the entrance to the drift
chamber.

As a result, we obtain an expression for the space
charge limiting current of an electron beam in a coaxial
vacuum chamber:

(11)

where γ|| = (1 – /c2)–1/2 and IA = mc3/e ≈ 17 kA.

In the limit ρ  0, expression (11) is reduced to
the well-known Bogdankevich–Rukhadze interpolation
formula [1]

(12)

For a thin beam (a = r0 – ri ! r0) away from the
metallic walls (a/r0 ! min{ln(R/r0), ln(r0/ρ)}), formula
(11) yields an expression for the space charge limiting
current of an electron beam in a coaxial:

(13)

i.e., the space charge limiting current of a thin electron
beam in a coaxial is ln(R/ρ)/ln(r0/ρ) times that in a
cylindrical drift chamber. To estimate the accuracy of
approximate analytical expressions (11) and (13), we
numerically solved Poisson equation (1) under bound-
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ary conditions (2) with regard for integrals of motion (9)
and (10) using the Newton method of solution of non-
linear difference equations [10]. In the calculations, we
used the parameters of the coaxial and an electron beam
for a high-power coaxial ubitron under development [4]:
ρ = 6.7 cm, R = 15.2 cm, and γ = 2. Figure 1 shows the
dimensionless current i = I/J0 versus injected current I0
for different transverse beam velocities βw = v ⊥ 0/c(γ|| =

γ/(1 + γ2)) with ri = 9.2 cm and r0 = 12.6 cm. The
current in the drift chamber was calculated as

(14)

where v ||(r) is a solution to system of equations (1), (2),
(9), and (10).

Qualitatively, the dependence of the beam current in
the coaxial drift chamber on the injection current is the
same as that in the cylindrical drift chamber. The cur-
rent first grows, reaching the maximum value Imax (the
space charge limiting current), and then decreases with
increasing injection current. Figure 1 shows the current
fall only up to the point where the electron beam veloc-
ity vanishes at any cross section. Further calculations in
the framework of this model are invalid. As follows
from Fig. 1, the dimensionless current i is almost inde-
pendent of γ|| (or of βw). This indicates that the depen-
dence of the space charge limiting current in the coaxial
drift chamber on γ and γ|| is predicted by analytical
expression (11) with a high accuracy and is the same as
that for the cylindrical chamber. The table compares the

space charge limiting current calculated directly ,
space charge limiting current in the coaxial drift cham-

ber  determined from formula (11), and space
charge limiting current J0 in the cylindrical chamber at

βw
2

I I0
2

v ||0 r0
2 ri

2–( )
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Fig. 3. Space charge limiting current of the electron beam
versus beam position in the coaxial drift chamber. (1) Direct
calculation and (2) approximate formula (11). The beam
thickness is a = 1 cm and γ = γ|| = 2. The remaining param-
eters are the same as in Fig. 1.
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the same electron beam radii, γ, and γ||. As follows from
these data, the accuracy of approximate formula (11)
significantly depends on the longitudinal energy γ|| of
the electron beam. In particular, at γ|| = 2 (βw = 0), the

difference between  and  is ≈18.2%. With γ||
decreasing to 1.41 (βw = 0.5), this difference becomes
≈26.8%. It is natural to expect that, for γ|| @ 1, the dif-
ference between the results of the direct calculation and
those given by approximate formula (11) will be much
smaller. For example, at γ = γ|| = 10, this difference is
≈3%. As follows from the last two columns of the table,
the coaxial chamber can transport much higher currents
than the cylindrical one.

Figure 2 shows the space charge limiting current

 versus radius of the inner conductor of the coaxial

line at γ = γ|| = 2 (curve 1) and  calculated from for-
mula (11) (curve 2). The results obtained by the direct
calculation and by approximate formula (11) are seen
to be in good agreement throughout the range of ρ.
When the radius of the coaxial approaches the inner
radius of the beam, the space charge limiting current in
the coaxial grows significantly. This is because the

Imax
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Imax
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a, cm1 5 7

15

1

2

2 4 6

20

30

25

35

10

3

Fig. 4. Space charge limiting current of the electron beam
versus beam thickness a. (1) Approximate formula (11),
(2) direct calculation for the coaxial drift chamber, and
(3) formula (12) for the cylindrical chamber. The beam
average radius is (ri + r0)/2 = 10.95 cm and γ = γ|| = 2. The
remaining parameters are the same as in Fig. 1.

Table

βw , kA , kA J0, kA

0 19.70 24.09 11.65

0.1 16.21 20.73 11.26

0.2 14.50 18.73 10.17

0.28 12.58 16.45 8.94

0.5 6.54 8.93 4.85

Imax
calc Imax

coax
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space charge of the electron beam near the metallic sur-
face is screened. As a result, the potential well created
by the electron beam smooths out, and, consequently,
the decrease in the beam longitudinal velocity becomes
smaller.

Figure 3 illustrates the space charge limiting current
of the electron beam of a constant thickness a = 1 cm
versus its position in the coaxial drift chamber. As fol-
lows from Fig. 3, the limiting current increases signifi-
cantly as the inner boundary of the beam approaches
the metallic walls of the coaxial line. Such behavior
(like that shown in Fig. 2) is associated with a signifi-
cant decrease in the potential well when the beam
approaches the metallic surface. When the thin electron
beam approaches the outer conductor of the coaxial
line, the space charge limiting current tends to that in
the cylindrical drift chamber. Curves 1 and 2 in Fig. 3
suggest that, as in Fig. 2, the direct calculations and the
predictions are in good agreement.

Figure 4 plots the space charge limiting current in a
vacuum against beam thickness for the constant beam
average radius rav = (ri + r0)/2 = (ρ + R)/2. When the
beam thickness increases from 0.1 to 8.5 cm (the coax-
ial is totally filled), the space charge limiting current
calculated directly (curve 2) grows more than twofold.
As in Figs. 2 and 3, the difference between the predic-
tion (curve 1) and direct calculation (curve 2) is small.
As the beam thickens, this difference decreases further.
For comparison, Fig. 4 plots the space-charge limiting
beam current in the cylindrical vacuum drift chamber
calculated from formula (12). Curves 1 and 3 suggest
that in the coaxial drift chamber, the limiting current is
significantly higher than that in the cylindrical cham-
ber. The ratio between the space-charge limiting cur-
rents in the coaxial and cylindrical drift chambers
increases with growing beam thickness. This differs
significantly from the situation with the thin beam
(Fig. 3), where the limiting currents in the coaxial and
cylindrical drift chambers increase to the same extent
when the electron beam approaches the metallic sur-
face.
Thus, asymptotic expression (11) obtained in this
paper gives an estimate of the current in a coaxial vac-
uum drift chamber. It has been shown numerically that
the accuracy of this formula is significantly improved
when the longitudinal electron beam energy rises. In
particular, at γ|| = γ = 2, the discrepancy between the
analytical formula and the direct calculation is less than
20%; at γ|| = γ = 10, it is reduced to 3%.
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Abstract—A method for constructing an unsteady solution to the MHD equations is formulated on the basis
of a self-similar extrapolation of the solution to the Shafranov equations. © 2002 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

In an ideal conducting fluid model, macroscopic
plasma motions are described by the MHD equations [1]

(1)

(2)

(3)

For a spatially bounded, axisymmetric plasma con-
figuration, steady solutions to Eqs. (1)–(3) can be con-
structed by using the Shafranov equation for the mag-
netic surfaces [2]:

(4)

Analytic solutions to this equation were obtained in
a number of papers [2–4].

As for the time-independent problem, the possibility
of solving it on the basis of the self-similar approach
was demonstrated earlier for unsteady plasma motions
belonging to the class of such motions of continuous
media whose velocities are proportional to the distance
from the center of symmetry (see [5, 6] and the litera-
ture cited therein).

In the present paper, a method is proposed for con-
structing an unsteady solution to Eqs. (1)–(3) for an
axisymmetric plasma configuration whose steady state
is described by the solution to the Shafranov equation.
The desired solution refers to the above-mentioned
class of two-dimensional unsteady plasma motions.

SELF-SIMILAR EXTRAPOLATION

We denote by a = a(t) and b = b(t) the characteristic
radial and axial dimensions of a moving plasmoid; to be
specific, we set a(0) = R and b(0) = L, where R and L
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are the corresponding dimensions of the plasma config-
uration in a steady state. We start by considering the
class of nonrotating plasma motions, in which case the
plasma density and the components of the plasma
velocity have the form

(5)

Here, ξ = r/a and η = z/b are self-similar variables and
the function ϕ is determined by the steady-state plasma
density distribution, ϕ(χ, ζ) = ρ(r, z), where χ = r/R and
ζ = z/L. We substitute the expressions for the velocity
components into the condition for the magnetic field
lines to be frozen in the plasma and obtain the equations

(6)

(7)

(8)

It is easy to see that the general solution to Eqs. (6)–
(8) has the form

(9)

where f, g, and h are certain functions.
Note that solutions (9) can be derived in a simpler

way, i.e., from the following consequence of the frozen-
in condition for the magnetic field lines:

(10)

where S is any quantity conserved during the plasma
motion.
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ȧ
a
--- Bz– r

ȧ
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By successively setting S equal to ξ, ϕ, and η, we
immediately obtain solutions (9) from expression (10).

On the other hand, the magnetic field components in
an axisymmetric plasma configuration can be repre-
sented as

where ψ and J are, respectively, the magnetic flux and
total current through a ring of radius r, perpendicular to
the z-axis:

A comparison between the expressions for the radial
and axial components of the magnetic field yields the
following expressions for the functions f and h:

(11)

where the function Ψ satisfies the condition Ψ(ξ, η) =
ψ(r, z, t).

For the class of motions under consideration, the
above expressions for Bϕ give b = L, provided that the
axial component of the current density is nonzero. In
this case, it is only possible to speak of the solutions
that describe plasma configurations with the time-
dependent transverse dimension. The solutions describ-
ing plasma configurations whose longitudinal and
transverse dimensions are both time-dependent are pos-
sible only when the current density distribution is
purely azimuthal, i.e., when J = 0.

The formulas derived above imply that, for the class
of motions under consideration, the desired solution to
the MHD equations can be obtained by generalizing the
solution to the Shafranov equation (4). For the function
Ψ(χ, ζ) = ψ(r, z), this equation can be written as

(12)

where, for brevity, we introduce the notation

The solution to Eq. (12) enables us to specify the
function Ψ in relationships (11). Clearly, this can be
done under the assumption that the pressure of a mov-
ing plasma is a function of the magnetic flux, p = P(ψ),
as is the case in a steady state plasma.

In order to determine how the dimensions of the
plasma configuration depend on time, we must insert

Br
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expressions (5), (9), and (11) into the Euler equation (3).
As a result, we obtain

(13)

We can readily see that, if the function Ψ(χ, ζ) sat-
isfies Eq. (12), then the solution to the ordinary differ-
ential equations (13) has the form

As was mentioned above, for a steady-state plasma
configuration with a purely azimuthal distribution of
the current density, a solution is possible in which the
transverse and longitudinal dimensions of the plasmoid
are both time-dependent:

where u and w are constants. Hence, we have shown
that, using a self-similar extrapolation of the solution to
the Shafranov equation, it is possible to construct an
unsteady solution to the MHD equations that describes
how the dimensions of an axisymmetric plasma config-
uration change with time.

TOROIDAL CONFIGURATION

As an illustration, let us consider the solution to the
Shafranov equation in the case of a toroidal plasma
configuration with an azimuthal distribution of the cur-
rent density [3]:

(14)

where R is the radius of the magnetic axis and ψ0 and α
are constants.

Expression (14) is a solution to the Shafranov equa-
tion (4) with J = 0:

(15)

Assuming ψ0 = 8π2j0/cRα, we can express the den-
sity of the current flowing in the plasma column as jϕ =
–j0r/R. Near the magnetic axis, we have

(16)

where q = r – R.
Setting α = λ2 + 1 and λ = L/D, we see that the cross

section of the magnetic surface (16) is an ellipse with
semiaxes L and D. The small parameter is the ratio of
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the transverse dimension of the plasma column to
the radius of the magnetic axis. In accordance with
expression (15), the plasma pressure in a thin column is
equal to

(17)

where Q = 2π L2/αc2. The magnetic field components
are thus equal, within the same accuracy, to

(18)

As in the case of a straight plasma column with an
elliptical cross section [4], the magnetic field (18) is a
superposition of the external quadrupole confining field
and the field of the plasma column:

(19)

where

Now, we construct an unsteady solution for a toroi-
dal plasma configuration, assuming that the pressure of
a moving plasma satisfies the same condition as the
pressure of an immobile plasma:

In this case, from solution (14), we find

Following the above procedure, we obtain an
expression for the magnetic flux in a moving plasma:

Near the magnetic axis, the cross section of a mag-
netic surface in a moving plasma column

is an ellipse with semiaxes b and d = aD/R. The pres-
sure of a moving plasma is described by an expression
analogous to formula (17):
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In the unsteady solution, the current density in the
plasma column is time-dependent:

(21)

where µ = b/d is the ratio of the semiaxes of the cross
section of the column.

The magnetic field components are described by the
expressions

(22)

which can be represented in a form analogous to
expressions (19):

(23)

Hence, the solution obtained describes the temporal
behavior of the dimensions of a toroidal plasma column
in which the pressure, current, and external quadrupole
magnetic field evolve according to formulas (20), (21),
and (23).

ROTATING PLASMA

Here, we consider a plasma configuration with a
purely azimuthal current density distribution. In this
case, condition (1) for the magnetic field lines to be fro-
zen in a plasma rotating steadily with the velocity V =
Vϕeϕ has the form

(24)

It is easy to see that, if the plasma rotates as a solid
body (Vϕ = ωr, where ω is a constant quantity), then
condition (24) reduces to the condition ∇  ⋅ B = 0.

Unlike in the case of an immobile plasma, the equi-
librium condition for an axisymmetric configuration of
a rotating plasma contains the centrifugal term

A known solution to the equilibrium equation
describing an immobile plasmoid can be readily gener-
alized to a plasma configuration rotating as a single
entity. To do this, we must choose the plasma density
distribution to be

(25)

where β is a constant.
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With this choice, the confinement of a rotating
plasma is ensured by imposing an external uniform
magnetic field Bext = βez; the term describing the inter-
action of this field with the azimuthal current exactly
cancels the centrifugal term.

Let us consider the time-dependent problem

(26)

where Ω = ω(R/a)2 is the angular velocity of plasma
rotation.

In order to apply the results obtained in the previous
section, we must take into account the fact that the mag-
netic flux density in a rotating plasma is equal to ψ +
πβr 2, where ψ is the magnetic flux density in an immo-
bile plasma. That is why, in the time-dependent prob-
lem, the magnetic field in expressions (9) and (11)
should be calculated by making the replacement
Ψ(ξ, η)  Ψ(ξ, η) + πβR2ξ2; in other words, the fro-
zen-in condition for the magnetic field lines can be sat-
isfied only if the external uniform magnetic field Bext =
β(R2/a2)ez is unsteady.

In this case, using formula (25), we obtain the fol-
lowing expression for the function ϕ in the time-depen-
dent problem (26):

Then, we substitute expressions (9), (11), and (25)
into the Euler equation (3) to arrive at the following
equations for the dimensions of a rotating plasmoid:

As may be seen, these equations can be reduced to
an ordinary differential equation describing the time
evolution of the characteristic transverse dimension of
the plasmoid only when the quantities Γ and Λ depend
in a certain fashion on the self-similar variables: Γ =
C1F(ξ, η) and Λ = C2F(ξ, η), where F is some function
and the coefficients Ci are independent of the self-sim-
ilar variables.

Thus, for the toroidal plasma configuration analyzed
in the previous section, we have Γ = ψ0(α – 1)R4ξ2 and
Λ = ψ0R2L2ξ2. Consequently, the time evolution of the
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radius of the magnetic axis of the toroidal configuration
of a rotating plasma is described by the equation

(27)

The solution to Eq. (27) with b = L can readily be
reconstructed in the case of small oscillations about a
steady state. We linearize this equation and obtain

where ωr = ω .
For a thin plasma column, we have d = Da/R; con-

sequently, the transverse dimension of the column
changes in a similar fashion.

It should also be noted that the radial component of

the plasma velocity can be represented as Vr =  + q /d.
This indicates that, to second order, the ratio q/d is a
self-similar variable. We thus can conclude that the
results obtained for a thin toroidal plasma column cor-
respond to the solution to the MHD equations in the
self-similar approximation. In my earlier paper [7], this
approach was used to study the dynamics of an electron
ring.
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Abstract—A model of chemical bonds in manganates that allows for one-electron covalent σ bonding between
manganese and oxygen ions is suggested. One-electron covalent bonding results in the strongly correlated state
of electrons due to exchange interaction between the electrons when they are shared by the cation and anion
orbitals. The correlated state shows up as the spatial ordering of electrons and the ordering of their spins, caus-
ing the spin-ordered electron lattice to form. In this model, electrical conduction in manganates takes place
when the electron lattice (more precisely, its part) shifts from one site of localization to another. The conduc-
tivity of the material depends on the type of the spin order of electrons in the electron lattice and on the energy
of localization, which is defined by the energy of one-electron σ bonding. The model also implies the strong
cationic polarization of anions, which facilitates the 3s2p hybridization of anions and the transition of one of
the pairs of 2p electrons from the singlet state to the triplet one. The 3s2p hybridization of anions favors the
formation of the spin-polarized electron lattice (the electron spins are parallel) and the ferromagnetic ordering
of manganese ions. Under these assumptions, the effect of giant magnetoresistance is explained by a change in
the conduction mechanism when an external voltage is applied. In this case, the conduction mechanism typical
of ionic crystals changes to that specified by the spin-polarized electron lattice. © 2002 MAIK “Nauka/Inter-
periodica”.
INTRODUCTION

The electrical and magnetic properties of doped
manganates have been the subject of extensive investi-
gation in recent years, since these compounds are can-
didates for high-sensitivity magnetic detectors in resis-
tive magnetic memory devices, magnetic read heads,
and devices using spin-polarized transport [1].

Of particular interest are doped manganates where
the transition to magnetic ordering is attended with the
insulator–metal transition [2]. Such a correlation
between the magnetic and transport properties in man-
ganates has long been explained in terms of the theory
of double (indirect) exchange [3]. This theory assumes
that neighboring Mn3+ and Mn4+ ions exchange elec-
trons through an O2– oxygen ion in between.

However, recent experimental findings, such as the
effect of increasing Tc in a magnetic field [4] or the
effect of giant magnetoresistance [5]; the coexistence
of charge ordering and ferromagnetism [6]; and ferro-
magnetic ordering in CaCu3MnO12 [7] and Tl2Mn2O7

[8] compounds, where Mn3+ ions are absent, have
thrown doubt on the double exchange mechanism as the
mechanism governing the manganate behavior [9].

The discovery of local distortions in the doped man-
ganate lattice [10] has been a breakthrough in the study
of these compounds. It has been shown that the real lat-
tice radically differs from the “averaged” lattice, which
is determined by X-ray diffraction. These findings sug-
1063-7842/02/4705- $22.00 © 20543
gest an intimate correlation between the magnetic,
transport, and structural properties. However, the ques-
tion of how lattice local distortions may affect the elec-
tron lattice and magnetic ordering remains to be
answered, and the nature of these distortions is still
unclear.

In this work, we demonstrate that the interplay
between the magnetic, transport, and structural proper-
ties can be understood by taking into consideration the
strong covalence of manganese–oxygen bonds and
treating it as the formation of one-electron σ bonds
between ions of these elements. Such an approach has
already been invoked for the explanation of antiferro-
magnetic ordering in manganates [11]. We will show
that it also helps in explaining ferromagnetic ordering.
Moreover, this work poses a more general problem,
namely, to show (by an example of manganates) how
the highly correlated state of electrons forming one-
electron σ bonds may arise through electron exchange,
this state being responsible for both magnetic ordering
and high conductivity.

THE CONCEPT OF ONE-ELECTRON COVALENT 
σ BONDING IN MANGANATES

Chemically, manganates are intermediate between
ionic and covalent crystals, as evidenced, for example,
by the Polling electronegativity values (1.55 for Mn and
3.44 for O). The difference 1.9 means that bonds among
002 MAIK “Nauka/Interperiodica”
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these elements are roughly 40% covalent and 60% ionic
[12]. Recent high-resolution spectroscopy data [13]
support the strong bond covalence in manganates.
A high degree of covalence must show up largely in the
behavior of valence electrons, since covalence means
the sharing of these electrons by surrounding ions while
ionicity means their localization on anions. The situa-
tion where valence electrons in a solid are localized on
anions and, at the same time, shared by cations is diffi-
cult to imagine. For molecules, such bonding has been
considered as the resonant state of structures with
purely covalent and purely ionic bonds [12]. For ionic
crystals, however, such a concept is hardly applicable.
The formation of ordinary two-electron σ bonds in res-
onant structures, which is the basic idea in this concept,
seems unlikely, because it requires considerable lattice
strains. In our opinion, the most acceptable explanation
of this situation is that each cation–anion pair shares
only one electron, which would be localized on the
anion in the case of purely ionic bonding.

Let us assume that ionic bonds, which specify the
crystal structure of manganates, prevail at high temper-
atures (above Tc). As the temperatures lowers, addi-
tional covalent one-electron σ bonds between Mn and
O ions appear. This effect causes a slight distortion of
the crystal lattice and a reduction of the crystal symme-
try, since a rise in the bond energy between the ions
decreases the interionic spacing (it becomes smaller
than the sum of the ionic radii).

We will consider one-electron covalent bonds in
manganates as a set of localized bonds between neigh-
boring ions. Below, it is shown that such a representa-
tion is valid because electrons occupying hybridized
orbitals of the same ion interact with each other.

Let us also assume that manganese ions in the octa-
hedral environment of oxygen ions produce covalent
bonds with them through six equivalent hybridized
3d 24s4p3 orbitals. The energy level of these orbitals is
higher than that of dxy , dyz, and dxz orbitals. This is
because the higher energy 4p state is present and the d
levels split in the high octahedral electric field. There-
fore, one can assume that the energy gap between
hybridized and unhybridized d orbitals is sufficiently
large for the transition of a Mn3+ ion from the high-spin

state ( ) to the low-spin one ( ) to be energeti-
cally favorable. Eventually, all hybridized orbitals of
the Mn3+ ion will be unoccupied and accessible for
covalent bonding. The possibility of the low-spin state
for a Mn3+ ion in manganates was also discussed in
[14].

An O2– ion in manganates is also in the octahedral
environment of the cations, two of which are manga-
nese ions located on one of the octahedron axes. To pro-
duce one-electron covalent σ bonds with these cations,
the O2– ion may use its 2p orbital or two hybridized
3s2p orbitals facing Mn ions. The possibility of using
the 2p orbital is beyond question and was considered in

t2g
3 eg

1
t2g

4

[11]. The possibility of 3s2p hybridization needs clari-
fication.

Because of the great energy difference between the
2p and 3s levels for an oxygen atom, 3s2p hybridization
is considered to be impossible. However, for an O2– ion
in the ionic crystal lattice, this hybridization seems to
be likely for a number of reasons. First, the energy level
of the 2p states in an O2– ion comes closer to the 3s
level, making the ion unstable. Second, the ion, being
located between two Mn cations, which have the rather
large charge and the relatively small ionic radius, will
experience a high polarization due to the cations. The
energy of polarization may partially compensate for the
energy spent on the excitation of the two 2p electrons
of the O2– ion into the 3s2p state. Finally, the energy
spent on hybridization will be compensated for by the
energy gain due to the formation of stronger bonds
between Mn and O ions.

Let us compare one-electron covalent bonds pro-
duced with the participation of the 2p and 3s2p orbitals
of an O2– ion (1e–σ and 1e–σ*, respectively). Since a
1e–σ bond involves shorter 2p orbitals, its energy is
higher than that of a 1e–σ* bond, so that this bond is
preferable for the stable state of the crystal. However, a
1e–σ bond may form if the cation and anion approach
close enough for overlapping with the 2p orbital be pos-
sible. This depends on the deformability of the ionic
sublattice and on the state of the electron shell of the
cation. The nonspherical shape of the electron shell of
a Mn3+ ion in the low-spin state makes its approach to
the anion in the plane where a pair of t2g electrons is
located difficult, because the electrons of the anion
repel strongly from this pair. Therefore, in this plane,
overlapping with the more extended 3s2p orbital of the
anion to produce 1e–σ* bonds remains possible,
although the energy gain of the system is smaller in this
case.

Another difference between 1e–σ and 1e–σ* bonds
is the spin state of the anion electron pair, which forms
these bonds. In the former case, the pair is in the singlet
state, since it belongs to one p orbital (Pauli’s exclusion
principle). In the latter, the pair is in the triplet state,
since the two p electrons must pass to two hybridized
3s2p orbitals and their spins must be parallel (the gen-
eralized Hund rule).

SPIN ORDERING OF ELECTRONS
AND ELECTRONIC CRYSTALLIZATION

When the anion produces two one-electron σ bonds
with two neighboring cations, the spin state of the anion
electron pair, taking part in bonding, defines the orien-
tation of the electron spins on the hybridized orbitals on
the cations (Fig. 1). However, in the presence of six
unoccupied hybridized orbitals, either cation can share
six electrons, one from each of the six surrounding
anions. The spin directions in these six electrons must
coincide according to the Hund rule for the hybrid d 2sp3
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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orbitals of the cation. Hence, if all anions and all Mn
ions are bonded by one-electron σ bonds, all electrons
producing these bonds will be spin-ordered (Fig. 2).

It should be remembered that the Hund rule reflects
the dependence of the electron system energy on the
arrangement of the spins and that the presence of this
dependence means the presence of an additional inter-
action known as exchange interaction. Then, one can
argue that the spin ordering of electrons involved in
covalent bonding results from two exchange interac-
tions: between electrons on the anion orbitals and
between the same electrons also occupying the cation
orbitals.

In our case of one-electron bonding, the sign of the
exchange interaction on the cation orbitals is always
positive, while the exchange interaction between the
electrons on the anion orbitals may be both positive (the
triplet pair) and negative (the singlet pair) (Fig. 2), as
has been discussed above.

If the exchange interaction on the anion and cation
orbitals is positive, the spins of the electrons involved
in one-electron σ bonding will be parallel; that is, 100%
spin polarization of the electrons will take place. If the
signs of the exchange interactions on the anion and cat-
ion orbitals are opposite, the electrons become spin-
ordered so that the spins of the electrons on neighboring
cations are antiparallel.

The exchange interaction leads not only to the spin
ordering but also to the spatial ordering of the electrons
involved in covalent bonds. This can be considered as
the formation of the electron lattice (electron crystalli-
zation). Such ordering resembles the formation of a
Wigner crystal [15]. The essential difference, however,
is that a Wigner crystal arises as a result of the purely
electrostatic repulsion between electrons in a uniform
field of a positive charge. Therefore, it forms only at
low temperatures, when the electrostatic repulsion
energy exceeds the thermal energy of electrons.

In our case of electron lattice formation, the energy
of purely electrostatic repulsion adds up to the energy
of the exchange interaction between the electrons. That
is why electronic crystallization is observed at high
temperatures, such as Tc.

The participation of electrons in covalent bonding
causes the localization of the electron lattice. The
energy of localization depends on the energy of a one-
electron σ bond and may vary with the overlap between
the hybridized orbitals of the anion and cation.

Thus, the electrons involved in one-electron cova-
lent bonds between the ions are in the strongly corre-
lated state; i.e., they produce the localized spin-ordered
electron lattice.

The magnetic ordering of the cations having their
own magnetic moment due to unpaired t2g electrons
will then be set up through the purely magnetic interac-
tion of these magnetic moments with the magnetic
moment of the spin-ordered electron lattice. Then, all
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
the cations will be ordered ferromagnetically if the sub-
lattice is 100% spin-polarized (the spins are parallel).

THE FEASIBILITY OF CONDUCTION
IN A SYSTEM OF STRONGLY CORRELATED 

ELECTRONS

Now consider the feasibility of conduction in a sys-
tem of strongly correlated electrons. It appears that in
the presence of the strong repulsion between spin-
polarized electrons (one orbital cannot be occupied by
two electrons with parallel spins), the only possible
mechanism of conduction is the successive displace-
ment of the entire electron lattice from one site of local-
ization to another. However, such a collective displace-
ment is possible if the transition of each of the electrons
to a hybridized orbital of a neighboring cation is not
forbidden by the spin direction on this orbital and if the
energy of electron lattice localization is not too large.
The first condition is met if the electron lattice is spin-
ordered (the spins of all the electrons are parallel). The
second one can be fulfilled by decreasing the overlap
between the anion and cation hybridized orbitals, i.e.,
by increasing the spacing between the Mn3+ and O2–

ions (for example, when the crystal lattice is locally dis-
torted).

(a)

(b)

Mn3+ Mn3+O2–

O2–

Mn3+ Mn3+

Fig. 1. Production of one-electron covalent bonds between
Mn3+ and O2– ions. (a) 1e–σ and (b) 1e–σ* bonds. Shown
are free d2sp3 hybridized orbitals for two Mn3+ ions and
(a) the p orbital of O2– occupied by the singlet electron pair
and (b) two 3s2p hybridized orbitals of O2– occupied by the
triplet electron pair.

Mn4+

O2– O2–
O2–Mn3+ Mn3+

Fig. 2. Electron spin ordering on hybridized orbitals of (d)
Mn3+ and (j) Mn4+ ions upon forming 1e–σ and 1e–σ*
bonds through intermediate O2– ions (singlet and triplet
pairs). For simplicity, only four of six hybridized orbitals
for each of the cations and only three anions are shown.
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Note, however, that these conditions are nearly
incompatible, since the loosening of covalent bonds,
which provide spin ordering, would break the ordering.
Yet, both conditions can be satisfied if various parts of
the spin-polarized lattice are responsible for spin order-
ing and conduction. This can be achieved if one part of
the spin-polarized lattice remains three-dimensional
and localized and the other has a lower dimension and
a small energy of localization.

Below, we will show how these functions can be
divided between the parts of the spin-polarized electron
lattice in doped manganates.

MAGNETIC ORDERING AND CONDUCTION
IN DOPED AND UNDOPED MANGANATES

Consider how our model explains magnetic order-
ing and conduction in doped and undoped manganates.
The experimentally observed perovskite-like cubic lat-
tice of CaMnO3 with an interionic distance smaller than
the sum of the ion radii and with antiferromagnetic
ordering of the Mn4+ ions [2] agrees well with the idea
that each of the Mn4+ ions produces six equivalent one-
electron σ bonds with the participation of singlet elec-
tron pairs of the anions. The anion electrons involved in
covalent bonds and at the same time occupying the
hybridized orbitals of the cations turn out to be mutu-
ally ordered. Then, their state can be considered as an
electron lattice. In this case, the electron lattice consists
of electronic tetrahedra surrounding the Mn4+ ions. In

Mn4+

O2– Mn3+
O2–

x

y

z

Fig. 3. Coordination polyhedron for the Mn3+ ion in
A0.67B0.33MnO3. Three pairs of 1e–σ bonds with neighbor-

ing Mn4+ ions and three pairs of 1e–σ* bonds with neigh-
boring Mn3+ ions through O2– intermediates are shown.
each of the tetrahedra, the spins are parallel to each
other and antiparallel to the spins in a neighboring tet-
rahedron. The different orientation of the electron spins
on the orbitals of neighboring cations forbids electron
exchange between the cations and explains the absence
of conduction. This is consistent with experimental
data for CaMnO3 [2] obtained at temperatures lower
than TN .

As for LaMnO3, the electron shell of the Mn3+ ions
is not spherical in the low-spin state, as was noted
above. Therefore, only 1e–σ* bonds may form in the
plane where the pair of t2g electrons is located. This
must cause ferromagnetic ordering between adjacent
cations. In the direction normal to this plane, the possi-
bility for the formation of stronger 1e–σ bonds, causing
antiferromagnetic ordering between adjacent cations,
persists.

The orientational ordering of the spherically asym-
metric Mn3+ ions provides the ferromagnetic ordering
of all the Mn3+ ions in the plane of paired t2g electrons,
with antiferromagnetic ordering between such planes.
Such a pattern of magnetic ordering has been observed
in experiments [2]. The orientational ordering of the
Mn3+ ions decreases the lattice strain energy when
covalent bonds of various length (1e–σ and 1e−σ*) are
produced and, therefore, is energetically favorable.

In this case, the spin-ordered electron lattice con-
sists of electronic octahedra surrounding the Mn3+ ions.
In each of the octahedra lying in the plane of Mn3+ ori-
entational ordering (the plane of paired t2g electrons),
the spins are parallel to each other and antiparallel to
the spins in the electronic octahedra lying in adjacent
planes. Below TN, LaMnO3 is an insulator [2]. This is
presumably associated both with a high energy of elec-
tron lattice localization in the plane of ferromagnetic
ordering when the lattice distortions are absent and
with the antiferromagnetic order between the planes.

In doped manganates where both Mn3+ and Mn4+

ions are present, either ion individually will tend to pro-
duce the same bonds with the anions as in undoped
compounds. Regarding the bonding between the Mn3+

and Mn4+ ions through an intermediate anion, it appears
that a 1e–σ bond will form between them, since it is
energetically more favorable. As a result, the Mn3+ and
Mn4+ ions will be antiferromagnetically ordered rela-
tive to each other. Since a Mn3+ ion cannot produce six
1e–σ bonds because of the presence of the paired t2g

electrons, this and neighboring Mn3+ ions must produce
a 1e–σ* bond through an intermediate anion. In this
case, the order of these ions relative to each other will
be ferromagnetic. The doped manganate of composi-
tion A0.67B0.33MnO3 is unique in that it admits the
charge order of the Mn3+ and Mn4+ ions such that each
of the Mn4+ ions is surrounded by six Mn3+ ions, while
each of the Mn3+ ions has three Mn4+ and three Mn3+

neighbors. In the latter case, cations with the same
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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degree of oxidation turn out to be the nearest neighbors
(Figs. 3, 4). Such charge ordering produces 1e–σ*
bonds between all the Mn3+ ions through intermediate
O2– ions and 1e–σ bonds between all the Mn3+ and
Mn4+ ions. Figure 4 shows two sublattices formed by
the Mn3+ and Mn4+ ions ordered. Here, the electron lat-
tice consists of two sublattices with oppositely directed
spins. One includes electronic octahedra around the
Mn4+ ions; the other, around the Mn3+ ions. Such a sep-
aration of the electron sublattices is convenient for
determining the magnetic order of the cation magnetic
moments, which results from the magnetic spin–spin
interaction between the electronic lattice and unpaired
t2g electrons. In the manganate considered, ordering
between the Mn3+ ions and between the Mn4+ ions is
ferromagnetic, while that between Mn3+ and Mn4+ ions
is antiferromagnetic.

To explain the phenomenon of conduction in the
electronic lattice, it would be convenient to subdivide
the whole lattice into the sublattice formed by the elec-
trons of the anion triplet pairs and the sublattice formed
by the electrons of the singlet pairs. In these pairs, the
energies of electron localization, which depend on the
energy of the 1e–σ* and 1e–σ bonds, differ. Therefore,
such a division into the two sublattices allows one to
find the weaker localized part of the spin-polarized lat-
tice (the spins are parallel). As follows from Figs. 3 and
4, the triplet sublattice is a part of the spin-polarized lat-
tice and is quasi-one-dimensional in each of the MnO2

planes. It is located between the Mn3+ ions and forms
parallel stripes separated by the stripes of the singlet
pairs between the Mn4+ ions (Fig. 5). Since the produc-
tion of short 1e–σ bonds between the Mn3+ and Mn4+

ions is accompanied by an increase in the spacing
between the Mn3+ ions (Fig. 5), a decrease in the over-
lap between the orbitals of the Mn3+ and O2– ions, and
a decrease in the 1e–σ* bond energy, one can assume
that, in the manganate considered, the triplet pair sub-
lattice is localized weaker than in LaMnO3. The singlet
pair sublattice remains fixed, making no contribution to
conduction. At the same time, it sustains the spin order
because half the electrons of this lattice and the elec-
trons of the triplet pairs occupy the orbitals of the same
Mn3+ ions (Fig. 3).

FERROMAGNETIC FLUCTUATIONS
AND THE EFFECT OF AN APPLIED

MAGNETIC FIELD ON Tc

As follows from the above consideration, Tc can be
viewed as the temperature of formation of the spin-
ordered electron lattice, including the spin-polarized
sublattice of the triplet pairs. Above this temperature,
the electrons are not spin-ordered and are localized on
the anions. Although the anions, which are polarized by
the Mn ions, may be in the state of 3s2p hybridization,
the static overlap of these hybridized orbitals with those
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
of the cations is absent. Only dynamic overlapping due
to lattice thermal oscillation is possible. It does not
order all valence electrons in the crystal in terms of the
spin but may show up as ferromagnetic fluctuations,
which have been observed experimentally [16]. As the
temperature drops, approaching Tc, the system as if
paves the way to the formation of the spin-polarized lat-
tice. In other words, the spins of all the electrons of the
triplet pairs gradually acquire the same orientation as
the 1e–σ* bonds are produced between a Mn3+ ion and
surrounding O2– ions. It is obvious that the application
of a magnetic field, orienting the spins of the triplet pair
electrons in the same direction, may accelerate the for-
mation of the spin-polarized electronic sublattice and

Fig. 4. Ordering of (d) Mn3+ and (j) Mn4+ ions, as well as
of 1e–σ bonds formed by singlet pairs (dashed lines) and
1e–σ* bonds formed by triplet pairs (solid lines), in
A0.67B0.33MnO3. Dotted circles, O2– ions in the state of
3s2p hybridization. Lattice local distortions are not shown.

Fig. 5. Projection of the strained (distorted) crystal lattice
onto the MnO2 plane. 1e–σ and 1e–σ* bonds produced by

the singlet and triplet electron pairs are shown. O2– ions
producing these bonds are omitted. Designations are the
same as in Fig. 4.
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thereby raise Tc. For the same reason, Tc must increase
with magnetic field as well [17].

In terms of our model, the effect of giant magnetore-
sistance arises because of the conduction mechanism
change-over during the formation of the electron lat-
tice: thermally activated conduction, typical of states
with ionic bonds, changes to metallic conduction,
which is associated with the spin-polarized electron
sublattice of triplet pairs. The formation of the pairs is
facilitated by the application of a magnetic field.

CONCLUSION

Thus, the nature of the strongly correlated state of
electrons in manganates can be understood by taking
into consideration the strong covalence of chemical
bonds between the manganese and oxygen ions. The
covalence shows up through the formation of one-elec-
tron σ bonds between these ions. The bonds are pro-
duced when the free d2sp3 hybridized orbitals of the
manganese ions and the anion orbitals overlap. In this
case, each of the anions produces two one-electron σ
bonds with two neighboring Mn ions. It is assumed
that, in manganates, Mn3+ ions are in the low-spin state.
Also, the Mn ions are assumed to polarize the anion
located between them, facilitating its 3s2p hybridiza-
tion and the transition of its electron pair from the sin-
glet to triplet state. In one-electron covalent bonds
between the manganese and oxygen ions, the electrons
of both the singlet and triplet pairs take place, hence,
different spin orders of the electrons on the orbitals of
adjacent cations. The correlated state of electrons form-
ing one-electron σ bonds is due to the exchange inter-
action between the electrons that simultaneously
occupy the hybridized orbitals of the cations and p- or
3s2p hybridized orbitals of the anions. It is this
exchange interaction that causes the spin and spatial
order of the electrons, which is the prerequisite for the
formation of the spin-ordered electron lattice. The con-
ductivity due to this electron lattice depends on the type
of spin ordering; dimension of the lattice; and the
energy of localization, which, in turn, depends on the
energy of one-electron σ bonding.

The chemical bond model suggested in this work
has turned out to be useful for the explanation of high-
temperature conductivity in cuprates. In [18], an
attempt was made to describe Cu–O ionic bonds, which
are more covalent than Mn–O bonds in manganates,
through the resonance state of ionic and ordinary two-
electron σ bonds (by analogy with molecular bonds
[12]). Although such a treatment of covalence has led to
the idea of additional π bonding between the Cu and O
ions, which made it possible to explain high-tempera-
ture conductivity on the qualitative basis, many
assumptions of the model remained questionable.

The concept of one-electron σ bonding, put forward
to accommodate bond covalence, has clarified the
behavior of correlated electrons in cuprate supercon-
ductors. It can be assumed that one-electron σ bonds
are also produced in the CuO2 plane. The anions are
also polarized by the cations. However, in the supercon-
ductivity effect, the polarization of the anions in the
highly asymmetric electric field normal to the CuO2
plane plays a crucial part. The polarization favors the
3s2p hybridization of the anion and the transition of its
electron pair to the 3s2p orbital facing the large positive
charge. The singlet pairs occupying the 3s2p orbitals of
the anions produce the localized electron lattice. The
displacement of this lattice, i.e., the collective displace-
ment of the singlet pairs, can occur when the 3s2p orbit-
als of the anions overlap with the free hybridized orbit-
als of the Cu3+ ions via π bonds to form delocalized π
orbitals. Thus, it turns out that the essence of the pairing
mechanism in high-temperature superconductors is
exchange interaction between electrons occupying the
anion hybridized orbital polarized by the highly sym-
metric crystal field. In this model, superconductivity is
provided by the displacement of the electron-pair lat-
tice through the delocalized π orbitals belonging to the
Cu3+ and O2– chains in the CuO2 plane.

After this article was written, Kagan and Kugel’
published a work [Usp. Fiz. Nauk 171, 577 (2001)]
where the problem of small-scale phase layering in
manganates is discussed at length in terms of the insta-
bility of uniform magnetic or charge ordering.
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Abstract—Diffusion processes taking place at the contact of higher manganese silicide MnSi1.71–1.75 with chro-
mium at elevated temperatures are considered. The microstructures of cast and annealed samples show a diffu-
sion region that evolves at the HMS/Cr interface during the HMS melt crystallization on chromium flakes. As
the temperature and time of annealing of HMS/Cr samples increase, the diffusion region grows thicker and new
phases appear. It is shown that the diffusion is of reaction character. The diffusion coefficients of magnesium,
chromium, and silicon in the solid solution based on manganese and chromium monosilicides and in the solid
solution based on the Cr3Si compound are calculated. It is also shown that, when the temperature of the HMS
used as a thermoelement positive leg is optimal, the depletion time of a 10-µm-thick chromium layer exceeds
15000 h. Intermetallic phases forming in the diffusion region between the HMS and Cr are of metallic conduc-
tion and exhibit a high thermal conductivity, which minimizes energy losses in the contact layers of thermoele-
ments. © 2002 MAIK “Nauka/Interperiodica”.
Higher manganese silicide (HMS) MnSi1.71–1.75 is a
promising p-type material with a maximal thermoelec-
tric figure of merit ZT = 0.7. Low vapor pressure, high
chemical stability, no need for protection in open air at
high temperatures, low production cost, as well as the
availability and nontoxicity of the constituents, all
makes HMS a candidate for the positive leg of thermo-
generators [1].

In the design of thermoelectric devices, much atten-
tion is given to the production of contacts that retain
their parameters at high temperatures and withstand
temperature cycling. One of the most appropriate con-
tact materials is nickel. Under certain conditions, nickel
can also be used as the passive leg of a thermoelement
[2]. Diffusion in the HMS/Ni contact were studied in
[3]. It was established that, due to reaction diffusion, a
diffusion region consisting of Mn–Ni–Si intermetallic
layers forms between the contacting materials [4]. Dif-
ferent partial diffusion coefficients of the components
and the brittleness of phases arising at the nickel bound-
aries cause cracking and void formation. The use of
chromium as an antidiffusion interlayer between HMS
and nickel was studied in [5]. It was demonstrated that
the presence of a Cr interlayer suppresses the diffusion
of Ni in HMS. The formation of a chromium–nickel
solid solution and the penetration of Cr from the inter-
layer into HMS were also observed. In this study, we
analyze diffusion processes that take place at HMS/Cr
contact at high temperatures.
1063-7842/02/4705- $22.00 © 20550
In our experiments, HMS/Cr contacts were prepared
by vacuum casting: quartz ampules containing electro-
lytic chromium flakes were filled with molten HMS.
Then, the samples were placed in argon-filled quartz
ampules and heat-treated at temperatures from 1073 to
1173 K for 5 to 25 h. The samples were examined by
electron probe X-ray analysis and structural analysis.
The radiation intensities from Cr, Mn, and Si versus the
depth of penetration into the HMS/Cr contact region
were taken by a Cameca MS-46 microanalyzer with a
spatial resolution of about 1 µm in the continuous
record mode. To derive the concentrations of the com-
ponents from the intensities, the latter were corrected
for radiation absorption, atomic number of the element,
and fluorescence with the technique presented in [6].

