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Abstract—The theory of the longitudinal (with respect to an external magnetic field) response of a combined
spin system of localized paramagnetic centers (s subsystem) and free charge carriers (e subsystem) of a solid
semiconductor to modulated saturation of EPR is developed. In contrast to relevant studies made earlier, the
general case is considered of an arbitrary modulation frequency and arbitrary detuning of the saturating micro-
wave field with respect to the central EPR frequency. A theoretical approach is used in which normal modes are
considered in analyzing coupled oscillations of the spin magnetizations of the s and e subsystems. It is shown
that, in the case of relaxation coupling between the subsystems, the longitudinal response recorded at the mod-
ulation frequency can be represented as the sum of the responses of the normal modes, each of which is
described by a universal resonance lineshape that is different, in general, from the Lorentzian lineshape char-
acteristic of EPR signals. In the extreme cases of weak and strong coupling, simple analytical formulas are
derived. The results presented form a theoretical basis for applying the method of modulated longitudinal
response for measuring very short longitudinal spin relaxation times in semiconductors with paramagnetic
impurities. As an example, experimental data are presented for activated carbon containing stable free radicals.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Measurements of the longitudinal (T1) and trans-
verse (T2) electron spin relaxation times can provide
valuable information on the amplitudes and correlation
times of internal fluctuating fields in novel solid mate-
rials, such as high-temperature superconductors, ful-
lerides, and manganites exhibiting colossal magnetore-
sistance. The relaxation time T2 is usually determined
from the EPR linewidth; however, inhomogeneous
broadening frequently masks the effect of fluctuating
fields. The longitudinal relaxation time in the materials
mentioned above is short (10–7–10–10 s) and cannot be
measured using the conventional method based on
pulsed or steady-state saturation of EPR. This difficulty
was overcome using the improved technique for
observing the longitudinal response first proposed in
[1–3]. With this technique, the longitudinal relaxation
time has recently been measured for a number of con-
ducting materials [4–7]. In this method for measuring
T1 [1–7], the voltage induced across a pickup coil (ori-
ented along the static magnetic field) is recorded; the
signal is produced by the oscillating component of the
longitudinal spin magnetization of a sample, which is
the response of the spin system to modulation of the
microwave (MW) radiation power saturating EPR. It is
1063-7834/03/4511- $24.00 © 22017
significant that a fairly low saturation level of EPR
(with a saturation factor of the order of 10–3–10–4) is
sufficient in this case, which makes it possible to mea-
sure very short relaxation times T1.

In many of the novel solid materials mentioned
above, as well as in other conductors with paramagnetic
impurities, there are two types of paramagnetic parti-
cles (“spins”). Particles of one type (s) are localized
paramagnetic centers, and particles of the other type (e)
are itinerant charge carriers. Both these spin sub-
systems are coupled due to strong exchange interaction.
Therefore, we should consider magnetic resonance for
a strongly coupled system in which interaction between
the two spin subsystems makes their precession com-
plicated in character and significantly affects the reso-
nance frequencies and damping (relaxation rates). In
order to interpret an experimentally observed longitudi-
nal response of such a system and extract information
on the spin relaxation times, we need to invoke the the-
ory of coupled oscillators.

This problem was partially solved in [8, 9], where
the theory of coupled oscillators was used to calculate
the EPR signal and the longitudinal response in a mate-
rial with exchange-coupled s and e spin subsystems.
However, the results obtained in those papers are valid
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only in the case of low modulation frequencies or small
(close to zero) detuning of the saturating MW field with
respect to the spin resonance frequency.

For arbitrary modulation frequencies and detuning,
the theory of longitudinal response has been developed
only for one type of spins [1–3, 10]. In this paper, we
extend the results obtained in [8, 9] for two interacting
spin subsystems to the case of arbitrary values of the
modulation frequency and detuning.

2. CALCULATION OF THE LONGITUDINAL 
RESPONSE OF RELAXATION-COUPLED 

SUBSYSTEMS OF LOCALIZED AND ITINERANT 
SPINS

We consider the spin system of a sample (normal
conductor) containing a subsystem (s) of localized
spins and a subsystem (e) of itinerant spins coupled via
exchange interaction:

(1)

where Ssi is a localized spin at a lattice site i and Sei' is
an itinerant spin (we assume that Ss = Se = 1/2). The
sample is exposed to a static magnetic field H0 || z and
an MW field 2H1cos(ωt) || x; s spins and e spins possess
Zeeman energy, and e spins also have kinetic energy.
Interaction (1) gives rise to a dynamic shift in the pre-
cession frequency of s and e spins via the molecular
field and to spin relaxation, which is associated with the
transfer of magnetization from the s subsystem to the e
subsystem and vice versa [11, 12]. Experiments show
that the dynamic shifts in the precession frequency, as a
rule, are negligible [5, 6]. In what follows, we consider
this case and assume, for simplicity, that the g factors of
s and e spins are equal. Therefore, the resonance fre-
quencies of s and e spins are also equal and the interac-
tion between the magnetizations of the two spin sub-
systems is purely relaxational in character. As a result,
the motion of the coupled transverse components of the
s- and e-spin magnetizations is precession of two nor-
mal modes having normal (modal) decay rates (the lin-
ewidths of two EPR signals observed experimentally).
For this reason, we write the equations of MW-field-
modulated EPR saturation in terms of these transverse
magnetization modes. We derive these equations in the
same way as in [9] but take into account that, at a fairly
high modulation frequency, each individual (s- and e-)
spin subsystem is excited at three frequencies, one of
which corresponds to main resonance and the other two
are side frequencies.

