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Abstract—The problems of transition radiation from a charged particle interacting with an anisotropically con-
ducting ball and of diffraction radiation from a charged particle flying close to this ball are solved. The energy,
spectra, and polarization of the emitted radiation are determined. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, there are many papers devoted to transi-
tion radiation, which was discovered as early as 1946
by Ginzburg and Frank [1] (an extensive bibliography
on this problem is given in [2]). The problem of transi-
tion radiation from a charged particle interacting with
an anisotropically conducting plane (straight-line
anisotropy) was solved by Barsukov and Naryshkina
[3]. The problem of transition radiation from a charged
particle interacting with a ring grid and a radial grid
(cylindrical anisotropy) was addressed in my earlier
papers [4, 5]. It is also of interest to consider the prob-
lem of transition radiation in the interaction between a
charged particle and a ball with a spherically anisotro-
pic conductivity. This problem, being obviously impor-
tant from a theoretical standpoint, has, at the same time,
significant astrophysical applications (the author is
grateful to Ya.N. Istomin for drawing attention to the
latter point).

Thus, the problem of transition and diffraction radi-
ations from a charged particle interacting with a radi-
ally conducting ball refers, in particular, to the study of
active galactic nuclei, which are, according to present
opinion, black holes surrounded by accretion disks,
whose magnetic fields compress the magnetic fields of
the hole to nearly the field of a monopole (the magnetic
induction being on the order of 104 G). In such a field,
charged particles move freely along the magnetic lines
(the conductivity in the radial direction is nearly infi-
nite) and cannot propagate across the lines (the conduc-
tivity along spherical surfaces is nearly zero). Hence,
transition and diffraction radiations associated with
active galactic nuclei can be described using a radially
conducting ball model, which can also be applied to
magnetized neutron stars, whose magnetic fields,
although dipolar, have an induction on the order of
1012 G.

The objective of this paper is to investigate the prob-
lem of transition and diffraction radiations from a
charged particle interacting with a ball with a spheri-
cally anisotropic conductivity.
1063-7842/02/4706- $22.00 © 20655
FORMULATION OF THE PROBLEM 
AND SOLUTION OF THE INHOMOGENEOUS 

VECTOR WAVE EQUATION

We consider a ball with a spherically anisotropic
conductivity, in which case we must distinguish
between the following two possible cases. In the first
case, a ball consists of nested, electrically insulated,
perfectly conducting spherical layers. It is easily under-
stood that, with respect to an external field, such a ball
is equivalent to a perfectly conducting ball. The corre-
sponding boundary condition is

(1)

where R0 is the ball radius.

In the second case, the conductivity of the ball is
infinite in the radial direction, but it is zero in the trans-
verse directions. The corresponding boundary condi-
tion has the form

(2)

Let a point particle with charge q move parallel to
the z-axis with velocity v(0, 0, –v ). The moving charged
particle generates a current with density j(0, 0, –j),
where

(3)

and it can be assumed that y0 = 0. The particle trajectory
intersects the X0Y plane at the point M0(x0, y0), in which

case we have r0 =  = R0sinΘ0 (with 0 ≤ Θ ≤
π/2) for transition radiation and r0 > R0 for diffraction
radiation. We denote by r the distance from the point
M(x, y) to the axis of a cylindrical coordinate system
and obtain

and

(4)

where ϕ is the polar angle.

EΘ R R0= 0,=

ER R R0= 0.=

j qv δ x x0–( )δ y y0–( )δ z v t+( )=

x0
0 y0

0+

M0M r' r r0–= =

r' r2 r0
2 2rr0 ϕcos–+ ,=
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We expand the current density in a Fourier integral,
e.g.,

(5)

with the Fourier coefficients

(6)

Using the formula [6]

(7)

and the addition theorem for Bessel functions [7]

(8)

we obtain

(9)

In order to solve the electrodynamic problem as for-
mulated, we start with the following Maxwell equa-
tions for the Fourier coefficients:

(10)

Choosing Hr and Hϕ as potentials (Hz = 0), we solve
Eqs. (10) in cylindrical coordinates. The potentials sat-
isfy the equation

(11)

or, equivalently, the equations

(12)

(13)

Using the recurrence formulas for Bessel functions
[7], we arrive at

(14)
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∫

(15)

We represent the sought-for solution to the inhomo-
geneous equations (12) and (13) in the form

(16)

(17)

Turning to the familiar relationships [8]

(18)

(19)

we solve Eqs. (12) and (13) in the same way as was
done in [4, 5]. As a result, we obtain

(20)

where β = v /c.

Thus the set of inhomogeneous equations (12) and
(13) is solved. The solution to the electrodynamic prob-
lem is sought for in the form

(21)

where  is the magnetic field of a charged particle
(a solution to the inhomogeneous vector wave equa-

tion) and  is the magnetic field of transition or dif-
fraction radiation (a solution to the homogeneous vec-
tor wave equation).
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The latter solution was obtained in [4, 5]:

(22)

(23)

where κ = . For z > 0, we have Imκ > 0,
and for z < 0, we must replace the tilde ~ by the double
tilde ≈ and eiκz by e–iκz.

The coefficients (λ) and (λ) can be found
from the boundary conditions (1) and (2) and the con-
dition

(24)

SOLUTION TO THE PROBLEM OF TRANSITION 
AND DIFFRACTION RADIATIONS

FROM A CHARGED PARTICLE INTERACTING 
WITH A PERFECTLY CONDUCTING BALL

From condition (24), we obtain

(25)

(26)

The boundary condition (1) has the form

(27)

where

(28)

(29)

We substitute expressions (29) for the Fourier coef-
ficients Hωϕ and Hωr into relationships (27) and (28) and
pass over from cylindrical coordinates to spherical
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ones. As a result, we obtain

(30)

We expand the quantities EωΘm in a series in associ-
ated Legendre functions:

(31)

Then, the boundary condition becomes

(32)

From this condition, we determine the unknown
coefficients Dmn(λ):

(33)

where

(34)
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(35)

We thus arrive at the desired coefficients:

(36)

SOLUTION TO THE PROBLEM OF TRANSITION 
AND DIFFRACTION RADIATIONS

FROM A CHARGED PARTICLE INTERACTING 
WITH A RADIALLY CONDUCTING BALL

For a radially conducting ball, the corresponding
boundary condition has the form

(37)

where the Fourier coefficients Eωr and Eωz can be deter-
mined from formulas (28).

The coefficients Dmn(λ) can be obtained in the same
way as was done in the previous section:

(38)
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(39)

(40)

We thus arrive at the relationship

(41)

CALCULATION OF THE RADIATION 
INTENSITY

In expressions (22) and (23), we switch from Bessel
functions to Hankel functions. Using the circumvention
rules for Hankel functions and their asymptotics [7]
and, then, applying the saddle point method, we obtain
the following expression for the spectral radiation

intensity in the wave zone, where  = :

(42)

The field in the wave zone is linearly polarized;
moreover, the electric vector lies in a plane determined
by the z-axis and the position vector of the observation
point.

ANALYSIS OF THE RESULTS OBTAINED

Formulas (20), (33), (38), and (42) imply that the
radiation intensity falls off to zero as r0  ∞ and also
as R0  0. It is expedient to present the results of a
calculation of the radiation intensity for a black hole
with a mass of 108 solar masses (R0 = 3 × 1011 m) and a
charged particle with different energies: 1010, 1011, …,
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1020 eV. It should be noted that the frequency at which
the radiation intensity is the highest (ω ~ 10 s–1) is inde-
pendent of the particle energy.

The values of the function

calculated for n = 0, m = 0, Θ = π/4, and τ0 = R0 are sum-
marized in the table. The plot of the function f(ω) cal-
culated for ω = 10, 102, …, 108 s–1 is shown in the
figure.

f ω( ) 4π2c5

q2v 4
-------------

dwω

dΩ
----------=

Table

logω f(ω)

1 3.2 × 1019

2 1.4 × 1015

3 1.5 × 1015

4 1.6 × 107

5 2.0 × 106

6 3.5 × 103

7 1.4 × 102

8 0.95
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Abstract—Focusing of a spherical wave in the well-known Johann scheme is considered theoretically. An ana-
lytical formula for the size of the crystal bent surface reflecting radiation in the Johann scheme is derived. The
intensity distribution near the focus is found. The spherical aberration of the diffracted beam is analyzed. Back
scattering is shown to minimize the aberration. Spectral characteristics of an Johann spectrometer are discussed.
The focusing of a spherical wave by a crystal bent into a logarithmic spiral is considered. It is shown that the
Johann scheme is a specific case of a logarithmic spiral. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

X-ray radiation focusing with the Johann scheme
[1] is a most promising way of producing beams with a
large collection solid angle. In this scheme, reflecting
planes make the same angle with plane harmonics of an
incident spherical wave at any point of the crystal sur-
face. The spatial and spectral parameters of X-ray
beams obtained with the Johann scheme have been
studied theoretically and experimentally in a number of
works [2–8]. Specifically, the theory of a Johann focus-
ing spectrometer has been elaborated in [2, 3, 7]. How-
ever, the spherical aberration of the diffracted beam has
not been considered as yet.

In this work, we took into account spherical aberra-
tion and came to results differing from those obtained
in [2, 3, 7].

1. DIFFRACTION REFLECTION RANGE 
IN THE JOHANN SCHEME

Consider X-ray spherical wave focusing by a uniax-
ially bent crystal in the Bragg geometry [9]. We assume
that the diffraction reflection of the wave is coherent

elastic; that is, k0 + h = kh,  =  = k2. Here, k0 and
kh are the wave vectors of the incident and diffracted
waves. The vector h of the reciprocal lattice of a bent
crystal is given by

(1)

where h0 is the vector of the undistorted crystal: h0 =
2ksinΘB, k = 2π/λ, λ is the wavelength of the incident
radiation, and ΘB is the Bragg angle. Parenthesized
vectors mean the scalar product.

kh
2 k0

2

h hx hy hz, ,( ) h0 ∇ h0u( ),–=
1063-7842/02/4706- $22.00 © 20660
The atomic displacement vector u(ux, uy, uz) for an
elastically bent crystal has the form

(2)

where Rx is the bending radius of the crystal.

In (2), terms quadratic in z are neglected. We will
consider only those beams emitted by the source S in
the plane of diffraction scattering of the crystal (Fig. 1).
Unlike [9], the second- and third-order terms in x will
be left in the expressions for the direction cosines γ0x
and γ0z of the wave vector k0 (x is the point of incidence
of an arbitrary beam on the X axis). The related expres-

ux xz/Rx, uz– x2/2Rx,= =

Z

X

Y

kh
S

ϕ0 ϕh
k0

S'

Fig. 1. One-dimensional focusing of a spherical wave by a
uniaxially bent crystal. S, point source; S ', its image.
002 MAIK “Nauka/Interperiodica”
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sions are then written as follows:

(3)

(4)

(5)

Here, Ψ is the angle between the reflecting planes and
the crystal surface.

From Fig. 2, the angle between the beam incident
from the point P and the normal to the surface at this
point is given by

Taking into account that

(6)

and putting δΘ = ∆Θ = |χhr|/sin2ΘB, we come to an
expression for the range xeff of symmetrical diffraction
on the crystal surface (in this range, the diffracted beam
does not fall outside the region of total reflection):

(7)

For the Johann scheme (L0 = RxsinΘB), we find with
(3)–(6)

(8)

Here, ∆Θ is the half-width of the Bragg reflection curve
and χhr is the Fourier component of the X-ray polariz-
ability. From (7) and (8), it is seen that the location on
the Rowland circle in the Johann scheme allows one to
increase considerably (by two or three orders of magni-
tude) the collection angle in comparison with the case
L0 ≠ RxsinΘB.

Now we will seek for an expression for the distance
|SP| (Fig. 2) as a power series in x. Consider two cases.
In case (a), we include the curvature of the crystal sur-
face, assuming that z ≈ x2/Rx. Then, it is easy to see that

γ0x ϕ0 x ϕ0/L0cos
2

x2 ϕ0 ϕ0/L0
2cos

2
sin–+sin=

– x2 ϕ0 ϕ0 ϕ0 L0/Rx–cos( )/2L0
2cossin

+ x3 ϕ0 ϕ0/L0
3 x3 ϕ0cos

3 ϕ0cos(–cos
2

sin
2

– L0/Rx )/2L0
3 x3 ϕ0 ϕ0 ϕ0cos L0/Rx–( )/L0

3,cossin
2

+

γ0z ϕ0cos–= x ϕ0 ϕ0/L0 x2/2RxL0+cossin+

– x2 ϕ0 ϕ0/L0
2 x2 ϕ0cos

2 ϕ0cos L0/Rx–( )/2L0
2+cossin

2

– x3 ϕ0/2RxL0
2 x3 ϕ0 ϕ0/L0

3cossin
3

+sin

– x3 ϕ0 ϕ0 ϕ0cos L0/Rx–( )/2L0
3cos

2
sin

– x3 ϕ0 ϕ0 ϕ0cos L0/Rx–( )/L0
3,cos

2
sin

hx 2k ΘB x Ψ/Rx Φsin+cos( ),sin–=

hz 2k ΘB Ψcos x Ψ/Rxsin–( ).sin=

Ω π/2 ΘB δΘ+( ).–=

Ωcos k0h( )/kh,–=

γ0x x L0 ϕ0sin+( )/ SP ,=

γ0z z L0 ϕ0cos–( )/ SP=

xeff ∆Θ ΘB/L0sin 1/Rx– 1– , L0 Rx ΘB.sin≠=

xeff Johann, Rx 2∆Θ ΘBtan( )1/2.=
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(9)

For L0 = Rxcosϕ0, the quadratic and cubic terms van-
ish; hence, fourth-order terms in x must be taken into
account. Similarly,

(10)

In case (b), the crystal is bent so that the reflecting
plane remains flat (z ≈ 0). Then,

(11)

For the distance |S'P|, we will come to an expression
similar to (11) making the changes L0  Lh and
ϕ0  ϕh. The expression for the intensity distribution
at the focus will depend on which bending model [(a)
or (b)] we use. For (a), it is the Pearsey integral; for (b),
the Airy function.

2. SPHERICAL ABERRATION 
OF THE REFLECTED BEAM

From the preceding section, it follows that the dif-
fracted beam in the Johann scheme is subjected to
spherical aberration. Let |S'P| = Lh and |OS'| = Lh(0).
Consider the symmetrical geometry of diffraction.
Then, for case (a) we have

SP L0 1 x ϕ0/L0 x2 ϕ0/2L0
2cos

2
+sin+[≅

– x2 ϕ0/2L0Rx ϕ0 1/L0 ϕ0/Rxcos–( )x3/2L0
2sin–cos

+ ϕ0x3/2L0
3 ] .sin

3

S'P Lh 1 x ϕh/Lh x2 ϕh/2Lh
2cos

2
+sin+[≅

– x2 ϕh/2LhRx ϕh 1/Lh ϕh/Rxcos–( )sin–cos
2

× x3/2Lh
2 ϕhx3/2Lh

3 ] .sin
3

+

SP L0 1 x ϕ0/L0 x2 ϕ0/2L0
2cos

2
+sin+[=

– x3 ϕ0 ϕ0/2L0
3 ] .cos

2
sin

Lh x( ) Lh 0( ) 1 x ΘB/ Rx ΘBsin( )cos+( );≅

S

PΘB

ΘB + δΘ

Fig. 2. On the calculation of the diffraction reflection zone
of the crystal.
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that is, the spherical aberration is significant for heavily
bent crystals, when x ≤ Rx. For back scattering in the
Johann scheme, the aberration is insignificant up to
third-order terms in x inclusive.

In case (b) (the reflecting surface curvature is
neglected), spherical aberration is present from the
first- to third-order terms inclusive. Its effect can be
minimized by using the back scattering geometry.
Then, the second-order aberration alone is left.

3. WAVE INTENSITY DISTRIBUTION 
AT THE FOCUS

With allowance for aberration, we will find the
intensity of the diffracted beam at the focus. According
to the theory of dynamic Bragg diffraction in thick
crystals [2, 3, 7, 10], the amplitude of the diffracted
wave at the entrance plane of the crystal (z ≈ 0) is given
by (up to insignificant factors)

(12)

where

is the normalized angular variable (with allowance for
refraction), ∆ΘB is the deviation from the exact Bragg
angle, σh = kχh/2cosΘB, and C is the polarization
factor.

In (12), we took into account that L0 = Rxcosϕ0 in
the Johann scheme. For the amplitude coefficient of
plane wave reflection by a slightly bent crystal, R( ),
we will use its asymptotic expression coincident with
the coefficient of reflection by a perfect unbent crystal:

Using the Huygens–Fresnel X-ray diffraction and
X-ray optical principles and taking into account the
results of Section 1, we find the intensity of the dif-
fracted wave at a point ξp near the focus:

(13)

Eh x 0,( ) 2k( )1/2 χhr σhCγ0 ikL0( ) iπ/2( )expexp=

× ik ϕhx2/2Rxcos–( ) 8πL0 ϕ0 ϕh+( )sin[ ] 1–exp

× yR y( ) iyσhx–( ),expd

∞–

+∞

∫ ˘ ˘ ˘

y ∆ΘB χ0 ϕ0cos ϕhcos+( )/2 ϕ0 ϕh+( )sin–{ }=

× 2ΘB/ χhrsin

˘

y̆

R y( ) y y2 1–( )1/2
.–=˘ ˘ ˘

Ih ξ p( ) k2Cχhrσh 8π3/2Rx
2

2ΘBsin
2( )

1–
yR y( )d

∞–

+∞

∫∼ ˘ ˘

× x ik ξ pγhx/Lh yσhx/k– ϕhx2/2Lhcos
2

+[{expd

∞–

+∞

∫ ˘
The integral over the coordinate x in (13) can be
reduced to the Airy function:

(14)

where

is the Airy function. For symmetric diffraction, A1 =

−kξp/Rx + σh and A2 = –kcosΘB/2 . The integral

over  in (13) is taken by the method of stationary
phase. The stationary point is  ≈ 0.

The intensity Ih(ξp) vanishes at tmin = –2.33811. With
the spherical aberration taken into account, the geomet-
rical focus position (ξp = 0) and the position of the
focused wave intensity maximum are not coincident.
The largest maximum of the Airy function, 0.9494, is at
tmax ≅  –1.02. For the (220) reflection of the CuKα radia-
tion from a silicon crystal (Rx ≈ 1 m), the coordinate of

the intensity maximum is  ≈ –0.1 µm.

Now let us derive a formula for the diffraction width
of the maximum of function (14). Note that Φ(–2.34) =
–0.0024 and Φ(4.00) = 0.0016866. Then, the half-
width of the intensity maximum is given by

(15)

For the parameters of the Johann scheme that were
mentioned above, the focus width was estimated with
(15) at ∆ξ ≈ 0.6 µm. The half-intensity focus width is
≥0.1 µm. The diffraction broadening calculated by the
relationship ∆ξ = λRx/xeff [2, 3, 7] (without allowance
for spherical aberration) is ∆ξ ≈ 1.5 × 10–2 µm.

4. JOHANN FOCUSING SPECTROMETER

The spectral characteristics of a Johann spectrome-
ter calculated in view of (15) are several orders of mag-
nitude lower than those obtained in [2, 7]. The spectral

∫ – ϕhx2/2Rx x3 ϕh ϕh/2Lh
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2
sin– ] }cos

2

.
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2 2ΘBsin
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× yR y( ) 3A2( ) 1/3– Φ A1/ 3A2{ } 1/3( )d

∞–
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∫
2

,˘ ˘
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∫=

=  2 1– π 1/2–( ) i ut u3/3+( ){ }exp ud
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∫

y̆ Rx
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yst˘
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1/3/ 2π( )2/3 2/3( )1/3cos≈
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resolution can be found from the Bragg condition

where ∆Θξ ≈ ∆ξp/Lh and Lh = RxsinΘB.

For an extended source of length d, only its length
dcoh ~ 2∆ΘL0 = 2∆ΘRxsinΘB takes part in coherent
Bragg reflection. To be definite, we consider here sym-
metrical diffraction; ∆Θ is the half-width of the Bragg
reflection curve. Then, setting ∆ξp equal to sum (15) of
the focus diffraction width and dcoh, we find the spectral
resolution

(16)

For the MoKα radiation (λ = 1.54 Å) reflected from
a silicon crystal with Rx = 1 m, estimator (16) yields
∆λ/λ ≈ 4.3 × 10–5. Note that for these numerical values,
the second term in (16) makes a major contribution.

For back scattering (ΘB ≈ π/2), the spectral resolu-
tion,

(17)

is several times higher than at ΘB ≠ π/2. However, if the
crystal is bent only slightly (Rx ≈ 1 m),

Note that formula (17) yields the upper limit of the
spectral resolution for back scattering. The half-width
of the total reflection range for back diffraction is
∆Θ ~ |χhr|1/2.

From Fig. 3 it follows that, for a given source size,
the resolution of a Johann spectrometer is the best when
the bending radius of a crystal meets the condition Rx >
d/(2∆ΘsinΘB). For Rx @ d/(2∆ΘsinΘB), the effect of
the source size is negligibly small. The spectral resolu-
tion in this case is on the order of 10–7.

The Johann scheme is more sensitive to the source
size than the Cauchois scheme [11] for the Laue geom-
etry. However, the characteristics of a Johann spec-
trometer are no worse than those of a Cauchois spec-
trometer [12].

5. FOCUSING OF A SPHERICAL WAVE 
BY A CRYSTAL BENT INTO A LOGARITHNIC 

SPIRAL

A surface shaped into a logarithmic spiral is one of
the best in terms of focusing efficiency. For a logarith-
mic spiral, the angle between any beam emitted from a
point S and the surface (at the point of incidence) is
constant (Fig. 4). If the source–surface distance S is
varied over some limits, the focusing effect of the spiral
is retained (see below).

Consider symmetric diffraction. The size of the
crystal surface fragment taking part in the reflection of

∆λ /λ ΘB∆Θξ ,cot=

∆λ /λ

∼ Θ B 3π ΘBcos( )1/3λ2/3/ Rx
2/3 ΘBsin( ) 2∆Θ+{ } .cot

∆λ /λ( )π/2 3π( )1/3λ2/3 ∆Θ( )4/3/Rx
2/3 2 ∆Θ( )2+≤

∆λ /λ( )π/2 2 ∆Θ( )2 1.8 10 5–× .≈≤
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an incidence beam is

(18)

For symmetric reflection, β =  and ∆ϕ is the
incident beam divergence. From (18), it follows that for
the symmetric back reflection (ΘB = π/2, cosΘB ≤ ∆Θ)
of a spherically divergent beam, the reflecting surface
size is limited only by the maximal divergence of the
incident beam and the crystal–source spacing:

(19)

For the source far away from the crystal (L0 ≈ 5 m,
∆ϕ ≈ 3 × 10–3), xeff, Θ = π/2 ≈ 1.5 cm. Thus, we have
arrived at a formula for a focusing X-ray lens made of
a crystal bent into a logarithmic spiral. From Fig. 4, the

xeff 1 β2+( )1/2
L0 βϕ( ) β∆ϕ( )exp 1–{ } /β.exp=

ΘBcot

xeff Θ, π/2= L0∆ϕ .∼

∆λ/λ

2.3 × 10–7

1.4 × 10–7

2∆ΘcotΘB

Rx
(*) 1.4 5 10 Rx, m

~Rx
–2/3

Fig. 3. Spectral resolution of a Johann focusing spectrome-
ter vs. radius of curvature of the crystal. d = 10 µm = const.
The plateau corresponds to radii Rx @

(3πcosΘB)1/2λ/[(2∆ΘsinΘB)3/2].  is the critical radius

satisfying the condition of slightly bent reflecting surfaces.

Rx
*( )

Z

S

S'

L0

Lh(0) Lh(ϕ)

ϕ
π – 2ΘB

Fig. 4. Focusing of a spherical wave by a crystal shaped into
a logarithmic spiral.
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spacing between the point source S and its image S' is

(20)

The geometric aberrations are minimized and focus-
ing proceeds by the “point-to-point” principle if the
equality

(21)

is valid for any arbitrary angle ϕ.
From (20) and (21), two focusing approaches are

possible. In the first one, βϕ ! 1, so that the effect of
aberrations is minor and Lh, ϕ ≥ Lh, 0. The second
approach seems to be of greater interest, and we will
concentrate on it. Conditions for this approach are the
following:

(22)

Clearly, equalities (20) and (21) are also valid and
point focusing takes place. Bearing in mind that the
equation of a logarithmic spiral has the form

(23)

we find the sought lens formula from (22):

(24)

For small ϕ (ϕ ! β–1), we find from (23) and (24)

(25)

where Lh(0) ≈ Lh, ϕ = L0 = RsinΘB. The result obtained
means that the Johann scheme is a specific case of a
logarithmic spiral. Note that, with conditions (22) met,
the point S' is the asymptotic pole of another logarith-
mic spiral.

SS' LS L0
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.= =

LS L0
2 2βϕ( )exp{=
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2L0Lh ϕ, βϕ( ) 2ΘB } 1/2cosexp±
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1/L0 1/Lh 0( )+ βϕ( )exp 1+[ ] / R ΘBsin( ).=
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Fig. 5. On the effect of source (S) displacement on the
focusing of a spherical wave by a logarithmic spiral.
Consider now the effect of aberrations on focusing.
With (22) in mind, we differentiate distance LS (21)
with respect to ϕ:

(26)

From (26), the aberration along the length SS' can be
found. For L0 ≈ 1 m, 0 < ϕ ≤ 10–5, and ΘB ≈ 23.65°, we
obtain ∆LS ≈ 20 µm. From (26), it is seen that the aber-
ration is a linear function of ϕ if βϕ ! 1.

The aberration is absent at β = 0, which corresponds
to ΘB = π/2 in the symmetric case, and at ϕ =
ln(cos2ΘB)/β. Now we will show that a displacement of
the source S does not disturb focusing under certain
conditions. From Fig. 5,

Let ∆Θ be the angular half-width of the reflection
curve. Then, the source displacement is given by

(27)

It is easy to see from (27) that the source displace-
ment ∆L0 ≥ L0 (for βϕ ! 1) if ϕ ! ∆Θ. If ϕ ~ ∆Θ, the
source–crystal spacing may be varied over wide limits
without considerably affecting the focusing (∆L0 > L0).
Finally, for ∆Θ ! ϕ ! 1, we have ∆L0 ! L0.

For the focusing to remain unchanged when the
source is displaced to the position S1, it is necessary that
the angle S1P'S for the beam SP' (Fig. 5) be equal to
∆Θ1 = ∆Θ. Taking into account that

we find

(28)

The displacement of the source S to the point S1 does
not disturb focusing, ∆Θ1 ≈ ∆Θ. Specifically, for ∆ϕ !
ϕ ! 1 and ϕ ≥ ∆Θ, we find from (28) that ∆Θ1 ≅  ∆Θ. In
this case, ∆L0 ≤ L0; in other words, a displacement of a
point source in a rather wide range has a negligible
effect on the focusing. Let us estimate the maximal size
of the source in the direction normal to L0, ξ⊥ , at which
focusing still takes place. From Fig. 5,

(29)

If (ϕ + ∆ϕ) ~ ∆Θ1 in (29), the transverse size of the
source ξ⊥  > L0∆Θ1. For ∆Θ1 = ∆Θ ~ 10–5 and L0 ≈ 1 m,
ξ⊥  > L0∆Θ ≈ 10 µm.

Basically, for beams with large ϕ ≤ π/2cL0, the max-
imum possible source size increases greatly. In Section 4,
we found that the spectral characteristics of the beam
reflected drastically degrade in the Johann scheme with

dLs/dϕ βL0
2 βϕ( ) βϕ( )exp 2ΘBcos±[ ] /Ls.exp=

ξ ∆ L0 ϕ ∆Θ–( )sin L0 βϕ( ) ∆Θ( ).sinexp= =

∆L0 L0 βϕ( ) ∆Θ( )/ ϕ ∆Θ–( )sin .sinexp≅

∆L0 L0 β ϕ ∆ϕ+( ){ }exp≈
× ∆Θ1( )/ ϕ ∆ϕ+( ) ∆Θ1–{ } ,sinsin

∆Θ1( )tan

=  ϕ ∆ϕ+( ) ∆Θ( )/ β∆ϕ( ) ϕ ∆Θ–( )sin{ }exp[sinsin

+ ϕ ∆ϕ+( ) ∆Θ( ) ] .sincos

ξ⊥ ∆L0 ϕ ∆ϕ+( ) ∆Θ1–[ ]tan≈ L0 β ϕ ∆ϕ+( )[ ]exp=

× ∆Θ1( )/ ϕ ∆ϕ+( ) ∆Θ–[ ] .cossin
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an extended source (d > dcoh ≅  2L0∆Θ). However, it has
just been shown that the use of sources with a size >dcoh
does not disturb the focusing if the crystal surface has
the form of a logarithmic spiral. This is an undeniable
advantage of a logarithmic spiral over a cylindrically
bent crystal surface in the Johann scheme, since the
former shape extends the selection of the sources.

To conclude, we note that crystals, in general,
are easy to make into the logarithmic spiral shape (see,
e.g., [13]).
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Abstract—The theory of the dynamic 2D focusing of an X-ray wave upon its Laue diffraction by a system of
two bent crystals is developed. The reflecting planes of the crystals are perpendicular to their surfaces. 2D
focusing is shown to be highly sensitive to the bending radius of the crystals and to the difference in their thick-
nesses. The effect of astigmatism on 2D Laue focusing is described, and conditions for stigmatic focusing are
found. One-dimensional focusing inside the crystals is discussed. The spectral characteristics of a double-crys-
tal 2D-focusing spectrometer are considered. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Dynamic Laue focusing of X rays has been studied
both theoretically and experimentally for the case of a
narrow beam diffracted by perfect (flat) crystals [1–4],
as well as a spherical wave diffracted by both perfect
[5–12] and elastically bent crystals [13–20]. It has been
shown that the spherical wave can be focused both
inside and outside the crystals. Even in the pioneering
works [1, 3, 4], the effect of focusing was applied for
the spectral decomposition of X-ray radiation. The the-
ory of a bent-crystal Laue spectrometer was developed
in [19]. The transfer of X rays with magnifying and
demagnifying bent-crystal Laue lenses was demon-
strated in [21–24]. The focusing of X rays by two bent
crystals was studied in [25].

However, in all the works cited, the object of inves-
tigation was 1D focusing. In this work, we suggest a
theory of dynamic focusing of a spherical X-ray wave
Laue-diffracted by two bent crystals. With a proper
arrangement of the crystals, the 2D focusing of the radi-
ation with the formation of the focus takes place.

2D FOCUSING OF A SPHERICAL WAVE 
IN A VACUUM FOR THE CASE OF LAUE 
DIFFRACTION BY TWO BENT CRYSTALS

Let a spherical X-ray wave be incident on a system
of two elastically bent crystals (Fig. 1). We will use the
parabolic decomposition for the spherical wave. Let the
crystals be so bent that their reflecting planes coincide
with the normal cross sections, which remain undis-
torted. Then, each of the plane harmonics of the spher-
ical wave “sees” the crystal unbent at the point of inci-
dence. Therefore, the amplitude coefficient of plane-
wave reflection (ACPWR) can be given by the expres-
sion for the case of an undistorted (flat) crystal. The
1063-7842/02/4706- $22.00 © 20666
plane of diffraction scattering by the first crystal will be
referred to as the meridional plane. Then, the diffrac-

tion plane of the second crystal makes an angle ≈
with the sagittal plane of the first crystal and the sagittal

plane of the second crystal makes an angle ≈  with

the meridional plane of the first crystal. Here,  are
the Bragg angles for the first and the second crystal,
respectively. In the sagittal plane, the Fourier transform

R(ky, t) of the Green function  (yT – y, t) is roughly
equal to unity. Then, the Green function

ΘB
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=  2π( ) 1– ky iky yT y–( )–[ ] R ky t,( )expd
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Fig. 1. 2D focusing of a spherical X-ray wave Laue-dif-
fracted in a system of two bent crystals. (a) Focusing in the

{HO} plane, |OS(1)| = ; (b) focusing in the {OH} plane,

|OS(2)| = . S(1), (2), images of the source S.
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behaves like the delta function. With this in mind and
taking into account the Huygens–Fresnel X-ray diffrac-
tion and X-ray optical principles, we find the intensity
of the doubly diffracted spherical wave at a distance Lhh

to the second crystal in a vacuum:

(1)

where (x) and (y) are the intensity distributions
in the {HO} and {OH} planes, respectively (Fig. 1),
and (x, y) are the coordinates of the point of observa-
tion. We have

(2)

(3)

where

(4)

In the integral in (2),

(5)

is the ACPWR by flat crystals [26],

(6)

 = ∆Θ(1, 2)sin2 /(χh )1/2 is the normalized
angular variable (without allowance for refraction),
∆Θ(1, 2) are the deviations from the Bragg angle for the
first and the second crystal,

(7)

(8)

γ0 and γh are the direction cosines for the incident and
diffracted waves, R(1, 2) are the bending radii of the crys-
tals in the planes of diffraction scattering,

(9)
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 =  is the distance from the second crystal to the

source image in the {OH} plane,  is the distance
from the second crystal to the image in the {HO} plane,
L12 is the spacing between the crystals, κ = 2π/λ, λ is
the incident wavelength, t(1, 2) are the thicknesses of the
crystals,  and χ0 are the Fourier components of
X-ray polarizability, and C is the polarization factor.
The signs ± in (6) correspond to two modes (α and β)
of the wave field in the crystals (the minus sign corre-
sponds to the weakly absorbable mode), and the indi-
ces (1) and (2) correspond to the first and the second
crystal.

Intensity (2) is calculated with the method of sta-
tionary phase (here, it is taken into account that the

function (  + 1)–1/2 varies much more slowly than the
exponential). With regard for the ACPWR phase, we
find the first-, second-, third-, and fourth-order deriva-
tives of the eikonal function:

(10)

where  is the -dependent part of ε(1, 2)

[see (6)].

The stationary points  are determined from the
condition ∂Φ(1, 2)/∂  = 0. For the beams to intersect,
that is, for focusing in the {HO} and {OH} planes to
take place, it is also necessary that the second derivative
∂Φ(1, 2)/∂  vanish (∂2Φ(1, 2)/∂  = 0). The point

 = 0 is stationary for both planes, so that the wave
is focused at the geometrical focus with the coordinates
found from the following equations:

(11)

Lh
2( ) Lhh

2( )

Lhh
1( )

χh h,

y2˘

∂Φ 1 2,( )/∂y 1 2,( ) σh 1 2,( )
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1 2,( ) 1/αh
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;
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y 1 2,( )˘

y 1 2,( )˘ y 1 2,( )˘

yst 1 2,( )˘

1/α0
1 2,( ) 1/αh

1 2,( )+ κ ΘB
1 2,( )t 1 2,( )/σh 1 2,( ),tan±=

Ψ Ψ0– Lh
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The 2D (point) focus is the point of intersection of
two focal lines passing through the points S(1) and S(2).
The focal line passing through the point S(1) makes an
angle Θ(2) with the Y axis.

When the second crystal is rotated about the normal
to its surface through an angle ϕ, the second focal line,
passing through the point S(2), also rotates through the
same angle. In the limit ϕ  90°, the second focal
line transforms into a new focal line arising because of
the focusing of the convergent beam by the second
crystal. At ϕ = 90°, the first focal line disappears. 2D

focusing disappears, and 1D focusing into a line 
distant from the second crystal takes place. In this case,
the geometrical conditions for focusing have the form

(12)

where αh = /  + γh(1)/R1 + γh(2)/R2.

For the convergent beam to be focused by the sec-

ond crystal, it is necessary that ξ ~ x(2)/R2 > φ ~ x(2)/ ,
where ξ is the angle between the cross sections normal
to the crystal surface and φ is the angle of beam conver-
gence.

When the second crystal is rotated through an angle

≈2  counterclockwise about the X axis, the focus
shifts to another point along a circular arc of radius

≈ . The angle between the directions to the initial

and final positions of the focus is 4 .

From (11) and (12), it follows that two focuses cor-
responding to the α and β modes of the wave field may
form behind the second crystal if the crystals are not too
thick.

It is of interest to consider 2D Laue focusing in the
case when one focal line arises because of α mode
focusing and the other, because of β mode focusing.

Lh
2( )

1/α0 1/αh+

=  κ ΘB
1( )t1/σh 1( )tan ΘB

2( )t2/σh 2( )tan+[ ] ,±
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2( )

ΘB
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Ihh(x)

Ihh
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xF x

Fig. 2. Intensity distribution in the {HO} plane for the dou-
bly diffracted wave.
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Conditions for α–β focusing have the form

(13)

where the signs ± correspond to the different modes.
Note that the second crystal is exposed to the beam

(wave) with the angle of divergence ~|χhr|1/2 (in the
plane of diffraction scattering of this crystal) but only a
small part of the beam diffracts. However, the effect of
focusing more than compensates for the transmission
loss. At L0 ≈ 1 m, Lh ≤ 1 m, χhr ~ 10–5, and the focus
width ∆Ψ ≈ 10 µm, 2D focusing provides roughly a
800-fold gain in the collection angle compared with the
case of 1D focusing.

Let us find the intensity distribution in the neighbor-
hood of the focus (we will consider the focusing of the
weakly absorbable mode for definiteness). Intensity (1)
in view of (2) and (10) is expressed as

(14)

where Ip(A1, A2) = i[A2τ + A1τ2 + τ4]}dτ is the

Pearsey integral [27],

(15)

and ΨF is the position of the geometrical focus.
The intensity distribution has a peak with weak

oscillations on the right of it (Fig. 2).
Let the diffraction width of the focus be defined as a

distance over which the intensity drops twice. Then,
taking into account the properties of the Pearsey inte-
gral [27] and putting A1 = 0, we come to the following
estimates of the diffraction sizes of the focus in the
{HO} and {OH} planes:

(16)

The focus size is seen to be ∆Ψ ~ . For the (220)
reflection of CuKα radiation from a silicon crystal of
thickness t ≅  600 µm with R = –2 m, sinΘB ≅  0.4, and
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2( )t2/σh 2( ),tan=
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Lh ≅  0.65 m, formula (16) yields ∆Ψ ≈ 11 µm. From
(16), an interesting consequence follows: the diffrac-
tion broadening of the focus is smaller for a system of
flat crystals. This feature of a flat-crystal scheme, how-
ever, shows up only for Lh ≥ Rγh.

Exactly at the geometrical focus (A1 = A2 = 0), the
Pearsey integral absolute value equals 1.813. Its maxi-
mum (roughly 2.7) is observed at A1 ≅  –2 and A2 = 0,
not at the geometrical focus. The maximal intensity of
the doubly diffracted wave is reached if

(17)

Relationship (17) implies that the contribution from
the second term on the right-hand side is significant if
t ≤ 2Λ/π < Λ, where Λ = λ cosΘB/|χhr| is the extinction
length. For dynamic Laue focusing, the shift of the
intensity maximum from the geometrical focus can be
neglected.

FOCUSING OF A SPHERICAL WAVE INSIDE 
CRYSTALS

Consider the case  ≠ R1γ0(1). For the weakly
absorbable mode, the eikonal function Φ in the first
crystal is given by

(18)

Let γ0 = γh. Then, from (18) it follows that the
weakly absorbable wave is focused inside the first crys-
tal at a depth

(19)

The thickness of the first crystal must exceed .

Varying the distance , one can vary the position of
the focus inside the crystal. Note in passing that this cir-
cumstance might be used in studying the defect struc-
ture of bent crystals.

Putting  = t1 in (19), we come to the equation for
a cylindrical Laue lens [22] as a specific case:

The condition for kinematic focusing at the exit sur-
face of the first crystal, which follows from the lens
equation, has the form L0 = R1cosΘB. The wave weakly
absorbable in both crystals is focused inside the second

crystal at a depth  < t2:

It is of interest that either crystal and also the entire
double crystal system may serve as a demagnifying (in
the longitudinal direction) X-ray diffraction lens. In

1/α0 1/αh+  = κ ΘBt/σh κ 2 ΘBttan 1/2( )/σh
3/2.+tan
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2

=

ZF
2( )

ZF
2( ) σh 2( ) ΘB

2( )/κα 0
2( ).cot=
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fact, a slight displacement of the source by a distance
∆L0 along the incident beam direction causes the focus
to shift by a distance

(20)

for the symmetric geometry of diffraction. As follows
from (20), the longitudinal coefficient of image transfer
may be very low (~10–4–10–5). For example, for sources
in the immediate vicinity of the crystal surface (or in
the case of a flat crystal), the longitudinal coefficient of
image transfer is proportional to ~|χhr|. Note that a
weakly absorbable Bloch wave focused in the first crystal
is confined once again beyond the first crystal at a distance

 = 2sin2 cos t1/|χhr(1)| – cos2 / .

Let the planes of diffraction scattering of the crys-
tals coincide. Then, in the second crystal, the mode
weakly absorbable in both is focused at a depth

(21)

Here, the upper plus refers to the case L12 > ; the

lower minus, to L12 < . It is seen that in a system of flat

crystals with  =  and χhr(1) = χhr(2), the doubly dif-
fracted wave is focused in the second crystal at a depth

(22)

For (L0 + L12) ! t1sinΘBsin2ΘB/|χhr| and L12 < ,
the wave will be focused in the second crystal at a depth
equal to the thickness of the first crystal. This result is
consistent with those obtained in [1–4].

When focusing a spherical wave inside, an elasti-
cally bent crystal acts as an X-ray diffraction lens. The
formula for such a lens can be written as

(23)

where the focal length F is

In the case of a plane wave (L0 @ RcosΘ), we have
F ≈ R|χhr|/2sin2ΘB. Hence, for slightly bent crystals
with R ≈ 1 m, F ~ |χhr|. For bending radii R <
λ sinΘBsin2ΘB/|χhr|2, the focusing takes place at depths
shorter than the extinction length. Obviously, if a spher-
ical wave passes through a set of bent crystals roughly
meeting the Bragg condition and having thicknesses
ti ≥ Λi, the diffraction focus may form in each of the

∆ZF = χhr ΘB/2 ΘB ΘBcos L0/R–( )2∆L0sin
2

cos

Lh
1( ) ΘB

1( ) ΘB
1( ) ΘB

1( ) α0
1( )

ZF
2( ) χhr 1 2,( ) L12 Lh

1( )–( )/ ΘB
2( )sin 2ΘB

2( )sin( )±=

=  χhr 2( )± L12/ ΘB
2( ) 2ΘB

2( )sinsin( )

+ χhr 2( ) ΘB
1( ) 2ΘB

1( )t1/ ΘB
2( ) 2ΘB

2( ) χhr 1( )sinsin( )sinsin

± χhr 2( ) ΘB
1( )/ ΘB

2( ) 2ΘB
2( )α0

1( )sinsin( ).cos
2

Lh
1( )

Lh
1( )

ΘB
1( ) ΘB

2( )

ZF
2( ) t1 χhr L0 L12+( )/ ΘB 2ΘBsinsin( ).+±=

Lh
1( )

1/L0 1/ZF+ 1/F,=

F = χhr L0R/ χhr ΘB 2ΘBsinsin+( )R 2 ΘBL0sin
2

–{ }

≈ χhr / 2 ΘB ΘB/L0 1/R–cossin
2{ } .



670 TCHEN
crystals (Fig. 3). For this to occur, it is necessary that
the wave weakly absorbable in the first crystal be
weakly absorbed in the others.

EFFECT OF ASTIGMATISM ON THE FOCUSING 
OF THE SPHERICAL WAVE 

BY THE DOUBLE-CRYSTAL SYSTEM

From Eqs. (11), the 2D focused beam is subjected to
astigmatism. Let diffraction be symmetric (γ0 = γh = γ),

t1

t2

ti

S

F1

F2

Fi

Fig. 3. Multiple focusing of the weakly absorbable mode of
the spherical X-ray wave upon Laue diffraction by crystals
of different atomic composition. S, point source; F1, 2, …, i,
foci.

Effect of astigmatism on the transmission of doubly focussed
beam

R2, m ∆Lhh, cm ∆L, µm 10–4 N N

–2.100 8.099 1285 6.50 285

–2.050 4.676 742 2.17 35.5

–2.040 3.989 633 1.58 15.78

–2.030 3.300 523 1.08 3.2

–2.020 2.611 414 0.68 0.35

–2.010 2.317 367 0.53 6.68

–2.000 1.230 195 0.15 22.70

–1.990 0.538 85

–1.985 0.192 30

–1.984 0.123 20

–1.983 0.054 9

–1.982 –0.016 3

–1.981 –0.085 13

–1.980 –0.154 24

Note: t1 = t2 = 400 µm,  = 1 m, L12 = 1 cm, R1 = –2 m, σh =

4.5899 × 105 m–1,  =  = 2 cm,  = 63.05 cm,

and  = 64.24 cm. (220) reflection of CuKα radiation

from silicon crystals. ∆Lx = ∆Ly = ∆L are the sizes of aber-
ration spots.

L0
1( )

Lx
2( )

Ly
2( )

Lhh
1( )

Lh
1( )
the crystals have the same structure (σh(1) = σh(2)), and

the Bragg angles coincide. Then, the distances 
from the second crystal to the source images S(1, 2) are
given by

(24)

For arbitrary , L12, t(1, 2), and R(1, 2), the doubly
diffracted beam converges not to a point but to the focal
spot, whose size depends on the astigmatism (see table).
Let us suppose that the beam illuminates the entire sur-

face area ≈  of the second crystal. Then, the size
of the focal spot located in the middle between the focal

lines is ≈(∆Lhh /2 )(∆Lhh /2 ). Here, we

assume that ∆Lhh =  –  > 0.

The diffraction broadening of the focus in the {HO}
and {OH} planes calculated by formula (16) are ∆Ψ ≈
10 µm. Astigmatism reduces the collection angle by
N ≈ ∆Lx∆Ly/(∆Ψ)(1)(∆Ψ)(2) times. The values of the
coefficient N for various R2 are listed in the table. It is
seen that the astigmatism and, hence, the collection
angle depend on the bending radius R2. For example,
the collection angle grows by two orders of magnitude
when R2 changes from –2.000 to –1.984 m.

Now we will show that the degree of astigmatism
depends on the difference in the crystal thicknesses. Let
the source be placed near the surface of the first crystal

(   0) and R(1, 2)  ∞ (flat crystals). Then, from
(24), the astigmatism is expressed as

(25)

It is seen that ∆Lhh is a linear function of the differ-
ence ∆t = t2 – t1 in the thicknesses for L12 = const and
t2 = const.

With ∆t ≅  1 µm, sinΘB ≅  0.4, and χh ~ 10–5, we have
from (25) ∆Lhh ≈ 3 cm. In this case, the collection angle
drops by three or four orders of magnitude compared
with the stigmatic situation. The result obtained is of
practical importance, since the effect of focusing can be
applied to measure the crystal thickness with a micron
(or even submicron) accuracy.

DOUBLE-CRYSTAL FOCUSING LAUE 
SPECTROMETER

Now let us discuss the spectral characteristics of the
double-crystal system when it is used as a double-crys-
tal Laue spectrometer with diffraction focusing. In the
presence of astigmatism, we have, in essence, two spec-
trometers with different spectral resolutions. Let the

Lhh
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Lh
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1 2,( ) 1/R 1 2,( )–( ) 1–

.–sin=
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condition when astigmatism is absent be fulfilled:

∆Lhh =  –  = 0. Taking into account that dΘ =

δλ /λ (according to the Bragg equation) and that
the linear dispersion is given by

(26)

we find for the spectral resolution in the {OH} and
{HO} planes

(27)

For α0 = αh, L0 = 1 m, γ = 0.91, R = –2 m, Lh =
0.48 m, and δΨ = 10 µm, the spectral resolution is esti-
mated from (27) at dλ/λ ≈ 4 × 10–5. As follows from
(27), the spectral resolution varies as t1/4 and the lower
limit is reached at t ~ Λ. Also, we have from (27) that in
the symmetric geometry of diffraction (α0 = αh), the
resolution for the flat crystals is the worst if L0 = Lh.

If a plane wave is incident (L0 @ Rγ) and α0 = αh, the
spectral resolution is on the order of 10–6 (L0 ≈ 10 m).

When the spherical wave source is in the immediate

vicinity of the surface of the first crystal (   0),

the resolution is the best if  ≈ –R(1, 2)γh(1, 2). The
minus sign means that the first crystal presents its con-
vex surface to the source (R < 0).

In the absence of astigmatism, the decomposition
into the spectrum takes place along the line making the
angles Ψ1 and Ψ2 with focal lines 1 and 2 (Fig. 4). Here,
sinΨ1/sinΨ2 = ∆x/∆y and Ψ = Ψ1 + Ψ2. The spectral
resolution is given by max{(dλ/λ)1, (dλ/λ)2}.

FOCUSING OF A PLANE WAVE
AND SYNCHROTRON RADIATION

A practical case of special interest is the incidence

of a plane X-ray wave (  @ R1γ0(1)) and synchrotron
radiation. In the latter case, the radiation has an
extremely small divergence in one plane and a consid-
erable divergence in the plane normal to the former.

Focusing conditions (11) remain valid for the plane

wave if the change   – /R(1, 2) is made.
Then, the linear dispersions and the spectral resolutions
in the {HO} and {OH} planes equal each other:

(28)

Clearly, when numerically estimating the parame-
ters from (28), one must put L0 @ Rγ. Formulas (28)

Lhh
2( ) Lhh

1( )

ΘBtan

DΨ ΘB Lh
1 2,( ) L0

1 2,( )αh
1 2,( )/α0

1 2,( )–( )/λγ ,tan=

dλ /λ( ) 1 2,( ) ΘBγ∆Ψ 1 2,( )cot≅

× Lh
1 2,( ) L0

1 2,( )αh
1 2,( )/α0

1 2,( )–
1–
.

L0
1( )

Lh
1 2,( )

L0
1( )

α0
1 2,( ) γ0

1 2,( )

DΨ
p1( ) ΘB

1 2,( )L0
1 2,( )R 1 2,( ) 1/Lh

1 2,( ) 1/γR 1 2,( )+( )/λ ,tan≅

dλ /λ( ) 1 2,( )
p 1( ) ∆Ψ( ) 1 2,( ) ΘB

1 2,( )cot

L0
1 2,( ) 1/γ R 1 2,( )/Lh

1 2,( )+( ){ }
------------------------------------------------------------------.≅
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
characterize the spectral properties of the plane wave
being focused by the double-crystal spectrometer.

For the plane wave, the astigmatism is given by

(29)

Let us show that ∆Lhh strongly depends on the dif-
ference in the bending radii ∆R = R2 – R1 ! R1. In fact,
with t1 = t2 = 400 µm, γ ≅  0.91, σh = 4.5899 × 105 m–1,
R1 @ 1 m, λ = 1.54 Å, L12 ≈ 1 cm, and ∆R ≈ 1 cm, we
find that ∆Lhh ≈ 1.47 cm. The collection angle in this
case drops by one or one and a half orders of magnitude
in comparison with the case when the beam is focused
into a “point.” For L12 @ ∆R, the value of ∆Lhh depends
on ∆R only slightly and the astigmatism depends only
on the distance L12. As follows from (29), the astigma-
tism can be diminished (at R2 > R1) if the convex sur-
face of the first crystal is presented to the incident wave
(R1 < 0). Thus, with small distances between the crys-
tals (L12 < ∆R), the point focusing of the plane wave is
highly sensitive to the difference in the bending radii of
the crystals.

Figure 4 plots the astigmatism against the bending
radius of the first crystal. For the crystals of the same
thickness, the astigmatism is the least if the bending
radii coincide. Formula (29) has been derived for crys-
talline plates made of the same material. From (29), the
astigmatism is absent in the specific case R1 = R2 = R
and ∆t = t2 – t1 < 0, when the intercrystal spacing is
given by

(30)

From (30), with R = 2 m, sinΘB = 0.4, t1 = 400 µm,
t2 = 300 µm, and χh ~ 10–5, the intercrystal spacing at
which the image of a remote source is stigmatic equals

 ≈ 8.7 cm.