The microstructure of the as-cast and annealed sam-
ples shows a diffusion region that appears at the
HMS/Cr interface even at the stage of the HMS crystal-
lization on the Cr flakes (Fig. 1a). As the annealing tem-
perature and time increase, the diffusion region thick-
ens (Figs. 1b, 1c) and layers of new phases appear. The
diffusion region consists largely of two layers of differ-
ent color and structure. The space in between is a two-
phase zone consisting of a layer adjacent to the chro-
mium and new-phase inclusions. Such a structure arises
when the components of the initial diffusion pair dif-
fuse through the first single-phase region; cross the
two-phase zone, which connects these two phases in the
002 MAIK “Nauka/Interperiodica”
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(a) (b) (c)

Cr Cr Cr

HMS HMSHMS

Fig. 1. Micrographs of the (a) as-prepared HMS/Cr contact (×625), (b) contact annealed at 1073 K for 25 h (×400), and (c) contact
annealed at 1173 K for 5 h (×400).
ternary phase diagram; and then, crossing the ternary
region, reach the other single-phase region [7].

The stepwise change in the Cr, Mn, and Si concen-
trations that was observed in the diffusion region
implies the reaction character of the diffusion. Figure 2
shows the distribution of the Mn, Cr, and Si concentra-
tions near the HMS/Cr contact in the as-cast and heat-
treated samples. In the former, the transition region
between the HMS and Cr contains new-phase nuclei
(Fig. 2a). After the annealing, these phases thicken and
phases of another composition appear (Figs. 2b, 2c).
The compositions and thicknesses ∆x of the phases
formed by the reaction diffusion at the HMS/chromium
contact were determined from the concentration pro-
files of the components. After the vacuum casting, two
layers were observed in the diffusion region: a layer of
the MnSi–CrSi solid solution and a narrow layer of a
chromium-based solid solution. After the thermal treat-
ment, a solid solution based on Cr3Si and a phase based
on the Mn5Si3 compound appeared. The compositions
and thicknesses of the layers formed in the reaction dif-
fusion region of the samples after annealing at 1073 K
for 25 h are listed in Table 1. To determine the thick-
nesses of the layers grown in the diffusion region after
the thermal treatment, the thickness of the diffusion
region grown at the stage of sample preparation was
subtracted from the diffusion region after the treatment.

A comparison of the X-ray electron probe data with
the isothermal section of the equilibrium phase diagram
for the ternary Cr–Mn–Si system [4, 8] shows that the
compositions of the phases and the order of their
arrangement between the HMS and Cr in the diffusion
region correlate well with the phase equilibria in the
Cr–Mn–Si system (Fig. 3). The dashed curve indicates
the diffusion path of the components of the initial diffu-
sion pair HMS/Cr, and the dots mark the homogeneity
region for Mn5Si3, which has not yet been studied in
detail.
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
Based on the experimental data obtained and
employing the technique described in [9], we calcu-
lated the diffusion coefficients D of manganese, chro-
mium, and silicon in the two thickest phases, namely, in
the MnSi–CrSi solid solution and in the solid solution
based on the Cr3Si compound (Table 2). The diffusion
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Fig. 2. Concentration profiles of (1) Mn, (2) Si, and (3) Cr
in the HMS/Cr contact region of the (a) as-prepared sample,
(b) after annealing at 1073 K for 25 h, and (c) after anneal-
ing at 1173 K for 5 h.
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coefficients were calculated by the formula D =
k2c/2∆c, where k is the rate constant of phase growth, c
is the mean of two extreme phase concentrations in the
concentration profiles of components, and ∆c is the
concentration extent of a phase. For a parabolic depen-
dence of the phase layer thickness on the diffusion time
(τ), the rate constant is expressed in the form k = ∆x/τ1/2

[10]. The data presented above indicate that, in the
(Mn1 – pCrpSi) solid solution, the silicon has a maximal

Table 1.  Mn, Cr, and Si content in the layers of the diffusion
region at the HMS/Cr contact and the thickness of the layers
after annealing at 1073 K for 25 h

Phase
composition

Concentration, wt %
∆x, µm

Mn Cr Si

HMS(MnSi1.75) 52.8 – 47.2 100

Mn1 – pCrpSi 65.1–61.8 6.1–4.7 33.3–33.5 18

Mn5 – yCrySi3+ 55.5 21.0 23.5 2.6

Cr3 – qMnqSi 36.1 45.5 18.4

Cr3 – qMnqSi 33.6–23.5 51.3–62.6 15.1–13.9 10.2

Cr(Mn, Si) 3.4–0 92.3–100 4.3–0 5.8
diffusion mobility, and the chromium, minimal. In the
Cr3Si-based solid solution, the diffusion coefficient of
Cr increases. The diffusion coefficients of the compo-
nents in all of the phases increase with annealing tem-
perature.

The solid-phase growth of the phase layers at the
HMS/Cr contact involves the following transforma-
tions: HMS decomposition, 

and the interaction between diffusing silicon and chro-
mium atoms,

In addition, the interdiffusion of Cr and Mn atoms
leads to the partial substitution of Cr for Mn with the
formation of a Mn1 – pCrpSi layer and of Mn for Cr with
the formation of a Cr3 – qMnqSi layer. It is evident that
the HMS side of the diffusion layer must grow faster,
since the decomposition of MnSi1.75 yields four “mole-
cules” of MnSi whereas only three molecules of Cr3Si
appear at the Cr interface.

As the intermediate phases grow in the diffusion
region, the components that have initially been brought
into contact come to an end. In this connection, it is of
interest to determine the time taken for the chromium

4MnSi1.75 4MnSi 3Sidif,+=

3Sidif 9Cr+ 3Cr3Si.=
Table 2.  Diffusion coefficients of Mn, Cr, and Si in the reaction diffusion phases at the HMS/Cr contact at (a, b) 1073 and
(c, d) 1173 K

Component ∆x, µm τ, h c, % ∆c, % k2, cm2/s D, cm2/s

(a) Mn1 – pCrpSi

Mn 18 25 63.45 3.3 3.7 × 10–11 3.6 × 10–10

Cr 18 25 3.15 3.1 1.9 × 10–11

Si 18 25 33.4 0.2 3.1 × 10–9

(b) Cr3 – qMnqSi

Mn 10.2 25 28.3 9.6 1.2 × 10–11 1.3 × 10–11

Cr 10.2 25 56.45 11.3 2.9 × 10–11

Si 10.2 25 14.5 1.2 7.0 × 10–11

(c) Mn1 – pCrpSi

Mn 21.8 5 63.0 2.9 2.6 × 10–10 2.8 × 10–9

Cr 21.8 5 3.6 3.4 1.4 × 10–10

Si 21.8 5 33.5 0.5 8.7 × 10–9

(d) Cr3 – qMnqSi

Mn 12.8 5 21.5 1.2 9.1 × 10–11 8.2 × 10–10

Cr 12.8 5 64.15 3.1 9.4 × 10–10

Si 12.8 5 14.4 1.8 3.6 × 10–10
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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Table 3.  Kinetic parameters of reaction diffusion at the HMS/Cr contact with xCr(0) = 10 µm

T, K τ, h ∆xCr(1), µm ∆xCr(2), µm , cm2/s , cm2/s K2, cm2/s tCr, h

1173 5 0.9 7.1 1 × 10–11 5 × 10–11 6 × 10–11 4.6

1073 25 0.6 4.4 1.3 × 10–12 4.9 × 10–12 6.2 × 10–12 44.8

873 – – – 5.1 × 10–15 13.1 × 10–15 1.8 × 10–14 15260

773 – – – 1.1 × 10–16 1.8 × 10–16 2.9 × 10–16 960000

K1
2 K2

2

antidiffusion interlayer at the HMS/Cr–Ni contact to be
fully exhausted, since this layer has a much smaller ini-
tial thickness than the HMS and Ni layers [5].

We based our calculations on the experimentally
verified assumption that both the growth and the deple-
tion of the phases are a parabolic function of time [11].
Given the initial thickness x(0) of each of the starting
components, the variation of the thickness can be found
from the expression x(τ) = x(0) – Kτ1/2, where K is the
depletion constant. If we assume that x(τ) = 0 at τ = t,
the depletion time t = x(0)2/K2. During the interdiffu-
sion at the HMS/Cr contact, the chromium is mainly
spent on the growth of the two intermediate phases:
Mn1 – pCrpSi (phase 1) and Cr3 – qMnqSi (phase 2);
therefore, the Cr depletion time is defined as tCr =

xCr(0)2/(  + ), where K1 and K2 are the depletion
constants of the chromium spent on the related phases.
The kinetic parameters of the reaction diffusion at the
HMS/Cr contact were determined under the assump-
tion that one phase does not affect diffusion in the order.
Employing the technique used in [12], we believed that
a decrease in the thickness of the initial Cr layer (∆xCr)

K1
2

K2
2
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Fig. 3. Phase diagram of the Cr–Mn–Si system at 1273 K
[6]. The dashed curve passes through the phase composi-
tions (circles) of the layers in the diffusion region between
HMS and Cr after annealing at 1073 K.
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is related to the thickness of the resulting compound (d)
as follows: for the Mn1 – pCrpSi layer, ∆xCr(1) =
d1pVCr/V1; for the Cr3 – qMnqSi (2) layer, ∆xCr(2) = d2(1 –
q)VCr/V2. Here, V are the molar volumes of the corre-
sponding components, which were calculated from the
room-temperature X-ray data for the size of the atoms
in accordance with their coordination numbers [13].
The calculations were carried out for the phases with
the highest Cr content. These phases were found from
the concentration profiles of the components in the dif-
fusion region of the HMS/Cr contact; the chromium

depletion constants, from the equations  =

d1∆xCr(1)/τ and  = d2∆xCr(2)/τ, where τ is the diffusion
time at a given temperature. The results of calculations
are listed in Table 3.

From the data obtained at 1073 and 1173 K, we
derived the activation energies of chromium “deple-
tion” in the two phases mentioned above: Q1 =
217.5 kJ/mol and Q2 = 240 kJ/mol. Using these values,
we calculate the constants and times of depletion for a
10-µm-thick Cr layer at lower temperatures. It is seen
from the table that the decrease in the operating temper-
ature of the contact extends considerably the chromium
layer lifetime and, thus, the service time of the contact.

Note also that the intermetallic phases forming in
the diffusion region between the HMS and Cr has
metallic conduction and a high thermal conductivity
[13], which minimizes energy losses in thermoelement
contacting layers.

The results presented above indicate that chromium
is a candidate for antidiffusion interlayers in thermo-
electric devices.
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Abstract—The effect of an external magnetic field on uniform magnetic states in (011) crystalline garnet ferrite
plates with combined anisotropy is theoretically studied. Under the action of the field, the magnetic symmetry
of the crystals is reduced and the pattern of spin-reorientation phase transitions, which depends significantly on
the magnetic field strength and direction, changes. Curves of critical fields are found, and the general law of
magnetization reversal in the (011) plates due to rotation is derived. © 2002 MAIK “Nauka/Interperiodica”.
† INTRODUCTION

As is known, epitaxial garnet ferrite single crystals,
used in many magnetic electron devices, exhibit both
induced uniaxial (IUA) and natural cubic (CA)
anisotropies [1, 2]. Such a combination affects consid-
erably the properties of the material, including its
behavior in an external magnetic field. Studying the
processes of magnetization and magnetization reversal
in the crystals, one extracts much information on some
magnetic characteristics that are of practical value. In
this respect, it is of interest to study the effect of an
external magnetic field on the equilibrium directions of
the magnetization vector M in the (011) crystals with
the combined anisotropy. Earlier [3–5], similar studies
were performed on magnets in the form of (001) and
(111) plates. In this work, we concentrate on magneti-
zation reversal that is due to magnetic moment coherent
rotation. Note also that in the magnets under study, IUA
has two, perpendicular and rhombic, components. The
latter improves the dynamic properties of the material,
hence, increasing interest in it.

UNIFORM MAGNETIC STATES
IN THE ABSENCE OF FIELD

Let us consider first the energy density of a uni-
formly magnetized (011) plate with combined anisot-
ropy subjected to a magnetic field H. In the coordinate
systems with the axis Oz || [011], the axis Ox || [100],

and the axis Oy || [ ], the energy density has the

† Deceased.

011
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form

(1)

where Ku and Kr are the constants of uniaxial and rhom-
bic anisotropies, respectively; K1 and K2 are the first
and second constants of CA; Θ and ϕ are the polar and
azimuth angles of the magnetization vector M; and
(MH) is the scalar product of the vectors. Taking into
account the finiteness of the plate leads merely to the

renormalization of the constant Ku  Ku – 2π ,
where Ms is the saturation magnetization.

The equilibrium directions of the magnetization M
in the crystal are found from the minimum of (1), i.e.,
from solutions of the equations

(2)

subject to

(3)

It follows from the above equations [6] that nine
magnetic phases may exist in the (011) plate if H = 0.
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Three of them are symmetrical and six, disymmetrical
[7] (Figs. 1, 2). Of the latter six, five are angular. In
them, the magnetization M varies in certain planes of
symmetry of a cube, depending on the parameters κ1,
κ2, and κr, where κ1 = K1/|Ku|, κ2 = K2/|Ku|, and κr =
Kr/|Ku|. The sixth phase is of the general type. The
parameters of these phases are listed in the table. The
degree of their degeneracy depends mostly on the sym-
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Fig. 1. Phase diagram for uniform magnetic states of the
(011) plate in the absence of the field for Ku > 0. (a, b) κ2 =
4. Continuous curves, SRPTs; dashed curves, boundaries of
the domains of existence for metastable phases.
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Fig. 2. The same as in Fig. 1 for Ku < 0 and κ1 = –1.5.
metry of the plate (group D2h) [7, 8]. Specifically, the
high-symmetry phases are doubly degenerate; the
angular ones, quadruply degenerate; and the phase of
the general type, octuply degenerate. The angular

phases ( )1, 2 and ( )1, 2 have the same group of
symmetry. Their presence is due to the fact that CA is
taken into account (K2 ≠ 0). In fact, the asymptotic

behavior (K2  0) of the phases ( )1, 2 implies that

the phase ( )1 continuously turns to the angular

phase , which was studied earlier in [9, 10] and
takes place at K2 = 0, and that the second solution of
Eqs. (2) and (3), which corresponds to the phase

( )2, loses its meaning. It becomes meaningful only
if K2 = 0, i.e., when the contribution of easy CA axes
like [011] to the spectrum of uniform magnetic state of
the plate is included. This follows, for example, from
the coincidence of the domains of stability in terms of

K1 and K2 for the phases ( )2 and 〈011〉  [11]. The
occurrence of the phase [uvw], whose domain of exist-
ence is shown in the coordinates (κr, κ2) in the phase
diagram (Fig. 2), is explained by the same reason.

Another feature of the orientational phase diagram
for the (011) plate is the presence of the quintuple point
(Fig. 1). This is consistent with the Gibbs phase rule,
which states that a given thermodynamic system is in
equilibrium under the action of three internal fields
associated with three anisotropies with different sym-
metries: uniaxial, rhombic, and cubic [6].

MAGNETIC PHASE DIAGRAMS
IN THE PRESENCE OF AN EXTERNAL FIELD

In order to study the effect of a magnetic field on the
ground state of the crystal, it is necessary to take into
account Zeeman interaction (H ≠ 0, whose contribution
to (1) depends on the orientation of H with respect to
the crystallographic planes. Let us consider three typi-
cal orientations of the field: H || [011], H || [100], and

H || [ ].
(1) H || [011]. In this case, the magnetic symmetry

of the crystal is reduced to C2v in the group D2h.
Because of the loss of the symmetry element σ [σh(m)
is the mirror reflection plane coincident with the plane

(011)], the angular phases  and  split into two
states: stable, where the magnetization M makes an
acute angle Θ with the field, and metastable, where
π/2 < Θ < π. Their domains of existence are no longer
coincident: the energetically less favorable phase

(  is bounded by curve 1 in Fig. 3a, while the stable

phase (  occupies the space bounded by curves 2

and 3. The latter merges with the phase , which
is skewed in the presence of the field (being symmetri-
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Magnetic phases in the (011) plate in the absence of the field (H = 0)

Phases Magnetization orientation Domain of existence

Φ[011] ϑ  = 0; π; M || [011] K1 > –2(2Ku + K1), K1 < Ku + Kr

Φ[100] ϑ  = π/2; ϕ = 0, π; M || [100] K1 > Ku, K1 < –Kr

ϑ  = π/2; ϕ = π/2, 3π/2; M || K1 < –(Ku + Kr), K1 > 2Kr – K2/2

sinϕ = {[K1 – (Ku + Kr)]/2K1}1/2, ϑ  = π/2, 3π/2; M || [0uv]
K1 > –(Ku + Kr), K1 > Ku + Kr

 + (Ku – Kr) + K2(Ku + Kr)
2 > 0

ϑ  = π/2, sinϑ  = , M || 

ϑ  = π/2, sinϑ  = , M || 

sinϑ  = , ϑ  = 0, π, M || [uvv]

sinϑ  = , ϑ  = 0, π, M || [uvv]

M || [uvv]

Note: A1 = K2 – 3K1, B1 = , A1 = K2 + 3K1, B1 = . Empty rows in the right-hand col-

umn mean that the domain of existence (stability) cannot be expressed through simple formulas; they are found from general con-
ditions (3).
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cal in its absence), to form the single angular phase

(  with ϕ = π/2 or 3π/2. Its domain of existence

is bounded by the line of spin-reorientation phase tran-

sition (SRPT) of the second kind: (   ( )z

(curve 4). Thus, the SRPT of the second kind

   (Fig. 3b) breaks, and the point A

becomes quadruple rather than quintuple. In the pres-
ence of the field, the domains of existence of the stable

phase (  and the metastable phase (  also
diverge (their boundaries are depicted by curves 5, 6
and 7, 8 in the phase diagram).

The angular phases ( )1, 2 transform into the

phases of the general type ( )z, remaining degener-
ate, since H || 2z does not change their group of symme-
try in our case. As the reduced field h = MsH/|Ku| grows,

the line of the SRPT of the first kind, ( )
z
  ( ,

shifts toward smaller κr (curve 9 in Fig. 3a). For the
same reason, the phase Φ[100], which transforms into the

angular phase (Φ[100]  of type [uvv], also remains
degenerate. The domain of its existence is bounded by
curve 10 in Fig. 3a and disappears from the phase dia-
gram as h increases. Accordingly, the lines of the
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SRPTs of the first kind (Φ[100]   Φ[011] (curve 11)

and (Φ[100]   (  (curve 12) shift toward
larger 
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 [ ]). The domain of existence of the latter is
limited by the following inequality for the reduced field
(Fig. 4):
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entire space between curves 10 and 5 (the latter is the

line of the SRPT of the first kind, (   Φ[100]).

The metastable phase ( , lying below curve 12, is
displaced downward, i.e., toward smaller (negative) κ1,
as the reduced field grows. Simultaneously, the other

phase (  of the “doublet” merges with the skewed

phase  to form the angular phase ( )x. Its

domain of existence lies to the left of and below curves
9 and 11. Here, curve 9 corresponds to the SRTP of the

second kind between the phases ( )x and ( )x,

where the latter is a phase of the general type that is
quadruply degenerate as before. It should be noted that

the transformation of the angular phase  into the

phase of the general type ( )x can be explained by the

fact that the vector M of the phase  lies in the plane
(001) in the absence of the field. The field H || [100] as
if “extracts” spins from the plane (001), causing the
phase of type [uvw] to form. At the same time, the vec-
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Fig. 3. (a) Phase diagram for uniform magnetic states of the
(011) plate in the field H || [011] for Ku > 0, κ2 = –4, and h =
0.5; (b) SRPT of the second kind in the absence of the field
(κr = –5) for h = 0 (1), 0.1 (2), 0.5 (3), and 10 (4). Figures at
the curves correspond to Fig. 1.
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H

 

 

 

||

 

 [100] also
lies in these planes, so that the phases do not transform
when the field is applied.
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lar phase of type [uvv], which merges with ( )x.
Since H ⊥  [011], the degeneracy of the phases is
retained. However, the SRPT of the second type

Φ[011]  , taking place in the absence of the field,
disappears.

(3) H || [ ]. In this case, the field affects the orig-
inal phase diagrams similarly to the case H || [011].
This follows from the symmetry of the (011) crystalline
plate. Here, the equilibrium orientation of the vector M
is specified by CA and IUA, both having perpendicular
and rhombic components. The CA and IUA easy axes
are mutually perpendicular and coincide with the direc-

tions [011] and [ ], which are equivalent for CA.

Therefore, the case H || [ ] has the same effect as the
case H || [011].

CRITICAL FIELD CURVES

To investigate the effect of a magnetic field on the
ground state of the crystal throughout the field range,
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Fig. 5. Phase diagram for uniform magnetic states of the
(011) plate in the field H || [100] for Ku > 0, κ2 = 4, and h =
0.5. Dashed curves correspond to Fig. 1.
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
consider the curves of critical fields, which are deter-
mined from conditions (2) and (3) in view of (1) when
the inequalities are replaced by equalities. For the plane
hxhz, where hx = HxMs/|Ku| and hz = HzMs/|Ku|, we come
to the parametric equation

(5)

where

(6)

Figures 6a–6c show the associated curves. As the
parameter κ1 decreases (IUA begins to play a leading
part), the domain of existence of the four states con-
tracts and eventually (at κ1 = 1) shrinks to a point. In the
plane hyhz (hy = HyMs/|Ku|), the curves have a similar
shape but are rotated by 90° with respect to the above
case. Thus, we can argue that the magnetization of
cubic crystals with IUA generally proceeds in a similar
way [3–5]. Yet, the plate under study shows a number
of specific features. For example, in the plane hxhy

(Fig. 6d), where conditions (2) and (3) yield the para-
metric equation

(7)
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(8)
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there appear two regions where six magnetic phases
may coexist if the second constant of CA far exceeds
(in magnitude) the constant of uniaxial anisotropy
(Ku < 0). The presence of such regions, which corre-
spond to hysteresis loops, indicates the complicated
mechanism of magnetization reversal in the magnet
under study.

CONCLUSION

Thus, the effect of a magnetic field on the ground
state of the (011) plate shows up as a reduction of its
magnetic symmetry. Because of this, the degeneracy of
magnetic phases is partially or completely removed. As
a result, the original phase diagram of the (011) plate
changes significantly: some phases totally disappear,
while others transform changing symmetry. The effect
of the field on SRPTs is similar. The process of magne-
tization reversal in such crystals becomes more compli-
cated: the process is governed not only by the strength
and orientation of the magnetic field but also by the
constants of CA and IUA (the latter is characterized by
two parameters). The results obtained bridge the gap in
the analysis of the (011) plates. Moreover, they indicate
features of magnetization reversal in combined-anisot-
ropy crystals, which is of interest for applications.
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Abstract—The size, shape, and structure of the molten zone appearing on the surface of Fe–C multicomponent
alloy upon laser recrystallization are studied. The laser scan rate varies between 0.01 to 0.167 m/s. A set of equa-
tions for the temperature and concentration fields is derived within a model of locally nonequilibrium crystal-
lization. The use of the hypothesis for marginal stability, as applied to crystal growth, makes it possible to find
the characteristic size of the crystal structure. The mathematical simulation of recrystallization upon laser pro-
cessing is in good agreement with experimental data. The results of the simulation can be used for predicting
the mechanical properties in the molten zone as a function of the energy parameters of the radiation and thermo-
physical properties of the alloy. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Fast crystallization from melts due to fluxes of ener-
getic particles, such as laser or electron beams, opens
up vast possibilities of obtaining new structural states
of alloys that qualitatively differ from those observed
after conventional metallurgical processes. Specifi-
cally, it has been shown that fast crystallization during
laser processing may lead to the formation of cellular,
ribbon-like, and chemically inhomogeneous micro-
structures, as well as to the “freezing” of new metasta-
ble precipitates [1, 2]. It is well known that the mechan-
ical properties to a great extent depend on the crystal
structure parameters and that the capability of alloys to
retain their properties at high temperatures is specified
by the structure dispersity and the rate of secondary
recrystallization. Therefore, the study of the alloy struc-
ture after laser processing is a topical problem of crys-
tallization physics and materials science.

In metallurgy, the laser recrystallization of Fe–C
alloys through surface melting is usually used for mate-
rial hardening. However, unlike hardening without
melting, this method has not found wide application
and is applied, as a rule, for increasing the penetration
depth of the laser beam [3]. This is because when the
beam scan rate Vb is low, the microhardness of the mol-
ten zone after solidification is reduced. However, the
effect of the molten zone on the mechanical properties
still remains unclear. The very existence of the terms
“shallow molten zone” and “deep molten zone” (see,
e.g., [3, 4]), which have been introduced for the cases
when the microhardness values greatly differ while the
values of Vb remain the same, suggests that the problem
of structure formation and mechanical properties upon
the laser recrystallization of structural steels has not
1063-7842/02/4705- $22.00 © 0561
received due attention. The use of laser radiation in
studying the crystallization processes provides a possi-
bility for directly and reliably determining the rate of
solidification (or the interface velocity) Vs. Different
values of Vs can then be correlated with the type and
characteristic size of the forming structure, and experi-
mental dependences can be contrasted with model
curves. Over two last decades, a breakthrough in under-
standing the factors that govern the structure of the
material after fast crystallization has been achieved [5–7].
It has been established that the velocity of the crystalli-
zation front and the temperature gradient at the front are
of crucial importance [1, 5–8].

In this work, we report experiments on the study and
simulation of austenitic growth in the molten zone of
structural steel with 0.5 wt % C during fast laser recrys-
tallization. The alloys studied contained reducing
agents (Mn and Si) and other alloying elements (Ni, Cr,
P, and S), since we were interested in simulating the
structure of Fe-based multicomponent alloys, which
are of practical importance (for example, the Si addi-
tion improves the mechanical properties and corrosion
resistance of Fe–C alloys).

Experience in simulating the crystallization (struc-
ture formation) of Fe-based multicomponent alloys
[9, 10] convincingly suggests that carbon has a decisive
effect on the final structure. Therefore, we can apply
pseudobinary models of fast crystallization to simulat-
ing multicomponent systems.

To simulate the recrystallization, we will use the
model of locally nonequilibrium solidification [11, 12],
which was applied to simulate fast crystallization by
quenching from the liquid state during the spinning of
thin ribbons [13, 14]. A feature of the model is that it
2002 MAIK “Nauka/Interperiodica”
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includes the finiteness of the impurity diffusion rate
both at the interface and in the bulk of the existing
phases during fast solidification. The use of the hypoth-
esis for marginal stability within the model of locally
nonequilibrium solidification allows the determination

10 µm

Fig. 1. Image of the longitudinal section obtained in a met-
allographic microscope. Etching in an HF-based solution.
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Fig. 2. Shape of the molten zone under laser heating [17]. In
the central plane XZ of the molten track, the rate of solidifi-
cation Vs depends on the laser beam velocity Vb and angle Θ.
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Table 1.  Concentrations of the components in the alloy, equilib-
rium distribution coefficient ke, and slope of the equilibrium
liquidus line me

Chemical
element Content, at. % ke me, K/at. %

C 2.29 0.35 –14

Mn 0.71 0.8 –2.4

Si 0.62 0.6 –8.5

S 0.003 – –

P 0.004 – –

Cr 0.21 0.4 –5.8

Ni 0.26 0.5 –2.6
of the characteristic size of the grains [15, 16]. In this
work, the calculated value of the grain size is compared
with the size of austenite grains found experimentally.
The effect of the grain size on the yield point and hard-
ness of laser-recrystallized structural steel is estimated.

1. EXPERIMENT

Specimens used were made of structural steel with
0.5 wt % C. The concentrations of the components in
the alloy, distribution coefficients, and slopes of the liq-
uidus line are listed in Table 1. Carbon has the highest
concentration, the maximal absolute value of the liqui-
dus slope, and the least distribution coefficient. Clearly,
this alloying element can be thought of as having a
decisive effect on the structure formation during crys-
tallization, since it is to the greatest extent responsible
for the concentration supercooling at the crystallization
front, which causes the morphological instability of the
front and specifies the characteristic scale of the crystal
structure. Therefore, the structural steel will be consid-
ered as a pseudobinary alloy where the formation of the
crystal structure is governed by thermal processes upon
laser processing and carbon redistribution in the molten
(recrystallized) zone.

After melting in an induction furnace, the structural
steel under study (Table 1) was cast into shells measur-
ing 11 × 11 × 50 mm. The castings were cut into spec-
imens of size 8 × 8 × 22 mm in order to remove chem-
ical inhomogeneities due to the contact with the mold
surface. As follows from metallographic studies, the
cast macrostructure represents a ferrite–pearlite mix-
ture at this stage.

Prior to laser processing, the specimens were cov-
ered by a 15-µm-thick Al2O3 absorbing coating to effec-
tively absorb the laser radiation and provide similar sur-
face conditions on the specimens. Experiments were
carried out with a Lantan-3M cw CO2 laser with a rated
power of 1.0 kW. The laser beam scan rate was varied
from 0.01 to 0.167 m/s. The beam was focused to a spot
of diameter 0.2–2.0 mm, which corresponds to a power
density between 3.2 × 1010 and 3.2 × 108 W/m2. To sup-
press oxidation in the molten zone, helium was contin-
uously delivered to the surface during the processing.

The microstructure of the specimens was examined
on longitudinal microsections passing through the cen-
ter of the laser beam path. The microsections exhibited
the homogeneous phase (martensite) without traces of
the dendritic microstructure even at large depths
(Fig. 1). The further examination of the microstructure
was performed on cleavages by SEM (REM-100U
microscope). The specimens were cleaved both longi-
tudinally and transversely relative to the beam path.
The cleavage surface bends around the lateral surface
of dendrites (so-called interdendritic fracture). There-
fore, using SEM data, one can directly measure the
characteristic size of the structure and the local rate of
solidification Vs. The longitudinal cleavages were used
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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Fig. 3. Central dendrites lying in the surface plane of the specimens at w/h > 10. SEM micrographs of the surface were obtained for
Θ = 0. Vb = 0.010 (a) and 0.092 m/s (b).
for a more detailed investigation into the structure and
shape of the molten zone in the section YZ (Fig. 2).

2. EXPERIMENTAL RESULTS

In this section, we report the SEM results for the
fracture surface, microhardness, and the geometry of
the molten zone. The depth, h, and width, w, of the mol-
ten track vs. laser power density E and beam scan rate
Vb are listed in Table 2. Note that tracks with a depth of
less than 20 µm are unstable by depth (the depth varies
within ±2.5 µm) because of the initial chemical inho-
mogeneity of the specimens.

The local rate of solidification Vs is determined by
measuring the orientational angle of the microstructure
in the longitudinal section relative to the laser beam
velocity vector and is given by

(1)

where Θ is the angle between the structure growth
direction and the scan rate Vb (see Fig. 2).

A typical shape of the molten zone during thermal
laser treatment is depicted in Fig. 2. Along the axis 0Z,
the velocity Vs increases from zero (at the bottom of the
zone) to the maximal value (on the surface), the latter
being defined by the energy parameters of the laser
beam. At the bottom, the velocity Vs sharply grows and
then becomes fixed (Vs ≈ const) at angles Θ = 60°–85°.
Such behavior was observed throughout the range of Vb
for w/h < 10 (where w and h are the width and the depth
of the molten zone, respectively). If the width-to-height
ratio is large (w/h > 10), the shape of the zone changes,
which shows up in a considerable decrease in the angle
Θ (hence, an increase in Vs). Closer to the surface,
Θ  0 and, as follows from (1), the rate of solidifica-
tion approaches the scan velocity: Vs ≈ Vb. Under these
conditions, we are dealing with the “shallow molten
zone” [3, 4]. Thus, near the surface of the laser track,
the growth proceeds parallel to the surface plane, which
is clearly seen in Fig. 3. For w/h < 10, no central den-

V s Vb Θ,cos=
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drites lying in the surface plane were revealed and the
growth proceeded as shown in Fig. 2, which is sup-
ported by the SEM micrographs taken from the longi-
tudinal and transverse cleavages of the specimens
(Fig. 4).

The crystallization from the laser-produced melt
results in the formation of γ-Fe austenite throughout the
range of Vb considered. It solidifies in the form of den-
drites or cells. Upon the further cooling of the austenite,
it undergoes γ–α allotropic transformation by the mar-
tensitic mechanism, with the starting grain shape and
sizes retained. This allows the examination of the aus-
tenitic growth morphology at low temperatures. Figure 4a
shows the dendritic grain structure that forms as a result
of the competing growth of dendrite ensembles in the
direction specified by heat-and-mass transfer processes
[18]. At the low value of Vb = 0.01 m/s, the growth
direction of the dendrite ensemble is substantially
affected by the surface energy anisotropy. That is why
the growth directions of the ensembles in Fig. 4a
diverge. The dendritic growth proceeds in a clearly
defined crystallographic direction (for example, in
〈100〉  for the cubic lattice). This must be taken into
account in calculating the local rate of solidification. If
the crystallographic orientation is taken into consider-

Table 2.  Experimental values of the melting depth h and
molten zone width w vs. power density E and beam scan rate Vb

E, W/m2 Vb, m/s h, µm w, µm

3.2 × 108 0.01 140 1400

8.8 × 108 0.01 220 900

6.3 × 109 0.042 52 160

7.2 × 109 0.092 5…10 100

9.6 × 109 0.092 28 90

3.2 × 1010 0.142 38 80

3.2 × 1010 0.167 25 75
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Fig. 4. SEM micrographs of austenite grains taken from the specimens cleaved in the longitudinal direction through the molten zone.
The velocity vectors of the beam, Vb, and crystallization front, Vs, lie in the figure plane and are indicated by arrows. (a) Dendritic–
granular structure, (b) dendritic structure, and (c, d) cellular structure. Vb = 0.01 (a), 0.042 (b), 0.092 (c), and 0.142 m/s (d).
ation, the rate of solidification Vhkl is given by

(2)

where hkl are Miller indices and ϕ is the angle between
the dendritic growth direction and the normal to the
interface.

At Vb ≥ 0.042 m/s (Figs. 4b–4d), the surface energy
anisotropy does not affect the grain growth direction
and the growth is controlled only by heat-and-mass
transfer processes.

3. SIMULATION

3.1. Temperature Field

The experimental methods currently available do
not provide a possibility of directly observing the ther-
mal field distribution within the laser action area.
Therefore, we performed the numerical simulation of
the temperature field in the specimen in order to esti-
mate the temperature gradient at the crystallization
front, since this gradient has a strong effect on structure
formation.

When simulating heat transfer, we ignored convec-
tive transport in the melt. Also, the thermophysical
parameters were assumed to be temperature-indepen-
dent and the same in the liquid and solid phases. It
should be noted that the characteristic scales of change

Vhkl Vb Θ/ ϕ ,coscos=
of the temperature field and mass transfer differ by
more than twofold. Therefore, the temperature field
was simulated irrespectively of the carbon concentra-
tion gradient at the crystallization front and the carbon
concentration was assumed to be uniform and equal to
its initial concentration in the specimen. It was also
assumed that the structure forms under the combined
action of the temperature and concentration gradients
(see Section 3.2). In this case, the temperature field
T(x, y, z, t) in the specimen is given by

(3)

where cp is the specific heat at constant pressure, λ is
the thermal conductivity, ∆H is the latent heat of phase
transition, and g is the fraction of the solid phase.

The velocity of the crystallization front Vs, the melt-
ing point of the pure material Tm, as well as the temper-
ature T1 and the impurity concentration C1 at the crys-
tallization front, are related as

(4)

Equation (3) was numerically solved with a uniform
spatial grid having a constant time step. The finite-dif-

cp
∂T
∂t
------ λ∇ 2T ∆H

∂g
∂t
------,+=

V s µ Tm meC1 T1–+( ).=
TECHNICAL PHYSICS      Vol. 47      No. 5      2002



FAST CRYSTALLIZATION OF STRUCTURAL STEEL 565
ference approximation of Eq. (3) has the form

and describes a change in the temperature  at a
point with the coordinates (ihx, jhy, khz) at a time instant
nτ (where n is the number of iterations with a time step
τ). The rate of change of the solid phase fraction in a
solidifying or melting mesh is given by

(5)

where  is the crystallization front velocity corre-
sponding to Eqs. (1) and (4).

As was noted above, the carbon concentration at the
interface was taken to be equal to its initial concentra-
tion; that is, C1 = C0. According Eqs. (4) and (5), the
sign of the velocity defines the direction of the phase
transition. Positive velocity values correspond to crys-
tallization; negative ones, to melting.

The distribution of the laser power density over the
beam cross section was assumed to be Gaussian:

where r is the radius of the laser beam cross section and
ρ is a distance from the beam axis in the radial direc-
tion.

The heat balance in the laser action area on the sur-
face was defined in the form

The fraction of the laser beam energy absorbed by
the specimen depends on the absorption coefficient R of
laser radiation and the loss factor A, which combines
the evaporation loss and plasma formation loss. In the
simulation, we took R = 0.8 [3]. The value of A was
selected in such a way that the molten zone depth
agreed with the experimental value. The thermophysi-
cal parameters of the Fe–C system that were employed
in the simulation are given in Table 3.

The results of the numerical simulation for various
scan rates of the laser beam are summarized in Table 4.
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As the scan rate and the beam power increase, so does
the mean value of the temperature gradient G at the
crystallization front, while the depth of the molten zone
hsim decreases. The substantial change in the tempera-
ture gradient G at the crystallization front indicates
that, with different scan rates, the microstructure of the
material forms under considerably differing conditions
(different rates) of heat removal into the bulk of the
specimen. The coefficient A, taking into account the
evaporation loss and plasma formation loss, grows with
the power density E of the radiation source and can be
approximated by the expression

(6)

Note that the refinement of the temperature distribu-
tion under laser processing requires a detailed investi-
gation into mechanisms of evaporation and plasma for-
mation in the laser action area on the surface. Appropri-
ate studies of these surface processes may change
quantitatively the boundary condition for heat fluxes.

3.2. Characteristic Size
of the Microstructure

The characteristic size of the steel structure was
determined by the approach in [19, 20], which general-
izes the one put forward in [15, 16] for fast crystal
growth when impurity transfer in the diffusion field is
far from local equilibrium. This approach solves the
problem of heat-and-mass transfer during crystalliza-
tion using an additional condition that the characteristic
size of a structure is selected morphologically. One of
such conditions is the hypothesis for marginal stability
[21], according to which the selected scale of a struc-
ture equals the least wavelength of Mullins–Sekerka
morphological (in)stability. Thus, the structural scale
selected is related to the state of marginal stability, the
“demarcation line” between the stable and unstable
states of a growing crystal, and equals the critical wave-
length of a perturbation imposed on the interface.

Using this hypothesis, one can estimate the charac-
teristic size of a structure forming during laser recrys-

A E( ) 0.82 1 1.14 10 9– E×–( )exp–( ).=

Table 3.  Physical parameters of the Fe–C system

Parameter Value Refs.

C0, at. % 2.29 This work

me, K/at. % –14 [6]

Tm, K 1811 [6]

∆H, J/m3 1.93 × 109 [6]

λ, W/K m 35 [6]

cp, J/K m3 5.74 × 106 [6]

D, m2/s 2 × 10–8 [6]

µ, m/s K 0.1 This work

VD, m/s 17 [14]
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Table 4.  Results of the simulation of the temperature field upon laser processing

Vb, m/s E, W/m2 A hsim, m hexp, m G, K/m

0.010 3.2 × 108 0.25 1.35 × 10–4 1.4 × 10–4 3.0 × 106

0.042 6.3 × 109 0.78 5.1 × 10–5 5.2 × 10–5 1.2 × 107

0.092 9.6 × 109 0.83 2.7 × 10–5 2.8 × 10–5 1.7 × 107

0.142 3.2 × 1010 0.84 3.6 × 10–5 3.8 × 10–5 2.0 × 107
tallization [6, 7]. High velocities of the laser beam
cause relatively high velocities of the crystallization
front. Under these conditions, effects associated with
the relaxation of the diffusion flux of an impurity in the
melt may play a major part [11, 12]. The model of
locally nonequilibrium crystallization that has been
constructed in view of this circumstance [12] provides
good agreement with experimental data in a wide range
of growth rates [15, 16].

Taking into account the effects of the impurity dif-
fusion flux relaxation leads to the hyperbolic equation
for mass transfer in the melt:

(7)

where C is the impurity concentration, τD is the time of
diffusion relaxation, and D is the diffusion coefficient
of the impurity.

Equation (7) includes the diffusion rate VD =
(D/τD)1/2, which is the maximal rate of propagation of
concentration perturbations.

The morphological stability of a flat interface in the
concentration field described by (7) with regard for the
hypothesis for marginal stability has been analyzed in
[15]. In this case, the characteristic size d of the struc-
ture can be found from the relationship

(8)

where σ = (4π2)–1 is the stability parameter;

(9)

∂C
∂t
------- τD

∂2C

∂t2
---------+ D∇ 2C,=

d
Γ /σ

mGCξC
1
2
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---------------------------------------------------------------
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 
 
  1/2

,=

GC
1 k–( )V sC0

kD 1 V s
2/VD

2–( )
------------------------------------–=

Table 5.  Calculated characteristic size of the structure

Vb, m/s Vs, m/s G, K/m dsim, m dexp, m

0.010 0.01 3.0 × 106 8.7 × 10–7 10 × 10–7

0.042 0.0144 1.2 × 107 9.9 × 10–7 7.4 × 10–7

0.092 0.0315 1.7 × 107 5.3 × 10–7 3.9 × 10–7

0.142 0.06 2.0 × 107 3.4 × 10–7 3.0 × 10–7
is the impurity concentration gradient [12]; C0 is the
impurity concentration away from the crystallization
front (equal the initial concentration); and GL and GS
are the temperatures gradients on the sides of the melt
and solid phase, respectively (the mean temperature
gradient G is given by G = (GL + GS)/2).

The stability functions ξ have the form

(10)

and depend on the thermal, PT = Vsd/2a, and concentra-
tion, PC = Vsd/2D, Peclet numbers (a = λ/cp is the ther-
mal diffusivity).

The nonequilibrium distribution coefficient of the
impurity with regard for the effect of diffusion flux
relaxation is given by [22]

(11)

where ke is the equilibrium distribution coefficient.
The slope of the liquidus line in the kinetic phase

diagram in view of the relaxation effect is found from
the relationship [23]

(12)

where me is the slope of the liquidus in the equilibrium
phase diagram of the pseudobinary alloy.

It should be noted that Eq. (8) holds if the rate of
solidification is less than the diffusion rate, that is, if
Vs < VD. When the crystallization front moves with a
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velocity exceeding the diffusion rate, the concentration
profile ahead of the front degrades and the destabilizing
force due to the impurity concentration gradient disap-
pears. Since the crystallization during laser processing
occurs under the positive temperature gradient, the
forces causing the morphological instability of the flat
interface are absent when Vs ≥ VD.