We represent the Bloch–Hasegawa equations [11]
for the transverse magnetization components of the s
and e spins in the form of second-order differential
equations. The longitudinal components will be

Hex 2J SsiSei'δ Ri Ri'–( ),
i i',
∑–=
PH
described by first-order differential equations [12].
Thus, we have

(2)

(3)

Here,  =  + ,  =  + ,  = – ,

and  = – ;  and  are the itinerant- and
localized-spin relaxation rates to equilibrium with the

lattice, respectively; and  and  are the Korringa
and Overhauser relaxation rates, respectively, which
can be written as

where ρ is the density of states of conduction electrons
at the Fermi level, J is the exchange integral, S and c are
the spin and concentration of localized spins, T is the
lattice temperature, and kB is the Boltzmann constant.
In the case when the g factors of the spins are equal, we
have Tse/Tes = χs /χe [11], where χs and χe are the static
susceptibilities of localized and itinerant spins. If only
the EPR line broadening mechanisms indicated above
are operative, then, in the case of homogeneous EPR

broadening, we have  =  and  = . We

introduced the designations  and , because later
on we include inhomogeneous and dipole–dipole

broadening, which affects  and  but leaves 

and  unchanged.

Let us consider the case where an MW field of fre-
quency ω ≈ ω0 (ω0 is the resonance frequency, which is
assumed to be the same for s and e spins) saturates EPR
and is modulated with a frequency Ω ! ω0.

In actual practice, the MW radiation power is usu-
ally modulated. However, in the method in question, all

harmonics of the periodic function ,
other than the harmonics with frequencies ω + Ω and
ω – Ω , are cut off in the experiment. Therefore, the time
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dependence of the amplitude of the transverse MW
field in Eq. (2) can be written as

(4)

where a0 and a1 are the zeroth and first Fourier coeffi-

cients [13] of the function .
Thus, according to Eq. (4), the spin system is

excited at three frequencies. Therefore, we consider the
response of the system at these three frequencies:

(5)

where us, e⊥  and v s, e⊥  are slow transverse (Bloch) ampli-
tudes satisfying the inequalities

(6)

Using Eqs. (6), we obtain the following equations for
the individual Bloch precession amplitudes of s and e
spins at the frequency ω:

(7)

where ∆ = ω – ω0. Equations for the transverse Bloch
amplitudes at frequencies ω + Ω and ω – Ω can be
obtained from Eqs. (7) by substituting ∆ ± Ω for ∆.

In the absence of a driving force (H1 = 0, ∆ = 0), the
set of differential equations (7) reduces to two sets of
equations. Each of these sets has the same secular equa-
tion,

(8)

Solutions  and  to Eq. (8) are the normal-mode
decay rates [14] (i.e., the EPR linewidths) of the cou-
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pled spin system under study. Here, t is the mode index,
which stands for + or –; the index t always indicates the
s-like mode and t, the e-like mode. Therefore, in the

absence of dynamic s–e coupling (  =  = 0), the

normal-mode decay rates  and  reduce to the

partial decay rates  and  of the s and e spins,
respectively. It should be noted that t stands for + or –
depending on the actual type of the (+) and (–) modes.

As in [9], we pass over to the transverse Bloch
amplitudes using the relations

(9)

Here, u(±t) and v (±t) correspond to the modes with decay

rates  and the quantities k(±t) are defined as [9]

(10)

Substituting Eqs. (9) into the first two equations in (7),
we obtain decoupled equations which describe the evo-
lution of the slow transverse s-like t-mode Bloch ampli-
tudes:

(11)

Equations for the slow Bloch amplitudes of the e-like
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In the equation for the longitudinal magnetization com-

ponent , the term describing the interaction with the
transverse microwave field can be written using
Eqs. (4), (5), and (9); this equation takes the form

(13)

Now, we take into account other mechanisms of EPR
line broadening for s spins. First, we include the
dipole–dipole (dd) interaction between s spins. If all s
spins have the same resonance frequency, the secular
part of the dd interaction causes homogeneous EPR line
broadening, which depends only on the secular dd
interaction constants in the absence of exchange nar-
rowing. In addition, the EPR line of s spins can be inho-
mogeneously broadened due to lattice defects, micro-
scopic variations in the orientation of the crystallo-
graphic axes, hyperfine interaction with surrounding
magnetic nuclei, etc. The effect of the scatter of the
s-spin resonance frequencies on EPR in metals was
consistently taken into account in this case in [15],
where all s spins were characterized by different reso-
nance frequencies and the s-spin magnetization spectral
density, in addition to the e-spin magnetization, was
included as a dynamic variable in the kinetic equations.
To calculate the EPR signal, integration was performed
over all resonance frequencies of s spins. However, in
the case of inhomogeneous broadening, flip–flops of s
spins having different resonance frequencies can occur
due to the nonsecular part of their dd interaction. This
effect can result in so-called fast spectral diffusion [16]
within an inhomogeneously broadened EPR line. The
spectral diffusion is called fast if it has a chance to
involve the whole of the inhomogeneously broadened
EPR line in a time less than any time of relaxation in the
system under study. In this case, an inhomogeneously
broadened EPR line transforms into a homogeneously
broadened line, with its resonance frequency lying at
the centroid of the line. The width of such a line
includes (in the absence of narrowing mechanisms)
contributions from the secular dd interaction and from
the so-called local-field reservoir [16, 17].