∆Lhh γR2 1 σhR2/ κ ΘBt2sin( )+( )–=

+ γR1 1 σhR1/ κ ΘBt1sin( )+( ) L12 t2+( )/γ.+

L12
p1( ) χhr γ2R2∆t/2 ΘBt1t2 t2+sin

2( ).–=

L12
p1( )

1

2

λ

Ψ

λ + dλ
∆y

S0

S1

∆x

Fig. 4. On the spectral decomposition of the spherical wave
upon Laue diffraction (astigmatism is absent). (1) Focal line
normal to the {HO} plane and (2) focal line normal to the
{OH} plane. ∆x and ∆y, diffraction broadening of the focus
in the {HO} and {OH} planes, respectively; S0, point
source image (focus) for the wavelength λ meeting the
Bragg condition; and S1, image for λ + dλ.



672 TCHEN
For the crystals of the same thickness and bending
radius, the astigmatism depends linearly on the inter-
crystal spacing ∆Lhh = (L12 + t2)/γ. In this case, the col-
lection angle will be high if the crystals are very close
to each other.

Let the bending radii be the same (R1 = R2 = R) but
the thicknesses differ. The astigmatism depends on the
difference in the thicknesses ∆t = t2 – t1 ! t1 as follows:

(31)

We will estimate ∆Lhh for the same numerical
parameters as before. Then, the first term in (31) is
1.6 × 102∆t. For ∆t = 1 µm and L12 ≈ 1 cm, its contribu-
tion is much less than from the second term. With L12 ≈
1 cm, the ∆L vs. ∆t dependence becomes significant if
the bending radii are sufficiently large (R ≥ 10 m).

Finally, let the radiation incident on the first crystal
diverge weakly in the plane of scattering and have a
finite divergence in the perpendicular plane (synchro-
tron radiation). The geometrical conditions for the 2D
Laue focusing of synchrotron radiation are given by

(32)

It follows that the nth diffraction harmonic λ/n,
along with the fundamental harmonic λ, is focused to
the focal point.
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Abstract—Capillary oscillations of a charged drop of a viscous incompressible liquid with finite conductivity
emitting electromagnetic waves are considered. A dispersion relation for the capillary oscillations has been
derived and analyzed using a linear approximation to oscillation amplitudes. © 2002 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

Investigating the capillary oscillations and stability
of a charged drop of a real liquid is of interest in con-
nection with numerous scientific and technological
applications (see, for example, [1–4] and the references
therein). Most theoretical investigations carried out in a
linear approximation to the oscillation amplitude [1–4],
and all investigations with the use of approximations of
a higher order of smallness (see [5]), dealt with drops
of an perfectly conducting inviscid liquid. The phenom-
enon of electromagnetic emission by a vibrating drop
was discussed in only one study [6], which also dealt
with an perfectly conducting inviscid liquid. It appears
interesting, therefore, to study capillary oscillations of
a viscous drop with a finite transfer rate of its electric
charge taking into account radiation energy losses.

1. Consider a spherical drop of a viscous incom-
pressible liquid with a density ρ, coefficient of kine-
matic viscosity ν, conductivity σ, permittivity ε1, and
surface tension γ, whose surface is in capillary oscilla-
tions of an infinitesimally small amplitude caused by
thermal motion of the drop molecules. A drop having a
radius R and carrying a charge Q is placed in a vacuum.
An equation of the drop free surface in a spherical coor-
dinate system with the origin in its center of mass can
be written in the form r = R + ξ(Θ, t), where ξ is the dis-
tortion of the equilibrium spherical drop surface caused
by the capillary wave motion, |ξ| ! R; Θ is the spherical
angular coordinate; and t is the time.

To simplify the subsequent presentation and calcu-
lations, we introduce dimensionless variables R = 1,
ρ = 1, and γ = 1. (All dimensionless quantities we
denote by the same symbols as the corresponding
dimensional ones.) Other quantities are expressed in
units of their characteristic values and have lower aster-
isks, viz.,

r* R; t* R3/2ρ1/2γ 1/2– ; u* R 1/2– ρ 1/2– γ1/2;= = =
1063-7842/02/4706- $22.00 © 0673
and 

Here, u is the liquid velocity, P is the liquid pressure,
and s is the oscillation frequency.

A set of electrohydrodynamic equations describing
the system considered with a field E induced by the
charge Q has the form

(1.1)

(1.2)

(1.3)

Subscript 1 denotes quantities relating to the drop,
and subscript 2, to the ambient; εj is the permittivity (in
the following we assume that ε2 = 1 and ε1 ≡ ε); u(r, t)
is the liquid velocity field and P1(r, t) is the pressure in
the liquid drop in the presence of an external electric
field; and c is the propagation speed of electromagnetic
waves in vacuum.

At the drop free surface described by an equation in
the form

(1.4)

the following boundary conditions must be satisfied:

—the kinematic condition

(1.5)

P* R 1– γ; s* R 3/2– ρ 1/2– γ1/2; Q* R3/2γ1/2;= = =

ν* R1/2ρ 1/2– γ1/2.=

du
dt
------ ∂u

∂t
------ u —⋅( )u+≡  = –—P1 v ∆u; ∇ u⋅+  = 0;

∇ D j⋅ 0; D j ε jE j;= =

∆E j
1

c2
----

∂E j

∂t2
---------– 0; j 1 2.,= =

F r t,( ) r 1– ξ Θ t,( )–≡ 0,=

dF
dt
------- ∂F

∂t
------ u —F⋅+ 0;= =
2002 MAIK “Nauka/Interperiodica”
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—the dynamic condition for the tangential compo-
nents of the stress tensor

(1.6)

where En and Eτ are the normal and tangential compo-
nents of the electric field strength and n and t are unit
vectors normal and tangential to the drop surface (1.4),
respectively;

—the dynamic boundary condition for the normal
component of the stress tensor

(1.7)

where P2 is the pressure from the ambient and PE and
Pγ are the pressures exerted by electric and surface ten-
sion forces, respectively;

—the conditions of discontinuity of the normal
component of the electric induction and continuity of
the tangential components of the electric field

(1.8)

and the balance equation for the surface charge density

(1.9)

where κ(Θ, t) is the surface density of the electric
charge, b is the mobility of charged particles, uτ and Eτ
are vectors in a plane tangential to the drop surface, and
divΣa is the surface divergence of the vector a.

In addition, we impose additional conditions fol-
lowing from obvious requirements of invariability of
the drop volume and position of its center of mass and
conservation of the total drop charge:

(1.10)

(1.11)

(1.12)

The set of Eqs. (1.1); (1.3), together with conditions
(1.5)–(1.12), is a mathematical formulation of the prob-
lem being solved.

2. We shall seek a solution to the problem using the
scalarization technique described in detail in [7], where

Π2τ Π1τ–( ) ν t n —⋅( )u n t —⋅( )u⋅+⋅[ ]– 0;=

Πτ
ε

4π
------EnEτ ;=

– P1 P2–( ) 2νn n —⋅( )u PE– Pγ+⋅+ 0;=

r 1 ξ : D2n D1n–+ 4πκ; E2τ E1τ ;= = =

∂κ
∂t
------ σ n E⋅ 1( ) divΣκut κbEτ++– 0;=

r ∞: D2 0;

r 0: D1 0;

r2 r Θsind Θd φd

V

∫ 4
3
---πR3;=

V 0 r R ξ Θ t,( ), 0 Θ π≤ ≤+≤ ≤[ ] ;=

ξ Θ t,( )nr ΘdΘdφsin

S

∫° 0;=

S r R ξ Θ t,( ), 0 Θ π≤ ≤+=[ ] ;=

κ Θ t,( )dS

S

∫° Q;=

S r R ξ Θ t,( ), 0 Θ π≤ ≤+=[ ] .=
it is shown, in particular, that the liquid velocity field
u(r, t) in a drop, being of the first order of smallness in
|ξ(Θ, t)|, can be presented in the form of a sum of three
orthogonal vector fields:

(2.1)

where Ψj(r, t) are scalar functions determined by the

field u(r, t) and  are vector operators meeting the
orthogonality conditions

(2.2)

and the conditions of commutativity with the Laplace
operator ∆

(2.3)

It is convenient to choose the operators  in the
following form:

(2.4)

(2.5)

The operators  and  are Hermitian adjoints.

Operator  separates the potential component of the

liquid motion; operator , the eddy toroidal compo-
nent about axis OZ; and the operator N3, the eddy poloi-
dal component.

According to [7], the toroidal component of the
velocity field does not influence the motion of the drop
free surface and can be omitted in the present analysis.
Substituting expansion (2.1) into Eqs. (1.1) and using
conditions (2.2) and (2.3) to find scalar functions
Ψ1(r, t) and Ψ3(r, t) and introducing additions of the
first order of smallness in |ξ| to the pressure field in the
drop p1(r, t), we obtain a set of equations

(2.6)

(2.7)

Assume that the time dependence of scalar func-
tions Ψj(r, t) and distortions of the equilibrium drop
surface ξ(Θ, t) are exponential:

We write the solution to set (2.6) in the form of an
expansion in Legendre polynomials:

(2.8)

u r t,( ) N̂1Ψ1 r t,( ) N̂2Ψ2 r t,( ) N̂3Ψ3 r t,( );+ +=

N̂i

N̂ j
+

N̂i⋅ 0 at i j≠=

∆N̂i N̂i∆; i 1 2 3., ,= =

N̂i

N̂1 —; N̂2 N̂1 r× — r;×= = =

N̂3 N̂1 N̂2× — — r×( );×= =

N̂1
+ —; N̂2

+
– r —; N̂3

+× r —×( ) —.×= = =

N̂ j
+

N̂ j

N̂1

N̂2

∆Ψ j r t,( ) 1
v
---- 1 δj1–( )

∂Ψ j r t,( )
∂t

----------------------–  = 0; j = 1 3;,

p1 r t,( ) ∂
∂t
-----Ψ1 r t,( ).–=

Ψ j r t,( ) st( ); ξ Θ t,( ) st( ).exp∼exp∼

Ψ1 r t,( ) Cn
1( )rnPn µ( ) st( ), µ Θcos≡exp

n 2=

∞

∑=
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and

(2.9)

where in(x) are the modified first-kind spherical Bessel
functions [9].

The function ξ(Θ, t) describing the drop surface dis-
tortion can also be presented in the form of a series in
Legendre polynomials:

(2.10)

The range of n from n = 2 to n  ∞ in the expan-
sions above is defined by conditions (1.10) and (1.11).

Boundary conditions (1.5)–(1.7) of the first order of
smallness in |ξ| after implementation of the scalariza-
tion procedure take the form

(2.11)

(2.12)

where ∆Ω is the angular component of the Laplace oper-
ator,

(2.13)

3. To find an expression describing the electric field
induced in the ambient medium by a charged conduct-
ing spherical drop with the surface perturbed by capil-
lary wave motion, it is necessary to solve the set of
Eqs. (1.2) and (1.3) subject to boundary conditions (1.8)
and (1.9) with additional condition (1.12).

It is reasonable to seek a solution to this problem in
the form of a superposition in spherical coordinates
with the origin at the center of mass of the drop:

(3.1)

Ψ3 r t,( ) Cn
3( )

in
s
ν
---r 

 

in
s
ν
--- 

 
-------------------Pn µ( ) st( ),exp

n 2=

∞

∑=

ξ Θ t,( ) ZnPn µ( ) st( ).exp
n 2=

∞

∑=

r 1: 
∂ξ Θ ϕ t, ,( )

∂t
---------------------------

∂Ψ1

∂r
----------

1
r
---∆ΩΨ3;–= =

t eΘ: Π2Θ Π1Θ–( ) v
∂

∂Θ
------- 2

∂
∂r
-----

Ψ1

r
------ 

 




–




≡

+
∂2Ψ3

∂r2
------------

1

r2
---- 2 ∆Ω+( )Ψ3–





+
1
Θsin

------------ ∂
∂ϕ
------

∂Ψ2

∂r
---------- Ψ2–

 
 
 





r 1=

0,=

r 1: – p1 2ν
∂2Ψ1

∂r2
------------ ∆Ω

∂
∂r
-----

Ψ3

r
------ 

 
 
 –+





=

-----– pE 2 ∆Ω+( )ξ–




0.=

E j E2
0( ) r( ) E j

1( ) r Θ t, ,( ), j+ 1 2,,= =
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where (r) is the electric field strength in the vicinity

of the unperturbed sphere and (r, Θ, t) is an addi-
tional contribution to the field strength resulting from
capillary oscillations of the drop surface and having the
same order of smallness as the surface perturbation,

that is,  ~ ξ.

By virtue of the linearity of the problem being

solved and expansion (3.1), vectors  and  are
solutions to sets of equations analogous to (1.2) and (1.3).

In the zero-order approximation, the electric field

strength inside the drop is (r) = 0 and the field

strength (r) outside the drop can be found by solv-
ing the problem

(3.2)

(3.3)

(3.4)

(3.5)

where κ0 is the charge density at the unperturbed drop
surface.

We shall seek  in the form

In this case, Eq. (3.2) subject to (3.3) is satisfied
identically and Eq. (3.3) transforms into the Laplace
equation for the potential Φ:

(3.6)

Due to the central symmetry of the problem in a
zero-order approximation, Eq. (3.6) takes the form of
an ordinary second-order differential equation with a
solution

Then, for the field strength  we obtain

(3.7)

The second boundary condition (3.4) is satisfied for
arbitrary values of the constant A due to er ⊥  t. The
magnitude of this constant A = Q is determined from

E2
0( )

E j
1( )

E j
1( )

E2
0( ) E j

1( )

E1
0( )

E2
0( )

∆E2
0( ) grad divE2

0( ) curl curlE2
0( )

–≡ 0;=

divE2
0( ) 0;=

r 1: E2
0( )n 4πκ0; E2

0( )t 0;= = =

κ Θ t,( )dS

S

∫°  = Q; S = r = R ξ Θ t,( ); 0 Θ π≤ ≤+[ ] ;

r ∞: E2
0( ) r t,( ) 0,

E2
0( )

E2
0( ) ∇Φ .–=

∆Φ 0.=

Φ A
r
---.–=

E2
0( )

E2
0( ) A

r2
----er.=
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the first of conditions (3.4) and (3.5). Finally, the

expression for the field strength  takes the form

(3.8)

Consider the determination of  as a problem of
the first order of smallness. To simplify the subsequent

calculation, we omit the superscript in  indicating
the order of smallness. An additional contribution of the
first order of smallness to the electric field strength Ej is
determined by Eqs. (1.2) and (1.3). Let us scalarize
these equations by representing vector Ej in the form of
an expansion:

(3.9)

where operators  are defined by expressions (2.4)
and (2.5) and satisfy conditions (2.2) and (2.3) and

 are arbitrary scalar functions.

With due regard for (2.2), Eq. (3.3) transforms into

the Laplace equation for function :

(3.10)

Due to commutativity of the operators  and the
Laplace operator (2.3), condition (1.3) transforms into
three scalar equations. Substituting expansion (3.9) into
(1.3) gives

Multiplying the last expression from the left subse-

quently by  and taking into account conditions (2.2)
and (2.3), we obtain a set of scalar equations

(3.11)

Inasmuch as we are solving a problem of electro-
magnetic emission by a drop, it is natural to assume that

 ~ exp(st). Then, Eqs. (3.11) reduce to Helmholtz
equations.

From Eq. (3.11) at m = 1 and from Eq. (3.10), we

obtain (s2/c2)  = 0; the complex frequency s of the
oscillations being different from zero, the scalar func-

tion  = 0. Thus, the strength Ej of the electric field

E2
0( )

E2
0( )

r( ) Q

r2
----er.–=

E j
1( )

E j
1( )

E j N̂1Φ j
1( ) N̂2Φ j

2( ) N̂3Φ j
3( ),+ +=

N̂i

Φ j
m( )

Φ j
1( )

∇ E j = N̂1
+

E j⋅–  = N̂1
+

N̂1Φj
1( ) N̂2Φj

2( ) N̂3Φj
3( )+ +( )–

=  –N̂1
+

N̂1Φ j
1( )⋅ ∇ ∇Φ j

1( )⋅ ∆Φ j
1( ) 0.= = =

N̂i

N̂m ∆Φ j
m( ) 1

c2
----

∂2Φ j
m( )

∂t2
----------------–

m 1=

3

∑ 0.=

N̂m
+

∆Φ j
m( ) 1

c2
----

∂2Φ j
m( )

∂t2
----------------– 0; m 1 2 3., ,= =

Φ j
m( )

Φ j
1( )

Φ j
1( )
produced by the surface oscillation of a charged drop
can be written as follows:

(3.12)

Functions  are solutions to the Helmholtz equa-
tion and have the form

(3.13)

It is easy to show that, due to the axial symmetry of
the problem, the electric field strength Ej both inside the
drop (j = 1) and outside (j = 2) has only a poloidal com-

ponent ~  in (3.12), the toroidal component,

~ , being  ≡ 0. Ultimately, for the field Ej in
a spherical coordinate system, we have

(3.14)

We shall seek a solution to Eq. (3.13) at j = 2 (for the
ambient medium) in the form of a superposition of trav-
eling waves:

(3.15)

where hn(kr) is the modified third-kind spherical Bessel
function [8].

We shall seek a solution to Eq. (3.12) at j = 1 (inside
the drop) in the form of a superposition of standing
waves:

(3.16)

where in(z) is the modified first-kind spherical Bessel
function.

Substituting (3.15) and (3.16) into (3.14), we find
for the field Ej

(3.17)

with the components for the ambient medium (j = 2)

(3.18)

E j N̂2Φ j
2( ) N̂3Φ j

3( ).+=

Φ j
m( )

∆Φ j
m( ) k2Φ j

m( )– 0; k2 s2/c2; m≡ 2; 3.= =

N̂3Φ j
3( )

N̂2Φ j
2( ) Φ j

2( )

E j N̂3Φ j
3( ) 1

r
---∆ΩΦ j

3( )er–
1
r
--- ∂

∂r
-----r

∂Φ j
3( )

∂Θ
-------------eΘ.+≡ ≡

Φ2
3( ) Dn

hn kr( )
hn k( )
---------------Pn µ( ); µ Θ,cos≡

n 2=

∞

∑=

Φ1
3( ) An

in kr( )
in k( )
--------------Pn µ( ),

n 2=

∞

∑=

E j r t,( )

=  Ern
j( )n n 1+( )Pn µ( )er EΘn

j( ) dPn µ( )
dΘ

------------------eΘ+
n

∑ st( ),exp

Ern
2( ) Dn

hn kr( )
rhn k( )
---------------;≡

EΘn
2( ) Dn

hn kr( )
rhn k( )
---------------

d
dr
-----

hn kr( )
hn k( )
---------------+

 
 
 

≡
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and for the drop liquid

(3.19)

For the condition of equality of tangential compo-
nents of the field strength E at the drop surface to be sat-
isfied, we take into account that the total electric field
outside the drop is a superposition of term (3.8) of the
zeroth order of smallness and additional contribution
(3.17) at j = 2 of the first order of smallness. The expres-
sion for a unit vector tΘ of the tangent to the perturbed
drop surface is written in the form

Ultimately, from the condition of equality of the tan-
gential components, in the first order of smallness in |ξ|
we have

(3.20)

Substituting (3.18) and (3.19) into (3.20), it is easy
to find relationships between the unknown coefficients
An, Dn, and Zn:

(3.21)

For all modes of the capillary oscillations of the
drop which are not damped by viscosity (at ν < 1), their
dimensionless frequencies are much less than the nor-
malized electrodynamic constant c; therefore, when
calculating the intensity of electromagnetic radiation
from a vibrating drop, it is natural to use asymptotic
expressions (at k ≡ (s/c)  0) for In, Hn, and fn:

(3.22)

Let us write complete expressions for the projec-
tions of the electric field strength Ej onto the axes:
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r
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From the discontinuity condition (1.8) of the normal
component of the electric induction vector at the free
surface of a charged drop, one can find a correction
κ1(Θ, t) to the equilibrium surface charge density κ0 =
Θ/4π arising from distortion ξ of the drop sphericity:

(3.24)

Using the condition of charge balance at the drop
surface given by Eq. (1.9), we find a relation between

the coefficients Dn, Zn, , and :

(3.25)

Here, In(x) is the same function as that defined in (3.21)

but of different argument: x ≡ ( ). Let us derive an
expression for the electromagnetic field pressure on the
drop surface. Using a linear approximation with respect
to small parameter |ξ|, we have

(3.26)
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To write the dynamic boundary condition for the
tangential components of the stress tensor (1.6) using a
linear approximation in |ξ|, it is sufficient to find the
component Π2τ because, according to (1.6) and (3.23),
Π1τ is of the second order of smallness in |ξ|:

(3.27)

4. Substituting expansions (2.8)–(2.10) into (2.11)–
(2.13) and taking into account (3.26) and (3.27), we
obtain a set of equations for obtaining unknown coeffi-
cients in expressions (2.8)–(2.10):

(4.1)
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Coefficients Bn, Gn, and Hn are defined by relation-
ships (3.22) and (3.25). The set of equations (4.1) is
homogeneous and has a solution only when a determi-
nant composed of the coefficient by the unknowns Zn,

, and  is zero. Equating the determinant to
zero, we obtain the dispersion relation for the capillary
oscillations:

(4.2)

At c  ∞, ν ≠ 0, σ = const, b = const, and ε =
const, this dispersion relation is reduced to that for a
charged drop with finite conductivity derived in [9].

It can be shown that for an perfectly conducting liq-
uid in the limit of low viscosity (at s @ ν), dispersion
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relation (4.2) is reduced to

(4.3)

It is easy to see that at ν = 0 and c  ∞, Eq. (4.3)
is reduced to the dispersion relation for a charged drop
of perfectly conducting inviscid liquid derived by Ray-
leigh [10]. At ν ≠ 0 and c  ∞, Eq. (4.3) is reduced to
that for a charged drop of perfectly conducting liquid
with low viscosity [11]. If the constant c is finite, the
third term in (4.3) determines the damping constant χn

of capillary oscillations of a charged drop of perfectly
conducting liquid related to the emission of electro-
magnetic radiation by this drop:

(4.4)

Numerical calculations with the use of complete
dispersion relation (4.2) allowed us to obtain depen-
dences of the real and imaginary components of the fre-
quency of drop oscillations on the characteristic physi-
cal parameters of the phenomenon illustrated in
Figs. 1–5. Figure 1 shows the dependences of the real
and imaginary components of the dimensionless fre-
quency on the dimensionless conductivity σ at n = 2,
ν = 0.01, b = 0.5, Q = 1, and ε = 80. Curve 1 corre-
sponds to capillary oscillations of the drop; curves 2–6,
to aperiodically damped poloidal liquid motion in the
drop. Curve 7 characterizes damped aperiodic liquid
motion associated with relaxational redistribution of
the charge over the drop surface. It is seen that the
increase in conductivity results in a linear increase in
the damping constant in branch 7 , corresponding to the
relaxation motion while not affecting the damping con-
stants of the capillary oscillations and poloidal liquid
motions. Neither does the frequency of capillary oscil-
lations depend on the conductivity. It is interesting to
note that high-frequency capillary waves can superpose
on fast-decaying low-frequency waves resulting from
interaction between poloidal liquid motion and liquid
motion associated with the movement of charge carri-
ers. In Fig. 2, these motions are represented by
branches 8. Strictly speaking, the liquid motions
described by branches 8 are not wavelike because their
damping constants in all cases are appreciably in excess
of the frequencies; therefore, these motions should be
interpreted as aperiodic.

Figure 2 displays dependences of the real and imag-
inary components of the dimensionless frequency on
the dimensionless viscosity ν at n = 2, σ = 25, b = 0.5,
Q = 1, and ε = 80. The numbers of curves 1–8 corre-
spond to the notation in Fig. 1. Curves 9 and 10 corre-
spond to damping constants of capillary–poloidal liq-
uid motion. It is seen that with rising viscosity, the
damping constants of branches 1–6 increase.

s2 2sν n 1–( ) 2n 1+( ) s
c
--Q2

4π
------ n 1+( ) 2n 1+( )+ +

+ n n 1–( ) n 2+( ) Q2

4π
------– 0.=

χn
Q2

8πc
--------- n 1+( ) 2n 1+( ).=
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In this case, as in Fig. 1, curve 7, corresponding to
relaxation liquid motion, interacts with branches 2–6,
corresponding to poloidal motion, and with branch 10,
corresponding to capillary-poloidal motion. In Fig. 2b,
the region of interaction between relaxation branch 7
and poloidal branches 2–5 is shown on a larger scale.
Also on a larger scale, Fig. 2c shows the region of inter-
action between branch 7 and capillary–poloidal
branch 10. It should be noted that the damping constant
of relaxation motion 7 associated with the charge redis-
tribution does not vary with viscosity.

In the general case, for a liquid with finite conduc-
tivity, the damping constant χn of capillary oscillations
should depend on the conductivity σ and surface mobil-
ity b of charge carriers. Numerical calculations show
that the damping constant χn of capillary oscillations of
a drop associated with emission of electromagnetic
radiation by the drop (this damping constant can be
extracted from the total damping constant assuming
n = 0) grows linearly with σ and b in the ranges of con-
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Fig. 1. Real and imaginary components of the dimension-
less oscillation frequency as functions of the dimensionless
liquid conductivity σ.
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Fig. 2. Real and imaginary components of the dimensionless oscillation frequency as functions of the dimensionless liquid viscosity ν.
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ductivity and the charge carrier mobility, which is of
interest from the viewpoint of possible applications in
geophysics. This can be seen in Figs. 3 and 4, where the
corresponding dependences are given for a mode with
n = 100. Such a high mode is chosen in order for the
intensity of electromagnetic radiation, which in this
case is characterized by the damping constant ~n2, to
have magnitudes corresponding to applications in geo-

Fig. 3. Dependence of the dimensionless damping constant
χn of capillary oscillations of a drop related to the electro-
magnetic drop radiation on the dimensionless liquid con-
ductivity σ. n = 100, Q = 1, b = 0.5, and ε = 80; ν: (1) 0,
(2) 10–9.

0.5

0 50

χn × 104

100 σ

1.0

1

2

physics (for example, to electromagnetic radiation from
storm clouds [6] or from Saint Elmo’s fire arising at the
surface of airplanes and causing intensive radiointerfer-
ence [12]). The intensity of electromagnetic radiation
depends on the damping constant related to the electro-
magnetic radiation and varies as ~χnexp(2χnt). In
Fig. 3, curve 2 represents the dependence χn = χn(σ)
calculated numerically for a liquid with low viscosity
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0 0.5

χn × 104

1.0 b
2.0

3.0

Fig. 4. Dependence of the dimensionless damping constant
χn of capillary oscillations of the drop related to the electro-
magnetic emission from the drop on the dimensionless sur-
face charge mobility b. n = 100, Q = 1, σ = 25, ε = 80, and
ν = 0.
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(ν = 10–9). It is seen that the contribution to the total
damping constant due to viscosity does not depend on
σ and the viscosity only causes a vertical shift of the
dependence χn = χn(σ) for an inviscid liquid.

A numerical calculation using Eq. (4.2) shows that,
as the drop charge Q (or the surface charge density κ)
increases at finite conductivity σ and mobility b, the
damping constant χn (Fig. 5) both for an ideal liquid
(curve 1) and for a liquid with low viscosity (curve 2)
grows as a square of Q. Curve 3 in Fig. 5 is the depen-
dence on Q of the damping constant of oscillations
related to the electromagnetic emission by a charged
drop of inviscid nonconducting liquid (Q ≠ 0, ν = 0,
σ = 0, and b = 0). It appears interesting that the damp-
ing constant is nonzero for a purely dielectric liquid,
where the charge is “trapped” on the drop surface; that
is, a vibrating charged dielectric drop is capable of
emitting electromagnetic radiation, although of appre-
ciably lower intensity.

The viscosity v  has no effect on the functional
dependence χn = χn(σ, b, Q) of the damping constant of
capillary oscillations related to emission of electromag-
netic radiation by the drop; however, with increasing
viscosity, frequencies of surface oscillations decrease
until they completely cease and the drop stops emitting
electromagnetic radiation at the corresponding fre-
quency. Numerical calculations show that oscillations
of a mode with n = 100 cease at ν ≈ 0.05; of the princi-
pal mode with n = 2, at ν ≈ 0.75.

CONCLUSION
Because of the finite charge redistribution rate and

energy loss by capillary oscillations through emission,

0.5

0 1

χn × 104

2 Q

1.0

1

2

3

Fig. 5. Dependence of the dimensionless damping constant
χn of capillary oscillations of the drop related to the electro-
magnetic emission from the drop on the dimensionless drop
charge Q. n = 100, ε = 80; (1) ν = 0, b = 0.5, and σ = 25;
(2) ν = 10–9, b = 0.5, and σ = 25; (3) ν = 0, b = 0, and σ = 0.
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the damping constants of all modes of capillary oscilla-
tions turn out to be greater compared with a liquid drop
of infinite conductivity and the structure of the arising
liquid motion is more complicated.

The contribution to the damping rate due to the
emission of electromagnetic radiation from a charged
drop grows with increasing conductivity of the liquid
and mobility of the charge carriers according to a linear
law. As conductivity of the liquid increases, poloidal
eddy motion in the drop interacts with near-surface liq-
uid motion caused by the charge redistribution. The vis-
cosity affects only the damping constants of capillary
and poloidal liquid motions in the drop and makes pos-
sible their interaction with the near-surface motion
caused by the charge redistribution accompanying drop
vibrations.
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Abstract—Regular features of the disintegration of both a drop of a perfectly conducting liquid and a drop of
a dielectric liquid into two or three parts in an external uniform electric field are studied using the principle of
minimizing the potential energy of the final state of a closed system with spontaneous processes. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the stability of a liquid drop in a uni-
form electrostatic field is of considerable interest for
various physical, geophysical, and engineering applica-
tions (see, e.g., reviews [1, 2] and the literature cited
therein). As a rule, in solving particular physical or
engineering problems associated with the possible dis-
integration of a drop in an electrostatic field, two main
questions ought to be answered. (i) Will the drop be
unstable, and, as a result, will it disintegrate? (ii) What
is the disintegration mechanism: will the drop disinte-
grate into several parts of comparable size or will it lose
excess charge and generate a large number of highly
charged small drops [1, 2]?

One of the problems arising in determining the dis-
integration mechanism is associated with the fact that,
under the action of a uniform electrostatic field, a drop,
though stable against disintegration, stretches out to take
on a nearly spheroidal shape [3, 4]. This effect compli-
cates analytic treatment because the relevant mathemati-
cal expressions are quite lengthy. Solving the problem of
the instability of a spheroidal drop by classical hydro-
dynamic methods (e.g., by mode-by-mode analysis) is
usually laborious, and the solution can only be obtained
for drops having a small eccentricity [3, 5].

An approach to analyzing the problem under discus-
sion on the basis of the energy principle is simpler.
Although this approach cannot be used to obtain exact
quantitative characteristics of the disintegration pro-
cess, it yields reliable qualitative predictions as applied
to the problems of the disintegration of a highly
charged drop [6–8] and the disintegration of a highly
deformed nonspheroidal drop in an external electro-
static field. The problem of the disintegration of an
uncharged drop with an arbitrary electrical conductiv-
ity in an external uniform electrostatic field E in the
case of natural spheroidal deformations (such that the
equilibrium shape of a drop in the field E is close to a
prolate spheroid) still remains unsolved.

In the context of what was said above, we investi-
gate the possible disintegration of a drop of an inviscid
1063-7842/02/4706- $22.00 © 20682
incompressible liquid into two or three parts. We con-
sider a drop in an external uniform electrostatic field E
between the plates of a plane capacitor and assume that
the drop has the shape of a prolate spheroid stretched
out along the field E. The remaining basic assumptions
are as follows. (i) The drop, together with the electrodes
creating the external field and the source of electromo-
tive force (emf), forms a closed system. (ii) In accor-
dance with the principle of minimum potential energy
of the final state of a closed system, the change in the
total potential energy of the system during the disinte-
gration of the drop is extreme. (iii) The kinetic energy
of the parent drop before the disintegration and that of
the daughter drops after the disintegration are both
zero. (iv) The total volume of a liquid in the parent and
daughter drops remains unchanged during the disinte-
gration. (v) The liquid in the drop is in equilibrium with
its saturated vapor, so that the mass of the liquid lost by
evaporation is negligible.

Hence, we consider a spherical drop of radius R,
with the surface tension σ, in a uniform electrostatic
field E, along which the drop stretches out to take on an
equilibrium spheroidal shape with the eccentricity e,
satisfying the relationships

Here, a and b are the major and minor semiaxes of the
spheroid. In what follows, we consider two opposite
limiting cases in which the liquid in the drop is (i) a per-
fect dielectric or (ii) a perfect conductor.

2. DIELECTRIC LIQUID DROP
2.1. Disintegration of a Drop into Two Parts

The potential energy of the surface-tension forces of
a spheroidal drop has the form

e 1 a2/b2– , a R 1 e2–( ) 1/3–
,= =

b R 1 e2–( )1/6
.=

U0 2πσR2 1 e2–( )1/3
1 earcsin

e 1 e2–( )1/2
--------------------------+ 

  .=
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The potential energy of a dielectric spheroid in a
uniform electrostatic field E is described by the expres-
sion [9]

where P is the dipole moment of a dielectric spheroid
polarized by the field E, ε is the dielectric constant of a
liquid, and the depolarization factor k is equal to [9]

The total potential energy of a spheroidal dielectric
drop in an external uniform electrostatic field E is

We suppose that, in a sufficiently strong field E, the
drop is unstable and disintegrates into two daughter
drops of comparable size having a volume equal to the
sum of the volumes of spheres of radii R1 and R2. Since
the parent drop is a perfect dielectric, the daughter
drops remain uncharged. Assuming that the eccentrici-
ties e1 and e2 of the daughter drops depend only on the
strength of the external field, we can write the following
expression for the potential energy of a system of two
daughter drops in the field E:

(1)

Here, the first and second terms describe the energy of
the surface tension of the daughter drops, the third and
fourth terms describe the energy of their polarization in
the field E, the fifth term describes the energy of the
dipole interaction between the polarized daughter
drops, r is the distance between their centers, and their
dipole moments p1 and p2 are defined as

(2)

In expression (1), the parameter r implicitly deter-
mines the degree of deformation of the parent drop.
During the disintegration, the parent drop is distorted
into a dumbbell shape and then splits at the neck into
two daughter drops of comparable size.
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We introduce the notation V1/V = n, where V1 is the
volume of the first daughter drop and V1 is the volume
of the parent drop. Then, from the volume conservation
condition, we find

We substitute this relationship into expression (1)
and take into account expression (2) to obtain

(3)

In order to simplify the calculations, we nondimen-
sionalize expression (3) by dividing by 2πσR2 and
introduce the notation

(4)

With this notation, expression (3) becomes

(3a)

It should be taken into account that the eccentricities
e1 and e2 depend on the strength of the external electric
field [4]:

Let us determine the value of the parameter n at
which expression (3a) has a minimum. To do this, we
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require that the following two conditions be satisfied:

(5)

The first of conditions (5) yields

(6)
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Fig. 1. Surface f1 = f1(n, w), which determines the depen-
dence of the first derivative of the potential energy of two
dielectric drops on the dimensionless volume n and on the
parameter w characterizing the strength of the external elec-
tric field. The calculations were carried out for ε = 10.
where

Because of the complexity of Eq. (6), it can only be
solved numerically. The sought-for function w(n) is a
curve of the intersection of the surface f1 = f1(n, w) and
the z ≡ 0 plane. In constructing the surface f1 = f1(n, w),
there is an uncertainty in the choice of x. The related
numerical calculations were carried out under the
assumption that the daughter drops touch one another,
in which case the x value is equal to the sum of their
major semiaxes,

Figure 1 shows the intersection of the surface f1 =
f1(n, w) calculated for ε = 10 and the z = 0 plane. We can
see that the necessary disintegration condition can be
satisfied only for n = 0.5, which corresponds to the dis-
integration of a parent drop into two daughter drops of
equal volume.

Figure 2 shows the surface f2(n, w) = ∂2U/∂n2 in the
n and w coordinates. The second of conditions (5) (a
sufficient condition) is seen to hold for any n and w val-
ues. The explicit analytic expression for the function
f2 = f2(n, w) is fairly involved; therefore, we do not write
it out here. Hence, the two daughter drops into which a
dielectric parent drop disintegrates should have the
same volume; this corresponds to a “symmetric” disin-
tegration mechanism.
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Fig. 2. Dependence of the second derivative f2 = f2(n, w) of
the potential energy of two dielectric drops on the dimen-
sionless volume n and on the parameter w. The calculations
were carried out for ε = 10.
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2.2. Disintegration of a Drop into Three Parts

In this section, we assume that two daughter drops
of equal volume detach from the opposite sides of an
unstable dielectric parent drop in the field E. The poten-
tial energy of the final state of such a system has the
form

(7)

Here, the first term describes the energy of the surface
tension of the central daughter drop, the second term
accounts for the energy of its polarization in the field E,
and the third term describes the energy of the dipole
interaction between the two side daughter drops. In
parentheses, the first term is the energy of the surface
tension of the two side daughter drops, the second term
is the energy of their polarization in the field E, and the
third term is the energy of the dipole interaction of the
two side daughter drops with the remainder of the par-
ent drop. The subscript 1 refers to the central daughter
drop, and the subscript 2 stands for the side daughter
drops. The dipole momenta of the drops are again
described by expression (2), in which r is now the dis-
tance between the centers of a side daughter drop and
the remainder of the parent drop.

We assume that the volume V2 of a daughter drop is
n times smaller than the volume V of the parent drop.
From the volume conservation condition, we obtain the
relationships

Substituting these relationships into expression (7)
and taking into account expression (2), we find
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As before, we must take into account the fact that
the eccentricities e1 and e2 depend on the strength of the
external electric field [4]:

In order to simplify the calculations, we nondimen-
sionalize the potential energy of the final state of the
system in the above manner. Then, we use relationships
(4) to arrive at

(8)
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Fig. 3. Same as in Fig. 1, but for disintegration into three
dielectric drops.
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In order to determine the position where the function
U = U(n) is minimum, we require that conditions (5) be
satisfied. The first of conditions (5) yields

(9)
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Fig. 4. Same as in Fig. 2, but for disintegration into three
dielectric drops.
As in the case of disintegration of a dielectric drop
into two parts, Eq. (9) was solved numerically. In con-
structing the function f1(n, w), we assume that the side
daughter drops touch the central daughter drop; i.e.,
that

The surface f1 = f1(n, w) intersected by the z = 0
plane is shown in Fig. 3. The calculations were carried
out for ε = 10. The intersection of the surface f1 =
f1(n, w) by the z = 0 plane is the sought-for solution to
the equation f1(n, w) = 0. As may be seen, in order for
disintegration to occur, it is necessary that n ≈ 0.33,
which corresponds to the three daughter drops having
an approximately the same volumes. The volume of the
side daughter drops is seen to increase insignificantly
with the parameter w. Figure 4 shows the surface
f2(n, w) = ∂2U/∂n2 calculated for ε = 10. One can see
that the second of conditions (5) is satisfied for any n
and w values. The analytic expression for the function
f2 = f2(n, w) is not presented here because of its com-
plexity. Hence, a dielectric drop disintegrates into three
parts by a symmetric mechanism, as is the case with
disintegration into two parts.

3. PERFECTLY CONDUCTING DROP

It is well known [1, 10] that, in a strong uniform
electrostatic field, a perfectly conducting parent drop
disintegrates, emitting a large number of smaller (by
two orders of magnitude) daughter drops. For this rea-
son, we restrict ourselves to analyzing the relevant dis-
integration mechanism. We assume that, during the dis-
integration, two substantially smaller daughter drops
with the same volume and with the charges Q equal in
magnitude but opposite in sign detach from the oppo-
site sides of an ellipsoidal parent drop with the eccen-
tricity e1. Because of their small radii and the high
Laplace’s pressure in them, the side daughter drops can
be assumed to be spherical, in which case the depolar-
ization factor for them reduces to k2 = 1/3 [9].

The energy of a conductor in a uniform electrostatic
field is described by the expression [9]

where the electric dipole moment P is

Consequently, the potential energy of the final state
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of a system of three drops has the form

(10)

Here, R1 is the radius of the central daughter drop, R2 is
the radius of the side daughter drops, and the potential
energy U1 of the dipole interaction between the central
drop and a side drop is

(11)

where p1 is the dipole moment of the central drop, p2 is
the dipole moment of a daughter drop, and r is the dis-
tance between their centers. In expression (10), the
electrostatic energy U2 of a charged daughter drop is
equal to

(12)

In order to determine the energy U3 of the electro-
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the polarized remainder of the parent drop, we assume
that the polarized drop is a dipole. The total polariza-
tion charge of half of a spheroid can be obtained by
integrating the surface charge density γ:

The distance between the center of the drop and the
centroid of the charge is

The axial symmetry of the problem implies that
 = 0 and  = 0.

Hence, the energy of the electrostatic interaction
between the polarized parent drop and a charged
daughter drop is described by the expression

(13)

In expression (10), the term U4 is the potential
energy of a dipole formed by the two side charged
daughter drops in the field E:
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Substituting formulas (11)–(14) into expression (10),
we obtain

(15)

We assume that the volume V2 of a side drop is n
times smaller than the volume V of the parent drop.
From the volume conservation condition, we can obtain
the relationships

in which case we have

and the depolarization factor k1 has the same form as for
a dielectric drop.

Under the assumption that the charge of the daugh-
ter drops does not depend explicitly on their volume,
the potential energy of the system under consideration
can be rewritten as

After nondimensionalizing according to (4), we take
into account the identity Q ≡ Q/ER2 to obtain

U
E2R1

3

6k1
------------–= 2πσR1

2 1 e1
2–( )1/3

1
e1arcsin

e1 1 e1
2–( )1/2

----------------------------+
 
 
 

+

+ 2 –
E2R2

3

2
------------ 4πσR2

2 2R1
3R2

3

3r3k1

---------------E2–+




+ Q2

2R2
---------

QER1
3

3k1
-------------- r1

4R1
2

9 1 e1
2–( )2/3

---------------------------–
 
 
  1–





– 2QEr.–

R1 1 2n–( )1/3R, R2 n1/3R,= =

e1
3w1/2

23/2
------------ 1 2n–( )1/6=

U –
E2R3 1 2n–( )

6k1
-------------------------------- 2πσR2 1 2n–( )2/3 1 e1

2–( )1/3
+=

× 1
e1arcsin

e1 1 e1
2–( )1/2

----------------------------+
 
 
 

E2R3n– 8πσR2n2/3+

–
4 n 2n2–( )

3r3k1

-------------------------R6E2 Q2

n1/3R
------------+

+
2 1 2n–( )QER3

3k1
-------------------------------------- r2 4 1 2n–( )2/3R2

9 1 e1
2–( )2/3

----------------------------------–
 
 
  1–

2QEr.–

U 1 2n–( )2/3 1 e1
2–( )1/3

1
e1arcsin

e1 1 e1
2–( )1/2

----------------------------+
 
 
 

= 4n2/3+

–
w 1 2n–( )

6k1
------------------------ wn– 4 n 2n2–( )w

3x3k1

-----------------------------
wQ2

n1/3
----------+–



688 KOROMYSLOV et al.
0
–2

f1
0.2

0.4

n

0

0.8
w

0

0.4

Fig. 5. Same as in Fig. 1, but for disintegration into three
perfectly conducting drops.
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Fig. 6. A magnified fragment of Fig. 5: the region of small
n values is reproduced on an enlarged scale.
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Fig. 7. Same as in Fig. 4, but for disintegration into perfectly
conducting drops.

0

The position where the function U = U(n, Q) is min-
imum is determined by the relationships

(16)

in which A = ∂2U/∂n2, C = ∂2U/∂Q2, B = ∂2U/∂Q∂n, and

Using these relationships, we arrive at the following
expression for the charge of a daughter drop:
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From the second of relationships (16), we find
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Equations (17) and (18) were solved numerically,
the distance between the centers of the parent drop and
a side daughter drop being defined as

The surface f1 = f1(n, w) intersected by the z = 0
plane is shown in Figs. 5 and 6. The intersection of the
surface f1 = f1(n, w) by the z = 0 plane is the sought-for
solution to the equation f1(n, w) = 0. A sufficient condi-
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tion for existence of the minimum is very complicated,
so we do not write it out here. Figure 7 shows the inter-
section of the numerically calculated surface

which characterizes the sufficient condition, and the
z = 0 plane. As may be seen in Fig. 7, the condition
f2(n, w) > 0 is satisfied only for small n values.

Hence, although Eqs. (17) and (18) at fixed w have
two solutions (one in the region of small n values and
the other in the region of large n values), the only pos-
sible mechanism for the disintegration of a perfectly
conducting drop is by the emission of small daughter
drops, in which case the radius of the produced drops
increases with electric field strength.

4. CONCLUSION

A dielectric drop can only disintegrate into parts of
comparable size. A drop of a perfectly conducting liq-
uid in a strong electrostatic field E disintegrates, emit-
ting many very small daughter drops whose radii are
two orders of magnitude smaller than the radius of the
parent drop.

f 2 n w,( ) A B

B C
,=
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
REFERENCES

1. A. I. Grigor’ev and S. O. Shiryaeva, Izv. Akad. Nauk
SSSR, Mekh. Zhidk. Gaza, No. 3, 3 (1994).

2. D. F. Belonozhko and A. I. Grigor’ev, Élektrokhim.
Obrab. Met., No. 4, 17 (2000).

3. G. Taylor, Proc. R. Soc. London, Ser. A 280, 383 (1964).
4. A. I. Grigor’ev, S. O. Shiryaeva, and E. I. Belavina, Zh.

Tekh. Fiz. 59 (6), 27 (1989) [Sov. Phys. Tech. Phys. 34,
602 (1989)].

5. S. O. Shiryaeva, Zh. Tekh. Fiz. 69 (8), 28 (1999) [Tech.
Phys. 44, 894 (1999)].

6. V. A. Koromyslov, A. I. Grigor’ev, and S. O. Shiryaeva,
Zh. Tekh. Fiz. 68 (8), 31 (1998) [Tech. Phys. 43, 904
(1998)].

7. S. I. Shchukin and A. I. Grigor’ev, Zh. Tekh. Fiz. 70 (4),
1 (2000) [Tech. Phys. 45, 381 (2000)].

8. S. I. Shchukin and A. I. Grigor’ev, Zh. Tekh. Fiz. 70 (6),
27 (2000) [Tech. Phys. 45, 694 (2000)].

9. L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Nauka, Moscow, 1982; Pergamon,
New York, 1984).

10. A. I. Grigor’ev and S. O. Shiryaeva, J. Phys. D 23, 1361
(1991).

Translated by O. Khadin



  

Technical Physics, Vol. 47, No. 6, 2002, pp. 690–694. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 5, 2002, pp. 35–40.
Original Russian Text Copyright © 2002 by Konshina.

                          

GAS DISCHARGES,
PLASMA

                                   
Deposition of a-C:H Films in a DC Glow Discharge 
with a Magnetron Plasma Localized near the Anode

E. A. Konshina
Vavilov State Optical Institute, All-Russia Research Center, 

Birgevaya Linia 12, St. Petersburg, 199034 Russia
e-mail: konshina@soi.spb.su

Received March 23, 2001; in final form, August 21, 2001

Abstract—A multielectrode CVD system having a region of crossed magnetic and electric fields is used for
the deposition of a-C:H films in a dc glow-discharge plasma. The I–V characteristics of the discharge are taken
in the pressure range from 0.004 to 0.1 Pa. The effect of magnetic field on the I–V characteristics is investigated.
The film deposition rate as a function of discharge power, hydrocarbon vapor pressure, conductivity and poten-
tial of the substrate, and inert gas is studied. The results obtained are discussed in terms of the adsorption mech-
anism of film condensation in a plasma. The effect of deposition rate on the film properties is analyzed. © 2002
MAIK “Nauka/Interperiodica”.
INTRODUCTION

CVD in a glow discharge plasma is common in the
production of amorphous hydrogenated carbon (a-C:H)
films. In this method, hydrocarbon decomposition
products condense in a positive-ion plasma. The glow
discharge plasma is produced with rf-biased [1–7] or dc
[8–10] diode-type systems. Inertia of ions (in compari-
son with electrons) in an rf discharge decreases their
effect on the growing film. The efficiency of gas ioniza-
tion can be improved by placing a grid negatively
biased with respect to the rf plasma near the substrate
[11] and also by using a magnetic field perpendicular to
the rf plasma electric field [12].

In this work, we study the performance of a multi-
electrode device designed for the deposition of a-C:H
films. A particular feature of this device is that a mag-
netron plasma localized near the anode coexists with a
dc glow discharge plasma in a quasi-closed volume.
The effect of interelectrode voltage, discharge power,
gas pressure, and other factors on the rate of a-C:H film
deposition is analyzed.

EXPERIMENTAL

(i) Device for film deposition in a glow discharge
plasma. The schematic representation of the multielec-
trode device for the deposition of a-C:H films is shown
in Fig. 1. Localized plasma 1, produced by crossed
magnetic and electric fields, sustains a glow discharge
in volume 2. We used annular permanent magnet 3 and
two planar annular electrodes: anode 4 and cathode 5.
The magnetic field intensity near the cathode surface
was about 600 G. Additional electrode 6 and substrate-
carrying electrode 7 were mounted on glass cylinders
with a diameter of about 130 mm. The cylinder walls
1063-7842/02/4706- $22.00 © 0690
confine the plasma inside the quasi-closed volume of
the vacuum chamber. The ring-shaped gap between the
magnet and the cathode is used as a gas inlet. Such a
design of the device provides uniform gas distribution
and efficient gas consumption, as well as reduces the
film contamination by foreign impurities. Cathode 4
and anode 5 are placed in the neighborhood of the per-
manent magnet to provide maximum intensity and uni-
formity of the magnetic field in the crossed field region.
The spacing between cathode 4 and substrate holder 7
is about 50 mm in the absence of the additional elec-
trode. This electrode is placed 30 mm away from the
cathode. This device allows the deposition of films with
a thickness nonuniformity of no more than 20% on sub-
strates of diameter up to 100 mm.

Vapor

To pump

1

2

3 4

5
6
7

8

9

10

Fig. 1. Multielectrode device: 1, localized plasma; 2, glow
discharge plasma; 3, permanent magnet; 4, cathode;
5, anode; 6, additional electrode; 7, substrate holder; 8, vac-
uum chamber; 9, current leads; and 10, valve.
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The device is placed into vacuum chamber 8 having
current leads 9 and adjustable valve 10 for gas supply
(Fig. 1). In the experiments, the anode was positively
biased with a standard dc power unit. The cathode was
under the ground potential. The substrate holder was
either negatively biased with a dc power unit or under
the ground potential. The additional electrode was used
as a substrate holder when a-C:H films were deposited
at a glancing angle [13]. The vacuum chamber was
evacuated to (1–5) × 10–3 Pa by a rotary backing pump
and a turbomolecular pump. The gas pressure in the
vacuum chamber was measured by a vacuum ionization
gage.

The vapor of the material to be deposited was deliv-
ered to the vacuum chamber through the adjustable
valve and the receiver pre-evacuated by the backing
pump. When the voltage is applied to the electrodes, a
high-density toroidal plasma arises as a result of the
effective electron capture by a magnetic trap, followed
by gas ionization in the discharge gap between the
anode and the substrate holder. Ion collisions with the
solid surface confining the plasma generate extra elec-
trons which also take part in gas ionization. a-C:H films
were deposited on polished copper and glass substrates
covered by thin conducting and semiconducting layers.