Using the set of equations (8)–(12), we calculated
the characteristic sizes of the crystal structure. The
velocity Vs of the crystallization front was determined
from the micrographs according to (1); the concentra-
tion gradient, from the rate of solidification with (9);
and the temperature gradients G, GL, and Gs were found
by numerically simulating the temperature field
(Section 3.1). Table 5 compares the characteristic sizes
dsim of the structure with experimental data dexp. Good
agreement between the analytical and experimental
results is obvious. Thus, the model of locally nonequi-
librium solidification in combination with the hypothe-
sis for marginal stability can be used for estimating the
characteristic size of a structure forming during laser
recrystallization.

CONCLUSIONS

We considered the formation of the microstructure
of structural steel with 0.5 wt % C during the laser pro-
cessing of the material surface. Using the model of
locally nonequilibrium solidification [12], we derived a
set of equations for the temperature and concentration
fields in the pseudobinary approximation. This approx-
imation is applicable to steel, since carbon plays a
major part in diffusion and structure formation pro-
cesses. The use of the hypothesis for marginal stability
within the model of locally nonequilibrium solidifica-
tion allows the determination of the characteristic size
of the grains [15, 16]. The analytical results agree well
with experimental data. The conclusions drawn are as
follows.

(1) The austenite phase has a dendritic–granular,
purely dendritic, or cellular structure when the laser
beam scan rate is Vb = 0.01–0.167 m/s.

(2) The characteristic size d of the structure calcu-
lated in the pseudobinary approximation agrees well
with the experimental data (Fig. 5). This suggests that
carbon is the basic structure-forming alloying element
in the steel.

(3) The effect of improved mechanical properties in
the shallow molten zone is explained. The primary rea-
sons for this effect are a change in the shape of the zone
and a decrease in the angle Θ down to zero on the sur-
face. As a result, the rate of solidification Vs grows.
Eventually, the size d of the structure decreases and the
microhardness rises in accordance with the qualitative
dependence of the mechanical properties on the grain
size [24–27].

(4) The models used in this work for simulating the
temperature field and characteristic structure size in the
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
laser action area make it possible to predict the mechan-
ical properties of structural steels vs. energy parameters
of laser processing and thermophysical properties of
the alloy. Our approach to predicting steel characteris-
tics may be useful for the further development of the
laser-assisted hardening technology.
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Abstract—Electroluminescence and high-frequency voltage–capacitance methods are used to study Si/SiO2
structures obtained by thermal oxidation of KÉF-5 (100)Si wafers at 950°C in wet oxygen (oxide thickness
250 nm). The structures are irradiated by 130-keV argon ions with doses in the range of 1013–3.2 × 1017 cm–2.
A correlation between the origin, properties, and formation mechanism of implantation-induced defects in
the oxide layer is established, and a model of defect formation is proposed. © 2002 MAIK “Nauka/Interperi-
odica”.
The properties of Si/SiO2 structures, a building
block of modern micro- and solid-state electronics, are
of great scientific and applied interest. Radiation-
induced effects in these structures have been studied
over many years for different purposes. These effects
are caused, in particular, by ion implantation (II). By
varying implantation parameters, one can form local
areas with specified properties in Si/SiO2 structures.
Such an approach has found wide application in differ-
ent fields of science and technology. On the other hand,
II-induced electrically active defects in Si/SiO2 struc-
tures may adversely affect the performance of related
devices. Therefore, the study of the postimplantation
behavior of the Si/SiO2 structures is of interest for pre-
dicting the performance of the devices under irradia-
tion. In spite of extensive research in this field, the
properties and origin of radiation-induced defects in
such structures, as well as mechanisms of their forma-
tion, remain unclear.

The aim of this study was to find a correlation
between the origin, properties, and formation mecha-
nisms of defects generated in the oxide layer of Si/SiO2
structures by Ar ion implantation.

Si/SiO2 structures were obtained by thermal oxida-
tion of KÉF-5 (100)Si wafers at 950°C in wet oxygen.1

The oxide layer thickness was 250 nm. Ar ions were
implanted at doses D = 1013–3.2 × 1017 cm–2 in an Eaton
Nova 4206 implanter. The samples were cooled and the
ion beam density was low in order to avoid target over-
heating. The ion energy, 130 keV, was selected such
that the maximum concentration of ions implanted was
at the center of the oxide layer. Rapid thermal annealing
(RTA) at 500, 700, and 900°C was performed with a
halogen lamp for 10 s in nitrogen. The strength of the
electric field applied to the structures was below the

1 KÉF-5 means phosphorus-doped silicon with a resistivity of 5 Ω cm.
1063-7842/02/4705- $22.00 © 20569
breakdown value for the oxide layer. Near-UV irradia-
tion was provided with a DRL-250 mercury lamp (hν =
4–6 eV).

In the experiments, we used the electrolumines-
cence (EL) method in the 250–800 nm spectral range
[1, 2] and electrophysical diagnostic methods based on
taking high-frequency C–V characteristics, in particu-
lar, the depth profiling technique [1, 3–6]. All measure-
ments were carried out at 293 K in an electrolyte–insu-
lator–semiconductor system [1].

Earlier, characteristic emission bands at energies
1.9, 2.3, 2.7, 3.3, 3.8, and 4.6 eV were revealed in the
EL spectrum of as-prepared Si/SiO2 structures pro-
duced under different oxidation conditions [1]. The
bands were assigned to various defects in the oxide
layer and at the Si/SiO2 interface. The EL band at
1.9 eV was excited by thermalized electrons; the oth-
ers, by electrons heated by the electric field in the oxide
layer (particularly, the EL band at 2.7 eV was excited in
fields greater than or equal to the critical field E* that
initiates the process of impact ionization in the SiO2
matrix) [1].

The EL spectra of the ion-irradiated structures
closely resemble those of the as-prepared structures
and contain three clearly defined EL bands: at 1.9 eV
(650 nm), at 2.7 eV (460 nm), and at 4.4 eV (280 nm)
(Fig. 1) [2]. The EL bands at 1.9 and 2.7 eV have the
same energy position and are fitted by the same Gauss-
ian distributions (0.12 ± 0.05 and 0.35 ± 0.05 eV,
respectively) as in the starting structures. However, in
the structures irradiated, the EL band at 2.7 eV is
excited in fields lower than E* and its intensity is con-
siderably higher. The UV region of the EL spectrum has
one distinct band at 4.4 eV, which can adequately be fit-
ted by the Gaussian distribution with a variance of
0.4 ± 0.1 eV.
002 MAIK “Nauka/Interperiodica”
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It was found that the intensity of the EL band at
1.9 eV grows as the implant dose increases to 1014 cm–2,
remains invariable up to 1015 cm–2, and then drops
(Fig. 2). In the structures irradiated, the EL band at
2.7 eV appears starting from a dose of 1013 cm–2. At a
dose of 1017 cm–2, the intensity of this band decreases
and then abruptly rises at a dose of 3.2 × 1017 cm–2

(Fig. 2). The dose dependence of the intensity of the
4.4-eV band is identical with that of the band at 2.7 eV.
The ratio of the intensities of these bands remains con-
stant.

The emission centers were located from the inten-
sity of the EL bands at 1.9, 2.7, and 4.4 eV vs. oxide
thickness dependence by layer-by-layer etching the
oxide. It was found that the centers responsible for the
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Fig. 1. EL spectra from Ar-irradiated structures. (1) As-pre-
pared; D = 1013 (2), 1014 (3), 1016 (4), and 3.2 × 1017 cm–2 (5).

Fig. 2. Intensities of the EL bands in the spectra from the
ion-irradiated structures as functions of the implant dose.
The EL band position is (1) 1.9 and (2) 2.7 eV. (h) Near-
UV irradiation; (s) near-UV irradiation with the electric
field applied.
1.9-eV band are localized in the outer region of the
oxide, as in the case of the as-prepared structures. The
area of center localization expands with implant dose.
The centers responsible for the EL bands at 2.7 and
4.4 eV concentrate at a distance of 30–140 nm from the
Si/SiO2 interface. As the implant dose rises, the emis-
sion center distribution broadens and its maximum
shifts toward the interface.

High-temperature RTA, near-UV irradiation with
and without a negative bias applied to the field elec-
trode (the negatively biased field electrode prevents
electron injection from the Si into the SiO2), and the
action of the field all decreased the intensity of all the
EL bands.

From the C–V characteristics, it was found that the
ion implantation raises the density of states at the
Si/SiO2 interface and modifies the charge state of the
oxide [3]. From the curves Vfb(dox) (Fig. 3), we deter-
mined the true values of charges in the oxide layer that
are induced by the ion implantation and the values of
their centroids [4–6]. As the dose grows, so does the
negative charge in the outer SiO2 layer. At the dose D =
1013 cm–2, a positive charge forms (with the centroid at
X21 = 35 ± 10 nm measured from the Si/SiO2 interface),
which does not vary with implant dose (Figs. 3, 4)
[4, 5]. Starting with D = 1014 cm–2, a negative charge
(with the centroid at X32 = 8 ± 7 nm) forms, along with
the positive one, its amount increasing with the dose
(Figs. 3, 4) [4, 6]. High-temperature RTA causes these
charges (Fig. 4) and the density of surface states to
decrease monotonically. The positions of the centroids
for the positive and negative charges in the outer layer
of the SiO2 do not change, whereas near the Si/SiO2
interface the position of the negative charge centroid
shifts to greater values (remaining smaller than that of
the positive charge).

The electric field applied to the as-prepared Si/SiO2

structures and to those irradiated with D = 1013 cm–2

modifies the charge state of the oxide insignificantly. At
D = 1014 cm–2 or higher, the field leads to the formation
of a considerable positive charge in the SiO2 near the
interface. The centroid of this positive charge always
coincides with that of the implantation-induced nega-
tive charge forming near the Si/SiO2 interface. The
amount of the field-induced positive charge varies in
proportion with implantation-induced negative charge
for all implant doses and RTA temperatures (Fig. 5) [6].
As the implant dose rises, so does the density of elec-
tron traps in the outer layer of the SiO2, which are filled
by the electric field.

The near-UV irradiation of the ion-irradiated
Si/SiO2 structures caused a negative charge to form in
the SiO2 (which is approximately twice as large as the
positive charge forming as a result of ion implantation
[5]) with the centroid coincident with that of the posi-
tive charge (Fig. 3). The near-UV irradiation with the
negatively biased field electrode, preventing electron
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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injection from the Si into the SiO2, does not modify the
charge state of the ion-bombarded structures [5]
(Fig. 3). The near-UV irradiation also decreases the
negative charge amount and the electronic traps density
in the outer region of the SiO2.

The coincidence of the centroid positions for the
negative charge in the SiO2 near the Si/SiO2 interface
and for the positive charge arising in the electric field,
as well as the fact that the amount of the positive charge
is linearly dependent on that of the negative charge for
all implantation doses and RTA temperatures (Fig. 5),
suggests that the centers responsible for the negative
charge are hole traps, which are filled in the electric
field by hole injection from the Si into the SiO2.

The coincidence of the centroid positions for the
positive charge forming in the SiO2 by the ion implan-
tation and for the negative charge due to the near-UV
irradiation, as well as the fact that the amount of this
negative charge is twice as large as the amount of the
positive charge, indicate that both charges are produced
by the same amphoteric centers.

Earlier, the band at 1.9 eV, the negatively charged
centers, and the electronic traps in the outer layer of the
oxide have been shown to be related to hydrogenous
complexes in the SiO2 (in particular, silanol groups) [1]
(Fig. 6). We found that the ion implantation modifies
such complexes, whereas the postimplantation RTA,
near-UV irradiation, and exposure to the electric field
decrease their concentration in the outer layer of the
SiO2.

Based on our results and published data [7], we sup-
pose that the bands at 2.7 and 4.4 eV are caused by
defects like silicon atoms coordinated with two oxygen
atoms (O2=Si:), which are excited by hot electrons with
an energy of ≈5 eV [2]. Ion implantation causes such
defects through breaking two Si–O bonds in a silicon–
oxygen tetrahedron. From the aforesaid, it follows that
most emission centers responsible for the EL bands at
2.7 and 4.4 eV in the ion-irradiated Si/SiO2 structures
are concentrated within a distance of 30–140 nm from
the interface (Fig. 6). With an increase in the dose of Ar
ions, the concentration of defects like O2=Si: in the
SiO2 first increases, then decreases, and increases again
because of restructuring in the oxide layer. It was found
that the postimplantation RTA, near-UV irradiation,
and exposure to the electric field decrease the concen-
tration of the emission centers responsible for the EL
bands at 2.7 and 4.4 eV. This is because unsaturated sil-
icon bonds are completed by neighboring uncoordi-
nated Si atoms, O atoms, or diffusing H atoms (the
hydrogen in the oxide layer appears as a product of sil-
anol dissociation under the field). Or, alternatively, the
actions listed above may decrease the probability of
electron heating up to energies exciting the emission
centers revealed (due to the restructuring in the oxide
layer).
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
Thus, we can conclude that the ion implantation
changes essentially the properties of the Si/SiO2 struc-
tures and that these changes take place beyond the
region of implanted argon location. The embedded ions
lose their energy in the solid mainly by interacting with
its atomic and electronic subsystems, generating elec-
tron–hole pairs and producing structure defects, respec-
tively, in the SiO2 matrix. Furthermore, the energy suf-
ficient for individual surface atoms to leave the SiO2 for
the environment is transferred to them either directly by
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Fig. 4. Amounts of charges formed by the ion implantation
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the bombarding ions or indirectly by the entire excited
system of the material irradiated. This results in the
sputtering of the SiO2 outer layer, which shows up as a
noticeable decrease in the oxide layer thickness at Ar
ion doses D ≥ 1016 cm–2. At the given implantation
energy (E = 130 keV), the interaction with both the
electronic and atomic subsystems causes energy dissi-
pation in the outer part of the oxide layer in the Si/SiO2

structures. The disorder of the oxide outer layer in this
case is such that the hydrogenous complexes concentra-
tion increases in this region. It shows up in the increase
in the concentration of the centers responsible for the
EL band at 1.9 eV, as well as of the negatively charged
centers and the electronic traps in the outer layer of the
SiO2. In the bulk of the oxide layer, the most likely pro-
cess of energy dissipation for the embedded argon
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Fig. 6. Spatial distribution of the defects formed in the oxide
layer of the Ar-irradiated Si/SiO2 structures.
atoms is the interaction with the atomic subsystem. As
a consequence, the greatest amount of dangling Si–O
bonds is observed near the maximum of the Ar distribu-
tion and the Si and O atoms shift deeper into the oxide.
According to estimates, the O and Si atoms are dis-
placed from the Ar distribution maximum by distances
of 80–170 and 30–70 nm, respectively. A considerable
portion of the O atoms reaches the coesite (which is
denser than SiO2 layer, located at a distance of 0–10 nm
from the interface [1]), and the silicon substrate.
Because of retardation in these denser materials, the O
atoms travel distances lesser than those calculated for
SiO2. As a result, two spatially separated nonstoichio-
metric SiOx regions with x > 2 and x < 2 form in the
oxide of the Si/SiO2 structures. The oxygen-depleted
region (x < 2) lies farther from the silicon surface,
because the silicon atoms are displaced by a smaller
distance than the oxygen atoms, and contains defects
such as silicon atoms coordinated with two oxygen
atoms. These defects are responsible for the emission
bands at 2.7 and 4.4 eV. Thus, the EL data suggest that
during the implantation, the SiOx < 2 layer forms in the
SiO2 at a distance of 30–140 nm from the interface,
while the SiOx > 2 layer arises closer to the interface.

We assume that the electrically active centers are
also related to the formation of these nonstoichiometric
regions and associated defects. For the oxygen-
depleted region, where the centroid of the implantation-
induced positive charge is situated, the most likely
defects are silicon atoms coordinated with three oxygen

atoms (O3≡ ) and/or oxygen vacancies [5] (Fig. 6).
Both defects are amphoteric centers, which become
negatively charged under the near-UV irradiation. They
may be positively charged either directly after the ion
implantation or, being initially neutral, acquire a posi-
tive charge by capturing holes that appear when the Ar
ions interact with the electronic subsystem of the SiO2
matrix. The fact that the charge state of the ion-pro-
cessed structures does not change under the near-UV
irradiation with the field electrode biased negatively
indicates that the amphoteric centers become negative
after the near-UV irradiation by capturing electrons
optically excited from the Si into the conduction band
of the SiO2. For the oxygen-enriched region, where the
centroid of the negative charge formed by the ion
implantation is located, defects like nonbridging oxy-

gen atoms (O3≡Si– ) are the most probable [6]
(Fig. 6). They are generated in the SiO2 during and/or
after the ion implantation and initially are negative.
Subsequenty, they may serve as Coulomb hole traps,
which are filled under the action of the field, thus
becoming neutral. The centroid of these defects shifts
with increasing RTA temperature as a result of the
asymmetric broadening of the SiOx > 2 region due to the
existence of the coesite layer near the interface.

Along with defect formation in the oxide, the ion
implantation causes some of the displaced atoms in the

Si
.

O
.
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SiO2 matrix to reach the Si/SiO2 interface. Having an
energy large enough to break loose bonds [1], they pro-
duce structure defects contributing to the density of sur-
face states in the forbidden gap of the Si at the interface.
A contribution to the density of surface states may also
be made by defects formed at the Si/SiO2 interface as a
result of the saturation of dangling bonds in the SiO2

bulk, as well as other long-range effects that are poorly
understood.

The constancy of the concentration of the O3≡
defects (and/or oxygen vacancies), the noticeable

amount of the O3≡Si–  defects near the interface, and
the reduction of the concentration of the O2=Si: defects
in the oxide layer in going from D = 1013 to 1014 cm–2

are apparently associated with the restructuring in the
SiO2 at the dose D = 1014 cm–2. At D = 3.2 × 1017 cm–2,
one more restructuring takes place in the oxide layer
with the resulting increase in the intensities of the 2.7-
and 4.4-eV EL bands and, hence, in the concentration
of the O2=Si: defects.

Si
.

O
.

TECHNICAL PHYSICS      Vol. 47      No. 5      2002
The reasons and mechanisms underlying the
restructurings remain yet unclear and call for further
study.
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Abstract—The properties of Si/SiO2 structures produced by oxygen implantation into silicon (SIMOX tech-
nology) are investigated by the high-frequency C–V method and by the electroluminescence (EL) method. The
existence of electrically active and luminescence centers in the oxide layer near the interface is established. The
effect of a SiO2 masking layer on the silicon surface on defect formation in the SIMOX structure is elucidated.
The dependence of the concentration of the electrically active and luminescence centers on the thickness of the
masking layer is found. © 2002 MAIK “Nauka/Interperiodica”.
Si/SiO2 structures and related metal–insulator–
semiconductor devices are the building blocks for mod-
ern micro- and solid-state electronics. In this connec-
tion, the properties of these structures are of both fun-
damental and applied interest. One way of creating
Si/SiO2 structures is the formation of buried oxide lay-
ers in the bulk of silicon by oxygen implantation (the
so-called SIMOX technology). The minimization of the
defect density in such structures and, as a consequence,
the improvement of their stability against an electric
field are basic issues of many today’s investigations.
A method of modifying the properties of the buried
oxide layer is the variation of the irradiation parameters
during the formation of SIMOX structures, including
the implantation of oxygen ions into silicon covered by
a masking SiO2 layer of various thicknesses.

The aim of this study is to discover the effect of
masking SiO2 on defect formation in SIMOX struc-
tures, in particular, its effect on the concentration of
electrically active and luminescence centers within the
buried oxide layer.

We investigated Si/SiO2 SIMOX structures obtained
by implanting oxygen ions directly or through a mask-
ing SiO2 layer of various thicknesses (dm.ox = 46.6,
189.7, and 246.4 nm) at a dose of 1.8 × 1018 cm–2, an
energy of 190 keV, and at a temperature of 650°C. In
order to form buried SiO2 layers, we used postimplan-
tation annealing at T = 1320°C for 6 h. After the forma-
tion of the buried layers, the layer was chemically
removed and we obtained Si/SiO2 structures with an
oxide thickness of 360–425 nm. Subsequent electrical
measurements were performed at voltages below the
oxide breakdown voltage.

The charge states of the SIMOX structures were
studied by taking high-frequency C–V curves, using, in
particular, the method of depth profiling [1], which
makes it possible to find the dependence of the flat-
1063-7842/02/4705- $22.00 © 0574
band voltage Vfb on the oxide layer thickness dox

(Figs. 1, 2). For the positions of the centroids X of
charges localized in the oxide layer, we took the oxide
layer thicknesses at which the compared curves Vfb(dox)
interpolated to zero thickness intersected, and the true
values of the charges were found from the slopes of
these curves [1, 2]. To simultaneously detect electri-
cally active defects in the buried oxide and measure
their relative concentrations, we used the method of
field cycles [1] (Fig. 3). The method of electrolumines-
cence (in the spectral range of 250–800 nm) allowed us
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Fig. 1. Flat-band voltage vs. SIMOX oxide thickness. The
oxygen ions were implanted (1) into Si directly and through
a SiO2 mask of thickness dm.ox = 46.6 (2), 189.7 (3), and
246.4 nm (4).
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to gain information on the presence, type, and relative
concentration of luminescence centers in the SIMOX
oxide layer from the EL spectrum and the intensity of
characteristic lines (Fig. 4). The measurements were
performed in an electrolyte–insulator–semiconductor
system at room temperature [1].

Previously, it has been established that, in the
SIMOX structures obtained without the masking layer,
a positive charge Q = (0.4 ± 0.1) × 1012 cm–2 with a cen-
troid X = (65 ± 10) nm forms in the SiO2 near the inter-
face with the Si [2]. The use of the masking oxide
decrease the charge, but the value of its centroid
remains unchanged (Fig. 1). Subsequent field actions
on the SIMOX structures (the method of field cycles)
showed the stability of the charge state in the structures
in the field range Eox ≤ 2.5 MV/cm (Fig. 3). At the fur-
ther increase in the electric field intensity, the value of
–Vfb. sharply rises starting from Eox = 3 MV/cm in the
case of the structures formed without the masking
oxide and from Eox = 3.5, 4.5, and 5.5 MV/cm at dm.ox =
46.6, 189.7, and 246.4 nm, respectively (Fig. 3). This
indicates that a positive charge forms in the structures.
Its centroid, as in the structures formed without the
masking oxide [2], was equal to X = (65 ± 10) nm
(Fig. 2). The amount of this positive charge was deter-
mined from the electric field intensity and the time of
field action.

Taking into account this circumstance and also the
fact that the low-temperature annealing had no effect on
the amount of this charge [2], we assume that the for-
mation of the positive charge in the SIMOX oxide
under the field action is associated with the conversion
of electrically inactive centers that arise during the for-
mation of the buried SiO2 layer to positively charged
electrically active ones. The increase in the electric field
threshold intensity (at which the fast buildup of the
charge is observed) with increasing masking oxide
thickness dm.ox is likely to be related to the fact that (1)
the concentration of the electrically inactive centers
(becoming active under the field action) decreases
and/or (2) a greater energy of electrons is required to
pass them into the electrically active state (hence, a
stronger electric field intensity in the oxide).

Earlier [2], taking into account that the centroid of
the positive charge due to the field action coincides with
that of the charge appearing in the SIMOX structures
and also that the effect of near-UV irradiation on both
charges is identical while low-temperature annealing
has no effect, we assumed that these charges are caused
by defects of the same origin.

The EL spectra of Si/thermal SiO2 structures con-
tain characteristic lines at 1.9, 2.3, 2.7, 3.3, 3.8, and
4.6 eV, which are associated with the presence of vari-
ous defects in the oxide layer and at the Si/SiO2 inter-
face [1]. The 1.9-eV band is excited by thermalized
electrons; the others, by electrons heated by the electric
field in the oxide layer (in particular, the 2.7-eV band is
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
excited in fields greater than or equal to the critical field
E* at which the impact ionization of the SiO2 matrix
begins) [1].
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Fig. 2. Effect of the field on the dependences of the flat-band
potential on the SIMOX oxide thickness dm.ox = 46.6 (1)
and 189.7 nm (2); 1F and 2F are field actions.
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Fig. 3. Flat-band potential vs. electric field intensity in the
SIMOX oxide. (1) Without a masking oxide; dm.ox = 46.6 (2),
189.7 (3), and 246.4 nm (4).
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The EL spectra of our SIMOX structures contain
two characteristic EL lines: at 2.7 eV (460 nm) and at
4.4 eV (280 nm) (Fig. 4) [3]. The 2.7-eV line has the
same energy position and is described by the same
Gaussian distribution [(0.26 ± 0.07) eV] as in the struc-
tures with thermal SiO2. However, it is excited in fields
below E*, and its intensity is much higher than in the
spectra taken from the Si/SiO2 structures with thermal
SiO2. In the UV range of the EL spectrum, we observed
the single well-defined line at 4.4 eV, which is well
approximated by a Gaussian distribution with a vari-
ance of (0.31 ± 0.11) eV [3].

The intensities of these lines remained unchanged
when the SIMOX oxide was thinned by etching down
to a thickness of 250 nm. Thus, we conclude that the
luminescence centers responsible for these lines are
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Fig. 4. EL spectra of the SIMOX Si/SiO2 structures.
(1) Without a masking oxide layer and (2) dm.ox = 46.6 nm.
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Fig. 5. EL line intensities for the SIMOX Si/SiO2 structures
and the positive charge amount in the buried SiO2 layer vs.
thickness of the masking layer. (1) 2.7-eV EL line,
(2) 4.4-eV EL line, and (3) positive charge amount.
localized in the 250-nm-thick part of the oxide layer at
the interface with the silicon.

In this spectrum, the 1.9-eV line was absent, sug-
gesting that the oxide layer does not contain silanol
groups (which, as has been previously found [1], are
responsible for this line). This is because the SIMOX
process prevents the penetration of water fragments
(hydrogen and hydroxyl groups) into the oxide layer.

Figure 5 shows the EL line intensities (at 2.7 and
4.4 eV) and the positive charge arising in the SIMOX
SiO2 vs. thickness of the masking layer. With an
increase in the masking SiO2 thickness, the EL intensi-
ties and the positive charge amount decrease. The
charges become significant even at a mask thickness of
46.6 nm. It should be noted that the intensities diminish
by the same factor, which indicates that both bands are
caused by identical defects.

To elucidate the effect of implant energy losses in
the mask oxide on the EL line intensities and on the
amount of the charge, we evaluated the energy losses of
190-keV oxygen atoms having passed the SiO2 layer
[4] (Fig. 6).

Comparing Figs. 5 and 6, we see that the insignifi-
cant decrease in the energy of implanted oxygen atoms
(in the case of small oxide thicknesses) is accompanied
by the considerable decrease in the EL line intensities
and the positive charge amount. With the further signif-
icant decrease in the energy of oxygen atoms, both the
intensities and the charge remain virtually unchanged.

At this stage of investigation, it is believed that
impurity-modified defects like triply coordinated sili-
con atoms are responsible for the positive charge in the
oxide [2].

On the strength of our previous results and the anal-
ysis of the published data [3, 5], we assume that defects
like silicon atoms doubly coordinated by oxygen (O2=Si:),
which are produced by hot electrons with an energy
≈5 eV, are responsible for the 2.7- and 4.4-eV EL.

The appearance of the above two types of defects in
the SIMOX structures can be related to microcrystal-
line silicon inclusions (the existence of which has been
established in a number of works [6–8]) arising in the
SiO2 near the Si/SiO2 interface. The decrease in the
intensity of the EL lines considered and in the amount
of positive charge with increasing mask thickness cor-
relates with the decrease in the density of silicon islands
in the SiO2 layer at the inner interface [19].

The significant decrease in the concentration of the
luminescence centers, electrically active defects, and
subdefects in the case of the slight decrease in the
energy of the oxygen implant allows us to conclude that
this effect is unrelated to a decrease in the oxygen ion
energy. We suppose that when passing through the
amorphous mask (even of a small thickness), the ion
flux spreads, the motion of the ions becomes chaotic,
and thus the total momentum of the oxygen ions
embedded into the silicon declines. In this case, the
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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oxygen ions do not penetrate deep into the silicon and,
the subsequent annealing, the resulting SiO2 does not
have a region with a small content of oxygen atoms.
Consequently, the concentration of the defects like sili-
con atoms doubly coordinated by oxygen and triply
coordinated silicon atoms is considerably smaller.

The decrease in the defect concentration in the
SIMOX oxide produced by the mask process may be
related to a reduced contamination level in the silicon,
as well as to the redistribution of the energy losses
(among the electronic and atomic subsystems of the sil-
icon) of the oxygen atoms when their energy changes
slightly, which is the case in our consideration [4].

Thus, the presence of a masking oxide on the silicon
surface in fabricating SIMOX Si/SiO2 structures leads
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Fig. 6. Energy of implanted oxygen ions vs. thickness of the
masking SiO2 layer.
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to a significant decrease in the concentration of posi-
tively charged defects, predefect states, and lumines-
cence centers causing the 2.7- and 4.4-eV lines in the
SIMOX oxide near the Si/SiO2 interface. The decrease
in the concentration of the predefect states improves the
stability of the Si/SiO2 structures against an electric
field.
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Abstract—A method for the formation of fast ion beams with an energy spectrum providing a desired profile
of embedded atoms and radiation-induced defects in the sample is suggested. A rigorous mathematical analysis
of the profiles of film energy absorbents that produce light- and heavy-ion beams with a necessary energy spec-
trum from fast monochromatic beams is performed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Nuclear methods for modifying electrical, physical,
chemical, and mechanical properties of materials are
widely used in modern technologies. Specifically, the
deep implantation of fast ions and the creation of
desired profiles of radiation-induced defects are applied
for imparting specific properties to semiconductor
structures and associated devices [1, 2]. The concentra-
tion profiles of ions implanted depend on the
bremsstrahlung losses of the ions in the material, that is,
on the type and energy of the ions and also on the prop-
erties of the material on the atomic level. The defect
density distribution across the sample also depends on
the atomic bond strength in the irradiated compound.
The ranges of fast ions and the depth distribution of
radiation-induced defects in various materials can be
simulated with the well-known SRIM program [3].
Naturally, these distributions are a function of the angle
between the beam direction and the normal to the sam-
ple surface and also (under channeling conditions)
between the beam direction and crystallographic direc-
tions.

The most efficient way to produce the necessary
concentration profiles of ions of a given type and the
distributions of radiation-induced defects (RIDs) is the
irradiation of the samples by an ion beam with a certain
energy spectrum. Since ion accelerators are designed
for creating monochromatic beams and their energy
tuning is rather difficult (especially in the case of reso-
nant accelerators), it is appropriate to use stopping
media in mass production. These media produce beams
with a necessary energy spectrum from fast monochro-
matic beams.

In this work, we for the first time present a method
of analysis of profiled energy absorbents (PEAs) in the
form of a homogeneous foil arched along one coordi-
nate that is perpendicular to the beam direction. Then,
1063-7842/02/4705- $22.00 © 20578
the penetrating depth of the beam in the absorbent will
depend on this coordinate. As a result, away from the
absorbent, one can form an energy spectrum of the
beam that provides the desired depth distributions of
the monochromatic beam ions and RIDs produced by
the beam.

1. CURVATURE ANALYSIS OF THE ABSORBING 
FOIL FORMING GIVEN CONCENTRATION 

PROFILES OF EMBEDDED ATOMS

Let it be necessary to produce some distribution of
stopped doping ions in the depth range 0–zmax. The ion
density is n(z) [ion/cm3], and the irradiation dose is
N [ion/cm2]. We approximate a range–energy relation
by a power dependence usually used in the case of
medium-energy ions [4]. Since at normal incidence the
stop depth z of an ion equals its range R, this depen-
dence can be written as

(1)

In view of (1), the energy spectrum dN(E)/dE of the
beam that provides a given concentration profile n(z)
can be represented as

(2)

where C0 is a dimension-adjusting constant.

Let a PEA in the form of a metallic foil be placed in
front of the sample irradiated and let the ion range in the
absorbent depend on energy as

(3)

If E0 is the energy of the incident monochromatic beam,
the ion energy at the exit from the foil absorbent of

R z AEB.= =

dN E( )
dE
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002 MAIK “Nauka/Interperiodica”



        

FORMATION OF DESIRED CONCENTRATION PROFILES 579

                                                   
effective thickness Zf is given by

(4)

where Rf is the range of ions with the energy E0 in the
foil material.

Figure 1 shows a fragment of the arched foil with a
thickness k. Taking into account that Zf = k/cosα(x)
when the beam direction is aligned with the ordinate
axis, we find from (2)–(4) that

(5)

If the radiation density is uniformly distributed
along the X axis, dN ~ dx. Then,

(6)

On the other hand, since Zf is a function of α(x), dif-
ferentiating Eq. (4) with respect of x yields

(7)

From (6) and (7), we find

(8)

Using (8) and the relationship dy/dx = , we
come to the expression for the instantaneous coordi-
nates of the PEA profile as a function of parameter α:

(9)

If a desired concentration profile cannot be repre-
sented by a functional dependence of z, we represent
n(z) as a polynomial expression

determine αi, and take into account expression (9) to
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obtain

(10)

Having put Cx = Cy = 0 according to the adopted
conditions x(0) = y(0) = 0 and having calculated x(α)
and y(α) for specific Rf, k, B, and Bf, we find the desired
dependence y(x), which specifies the shape of the PEA
film.

2. ANALYSIS OF AN ADSORBENT PROVIDING 
THE UNIFORM DEPTH DISTRIBUTION OF 

EMBEDDED IONS

The condition dN/dR = n(z) = const greatly simpli-
fies expressions (9). Moreover, for specific materials,
these expressions may be simplified further. Let we
form a 50-µm-thick proton-doped region, for example,
in a silicon sample with a PEA in the form of an alumi-
num foil of thickness k = 40 µm. For appropriate beam
energies and thickness values measured in microme-
ters, the coefficients in formulas (1) and (3) take the val-
ues A = ASi = 18.56, B = BSi = 1.476, Af = AAl = 16.51,
and Bf = BAl = 1.485. Hence, for this case, B ≈ Bf.
Replacing the approximate equality by the strict one,
assuming that Cx = Cy = 0, and taking into account that
y(x) is C3-independent, from (9) we find

(11)

The position of the boundaries of the uniformly
doped layer depends on the monochromatic beam
energy E0 and the maximal angle αmax of foil inclina-
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Fig. 1. Fragment of the PEA profile.
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tion. If the outer boundary coincides with the sample
surface, αmax is determined from the obvious relation-

ship cosαmax = k/AAl . Using formulas (1) and (3)
with the reduced values of the coefficients and convert-
ing the Si layer thickness to the Al thickness equivalent
in terms of energy loss, one finds that E0 = 3.01 MeV
and αmax = 61.9°.

If the outer boundary of the layers doped must be at
a depth zSi, min from the surface, the minimum energy of

the ions leaving the PEA is Emin = (zSi, min/ASi  and the

maximal energy is Emax = (zSi, max/ASi . The energy E0

of the incident beam must meet the condition

(12)

where zAl, min and zAl, max are the Al thicknesses that are
equivalent (in terms of energy loss) to the Si layers
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Fig. 2. Period of the PEA profile for proton implantation at
δz = 50 µm (lower curve) and 260 µm (upper curve). E0 =
3.01 MeV.
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Fig. 3. RID distribution across the Ge sample irradiated by
a monochromatic beam of Ar40 ions with an energy E =
4.5 MeV.
extending to the outer and inner boundaries of the layer
doped, respectively, and Zmax = k/cosαmax.

For zSi, min = 10 and 100 µm, E0 was estimated at E0 =
3.22 and 4.84 MeV, respectively. The change in αmax for
these two values of zSi, min does not exceed 1.5°.

The PEA profile given by (11) is depicted in Fig. 2
(lower curve) for αmax ≈ 62°. The calculations were
made for the initial quarter-period. The total period was
obtained by symmetrizing the segment constructed
under the assumption that y(x) is a continuous function.
The PEA profile is nearly identical for any depth at
which the doped layer of fixed thickness is situated.

A change in the doped layer thickness is related to a
substantial change in the PEA profile. By way of exam-
ple, Fig. 2 demonstrates the PEA profile with k = 40 µm
and αmax ≅  81°, which is responsible for the formation
of a doped layer of thickness δz ≈ 260 µm (upper
curve). The strong dependence of αmax on the doped
layer thickness and the independence of this angle from
the layer position for the materials selected are easy to
explain. From (1) and (3), we find RAl = AAlRSi/ASi,
assuming that BAl = BSi. Since δzSi = δRSi, relationship (13)
yields

3. FORMATION OF A DESIRED DEPTH 
DISTRIBUTION OF RADIATION-INDUCED 

DEFECTS

Since physical processes underlying the formation
of proton-induced defects differ from those responsible
for the production of the defects by heavy ion (HI) irra-
diation [5], it seems to be appropriate to analyze the
PEA profiles for the two cases separately.

In the case of energetic protons, most defects are
produced in narrow final segments of the tracks [5].
Then, the problem of formation of a desired depth dis-
tribution of the defects becomes equivalent to the above
problem of forming a given hydrogen dopant profile. In
particular, the lower PEA profile in Fig. 2 provides the
approximately uniform depth distribution of defects
from z = 0 to z = 82 µm in the silicon sample if the
energy of an incident proton beam is 3 MeV and k =
40 µm.

In the case of HIs, the density of defects is substan-
tially nonzero over the major part of the track. This is
because bremsstrahlung losses of HIs grow as E
increases to E(MeV) ≈ A of the ion. The reason for this
effect is that the equilibrium charge of HIs moving in a
stopping medium increases and the “nuclear stopping”
component is much higher than for the case of light
ions [5]. The relative density function of the defects
F(z) vs. penetration depth of Ar 40 ions with an energy
E0 = 4.5 MeV for the germanium sample is shown in
Fig. 3. The curve was obtained with the SRIM program.

αmax
δZSiAAl

ASik
------------------ 1+

1–

.arccos=
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It is highly asymmetric, having the extended region of
monotonic rise and the relatively narrow region of
monotonic fall.

The calculation of the PEA desired profile is based
on using the density function of HI ranges. This func-
tion must satisfy the distribution F(z) of the defects that
approximates the desired one as close as possible.

4. DENSITY FUNCTION OF RANGES

The depth distribution of the defects parametrically
depends on R. Let K(z) be the density function of the
defects that corresponds to a monochromatic beam of
HIs having an energy Emax and a range Rmax. Obviously,
the density function of defects produced by ions with
lesser energies and lesser ranges shifts parallel to K(z)
depthward by a value of Rmax – R. The shape of the
function remains unchanged:

Let n(R) be the density function of the ranges of HIs
with an energy spectrum formed by a PEA. The HIs
lying at a depth z and having ranges in the interval
(R, R + dR) make a contribution K(R, z)n(R)dR to the
density function. Integrating over all ranges exceeding
z yields the defect distribution

(13)

For a given F(z), expression (13) can be viewed as
an integral equation for a desired function n(R). In this
equation, the density function K(Rmax – R + z) fulfills
the role of a positive kernel.

Equation (13) is a Volterra integral equation of the
first kind [6–8] for which a solution should be sought in
the class of nonnegative functions from the physical
point of view. The right-hand side of this equation is an
integral transformation of the convolution type. If an
exact solution of Eq. (13) exists, it is usually found by
an operational method based on Laplace transforms
[6, 7]. Here, we use an iteration solution algorithm for
which the existence of an exact solution of Eq. (13) is
not necessary. Its essence is that for a given distribution
F(z), a kernel (R, z) close to (R, z) is selected such
that a solution n1(R) exists a fortiori and can be found
by any, for example, matrix method [9]. Then, the ker-
nel selected, n1(R), and true kernel (R, z) = K(Rmax –
R + z) are substituted into (13) and the free term F1(z)
is refined. The pair of the function n1(R) and F1(z) gives
the first approximation to the solution desired.

Next, we construct the function F1(z):

where zmax is the position of the maximum of F1(z).
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The function 1(z) obtained is substituted into the
left-hand side of (13), and the iteration procedure is
repeated until the function F1(z) flattens in the interval
0 ≤ z ≤ , where i is the number of iteration. Other-
wise, the process is terminated.

In the above procedure, the search for the desired
distribution n(R) and the refinement of the function F(z)
take place simultaneously. Therefore, the procedure
can be considered as a solution algorithm for a varia-
tional problem with uncertain conditions of extremum.
It is also seen that the algorithm is appropriate for the
analysis of the density function of ranges if kernel and
defect distribution are “fairly close” to each other.

With this method, we simulated the distribution of
Ar 40 tracks in germanium for Emax = 4.5 MeV. For this
track distribution, the RID distribution was uniform to
the greatest extent. The continuous part of the distribu-
tion was then approximated by a power polynomial. In
analytical form, the solution is given by

(14)

where α0 = 0.04961, α1 = 0.09850, α2 = –0.09165, α3 =
5.259 × 10–2, and α4 = –1.312 × 10–2; R is expressed in
micrometers.

Figures 4a and 4b demonstrate the range distribu-
tion n(R) obtained and its associated defect distribution
F(z), respectively. From Fig. 4b, it follows that the
approximate calculation of n(z) corresponds to the
fairly flat F(z) at z ≤ 2.0 µm although only three itera-
tions have been made. In the interval 2.0 < z < 2.6 µm,
the distribution F(z) drops to zero monotonically and
can be flattened by no means because of the descending
part of the kernel (R, z).

In should be noted that distribution (14) has a singu-
larity (at R = 2.6 µm) in the form of delta function [10],
which affects the PEA profile, as will be shown below.

5. ANALYSIS OF THE PEA PROFILE

As was noted above, the stopping mechanisms for
HIs, on one hand, and protons and α particles, on the
other, differ. For HIs of mass A that have an energy
E(MeV) < A, bremsstrahlung losses per ion grow
because of an increase in the equilibrium charge of the
ions. In the approximate power dependences of R on E,
(1) and (3), the exponents B and Bf become less than
unity. However, in a sufficiently wide energy interval,
they continue to weakly depend on the stopping
medium for a given sort of ions; that is, B ≅  Bf. Specif-
ically, for Ar 40 ions with an energy up to 15 MeV, the
exponent B ≈ 0.714 for both aluminum and germanium
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samples. Hence, the profile of an aluminum PEA that
provides the uniform distribution of defects in the Ge
sample is given by the equations

(9a)

x α( ) A0
n R( ) αsin

αcos
2

------------------------

0

α

∫ dα Cx,+=

y α( ) A0
n R( ) αsin

2

αcos
3

--------------------------

0

α

∫ dα Cy,+=
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X–0.2
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0.4
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1.0

1.2

1.4
Y

Fig. 5. Period of the PEA profile providing a uniform layer
of RIDs with a thickness δz = 24 µm in the germanium sam-
ple (striking ions, Ar40; absorbent material, Al; k = 2.4 µm;
E0 = 11.38 MeV; Emax = 4.5 MeV; and αmax = 62°).
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–0.05

0

0.05

0.10
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Fig. 4. (a) Range distribution n(R) for Ar40 ions in Ge that
provides the defect distribution as uniform as possible
(Emax = 4.5 MeV) and (b) defect distribution over the depth
F(z) that corresponds to the range distribution n(R) in
Fig. 4a.
which follows from (9) and where R is substituted for z.

Now we express the coordinate z corresponding to
the range R in the target material through Rf, k, and α:

(15)

where AAl = 0.878, AGe = 0.347, and BAl = BGe = 0.714.

Substituting (15) into (14) and rejecting the term
containing the delta function, we come to

(16)

Formula (16) specifies the depth distribution n(Rmax,
k, α) of tracks in the range of foil inclination 0 < α ≤
αmax. This distribution corresponds to the condition
F(z) = const. Putting αmax = 62° and using formu-
las (1)–(5), we find that, with the aluminum foil thick-
ness k = 2.4 µm and the energy of the Ar40 incident
monochromatic beam E0 = 11.38 MeV, the maximal ion
path length in the absorbent is ZAl, max = 4.99 µm and the
maximal energy of the spectrum behind the PEA is
Emax = 4.5 MeV. Substituting the parameter values into
(16) and expression (16) into set (9a), we calculate the
parametrically defined PEA profile in the angular range
0° < α ≤ 62°. For definiteness, we put A0 = 1 and Cx =
Cy = 0. Eliminating the parameter α, we arrive at the
desired dependence y(x). In Fig. 5, this dependence cor-
responds to the profile in the interval 0.343 ≤ x ≤ 1.