We include the dd interaction between s spins in a
metal in the cases where (i) this interaction results in
homogeneous broadening of EPR lines or (ii) causes
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fast spectral diffusion in an inhomogeneously broad-

ened EPR line. Let  be the contribution from one of
these additional broadening mechanisms to the EPR
linewidth of s spins in the absence of e spins in the sam-
ple. It was shown in [9, 11, 15] that, if the s–e coupling
in a metal is sufficiently strong, then the contribution
from an additional broadening mechanism to the EPR
linewidth can become equal to a certain value δ* differ-

ent from the bare linewidth . The value δ* was esti-
mated in two extreme cases of the s–e coupling. If this

coupling is weak (  ! ), then we have δ* ≈ . In

the case of strong s–e coupling (  @ ), we have

δ* ≈ ( )2Tse. In [9, 11, 15], these relations were pre-
sented for the case of inhomogeneously broadened
EPR lines. However, this exchange narrowing is fairly
universal in character and, therefore, the relations indi-

cated above can also be used in the case where  is the
contribution from the secular part of the dd interaction
to a uniformly broadened EPR line. In what follows, we
include the additional broadening mechanisms indi-
cated above by adding the quantity δ* to the partial

EPR linewidth of s spins [11]  +  in all expres-
sions related to their motion in a transverse plane. The
quantities characterizing this motion are labeled by the
indices (±t), and the partial linewidth of s spins is taken
to be

where, in the case of s–e coupling of arbitrary strength,

the value of δ* is intermediate between  and

( )2Tse.

We differentiate Eq. (13) twice and transform it by
using Eq. (7) and replacing the slow amplitudes by their
steady-state values in the third-order differential equa-
tion thus obtained. Then, we assume that a solution to
this equation can be represented as the sum of a steady-
state solution (without modulation) and a small addi-
tion msz(t) due to modulation. In the case of weak EPR
saturation (where the saturation factor is much less than
unity), the time evolution of this small addition can be
shown to be described by the equation1

1 We note that, in [8, 9], the Bloch–Hasegawa equations were writ-
ten only at frequency ω, which is valid if the harmonics with fre-
quencies ω + Ω and ω – Ω overlap considerably with the funda-
mental resonance line, i.e., if the modulation frequency is much
smaller than any decay rate in the system under study. Further-
more, in calculating the longitudinal response, second-order dif-
ferential equations for msz(t) and mez(t) were used and trans-
formed in much the same way as the third-order equation in this
paper. As a result, the left-hand side of the second-order equa-
tions did not contain detuning and a number of effects associated
with nonresonant EPR saturation were not included.
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(14)

An analogous equation for e spins can be obtained

from Eq. (14) by replacing k(t)  , s  e,
(t)  (–t), and δ  γ.

Using the notation from [4–7], we represent the sum
of msz and mez

in the form

(15)

where u = us + ue and v  = v s + v e are the amplitudes of
slow oscillation of the total longitudinal magnetization
components that are in phase and π/2 out of phase with
modulation, respectively. The voltage that is induced
across a pickup coil oriented along the static magnetic
field also consists of two components (one in phase and
one in quadrature): U = AuΩ and V = Av Ω , where A is
the instrumental factor. Solving Eq. (14) and an analo-
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gous equation for mez(t), we obtain the following
expression for this voltage in complex form:

(16)

where Ks(t) = (1 + k(t)), Ke(–t) = (1 + ), and
the functions

describe the shape of EPR lines corresponding to dif-
ferent modes. The quantities  and k(±L) are

obtained from  and k(±t), respectively, by replacing

δ*  0, and the functions f(Ω, ∆, , ), which
were first defined in [2, 3] for the case of spins of one
type, are given by

(17)

At small values of detuning and (or) low MW-field
modulation frequencies, the results of this paper coin-
cide with those obtained in [9].

In the absence of s–e coupling, Eq. (16) reduces to
the sum of individual complex signals of the longitudi-
nal response of s and e spins, with each individual
response coinciding with the expression derived in [2,
3] for the case of spins of one type (if the decay rates in
Eqs. (16) and (17) are expressed in terms of the times
T1 and T2). As seen from Eqs. (16) and (17), the ω
dependence of the mode signals of the longitudinal
response is different from the shape of the correspond-
ing EPR lines (the frequency dependence of the indi-
vidual response likewise differs from the shape of the
individual EPR signal).

Distortion of the shape of a longitudinal response in
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carbon prepared using a special technology) containing
stable surface free radicals for which the EPR linewidth
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is very sensitive to the oxygen content in the environ-
ment [18]. The modulation frequency of the MW radi-
ation power (wavelength 3.2 cm) was Ω = 107 rad/s.
The figure shows the in-phase and in-quadrature com-
ponents of the longitudinal response (for convenience,
the quantity –V is plotted) and the EPR line (in arbitrary
units), whose shape is described by a Lorentzian curve
with a half-width of 1.6 Oe. (We note that the EPR
spectrum in this material consists of two lines corre-
sponding to paramagnetic centers that are located at
physically different areas of the surface of the activated
carbon; for the sake of simplicity, the second line is not
shown in the figure.) It can be seen that the longitudinal
response as a function of detuning differs in shape from
the EPR (absorption) line. This difference is most evi-
dent for the signal U, which exhibits a dip at its center.
The dashed curves are best fits to the signals U and V
obtained using the formulas from [2, 3] with the param-
eters T1 = 2.2 × 10–7 s and T2 = 7 × 10–8 s. These theo-
retical curves are seen to agree well with the experi-
mental data, which indicates that the conduction elec-
trons in the activated carbon do not affect the signals of
the longitudinal response.

Now, we consider several extreme cases of s–e cou-
pling that are of interest for practical application of the
modulation technique to metals with paramagnetic
impurities.