(ii) Performance of the device. Figure 2 shows the
ion current I through substrate holder 7 (Fig. 1) vs. acet-
ylene pressure P in the vacuum chamber. The glow-dis-
charge acetylene plasma was obtained with the device
described above. When the plasma is sustained by the
plasma localized in the device, the ion current varies
only slightly with the gas pressure (varying from 0.01
to 0.04 Pa) at a constant voltage U (curves a and b in
Fig. 2). An increase in the voltage from 600 to 800 V
leads to a twofold increase in the current through the
substrate holder. In the absence of the permanent mag-
net, the glow discharge was initiated at a higher pres-
sure, 0.06 Pa (curve c in Fig. 2), and at a higher voltage,
1200 V. In this case, the ion current depends more
strongly on the gas pressure and increases with it. Fig-
ure 2 suggests that the localized plasma generated in the
region of the crossed electric and magnetic fields has a
substantial effect on the properties of the discharge.

The experimental voltage dependences of the ion
current to the substrate are presented in Fig. 3a. The
curves increase following the law I ~ Ua. The exponent
a defining the gas ionization efficiency varies non-
monotonically in the pressure range from 0.004 to
0.1 Pa (Fig. 3b). The gas ionization is more effective at
pressures near 0.03 Pa. The ion current decreases both
when the pressure decreases (due to a reduction in the
gas molecule concentration in the quasi-closed volume)
and when the pressure grows up to 0.05 Pa. With the
additional electrode (at the ground potential) intro-
duced, the ion current to the substrate decreases (line 4)
in comparison with its value at the same pressure (line 3
in Fig. 3a). The same slope of straight lines 3 and 4 in
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
Fig. 3a indicates that the gas ionization efficiency
remains constant.

The performance analysis of our multielectrode
device showed that it operates in a wider pressure range
(from 0.004 to 0.1 Pa) in comparison with standard
diode-type systems. This greatly extends the range of
operating conditions for the deposition of a-C:H films

4

10–1

I, mA

P, Pa
0

2
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8

10

10–2

a

b

c

Fig. 2. Ion current through the substrate holder vs. acetylene
pressure in the vacuum chamber. Glow discharge is sus-
tained (a, b) by the localized plasma and (c) without it. U =
600 (a), 800 (b), and 1200 V (c).
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Fig. 3. (a) Ion current vs. voltage for the three-electrode
arrangement. Acetylene pressure P = 0.004 (1), 0.03 (2),
0.05 (3), and 0.05 Pa (with an additional electrode) (4);
(b) exponent a in the law I ~ Ua vs. pressure.
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in a glow discharge plasma. The ion current to the sub-
strate can be varied from 2 to 40 mA at interelectrode
voltages from 600 to 1200 V. Then, the discharge power
N dissipated by positive ions at the substrate holder will
vary between 1.2 and 44 W.

FACTORS GOVERNING THE RATE 
OF a-C:H FILM DEPOSITION

(i) The effect of glow discharge parameters. Chem-
ical reactions and physical processes at the surface of
a-C:H films during their deposition in a low-tempera-
ture hydrocarbon plasma were considered in terms of
the adsorbed layer model [14]. This model assumes that
CH3 plasma radicals are physically adsorbed on the sur-
face and then pass into the chemisorbed state as a result
of cross linking due to energetic ions. The surface cov-
erage depends on the number of surface states and sur-
face temperature. When a-C:H films are deposited with
the described device, their surface is continuously bom-

0.5

800

r, Å/s

600 1000 1200 U, V
0

1.0

1.5

2.0

101

100 101

r, Å/s

N, W

1

2

Fig. 4. Rate of a-C:H film deposition on the glass substrates
vs. interelectrode voltage.

Fig. 5. Rate of a-C:H film deposition on the copper sub-
strates vs. discharge power at acetylene pressures P ≥ 0.1
(s) and P ≤ 0.05 Pa (m). n, deposition from the acetylene–
argon plasma.
barded by positive ions whose energy depends largely
on the interelectrode voltage. The ion energy may be
high enough to consolidate the condensate either by
cross linking or by decomposing weakly bound parti-
cles with subsequent surface diffusion and desorption
of the decomposition products. The balance of the pro-
cesses conducive to film deposition and etching defines
the deposition rate. The film deposition rate can also be
varied by properly selecting the glow discharge param-
eters (gas pressure, ion current to the substrate, and
interelectrode voltage), which control the number of
ions and their energy.

The rate (r) of film deposition on the surface of the
glass substrates in the acetylene plasma as a function of
the interelectrode voltage is shown in Fig. 4. The depo-
sition rate was defined as the ratio of the a-C:H film
thickness to the deposition time. The thickness was
measured by an MII-4M microinterferometer with an
accuracy of 10%. The thickness of a-C:H films was
found to be 0.1–0.3 µm. As the voltage increases from
700 to 1300 V, the deposition rate varies from 0.25 to
2 Å/s.

The experimental dependences of the deposition
rate on the discharge power for the a-C:H films
obtained at a vapor pressure of ≈0.1 Pa (straight line 1)
and ≈0.05 Pa (straight line 2) are shown in Fig. 5. The
films were deposited on the copper substrates from the
acetylene and acetylene–argon plasma at room temper-
ature. When N is varied from 1 to 20 W, the rate varies
from 1 to 35 Å/s. The different slopes of straight lines 1
and 2 in Fig. 5 demonstrate the effect of pressure on the
rate of film condensation. At high pressures (line 1), the
fraction of energetic ions involved in the condensation
decreases because of energy losses due to collisions
with gas molecules. This must decrease the rate of ion-
stimulated cross linking and lead to the formation of
polymer-like a-C:H films containing a considerable
amount of bound hydrogen. For low pressure (line 2 in
Fig. 5), the power dissipated by the substrates
approaches the power applied to the discharge because
the energy lost by the ions in the plasma is smaller. The
content of hydrogen in the films obtained under these
conditions decreases, and the interelectrode voltage
defines the ratio of carbon atoms in the sp3 and sp2

states in the film structure [15].
(ii) The effect of an inert gas. The addition of an

inert gas to acetylene decreases the deposition rate of
the a-C:H films for the same pressure in the vacuum
chamber. The film deposition rates in the acetylene–
argon plasma are shown in Fig. 5 (symbols n). The
reduction of the rates is caused by a decrease in the den-
sity of hydrocarbon radicals in the plasma and the
enhancement of the desorption of weakly bound parti-
cles because of surface bombardment by argon ions,
which do not carry the material being deposited and do
not combine with the condensate.

The dependence of the deposition rate on the acety-
lene volume concentration in a mixture with krypton is
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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shown in Fig. 6 for a constant discharge power of 1.8 W
and a pressure of 0.05 Pa. The rate of film deposition on
the copper substrates can be reduced from 4 to 0.5 Å/s
by decreasing the relative content of acetylene in the
mixture to 20%. The ratio between the carboniferous
particles and inert gas ions is responsible for two com-
petitive processes: deposition and etching of the film.
The carboniferous particles (neutral molecules, radi-
cals, and ions) present in the plasma favor film growth.
On the contrary, film bombardment by inert gas ions
etches the surface during the condensation and lowers
the deposition rate.

(iii) The effect of substrate conductivity. Figure 7
illustrates the effect of surface conductivity on the dep-
osition rate at an acetylene pressure in the vacuum
chamber of about 0.05 Pa. For the same discharge
power, the rate of film deposition on the surface of a
transparent conducting indium–tin oxide (ITO) layer is
one order of magnitude higher than that on the surface
of a-Si:C:H semiconductor layer with a resistivity of
about 1012 Ω cm.

Space charge is produced on the substrate surface
when it is bombarded by positive ions in a dc glow dis-
charge plasma. Charge leakage from the surface
depends on the substrate conductivity, as well as on the
thickness and resistivity of the growing film. For a
metallic substrate, the formula d = RD/ρF yields a film
thickness d at which the surface charge is negligible.
Here, RD is the resistance of the discharge gap and ρF is
the resistivity of the film [16]. For RD ≈ 3 × 105 Ω , the
film of thickness ≈0.3 µm and a resistivity ρF =
108 Ω cm does not prevent charge leakage. As the resis-
tivity grows, the critical thickness and the deposition
rate decrease. Therefore, the surface conductivities of
the substrate and condensate in a glow discharge
plasma should be considered as important factors
affecting the kinetics of a-C:H film deposition.

PROPERTIES OF a-C:H FILMS 
AND THEIR APPLICATIONS

A correlation between the deposition rate and the
properties of a-C:H films was studied by the author in
[17–20]. Here, we will briefly review the basic results.
When the rate of a-C:H film deposition on glass sub-
strates ranges from 0.4 to 2.5 Å/s, the refractive index
varies from 2.4 to 2.0 and the absorption coefficient
decreases from 0.3 to 0.1 at a wavelength of 633 nm
[17, 18]. A fourfold decrease in the deposition rate
results in a decrease in the optical gap width from 2.1
to 1.1 eV [19] if argon is added to acetylene in amounts
of 50–70 vol. %. The resistivity of the films can be var-
ied by six orders of magnitude, starting from ~107 Ω
cm, if the deposition rate ranges from 1 to 10 Å/s [20].
An increase in the absorption in the visible range for
a-C:H films obtained from acetylene is accompanied by
optical gap narrowing and a rise in the film conductiv-
ity. The correlation between the absorption coefficient
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
at a wavelength of 633 nm, optical gap width, and resis-
tivity as functions of the deposition rate is discussed in
[21].

a-Si:H deposits obtained by the above method have
various optical, electrical, surface, and other properties
and can be used in different optical devices. The
mechanically strong and chemically stable amorphous
coatings, which are transparent in the IR region and
have the refractive index 2–2.4 and an absorption coef-
ficient of ≈0.02 at a wavelength of 10.6 µm, raise the
optical breakdown threshold of laser mirrors. The effect
of various factors on the breakdown threshold of copper
mirrors with such a coating is analyzed at length in
[22]. For this purpose, the optimal deposition rate is
about 2 Å/s.

The thin transparent films with a low refractive
index (about 1.6) obtained from toluene and octane
were used as layers orienting liquid crystals (LCs) [13].
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Fig. 6. Rate of a-C:H film deposition on the copper sub-
strates vs. acetylene volume content in the acetylene–argon
mixture.

Fig. 7. Rate of a-C:H film deposition on the In2SnO3 trans-
parent conducting electrode (j) and a-Si:C:H semicon-
ducting layer (h) at the acetylene pressure P ≈ 0.05 Pa vs.
discharge power.
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The interaction of LC molecules with the relatively
smooth surface of a-C:H layers is associated with dis-
persion intermolecular interaction at the solid body–
liquid crystal interface. To deposit such films, the
device with the additional electrode was used. In this
arrangement, the substrates were tilted to the electrode
surface. The ions struck the surface at a glancing angle,
which modified greatly the conditions for their interac-
tion with the growing film. An appreciable difference in
the orienting properties of the layers deposited at nega-
tive and floating potentials was found. When the ions
were involved in the condensation (the surface is under
a negative bias), the films aligned LC molecules paral-
lel to the substrate surface [23]. At the same time, the
films obtained at a floating potential oriented the same
LC molecules normally to the surface in the same
device geometry [24]. IR spectroscopy studies showed
that a-C:H orienting layers provide stable orientation of
LC molecules [25].

Black a-C:H films, absorbing in the visible range,
were used for optical isolation between writing and
reading light beams in optically addressed LC reflec-
tion modulators. The light-absorption efficiency of
a-C:H films on a-Si:H and a-Si:C:H optically sensitive
semiconducting layers was demonstrated in [26].
A 1-µm-thick a-C:H film with an absorption coefficient
of ≈5 × 104 cm–1 at a wavelength of 633 nm reduces the
incident light intensity by a factor of 100. The applica-
tion of a-C:H absorbing films in LC modulators would
be a step forward in solving the problem of optical iso-
lation [27].

CONCLUSION
This paper generalizes the results of investigations

into a-C:H film fabrication technology. The films are
obtained in a dc glow-discharge plasma with an original
multielectrode device with the magnetron plasma local-
ized near the anode. The device allows one to deposit
the films in a wider range of working pressures (from
0.1 to 0.004 Pa) in comparison with standard diode sys-
tems. The dependences of the deposition rate on the
interelectrode voltage, discharge power, and relative
content of an inert gas in the mixture with a hydrocar-
bon are obtained. Knowing them, one can control the
process of condensation. By varying the deposition rate
from 0.25 to ≈30 Å/s, one can modify the structure and
properties of the films from polymer- to diamond-like.
The results obtained are expected to be of interest in the
areas of applied physics where thin a-C:H films are
used.
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Abstract—Experimental investigation of the structure and electrical properties of layered gallium selenide and
indium selenide crystals laser-intercalated by copper and gallium is discussed. © 2002 MAIK “Nauka/Interpe-
riodica”.
Considering intercalation (i.e., the embedding of
ions, atoms, or molecules into “guest” sites) as a branch
of crystal engineering, one can suppose that it can form
a conceptual basis for the nanotechnology of low-
dimension materials. Nanotechnologies are expected to
replace today’s microtechnologies, whose potential has
been exhausted. There is no doubt that incipient physi-
cal nanoelectronics will closely be related to a break-
through in developing new processes and active
devices. The intercalation methods known can be sub-
divided by convention into three groups: thermal expo-
sure, element-selective, and electrochemical [1]. It is
meant that an intercalant occupies guest vacancies,
penetrating from its liquid phase, from its vapor phase
(when being incorporated into a hetero-organic com-
plex) by a direct or an exchange reaction, or in the form
of an ion (radical ion) during electrode polarization,
respectively. At present, a wide spectrum of intercalates
can be obtained. However, they are inappropriate for
rapidly changing process conditions, especially in the
case of multistage processes, and for effectively scan-
ning sample interiors by guest components, because the
associated processes are lasting and selective. In a num-
ber of cases, the above methods imply thermal load on
the “host” material because of the low vapor pressure of
some metals, concentration threshold of intercalation
[2], and kinetic difficulties associated with mass trans-
fer in solids. However, heating deteriorates the stability
of the crystal lattice.

The aim of this study is to eliminate these disadvan-
tages by applying a new intercalation method. We sug-
gest to enhance the process of intercalation by using
laser irradiation of a thin absorbing film of a guest com-
ponent deposited on one of the host material faces, for
example, perpendicularly to the substrate, up to forma-
tion of the layered crystal structure. The irradiation
(shots with an energy density of 2–20 J/cm2) can be per-
formed from both the film side and the opposite side if
the host material is transparent to laser radiation.
Absorbing the laser radiation, the guest vaporizes in 2–
1063-7842/02/4706- $22.00 © 20695
8 ms and, due to high concentration and temperature
gradients, penetrates into guest sites which are situated
between atomic planes coupled by weak van der Waals
forces. Thus, by varying the film thickness and the radi-
ation energy density, one can minimize the thermal load
on the host material and the amount of the guest can
conveniently be controlled by the number of laser
shots. Since films of some intercalants are easy to
deposit to a desired thickness and with a given distribu-
tion by well-known methods, there appears the possi-
bility of scanning one or more intercalants over the
sample to form complex nanostructures. Unlike the
conventional intercalation methods, the kinetic barriers
to effective intercalation are usually overcome under
laser irradiation. Therefore, the laser approach expands
the range of elements that can be introduced into a
given host material.

In order to experimentally substantiate our method,
we used indium and gallium selenides as host materials
having layered crystal structures. From Bridgman-
grown ingots, we cut samples in the form of 8 × 4 ×
0.5 mm rectangular parallelepipeds, two faces of which
were perpendicular to the crystallographic C axis and
the remaining four were parallel to it. On one of the
four faces, a 1- to 3-µm-thick metal (Cu, Ga) film was
deposited by thermal evaporation in a vacuum. Next,
the samples were irradiated by the pulses of a free-run-
ning Nd laser. The shot duration was 2 ms, the radiation
wavelength λ = 1.06 µm, and the energy density of the
radiation was varied from 2 to 20 J/cm2. The laser beam
was directed onto the sample both from the film side
and from the opposite side at an angle of 90° ± 10°. The
irradiation from the sample side was performed only
for gallium monoselenide, which is transparent to this
radiation. Mass spectrometric analysis shows that the
amount of both the Cu and Ga intercalates increases
with increasing number of intercalating shots irrespec-
tive of the side of irradiation. The results of laser inter-
calation are summarized in the table. It is interesting
that, under the same process conditions, the amount of
002 MAIK “Nauka/Interperiodica”
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the Ga intercalate is noticeably less than that of the Cu
one. This may be related to the higher diffusion coeffi-
cient and the higher penetrability of Cu as compared to
those of Ga in the matrices used.

X-ray diffraction analysis of the laser-intercalated
structures was performed with a double-crystal diffrac-
tometer (CuKα radiation) by the Bond method. After
the third intercalation by Cu, the layer spacing in InSe
increased by 0.0026 Å, while that in GaSe irradiated
from the side opposite to the metallized surface
decreased by 0.0069 Å. The irradiation of reference
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Fig. 1. Conductivity perpendicularly to the layers for
(1) InSe and GaSe irradiated (2) on the side of the metal-
lized surface and (3) on the opposite side vs. number of
shots.

Fig. 2. Resistivity perpendicularly to the GaSe layers vs.
number of shots (Ga intercalation).
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Fig. 3. Ratio of the dark conductivity perpendicularly to the
layers to the conductivity observed under illumination (48 h
ahead) as a function of the number of intercalating shots.
(uncovered) GaSe samples under the same conditions
increases the layer spacing by 0.0060 ± 0.0002 Å. Sim-
ilar “contracting” effects have been also observed when
CoO2 was intercalated by Li [3] and TiTe2 by Ag [4].

In the case of the laser intercalation by Cu, the con-
ductivity of both compounds along the crystallographic
C axis (σ||C) varies as shown in Fig. 1. After the third
intercalcalating shot, the value of σ||C for InSe increases
by more than three orders of magnitude and for GaSe
by nearly 2 × 104 times. These conductivity values
exceed (by ≤20%) the corresponding values for the
InSe and GaSe reference samples irradiated under the
same conditions. The difference in the kinetics of Cu
intercalation when the samples are irradiated on the
side of the metallized surface and on the opposite side
is also noticeable. The value of the resistivity perpen-
dicular to the layers (ρ⊥ ) is greatly affected by the con-
centration of ionized intrinsic or extrinsic (for example,
introduced by doping with Dy) acceptors. For example,
if the conductivity of the initial crystals is decreased
70 times and 3 × 102 times, the ratio of ρ⊥ 0/ρ⊥ n (here,
0 and n are subscripts numbering the shots) drops to
220–500 and 10–25, respectively. In the latter case, the
functions ρ⊥ (x) become nonmonotonic. Unlike copper,
the introduction of gallium, which is physically similar
to the host metal (a useful expedient for the eloboration
of a convenient model approximating the phenomenon
of intercalation), causes the conductivity of GaSe to
drop with increasing guest gallium content (Fig. 2). It
should be noted that the changes in ρ/ρ0 between inter-
calating shots 2 and 3, as well as between shots 4 and 5,
correspond to the case when the laser beam falls on the
gallium film, while those between shots 1 and 2, 3 and
4, and 5 and 6 are observed when the beam strikes the
opposite side. The introduction of Ga causes the ac
resistivity in the direction perpendicular to the layers to
increase throughout the frequency range investigated
(from 0.1 Hz to 20 MHz), the increase being smaller in
the high-frequency part.

The study of relaxation processes incovered exotic
effects, namely, variation of the dark resistivity in the
direction perpendicular to the GaSe and InSe layers
with the amount of copper intercalate (Fig. 3). These
effects are related to intercalation-induced negative
residual photoconductivity and its temperature quench-
ing [5–7]. In addition, we found narrow guest concen-
tration intervals wherein optically enhanced growth of
the intergrain (interface) barriers is observed. This may
serve as the initial step toward the production of
charged-coupled nanostructures and photovaricaps.

As follows from Fig. 4, the initially (before the Ga
intercalation) symmetric I–V characteristics of the sam-
ples become of the diode type during the Ga intercala-
tion. This effect is much less noticeable in the case of
the laser intercalation by Cu. In addition, in 〈Cu〉GaSe,
we found N-shaped sections, which appear even after
the first intercalating shot in the range of field strengths
between 20 and 55 V/cm. These sections are absent in
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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〈Cu〉InSe (for these samples, the symmetry of the char-
acteristics remains unchanged) and 〈Ga〉GaSe. Note
that the number of the N-shaped sections, as well as the
values of the excess currents, are increasing functions
of the guest concentration and the field strength respon-
sible for the appearance of these sections shifts toward
higher values when the number of the intercalating
shots grows. It is therefore likely that the shape of the
I–V characteristics is associated with the intercalation-
induced formation of interlayer barriers with matrix
compensation in the case of Ga〈GaSe〉 . For Cu〈GaSe〉 ,
the concentration of shallow impurities increases, as a
result of which the thickness of these barriers becomes
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Fig. 4. I–V characteristics of the GaSe structures interca-
lated by (a) Cu and (b) Ga (figures at the curves are the num-
bers of the shots).

Energy conditions of laser intercalation

Energy density
of radiation, J/cm2 Result of intercalation

2 ± 0.2 Unconvincing signs of intercalation

5 ± 0.5 Noticeable intercalation with nonuni-
form distribution over guest sites

9.5 ± 0.5 Uniform distribution of intercalate

15 ± 0.5 Thermal load becomes noticeable

20 ± 0.5 Thermal load increases the amount of 
guest metal changes insignificantly
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
comparable to the de Broglie wavelength; i.e., they
become tunnel-transparent. On the other hand, the N-
shaped I–V characteristics may indicate the validity of
the model proposed in [8]. If so, the intercalation of gal-
lium monoselenide by copper may change the layer
interaction integral ε⊥  and the position of the Fermi
level to the point where the applied voltage per layer
becomes greater than ε⊥ .

We by no means think that our interpretation of the
experimental results is exhaustive. This work will hope-
fully stimulate further advances in this field of nano-
electronics.
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Abstract—The effect of 60Co gamma irradiation at doses of 103–2 × 105 Gy on the photoconversion and dark
I–V characteristics of Au/GaAs surface-barrier solar cells (SCs) is studied. The morphology of the interface
microrelief is varied to reach the highest photoconversion efficiency. Of the two types of microrelief morphol-
ogy (dendritic and quasi-grating) obtained by the chemical anisotropic etching of n-(100)GaAs, the latter is
more promising, particularly for SCs designed for space application, since the associated SCs offer higher effi-
ciency and radiation resistance. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

GaAs-based Schottky-barrier solar cells are promis-
ing for space application because they may offer a high
efficiency-to-weight ratio and have a higher resistance
to hard radiation (fast protons and neutrons) than Si
cells [1–4]. Moreover, in a certain dose range, irradia-
tion by fast electrons and 60Co gamma quanta causes
radiation-induced ordering or gettering of active
recombination centers (the so-called low-dose effect).
This effect shows up as an increase in the diffusion
length of charge carriers and a decrease in the recombi-
nation rate at the interface [5, 6]. The interface here
serves the function of a sink for intrinsic and radiation-
induced defects. Therefore, both the amount of the low-
dose effect and the dose range of its existence depend
on the degree of structure perfection at the interface and
on the presence of mechanical stress fields in the inter-
face region [7]. One of the most promising ways of
increasing the efficiency of the cells is the use of a tex-
tured active interface. In deciding on a particular
microrelief morphology and a technique for its forma-
tion, one usually takes into consideration the effect of
the microrelief on the optical and recombination
parameters of the structure, i.e., on the photoconversion
efficiency. However, for space application, the effect of
the microrelief morphology on the radiation resistance
of the structures should also be taken into account. In
this work, we try to establish such a correlation.

We studied the effect of 60Co γ radiation on the pho-
toconversion efficiency of metal Au/GaAs barrier struc-
tures with various morphologies of the interface
microrelief obtained by chemical anisotropic etching of
the GaAs surface.
1063-7842/02/4706- $22.00 © 20698
EXPERIMENTAL

Au/GaAs barrier structures were fabricated with the
planar technology by thermally evaporating a semi-
transparent gold film onto n-GaAs wafers (Nd = 1–3 ×
1016 cm–3). The substrate temperature was kept at about
120°C. Ohmic contacts were formed on the back side of
the wafer by alloying indium. Two types of the
GaAs(100) surface microrelief promising for use in
photodetectors [8] and solar cells [9] were investigated.
The dendritic microrelief was obtained by etching in
concentrated HNO3 acid. The quasi-grating one, a set
of V-shaped grooves oriented along the [110] direction
and having a period varying over the surface within cer-
tain limits, was produced by etching in a 2HF +
2H2SO4 + 1H2O mixture. The development of the
microrelief was controlled by varying the etching con-
ditions (duration and temperature). The surface of flat
samples was treated in a polishing etchant. Prior to the
gold deposition, the oxide layers forming during the
anisotropic etching were etched off in an HCl solution;
i.e., the surface finish of the wafers was the same. Gold
was deposited simultaneously on all GaAs wafers and
on a satellite quartz wafer used to measure the thickness
and optical parameters of the gold film by multiple-
angle incident ellipsometry, as well as by reflection and
transmission spectroscopy. The surface morphology
was studied by a Nanoscope “Dimension 3000” scan-
ning atomic force microscope (AFM) with the silicon
nitride tip operating in the tapping mode. The parame-
ters of the semiconductor and the interface were deter-
mined from dark I–V characteristics and high-fre-
quency (1 MHz) C–V characteristics.

We also recorded the spectral dependences of the
short-circuit current and I–V characteristics under illu-
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Microrelief of GaAs surface: (a) dendritic and (b) quasi-grating. (c, d) Corresponding profiles (for (d), the section passes
perpendicular to the grooves).
mination using a solar simulator based on an incandes-
cent lamp with a tungsten filament. The simulator was
calibrated with a reference silicon solar cell. The 60Co
gamma irradiation was performed with an MPX-γ-25M
setup in the 103–2 × 105 Gy dose range.

RESULTS AND DISCUSSION

Figure 1 shows the AFM images of the two GaAs
surface morphologies and the corresponding microre-
lief profiles. From this figure, one can determine both
the statistical parameters of the microrelief and its geo-
metrical features (in particular, the inclination of the
facets to the sample plane, an increase in the surface
area, etc.), which should be taken into account in ana-
lyzing the spectrum of the radiation transmitted into the
semiconductor. From this spectrum, the interface
recombination parameters are determined [9].

As the quasi-grating microrelief develops, both the
depth (hmax) and the groove spacing (a) increase. For
example, hmax = 0.3 and 1.2 µm and a ≈ 0.6 and 1.4–
2.0 µm for two different times of anisotropic etching,
respectively. The inclination of the facets to the sample
plane also increases from 32°–42° to 45°–48°. At the
same time, the dendritic microrelief evolves from pyra-
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
midal–prismatic to purely dendritic [10] and is more
complex. In particular, microplanes set at an angle of
40°–45° and at a higher angle of about 65° are
observed. Because of this, the field in the areas with a
higher curvature is enhanced more strongly and the
thermal–field mechanism makes a greater contribution
to current transport in the barrier structures [11]. This
follows from the forward branches of the I–V character-
istics presented in Fig. 2 for the structures with a differ-
ent interface microrelief. Hence, along with the thermi-
onic and recombination mechanisms of carrier trans-
port [12], the thermal–field component should also be
taken into account. The effect of this component shows
up as an apparent decrease in the barrier height in cer-
tain surface regions. The inclusion of the barrier height
distribution over the diode surface [13], which is
broader in the case of the dendritic morphology,
enables us to explain both the current rise in the initial
region of the I–V characteristic and the smaller ideality
factor n (in the range of high biases) for the structures
with the developed microrelief. However, the latter can
also be related to a thinner transition layer at the inter-
face and/or to a higher density of interface states, which
are filled through the exchange with the metal.
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Fig. 2. (a) Forward and (b) reverse dark I–V characteristics of Au/GaAs diodes with (1) flat and (2–5) textured interface. (2, 3) Quasi-
grating microrelief and (4, 5) dendritic microrelief (3 and 5 correspond to the developed microrelief).
Figure 3a shows the I–V characteristics under illu-
mination, and Fig. 3b demonstrates the spectra of the
short-circuit photocurrent in the surface-barrier struc-
tures. As is seen, the short-circuit current Isc grows in
comparison with that for the flat structure as the
microrelief develops (approximately three times and
3.2 times for the quasi-grating and developed dendritic
microreliefs, respectively). However, the open-circuit
voltage Voc increases to a lesser extent: by a factor of
≈1.3 for the quasi-grating microrelief and by factors of
≈1.25 and ≈1.16 for the incipient and developed den-
dritic microrelief, respectively. The structures with the
dendritic microrelief exhibit a lower fill factor FF of the
I–V characteristics under illumination than the flat
structures and those with the quasi-grating microrelief.
Accordingly, the quasi-grating structures have the high-
est efficiency.

It turned out that the effect of gamma irradiation is
more pronounced in the structures with the developed
microrelief. The low-dose effect (which decreases the
recombination rate at the interface and the ideality fac-
tor n, as well as increases the minority carrier diffusion
length Lp and contact barrier height ϕb) is observed in
the structures with the dendritic relief and developed
quasi-grating microrelief at doses lower than 104 Gy
(Fig. 4). Among the parameters of the I–V characteris-
tics under illumination, the short-circuit current Isc is
the most sensitive to the irradiation, as in the case of Si-
and GaAs-based flat structures irradiated by fast elec-
trons and protons [1–4]. Figure 5 depicts the spectral
dependences of the relative photocurrent when the
diodes with the developed interface microrelief were
irradiated by improving (≈103 Gy) and degrading (≈2 ×
105 Gy) doses. It is evident that the basic effect of the
gamma irradiation, which is virtually wavelength-inde-
pendent, is on the interface recombination rate [14].
The I–V characteristics under illumination start to
degrade from the irradiation dose 105 Gy. The struc-
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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tures with the developed dendritic microrelief are the
least resistant. Here, the efficiency drops by about 5%
from the initial value at a dose of 2 × 105 Gy. The quasi-
grating microrelief imparts to the structures the highest
resistance: the efficiency drops by no more than 2%
from the initial value.

Thus, the dendritic microrelief of the metal/GaAs
interface with the facets tilted at angles ≥60° provides
higher values of the short-circuit photocurrent. In spite
of this, it is less suitable for SCs designed for space
application than the quasi-grating microrelief (at least
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Fig. 4. Dose dependences of (a) ideality factor n, (b) barrier
height ϕb, and (c) minority carrier diffusion length for
diodes with the textured interface. (1, 2) Quasi-grating
microrelief and (3, 4) dendritic microrelief (2 and 4 corre-
spond to the developed microrelief).

Fig. 5. Spectral dependences of the ratio between the pho-
tocurrents in the irradiated and nonirradiated structures with
(1, 2) the developed quasi-grating and (3, 4) dendritic inter-
face microreliefs. Dose equals (1, 3) 103 and (2, 4) 2 ×
105 Gy.
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without special passivating treatments [14, 15]) in
terms of efficiency and radiation resistance.
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Abstract—Optical detection of magnetic features of 0.1 µm or less in size, as well as their generation and
motion due to laser shots, is described. The physical effects discovered make it possible to implement the basic
functions of a memory device (writing, shift in a storage register, and reading) by purely optical means. These
effects can form a basis for designing novel ultra-high-density solid-state memories with optical access and
control. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In digital memories with optical writing/reading, the
bit size is defined largely by the effective area of inter-
action between the optical radiation and a record
medium, i.e., by the diameter of a focused laser beam
[1–3]. This is equally true for both commercial memory
devices (compact disks, videodisks, magnetooptical
disks, etc.) and new-generation memories under devel-
opment (3D optical memory based on photorefractive
and photochromic materials). However, because of the
diffraction-related constraints imposed on the degree of
focusing, a bit size of much less than the recording laser
wavelength is extremely difficult to obtain even with
special optical tools and various buffer structures that
limit the size of the bit being recorded [1, 3]. In addi-
tion, such approaches require sophisticated facilities
and are very expensive. Moreover, a decrease in the bit
size inevitably complicates data readout schemes. In
conventional methods of optical reading (effect of
induced luminescence, phase-change effect, and
change in the plane of polarization and/or in the inten-
sity of transmitted or reflected light according to
whether “0” or “1” is recorded), a decrease in the bit
size causes a decrease in the valid signal intensity
against the optical background and noise. Various spe-
cial methods are used to solve this problem, such as
land–groove recording, partial response signaling and
maximum likelihood detection (PRML), magnetically
induced superresolution (MSR), etc. [1–7]. It is
believed that, when applied to optical memory with a
magnetic active (recording) medium (magnetooptical
disks), these writing/reading methods will shrink the bit
(magnetic domain) size down to 0.1–0.2 µm [3–6].

The restrictions and difficulties associated with the
design of new-generation memory devices necessitate
the search for novel materials and physical mechanisms
that would admit a change in the material parameters
1063-7842/02/4706- $22.00 © 20703
over a submicron area due to optical action and subse-
quent detection of this change by optical means.

In this work, we report experiments on direct optical
detection of magnetic features 0.1 µm or less in size, as
well as study the laser generation and control of these
features. The physical effects employed can form a
basis for designing ultra-high-density solid-state mag-
netic memories with optical reading/writing.

EXPERIMENTAL TECHNIQUES

Optical detection of magnetic features with a size
below the optical resolution of conventional magneto-
optical microscopy based on the Faraday or Kerr effects
can be provided with dark-field microscopy. This
method is intended for visualizing the phase structure
of objects that cannot be distinguished from the envi-
ronment optically. Here, the illuminating beam does
not fall into the objective lens and the image is formed
by the light scattered by phase inhomogeneities of the
sample. Due to magnetooptical effects, the magnetiza-
tion distribution in the sample is merely the phase struc-
ture that can be visualized in dark field [8]. Because of
the diffraction principle of imaging, dark-field micros-
copy (widely used in various investigations but poorly
developed as applied to magnetic phenomena) can basi-
cally detect structures of size beyond the optical resolu-
tion of conventional microscopy (ultramicroscopy).
The use of the dark-field geometry in optical micros-
copy allows the detection of mesoscopic magnetic fea-
tures 0.1 µm or less in size. Of special importance is the
fact that dark-field microscopy does not require scan-
ning and is well compatible with standard methods for
studying the fast dynamics of magnetic structures (e.g.,
streak photography) [9], whereas scanning tunnel
microscopy has fundamental limitations when applied
to dynamics investigations.
002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a, b) Optical scheme for one-sided dark-field illumination and magnetization distribution in domains, domain walls, and
Bloch lines. The plane of light incidence is (a) perpendicular and (b) parallel to the DW plane. k0, wavevector of incident radiation;
ki, wavevector of scattered radiation. (c, e) Typical images of DWs and Bloch lines when the light is incident (c) normal and
(e) parallel to the DW plane (opposite contrast). (d) Schematic magnetization distribution in the sample.
The detection of submicron magnetic features with
dark-field microscopy was first demonstrated by Thia-
ville and Miltat, who succeeded in direct optical obser-
vation of vertical Bloch lines (VBLs) in garnet ferrite
films with perpendicular anisotropy [10]. VBLs are sta-
ble elements of a domain wall (DW) structure and are
0.1 µm or less in size [11]. In the polarized anisotropic
dark-field observation (PADO) method [10], the illumi-
nating beam strikes the sample at some angle and
bypasses the objective lens, while the image is formed
by the light diffracted by magnetic inhomogeneities
(Fig. 1a). In the PADO geometry, the plane of light inci-
dence is perpendicular to the DW plane. In this case, the
DW appears as a bright fringe on the black background
and local variations of the brightness are treated as VBL
locations (Fig. 1c; opposite contrast, VBLs are marked
by arrows). With the angle of light incidence fixed, the
VBL contrast (bright or dark) depends on the VBL
magnetic topology and magnetization direction in adja-
cent domains (the topology shown in Fig. 1d is that of
the DWs with VBLs in Fig. 1c) [12].

Combining the PADO method with streak photogra-
phy (which provides the observation of instantaneous
dynamic configurations of the domain structure [13])
has allowed us to detect and comprehensively study the
VBL controllable generation and movement by locally
applying a laser radiation [14, 15]. Experiments were
carried out with uniaxial magnetic garnet ferrite films
of composition (BiTm)3(FeGa)5O12 which had the fol-
lowing parameters: crystallographic orientation (111),
saturation magnetization 4πMs = 173 G, collapse field
Hcol = 126 Oe, period of the equilibrium strip domain
structure 8.5 µm, thickness 7.5 µm, and quality factor
Q = 3.8.

GENERATION AND MOVEMENT 
OF SUBMICRON MAGNETIC FEATURES 

DUE TO LASER IRRADIATION

From experiments [14, 15], as the energy of a laser
shot (duration 10 ns, wavelength λ = 540 nm, maxi-
mum peak energy Wmax ~ 10–6 J, and spot diameter on
the film 3–4 µm) grows, the shot causes the (1) move-
ment of existing VBLs toward a DW, (2) generation of
a pair of VBLs on DWs that were initially free of the
lines, and (3) irreversible changes in the configuration
of both individual DWs and the domain structure as a
whole.

Figure 2 illustrates the VBL movement under the
action of focused laser shots. The initial domain struc-
ture with a specially introduced VBL is shown in
Fig. 2a (VBL is marked by an arrow, symbol ⊗ shows
the site of the laser spot). With a shot of energy W ≈
TECHNICAL PHYSICS      Vol. 47      No. 6      2002



        

NEW MECHANISMS OF OPTICAL WRITING/READING 705

                    
0.1 Wmax applied, the VBL shifts (Fig. 2b). From
Figs. 2b and 2c, it is seen that the travel of the VBL
decreases as it approaches the laser spot. This effect, as
well as the conditions for uniform and reproducible
VBL movement, calls for further investigation.

At W ≈ 0.2 Wmax, the shot generates a pair of VBLs
on DWs that were initially free of the lines. Figures 3a–
3c show typical images of localized VBLs produced by
the shot. The contrast is seen to change at the walls
where VBL pairs have been generated.

Experimental conditions under which the VBL gen-
eration is controllable and reproducible are discussed at
length in [15].

The series of streak photos in Fig. 4 demonstrates
the movement of the DW and the generation of a pair of
VBLs due to the shot. The upper photos, showing the
“instantaneous” configurations of the domain structure,
were obtained in the direct-illumination mode (using
the Faraday effect) with crossed polarizers. A dark area

(a)

(b)

(c)

10 µm

Fig. 2. VBL movement under laser irradiation: (a) initial
position and (b, c) shifts after the sequential application of
two shots. Dark-field image (opposite contrast).
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
is seen to appear near the laser spot, and the DW nearest
to the spot bends. The rate of bending is the highest
within several tens of nanoseconds after the shot appli-
cation. Then, the DW relaxes to its initial shape within
1500–2000 ns and the dark area disappears (in this area,
the Faraday effect is weak, since the laser heating
reduces the saturation magnetization). The lower pho-
tos are the dark-field images of the same process in the
same area. Here, the DW bend appears as a local
change in the DW brightness. VBLs (marked by
arrows) near the laser spot become distinct 300 ns after
the shot has been applied and reach their final positions
within the same 1500–2000 ns noted above.

Based on the experimental data obtained in [14, 15],
we put forward a physical model of VBL generation
and movement due to a laser shot. Central in this model
is the thermal effect of the shot, which locally reduces
the saturation magnetization of the film in the laser spot
region. A local change in the magnetization upon heat-
ing and subsequent cooling modifies radically the dis-
tribution of stray fields in this region and causes nearby
DWs to shift. When the velocity of a DM exceeds the

(a)

(b)

(c)

10 µm

Fig. 3. Typical dark-field images (opposite contrast) of
Bloch lines (marked by arrows) originating in DWs due to
the laser shot.
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(g) (h) (i) (j) (k) (l)

Fig. 4. Instantaneous dynamic configurations of the domain structure at various time instants after the application of the “writing”
laser shot. (e, g) Before the pulse application; (b, h) 100, (c, i) 300, (d, j) 700, and (e, k) 1000 ns after the pulse; and (f, l) after the
dynamic processes have been completed. (a)–(f) Bright-field images with crossed polarizers; (g)–(l) dark-field images (opposite
contrast).
critical value, a horizontal VBL originates in it. This
horizontal line emerges on the film surface, producing
a pair of VBLs. If the velocity of the DW is below the
critical value, the Bloch lines may advance.

The above effect of Bloch line reproducible genera-
tion allows us to formulate a concept of optical writing
of a submicron magnetic bit of information. For the
optical generation of a magnetic feature of size
≈0.1 µm, there is no need to shrink the focused laser
beam as much as possible or to produce an artificial
potential relief to specify the size of a laser-written
domain (which is typical of attempts to raise the ther-
momagnetic writing density on magnetooptical disks).
The experimental results described above suggest that a
“magnetic” bit can optically be written as a feature of
the DW structure rather than as a domain. In this case,
there is no need for a correlation between the scale of a
feature recorded and the size of the laser spot. Here, the
“size” of a bit, a mesoscopic object inside a DW, is
specified by its physical nature and not by the charac-
teristic scale of the “writer.”

OPTICAL READOUT OF SUBMICRON 
MAGNETIC STRUCTURES

In experiments on the generation and motion of
VBLs, the lines can conveniently be detected with the
PADO method, which allows one to visualize and study
the motion not only of the VBLs but also of the domain
wall. However, if a VBL is viewed as an information
bit, only the signal from the VBL is valid for readout.
In this case, such a feature of the PADO method as the
representation of a VBL in the form of a dark or bright
region (according to the magnetization distribution in
the line) against the background of the DW complicates
the readout scheme and requires three-level (bright
VBL, dark VBL, domain wall) discretization of the
optical signal detected. Moreover, the study of the
mechanism behind VBL and DW dark-field imaging
[12] has shown that the change in the contrast in the
VBL vicinity (see Fig. 1) depends on the inclination of
the DW with VBLs rather than on the magnetization
distribution. The inclination can be related to different
physical mechanisms [12]. The indirect character of
imaging in the PADO mechanism (in the geometry of
Fig. 1a) greatly complicates the interpretation of dif-
fraction images observed experimentally in terms of
micromagnetism, does not allow exact determination of
the VBL topology, and makes it possible to visualize
VBLs only for a limited class of samples [12].

The aforesaid explains the extensive search for
direct magnetooptical methods that would be sensitive
to the magnetization distribution in Bloch lines and
provide their simple yet reliable detection in various
samples.

Our investigations have shown that VBLs can opti-
cally be detected with other dark-field geometries
[16, 17]. In Fig. 1b, as in the conventional PADO
method, only scattered light falls into the objective lens
because of the inclined incidence of the beam. In this
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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case, however, the plane of light incidence is parallel to
the DWs. Neither domains nor DWs without VBLs take
part in imaging, and the DW images become almost
free of background noise.

Figures 1c and 1e are the dark-field images of a
fixed region that were obtained when the plane of light
incidence was normal and parallel to the DW plane
(conventional and modified PADO geometry, respec-
tively; VBLs are indicated by arrows). In the latter case,
magnetooptical diffraction by the DWs is absent and
the DWs exhibit no contrast (are not visualized). How-
ever, with the angle of incidence chosen properly, the
Bloch lines (bright spots) are seen (Fig. 1e). Figure 1e
differs from an image obtained with the conventional
PADO method in that (1) Bloch lines are visualized as
bright spots irrespective of the magnetic topology and
(2) their sizes along and across the DW are nearly the
same.

Further experimentation is needed to gain better
insight into the physics of VBL visualization. Yet we
can note that the Bloch line imaging is consistent with
predictions of the magnetooptical diffraction model
developed in [10]. This model considers diffraction by
magnetization distribution in a VBL and treats a DW as
a one-dimensional phase edge (for polarized light) and
the very VBLs as point diffraction centers. Our results
are in qualitative agreement with this model; namely,
(1) diffraction by DWs is absent, (2) the contrast for
Bloch lines of different topology is the same, and (3)
the ratios of the VBL sizes along and across a DW are
similar.

From the above, we can hypothesize that, in the
PADO geometry considered, direct magnetooptical dif-
fraction by magnetization distribution in a Bloch line,
rather than the distortion of the DW vertical profile, is
responsible for VBL visualization.

CONCLUSION

The experiments described above illustrate the
physical mechanisms providing optical detection of
magnetic features 0.1 µm or less in size, as well as those
responsible for their generation and advance. The phys-
ical effects discovered make it possible to implement
the basic functions of a memory device (writing, shift
in a storage register, and reading) by purely optical
means. These effects can form a basis for designing
novel ultra-high-density solid-state VBL-based memo-
ries with optical access and control.

Owing to such properties as nonvolatility and high
record density (up to 1 and even 128 Gbit/cm3 [18, 19]),
VBL memories have extensively been studied since the
mid-1980s. However, they have not been implemented
because associated magnetically controlled read/write
devices, as well as devices advancing VBLs, are not
feasible. The effects of VBL optical generation and
detection that were discovered in this work may help to
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
implement ultra-high-density magnetic memories with
optical access that would outperform the magnetoopti-
cal memories currently available in many parameters.
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Abstract—A method for increasing the sensitivity of measurements through aberration compensation upon
reconstruction of interferograms from two multiple-exposure holograms is proposed. At the early stage of
object investigation, the holographic structures recorded at certain time instants are rerecorded by two coherent
beams on new image carriers. In this case, the interference moiré method is employed to monitor the equality
of the vectors of the holographic structures rerecorded. At the final stage, the new nonlinear holograms are pro-
cessed in an optical analyzer of conjugate holograms with the use of incoherent light. The hologram thus recon-
structed offers a high sensitivity of measurements and is free of aberrations. The method is tested by visualizing
the temperature-field variations in a glass substrate with a conducting coating. © 2002 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

Holographic interferometry offers significant
advantages over the conventional method, such as com-
pensation of aberrations due to the optical elements of
an interferometer, arbitrary adjustment of the interfer-
ence fringes, and sensitivity control at the stage of holo-
gram optical processing [1–3]. To increase the sensitiv-
ity of measurements in holographic interferometry, one
can take advantage of the nonlinear properties of holo-
grams and reconstruct higher diffraction orders [4, 5] or
rerecord holograms [6, 7]. Rerecording in combination
with the nonlinear recording of secondary holograms
makes it possible to substantially improve the sensitiv-
ity of measurements by effectively compensating aber-
rations in recording and optical processing systems
[8−10].

The advantages of the holographic methods become
even more evident in studies of fast processes. Various
states of the object can be recorded on several image
carriers [11] or on a single one [12, 13]. The latter tech-
nique, where the reference beam can move, enables one
to reduce experimentation costs, since several states of
the object are recorded on the same carrier. Apparently,
the number of records per carrier is limited. Therefore,
the recording of a large number of holographic struc-
tures corresponding to various states of the object
requires a number of carriers. In this case, the optical
processing of several multiple-exposure holograms
involves difficulties when object different states
recorded on different carriers are compared. Consider,
for example, a pair of multiple-exposure holograms in
a two-channel interferometric correlator [14], where
the filtering diaphragm discriminates waves diffracted
by the holographic structures of the object states being
compared. Under these conditions, the resulting inter-
1063-7842/02/4706- $22.00 © 20708
ference pattern, visualizing the difference in the states,
will additionally be distorted by inhomogeneities in the
substrates of the hologram carriers. Moreover, the
recording of several holographic structures on a single
carrier complicates markedly the diffraction spectrum
of the multiple-exposure hologram, which is observed
in the second focal plane of the objective lens. In the
case of the nonlinear recording of such a hologram, the
diffraction spectrum is so complicated by crosstalk-
induced extra maxima [15] that it becomes impossible
to discriminate between waves diffracted by given
holographic structures and spurious ones. Therefore,
the nonlinear properties of multiple-exposure holo-
grams cannot improve the measurements sensitivity.

In this work, we developed a method for optically
processing multiple-exposure holograms that offers
increased sensitivity, compensates aberrations, and
enables one to use even incoherent light at the final
stage of processing.

DESCRIPTION OF THE METHOD

Let us assume that N states of the object are holo-
graphically recorded on each of several carriers at vari-
ous time instants. The resulting intensity distribution on
the carrier is the sum of the intensities from each expo-
sure recording a particular holographic structure:

(1)

If a multiple-exposure hologram is recorded under
linear conditions, its amplitude transmission is directly
proportional to the resulting intensity [3]. Let us record
two multiple-exposure holograms with the amplitude

I I1 I2 … IN .+ + +=
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transmissions τ and τ' given by

(2)

(3)

where τ0 and  are constants; ξl = cosγlx/Tl and ηl =
cosγly/Tl are the spatial frequencies of the lth holo-
graphic structure; γlx and γly are the angles between the
fringes and the axes 0X and 0Y, respectively; Tl is the
period of the fringes in the lth holographic structure;
εl and  are the object-related phase shifts at the
instants of the lth exposures of the first and second
holograms, respectively; and ϕ is the phase distortion
caused by aberrations in the recording system (holo-
graphic interferometer). The coordinate frame X0Y lies
in the plane of the hologram. The spatial frequencies ξl

and ηl are directly proportional to the projection of the
vector of the lth holographic structure. This vector lies
in the plane of the hologram and is orthogonal to the
fringes. Note that the recording of multiple-exposure
holograms necessitates a change in the fringe orienta-
tion or period for each exposure to avoid overlap
between the diffraction orders of the reconstructed
waves during the optical processing of multiple-expo-
sure holograms. This can be provided, for example, by
varying the angle between the object and reference
beams prior to each exposure [15].

It has been demonstrated [16–19] that an increase in
the sensitivity of measurements for obtaining high-
quality low-noise interferograms implies the use of
incoherent illumination. The associated method is
implemented in two stages. The first stage involves the
rerecording of each of the holographic structures writ-
ten in complex conjugate orders from a multiple-expo-
sure hologram on two new carriers. The rerecording
also implies verification of the strict equality of the
rerecorded holographic structure vectors. At the second
stage, this pair of holograms, recorded under nonlinear
conditions, is processed in an optical analyzer of conju-
gate holograms with the use of an incoherent light
source [3].

Multiple-exposure holograms are rerecorded by two
coherent beams in a rerecording device (Fig. 1a) which
can be based on any two-element interferometer [17].
To approximately equate the vectors of the holographic
structures rerecorded, we make two holes in filter 3 of
spatial frequencies, which is located in the second focal
plane of objective lens 2 (Fig. 1a). The holes are cen-
tered at the points with coordinates (ξ1, η1) and (ξ2, η2)
relative to the principal optical axis (Fig. 1b). Such a
spatial filter transmits waves with spatial frequencies
approximately equal to ξ1 = cosα1/λ, η1 = cosβ1/λ and
ξ2 = cosα2/λ, η2 = cosβ2/λ. Here, cosα1, cosβ1, cosα2,

τ τ 0 2π ξlx η ly+( ) εl ϕ+ +[ ] ,cos
l 1=

N

∑+=

τ' τ0' 2π ξlx η ly+( ) εl' ϕ+ +[ ] ,cos
l 1=

N

∑+=

τ0'

εl'
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and cosβ2 are the direction cosines of the waves and α1

and α2 (β1 and β2) are the angles between the direction
of propagation and the 0X (0Y) axis. For the rerecording
of the first holographic structure corresponding, for
example, to the bth exposure, we employ two coherent
waves with the spatial frequencies ξ01, η01 and ξ02, η02

meeting the conditions

(4)

where ξb = cosγbx/Tb, ηb = cosγby/Tb, and Tb is the period
of the fringes in the bth holographic structure that
makes angles γbx and γby with the 0X and 0Y axes,
respectively, in the plane of the multiple-exposure holo-
gram. In this case, the spatial-frequency filter selects
the waves

(5)

where δξ1, δη1, δξ2, and δη2 are adjustment errors due
to an insufficient accuracy in satisfying condition (4)
and the function ψ0 takes into consideration optical
inhomogeneities of the substrate of the carrier of multi-
ple-exposure hologram (2). The adjustment errors are
related to the finite sizes of the holes in the spatial-fre-
quency filter. Waves (5) form a rerecorded holographic
structure in plane 5, which is optically coupled with
multiple-exposure hologram 1 by objective 4. The

ξ01 ξ1 ξb, η01– η1 ηb,–= =

ξ02 ξ2 ξb, η02+ η2 ηb,+= =

A1 ab i 2π ξ1 δξ1+( )x[{exp=

+ 2π η1 δη1+( )y εb ϕ ψ0 ] } ,+ + +

A2 ab i 2π ξ2 δξ2+( )x[{exp=

+ 2π η2 δη2+( )y – εb – ϕ ψ0 ] } ,+

(a)

321 4 5

(b)

η

ξ
η1

η2
ξ1

ξ2

Fig. 1. (a) Optical scheme of the device for rerecording mul-
tiple-exposure holograms and (b) spatial-frequency filter.
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amplitude transmission of the rerecorded bth holo-
graphic structure is represented as

(6)

where δξ = δξ1 – δξ2, δη = δη1 – δη2, and γ is the con-
trast ratio.