The singularity in the form of the delta function in
(14) at R = 2.6 implies that a finite portion of the area
under the spectrum concentrates at E = Emax (α = 0); in
other words, along with the continuous part, the spec-
trum contains the discrete component. This fraction is
given by

Integration using the polynomial representation of
n(R) in the interval 0 ≤ R < 2.6 and taking into account
the properties of the delta function [11] yields ξ =
0.343.

Thus, the extent of the PEA segment to which the
angle α = 0 corresponds must account for 34% of the
total interval of x considered in the analysis. In Fig. 5,
the total interval used in the calculations lies between 0
and 1. From the function y(x) determined in this total
interval, one can, by analogy with Fig. 2, construct the
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PEA profile in the form of a continuous periodic func-
tion. The complete period of such a function is repre-
sented in Fig. 5.

The presence of plateaus is typical of PEAs for HIs.
The plateau appears because the defects generated by a
low- or medium-energy heavy particle are distributed
along its entire path. As a result, a “wide” kernel K(R, z)
appears in integral equation (17) and the delta function
arises in the distribution n(z). As the width of the distri-
bution K(R, z) decreases, so does the amplitude of the
delta function; therefore, the relative extent of the flat
part of the PEA profile shrinks, tending to zero in the
limit.

CONCLUSION

In general, a profiled absorbent is an arched foil with
the profile meeting expression (9). For dopants to be
uniformly distributed over the doping area, the beam
usually scans the target in two directions. For the PEA
profile not to modulate the surface relief, the PEA can
be displaced relative to the sample. However, another
simpler approach seems to be more preferable. It uses
the effect of angular scattering, which is observed when
ions travel in condensed media.

According to calculations carried out with the SRIM
program, the transverse straggling of protons passing
through a 40-µm-thick Al layer is ≈1.8 µm. This corre-
sponds to a mean scattering angle  = 2.6°. This angle
depends on E0 only slightly and grows in proportion to
the absorbent thickness. Calculations performed in [11]

ϕ
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0.343δ(E – 4.5)
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–0.35
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0.50

0.75

dN/dE
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Fig. 6. (a) Energy spectrum of protons producing a constant
hydrogen concentration in Si at depths from 0 to 50 µm and
(b) energy spectrum of Ar40 ions producing the same RID
density profile in Ge as shown in Fig. 4a.
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for this case gave a close value:  = 2.37°. If the period
of the arched film is ≈2 mm, the ions having passed
through the thinnest part of the absorbent become
almost uniformly distributed over the sample even at a
distance of several centimeters. As the mass of the ions
grow, this distance increases because  decreases.

Foil PEAs can be fabricated with a flat extrusion die.
The die profile, in turn, can be made with a shaping tool
on a planing machine.

With surface barrier detectors, the PEA profile can
be tested by comparing the energy spectrum of the ions
passing through a PEA with that obtained by formula (2).
Figures 6a and 6b demonstrate the analytical energy
spectra of protons and Ar40 ions that form the uniform
depth distribution of hydrogen and RIDs for the cases
under study.

It is known that, for given light and heavy ions, the
coefficients B are weakly dependent on the stopping
medium in a sufficiently wide energy range. Let a mate-
rial irradiated have a low or medium atomic number
and let a PEA be made of aluminum or copper, respec-
tively. Then, for light and heavy ions, (B – Bf)/Bf < 0.03.
In this case, for real values of Rf, k, and α, the assump-

tion (Rf – k/cosα  ≈ const changes the results only
by several percent, which is quite tolerable.

The basic advantage of doping by ion implantation
is the production of doped layers with extremely sharp
concentration boundaries, since the longitudinal strag-
gling is <5% of the total range even for light ions.

It should be noted that the above calculations have
been carried out under the assumption that the stopping
coefficients do not depend on the implantation dose N.
However, such a dependence is observed for heavy ions
(A > 10) at N > 1014 ion/cm2 and for superheavy ions
even at N > 1013 ion/cm2. For a doped layer 10 µm
thick, these doses correspond to concentrations
between 1016 and 1017 ion/cm3. In view of the fact that
RIDs arise at doses N < 1012 ion/cm2, our calculations
also apply to the problem of designing PEAs used for
the formation of desired RID distributions.
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Abstract—The possibility of separately measuring the surface and volume absorption by a phase photothermal
method is demonstrated with ZnSe polished samples. A theory developed allows us to directly relate the signal
amplitude to the coefficients of surface and volume absorption. From the experimentally found dependence of
the temperature oscillation amplitude at the sample surface on the angle of incidence, the position of the absorb-
ing surface layer relative to the interface is determined and a mechanism of interaction between the pumping
radiation and the target material is assessed. © 2002 MAIK “Nauka/Interperiodica”.
The rapid advances in laser technology have lead to
a continuous rise in the laser power and, as a conse-
quence, to increasingly stringent requirements for the
quality of optics. The absorption coefficient is one of
the basic parameters defining optical losses and distor-
tions, as well as the lifetime of optics.

Currently, the absorption coefficient is most fre-
quently measured with the calorimetric method. Its
basic advantage is simplicity. However, the interpreta-
tion of results obtained by this method is rather diffi-
cult, especially if the samples have various shapes. The
separate determination of the volume and surface
absorption coefficients and finding their distribution
over the sample with this method are also a challenge
[1, 2].

These problems can be obviated by using photother-
mal diagnostics methods. Over the last decade, they
have gained wide acceptance in microscopy and nonde-
structive testing, in studying the thermophysical prop-
erties of various objects and media, in impurity and pol-
lutant control systems, etc. [3–5]. Of special interest are
optical methods of photothermal spectroscopy, which
are totally nonintrusive (contactless) and offer high sen-
sitivity and spatial resolution. Among them, the phase
(interferometric) method is the most sensitive [6–8]. It
was applied for tackling the problem posed.

The setup used in this work is presented in Fig. 1
(for details, see [9, 10]).

We studied absorption in polished plates of poly-
crystalline ZnSe at a wavelength of 10.6 µm.

Figure 2 shows the experimental dependence of the
photothermal signal amplitude Aph on the position of
the point where the probing and heating light beams
intersect. It follows from this figure that normal heat
evolution due to volume adsorption is attended with
anomalous heat evolution at the surfaces. Such an effect
1063-7842/02/4705- $22.00 © 0585
can be explained by the presence of a thin anomalously
absorbing layer at the interfaces.

The nature of this layer calls for special investiga-
tion, which is beyond the scope of this work. We only
note possible reasons for its occurrence. First, the sur-
face absorbing layer may be formed of contaminants,
for example, water molecules adsorbed on the surface
from air. Second, the layer may be associated with a
polisher left in the cracks. Third, the additional absorp-
tion may arise because of a change in the ZnSe band
structure in the polishing-damaged layer.

In all the three cases, the thickness of the layer dam-
aged is no higher than several hundred angströms.
Since the typical size of the region of interaction

+

–

He–Ne probing laser
Sample

Ppump
t

Pumping power meter

X

UNIPAN 232P lock-in amplifier

CO2 pumping laser

Fig. 1. Experimental setup. The pumping laser power is
1 W. The sensitivity is no worse than 10–5 cm–1 for volume
absorption and 10–6 for surface absorption. The measure-
ment accuracy is ±30%.
2002 MAIK “Nauka/Interperiodica”
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between the probing and heating beams is on the order
of several hundreds of micrometers, it is obvious that
the presence of the extra layer cannot significantly
affect the thermophysical properties of the material.
The refractive index also changes only slightly. For a
layer thickness of 100 Å and measured losses of about
10–2%, the imaginary part of the refractive index of the
anomalous layer does not exceed 10–2.

Thus, the output (recorded) signals can adequately
be described within a model of semi-infinite sphere 2
having low coefficients of volume absorption α (cm–1)
and surface absorption β (%) (Fig. 3). The sphere is in
contact with nonabsorbing air.

We are interested in a variable temperature perturba-
tion arising from the absorption of the pumping radia-
tion. The pumping radiation has a Gaussian distribution

0 1 2 3 4 5 6
x, mm

1

2

3

4

5

6

7
Aph, arb. units

2

3

1

Fig. 2. Amplitude Aph of the signal measured vs. position of
the point x, where the probing and heating light beams inter-
sect. The signal peaks at the sample surfaces: the lower peak
is at the front (nearer) surface and the higher one, at the rare
(farther) surface: (1) signal at the rare surface; (2) signal at
the front surface; and (3) signal in the volume.

1 2, α
x

z

Probing beam

Pumping

β

Θt

Θi

x0

w0

r0

Fig. 3. Geometry of the experiment.

beam
of the intensity I(x, y, z, t) and is time-modulated with a
mechanical chopper:

(1)

Hereafter, Θ = Θ1 in the first region (angle of inci-
dence), Θ = Θ2 in the second region (angle of refrac-
tion), r0 is the pumping beam radius, f is the modulation
frequency, and I is the average pumping intensity. Then,
the heat conduction equation for each of the Fourier
components has the form

(2)

Here, K is the thermal conductivity, χ = K/ρc is the ther-
mal diffusivity, ρ is the density, c is the specific heat,
Ω = 2πf is the circular frequency, and am is the ampli-
tude of the harmonic with a serial number m (m = 1, 3,
5, …). The temperature distribution Tm(x, y, z, t) is
sought in the form

(3)

where (λ, δ, z) is the amplitude of the mth harmonic.

For the mth harmonic, Eq. (3) can be recast as

(4)

Ignoring the air absorption and taking into account
that the temperature cannot rise when z approaches ±∞,
we find the solution of (4) in the first and second
regions, respectively:
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Here, ξ1, 2 = λ2 + δ2 + imΘ/χ1, 2; I2 is the intensity of the
light having crossed the interface; and A and B are con-
stant factors determined from the boundary conditions
at z = 0:

(7)

(8)

where I surf is the pumping intensity in the absorbing
layer. The factors A and B are given by

(9)

(10)

(11)

Having passed through the thus-heated region per-
pendicular to the interface, the probing light acquires an
additional phase shift (provided that the temperature
perturbations and their gradients are small)

(12)

Periodic variations of the phase difference between
the probing beams cause the interference pattern (sig-
nal intensity) at the output of the probing interferometer
to oscillate. If it is assumed that the probing beam shape
does not depend on the temperature oscillations, the
complex relative amplitude of the intensity oscillating
at a frequency of 2πfm in the far-field zone can be
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expressed in terms of the variables x and y as [7, 8]

(13)

Here, |U0(x, y)|2 is the intensity distribution of the prob-
ing light in the region heated:

(14)

(15)

Substituting (5), (6), (9)–(12), (14), and (15) into
(13) eventually yields

(16)

Taking into account that for the given parameters
(f > 100 Hz, r0 = 270 µm, K2 = 0.18 W/(cm K), c2 =
0.342 J/(g K), ρ2 = 5.265 g/cm3, K1 = 2.5 × 10–4 W/(cm K),
c1 = 1 J/(g K), and ρ1 = 1.3 × 10–3 g/cm3) Ω/χ1, 2 is larger
than λ2 and δ2, we expand expression (16) in small
parameters χλ2/Ω and χδ2/Ω . Estimates showed that
the first-order corrections in this case are rather small;
therefore, we will consider only the zeroth-order terms.
Then, integration yields the complex relative amplitude
of the photothermal signal at a frequency of 2πfm:
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(17)

Two limiting cases are of interest. For x0 @

, the interface does not influence the
amplitude of the signal measured. The first and third
terms vanish, so that the coefficient of volume absorp-
tion can be measured independently. The signal
detected has a sawtooth shape with the effective voltage

(18)

At x = 0, the absorption surface component domi-
nates in the signal (Fig. 2) and the volume component
can be neglected. Then, the effective voltage of the sig-
nal is

(19)

As has been shown [11], when measuring the sur-
face absorption, one should consider the interference
between the incident pumping radiation and its part
reflected from the interface. The situation varies
according to the pumping polarization, angle of inci-
dence, and position of the absorbing layer relative to the
interface (inside or outside of the sample, as well as
above or under the reflecting surface). Also, it depends
on the type of interaction between the pumping radia-
tion and the sample (whether it is electric dipole–dipole
or magnetic dipole–dipole). This is because in the
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former case, the electric field strength plays a major
role. Therefore, here the interference can be taken into
account by adding up the electric field strengths of the
incident wave and the wave reflected from the interface.
For magnetic dipole–dipole interaction, the magnetic
field is of major concern; accordingly, the magnetic
fields of the incident and reflected waves are added. If
the absorbing layer is above the reflecting surface (i.e.,
outside) of a plate of finite thickness, the interference
effects influence the signal amplitude at the surface that
is nearer to the pumping source. Conversely, if the
absorbing layer is under the reflecting surface (i.e.,
inside) of a plate of finite thickness, the interference
effects influence the signal amplitude at the surface that
is farther from the pumping source.

Thus, for a sufficiently thick plane-parallel (for mul-
tiply reflected beams not to intersect inside) plate, the
coefficients of volume and surface absorption under the
above conditions are given by

Here,  is the average power of the pumping radi-
ation having passed through the plane-parallel plate;
kt is the Fresnel transmission coefficient, which is
expressed as

and

for s- and p-polarized pumping radiations, respectively;
and kint is the “interference” coefficient, which includes
optical losses due to reflection from the interface and
interference effects near it. Under specific experimental
conditions, the interference coefficient is expressed as
follows:

(nearer peak, s-polarization of pumping radiation, elec-
tric dipole–dipole interaction, absorbing layer outside),
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(nearer peak, s-polarization of pumping radiation, elec-
tric dipole–dipole interaction, absorbing layer inside),

(nearer peak, s-polarization of pumping radiation, mag-
netic dipole–dipole interaction, absorbing layer outside),

(nearer peak, s-polarization of pumping radiation, mag-
netic dipole–dipole interaction, absorbing layer inside),

kint = 1
(farther peak, s-polarization of pumping radiation, elec-
tric dipole–dipole interaction, absorbing layer outside),

kint = 1/n2

(farther peak, s-polarization of pumping radiation, elec-
tric dipole–dipole interaction, absorbing layer inside),

kint = 1
(farther peak, s-polarization of pumping radiation, mag-
netic dipole–dipole interaction, absorbing layer outside),

kint = n2

(farther peak, s-polarization of pumping radiation, mag-
netic dipole–dipole interaction, absorbing layer inside),

(nearer peak, p-polarization of pumping radiation, elec-
tric dipole–dipole interaction, absorbing layer outside),

(nearer peak, p-polarization of pumping radiation, elec-
tric dipole–dipole interaction, absorbing layer inside),

(nearer peak, p-polarization of pumping radiation,
magnetic dipole–dipole interaction, absorbing layer
outside),

(nearer peak, p-polarization of pumping radiation,
magnetic dipole–dipole interaction, absorbing layer
inside),

kint = 1
(farther peak, p-polarization of pumping radiation, electric
dipole–dipole interaction, absorbing layer outside),

kint
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(farther peak, p-polarization of pumping radiation,
electric dipole–dipole interaction, absorbing layer
inside),

kint = 1
(farther peak, p-polarization of pumping radiation,
magnetic dipole–dipole interaction, absorbing layer
outside), and

kint = n2

(farther peak, p-polarization of pumping radiation,
magnetic dipole–dipole interaction, absorbing layer
inside).

Figure 4 shows the experimental and theoretical
dependences of the volume absorption signal on the
angle of incidence for the p-polarized pumping radia-
tion. At α = 2.66 × 10–4 cm–1, the theory fits the exper-
imental data well.

Figure 5 demonstrates the experimental and theoret-
ical ratios of the temperature oscillation amplitudes at

0.006

30
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Θ, deg
40 50 60 70 80

0.008

0.010

0.012

0.014

Fig. 4. Experimental (j, mean values) and theoretical
dependences (continuous curve, α = 2.66 × 10–4 cm–1) of
the amplitude Aph of the volume absorption signal on the
angle of incidence of the p-polarized pumping radiation Θ.
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Fig. 5. Experimental (j) and theoretical (curves) depen-
dences of the ratio of the photothermal signal amplitudes
Aph at the farther and nearer (relative to the pumping laser)
samples surfaces vs. angle of incidence of the p-polarized
pumping radiation. Continuous and dashed curves, electric
dipole–dipole interaction for the cases of internal absorbing
layer and external absorbing layer, respectively; dotted
curves, magnetic dipole–dipole interaction. hp1/hp2 is the
ratio of the first and second peak heights.
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the farther and nearer (with respect to the pumping
laser) sample surfaces vs. angle of incidence of the
p-polarized pumping radiation. As was expected, the
experimental data are best fitted by the model of elec-
tric dipole–dipole interaction between the pumping
radiation and the material. Moreover, form these
curves, one can determine the position of the absorbing
layer relative to the air–sample interface. In this case,
the layer lies underneath the reflecting surface.

This conclusion is corroborated by the experimental
and theoretical curves (Figs. 6, 7) showing the temper-
ature oscillation amplitudes at the nearer and farther
surfaces vs. angle of incidence of the p-polarized
pumping radiation. It is seen that the model of internal
absorption (the absorbing layer under the reflecting sur-
face) adequately describes the experimental data. The
coefficient of surface absorption in this case varies
between 2.4 × 10–2 and 3.4 × 10–2%.

0
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0.12

Fig. 6. Mean amplitude of the photothermal signal ampli-
tude Aph at the nearer sample surface vs. angle of incidence
of the p-polarized pumping radiation Θ, and theoretical
dependences of Aph calculated for the two positions of the
absorbing layer. j, measured values; continuous curve,
internal absorbing layer (β = 1.65 × 10–2%); dotted curve,
external absorbing layer (β = 3.5 × 10–2%).

0
30

Aph

Θ, deg
40 50 60 70 80

0.04

0.08

0.12

0.16

0.20

0.24

Fig. 7. Mean amplitude of the photothermal signal ampli-
tude Aph at the farther sample surface vs. angle of incidence
of the p-polarized pumping radiation Θ, and theoretical
dependences of Aph calculated for the two positions of the
absorbing layer. Designations are the same as in Fig. 6.
Thus, using the phase photothermal method, we
succeeded in separately measuring low coefficients of
surface and volume absorption in relatively thick pol-
ished plates of optical materials. The theory developed
makes it possible to directly relate the signal amplitude
to the coefficients of volume and surface absorption.
In the CVD polycrystalline polished ZnSe sample used
in the experiments, the coefficients vary from 2.2 × 10−4

to 3.6 × 10–4 cm–1 and from 2.4 × 10–2 to 3.4 × 10–2%,
respectively.

From the experimental dependence of the tempera-
ture oscillation amplitude at the surface on the angle of
incidence of the p-polarized pumping radiation, one
can judge the nature of radiation–material interaction.
In polycrystalline CVD ZnSe, this is electric dipole–
dipole interaction, as was expected.

In addition, the possibility of locating the surface
absorbing layer relative to the interface was shown. In
the samples studied, it lies under the reflecting surface
(i.e., inside the sample). This layer may be associated
with a change in the band structure because of polish-
ing-induced damage or a polisher left in the cracks.
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Abstract—The effect of Kerr nonlinearity dispersion on the envelope duration and the velocity of the envelope
maximum for a wave packet propagating in an optical fiber and formed by two coupled copropagating waves
is studied. The critical (threshold) energy of wave packet collapse can substantially be diminished and the
supraluminal mode of propagation of the pulse envelope maximum in a nonamplifying medium can be realized
owing to a significantly higher nonlinearity dispersion in such systems in comparison with “single-wave” ones.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, special attention has been paid to the
area of nonlinear fiber optics that investigates distrib-
uted-coupled waves, which are of great interest for
applications. Usually, such waves emerge in tunnel-
coupled, anisotropic, or periodic optical fibers (OFs)
[1, 2]. That is why analysis of the short pulse dynamics
in such fibers with allowance for various nonlinear
effects is topical [3–6]. In OFs with strong linear cou-
pling, these effects can be more diversified and pro-
nounced than in single-mode fibers, because mode cou-
pling and phase cross modulation contribute markedly
to the effective dispersion and nonlinearity. Maœmistov
[7] demonstrated the possibility of pulse collapse (the
pulse duration tends to zero) in a single-mode fiber with
nonlinearity dispersion in the case when the energy
density delivered to the fiber reaches a critical value
Wcr. The strong dependence of the effective parameters
of the two-mode fibers considered on the type of their
excitation makes it possible to substantially diminish
the energy threshold for an optical pulse. In this work,
based on the method of partial pulses and the varia-
tional approach, which were successfully applied in the
analysis of short pulse propagation in nonlinear OFs
[5–9], we study the dynamics of a wave packet consist-
ing of two strongly interacting waves copropagating in
a Kerr medium. Emphasis will be on the effect of non-
linearity dispersion on the wave packet duration and on
the maximum velocity of the wave packet envelope. It
is demonstrated that in these systems, the pulses can
propagate with supraluminal velocities.

GENERAL RELATIONS

With allowance for a mode mismatch of the group
velocities, nonlinear effects of phase self-modulation
and phase cross modulation, and nonlinearity disper-
sion, a system of equations for the time envelopes of
1063-7842/02/4705- $22.00 © 20591
two coupled waves forming a wave packet is repre-
sented as

(1)

Here τ = t – z/u is running time, u is the group velocity

of the wave packet, v –1 = (u1 – u2)/2u2, uj = (∂βj/∂ω
is the group velocity of the jth mode, dj = (∂2βj/∂ω2

is the group velocity dispersion for the jth mode, 2u =
u1 + u2, R is the parameter of fiber nonlinearity, ω0 is the
carrier frequency of the wave packet, σ is the mode
coupling coefficient, and γs and γc are the self-modula-
tion and cross modulation parameters [3]. Equations (1)
must be complemented by initial conditions for the
time envelopes of the modes Aj: A2(τ, 0) = ψA1(τ, 0),
where the parameter ψ defines the type of fiber excita-
tion. The excitation is symmetric (antisymmetric) if
ψ = ±1. For strong mode interaction, one can represent
the solution to system (1) as the sum of two partial
pulses (PPs):

(2)

where af are the amplitudes slowly varying with the
coordinate z in the fiber. The initial conditions for these
amplitudes are given by

(3)
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Substituting Eq. (2) into system (1), we obtain a sys-
tem of equations for PP amplitudes:

(4)

where Df = (d1 + d2)/2 + (–1)f/v 2|σ| is the effective dis-
persion of the partial pulse, s = 2γs/(γc + γs), χ1 = 2R(γc +
γs)/ω0, and χ2 = R(γc + γs)/2v |σ.

If the initial conditions of OF excitation are sym-
metric or antisymmetric, the amplitude of one of the
PPs equals zero: a1 = 0 for symmetric excitation and
a2 = 0 for antisymmetric excitation [9]. The system of
two equations for PPs can then be reduced to a single
equation 

(5)

where δf = χ1 + (–1)fχ2 and ρf = (–1)f + 1χ2.
Let us solve this equation by the variational method.

It involves the construction of a trial solution with
z-dependent parameters that, following the variational
procedure, are determined from a system of appropriate
equations.

As a trial solution to Eq. (5), we take the function
widely used for describing soliton-like pulses:

(6)

where the amplitude Gf, phase ϕf, correction gf to the
phase velocity of the pulse, the rate of frequency mod-
ulation (chirp) αf, pulse duration τf, and parameter θf =
τ – Tv f depend on the coordinate z. The parameter Tv f

takes into account the variation of the group velocity of
the pulse. These parameters specify the pulse dynam-
ics. Following the formalism described in detail in
[6, 7], we can derive the system of equations 
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From Eqs. (3) and (7.1), we find 2 τf = W0, where
W0 is the pulse energy at entrance to the fiber. For the
symmetric and antisymmetric excitations, W0 =
2|Aj0|2τ0, where τ0 is the pulse duration at z = 0. Solving
Eqs. (7.1)–(7.3), we come to

(8)

Eliminating the variables αf and gf from Eqs. (7.3)
and (7.5) and taking into account Eq. (8), we arrive at
the equation for the pulse duration τf:

(9)

where

The expression for the first integral in (9),

(10)

where f0 = 4 α2(0) + 2p/τ0 + q/  and α0 = α(0),
shows that the problem considered is reduced to the
well-known equation in the Kepler problem [10].
According to the general theory, its solution depends
considerably on the sign of the constants involved. In
particular, the parameter f0 is responsible for the sign of
the “total energy” of a particle in the presence of a “cen-
ter of force,” whose character depends on the sign of the
parameter p. In the Kepler problem, the parameter q is
always positive, since it accounts for the contribution of
the azimuthal motion to the kinetic energy of the parti-
cle. The signs of these constants specify the possibility
of a finite or infinite motion. For a pulse in a fiber, this
is equivalent to either its finite duration (quasi-soliton
mode) or infinite broadening at z  ∞.

SOLUTIONS AND ANALYSIS

Let us analyze more comprehensively the solutions
to Eq. (10), which yields the dependence of the pulse
duration τf on the traveled distance at q > 0 and p < 0,
when pulse compression is possible.
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(i) f0 < 0. In this case, Eq. (10) describes a finite
motion or a pulse with a periodically varying duration,
which can be considered as a quasi-soliton (strictly
speaking, such a wave object is not a soliton, since ini-
tial system of equations (1) is not integrable). The solu-
tion of Eq. (10) yields the pulse duration in the form

(11)

where the parameter ζ is related to the travel by the for-
mula

(12)

where k = |p/f0|, b = |p||f0|–3/2, and e = (1 – 16π2|f0|/R2(γs +

γc)2 )1/2. The constant of integration in Eq. (12) is
determined from the initial conditions and equals C =
b(esinζ0 – ζ0). The variable ζ ranges from ζ0 to ∞,
where

(13)

In the case considered, e < 1 and the pulse duration
τf increases with distance from τmin to τmax. The mini-
mum, τmin = k(1 – e), and maximum, τmax = k(1 + e),
pulse durations correspond to ζ = 2mπ and ζ = (2m +
1)π and to the distances zmin = 2mπb + C and zmax =
(2m + 1)πb + C, respectively. If Dfα(0) < 0, then
dτf/dz > 0, so that the pulse duration first decreases to
the minimum value and then starts increasing. If
Dfα(0) > 0, then dτf/dz > 0; that is, the pulse first widens
to τmax and then shortens (pulse compression takes
place). The compression length can be defined as a fiber
segment at which the pulse duration varies from the
maximum to the minimum. For the case considered, the
compression length is Lcom = πb.

(ii) f0 > 0. In this case, e > 1 and Eq. (10) describes
an infinite motion; that is, τ  ∞ at z  ∞. Both
above scenarios are possible here. If the quantity Dfα0
is positive, the pulse continuously broadens after hav-
ing entered the fiber. If Dfα0 < 0, the pulse first contracts
and then expands. In both cases, the dependence of the
pulse duration on the travel is given by

(14)

where C' = b(ζ0 – e )), ζ0 = ln(ϕ ± ), and
ϕ = (|k| + τ0)/|k|e. In the second relationship, the sign
coincides with that of Dfα0.

If Dfα0 < 0, the minimum pulse duration and the
compression length are represented as

(15)

(iii) q ≤ 0. Analysis shows that the sign of the param-
eter q also affects the pulse dynamics. This parameter
depends on the energy W0 delivered to the fiber and can
be negative. If f0 < 0 and p < 0, an equation similar to

τp k 1 e ζcos–( ),=

z b ζ e ζsin–( ) C,+=

W0
2

ζ0 ζ 0( )≡ k τ0–( )/de( ).arccos=

τp k e ζcosh 1–( ), z b e ζsinh ζ–( ) C ',+= =

ζ0sinh ϕ2 1–

τmin k e 1–( ),=

Ic e ϕ2 1– ϕ ϕ 2 1––( )ln–[ ] .=
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Eq. (10) in the Kepler problem describes a particle fall-
ing on a center of attraction. For an OF, this means that
the pulse duration tends to zero, or, in other words, the
pulse collapses. According to Eqs. (9) and (10), the col-
lapse is possible only upon the symmetric (f = 2, a2 ≠ 0)
excitation of the fiber. In the case of antisymmetric
excitation, q > 0. The collapse of a wave packet takes
place if the energy W0 delivered to the OF exceeds a
certain critical value Wcr (W0 ≥ Wcr)

The collapse length is given by Lclp = F(0) – F(τ0),
where

(16)

and the parameters p, q, and f0 are negative.

The figure shows characteristic travel dependences
of the pulse duration for cases (i)–(iii). Curve 1 corre-
sponds to the “oscillatory” mode of pulse propagation
at f0 < 0, curve 2 shows pulse broadening at f0 > 0 and
Dfα0 > 0, curve 3 demonstrates the initial stage of com-
pression at f0 > 0 and Dfα0 < 0, and curve 4 reflects opti-
cal collapse at f0 < 0 and p < 0.

Note that the inequality w0/v |σ| @ 1 holds true in a
wide range of parameters of the pulse and the medium.
Hence, χ2/χ1 @ 1. In particular, for a pulse initial dura-

tion τ0 ≅  1 ps, intensity  ≅  1010 W/cm2, carrier fre-
quency w0 = 1015 s–1, v –1 = 6 × 10–13 s/m, σ = 4.5 m–1,
and R(γs + γc) = 1.5 × 10–14 W–1 m–1, we obtain χ1 = 3 ×
10–29 (s m)/W and χ2 = 10–27 (s m)/W, so that χ2/χ1 ≅  30.
This makes it possible to realize optical collapse in a
system of coupled waves at energies much lower than
those typical of a single-wave system. The strong
dependence of the effective dispersion Df on the OF
parameters and energy reduces the critical energy of

Wcr Df 6/χ1 χ1 χ2+( ).=

F τ( ) 1
f 0
----- f 0τ

2 2 pτ q–+ ---=

+
1

f 0–
------------

f 0τ p+

2 p2 f 0q+( )
----------------------------arcsin

a f 0
2

C C' C+2πb Lclp z
0

τmin

τ0

τp

1

23

4

Characteristic curves of the pulse duration versus travel in
the OF.
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optical collapse still further, down to Wcr ≅  1 J/m2,
whereas the collapse energy for a “conventional” sin-
gle-wave system is most likely no lower than Wcr = 10–
50 J/m2.

THE VELOCITY
OF THE ENVELOPE MAXIMUM

An important qualitative difference between the sys-
tems considered and single-wave ones is that the
parameters δf and ρf may be negative under certain exci-
tation conditions. One of the most interesting conse-
quences of this negativeness is supraluminal velocities,
which can be attained in the systems. Consider trial
solution (6), which implies that the velocity um of the
envelope maximum and the group velocity u are related
as

(17)

where the z dependence of the parameter Tv is given by
Eq. (7.4).

It follows from Eq. (17) that um > u if Tv < 0. Let us
analyze conditions for the appearance of a “supralumi-
nal” wave by an example of a quasi-monochromatic
wave or a long pulse with a duration τ0 ≥ 10–9 s. For the
OF lengths considered, the pulse duration and ampli-

tude are virtually constant (  ≅  ) because the dis-

persion length is large (LD = /|d| ≥ 107 m). In this
case, τf(z) ≅  τ0, g(z) ≅  0, and Eq. (7.4) can be reduced to

(18)

Integrating this equation and assuming that Tv(0) = 0,
we arrive at an expression for Tv(z) in view of which the
formula for the velocity of the pulse envelope maxi-
mum takes the form

(19)

It is seen from (19) that the velocity of the envelope
maximum can be greater that the speed of light in the
case of OF antisymmetric excitation (f = 1) if 3χ1 –
2χ2 < 0. Such effects are explained [11] by the energy
redistribution in the wave packet due to the fact that the
velocity of the envelope maximum exceeds that of its
“center of mass.” However, this phenomenon was sup-
posed to be related exclusively to the amplifying prop-
erties of the medium, which can modify substantially

um
u

1 uTv /z+
-----------------------,=

G f
2 a f 0

2

τ0
2

dTv

dz
--------- χ1

2
3
--- 1–( ) f χ2+ 

  a f 0
2 .=

um
u

1 χ1 1–( ) f 2χ2/3+( )ua f 0
2+

-----------------------------------------------------------------.=
the parameters of the pulse (duration, peak intensity,
phase, etc.) propagating in an optical fiber [12, 13].
Note that the above solution is also valid for the case of
a soliton-like pulse emerging at f0 < 0, when the condi-

tions τf ≅  const and  ≅  const are satisfied at a certain
OF segment z @ LD.

It should be emphasized that the parameters charac-
terizing the nonlinearity dispersion in systems with a
strong mode coupling (when |δf/χ1| = 10–100) are much
greater than those for conventional single-mode sys-
tems. Therefore, analysis of the former systems must
necessarily include these parameters into consider-
ation. In particular, it seems to be especially important
to take into account the nonlinearity dispersion in sim-
ulating tunnel-coupled optical fibers which have
recently received wide recognition.
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Abstract—Theoretical, numerical, and experimental studies of a vircator with the premodulation of a dm-wave
electron beam are performed. Possible oscillation mechanisms in virtual-cathode systems (modulation of pass-
ing current, effect of reflex klystron, and inertial bunching of particles reflected) are analyzed. The microwave
efficiency of the vircator using a two-gap electrodynamic system is shown to be significantly higher than that
of the vircator with a one-gap system. Based on the results of the numerical experiment, a prototype of a two-
stage vircator in the absence of an external magnetic field is designed. In experiments using a high-current
pulsed–periodic accelerator, single-mode oscillations with a power of up to 1 GW, a duration of ≈25 ns, and an
efficiency of ≈5% are generated in the dm-wave range. The oscillation frequency is demonstrated to be stable
during a pulse and from pulse to pulse, which suggests the decisive effect of the electrodynamic system. It is
shown that the oscillation frequency can continuously be tuned in a half-power bandwidth of ≈15% by varying
the parameters of the resonator. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Vircators [1–6] are attracting attention as sources of
high-power microwave radiation that operate in the
absence of an external magnetic field. Since the length
of interaction between the particle flux and the rf field
in vircators is comparable to the radiation wavelength,
the devices have small sizes, which is of great impor-
tance for generating radiation in the long-wave part of
the microwave range. In most experiments, however,
the vircator efficiency was poor (≈1%) and the radiation
frequency was unstable. As a rule, this is a result of a
too high injection current and of using overmoded elec-
trodynamic systems with a high density of electromag-
netic oscillations. In this work, we study a vircator in
which a virtual cathode (VC) forms in a two-stage sin-
gle-mode resonator and into which an electron beam of
a low supercriticality [7, 8] is injected.

OSCILLATION MECHANISMS

As a model of a vircator, we consider a planar gap
of length L into which an electron beam with a particle
energy εin = mc2(γin – 1) and a current density jin > jcr2
(jcr2 is the second critical current) is injected. Under
such conditions, the two-flow state of the electron beam
can be set up with the formation of a VC [9]. The output
current and the position z0 of the VC are given by

1

jout
1/2

------- 1

2 jin jout–( )1/2
--------------------------------+

2

jcr
1/2

-------,=
1063-7842/02/4705- $22.00 © 20595
where jcr1 ≈ jcr2/2 is the first critical current.

The probability that a particle will cross the gap is
Wtr = jout/jin. The value of Wtr depends on how much the
injected current exceeds the critical one. For jin ≈ jcr2,
Wtr ≈ 1/4 and z0 ≈ L/3.

Assume for simplicity that the planar gap is an ele-
ment of a single-mode resonator with a Q factor @1, so
that the distribution of the rf field in the resonator is
invariable. We also assume that the field amplitude is
small and a change in the total particle energy for a time
of flight over the gap, eEL, is much smaller than εin; i.e.
eEL ! εin. Finally, the particle motion is one-dimen-
sional and the particles reflected from the VC do not
return to the region of interaction with the rf field.

In the presence of the rf field, the total energy of the
particles in the gap becomes time-dependent. Obvi-
ously, the energy modulation of the particles causes the
modulation of the output current, the current of the
electrons reflected, and the VC position. The work done
by a field with a frequency ω on the particle flux can be
written as

where ∆  = ∆ (L) is the change in the transit particle

energy in the rf field, ∆  = (1 – )∆ (z0) is the

z0/L 1 jcr1/4 jout( )1/2,–=

P∆j

jinSb

2e
-----------Re ∆W̃ tr* ∆ε̃tr ∆ε̃ref–( )〈 〉 Q0

{ } ,≈

ε̃tr ε̃

ε̃ref e
iΘz0 ε̃
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change in the energy of the particles reflected from
the VC,

V(z) is the undisturbed velocity of the particles, Sb is the
cross-sectional area of the beam, and Θ0 is the phase
with which the particle enters into the region of interac-
tion with the rf field.

On assumption that ω < ωvc, where ωvc is the eigen-
frequency of VC oscillations, the possibility that the
particle will pass through the VC can be represented as

If the distribution of the rf field in the gap is uniform,
the linear interaction efficiency is expressed as

where

At small transit angles, Φ∆j ≈ 1 and the radiation is
absent due to the fact that the energy is absorbed by the
transit particles, because the current density of the
field-accelerated transit particles is higher than that of
the particles decelerated. For finite transit angles and
jin @ jcr2, the plane of particle rotation approaches the

∆ε̃ z( ) e
iΘ0 eEeiΘ z,  Θ z( )d
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Fig. 1. Transit angle functions for a one-gap vircator.
plane of beam injection. In this case (as before), the
particles reflected do not participate in the interaction
and we have Φ∆j ≈ Re{f(L)}. For example, if Θ(z) ≈
ωz/ , the transit angle function Φ∆j ≈ sinΘL/ΘL, where
ΘL = Θ(L). Thus, for high values of the injected current,
the radiation is observed if π < ΘL < 2π. The transit par-
ticles make a major contribution to the negative energy
exchange with the rf field. Hence, it follows, in partic-
ular, that oscillations may be excited in a planar vacuum
diode. The transit angle function for jin ≈ jcr2 at Θ(z) ≈
ωz/  is shown in Fig. 1. Under these conditions, the rf
conductivity of the gap becomes negative at ΘL > π and
is minimal at ΘL ≈ 2π.

Another mechanism behind oscillation excitation in
the vircator is the inertial bunching of the particles
under the action of the rf field. For the transit particles,
this can occur through the monotronic effect; the parti-
cles reflected may exchange energy with the rf oscilla-
tions at smaller transit angles as well, 0 < ΘL < 2.5π.
Taking into account the contribution from both the tran-
sit and reflected particles to oscillation excitation and
assuming that L ≈ βλ or ΘL ≈ π, one finds from the solu-
tion of the stationary problem that

Hence, it follows that the inertial bunching of the
particles may be responsible for the excitation of oscil-
lations in a one-gap vircator if the electrons are initially
nonrelativistic. For small transit angles (ΘL < 2.5π), the
particles reflected from the VC make a major contribu-
tion to energy exchange. For relativistic energies, when
the particle velocity varies insignificantly because of
the interaction with the rf field, the oscillations may
occur through current modulation, which in turn is
caused by the oscillation of the VC potential. At jin ≈
jcr2, the particles reflected are responsible for the oscil-
lations in a wide range of transit angles. For jin @ jcr2,
the transit particles may cause the oscillations. The
oscillations can also be excited through current modu-
lation in the rf field in the case of nonrelativistic elec-
trons, when the VC does not form. An example is a
Barkhausen–Kurz oscillator [10], where rf-field-accel-
erated transit particles are absorbed by the electrode
being under the cathode potential and field-decelerated
particles oscillate in a potential well near the unbiased
grid.
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Now let a vircator have two gaps of length L1 and L2,
respectively, and let L1 ! L2. In this case, the VC exists
only in the second gap. We also assume, as before, that
the gaps are elements of a high-Q resonator in which rf
fields with amplitudes E1 and E2 coexist. The field in
the second gap is out of phase by ∆ϕ relative to the field
in the first gap. It is assumed that the change in the par-
ticle velocity due to the rf field is insignificant and tran-
sit angles are small. Then, for the particle crossing both
gaps, the change in its energy under the action of the
field is

In this approximation, the change in the reflected
particle energy is small compared with that in the tran-
sit particle energy; i.e., ∆εref ! ∆εtr. The probability that
the particle will cross the second gap depends on the
change in its energy near the VC and also on the energy
at the exit from the first (modulating) gap. From the
solution of the stationary problem, it follows that

Then,

where Φ∆j(α, ∆ϕ) = 2  + α(1 +

2 )cos∆ϕ + α2 and α = E2L2/E1L1.

The function Φ∆j(α, ∆ϕ) takes negative values at 1 <

α < 2  and ∆ϕ = π. Its minimal value (α,

∆ϕ) = –(1 – 2 )2/4 is attained at α ≈ (1 +

2 )/2. Thus, in a system with two gaps, oscilla-
tions may also occur at small transit angles. In this
approximation, the transit particles take place in energy
exchange. For the emission to arise, it is necessary that
the change in the energy in the second gap be larger
than in the first one. With this condition met, the parti-
cle energy is transferred to the electromagnetic field if
the fields in the gap are out of phase by π. In this case,
the first gap acts as a modulator of the electron flow. As
the current injected grows, the linear efficiency of inter-

action drops:   0 at   /4.

The finiteness of transit angles can easily be taken
into account for α ! 1. In this case, it is sufficient to
ignore the change in the particle energy due to the inter-
action with the rf field in the gap with the VC. If, in
addition, L1ω/  ! π, we have
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The probability that the particle passes through the
VC now depends on its energy at the exit from the first
(modulating) gap:

Thus,

In this approximation, the transit particles always
absorb the energy of the rf field. The electromagnetic
field may gain only the energy of the particles reflected
from the VC. The efficiency of interaction is maximal
when 2Θz0 = π. When the value of Θz0 is optimal, the
particles accelerated in the modulating gap are further
accelerated when being reflected from the VC, while
those decelerated lose more energy. On average, the
energy exchange is negative because the density of the
backward current due to the decelerated particles is
higher than the current density of the accelerated ones.
It is obvious that for α ! 1, the phase shift of the rf field
between the gaps influences the process of energy
exchange insignificantly.

Next, in the same approximation, we will include
the spatial oscillations of the VC, assuming that they
are small. The mechanism of these oscillations is simi-
lar to that behind oscillations in a reflex klystron [11].
Then,

where ∆Θz0 is the change in the particle transit angle
due to the VC spatial oscillations, which result from the
energy change in the modulating gap. In this case, we
have

As for a reflex klystron, the energy exchange is max-
imal when 2Θz0 = 3π/2. The total efficiency of interac-
tion is thus

When jin ≈ 2 , the coefficient µ ≈ 2. The transit
angle function for this case is shown in Fig. 2. It is seen
that when jin ≈ jcr2 and α ! 1, oscillations in the vircator
may be due to both the oscillations of the VC potential

∆W̃ tr
jout

0

jin jcr1
0

-------------
∂ jcr1

0

∂γ
----------

2∆ε̃tr jout
0 / jcr

0( )1/2

mc2
--------------------------------------.≈

P∆j

Sb

e
-----

jout
0

jcr1
0

-------
 
 
 

3/2
∂ jcr1

0

∂γ
---------- 1

mc2
---------Re ∆ε̃tr

2 ∆ε̃tr∆ε̃ref*–{ } .≈

∆ε̃ref eE1L1( )e
iΘ0 1 e

i2Θz0–( ) i2∆Θz0e
i2Θz0–[ ] ,≈

P∆z

Sb jin jout
0–( )

e
-----------------------------

∂ z0/L2( )
∂γ

--------------------
eE1L1( )2

mc2
---------------------≈

×
L2

z0
-----Θz0 2Θz0( ).sin

ηΣ
1
jin
-----

jout
0

jcr1
0

-------
 
 
 

3/2
∂ jcr1

0

∂γ
----------

eE1L1/mc2 2

γin 1–( )
-------------------------------≈

× 2Θz0( )cos µΘz0 2Θz0( )sin+[ ] .

jcr1
0



598 KITSANOV et al.
and the VC spatial oscillations. When the current
injected is high, the oscillations in the vircator may
arise only in overmoded systems, where L2 @ λ. In this
case, the effect of a reflex klystron dominates in induc-

ing the oscillations, since at jin @ ,

If L2 ≈ λ, the transit angle Θz0 decreases as the cur-
rent injected grows, so that the oscillations cannot be
induced.