We assume that, in a relaxation-coupled s–e spin
system, the “coupling efficiency” is high in comparison
with unity (the definition of this parameter for the case
where oscillations are coupled with respect to their res-
onance frequencies is given in [14]). In our case of
relaxation-coupled oscillators, the coupling efficiency
was defined in [8, 9] as the ratio of the quantity charac-

–V

U

3400 3405 3410 3415 3420
Magnetic field, Oe

EPR

In-phase (U) and in-quadrature (V) components of the sig-
nal of the longitudinal response for one of the EPR lines of
surface free radicals in carbonized wood recorded at room
temperature in an oxygen-free atmosphere at a modulation
frequency of 107 rad/s. The uppermost curve is the EPR
(absorption) signal (in arbitrary units), and the dashed
curves are calculations based on the formulas from [2, 3].
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terizing the coupling of spins of two types to the differ-
ence of their partial decay rates:

(18)

If the coupling efficiency is high, i.e., σ @ 1, or, in a
different nomenclature, if there is an efficient relaxation
“bottleneck” (RB) [11], then the decay rates of the nor-
mal modes of the transverse magnetization components
can be approximated by the expressions

(19)

The quantity δ*, involved in the expression for the
decay rate of the s-like normal mode, characterizes an
additional broadening, as mentioned above. Under the

condition  @ , as shown in [9, Appendix], we

have δ* = ( )2 , irrespective of whether the addi-
tional broadening is inhomogeneous in nature with fast
spectral diffusion or is due to dipole–dipole interaction
(this equation is associated with exchange narrowing,
which takes place in the case of a high coupling effi-
ciency [6, 15]). In the case of an efficient RB, the signal
of the longitudinal response is due to narrow modes of
transverse and longitudinal Bloch amplitudes enhanced

by the s–e coupling. Under the conditions  +  <

 +  + δ* and δ* !  min( , ) in the case of
an efficient RB, the signal of the longitudinal response
is proportional to the sum of the magnetizations of the
s and e spins:

(20)

In the case of low coupling efficiency (σ ! 1) and

under the assumption that  +  <  +  +

, the transverse normal mode decay rates are

(21)

The longitudinal normal mode decay rates  are

given by Eqs. (21) with  = 0. In the case of low cou-
pling efficiency, there is no exchange narrowing [6, 9,
15]. The complex signal of the longitudinal response in
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the case of low coupling efficiency can be approxi-
mated by

(22)

In the case of  @ , the e spins relax to equi-
librium with the lattice so fast that their magnetization
is always equal to its equilibrium value; i.e., an isother-
mal limit arises. In this case, temporal variations occur
only in the s subsystem with the corresponding partial
decay rates [12]. The signal of the longitudinal
response is described by the first term in Eq. (22) with
σ = 0.

When the signal of the longitudinal response can be
described by one term (the isothermal limit or the effi-
cient RB), the function f(Ω, ∆, , ) has the form

(23)

where, in the isothermal limit, the effective longitudinal

and transverse relaxation rates are  =  + 

and  =  +  + , respectively; in the case of

the efficient RB, we have  =  and  =

. Note that, in the case of large values of the
detuning and the modulation frequency of the saturat-
ing MW field, the relaxation times T1eff and T2eff can be
determined simultaneously and independently by ana-
lyzing the complicated shape of the signals U and V, as
in the case exemplified in the figure, corresponding to
the isothermal limit and weak s–e coupling. In the case
of intermediate coupling, both terms in the longitudinal
response in Eq. (16) are of importance and the relax-
ation characteristics of the coupled system of s and e
spins can be determined using a fitting procedure, with

 and  being adjustable parameters.

3. CONCLUSIONS

In this paper, we have derived an expression for the
complex signal of the longitudinal response of the spin
system in a metal containing both localized (s) and itin-
erant (e) spins; this expression is valid for arbitrary val-
ues of the detuning ∆ and modulation frequency Ω of
the saturating MW field. In two extreme cases for the
coupling efficiency of s and e spins (the isothermal
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limit and efficient RB), the signal of the longitudinal
response has been expressed in terms of the same func-

tion f(Ω, ∆, , ) that was used earlier to
describe the longitudinal response in systems with
spins of one type [2, 3]; the effective relaxation rates

 and  have been found to be different in these
two extreme cases and have been expressed in terms of
the microscopic parameters of the material. The exper-
imentally measured EPR signals and longitudinal
response of surface free radicals in activated carbon
were adequately described by the theoretical expres-
sions derived for the case of low coupling efficiency of
paramagnetic centers with the conduction electrons.
For arbitrary coupling efficiency, the signal of the lon-
gitudinal response was represented as the sum of two
terms, each of which involves the same function f. In
one term, the arguments of this function are Ω , ∆, ,

and , while in the other term, they are Ω , ∆, ,

and . The decay rates  and  of the trans-
verse and longitudinal magnetization modes can be
determined by fitting the expressions derived in this
paper to the experimental data. The fact that the in-
phase (U) and in-quadrature (V) components of the sig-
nal of the longitudinal response are described by the
same set of parameters makes this problem easier. In
addition, the parameters  can be determined inde-
pendently as the widths of the two mode lines obtained
by decomposing an experimental EPR (absorption) sig-
nal into two Lorentzians [5, 6].