The projections of the rerecorded holographic struc-
ture vector onto the 0X and 0Y axes are derived from
expression (6):

(7)

One can record the rerecorded hologram again
under nonlinear conditions (γ ≠ –2) to provide its recon-
struction in higher diffraction orders. Note that rere-
corded hologram (6) is free of the inhomogeneities of
the substrate under original multiple-exposure holo-
gram (2).

For rerecording the second holographic structure
corresponding, for example, to the cth exposure, we use
two coherent waves with the spatial frequencies ,

 and ,  meeting the conditions

(8)

where ξc = cosγcx/Tc, ηc = cosγcy/Tc, and Tc is the period
of the fringes in the cth holographic structure making
angles γcx and γcy with the 0X and 0Y axes, respectively,
in the plane of the multiple-exposure hologram.

Note that the cth holographic structure can be
located in either the first or the second multiple-expo-
sure hologram. When the holographic structures belong
to different carriers, aberrations are the most difficult to
compensate. In this case, the cth holographic structure
is rerecorded in the following way. The second multi-
ple-exposure hologram placed in position 1 (Fig. 1a) is
illuminated by two coherent waves with condition (8)
met. In this case, the spatial-frequency filter selects the
waves

(9)

where δ , δ , δ , and δ  are the adjustment
errors arising for the same reasons as in the former case
and the function  takes into account optical inhomo-
geneities in the substrate under multiple-exposure holo-
gram (3).

τb 1 2π ξ1 ξ2– δξ+( )x[cos+{=

+ 2π η1 η2– δη+( )y 2 εb ϕ+( ) ] } γ/2– ,+

Kx 2π ξ1 ξ2– δξ+( ),=

Ky 2π η1 η2– δη+( ).=

ξ01'

η01' ξ02' η02'

ξ01' ξ1 ξc, η01'– η1 ηc,–= =

ξ02' ξ2 ξc, η02'+ η2 ηc,+= =

A1' ac i 2π ξ1 δξ1'+( )x[{exp=

+ 2π η1 δη1'+( )y εb' ϕ ψ0' ] } ,+ + +

A2' ac i 2π ξ2 δξ2'+( )x[{exp=

+ 2π η2 δη2'+( )y – εc'  – ϕ ψ0
' ] } ,+

ξ1' η1' ξ2' η2'

ψ0'
The rerecording of the second holographic structure
involves the replacement of multiple-exposure holo-
grams and the adjustment of the optical system for the
new condition for the spatial frequencies of the incident
waves to be satisfied. Therefore, the misadjustments
upon rerecording of the first and the second holo-
graphic structures are different. However, the vector of
the holographic structure rerecorded depends on the
difference in the errors rather than on their absolute val-
ues. Then, to equate the vectors of the holographic
structures rerecorded, one can match the interference
field rerecording the second holographic structure with
the already rerecorded first holographic structure [19].
This can be accomplished by placing the new carrier in
the same position 5 (Fig. 1a) after rerecording the first
holographic structure on it. The equality of the vectors
of the second interference holographic structure being
rerecorded and the first already rerecorded holographic
structure is monitored by the width of the moiré fringes.
The moiré pattern represents the low-frequency modu-
lation of these periodic structures, which can be
observed on rerecorded holographic structure 5 in both
transmitted and scattered light. By additionally adjust-
ing one of the beams illuminating second multiple-
exposure hologram 1, one can vary the moiré pattern
and obtain a fringe of an infinite width. Then, the carrier
with the first rerecorded holographic structure is
removed and the second holographic structure is
recorded on the new carrier placed in position 5. An
infinitely wide fringe in the moiré pattern corresponds
to equal differences in the adjustment errors:

(10)

Thus, the amplitude transmission of the cth rere-
corded holographic structure has the form

(11)

As long as equalities (10) are satisfied, the projec-
tions of the vectors of the rerecorded holographic
arrays in expressions (6) and (11) equal each other,
which provides equality of the vectors themselves.

One can process the pair of holograms (6) and (11)
in an optical analyzer of conjugate holograms [3] with
the use of incoherent light. For example, the selection
of the ±nth diffraction orders in the record plane makes
it possible to observe an interference pattern adjusted to
an infinitely wide fringe. Such a pattern visualizes the
object dynamics in the time interval between the bth
and cth exposures upon the recording of the original
multiple-exposure holograms:

(12)

The sensitivity of such an interferogram is increased
4n times. The aberrations in the recording and optical
processing systems, as well as the inhomogeneities of
the substrates, are completely compensated.

δξ1 δξ2–  = δξ1' δξ2' , δη1– δη2–  = δη1' δη2' .–

τc 1 2π ξ1 ξ2– δξ+( )x[cos+{=

+ 2π η1 η2– δη+( )y 2 εc' ϕ+( ) ] } γ/2–
.+

Icb 1 4n εb εc–( )[ ] .cos+=
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EXPERIMENTAL RESULTS

The above method for improving the sensitivity and
eliminating aberrations was tested in experiments on
visualizing the temperature field in a glass substrate
with a transparent conducting coating near one of the
electrodes. The voltage applied to the electrodes was
varied with time by a certain law. The substrate with the
conducting coating was placed in the object arm of the
holographic interferometer. The state of the substrate
was holographically recorded at certain time instants.
In one experiment, we recorded 15 states of the sub-
strate (five holographic structures on each of three car-
riers) by varying the orientation of the fringes in the
structures. When the interference patterns visualizing
the temperature-field variations in the substrate for a
time between two arbitrary exposures were recon-
structed by the conventional methods without increas-
ing the sensitivity, the curvature of the fringes was so
small that it was impossible to estimate the tempera-
ture-field variations even qualitatively. When the inter-
ference patterns were reconstructed in the interferomet-
ric correlator with two different multiple-exposure
holograms, the interference fringes were heavily dis-
torted by substrate inhomogeneities. Figure 2 shows
such an interferogram adjusted to an infinitely wide
fringe and reconstructed with the holographic struc-
tures recorded at the corresponding time instants. The
holographic structures were taken from different multi-
ple-exposure holograms. It is seen from the interfero-
grams (the electrode is on the right) that the aberrations
significantly exceed the desired signal. To compensate
for the inhomogeneities in the multiple-exposure holo-
gram substrates and to increase the sensitivity, we rere-
corded the holographic structures obtained at the time
instants of interest on new carriers by the method pro-
posed. The new holograms exhibited the nonlinearity
allowing for the use of higher diffraction orders. Figure
3 shows interferograms reconstructed through the rere-
corded holograms in the optical analyzer of conjugate
holograms with an incoherent light source. We
achieved an eightfold increase in the sensitivity when
reconstructing the interferograms in the diffraction
orders ±2. By exactly superimposing the rerecorded
holograms in the optical analyzer, we reconstructed the
interferogram adjusted to the infinitely wide fringe
(Fig. 3a). Note that such an adjustment of the interfer-
ence pattern with complete compensation of aberra-
tions necessitates the equality of the vectors of the holo-
graphic structures. The adjustment to finite-width
fringes was accomplished by slightly rotating one of
the holograms relative to another about the optical axis
of the device. However, interferograms reconstructed in
such a way (Fig. 3b) can suffer from uncompensated
aberrations introduced by systems recording multiple-
exposure holograms and by those rerecording holo-
graphic structures. These uncompensated aberrations
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
depend on the angle of rotation and on the form of the
function ϕ.

CONCLUSION

In the interferograms obtained, the inhomogeneities
in the substrates of the multiple-exposure holograms
are totally eliminated. The increase in the sensitivity is
sufficient for quantitative estimate of the variations of
the temperature fields in the glass substrate. If the sen-

Fig. 2. Interferogram reconstructed from two multiple-
exposure holograms in the interferometric correlator.

(‡)

(b)

Fig. 3. Interferograms adjusted to (a) an infinitely wide
fringe and (b) finite-width fringes and reconstructed from
two rerecorded holograms in the optical analyzer of conju-
gate holograms.
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sitivity turns out to be insufficient, the holographic
structures rerecorded on the new carriers [see expres-
sions (6) and (11)] can additionally be rerecorded in
coherent or incoherent light by the method presented in
[17] to achieve the desired sensitivity.
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Abstract—Propagation of a frequency-modulated Gaussian pulse along an optical fiber with a gradient refrac-
tive index is studied. It is shown that, after propagating a certain distance, the pulse undergoes compression. If,
at the point of maximum compression, the pulse intensity is exactly equal to the threshold intensity, then either
a bright or dark vortex soliton can form. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, most of the methods for information
transfer along optical fibers are based on pulse coding.
Both the need of pulse shortening with the purpose of
the enhancing information transfer rate and the neces-
sity of lengthening the transmission line require
increasing the power of the pulse transmitted along an
optical fiber. In this case, the pulse propagation along
the fiber can be substantially affected by nonlinear
effects.

The formation of an envelope soliton in an optical
fiber from a pulse with a bounded spectrum and a peak
power of ~1 W was predicted theoretically in [1] and
demonstrated experimentally in [2]. Conditions for the
formation of bright and dark solitons in a fiber were
studied in [3]. In [4], it was shown that, in an optical
fiber, a stable laser pulse can evolve into a soliton. The
stability of soliton pulses generated by exciting two
modes with different group velocities in an optical fiber
was studied analytically in [5]. In [6], the dynamics of
a vortex soliton generated due to the self-focusing of
cw laser radiation in a nonlinear medium was investi-
gated numerically.

It is well known [7, 8] that a frequency-modulated
pulse with a Gaussian envelope in a fiber undergoes
compression. In the course of compression, the pulse
shortens and its intensity increases. As a result, even if
the initial pulse intensity is lower than the critical one,
it can reach the threshold value at which a soliton
forms. In this paper, we consider the dynamics of the
amplitude and phase of a frequency-modulated Gauss-
ian pulse in an optical fiber and show that the pulse
compression can result in the formation of a bright or
dark vortex soliton.

FIELD EQUATIONS

Let us consider the dynamics of an optical pulse
propagating in a transversely nonuniform medium with
1063-7842/02/4706- $22.00 © 20713
axial symmetry and dispersion, namely, in an optical
fiber with a nonuniform refractive index. We assume
that, in the cross section z = 0, the waveguide conditions
for a pulse with a given electric field profile are satis-
fied; i.e., the transverse profile of the pulse electric field
is described by the guided modes, the radiative modes
have been already emitted, and the guiding conditions
for the fundamental harmonic in a fiber are fulfilled. In
the transverse direction, the Sommerfeld radiation con-
ditions for all the components of the electromagnetic
field E and B are satisfied: r(kψj + ∂ψj/∂r)} = 0.

For silica glass, from which optical fibers are pro-
duced, the nonlinear response time is τNL ~ 10–15 s [7].
Generally, the pulse duration T0 can be comparable
with the nonlinear response time τNL. In a fiber along
which the pulse propagates, the nonlinear response is
usually small as compared to the linear one. Hence, the
optical nonlinearities can be approximated by expand-
ing the polarization vector in series in the electric field
strength,

(1)

where PNL ! PL.
For silica glass, the largest contribution to the non-

linear response comes from the term proportional to the
third power of the electric field strength,

(2)

The electromagnetic field of a pulse propagating
along an optical fiber satisfies Maxwell’s equations for

{
r ∞→
lim

P PL PNL,+=

P r t,( ) t1χ1 r t1,( )E r t t1–,( )d

0

∞

∫=

+ t1 t2 t3χ3 r t1 t2 t3, , ,( )E r t t1–,( )ddd

0

∞

∫
0

∞

∫
0

∞

∫
× E r t t1– t2–,( )E r t t1– t2– t3–,( ).
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a dielectric,

(3)

and the constitutive equation D = E + 4πP ≡ E.

From set (1)–(3), we obtain the integrodifferential
equation for E:

(4)

By virtue of the equation ∇ D = 0, we have ∇ E +
(∇ ) ⋅ E = 0. We ignore the polarization effects and
assume that | ∇ ⋅ E| @ |(∇ ) ⋅ E|; i.e., ∇ ⋅ E ≈ 0. Then,
from Eq. (4), we obtain

(5)

where

are the integral operators.

We separate out the second derivative with respect
to the longitudinal coordinate in the Laplace operator,

 + ∂2/∂z2, and multiply Eq. (5) by the complex con-
jugated value E* and the complex conjugated Eq. (5)
by E and, then, subtract these equations from one
another. After integrating the equation obtained over
the cross section, we arrive at

(6)

where  = 1 + 4π  + 4π |E|2.

Taking into account the Sommerfeld radiation con-
dition

∇ B× 1
c
---∂D

∂t
-------, ∇ D⋅ 0,= =

∇ E× 1
c
---∂B

∂t
-------, ∇ B⋅– 0,= =

ε̂

∇ 2E ∇ ∇ E⋅( ) 1

c2
----∂2E

∂t2
---------––

4π
c2
------∂2P

∂t2
---------.=

ε̂
ε̂

ε̂ ε̂

∇ 2 1

c2
---- ∂2

∂t2
-------– 

  E
4π
c2
------ ∂2

∂t2
------- χ̂1 χ̂3 E 2+( )E,=

χ̂1 = t1χ1 r t1,( ), χ̂3d

0

∞

∫  = t1 t2 t3χ3 r t1 t2 t3, , ,( )ddd

0

∞

∫
0

∞

∫
0

∞

∫

∇ ⊥
2

S E* ∇⋅ ⊥
2 E E ∇⋅ ⊥

2 E*–( )---




d

S

∫∫

+ E* ∂2

∂z2
-------

1

c2
---- ∂2

∂t2
------- ε̂– 

  E⋅

 E ∂2

∂z2
-------

1

c2
---- ∂2

∂t2
------- ε̂– 

  E*⋅




–  = 0,

ε̂ χ̂1 χ̂3

r
ω
c
----E

∂
∂r
-----E+ 

 
r ∞→
lim 0=
and the second Green’s formula, we find that

at L  ∞. We represent the electric field vector in the
form

and substitute it into Eq. (6). Then, taking into account
that Z* ≠ 0, we arrive at the equation for Z(z, t):

(7)

where

We apply the method of slowly varying amplitudes
[7, 8] to analysis of the pulse dynamics in an optical
fiber. In this method, the complex amplitudes A(z, t) of
the pulse field components (envelopes) are assumed to
slowly vary in time and along the longitudinal coordi-
nate as compared to fast oscillations at the fundamental
harmonic

(8)

We expand the slowly varying amplitude A(z, t – t1)
in a Taylor series in the t1 variable (the relaxation time)
about the current time t:

(9)

S E* ∇⋅ ⊥
2 E E ∇ ⊥

2 E*⋅–( )d

S

∫∫  

 = dl E*
∂
∂r
-----⋅ E  E

∂
∂r
-----E*– 

 

L

∫°  = 0

E r t,( ) e r⊥( )Z z t,( )=

∂2

∂z2
-------  

1

c2
---- ∂2

∂t2
-------– Z

4π
c2
------ ∂2

∂t2
------- α̂1Z α̂3Z Z 2+( ),=

α̂1 ϕ rrχ̂1 r⊥( ) e r⊥( ) 2d

0

∞

∫d

0

2π

∫ 
 
 

=

× ϕ rr e r⊥( ) 2d

0

∞

∫d

0

2π

∫ 
 
 

1–

,

α̂3 ϕ rrχ̂3 r⊥( ) e r⊥( ) 2 e r⊥( ) 2d

0

∞

∫d

0

2π

∫ 
 
 

=

× ϕ rr e r⊥( ) 2d

0

∞

∫d

0

2π

∫ 
 
 

1–

.

Z z t,( ) A z t,( ) i ω0t βz–( )[ ]exp .=

A z t t1–,( ) A z t,( )
t1–( )m

m!
--------------∂mA z t,( )

∂tm
----------------------.

m 1=

∞

∑+=
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Taking into account Eqs. (8) and (9), we obtain

(10)

where

For the real frequencies, the function α1(z, ω0) has
no singularities [9]. Analogously, we expand the slowly
varying amplitude in series in t1, t2, and t3:

(11)

Let us consider a pulse with a duration much longer
than the nonlinear response time of silica glass (T0 @
τNL). Then, the nonlinear response of the medium can
be regarded as inertia-free and the response function
can be represented as a product of delta functions,

i.e., we can retain only the first term in expansion (11).
We ignore the dependence of the fiber permittivity on
the longitudinal coordinate. In this approximation, the
equation for the electric field amplitude in a silica fiber
takes the form

(12)

α̂1Z

=  α1 z ω0,( )A
i–( )m

m!
------------∂mα1 z ω0,( )

∂ωm
---------------------------

ω ω0=

∂mA

∂tm
----------

m 1=

∞

∑+

× i ω0t β ω0( )z–( )[ ] ,exp

α1 z ω0,( ) α1 z t1,( ) iω0t1–( )exp t1.d

0

∞

∫=

â3Z Z 2

=  α3 x ω0,( )A A 2 i ∂α3 z ω0,( )
∂ωk

-------------------------
ωk ω0=

∂A A 2

∂t
----------------

k 1=

3

∑–

+
1
2!
----- ∂2α3 z ω0,( )

∂ωk∂ωm

----------------------------
ωk m, ω0=

∂2A A 2

∂t2
------------------ …+

m 1=

3

∑
k 1=

3

∑

× i ω0t β ω0( )z–( )[ ] .exp

χ3 t1 t2 t3, ,( ) χ3 ω0( )δ t1( )δ t2( )δ t3( );=

∂2

∂z2
-------

1

c2
---- ∂2

∂t2
------- i2β0

∂
∂z
----- i2ω0

1

c2
---- ∂

∂t
-----

ω0
2

c2
------ β0

2–
 
 
 

+––– A

=  
4π
c2
------ α1

∂2

∂t2
------- i2α1ω0

∂
∂t
----- a1ω0

2–
i–( )m

m!
------------

∂mα1

∂ωm
------------

m 1=

∞

∑+ +

× ∂m 2+

∂tm 2+
------------- i2ω0

∂m 1+

∂tm 1+
------------- ω0

2 ∂m

∂tm
--------–+ 

 
ω0

A α3
4π
c2
------+

× A 2∂2A

∂t2
--------- A

∂2 A
2

∂t2
-------------- 2

∂A
∂t
------∂ A 2

∂t
------------+ +



+ i2ω0 A 2∂A
∂t
------ i2ω0A

∂ A 2

∂t
------------ ω0

2A A 2–+ 
 .
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Equation (12) describes both linear dispersion (the
terms ~∂mα1∂mA/∂ωm∂tm) and nonlinear effects, such as
the breaking of the amplitude envelope (the term
~A|A|2) and its perturbations (the nonlinear terms with
time derivatives of the amplitude).

DYNAMICS OF THE PULSE ENVELOPE

Let us find the solution to Eq. (12) for the envelope
of a pulse with given parameters in the cross section
z = 0 in the linear approximation, assuming χ3  0.
The frequency spectrum of the pulse with an amplitude
A0(t) at z = 0 is

(13)

Taking into account that harmonic waves propagate
in a linear medium independently of each other, we will
seek a solution to the equation for the longitudinal fac-

F ω( ) A0 t'( ) iωt'–( )exp t'.d

∞–

∞

∫=

1.0

0.5

0

–0.5

–1.0
–4 –2 0 2 4 t

Fig. 1. Pulse with initial frequency modulation (v  > 0) at z = 0.
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tor Z(z, t) as a superposition of the harmonics
F(ω)exp{i[ωt – β(ω)z]} [7, 8]:

(14)

We substitute expression (13) for the spectrum into
Eq. (14) to arrive at the expression for Z(z, t) with
allowance for the boundary conditions:

(15)

The solution to Eq. (15) can be obtained in a closed
form by calculating the double integral with allowance
for the exact dispersion law β = β(ω).

Let us consider the dynamics of a relatively long
pulse with a smooth front. We assume that the width of
the pulse frequency spectrum ∆ω is fairly small. Then,
the approximate solutions for Z(z, t) can be found by
expanding the propagation constant in a Taylor series
about the carrier frequency ω0:

(16)

Substituting series (16) into Eq. (15), we obtain
expressions for Z in the first, second, etc. approxima-
tions of dispersion theory in accordance to the terms
retained. After taking the inner integral over ω and,
then, the integral over t', we arrive at the solutions in the
corresponding approximations of dispersion theory. In

Z z t,( ) 1
2π
------ F ω( ) i ωt β ω( )z–[ ]{ }exp ω.d

∞–

∞

∫=

Z z t,( ) 1
2π
------ A0 t'( )

∞–

∞

∫
∞–

∞

∫=

× i ω t t'–( ) β ω( )z–[ ]{ } dt'dω.exp

β ω( ) β ω0( ) ∂β
∂ω
-------

ω ω0=

ω ω0–( )+=

+
1
2
--- ∂2β

∂ω2
---------

ω ω0=

ω ω0–( )2 ….+

0.2

0.2
z

0.6 1.0–0.2–0.6–1.0
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1.0

1
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3

Fig. 3. Longitudinal profile of the pulse energy density:
(1) Gaussian pulse, (2) bright soliton, and (3) dark soliton.
the second approximation of dispersion theory, we
obtain the following expression for Z:

(17)

If a Gaussian pulse is initially frequency modulated,
its envelope at z = 0 can be represented in the form
[7, 8]

(18)

When the frequency parameter is positive (v  > 0),
the frequency decreases toward the pulse trailing edge
(Fig. 1); in the opposite case (v  < 0), it increases toward
the trailing edge.

Substituting expression (18) for A0(t) into Eq. (17),
we obtain the envelope of a frequency-modulation
pulse in the fiber core in the cross section z:

(19)

where

is the correction to the pulse phase, γ = vω0  is the

initial frequency modulation depth,  = z/LD is the nor-

malized fiber length, LD = /4D is the dispersion
length over which the pulse duration increases by a fac-

tor of ,

is the dispersion factor, and v g = (∂β/∂ω)–1.
Figure 2 shows the dynamics of the amplitude |A | of

a frequency-modulated pulse propagating in the fiber
core for γ = 1 [see Eq. (19)]. The pulse amplitude
increases over the normalized distance  = 0.5, on
which the pulse undergoes compression in the normal-
ized time τ0 = (t – LD/v g)/T0. After passing the point
of maximum compression, the pulse spreads out. The
rate of the pulse envelope deformation increases with
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increasing the coefficient γ. For example, at γ = 10, a
pulse with initial frequency modulation is not com-
pressed at all.

For γ = 1 and D > 0 (normal dispersion), the duration
of a frequency-modulated pulse propagating in the fiber
core, 2T = 2T0[(1 – γz/LD)2 + (z/LD)2]1/2, has a minimum

at the distance zmin = γ /4D(1 + γ2). Therefore, in a
linear medium, the frequency-modulated pulse is
“focused” in time. Due to compression, the pulse
energy density increases, so that nonlinear effects can
come into play if the energy density reaches a level at
which the refractive index begins to depend on the elec-
tric field strength.

BRIGHT AND DARK SOLITONS

Let us consider in more detail the effects of linear
dispersion and the nonlinear breaking of the amplitude
envelope, ignoring other processes. We go over to the
frame of reference related to the pulse (ζ = z and τ = t –
z/v, where v  = const) and switch to the new variables in
Eq. (12). The velocity of the moving frame of reference
can be found by equating to zero the coefficient by the
first derivative with respect to τ in the equation
obtained:

(20)

It follows from (20) that the velocity of the new
frame of reference is determined by the frequency of
the fundamental harmonic ω0 and the dispersion of the
dielectric susceptibility of the fiber core ∂α1/∂ω. We
write the equation for the pulse amplitude in the form

(21)

where

When the rate of dispersion spreading is exactly
equal to the rate of the nonlinear breaking of the ampli-
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tude envelope, we can find the steady-state pulse shape
[7] assuming that

(22)

Substituting expression (22) into Eq. (21), we arrive
at the equation

(23)

where g = b2/b4 and h = (Γ2b1 + Γ – b3)/b4.

In the given approximation, for (d /dτ)0 = 0, g > 0,
and h > 0, we obtain a solution to Eq. (23) in the form
of a bright soliton,

(24)

The pulse intensity (I ~ v ) is proportional to

where  is the fiber cross section in which the soliton
forms.
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Fig. 4. Wave surface of a bright soliton.

Fig. 5. Wave surface of a dark soliton.
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If g < 0 and (d /dτ)0 = h/ , then the solution to
Eq. (23) has the form of a kink wave,

(25)

at  < h or an “antikink” at  > h. In the latter case,
the field intensity is proportional to

In the center of the kink or antikink (at τ = 0), the
amplitude is zero; i.e., a dark soliton is formed [1, 3, 7–9].
The parameter g depends on both the first and second
frequency derivatives of the dielectric susceptibility,
i.e., on the sign of the dispersion and on the nonlinear
properties of the fiber (χ3).

A steady-state pulse (soliton) in a fiber has the form

(26)

where (t – z/v ) is described by expression (24)
or (25).

We denote the pulse duration by τS = . Then,
we can express the soliton amplitude A0 and the propa-
gation constant Γ in terms of the duration. Solving the
equation for Γ,

we obtain

For the pulse amplitude, we have A0 =  =

. We will describe a soliton pulse propagating
along a fiber by the expression

(27)

The soliton velocity, phase, and amplitude depend
on the type of dispersion in the fiber:

The soliton amplitude and phase also depend on the
soliton duration (τS).
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Figure 3 shows the longitudinal energy density pro-

files for a Gaussian pulse, W ~ exp(–2τ2/ ); a bright

soliton, W~ –τ/τS); and a dark soliton, W ~

exp(–2τ2/ )[1 – –τ/τS)]. The wave surfaces of
the pulses are shown in Figs. 4 and 5.

We assume that the soliton forms from a pulse
excited on one of the modes of an optical fiber with a

parabolic refractive index n =  [10]:

(28)

where w = VR2, R = r/ρ, V 2 = 2ρ2(ω0/c)2ε1∆, ρ is the

core radius, and (w) (N = 0, 1, 2, …) is the general-
ized Laguerre polynomial.

When the mode azimuthal index l is not zero, the
real and imaginary parts of the pulse electric field are
both zero on the fiber axis and the phase is indefinite at
r = 0. In this case, a nonsteady optical vortex over the
pulse length ~τS is formed. A nodal line formed by the
singular points of the electric field moves along the
fiber axis. Thus, both the bright and dark solitons
formed from a single pulse are nonsteady optical vorti-
ces, whose axis is the nodal line. The vortex axis can be
regarded as a string (see, e.g., review [11]). Moreover,
the dark soliton has one more singular point in its cen-
ter; thus, for a dark soliton, the field singularity on the
axis is doubly degenerated.

DISCUSSION

Let us estimate the optical fiber length over which a
Gaussian pulse with initial frequency modulation
(γ = 1) and an intensity lower than the threshold one

(IG ~ v g  < v ) evolves into a soliton. At v g = v,
g > 0, and h = 1/2, the compression of a frequency-
modulated Gaussian pulse in the linear regime results
in the formation of a bright soliton over the length z =
LD/2. For a pulse with T0 = 10–12 s at γ = 1 and ∂2β/∂ω2 =
10–26 s2/m, the fiber length over which the bright soliton
forms is z = 25 m. If the intensity of the compressed
pulse exceeds the threshold value for soliton formation,
then the Gaussian pulse spreads out after passing the
point of maximum compression [7]. At g < 0 and

(d /dτ)0 = h/ , all other parameters being the
same, a dark soliton can be formed over a fiber length
of z = 25 m provided that h = 1.
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Abstract—Thin (<0.5 µm) gradient SiOx/Ti coatings with a low coefficient of specular reflection (≤1%) in the
visible part of the spectrum are obtained by thermal evaporation in vacuo. The optical parameters and the dis-
tribution of the components across the coating are studied. The optical properties of the gradient layers are sim-
ulated, and the results of simulation are compared with experimental data. These coatings can be used in fabri-
cating black (light-absorbing) matrices for cathode-ray tubes and flat-panel displays. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Light-absorbing (black) matrices are widely used in
modern cathode-ray tubes and various flat-panel dis-
plays. In matrix screens, the space between pixels is
filled with a black coating which absorbs environmen-
tal light and the radiation scattered by adjacent pixels.
The absence of the optical background improves the
image contrast.

The coatings used in black matrices must have low
coefficients of diffuse (Rd) and specular Rsp reflection in
the visible part of the spectrum (R ≤ 1%), be opaque
(optical density D > 3–4), and offer a sufficiently high
conductivity. In addition, the black coating in modern
flat-panel displays must be of a submicron thickness.
Low reflection, high optical density, and submicron
thickness are impossible to combine in homogeneous
coatings. For example, for the reflection from the coat-
ing–screen glass interface to be low, the refractive indi-
ces n of the coating and the substrate must differ insig-
nificantly and the absorption coefficient k must be low.
However, the optical density of a submicron coating
will be low if k is high. This problem can be solved with
the use of multilayer or gradient films whose composi-
tion (hence, optical properties) varies in the direction
normal to the substrate. Gradient coatings for the black
matrices can be applied by various techniques. Among
them are controllable vacuum evaporation of two com-
ponents from two evaporators [1] and rf sputtering of a
metal (Me) in a variable-composition atmosphere [2] to
form MeO–Me coatings. One more way suggested by
us for applying SiO–Cr insulator–metal coatings [3]
consists in vacuum evaporation of the component mix-
ture from a single evaporator. Because of a slight differ-
ence in the temperatures of evaporation for SiO and Cr,
1063-7842/02/4706- $22.00 © 20720
the process conditions can be selected so that the com-
position of the resulting gradient layer varies gradually
from SiO to Cr. Such coatings provide desired optical
and electrical properties at thicknesses from 0.3 to 0.6
µm. Unfortunately, the process of chromium vacuum
deposition and subsequent lithography of the coating
are not environmentally safe.

In this work, we study the properties of chromium-
free gradient insulator–metal coatings for matrix pan-
els.

SIMULATION OF OPTICAL PROPERTIES 
OF GRADIENT INSULATOR–METAL COATINGS

To make use of the single-evaporator method, it is
necessary to take a pair of components that have close
temperatures of evaporation in vacuo. As an insulator,
we took silicon monoxide, because good SiOx layers
(x = 1.2–1.3 in our experiments [4]) can be obtained by
thermal evaporation in vacuo. Moreover, the refractive
index of thermally evaporated SiOx films differs from
that of panel glasses only slightly and the coefficient of
absorption in the visible part of the spectrum is low.
Along with Cr, which was used as a metallic compo-
nent in our early experiments, one can try Fe, Ti, Co, V,
and Ni. The temperatures of evaporation of Mo, Ta,
amd W exceed that of SiO insignificantly. However, in
the molten state, these elements vigorously react with
the conventional materials of resistive evaporators;
therefore, SiOx/Ti gradient coatings were studied in this
work.

The coefficient of specular reflection is the basic
optical property of a black coating. Let us calculate the
value of R for a SiOx/Ti heterogeneous layer in which
002 MAIK “Nauka/Interperiodica”
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the composition and the optical constants n and k vary
from those typical of SiOx to those of Ti. Figure 1
shows the cross section of the gradient layer (medium
2) on a glass substrate (medium 1) in air (medium 3).
Let a radiation of intensity I0 be incident from the side
of medium 1 normally to the surface. We partition inho-
mogeneous layer 2 by planes parallel to the substrate
into N quasi-homogeneous layers of the same thickness
∆z = zN/N. It is assumed that each jth layer has its own
complex refractive index (the medium is nonmagnetic)

We adopt that the first layer (0 < z < z1) consists of
SiOx and one or several of the last layers (zm < z < zN)
consist of Ti. The distribution of  in the intermediate
region (z1 < z < zm) is arbitrary.

The reflection and transmission in such a structure
are most convenient to simulate with the Abeles matrix
theory, which is presented for insulators in [5] and
inhomogeneous absorbing structures in [6]. Abeles
showed that the amplitude coefficients of a planar wave
at the boundaries of a homogeneous layer can linearly
be related through the characteristic matrix. Under our
assumptions, the characteristic matrix of the j layer has
the form

(1)

The matrix of the entire structure is found by multi-
plying the matrices for the homogeneous layers:

(2)

The amplitude reflection and transmission factors
(r and t, respectively) can be expressed through the ele-
ments of characteristic matrix (2):

(3)

where ng and na are the refractive indices of the glass
and air, respectively.

Finally, the energy factors of reflection and trans-
mission are given by the amplitude factors multiplied
by their complex conjugates:
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Figure 2 shows the simulated wavelength depen-
dence of the reflection from the glass/inhomogeneous
SiOx/Ti multilayer structure in the visible range. Cur-
ves 1–4 correspond to different thicknesses of the gra-
dient region (zm – z1). The thickness of the metal layer
(zN – zm) was selected such that the transmission was
less than 10–5. It should be noted that the metal layer is
unnecessary if the intermediate (gradient) layer is more
than 250 nm thick, because the gradient layer alone
provides the desired optical density in this case. In the

y

z2z1 z1 zm zN z

na

1 2 3
ne

I0

0

Fig. 1. Cross section of gradient layer 2 on the glass sub-
strate 1. ng, refractive index of the glass; na, refractive index
of air.
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Fig. 2. Spectral dependence of the specular reflection coef-
ficient R at the interface between the glass and the SiOx/Ti
gradient layer. zm – z1 = 150 (1), 250 (2), 350 (3), and 1000 nm
(4). N = 200. n and k vary linearly with layer thickness.
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simulation, we assumed that the optical constants n and
k of the gradient layer vary linearly with thickness from
the values typical of SiOx (near the substrate) to those
of Ti at the point zm. The optical constants for Ti were
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λ, nm
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0.036

450 500 550 600 650 700
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Fig. 3. Spectral dependence of the specular reflection coef-
ficient R at the interface between the glass and the SiOx/Ti
gradient layer. Designations are the same as in Fig. 2. k var-
ies exponentially with layer thickness.
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Fig. 4. Specular reflection coefficient R at the interface
between the glass and the SiOx/Ti gradient layer vs. refrac-
tive index ng of the glass substrate. λ = 400 (1), 560 (2), and
700 nm (3).
taken from [17], and those for thermally evaporated
SiOx were measured by the procedure described in [8].
In experiments, we used silicon monoxide from Cerac
Inc.; the refractive index used in the calculations was
that of BK7 glass (Schott Glass). As follows from
Fig. 2, the coefficient of specular reflection in the visi-
ble range depends markedly on the gradient layer thick-
ness. It is relatively high for small thicknesses, then
drops with growing thickness, and reaches a minimum
in the interval 450 ≤ λ ≤ 650 nm at the thickness zm –
z1 ≈ 350 nm. With a further increase in zm – z1, the
reflection varies insignificantly and slightly increases
only at zm – z1 ≈ 1000 nm throughout the spectral range.

In the real gradient coatings, the optical constants
may vary nonlinearly in the intermediate layer. In [3],
we studied the distribution of the optical constants in an
inhomogeneous black SiO/Cr layer. It was found that
the refractive index in this layer varies linearly from the
value for SiO to that for Cr, while the absorption coef-
ficient is well approximated by a power law with an
exponent of about 4.5 or by an exponential. It should be
noted that the refractive index of such structures varies
within a narrow interval, especially in the short-wave
range (at λ = 400 nm, n for SiO1.2 equals 1.9 and nTi =
2.1, while k varies from 1.4 to 2.95); hence, the optical
properties of the layer are controlled largely by the gra-
dient of the absorption coefficient.

Figure 3 shows the spectral dependence of the
reflection from the SiOx/Ti structure when the refrac-
tive index varies with thickness linearly and the absorp-
tion coefficient varies exponentially. As for the linear
dependence of k, R decreases with increasing zm – z1
and is minimal in the visible range at a somewhat lesser
thickness of the gradient layer, zm – z1 = 250 nm. As
zm − z1 grows further, R remains virtually unchanged.
The minimal value of R in this case (Rmin ≈ 0.008) is
2.5 times as large as Rmin for the case when both con-
stants vary linearly with thickness.

The reflection from the transparent substrate–gradi-
ent film interface must also depend on the difference in
the optical constants at the interface (in our case, at the
interface between SiOx and the substrate material). Fig-
ure 4 shows R vs. refractive index of the substrate for
several wavelengths from the visible range. The optical
constants vary linearly with the gradient layer thick-
ness, and the optimal value of zm – z1 is 350 nm. As fol-
lows from Fig. 4, R ≤ 0.01 throughout the visible range
when the refractive index lies in the interval 1.50 ≤ n ≤
1.75, that is, when it is somewhat lower than that of
SiO1.2. A similar result is obtained for the exponential
distribution of k across the gradient layer, but the opti-
mal value of the refractive index of the substrate here is
higher: 1.6 ≤ n ≤ 2.0.

Thus, the results of simulation indicate that the
spectral dependence and the value of the specular
reflection at the interface between the transparent sub-
strate and the inhomogeneous (gradient) SiOx/Me film
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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are specified basically by two factors: the thickness of
the variable-composition region and the difference in
the refractive indices of the transparent substrate and
the SiOx film. The value of R also depends, though to a
lesser extent, on the variation of the optical constants
with gradient region thickness. However, given the
properties of the substrate and zm – z1, the minimal
value of the reflection coefficient can be varied in a
wide range by varying the optical constant distribution
law.

EXPERIMENTAL

Samples used were prepared by thermally evaporat-
ing in vacuo (residual pressure 2 × 10–3 Pa) a SiO + Ti
powder mixture from a single evaporator on a glass
substrate or cathode-ray tube panel. The temperature at
which Ti is vigorously evaporated in vacuo is slightly
above that of SiO. Therefore, when the temperature of
the evaporator is smoothly raised, first SiO sublimates
and is deposited, then SiO and Ti are codeposited, and
finally Ti alone is deposited. Varying the evaporation
conditions (rate), as well as the weight and composition
of the charge in the evaporator, one can attain a desired
distribution of the components and thickness of the
black layer. During the deposition, the thickness of the
layer was monitored by a KIT-1 quartz meter. After the
deposition, it was measured with an MII-4 microinter-
ferometer. The thickness of the layers studied was
between 0.3 and 0.6 µm. The depth profiling of the
component atoms was accomplished with a VG Micro-
lab 310-F Auger spectrometer. The reflection of the
normally incident light was measured with a KSVU-23
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Fig. 5. Distributions of Ti and Si over the SiOx/Ti cross sec-
tion. The origin is at the coating–air interface.
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spectrophotometer; the diffuse reflection at an angle of
incidence of 45°, with a test bench (Samsung SDI Ltd).

Figure 5 shows the distributions of Ti and Si across
the 330-nm-thick SiOx/Ti coating obtained. The thin
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Fig. 6. (1) Spectral dependence of the specular reflection
from the glass substrate with the SiOx/Ti gradient layer
measured from the side of the substrate. (2) Reflection from
the air–substrate interface. (3) Calculated specular reflec-
tion from the SiOx/Ti coating measured from the side of the
substrate (the Maxwell–Garnett effective medium model
with the gradient of the metallic phase).

0.5

400

Rd, %

λ, nm

0

1.0

1.5

3.0

2.5

2.0

450 500 550 600 650 700

2

1

Fig. 7. Spectral dependence for the coefficient Rd of diffuse
reflection from light-absorbing (1) SiOx/Ti and (2) graphite
coatings.
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layer near the coating–substrate interface consists
almost totally of SiOx: the concentration of Ti atoms is
less than 10%. At a distance from the substrate, the Ti
concentration grows and the outer layer of the coating
(about 90 nm thick) consists almost totally of Ti. The
variable-composition region is 240 nm thick, and, as
follows from Fig. 5, the metal concentration in it varies
with thickness nearly linearly. The optical density of
the thickness is more than 4, and its sheet resistance
measured by the four-point probe method is close to
30 Ω/h.

Curve 1 in Fig. 6 shows the spectral dependence of
the specular reflection coefficient Rsp of the coating
(conditions are the same as in Fig. 5). The reflection
was measured on the side of the substrate. In such a
measuring scheme, the reflection from the front surface
of the substrate Rs (curve 2) is imposed on that from the
coating–substrate interface R. The value of R = Rsp – Rs
is small (≈0.01) throughout the visible range; that is, the
coating is achromatic and effectively absorbs the inci-
dent radiation.

Figure 7 demonstrates the spectral dependence of
the diffusion reflection Rd for the coating applied on the
cathode-ray tube panel (curve 1). For comparison, the
diffusion reflection for a standard graphite coating is
also plotted (curve 2). It is seen that Rd for the black
insulator–metal coating is one order of magnitude less
throughout the visible range and does not change after
thermal heating at 450°C for 1 h, which is used in the
fabrication of cathode-ray tubes.

DISCUSSION

From Auger spectra recorded after the variable-
composition coating had been argon-etched, we found
the distribution of the metal atoms across the depth. In
these calculations, the distribution of the optical con-
stants n and k over the cross section should be used. To
derive an accurate relationship between the metal con-
centration and the optical constants, it is necessary to
know the chemical composition and structure of the

Fig. 8. Fragment of the SiOx/Ti-based black matrix on the
screen of the cathode-ray tube. The hole diameter is 110 µm.
layer. Upon the evaporation, Ti may combine with sili-
con to form silicide nanoinclusions, which change the
composition of the matrix or enter into the matrix as
metallic inclusions. The fraction of Ti agglomerated
increases with its concentration, as demonstrated by
measurements of the SiO/Me composite resistivity as a
function of the metal concentration [9].

Let us assume that a gradient SiOx/Ti layer repre-
sents, in the first approximation, a two-phase amor-
phous SiOx/metallic Ti structure in any cross section.
Such an approach was adopted in [10] to describe the
optical properties of SiO2/Ag(Au) composites over a
wide range of concentrations (10–90%). As in [10], the
effective optical constants of the SiOx/Ti composite will
be analyzed in terms of the Maxwell–Garnett effective-
medium theory. Since neither the sizes nor the shapes
of the inclusions in the two-phase structure are known
(moreover, they may be concentration-dependent), we
will use the Maxwell–Garnett formula for spherical
inclusions and assume that the optical constants of both
phases do not depend on the inclusion size. Thus,
knowing the optical constants for SiOx and Ti and tak-
ing into account that the component atoms are distrib-
uted in the two-phase structure linearly (Fig. 5), one can
calculate the distribution of the optical constants of the
SiOx/Ti structure over the cross section of the layer
deposited. Substituting the functions (z) into formu-
las (1)–(4) yields the distribution of the specular reflec-
tion coefficient (curve 3 in Fig. 6). Unlike Figs. 2 and 3,
here the reflection from the front boundary of the sub-
strate is taken into account. In the visible range, the cal-
culated and measured specular reflection coefficients of
the glass substrate are seen to agree well; hence, the
assumptions made are valid.

Usually, black matrices based on graphite coatings
are fabricated only with lift-off photolithography,
because chemical etchants for graphite are absent. The
insulator–metal black matrices can be fabricated by the
direct photolithography method. This method was
employed in this work to prepare the SiOx/Ti black
matrices. The basic process steps in their production are
the following.

(1) Application of a SiOx/Ti black coating on the
inner surface of a 17-inch cathode-ray tube panel by
thermal evaporation in vacuo. This was made on a stan-
dard vacuum station for panel aluminizing. The unifor-
mity of the coating thickness was ±7%.

(2) The application of an AZ-HKT-501 positive pho-
toresist layer by spinning. The rate of rotation of the
tube panel was 246 rpm.

(3) Photoresist drying, exposure, and development.
(4) Curing of the protective mask and etching of the

black layer.
(5) Removal of the protective mask.
A fragment of the SiOx/Ti black gradient matrix is

shown in Fig. 8. It has been found that these matrices

n̂ j
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offer a number of advantages over graphite ones: a low
coefficient of diffuse reflection (one order of magnitude
lower than that of a graphite matrix), excellent physic-
ochemical properties (e.g., high mechanical strength
and high adhesion) and their stability against thermal
and chemical treatments, extremely low hygroscopicity
and the absence of gas release, and high reproducibility
of the coating properties.

The use of direct photolithography makes it possible
to apply our process for fabricating black matrices
intended for flat-panel displays (for example, for LCD
filters).
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Abstract—A model of double synthetic aperture based on Multiskan photodetectors is suggested. The model
aperture makes it possible to locate and track the illuminance boundary of a weak optical signal in real time.
With such an aperture, the boundary position can be found by integrally measuring the median of the photocur-
rent distribution for the modified signals. © 2002 MAIK “Nauka/Interperiodica”.
The problem of locating the faint optical boundary
between two media is central to the practice of optical
data processing. Difficulties arise, for example, in
locating petroleum spots on the sea surface [1, 2], as
well as the sea shelf and ocean currents [3]. This prob-
lem is also of great importance in the area of environ-
mental protection, where the concentration of various
gases is measured with gas-analyzing indicator tubes
[4]. Here, the location of the optical boundary is diffi-
cult because of high spatial inhomogeneities.

In practice, the optical boundary (front) is located
by differential methods: from the position of the peak
of the signal first derivative, from the position of the
point where the signal intersects a (fairly arbitrarily)
preset level, or from the position of the zero of the sec-
ond-order derivative. All these methods suffer from the
same disadvantage: the need for differentiation with
respect to time. When both the first and the second
derivatives of the signal are used, the position of the
front depends on its shape and, especially, on the noise
level. If the position is found from the point of intersec-
tion, the location accuracy depends on the stability of
this level, variation of the constant component of the
optical distribution, contrast ratio, and the width and
shape of the transition region. That is why the location
accuracy for the optical boundary of weak signals in the
presence of noise (i.e., under real conditions) is low,
within 5–50% [1, 2].

Refractometry methods, where four-quadrant pho-
todiodes are used as position detectors, provide the
highest accuracy [5]. However, in this case, too, the
degree of discrimination of two media with close
refractive indices is insufficient.

In a number of works, it has been shown [6, 7] that
optical distribution parameters can be found with a high
accuracy by using integral methods of image process-
ing. In this case, the coordinates of image informative
signs are integrally estimated from the positions of the
optical signal medians and by calculating sets of quan-
1063-7842/02/4706- $22.00 © 20726
tiles or integral moments of the signals. According to
published data [8], the distribution median adequately
estimates the position of spatially localized optical sig-
nals. An advantage of the integral methods is the full
use of the input energy and noise integration over nar-
rower space and time domains, because there is no need
for scanning the entire range of optical signal distribu-
tion. For example, the integral estimation of the posi-
tion of a light source locates its median with an accu-
racy of 0.02–0.002% of the field of vision [7].

The transition from scanning methods to integral
functionals implies the use of photodetectors that can
implement the integral method of signal conversion
throughout the interval where the signal distribution is
defined. Today, an integrated coordinate Multiskan
photodetector [9] is the only device satisfying these
requirements.

A Multiskan photodetector is a silicon structure
consisting of an array of back-to-back-connected pho-
todiodes. The diodes are under a linearly distributed
potential when a dc voltage is applied to a resistive
divider. The operation of a Multiskan as a variable-
aperture device that forms an integral signal takes
advantage of its integral aperture characteristic. The
position U0 of its inflection point depends on the poten-
tial of the resistive divider and the output potential in
such a way that the photocurrent from the Multiskan
output is given by [9]

or, in terms of the applied voltage,

(1)

I α f x( )
x ξ0–

Ax

-------------tanh xd

0

L

∫=

I β f u( )
u U0–

Au

---------------tanh u.d

E–

E

∫=
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Here, L is the length of the Multiskan photosensitive
layer; ξ0, spatial position of the inflection point in the
aperture characteristic; E, voltage applied to the resis-
tive layer; Ax, aperture spatial width; Au, aperture width
in terms of voltage; α and β, proportionality coeffi-
cients (hereafter, α = β = 1); and f(x) and f(u), optical
signal distribution in terms of coordinates x and u,
respectively.

For an optical signal, the determination of the illu-
minance front with the integral method poses funda-
mental difficulties, unlike the case of locating a local-
ized optical spot. When the front is faint, one usually
deals with optical distributions having a significant
density on both sides of a front to be located. In this
case, the position of the distribution median is virtually
independent of the optical front coordinate.

The aim of this work is to obviate this difficulty. The
problem of finding the position of the weak signal front
is reduced to the measurement of the median of the
modified signal. The modification is made by a set of
photodetectors having a double synthetic aperture.

Two-aperture synthesis is a signal processing
method whereby transformations equivalent to the
addition or subtraction of optical signals (with assign-
ing given weighting factors to them and introducing a
necessary spatial shift of the optical distributions into
these operations) are performed with one or several
photodetectors. Such modifications sometimes make it
possible to find the coordinates of the informative signs
of the initial distributions from the integral characteris-
tics of the signals modified.

Previously, the method of double synthetic aperture
was aimed at improving the location accuracy of Mul-
tiskans in the presence of intense background illumina-
tion [10]. However, the problem of locating the optical
front has the specific features noted above, which
require a radically different approach to be employed.
In this case, it is necessary to transform the initial dis-
tribution so that the position of the median of the new
distribution is directly related to the position of the
front. Clearly, the desired integral procedure must be
capable of revealing this differential sign without scan-
ning the interval where the illuminance function is
defined and without subsequent signal filtering and
smoothing.

The integral methods of signal formation allow the
location of informative signs in the tracking mode; that
is, the entire time of observation t' is completely spent
on the valid signal formation. It is in this sense that the
term “real-time operation” is applied to these methods.

For the system to operate in the tracking (real-time)
mode, it is necessary that an informative sign (optical
front coordinate in our case) be found not by scanning
the entire realization. Instead, it must be formed as a

continuous current value , which is automati-
cally set up (within the interval ±E) as a potential cor-
responding to the position of the front. For this purpose,

Ucontrol
0
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one needs to relate the difference current I and the coor-
dinates (U0 + ε) and (U0 – ε) of the inflection points in
the Multiskan aperture characteristics. We will find the
control voltage Ucontrol by integrating the Multiskan
instantaneous output current over time:

where C is the capacitance of the integrator.
It is obvious that Ucontrol reaches the steady-state

value at IΣ = 0. By definition, this corresponds to the
position of the optical distribution median. Thus, the

value of  can be found from the condition IΣ = 0.

This condition is the universal condition for finding
the optical distribution median when the photodetectors
operate in real time. Since IΣ is the sum of the currents
I1 and I2 of two Multiskans, the value and the variation
of IΣ depend on the law by which f(u) transforms into I1
and I2. Namely, they depend on the relative shift of the
potentials across the Multiskan resistive dividers, posi-
tions of the inflection points in the aperture characteris-
tics, transconductances of the I–V characteristics, cur-
rent gains, and other parameters.

To track the illuminance front position with Multi-
skans, we adopt the following model of formation of
the currents I1 and I2. Let two Multiskans (M1 and M2)
be placed in parallel along the mutual voltage axis u and
be shifted by ∆x so that their limits of integration are
shifted relative to each other by some value ±ε. The rel-
ative positions of the inflection points in the aperture
characteristics are defined by the potentials +ε and –ε
applied to the mutual buses of M1 and M2 (Ucontrol = 0).

Then, the currents I1(Ucontrol) and I2(Ucontrol) are
given by

(2)

and the equation for current balance has the form

(3)

Figure 1 depicts a connection diagram realizing a
double synthetic aperture where a spatial shift of Mul-
tiskans causes a shift in the supply voltages.