At α ≈ 1 and αz0/L2 ! 1, the probability that the par-
ticle will pass through the VC depends, as in the previ-
ous case, on the change in its energy in the modulating
gap. Yet, since α ≈ 1, it is necessary to take into consid-
eration the field–transit particle interaction in both the
first and second gaps. In this case, the transit angle
function (without considering the effect of a reflex
klystron) can be given by

In particular, for Θ(z) = ωz/ , we have

The first two terms are due to the interaction of the
electromagnetic field with the particles reflected; the
other two, with the transit particles. The former parti-
cles are seen to transfer the energy to the field at any
transit angle. The result of the interaction between the
transit particles and the rf field depends on the phase
shift between the stages (gaps) and on the value of α.
For ∆ϕ = 0 and α < 4.7, the transit particles absorb the
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Fig. 2. Transit angle functions for a two-gap vircator at
α ! 1 and jin ≈ jcr2.
energy at any transit angle. If ∆ϕ = π – ΘL2/2 and

the transit particles, along with those reflected, can
transfer the energy to the field. At Θz0 ! π, the transit
particles alone interact with the field.

If αz0/L2 @ 1, the modulating gap has a minor effect
on the oscillation excitation and the two-gap systems
becomes close to the single-gap one in properties.

NUMERICAL SIMULATION
WITHIN THE ONE-DIMENSIONAL MODEL: 

HIGH-EFFICIENCY CONDITIONS

The energy exchange between a VC-containing
electron beam and high-strength rf fields in the one- and
two-gap systems was simulated with the PIC one-
dimensional model, which separately takes into
account space-charge and rf fields. The former field
was determined self-consistently in the potential
approximation. The amplitude and phase of the rf field,
as well as the injected electron energy εin and the
injected current density jin, were specified. The micro-
wave efficiency was determined by summing the works
done by the rf field on all beam particles over a time
interval from the instant of injection to the instant of
absorption by the electrodes or a foil. Having compared
this sum with the total energy lost by the particles, we
arrived at the conclusion that the conservatism of the
computational scheme in terms of energy is quite ade-
quate (≈10%).

For the current slightly exceeding the critical value
and moderately relativistic electrons injected (γ ≈ 2),
the maximal microwave efficiency (≈12%) in the one-
gap system with the VC is reached when the accelerat-
ing parameter is

and the transit angle of the particles passing through the
gap in the rf field is undisturbed:

This value of the transit angle is close to that
observed when the oscillations are excited by modulat-
ing the current passing through the VC (Fig. 1). It is
nearly twice as large as the transit angle corresponding
to the resonance of an electron beam with a relaxation
frequency fr .1 Under the maximum-efficiency condi-

1 The frequency of relaxation oscillations arising when the equilib-
rium current passes in a high-current system, depends on the
characteristic time of space charge accumulation. In an ordinary
diode, this is the time of electron transit through the gap. In the
presence of a VC, the relaxation frequency depends on the time it
takes for injected electrons to transit to the VC and back.

α α cr>
ΘL2/2

ΘL2/2sin
----------------------=

a
eEL

mc2 γ0 1–( )
---------------------------- 3≈=

ΘL
ωL
cβ0
-------- 2π.≈=
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tions, the positive contribution to the energy exchange
comes from reflected particles. Those transmitted make
a negative contribution, which is usually small. Mainly
particles having started in the latter half of the deceler-
ating phase or in the former half of the accelerating
phase of the rf field undergo reflection.

For the two-gap system, one-dimensional calcula-
tions were performed for the case when the current was
in a slight excess of the second critical value in the sec-
ond gap with L1 = (0.1–0.2)L2. Two simple situations
for the VC-reflected particles were simulated. In the
first case, a gap-separating foil completely transmitted
the particles in both directions. In the second one, the
particles crossing the foil in the negative direction were
excluded from the calculations.

If the partial rf fields in the stages of the two-gap vir-
cator are phase-shifted, the distribution of the compos-
ite rf field along the electron path is more favorable to
current modulation and energy exchange. The calcula-
tions showed that for εin = 500 keV, the efficiency of the
two-gap system may be thrice as high as that of the sin-
gle-gap one. In addition, the maximal efficiency is
observed when the oscillation frequency becomes
equal to the frequency of VC relaxation oscillations,
unlike the single-gap vircator. In what follows, we will
consider just this case. The optimal phase shift ∆ϕopt
depends on the transit angle of the electrons, decreases
with increasing electron energy, and is virtually inde-
pendent of conditions at the separating foil. For exam-
ple, for L1 = 1 cm, L2 = 5 cm, and jin ≈ 1.35jcr2, we have
∆ϕopt ≈ 85° at εin = 250 keV, ∆ϕopt ≈ 80° at εin = 500 keV,
∆ϕopt ≈ 70° at εin = 1 MeV, and ∆ϕopt ≈ 65° at εin =
5 MeV (in each of the cases, the field in the second gap
leads in phase).

The foil conditions significantly affect the maximal
efficiency value and the values of the accelerating
parameters in the stages. For example, if εin = 500 keV,
∆ϕ = ∆ϕopt, and the foil-reflected particles are included,
we have ηmax = 29% at a1 = 0.45 and a2 = 1.8. If the foil-
reflected particles are rejected, ηmax= 38% at a1 = 1.05
and a2 = 4.6. In the other case of practical significance
when the phase shift between the stages is absent,
ηmax = 20% at a1 = 0.4 and a2 = 1.6 and ηmax = 13% at
a1 = 0.55 and a2 = 1.7. This means that, in this case, the
rejection of the foil-reflected particles deteriorates the
efficiency. It should be noted that the conditions with
the optimal phase shifts feature the narrowest operating
range of the ratio a2/a1.

When the current is in a fixed excess of the critical
value, f = f r, and the foil conditions are the same, the
dependence of the efficiency on the accelerating param-
eters and its absolute value vary insignificantly in a
wide range of electron energies (from γin ≈ 1.5 to γin ≈
10).

With the optimal accelerating parameters, the posi-
tive values of the efficiency roughly correspond to the
phase shift in the range –π/2 < ∆ϕ < π/2 and are attained
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
in a relatively wide range of transit angles (Fig. 3).
Thus, it is hoped that the oscillation frequency in the
real vircator can be varied by appropriately tuning the
electrodynamic system with fixed electron beam
parameters.

Under the high-efficiency conditions, the rf fields of
the space charge of the electron beam have a decisive
effect on the energy exchange dynamics. The electrons
having lost the energy in the first gap reach the collector
for the most part. The positive contribution to the
energy exchange with the wave is made largely by the
VC-reflected particles, while the efficiency of the parti-
cles transmitted is small and can be negative.

THE DESIGN OF THE VIRCATOR

The basic factor specifying the design of a two-stage
vircator is the phase shift between the rf fields over the
electron path in the stages. The conditions with the
optimal phase shift (∆ϕ ≈ π/2) can be established by
using traveling-wave electrodynamic systems. In reso-
nant electrodynamic systems, the situation with
equiphase fields (∆ϕ = 0) is of interest.

We tried to realize the condition of equiphase fields
in the vircator described below. Its electrodynamic sys-
tem consists of two rectangular waveguides coupled by
a rectangular hole (Fig. 4). The operating mode is the
lowest TE10 mode. The analytical field pattern pre-
sented in Fig. 4 arises when the resonator is excited by
a linear current source placed across the second gap. In
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Fig. 3. Microwave efficiency of the two-gap vircator as a
function of the phase shift between the rf fields in the stages
and the undisturbed transit angle of electrons. a1 = 0.4, a2 =
1.6 (with foil-reflected particles included).



600 KITSANOV et al.
–/

Fig. 4. Analytically derived evolution of the amplitude distribution of the electric field in the cross-sectional midplane of the elec-
trodynamic system during the half-period of rf oscillations (with a step of 20°) under excitation by the given linear current source.
The vector map corresponds to the last time instant.
this configuration, the oscillation in the first and second
stages behind the current source has the form of a
standing wave, and the radiation is extracted from the
second stage in the form of a traveling wave (downward
in Fig. 4). In the real system, a circular electron beam is
passed through the antinodes of the field.

The sizes of the resonator were selected as follows.
First, to avoid the formation of a VC in the first gap, its
length must be much less than the length of the second
gap (≈1/5). Second, to minimize the operating current
density (which is desirable for the formation of a high-
current beam in a vacuum diode and its transport
through a resonator with separating foils or grids) and
to make the shape of the electron beam in the gaps of
the resonator as close to planar as possible, the diameter
of the beam was taken approximately equal to the
length of the second gap, Db ≈ L2. This, in turn, limits
the transverse dimension of the waveguide stages from
below by a value of ~2L2. The width of the waveguides
(~0.7λ) was taken such that it coincided with the guide
half-wavelength at the operating frequency. Under such
conditions, the scale of the transverse nonuniformity of
the rf field, which has the sinusoidal distribution in the
X and Y directions, was the same along both coordi-
nates. Unfortunately, with all these requirements satis-
fied, the operating frequency of the vircator was found
to be somewhat lower than the undisturbed relaxation
frequency of the VC (2.7 GHz against ≈4 GHz) and the
microwave efficiency was poor. The width and the posi-
tion of the coupling hole were selected such that the rf
field strengths in the gaps were approximately the same
at the operating frequency, E1 ≈ E2.

The preliminary optimization of the vircator param-
eters was made with the 3D version of the KARAT PIC
code [12]. The vircator was simulated in combination
with a vacuum diode. In a simplified variant, an elec-
tron beam with given parameters was injected into the
resonator [7, 8]. The microwave amplitude was shown
to resonantly depend on the vacuum diode impedance
(the optimal value ≈60 Ω , an excess of ≈30% over the
critical current) and adjustable parameters of the reso-
nator (the positions of the pistons, the size and the posi-
tion of the coupling hole). For the oscillations excited
by the rectangular current front, the build-up time was
found to be 15 oscillation periods and the radiation had
a narrow spectrum. The oscillation frequency depended
on the vacuum diode impedance only slightly (it dif-
fered by no more than 4% when the impedance was
changed by 50%), and the microwave efficiency was
kept at 10–12% in a wide range of electron beam
powers.

It was demonstrated that the oscillation frequency
can continuously be tuned in a half-power bandwidth of
≈20% by varying the geometric dimensions of the res-
onator with the electron beam parameters remaining
unchanged.

EXPERIMENTAL RESULTS

Figure 5 shows the experimental scheme. An elec-
tron beam is formed in a planar vacuum diode with the
explosive field-emission cathode in the absence of an
external focusing magnetic field and is injected into a
two-stage resonator with gaps of length L1 ≈ λ/8 and
L2 ≈ λ/2, respectively. The beam is transported through
two highly transparent thin foils or grids. The former
separates the diode from the first stage, while the latter
is placed between the stages. The TE10 operating mode
of the vircator is radiated in the form of a quasi-Gauss-
ian beam into open space by means of a horn antenna
with an aperture of about 8λ.

In the first stage, the TE10 mode has three variations
in the transverse direction with respect to the beam axis
(along the waveguide). The resonant frequency was
varied by varying the waveguide length through chang-
ing the positions of the adjustable pistons. Electrody-
namic measurements of the resonator parameters were
made with a panoramic meter of S parameters. The res-
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onator was excited using a short pin located in the first
stage along the electron beam axis. The results of tun-
ing the resonant frequency of the TE103 mode are
depicted in Fig. 6 (curve b). The resonant frequencies
of the neighboring modes TE102 and TE104 are offset by
approximately 15% from the TE103 resonant frequency.
The Q factor of the TE103 mode depended on the size of
the coupling hole and was found to be about 40 at the
operating frequency for the optimal size of the hole. In
this case, the electric field strengths in the stages were
nearly the same.

The performance of the vircator was investigated in
a SINUS-7 pulsed–periodic accelerator (a pulse half-
width of 50 ns, electron energy to 2 MeV, beam current
to 20 kA, and pulse repetition rate to 100 Hz) [13]. The
electron beam was generated with the use of a metal-
covered insulating cathode having a screening elec-
trode and a diameter of the emitting area of ≈λ/2.

The parameters of the microwave pulses (power,
shape, and spectrum) were measured by several dipole
antennas with different effective areas. The antennas
were calibrated with an HP8510 meter of S parameters.
Microwave signals from the antennas were either
detected or applied directly to an HP5472D wide-band
oscilloscope. The radiation total power was determined
by summing over the radiation pattern. The energy of a
microwave pulse was measured with a calorimeter sim-
ilar to that described in [14]. The calorimeter was inte-
grated into a 20 × 30-cm rectangular overmoded
waveguide, filled with ethyl alcohol. In view of the cal-
ibration accuracy, the error in measuring the radiation
power was no more than ±20%.

In the experiments, the vircator was tuned to a max-
imal power and a desired oscillation frequency by vary-
ing the gap width in the diode and resonator parame-
ters. When the gap was wide (the diode impedance
high), the current was insufficient for the formation of
a VC and the radiation was absent. The optimal width
of the gap was observed when the current exceeded the
critical value for the second stage by 30%. This is con-
sistent with the results of numerical simulation. When
the current injected was too high, the radiation power
decreased considerably and the spectrum broadened. In
this case, regular microwave oscillations in the vircator
were absent. The presence of the optimal current is
apparently associated with both the nonuniform distri-
bution of the potential along the beam radius and a
change in the VC position in response to that in the vac-
uum diode impedance.

Under the optimal oscillation conditions (the volt-
age across the diode 1 MV, the electron beam current
19 kA), the radiation power of the vircator was ≈1GW
at an efficiency of about 5%; the oscillation frequency,
2.65 GHz; and the half-power duration of a microwave
pulse, 25 ns. The radiation pattern corresponded to the
radiation of the TE10 mode from the horn antenna. The
radiation power density at the peak of the radiation pat-
tern (3 m away from the antenna) was about
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
60 kW/cm2; the energy of a microwave pulse measured
with the calorimeter, 20 J.

The experimental microwave efficiency was defined
as the ratio of the peak microwave power to the electron
beam power calculated with regard for the total current
in the vacuum diode. However, as follows from the
measurements, from 30 to 50% of the current through
the diode is accounted for by the stray current, which
passes from the stainless steel focusing electrode sur-
rounding the working area of the cathode. This current
was picked up by the collimating diaphragm at the
entrance to the vircator and did not contribute to the
microwave oscillations. The efficiency calculated in
terms of the useful current was found to be 8–10%,
which approaches the theoretical value.

The radiation maximal power was reached when the
coupling hole width was Ac ≈ λw/30 (λw is the wave-
length in the waveguide). As follows from the electro-
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Fig. 5. Vircator design: (1) cathode; (2) vacuum diode;
(3) modulating gap; (4, 5) adjustable pistons; (6) radiating
horn antenna; and (7) receiving antenna.
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dynamic analysis and measurements, under these con-
ditions, the fields in the stages roughly equal each other
and a2/a1 ≈ 4. The efficiency of the vircator varied with
the electron beam power insignificantly (Fig. 7). The
slight increase in the efficiency to 6% as the beam
power diminishes to 10 GW was due to the fact that the
loss of the current from the screening electrode
decreases at lower voltages across the diode. During a
radiation pulse, the impedance of the vacuum diode
decreased roughly by a factor of 1.5. This is typical of
diodes with explosive field-emission cathodes in the
absence of an external magnetic field. The increase in
the current during a pulse is likely to be associated with
the growth of the emission centers on the cathode sur-
face and also with an increase in their number [15]. The
expansion of the cathodic plasma into the gap may also
be a factor. However, the oscillograms indicate that the
radiation frequency remains unchanged during a pulse.

The radiation frequency was varied by varying the
position of piston 4 of the modulating stage and the
position of the coupling hole. The dependence of the
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Fig. 7. Experimental dependence of the power and effi-
ciency of the vircator on the electron beam power.

0.2

10

P/Pmax

Foil thickness, µm
20 400

0.4

0.6

0.8

1.0

1.2

30 50

U = 1 MV

U = 650 kV

Fig. 8. Radiation power vs. foil thickness for different volt-
ages across the vacuum diode.
radiation frequency on the spacing A1 between piston 4
and the beam axis is shown in Fig. 6 (curve a). This
curve agrees well with the results of electrodynamic
measurements (curve b). This confirms the fact that the
oscillation frequency of the vircator depends on the res-
onator parameters when the supercriticality of the cur-
rent is small. The oscillation frequency tuning band-
width was extended to 15% by simultaneously varying
A1 and A2 in such a way that the antinode of the electric
field was near the beam axis all the time; i.e., A1 ≈ A2 ≈
3λ w/4. The width of the coupling hole remained con-
stant.

Figure 8 shows the dependence of the microwave
power on the thickness of the aluminum foil separating
the stages for different diode voltages and a fixed diode
impedance. At a voltage of 1 MV, the radiated power
drops twofold when the foil is 15 µm thick. The rela-
tively rapid drop of the power can be explained by the
considerable effect of the foil on the motion of slow
electrons existing in the electrodynamic system when
they interact with high rf fields. At a lower voltage of
650 kV, the decline of the oscillation power with
increasing foil thickness was still faster. Similar exper-
imental dependences were observed in works cited in
the review [6]. The dependence of the oscillation power
on the thickness of the foil that separates the diode from
the modulating stage is much weaker. At the thickness
15 µm and the diode voltage 1 MV, the decrease in the
power was about 30%.

The electron beam structure was judged from its
print (image) on a polymer film. The transverse distri-
bution of the current at the entrance to the system was
fairly uniform, becoming ring-shaped at the collector.
We carried out experiments on taking the distribution of
the collector current of the beam where some of the
electrons having passed through a small hole on the col-
lector struck the central conductor of a coaxial line with
a wave impedance of 50 Ω . The signal obtained was
attenuated and then applied to the wide-band oscillo-
scope. The position of the hole could be varied. Both
the dc and rf components were detected in the collector
current. The frequency of current modulation coincided
with the frequency of the microwave radiation. The rf
current modulation started 15–20 ns after the beginning
of the pulse. This time corresponds to the time of oscil-
lation build-up in the vircator. The distribution of the dc
component had the form of a ring diffusing during the
pulse. The maximum of the distribution of the relative
rf current value was near the beam axis. The maximal
depth of electron current modulation was found to be
70–80%.

Using a dm-wave vircator built around the SINUS-7
accelerator, we succeeded in generating trains of pulses
in the periodic regime. In this regime, tungsten grids
with a mesh size of 0.5 × 0.5 mm and a geometrical
transparency of about 0.9 were used instead of the
stage-separating aluminum foil. The radiation power in
each of the pulses was about 100 MW; the pulse dura-
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tion, 20–25 ns. The number of pulses per train was
selected so as not to destroy the stage-separating grid
and equaled 50 and 400 for pulse repetition rates of 50
and 20 Hz, respectively.

CONCLUSION
Our study makes it possible to draw conclusions

about the basic mechanisms behind microwave oscilla-
tion in VC-containing devices. At the stage of excita-
tion, these are (i) direct current modulation, associated
with VC potential oscillation in the rf field; (ii) electron
bunching similar to that in a reflex klystron due to the
oscillation of the VC position; and (iii) inertial bunch-
ing of reflected particles. For relativistic electrons, the
last-named mechanism is of minor importance. At large
amplitudes of the rf field, the efficiency is limited by the
finite phase width of the modulated electron beam, as in
other microwave devices.

Theoretically, the use of a two-gap electrodynamic
system in a vircator makes it possible to raise the
microwave efficiency to ≈20% (≈40% in the one-
dimensional model). This can be achieved by shifting
the phases of the rf oscillations in the stages (and, thus,
by setting the more favorable distribution of the rf field
along the electron path). This value is more than thrice
as high as the efficiency of a one-gap system under
identical conditions. The considerable (≈20%) band-
width of electron susceptibility near the relaxation fre-
quency gives a chance to alter the oscillation frequency
by appropriately tuning the electrodynamic system.

In experiments, such a high value of efficiency is
difficult to reach because of the need for simulta-
neously satisfying a number of interrelated physical
conditions (appropriate gap width, rf field phasing,
ratio of the rf amplitudes in the stages, as well as the
formation of a high-current electron beam with desired
parameters).

Based on the results of numerical simulation per-
formed with the 3D version of the electromagnetic PIC-
code KARAT, we developed a prototype of a two-stage
vircator for an external magnetic field with equiphase
fields in the stages. In the experiments with the high-
current dm-wave pulsed–periodic electron accelerator,
we realized single-mode oscillation of power up to
1 GW and a duration of ≈25 ns. The associated effi-
ciency was ≈5% and remained almost invariable when
the electron beam power was varied. Factors limiting
the efficiency were found to be substantial current
losses in the vacuum diode and the drift of the beam
parameters during a pulse. The oscillation frequency
remained constant both during a pulse and from pulse
to pulse, suggesting the decisive effect of the electrody-
namic system. We succeeded in continuously tuning the
oscillation frequency of the vircator in a half-power
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
bandwidth of ≈15% by varying the resonator parame-
ters.
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Abstract—The kinetics of alkali metal ion emission from metal surfaces heated to temperatures of 800–2500 K

is studied. The ion current relaxation is described by the relationship I = A  + C/  + I0. After the relax-
ation, the ion emission is recovered when the surface is exposed to H2O at room temperature. The nature of the
phenomenon is discussed. © 2002 MAIK “Nauka/Interperiodica”.
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The emission of alkali metal ions from a tungsten
wire heated in a vacuum was first observed as early as
at the beginning of the 20th century [1]. Later, this phe-
nomenon was repeatedly described in the 1960s [2, 3]
but has not been studied in detail because of the poor
reproducibility of results. Recent works [4, 5] are the
only publications concerning the dynamics of thermi-
onic emission. However, they are devoted to ion current
noise. The kinetics of ion emission has remained poorly
understood. This process can form the basis for sensi-
tive methods of surface investigation and deserves more
attention. This paper is an attempt to fill the gap. We
quantitatively describe the ion current response to emit-
ter heating and discuss a mechanism of ion emission.
The emission of impurity alkali ions from Pt, W, and
Mo in a vacuum and from Nichrome alloy in air at emit-
ter temperatures of 800–2500 K was studied. It has
been found that preliminary moistening of the metal
surface at room temperature and rapid cooling of sam-
ples are necessary to provide reproducible observa-
tions.

The experimental setup consisted of a locked vac-
uum chamber evacuated by magnetic-discharge pumps
and an rf mass spectrometer with a resolution of 1 u.
A metallic filament was used as an ion emitter. The
temperature at the filament center was estimated from
the filament current and voltage drop across the fila-
ment by numerically solving the thermal physical prob-
lem. References data from [6] were used. The emissiv-
ity taken from [6] was multiplied by a factor k > 1,
which takes into account the surface contamination.
For the primary annealing of the W filament, the factor
k was taken to be equal to 1.1 and then was varied in the
range 1.0–1.2.

Upon heating the unannealed filament to a tempera-
ture of about 1000 K, the current density of alkali metal
ion emission lies between 10–7 and 10–6 A/cm2. With
1063-7842/02/4705- $22.00 © 0604
time, the ion current I drops first rapidly and then
slowly, reaching a level I0 = 10–3–10–4 of the initial
value. Our experiments showed that the current
decrease follows the time dependence

(1)

The oscillograms of the K+ current from the W fila-
ment at temperatures 1530 and 1760 K (represented by
curves 1 and 2, respectively) and from the Pt filament at
1430 K (curve 3) are shown in Fig. 1. The curves are
seen to be well approximated by Eq. (1). Note that the
parameter B in the exponent may take two values (see,
e.g., 2 and 3); i.e., the relaxation with a higher B
changes to a slower relaxation. The parameter C
remained constant. The disadvantage of such experi-
ments is that each time we had to deal with a new sam-
ple with the properties inevitably differing from those
of the previous one. Moreover, the initially contami-
nated surface became clean at the end of the experi-
ment. The regular current relaxation was sometimes
disturbed by random current spikes. It was therefore
necessary to devise a method providing reproducible
ion emission from the surface.

It was noticed that the emissivity of metals increases
after long-term exposure to air at room temperature. We
examined the effect of air, dry N2, H2, and water vapor
on a tungsten filament annealed in a vacuum at 2500 K
and arrived at the conclusion that the influence of air is
due to moisture. The effect is the highest for a single
contact of the surface with H2O in the liquid phase. The
effect of surface wetting is retained after keeping the
emitter at a pressure of 10–3 Pa for 1000 s. The adsorp-
tion of N2 and H2 by the emitter results in a short ion
current peak with an amplitude ≈1/30 of that in the case
of H2O vapor.

I Ae B t– C/ t I0.+ +=
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The relaxation of the K+ ion current from the acti-
vated surfaces of Nichrome (1), Pt (2), Mo (3), and
W (4, 5) is presented in Fig. 2. The emitters were first
annealed up to the total relaxation of the ion current.
After having been brought into contact with water at
room temperature, they were heated to annealing tem-
peratures of 1000, 1400, 1400, 1650, and 850 K,
respectively. The experiments with the Nichrome alloy
were carried out in air; with the metals (except for acti-
vation), at a pressure of 10–3–10–4 Pa. The solid curves
are the approximation of the data points by Eq. (1). The
approximation parameters are listed in the table. The
curve for the Nichrome has two portions with different
parameters A and B. The emission of K+ ions was
observed at temperatures higher than 800 K. At very
low temperatures, the stage of ion current growth (5)
lasts t > 1 h (against t < 1 s at very high temperatures).
This phase is followed by the current relaxation
described by Eq. (1). Zero time in Eq. (1) coincides
with the start of heating rather than with the onset of ion
current. This indicates that the ion emission occurs in
several stages. First, a heating product with a concen-
tration specified by Eq. (1) forms; then, the ion emis-
sion limited by this product occurs. The effect of sam-
ple hardening observed by us confirmed indirectly that
the ion emission is a multistage process. When the fila-
ment is rapidly cooled, ion emission is also observed,
with the ion current relaxing in the same way as upon
heating. The K+ current as a response to the rapid cool-
ing of the tungsten filament from 2300 to 1830 K (1)
and from 2140 to 1830 K (2) is shown in Fig. 3. The ion
current increases, reaches the approximation curve, and
then follows it. The curve is described by Eq. (1) with
the parameters A = 13, B = 0.41, C = 0.297, and I0 =
0.0055. Time is measured from the start of cooling. The
ion emission upon cooling is observed only if the initial
emission takes place.

When the temperature varies rapidly, the ion current
follows the Arrhenius law. The energy of activation Ea
is high and takes several values for different samples of
the same metal. For tungsten, the values of Ea were
found to be Ea = 2.27, 3.33, and 4.58 eV. These values
far exceed the energy of ion desorption, ≈1 eV [5, 7, 8],
and remained constant after the sublimation of the
oxide film during vacuum annealing and after the
recovery of the ion emission by water. The ion source is
apparently located at grain boundaries rather than on
the sample surface. In this case, the value of Ea is the
energy of ion emergence on the surface, while the
observed kinetics of ion emission reflects the grain
boundary relaxation after sample heating.

Numerical experiments show that function (1) is
typical of the ion emission kinetics for various alkali
metals. Kinetics (1) was observed under various
changes in experimental conditions, for example, after
a slight, by 30 K, increase in the temperature and after
sharp cooling. In (1), the instant the conditions change
is taken for the starting time. A number of factors (high
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
activation energy and insensitivity to the surface condi-
tion) allow us to consider kinetics (1) as a grain bound-
ary phenomenon. The complexity of such phenomena
under unsteady conditions and the lack of experimental
data make it difficult to identify mechanisms responsi-
ble for the ion current relaxation observed. We will dis-
cuss possible explanations of our observations below. 

The early stage of the ion emission occurs irrespec-
tive of whether the ions are present at the final stage of
the process or not and specifies basic quantitative char-
acteristics of the process. It is the early stage that is

related with models discussed below. The term C/  in
Eq. (1) is usually associated with diffusion. For plati-
num, the contribution of this term is shown by the thick
curve in Fig. 4, while the total dependence I(t) taken
from Fig. 2 is shown by the thin line. The minor amount
of the ions adsorbed on the surface and the regenerabil-
ity of the emitter suggest that the ions come to the metal
surface from localized sources. The ions are apparently
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Fig. 1. Relaxation of the K+ current from the heated fila-
ment: (1) W at 1530 K, (2) W at 1760 K, and (3) Pt at 1430 K.
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Fig. 2. Relaxation of the K+ current from the heated fila-
ment annealed in a vacuum and brought in contact with
H2O: (1) Nichrome at 1000 K, (2) Pt at 1400 K, (3) Mo at
1400 K, and (4, 5) W at 1650 and 850 K.
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transported along the grain boundaries. The time

dependence of the ion current, ~1/ , may be associ-
ated with the behavior of vacancies, since the vacancy
mechanism of grain-boundary diffusion is typical of
metals [9]. After the emission peak, the vacancies con-
centrate at the grain boundaries and then diffuse into

the grains. The origin of the term exp(–B ) is more
difficult to explain.

t

t
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t0.5, s0.5
20 30 40

10–2

10–1

Fig. 3. Relaxation of the K+ current from the W filament
upon cooling (d) from 2300 to 1830 K and (s) from 2140
to 1830 K. Solid line, approximating curve.
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Fig. 4. Kinetics of the K+ emission from platinum: thick

curve, ~1/  component; thin curve, total current.t
The exponential term may be related to the differen-
tial equation

(2)

which describes the reaction of particles with vacancies
or another diffusant. To distinguish the process
described by Eq. (2) from that yielding the diffusion

term C/  in Eq. (1), we must assume that there are two
kinds of particles near the surface that limit the ion flux
to the surface. These particles are produced when the
process conditions change rapidly. The first, predomi-
nant, kind diffuses into the material, while the second
becomes inactive, having reacted with the first one.
Under this assumption, the factor B in Eq. (1) is propor-
tional to the amplitude C. This comes into conflict with
the experimental results, whereby the higher C, the
smaller B. The situation with three kinds of particles is
too complicated. A model assuming the linearity of the
process space seems to be more adequate. In such a
space, a group of particles executes the Brownian
motion. This may occur along a dislocation line or at a
step on a crystal face. If the interaction between the par-
ticles removes them, their number decreases as

~1/ . If the particles disappear, reacting with
unsaturated absorption centers, their number relaxes as

exp(–B ). For a chain of sites, the factor B equals

1.64n , where n is the fraction of the sites occupied
by the centers and ν is the frequency of jumps between
the sites. Let us consider an example demonstrating
both ways of relaxation. Let there be a set of vacancies
where single vacancies coalesce to form extended
steps. The number of single vacancies first decreases as

~1/ , when the vacancies coalesce largely by

pairs, and then as ~exp(–B ). The superposition of
the two kinetics leads us to the assumption that two
kinds of particles forcing alkali metal ions to move
toward the surface are responsible for them.

To conclude, we note that Eq. (1) is valid not only
for the kinetics of alkali metal ion emission. It applies
to more complicated processes as well. Work [10] con-
sidered the scattering of slow hydrogen and nitrogen

dn
dt
------

a

t
-----n,–=

t

t t0+

t

ν

t t0+

t

Table

No. Metal T, K A B C I0

1 Nichrome 1000 1120 (7050) 0.212 (0.644) 465 2.11

2 Pt 1400 133 0.123 350 0

3 Mo 1400 249 0.284 17 0

4 W 1650 1.62 0.0347 16 0.33

5 W 850 944 0.0617 13.3 0
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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ions by a tantalum target and studied the relaxation of
the scattering rate after pulsed heating of the target. It
was found that relationship (1) approximates the data
better than the dependence ~exp(–kt) accepted in [10].
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Abstract—Photoemission from a semiconductor having a negative electron affinity under nonuniform illumi-
nation is investigated theoretically for stationary and pulsed excitation regimes. The maximum emission current
is shown to grow exponentially with increasing ratio of the negative electron affinity ∆0 to a characteristic tun-
neling energy E0, and the excitation intensity Iopt corresponding to the maximum current has been determined.
Excitation nonuniformity results in a weakening of the dependence of the emission current on illumination
intensity near the current maximum. The quantum efficiency recovery time measured in a two-pulse excitation
mode depends weakly on the illumination intensity and on its nonuniformity over the illuminated spot and is
close to the relaxation time of low photovoltages. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

High-density electron beams obtained from GaAs
photocathodes having negative electron affinity (NEA)
are used in high-energy electron accelerators [1] and in
semiconductor electron lithography [2]. Under intense
optical excitation, saturation of the charge emission is
observed caused by accumulation of electrons in a near-
surface potential well in the space-charge region (SCR)
and emergence of a photovoltage that decreases the
NEA and impedes emission [3–5]. In earlier studies of
the basic mechanisms of the effect of charge saturation,
by means of numerical simulation [4, 6–8] and analyti-
cally [8], different assumptions concerning the restor-
ing hole flux toward the surface were used; however,
only uniform excitation was considered.

If the size of the illuminated spot is less than or close
to the activated area of the photocathode, transverse
distribution of the light intensity over the spot becomes
substantial. In experiments on charge emission from
photocathodes known to us, the light intensity distribu-
tion varied from an “incorrect” function, asymmetric
relative to the beam axis [9], to a Π-shaped curve with
30% intensity variation over the beam cross section [10].

Also, nonuniform illumination intensity is used in
the case where local excitation is utilized for preventing
deactivation of the cathode by the backward flow of
ions [11] and in measurements of the surface distribu-
tion of quantum yield [12]. The intensity nonuniformity
should also be taken into account when the saturation
effect is used in order to determine from experimental
1063-7842/02/4705- $22.00 © 20608
data such parameters of photoemitters as the surface
barrier permeability and the magnitude of the NEA.

In the present paper, the emission problem is consid-
ered in the case of a nonuniformly distributed and
intense excitation. Dependence of the emission current
on the intensity of local excitation is studied in both sta-
tionary and pulsed regimes, and conditions are found
for achieving a maximum current for excitation by a
Gaussian beam typical of single-mode lasers [13].

1. A MODEL OF PHOTOEMISSION

1. Consider the photoemission from a working layer
of thickness d of a semiconducting material with a sur-
face SCR layer of thickness w activated to the NEA
state. We assume that the illumination intensity I is non-
uniformly distributed over the semiconductor surface
and varies with distance from the illuminated spot cen-
ter, I = I(ρ), where ρ is the radial coordinate. The local
density of emitted electrons qemi and the total emission
flux qtot are equal, respectively, to

(1)

where qw is the density of the electron flux toward the
surface at the interface between the working region and
the near-surface SCR layer and Bn is the probability of
electron escape into vacuum from the near-surface
potential well in the SCR.

qemi qwBn, qtot 2π qemi ρ( )ρ ρ,d

0

ρmax

∫= =
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In the experiment, the distance over which the radial
distribution of the excitation intensity changes appre-
ciably is much larger than the working region thickness
(d ≤ 1 µm), and the electron flux qnz in the direction of
the external normal z to the working layer surface pre-
dominates over the radial flux qnρ, namely, qnz @ qnρ.
Therefore, the coordinate ρ enters the one-dimensional
transport equation as a parameter in the distribution
I(ρ). The electron flux qw toward the boundary between
the SCR and the quasi-neutral region z = w (w ! d) can
be found by solving a diffusion equation for the work-
ing region under boundary conditions describing the
surface recombination with a velocity s1 at the heter-
oboundary at z = d and fast capture of electrons in the
SCR at z = w at a rate . Consequently,

(2)

Here α is the light absorption coefficient; γ is a param-
eter depending on the magnitudes of δ; κ = (d – w)/Ldif;
and S1 = s1(d – w)/Dn, where Ldif and Dn are the diffu-
sion length and diffusion coefficient of electrons in the
working layer, respectively. In the limit of weak bulk
recombination κ  0 and at δ < 1, we arrive at

(3)

An expression for the diffusion flux toward the sur-
face at arbitrary κ and δ is given in [8]. Note that the
flux qw through the quantity γ and the capture rate  in
the SCR depends on the SCR width and the arising pho-
tovoltage δV (δV = Vb – Vb0, eVb0 being the depth of the
potential well in the SCR in the dark, and eδV, its
change under illumination); however, for small values
of the ratio s1/ , this dependence is insignificant.

2. If permeability of the surface potential barrier at
the interface with a vacuum is low and the energy relax-
ation of electrons in the potential well in the SCR has a
quasi-elastic character, then Bn is proportional to the
NEA, that is, to the energy interval between the edge of
the conduction band and the level corresponding to the
vacuum, ∆ = Ec – Evl, decreasing linearly with photo-
voltage δV. In this case [5],

(4)

Here Bn0 and ∆0 are the emission probability and the
NEA value, respectively, in the case of no illumination.

3. The local decrease in the band bending δV(ρ) in
the SCR under illumination is determined by the kinet-
ics of capture by the surface centers of photoelectrons
from the working zone and holes tunneling through the
energy barrier in the SCR, as well as by spreading of the
nonequilibrium carriers in the SCR potential well. The
characteristic size δl of the charge spreading region
associated with the radial drift of electrons on the SCR
surface can be evaluated as δl ≈ τεv s, where v s is the

v

qw Dn
dn
dz
------ w( ) I ρ( )δγ, δ α d w–( ).= = =

γ 1 δ/2 S1/2+–( ) 1 S1 s1/v+ +( ) 1– .=

v

v

Bn Bn0 1 y
r
--– 

  , r
∆0

eVb0
-----------, y

δV
Vb0
--------.= = =
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radial drift velocity of electrons in the transverse field
created by photovoltage, v s ≈ (eD/kT)δV/δl, and τε ≈
(eVb0/"ω0)τopt is the electron energy relaxation time
down to the level of the mobility threshold in the SCR
potential well, τopt being the emission time of an optical
phonon of energy "ωopt [5]. For GaAs ("ω0 = 39 meV,
τopt ≈ 0.1 ps) up to a photovoltage of δV ≈ 0.2 V (which
is close to the NEA and corresponds to the cease of
photoemission), this characteristic size is δl & 0.1 µm;
for beam radii in excess of 1–2 µm, the electron spread-
ing over the SCR is insignificant.

4. Variation of the surface charge density Ns is deter-
mined by the difference between the local fluxes of
electrons and holes toward the surface as follows:

(5)

The flow of recombining electrons is found as the
difference between the electron flux from the working
region and the emission flux of electrons penetrating
the surface potential barrier, qns = qw(1 – Bn) ~ I.
Because of the fast capture of electrons by attracting
surface centers, the concentration of nonequilibrium
carriers in the SCR is low.

The flux of holes restoring the equilibrium is deter-
mined by hole capture by neutral surface centers. The
flux density of recombining holes is equal to qps =
pw〈v pσp〉Nns, where pw is the concentration of holes at
the interface between the SCR and the quasi-neutral
region; Nns is the surface density of neutral centers;
σp is the capture cross section; and v p is the velocity of
the holes. The angle brackets denote averaging over the
distributions of holes and the levels of the surface
states. The density Nns of neutral centers depends on the
surface layer structure. Experimental data on GaAs sur-
face activation prove that no pinning of the Fermi level
on activated surfaces takes place, thus indicating the
presence of a wide band of partially occupied surface
states. When this takes place, the dark density of cap-
ture centers for holes is close to the concentration of
surface states and is weakly changed by illumination
[6, 7].

The hole capture cross section for the surface states
is proportional to the probability of tunneling through
the repelling SCR potential and is, therefore, exponen-
tially small. Temperature and concentration depen-
dences of the nonlinear effects in photoemission are
evidence that a predominant contribution to the hole
flux toward the surface comes from the thermal-field
component (that is, thermoactivated tunneling). In this
case, the recombination flux can be written in the form

(6)

dNs

dt
--------- qps qns.–=

qps = qs0 λ0y( )exp 1–[ ] ,

qs0 1/4v T pwσ0Nnse
λ0–

,=
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(7)

Here, vT is the thermal velocity of holes and σ0 is the
effective capture cross section for the tunneling holes.
The second terms in brackets in (6) allow for processes
holes being ejected back into the semiconductor bulk in
the approximation of high density of the surface states.

The main difference between the flux qps of recom-
bining holes and the flux of holes tunneling to the sur-
face layer (the latter determines the restoring current in
a model corresponding to the Schottky diode [5–7]) is
given by the factor σ0Nns. The magnitude of σ0 depends
on the capture mechanism. If the thermal velocity of
holes is 107 cm/s, the surface concentration of the cen-
ters Nns = 1012–1013 cm–2, and a typical value of the cap-
ture cross section by a neutral center is σ0 = 10–15 cm2

[14], then this factor is Nnsσ0 ! 1. In this case, the
recombination flux qps is appreciably less than the flux
of holes tunneling to the surface. Hereinafter, the value
qs0 is considered as a parameter of the model.

PHOTOVOLTAIC KINETICS: RESULTS
FOR UNIFORM ILLUMINATION

1. In a depletion layer approximation, we have Ns =

Ns0  and Eq. (5) can be written in terms of photo-
voltage y as follows,

(8)

and it then can be integrated by quadratures. For a low
electron escape probability Bn ! 1, the dependence y(t)
has the form

(9)

Here, y(t = 0) = y0 = 0 at the moment when illumination
is turned on and y = y0 ≠ 0 when illumination is turned
off. At low intensities, qw /qs0 ! 1, the stationary photo-
voltage δVst increases in proportion to the intensity and
yst = 1/λ0(qw/qs0). At high intensities, qw/qs0 @ 1, the
photovoltage grows logarithmically. Note that the
boundary between the low and high intensities is given
by the condition qw . qs0 , the corresponding intensity
being Ib . qs0/δ.

λ0 eVb0/E0, E0 E00 E00/kT( ),coth= =

E00
"
2
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------------
1/2
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1 y–

τ s

2 1 y–
-------------------dy

dt
------ qw/qs0 1 Bn–( ) 1 e

λ0y
,–+=

τ s Ns0/qs0=

y
1
λ0
-----=

× a

1 a λ0y0–( )exp 1–[ ] 2λ0aτ 1 y–( )1/2–[ ]exp+
-------------------------------------------------------------------------------------------------------------,ln

τ t
τ s
----, a

qw

qs0
------ 1.+= =
From (9) it follows that the photovoltage relaxation
time is

(10)

At low intensities, qw ! qs0 , kt ≈ 1, and the relax-
ation time is independent of the illumination intensity
and equal to trel = τs0 . At high intensities, qw @ qs0 , kt ≈
3, and the photovoltage relaxation time decreases in
inverse proportion to the illumination intensity, trel ~

. After the illumination is turned off, electrons
escape the working region in a short time, τext ≈
max(d2/Dn, d/ ). Measurement of the relaxation time
of the photovoltage in the SCR by the method of two-
pulse excitation with the use of formulas (8) and (10)
gives an estimate of qs0 .