Thus, the theory developed in this paper can form
the basis of an improved technique for measuring very
short electron spin relaxation times in metals and (after
the corresponding extension of the theory) in any solid
material containing several types of exchange-coupled
paramagnetic particles.
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Abstract—The surface morphology and superconducting properties of YBaCuO epitaxial films prepared
through magnetron sputtering from targets of different cation composition were systematically studied. It was
shown that small changes in the growth conditions and relatively small variations in the cation composition of
the condensate noticeably affect the surface morphology of the films and their structural and superconducting
properties, thus offering an efficient way of controlling the YBCO film parameters. It was found that the 90°
off-axis configuration of the magnetron sputtering system permits realization of growth conditions in which the
grown films do not contain CuO precipitates and exhibit good superconducting properties (Tc ≥ 88 K, jc(77 K) ≥
4 × 106 A/cm2). © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is common knowledge that the superconducting
properties of YBa2Cu3O7 – δ (YBCO) films, such as the
superconducting transition temperature, critical cur-
rent, and microwave resistance, as well as the micro-
structure and surface morphology of the films, are
determined by their cation composition. It has also
been established that, irrespective of the method used to
prepare YBCO films (laser ablation, magnetron sputter-
ing, electron beam evaporation, metal-organic synthe-
sis), the optimal superconducting characteristics are
reached for nonstoichiometric compositions. Indeed, it
was shown in [1–4] that films with the highest super-
conducting performance (zero-resistance temperature
Tc0 > 90 K, critical current density jc > 2 MA/cm2 at
77 K, surface microwave resistance RS < 1.0 mΩ at
77 K and 10 GHz) are obtained in a condensate
enriched strongly (up to 100% and more) by copper and
yttrium in the course of film growth. However, particles
of the secondary phase CuO, typically 0.5 µm in size
and with a surface density of 108 cm–2, create serious
problems in the development of devices based on mul-
tilayered structures and Josephson junctions. Films in
the stoichiometry region (1-2-3), while being more
smooth and containing no YBCO secondary-phase par-
ticles, exhibit, as a rule, poorer superconducting prop-
erties (Tc0 < 88 K, jc < 2 MA/cm2, RS > 2.0 mΩ). To
reach optimum superconducting and/or structural
parameters of the films, one needs to vary their (inte-
grated) cation composition over a broad range. The
present communication reports on a study of the effect
of cation composition on the superconducting proper-
ties and microstructure of YBCO thin films prepared
through magnetron sputtering.
1063-7834/03/4511- $24.00 © 22025
2. EXPERIMENTAL TECHNIQUE

The YBCO films were grown in a magnetron sput-
tering system in a 90° off-axis configuration [5]. Disk-
shaped targets were used of the stoichiometric
Y1Ba2Cu3O7 (1-2-3, KIB-1, Giredmet Company) and
1-2-2.5, 1-2-3.3, 1-2.25-3, and 1-2.6-3 compositions
prepared at the IMP RAS. The target diameter was 40–
60 mm, and the ablation zone diameter was 25 mm.

YBCO films 50–70 nm in thickness were grown on
NdGaO3 substrates under the following conditions:
operating mixture pressure (1/1 Ar/O2) 20 Pa, target
voltage ~150 V, and discharge current 400 mA. The
growth temperature Td was varied from 690 to 760°C.
The substrates were heated by a resistance heater using
an In–Ga eutectic alloy. After the deposition, the work-
ing chamber was filled by oxygen to a pressure of 1 atm
and the sample was cooled to room temperature
for ~1 h.

The temperature of the superconducting transition
was determined without contact using a near-field
microwave microscope from the change in the third-
harmonic response intensity within the temperature
interval 4.2–92.0 K [6]. The sensitivity of this method
was 10–14 W Hz–1, and the spatial resolution was
~50 µm [7]. The critical (pinning) current was calcu-
lated using Bean’s model from the measured remanent
film magnetization [8] and reduced to the effective
thickness of the 1-2-3 YBCO phase, which was derived
from x-ray diffraction data.

The surface morphology and local electrical proper-
ties of the films were investigated using scanning probe
microscopy (SPM) on a Solver setup (NT-MDT Com-
pany, Zelenograd). The film microstructure was studied
003 MAIK “Nauka/Interperiodica”
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using x-ray diffraction techniques on a DRON-4 dif-
fractometer.

3. RESULTS AND DISCUSSION

Our planar-magnetron 90° off-axis deposition sys-
tem makes it possible to exclude, to a considerable
extent, the factors which are responsible for deviations
of the condensate composition from the original com-
position of the target and are difficult to control (such
as diffusion-induced changes in the target volume and
the effect of secondary electrons on the growing film).
Therefore, one can control the composition of the con-
densate on the growth surface by properly varying the
cation composition of the targets employed and the
growth conditions, primarily, the deposition tempera-
ture Td. Figure 1 displays the critical temperature and
pinning current (at 77 K) of YBCO epitaxial films plot-
ted vs. deposition temperature for a range of cation
compositions. We readily see that the superconducting
properties of YBCO films of the stoichiometric compo-
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Fig. 1. Deposition temperature dependences of (a) the criti-
cal temperature and (b) the pinning current of YBCO films
of different cation composition obtained in the 90° off-axis
system.
PHY
sition (1-2-3) reach optimum values within a narrow
(~10°C) interval of growth temperatures near 720°C.

3.1. Films of Stoichiometric (1-2-3) Composition

It was shown in [9] that the properties of YBCO
films vary substantially in the course of low-tempera-
ture (Tann < 200°C) vacuum annealing. Our studies
revealed that post-growth vacuum annealing (Tann ~
200°C, duration 20–30 min) increases the supercon-
ducting transition temperature of 1-2-3 films by 1–3 K
(Fig. 1a). This increase is accompanied by a decrease in
the pinning current by 20–40% of the original value
(Fig. 1b). These features in the variation of the film
properties are apparently due to the formation of a per-
oxidized state in YBCO crystallites in the final stage of
film growth (during cooling in an oxygen environ-
ment); in this state, the concentration of conduction
holes in the Cu–O sheets deviates from the optimum
value. In the course of subsequent annealing, the film
looses part of the oxygen, thus optimizing the carrier
concentration in the Cu–O sheets. A change in oxygen
content in a film subjected to low-temperature anneal-
ing was detected by us from the increase in the lattice
parameter c, whose magnitude is connected with the
concentration p of conduction holes in the Cu–O sheet
(reduced to one Cu atom) through the empirical rela-
tions [10, 11]

The oxygen concentration varies differently in crys-
tallites of the YBCO phase and at grain boundaries in a
film. As a result, the critical temperature of the YBCO
matrix and the pinning current, which is governed pri-
marily by intergrain (weak) links, respond differently to
annealing (Fig. 1).