Ucontrol
1
C
---- IΣ t,d
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Fig. 1. Connection diagram for Multiskan photodetectors
operating in the synthetic aperture mode for locating the
illuminance front.
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Fig. 2. Results of analysis of the current balance equation.
Z1 and Z2, Multiskan aperture characteristics; f(u), function
simulating the input distribution; and D, distribution of the
difference current I1 – I2 over the illuminance front region.
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Fig. 3. Behavior of the currents I1 and I2, as well as of their
difference D, in the vicinity of the illuminance front.
When the Multiskans are identically illuminated by
the optical signal f(u), the value of Ucontrol starts to vary
because of the difference photocurrent until the posi-
tions of the aperture characteristics relative to the input
signal become such that the total photocurrent van-
ishes.

Since such two-aperture synthesis is intended for
locating the optical signal front, we define f(u) as

(4)

Here, the parameter b specifies the position of the front
in the interval ±E and the parameter B specifies the
steepness of the front. The parameters q and p charac-
terize the illuminance drop and the constant component
of the optical signal, respectively. Then, Eq. (3) takes
the form

(5)

We will solve this equation for Ucontrol, setting the
front position parameter b = 5 for definiteness. The
other parameters are as follows: voltages applied to the
resistive dividers E = ±10 V, shift ε = 0.2 V, width of the
transition region of the Multiskan aperture characteris-
tic Au = 0.2 V, optical front width B = 0.02 V, q = 0.1,
and p (the parameter including the constant component
and optical distribution contrast) = 0.5.

Figure 2 reflects the results of analysis of Eq. (5) for
current balance. Shown are the function f(u), which
simulates the initial optical distribution for b = 5, and
the aperture characteristics Z1 and Z2 of the Multiskans
M1 and M2, respectively, which are shifted by a value
u = 2ε relative to each other. The curve D(Ucontrol) =
I1(Ucontrol) – I2(Ucontrol) demonstrates that the value

D( ) = 0, which is the solution to Eq. (5), is at the

point  = b, which corresponds to the specified
position of the front within the given calculation accu-
racy.

The behavior of each of the curves I1 and I2 near
their intersection is shown in Fig. 3. The currents are
seen to have a single point of intersection; that is, the
solution found is unique. Let us consider the behavior
of the difference curve D and of the integral currents I1
and I2 (Figs. 3, 4) in order to physically substantiate the
coincidence of the solution to Eq. (5) with the position
b of the optical front. In the regions where the curve
D(Ucontrol) saturates (on the right and on the left of the
inflection point), the difference |I1 – I2| equals the sum
of the currents in the end portions shifted relative to
each other in the Multiskan space, i.e., in the portions

f u( ) p q
u b–
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p q
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from (–E – ε) to (–E + ε) and from (+E – ε) to (+E + ε).
This saturation current will be denoted by ∆I. The con-
stancy of ∆I both on the right and on the left of the front
position indicates that the photocurrents from the Mul-
tiskans cancel each other in the interval from (–E + ε)
to (+E – ε), where the inflection points of the aperture
characteristics Z1 and Z2 are beyond the front region.
The presence of ∆I causes Ucontrol to vary and thus Z1
and Z2 to move along the u axis. When one of the char-
acteristics reaches the front position coordinate, an
extra photocurrent directed oppositely to ∆I arises due
to the difference in the illuminance on the right and on
the left of the front. As the characteristics move further
and become symmetric about the front coordinate, ∆I
vanishes, the process of charge accumulation on the

integrator I is completed, and a value of  corre-
sponding to the front position forms.

Consider in greater detail the derivative
dD(Ucontrol)/dUcontrol, which clarifies how the variation
of the integral difference I1 – I2 provides the passage of
the curve D through the zero. It is this derivative that
allows us to find the photocurrent distribution whose
median specifies the front position. Also, this derivative
illustrates how the optical front position (the differen-
tial sign of the initial distribution that is the most stable
against variation of the front width and shape, as well
as against space–time noise [8]), can be found by using
the integral procedure of median finding.

Figure 4 shows a family of curves dD(Ucontrol)/dUcontrol
for various front widths B. As B grows, the peak height
decreases and the curve broadens. However, the broad-
ening takes place much more slowly than the front
width B increases. In the interval B = 0.2–2.0 V (the ten-
fold extension of the front), the effective value of the
difference aperture increases less than twofold. This is
associated with the properties of the Multiskan aperture
characteristics, which are close in shape to hyperbolic
tangents, whose difference rapidly approaches zero.

The shape of the curve dD(Ucontrol)/dUcontrol is
severely affected by the shift ε and the steepness Au of
the aperture characteristics. Both parameters define the
size of the spatial “window” produced by the Multiskan
aperture characteristics shifted relative to each other.
Within this window, the difference photocurrent is inte-
grated and the integral procedure of locating the optical
front is performed.

Since the aperture characteristics are rather smooth
(the transition region width at a level of 0.8 of the satu-
ration current is 0.4 V), a large location error may arise
if b is close to the interval extremes +E and –E.

Figure 5 shows the relative error ∆ = (  – b)/b
throughout the interval ±10 V for the signal front width
B = 0.2 V. In the absence of noise, the location error is
within the given calculation accuracy over the entire
operating interval. At a distance of 0.5% from the
device edge, the accuracy improves to 1%. As the front

Ucontrol
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Ucontrol
0
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Fig. 4. Run of the derivative dD(Ucontrol)/dUcontrol for the
front width B (1) 0.02, (2) 0.05, (3) 0.1, (4) 0.2, and (5) 0.5 V.
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Fig. 6. Realization of the noisy signal F(u).
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width grows, the error at the limits of the interval
increases and the region where the error falls into the
specified range shrinks.

The region of accurate calculation can be extended
by decreasing the parameter ε. However, such a
decrease and thereby a decrease in the geometrical shift
∆x of the devices reduce the difference current
D(Ucontrol). In this case, the time of front location grows
and the location accuracy worsens.

A necessary estimate of the model suggested is the
stability of the solution against spatial inhomogeneities
and noise. For this purpose, we used a computer model
that imposes a random noise-simulating process on the
signal f(u). Our goal was to obtain a basic estimate of
the noise effect on the accuracy of the method and com-
pare the resulting accuracy with that of the conven-
tional time scanning methods without considering the
noise spectrum.

The model of the noisy signal F(u) is depicted in
Fig. 6. The signal-to-noise ratio was estimated from the
relationship between the illuminance drop and the
width of the noise track N. In model calculations, the
latter was set equal to 1, 2, and 10. For all the values,
the rms error σ was calculated based on 100 samples
(see the table).

For comparison with the conventional methods, we
calculated this error for N = 1 when finding the front
coordinate from the peak position of the first derivative
of F(u). The value of σ obtained was equal to 8 × 10–2,
or 40 times as large as that in our integral method.

CONCLUSION

The use of a double synthetic aperture for locating
the illuminance front of a weak optical signal by the
integral method allows the following conclusions.

A combination of an electrical bias and a relative
spatial shift of Multiskan photodetectors makes it pos-

Table

N σ

1 1.997 × 10–3

2 1.239 × 10–3

10 1.934 × 10–4
sible to elaborate a technique for locating a signal dif-
ferential sign in real time (tracking mode) without scan-
ning the interval where the initial function is defined.

This technique provides a unique solution which
corresponds to the illuminance front position. This
solution does not depend on the front width and optical
distribution contrast. It offers a high accuracy over a
substantial area of the photosensitive layer of the pho-
todetectors.

The technique reduces the effect of noise on the
location accuracy by integrating noise over the interval
2ε. For a signal-to-noise ratio of 1, the rms error is
2 × 10–3.

Thus, this work discovers the high operational func-
tionality of a Multiskan-based synthetic aperture.
Namely, it cannot only locate local signals but also
track the current position of the illuminance front of
optical signals.
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Abstract—Electrodynamic analysis of a disk dielectric resonator with finite-conductivity end faces that is
excited at the whispering-gallery mode is carried out. The inverse problem of determining the components of
the permittivity tensor of the anisotropic uniaxial crystal, loss tangent of the dielectric material, and surface
resistance of the conductor is formulated and solved. The frequency spectra and energy characteristics of a
Teflon disk resonator with copper-covered end faces are studied in the 8-mm wave range. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The advance into the millimeter-wave range sug-
gests the development of appropriate microwave
devices. The new-generation compact devices are being
developed around disk dielectric resonators (DDRs),
which are well compatible with passive and active ele-
ments of hybrid circuits and offer a high Q factor (sig-
nificantly higher than that of metallic cavity resona-
tors). DDRs operating at lower oscillation modes are
used in stable centimeter-wave oscillators and filters.
Such resonators are made of high-permittivity (ε ≥ 100)
insulators. It has been shown [1, 2] that low-permittiv-
ity (ε = 2–10) cylindrical dielectric rods can support
slowly decaying azimuthal oscillations. These oscilla-
tions are generated inside the dielectric when waves
with high azimuthal indices n are incident on the side
surface of a DDR (with the radius of curvature r0) at the
angle of total internal reflection. The presence of the
caustic and an outside region where the field decays
exponentially provide a high Q value of the resonator.

Anomalously low attenuation was first observed in
acoustic waves traveling along the inner surface of an
annular gallery. That is why azimuthal oscillations that

occur when the condition k'r0 < n < k'r0 is met were
called whispering-gallery oscillations [3]. Here, k' =
ω'/c, c is the velocity of light, and ω' is the real part of
the complex frequency ω = ω' – iω'' (where ω'' ≥ 0).

Whispering-gallery oscillations are very sensitive to
the surface condition of films and laminated structures,
which are today the subject of extensive research in
solid-state physics. This is because the interface quality
is crucial for the operation of many physical devices.

Anisotropic materials with a small (no greater than
5 × 10–5) loss tangent , such as uniaxial single-
crystalline quartz, sapphire, and rutile, have made it

ε

δtan
1063-7842/02/4706- $22.00 © 20731
possible to increase significantly the unloaded Q value
of DDRs. In particular, a Q factor of sapphire resona-
tors as high as ~105 at room temperature, ~107 at 77 K,
and ~109 at 4 K [4] has been obtained. The unique set
of parameters, high polarization stability, and ease of
excitation of DDRs made of these single crystals have
stimulated applied research in the millimeter-wave
range. A number of devices that effectively stabilize the
oscillator frequency [5], as well as new-generation fil-
ters [6, 7], have been developed. Such resonators are
also used in studying high-frequency electron paramag-
netic resonance [8] and in electron spin resonance spec-
troscopy [9].

In contactless measurements of insulator parameters
[10, 11] and those of single-crystal high-temperature
superconductors [12], a sample studied is placed into
the electromagnetic field of a resonator. A significant
drawback here is that a rigorous electrodynamic
approach to the analysis of experimental results is
absent. The use of samples with perfectly conducting
end faces makes it possible to study the spectral charac-
teristics of resonator free oscillations [13].

DISK DIELECTRIC RESONATOR

In a DDR made of an anisotropic uniaxial single
crystal with its anisotropy axis parallel to the DDR axis,
the permittivity tensor has the form

εij[ ]

δij r r0>

ε⊥ 0 0

0 ε⊥ 0

0 0 εz 
 
 
 
 

, r r0,≤









=

002 MAIK “Nauka/Interperiodica”



 

732

        

PROKOPENKO, FILIPOV

                                                                             
where εz and ε⊥  are, respectively, the components of
[εij] in the directions parallel and perpendicular to the
crystal optical axis and δij is the Kronecker delta.

The fields of monochromatic oscillations in these
resonators are given by [13]

Here,

the subscript j stands for H or E; k = ω/c; the azimuthal
subscript n equals 0, 1, 2, …; kz is the axial component

of the wave vector; qH = ; qE = qH

and q0 =  are the radial components of the
wave vector inside and outside the insulator, respec-

tively; Cn and Dn are constant factors; and q2 =  when

r ≤ r0 and q2 =  when r ≥ r0.

The frequency ωp =  – i  (  ≥ 0) for the pth
mode of the resonant oscillation is found from a solu-
tion to the characteristic equation

(1)

Ez DnGE r( ) kzz( ) i nϕ ωt–( );expcos=
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Fig. 1. DDR with conducting end faces.
where

prime denotes differentiation with respect to the argu-

ment, and Jn(x) and (x) are the nth-order Bessel
and Hankel functions of the zero kind. The subscript p
equals nsm, where n, s, and m are the azimuthal, radial,
and axial subscripts, respectively.

For resonators with perfectly conducting end faces
(Fig. 1), the axial component of the wave vector is kz =
mπ/l, where l is the height of the resonator and m = 0,
1, 2, ….

A DDR supports independent EH and HE oscilla-
tions. When the condition

is met, the free oscillations of the resonator are of the
HE type, the constant Dn is determined from the excita-
tion condition, and

Otherwise, the resonator mode is EH, the constant
Cn is determined from the excitation condition, and

If the axis of the uniaxial crystal makes an angle Θ
with the geometrical axis of the resonator, the permit-
tivity tensor takes the following form in the cylindrical
coordinates (r, ϕ, z):

where 2ε± = εzsin2Θ + ε⊥ (cos2Θ ± 1), 2εxz = (εz –
ε⊥ )sin2Θ, and εzz = εzcos2Θ + ε⊥ sin2Θ.

In the cylindrical coordinates, the permittivity ten-
sor components depend on the azimuth angle ϕ. This
dependence splits the EH and HE oscillations into the
ordinary and extraordinary modes, as follows from
experiments [14]. The spectral characteristics of these
modes provide information on the permittivity compo-
nents along the principle lattice directions, which is
necessary for designing high-performance millimeter-
wave and optical integrated circuits.

For the case when the end faces are not perfectly
conducting planes, a rigorous theory does not exist. We

α j
1

q jr0
---------

Jn' q jr0( )
Jn q jr0( )
-------------------, α0

1
q0r0
---------

Hn
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 @ 1

Cn Dn

Jn qEr0( )
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calculated the resonance frequencies with the mag-
netic-wall method, variational methods, and mode-
matching method by appropriately approximating the
electromagnetic fields outside the resonator with allow-
ance for their singularities at the insulator edges [15]. In
[16, 17], experimental identification of the resonance
frequencies with the azimuthal and radial indices was
suggested. In this case, the radial and azimuthal compo-
nents of the wave vector are described by the character-
istic equation presented above and the effective height
of the resonator is defined as leff = mπ/kz.

DDR WITH IMPEDANCE END FACES

The quadratic relationship obtained from the Max-
well equations for resonant oscillations in resonators
with perfectly and imperfectly conducting end faces is
integrated over the entire space [18]. Using the radia-
tion condition at r  ∞ (outgoing wave), the continu-
ity of the tangential electric and magnetic field compo-
nents at the curved surface of the resonator, and the
impedance boundary condition at the end faces of the
resonator, we arrive at an integral equation that defines
a shift in the resonance frequency due to imperfect con-
ductivity of the DDR end faces (Fig. 1) [18]:

where ez is the unit vector along the DDR axis; ω, E,
and H are the frequency and the electric and magnetic
field vectors for the resonator with imperfectly con-
ducting end faces; and ωp, Ep, and Hp are the frequency
and the electric and magnetic field vectors for the pth
mode of the resonator with perfectly conducting end
faces (asterisk means complex conjugation). Vectors in
parentheses denote the scalar product. On the left-hand
side of this formula, integration is performed over the
entire volume V; on the right-hand side, over the surface
S of the end faces having the surface impedance ζ =
RS + iXS.

Representing the vectors E and H as a linear combi-
nation of the respective self-fields Ep and Hp of the
DDR with perfectly conducting end faces, we obtain
the following system of equations:

Here, βp' is the expansion coefficient and

ω ωp*–( ) HHp*) (E εij[ ] Ep*+( )[ ] Vd

V

∫

=  i
c2

2π
------ζ ( ex ez H×[ ]×[ ] Hp*) S,d

S

∫

ω ωp*–( )W pβp iζ I p' p
2 βp' .

p

∑–=

W p
1

8π
------ HpHp*) (Ep εij[ ] Ep*+( )[ ] Vd

V

∫=
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
is the energy of the pth electromagnetic mode in the res-
onator with perfectly conducting end faces. The param-
eter

takes into account losses in the imperfectly conducting
end faces and describes the interaction between DDR
modes. The consistency condition for the system of
homogeneous linear equations for βp' yields a charac-
teristic equation for the natural frequencies of the DDR
with finite-conductivity end faces:

(2)

This relationship defines the shift between the reso-
nance frequencies of a DDR with imperfectly conduct-
ing end faces and that with perfectly conducting faces
for a particular oscillation mode. The shift in the real
part of the resonance frequency is specified by the
imaginary part of the surface impedance (reactance) XS.
The reactance specifies the nondissipative energy
stored in the surface layers of the end faces. The surface
resistance RS is responsible for the period-averaged

Joule loss RS in the impedance end faces of the res-
onator.

When the surface impedance ζ is small (ζ ! 1) and

the mode interaction is neglected (  = 0 if p' ≠ p),
relationship (2) becomes

(3)

where Ipp is the surface current on the finite-conductiv-
ity end faces induced by the electromagnetic wave.

Relationship (3) can be used to calculate the surface
impedance ζ of the end faces from the DDR resonance
frequency ω measured.

DDR WITH LOCAL INHOMOGENEITIES

Radial–azimuthal inhomogeneities in the DDR iso-
tropic material that are included in the permittivity

(r, ϕ) also change the spectral characteristics of the
resonance oscillations. The shift in the resonance fre-
quencies due to the inhomogeneities is described by the
integral equation

I p' p
2 ζ c2

16π2
-----------ζ ez ez Hp'×[ ]×[ ] Hp*( ) Sd

S
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det ω ωp*–( )δp' p iζ
I p' p
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W p

-------+ 0.=

I pp
2
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2
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2
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-------+ 0,=
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∫
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Inhomogeneities in the form of radial slots split the
frequencies of degenerate resonance oscillations that
depend on the azimuthal coordinate as sinnϕ and
cosnϕ, which is observed experimentally. The split is a
function of the number and arrangement of the slots.
This effect can be used for characterizing local inhomo-
geneities in the form of insulating, semiconductor, or
high-temperature superconductor films at microwaves
[19, 20].

Double disk resonators excited at whispering-gal-
lery modes are used in ultrasensitive detectors [21]. At
a certain spacing between two identical dielectric res-
onators, the frequency degeneration of symmetric
and asymmetric oscillations with contiguous axial
indices occurs. A weak inhomogeneity (e.g., a tilt of
the end face) removes the degeneracy, producing two
orthogonal oscillations with close frequencies modu-
lated by orthogonal envelopes. This property can be
used for spatially separation of two oscillations with
close frequencies in the millimeter and submillimeter
ranges [22].

Q FACTOR OF A DDR

The unloaded Q factor  of a DDR with imped-
ance end faces for the Yp mode is given by

(4)

Here, Y means the EH or HE oscillation mode and ,

, and  are the Q factors due to radiation, dielec-
tric loss, and loss in the conductive end faces, respec-
tively.

For whispering-gallery oscillations, which occur
when |q0r0| ≤ n ≤ min{|qHr0|, |qEr0|}, the relationship
ω' @ ω'' is valid. This corresponds to low radiation
losses. The radiation Q factor of the resonator at the res-

onance frequency ω of the Yp mode is  = ω'/2ω''.
The Q factor due to the dielectric loss is given by [17]

where, in the general case,  = /  and 

and  are the electromagnetic energies of the Yp

oscillation inside (I) and outside (II) the dielectric,
respectively. In a DDR (irrespective of whether the
end faces are conducting or not), this relationship
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for the EH modes and

for the HE modes, where

According to [23], the Q factor  of the resonator
due to the loss in the conducting end faces for the Yp

mode is

where
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The energy characteristics of DDRs can be used to
determine  of the insulator and RS of the conductor
at microwave frequencies from the measured parame-
ters of the resonator (r0, l, [εij]) and its natural frequen-
cies (ω) for a particular mode (Yp).

MICROWAVE CHARACTERISTICS 
OF MATERIALS

The theory developed above can be used for mate-
rial characterization at microwaves. The experimen-
tally found spectral and energy characteristics of a
DDR with the copper end faces operating at higher
modes were reported in [17]. The resonator was made
of sheet Teflon and had r0 = 3.9 cm and l = 0.71 cm
(Fig. 1).

For uniaxial crystals, the tensor [εij] has only two
unknown components, εz and ε⊥ . To evaluate them, it is
sufficient to experimentally find three pairs of the fre-
quencies ω of the resonant modes and their azimuthal,
n, and axial, m, indices (m = 2l/λr, where λr is the wave-
length in the resonator) and to solve the self-consistent
system of fundamental equations emerging from char-
acteristic equation (1). A solution to this system
uniquely determines the parameters εz and ε⊥  of the res-
onator material.

The permittivity of the resonator under study found
by the above method was ε = 2.04 ± 0.03 (for an isotro-
pic medium, ε⊥  = εz = ε). The radiation loss in the reso-

nator was neglected, because  @  for whisper-
ing-gallery oscillations.

Experimental values of the unloaded Q factor 

and formula (4) allow one to find the loss tangent 
of the insulator and the surface resistance RS of the end
faces as a function of frequency. In general, the

unloaded Q factor  depends on the environmental
conditions. Therefore, with relationship (4), one can
experimentally determine  and RS as functions of,
for example, temperature and pressure.

The loss tangent  of the DDR material was
measured to be (3 ± 0.5) × 10–4 at the room conditions.
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The surface resistance RS of pure electrolytic copper
(with a surface roughness of less than 0.05 µm, which
is much less than the skin depth ≈0.35 µm) in the form
of a 35-µm-thick sheet used to clad the glass–cloth lam-
inate was found to be (5.5 ± 0.2) × 10–2 Ω .

SPECTRAL AND POWER CHARACTERISTICS 
OF THE DDR

The microwave parameters of the insulator and of
the conductor on the end surfaces were used to derive
the spectral and power characteristics of the DDR
(Fig. 2). The frequency dependence of the slowing fac-
tor ξ = n/k'r0 – 1 was obtained from relationship (3) for
the reactance XS = RS. The unloaded Q factor Q0 was
calculated from formula (4). Figure 2 shows results for
DDRs with Yp oscillation modes having the azimuthal
indices n from 30 to 39, radial indices s = 1 and 2, and
axial indices m = 0 and 1.

The resonance frequencies of the resonator with
copper end faces differ from those for the resonator
with perfectly conducting surfaces by 10–15 MHz. The
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Fig. 2. (a) Slowing factor and (b) unloaded Q of a DDR with
copper end faces vs. frequency.
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power loss in the copper end faces decreased the
unloaded Q factor 10 to 100 times.

CONCLUSION

DDRs excited at whispering-gallery oscillation
modes can easily be combined with active and passive
elements of millimeter-wave hybrid circuits. High-Q
DDRs with finite-conductivity end faces are of interest
for measuring the low surface resistance of supercon-
ductors at millimeter waves [18].

An integral equation describing the effect of finite
conductivity of the end faces on resonant oscillations is
derived and studied. The frequency dependences of the
slowing factor and of the unloaded Q of a Teflon disk
resonator with copper end faces are presented.

A self-consistent system of equations that is based
on characteristic relationship (1) and includes the azi-
muthal and axial indices measured at the resonance fre-
quencies of whispering-gallery modes is constructed.
Its solution specifies the components of the permittivity
tensor [εij] of an anisotropic uniaxial crystal whose
optical axis is aligned with the resonator axis. The elec-
trodynamic analysis of the DDR made it possible to
evaluate the loss tangent of the insulator and the surface
impedance of the conducting end faces from the energy
characteristics measured.

Our method may find wide recognition in designing
millimeter- and submillimeter-wave devices and in
measuring microwave parameters of materials.
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Abstract—The propagation of magnetostatic waves in a waveguide ferromagnetic channel formed by exposing
a ferromagnetic film to a step bias is simulated. Both weak and strong channel couplings are considered. The
dispersion characteristics and the distributions of wave functions are calculated. It is shown that the amplitudes
of “half-waves” fitting into the channel width alternately increase and decrease with increasing frequency and
the half-waves pass into the channel with the largest bias. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

To date, the propagation of magnetostatic waves
(MSWs) in simple rectangular magnetic waveguides
[1] and in more complex two-channel ones [2] has been
simulated. The substantial evolution of the wave func-
tions when the MSW frequency changes has been dis-
covered. However, the shape of the dispersion curves
for the bias configurations considered remained virtu-
ally the same as for Damon–Eshbach surface magneto-
static waves (SMSWs) [3]. In this paper, we consider a
bias configuration causing essential changes in the
shape of the MSW dispersion curves.

MATHEMATICAL MODEL

A ferromagnetic film is exposed to a tangential mag-
netic (bias) field with the configuration shown in Fig. 1.
The film plane coincides with the xy coordinate plane.
The bias field is directed along the x axis and has a step
along this axis. The distribution of the field along the
other axes is assumed to be roughly uniform. Such an
approximation is valid, because the nonuniformity
along the width (z axis) can be neglected if the width d
of the ferromagnetic film is much smaller than the char-
acteristic sizes (hA and hB) of the field nonuniformity
along the waveguide width (x axis). An MSW propa-
gates in the direction of the y axis. 

The approach used to solve the problem numerically
is based on the magnetostatic approximation of the
Maxwell equations. With regard for the equation of
magnetic moment motion, this approximation yields
the expression for magnetic potential Ψ specifying the
spatial distribution of the MSW variable magnetic field:

(1)

Here, µ(x, z) is the dynamic permeability tensor. It
involves both the jumps of the magnetic parameters on

div µ x z,( )gradΨ[ ] 0.=
1063-7842/02/4706- $22.00 © 20737
the ferromagnetic film surface and nonuniformities
induced by the magnetostatic field shown in Fig. 1. The
anisotropy of the ferromagnet and the exchange inter-
action are neglected. Equation (1) is solved numerically
by the finite difference method. First, we choose a rect-
angular contour away from the waveguide, so that the
potential Ψ on it can be set equal to zero. Then, condi-
tions of “magnetic” or “electrical” walls are written for
this contour and a rectangular mesh is superimposed on
the domain of interest. Finally, Eq. (1), represented in
integral form on the mesh, is reduced to the problem of
a quadratic matrix operator. This method was detailed
in [4, 5]. Eventually, we obtain the wave numbers and
distributions of the scalar potential Ψ of the MSW
modes.

Although the distribution of the wave is calculated
for the complex channel C as a whole (Fig. 1), the
behavior of a wave can be described via the interaction
of waves in two rectangular channels A and B with the
parameters hA, HA and hB, HB, respectively. In this case,
the modes of the entire waveguide can be considered as
the hybridization of modes in separate rectangular
channels, where the propagation of the SMSWs is mul-

hA h hB

A B

C

Hx

HA

HB

x

Fig. 1. Distribution of the bias field over the channel width.
The channel C is formed by the combination of the channels
A and B.
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timode because of the finite aperture. We will show that
the shapes of the dispersion curves for the complex
waveguide can be controlled by the parameters of the
magnetic field nonuniformity.

In Fig. 2, the two sets of the SMSW dispersion
curves are shown by dashed lines (channel A) and dot-
ted lines (channel B) for the first four modes of either
rectangular channel. The mode numbers coincide with
the numbers of half-waves fitting into the channel
width. The two sets are shifted relative to each other
both along the vertical axis due to the different bias
fields and along the horizontal one because of the dif-
ferent channel widths. The values of the parameters hA,
HA, hB, and HB are chosen so as to provide the crossing
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Fig. 2. Dispersion curves for the first four modes of the
channels A, B, and C. d = 18 µm, 4πM = 1850 G, hA =
0.1 mm, hB = 0.3 mm, HA = 570 Oe, and HB = 445 Oe.

0.2

Ψ

x0–0.2 0.2 x0–0.2

(d)(a)

(b)

(c)

Ψ

(e)

(f)

Fig. 3. Distribution of the potential for the (a, b, and c) third
and (d, e, and f) fourth modes of the channel C for kh @ 1
near the cross point at f = 3686 GHz, and k = 690 cm–1. f =
3640 (a, d), 3687 (b), 3685 (e), and 3730 GHz (c, f).
of curves from various sets. The modes of the compos-
ite channel C arise from the interaction and hybridiza-
tion of the initial modes in the channels A and B. As a
result, waves with a complex distribution of the wave
functions over the width of the entire channel form
(Figs. 3, 4). In contrast to the simple rectangular chan-
nel, the number of half-waves fitting into the width of
the composite channel C no longer indicates the num-
ber of its mode.

The mathematical model employed can be used for
both weak and strong interactions.

DISCUSSION

MSWs occupy the frequency range from γHB to f3 =
γ(HA + 2πM), where M is the saturation magnetization
and γ is the gyromagnetic ratio. Surface waves, i.e.,
those not oscillating in the bulk of the film, have fre-

quencies from f1 = γ  to f3. In this
paper, we consider this type of MSW.

Note also that in the range γ  < f <
f1, there exist surface–bulk MSWs with a complex dis-
tribution of the wave function along the waveguide
width and thickness. They are surface in the channel B,
and bulk in the channel A. In the frequency range γHB <

f < γ , there exist bulk modes local-
ized either over the total width of the channel C or over
its part B.

Let us analyze the dispersion curves and magneto-
static potential distribution for surface waves propagat-
ing in our waveguide.

(i) Weak coupling. To begin with, consider the case
where the interaction between the channels A and B is
weak. This case may be realized by separating the
channels from each other [2] to meet the condition
kh @ 1. Then, the dispersion curves of the waveguide C
sequentially coincide with the segments of the curves
corresponding to the channels A and B in accordance
with their crossings in Fig. 2 (the crossings of the
dashed and dotted curves).

The curve C1 of the first mode coincides with the
curve A1 if kh @ 1. The wave function is represented by
the half-wave occupying the total width of the
waveguide C below the frequency f2 = γ(HB + 2πM).
Above this frequency, the wave propagates almost
exclusively in the A channel, whereas in the B channel,
the wave function decays like in a vacuum but with a
smaller decrement.

The dispersion curve C2 of the second mode coin-
cides with the curve B1 in the range of small wave num-
bers. The wave potential is represented by two
antiphase half-waves in the regions A and B. In this
case, the amplitude ΨB of the half-wave in the B chan-
nel is much greater than that (ΨA) in the A channel.
Their ratio depends on the channel coupling parameter,

HA HA 4πM+( )

HB HB 4πM+( )

HB HB 4πM+( )
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which is proportional to exp(–kh). At the crossover, the
amplitudes of the half-waves are the same. Above the
point where the curves B1 and A2 intersect, the curve C2
coincides with the curve A2 (Fig. 2). Both half-waves
gradually pass into the A channel, and the B channel
contains only the decay function, since the wave solu-
tion for the channel B is absent above the curve B1. The
features of the wave function distribution near the
crossover will be described later.

The dispersion curve C3 of the third mode initially
coincides with the curve B2. Then, it merges with the
segments of the curves A2 and B1 and ends, coinciding
with the curve A3. The potential Ψ undergoes the fol-
lowing changes while moving along the dispersion
curve from bottom up. Its amplitude is the greatest in
the channel whose dispersion curve coincides with the
dispersion curve of the channel C at a particular fre-
quency. For example, at small frequencies, two large
amplitude half-waves are in the B channel and one
small-amplitude half-wave is in the A channel (Fig. 3a).
Above the first crossover point, one of the half-waves
passes into the channel A. In this case, the amplitude ΨA

of the second mode having formed in this channel
reaches its peak value and the amplitude ΨB of the half-
wave remaining in the channel B goes down to its min-
imal value, depending on the channel coupling param-
eter. After the second crossover has been passed, the
number of half-waves in both channels does not change
but the half-waves exchange amplitudes. Above the
third crossover, all three half-waves gather in the chan-
nel A, whereas the wave solution in the channel B dis-
appears.

The fourth mode C4 behaves in a similar way, with
the only difference that it begins with the mode A2 of
the channel A and then follows the curves B2, A3, B1,
and A4. At small wave numbers, either channel contains
two half-waves (Figs. 3d, 3c, and 3f). With increasing
wave number, all the half-waves gather in the channel A.
The amplitudes of the half-waves in either channel
increase and decrease in turn, depending on which
curve coincides with the dispersion curve of the fourth
mode at a given frequency. This is illustrated in Fig. 5,
where the dashed curves show the ratio ΨA/ΨB in the
case of weak coupling. In essence, this curve character-
izes the channel coupling parameter. The coupling is
maximal in the frequency range where ΨA/ΨB ≈ 1,
which corresponds to the crossover ranges in Fig. 2.

Modes with higher numbers behave in a similar
way. The dispersion curve of the complex waveguide C
has inflection points, as well as convex and concave
segments located in the ranges where the MSW disper-
sion curves of the channels A and B cross. The disper-
sion curves of the simple rectangular channels do not
have such features. Consider the crossover ranges
where the hybridization of the modes belonging to the
channels A and B is the most distinct. At the cross
points, the dispersion curves are separated by a distance
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
proportional to the coupling parameter [6]. The result-
ing dispersion curve of the waveguide C is concave if it
is located to the upper left of the crossover point. Oth-
erwise, the curve is convex. The amplitudes of the half-
waves in the channels A and B are the same (Figs. 3b,
3e). However, the higher frequency (concave) curve
corresponds to the distribution of the Ψ function such
that the half-waves in the different channels are in
phase (Fig. 3b), whereas the lower frequency (convex)
dispersion curve corresponds to the distribution for
which the waves are in antiphase (Fig. 3e). Accord-
ingly, inphase (in the aforementioned sense) half-waves
have a higher frequency than antiphase ones.

In the above cases, as the frequency rises, the num-
bers of A(B)-channel modes crossed by the dispersion

0.2 x0–0.2

(d)
0.2 x0–0.2

(g)(c)

(b)

(a) (e)

(f)

Ψ Ψ

Fig. 4. Distribution of the potential for the fourth mode of
the channel C at the characteristic points (a)–(g) marked in
Fig. 2.
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Fig. 5. Ratio of the potential amplitudes in the channels A
and B vs. wave number.
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curve of the channel C increase (decrease). However,
this is not a general rule. The situation where the disper-
sion curves cross twice (as A3 and B4 in Fig. 2) or where
two or more curves of one channel cross the curve of
the other channel are also possible. Then, the numbers
of A- and B-channel modes vary nonmonotonically.
The general rules are the following.

When approaching the crossover range, the half-
waves of the potential Ψ either pass from the channel B
to the channel A or do not change their location at all.
The number of half-waves in the channel B may
increase only if an additional inphase half-wave
appears. This half-wave arises, according to the above-
mentioned rule, at the inflection points of the dispersion
curve C; however, it is not regular in the sense that its
left part does not cross the abscissa axis but is adjacent
to the half-wave from the neighboring channel A.
Therefore, it is convenient to take the number of zeros
of the Ψ function, rather than the number of half-waves,
as the parameter most fully characterizing the modes of
the complex channel.

The number of zeros of the wave function is con-
stant and equals N – 1, where N is the number of the C-
channel mode.

With increasing frequency, all the half-waves are
found in the channel A, regardless of how the curves A
and B cross.

(ii) Strong coupling. Now we turn to the case where
h = 0 and the channels A and B are located close to each
other. In Fig. 2, the dispersion curves of the first four
modes of the waveguide C (solid lines) are shown.
These curves are displaced from their unperturbed pro-
totypes, namely, from the dispersion curves of the
waveguides A and B. As the wave number increases, the
dispersion curves either cross their prototypes (as takes
place for the mode C2) or move away from them (mode
C3). The dispersion curves as if interact: they repulse
each other, shift, and change shape. Not only their slope
but also their curvature changes. The reconfiguring of
the curves is accompanied by a substantial reconfigur-
ing of the wave function Ψ.

Consider these metamorphoses at length with the
SMSW fourth mode. In the range of small wave num-
bers, the dispersion curve of the composite channel C4
is located between the second modes B2 and A2 (Fig. 2,
points a and b). With increasing frequency, the curve C4
shifts towards B2 and then returns to A2. In Figs. 4a and
4b, the distribution of the function Ψ for these points is
shown. As is seen, less than two half-waves fit into the
A-channel width, whereas more than two half-waves fit
into that of the channel B. As a result, the waveguide C
supports four half-waves of the fourth mode. The point a
is closer to the dispersion curve A2 than to B2, whereas
the point b is almost exactly between them (Fig. 2).
This affects the distribution of the potential Ψ. In the
plot of the potential distribution for the point a
(Fig. 4a), almost two half-waves fit into the narrow
channel. Then, these half-waves shift towards the chan-
nel B (Fig. 4b).

The dispersion curve A2 gradually approaches B2 as
the wave number grows. At the same time, the potential
distribution in the waveguide C approaches the form
when either channel contains strictly two half-waves
(Fig. 4c). This occurs at the point c located not at the
point where the dispersion curves A2 and B2 intersect
but much to the right of this point (Fig. 2) because of
the strong channel interaction.

A further redistribution of the magnetostatic poten-
tial over the width of the complex waveguide with
increasing frequency proceeds in a way similar to that
for weak coupling between the waveguides A and B.
The half-waves gradually pass from the broad channel
to the narrow one. The broad channel becomes evanes-
cent, and the potential distribution in it takes the form
of an exponentially vanishing function (Fig. 4g and the
point g in Fig. 2). However, the strong channel interac-
tion smears the crossover range and changes the shape
of the wave functions.

In Fig. 5, the solid line shows the ratio ΨA/ΨB of the
amplitudes of the half-waves. In contrast to the case of
weak coupling (dashed line), strong coupling causes
the amplitude ΨB to exceed ΨA almost in the whole
range of wave numbers. The wave numbers above the
point f can be disregarded, since the waveguide B is
evanescent for them. For definiteness, the amplitude ΨB

is taken to be equal to the value of the wave function Ψ
at the center of the waveguide. In the case of strong
coupling, the ratio ΨA/ΨB can no longer be considered
a measure of channel interaction as for weak coupling.
The channel interaction is strong both near and far from
the cross points. It redistributes the amplitudes in
favour of the channel B and flattens the curve ΨA/ΨB at
small wave numbers.

The curvature of the concave segments of the dis-
persion curve becomes smaller. As in the case of weak
coupling, these segments (Fig. 2: points d, f) corre-
spond to the inphase neighboring half-waves with the
same amplitudes in the different channels (Fig. 5;
points d, f). Only if the coupling is strong are these half-
waves not separated by a dip and make up a single half-
wave (Figs. 4d, and 4f).

The antiphase half-waves near the boundary
between the channels are shown in Figs. 4c and 4e. For
weak coupling, these waves correspond to the point in
the low-frequency (convex) dispersion curve in the
crossover region and the amplitudes of the half-waves
in the channels A and B are equal to each other. In the
case of strong coupling, the positive curvature is small
at these points; i.e., the crossover region is smeared
greater than for the inphase half-waves. The amplitudes
of the half-waves are not equal; moreover, their ratio
tends to the minimum (Fig. 5; points c, e).
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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CONCLUSION
It is shown that dispersion curves that differ from the

exponential form, which is typical of rectangular
waveguides, can be constructed by appropriately
choosing the configuration of the bias field which forms
the MSW waveguide. The combination of two closely
spaced channels with different widths and bias fields
makes it possible to produce convex and concave seg-
ments of certain curvature in given segments of the dis-
persion curves.

The distribution of the wave function in either chan-
nel of the double waveguide is a periodic function char-
acterized by the number of half-waves. With increasing
frequency, the half-wave amplitudes in the channels
alternately increase and decrease, so that the wave con-
centrates in either one or the other channel, depending
on the frequency. The half-waves pass from one chan-
nel to the other. In the high-frequency range, the entire
wave occupies the channel with the maximal bias field.
The number of zeros of the wave function is constant
throughout the range where the quasi-surface MSWs
exist.

If the spacing between the channels is large (weak
coupling), the amplitudes of the half-waves are the
same at the points where the modes of the initial chan-
nels intersect. If neighboring half-waves from the dif-
ferent channels are in phase, a concave segment is
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
observed in the dispersion curve. In the opposite case,
the dispersion curve is convex. The scale of these
changes decreases with decreasing channel spacing
(increasing coupling). However, this takes place in a
dissimilar manner in either channel. The curvature of
the convex and concave segments in the dispersion
curves decreases, and their locations change.
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Abstract—Secondary-ion mass spectrometry (SIMS), Auger electron spectroscopy (AES), and low-energy
electron diffraction (LEED) methods are used to determine the chemical composition on the surface and in the
near-surface layer of CVD cylindrical single-crystal tungsten, which is applied as the emitter material in ther-
mionic thermal-to-electrical energy converters in space-borne nuclear power plants. Results obtained are com-
pared with those for reference perfect plane-parallel W(110). © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Single-crystal tungsten with the (110) close-packed
face on its surface has been shown [1, 2] to be a candi-
date material to be used as a collector in thermionic
thermal-to-electric energy converters (TECs), which
are used in space-borne nuclear power plants. Unlike
Mo(110) [3−5], Nb(110) [6, 7], or Mo97.5Nb2.5(110)
[8, 9], the suboxide films of which readily oxidize fur-
ther under TEC operating conditions, films of lower
tungsten oxide W2O seem to be an optimal overlayer
for cesium in Me–O–Cs systems used in TECs [1, 2,
10]. The term “optimal” here means that, when used in
the Me–O–Cs systems, this film provides a combina-
tion of the minimal work function ϕmin and maximal
thermal stability. The temperature T = 600 K, at which
the work function of the W2O/Cs system still remains
the lowest under static conditions (i.e., when the O and
Cs fluxes are absent once the film has been formed), is
the highest of those ever reported for the Me–O–Cs sys-
tem. Under dynamic conditions of TEC operation, the
collector is optimized, as a rule, by properly selecting
its temperature Tc and Cs vapor pressure. At an oxygen
partial pressure PO ~ 10–4 Pa (a total residual pressure
Pres = 10–2–5 × 10–3 Pa), the W2O film on W(110) exists
in the interval 1425–1625 K; at lower PO, even from
925 K [2, 10]. The temperatures cited are the operating
range of Tc. However, the most significant advantage of
the W(110)–O system is that its properties do not
change when an excess amount of W is deposited (i.e.,
the system offers the property of self-recovery). This is
because oxygen can dissolve only in the first atomic
layer (i.e., at the surface) of Group VIb transition met-
als (in contrast to Group IVb and Vb metals) [2, 10].
Therefore, when excessive W is deposited on a surface
covered by an already existing film of any binary (W–O)
or ternary (W–O–Cs) compound, the film emerges on
the surface again and cannot be buried by the tungsten
unless the process conditions are changed. This
1063-7842/02/4706- $22.00 © 20742
removes the problem of degradation of TEC perfor-
mance due to the transfer of the emitter material (W) to
the collector (Group IV(V)b metals or their alloys).

The above properties are typical of W flat single-
crystal surfaces. However, in modern space-borne
sources of electrical energy, the electrodes have the
cylindrical form or, in general, are polyhedral. Today,
polyhedral single-crystal tungsten emitters can be pro-
duced by CVD. For example, fairly perfect extended
hexagonal W single crystals with {110} or {112} [11]
faces can be deposited on single-crystal Mo cylinders
with the 〈111〉 axis by varying the chloride process con-
ditions (WCl6 vapor pressure, substrate temperature,
and oxygen content in the vapor phase). Subsequently,
however, the surface cannot be made single-face even if
special procedures (selective etching, high-temperature
annealing in vacuo, etc.) are applied: there always exist
at least two, (110) and (112), faces. Since the angle
between these faces in the bcc lattice is π/8, microscop-
ically, this surface must consist of inclined-wall ter-
races and the dihedral angle between them must be
7π/8. Even from these general considerations (the pres-
ence of extended one-dimensional grooves and inclined
faces), one can expect that the integral emission and
adsorption properties of the rough surfaces to differ
from those of the (110) and (112) surfaces. Moreover,
the surface of CVD tungsten must contain a large con-
centration of defects, such as facets and screw disloca-
tions [11–14]. Yet, the much lower concentration of
defects on the single-crystal tungsten cylindrical sur-
face compared with that on polycrystalline tungsten
coatings covering an Nb + 1% Zn alloy (which is pro-
duced by the same CVD technology and is widely used
as a TEC collector material) implies that the impurity
concentration in the former case is lower. This point is
of special concern for carbon (the most harmful impu-
rity in emission electronics), which diffuses from bulk
defects toward the surface upon heating and can appear
on it in amounts far exceeding the bulk concentration,
002 MAIK “Nauka/Interperiodica”
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i.e., segregate. Even special cleaning techniques may
turn out to be inefficient in this case.

Therefore, studies of oxygen adsorption on, as well
as adhesion of, O–Cs binary films to the cylindrical sur-
face of CVD single-crystal tungsten as a collector
material are of great importance. It appears that the
shape of the surface cannot help influence its proper-
ties. Therefore, we will study the properties of a cylin-
drical single-crystal tungsten emitter. Before proceed-
ing to this study, it is natural to consider the chemical
composition (including impurity composition) of the
surface and near-surface layers of the material and elab-
orate methods for obtaining atomically smooth surface.

EXPERIMENTAL TECHNIQUES

A cylindrical fragment of a single-crystal W emitter
of diameter ≈20 mm was electrolytically etched (pol-
ished) in a 3% solution of NaOH in distilled water and
then subjected to high-temperature annealing in vacuo.
It was bored out (without cooling) to thin the walls
down to 1.2 mm. Then, 10 × 10-mm2 specimens were
cut out from the fragment with a dry diamond disk.
Before being loaded into the instruments, one of the
specimens was electrolytically etched again in the same
solution and rinsed in distilled water to remove the
residual etchant. Then, all the specimens were rinsed in
methylene chloride to remove oil spots and in boiling
distilled water to remove salt contaminants.

Two samples, etched and unetched, were placed into
an MS 7201 M secondary-ion mass spectrometer to
determine the chemical composition of surface contam-
inants. The specimens were not heated. The instrument
also contained a Mo specimen that was used to precal-
ibrate the ion gun and a reference, a plane-parallel
W(110) single-crystal specimen, to perform compara-
tive studies. The latter was prepared according to the
requirements for LEED and was identical to that used
in [10]. The impurity content in the reference specimen
at a depth of 15–20 µm was as follows (as determined
by the SIMS method with a Cameca IMS-3F instru-
ment): H, 20; C, 50; O, 20; Na, 300; Al, 0.7; Si, 3.7; K,
100; Ca, 0.6; Ti, 0.2; Ni, 1.5; Cu, 0.8; Mo, 0.01; and Ta,
3 ppm.

During recording of the mass spectra, the pressure
of residual gases did not exceed 5 × 10–6 Pa; that of the
working gas, (1–2) × 10–2 Pa. The evacuation facilities
did not contain hydrocarbons (the working fluid of the
steam-jet pump was 5F4É). Extra-pure-grade He and
Ar were used as working gases. The ion beam current,
7–18 µA, was kept constant during the experiments.
The angle of incidence of the beam on the specimen
was 50°; the ion energy, 4 keV; and the spot size on the
specimen, ≈0.1 cm2. The exposure time (including the
spectrum recording time) was ≈20 min. First He+ spec-
tra and then Ar+ spectra were recorded. The Ar+/He+

sputtering ratio was 60 [15].
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The spectra were recorded successively as a series
of several operators without additional exposure to the
ion beam. The reference had to be only purified; there-
fore, it was exposed to the Ar+ beam immediately.
Three of its spectra were recorded in argon and then
four spectra in helium. The same was done for the
unetched W. For the etched W, two series of spectra
were taken: three spectra in Ar and then three spectra in
He (series 1) and five spectra in Ar and four spectra in
He (series 2). The last-recorded He spectrum for
W(110) was taken as the reference spectrum. The series
were recorded so as to study all the specimens in any of
the gases without interrupting the instrument operation.
The only exception was the etched W: for it, one more
series of spectra in both He and Ar was recorded after-
wards. During the idle time of the instrument, it was
filled with Ar (starting from a high vacuum) up to a
pressure of several hundreds of pascals. Prior to record-
ing, the instrument was evacuated and then a desired
working gas was delivered to a given pressure.

Upon processing the spectra, only the most intense
peaks of nongaseous impurities, namely, C, Na, Al, K,
Ca, Cr, Fe, Re, WO, and ReO, were taken into consid-
eration. First, the peak intensities I of these impurities
were normalized to the peak intensity of the main tung-
sten isotope 184W. Then, for each of the series, a change
in the peak intensity of these impurities relative to the
intensity of the same peaks in the initial spectrum in
each of the series (i.e., the ratio Ii/I0) was determined. In
this way, we found by how many times the peak inten-
sity of any impurity changes from spectrum to spec-
trum in a given series or from series to series for a par-
ticular working gas.

The third etched specimen was placed into an origi-
nal general-purpose electron spectrometer (GPES),
which, during evacuation at 625 K to a desired pressure
(Pres ≤ 10–8 Pa), was not heated so as to correctly com-
pare subsequently the elemental composition of the
surface contamination at various heating temperatures.
This composition was determined by AES with the
electron gun mounted at an angle of 20° to the speci-
men surface. The energy Ep of the primary beam was
1200–1400 eV; the modulating voltage, 2.5–3.5 V. The
spectra were recorded as the first derivative of the back-
scattered electron distribution with respect to energy by
means of a four-grid decelerating field energy analyzer
(DFEA) [16]. The structure of the surface contamina-
tion film, as well as that of the clean surface, could be
monitored by LEED with the electron gun normal to the
surface.

Heating of the specimens up to ≈1000 K was accom-
plished by thermal radiation. To still higher tempera-
tures, the specimen could be heated by electron bom-
bardment of its back surface. Carbon was removed
from the surface by oxidation (the oxygen partial pres-
sure PO was 5 × 10–5 Pa). The source of spectral-grade
atomic oxygen is described in [17]. During the cyclic
cleaning of the surface, the oxidation time (to remove
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carbon) was 2 min at 1100 K and subsequent heating to
remove metal oxides lasted 1 min at 1900 K without
lowering PO [18].

IMPURITY COMPOSITION NEAR 
THE SURFACE

Consider first the cleaning of the reference. Between
the first and third Ar spectra, only the peak intensities
of C, WO, and ReO decrease: by a factor of 1.4, 2.4,
and 1.6, respectively. That of Re remains unchanged.
For the remaining impurities, the peaks grow: for Na,
K, and Cr most significantly (by a factor of 7, 5, and
4.4, respectively); for the others, 1.2–1.5 times. This
means that Na, K, and Cr are accumulated well below
the surface. Another situation arises with the He+ beam,
which etches off a much thinner (approximately
60 times) layer from the surface than the Ar+ beam [15].
Here, in the fourth spectrum, the peak intensities for
Na, Al, Ca, Cr, Re, ReO, and WO do not change, while
those for C, K, and Fe decrease, respectively, by 1.8,
1.4, and 2.5 times. Hence, the relative surface concen-
tration of the last three impurities is lower than that of
the others (Fig. 1a). This spectrum will hereafter be
referred to as the reference spectrum.

The etched specimen of the CVD tungsten was first
exposed to the He+ beam (Fig. 1b). From the three spec-
tra of the first series, it follows that the concentration of
all the impurities listed above decreases (the decrease
being considerable for some of them) the instant the He
irradiation starts. For example, even in the second spec-
trum, the intensity of the Na peak drops 19 times; Al,
6 times; K, 31 times; Ca, 6.8 times; Cr, 3.3 times; and
Fe, 11 times. However, for C, Re, ReO, and WO, the
peak intensity changes by no more than 10%. In the
next spectrum, the peak intensity for Cr, Re, ReO, and
WO remains the same, while that for the other impuri-
ties grows but does not exceed the initial values. For
example, the peaks of Na and Al grow four times; K,
6.8 times; Ca, 3.6 times; and Fe, 2.6 times. Conse-
quently, these impurities are process-related impurities
(Na and K are likely introduced by the etchant).