2. According to (4), at a photovoltage of y = r, the
barrier permeability is Bn = 0 and emission Òeases. The
corresponding critical illumination intensity Icr can be
determined using the stationary state condition: qns = qps

(11)

From (11) it follows that the critical intensity
increases exponentially with growth of λ0r = ∆0/E0. The
intensity Iopt, at which the stationary emission current
density is maximum, can be found (taking into account
(9) at τ  ∞) from an extremum condition for the
expression

(12)

The emission current is maximum when qw/qs0 =

 – 1. At qw @ qs0 , the intensity Iopt, the photovolt-
age, and the maximum emission current density qopt
are, respectively,

(13)

Using (13) and an expression for the emission quan-
tum yield Y at low intensities, Y0 = (qemi/I)I → 0 = Bn0δγ,
we get

(14)

From (13) it follows that the maximum emission
current is proportional to the restoring hole current and
the probability Bn0, its growth with an increasing ∆0/E0
ratio being close to exponential.

trel kt I( )
τ s0

1 qw/qs0+( )
-----------------------------, τ s0 τ s/λ0,= =

1 kt I( ) & 3.<

qw
1–

v

Icr

qs0

δγ
------e

λ0r
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qemi Bn0qw 1
1

λ0r
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3. The formulas given above relate the basic charac-
teristics of a photocathode (∆0, eVb0, Bn0, qs0, and E0)
with the experimentally measured values, in particular,
Y0, Iopt, Yopt = qopt/Iopt, and δVst(Iopt), as follows:

(15)

Let us evaluate the characteristics of GaAs photo-
cathodes investigated experimentally in studies [9, 10]
(for a working layer thickness of d = 2 µm, an acceptor
concentration of Na = 6 × 1018 cm–3, and a light absorp-
tion coefficient of α = 104 cm–1). Using experimental
data for the quantum efficiency, emission current, and
photovoltage at corresponding excitation intensities,
namely, Y0 = 0.219, jopt = 1 A/cm2 (qopt = 6.25 ×
1018 cm−2 s–1), Iopt = 30 W/cm2 (Iopt = 1.3 × 1020 cm–2 s–1),
Yopt = 0.049, and δVst = 152 mV, we obtain Bn0 = 0.384,
λ0r = 4.47, E0 = 44 meV, and ∆0 = 0.2 eV. E0 is close to
47 meV, as given by (7), and the preexponential factor
qs0 (see (6)) is equal to 2.3 × 1018 cm–2 s–1. Close values
of the two parameters, E0 and qs0 , were obtained in sim-
ilar experiments with thin GaAs layers [5], which con-
firms the model’s adequacy.

3. NONUNIFORM ILLUMINATION
INTENSITY

1. Consider the photovoltage distribution, quantum
efficiency, and emission flux under nonuniform illumi-
nation of the photocathode I(ρ) = ImΦ(ρ) assuming that
the size of the illuminated spot ρmax @ d. In a stationary
regime, the photovoltage distribution y(ρ) = δV/Vb0 can
be found from the equation

(16)

which, in the case where Bn < 1, is effectively solved by
the iteration technique. The total emission flux qtot is
found by integration over the excitation spot.

Numerical calculations were carried out for a GaAs
photoemitter at the parameter values given in Section 2.
It was assumed that the intensity I(ρ) drops with dis-
tance from the center according to the Gaussian distri-
bution, which is displayed by the principal mode ampli-
tudes in various modifications of single-mode
lasers [13]

(17)

2. As the illumination intensity falls off with dis-
tance from the center of the excitation spot, the photo-
voltage y decreases and the quantum efficiency grows.
The emission flux distribution qemi(ρ) along the dimen-

Bn0
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δγ
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-----
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--------,= =

qs0 Ioptδγe
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sionless distance from the spot center is given in Fig. 1.
In the range of intensities Im < Iopt, where the effective
permeability of the SCR varies relatively weakly and is
not too low (∆ = Ec – Evl ≈ ∆0), qemi drops with distance
from the spot center as does the intensity (curves 1 and 2).
Close to a critical intensity value, at which the effective
barrier permeability near the beam axis is close to zero,
the distribution qemi(ρ) is nonmonotonic and has a max-
imum shifted from the spot center. In the range Iopt <
Im < Icr, as the intensity approaches the critical value,

the differences  – qemi(0) and  – qemi(1)
increase and the maximum position moves away from
the spot center. The maximal emission is not affected
by the illumination intensity and is a function of the
maximum barrier permeability and the parameters
affecting the restoring hole current. Accuracy of the
maximum current value qopt with the use of formula
(13) depends on Bn0 and amounts to a few percent.

3. Let us determine the illumination intensity at the
center of a spot of area S corresponding to the maxi-
mum collected charge. This maximum is achieved at an
intensity value slightly higher than Iopt and less than Icr

because the area where I(ρ) ≥ Icr corresponds to Bn ≈ 0
and is inactive. For I(ρ) having the Gaussian distribu-
tion given by (17) and using (16), at Bn ! 1 and qw =
I(ρ)δγ we obtain

(18)

Here H = Imδγ/qs0 , φ(x) = (x + 1)ln(x + 1) – x, and the
values P and H' are defined by the relations

qemi
max qemi
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Fig. 1. Variation of the emission current qemi(R) over the
illuminated surface (Imax/Imin = 100) for different illumina-

tion intensities. Imax, 1020 cm–2 s–1: (1) 0.1; (2) 1; (3) 1.7;
(4) 2; (5) 2.5; and (6) 3.
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(19)

At H ! 1, the total flux is practically independent of
β and increases in proportion to the intensity  aver-
aged over the spot area as follows:

(20)

At high intensities, H @ 1, the function Φ(H, β) is
nonmonotonic. At close to uniform illumination inten-
sity distributions (β ! 1), the maximum and average
intensities corresponding to the maximum total emis-
sion flux and the magnitude of the latter are given by the
formulas

(21)

From (21) it follows that as the illumination
becomes less uniform, Im increases and becomes more
sensitive to illumination nonuniformity than the emis-
sion flux. The maximum flux, same as the average
intensity, deviated not much from its highest values up
to Im/I(ρmax) & 2. From (18) and (19) it follows that, for
a Gaussian beam, the emission ceases when I(ρmax) =

Im Icr    P≤ 1, H' H ,= =
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Fig. 2. Dependence of the normalized total emission current
q = qtot/qopt on the average dimensionless illumination

intensity  = /Iopt for various nonuniformity degrees of
the illumination distribution over the light spot. Imax/Imin:
(1) 1; (2) 2; (3) 5; (4) 20; (5) 100; and (6) 1000.

Ĩ I
Icr , which is achieved at Im = Isup, where

(22)

For strongly nonuniform distributions (e–β ! 1) at
high intensities, H @ 1, the average and maximum
intensities of the incident radiation corresponding to
the maximum total emission flux are given by

(23)

The maximum flux  (same as the quantity 
varies in inverse proportion to β:

(24)

Variation of the total emission flux qtot (normalized
by qopt) with the average illumination intensity for dif-
ferent values of β are presented in Fig. 2. As β grows,
the current maximum position shifts towards lower
average intensities, the maximum current decreases,
and at β @ 1 the current near the maximum exhibits dis-
tinct “saturation” due to an appreciable increase in the
ultimate intensity Isup. The function q( ) derived theo-
retically reproduces specific qualitative features of the
experimental dependence j(I) [10]: the rather fast drop
of the emission current at  <  and practically con-

stant current at  * . The smooth variation of

qtot( ) in the vicinity of  is associated with the inte-
gral character of this value. The region around the beam
axis where the energy interval adequate for the emis-
sion is narrow has a small area, and the basic contribu-
tion to the emission comes from the area where the illu-
mination intensity is close to optimal. Because of the
sharp exponential variation of the restoring current at
high excitation intensities, exact knowledge of the bar-
rier permeability variation in the vicinity of Iopt at low
values of Bn is not essential.

4. TRANSIENT PROCESSES AND CHARGE 
RECOVERY

1. For studying the relaxation processes and the
quantum efficiency recovery time, the emission current
is measured as a function of time after abrupt exposure
to light and or in a two-pulse excitation regime. In the
latter case the ratio of the charges emitted after the first,
probing, pulse and the second, excitation, pulse is mea-
sured as a function of time difference between the two
pulses.
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The results of numerical calculations of transient
processes for the case of instantaneous turning on (off)
of constant-intensity illumination I(ρ) in one-pulse and
two-pulse regimes are as follows. Duration of the illu-
mination pulses is ti; the time delay of the second pulse
is tp. The parameters of photocathodes were given in
Section 2. The photovoltage y(R, t) was determined by
numerical integration of Eq. (8) under corresponding
initial conditions: at the time moment when the illumi-
nation is first turned on the photovoltage is y0(R, 0) = 0; at
the moment when the illumination is abruptly turned
off the photovoltage is y(R, ti); and at then moment
when the illumination is turned on again it is y(R, ti + tp).
The total emission flux was determined by integration
over the sample area. The magnitude of the accumu-
lated charge is

(25)

2. Shown in Figs. 3–5 are calculation curves of vari-
ation with time of the photovoltage and the emission
flux for an intensity of Im ≈ 2 × 1020 cm–2 s–1 and
strongly nonuniform distribution of the light intensity
Im/I(ρmax) = 100. The illumination time ti = 0.1τs was
close to that required for the photovoltage at the light
spot periphery to set in. In Fig. 3 the following is seen.
The photovoltage relaxation time after illumination
being turned on τ+ increases considerably with distance
from the center toward the spot periphery, that is,
τ+(0) ! τ+(ρmax). The relaxation time after illumination
is turned off τ– is appreciably longer than the time τ+ for
high light intensities and coincides with the latter at low
intensities.

The appreciably higher photovoltage relaxation rate
at the spot center in the dark results in smoothing out of
the photovoltage along the radius in a short time (λ0τ ! 1).
Consequently, in the dark over most of the time period,
the relaxation proceeds in a linear regime and, there-
fore, the charge recovery time is equal to τs0 (see (10)).

The relaxation time of the local emission flux in the
dark (Fig. 4) is equal to the relaxation time of the effec-
tive barrier permeability (that is, to the photovoltage
relaxation time) and rises considerably with distance
from the spot center toward its periphery as the ratio
qw/qs0(ρ) decreases (see (10)). The total emission flux
qtot relaxes over an intermediate relaxation time close to

the relaxation time trel ≈ τs0  in the surface area
where the emission flux is maximum.

Influence of the delay time tp on variation of the total
flux with time is demonstrated in Fig. 5, where depen-
dences qtot(t) are shown after the first and the second
illumination pulses. As tp is decreased, the initial mag-
nitude of the total emission flux decreases because of
the higher photovoltage encountered by the second
pulse.

Q qtot t( ) t.d

0

ti

∫=

e
1 λ0r–
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3. The most important dependences η = Q2/Q1(τp)
characterizing charge recovery as a function of the
delay time for various intensities Im and different
Im/I(ρmax) are shown in Fig. 6. The illumination pulse
duration ti = 0.02τs is nearly as long as the relaxation
time of the total emission flux (Figs. 4, 5). It is seen in
Fig. 6 that in cases where the charge saturation effects
are strongly pronounced (at Iopt & Im & Icr and
Im/I(ρmax) . 1), the ratio η = Q2/Q1(τp) depends on the
illumination intensity and its nonuniformity over the
spot area at short delay times λ0τρ ! 1 (compare solid
and dashed lines 3 or solid lines 1–4). Because of this
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Fig. 3. Variation with time of the dimensionless photovolt-
age y (normalized by τs = Ns0/qs0 after switching the illumi-
nation on (1–4) and off (5–7). The dashed line is the depen-
dence y(t) after application of the second light pulse,
delayed by 0.1τs. The time is measured from the moments
of switching the illumination on or off and application of the
second illumination pulse; ρ/ρmax: (1, 5) 0; (2) 0.3;
(3, 6) 0.6; and (4, 7) 1.

Fig. 4. Variation with time of the normalized emission flux
q = qemi(t, ρ)/qopt at the center (1) and at the periphery (2) of
the illuminated spot; ρ/ρmax: (1) 0 and (2) 0.8. The dotted
line corresponds to variation with time of the normalized
total emission current  = qtot(t)/qopt.q̃tot
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the charge recovery time, as well as the flux qs0 (corre-
sponding to the charge recovery level of &90%),
become dependent on the light beam parameters. In
those cases where the main contribution to the charge
comes from a spot area illuminated below the optimum
level, sensitivity of the function η(τp) to the light beam
parameters diminishes (compare dashed curves 3 and 4).
Complete charge restoration (η = Q2/Q1(tr) ≈ 0.99) is
achieved at tr ≈ τs0 . When this takes place, the time tr ,
corresponding to restoration of the charge accumula-
tion, depends weakly on the illumination intensity and
nonuniformity of its distribution over the light spot.
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Fig. 5. Variation with time of the normalized total emission
current (t) = qtot(t)/qopt for different time delays of the

second light pulse. The dashed line corresponds to the
relaxation of (t) following the initial illumination; the

solid lines show the relaxation during the second illumination
pulse; τp (normalized by τs): (1) 0.1, (2) 0.02, and (3) 0.01.
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Fig. 6. Variation with time of η = Q2/Q1(τp) at different illu-

mination intensities and nonuniformities; Im, 1020 cm–2 s–1:
(1) 0.1, (2) 0.3, (3) 2, and (4) 2.8. The solid lines correspond
to a uniform illumination Im/I(ρmax) = 1, and the dashed
lines correspond to nonuniformity of Im/I(ρmax) = 100.
This is due to the fact that, at η values close to 1, the
recovery rate is determined by the longest relaxation
time corresponding to the light-spot periphery.

CONCLUSION

Calculation results show an exponentially high sen-
sitivity of the maximum emission current to the nega-
tive electron affinity. Under nonuniform excitation, the
maximum emission current noticeably decreases and
its dependence on the illumination intensity in the
vicinity of the maximum becomes less steep. Fast pho-
tovoltage relaxation in the area of high illumination
intensity results in low sensitivity of the charge recov-
ery time to the excitation intensity and nonuniformity
of the illumination distribution over the light spot.
Therefore, making allowance for nonuniformity of the
illumination turns out to be necessary both when deter-
mining the photocathode parameters from experiment
and choosing an optimum photoemission regime.

The work was supported by INTAS (grant no. 99-
00125) and the Russian Foundation for Basic Research
(project no. 00-02-16775).
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Abstract—Sulfur and nitrogen oxide conversion in an ionized gaseous mixture modeling the composition of
flue gases from thermal power plants is studied experimentally. A pulsed microsecond beam of electrons is used
as an ionization source. Oxides of both elements are shown to influence the conversion process. Possible kinetic
mechanisms for removing the oxides from the gaseous mixture are discussed. © 2002 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

Flue gases from thermal power plants, which con-
tain sulfur and nitrogen oxides in large amounts, are a
basic source of environmental pollution. Combining
with water vapor and accumulating in the atmosphere,
they cause acid rain. To reduce environmental damage
due to SO2 and NOx, it is necessary to purify flue gases
immediately at the site of their outflow into the atmo-
sphere, i.e., at thermal power stations. There are several
ways of attacking this problem, one of them being the
processing of flue gases by electron beams.

To this end, continuous-mode electron accelerators
generating beams of moderate current density (10–5–
10–9 A/cm2) are usually used (see, e.g., [1, 2]). In this
case, flue gases are removed in several steps. First, fast
electrons act on flue gases, which contain water vapor
(along with the oxides to be removed), to generate free
radicals like O, OH, O2H, etc. Then, SO2 and NOx oxi-
dize to related acids, H2SO4 and HNO3, via chemical
reactions involving these free radicals. Further, the
acids react with ammonia added to flue gases to form
powdered ammonia sulfates and nitrates. At the final
step, these powders are trapped by various filters.

The theoretical groundwork for the first two steps
has been developed to the point where analytical and
experimental data are in good agreement [4, 5]. The
refinement of the free-radical mechanism of impurity
oxidation when flue gases are processed by electron
beams will include the study of heterogeneous pro-
cesses and aerosol formation [6, 7].

Using the electron beams, one can attain a high
degree of purification: up to 95% for SO2 and 80% for
NOx [1–3]. The energy spent on the removal of one
molecule amounts up to 12–30 eV or higher. Clearly,
the energy consumption for gas purification, which
makes up 3–5% of the rated power of thermal power
1063-7842/02/4705- $22.00 © 0615
stations, must be reduced. This is the central problem in
developing electron-beam purification technologies.

Earlier, it has been demonstrated with sulfur dioxide
[8, 9] that the use of pulsed electron beams makes it
possible to considerably (by several times) decrease the
energy loss per toxic molecule. The reason is that with
the parameters of the beams optimized, the conversion
of SO2 proceeds by the chain plasma-chemical mecha-
nism. Pulsed electron beams also reduce the energy
needed to remove NOx oxides [10, 11]. However, in the
works cited, either SO2 or NOx nitrogen oxides were
removed. In this work, we study the combined effect of
SO2 and NOx oxides on their conversion.

EXPERIMENTAL EQUIPMENT
AND METHODS

Experiments were carried out with the setup built
around a plasma-cathode pulsed electron accelerator
designed similarly to that described in [12]. The cross-
sectional dimensions of the output electron beam were
10 × 100 cm. The beam energy, half-width, and current
density were 200 keV, τ ≈ 5 × 10–6 s, and j = (4.5–
12.5) × 10–3 A/cm2, respectively. The beam was
injected to the gas chamber of volume 12 l through a
20-µm-thick titanium foil. The beam energy absorbed
by the gas was defined as W = jτD, where D is the dose
of the gas-absorbed energy per unit length. The product
jτ was determined by integrating the current and volt-
age waveforms, and D was measured with TsDP-F-2
film detectors by the standard technique [13].

A model gaseous mixture prepared in a special
mixer was delivered to a pre-evacuated plasma chemi-
cal chamber doubly purged by pure nitrogen. The mix-
ture was forced to circulate in the chamber throughout
the experiment. The mixture was composed of nitrogen
2002 MAIK “Nauka/Interperiodica”
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(90%), oxygen (10%), as well as SO2 and NOx impuri-
ties from 0 to 5000 ppm.

The qualitative and quantitative analysis of the gas
mixture was performed by chromatographic and elec-
trochemical methods with a Tsvet 500M gas chromato-
graph and a Testo-350 flue gas analyzer. The chromato-
graph was applied to measure the oxygen and nitrogen
concentrations, and the Testo-350 analyzer measured
the concentrations of SO2 and NOx. The partial concen-
trations of NO and NO2 (their sum gives the total con-
centration of the NOx impurity) were measured conduc-
tometrically with and without cryogenic separation of
NO from NO2 [14]. In the former case, the concentra-
tion of nitrogen monoxide [NO] was determined. With-
out the separation, the total concentration of the nitro-
gen oxides [NOx] = [NO] + [NO2] was measured. Then,
the concentration of NO was found from the calibration
curve of [NO] vs. absorbing solution conductivity,
which was found independently in experiments with
(NO + N2) standard gaseous mixtures with NO concen-
trations from 200 to 5500 ppm. The mean statistical
measurement error was no more 0.03. The methods
used cannot monitor the partial concentrations of sulfur
and nitrogen oxides simultaneously. Therefore, we
determined the initial composition of the mixture and
then monitored the concentration of only one sort of the
oxides: either sulfur dioxide or nitrogen oxides.

The gaseous mixture studied was irradiated by indi-
vidual shots. In each of the runs, the number of shots
was 300–500. The amount of the sulfur or nitrogen
oxides was determined in 50 shot intervals. We mea-
sured the absolute change in the oxide concentration,
the degree of conversion, and the energy needed to
remove one molecule. The degree of conversion η
and the energy loss ε were calculated for each of the
oxides as

Here, ∆[C] is the change in the concentration of SO2 or
NOx after a series of shots (cm–3), [C]0 is the initial
impurity concentration in the mixture (cm–3), W is the
beam energy absorbed by the gas per shot (J/cm3), N is
the number of shots, and e is the charge of an electron
(C). The total error in measuring ε was no higher than
0.3 (with the error in the absorbed energy W included).

SULFUR DIOXIDE CONVERSION

Earlier [9], it has been shown that in flue gases con-
taining only sulfur dioxide, the SO2 conversion induced
by microsecond electron beams follows the chain
mechanism. The chain is initiated by the three-body
attachment of thermalized beam electrons and electrons
underwent the degradation cascade to oxygen mole-

cules with the formation of  negative ions:

(1)

η ∆ C[ ] / C[ ] 0, ε WN /e∆ C[ ]  eV/molecule( ).= =

O2
–

e O2 M O2
– M,+ + +
where M is a third particle (a nitrogen, oxygen, or water
molecule).

The  active ions disappear in chain propagation
reactions and in competing reactions of recombination

with  positive ions. The chain oxidation reactions
are as follows [15]:

(2)

(3)

(4)

(5)

(6)

The free electron produced by reaction (6) may take
part in reaction (1), closing the chain. In addition,
mechanism (1)–(6) involves negative ozone ions, which
can form by the reactions

(7)

(8)

and other reactions with the participation of atomic

oxygen and  ions [16].

The characteristic time of the recombination reac-
tion

(9)

which involves nitrogen and oxygen ions and competes
with (2) and (8), is 10–20 µs at atmospheric pressure,
moderate humidity, and beam parameters used in the
experiments [17]. Therefore, as time passes, the

amount of the  ions in reaction (9) sharply decreases
and the probability of the chain reaction drastically
drops. Thus, the use of a pulsed electron beam with an
optimal current density j ~ 10–3 A/cm2 and a shot dura-
tion τ ~ 10 µs makes it possible to realize the chain
mechanism of SO2 oxidation with low energy losses
(~1 eV/molecule) [9].

Figure 1 shows the variation of the SO2 concentra-
tion with the number of shots N for various concentra-
tions of NO2. The model mixture consisted of N2
(≈88.5%), O2 (≈10%), H2O (≈1%), and NO (≈0–0.1%).
The initial concentration of SO2 equals the ordinate
intercept at N = 0. It is seen that the SO2 concentration
decreases with an increase in the number of shots, the
decrease being the most pronounced in the absence of
the NO2 impurity (curve 1). Under such conditions, the
conversion is η ≈ 98% and the energy loss, ε ≈
4 eV/molecule. Apparently, SO2 oxidizes by the chain
mechanism in this case. The energy loss is somewhat
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higher than that reported in [9], since in [9] the electron
beam was optimized.

With small amounts of NO2 ([NO2] ≈ 500 ppm)
added, the efficiency of SO2 removal drops (curve 3,
Fig. 1) and the conversion η decreased to 60%. The fur-
ther increase in the NO2 amount ([NO2] ~ 1000 ppm)
improves the process: the conversion rises to ≈65%.

The energy ε needed to remove an SO2 molecule is
an energy characteristic of SO2 removal. Figure 2
shows the dependences of ε and η on the NO2 initial
concentration in the mixture (curves 1 and 2, respec-
tively). For each of the experimental points, the number
of shots was 300. As the NO2 initial concentration
grows, the conversion of SO2 declines while the energy
loss per SO2 molecule rises. With a further increase in
the NO2 concentration, the energy loss is slightly
reduced.

Let us consider possible reasons for the effect of the
nitrogen oxides on the SO2 conversion process. The
presence of NO2 molecules in the SO2-containing gas
may initiate competing processes that lead to a reduc-

tion of the concentration of , , and S  negative
ions, which participate in the chain mechanism. Such a
process can be the attachment of thermalized beam
electrons to an electronegative NO2 molecule, which
has an electron affinity of 2.42 eV:

(10)

Another process that competes with reaction (2) is
the charge exchange reaction

(11)

The rate constant of (11) is much larger than that of
(2) (k2 ≈ 4.5 × 10–10 cm3/s against k11 ≈ 12 × 10–10 cm3/s

[18]). The loss of S  negative ions in the charge
exchange reaction

(12)

may considerably decrease the probability of the chain
mechanism. This reaction proceeds vigorously in mix-
tures enriched with impurity oxides, and its rate con-
stant is k12 ≈ 4.3 × 10–10 cm3/s [18].

The effect of the nitrogen oxides was estimated for
the mixture with [SO2] = 700 ppm and [NO2] varying
from 0 to 500 ppm. The mixture was irradiated by an
electron beam with a current density of 5 × 10–3 A/cm2.
The duration of rectangular shorts was 5 × 10–6 s. Reac-
tions (2) and (10)–(12) were considered. The analysis
shows that the quasi-steady-state free electron concen-
tration in the ionization chamber is established within a
characteristic time of ~10–7 s and equals ~10–11 cm–3.
With the nitrogen oxides added into the mixture, the
concentration remains virtually unchanged. In our
experimental conditions, the rate of production of the

O2
– O3

– O2
–

e NO2 NO2
–.+

O2
– NO2 O2* NO2

–.++

O2
–

SO2
– NO2 SO2 NO2

–+ +
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negative ions by reaction (1) was shown to be 40 times
higher than by reaction (10). Thus, the loss of the elec-
trons due to attachment in reaction (10) cannot signifi-
cantly affect the initiation of the chain mechanism of
SO2 oxidation.

Figure 3a shows the analytical time dependences of
the negative oxygen ion concentration. The presence of

the nitrogen oxides reduces the  concentration only
slightly; that is, the competition between charge
exchange reactions (2) and (11) has a minor effect on
the efficiency of chain mechanism (2)–(6).

In the presence of the nitrogen oxides, charge
exchange reaction (12) reduces the SO2 removal effi-
ciency to the greatest extent. Simplified calculations
demonstrate that the addition of NO2 in an amount of

500 ppm drastically reduces the S  ion concentration

O2
–

O2
–

1500

0 100

[SO2], ppm

N, shots
200 300

3000

4500

1

2
3

Fig. 1. SO2 concentration vs. number of shorts. The NO2
concentration is (1) 0, (2) 1000, and (3) 500 ppm.
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80
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4

Fig. 2. Energy loss (curve 1) and conversion efficiency
(curve 2) vs. NO2 initial concentration upon removing sul-
fur dioxide. The SO2 initial concentration is 3600 ppm.
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(Fig. 3b). Accordingly, the probability of the chain oxi-
dation mechanism also decreases. Eventually, the SO2
conversion drops and the energy spent on the removal
of a SO2 molecule rises (Fig. 2).

On the other hand, the nitrogen oxides added in suf-
ficiently large amounts intensify the chemical mecha-
nism of SO2 conversion. This becomes possible when
SO2 oxidizes to SO3 in the presence of NO2 [19, 20] and
SO3 combines with water molecules to form sulfuric
acid:

(13)

(14)

Quantitative estimates made for our experimental
conditions (for example, for curve 2 in Fig. 1 when N =
300) show that with the rate constant of reaction (13)
k13 = 4.1 × 10–21 cm3/s [20], the concentration of SO2
molecules converted by reactions (13) and (14) is
~1016 cm–3. The value found experimentally (curve 2 in
Fig. 1) is ∆[SO2] ≈ 6 × 1016 cm–3. The fairly good agree-
ment between the calculated and experimental values
indicates that reaction mechanism (13), (14) may

SO2 NO2 NO SO3,+ +

SO3 H2O H2SO4.+

1
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(b)

Fig. 3. Results of simplified calculation: time dependences

of the (a)  and (b) S  concentrations in the (1) absence

and (2) presence of NO2.
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Fig. 4. Impurity concentrations vs. number of shots.
(a) Nitrogen monoxide NO for [SO2] = (1) 100, (2) 300,
(3) 500, and (4) 0 ppm; (b) (1) sum of the nitrogen oxides
NOx, (2) NO, (3) NO2, and (4) SO2.
indeed raise the degree of purification and reduce the
energy consumption.

NITROGEN OXIDE CONVERSION

When the gaseous mixture is subjected to an elec-
tron beam, nitrogen oxides are removed primarily by
the gas-phase oxidation of NOx following the free-rad-
ical mechanism [1, 2]. As was noted in the Introduction,
fast electrons of the beam generate free atoms and rad-
icals, which interact with NO2 molecules:

(15)

(16)

(17)

(18)

(19)

(20)

Nitrogen monoxide rapidly oxidizes to dioxide by
the reaction

(21)

It has been shown [21] that in flue gases with a low
oxygen content, NO2 conversion is not necessarily
accompanied by the formation of the acid as a final
product. Atomic nitrogen may interact with NOx oxides
by reactions (15)–(17) to form atomic and molecular
oxygen and nitrogen [reactions (16), (17), and (19)].

The reduction of the NOx concentration in the
N2 : O2 : H2O ≈ 89 : 10 : 1 mixture subjected to electron
shots is shown in Fig. 4. In these runs, the initial con-
centration of NOx was 260–295 ppm. As the number of
shots grows, the nitrogen oxide concentration
decreases, the decrease being the most pronounced in
the absence of SO2 (curve 4). The addition of SO2 in
small amounts (100–200 ppm) retards the process of
nitrogen oxide removal substantially. Figure 4b illus-
trates the concentrations of NOx , NO, and NO2, as well
as of SO2, vs. number of shots in the mixture with
150 ppm SO2. The curves for NO, NO2, and NOx =
NO + NO2 run similarly to those in the absence of SO2
[10]. The concentration of SO2 smoothly declines,
which also agrees qualitatively with the previous
results [9].

Figure 5 depicts the dependences of ε and η on the
initial concentration of SO2 in the mixture (curves 1 and
2, respectively). The number of shots was 300 for each
of the experimental curves. The presence of SO2 is seen
to increase the energy loss per NO2 molecule. The con-
version η declines when the amount of SO2 rises to
100–300 ppm and then varies insignificantly with SO2
amount. These experiments were carried out for the
mixture having water vapor in amounts insufficient for

NO2 N 2NO,+

NO2 N N2 2O,+ +

NO2 N N2 O2,+ +

NO2 O NO 2O,+ +

O NO2 O2 NO,+ +

NO2 OH HNO3.+

2NO O2 2NO2.+
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aerosols to form and NOx heterogeneous oxidation
[6, 7] to proceed. With aerosols formed by liquid-phase
reactions in the mixture, the addition of SO2 improves
the NOx conversion and favors the removal of SO2 [22].

For our experiments, it seems unlikely that the
attachment of thermalized electrons to SO2 molecules
adversely affects the conversion of NO2. Appropriate
estimates show, as before, that the free electron concen-
tration changes insignificantly. Moreover, the energy of
the thermalized electrons, which effectively take place
in attachment reactions (10) and (22), is insufficient for
the mixture molecules to dissociate and free radials to
form in detectable amounts. Hence, the loss of the elec-
trons in reactions (10) and (22) is of minor importance
for the NO2 conversion.

The above ionic and molecular reactions involving
impurity oxides can also hardly influence the process of
NO2 removal, since charged particles do not participate
in nitrogen oxide conversion reactions (15)–(21). The
analysis based on the approximate solution of the basic
kinetic equations does not allow the elucidation of a
kinetic mechanism behind the conversion efficiency
variation observed in our experiments. The clarification
of this mechanism calls for special experiments in
which the variation of the reactive particle concentra-
tion both during and after irradiation in a wide time
interval can be traced.

CONCLUSION

The conversion of sulfur and nitrogen oxides in the
model gaseous mixture irradiated by pulsed electron
beams was studied. Our experimental data suggest that
the presence of both in flue gases reduces the conver-
sion efficiency in comparison with the case when one of
the oxides is present.
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Fig. 5. (1) Energy loss and (2) degree of purification upon
removing NOx vs. initial concentration of SO2. The initial
concentration of NOx is 280 ppm.
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In the absence of NOx in the beam-ionized mixture,
SO2 is removed according to the chain mechanism pro-
ducing SO2 negative ions. The presence of the nitrogen
oxides in the gaseous mixture initiates the competing
charge exchange reaction, which decreases the proba-

bility of the S  negative ions participating in the
chain process. In this case, the degree of SO2 removal
declines. As the concentration of NOx in the mixture
rises to 1000 ppm or higher, the chain mechanism of
SO2 conversion fails and SO2 molecules are removed
via SO2 oxidation reactions involving free radicals and
NO2 molecules. In this case, the purification efficiency
somewhat rises.

The effect of SO2 on the conversion of NOx oxides
under electron beam radiation shows up in a similar
way at first glance: the conversion of NOx decreases
with SO2 added in small amounts but somewhat rises
when the SO2 concentration exceeds some critical
value. However, the kinetic mechanism behind this
effect remains unclear and calls for further investiga-
tion.
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Abstract—The total momenta of the particles emitted by a target intensely sputtered with heavy noble-gas ions
with an energy of E0 ≈ 0.5 keV are measured. For liquid Ga targets and Ga targets at the premelting temperature,
the measured momenta are close to the expected values for the sputtered metal atoms and reflected ions,
whereas for Cu and Zr targets, the measured momenta are significantly higher. It is assumed that these excessive
momenta are related to the sputtering of the noble gas atoms implanted into the target. The average energy of
these atoms is estimated as 〈E 〉  ≈ 20 eV. When gallium is irradiated, the implanted atoms diffuse predominantly
to the surface and then are desorbed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Ion sputtering techniques (including ion–plasma
sputtering) are widely used for film deposition. The
nature and energy of the particles emitted by the target
and affecting the condensation surface determine the
growth process and the final film parameters. It is
known that the bombardment of the deposited film with
high-energy particles enhances the mobility of the sur-
face atoms (which allows one to decrease the tempera-
ture of epitaxial growth), stimulates the dissociation of
molecules and the desorption of the surface atoms,
modifies the film structure, and can even lead to resput-
tering, which, in many cases, changes the film compo-
sition. The threshold energies for these processes are
close to the corresponding binding energies, whose val-
ues, in solids, amount to a few electronvolts.

In the course of ion–plasma sputtering, the growing
surface is irradiated with the particles emitted from the
target, as well as with the ions and electrons of the
plasma adjacent to the film, which are not taken into
account here.

In the steady-state phase of sputtering, the irradia-
tion of the target with an ion beam with the current den-
sity j results in the emission of atoms and electrons
from the target with the flux densities Yj and γj, respec-
tively. Because of the steady-state condition, the flux of
the gas atoms leaving the target is equal to the ion flux.
The fraction Rj of this flux consists of the reflected
former ions, and the rest fraction of the flux, (1 – R)j,
consists of the ions previously absorbed (implanted) in
the target surface layer. Here, Y, γ, and R are the sputter-
ing yield, the coefficient of ion–electron emission, and
the ion reflection coefficient, respectively.

The energy spectra of the sputtered metal atoms
were measured with various techniques [1–5]. The
1063-7842/02/4705- $22.00 © 20621
characteristic average energies are on the order of
10 eV. The energies of the reflected metal ions were
measured in [6, 7]. For the gas ions, the data were
obtained mainly via computer simulations [8]. The
implanted gas ions can escape from the target due to
either the diffusion of ions toward the surface and their
subsequent desorption or the sputtering by the incident
ions. In the former case, the ion energy should be on the
order of 0.1 eV. In the latter case, the ion energy should
be on the order of the characteristic energy of the sput-
tered atoms. The measurements of the energy released
in a target irradiated with noble gas ions [9, 10] showed
that, at j ~ 1 µA cm–2, the former case is realized. At j ~
1–10 mA cm–2, which is characteristic of magnetron
sputtering, we could not find any published data on
mechanism for the escape of the implanted gas ions, as
well as on the energy of escaping ions.

Under the conditions of intense ion bombardment,
the outer sputtered target layer constitutes a solution of
the implanted atoms of a reaction gas in the initial target
material [11]. The fraction of the sputtered gas atoms
must be proportional to their concentration in the sput-
tered layer. By solving the diffusion equation, it was
shown that the gas atom concentration increases with
increasing j/D ratio, where D is the coefficient of gas
diffusion in the target material. Thus, we can assume
that, the higher j, the higher the fraction of the sputtered
gas atoms and the smaller the fraction of the desorbed
atoms in the flux of gas atoms emitted from the target.

In this study, the total momenta of the particles emit-
ted from the target under the conditions of magnetron
sputtering with Ar+, Kr+, and Xe+ ions, which have dif-
ferent masses and, consequently, different reflection
coefficients R, were measured using a force probe. For
targets made from Cu or Zr + 15%Y alloy, the total
002 MAIK “Nauka/Interperiodica”
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Table 1.  Sputtering regimes

Target P, Pa Uc, V Ic, mA vd(0), 1016 
at/s cm2

Fmeas(0), 
dyn/cm2 γ αn Y

Ar/Cu 0.66 447 205 2.5 1.93 0.1 0.65 1.9

Kr/Cu 0.38 550 168 2.3 1.50 0.05 0.8 2.1

Xe/Cu 0.16 635 142 2.1 1.42 0.02 0.88 2.25

Ar/Ga 0.66 473 197 2.2/2.8* 1.18/1.3 0.64

Kr/Ga 0.47 604 152 2.33/n.d. 1.03/n.d. 0.78

Xe/Ga 0.23 705 124 2.6/2.7 0.93/0.92 0.86

* Solid/liquid targets.
momenta turn out to be much higher than the sputtered
metal atom momenta calculated based on the energy
spectra (including those for Kr+ and Xe+ ions, whose
reflection coefficients are small) taken from the litera-
ture. For liquid Ga targets and Ga targets at the premelt-
ing temperature, the measured momenta are close to the
expected momenta of the sputtered metal atoms. It is
assumed that the excessive momentum observed in
sputtering Cu and Zr–Y targets is related to the sputter-
ing of the implanted gas atoms that were captured by
the radiative lattice defects. In Ga targets, due to the fast
diffusion and thermal annealing of the lattice defects
(both provoked by the high temperature close to the
melting temperature), the major part of the implanted
atoms have time to escape to the surface and then to be
desorbed.

Since the energy spectra of the sputtered metal
atoms are studied most comprehensively for copper, the
calculations of different contributions to the measured
force turn out to be more exact for a Cu target than for
a Zr–Y target. In the latter case, the results will only be
briefly discussed.

EXPERIMENTAL

The data presented in Table 1 were obtained under
the conditions of dc magnetron sputtering of targets
76 mm in diameter. The calculated heating of a Cu tar-
get soldered to a water-cooled cathode is no more than
1°C. The Ga targets were either solid (Tsol = 20°C =
0.97Tmelt, where Tmelt is the melting temperature) or
melted (Tliq = 50°C). The sputtering rates, as well as the
measured forces, turned out to be nearly the same for all
Ga targets (Table 1). The ion (Ii) and electron (Ie) com-
ponents of the cathode current Ic were calculated taking
into account the relation Ie/Ii = γ. The γ value for copper
was assumed to be equal to that for tungsten (taken
from [12]), because their electron work functions are
close to each other. For a Cu target in argon, krypton,
and xenon, the ion current density j averaged over the
erosion zone is 7.8, 6.4, and 5.4 mA/cm2, respectively;
in the center of the erosion zone, the corresponding val-
ues are twice as high.
The distance from the target to the substrates and the
measuring plate of the force probe was H = 22 mm,
which provided the high sensitivity of the calculated
radial profiles of the thickness to the model angular
dependences of the escape probability. The radial pro-
files of the deposition rate v d(R) were obtained from the
profilometric measurements of the film thickness.

A permanent-magnet microamperemeter with a
measuring plate attached to a pointer tip [13] was used
as a force probe. When the discharge was switched on,
the plate underwent a force determined by the change
in the momenta of the particles colliding with the plate,
including those not emitted from the target. An analysis
of the forces acting on the measuring plate due to the
desorption of atoms from its surface, impacts by the
ions and electrons from the adjacent plasma, and the
light pressure showed that, under the experimental con-
ditions, either their values were negligible or the forces
acting on the lower and upper (facing the magnetron)
plate sides balanced each other. The force induced by
the heating of the reaction gas in the space between the
magnetron and the probe will be discussed below.

To minimize the scattering of the particles emitted
from the target by the reaction gas atoms, the pressure
P was kept near the lower threshold for stable discharge
operation. The probe measurements of the plasma float-
ing potential near the target surface showed that, at the
pressures employed, the thickness of cathode sheath
(d ≈ 0.5 mm) was 6–10 times shorter than the charge-
exchange mean free path for Ar+ ions [14]. Thus, the
spectrum of the ions incident onto the target was close
to monoenergetic with Ei ≈ E0 = eUc, where Uc is the
cathode potential.

The measurements showed that, at P < 2 Pa, the nor-
malized radial distributions of the force and the film
thickness did not depend on the pressure, which indi-
cated that the scattering processes in the gas only
slightly affected the trajectories of the sputtered parti-
cles. The transport regime for sputtered atoms was
close to the ballistic one, which was confirmed by the
estimates of their mean free path l. At incident ion ener-
gies of E0 ≥ 400 eV, the average energy of sputtered Cu
atoms is 〈E 〉  ≈ 10 eV (see below). At this energy, the
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
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effective cross sections for momentum scattering are
6 times lower than the thermal ones [14]. In argon at
P = 0.66 Pa, we have l ≈ 6 cm, which is nearly three
times longer than the distance to the magnetron.

Before the film deposition and the measurements
with a force probe, the target was treated with ions at an
average dose over the erosion zone of no less than
1020 cm–2, which, according to optical microscopy
measurements, enabled the steady-state level of the tar-
get surface microroughness.

ESTIMATION OF THE CONTRIBUTIONS
TO THE MEASURED FORCE

1. The radial profile of the force Fme(R), induced by
the sputtered metal atoms, was determined by using the
ballistic transport approach:

(1)

Under these conditions, the film deposition rate is

(2)

where ϕ and r are the running target coordinates; Θ =
H/ρ) is the angle between the normal to the tar-

get and the escape direction; ρ2 = H2 + R2 + r2 –
2rRcosϕ; f(Θ) is the probability of escape at the angle
Θ; A(r) is the sputtering rate at the running point on the
target (this rate was assumed to be proportional to the
measured depth of the erosion zone); 〈p(Θ)〉 cosΘ = p⊥
is the vertical component of the average momentum of
the particles escaped from the target at the angle Θ;

〈p〉  = (2M)0.5〈E0.5〉  = (2M)0.5 N(E)dE, where N(E)

is the sputtered atom energy distribution function
(AEDF); and αn = (p⊥ inc – p⊥ refl)/p⊥ inc is the accommo-
dation coefficient for the vertical component of the
momentum [15] (for metal atoms, αn = 1).

The angular distribution of the sputtered copper
atoms,

was determined by fitting the results of the numerical
integration of expression (2) with different trial func-
tions f(Θ) to the measured values of v d(R). The angular
dependence with a maximum at Θ ≈ 42° seems to be a
result of the target surface microroughness caused by
intense ion etching [16, 17].

The sputtering yield Y (Table 1) was obtained by
integrating v d(R) over the entire surface and the subse-
quent division of the result by Ii.

Most AEDFs available in the literature [1–4] were
measured within the energy range up to 27–40 eV. An
analysis of these AEDFs shows that, for various ions,
targets, and escape directions, in the ion energy range

Fme R( ) 2 αn–( ) A r( ) f Θ( )∫=

× Θ p Θ( )〈 〉 Θρ 2– rdϕdr.coscos

v d R( ) A r( ) f Θ( ) Θρ 2– rcos ϕd r,d∫=

(arccos

E0.5∫

f Θ( ) = 0.12 Θcos
0.5

0.04/ Θcos 0.735–( )2 0.02+[ ]+{ } ,
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characteristic of magnetron sputtering, the average
energy 〈Eme〉  of the target atoms can be satisfactorily
described by the dependence

(3)

where E1 is determined by the target material and the
ion species (Fig. 1). By analyzing the AEDFs from [1–
5], it was also shown that all the energy spectra are
characterized by nearly the same ratio 〈E〉0.5/〈p〉  =
(1.08 – 1.16)/(2M)0.5 , where M is the metal atomic
mass. We took this into account when calculating Fme
by formula (1). According to the data from [1], the aver-
age momenta of the sputtered atoms depend slightly on
the escape angle. In our calculations, we used the fitting
expression 〈p(Θ)〉  = 〈p(0)〉[1 – 0.1cos(1.6Θ)2].

Eme〈 〉 E1 1 1/ 0.0017E0 1+( )3–[ ] ,=

0.4

0.2
0

〈E〉/E1

Ion energy, eV
200 400 600 800 1000 1200

0.6

0.8

1.0

Fig. 1. Average energy of the sputtered atoms vs. ion
energy: (squares) Cu–Ar+, E1 = 8.4 eV [3]; (circles)
Cu[110]–Kr+, Θ = 0, E1 = 9.8 eV [1]; (open triangles)
Cu[110]–Kr+, Θ = 60°, E1 = 15.4 eV [1]; (closed triangles)
Ag[110]–Hg+, Θ = 60°, E1 = 8.0 eV [2]; and (closed
squares) Au––Ar+, E1 = 10.4 eV [4]. The solid curve shows
the fitting function (3).