Atomic-force microscopy (AFM) studies showed
that the films prepared in the 90° off-axis system
through sputtering of a stoichiometric target at the opti-
mum growth temperature have a uniform surface con-
sisting of YBCO microblocks (an AFM image of the
film surface is presented in Fig. 2).

The mean film roughness as determined from the
AFM profile is less than 20 nm within a surface area of
10 × 10 µm. The roughness of the films prepared from
a 1-2-3 target increases with increasing deposition tem-
perature Td. Figure 3 displays an AFM image of the sur-
face of an YBCO film deposited at Td = 750°C.

As seen from Figs. 1 and 3, the degradation of the
superconducting properties of the film observed to
occur with increasing Td is accompanied by a roughen-
ing of the surface relief, which is associated, in part,
with the formation of YBCO crystallite outgrowths.
Note that the main structural characteristics of the film,
namely, the half-width of the rocking curve
(FWHM(005)YBCO) and the lattice parameter c, prac-

p 0.187 0.21δ,–=

c 1.2771 0.01557 7 δ–( ).–=
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tically do not change. An important feature of the films
grown in the 90° off-axis system from targets of stoichi-
ometric composition is that they do not have particles
of secondary phases on their surface. The films are
practically single phase and exhibit the following
superconducting parameters: Tc0 > 86 K and jc up to
1.2 × 106 A/cm2 at 77 K. Thus, the results obtained in
our studies indicate that the cation composition of films
prepared in a 90° off-axis configuration is identical to
that of the original 1-2-3 target.

For comparison, Fig. 4 presents an AFM image of an
YBCO film obtained in an inverted cylindrical magne-
tron sputtering (ICMS) system. As shown in [12–14],
films prepared in an ICVS system are enriched in cop-
per and yttrium due to diffusive mass transport occur-
ring in the bulk of the target and selective reevaporation
and desorption of YBCO components from the sub-
strate and the surrounding parts of the system. The sur-
face of these films exhibits CuO precipitates of hemi-
spherical shape, with typical lateral dimensions of 0.5–
1.0 µm and a height of up to 400–600 nm [13]. Films
grown in an ICMS system had the same morphology
within a broad deposition temperature range, from 600
to 750°C. Regions between precipitates have a typical
block structure with a mean roughness of ~15 nm.

The local electrical properties of the films were
studied using scanning tunneling microscopy (STM).
We investigated the spatial distribution of the tunneling
current between the probe and a sample and local cur-
rent–voltage tunneling-junction characteristics at vari-
ous points on the film surface. As follows from the
STM measurements, the regions between CuO parti-
cles in a film have metallic conduction, as should be
expected for the 1-2-3 YBCO phase above the critical
temperature. The shape of the STM I–V curves
obtained on the surface of CuO particles was typical of
a metal–broad-band-gap semiconductor function.

A major factor determining the superconducting
properties of films was shown in [4, 15, 16] to be cation
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Fig. 2. AFM surface image of an 1-2-3 film grown in the 90°
off-axis system at optimum growth temperature (720°C).
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disorder (CD) in the YBCO unit cell. This disorder con-
sists, as a rule, in the formation of copper vacancies in
the CuO chains and in the mutual substitution of Y and
Ba atoms, which distorts the lattice. As a result of CD,
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Fig. 3. AFM surface image of an 1-2-3 film grown in the 90°
off-axis system at a growth temperature of 750°C.
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Fig. 4. AFM surface image of an YBCO film grown in
inverted cylindrical magnetron sputtering system from a
stoichiometric 1-2-3 target.
3



 

2028

  

VOSTOKOV et al.
the carrier concentration in YBCO films deviates from
the optimal value, which degrades their superconduct-
ing properties. Obviously enough, the processes
involved in CD depend, above all, on the cation compo-
sition of the condensate on the growth surface. In the
ICMS deposition system, the crucial parameter is the
Cu/Ba concentration ratio. In this system, at high dep-
osition temperatures (above 720°C), Ba undergoes
intense reevaporation, which brings about a change in
the cation composition of the YBCO film and the for-
mation of CuO secondary-phase particles. The regions
near these particles exhibit modified properties (dis-
torted relief and reduced tunneling conductivity)
because of diffusive depletion in copper during film
growth [13]. As a result of CD (the formation of copper
vacancies), these regions possess degraded supercon-
ducting characteristics. In films obtained at high depo-
sition temperatures (above 740°C), the relative volume
of the nonuniformities actually representing CuO parti-
cles surrounded by such regions exceeds the current
flow threshold, which degrades the superconducting
properties dramatically. Furthermore, CuO particles
contribute noticeably to resistive losses in the micro-
wave range [17] and, hence, degrade the parameters of
microwave devices. To study the effect of cation com-
position on the properties of YBCO films, a series of
samples were deposited in the 90° off-axis system from
nonstoichiometric targets of three types: 1-2-2.5
depleted in copper, 1-2.25-3 and 1-2.6-3 enriched in
barium, and 1-2-3.3 enriched in copper.