The following series of three spectra in Ar+ confirms
the conclusions drawn for the He+ irradiation in the first
series. The peak intensity for all the impurities
increases (except for Re, ReO, and WO, for which it
drops): for C, twofold; Na, 9.6 times; Al, four times; K,
3.6 times; Ca, 4.8 times; Cr, 2.8 times; and Fe, 4.8 times
relative to the intensity in the first spectrum (Fig. 1c).
This means that many of the impurities concentrate
much deeper the layer than can be probed with the He+

beam for a reasonable time.
Even in the Ar+ series next to the first one, the con-

centration of the impurities (with the exception for Cr)
starts decreasing. The chromium concentration in the
last, fifth, spectrum of this series grows 2.6 times rela-
tive to its concentration in the first spectrum. Hence,
among the impurities considered, chromium is buried
at the greatest depth. As for the other impurities, the
concentration (peak intensity) in the last spectrum of
the second Ar+ series decreases relative to that in the
first spectrum of the same series by a factor of 2.3 for
C, 4.9 for Na, 3.3 for Al, 9 for K, 1.2 for Ca, 2 for Fe,
and 1.6 for WO and ReO. The intensity of the Re peak
does not change. The fact that the impurity content
drops with depth suggests that the impurities are local-
ized near the surface and are related most likely to the
deposition or subsequent processing of the material.

A comparison of the last spectrum of the specimen
in the second Ar+ series with the last spectrum of the
reference shows that they are almost identical in purity
(Fig. 1d). The discrepancy in the peak heights is no
more than 5–10% for most of the impurities. The
exception is K, Ca, and Cr, for which the discrepancy is
≈25%.

Once one He+ series and two Ar+ series had been
taken from the etched specimen, one more He+ series of
four spectra was recorded. The same was done for
W(110). In the former case, the peak intensities are
reduced further from spectrum to spectrum (by 25–
50% on average) for all the impurities except for Al
(10%) and Fe (three-fold decrease). However, the
intensity of the WO and ReO peaks grows by 2–3% and
that of the Re peak, by 17%. A comparison of the initial
spectrum in the first He+ series (when the surface con-
tamination was the highest) with the last one in the sec-
ond He+ series shows that the concentration decreased
by a factor of 3.3. for C, 229 for Na, 16 for Al, 111 for
K, 18.5 for Ca, 2.7 for Cr, and 18 for Fe (with regard for
the intermediate cleaning by the Ar+ beam). Con-
versely, the concentration of Re, ReO, and WO rose by
26, 22, and 11%, respectively (Fig. 1e).

At the same time, comparing the final spectrum of
the specimen in the He+ series (Fig. 1e) with the same
spectrum for W(110) (Fig. 1a), we see that the concen-
trations of C, Al, Ca, Cr, Re, ReO, and WO in them
coincide within 4–11% (the specimen becomes purer
than the reference). The Na and K concentrations in the
specimen are higher by a factor of 2.3 and 1.3, respec-
tively, while the Fe concentration in W(110) is 1.3
times that in the specimen. Certainly, these data charac-
terize the surface, rather than volume, purity of the
specimen and W(110).

Consider now the unetched specimen. In view of the
results described above, He+ irradiation preceding Ar+

irradiation was not performed. Here, the peak intensi-
ties vary not as considerably as for the etched specimen.
For example, the intensity in the last (third) spectrum of
the Ar+ series decreases relative to the initial spectrum
by a factor of 1.4 for C, 1.2 for Fe, 1.1 for Re, 1.4 for
WO, and 1.6 for ReO. The intensity increases by a fac-
tor of 1.7 for Na, 1.1 for Al, 1.1 for K, 1.4 for Ca, and
2.1 for Cr.

Next was the He+ series of four spectra. Here, the
intensity in the fourth spectrum decreases relative to
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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Fig. 1. Secondary-ion mass spectra. (a) Last spectrum in the last He+ series for the W(110) reference, (b) initial spectrum in the He+

series for the etched specimen, (c) initial spectrum in the Ar+ series for the etched specimen after exposure to the He+ beam, (d) last
spectrum in the second Ar+ series for the etched specimen, (e) last spectrum in the second He+ series for the etched specimen after
exposure to the Ar+ beam in the second Ar+ series, and (f) last spectrum of the unetched specimen after exposure to the Ar+ beam.
that in the initial spectrum by a factor of 1.1 for C and
K, 1.3 for Ca, and 1.7 for Fe. However, the intensities
of the Al, Cr, WO, and ReO peaks increase by a factor
of 1.4, 1.1, 1.7, and 1.5, respectively. A comparison
between the last spectrum of this series (Fig. 1f) with
the last spectrum for W(110) in the He+ series (Fig. 1a)
shows that the specimen contains 1.3 times more Al,
1.1 times more K, and 1.5 times more WO and ReO.
However, the concentration of the other impurities in
the specimen is higher by a factor of 1.3 for C, 1.2 for
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
Ca, 1.1 for Cr, 1.3 for Fe, and 1.1 for Re. Thus, the
unetched CVD tungsten specimen approaches the sin-
gle-crystal W(110) reference in purity after the He+ and
Ar+ irradiations.

The data for the two CVD tungsten specimens show
that most of the contaminants are due to the electrolytic
polishing in the etchant. Therefore, if the additional
treatment pursues no goal other than surface cleaning,
it should not be carried out.
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The evaluation of the impurity content in W requires
that the relative sensitivity factors (RSFs) be known.
Unfortunately, the RSFs only for Al, Cr, and W have
been reported in the literature. Therefore, we calculated
the absolute impurity content for Al and Cr. From the
last spectrum of W(110) in the He+ series (Fig. 1a), the
Al and Cr content in W is 3 × 10–2 and 3.5 × 10−1 at. %.
From the same spectrum of the etched specimen
(Fig. 1e), we have 3 × 10–2 at.% Al and 3 × 10−1 at. %
Cr; for the unetched specimen (Fig. 1f), also 3 × 10–2

and 3 × 10–1 at.%, respectively.

Thus, the purity of CVD single-crystal tungsten (as
a TEC emitter material) approaches the purity of a
W(110) single crystal, which completely meets
requirements for LEED specimens if the ion etch depth
is sufficiently large. The additional electrolytic clean-
ing (polishing) increases the concentration of impuri-
ties. However, it is etched specimens of CVD tungsten
unexposed to ion beams in the SIMS method that were
taken for subsequent AES studies in the GPES.
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Fig. 2. Auger spectra after heating. T = 575 (a), 1025 (b),
1075 (c), 1225 (d), 1375 (e), 1475 (f), and 1625 (g) K.
(h) Second heating at 1125–1175 K, (i) clean surface.
SURFACE CONTAMINANTS

After GPES evacuation at 625 K down to Pres =
10−8 Pa and cooling, the specimen was heated again to
575 K. No diffraction pattern is observed in this case.
The AES spectrum shows the most intense peak from
the thick carbon or hydrocarbon film at 272 eV and the
second most intense oxygen peak (515 eV) with its sat-
ellites (475 and 490 eV). Next in order of intensity are
the calcium peak (293 eV), as well as traces of niobium
(105, 133, and 142 eV), sulfur (152 eV), tungsten (169
and 179 eV), and Mo (120 eV) (Fig. 2a).

Upon further heating, the S peak (152 eV) grows
starting from 625 K and the W peaks, from 925 K. At
1025 K, the C peak (272 eV) lowers considerably and a
faint K peak (253 eV) arises. Its position coincides with
one of the peaks from CO or W2C carbide. The more
intense peak from these substances (261 eV) has not yet
appeared. The S and W peaks grow substantially
(Fig. 2b). At 1075 K, a weak LEED pattern with anom-
alously moving reflections is observed upon normal
incidence of the primary electron beam. However, it
still bears little information and cannot be identified.
Yet, taking into account that the reflections move in the

[01] and [ ] directions when Ep is varied, we can
assume the presence of prismatic facets arranged along
the cylindrical surface of the specimen. At this temper-
ature, the intensity of the Auger peak for Ca (293 eV)
exceeds that of the C peak. Simultaneously, the K peak
grows, approaching the height of the C peak. The basic
O peak (515 eV) is also of high intensity (Fig. 2c).

At 1175 K, the S peak starts and the C peak contin-
ues decreasing. At 1225 K, the Ca peak reaches the
maximum intensity, which is four times as high as that
of the C peak (Fig. 2d). The LEED pattern from the
W(112) face represents a fairly distinct (2 × 2) structure
with anomalous reflections which move in the direc-
tions mentioned above when Ep is varied (Fig. 3a). At
the same time, no additional reflections are seen in the
LEED pattern from the W(110) face (this pattern is
obtained if the angle of incidence of the primary beam
is changed by 20°–30°). The (2 × 2) pattern is most
likely associated with Ca segregation, since when the
AES spectrum contains even more intense lines for the
other elements, such as S, C, and O, neither this nor any
other LEED pattern is observed.

After the appearance of the initial LEED pattern, it
becomes evident that, microscopically, the cylindrical
surface of the CVD single-crystal tungsten consists of
terraces with the (112) face as the base and the (110)
faces as the inclined walls. The base is parallel to the
cylinder envelope. Since the angle between these faces
in the bulk is π/8, the dihedral angle of the terraces must
equal 7π/8.

However, before relating the (2 × 2) pattern to Ca or
CaO, we should consider other processes that may
occur in parallel with Ca segregation at 1225 K. At this
temperature, carbon is not removed from the transition

01
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Fig. 3. LEED patterns (squares, reflections from the (110) face; triangles, reflections form the (112) face; filled circles, reflections
from the structure; empty circles, moiré reflections). (a) (2 × 2), CaO + CO on W(112); (b) c(3 × 2), W2C(0001) on W(112); (c) clean
W(112) face; (d) clean W(110) face; and (e) artificial superposition of the patterns from the clean W(112) and W(110) faces.

(a) (b) (c)

(d) (e)
metal surface [2]; therefore, the continuing decline in
the C peak intensity (even after its sharp drop at
1025 K) and the concurrent growth of the Ca peak can
be assigned to the “screening” of C by fast Ca diffusion
toward the surface. However, the temperature interval
where the Ca peak increases is at the same time optimal
for C oxidation [2, 5, 10, 18]. Thus, the surface (more
specifically, the (112) face, because carbon does not
precipitate on the (110) face) may contain both Ca
and CO.

At 1275 K, the Ca and O peaks start to decrease. At
1375 K, the former disappears and the latter has an
intensity of roughly one sixth that observed when the
Ca intensity was the highest. The (2 × 2) LEED pattern
also disappears. Note that alkaline-earth metals pro-
duce strong double chemical bonds with oxygen when
oxidizing, so that the oxides on the refractory metal sur-
face do not dissociate. This leads us to the assumption
that Ca is desorbed from the surface in tandem with O;
in other words, we suppose that CaO, not elemental Ca,
is present on the surface. Moreover, the K peak disap-
pears, but extra carbon peaks at 242, 251, and 261 eV
arise. They indicate the presence of surface C in the
form of W2C, CO, or both (Fig. 2e) (the presence of CO
is indicated by the presence of O peaks, which are
absent if pure carbides are the only surface compo-
nents). The intensity of the C basic peak (272 eV)
grows by roughly 2.5 times. This means that upon heat-
ing, the calcium at least partially screens the carbon. We
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
cannot argue that the screening is complete, because the
temperature 1375 K is close to that of fast carbon diffu-
sion from the volume to the surface and carbide forma-
tion [5, 19].

At this temperature (1375 K), the material is
intensely sputtered from the surface. This is indicated
both indirectly (by a sharp rise in the residual pressure
Pres) and directly (by the appearance of a deposit on the
shutter placed before the specimen is heated). Hence,
the actual amount of Ca on the surface is large and can
screen C. Since O does not dissolve in the bulk of
Group VIb elements (because the associated atoms lack
vacant d orbitals [10, 20]), CaO oxide may form only
when Ca segregated on the surface or at surface defects
combines with residual surface oxygen. For Pres = 10–8

Pa, the partial oxygen pressure PO = (1–5) × 10–10 Pa;
therefore, it can be assumed that the external O flow is
absent upon heating of the specimen.

Carbon oxidation and carbide formation take place
in a similar way.

The conventional approach to the identification of
the (2 × 2) LEED pattern on W(112) gives the coverage
Θ = 0.25 (Fig. 4a). However, with such Θ, the sputter-
ing of CaO cannot be so high. Therefore, as a first
approximation, we can assume that the (2 × 2) pattern
is formed not by CaO molecules but by substrate atoms
unscreened by the film and producing a surface frame-
work having the (2 × 2) structure with its interior filled
with a film copying the substrate structure. Then, the
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Fig. 4. Arrangement of atoms and molecules (large empty circles, W atoms; figured circles, CO molecules; hatched circles, W2C
molecules; small filled circles, CaO molecules). (a) CaO + CO film on W(112), ΘW = 0.25, ΘCO = 0.25, ΘCaO = 1.5; (b) clean

W(112) face, two types of domains; (c) W2C film on W(112),  = 1.667, one of the domain types; (d) clean W(110) face; and

(e) W(110) face converted to the (111) face of the fcc lattice ((0001) face of the hcp lattice) on the cylindrical surface.

ΘW2C

(a) (b)

(c) (d) (e)
ΘCaO in the uppermost layers of the substrate may be as
high as 0.75. In this case, the LEED pattern will not
change up to the reflection intensity. The presence of
the mobile anomalous reflections indicates that the sub-
strate surface is composed of moderately inclined
faces. Therefore, the possibility of CaO molecules
being formed in grooves between upper close-packed
(CP) atom rows on the W(112) face (Fig. 4b) should
also be taken into account. Then, with the same LEED
pattern, Θ may reach 1.75. Such a high value may
explain the intense sputtering of the film when CaO is
desorbed even without considering its presence at
defects not appearing in the LEED pattern.

The strange point in the above model of the (2 × 2)
pattern is that W atoms in the CP rows must alternate
(or even occupy alternate rows) (Fig. 4a) although the
adsorbate (Ca) flux is unlimited. This implies the pres-
ence of a tungsten compound in which the spatial con-
figuration of atomic and molecular orbitals prevents the
adsorbate from being combined with each of the atoms
in the row. CO as the additional adsorbate appears to be
the most plausible.

If a surface atom of a transition metal (for example,
in CP rows on the (110) and (112) faces of Group VIb
elements) has a vacant d orbital, a CO molecule in the
ground state (i.e., with triple C–O bonds and two occu-
pied C and O orbitals opposite to the linear σ bond,
which is the strongest in this triad [21]) can also pro-
duce a strong linear donor–acceptor bond via the occu-
pied orbital of the C atom (CO combines with a metal
only through the C atom [21]) and the vacant  orbital

(i.e., the orbital directed normally to the surface). In
other words, a MeCO subcarbonyl molecule may form.
This molecule has one occupied O orbital directed nor-
mally (both toward and outward) to the substrate. This
orbital also can produce a donor–acceptor bond with
another ionized adsorbate, e.g., with cesium. Thus,
being bonded with the metal in the ground state (in the
excited state of a CO molecule, i.e., when one of the
two π bonds is broken, Me–C–Me bridge bonds occur
largely at defects or if surface atoms of the substrate
lack vacant d orbitals), a CO molecule will always be
directed normally to the surface. Obviously, such a
molecule cannot be buried by an external W flux, e.g.,
from the TEC emitter. In other words, in the case of W
mass transfer from the environment, the CO molecule
will always “penetrate” into the upper layer of the W
atoms. In view of its location on the substrate and the
strong tendency to produce bonds to Cs+, it becomes
clear to what extent the work function of the CO-cov-
ered TEC collector subjected to the Cs vapor increases.
Indeed, the CO contamination has the most adverse
effect on the TEC collector [5].
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From the difference in the linear sizes of CO and
CaO molecules and taking into account the different
nature of W–CO and W–CaO bonds, one can suppose
that CO molecules, when incorporated into the CO–
CaO film, will form ridges. This, in turn, will cause the
formation of inclined facets occupied by CaO. In fact,
CaO molecules, having strong double Ca–O bonds, can
be attached to W atoms only via one of the two remain-
ing occupied orbitals of the O atoms. They form donor–
acceptor σ bonds via the vacant  orbital of the W

atom. Then, double Ca–O bonds in the CaO molecule,
and hence, the molecule itself, will arrange themselves
at an angle to the substrate. Naturally, this will affect
the packing density of the CP W atom rows (which pro-
duce bonds with CO molecules), especially in view of
the asymmetry of the two π bonds about the linear σ
bond in the ground state of CO. The polarization, rather
than chemical, nature of the CaO–W bond is out of the
question because of the high temperature (1375 K) of
CaO desorption.

The two π C–O bonds, which are asymmetric about
the σ C–O bond, must be arranged so that the remaining
half-occupied dyz orbital of the W atom in carbonyl
WCO (this orbital is directed along a CP row at an
angle to the substrate) is placed in the dihedral angle
formed by the π bonds. Therefore, these π bonds must
be equally directed relative to the σ bond and the CP
row of W atoms. Because of this, the W atoms in the CP
rows alternate when WCO molecules form.

Thus, if Ca and C (or W2C) oxidize concurrently,
there appears a high probability of a mixed CaO + CO
film being formed, where WCO molecules create the
framework with the (2 × 2) structure and ΘCO = 0.25.
The value of ΘCaO in this film equals 1.5. Note that the
W surface atoms responsible for the coverage 0.25 and
the (2 × 2) structure do not combine with any of the
adsorbates (Fig. 4a).

Upon heating to 1475 K, the W(112) face gives the
c(3 × 2) diffraction pattern due to carbide W2C(0001)
(Fig. 3b). The LEED pattern taken from the (110) face
shows no extra reflections. On the other hand, the
LEED pattern taken from the (110) face of the flat spec-
imen exhibits reflections typical of W2C(0001) [10, 22,
23]. That is why the assumption that only the W2C
amorphous film is produced on the W(110) inclined
faces seems to be unjustified. Unfortunately, the AES
method cannot distinguish the states of the W2C carbide
on the (112) and (110) faces of the cylindrical surface,
since the relatively wide and, what is more, inclined
beam of primary electrons covers both faces. This leads
us to the conclusion that the carbon does not precipitate
on the inclined W(110) faces forming terraces with the
(112) faces as their base. This fact can be explained by
the increased energy of an inclined (110) face com-
pared with that of a (112) face (terrace base) and also
by the presence of the boundaries (grooves) between
the terraces. At the same temperature (1475 K), the O

d
z

2

TECHNICAL PHYSICS      Vol. 47      No. 6      2002
peaks also disappear (Fig. 2f); that is, at this tempera-
ture, the surface is totally free of CO.

As the temperature rises further (1525 K), the S
peak in the Auger spectrum starts decreasing and com-
pletely disappears at 1625 K (Fig. 2g). Still higher tem-
peratures, up to 2000 K, cause no changes in the Auger
spectrum and the LEED pattern: the former exhibits the
peaks of W and W2C and the latter, the c(3 × 2) struc-
ture.

It should be noted that the Auger spectra from CO
and W2C differ only slightly; therefore, the associated
peaks may superpose. It has been found, however, that
the presence of at least the basic O peak at 512–516 eV
is a good indication of CO on the surface. To verify this
experimental finding in the presence of the C and O
peaks in the spectrum, it is necessary to rapidly heat the
specimen to 1175–1475 K and record the spectrum
immediately after heating (preventing its cooling). In so
doing, the C peak at 272 eV is sharply reduced and the
O peaks disappear (Fig. 2h). This confirms the above
conclusion that CO may be present on the surface when
a part of the carbide is oxidized by the residual surface
oxygen at moderate heating temperatures.

From the aforesaid, it follows that the CVD tungsten
cylindrical surface can be cleaned of all the impurities
but carbon even after the first heating in vacuo. Carbon
combines with the substrate material at temperatures
below 1475 K to form carbides.

It has been reported [2, 4, 10, 22, 23] that W2C car-
bide dominates on any of the W crystallographic faces
except (100) when single-crystal W reacts with C no
matter how the latter was deposited (by segregation or
from an external source), the most close-packed (0001)
face of W2C being parallel to the substrate. Hence, the
same could be expected for the W(112) face.

When analyzing the undoubtedly moiré LEED pat-
tern with c(3 × 2), we constructed 25 models of the
structure with more or less realistic Θ (0.750, 0.883,
0.917, 1.083, 1.167, 1.250, 1.333, 1.583, 1.667, and
1.750) and with scattering centers variously arranged
on the W(112) face. Basically, each of the models could
be responsible for the LEED pattern observed. How-
ever, only two of them [with the reflection coordinates
in the reciprocal lattice (i.e., on the LEED pattern)

( /3, 3/2), (1/6, 7/4), and (1/2, 1/4) for Θ = 0.883 and

( , 1/2), ( /6, 7/4), and (5/6, 5/4) for Θ = 1.667]

proved to be close to the W2C low-index faces, (10 0)
and (0001), respectively. Taking into account the type
of chemical bonds in W2C molecules (three-center W–
C–W bridges), the spatial orientation of bonding and
antibonding orbitals in C and W atoms, the need for
minimizing the energy spent on the rotation of W2C
molecule rows relative to CP rows of W atoms on the
(112) face (that is, the rotation of W2C rows must be as
small as possible), and data from the works cited above

1

1 1

1
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(specifically, the data for ), we adopted the model
with Θ = 1.667 as the most realistic. For this model, the
arrangement of W2C molecules relative to the substrate
is shown in Fig. 4c. The deviation from the perfect
W2C(0001) face, for which the least spacing between
W atoms is 0.299 nm [24], along the three principle lat-
tice directions is 1.64, –2.58, and –6.05% (for the last
two directions, the interatomic spacings in W2C mole-
cules are much smaller than on the perfect face). The
deviation from  on the perfect face (1.585 for
W(112)) is 5.19% (the W2C(0001) face becomes closer
packed). Upon forming the W2C(0001) film, the rota-
tion of the CP substrate atom rows is 8°50′. Sites of
coincidence between W atoms in the W2C(0001) film
and on the W(112) substrate produce the c(3 × 2) coin-
cidence site (coherent) lattice.

From the model selected, it follows that the W2C
film is formed not only by the uppermost CP W rows on
the (112) face but also by the rows in the grooves. The
latter are located between the former and are partially
(by 5.72%) screened by them (Fig. 4b). Consequently,
the formation of the carbide leads to the radical recon-
struction of the W(112) face, causing the groove CP
substrate atom rows to emerge on the surface. Similar
effects have been observed upon the formation of Mo
and W suboxides [2, 10, 20].

CARBON REMOVAL AND THE STRUCTURE 
OF THE CLEANED SURFACE

After 30 cycles of oxidation of the carbon-contami-
nated surface (by the method described above) and sub-
sequent oxygen evacuation to a residual pressure Pres ≤
10–8 Pa, followed by several rapid heatings to 1925 K,
the Auger spectrum had no peaks other than the W peak
(Fig. 2i). Under normal incidence of the beam, the
LEED pattern is typical of the clean (112) face of the
bcc lattice (Fig. 3c). Taking into consideration that the
cylinder envelope was placed in the horizontal plane of
the instrument and was at the same time normal to the
optical axis of the central electron gun, as well as that
the diffraction pattern (reciprocal lattice) was rotated
through 90° relative to the atom arrangement in the
direct lattice, we can conclude that the CP W atom rows
on the (112) face are aligned with the cylinder envelope
(Fig. 4b).

When the angle of beam incidence is varied in the
plane normal to the cylindrical surface of the specimen,
there comes a point where the LEED pattern from the
(112) face is no longer observed. Instead, one can see
the pattern from the clean (110) plane of the bcc lattice
(Fig. 3d). The angle between the (110) and (112) in this
lattice is π/8; that is, when emerging on the surface,
these faces make a dihedral angle of 7π/8. Thus, the
clean cylindrical surface of single-crystal CVD tung-
sten consists of terraces with inclined (110) faces as
walls.

ΘW2C

ΘW2C
However, at some intermediate angle of incidence
when {h0} and {0k} reflections (h = k = ±1, ±2, ±3, …)
in the pattern from the (112) face gradually disappear
and the pattern changes to that from the (110) face, one
can see that reflections of type {2h + 1, 2k + 1} (h = k =
0, ±1, ±2, …) in both patterns roughly coincide in the

first order. However, in the directions [10] and [ 0], the
reciprocal lattice for the perfect (110) face must be
15.47% shorter than the reciprocal lattice for the (112)
face (Fig. 3e). Therefore, it can be assumed that one of
the faces on the imperfect substrate is distorted. Rely-
ing on the general considerations that a complex sur-
face tends to have a relief minimizing its surface, we
believe that the probability of distortion is higher for
the terrace inclined walls. Their energy is higher than
that of the terrace bases, and they have a variable poten-
tial relief because of the inclination. In other words, the
W atom rows along the bcc lattice constant on the (110)
face must be compressed to the close packing state in
the first approximation.

The LEED patterns imply only two types of (110)
face distortion. In one case, it can be assumed that,
when the (110) and (112) faces join (along the
grooves), the (110) face is reconfigured in such a way
(Fig. 4d) that the directions of its CP rows of two types
become coincident (in either domain) with the direc-
tions of first-order inclined rows on the (112) face. The
inclined rows make an angle of 31°29′ with the CP rows
on this face (Fig. 4b). In the other case, the (110) face
may even be converted to the (111) face of the fcc lat-
tice or, which is the same, to the (0001) face of the hcp
lattice (Fig. 4e). In this case, the LEED (110) and (112)
reflections along directions parallel to the h axis will
coincide. Along directions perpendicular to the h axis
(i.e., along those parallel to the k axis), the first-order
reflections will deviate by 5.72%, compressing the
LEED pattern from the (110) face relative to that from
the undistorted (112) face. Visually, such a deviation is
practically indiscernible for the first-order reflections.
In this case, the joint of the (110) and (112) faces (ter-
race groove or ridge) will run along the mutual CP row
of W atoms. In view of the considerable decrease in the
energy in the groove because of the CP row formation,
the latter case of inclined (110) face distortion seems to
be more probable.

CONCLUSION

Thus, microscopically, the clean cylindrical surface
of single-crystal CVD tungsten consists of terraces.
Their bases are the (112) faces coplanar with the cylin-
der envelope. The walls are the (110) faces making an
angle of 157°30′ with the base. The (110) face is dis-
torted, i.e., slightly compressed (by 8.14%), in such a
way that it is converted to the (111) face of the fcc lat-
tice [(0001) face of the hcp lattice]. The joint of the dis-
torted (110) and undistorted (112) faces (terrace groove
or ridge) runs along mutual CP rows of W atoms.

1
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In terms of impurity content in the near-surface
layer (but not on the surface), CVD tungsten single
crystals are highly competitive with zone-melted per-
fect tungsten single crystals, which were prepared
according to the requirements for specimens to be stud-
ied by modern methods for surface investigation. The
basic advantage of the material studied in this work is a
relatively low content of carbon impurity—the most
harmful impurity for emission electronics. This allows
process engineers to obtain an atomically clean surface
by applying conventional cleaning procedures. To
decrease the surface contamination, especially, con-
tamination by carbon (the clean surface facilitates sub-
sequent purification of the near-surface layer), it would
be desirable to formulate more stringent demands on
the processing (vacuum) conditions, use hydrocarbon-
free evacuation means, and remove carbon from the
TEC electrodes by the technique described above
directly in a TEC before its start-up.
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Abstract—Photoprocesses in systems produced by adsorption of NO and CO molecules on the Pt(111) and
Ni(111) surfaces, as well as on the (111) surface of Pt–Ge alloy, is studied by the IR absorption spectroscopy,
resonant multiphoton ionization, and UV photoelectron spectroscopy methods. The energy of photons varies
between 2.3 and 6.4 eV. The character of the processes depends on the type of the metallic substrate. On the
Pt(111) surface, NO molecules dissociate or are desorbed, depending on the degree of coverage. On the Ni(111)
surface, the molecules only dissociate. Conversely, NO molecules adsorbed on the (111) surface of the Pt–Ge
alloy are only desorbed from the surface. In the CO/Pt(111) and CO/Pt(111)–Ge systems, CO molecules
adsorbed on on-top adsorption sites are desorbed under the action of the photons, while those occupying bridg-
ing adsorption sites change their properties insignificantly. A model of photoinduced processes is suggested.
According to this model, the lifetime of a state excited by charge transfer between the valence band of the metal
and the 2π-antibonding molecular orbital plays a decisive part in the occurrence of one or the other of these
processes. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, desorption of atoms and molecules
from the solid surface that is induced by electron tran-
sitions (DIET) in adsorbate–substrate systems has been
the subject of much investigation [1–6]. The aim of
researchers has been (and remains to be) to obtain fur-
ther insight into the adsorbate dynamics on the sub-
strate surface. The elucidation of DIET mechanisms
would make it possible to tackle a number of funda-
mental problems, such as the nature of the chemisorp-
tive bond in the ground and excited states, and to find a
mechanism whereby the excitation energy of the elec-
tronic subsystem is converted to the energy of the trans-
lational, rotational, and vibrational motions of atoms
and molecules being desorbed [3–6]. Such studies are
also of great applied interest because they uncover
mechanisms of atomic and molecular transformations
on the solid surface, allowing for the control of these
transformations in applications [4].

The Antoniewicz model [7] is often used in describ-
ing particle desorption due to electron transitions in
adsorbate–substrate systems. It assumes that the shape
of the potential energy surface (PES) and the lifetime t
of an excited adsorbate–metal (A–M) complex (Fig. 1)
are basic factors specifying the type of particle desorp-
tion. The probability of an adsorbed particle being des-
orbed rises with increasing lifetime of the excited com-
plex. Eventually, the particle leaves the surface, having
gained an energy exceeding the energy of adsorbate–
1063-7842/02/4706- $22.00 © 20752
substrate bonds. On the metal surface, however, elec-
tron excitations in the valence band relax very quickly
and the lifetime is short (about several femtoseconds).
Because of this, the disintegration of the excited A–M
complex is accompanied by recombination. For poly-
atomic molecules, dissociation, along with desorption
and recombination, may also take place. Like desorp-
tion, dissociation implies bond breaking on the surface.
Therefore, the study of this process might clarify DIET
mechanisms.

The dynamics of adsorbed particles is usually stud-
ied with laser radiation that generates photons in the
visible and near-UV parts of the spectrum [5, 8–10]. In
this case, a valence electron transition responsible for a
specific photoinduced response of the adsorption sys-
tem can be identified. This makes it possible to selec-
tively activate or inhibit specific surface reactions,
which cannot be done with thermal excitation, as well
as with electron- or ion-induced excitations. Most
works studying the energy distribution over the transla-
tional, rotational, and vibrational degrees of freedom of
molecules being desorbed use laser spectroscopy of
atoms and molecules in the gas phase, the method of
resonant multiphoton ionization (RMPI) being the most
extensively employed [9]. In recent years, this method
has become common in studying the dynamics of NO
and CO desorption from a number of substrates [5, 8,
10–12]. The choice of these molecules as an object of
investigation has been dictated by their practical impor-
002 MAIK “Nauka/Interperiodica”
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tance in heterogeneous catalysis. In addition, they offer
a high chemisorptive efficiency with respect to most
adsorbents; hence, related adsorption systems can be
taken as models for studying the fundamental laws of
the interaction of these and other molecules with solid
surfaces.

In this work, we studied photoinduced processes in
NO/Pt(111), NO/Ni(111), CO/Pt(111), and
CO/Ni(111) systems, as well as on the (111) surface of
Pt–Ge alloy (hereafter, Pt(111)–Ge alloy), using the
methods of IR absorption spectroscopy (IRAS), RMPI,
and UV photoelectron spectroscopy (UVPS). From
vibrational spectra of the particles on the surface and
the energy distribution of molecules being desorbed
over degrees of freedom, we develop a model of these
processes. They are shown to depend on the substrate
metal and on the type of adsorption site. According to
theoretical considerations [13], the d band of Pt is filled
if a small amount of Ge (4% in our case) is added.
Therefore, we tried to trace how much a minor change
in the electronic properties of the substrate influences
the response of the systems to the irradiation. We have
found that the process type depends on the intramolec-
ular vibration frequency v of CO and NO. The parti-
cles with higher v tend to be desorbed because the
electrons transit to the unfilled 2π orbital of the mole-
cule. For the particles with lower v, photodissociation
prevails. Also, the type of photoprocess (desorption,
dissociation, or recombination) depends markedly on
the excited state lifetime, as well as on the intramolec-
ular bond strength and the strength of adsorbate–sub-
strate bonds.

METHODS OF INVESTIGATION

Experiments were carried out in an ultra-high-vac-
uum chamber designed for IRAS and RMPI investiga-
tion and equipped with Auger electron spectroscopy
(AES) and low-energy electron diffraction (LEED)
facilities. UVPS studies of the Pt(111)–Ge alloy were
performed in another ultra-high-vacuum chamber with
a synchrotron radiation source. Photoelectron spectra
were recorded by means of a double-focussing cylindri-
cal reflector analyzer. An incident UV beam makes an
angle of 48° with the normal to the sample surface and
90° with the axis of the analyzer. The residual gas pres-
sure in both chambers was no higher than 2 × 10–10 torr.
IR spectra of adsorbed molecules were recorded with a
Nicolet-Nexus 870 Fourier-transform spectrometer
with a resolution of 4 cm–1. The monochromator and
detector of the spectrometer were arranged so that the
incident and reflected IR beams polarized in the inci-
dence surface made an angle of 80° with the normal to
the sample surface. Such a geometry provides the high-
est sensitivity to intramolecular vibrations of the adsor-
bates, since the axes of the CO and NO molecules are
aligned with the normal to the sample surface. The pro-
cesses under study were initiated by the radiation from
a Lambda Physics pulsed excimer laser with a pulse
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
repetition rate and duration of 10 Hz and 8 ns, respec-
tively. This radiation generates photons with a wave-
length of 193, 248, 352, and 532 nm. The energy den-
sity of the laser beam was 1–3 mJ/cm2 for an angle of
incidence of 60°. The distribution of the molecules
being desorbed was taken with a Spectra Physics tun-
able dye laser. In this case, the probing beam ran paral-
lel to the sample surface at a distance of 2 mm from it.
The particles were detected by the RMPI method using
the standard (1 + 1) scheme to excite the A2Σ+  X2Π
transitions for NO and using the (2 + 1) scheme to
excite the B1Σ+  X1Σ+ transitions for CO.

The Pt(111)–Ge alloy was prepared by evaporating
a Ge monolayer on the Pt(111) surface with subsequent
annealing at 1100°C. As follows from the AES data, the
concentration of Ge in the surface layer of the alloy thus

A– – M

A – M

Desorption

Recombination

t > tc

t < tc

A– – M

A – M
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Fig. 1. Antoniewicz desorption model for an adsorbed par-
ticle [7]. If the lifetime of an excited state t exceeds the crit-
ical value tc (t > tc), the de-excited particle can pass through
the potential barrier of attraction to the substrate and be des-
orbed. Otherwise, recombination takes place. The transi-
tions between the ground and excited states are marked by
arrows.
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prepared corresponds to 0.1 of a monolayer. The prop-
erties of the alloy were found to be stable against sub-
sequent thermal treatments. Recent STM studies of this
alloy have indicated the presence of the (5 × 5) super-
structure, which suggests that the concentration of Ge
in the first atomic layer of the Pt(111) surface is 4%
[14]. The surfaces of the samples were cleaned by con-
ventional annealing in oxygen and hydrogen, followed
by rapid thermal annealing at 800°C for Ni(111) and
1100°C for Pt(111) and Pt(111)–Ge. The samples were
then cooled to 90 K, and the NO or CO gases to be
adsorbed were delivered to the chamber up to a pres-
sure of 10–7 torr. All the IRAS and RMPI measurements
were performed at a sample temperature of 90 K (for
details, see [14−19]).
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Fig. 2. (a) IR spectra taken from the NO/Pt(111) system for
exposures of 0.4 and 3.0 L (the latter provides the full cov-
erage of the substrate kept at 90 K). (b) Distribution of NO
molecules photodesorbed from the Pt(111) surface over
rotational energies (full coverage). Filled circles, spin-
orbital with the quantum number Ω = 1/2; empty circles,
spin-orbital with Ω = 3/2. The desorbent photon energy is
6.4 eV.
EXPERIMENTAL RESULTS

Figure 2a shows the IR absorption spectra for the
NO/Pt(111) system at a substrate temperature of 90 K
and exposures of 0.4 and 3.0 L (1 L = 10–6 torr s). When
the substrate coverage by the NO molecules is low, an
adsorption band due to intramolecular vibrations of
adsorbed NO appears at ν = 1485 cm–1. As the cover-
age grows, this band shifts to larger wave numbers and
its intensity decreases. At the same time, a new absorp-
tion band at large v appears. When the surface is fully
covered by NO, the spectrum has a single absorption
band at v = 1717 cm–1. It is assumed that these absorp-
tion bands are associated with intramolecular vibra-
tions of NO molecules occupying dissimilar adsorption
sites. The lower frequency band corresponds to NO
molecules occupying bridge adsorption sites, while the
higher frequency one is associated with NO molecules
occupying on-top adsorption sites [20–23]. Such an
interpretation of the IR spectra, which was accepted
long ago, has become the subject of furious debates.
The reason is that, according to recent structure inves-
tigations, NO molecules, when being adsorbed on the
Pt(111) surface, occupy largely octahedral and tetrahe-
dral voids [24–26]. Because of this uncertainty, we will
not assign spectrum features to any of the adsorption
centers. Instead, NO molecules adsorbed will by con-
vention be referred to as “low-frequency” and “high-
frequency” for the sake of convenience.

For the photon energy 6.4 eV, the process occurring
in the NO/Pt(111) system depends on the substrate cov-
erage. At low coverages, the photons decrease the
intensity of the lower frequency absorption band. Since
the desorption signal is absent in this case, one can sup-
pose that the NO molecules adsorbed dissociate under
the action of the radiation. When the surface is fully
covered by NO, the intensity of the related absorption
band (1717 cm–1) also decreases under irradiation but a
relatively high RMPI signal is observed in this case;
that is, the adsorbate is desorbed. The distribution of the
NO molecules being desorbed over rotational degrees
of freedom that is derived from the RMPI spectra is
shown in Fig. 2b on the semilogarithmical scale. The
distribution is seen to be linear, with its slope corre-
sponding to the NO desorption rotational temperature
490 K. Since the substrate temperature is 90 K, this
may indicate that NO molecules desorbed from Pt(111)
under the action of photons are rotationally excited.

For the CO/Pt(111) system, as well as for
NO/Pt(111), two absorption bands are observed. For
the fully covered surface, their peaks lie at 1855 and
2105 cm–1. These bands are assigned to the molecules
occupying bridging adsorption sites and on-top adsorp-
tion sites, respectively. It should be noted that, unlike
NO/Pt(111), such an interpretation here has been sup-
ported by recent investigations with structure-sensitive
methods. The irradiation of CO/Pt(111) with an energy
of 6.4 eV decreases the intensity of the high-frequency
band, while the low-frequency one does not undergo
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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noticeable changes. In this case, as follows from the
RMPI spectroscopic data, the CO molecules are des-
orbed. The related RMPI spectrum is depicted in
Fig. 3b. The data points are well approximated by the
model spectrum (solid curve) for molecules with a rota-
tional temperature of 130 K. Thus, one can suppose that
CO molecules desorbed are not rotationally excited,
unlike the NO molecules, which have a rotational tem-
perature of 490 K.

The IR spectrum from the NO/Ni(111) system
(adsorption at a substrate temperature of 90 K) has a
single absorption band corresponding to intramolecular
vibrations of adsorbed NO. As the surface concentra-
tion of NO (coverage) increases, the position of the
peak tends to larger wave numbers, reaching 1585 cm–1

for 100% coverage (Fig. 3a). By way of example,
Fig. 3a demonstrates the IR spectra taken from the
NO/Ni(111) system at exposures of 0.5 and 3.0 L. For
the full coverage of the surface, the effect of the pho-
tons is negligibly small, whereas for smaller coverages,
the intensity of the related absorption band declines and
a new peak at 1820 cm–1 arises. Similar absorption lines
in the high-frequency (above 1800 cm–1) part of the
spectrum are also observed when NO molecules are
adsorbed on the Ni(111) surface with preadsorbed O
and N atoms. Therefore, one can assume that the pho-
tons cause the NO molecules to dissociate when the
coverage is low, while the properties of the NO/Ni(111)
system remain virtually the same for the full coverage.
It should be noted that photon energies used in this
work do not all trigger the photoinduced processes
observed. From the dependences of the process type on
the photon energy E, it can be concluded that there exist
threshold energies Eth for each of the processes. The
table correlates Eth for desorption and dissociation of
NO and CO molecules on the Pt(111) and Ni(111) sur-
faces with the associated frequencies of intramolecular
vibrations.

For the NO/Pt(111)–Ge system, the IR spectrum
does not contain the low-frequency band at any cover-
age, unlike the NO/Pt(111) system. The corresponding
spectra for exposures of 0.4 and 3.0 L are demonstrated
in Fig. 4a. As the coverage grows, the absorption line
becomes more intense and shifts toward larger wave
numbers, reaching 1716 cm–1 for 100% coverage. The
spectrum is similar to that for the NO/Pt(111) system in
shape, while differing in intensities and half-widths of
the peaks. The photon irradiation lowers the intensities
of the peaks, which is due to NO molecule desorption,
in accordance with the RMPI data. Like for the
NO/Pt(111) system, Fig. 4b shows the distribution of
NO molecules desorbed from the Pt(111)–Ge surface
over rotational energies. The distribution can be consid-
ered as linear, with its slope corresponding to the rota-
tional temperature 410 K for the photodesorbed mole-
cules. It is seen that the distributions of the molecules
desorbed from the Pt(111) and Pt(111)–Ge surfaces
(Figs. 2b, 4b) agree qualitatively.
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DISCUSSION

To discuss the results obtained, it is reasonable to
invoke the well-known Blyholder electronic model of
bonding between NO (CO) molecules and metallic sub-
strates [27], which was supported by subsequent simu-
lations [28, 29] (Fig. 5). For NO and CO, molecular
orbitals responsible for chemisorptive bonding with the
surface are the 5σ and 2π orbitals, which are of bonding
and antibonding nature, respectively, in a free mole-
cule. According to the Blyholder model, these two
orbitals produce related bonding and antibonding orbit-
als when interacting with d electrons of the substrate. It
is assumed here that the electron density is transferred
from the 5σ orbital to the conduction band of the metal
and from the conduction band to the 2π-antibonding
orbital. According to UVPS data, the occupied bonding
state 5σb of a chemisorbed CO molecule and two occu-
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Fig. 3. (a) IR spectra taken from the NO/Ni(111) system for
exposures of 0.5 and 3.0 L (the latter provides the full cov-
erage). (b) Experimental RMPI spectrum for CO molecules
photodesorbed from the Pt(111) surface by photons of
energy 6.4 eV (circles) and the corresponding RMPI spec-
trum simulated with regard for the rotational temperature of
the desorbed molecules (130 K) (solid line).
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pied bonding states, 5σb and 2πb, of an NO molecule lie
at 9.2, 9.6, and 2.7 eV, respectively, below the Fermi
level [30, 31]. At the same time, inverse UVPS data
indicate that for a CO molecule, there exist two unfilled
states lying 1.5 and 4.0 eV above the Fermi level (they
are assigned to the 5σa and 2πa antibonding orbitals)
and one unfilled state for an NO molecule (1.5 eV
above the Fermi level), which is associated with the 2πa
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ν, cm–1

Erot, cm–1

A, arb. units

No/Pt(111)–Ge 1716

1678

(a)

NO/Pt(111)–Ge9
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In{N(J)/(2J + 1)}

Fig. 4. (a) IR spectra taken from the NO/Pt(111)–Ge system
for exposures of 0.4 and 3.0 L. (b) Distribution of NO mol-
ecules photodesorbed from the Pt(111)–Ge surface over
rotational energies. Ω = 1/2 (filled circles) and 3/2 (empty
circles).

Threshold photon energies Eth for the NO and CO photodes-
orption and photodissociation and the intramolecular vibra-
tion frequencies typical of these processes on the Pt(111) and
Ni(111) surfaces

System Eth , eV Photoprocess ν, cm–1

NO/Pt(111) 2.3 Desorption 1716

CO/Pt(111) 2.3–3.5 " 2105

NO/Pt(111) 5.0 Dissociation 1485

NO/Ni(111) 3.5 " 1480
antibonding orbital [31–33]. The energy width of the d
band of Pt and Ni is 8 and 5 eV, respectively [34, 35]. It
should be noted that the energy of transition between
the above levels somewhat differs from that measured
by the UVPS method because of the final-state effects.
These effects result in under- and overestimated bind-
ing energies for occupied and unoccupied levels,
respectively.

An electron transition responsible for a specific pho-
toprocess can be found from the tabulated data. The
threshold photon energies listed seem to be insufficient
for exciting electron transitions between the levels of
the molecules adsorbed. To explain the fact that the NO
and CO molecules are desorbed at photon energies of
2.3–6.4 and 3.5–6.4 eV, respectively, one has to assume
that the photons induce the electron transition from the
d band of the metal to the unoccupied 2πa state, which
is behind the photodesorption of both molecules. One
could suppose that, for CO photodesorption, the 5σa
state, which lies 1.5 eV above the Fermi level Ef (like
the 2πa orbital for NO), plays a crucial role. However,
the fact that the photon energy intervals inducing NO
and CO desorptions are not the same (see the table) is
against this supposition.

As was indicated above, the behavior of the
NO/Pt(111) and NO/Ni(111) systems under the photon
irradiation is different for the full surface coverage. In
the former case, the molecules are desorbed, while in
the latter, the properties of the system change insignifi-
cantly. This can be explained by the different effect of
the substrate electronic structure on the photoexcita-
tion. Platinum and nickel are isoelectronic transition
metals, and their electronic configurations are qualita-
tively similar. The most pronounced discrepancy is in
the energy width of the d band: 8 and 5 eV for Pt and
Ni, respectively [34, 35]. According to the Antoniewicz
model, the difference in the photoprocesses may be due
to the different geometry of the PESs in the ground and
excited states and to different lifetimes t of the excited
state. Assuming that the PES geometries for Pt and Ni
are similar because of the similarity of their electronic
configurations, one can argue that the parameter t gov-
erns the type of the photoprocesses.

Let us see how the different widths of the d band
lead to different values of the excited state lifetime.
First, we note that the d band of Ni is narrower than that
of Pt; hence, when they are equally filled, the center of
the d band in Ni lies closer to the Fermi level. As a
result, the interaction between the substrate and the 2π
level of the molecule for Ni is stronger than for Pt,
because the energy spacing between the 2π level and
the center of the d band is smaller in the former case
[28]. On the other hand, inverse UVPS data indicate
that the interaction of the substrate with the 5σ state for
Pt is stronger than for Ni [33]. The lifetime of an
excited state depends on the force of its interaction with
the substrate or on the degree of its localization: if the
interaction becomes stronger or the state is delocalized,
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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the lifetime decreases. As was noted above, the desorp-
tion of NO and CO is due to the photon-induced transi-
tion of electrons from the metal to the unoccupied 2π
orbital of the molecule. Since the interaction between
the d band and the 2π state for Pt is weaker than for Ni,
one can conclude that the lifetime of the related excited
state in Pt is larger. That is why the NO molecules are
desorbed from the Pt(111) surface and remain on the
Ni(111) surface under the action of the photons.

Further evidence in favor of such an interpretation is
IR spectroscopy data. According to the Blyholder
model, when the molecule is adsorbed on the metal sur-
face, the electron density is transferred from the occu-
pied antibonding 5σ orbital of the molecule to the d
band of the metal and from the d band of the metal to
the antibonding 2π orbital of the molecule. The interac-
tion of the latter orbital with the substrate is stronger;
hence, the electron density on this orbital is higher and
intramolecular bonds weaken. As a result, the intramo-
lecular vibration frequency decreases. At the same
time, the interaction of the 5σ orbital with the substrate
must not have a considerable effect on the intramolecu-
lar bond energy because of its antibonding nature. Note
that among orbitals producing chemisorptive bonding,
only the 2π orbital weakens intramolecular bonds;
hence, a higher frequency of interatomic vibrations in
the adsorbed molecule means a weaker interaction of
the 2π state with the substrate. This, in turn, increases
the lifetime of the related excited state and thus
explains the different responses of the NO/Pt(111) and
NO/Ni(111) systems to the photon irradiation.

The above considerations also help to explain the
dependence of the process on the adsorption site occu-
pied by the molecules. It was indicated that only high-
frequency particles respond to the photon action on the
NO/Pt(111) and CO/Pt(111) systems. In the case of
CO, these are molecules occupying on-top adsorption
sites. Such a specific selectivity can be explained if it is
remembered that the excited state PESs for the on-top
and bridge configurations are almost identical [36].
According to calculations, the PES shape is not respon-
sible for the selectivity. The selectivity effect can be
considered in terms of excited state lifetime t under the
assumption that t for high-frequency molecules is
larger than for low-frequency ones. The simulation of
CO chemisorption on Pt atom clusters counts in favor
of this approach. Its results indicate that the antibond-
ing 5σ orbital makes a major contribution to chemi-
sorptive bonding, while the 2π orbital has a minor
effect, in the on-top adsorption geometry [37]. More-
over, unlike CO molecules occupying on-top sites, the
2π state of a bridging CO molecule splits into two sub-
levels, which reflects the stronger interaction of the 2π
orbital with the substrate [37]. Consequently, it can be
assumed that the lifetime of the excited state associated
with the 2π level in the case of on-top adsorption (high-
frequency molecules) is larger than for bridge adsorp-
tion (low-frequency molecules).
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Further evidence for the decisive role of the 2π state
in the mechanism of the photoinduced processes is
apparent from comparing the results obtained for the
systems with Pt(111) and Pt(111)–Ge used as sub-
strates. As was noted above, the chemisorptive proper-
ties of Pt(111)–Ge differ greatly from those of Pt(111)
[16, 18]. Namely, the energy of NO and CO adsorption
on Pt(111)–Ge is appreciably lower than on Pt(111).
Also, low-frequency molecules observed on Pt(111)
are absent on Pt(111)–Ge. Nevertheless, in spite of
these differences in the ground state, the distributions
of the desorbed molecules over rotational energies for
both substrates are qualitatively similar (Figs. 2b, 4b).
Figure 6 compares the UVPS spectra for Pt(111) and
Pt(111)–Ge, from which it follows that the basic
change in the Pt electronic structure upon alloying with
Ge is the increase in the occupancy of the d band.
Because of this, the density of states in the d band that
are vacant for adsorption decreases and, hence, the
charge transfer from the 5σ level of the molecule to the
d band of the metal markedly decreases in comparison
with the pure Pt(111). This allows us to explain the fact
that the binding energy of the NO and CO molecules on
the Pt(111)–Ge surface is lower than on Pt(111). At the
same time, the relative increase in the occupancy of the
d band of the Pt–Ge alloy is insignificant and has a
minor effect on the reverse charge transfer from the d
band of the metal to the antibonding 2π orbital of the
molecule. The fact that, upon adsorption, the electron
densities on this orbital are close to each other for both
substrates is confirmed by the closeness of the associ-
ated intramolecular vibration frequencies (Figs. 2a, 4a).
This and also the similarity of the distributions of the
molecules desorbed from Pt(111) and Pt(111)–Ge
under the photon irradiation over rotational energies
suggest that the 2π level of the molecules governs the
photodesorption mechanism.