0.4

0
–90

F(R), dyn/cm2

R, mm
–60 –30 0 30 60

1.2

1.6

2.0

90

0.8

2.4

2.8

Xe

Ar

Fig. 2. Measured (symbols) and calculated (solid line) pro-
files of the forces induced by Cu atoms.
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Table 2.  Calculated contributions to the force measured

〈Eme〉 , eV Fme(0),
dyn/cm2

Frefl(0),
dyn/cm2

Ft1(0),
dyn/cm2

Ft2(0),
dyn/cm2

Fmeas – Fme – Frefl, 
dyn/cm2 〈Eg〉 , eV

Ar/Cu 9.57 0.85 0.2 ≤0.04 <1.0 0.86 24

Kr/Cu 10.1 0.82 0.02 <0.68 0.66 29

Xe/Cu 10.4 0.75 <0.01 ≤0.01 <0.08 0.67 16

Kr/Ga 1.0 <0.03 <0.07
The energy spectra at high energies (although with a
lower resolution in the low-energy range) were mea-
sured in [5]. A comparison of the data from [3, 5] on
copper sputtering at close energies of Ar+ ions (400 and
410 eV) shows that taking into account the high-energy
part of the distribution function increases the average
energy and average momentum of Cu atoms by 40 and
13%, respectively, and that about 7% of the sputtered
copper atoms have energies higher than 27 eV. The col-
umn 〈Eme〉  of Table 2 presents the calculated average
energies of the Cu atoms (with allowance for the 40%
addition) sputtered normally to the target surface for
the cathode voltages employed. The contribution of the
Cu atoms to the measured force is shown in Fig. 2. The
values in the column Fme(0) of Table 2 correspond to
R = 0. Taking into account a slight scatter in the litera-
ture data on the AEDF for copper, we estimated the
error in determining this force component as 5%. The
radial force profiles obtained when sputtering in kryp-
ton are not shown in Fig. 2; they are similar to those in
xenon, the force amplitude being slightly higher (see
the corresponding values of Fmeas(0) and Fme(0)). For a
Ga target, the force and the deposition rate were only
measured in front of the magnetron center. To calculate
the force induced by Ga atoms, the data from [2] on the
average velocity of the atoms knocked out by Kr+ ions
from various targets were used. The average velocity of
Ga atoms 〈vGa〉  was assumed to be equal to that for Ge
(the next element in the periodic table for which,

100

10–1 100

F, dyn/cm2

P, Pa
101

Fig. 3. Force vs. pressure for Ar+ (squares), Kr+ (triangles),
and Xe+ (crosses) ions.
together with Cu, the measurements were carried out in
[2]); i.e., FGa = FCu(v d, Ga/v d, Cu)(MGa/MCu)(〈vGe〉/〈vCu〉).

2. Reflected ions. Computer simulations based on
the molecular dynamics method (the quasi-stable
model) with the ZBL interatomic potential [18] used to
simulate the reflection of the ions with energies corre-
sponding to the cathode potentials employed shows
that, for a Cu target, the ion reflection coefficients R and
the average energies of the reflected ions 〈Erefl〉  (in
parentheses) are 0.14 (30eV), 0.02 (10eV), and 0.001
(1.7 eV) for argon, krypton, and xenon, respectively.
Simulations of the ion reflection with the help of the
TRIM 96 (SRIM variation, version 96.xx) numerical
code [19] results in nearly two times lower values of R
and 〈Erefl〉 . The extrapolation of the simulation results
for the reflection of Ar+ ions with E0 = 500 eV from var-
ious metals [8] to Cu gives 〈Erefl〉  = 51 eV. In front of the
magnetron center, the calculated forces induced by the
reflected ions are shown in the column Frefl(0) of
Table 2 (these values were calculated by Eq. (1) using
the maximum Ri and 〈Rrefl〉  values listed above). The αn

values shown in Table 1 were taken from [15]. In calcu-
lations, it was assumed that the angular distribution of
the ions reflected from copper was the same as f(Θ) for
the sputtered atoms. The use of another dependence
(f(Θ) = acosΘ or bcos2Θ) changes 〈Erefl〉(0) by no
more than 10%. At Mi/Mme > 1, a significant decrease in
R and 〈Erefl〉  with increasing ion mass agrees with both
the experimental data for alkali ions [6] and simulation
results for noble gas ions [20].

3. The reaction gas atoms in the gap between the
magnetron and the force transducer can be heated due
to the interaction with high-energy particles. As a
result, the flux of gas particles incident onto the mea-
suring plate side facing the magnetron contains high-
energy atoms. Hence, the pressures on the opposite
sides of the plate will be different. One of the reasons
for gas heating is collisions with the atoms emitted
from the target. Since the collision frequency is propor-
tional to the gas density, the corresponding force Ft1
acting on the measuring plate should be proportional to
the pressure.

For a Cu target, the pressure dependences of the
force are shown in Fig. 3. In argon, the decrease in the
force with increasing pressure is accompanied by a
decrease in the deposition rate [21]. Separating the term
TECHNICAL PHYSICS      Vol. 47      No. 5      2002



MOMENTA OF THE PARTICLES EMITTED BY A TARGET 625
linear in the pressure from these dependences (with
allowance for the decrease in the deposition rate) shows
that it does not exceed the Ft1 values presented in
Table 2.

The reaction gas is also heated due to the interaction
with the electrons magnetized in the plasma torus near
the cathode. Because of the complexity of the plasma
processes, it is hardly possible to exactly calculate the
corresponding force. An overestimated value can be
obtained from the electron power balance in the dis-
charge.

The parts Wi and Wgh of the total energy We of the
electrons escaped from the target are spent on gas ion-
ization and heating, respectively. The rest energy Wother
is released at an anode and other components of the
chamber (this term also includes the radiation of the gas
atoms excited by electron impact):

Since the discharge is self-sustained, each electron
should ionize, on the average, no less than neff = 1/γ gas
atoms in order to compensate for the ion loss at the
cathode; i.e., Wi ≥ IeneffUi, where Ui is the ionization
energy. The rest energy, which is spent on the heating
of the gas and the chamber wall, amounts to

The values of the Ft2 force acting on the upper side
of the measuring plate are given in Table 2. These val-
ues are certainly overestimated because they are calcu-
lated under the assumption that all the rest energy is
spent on increasing the kinetic energy of gas atoms in
the plasma torus.

For xenon, the Ft2 values estimated in this way are
significantly lower than the quantity Fmeas – Fme – Frefl
(Table 2). For krypton, the contribution from gas heat-
ing to the measured force should also be significantly
lower than the calculated value Ft2. At nearly the same
discharge parameters, the sputtering of Ga in krypton is
characterized by the Fmeas and Fme values close to each
other (Tables 1 and 2). For the sputtering of Ga in argon
and krypton, the contribution from the reflected argon
ions is sufficient to account for the different Fmeas val-
ues. Presumably, the replacement of the noble gas spe-
cies results in a similar change in Fme for Ga and Cu tar-
gets. Hence, for Cu sputtering in argon, the contribution
from gas heating is expected to be no higher than
0.1 dyn/cm2.

DISCUSSION OF THE RESULTS

The above estimates show that, when copper is sput-
tered with an ion beam at a current density of j ≈ 5–
8 mA/cm2, nearly one-half of the momentum measured
is brought by the metal atoms, whereas the contribu-
tions from the reflected ions are significantly lower. For
xenon, the thermal contribution is low; the above qual-

We IeUc γIcUc/ 1 γ+( ) W i Wgh Wother.+ += = =

Wgh Wother+ We W i Ic γUc U i–( )/ 1 γ+( ).≤–=
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itative considerations allow us to assume that it is also
low for argon and krypton. It is natural to suggest that
the rest force Fmeas – Fme – Frefl – Ft is related to the
momenta of the ions implanted into the target and then
escaping from it. The outward flux of these ions is equal
to the ion current minus the reflected one. The average
kinetic energy of these ions 〈Eg〉  = 〈p〉2/2M, shown in
Table 2, is comparable to the characteristic energies of
the sputtered atoms (〈Eg〉  was estimated neglecting the
thermal contribution). A close value of 〈Eg〉  was
obtained when sputtering Zr–Y alloys. Thus, it is rea-
sonable to assume that, under intense irradiation of
these targets, the implanted ions are predominantly
sputtered. Then, in the sputtered flux, their fraction with
respect to the fraction of Cu atoms is ≈(1 – R)/Y. Pro-
vided that difference between the partial sputtering
coefficients is not too high, the concentration of the
implanted atoms near the surface should be comparable
to this value, because it is the atoms from the outer
monolayers of the target that are knocked out. How-
ever, the measurements of the surface concentration of
argon in copper carried out with the help of Auger spec-
troscopy (the effective thickness of the layer under
study is t ≈ 0.5 nm) during ion sputtering showed that
the concentration is no higher than 1%. The acting ion
current density is ~1 µA/cm2, and, due to the apparatus
limitations, it cannot be significantly increased. At this
ion current density, the low Ar concentration presum-
ably points in favor of the desorption mechanism. The
measurements of the energy absorbed in a Cu target
irradiated with a noble-gas ion beam with a current den-
sity of j ~ 1 µA/cm2 also indicate the predominant des-
orption of the implanted atoms [9].

In the magnetron sputtering of gallium, the esti-
mated momentum of metal atoms is close to the mea-
sured one. This indicates that the energy of the escaped
implanted ions is low (Table 2) and, within the consid-
ered mechanisms for the escape of gas atoms from the
target, suggests their rapid diffusion to the surface and
the subsequent desorption. More rapid diffusion in Ga
as compared to Cu and Zr–Y targets can be related to
the fact that the Ga melting temperature is close to the
cathode temperature.

It is known from the literature on implantation (see,
e.g., [11]) that the implanted atoms, after being irradi-
ated, are captured by the radiative defects. Under the
action of persistent ion bombardment, the formerly
captured gas atoms can be activated, leave the places of
location, and diffuse toward other free trapping centers
or the surface. Under continuous irradiation, the steady-
state gas concentration in the target will be determined
by the condition for the rate of ion supply (ion current
density j) to be equal to the rate of ion escape. Assum-
ing that the gas atoms move due to diffusion and ignor-
ing the atoms sputtering, one can easily determine the
dependence of the gas atom concentration in the sur-
face layers of the target on j.
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Let f(z) be the distribution of the projective ranges,

(z)dz = 1, v  = jY/N be the velocity at which the outer

target boundary is displaced due to sputtering, and N be
the target atom density (atom/cm3). The concentration
c of the noble gas in the target is described by the equa-
tion

where the first term on the right-hand side is responsi-
ble for diffusion and the second one is responsible for
implantation.

Under the assumption that all the noble gas atoms
arriving at the surface are immediately desorbed, the
first boundary condition is c(x = v t) = 0. Perhaps, this
assumption is too strict for materials with a high density
of defects (e.g., the lifetime of the noble gas atom on
the surface is not known). The second boundary condi-
tion, –Ddc/dx(x = v t) = j(1 – R), means that the flux of
the ions entering the target surface is equal to the flux
of the gas atoms escaping from the target. We introduce
the z = x – v t coordinate reckoned from the running tar-
get surface. Then, for the relative concentration c = c/N
in the steady-state phase of sputtering (dc/dt = 0), we
have

(4)

To simplify calculations, the function f(z) was taken
in the form

where Rp is the mean projective range.

f∫

dc/dt Dd2c/dx2 j 1 R–( ) f x v t–( ),+=

d2c/dz2 adc/dz+ abf z( );–=

a jY /DN , b 1 R–( )/Y ,= =

c 0( ) 0; –Ddc/dz 0( ) v c 0( )– j 1 R–( ).= =

f z( ) 0, z 0, z 2Rp,≥≤=

f z( ) z/Rp
2
, 0 z Rp,≤ ≤=

f z( ) 2Rp z–( )/Rp
2, Rp z 2Rp,≤ ≤=

5×10–3

103 107

Auger-concentration

a, cm–1
109107

5×10–5

5×10–1

10–2

100

10–4

〈c(0.2 nm)〉/b

Fig. 4. Average calculated concentration of Ar atoms in the
outer monolayer in copper during irradiation and the con-
centration measured with an Auger spectrometer.
Solving Eq. (4) by the Green’s function method, we
obtain the steady-state concentration of the gas atoms
in the target,

To give an idea of the gas atom concentration in the
outer monolayer, which mainly supplies the sputtered
particles, Fig. 4 shows the dependences of both the
〈c(0.2 nm)〉  average concentration (calculated from

(z)exp(–z/t)dz/t in the 0.2-nm-thick surface layer

and the Auger concentration on the parameter a =
jY/DN (computer simulations by the TRIM code show
that, for copper in the ion energy range under study,
Rp ≈ 0.8 nm). At large a values, both concentrations sat-
urate, so that 〈c(0.2 nm)〉  = (1 – R)/Y ≈ 0.5. As the
parameter aRp decreases, the concentration in the outer
monolayer decreases linearly with a ~ j/D. In order that
the concentration measured with an Auger spectrome-
ter be no higher than 1%, we should have a ≤ 0.75 ×
106 cm–1. Assuming that, during the magnetron sputter-
ing of copper, 〈c(0.2 nm)〉  is no lower than 90% of the
limiting value and taking into account the current den-
sities in the magnetron and the ion gun of an Auger
spectrometer, we estimate the effective coefficient of
argon diffusion as 2 × 10–16 < D < 3 × 10–15 cm2/s.

CONCLUSION

When irradiating a target with noble gas ions, the
implanted noble gas atoms can escape due to both des-
orption and sputtering. The average energy of the sput-
tered noble gas atoms is 〈Eg〉  ≈ 20 eV. At low ion current
densities and the high coefficients of implanted atom
diffusion (the low-melting targets), the desorption
mechanism prevails; otherwise, the sputtering occurs.
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Abstract—The explosion of a tungsten wire in a weak longitudinal magnetic field is studied. The longitudinal
magnetic field is shown to decrease the rate of rise of initial perturbations and to stabilize the process. This
makes it possible to calibrate analytical models of conduction, equations of state, and radiation paths. Good
agreement between observed and analytical electrical and optical patterns of the wire explosion and expansion
is obtained. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The electrical explosion of a single wire in a longi-
tudinal magnetic field has been studied in [1, 2]. It was
noted that the magnetic field stabilizes the process and
makes it possible to significantly heat and accelerate
the plasma by generating azimuth currents. Emphasis
has been placed on the effect of a strong magnetic field
on the current in and the voltage across the wire, as well
as on the wire resistance as a function of the energy
applied. The magnetic fields were as high as 0.5–0.7
MG with the current in the wire ranging from 30 to 35
kA [2].

In this paper, we report experimental and numerical
studies of the electrical explosion of a single tungsten
wire in a weak (slightly affecting the expansion dynam-
ics) longitudinal magnetic field Bz = 1–50 kG under the
action of a ≈70-kA pulse with a ≈1.1-µs rise time. We
concentrated on the stabilizing effect of the longitudi-
nal magnetic field.

Such a study is of both scientific and applied inter-
est. Stable conditions of the explosion and plasma
expansion may be used for testing physical models of
conduction, equations of state, and radiation ranges in
a material that are used in simulations. A possible appli-
cation of this study may be, for example, the magnetic
field compression in the Z–Θ-pinch geometry, where a
high, δ = 15–22, stable radial compression by a plasma
sheath formed from a gas jet has been reached [3, 4] (cf.
with the theoretically achievable value δ ≤ 30 [5]).
High-power explosive sources of microsecond current
pulses (built around disk magnetic explosion genera-
tors [6]) for feeding Z–Θ pinch allow the generation of
ultrastrong magnetic fields [3, 4, 7, 8], quasi-adiabatic
compression of a DT mixture to provide an intense
source of neutrons and, perhaps, thermonuclear igni-
tion [5, 9], and generation of soft X-rays [7, 8]. Such
high-power current sources offer a possibility for using
1063-7842/02/4705- $22.00 © 20628
plasma sheaths generated by wire arrays exploding in a
longitudinal magnetic field.

EXPERIMENT

The setup for studying the electrical explosion of
wires due to microsecond current pulses in a longitudi-
nal magnetic field is schematically shown in Fig. 1.
Tungsten wire 1 of diameter 70 µm and length l =
15 mm is placed between two graphite electrodes 2 on
the axis of a stainless steel thin-walled (0.3 mm) cylin-
drical (diameter 60 mm, length 200 mm) evacuated
(10−4 torr) chamber 3. The chamber has a 20-mm-diam
window 4 sealed with a Lavsan film. A quasi-stationary
(the characteristic time of variation is 170 µs) longitu-
dinal magnetic field (Bz = 1–50 kG) is created around
the wire by Helmholtz coils 5, placed coaxially with the
chamber and spaced at 30 mm. The coils were arranged
symmetrically about the electrodes 2. The axial field

5

5
2

2

1

7

6

8

9

104

3

Pump

C

Fig. 1. Setup for studying the electrical explosion of a single
wire.
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nonuniformity between the electrodes is no higher than
5%. Before explosion, the wire is heated in a vacuum.
It explodes at the instant the longitudinal magnetic field
pronounced by the 1.2 µF capacitor C charged to 40 kV
reaches maximum.

In the experiments, we measured the voltage across
the wire by divider 6 and the derivative of the current
through the wire, by Rogowski loop 7. The light pulse
produced by the explosion and its space–time evolution
were recorded with a SNFT-3 photoelectric multiplier 8
equipped with an optical fiber 9 and a streak camera 10,
operating in the frame and slit scan modes. The space
and time resolutions of the entire detecting system,
built around an electron–optical image converter, are
≈0.13 mm and ≈10 ns, respectively.

EXPERIMENTAL RESULTS

Figure 2 plots typical time waveforms of the deriva-
tive dJ/dt, current J, voltage U across the wire, and total
radiation flux F of the process. The electrical character-
istics are independent of Bz. The maximum voltage
≈25 kV is achieved ≈70 ns after the pulse has been ini-
tiated (i.e., at the instant the wire explodes). The explo-
sion is accompanied by an abrupt increase in the lumi-
nance. At the instant of the explosion, the waveform of
the current shows a weak singularity (no pause in the
current is observed), which is typical of refractory met-
als [10]. Unlike the electrical characteristics, the inte-
grated (over the length of the wire) luminance depends
on Bz significantly (Fig. 3). With increasing Bz, the inte-
grated luminance decreases and irregular spikes
observed at small times for Bz ≤ 10 kG disappear.

The space–time evolution of the luminance shows
that the value of Bz does not affect the process for
t @ 1 µs. At the initial stage, the effect of the magnetic
field is however significant. At Bz = 0, the process is
nonreproducible and irregular along the wire, as indi-
cated by the streak photographs of the glow (Figs. 4,
5a). The photographs were taken with the slit of the
streak camera being perpendicular and parallel to the
wire, respectively. The inhomogeneities arising during
the wire explosion and expansion in a zero magnetic
field are clearly seen in the photographs (frame scan
mode) shown in Fig. 6a. The expansion of the plasma
sheath is accompanied by the development of magneto-
hydrodynamic (MHD) instability of the Rayleigh–Tay-
lor (RT) type with m = 0 and a characteristic wave-
length of 1–3 mm. Such phenomena have been
observed in many experiments [11, 12] and can be sim-
ulated numerically [13, 14].

When a longitudinal magnetic field Bz ≥ Bcr ≈ 10 kG
is applied, glow appears over the entire wire almost
simultaneously and its time behavior is nearly the same
in every section (Fig. 5b). The “sausage” structure of the
expanding plasma corona, which is typical for Bz = 0,
is not observed. With Bz ≥ Bcr, the streak photographs
become reproducible from run to run (Fig. 7a). The
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optical pattern of the expanding plasma exhibits two
luminance maxima (at ≈170 and >450 ns). A specific
feature of the pattern is a faintly glowing core at the
wire axis, which is observed in both the slit and frame
scan modes (Fig. 6b). The radius of the core is almost
constant in time. The reproducibility of the experimen-
tal data at Bz ≥ Bcr allows for a correct comparison
between experimental and analytical patterns of the
wire explosion and plasma expansion, making it possi-
ble to study the process in greater detail and calibrate
models of conduction, equations of state, and radiation
paths used in simulations.

NUMERICAL MODEL

In the one-dimensional cylindrical geometry, equa-
tions of single-fluid two-temperature magnetohydrody-
namics in the Lagrange coordinates have the form 

50 ns

3 
m

m

Fig. 4. Streak photographs of the explosion luminance at
Bz = 0. (a, b) 0–500 and (c) 500–1000 ns (the slit is perpen-
dicular to the wire).
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Fig. 5. Streak photographs of the process at Bz = 0 (a) and
40 kG (b) (the slit is parallel to the wire).
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where G is the Neumann quadratic viscosity.
The pressure, Pe, i, and the internal energy, εe, i, of

the electron and ionic components are calculated within
the averaged ion model using the equation of state [15].
In the energy equation for electrons, the ionization loss
term is included into the internal energy of the electron
component. The energy exchange Qei between the elec-
trons and the ions allows for the electron degeneration
effect [16]. The electrical conductivity σ and the elec-
tron thermal conductivity χe in the plasma state are cho-
sen in accordance with [17], where both electron
degeneration and plasma magnetization were taken into
account. The electrical conductivity of tungsten in the
condensed (solid and liquid) states is determined in
accordance with [18] and the thermal conductivity is
found from the Wiedemann–Franz law. The electrical
conduction models were matched in such a way as to
provide the best agreement with the experiment.

Radiation transport was calculated within the one-
group diffusion approximation:

(2)

The averaged Rosseland, lr , and Planck, lp, lengths
were calculated consistently with the averaged ion
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model [19]. At the axis of symmetry, the boundary con-
ditions are

(3)

At the exterior boundary of the plasma r = rext(t),

(4)

The current J is determined as a solution to the cir-
cuit equation

(5)

where C, L, and R are, respectively, the capacitance,
inductance, and resistance of the circuit and rout is the
radius of the output conductor.

At the initial time instant, we specified the voltage
across the capacitor bank, U|t = 0 = U0, and assumed that
the current in the circuit is zero, J|t = 0 = 0.

RESULTS OF SIMULATIONS

As follows from Fig. 2, the analytical curves of the
wire voltage and current agree well with experimental
electrical parameters of the wire explosion. The lumi-
nance curves constructed in the one-dimensional MHD
approximation (Fig. 8) differ qualitatively from the
experimental curves presented in Fig. 2. At the zero
magnetic field, the luminance calculated is lower than
that when the field is other than zero. This can be
explained by the fact that at Bz = 0, the real electrical
explosion process is essentially non-one-dimensional
and the energy release per unit wire length is highly
nonuniform.

When the current rises at a rate of ≈70 kA/µs, the
explosion is intermediate between homogeneous
vaporization (≈170 kA/µs) and current surface shunting
up to tungsten melting (≈20 kA/µs) [20]. This is illus-
trated in Fig. 9, which shows the electron temperature
versus density curves for two extreme Lagrange zones
(located near r = 0 and r = rext(t)).

At the linear stage of the development of MHD
instability with m = 0, the integral increments were esti-
mated using the energy model [21]. The spatial distri-
butions of the mass velocity, acceleration, density, and
temperature of the expanding plasma at a particular
time instant were numerically simulated in the frame-
work of the one-dimensional MHD approximation.
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Fig. 6. Frame photographs of the exploding wire at different
times after the pulse application at Bz = 0 (a) and 30 kG (b).
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Fig. 7. (a) Streak photograph and (b) calculated optical
image of the process at Bz = 50 kG.
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Figure 10 shows the integral increments
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Fig. 8. Total radiation flux versus time at Bz = 0 (dashed
line) and 50 kG (solid line).
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Fig. 9. Electron temperature versus density for the (1) inner-
most and (2) outmost Lagrange zones at Bz = 0 (dashed line)
and 50 kG (solid line).
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Fig. 10. Integral increments of instability with m = 0 versus
kr0 at a wavelength λ ≈ 0.22/kr0 mm. Figures at the curves
are the values of Bz (kG).
as a function of dimensionless wave number kr0 (r0 =
35 µm) for the mode m = 0 at different longitudinal
magnetic fields Bz. Integration was performed from
tin ≅  80 ns (the entire wire passes into the plasma state)
to tf ≅  500 ns. It is seen that the rate of instability devel-
opment with a wavelength of 1–3 mm, which is typical
of our experiments, decreases with increasing longitu-
dinal magnetic field. At Bz ≥ Bcr ~ 10 kG, MHD insta-
bility with wavelengths ≤0.8 mm is suppressed almost
completely. This is in good agreement with the experi-
mental data. Note that, in the presence of the longitudi-
nal magnetic field, the asymptotical spectrum of the
mode m = 0 is no longer a purely RT spectrum of form

σk ~  because of the shear of the total magnetic field.

To analyze the image of the exploding wire, we
used the formal solution to the radiation transfer equa-
tion [22]:

(6)

where Iν(s) is the spectral intensity as a function of the

coordinate s along the path of observation,  is the
spectral absorption coefficient with allowance for
induced radiation [19], and Iνp = 2hν3/c2[exp(hν/kTe) –
1]–1 is the spectral intensity of the equilibrium radia-
tion.

Figure 11 illustrates the cross section of the explod-
ing wire and parallel paths of observation along which
the integration from s0 to sf was performed. We used the
approximation of a photodetector placed at infinity and
having a narrow entrance slit running perpendicular to
the wire.

Figure 7b is the analytical optical image of the
explosion and plasma expansion. It was obtained by
integrating expression (6):

(7)

where the lower, νmin, and upper, νmax, limits of integra-
tion correspond to the boundary frequencies of the vis-
ible spectrum.

The streak photograph (Fig. 7a) and the image cal-
culated (Fig. 7b) are seen to be in qualitative agree-
ment.

Our calculations have shown that the faintly glow-
ing core at the wire axis that is observed in both the slit
(Fig. 7) and frame (Fig. 6b) scan modes is an optical
effect. It is due to the blooming of the outer higher tem-
perature (T = 3–4 eV) low-density (ρ = 10–3–
10−4 g/cm3) products of the explosion. As a result,

k
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colder (T = 0.2–0.5 eV) and denser (ρ = 10–1–
10−2 g/cm3) inner regions are visible better.

CONCLUSION
With a combination of experimental and theoretical

numerical methods, we gained a better insight into the
explosion and expansion of a single tungsten wire in a
low longitudinal magnetic field.

The effect of stabilization by a weak longitudinal
magnetic field (affecting the expansion dynamics only
slightly) found experimentally allowed us to improve
the reproducibility of experimental data. This offers
possibilities for correctly comparing experimental and
theoretical patterns of the plasma expansion due the
explosion. Also, based on optical observations, one can
calibrate models of conduction, equations of state, and
radiation paths used in simulations.

The reproducibility of experimental data paves the
way to further investigations into the processes of wire
explosion, plasma expansion, and plasma sheath gener-
ation from wire arrays. Finally, reproducible data make
it possible to verify analytical models of conduction,
equations of state, and radiation paths under different
experimental conditions by invoking a variety of diag-
nostic methods.
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Abstract—The formation of fullerenes from an arc-produced turbulent jet of carbon vapor is described. Both
direct and backward mono- and bimolecular reactions are analyzed. Initial characteristics of the jet are used as
the input parameters of the problem. The analytical dependences of the fullerene yield on the initial velocity of
the jet and carbon vapor concentration explain experimental relationships between the fullerene yield, current,
pressure, and buffer gas sort. © 2002 MAIK “Nauka/Interperiodica”.
This work completes a series of publications [1–5]
concerned with the intriguing transformation of the
chaotic carbon vapor into fullerene under the action of
an arc. The fact that carbon is present in the form of
atoms and ions in the arc channel is beyond question.
This follows both from experiments with the 13C iso-
tope [6] and from the analysis of a fullerene arc [4] (the
analytical results for the arc voltage and the rate of
anode erosion agree well with experimental data [7]).

One can assume that the evolution of carbon away
from the arc resembles that observed in drift-tube
experiments [8]: as the gas cools, chains (for a cluster
size of less than ten atoms), rings (for a larger number of
atoms), and finally more complex objects (direct precur-
sors of fullerenes) appear successively. Such an assump-
tion, as applied to the arc conditions, seems to be quite rea-
sonable in view of recent experiments [9] and their theo-
retical substantiation [10]. Namely, the amount of carbon
deposited on probes located at different distances from the
arc axis can be explained on assumption that, with
small distances, carbon is deposited on the probes in the
form of atoms and ions (at well-defined jet velocity and
temperature), while with large distances, as fullerene
associates and soot particles [11].

In [2], we applied the methods of quantum chemis-
try to show that clusters of two single-bonded rings are
the most probable precursors of fullerenes. All possible
ways of the transformation of multiring clusters into
fullerenes were described in [1, 3]. The next step should
be a kinetic analysis of preceding carbon vapor cluster-
ing and the determination of the actual concentration of
the two-ring cluster.

Carbon vapor undergoes the transformations in an
expanding gas–plasma jet originating from an arc
source [12]. The existence of such a jet is confirmed by
experiments with carbon-collecting probes [9] and
those where 13CO2 was added to helium [13]. Experi-
1063-7842/02/4705- $22.00 © 20634
mental mass spectra taken from 13C-containing
fullerenes were explained in terms of a simple physical
model considering gas circulation around the arc.

The condensation of carbon in the jet was consid-
ered in [12]. Bimolecular reactions due to cluster colli-
sions and monomolecular reactions introduced arbitrarily
were considered to be involved in the transformation.
Backward reactions between clusters already formed were
rejected. The reaction cross sections and probabilities
were calculated numerically with the methods of molecu-
lar dynamics [14], where a real three-dimensional prob-
lem was subjected only to time simulation. Backward
reactions were not considered, as in [12]. However, condi-
tions in the jet vary from nearly equilibrium at its origin
to extremely nonequilibrium in the fullerene formation
area, which is rather narrow [10, 15].

The aim of this work is to construct an approximate
analytical model of carbon condensation in a gas–
plasma jet with allowance for backward reactions and
also to set a correlation between the fullerene yield and
three jet parameters at the exit from the source: flow
velocity, carbon concentration, and temperature.

EQUILIBRIUM CONCENTRATION
OF CLUSTERS

To take into account backward reactions, it is neces-
sary to know the equilibrium concentration of the car-
bon clusters at different temperatures and different total
carbon concentrations.

When the clusters are in equilibrium, their concen-
tration is conveniently expressed through the concen-
tration of atoms N1. Then, the equilibrium concentra-
tions of C2 and C3 molecules, as well as clusters of n
atoms Cn, are given by

(1)Nn
0( ) Zn

Z1
n

-----N1
n,=
002 MAIK “Nauka/Interperiodica”
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where Zn is the partition function for a cluster of n
atoms, which includes the translational, rotational, and
vibrational components.

After substituting the total partition functions for the
chains, rings, and two-ring clusters into (1), expres-
sions for the equilibrium concentration of the clusters
take the following form:
chains,

(2)

rings with even n,

(3)

rings with odd n,

(4)

and two-ring clusters,

(5)

Here, qn = In/I2, I2 and In are the moments of inertia for
a diatomic molecule and an n-atomic chain, respec-
tively, about the central axis (I2 = ma2/2; m is the mass
of a carbon atom; and a ≈ 1.4 Å is the bond length in a

carbon molecule, which is taken to be fixed);  and

 are the absolute binding energies for the chains
and rings, respectively; and νn is the mean geometrical
frequency of oscillators involved in a given cluster; the
exponents (3n – 5) for the chains and (3n – 6) for the
rings and two-ring clusters characterize the vibrational
partition function when the condition hνi/T ! 1 is met
for all the oscillators;

and g1 is the orbital moment of the atomic nucleus. The
binding energies of the clusters calculated with the
AM1 quantum-mechanical method are presented in
Fig. 1. The binding energy of the chains is seen to grow

almost linearly with the chain size,  ≈ (n – 1)ε0, in
the same manner as the binding energy of the rings at
n > 10. The value of ε0 is roughly equal to 5.5–6.0 eV.

The mean vibrational frequency of the chains some-
what decreases with increasing length (within an even–
odd accuracy) and remains constant at νn ≈ 2.7 × 1012 s–1
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for n ≈ 10. The vibrational frequency of the rings is
nearly the same.

TURBULENT GAS JET

The evolution of the carbon clusters takes place in
the turbulent gas jet coming from the arc source. The
spatial variation of the jet parameters under the condi-
tions of fully developed turbulence is well known. The
total concentration N of carbon atoms in any of the
clusters and the jet velocity V vary as [16]

(6)

The difference between the temperature in the gas
jet, T, and that outside the jet, T∞ (T @ T∞) varies in a
similar way:

(7)

Here, x is the distance to the source axis, r0 is the elec-
trode radius, 2d is the interelectrode spacing, ϑ  is a
model turbulent constant that depends on r0 and d. In
our geometry, r0 = 0.3 cm, 2d = 0.6 cm, and ϑ  ≈ 3.5.
Formulas (6) and (7) apply when x ≥ x1 = ϑr0 = 1.05 cm,
i.e., at distances where the behavior of the plasma
parameters in the jet is self-similar [16]. At the point x1,
the initial jet parameters N0 (carbon concentration),
V0 (jet velocity), and T0 (jet temperature) are specified.

Figure 2 shows a typical variation of the chain spec-
trum with distance to the source. The curve was con-
structed under the assumption that the total concentra-
tion of the atoms, C2 and C3 molecules, chains, and
two-ring clusters is calculated by formula (6) and the
temperature varies according to (7).

At a small distance from the source, i.e., at a high
gas temperature (curve 1), the concentration of chains
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Fig. 1. Binding energy for the (d) chains and (s) rings vs.
number of atoms n in the cluster. The AM1 method.
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decreases on any scale, starting from the atomic scale.
At lower temperatures, the C3 molecules dominate over
the C2 and even C1 molecules (curve 3); at n > 3, the
curve declines monotonically.

QUALITATIVE CONSIDERATION
OF THE EQUILIBRIUM BETWEEN CARBON 
CLUSTERS IN VARIOUS DISCHARGE AREAS

In analyzing the evolution of carbon clusters, it is
necessary to consider equilibrium conditions between
the clusters on various length scales. The equilibrium is
set through the coagulation reactions upon cluster col-
lisions and the reactions of cluster decomposition. Note
that in collisions, the coagulation of atoms and small
molecules and the attachment of small molecules to
large clusters have different probabilities.

In the first case, the probability of the reaction is
nearly independent of temperature and is associated
with the presence of a third body, a buffer gas (for
example, helium) atom. Here, the probability P of the
reaction is defined as the probability that the helium
atom falls into the region where two carbon atoms col-
lide. Numerically,

(8)

where PHe is the helium pressure (torr) and T is the tem-
perature (eV); i.e., P ~ 10–4–10–5.

In the second case, the probability of cluster coales-
cence varies exponentially: P ~ exp(–∆E/T), where
∆E = 0.4–0.6 eV [17]. Here, P ~ 0.1.

It has been proposed that the transition from the first
to the second type of collisions takes place at n = 3,
since in C3 the number of vibrational modes that can be
excited (from 1 to 4) is much greater than in C2, so that
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Fig. 2. Variation of the equilibrium spectrum of the chain
sizes for distances to the source x = 1.3 (1), 1.7 (2), and
2.9 (3) cm.
the need for the third body, which takes away an excess
energy, is eliminated.

In this case, the carbon clusters are in equilibrium on
several scale levels.

(1) The scale of equilibrium between small clusters is

(9)

where NΣ ≈ N1 + N2 + N3 is the total effective
concentration of small clusters and atoms; σ0 is the
cross section of atom–atom collisions, which is set

equal to σ0 = 5.3 × 10–16 cm2 [12, 14]; and VT = 
is the thermal velocity of carbon atoms.

(2) The scale of equilibrium between large clusters
(starting from C3) is

(10)

(3) The scale where equilibrium between larger clus-
ters is disturbed because of a decrease in the number of
collisions, i.e., a decrease in the number of small clusters.

For carbon concentrations near the jet source, λ is
on the order of several tenths of a millimeter. Hence,
large clusters come into equilibrium virtually instanta-
neously. The value of λ1 is 1–10 cm or even greater.
Therefore, it is not impossible that the atoms and the C2
and C3 molecules do not come into equilibrium at all
within the arc chamber and the spectrum of large sizes
becomes totally depleted [5]. On the other hand,
expression (8) for P1, which yields the lower estimate
of the probability [5], assumes that the time of interac-
tion between carbon atoms is of the same order of mag-
nitude as 2a/VT. However, this time is actually defined
by the lifetime of the metastable complex  and may
be much higher than 2a/VT and λ1, much less than 1–
10 cm.

In this work, the length λ1 was assumed to be small
enough for tiny clusters to have time to come into equi-
librium at least in the region where the fullerene precur-
sors and fullerenes themselves form.

A SET OF EQUATIONS FOR CLUSTER 
EVOLUTION

The curves in Figs. 1 and 2, formulas (1)–(5), and
the above considerations provide the basis for consider-
ing the problem of cluster spectrum in the three-dimen-
sional statement. The calculation was performed under
the following conditions.

(1) For the balance of clusters of each of the types
(chains, rings, two-ring clusters, and fullerenes), the
kinetics of only their associated precursors is essential.
Namely, the formation of two-ring clusters and their
decomposition into separate rings have a minor effect
on the kinetics of the rings, and the decomposition of

λ1
V

σ0VT NΣP1
--------------------------,=

2 3

2T /m

λ V
σ0VT NΣP
-----------------------.=

C2*
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fullerenes insignificantly affects the kinetics of two-
ring clusters.

(2) An increase in the size of the chains by attaching
atoms or the C2 and C3 molecules can be considered as
diffusion in the space of sizes. Clusters formed by cap-
turing small molecules have a chance to be isomerized
into chains or rings by the instant of subsequent colli-
sion.

(3) Before the equilibrium in the large cluster spec-
trum breaks down, the atoms and C2 and C3 molecules
come into equilibrium between each other.

(4) A change in the properties of small chains and
rings when the number of atoms is changed by unity
(parity change) has a minor effect on large clusters.

(5) The properties of the chains and rings are simi-
lar. The chains smoothly transform into the rings at
n ≈ 10. Therefore, we can consider the unified spectrum
of the chains and rings.

Some of these assumptions need additional com-
mentary. The first assumption is fully justified when
only a small fraction of the rings transforms into the
two-ring clusters and only a small fraction of the two-
ring clusters transforms into fullerenes. If the yield of
fullerenes is high, such an assumption may give only
qualitatively valid results. The second assumption
implies that either carbon atoms (at temperatures
≈0.3 eV) or the C3 molecules (at lower temperatures,
Fig. 2) dominate under equilibrium conditions. For
n > 3, the spectrum does not exhibit singularities, as has
been noted above.

At the early stage of this work, we solved a set of
balance equations for the chains and rings. Being writ-
ten in the differential form as a single equation, it is
given by

(11)

This set was supplemented by an equation for atom
concentration variation:

(12)

Here,  is the equilibrium concentration of the clus-
ters at a given atom concentration N1 (for a given car-
bon concentration, N1 differs from the equilibrium

value), γ = Nn/ , and wn is the effective probability
of cluster growth through the coagulation with the
atoms and the C2 and C3 molecules. With regard for the
fact that the cross section of coagulation for two clus-
ters with arbitrary numbers of atoms n and k is σnk ≈

V γ
∂Nn

0( )

∂x
------------

Nn
0( )

x
---------+ 

  Nn
0( )∂γ

∂x
------+

∂
∂n
------ wnNn

0( )∂γ
∂n
------ 

  .=

V
∂N1

∂x
---------

N1

x
------+ 

  σ0VT PN1 nNn
0( )n

∂γ
∂n
------.d

3

∞

∫=

Nn
0( )

Nn
0( )
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(n + k + η)σ0P (η ~ 1) [12, 14] and the relative thermal
velocity of the clusters is

the expression for wn at a sufficiently high n has the
form wn ≈ σ0PnNΣVT, where NΣ has been defined above.
The second terms on the left-hand sides of (11) and (12)
are of turbulent character. They provide the appropriate
behavior of the concentration of a given carbon impu-
rity when the right-hand side vanishes, i.e., when the
transformations are absent.

The formation of the two-ring clusters is described
by the equation

(13)

where Bn and  are the actual and equilibrium con-
centrations of two-ring clusters of size n.

Equation (13) means that a two-ring cluster can be
formed through the coagulation of two rings, not by
sequentially attaching small molecules. The diffusion
term in (13) is rejected. The disappearance of two-ring
clusters having transformed into fullerene is also
neglected. This is justified by the fact that virtually all
possible two-ring clusters already form by the time the
optimal transformation temperature is established.

When analyzing the transformation of the two-ring
clusters into fullerenes, we assumed that the material
forms in a fixed temperature range δT centered at the
optimal value 0.25 eV [5, 14, 18]. It is then reasonable
to integrate the expression for the fullerene yield,

(14)

with respect to temperature. The result is

(15)

In (15), it is assumed that, at the optimal tempera-
ture, the rate of fullerene formation has the “spontane-
ous” part and that associated with the capture of small
clusters (primarily C3). It was shown [5] that the latter
part is expressed as ΦW0ε2, where W0 = σVTNΣP, ε is on
the order of the relative change in the partition function
when one new polyhedron is formed in a growing clus-
ter, and Φ is a factor on the order of unity. The value of

VT
n k,( ) n k+

nk
------------VT ,=

V
dBn

dx
---------

=  σ0VT P
n3/2

n1n2

-------------- Nn1
Nn2

Nn1

0( )Nn2

0( ) Bn

Bn
0( )---------– 

  ,
n1 n2+ n=

∑

Bn
0( )

F
xd

V
----- Fd

td
------,

0

∞

∫=

F x T( ) Td
T
------ 1

V
--- Fd

td
------

0

∞

∫
xF

V
-----δT

TF

------ wspont ΦW0ε
2+( )B∼ ∼

∼ 1
V0
------ wspont ΦW0ε

2+( )B.
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σ is σ ≈ 5σ0 [1], and the probability wspont of fullerene
formation at the optimal temperature was set equal to
104 s–1 according to [3].

SOLUTION OF THE SET OF EQUATIONS
FOR CHAINS AND RINGS

Expressions (2)–(4) for the equilibrium concentra-
tions of the chains and rings have some features that
simplify solution (11).

(1) The derivative

is almost independent of n and depends only on the
coordinate x (Fig. 2). Indeed, let us recast (2)–(4) in the
form

(16)

where

Then, the positive quantity

(17)

equals

Numerically,

(18)

(for N1 in cm–3 and T in eV).
(2) The cross section for the coagulation of large and

small clusters is almost proportional to n.
(3) The derivative

is proportional to n; that is, the proportionality coeffi-
cient

(19)

∂
∂n
------ Nn

0( )ln

Nn
0( ) Ψπn4.5

6a3
--------=

× n
ε0

T
---- 1.5 A a3N1( ) 3

T
hνn

-------- 
 ln+ln+ln– 

  ,exp

Ψ A5/2 T
hν
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 
5– 2πma2νn

2

T
---------------------- 

 
5/2

.= =

Θ ∂
∂n
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0( )ln–=

Θ
ε0

T
---- 1.5 A a3N1( )ln 3

T
hνn

-------- 
 ln+ +ln–=

=  
ε0

T
---- 1.5

2πma2νn
2

T
---------------------- 

 ln a3N1( ).ln+–

Θ
ε0

T
---- 13.5–

N1

1016
---------- 1.5 Tln+ln+ 

 –≈

∂
∂x
------ Nn

0( )ln nD≈

D
d N1ln

dx
--------------- 1.5

ε0

T
----– 

  d Tln
dx

------------+=
is a function of x alone. As follows from calculations,
D = 3–4. Since the equations were used for sufficiently
large n and x, the value of 1/x is much less than nD and
can be ignored.

(4) At carbon concentrations ≥1014 cm–3, the length
λ is very small. Moreover, as follows from the approx-
imate solution constructed, of the two terms propor-
tional to this parameter, that involving γ will always
dominate. Indeed, the right-hand sides of the equations
are small compared with the last terms in the left-hand
sides if

(20)

where x ~ 1 cm is the characteristic scale of distance.

In the equilibrium solution, Θ ≈ 2 and condition (20)
has the form n @ λ/2x even for n = 3; that is, the param-
eter λ must be <6. This is valid even if the concentration
of small clusters is at a level of 1013 cm–3.