3.2. Films with a Reduced Cu/Ba Cation Ratio

Our studies showed that YBCO films obtained from
targets with compositions 1-2-2.5, 1-2.25-3, and 1-2.6-
3, i.e., with a lower than stoichiometric Cu/Ba ratio,
have poor superconducting properties (Fig. 1). Note
that lowering the copper concentration (with respect to
the 1-2-3 stoichiometry) degrades the superconducting
properties more dramatically than increasing the con-
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Fig. 5. AFM surface image of an 1-2-3.3 film grown in the
90° off-axis system at a growth temperature of 750°C.
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centration of Ba atoms. In particular, films prepared
from 1-2-2.5 targets did not reveal any superconducting
phases down to 4.2 K. Studies of the nonlinear proper-
ties of Ba-enriched films (target compositions 1-2.25-3
and 1-2.6-3) performed in the temperature range 4.2–
92 K showed these films to have low critical tempera-
tures (~82 K) and a strongly nonuniform (in Tc) phase
composition. In our opinion, the poor superconducting
properties of the films (or complete absence of super-
conductivity) are associated with CD in the YBCO unit
cell. X-ray diffraction patterns of films with 1-2-2.5,
1-2.25-3, and 1-2.6-3 compositions prepared at Td ≥
720°C showed them to have normal structural parame-
ters; in particular, the lattice parameter was c ≤ 1.17 nm.
This apparently means that deposition in the 90° off-
axis system does not involve reevaporation of Ba atoms
from the growth surface, so that the Cu/Ba concentra-
tion ratio in a growing film remains nonoptimal (below
the stoichiometric value). As a consequence, the excess
of Ba gives rise to substitution of Ba for Y atoms and
the integrated copper deficiency causes cation-vacancy
formation in the Cu–O chains.

3.3. Films with an Enhanced Cu/Ba Cation Ratio

The surface morphology and electrical properties of
films prepared from copper-enriched 1-2-3.3 targets
were found to depend substantially on the deposition
temperature. As is evident from Fig. 1, the deposition
temperature optimal for this composition is 750°C.
X-ray diffraction analysis showed these films to have a
good microstructure. Films obtained at the optimum
growth temperature have Tc0 = 88–90 K. The films have
a high critical current jc ≥ 4 × 106 A/cm2 at 77 K
(reduced to the effective thickness of the c-oriented
YBCO phase). Figure 5 displays an AFM image of the
1-2-3.3 YBCO film with the best superconducting char-
acteristics.

The film features a well-developed surface relief.
Two layers can be conventionally discriminated in the
AFM image of the film. The bottom layer is made up of
merged crystallites. The top layer consists of isolated
microblocks with a real height, as derived from AFM
profiles, of 50–70 nm. Our STM studies showed this
film to feature highly uniform local electrical proper-
ties. Local STM I–V curves obtained in different film
regions were indicative of metallic conduction. No
dielectric inclusions were revealed on the film surface.
It may be conjectured that, despite the targets used hav-
ing been nonstoichiometric (Cu enriched), the growth
microkinetics conditions (growth temperature, deposi-
tion rate, working-gas pressure) are, in this case, such
that the formation of copper-containing particles is sup-
pressed. X-ray diffraction analysis showed the presence
of Y2O3 epitaxial inclusions (Bragg reflection angle
2θ = 33.8°), which are apparently distributed over the
bulk of a film [18].
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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The surface morphology of 1-2-3.3 films grown at
lower temperatures (Fig. 6) is similar to that of films
prepared from stoichiometric targets in the ICMS sys-
tem (Fig. 4). However, the films obtained in the 90° off-
axis system are smoother. Figure 6a presents an AFM
image of a film grown at Td = 690°C. On the surface,
particles about 60 nm high are clearly seen with char-
acteristic lateral dimensions of 500 nm; these particles
are apparently copper-containing precipitates. The sur-
face roughness in the regions free of secondary-phase
particles is within 5 nm. The film has a superconducting
transition temperature Tc0 = 85 K and a fairly low pin-
ning current jc ≥ 5 × 104 A/cm2 (the sensitivity limit of
magnetic measurements).

Thus, our studies show that the deposition of films
from 1-2-3.3 targets at ~750°C and higher temperatures
entails reevaporation of copper atoms from the growth
surface. The enhanced copper concentration in the orig-
inal condensate suppresses CD and, thus, favors the
attainment of improved superconducting properties for
the films. As a result, the films grown in the temperature
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Fig. 6. AFM surface images of 1-2-3.3 films grown in the
90° off-axis system at growth temperatures of (a) 690 and
(b) 720°C.
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interval Td = 690–760°C from 1-2-3.3 targets (Fig. 1)
have a critical temperature higher than 85 K.

4. CONCLUSIONS

Thus, we have carried out a systematic investigation
of the growth, surface morphology, microstructure, and
electrical properties of YBa2Cu3O7 – δ epitaxial films
prepared through magnetron sputtering from targets
differing in composition.