Another photoprocess observed in the systems con-
sidered is photodissociation. Note that only the low-fre-

E
Ef

Pt Ni
2πa

5σa

2πb

5σb

2π

5σ

NO

Fig. 5. Energy diagram for the interaction of an NO mole-
cule with the Pt and Ni surfaces. The 5σ and 2π molecular
orbitals produce the related bonding, 5σb and 2πb, and anti-
bonding, 5σa and 2πa, orbitals when interacting with the
valence band of the metal.
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quency particles dissociate on both Pt(111) and
Ni(111). As follows from the table, the threshold
energy of NO photodissociation is substantially higher
than the threshold energy of photodesorption. There-
fore, we can suppose that the electronic mechanisms
behind the two processes are different. However, the
inverse UVPS data for the NO/Pt(111) and NO/Ni(111)
systems do not reveal unoccupied states other than 2πa,
so that the electronic mechanism of photodissociation
cannot be identified with certainty. Nonetheless, based
on the available data, we can make some qualitative
suppositions. The absence of the photodesorption sig-
nal when the photons act on the low-frequency particles
indicates that the photodissociation competes with the
recombination of the excited molecules into the poten-
tial well of the adsorbate–substrate PES. Within the
Antoniewicz model, this is a consequence of the short
lifetime of the excited state. In its turn, the lifetime is
short because the interaction between the 2π antibond-
ing orbital and the d band of the metal for the low-fre-
quency molecules is stronger than for the high-fre-
quency ones. The lower intramolecular vibration fre-
quency means a larger amount of charge on the 2π
antibonding orbital, hence, the stronger interaction of
this level with the substrate and the smaller lifetime of
the excited state. On the other hand, as the charge on the
2π antibonding orbital grows, intramolecular bonds
loosen. This may cause the molecules to photodissoci-
ate because the related activation barrier is reduced.
Results [5], according to which the photodissociation
cross section increases with loosening intramolecular
bonds for molecules in the gas phase, validate this
assumption. Since the photodissociation takes place at
low coverages, one can suppose that the accommoda-
tion of dissociation products on the surface is also of
importance here. The significance of the accommoda-
tion follows, in particular, from the following observa-
tion. When the NO/Ni(111) system with a totally cov-
ered surface is heated, the molecules are first desorbed
in amounts providing the exposure of adsorption sites

3

2

1

0
–6 –4 –2 0 E, eV

I, arb. units

Pt(111)

Pt(111)–Ge

Fig. 6. UVPS spectra for the Pt(111) and Pt(111)–Ge sur-
faces. The photon energy is 36 eV. The value E = 0 corre-
sponds to the Fermi level.
needed for the subsequent accommodation of dissocia-
tion products of the remaining molecules [21, 22].

Thus, we conclude that the photoprocesses in the
NO(CO)/Pt(111), NO(CO)/Ni(111), and
NO(CO)Pt(111)–Ge adsorption systems are governed
by the type and surface concentration of the molecules
and by the type of substrate. It has been shown that the
2π antibonding orbital is crucial in the mechanisms
behind these processes. As the orbital interacts with the
substrate, the photoinduced processes change in the
order desorption–recombination–dissociation.
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Abstract—A model of silane decomposition in a radio-frequency argon plasma is constructed. The concentra-
tions of SiH4 decomposition products, as well as products of synthesis (higher silanes), are calculated. The role
of metastable argon atoms in the formation of SiH3 radicals and the higher silanes is analyzed. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Silane decomposition in a radio-frequency (HF)
plasma is a conventional technique used in the produc-
tion of a-Si:H films, which are usually deposited in
PECVD reactors. Recently, a breakthrough in jet
plasma-chemical methods has been made. These differ
in the ways of activating gaseous reagents. For exam-
ple, in the electron-beam activation technique [1], a
beam of electrons with an energy of several kiloelec-
tronvolts interacts with a free jet of a working gas that
passes through a supersonic nozzle. The electrons
cause the ionization and dissociation of the SiH4 mole-
cules with the subsequent deposition of the decomposi-
tion products on the substrate. Another technique [2]
implies the preliminary decomposition of a silicon-con-
taining gas in a capacitive HF discharge (like in a
PECVD reactor) and the subsequent transport of the
decomposition products from the discharge region into
the vacuum chamber through a nozzle. In this case, the
silane decomposition in the discharge region is accom-
panied by various interradical reactions leading to the
formation of disilanes and polysilanes, which change
the plasma composition and the amount of film-form-
ing agents. Information on the concentrations of the
working gas components and on their behavior under
various discharge conditions assists in optimizing the
plasma-chemical processes and thus improving the
quality of the films.

NUMERICAL MODEL

There is experimental evidence that SiH3 radicals
make the most essential contribution to the formation
of device-grade silicon films. Therefore, the simulation
of the production and loss of this radical in a plasma are
of special interest. It should be noted that the validity of
a model to a great extent depends on the plasma com-
ponents being included. Our model considers the com-
ponents listed in Table 1 and takes into account the vari-
1063-7842/02/4706- $22.00 © 0760
ation of the silane concentration, as well as the transi-
tion of the radicals and silane to higher silanes and dust
SiyHn (y > 5).

The chemical kinetics of the processes in a gas dis-
charge can be described by the equations

(1)

where Ni is the concentration of the ith component,

∂Ni

∂t
--------- u∇ Ni+  = ∇ Di∇ Ni( ) N j neK ji K jliNl∑+( )

j

∑+

– Ni neKij K jliNl

l

∑+
 
 
 

,
j

∑

Table 1.  Parameters of Lenard-Jones potential

Component σi(A) εi(K)

SiH4 4.084 207.6

SiH3 3.943 170.3

SiH2 3.803 133.1

SiH 3.662 95.8

H 2.5 30.0

H2 2.915 59.7

Si2H3 4.494 318.2

Si2H4 4.601 312.6

Si2H5 4.717 306.9

Si2H6 4.828 301.3

4.828 301.3

4.828 301.3

Si3Hn 5.08 354

Si4Hn 5.80 354

Si5Hn 6.50 354

Ar, Ar* 3.44 120

Si2H6*

Si2H6**
2002 MAIK “Nauka/Interperiodica”
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Di are the diffusion coefficients, ne is the electron con-
centration, Kji are the electron-induced reaction rate
constants, Kjli are the interradical reaction rate con-
stants, and u is the gas flow rate in a plasmatron.

The first term on the right-hand side stands for the
diffusion contribution to the concentration, and the sec-
ond and the third terms describe the production and loss
of sort-i particles, respectively. The term n∇ Ni takes
into account the gas flow (convection) in the discharge
chamber and makes the solution of Eq. (1) very cum-
bersome. It ensures the stationarity of the solution.
However, in the time interval [0, τ], where τ = M0/Q (M0
and Q are, respectively, the gas mass and the gas flow
rate in the reactor), convection can be disregarded and
the problem becomes essentially nonstationary [3].
This approximation is known as the plug-flow regime
and holds only when stirring of the reacting gas is neg-
ligibly small; otherwise, it is impossible to introduce
the parameter τ, which defines the residence time of the
gas in the reactor. In experiments, τ is usually 0.1 s,
which considerably exceeds the chemical reaction
time.

The diffusion coefficients were calculated by the
Wilke formula, which is commonly used for multicom-
ponent mixtures:

(2)

where n is the total concentration of the mixture and
ni is the concentration of the ith component.

Since the concentrations of radicals in the discharge
do not exceed 0.001% of the plasma-forming gas con-
centration, we may restrict our consideration to the dif-
fusion of the particles in the main components, which
are SiH4 and Ar. The coefficients Dki of binary diffusion
were determined with the formula from the molecular–
kinetic theory of gases [4] using the Lenard-Jones
potential

(3)

Here, p is the gas pressure expressed in torr, µki =
mkmi/(mk + mi) is the reduced mass of particles of the ith
and kth sorts, σki = (σk + σi)/2 is the effective collision
diameter,  = kT/εki is the characteristic temperature,

εki =  is the intermolecular potential parameter

(the potential well depth), and ( ) is the collision
integral for mass transfer normalized to the Ω integral
in the hard-sphere model. In our calculations, we used
the approximation [5]

(4)

Di n ni–( ) nk/Dki

k 1= k i≠,

N

∑
1–

,=

Dki 1.412308
T3/µki

pσki
2 Ωki* Tki*( )

------------------------------cm2

s
---------.=

Tki*

εkεi

Qki* Tki*

Ωki* Tki*( ) A Tki*( ) B–
C DTki*–( )exp+=

+ E FTki*–( )exp G HTki*–( ),exp+
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where the coefficients A = 1.06036, B = 0.15610, C =
0.19300, D = 47635, E = 1.03587, F = 1.52996, G =
1.76474, and H = 3.89411. The parameters of the
Lenard-Jones potential parameters [6, 7] are listed in
Table 1.

The reactions involved in our model are listed in
Table 2. We used the data from [6–8]. The rate con-
stants for the reactions induced by electron impact were
derived from the total cross section of silane dissocia-
tion by electron impact [6, 9]. We took into consider-
ation that reactions (R1)–(R3) of total dissociation,
account for 39, 48, and 13%, respectively, of the reac-
tion products [7]. The rate constant for silane dissocia-
tion was calculated after the energy distribution of the
electrons for the respective value of the applied field
had been found [10, 11]. Figure 1 shows the rate con-
stant for silane dissociation as a function of the applied
field. Under the simulation conditions (p = 0.125 torr),

the discharge is sustained by diffusion: (nikr ! (1/ )Da),
where kr is the recombination coefficient, Da is the

ambipolar diffusion coefficient, and  is the diffusion
length. Hence, the charged particles are lost on the walls of
the chamber rather than in the bulk of the discharge.

In order to complete the statement of the problem,
we should specify boundary conditions. To do this
implies the consideration of the surface kinetics, which
is difficult because of the lack of reliable data on the
parameters of surface interaction between the compo-
nents. That is why the boundary conditions from simple
kinetic theory are used in the simulation. The relation-
ship between the incident and reflected flows is given
by

(5)

where Γin = nv t/4 + D/2(∂n/∂z) and Γout = nv t/4 –
D/2(∂n/∂z) are the incident and the reflected flows,
respectively; v t = 8kT/πm is the thermal velocity; m is the
mass of the particle; and s is the deposition coefficient.

Then, the relationship for the gas-dynamic parame-
ters on an absorbing surface has the form (diffuse

ΛD
2

ΛD
2

Γout 1 s–( )Γ in,=

0.6 × 10–9
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Fig. 1. Silane dissociation rate constant kd vs. E/p.
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Table 2.  Chemical reactions and rate constants

No. Reaction Rate constant*

Electron-impact-induced reactions

R1 SiH4 + e  SiH2 + 2H + e 3.0(–11)

R2 SiH4 + e  SiH3 + H + e 3.0(–11)

R3 SiH4 + e   + 2e + 2H 2.0(–11)

R5 Ar + e  Arm + e 3.1(–11)

R6 Arm + e  Ar+ + 2e 3.65(–3)

R4 SiH4 + e   + 2e + H 2.0(–11)

R7 Ar + e  Ar+ + 2e 1.0(–13)

R8 SiH4 + e  SiH + H2 + H + e 9.34(–12)

R9 SiH4 + e  SiH2 + H2 + e 7.19(–12)

R10 H2 + e  2H + e 4.49(–12)

R11 Si2H6 + e  SiH4 + SiH2 + e 2.86(–10)

R12 Si2H6 + e  Si2H4 + H2 + e 1.23(–11)

Neutral–neutral reactions

R13 SiH4 + H  SiH3 + H2 2.8 × 10–11exp(–1250/T)

R14 SiH4 + SiH  1.0(–11)

R15 SiH4 + SiH  Si2H3 + H2 4.4 × 10–11(1 – 1.4/(1 + exp(P – 1.1)))

R16 SiH4 + SiH  Si2H5 2.5(–12)

R17 SiH4 + Si2H5  SiH3 + Si2H6 5.0(–12)

R18 SiH4 + Si2H4  Si3H8 1.0(–10)

R19 Si2H6 + H  SiH4 + SiH3 1.58 × 10–11exp(–1250/T)

R20 Si2H6 + H  Si2H5 + H2 2.4 × 10–10exp(–1250/T)

R21   Si2H4 + H2 5.0(6) s–1

R22  + Ar  Si2H6 + Ar 5.00(–10)

R23   SiH4 + SiH2 2.3(7) s–1

R24   SiH4 + H2 2.3(7) s–1

Reactions of radicals with radicals, silane, higher silanes, and hydrogen

R25 SiH3 + SiH3  SiH4 + SiH2 4.1 × 10–10(1 + 3.2/(1 + exp(0.4P)))

R26 SiH3 + SiH3  1.0(–11)

R27 SiH3 + Si2H5  SiH4 + Si2H4 1.0(–10)

R28 SiH3 + Si2H5  Si3H8 1.0(–11)

R29 SiH3 + Si2H6  SiH4 + Si2H5 4.1 × 10–10exp(–2500/T)

R30 SiH2 + H  SiH + H2 3.30(–10)

R31 SiH2 + Si2H6  Si3H8 3.9 × 10–10(1 – (1 + 0.55P)–1)

R32 Si2H3 + H2  Si2H5 1.70(–10)

R33 Si2H4 + H2  SiH4 + SiH2 1.00(–10)

R34 Si2H5 + H  Si2H4 + H2 1.00(–10)

R35 Si3H8 + H  Si2H5 + SiH4 2.4 × 10–10exp(–1250/T)

R36 SiH2 + Si3H8  Si4H10 1.00(–11)

R37 Si2H5 + Si2H5  Si4H10 1.00(–11)

R38 Si2H4 + Si2H6  Si4H10 1.00(–11)

SiH2
+

SiH3
+

Si2H5
*

Si2H6
*

Si2H6
*

Si2H6
**

Si2H6
**

Si2H6
**
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Table 2.  (Contd.)

No. Reaction Rate constant*

R39 Si3H8 + SiH3  Si4H9 + H2 1.00(–11)

R40 SiH + Si2H6  Si3H7 1.00(–11)

R41 Si3H7 + H  Si3H8 1.00(–11)

R42 SiH + Si3H8  Si4H9 1.00(–11)

R43 SiH3 + Si3H8  Si4H9 + H2 1.00(–11)

R44 Si4H9 + H  Si4H10 1.00(–11)

R45 SiH + Si4H10  Si5H11 1.00(–11)

R46 SiH2 + Si4H10  Si5H12 1.00(–11)

R47 SiH3 + Si4H10  Si5H11 + H2 1.00(–11)

R48 Si5H11 + H  Si5H12 1.00(–11)

Reactions with metastable particles

R38 Arm + SiH4  SiH2 + 2H + Ar 2.60(–10)

R39 Arm + SiH4  SiH3 + H + Ar 1.40(–10)

R40 Arm + H2  2H + Ar 7.00(–10)

R41 Arm + SiH3  SiH2 + H + Ar 1.00(–10)

R42 Arm + SiH3  SiH + H + Ar 1.00(–10)

R43 Arm + Si2H6  Si2H4 + 2H + Ar 6.60(–10)

R44 Arm + Si2H4  Si2H2 + 2H + Ar 6.60(–10)

R45 Arm + Arm  Ar+ + Ar + e 1.00(–9)

Dust-forming reactions

R46 SiHn + [Si5H11, Si5H12]  Dust 1.00(–11)

R47 Si2Hn + [Si4H9, Si4H10]  Dust 1.00(–11)

R48 Si2Hn + [Si5H11, Si5H12]  Dust 1.00(–11)

R49 Si3H7 + [Si3H7, Si3H8]  Dust 1.00(–11)

R50 Si3H7 + [Si4H9, Si4H10]  Dust 1.00(–11)

R51 Si3H7 + [Si5H11, Si5H12]  Dust 1.00(–11)

R52 Si4H9 + [Si4H9, Si4H10]  Dust 1.00(–11)

R53 Si4H9 + [Si5H11, Si5H12]  Dust 1.00(–11)

R54 Si5H11 + [Si5H11, Si5H12]  Dust 1.00(–11)

* Rate constants are given for a pressure of 0.124 torr and a gas temperature of 500 K unless the associated relationship is specified.
reflection is assumed)

(6)

Under intense wall deposition, the supersaturated
vapor pressure is considerable and the surface reevapo-
ration from the surface can be neglected, as was done in
Eq. (6).

COMPUTATIONAL METHOD

Let us consider the following equation written for
20 components in the cylindrical coordinate system:

(7)

D
∂n
∂z
------

sv t

2 2 s–( )
-------------------n.–=

∂Ni

∂t
--------- Di

1
r
--- ∂

∂r
----- r

∂Ni

∂r
--------- 

  ∂2Ni

∂z2
-----------+ Fi AiNi.–+=
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The term (Fi – AiNi) corresponds to the production
and loss of the ith component in the chemical reactions;
here, Ai > 0 and ∂Fi/∂Ni = 0. Equations (2) were solved
over the [0, R] × [0, L] domain within the [0, τ] time
interval by using the Peaceman–Rachford (longitudi-
nal–transverse) scheme:

(8)

where

n n–
0.5∆t
------------- Λzn Λrn+( ) F An,–+=

n n–
0.5∆t
------------- Λrn Λzn+( ) F An,–+=

(

Λr
1
r
--- ∂

∂r
----- Dir

∂ni

∂r
------- 

  ,=
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 is the concentration on the time half-layer ∆t(m +

1/2),  is the concentration on the time layer ∆t(m + 1),
m is the number of a time layer, and ∆t is the time step.

Taking the diffusion coefficient to be constant over
the space of the problem and applying the integro-inter-
polation technique, we arrive at the following expres-
sions for the operators Λr and Λz:

(9)

where  = (rk – 0.5h),  = (rk + 0.5h), hr = R/Nr is the
step along the radius, hz = L/Nz is the longitudinal step,

Λz
∂
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------- 
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n
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---- rk
–D

nk nk 1––
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r k,
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=  
D

rkhr
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+nk 1– 2rknk– rk

–nk 1++( ), 0 ri R,≤<

Λrnk D
∂2n
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k

D
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Fig. 2. Time dependences for concentrations of silane radi-
cals and hydrogen. 
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Fig. 3. Time dependences of the Si2H6, Si3H8, and H2 con-
centrations.
ni, k = n(rk, zi), rk = khr, and zi = ihz.
System (8) is closed by boundary conditions (simi-

lar to (6)) on the lateral surface and at the cylinder
edges and is then rearranged to

(10a)

(10b)

(10c)

(10d)

The gas flow at the cylinder axis (R = 0) is taken to
be zero. Condition (10c) can be approximated as

(11)

Here, µ0, k = (Λrn0, k + F0, k – Λ0, kn0, k), and β =
(sv t )/2(2 – s). Similar expressions can be obtained for
conditions (10b) and (10c). In the difference form, con-
dition (10a) appears as

(12)

where µ0, k = –(Λz  + Fi, 0 – Ai, 0 ).

For calculations, it is convenient to represent
expressions (11) and (12) in the form

(13)

where

(13a)

(13b)

In view of (9) and (13), system (8) takes the form
(the subscript at the components is omitted)
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Here,

(14)

The coefficients r2, p2 and r4, p4 can readily be
found from formulas (13a) by substituting correspond-
ing h, µ, and ni, k( ). System (14) is solved for all of
the components by scalar sweeping: first along the cyl-
inder length for every fixed value of the radius rk and
then, along the radius for every fixed value of zi. It is
evident from the calculations that the solutions are sta-
ble for a time step ∆t ≤ 10–8 s.

RESULTS

We performed the numerical simulation of the phys-
icochemical processes in a cylindrical reactor with the
sizes L = 3.88 cm and R = 1.25 cm. Other parameters
were as follows: the total gas pressure p = 0.125 torr,
temperature T = 500 K, and the electric field frequency
f = 13.56 MHz. The electron concentration was defined
parametrically at a level ne = 108 cm–3.

Figure 2 shows the time dependences of the concen-
trations of silane radicals and atomic hydrogen. It is
seen that SiH2 and SiH rapidly (≈0.001 s) reach their
equilibrium concentrations, whereas the time taken for
the SiH3 equilibrium concentration to set in is on the
order of 0.01 s. Similar behavior is displayed by the
atomic hydrogen. The considerable content of atomic
hydrogen in the plasma correlates with the result [3]
obtained for the diode-type PECVD reactor. Another
important feature is the accumulation of Si2H6, Si3H8,
and H2 in the reactor volume (Fig. 3). The SiH3 concen-
tration profiles along the length of the discharge cham-
ber at different pressures are plotted in Fig. 4. The SiH3
concentration depends strongly on the addition of

ni 0, r1ni 0, p1ni 0,+ r2ni 0, p2,+= =

ni 0, r3ni 0, p3ni 0,+ r4ni 0, p4.+= =

( ( ( (

ai = ai 1+  = 
D∆t

hz
2

----------, ak = 
D∆trk

hrrk

---------------, ak 1+  = 
D∆trk

+

hrrk

---------------.

( (

ni k,
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Fig. 4. Axial profiles of radical concentrations. The num-
bers at the curves indicate pressure p, torr.
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argon. This is because the Arm + SiH4  SiH3 + H +
Ar reaction provides an additional channel of silane
decomposition, thus increasing the silyl yield as com-
pared to that in the pure silane plasma (Fig. 5). How-
ever, the presence of Ar extends the time taken for the
SiH3 concentration to reach its equilibrium level.
Although the intense dust formation affects the kinetics
of the basic components only slightly, it may deterio-
rate the film quality. Figure 6 demonstrates the dust
concentration for different pressures of the discharge in
pure silane and in the 95% Ar + 5% SiH4 mixture. The
relative content of the dust in the argon–silane plasma
turns out to be lower: by a factor of 4 at high pressures
(0.25–0.5 torr) and by a factor of 6–6.5 at a pressure of
about 0.1 torr.
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Abstract—Description of the sputtering of metals by ion bombardment, in which large neutral or charged clus-
ters are produced with the number of atoms N ≥ 5, is further elaborated using simple physical assumptions. The
results obtained, represented by simple formulas, are in agreement with experiment. By way of example, cal-
culations of the mass spectra of neutral and singly charged clusters produced by ion sputtering of tantalum and
the ionization coefficients of silver clusters are presented. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Considerable efforts are being devoted to research
on ion sputtering of solids (see, for example, reviews
[1–5] and references therein). Generally, the sputtering
of solids can be either elastic (rebound) or inelastic
(electronic), depending on the mechanism of energy
transfer from the incident atoms to target atoms [1, 4].
In the inelastic sputtering process, which usually occurs
in sputtering with fast ions [4] (traveling at a speed of
~109 cm/s), or multiply charged ions, the ion transfers
its energy by exciting the electronic subsystem of the
solid with subsequent transfer of the electronic excita-
tion energy to atoms of the solid. In the elastic scatter-
ing process [1, 4] taking place under bombardment
with ions carrying a small charge and possessing an
energy from a few to tens of kiloelectronvolts, the
energy is usually transferred from the impinging ion
directly to a target atom, as a result of a (elastic) colli-
sion of the ion with a surface target atom with subse-
quent energy redistribution in the process of cascade
collisions. We will consider the sputtering phenomenon
of the latter, elastic type. Consistent calculations and
the complete theoretical description of the sputtering
process are extremely difficult, first of all, because of
the many-particle nature of the problem both in the
stage of penetration of the ions into the solid and in the
formation stage of sputtering products consisting not
only of single target atoms but also of polyatomic par-
ticles or clusters [6–8]. The first principle calculations
using molecular dynamics methods [1] (see also [9–
12]) are technically complicated in this case, especially
for large numbers of atoms in the cluster, and poorly
reproducible in calculations by different researchers.
The difficulties increase considerably if the scheme of
molecular dynamics is supplemented with formation
processes of the charge states of sputtering products.
Formation of the charge states of monoatomic particles,
dislodged from or scattered by a metal surface, have
1063-7842/02/4706- $22.00 © 20767
been treated in a number of experimental and theoreti-
cal studies (see, for example [5], pp. 137–236). The
mechanism by which charge states of polyatomic parti-
cles are formed has been studied much less extensively
[13–16] both theoretically and experimentally.

In this study, a description is given of the sputtering
of metal under ion bombardment for the case where
sputtered particles are large (with the number of atoms
N ≥ 5) neutral and charged clusters. It is based on sim-
ple physical assumptions and is in agreement with
experiment. Our treatment makes use of studies
[17−20], but the result is represented by a simple for-
mula for the probability of cluster ejection, as well as
the size and charge state of the clusters, and includes
the dependence on the target temperature. The pro-
posed approach is absolutely inapplicable to the case of
sputtering in the form of single atoms or small clusters.
Comparison with experiment indicates that this
approach [17, 21] can be applied starting with a certain
number of atoms in the cluster (N ≥ 5).

CALCULATION OF PROBABILITY

Let the bombarded solid consist of atoms residing in
oscillating wells of depth ∆ and having an intrinsic fre-
quency ω. The characteristic period of oscillations is
T = 2π/ω. Let the speed of the bombarding ions be such
that over a time τ ! T, the ions and fast recoil atoms in
the metal experience multiple collisions with the result
that the metal atoms receive momenta qi, where i is the
number of atoms. Inequality τ ! T allows a different
formulation; i.e., the passing of an ion through the sys-
tem of oscillators is equivalent to an instantaneous and
simultaneous transfer to the oscillators of momenta qi

(i = 1, 2, … N), where N is the number of oscillators. In
what follows, we assume that all qi, i = (1, 2, …, N), are
independent and all directions are equally probable.
The objective of the calculation is to derive the proba-
002 MAIK “Nauka/Interperiodica”
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bility of a system of N oscillators (which instanta-
neously received momenta qi) being found in finite
bound states with the center of mass having a momen-
tum k. If the last condition is met, then the system of N
oscillators moving as a whole will have the momentum
k. The easiest way of calculating the probability of such
an event, which corresponds to the correlated ejection
of a group of atoms, is to resort to quantum mechanics.
Let us adopt Einstein’s model and replace the group of
N atoms by a system of N-independent identical oscil-
lators with an intrinsic frequency ω.

The corresponding wave function has the form

(1)

where Φ(R) is the wave function of the center of mass
of the group of N atoms; R is the coordinate of the cen-
ter of mass; and φi is the wave function of the ith oscil-
lator with coordinate ri.

Put differently, the result of the ion’s journey
through the system of oscillators amounts to an instan-
taneous and simultaneous transfer of the momentum qi

to each oscillator (i = 1, 2, …, N) and of the momentum
 to the center of mass. This transforms wave

function (1) into

(2)

We assume that prior to receiving the momenta qi,
all oscillators are in their ground states, i.e.,

Therefore, the amplitude of the probability of find-
ing an arbitrary final state

with the center of mass in a state Φk of the continuous
spectrum and with a momentum k depends on the pro-
jection of the states Ψf onto states (2). After summation
over quantum numbers ni of the oscillators (subject to

n = , where n has the meaning of the principal
quantum number of a system of N oscillators), the
square of the amplitude modulus is

(3)

Ψi Φ R( )φ1 r1( )φ2 r2( )…φN rN( ),=

qii 1=
N∑

i
"
--- qi R⋅

i 1=

N

∑ 
 
 

exp Φ R( ) i
"
---q1 r⋅ 1 

  φ1 r1( )exp

× i
"
---q2 r⋅ 2 

  φ2 r2( ) … i
"
---qN r⋅ N 

  φN rN( ).exp××exp

φ1 φ2 … φN φ0, Φ Φ0.≡≡= = =

Ψ f Φk R( )φn1 r1( )φn2 r2( )…φnN rN( )=

nii 1=
N∑

Wk
n( ) 1

n!
----- 1

2"
2α2

--------------- qi
2

i 1=

N

∑
n

1

2"
2α2

--------------- qi
2

i 1=

N

∑–
 
 
 

exp=

× Φk R( ) 1
"
--- qi R⋅

i 1=

N

∑ 
 
 

exp Φ0 R( )
2

,

where α2 = mω/", m being the mass of an oscillator
(atom).

In calculating the square of matrix element (3) and
in summing, we used Fermi’s results (paper #74 in [22];
see also [17–19, 23]). This is actually the probability
that a cluster of N atoms will break away as a whole,
with a momentum k and in an excited state n. We are
interested in stable ejected clusters; therefore, the sum-
mation should be carried out over all excitation states
with n lower than n0, which is the state with enough
energy stored in the excited oscillators to cause disinte-
gration of a cluster. This state can be defined as n0 ≈
∆/"ω, or as the state in which the vibrational energy of
all oscillators is large enough to eject one atom out of a
well of depth ∆. Thus, it is necessary to calculate

where n0 @ 1; therefore, the summation is performed as
follows:

Hence,

Now, the full probability WN for the center of mass
of a group of N atoms being found in the continuous
spectrum can be obtained by integrating Wk over all
possible k, although this probability is easier to calcu-
late by summing over all bound states Φn(R) of the cen-
ter of mass and subtracting the obtained sum from
unity. Summation using this method gives

where summation is carried out from n = 0 through
some value n = k0 (its derivation is given below) and the
notation β2 = mNΩ/" is used, Ω being the oscillation
frequency of the center of mass.
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The result is

(4)

The procedure for deriving k0 is as follows. It is
assumed that the center of mass of a group of N atoms
oscillates harmonically at a frequency Ω in a potential
well of depth UN, which represents the binding energy
between the cluster and the metal. This binding energy
is proportional to a contact area SN between the group
of N atoms and the rest of the metal. Suppose that this
surface is a hemisphere with its center at the metal sur-
face as it was prior to sputtering. Then UN = σSN = δN2/3

[17–20]. In this way, we discriminate between the
depth ∆ of the potential well, in which each atom of the
solid is found, and the surface energy δ, binding the
cluster to the bulk of the metal per one cluster atom. It
us evident that in formula (4) k0 = UN/("Ω).

Then, probability (4) should be averaged over all
possible values of qi, i = (1, 2, …, N). It is natural to
assume that all quantities qi are independent and their
directions are equally probable, so that the average over
angles Ωqi of the qi vectors is

(5)

Unlike the case considered in [17–20], the integrals
in this formula cannot be factored; therefore, the aver-
age in question will be calculated using the following
representation:

where ρ = 1/(k02β2) = 1/(2mNUN) = 1/[N5/3(k01)2] and k01 =

(2mδ)1/2. It is easy to arrive at (4π)−1 exp(−iqi ⋅ r) =

(qr)–1sin(qr), and the average quantity (5) finally takes
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the form

(6)

The integral in this expression can be easily calcu-
lated using the formula

which is true for N @ 1 and is easily obtainable recall-
ing that the function

at N @ 1 satisfies the differential equation

Indeed,

Therefore, calculation of the integral in (6) is sim-
ple. We ultimately obtain

(7)

We proceed further, assuming for simplicity as in
[17–20], that though all qi are directed absolutely cha-
otically, their absolute magnitudes are equal, i.e., |qi| =
q for any i = 1, 2, …, N. Then, the probability takes the
form

(8)

where k01 = (2mδ)1/2.
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CHARGE STATE CHARACTERISTICS

Thus, we calculated the possibility of a cluster
breaking away as a whole (group) without its atoms
changing their positions relative to each other. The
charge-state formation process is part of the sputtering
mechanism. We will proceed further relying substan-
tially on the assumption that large clusters are dis-
lodged as whole groups of atoms, in which case the
charge state of a group of N atoms can be determined.
Therefore, we consider that the exchange between the
conduction band electrons in the metal and electrons of
the atoms comprising the cluster is possible up to some
(critical) distance ξ, as was done in the statistical deri-
vation of the Saha–Langmuir formula [24]. At dis-
tances exceeding ξ, the electronic exchange ceases non-
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Normalized yield YN
+1

Cluster size N
7 103

10–1

100

101

Fig. 1. Normalized yield  of singly charged clusters as

a function of the number of atoms in the cluster. The solid
curve is the calculation for a variable parameter value of q =
500 u (atomic units: " = me = e =1); solid circles is experi-
ment [25]; the dashed curved is the calculated mass spec-
trum of neutral clusters (q = 500 u) for the same target tem-
perature; the dotted curve is the power law [6] normalized
by a cluster of 5 atoms, i.e., the function N–8.5/5–8.5.
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Fig. 2. Normalized yield  of neutral clusters as a func-

tion of the number of atoms in the cluster. Solid curve—cal-
culation (q = 450 u); solid circles—experiment [6]; dashed
curved—calculated mass spectrum of singly charged clus-
ters (q = 450 u) for the same target temperature; dotted
curve—the same as in Fig. 1.

YN
0

adiabatically. Then, according to [20], the possibility
PN(Q) for an ejected cluster of N atoms to have a charge
Qe (e being the electron charge) follows from the stan-
dard formula for the probability of fluctuations,

(9)

where DN is a normalization factor, which is determined
by summation over all possible values of Q = 0, ±1,
±2, …; me is the conduction electron mass; V is the
cluster volume; Θ is the target temperature; γ is the

valence of the metal atoms; and  is the average
squared deviation of the cluster charge from the equi-

librium values defined in terms of , the average
squared deviation of the number of electrons in the

cluster from the equilibrium value:  = e2 .

Thus, for obtaining the breakaway probability of a
cluster of N atoms carrying a charge Qe, it is necessary

to multiply the probability  given by (8) by PN(Q).
This gives the final expression for the breakaway prob-
ability of a cluster of N atoms carrying the charge Qe:

(10)

COMPARISON WITH EXPERIMENT
A quantity usually measured in experiments is the

relative probability  of the breaking away of clusters
with a different number of atoms. Therefore, for com-
parison with experiment the probability expressed by
(10) needs to be divided first by the value for a cluster
with N = 5 (actually, for any cluster with N ≥ 5, but in

our case N = 5 is preferable). Thus, by definition,  =

/ . If required, any suitable units can then be
used. Figures 1 and 2 show normalized yields of singly
charged and neutral TaN clusters as a function of their
size N for a tantalum target bombarded with singly
charged ions Au–1 of energy 6 keV and with ions Ar+1

of energy 5 keV at target temperatures of Θ = 2273 and
300 K, respectively. For comparison, a power law curve
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for tantalum is shown normalized to a cluster of 5
atoms, i.e., the function N–8.5/5–8.5 [6]. In order to reduce
the number of fitting parameters in the calculation, it is
assumed that δ = ∆ = 8.1 eV (sublimation energy [26]),
so that the only remaining fitting parameter in (10) is
the momentum q. It is noteworthy that mass spectra of
the neutral clusters are only weakly dependent on the
target temperature, while those of singly charged clus-
ters change substantially with the target temperature
(see also experimental data in [16]); but as the temper-
ature is increased, these mass spectra become closer to
those of neutral clusters. The charge state is usually
characterized by an ionization coefficient equal to the
ratio of the number of clusters with a charge Q to the
number of neutral clusters (for a given cluster size N),
which can be defined as follows:

(11)

In Fig. 3, the dependence of the ionization coeffi-

cient  of silver clusters on the cluster size N at a tar-
get temperature of Θ = 400 K is shown. An important
feature of this dependence is the tendency to saturation
(for N > 5) with increasing cluster size, so that further vari-
ation with increasing N is insignificant. Qualitatively sim-
ilar behavior was observed experimentally [8, 13].
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Abstract—Composition (x)–temperature (T) phase diagrams obtained for the first time for single-crystalline
(Na,Li)NbO3 (system I) and (Na,K)NbO3 (system II) niobates are compared with the known phase diagrams
for ferroelectric niobate ceramics prepared by various techniques (standard firing and hot pressing). In system
I, the thermodynamic history (process conditions) is shown to have a pronounced effect on the diagrams
throughout the range of perovskite stability, while in system II, the effect is the most significant at low potas-
sium concentration (x & 0.15). These data are associated with a small value of the tolerance factor t of the solid
solutions, whose properties are sensitive to the thermodynamic history. Small (&0.9–0.93) values of t indicate
the “porosity” of the structure of solid solutions I and II in the above concentration ranges. Under these condi-
tions, polarization- and rotation-related structure instabilities compete on equal terms and substitutional and
interstitial solid solutions may coexist. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

(Na,Li)NbO3 and (Na,K)NbO3 solid solutions (SSs)
are promising piezoelectronic materials because they
offer low permittivity ε, high velocity of sound, rela-
tively high coefficient of electromechanical coupling,
and a wide spectrum of the mechanical Q factor [1, 2].
Such a unique combination is not encountered in other
piezoelectric materials. Moreover, these materials do
not contain lead, which is of great importance in view
of increasingly stringent environmental requirements.
Sodium niobate (SN) NaNbO3 exhibits multiple phase
transitions (PTs) (six known to this day [1–3]), and the
x–T phase diagrams of its solid solutions are very com-
plex. Data for the PT number and temperatures are very
contradictory [4–8] (Figs. 1a, 1b). The reason is that
some transitions are hard to detect because associated
changes in the structural and electrophysical parame-
ters are very small. It should be noted that SN-based
SSs have been studied mostly as ceramics. In this work,
for the first time we construct x–T phase diagrams for
SSs in systems I and II based on the dielectric and opti-
cal properties of the single crystals. The phase diagrams
constructed are compared with the known x–T dia-
grams for ceramic materials obtained by various tech-
niques (standard firing and hot pressing).

RESULTS AND DISCUSSION

(Na,Li)NbO3 and (Na,K)NbO3 transparent crystal-
line plates with LiNbO3 and KNbO3 concentrations up
1063-7842/02/4706- $22.00 © 20772
to 8 and 40 mol % were prepared by the method of
spontaneous crystallization from solution in the NaBO2
melt [9]. The composition of the SSs was determined
by comparing their lattice parameters and PT tempera-
tures with the published data for the ceramics. Ceramic I
with a density of more than 95% of the theoretically
predicted value was obtained by conventional ceramic
technology (solid-phase synthesis, followed by firing
without pressing). After grinding the samples, the pow-
ders were subjected to differential thermal analysis
with a Paulik derivatograph. Optical studies of the 100-
to 200-µm-thick plates were performed in a MIN-8
transmission polarization microscope provided with a
heating stage. Dielectric studies of the crystals with
Aquadag electrodes applied on the natural (001) faces
were carried out in the interval 1–100 kHz with a P5083
ac bridge upon continuous heating or cooling at a rate
of 2–3 K/min.

The x–T diagrams obtained are shown in Figs. 1 and
2. In system I, we succeeded in locating a phase transi-
tion at 220–330°C, which had not been discovered so
far. One could anticipate this transition in system I
based on the pyroelectric and optical properties of
Na1 − xLixNbO3 with x ≈ 0.02 crystals [10, 11]. Unlike
ceramic samples, crystals of both SSs, which, as fol-
lows from room-temperature X-ray data, contain
orthorhombic antiferroelectric, P, and orthorhombic
ferroelectric, Q, phases (the phases are designated
according to [3, 8]), exhibit PTs in the interval 30–
120°C. These PTs, being accompanied with anomalies
in the optical and dielectric properties [9], have a wide
002 MAIK “Nauka/Interperiodica”
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Fig. 1. x–T phase diagrams of the Na1 – xLixNbO3 solid solutions in the range of small x. The phases are designated as in [3, 8].
(a) Ceramic obtained by conventional firing (empty symbols, X-ray diffraction data [4]; filled symbols, data of differential thermal
analysis); (b) ceramic obtained by hot pressing, the diagram is constructed from the X-ray diffraction data [5]; and (c) single crystals
obtained by mass crystallization from solution in melt (filled symbols, optical data in polarized light; empty symbols, dielectric
measurements).
temperature hysteresis and are likely to be similar to the
transitions between the P and Q phases at temperatures
between 75 and 220°C in SN crystals [7]. In addition,
in the x–T diagrams of systems I and II, shown are lines
corresponding to the anomalies of the electrophysical
and structural parameters at 150–190°C (Figs. 1c, 2),
which were revealed by us earlier [9, 10]. For SN, these
anomalies can be identified as PTs between two antifer-
roelectric orthorhombic phases, as was shown in [9,
12, 13].

Analysis of the phase states in systems I and II
(Figs. 1, 2), as well as our experience in constructing
the x–T diagrams for the ceramic SSs, shows the fol-
lowing. (i) Although the chemical compositions of the
systems are close to each other (at small x), their x–T
diagrams differ markedly by the number of PTs and by
how the PT temperatures vary with the concentration of
the second component. (ii) As the concentration of the
second component grows, the manufacturability (i.e.,
the reproducible fabrication of high-density high-
strength ceramics with a desired composition over a
wide range of process parameters) in system I degrades,
while in system II it improves. (iii) The form of the x–
T diagram of system I depends considerably on the SS
preparation conditions throughout the range of perovs-
kite stability (x & 0.15).

In system II, a decrease in x, that is, the approach of
the SS composition to SN, enhances the thermody-
namic history effect. In particular, at x & 0.5, the phys-
ical properties of the SSs are virtually independent of
the preparation conditions; at x & 0.3, the effect of the
preparation conditions becomes more distinct; and at
x & 0.15, the properties of the variously obtained SSs
diverge considerably.
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In [14, 15], we found correlation between the ther-
modynamic parameters of the PTs (temperatures, type
of ordering, and phase sequence) and the crystal-chem-
ical characteristics of perovskite-like compounds,
which exhibit a large number of various, including rota-
tional, transformations. The elucidation of the mecha-
nism of their influence on the phase diagrams would
allow researchers to understand changes in the SN ther-
modynamic properties when the crystal-chemical char-
acteristics of compounds introduced as a second com-
ponent of the solid solution vary. For analysis, it is con-
venient to use, along with ionic radii, the tolerance
factor, which characterizes to what extent the sizes of
atoms entering into a compound ABO3 fit the perovs-
kite structure. The tolerance factor is defined as t =

(RA + RB)/ (RB + RO), where RA, RB, and RO are the
ionic radii of the cations A and B and the anion O taking
into account their coordination number. Let us consider
the properties of SN and its SSs in terms of such an
approach in greater detail.

A specific feature of SN is the variety of dissimilar
PTs, which is uncommon for oxides from the perovs-
kite family. One is initiated by the rotation of oxygen
octahedra (rotational PTs); the other, by the regular dis-
placement of Nb5+ cations from the centers of the octa-
hedra, i.e., by polarization (ferroelectric and antiferro-
electric PTs). Rotational distortions of the SN structure
occur either by rotating the octahedra in all layers
orthogonal to the axis of rotation in the same direction
(lattice vibration mode M3) or by rotating the octahedra
in adjacent layers in the opposite directions (R25 mode).
The condensation of the modes causes orderings, which
are treated in terms of order parameters (OPs). The
modes M3 and R25, as well as the “polarization,” are, in
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Fig. 2. x–T phase diagram of the Na1 – xKxNbO3 solid solutions. The phases are designated as in [3, 8, 16]. Filled symbols, dielectric
measurements; continuous curves, x–T diagram of the ceramic constructed from X-ray diffraction data, specific heat data, and
dielectric measurements [8, 16].
general, described by three OPs: ψ, ϕ, and p, respec-
tively [14–17].

At x * 0.5 in system II, the orderings are character-
ized by a single OP, polarization p; at 0.3 & x & 0.5, by
two OPs, rotational (ψ) and polarization (p). For x in
the range between 0.15 and 0.3, the other rotational OP,
ϕ, is added (Fig. 2). At x > 0.15, the prevailing OP is p,
since the rotational OPs appear, if at all, only together
with it. For x < 0.15, the rotational orderings arise inde-
pendently of polarization; that is, the instabilities “have
equal rights.” As has been noted above, the effect of
thermodynamic history on the PT temperatures and the
physical characteristics of the SSs in system II is most
significant precisely in the range x < 0.15. Thus, corre-
lating changes in the phase-state picture in system II
with the enhanced effect of preparation conditions on
the properties of appropriate SSs, one notes that
enhancement takes place with the appearance of each
new OP, which characterizes the complete set of phase
states for a given x.

Such a correlation may be explained as follows.
A fabrication process implies a given sequence of
external actions; hence, the correlation between the SS
properties with the process conditions reflects different
responses of the material to these actions. To some of
the external actions, instabilities generating various
OPs may respond oppositely. For example, hydrostatic
pressure favors rotational PTs (i.e., raises their temper-
atures) and suppresses ferroelectric ones [18]. Under
certain conditions, this may change the domains of
existence of phase states, the phase states themselves,
and, hence, the entire set of the SS physical properties.
Thus, two or more dissimilar structure instabilities hav-
ing comparable strengths cause a strong dependence of
the SS properties on the process conditions. This shows
up most vividly in system I, where the rotational and
polarization instabilities coexist throughout the stabil-
ity range of the perovskite phase. In SN, the domains of
existence of the rotational and polarization orderings
overlap heavily, while in perovskite-like titanates
ATiO3 (A = Ba, Sr, or Ca), they do not overlap at all
[1, 16].

It should be borne in mind that the firing of the
ceramics and the growth of the SS crystals take place at
temperatures far exceeding those of the PTs. Therefore,
the thermodynamic history influences the structural
instabilities indirectly. For example, in the hot-pressed
ceramics, high residual mechanical stresses arise [19].
They have been shown [20–22] to be the superposition
of the hydrostatic pressure and the uniaxial compres-
sion along the axis of pressure application during hot
pressing. According to the aforesaid, these stresses var-
iously influence the properties of the SN-based ferro-
electric and antiferroelectric SSs.

In SN, three high-temperature PTs are due to the
rotation of the octahedra and the following three, to the
combination of the rotation and polarization of the
octahedra. In this case, two complex-ordered antiferro-
electric phases (R and P) and one low-temperature fer-
roelectric (N) phase arise. From Figs. 1a–1c, it follows
that the preparation conditions have a significant effect
on the rotational PT temperatures. This means that the
rotational instabilities are very sensitive to external
actions. To realize the mechanism of this effect, it is
necessary to consider how the rotational instabilities
and the phase states induced by them form. The
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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sequence of purely rotational PTs in NaNbO3 is the fol-
lowing:

The tetragonal phase T2 forms from the cubic phase
U because of the condensation of the z component of
the mode M3 (the associated ordering is 00ψ). The
phase T1 forms from T2 by the condensation of the y
component of the mode R25 (0ϕψ). Finally, the phase S
arises from T1 through the condensation of one more
component of the mode M3 (ϕψ2ψ3). As has been
shown [14, 15], this sequence of the orderings is
favored by the specific features of the SN structure,
which will be considered below.

In the symmetric phase, the size of the Na+ cation
(0.98 Å) is much less than that of the octahedral void
where it is located (t ≈ 0.87 < 1). In addition, the charge
of Na+ is small, so that the force attracting it to the void
center is low. If t < 1, NbO2 planes are compressed,
while those of NaO are stretched. Compression causes
a bend of Nb–O–Nb bonds, and stretching increases the
rms displacements of the Na+ cation from the void cen-
ter. Eventually, the degree of Na+ delocalization grows.
The displacement also increases because, as was
already mentioned, the force of Na+ attraction to the
void center is low (Na+ has a small charge, +1). As the
temperature is reduced, this effect is compensated for
by bond bending due to the rotation of the octahedra. In
the SN cubic phase, both rotational modes M3 and R25
become “soft” as the temperature decreases but the
former mode condenses first. Presumably, when the
octahedra corresponding to M3 rotate, a local quadru-
pole moment arises in the void and Na+ cations delocal-
ized from the void center interact with this moment,
decreasing the energy of M3 and, thereby, favoring its
condensation. The OP ϕy appearing in the T2  T1
transition is, to a great extent, associated with the triple

interaction of type  [17, 23], where the rotational
modes M3 and R25 are coupled through the vibrational
mode X of the Na+ cations. Since the Na+ cation is rel-
atively free to move in the void, this “indirect” coupling
turns out to be strong enough for ϕy to follow ϕz.

From this reasoning, it follows that the substitution
of a larger K+ cation (1.33 Å) for Na+ (0.98 Å) will
decrease the temperatures of all the rotational PTs,
since the “free” space shrinks for both the anions (Nb–
O–Nb bonds become difficult to bend) and the alkaline
cations (the delocalization diminishes). In this case, t
grows, the compression of the NbO2 planes decreases,
and Nb–O–Nb bonds straighten out. Accordingly, the
conditions for ferroelectric ordering become more
favorable and, at x > 0.15, this type of ordering prevails,
reconfiguring rotational distortions. Thus, system II

U Pm3m Oh
1=( ) T2 P4/mbm D4h

5=( )
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17=( ) S Pmmn D2h

13=( ).

640°C
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becomes more stable and denser (t increases) as x rises.
As a result, the manufacturability improves.

The substitution of a smaller Li+ cation (0.68 Å) for
Na+ must, as follows from the aforesaid, extend the free
space and raise the temperatures of all the rotational
PTs. This is the case both in the crystal and the ceramic
of system I obtained by the various techniques but only
for x > 0.04–0.06. At smaller x, the situation observed
experimentally is more complicated.

In ceramic I, obtained by the conventional firing
method without pressing, the temperatures of all the
rotational PTs increase with x (Fig. 1a).

In hot-pressed ceramic I, the temperatures of all the
rotational PTs decrease with increasing x for 0 < x <
0.02, as in system II, and start rising at x > 0.02
(Fig. 1b). The decrease in the PT temperatures can be
related to the increase in the structure density (since the
lattice constant decreases [5]) rather than to the regular
bond bending. High-temperature densification due to
outer pressure can be associated with many factors.
Among them are the isomorphic substitutional-to-inter-
stitial transformation of the SSs (configurational PT)
[24] (because of the high intercalation capacity of Li+

ions [25]), octahedron deformation, lithium–defect
interaction, etc. Today, it is difficult to draw any definite
conclusions on this point without further investigation.
The decrease in the S–R and R–P PT temperatures in
hot-pressed ceramic I is likely to be associated with the
fact that the antiferroelectric order arises together with
the complex rotational order, and the suppression of the
latter (because of the densification) causes the PT tem-
peratures to diminish. With growing x (at x > 0.02), the
Li  Na substitution dominates, which “loosens” the
structure (t drops) and raises the temperatures of the
rotational PTs.

In single crystals I, the rotational PT temperatures
vary insignificantly at x < 0.04. Then (x > 0.04), they
grow with x, the growth being faster for x > 0.06
(Fig. 1c). It seems that, at small x, the probabilities of
substitution and interstice occupation are close to each
other, while substitution dominates at x > 0.04, which
increases the temperatures of the rotational PTs.

CONCLUSION

Thus, the porosity of SN-based SSs is a primary fac-
tor responsible for the effect of the thermodynamic his-
tory (preparation conditions) on their physical proper-
ties. The porosity is associated with the misfit between
the crystal-chemical parameters of the components and
the perovskite structure (small tolerance factor t). This
makes the structure unstable, specifically against rota-
tional distortions. As the porosity grows (t decreases
still further) when the SS composition changes, the
material becomes even more sensitive to external
actions and its response to them is more pronounced
and diversified. The manufacturability of SN-based SSs
diminishes appreciably at t < 0.90–0.93, since rota-
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tional and polarization instabilities become comparable
in strength in this interval of t. The manufacturability
degradation is also typical of other oxides of the per-
ovskite family for which t & 0.93 and which exhibit
rotational PTs, such as PbZrO3 [19] and Pb1 – xCaxTiO3
at x > 0.4 [26]. Thus, the results reported can be consid-
ered as general.
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Abstract—An optical channel for extracting, transporting, and applying (to a detector) IR synchrotron radia-
tion covering a wide wavelength range is developed. The design and study of optical systems with long-focus
entrance objective and mirror lenses, as well as with a field condenser lens, are reported. Practical use of IR
optics combined with integrated and position-sensitive detectors in accelerator experiments with synchrotron
radiation is described. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Magneto-bremsstrahlung or synchrotron radiation
(also referred to as fringe, undulator, coherent, or inter-
secting-beam radiation) is a well-known, very promis-
ing, and widely used effect. Synchrotron radiation
opens the way to the nonintrusive (contactless) diag-
nostics of elementary particle beams and bunches with-
out affecting their acceleration.

Accelerators currently available generate synchro-
tron radiation largely in the IR range [1–3], which
makes it difficult or totally excludes the use of conven-
tional techniques and tools of optical diagnostics. It is
therefore necessary to devise IR diagnostics methods
and equipment, as well as associated measuring, infor-
mation, and detecting units.

At the Joint Institute for Nuclear Research (JINR), a
compressor of toroidal (ring) high-current bunches of
low-energy relativistic electrons (adgezator)1 serves as
a generator of IR synchrotron radiation [1]. The syn-
chrotron radiation experiments being conducted with
the JINR compressor are of great importance, since this
radiation is the only source of direct objective (qualita-
tive and quantitative) information on the formation,
compression, and acceleration of an electron (electron–
ion) bunch. Only IR synchrotron diagnostics provides
the observation of a charged particle bunch without its
collapse and without affecting fast processes under
study.

Detecting, measuring, and information systems for
nondestructive diagnostics of relativistic particle
bunches in an accelerator or storage ring must detect,
record, and analyze particle-generated synchrotron
radiation, and eventually provide information on the
basic (current, energy, and geometrical) parameters of

1 Transliteration of the Russian acronym ‡‰„ÂÁ‡ÚÓ (‡‰Ë‡·‡ÚË-
˜ÂÒÍËÈ „ÂÌÂ‡ÚÓ Á‡flÊÂÌÌ˚ı ÚÓÓË‰Ó‚—adiabatic genera-
tor of charged toroids).
1063-7842/02/4706- $22.00 © 20777
the bunch, as well as on the fast processes. Because of
the severe conditions of accelerator experiments, the
creation of synchrotron diagnostics systems poses great
technical difficulties and is very expensive.