Thus, Eq. (11) takes the form

(21)

where the right-hand side is much less than the last term
on the right-hand side. Then, this equation turns into an
ordinary differential equation and its solution is
given by

(22)

where

(23)

Bearing in mind that the spectrum becomes equilib-
rium in the limit λ  0, the minus sign should be
taken in (23).

At x = ϑr0, γ(0) ≈ 1 for any n; however, the equations
for γ apply on large scales.

In the approximation that follows, it is necessary to
look for a partial solution to the inhomogeneous equa-
tion

This solution has the form

Dn @ 
∂B
∂x
------ ∂

∂x
------ λD

Θ
------- 

  λD
Θx
-------,∼ ∼

n
∂2γ
∂n2
-------- Θn

∂γ
∂n
------ λDnγ–– λ∂γ

∂x
------,=

γ 0( ) B n 3–( )–( ),exp=

B
1
2
--- Θ Θ2 4λD+±( ).–=

n
∂2γ
∂n2
-------- Θn

∂γ
∂n
------ λDnγ–– λ∂γ 0( )

∂x
-----------.=

γ 1( ) 1
2k
------λdB

dx
------- 3B–( ) bn'

n'
-------

n

n1

∫exp=

× n
Θ
2
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 
 
  2k n n'–( )( )exp 1–( ),exp
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where

and the upper limit of integration is arbitrary.
Being very awkward, this correction makes the fur-

ther solution difficult. It was rejected by virtue of con-
dition (18).

The rigorous solution of Eq. (21) as a partial differ-
ential equation by using standard techniques of mathe-
matical physics is possible but will be basically incor-
rect, because one does not know a distance over which
the initial shape of the spectrum (γ = 1) must be speci-
fied.

Therefore, when considering the kinetics of
fullerene formation, we used simple solution (22). Sub-
stituting it into expression (12) for atom balance, we
find

(24)

where y = lnN1.

In this expression for  for any n, we used
expression (16), which is valid for the chains and
applies to the rings up to the preexponential. Although
actually the rings dominate at n > 10, the relative error
in determining the right-hand side is insignificant, since
the integrand falls rapidly. It is easy to see that the inte-
gral

(25)

equals

(26)

at sufficiently large B + Θ.
In terms of the limiting value of B, Blim = (λD)/Θ at

(λD)/Θ ! 1, Eq. (24) can be written in the form

(27)

Formally, this equation looks like an ordinary differ-
ential equation; however, the right-hand side itself
depends on dy/dx. Therefore, at any point of integra-
tion, the equation was first solved numerically as an
algebraic equation for dy/dx.

k
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SOLUTIONS FOR THE CHAINS
AND RINGS

Figure 3 shows the variation of the atom concentra-
tion in the zero jet velocity limit (curve 1) and for the
uniform distribution of the atoms (curve 2). In the case
of the “ideal” solution to the set of balance equations,
the curves must coincide. The difference between them
indicates that the diffusion approach is not quite ade-
quate. However, all curves shown in the subsequent fig-
ures were obtained without correcting the solution. It
turned out that any correction changes the results thus
presented insignificantly.

Figure 4 plots the atom concentration versus dis-
tance for various jet velocities. Up to x ≈ 2.6 cm, the
curves are nearly coincident with the equilibrium
curve. At large distances, as the concentration of small
clusters decreases and the temperature drops, the
entrainment of the clusters by the jet becomes increas-
ingly significant. The concentrations of the large clus-
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Fig. 3. Radial distribution of the carbon atom concentration
(1) for the zero gas jet velocity and (2) in the presence of the
equilibrium distribution of the atoms.
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Fig. 4. Radial distribution of the atom concentration for gas
jet velocities V0 = 2 × 103 (1), 4 × 103 (2), 6 × 103 (3), and

8 × 103 (4) cm/s. N0 = 1017 cm–3, T0 = 0.7 eV.
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ters, which are rings almost without exception, become
much smaller than the equilibrium values. Accordingly,
the spectrum of the two-ring clusters and fullerenes
also becomes depleted.

FORMATION OF TWO-RING CLUSTERS
AND FULLERENES

The solution to Eq. (13) has the form

(28)

where

(29)

Clearly, only those values of x for which L is not too
large contribute to the concentration of two-ring clus-
ters of a given size. Therefore, with a reasonable accu-
racy (as applied to the approach considered), we can
assume that

and integrate over ξ to the point ξB where lnL = 0. Since
L does not depend on the carbon concentration and is a
function solely of the initial velocity and initial temper-
ature, it will suffice to determine ξB for one pair of

( , ). Then, one can readily show that for any
other pair

(30)

Similarly, if the position of the point ξB is known for

the pair ( , ): xB = ξB( , ), then

(31)

where α is found from the relationship lnS(x, ,

) = –α(x – xB), which holds in a relatively wide
range of x.

As the basic pair of the initial values, we took  =

0.8 eV and  = 5 × 103 cm/s. Then, α = –14.81 and
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xB = 2.222. Substituting (22) into (28) yields

(32)

with none of the quantities under the integral sign being
dependent on n1 or n2 alone.

If we consider only large clusters with n ≈ 60, the
constant factors related to n1 and n2 can be omitted:

(33)

Hence, the fullerene concentration is given by

(34)

where  and V0 are the initial thermal velocity and jet
velocity, respectively.

The results of integration of (34) are demonstrated
in Figs. 5–7. The fullerene concentration is given in
arbitrary units. The fullerene yield (as well as the per-
centage of fullerenes in soot) is seen to depend on the
initial velocity and carbon concentration to the greatest
extent. With an increase in the current, both parameters
grow but have an opposite effect on α. Therefore, the
curve α(I) has a peak, which was observed in experi-
ments [7]. Unfortunately, detailed comparison between
the theory and experiment is difficult, because the ana-
lytically found anode erosion in a complicated way
depends on the flow N0V0 toward the chamber walls and
the flow toward the cathode. Moreover, for the velocity
V0, we know only estimates of the plasma transfer rate
in a self-sustained high-current arc [19] originating
from a source of small diameter 2r0:

(35)

where ρ is the effective density of the gaseous medium.
Figures 5 and 7 clarify the reason for a decrease in

α when helium is replaced by heavy buffer gases. For
given current and pressure (PB) of a buffer gas, the
velocity V0, which varies in proportion with the square
root of the density, depends on the type of the gas only
slightly even if the atomic weights of buffer gases differ
considerably. For light helium, the overall density
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Fig. 5. Fullerene yield vs. carbon concentration at the inlet.
T = 0.7 eV, V0 = 4 × 103 cm/s.
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Fig. 6. Fullerene yield vs. gas (helium) temperature at the
inlet. N0 = 1017 cm–3, V0 = 4 × 103 cm/s.
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Fig. 7. Fullerene yield vs. initial jet velocity. T = 0.7 eV,
N0 = 1017 cm–3.
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increases because of a minor amount of the heavier car-
bon present. The effective density of a heavier buffer
gas is reduced because the gas is forced out from the
gap by lighter atomic carbon and the heavily ionized
carbon plasma. Therefore, although the atomic weights
of helium and, e.g., argon differ 20 times, the velocity

ratio is no more than 2.5–3 rather than . On the
other hand, the degrees of erosion differ by more than
one order of magnitude, so that the ratio of the concen-
tration N0 ~ q/V0 for helium to N0 for argon exceeds the
velocity ratio. Since α depends on N0 stronger than on
V0, the fullerene yield for helium is much higher. In the
case of a heavy gas, a rise in the current elevates the
erosion to the same level as in helium but owing to an
increase in the velocity and a decrease in the concentra-
tion N0 and not vice versa. The fact is that, in a heavy
gas, the velocity given by (35) rises with current supra-
linearly, since the effective density drops as the heavy
gas is forced out by lighter carbon. As a result, with the
same erosion, the velocity in a heavy gas turns out to be
higher while the carbon concentration lower than in
helium although the atomic weight of the former is
much larger. Both factors tend to reduce α.

No distinct supporting evidence for the experimen-
tally found variation of α with pressure PB has been

obtained. Velocity (35) varies roughly as 1/ , and
the erosion calculated declines somewhat faster than

1/  [4, Fig. 5b]. Accordingly, the concentration
N0 ~ q/V0 also drops with pressure but several times
more slowly than the velocity. However, α depends on
N0 stronger and may behave nonmonotonically, of
which the major peak in the α vs. pressure curve is an
indication [7]. The minor peak is associated with a sim-
ilar nonmonotonic dependence for the anode erosion.
This dependence has not yet found adequate explana-
tion.
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The Role of Small Clusters in the Transformation
of Two-Ring Clusters into Fullerenes
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Abstract—Possible reactions by which small carbon molecules C2 and C3 can join a cluster at an intermediate
assembly stage from a two-ring cluster to a fullerene are considered. For analysis of the separate stages of this
type of reaction, methods of quantum chemistry are used. The generalized reaction probabilities obtained are
then included into the general scheme of assembly kinetics alongside monomolecular reactions. It has been
shown that at a small cluster concentration of about 1014 cm–3 the assembly time drops severalfold. Also given
are generalized results of the effect on the assembly time of the multiplicity of paths of fullerene assembly from
two-ring clusters. © 2002 MAIK “Nauka/Interperiodica”.
This study is a continuation of a series of works [1–5]
on transformation of carbon vapor into fullerene under
arc discharge conditions. Direct precursors of the
fullerenes in this process, as shown in [3], are almost
planar two-ring clusters with one bond between the
rings. It was considered [4] that transformation of these
clusters into fullerenes proceeds only via monomolec-
ular reactions with a buffer gas for thermostatting. An

important result obtained in [4] is that the position 
of the binding energy maximum as a function of the
number of polygons comprising the assembled frame-
works of the fullerene surface (number of steps) NΣ

shifts to lower  values. For clusters with n ≥ 62–65,

 = 5; thus, the binding energy maximum becomes
lower. Therefore, in considering the process, a fairly
detailed level of abridged description is possible
because all frameworks of clusters with NΣ ≤ 6 accept-
able from the energy considerations can be easily over-
viewed manually, assuming that different ways of
attaching ring fragments to these frameworks are possi-
ble and mutually balanced. Vibrational partition func-
tions of such paths within a given framework can be
considered equal. In [4] it is considered that “small
clusters” (atoms and C2 and C3 molecules) do not par-
ticipate in the transformation process. In this work, cal-
culations are presented of the kinetics of transformation
into fullerene (hereinafter referred to as assembly) as a
function of small cluster concentration.

TRANSFORMATION INTO FULLERENE
OF A TWO-RING CLUSTER WITH A LARGE 

NUMBER OF ATOMS (60 OR MORE)

Prior to elucidating the role of small clusters in the
fullerene assembly kinetics, a calculation was per-

NΣ
0( )

NΣ
0( )

NΣ
0( )
1063-7842/02/4705- $22.00 © 20643
formed of the assembly of clusters having a size of
n = 60 atoms or more. As in [4], the calculation was
carried out taking into account all possible assembly
paths and assuming only monomolecular reactions.

In calculating the assembly kinetics, probabilities of
the direct reactions for every intermediate configura-
tion were determined by summation over all possible
variants µ of this configuration with their relative statis-
tical weights and over all possible reactions for every
variant:

(1)

Here, n1 and n2 are the numbers of the framework con-
figurations and NΣ(n1) + 1 = NΣ(n2), with superscript k
denoting the reaction number, and  and  are

the ratios of the statistical weights of variant µ and the
complete statistical weight of this configuration to the
statistical weight of the initial two-ring cluster. In order
to determine the reaction probabilities, it is necessary to
specify some set of cluster parameters. This set defines
an average number of fragments of the framework edge
permitting a given reaction [1]. This number is deter-
mined by purely combinatorial relationships and
related to the possibility of ring fragments to become
attached to the framework in different ways even if a
complete set of parameters is specified.

The calculation of the rate of evolution was carried
out in a quasi-stationary approximation. As in [4], the
solution was obtained from a system of balance equa-
tions of all the framework configurations taken into

wn1 n2→
Ωn1 µ,

Ωn1

------------ wn1 µ,
k( ) .

k

∑
µ
∑=

Ωn1 µ, Ωn1
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account,

(2)

at  – 1 ≥ NΣ(n) ≥ 2,

(3)

at NΣ(n) = ,

(4)

for the initial configuration. In formulas (2)–(4), yn =

Nn/  is the ratio of the concentration of a given clus-
ter type to the equilibrium concentration for a given
concentration of initial two-ring clusters N1 and q is the
decay rate of the initial state, assumed to be exponential

N1 = exp(–qt).

The calculated variation of the transformation time
τF = q–1 with temperature T is shown in Fig. 1. Note that
at T = 0.28 eV, τF is close to the result obtained in [4],
where the calculation scheme was somewhat different:
n and k denoted not a particular framework configura-
tion but some average configuration with specified
numbers (N5, N6, and the internal summation in (1) was
carried out over the numbers of radicals R5, R6, ρ5, and
ρ6).

The role of the path multiplicity factor in determin-
ing τF can be demonstrated as follows. For a particular
path chosen, the total assembly time is determined in
the quasi-stationary approximation by

(5)

It is seen from (5) that the contribution of the decay-
ing branch of the energy diagram to the assembly time
is insignificant.

If all paths are taken into account, τF is obtained
from a linear system of balance equations of all clusters
but can also be estimated by formula (5); for this pur-
pose, it is sufficient to replace each product wiΩi in (5)
with a sum over all possible reactions and variants µ of
the configurations i admissible for a given reaction. By

qynΩn– wknΩk yk yn–( )
NΣ k( ) NΣ n( ) 1–=

∑=

+ Ωn wkn yk yn–( )
NΣ k( ) NΣ n( ) 1–=

∑

NΣ
0( )

qynΩn– wknΩk yk yn–( ) ΩnwNΣ F→ yn–

NΣ
k( )

NΣ
n( ) 1–=

∑=

NΣ
0( )

q– w1k 1 yk–( )
NΣ k( ) 2=

∑=

Nn
0( )

N1
0( )

τF 1/w12 1/Ωiwi i 1+→

i 1=

NΣ
0( ) 1–

∑+=

+
nF

0( )

n1
0( )-------- Ωi 1+ /Ωiwi i 1+→ .

i NΣ
0( )

=

F 1–

∑

way of estimation, it can be assumed that this sum is

 ≈ 

So, an increase of every term in (5) due to the mul-
tiplicity of paths is determined by two factors. One is
the ratio Ωsum/Ωmax of the total statistical weight
Ωsum(NΣ) of the clusters with a given NΣ to the maxi-
mum possible statistical weight of some configuration
Ωmax(NΣ) (as a rule, this configuration is characterized
by a minimum binding energy). The other is the ratio of
the total probability of all the reactions possible for a
given cluster to the maximum probability. In the esti-
mation of both of these ratios, the configuration with a
maximum statistical weight does not necessarily coin-
cide with the configuration of the most probable path;
therefore, the total estimated increase of the assembly
rate by (5) is a lower bound.

In determining the statistical weights necessary for
the estimation, the following approximation was used.
Because computation of all clusters with n ~ 60
requires an enormous amount of computer time, the
configuration of minimum energy was determined by
looking at clusters of 40 atoms. Then, in the case of
n = 60, it was sufficient to determine the energies and
vibrational spectra of only six clusters (NΣ = 0…5). For
determination of parameters of all the remaining clus-
ters, parameterization similar to that suggested in [4]
was employed.

The estimate was carried out for a temperature of
T = 0.25 eV. That this temperature is an optimum
choice can be seen in Fig. 2, which shows variation
with temperature of the ratio of equilibrium concentra-
tions of two-ring clusters and fullerenes. It is seen that
at T > 0.25 eV the concentration of two-ring clusters is
higher despite the fact that the binding energy of the C60
fullerene is lower by about 28 eV. This is explained by
a gigantic reduction of the vibrational statistical weight
of fullerenes as a result of bond formation between
atoms. This result is in full agreement with the results
of study [6] and earlier studies (for example, [7]).

It has been found that at the optimum temperature
T = 0.25 eV, the characteristic ratio Ωsum/Ωmax in the
region of the bottleneck is equal to ~ 4–5, the ratio of
the total reaction probabilities to the most probable
ones being ~ 2. It is thus seen that taking into account
the combinatorial factor accelerates the fullerene
assembly by about an order of magnitude.

PROBABLE SMALL CLUSTER JOINING 
REACTIONS

If the assembly time is long, it can be significantly
affected by the joining of small carbon molecules:
atoms and C2 and C3 molecules [1, 8]. A number of pos-
sible ways for such joining resulting in the emergence
of new polygons has been proposed [1]. It was assumed
that the joining molecule is C2. This assumption was

wi
k( )

k∑ Ωi µ,µ k( )∑ wi
k( )

k∑ Ωi µ,µ∑× .
TECHNICAL PHYSICS      Vol. 47      No. 5      2002



THE ROLE OF SMALL CLUSTERS IN THE TRANSFORMATION 645
based on the fact that such molecules have been reliably
registered in emission spectra from a fullerene arc [9].

However, results of the theoretical calculation of the
equilibrium spectrum of carbon molecules indicate that
over a wide range of carbon concentration at tempera-
tures T ≤ 0.4 eV, the predominant molecules are not C2
but C3. A possible reason for this discrepancy between
experiment and calculation is the rather long time nec-
essary for the equilibrium between atoms and C2 and C3
molecules to be reached.

The equilibrium is established by way of direct and
reverse coagulation reactions between atoms and small
molecules, C + C  C2, C + C2  C3, with the
probability of direct reactions being determined by a
third particle, which is an atom of the buffer gas. It is
estimated as a probability that a buffer gas atom will be
found at the collision point of two carbon atoms and is
numerically equal to

(6)

(where PHe is the buffer gas (helium) pressure), i.e., a
quantity on the order of 10–4–10–5.

Then the length of establishment of the equilibrium
in the range of small clusters is estimated as

(7)

where NΣ ≈ N1 + N2 + N3 is the total effective
concentration of atoms and small molecules, σ0 is a
cross section of atom–atom collisions taken equal to

σ0 = 5.3 × 10–16 cm2 [10], VT =  is the thermal
velocity of carbon atoms, and V is the gas-flow velocity.

At concentrations corresponding to the initial por-
tion of the gas–plasma jet, λ1 is 1–10 cm or even
greater. Therefore, it is possible that within the arc
chamber, small clusters never reach equilibrium, the

P1 10 8– PHe torr( )
T eV( )

----------------------≈

λ1
V

σ0VT NΣP1
--------------------------,=

2 3

2T /m

10–2

0.22

τF, s

T, eV0.24 0.26

10–4

100

Fig. 1. Temperature dependence of the time it takes a two-
ring cluster of n = 60 atoms to transform into a fullerene.
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concentration of C3 molecules is much lower than the
equilibrium one, and such molecules are not observed.

However, expression (6) for P1 is a lower bound of
the estimated probability assuming that at the moment
when two atoms collide a third particle instantaneously
emerges at the collision point, whereas actually the
metastable complex  can exist for quite a long time
(its lifetime is not reliably known), so that the probabil-
ity P1 can be significantly higher. Therefore, in this

C2*

106

0.22 0.24 0.26 0.28 T, eV

103

100

10–3

10–6

10–9

Fig. 2. Temperature dependence of the ratio of the equilib-
rium concentration of two-ring clusters (n = 60) to the con-
centration of fullerenes (calculation by AM1 method).

0

E, eV

n1 2

–195

–197

–199

–201

3

S

1
2

(b)

(a)

1

2

C3

C3

Fig. 3. (a) Two versions of the reaction by which a C3 mol-
ecule (encircled) is added to a two-ring cluster. (b) Variation
of the total binding energy of a C3 molecule-cluster system
as new polygons are formed; point S: the cluster and the C3
molecule are not bound together; (1, 2) variants 1, 2 (a).
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work and in calculations in [4], it was assumed that C3
molecules are still capable of attaining equilibrium
with atoms and become predominant among small car-
bon molecules, but their concentration level is such that
they are hard to observe (on the order of 1014 cm–3). The
entire region where fullerenes are formed happens to be
located in the C1–C2–C3 equilibrium zone and the dom-
inant reaction of molecule capture by a cluster is the
capture of a C3 molecule instead of C2.

CALCULATION OF THE EFFECT OF SMALL 
CLUSTERS ON THE FULLERENE FORMATION 

PROCESS

Figure 3 shows reactions by which C3 molecules
join a two-ring cluster at some assembly stage and the
binding energy of the system. The binding energy of an
initial state of the system, which is an isolated cluster
and molecule, corresponds to point S in Fig. 3b. It can
be seen that the capture of a C3 molecule reduces the
binding energy. The reason is that the weakly bound
end atom is no longer there. Subsequent steps, in which
a hexagon (situation 1 in Fig. 3) or two pentagons (sit-
uation 2) are formed, the binding energy changes by a
much lesser amount.

It is easy to see that this kind of chain reactions, in
which C3 molecules are “solved,” can include one, two,

1

1012 1013

τF, 10–4 s

N3, cm–3

0

2

3

4

5

6

1014 1015

Fig. 4. Transformation time of a two-ring cluster into a
fullerene as a function of the concentration of C3 molecules.
or three reactions and therefore are influenced by the
structure of a fairly large vicinity near the joining point.
Therefore, in distinction from the case where a C2 mol-
ecule or an atom is added, a reasonable level of detail in
the brief description scheme of a cluster cannot be
attained. Two possibilities remain.

(1) A cluster is described by one variable, the full
number of polygons NΣ (extremely brief description),
and it is assumed that each act of adding a C3 molecule
to any doubly bonded atom of its framework or the first
atom of a ring fragment increases the number of poly-
gons by 1 or 2 and is not followed by a reverse reaction
because of a large gain in energy. All configurations
within a given NΣ are assumed to be in equilibrium.

(2) Consider all possible configurations of the
framework surface until an energy maximum is found
at NΣ = 5, as was done for an isolated cluster, and take
into account all further possible reactions. In this work,
the first approach is chosen as being a simpler one.

As in the case of an isolated cluster, a system of bal-
ance equations was solved for the number of clusters
with a given set of parameters; now this set consists of
only one parameter: the full number of polygons NΣ.
Taking into account the additions of small molecules
was reduced to adding to the probability of even a sin-
gle monomolecular reaction producing a new bond and
one more polygon in the cluster (in [1] such reactions
have been termed “spontaneous”) the probability of an
“induced” reaction, in the course of which a small car-
bon molecule is captured and one (W10) or two (W20)
polygons emerge. Probabilities of these reactions were
assumed to be identical:

(8)

In expression (8), the capture probability of a small
cluster by a large one as a result of their collision is
characterized by an exponential factor P ~ exp(–∆E/T),
where ∆E ~ 0.4–0.6 eV [10]. The cross section σ was
taken to be equal to the total area of the active belt on
the edge of the growing fullerene surface, to which ring
fragments are attached, σ ≅  5σ0 [1].

Solution of the chain of balance equation for NΣ = 1,
2, 3, 4, 5 taking into account induced reactions has the
form

W10 W20 σN3VT ∆E/T–( ).exp= =
(9)q

1
W0

w1
------- W20

1
w2Ω2
-------------

Ω2

w3Ω3
-------------

Ω3

w4Ω4
-------------+ + 

 + +

1
w1
------ 1

w2Ω2
------------- 1

w3Ω3
------------- 1

w4Ω4
------------- W20

Ω3

w4Ω4
------------- 1

w1
------ 1

w2Ω2
-------------+ 

  Ω2

w1
------ 1

w3Ω3
-------------+ 

 + + + +
---------------------------------------------------------------------------------------------------------------------------------------------------------------,=
where wi ≡ wi, i + 1, W0 = W10 + W20.

As the probability W20 is much less than wk and has
the same order of magnitude as the rate of spontaneous
transformation qspont [formulas (2)–(4)], an illustrative
estimate of the calculation result can be made assuming

w12 w23 w34 w45 w,= = = =
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The estimate has the form

(10)

In Fig. 4 the dependence of the assembly time τF =
q–1 of a two-ring cluster into fullerene obtained using (10)
on the concentration of C3 molecules at the optimum
temperature T = 0.25 eV. It is seen that acceleration of
the assembly on account of small molecules is not that
great: for an increase in C3 concentration of two orders
of magnitude, the decrease in the time τF = q–1 is only by
a factor of several. However, this estimate is in fact a
lower bound. The reason is that it is precisely the cap-
ture of small molecules that ensures the feasibility of all
those framework configurations and variants of the
connection of ring fragments that are topologically pos-
sible.
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Abstract—A high content (about 0.3%) of metastable ions is detected in the mass spectrum of uranium
hexafluoride (UF6). The apparent masses of the metastable ions found from the masses of UF6 fragment ions,
which were taken as references, are close to values predicted (the discrepancy is no more than 0.015 u). It is
shown that these ions are responsible for the background current in a wide mass range. The lifetime of a UF5
metastable ion with a mass of 333 is estimated. © 2002 MAIK “Nauka/Interperiodica”.
Mass spectrometry of metastable ions is extensively
used in organic chemistry for gaining extra information
on the composition of complex mixtures and the mole-
cule structure [1, 2]. Metastable ions arise when some
of the ions (including fracture ions) generated in an ion
source are in the excited state with a lifetime compara-
ble to the time of ion transit between the source and the
collector. In practice, an ion produced when a truly
metastable ion disintegrates on its way between the
source and the collector is often also called metastable
[2, p. 147]; however, such terms as parent ions and
daughter ions are more appropriate here [3]. A parent
(metastable) ion with a mass M1 disintegrates following
the reaction

(1)

to produce a daughter ion . In doing so, the parent
ion changes its mass, energy, and, as a consequence,
trajectory curvature in a magnetic field.

Mass spectra of uranium hexafluoride samples with
the natural isotopic composition were taken with an
MI-1201 AGM mass spectrometer operating in the ion
counting regime.1 The mass spectrum of ions with
masses ranging from 230 to 355 is shown in Fig. 1. The
magnified region of the highest peak corresponding to
metastable ions with a mass number of 296 is depicted
in Fig. 2.

The ion current is plotted on the ordinate in ions/s.
The tops of the peaks for ions with mass numbers of
333, 314, 295, and 276 (Fig. 1) are distorted because
these peaks go beyond the upper limit of the dynamic
range of the ion counter. The mass spectrum was taken
for 3.5 h at an ionizing voltage of 50 V, an emission cur-
rent of 0.1 mA, an accelerating voltage of 5 kV, a sweep

1 An MI-1201 AGM single-focusing sector mass spectrometer is
provided with a secondary emission multiplier (SEM) and a
counter of pulses due to ions striking the SEM collector.

M1
+ M2

+ M3
0+

M2
+

1063-7842/02/4705- $22.00 © 20648
pitch over the mass scale of 0.01 u, and an integration
time per point of 1 s. A metastable ion peak can easily
be distinguished by its width. For instance, the half-
height resolutions of the mass-292 and mass-296 peaks
are R50 = 1116 ± 17 and 586 ± 1.6, respectively.

The peaks associated with masses of 258, 277, 296,
and 315 (produced by the parent ions with masses of
295, 314, 333, and 352, respectively) were also identi-
fied. For this purpose, the spectrometer mass scale in
Fig. 1 was calibrated with the reference masses of UF6
ion fragments. The corrections ∆M to the peak posi-
tions measured by the mass spectrometer are well
approximated by a parabola (Fig. 3). The standard error
of approximation was 2.7 mu (1 mu = 10–3 u).

The corrected masses of the metastable daughter
ions were compared with the calculated (apparent)
masses (Table 1). The calculation was carried out by the
formula

(2)Mcal

M2
2

M1
-------.=

4×102

200 220

I, ions/s

M, u

4×101

240 260 280 300 320 340 355

4×103

4×104

4×105

3×106

Fig. 1. Mass spectrum of UF6.
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This formula assumes that disintegration products go
on moving with the same velocity as a parent ion and
that the parent ion disintegrates on its way between the
ion source and the entrance to the magnetic field of the
analyzer (field-free space). The values measured
exceed those calculated, as has been observed earlier
[1, p. 259], possibly because of a strong electric field
gradient at the entrance slit of the mass spectrometer,
which influences the lifetime of the metastable ions.

On the other hand, the good agreement between the
calculated and measured masses of the metastable ions
(the discrepancy is ≈0.01 u) means that the lines broad-
ened are correctly identified as belonging to the daugh-
ter metastable ions. The elevation of the background
ion current near M = 262 can be explained by the disin-
tegration 333+  295+ + 380 with the formation of
ions with an apparent mass of 261.4. Similarly, the
background ion current near M = 241 is related to the
disintegration 314+  276+ + 380 with the formation
of ions with an apparent mass of 242.6.

The trajectory of daughter metastable ions and, as a
result, the position of the corresponding peaks in the
mass spectrum depend on the region of disintegration
of a parent metastable ion. This is illustrated with the
disintegration 333+  314+ + 190 (Table 2).

From this table, it follows that the ions disintegrated
in the magnetic field are distributed over the mass range
between 296 and 333, causing the substantial increase
(approximately, five times) in the background ion cur-
rent for masses higher than 296 (Fig. 1). Also, the
height of the metastable ion peaks correlates with the
background ion current due to these peaks. This depen-
dence is nearly linear (up to 30%) if we assume that the
contribution of the scattered ion current 150 ions/s to
the background ion current is constant.

The mass spectrum shows that the background ion
current decreases, for instance, in the range between
315 and 329 because of the disintegration of the meta-
stable ions (the decrease in their number) when they
move in the magnetic field. A feature of the metastable
ion disintegration in the ion source is that the masses of
the ions decrease as the site of disintegration shifts
toward the exit slit. As a result, the background ion cur-
rent drops more slowly in the range between 296
and 310.

The dimensions of the ion channel in the mass spec-
trometer are as follows: the distance from the exit slit of
the ion source to the entrance of the magnetic analyzer
is 39.5 cm; the ion path length in the magnetic field
(with the stray field neglected), 29 cm; and the distance
between the exit of the magnetic analyzer and the ion
collector, 42 cm. Knowing the dimensions of the ion
channel, one can estimate the lifetime of the metastable
ions.

With these dimensions and an accelerating voltage
of 5 kV, the ion transit time through the channel is
20 µs. The lifetime of a metastable ion is expected to be
of the same order of magnitude. This value for the UF5
TECHNICAL PHYSICS      Vol. 47      No. 5      2002
metastable ion (M = 333) can be estimated more accu-
rately from the background ion current varying from
4 × 103 to 2.9 × 103 ions/s in the mass range between
314 and 326. Since the total channel length in the mag-
netic field is covered by ions of masses 333–296, the
travel of ions with masses of 326–314 is equal to
(29/37) × 12 = 9.4 cm and the transit time for this length
is t = 1.7 µs. Then,

τ t
N1

N2
------ln

------------ 1.7
4

2.9
-------ln

------------- 5.3 µs.= = =

10000

290 292

I, ions/s

M, u

1000
294 296 300298

2182032

100000

1000000

Fig. 2. Fragment of the mass spectrum for UF6.
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–0.10
325 375

0

0.05

0.10

Fig. 3. Correction curve for the mass scale.

Table 1.  Comparison between the measured and calculated
(apparent) masses of the daughter metastable ions

Mm, u Mcal , u Mm – Mcal , mu Error, mu

258.2846 258.2725 12.0 ±1.5

277.2079 277.1969 11.0 ±1.6

296.1417 296.1298 11.9 ±1.8

315.0728 315.0697 3.1 ±1.7
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Table 2.  Position of the peak for the  daughter ion
(M = 314) in the mass spectrum vs. site of disintegration of

the  metastable ion

Site of 333+  314+ + 190

disintegration
Position in mass

spectrum

Ionization chamber 314

Between ionization chamber
and exit slit of ion source

314–296

Between exit slit of ion source
and entrance to magnetic field

296

Magnetic field 296–333

Exit from magnetic field 333

UF
238 +

4

UF
238 +

5

The mass spectra with the starting and corrected
mass scales are available from
ftp://www.mp.dpt.ustu.ru/spectr (files Spectr 1 and
Spectr 2, respectively).
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Abstract—The excitation of flexural waves in a thin plate (film) by harmonically modulated laser radiation and
their scattering by small fractal inhomogeneities are considered. An expression for the mean fluctuation inten-
sity for the scattered wave field is obtained. A relationship between the intensity, parameters of the laser
radiation and the plate, and the fractal dimension of inhomogeneities is found. The expected frequency depen-
dence of the flexural wave attenuation in the plate due to their scattering by fractal inhomogeneities is discussed.
© 2002 MAIK “Nauka/Interperiodica”.
Films of various materials with different physical
properties provide the basis for modern electronic and
laser devices. To date, considerable progress has been
made in film production technology. For example, it is
possible today to grow diamond films of large areas (up
to several thousands of square centimeters) and thick-
nesses of 1–2 mm [1]. Diamond films may be used in
creating windows for powerful CO2 lasers.

The surface of any film is rough. This, in particular,
is true for films grown by chemical vapor deposition.
The film roughness may be as high as 10% of the film
thickness. It is worth noting that the surfaces of real
bodies are also always rough. Even if they appear to be
perfectly smooth, they are actually rough (the differ-
ence is only in scale of roughness) [2]. For instance, it
has been recently reported that statistical irregularities
with fractal properties are always present on the surface
of a computer hard disk, along with regular information
tracks (grooves) [3]. The internal structure of a film
greatly influences its mechanical, electrical, magnetic,
etc., properties. The film microstructure is often disor-
dered and fractal. This in especially true for amorphous
semiconductor layers [4]. 

From the acoustical standpoint, films can be consid-
ered as thin plates with surface irregularities (asperi-
ties) and microinhomogeneities of the internal struc-
ture. We will consider the excitation of flexural waves
in a thin plate by harmonically modulated laser radia-
tion and their scattering by the plate inhomogeneities.
It is assumed that the laser radiation is absorbed in a
thin (much thinner than the plate) surface layer. The
inhomogneities are taken to be random, statistically
uniform, and small (weak). The weak perturbation
method is used to solve the problem. The results
obtained may be of interest for laser optoacoustic diag-
nostics of film inhomogeneities as a technique of non-
destructive film testing.
1063-7842/02/4705- $22.00 © 20651
The scattering of flexural waves by random inhomo-
geneities in a plate has been considered earlier. Inho-
mogeneities were assumed either to be delta-correlated
[5] or to have statistical properties described by the
Gaussian correlation function [6]. However, inhomoge-
neities in plates (films) often have fractal properties.
Fractal structures are characterized by scale invariance
(scaling). As a result, the correlation functions, as well
as random fractal spectra, are described by power laws
with a fractional exponent [2]. Therefore, the statistical
models used in [5, 6] may turn out to be inadequate for
real inhomogeneities in plates (films).

Let a laser beam with the harmonically modulated
intensity be incident normal to the surface of a thin
plate. The displacements u(x, y) of the plate executing
forced flexural vibrations obey the equation [7]

(1)

where

Here, g is the flexural rigidity; E, Young’s modulus;
σ, Poisson’s ratio; 2h, the thickness; ρ, the density of
the plate material; ω, the circular frequency of radiation
intensity modulation; k, the wave number of the flex-
ural waves propagating in the plate; µ(x, y), the random
statistically uniform function describing plate inhomo-
geneities 〈µ(x, y)〉  = 0 and |µ(x, y)| ! 1; and F(x, y), the
function characterizing the external force acting on the
plate due to the laser radiation.

∆2
k4 x y,( )–[ ] u x y,( ) F x y,( )

g
-----------------,=

∆ ∂2

∂x2
--------

∂2

∂y2
-------- is haplocian,  g+≡ Eh3

3 1 σ2–( )
----------------------,=

k4 x y,( ) k4 1 µ x y,( )+( )4,=

k4 3ω2ρ 1 σ2–( )[ ] /Eh2.=
002 MAIK “Nauka/Interperiodica”
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We assume that the plate is opaque for the laser radi-
ation, which is absorbed in the thin surface layer. This
does not restrict the generality of the problem. The
intensity distribution I0(x, y) on the plate surface usu-
ally obeys a Gaussian law. In view of the aforesaid,
F(x, y) may be represented in the form [8]

(2)

where a is the radius of the laser beam on the plate sur-
face; α, the volumetric thermal expansion coefficient;
Cp, the specific heat of the plate material at constant
pressure; m, the modulation factor (0 ≤ m ≤ 1); and
µ1, the radiation absorption coefficient of the plate.

Let us represent the plate displacement in the form
(3)

where u1(x, y) are the displacements due to the scatter-
ing of the “zero-order” flexural waves with the dis-
placements u0(x, y).

Substituting (3) into (1) and taking into account (2),
we arrive at the following equations for u0(x, y) and
u1(x, y):

(4)

(5)

With the Green’s function approach applied, the
solutions to Eqs. (4) and (5) may be written as

(6)

where Qi(x, y) are the functions describing the right side
of Eqs. (4) and (5) (i = 0, 1) and G(x0, y0/x, y) is the
Green’s function satisfying the equation

(7)

and radiation conditions at infinity. Assume that the
front curvature of the zero-order flexural wave incident
on inhomogeneities does not influence the scattering
effects. This means that the wave front can be consid-
ered to be plane on scales of inhomogeneity correla-
tion. The field of the waves scattered will be studied in
the Fraunhofer zone in terms of the radius of inhomo-
geneity correlation. In this case, as follows from the
reciprocity theorem [8], it is sufficient to know the
asymptotics of Green’s function in order to find the
zero- and first-order plate displacements. This asymp-
totics has the form [7]

(8)

where R = , (x, y) are the coordinates of the
point of observation, (x0, y0) are the coordinates of the

source point, and k2 =  + .

F x y,( )
Eαµ1m

Cp
------------------I0

x2 y2+

a2
----------------– ,exp–=

u x y,( ) u0 x y,( ) u1 x y,( ) …,+ +≅

∆2 k4–( )u0 x y,( )
Eαµ1

Cpg
-------------– I0

x2 y2+

a2
----------------– 

  ,exp=

∆2 k4–( )u1 x y,( ) 4k4µ x y,( )u0 x y,( ).–=

ui x y,( ) Qi x0 y0,( )G x0 y0/x y, ,( ) s x0 y0,( ),d

S

∫=

∆2 k4–( )G x0 y0/x y, ,( ) δ x0 x–( )δ y y0–( )=

G x0 y0/x y, ,( ) ikR( )exp

32πik5R
------------------------- ikxx0 ikyy0+( ),exp–=

x2 y2+

kx
2 ky

2

Substituting (8) into (6) and integrating, we find the
zero-order approximation of u0(x, y):

(9)

From (9), it follows that the zero-order flexural wave
in the Fraunhofer zone is a diverging cylindrical wave
with the amplitude dependent on the laser radiation
power I0πa2 and the plate parameters. The factor

means that the amplitude of the zero-order wave
depends markedly on the parameter ka, characterizing
the size of the laser spot on the plate surface relative to
the wavelength. It can be seen that the size of the spot
has to satisfy the condition ka ! 1 in order to efficiently
excite the zero-order flexural wave in the plate.

Consider fluctuations of the plate displacements in
the field of the wave scattered. Under the assumption
that the front of the incident zero-order wave is a plane
in the region with correlated inhomogeneities, the solu-
tion to Eq. (5) can be represented in the form

(10)

Here, A0 ≡ u0(x, y) is the amplitude of the incident zero-

order wave at a distance R =  in the region
where the inhomogeneities are located; r0(x0, y0), coor-
dinates of the inhomogeneities; and r1(x1, y1), those of
the point of observation. Multiplying (10) by its com-
plex conjugate, we find the mean square fluctuation of
the plate displacement in the wave scattered:

(11)

where B( , , , ) ≡ 〈µ( , )µ*( , )〉 is
the correlation function of random inhomogeneities,
and n and n' are the direction vectors of the incident
(zero-order) and scattered (first-order) waves, respec-
tively.

We introduce differential coordinates ξ =  – 

and η =  – , as well as the center-of-mass coordi-

nates ρ1 = 1/2(  + ) and ρ2 = 1/2(  + ). Since
the correlation function of statistically uniform pro-

u0 x y,( )
Eαµ1mI0πa2

Cpg 32πik5
-------------------------------- ikR( )exp

R
----------------------- k2a2

4
----------– 

  .exp=

k2a2

4
----------– 

 exp

u1 x1 y1,( ) A0
k2

2πik
---------------

ikR1( )exp

R1

-------------------------=

× µ x0 y0,( ) ikxx0 ikyy0+[ ]exp

S

∫
× ikx' x0– iky' y0–[ ] ds x0 y0,( ).exp

x2 y2+

u1 x1 y1,( ) 2〈 〉 A0
2 k3

2πR1
------------ B x0' y0' x0'' y0'', , ,( )

S

∫∫=

× ik n n'–( ) r0' r0''–( )[ ] dx x0' y0',( )dx x0'' y0'',( ),exp

x0' y0' x0'' y0'' x0' y0' x0'' y0''

x0' x0''

y0' y0''

x0' x0'' y0' y0''
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cesses depends only on the coordinate difference and
integration over the center-of-mass coordinates yields
the plate surface area S, we find

(12)

In (12), the finite limits of integration defined by the
plate size S are replaced by ±∞, since the correlation
function rapidly falls to zero beyond the region of inho-
mogeneity correlation and

The integral in (12) differs from the spatial energy
spectrum of inhomogeneity fluctuations

(13)

by the factor (2π)–2.
As is customary in the statistical wave theory, we

find the scattering factor mS, which depends on the
energy flux through the closed loop of radius R. In view
of (12) and (13), we obtain

(14)

Of principle importance for fractal models of inho-
mogeneities is the fluctuation power spectrum

(15)
where the parameter γ is a fractional number. In the
case of inhomogeneities with a fractal boundary (frac-
tal surface), this parameter is given by

(16)
Here, D is the fractal dimension and d is the dimension
of the nested space. In order to describe random fractal
inhomogeneities, we choose the correlation function in
the form (see, e.g., [9])

(17)

where Γ(ν ) is the gamma function; Kν(u), the Mac-
donald function of the νth order; and r0, the inhomoge-
neity correlation radius.

For the energy spectrum, we have

(18)

Substituting (18) into (14) yields for the scattering
factor

(19)

From (19), it follows that the fractal properties of
inhomogeneities have no effect on wave scattering at

q2  ! 1. In contrast, we get

(20)

for qr0 @ 1.

u1 x1 y1,( ) 2〈 〉 A0
2 k3

2πR1
------------S B r'( ) iq r⋅ '( )exp r'.d

∞–

+∞

∫=

q k n n'–( )r' x' y',( ).=

G q( ) 2π( ) 2– B r( ) iq r⋅( )exp rd

∞–

+∞

∫=

mS 2πk3G q( ).∼

G q( ) qγ,∼

γ D 2d .–=

B r( ) µ2〈 〉 2ν 1– Γ ν( )[ ] 1–
r/r0( )v Kν r/r0( ),=

G q( ) µ2〈 〉 ν r0
2 π 1 q2r0

2+( )v 1+[ ]
1–
.=

mS µ2〈 〉 2πv k3r0
2 π 1 q2r0

2+( )v 1+[ ]
1–
.∼

r0
2

mS µ2〈 〉 2k3 qr0( )–2 2v– .≅
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Let us estimate the frequency dependence of the
flexural wave attenuation due to scattering by inhomo-
geneities:

(21)

Consider the case of inhomogeneities for fractal-
surface structures. It is well known that the fractal
dimension of boundaries varies in the range D = 1.3–
1.7 (see, e.g., [2]). Inserting this value of fractal dimen-
sion in (16) and taking into account that d = 2, we find
γ = –(2.7–2.3). Equating γ to the exponent of q in (20),
we find the order of the Macdonald function: v = 0.35–
0.15. Since q ≈ k, the frequency dependence of the
attenuation coefficient is

As is seen, the exponent in the frequency depen-
dence of the attenuation is a noninteger number. This is
due to the fractal properties of inhomogeneities. The
exponent can serve as a measure of the inhomogeneity
fractality [10]. Note that the theory of dislocation-
induced ultrasonic attenuation in solids gives β(ω) ~ ω–1,
i.e., nonfractal dependence (the exponent in the fre-
quency dependence of the attenuation is an integer).
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