Of special importance is the design and fabrication
of high-sensitivity detecting equipment that allows for
the detection of very weak light fluxes from a source
rapidly moving within the accelerator chamber and rap-
idly varying its radiation spectrum. In designing such
equipment, emphasis should be given on the optical
channel, which provides object tracking. The channel
must contain a window for extracting IR synchrotron
radiation from the accelerator and an optical path for
transporting and delivering the radiation to the detector.
This work describes the optical channel designed in the
JINR and its basic elements, which have been tested in
related experiments.

EXPERIMENTAL CONDITIONS

The specific features of the optics developed and its
use in the experiments with IR synchrotron radiation
will be demonstrated by an example of the JINR
adgezator diagnostics. Figure 1 shows the geometry of
emitting and detecting the radiation. The object of diag-
nostics and study (i.e., an IR radiation source) is toroi-
dal (ring) bunch 1 of low-energy relativistic electrons.
Under the action of a pulsed time-growing magnetic
field, the electrons spiral in the median plane of the
cylindrical chamber of an accelerator–compressor,
emitting narrow beam 2 of synchrotron radiation.

For the time of acceleration, the equilibrium (mean)
radius R of the bunch decreases from 40 to 4 cm and the
electron energy E grows from 2.5 to 20 MeV. For the
same time, the maximum λm of the spectral distribution
of the synchrotron radiation shifts from the rf range to
the IR range, ∆λ . 1–8 µm. For the latter, there exist a
variety of high-sensitivity fast-responding detectors,
002 MAIK “Nauka/Interperiodica”



 

778

        

MAL’TSEV

                                                                                                                                                     
which do not require sophisticated and expensive cryo-
genic facilities.

The requirements for the detecting part of the mea-
suring system for synchrotron diagnostics depend on
the parameters of the electron ring, radiation and tech-
nical experimental conditions, as well as the goal of the
experiments. To provide the condition for collective
acceleration (the electron bunch traps and confines
heavy ions) at the final stage of ring compression, the
parameters of the ring must be as follows: R . 4 cm, lin-
ear sizes of the smaller cross section of the ring electron
bunch aR and aZ = 2–4 mm, electron energy E .
20 MeV, and the number of electrons in the ring Ne *
1013. These parameters should be measured in the pro-
cess of acceleration with the use of synchrotron radia-
tion with an accuracy of no worse than 20%. The detec-
tors must be placed as close to the accelerator as possi-
ble and be capable of operating under a high level of dc
and pulse (with a pulse rate of up to 10 kHz) electro-
magnetic and radiation interference. The basic goals of
the synchrotron radiation experiments are the follow-
ing. (1) Extraction of the radiation from the high-vac-
uum chamber of the accelerator (the chamber may be
heated) in the working spectral range ∆λ . 1–8 µm; (2)
determination of the geometry of the toroidal bunch,
namely, its radius (R = 4–6 cm), sizes of the smaller
cross section (aR and aZ = 2–6 mm), as well as the ele-
mentary particle density function in the section with aR

and aZ and the angular distribution of the elementary
particles; and (3) determination of the total number of
electrons (electron current) in the range Ne * 108–1013

from the measured absolute intensity of the synchro-
tron radiation. The detecting part of the system must
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Fig. 1. Propagation and detection of synchrotron radiation.
1, electron ring; 2, synchrotron radiation; D1, field of vision
(object plane); D2, window; ϕ1–ϕ3, aperture angles;
D3, entrance pupil of objective lens; D4, condenser; and
D5, exit pupil.
include the window, intermediate focusing optics, as
well as integrated and multielement position-sensitive
detectors. Bearing in mind the above goals and require-
ments and taking into account preliminary analysis of
parameters of the electron bunches and its synchrotron
radiation, we selected associated detectors and optical
materials for the windows and lenses, and also designed
the optical systems.

OPTICAL CHANNEL

Remote nondestructive (nonintrusive) diagnostics
of ring bunch 1 by its IR radiation 2 includes the extrac-
tion of the radiation from the vacuum chamber of the
accelerator through the window of diameter D2, trans-
port of the radiation along the optical path (system),
and delivery of the radiation to the detectors. Intensity
losses during the extraction and transport must be min-
imized throughout the working spectral range.

Detectors of the absolute intensity of the synchro-
tron radiation must collect the maximum possible
amount of radiated energy irrespective of the position
of the source (small cross section of diameter D1 in a
given space of the accelerating chamber). This can be
provided with an optical system that is highly transpar-
ent in the spectral range of detector sensitivity. Also,
this system must transmit the entire radiation arriving at
the entrance pupil D3 of the system from the source
plane (which is bounded by the field of vision D1) to the
plane of the exit pupil D5, where the detector is located,
by means of the field condenser D4. This can be done
with an optical system based on a Fabry lens. The
design procedure for such systems is well known [4, 5].
In the scheme with field condenser D4 (Fig. 1), where
the detector is placed at the exit pupil D5 of the system,
the image does not move over the detector sensitive sur-
face and the exit pupil D5 is constantly under irradiation
even if the angle of beam incidence on the entrance
pupil D2 is varied.

The basic parameters of the system with a field con-
denser were selected in view of the Lagrange–Helm-
holtz invariant for image distortion-free transmission:

(1)

where φ1–3 are the aperture angles of the objective lens,
condenser, and detector, respectively.

For the normal operation of the optical system, it is
necessary that the condition φ3 ≤ 1 for the aperture
angle of the detector be fulfilled.

Since appropriate IR windows and optics adequate
for our problem are lacking, we developed special win-
dows [6] and designed relatively simple optical systems
with objective [5] and reflector lenses [7]. Either sys-
tem can use both a multielement position-sensitive
detector for measuring the geometrical parameters of
the bunch (equilibrium radius R, cross-sectional sizes
aR and aZ, electron distribution over the cross section,

D3 φ1sin D4 φ2sin D5 φ5,sin= =
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etc.) and a precision single-element integrated detector
for detecting the synchrotron radiation and determining
the total number of electrons in the bunch from the
absolute intensity of the radiation.

(1) The optical advantages of IR synchrotron diag-
nostics over UV and optical diagnostics are as follows.
(i) The transparency of the window is not adversely
affected by radiation-induced internal and external
damage; (ii) the linear resolving power of the IR sys-
tems may be low (10 lines/mm) in comparison with that
of visible-range optics (about 100 lines/mm); (iii) syn-
chrotron radiation beams are detected in a wide IR
wavelength range (∆λ/λ @ 1, where ∆λ = 1–8 µm),
unlike optical diagnostics, where ∆λ/λ ! 1; (iv) syn-
chrotron radiation beams are narrow and polarized;
(v) the source is of low intensity (~10–6 W) and small
size (~2 mm); and (vi) the location and shape of the
source in the field of vision are of no significance.

The use of the IR part of the electromagnetic spec-
trum for the diagnostics of accelerated beams improves
considerably the accuracy of measurement of the abso-
lute intensity of the synchrotron radiation in compari-
son with visible-range (optical) diagnostics. This is of
special importance for precision measurements, e.g., in
metrology. This advantage arises because radiation-
induced dark spots (damages) on the window do not
affect its transmissivity in the IR range, since the sizes
of the damages on and inside the window are, as a rule,
much less than the IR radiation wavelength. Therefore,
they do not absorb or scatter the IR radiation. The visi-
ble and UV background from the window is of no con-
cern, because either the detectors are insensitive to
these wavelengths or special filters are used. As a result,
with IR radiation used, the accelerator windows are
easier to fabricate and they are less expensive.

In the IR range, the linear dimensions of the detector
become comparable to the radiation wavelength, espe-
cially in the far-IR range. The minimal linear dimen-
sions of the position-sensitive elements operating at λ >
1 µm are usually no larger than dn * 0.1 mm. This cir-
cumstance makes it possible to radically (roughly ten
times) loosen requirements for the resolving power of
the optics compatible with position-sensitive IR detec-
tors. In addition, this eliminates the need for carefully
analyzing the optical system and calculating the lens
curvature. Eventually, the fabrication of the lenses and
the optical system as a whole is greatly simplified and
becomes less expensive. In this respect, IR diagnostics
is superior to UV and visible-range diagnostics.

(2) The problem of vacuum-tight windows has
always been of vital importance in vacuum technology
and cryogenics, including charged particle accelera-
tors. The maintenance of a high vacuum is a necessary
condition for their operation. Evacuation to a pressure
as low as 10–9 torr sometimes implies heating of the
units (including the radiation extracting window)
mounted on the vacuum chamber to 350–400°C. Also,
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
all vacuum seals must have a metallic gasket. Certainly,
the window must remain air-tight after heating.

Windows used in magneto-bremsstrahlung diagnos-
tic equipment must be transparent in a wide spectral
range; offer high radiation hardness, thermal stability,
plasticity, and mechanical strength; as well as provide
extremely low gas leakage and gas release. Thus, the
production of windows is an important, perhaps deci-
sive, problem in designing the optical path. The cost of
the optical material and its availability are also of great
concern.

In light of the aforesaid, we tested windows made of
various optical materials [6, 8]: fused quartz for the vis-
ible and near-IR (to 3.5 µm) ranges, CaF2 for the visible
and mid-IR (to 9 µm) ranges, MgF2-based polycrystal-
line optical ceramic for λ = 1–8 µm, ZnS-based poly-
crystalline optical ceramic for λ = 1–14 µm, as well as
ZnSe-based optical ceramic and GeSe-based oxygen-
free optical glass for wavelengths up to 20 µm. These
materials are highly transparent in the working ranges
of the spectrum and are vacuum-tight. The diameter of
the windows was varied between 60 and 115 mm.

For the heating of the chamber, the window made of
MgF2 was diffusion-welded to the stainless steel barrel
[6]. Such windows are designed for multiple use in
heated ultra-high-vacuum installations. The transpar-
ency region is ∆λ = 1–8 µm, and the optical diameter is
70 mm at a window thickness of 4 mm. The rate of gas
release from the surface at 600°C and a pressure of
~10−9 torr does not exceed 7 × 10–7 torr/s.

(3) The lens system [5] was developed with the aim
of being mounted directly on the extracting channel of
the accelerator. It is intended to serve two functions: to
determine the electron bunch geometry (source–objec-
tive lens–position-sensitive detector) and to measure
the absolute intensity of radiation (source–objective
lens–condenser–integrated detector). The optical part
with transparent refractive elements (lenses) is made
according to the scheme depicted in Fig. 1. Figure 2
shows the arrangement of the basic elements of the sys-
tem with an objective lens and a field condenser. The
optical channel has IR window 1 of diameter D2
(Fig. 1), objective lens 2 (which simultaneously serves
as the entrance pupil D3 of the system), deflecting plane
mirrors 3 and 4, field condenser 5 in the plane of the
image produced by the objective lens, and detector 6 in
the plane of the exit pupil D5.

All the lenses used in the optical system are spheri-
cal. The radii of curvature R1 and R2 depend on the focal
length f, as well as on the thickness h and refractive
index n of the lens material. These four parameters are
related as [9]

(2)1
f
--- n 1–( ) 1

R1
----- 1

R2
-----– 

  n 1–( )2h
n
--- 1

R1R2
------------.+=
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The lens thickness can be neglected if the focal
length-to-diameter ratio is much greater than unity.
Then, formula (2) is recast as

The radii of curvature were selected from the condi-
tion that the magnification due to spherical aberration
be minimal. The refractive index value corresponded to
the wavelength λ = 5.5 µm. For a simple lens, the spher-
ical aberration is minimal when the radii of curvature of
the lens surfaces are related as [4]

(3)

This relationship holds if

(4)

The table lists the basic parameters of the lenses
made of different IR materials when the spherical aber-
ration is minimal. The minus sign at the radius R2
means that the center of the circle is placed backward
to the object of observation or study (i.e., on the right of
the lens).

The lenses were made of specially developed optical
ceramics. The materials of choice were MgF2 and ZnS
polycrystalline ceramics with high refractive indices,
which define the spherical aberration. The use of the
high-index optical materials made it possible to
increase the optical diameter of the condenser lens to 19
and 23 mm, respectively. Because of this, the field-of-
vision diameter in the plane of the smaller cross section
of the torus becomes greater than 30 mm.

The long-focus lenses were designed largely for
objective or intermediate lenses. The short-focus ones
were used mainly as field condensers.

For all the lenses listed in the table and for the entire
optical system (including the window, mirrors, objec-
tive lens, and condenser lens), we thoroughly studied
the aberrations, resolving power, field of vision, and
transmission spectrum.
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Fig. 2. Arrangement of the basic elements of the system
with the objective lens.
The investigation of IR optics made of opaque opti-
cal materials is more complicated than similar investi-
gations in the visible range. For this purpose, we elab-
orated a special technique [5] based on temperature
quenching of photoluminescence. With this effect, the
result of IR irradiation becomes visible. This technique
includes several steps. First, the spatial distribution of
the IR beam intensity is visualized with a flat lumines-
cent screen. The phosphor is pre-excited by an UV
source. When the IR beam passes through the absorb-
ing surface, its temperature increases and the phosphor
brightness drops. The spatial distribution of the radia-
tion intensity, as well as the shape and geometry of the
beam, can be judged from the degree of darkening of
the luminescent screen. The temperature-quenchable
luminescent screen, as such, is a nonselective detector
sensitive to the range from microwaves to the near
infrared. The working spectral range is specified by
band-pass filters, the transmission or reflection coeffi-
cient of the optical elements in the path of the radiation,
and the spectral responsiveness of the detector.

The resolving power of lenses depends on diffrac-
tion effects and aberrations. The effective diameter of a
circle of confusion due to diffraction in the case of a
point source is given by

(5)

where N = f/D is the focus number (f, focus length;
D, optical diameter of a lens).

Spherical aberration has the strongest effect on the
magnification. For a simple lens with two spherical sur-
faces, the apparent image diameter (including an extra
magnification due to spherical aberration) is approxi-
mated by the formula [4]

(6)

where the spherical aberration factor is given by

We studied the effect of various aberrations (spheri-
cal aberration, coma, and astigmatism) on the image
size. It was found that diffraction and aberration are
basic adverse effects in the spectral range ∆λ = 1–8 µm.
Moreover, diffraction limits the resolving power of the
optical system. When calculating the radii of curvature
of the lens surfaces, we took into consideration the
spherical aberration alone. The influence of the other
aberrations on the resolving power is negligibly small,
while taking them into account makes the design and
production of the lenses difficult. For the MgF2 long-
focus lens with the focus number N = 5.3, the diameter
of a circle of confusion in the plane of the point source
image is dcal = 0.43 mm for a wavelength λ = 5.5 µm.
This value, including the effect of diffraction and spher-
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Parameters of the lenses made of different IR materials

Optical material
Lens parameters

∆λ, µm nλ = 5.5 µm f, mm R1, mm R2, mm D, mm

MgF2 1–8.5 1.3282 320.0 144.8 –394.0 60

ZnS 1–14.5 2.2416 320.0 288.0 1050.0 60

ZnS 1–14.5 2.2416 17.5 14.57 47.02 19

ZnS 1–14.5 2.2416 22.0 19.0 61.34 23

CaF2 0.13–12 1.3952 40.0 21.0 –74.5 27
ical aberration, was found from formulas (5) and (6).
The resolving power of the MgF2 lens with f = 320 mm
is presented in Fig. 3, where the point source size mea-
sured along the X and Y coordinates is shown. On the
ordinate, the signal picked up from the detector as it
moves in the point source image plane is plotted. The
abscissa axis plots the real (apparent) point source size
including the aberration and diffraction effects. The
half-height diameter of the circle of confusion is dreal .
0.45 mm. Thus, the resolving power of the MgF2 long-
focus lens with f = 320 mm completely corresponds to
that of the multielement position-sensitive InSb photo-
resistors with a scale division of 0.4–1.2 mm.

One specific feature of the technique used to study
the effect of diffraction and aberration should be noted.
Usually, the resolving powers of individual lenses and
an optical system as a whole are studied in a narrow
wavelength range ∆λ/λ ! 1, where λ is the wavelength
to which the refractive index n of the lens material cor-
responds. When included into calculations, the refrac-
tive index affects the curvature of the refracting sur-
faces. Moreover, it contributes to an extra magnification
due to spherical aberration according to formulas (3), (4),
and (6). Unlike the conventional approach, in this spe-
cific case we used the broad band ∆λ/λ = 1–8 µm. The
width of the range depends on the transmission spec-
trum of the optical elements (window and lenses) incor-
porated into a particular optical system and on the spec-
tral responsiveness of the detectors.

In spite of the wide spectral range and the simplicity
of the refracting surfaces of the lenses, our results
(Fig. 3) indicate that diffraction and spherical aberra-
tion have a minor effect on the enlargement of the point
source image; hence, they play an insignificant role in
imaging in the plane of the position-sensitive elements
of the detector.

To detect the synchrotron radiation, it was very
important to know the linear size D1 of the field of
vision (Fig. 1) in the plane of object movement, i.e.,
where the median XY plane of the bunch crosses the YZ
plane of its cross section. Associated studies were car-
ried out, and the field of vision was measured. A point
source of IR radiation moved in the focal plane of the
objective lens, and the radiation was focused by the
condenser in the plane of the photodetector, which con-
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
verted the IR radiation to an electrical signal. Prelimi-
nary, the image plane of the entrance pupil was found
with a temperature-quenchable luminescent screen. For
the system with the CaF2 condenser (f = 40 mm), the
field-of-vision size is D1 = 24 mm; with the ZnS con-
denser (f = 17.5 mm), D1 = 32 mm. This totally meets
the conditions for accelerator experiments. Thus, the
parameters of the individual lenses and the optical sys-
tems as a whole that were measured experimentally
with the temperature-quenchable luminescent screen
agree well with the calculations.

We also studied the optical efficiency of the system
with the MgF2 condenser (f = 320 mm) and the ZnS
condenser (f = 17.5 mm) in terms of window and lens
losses, as well as reflection losses. It turned out that its
working range (where the losses are the least) lies in the
near and middle infrareds (∆λ = 1–8 µm), which fully
meets the conditions for accelerator experiments. The
transmission peak of the system corresponds to the
spectral responsivenesses of the IR photodetectors used
in the accelerator experiments.

Thus, the primary parameters of the base optical
system with the objective lens (Fig. 2) are as follows:
working spectral range ∆λ = 1–8 µm, focal length of the
MgF2 objective lens fobj = 320 mm, entrance pupil
diameter Dent = 60 mm, relative aperture of the objec-
tive lens Dent/fobj = 1/5.3, focal length of the ZnS con-
denser fcon = 17.5 mm, exit pupil diameter Dex = 2 mm,
field-of-vision size in the object plane Df.v = 32 mm,
and overall dimensions are 290 × 300 × 100 mm.

(4) A mirror periscope is a specific optical channel
[7] with an entrance objective lens composed of spher-
ical mirrors. It provides the wide-band operation of the
entire optical system and allows the detection of syn-
chrotron radiation in the spectral range ∆λ = 0.3–
40 µm. A periscope is used when the detector must be
placed beyond the range of the electromagnetic and
radiation fields of the accelerator.

Multielement detectors must be reliably protected
from the accelerator interference. Interference is
caused largely by pulsed magnetic fields and gamma
radiation. To remove the interference, it is necessary
that the position-sensitive detector, on which the full-
size image of the radiation source is focused, be at a
distance of no closer than 2 m from the radiation
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source. This led us to develop an optical channel with a
long-focus reflector entrance objective.

The wide-band operation of the channel is provided
by the fact that it is composed only of reflecting ele-
ments (mirrors). The mirrors are made of optical glass
and have a surface of a given curvature, on which a sil-
ver layer is applied by evaporation in vacuo. The chan-
nel is used in laboratory conditions under constant tem-
perature and humidity; therefore, the metal layer is not
additionally protected to minimize transmission losses.
The short-wave edge of the spectral range depends on
the reflecting surface finish and the coating material.
The long-wave edge, being limited by diffraction, also
depends on the relative aperture of the system and
imaging wavelength.
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Fig. 3. Resolving power of the MgF2 objective lens.
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Fig. 4. Optical scheme of the periscope channel with the
mirror objective.
The optical scheme of the periscope with the mirror
objective lens is depicted in Fig. 4. Since the synchro-
tron radiation forms a narrow cone, only the section of
the electron ring perpendicular to the optical axis of the
system is seen. The radiation from the small cross sec-
tion (≈1/60 of the entire section) of the electron ring is
extracted from the vacuum chamber of the compressor
through IR window 1, in the neighborhood of which flat
mirror 2 is placed. Mirror 2 deflects the divergent beam
of the synchrotron radiation in the horizontal direction.
First spherical mirror 3 is placed so that the object of
observation is at its focus. With such an arrangement,
the divergent beam becomes parallel to the optical axis
and can travel any given distance. The torus section is
imaged in the focal plane of second spherical mirror 4,
where detector 7 (its sensitive surface) or condenser 5
is located. Mirror 6 rotates the optical axis through 90°
in the vertical plane. The focal length of both spherical
mirrors is the same, 1850 mm. Diaphragms eliminating
flare spots and stray radiations are placed along the path
of the beam being focused.

Deflector 2 rotates the optical axis through 90°. Ini-
tially, it had a cylindrical surface to correct for the astig-
matism of the spherical mirrors, which handle the
inclined beam. To optimize the image quality, we stud-
ied the optical scheme of the system by the method of
frequency–contrast characteristics. It was found that
the best image is provided if the deflector has a flat,
rather than cylindrical, surface. It is likely that the effect
of astigmatism in this system is weaker than that of
other aberrations (coma, spherical aberration, etc.). The
frequency–contrast characteristics obtained are shown
in Fig. 5. The spatial frequency ν (the number of lines
per 1 mm of the image) is plotted on the abscissa axis;
the change in the image contrast K relative to the object,
on the ordinate axis. With a level of 0.02 (visual resolu-
tion) taken as the sign of contrast decrease, the resolv-
ing power of the optical system equals 5–6 lines/mm
when the cylindrical mirror is placed in the meridional
plane of the system (the plane of drawing). As follows
from the calculations, this value is ultimate for the
cylindrical mirror. With flat mirror 3 employed, the
resolving power rises to 9–10 lines/mm. In Fig. 5, the
upper curves (crosses) refer to the central part of the
field of vision; the lower ones (circles), to the periphery
of the field. The absence of chromatic aberration allows
the adjustment of the device in the visible part of the
spectrum.

An advantage of this scheme is low transmission
losses (less than 4%). This is associated with the high
reflection coefficient of silver at wavelengths between
0.3 and 40 µm and also with the absence of protective
coatings on the reflecting surfaces. Losses of the syn-
chrotron radiation intensity are inserted mainly by the
IR window (up to 40% of the total losses) and detector
window materials.

The channel is compatible with various cooled and
uncooled IR detectors, particularly, with multielement
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
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position-sensitive silicon detectors, InSb detectors (the
working temperature Tw = 77 K), PbSe detectors (Tw =
250 K), pyroelectric detectors, etc. The wide-band
operation of the mirrors allows them to be used in the
UV and visible ranges. In addition, this optical channel
can be used in the visible and near-IR ranges in combi-
nation with an SFR streak camera.

The optical channel with the mirror objective lens
and condenser made it possible for the first time to
detect synchrotron radiation in the JINR accelerator–
compressor. In pioneering experiments, the radiation
intensity (total number of electrons) was so low and the
radiation spectrum was so uncertain that the radiation
was impossible to detect without optical amplification
and wide-band detectors.

The optical channel with the mirror objective lens is
designed for the UV, visible, and IR ranges (the operat-
ing range is limited only by diffraction and mirror coat-
ings) and has the following basic parameters: focal
length of the spherical mirrors f = 1850 mm, relative
aperture 1 : 21, magnification ×1, photographic resolu-
tion 7 mm–1, and overall dimensions 2000 × 360 ×
370 mm.

(5) The design of the optical systems enables them
to be used as base devices for accelerator diagnostics
and in experiments unrelated to accelerators. Structur-
ally, the lens optical system (Fig. 2) is made as a sepa-
rate unit. It can be mounted directly on the flange of a
special branch pipe from which the radiation is
extracted from the vacuum chamber of the accelerator.

The periscope channel (Fig. 4), provided with the
rigid tubular support, is mounted as a separate unit on a
concrete wall or cube. In other words, it must be
attached to a vibration-free foundation.

All blocks and parts of the optical systems are made
of nonmagnetic materials to meet conditions of physi-
cal accelerator experiments. The lens and mirror barrels
are made of brass. The optical parts are mounted into
the barrels with appropriate gaskets to avoid optical
material–metal contact. The body of the lens system
was made by turning and milling a D16t aluminum
alloy slab to make the system monolithic and thereby
provide a reliable attachment of all the units responsi-
ble for optical accuracy. Moreover, with such a con-
struction, there is easy access to the basic optical ele-
ments and the system is easy to adjust and tune to a
detector.

The lenses and mirrors can move along the optical
axis. In addition, the inclination of the mirrors can be
varied over wide limits in order to finely adjust the
image plane, which is produced by the objective lens in
the principal plane of the condenser or on the sensitive
surface of the detector.

Once assembled and adjusted, all optical and
mechanical units and parts of the system are mounted
rigidly by means of locating pins. The body and fixings
of the optical units are painted mat black to prevent
flare spots and scattered light from penetrating to the
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
image plane. The adjusting units of the optical systems
are protected from environmental (optical and mechan-
ical) effects by removable housings made of aluminum
alloy sheets.

APPLICATIONS

Thus, the IR optics described in this work has
played a crucial role in studying the possibility of gen-
erating electron and electron–ion bunches with param-
eters optimal for the collective acceleration of electrons
and heavy ions in various JINR compressors [1].

To solve the problem of synchrotron radiation detec-
tion, the author has designed the approach described
above, which makes it possible to detect (with mini-
mum losses) synchrotron radiation with detectors made
of the appropriate materials and covering the entire
spectrum of the radiation. Other advantages of this
approach are as follows: (1) more than 20-fold amplifi-
cation of the synchrotron radiation flux density on the
sensitive element of the detector (hence, amplification
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Fig. 5. Frequency–contrast characteristic of the optical
channel with (a) cylindrical and (b) flat deflector. ν, the
number of lines per 1 mm of the image; K, change in the
image contrast relative to the object. (1) Central part and
(2) periphery of the field of vision.
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of detector signal) by applying the optical scheme with
the field condenser, (2) use of precision detectors
whose sensitivity is the highest in the working spectral
range ∆λ = 1–8 µm, and (3) detection of the synchro-
tron radiation throughout the sensitivity range of these
detectors (∆λ/λ @ 1).

With this approach, synchrotron radiation was dis-
covered for the first time and used to study relativistic
electron bunches. The following are results illustrating
the application of the long-focus wide-band mirror-lens
optics in accelerator experiments.

From the maximal radiation signal, we located the
ring bunch relative to the median plane YZ and the Z
axis of the accelerator, measured the equilibrium radius
R, found the bunch profile (aR, aZ), and studied the elec-
tron distribution over the cross section. It turned out
that the median planes of the torus and accelerator coin-
cide and the energy of the electrons and the radius of
their orbit (accordingly, the radiation spectrum and
intensity) are close to the calculated values. However,
the size of the bunch, the number of electrons, and the
distribution of the electrons over the cross section differ
greatly from those required.

From the synchrotron radiation intensity, for the first
time we determined the absolute number of electrons in
an electron bunch formed in the JINR electron-ring
compressor. The actual number of electrons in the
bunch was found to be smaller (Ne ~ 107–108 electrons)
than expected, and the bunch had the shape of a diffuse
cylindrical helix rather than a ring.

The method of determining the instantaneous (τ <
0.1µs) geometrical parameter of the ring in the com-
pressor relies on advances in IR optics and IR multi-
channel detecting technology [7]. Its essence is that,
after it has fallen into the field of vision, the image of
the smaller section of the ring is focused by the objec-
tive lens on the sensitive surface of a detector with a lin-
ear array of the elements. Figure 6 shows the instanta-
neous sizes of the smaller cross section of the electron
bunch (scale division 1.2 mm) and the cross-sectional
distribution of the electrons.

Thus, the difficulties associated with the detection
of synchrotron radiation were due primarily to its low
density on the sensitive surface of the detector. There-
fore, the valid signal of the detector was hard to dis-
criminate from intense electromagnetic and radiation
fields of the accelerator. The problem has been solved
by employing the diagnostic method developed, taking
advantage of the unique properties of the IR optics, and
using high-sensitivity detectors. Based on the informa-
tion gathered, we upgraded the design of the accelerator
units, which helped us to raise the ring current (number
of electrons) from Ne ~ 108 to ~1012 electrons. Measure-
ments of the absolute intensity of the synchrotron radi-
ation allow the determination of the number of elec-
trons in a bunch at the final stage of compression with
an accuracy of no worse than 20%.
At the closing stages of the experiments on collec-
tive acceleration, a ring bunch with Ne ~ 1012 electrons
was obtained, the electron density distribution being
fairly uniform. However, in spite of the considerable
effort that went into upgrading the magnetic systems of
the accelerator, we failed to generate an electron bunch
with parameters optimal for collective acceleration.
Today, in view of the results of IR synchrotron diagnos-
tics, experiments on collective acceleration have been
terminated, although the JINR compressor remains to
be a unique source of synchrotron radiation in terms of
its parameters [10].

CONCLUSION

IR diagnostics offers a number of advantages over
visible-range diagnostics. The basic one is that require-
ments for the image size, i.e., for the resolving power of
the system, are not so stringent.

Modern optical materials, specifically, optical
ceramics, of which windows and lenses have been
made, offer good radiation hardness, mechanical
strength, and vacuum tightness. Moreover, they are
highly transparent over a wide spectral range, which
favors the extraction of IR synchrotron radiation from
the vacuum chamber and its transport to the detector
with minimal intensity losses.

A unique technique for window–barrel diffusion
welding has been developed. The design of the barrel
provides for the sealing of the vacuum window with the
help of a metallic gasket.

In spite of the simplicity of the mirror and lens
optics developed, we succeeded in discovering and
detecting synchrotron radiation in the JINR (with the
number of electrons in the ring about 108). The param-
eters of compressible electron bunches have been deter-
mined from their synchrotron radiation in the near and
middle infrareds with a desired accuracy. The resolving
power of the systems is adequate to that of the detectors
used.

The optical channel totally meets the requirements
for accelerator experiments and is compatible with var-
ious detectors for wide-band IR diagnostics in both
pure scientific purposes and applications.

Also of importance are bench tests with IR optics,
where the thermoluminescence effect was used. With
such an approach, we succeeded in studying optical
systems with lenses that are nontransparent in the visi-
ble range.
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Abstract—The effect of Mg isovalent impurity on photoluminescence in undoped and Al(donor)-doped ZnSe
crystals is investigated. The anomalously weak temperature quenching of the blue band in Mg-containing sam-
ples is detected. © 2002 MAIK “Nauka/Interperiodica”.
Doping by isovalent impurities may strongly
improve those physical properties of semiconductors
that are difficult or even impossible to improve by dop-
ing with conventional impurities [1]. In the first place,
isovalent impurities increase the probability of radia-
tive recombination and improve its temperature stabil-
ity. Note that the discovery of intense edge lumines-
cence in GaP〈N〉  [2] has provided the basis for produc-
ing commercial green LEDs. For blue (dark blue)
radiation sources, it is necessary to use a wider gap
material. Moreover, it is desirable that the material be
direct-gap. Zinc selenide, having the appropriate gap
width (Eg = 2.7 eV at 300 K [3]), meets these require-
ments. Therefore, most investigations are aimed at
developing methods of obtaining low-resistivity ZnSe
where edge luminescence prevails [4] for designing
various electroluminescent structures. One way of solv-
ing this problem was suggested in [5], where doping of
ZnSe by Mg isovalent impurity was shown to increase
significantly the intensity of the blue luminescence
band at 300 K. This paper studies the behavior of this
band in diffusion layers of ZnSe〈Mg〉  at high tempera-
tures.

Initial substrates were made of bulk ZnSe crystals of
the two types that are used most frequently [3]. They
were grown in a noble gas atmosphere from the stoichi-
ometric melt (type 1), as well as from the melt contain-
ing ≈0.1 mol % of Al (type 2). The electron conductiv-
ity σn was (at 300 K) 10–10 and 10–3 Ω–1 cm–1 for type-1
and type-2 crystals, respectively. At room temperature,
the photoluminescence spectrum contains two bands:
yellow orange and blue (see figure). The lower energy
emission is associated with donor–acceptor pairs con-
sisting of deep acceptor (Ea ≈ 1.2 eV) and shallow
donor (Ed ≈ 0.02–0.03 eV) levels [3, 4]. The former are
caused by doubly-charged negative vacancies of zinc
( ); the latter, by singly charged positive vacancies

of selenium ( ) and/or by an Al substitutional impu-

VZn''

VSe

.
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rity ( ).  vacancies that do not enter into the
donor–acceptor pairs are responsible for the blue lumi-
nescence, resulting from the recombination of free
holes with electrons localized on these centers [3]. The
virtual absence of the blue band in the initial type-2
crystals indicates that the concentration of “free” Se
vacancies is low. The number of these vacancies can be
increased, in particular, by healing the VZn vacancies,
which must change the relation between the orange and
blue band intensities in favor of the latter. This is
observed for crystals of both types (see figure). The

AlZn

.
VSe

.

1.7 1.9 2.1 2.3 2.5 2.7 2.9
"ω, eV

0

0.5

1.0 (b)

Orange
Blue

0

0.5

1.0 (a)

Orange
Blue

Nω

Photoluminescence spectra of the ZnSe samples at 300 K.
Solid lines, initial samples; dashed lines, samples annealed
in Zn vapor; and dotted lines, samples annealed in Zn and
Mg vapors. (a) Type-1 and (b) type-2 crystals.
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intensity of the blue radiation can be increased further
by doping with Mg isovalent impurity. Note that, in
Mg-doped type-1 crystals, the orange band is observed
at none of the excitation levels L, which could be varied
in the range of 1015–1018 photons/s in our experiments.
The incomplete quenching of the low-energy emission
for the ZnSe〈Al〉  substrates indicates that doping by Mg
does not heal all the VZn vacancies. Some of them
remain to be incorporated into the donor–acceptor
pairs, which form at temperatures (the temperature of
crystal synthesis is Ts ≈ 1450 K) higher than that of
doping by the isovalent impurity (1070 K). Since the
thermodynamic growth conditions are virtually the
same for the crystals of both types, one should assume
that the complexes with AlZn are more stable. Note that
the ZnSe〈Mg, Zn〉  diffusion layers, as well as the sub-
strates, have electron conductivity, but the value of σn

in the former grows to 10–1 Ω–1 cm–1. Thus, Mg doping
of the ZnSe crystals with different ensembles of intrin-
sic and impurity defects results in a significant increase
in the blue edge emission and suppresses the self-acti-
vated orange band.

Note also that the position of the blue band maxi-
mum remains virtually unchanged for all the samples:
"ωm ≈ 2.68 eV at 300 K. However, its behavior in the
layers containing magnesium and in the initial sub-
strates, as well as the substrates doped by Zn alone,
greatly differs. In the latter case, the position "ωm of the
maximum is independent of the excitation level when it
varies within three orders of magnitude. The difference
between "ωm and the energy gap width Eg is equal to

0.02 eV, which correlates with the energy depth of .
Such a behavior is typical when free carriers pass to a
discrete level by recombination [3]. In contrast, the
maximum of the blue band for the ZnSe〈Mg〉 layers
shifts toward lesser "ω with a rise in L. In addition, the
increase in the temperature and the excitation level
smooth out the low-energy tail of the blue band. When
combined, these factors testify to the annihilation of
excitons when they are inelastically scattered by free
charge carriers [6]. There is no doubt that the blue band
is due to the isovalent Mg impurity; however, any cer-
tain conclusions about the exciton nature are beyond
the scope of this work and requires special investiga-
tion, especially at low temperatures.

Indirect corroboration of Mg participation in the
formation of the blue band is its high temperature sta-
bility. For example, with T increasing from 300 to

VSe

.
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500 K, the blue emission intensity Ib in ZnSe〈Mg〉
decreases less than twice. At the same time, the doping
of the crystals by Zn alone causes a noticeable temper-
ature quenching of Ib, although this is somewhat
smaller than for the initial substrates. The main results
of the temperature investigations are listed in the table.
Here, the symbol Io denotes the intensity of the orange
luminescence band.

Note that the position of the edge emission maxi-
mum is the same for all the samples at each particular
T. The temperature dependence of "ωm is linear in the
range from 300 to 500 K, and its slope, 6.5 × 10–4 eV/K,
is close to the temperature coefficient gap width varia-
tion for ZnSe,  ≈ 7 × 10–4 eV/K [3, 4].

Thus, efficient temperature-stable blue lumines-
cence can be excited by doping zinc selenide with Mg
isovalent impurity.
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Table

Dopant
Ib/Io

300 K 500 K

Undoped 0.5 0.3 17

Zn 1.2 1.1 7

Zn, Mg – – 1.8

Al 0.07 0.05 13

Al, Zn 0.9 0.7 6

Al, Zn, Mg 5 6 2

Ib
300/Ib

500
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Abstract—Anisotropy of the gain and loss associated with different TM-wave components in a long-wave
intervalley-transfer laser is analyzed numerically. The effect of field leakage into the substrate and of interfer-
ence therein on the optical confinement coefficient and loss coefficient due to absorption by free charge carriers
is studied. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, coherent radiation sources operating in
the far- and mid-IR ranges are attracting great interest,
hence, the considerable effort in developing these
devices worldwide. This problem is topical because
these lasers can be used in spectroscopy, environmental
studies, and communication. The list of semiconductor
lasers designed for the 10–15-µm range is actually lim-
ited to devices of two types: quantum cascade [1] and
fountain [2] lasers. For a number of reasons (complex
structure of the quantum wells, need for pumping, and
failure to operate in the continuous-wave mode at room
temperature), these lasers do not meet current require-
ments.

Several years ago, a new version of intraband-tran-
sition lasers, a hot-carrier quantum-well laser [3], was
proposed by researchers at the Institute of Physics of
Microstructures (Russian Academy of Sciences, Nizhni
Novgorod). In these lasers, carriers are heated by an
electric field directed along the layers of the quantum-
well structure. The volume gain of the lasing medium
in lasers based on hot electron intervalley transfer was
estimated at 50–200 cm–1 for a wavelength of ≈10 µm
[3], which indicates the feasibility of the device.

MODEL AND BASIC RELATIONSHIPS

Since the current in the laser under study passes
along the layers of the structure, it can be built around
a multilayer waveguide with confining undoped AlAs
layers grown on an insulating GaAs substrate (Fig. 1).
The lasing layer consists of alternating quantum-size
GaAs films, which are wells for Γ valleys, and AlAs
1063-7842/02/4706- $22.00 © 20788
films, which are wells for X outer valleys. It has been
shown [3] that, in a strong electric field, electrons are
efficiently accumulated at those levels of X outer val-
leys located in the Brillouin zone along the growth
direction. This causes a population inversion between
these levels and the GaAs central valley [3]. The wave
functions of these electrons overlap significantly.
Therefore, direct transitions can occur at the hetero-
junctions, which provides amplification. The typical
thickness of the GaAs films in each of the periods of the
superlattice is 80 Å; that of the AlAs films, 20 Å. The
overall thickness of the lasing layer, consisting of
100 superlattice periods, is about 1 µm.

It is significant that amplification in this structure is
possible only for those waveguide eigenmodes that
have the electric field component directed across the
lasing region, i.e., for the TM modes. Our laser model

d 1
d 2

d 4
d 3

4

X

Y
Z

1
2

3
5

Fig. 1. Cross section of the laser: (1) substrate; (2, 4) lower
and upper confining layers, respectively; (3) active layer;
and (5) contacts.
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assumes that absorption by free carries (Drude absorp-
tion) is the basic reason for the attenuation of the TM
modes propagating in the structure. It is known that the
attenuation due to this mechanism is proportional to the
square of the wavelength and may become noticeable
for a long-wave laser if the carrier density is sufficiently
high.

Since the electric field of the TM mode contains
components both across and along the propagation
direction (i.e., along the structure layers), it is clear that
the gain and loss in the lasing layer must be estimated
with allowance for its anisotropy. Specifically, the
amplification of the lasing medium is associated with
the transverse component of the TM mode field, while
the loss is attributed to the longitudinal component
because the carriers remain free in the plane of the
quantum wells. The attenuation in other parts of the
structure (confining layers and substrate) can be
regarded as direction-independent, i.e., isotropic.
Assume that the gain and the loss in the structure are
low; i.e., g/β ! 1 and α/β ! 1, where g is the volume
gain for a plane wave in an infinite medium; α is the
power loss factor; and β is the propagation constant,
which characterizes the phase variation with distance.

In terms of the perturbation method [4, 5], the atten-
uation is given by

(1)

where  and  are the imaginary parts of the
permittivity tensor components for the layers, Sz =
0.5 Re|[EH*]|z is the time-averaged magnitude of the
Poyinting’s vector in the z direction (brackets mean the
vector product), and ω is the circular frequency. Inte-
gration is performed across the waveguide, i.e., in the
direction of the layer growth.

As is usual in the perturbation method, the complex
amplitudes of the electric, E, and magnetic, H, fields
are calculated under the assumption that the waveguide
structure is lossless. Let us rearrange expression (1) so
that it contains only the field components that are con-
tinuous at the interfaces:

(2)

Here, we used the relationship Ex = βHy/(ωe0 ),
which is valid for TM waves, and introduced the desig-
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nations k0 = 2π/λ for the wave number and ρ =

 = 120π for the free-space wave impedance. As
can be seen from expression (2), taking into account the
anisotropy of all the layers except for the lasing one
corrects the attenuation coefficient insignificantly. We
will therefore assume that the real parts of the permit-
tivity tensor components equal each other; i.e.,  =

 =  = , where i is the number of the layer. Obvi-
ously, the imaginary parts of the permittivity tensor
components that enter into formula (2) can be
expressed in terms of the volume gain α0 and loss factor
g as

for the active layer and 

for the other layers. In the lasing theory, of primary
importance is the field confinement coefficient Γ. For
TM waves, it is defined as

(3)

µ0/e0
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eyy' ezz' ei'
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Fig. 2. (a) Optical confinement and (b) power loss factor for
the TM wave in the intervalley-transfer laser vs. the upper
confining layer thickness d4. The lower confining layer
thickness d2 = 5 (1) and 10 µm (2).
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NUMERICAL RESULTS
To find the laser geometry optimal in terms of guid-

ing characteristics, it is necessary to study the optical
confinement and the loss factor as a function of the con-
fining layer thickness (Fig. 2). The calculations were
performed at a wavelength λ = 10 µm, d1 = 100 µm,
d3 = 1 µm,  = 12.2,  = 11.5, and  =  = 9. The

permittivity  of the lasing layer was calculated as an
effective parameter dependent on the relative thick-
nesses of the GaAs (x) and AlAs (1 – x) layers of the
superlattice:

The volume absorption α0a of the lasing layer was
estimated at about 500 cm–1 [4]. In the calculations, we
neglected the loss due to scattering by free carriers in
the undoped layers and the substrate.

Figure 2 shows that the optical confinement is max-
imum at a thickness of the upper confining layer d4 ≈
2.5 µm for both thicknesses d2 of the lower AlAs con-
fining layer. The power loss factor α does not exceed
2.0–2.5 cm–1. It is small primarily because the electric
field component Ez in the propagation direction is small
compared with the amplitude of the transverse compo-
nent Ex. Thus, the volume gain factor g ≈ 10.5 cm–1 is
sufficient to compensate for this loss (the radiation loss
through the end faces of the laser is neglected).

Notice the sharp dips in the curves in Fig. 2. It is
likely that, under certain conditions, the lasing power
flux resonantly tunnels into the substrate, causing inter-
ference effects therein. For example, for d4 ≈ 3.6 µm
and d2 = 10 µm, the dispersion characteristics of the las-
ing layer and the substrate intersect (see the outlined
region in Fig. 3). As a result of the strong interaction
between wave processes in the substrate and in the

e1' e3' e2' e4'

e3'

e3' eGaAs' x eAlAs' 1 x–( ).+=

3.04

9.8 9.9

β

λ, µm
10.0 10.1 10.2 10.3

3.02

3.06

3.08

Fig. 3. Anticrossing of the dispersion characteristics as a
result of interaction with substrate modes at d2 = 10 µm and
d4 = 3.6 µm.
guiding layer, a significant portion of the lasing power
penetrates into the substrate, sharply reducing the opti-
cal confinement coefficient. Wave interference in trans-
parent substrates was studied earlier for a conventional
semiconductor laser operating at 0.98 µm [6].

To illustrate the physical process described above,
Fig. 4 shows the normalized distribution of the power
flux over the laser cross section for the optimal (in
terms of the confinement) structure (d4 = 2.5 µm) and
for the case when the radiation into the substrate is
maximum (d4 = 3.6 µm). It can be seen that the resonant
interaction between the waves in the substrate and the
lasing layer increases significantly (by 15–17 dB) the
power peak density in the substrate.

CONCLUSION

Thus, our study of the electromagnetic properties of
the long-wave intervalley-transfer laser are summa-
rized as follows.

The optimal geometry of the structure that provides
the maximum optical confinement for the TM wave
(Γ ≈ 0.27) is found.

Conditions for the intense penetration of the lasing
power into the substrate are determined. The resonant
interaction between the wave processes in the substrate
and the optical waveguide may reduce significantly (to
0.13–0.15) the optical confinement coefficient.

Anisotropy of the loss and gain, which are associ-
ated with different field components of the TM wave in
the laser structure, is analyzed. It is found that, with the
optimal geometry of the optical waveguide at a volume

0 40 80 120
d, µm

–40

–30

–20

–10

0
S/Smax, dB

1

2

Fig. 4. TM-wave power density distribution over the cross
section at d2 = 2.5 (1) and 3.6 µm (2).
TECHNICAL PHYSICS      Vol. 47      No. 6      2002



ANALYSIS OF GAIN AND LOSS ANISOTROPY 791
absorption of 500 cm–1 in the active layer, the gain g ≈
10.5 cm–1 is sufficient to compensate for the loss.
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Abstract—An original method for designing magnetic mass analyzers that is represented in the form of a com-
puter program is proposed. The thorough optimization of the method makes it possible to rapidly and accurately
simulate the focusing properties of a mass analyzer along its focal line, as well as to select designs appropriate
for a given problem. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The development of a magnetic mass analyzer,
requiring a large body of computation and much expe-
rience, has always been a challenge for designers. To
facilitate the design of new mass analyzers, as well as
to tackle various comparison and optimization prob-
lems, we developed a new express design method.

EXPRESS SEARCH METHOD 

Our approach is based on well-known formulas [1],
which are extended by introducing higher order aberra-
tion coefficients into the classical dispersion relation. In
addition, we took into account the results of computer
simulations and optimized the mathematical model
obtained. This has made it possible to simulate the
focusing properties of a mass analyzer along its focal
line over a wide range of masses with a much lesser
body of computation.

Since the method is based on conventional formulas,
we recommend applying it as the basis for designing
magnetic mass analyzers. Further improvement of its
accuracy can be achieved only by considering higher
order effects of a stray edge field, as is done in more
awkward models, for example, in the matriciant
method [2]. Note that computational results obtained
by this method and by the matriciant method [2] differ
by approximately 2.5%. Because of the utmost simplic-
ity of the method and, as a consequence, the high rate
of computation, the application of our method for
express analysis is well justified.

On the basis of our method, we devised a program
(available from http://op.pochtamt.ru/) that makes it
possible to evaluate the main properties of a magnetic
mass analyzer along its focal line (resolution, positions
of focal points, focusing parameters in the vertical and
horizontal planes, etc.). In addition, the program
enables an express search for designs according to
given parameters. The optimization of the parameters is
not performed. This is due to the fact that there are a
1063-7842/02/4706- $22.00 © 20792
number of optimization criteria, which do not form a
continuous set. Frequently, improving one of the crite-
ria results in the significant deterioration of the others.
This problem has been considered carefully in [3],
where it was noted that the result of any computer opti-
mization cannot represent a single point in the space of
initial parameters. One can only restrict the region of
acceptable solutions, and the design of choice must
meet certain nonformal criteria. As in [3], our program
separates out a region of acceptable solutions according
to rather loose formal criteria. The results of this sepa-
ration form a database, which can readily be imported
into “clearer” software tools (for example, into
Microsoft Excel) for subsequent processing.

As was noted above, the basic feature of our method
is its nonextensiveness, namely, it needs minimum
computational resources for a rather high accuracy. The
design search algorithm is based on the exhaustive
search method (instead of the statistical sampling
method [3]). As a result, the program does not require a
large memory capacity and the search process and the
formation of the database (i.e., the detailed simulation
of the focusing properties of the mass analyzer along its
focal line) in combination take several minutes depend-
ing on the search discreteness required. In addition,
there is a possibility of simulating the process of elec-
trostatic scanning over fixed collectors if a permanent
magnet is applied [4] for rotations other than 180°.

RESULTS AND DISCUSSION

This method was successfully tested in the express
search for designs of magnetic mass analyzers intended
for the analysis of argon isotopes. The parameters sim-
ulated were resolving power R, mass dispersion D, tilt
angle of the focal line Ψ, and sum of squared deviations
of focal points from a straight line δ. Note that these
parameters, except for the last one, are, in general,
local; i.e., they are of interest only for a particular mass
(or for a pair of masses, for example, in the case of the
002 MAIK “Nauka/Interperiodica”
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tilt angle) from a given range. The input parameters
were angle of rotation in a magnetic field ϕ, radius of
rotation in a magnetic field r, optical magnification M,
and ion source parameters. The input arm (l') is an
optional parameter (it is calculated unless specified).
The output arm (l") is found from direction focusing
conditions. The entrance and exit boundaries of the
magnet are straight. We were interested in designs with
an optical magnification M in the range [0, 5, 1] and a
resolution R of no less than 600 (the width of the source
slit is S1 = 0.1 mm, and the divergence angle of the
beam is 2α = 4 × 10–2 rad).

The table lists comparative results for symmetric
mass analyzers with the radius and angle of rotation
50 mm and 120°, respectively (the entrance and exit
angles are integers).

Using the data from the table, one can construct a
rather compact analyzer with good analytical character-
istics. In addition, having a set of appropriate designs,

Table

ε' = ε'' R l' D ψ δ

31 1014 0.8840 3.0608 28.7 1.243 × 10–4

32 1016 0.9032 3.1772 28.2 1.415 × 10–4

33 1017 0.9327 3.3024 27.7 1.640 × 10–4

34 1019 0.9456 3.4376 27.1 1.860 × 10–4

35 1021 0.9691 3.5840 26.6 2.137 × 10–4

36 1023 0.9945 3.7428 26.1 2.464 × 10–3

37 1025 1.0220 3.9160 25.6 2.864 × 10–3

38 1028 1.0520 4.1040 25.1 3.362 × 10–4

47 1063 1.5160 7.1720 20.3 1.867 × 10–3

48 1069 1.6090 7.8040 19.7 2.401 × 10–3
TECHNICAL PHYSICS      Vol. 47      No. 6      2002
one can choose that offering the best manufacturability
and/or being easier to adjust. In our case, after simple
interpolation (the correctness of which is confirmed by
additional calculations), one can choose a version with
the entrance/exit angles (ε' = ε'') 37°30′, R = 1026, l' =
1.0370, D = 4.0080, Ψ = 25.2, and δ = 3.088 × 10–4.

CONCLUSIONS

Thus, the express search method proposed is ade-
quate to available analogues. The high rate and effi-
ciency of computation open up a wide spectrum of
applications, one of which is presented here. The issue
touched upon is rather topical nowadays, since the min-
iaturization of magnetic mass analyzers has become an
important problem.
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