It has been established that the superconducting
transition temperature of YBCO films obtained in the
90° off-axis system is extremely sensitive to the copper
atomic concentration in the flow of sputtered material.
When stoichiometric targets (1-2-3 composition) are
employed, the optimal superconducting properties of
films are reached within a narrow (~10°C) deposition
temperature interval. A 10% excess of copper content
above the stoichiometric value (1-2-3.3 composition)
broadens the growth temperature (Td) range within
which the films exhibit fairly high superconducting
properties (Tc0 > 85 K). Films obtained from Cu-
enriched targets feature a strongly developed surface
morphology and higher superconducting transport
characteristics compared to films grown from stoichio-
metric targets. If the percentage of copper is reduced
(target composition 1-2-2.5), the films grown in the
deposition temperature interval Td = 705–750°C have
practically no superconducting phases down to T =
4.2 K. Ba-enriched films (target compositions 1-2.25-3,
1-2.6-3) exhibit poor superconducting properties and,
as revealed in studies of nonlinear characteristics, a
strongly nonuniform (in Tc) phase composition. It has
been established that the 90° off-axis magnetron sput-
tering configuration makes it possible to realize growth
conditions in which the YBCO films obtained do not
contain CuO particles and feature good superconduct-
ing properties, namely, Tc0 up to 90 K and jc in excess
of 4 MA/cm2 at 77 K.

Low-temperature vacuum annealing (Tann ~ 200°C)
of YBCO films prepared from stoichiometric targets in
the 90° off-axis system increases the critical film tem-
perature by 1–3 K while lowering the pinning current
by 20–40%. Such annealing can be employed to attain
the highest possible superconducting transition temper-
ature for a given film, because it is reversible.

Thus, the surface morphology of films and their
superconducting properties and structure are noticeably
affected by small changes in the growth conditions and
relatively small variations in the cation composition of
the condensate, which provides the possibility of effi-
ciently controlling the parameters of YBCO films. The
growth conditions of YBCO films realized in practice
permit one to optimize their surface morphology (so as
to obtain, in particular, films which would not contain
CuO particles on the surface); such optimization is a
crucial requirement in the preparation of multilayered
structures and the formation of topologically complex
3
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configurations from photolithography. Conversely, in
cases where fine treatment of the sample surfaces is not
required, one can noticeably optimize the supercon-
ducting properties (critical temperature, pinning cur-
rent) of films, which is of crucial importance in reach-
ing the best possible operating parameters of YBCO-
based devices.

ACKNOWLEDGMENTS
The authors are indebted to S.A. Churin and

N.A. Korotkova for assistance in this study.
This study was supported by the Russian Founda-

tion for Basic Research (project no. 02-02-16764) and
the Ministry of Industry, Science, and Technologies of
the Russian Federation, program “Research in Topical
Areas of Science and Technology” (project on experi-
mental and theoretical research aimed at creating a
physical basis for the development of novel compo-
nents and devices for superconducting electronics).

REFERENCES
1. B. Schaulte, M. Maul, P. Haussler, and H. Adrian, Appl.

Phys. Lett. 62 (6), 633 (1993).
2. J. Hudner, O. Thomas, E. Mossang, et al., J. Appl. Phys.

74 (7), 4631 (1993).
3. N. G. Chew, J. A. Edwards, R. G. Humphreys, et al.,

IEEE Trans. Appl. Supercond. 5 (2), 1167 (1995).
4. W. Hattori, T. Yoshitake, and S. Tahara, IEEE Trans.

Appl. Supercond. 11 (1), 3205 (2001).
5. A. K. Vorob’ev, N. V. Vostokov, S. V. Gaponov, et al.,

Pis’ma Zh. Tekh. Fiz. 27 (5), 50 (2001) [Tech. Phys.
Lett. 27, 197 (2001)].
PH
6. E. E. Pestov, Yu. N. Nozdrin, and V. V. Kurin, IEEE
Trans. Appl. Supercond. 11 (1), 131 (2001).

7. E. E. Pestov, V. V. Kurin, Yu. N. Nozdrin, et al., in
Extended Abstracts of 8th International Superconductive
Electronics Conference (ISEC’01), Osaka, Japan, 2001,
p. 499.

8. Yu. N. Nozdrin, A. S. Mel’nikov, I. D. Tokman, et al.,
IEEE Trans. Appl. Supercond. 9 (2), 1602 (1999).

9. Yu. N. Drozdov, S. A. Pavlov, and A. E. Parafin, Pis’ma
Zh. Tekh. Fiz. 24 (1), 55 (1998) [Tech. Phys. Lett. 24, 24
(1998)].

10. J. R. Tallon, C. Bernhard, H. Shaked, and R. L. Hitter-
man, Phys. Rev. B 51 (18), 12911 (1995).

11. M. Ohkudo, T. Kachi, T. Hioki, and J. Kawamoto, Appl.
Phys. Lett. 55 (9), 899 (1989).

12. Yu. N. Drozdov, S. V. Gaponov, S. A. Gusev, et al.,
Supercond. Sci. Technol. 9, A166 (1996).

13. A. K. Vorobiev, Yu. N. Drozdov, S. A. Gusev, et al.,
Supercond. Sci. Technol. 12, 908 (1999).

14. M. N. Drozdov, S. V. Gaponov, S. A. Gusev, et al., IEEE
Trans. Appl. Supercond. 9 (2), 2371 (1999).

15. V. Matijasevic, P. Rosental, K. Shinohara, et al., J. Mater.
Res. 6 (4), 682 (1991).

16. J. L. MacManus-Driscoll, J. L. Alonso, P. C. Wang,
et al., Physica C (Amsterdam) 232, 288 (1994).

17. J. Z. Liu, Y. J. Tian, L. Li, et al., J. Appl. Phys. 77 (3),
1165 (1995).

18. T. I. Selinder, U. Helmersson, Z. Han, et al., Physica C
(Amsterdam) 202, 69 (1992).

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003



  

Physics of the Solid State, Vol. 45, No. 11, 2003, pp. 2031–2035. From Fizika Tverdogo Tela, Vol. 45, No. 11, 2003, pp. 1934–1937.
Original English Text Copyright © 2003 by Gritsenko, Novikov, Shaposhnikov, Wong, and Zhidomirov.

                                                                                                    

SEMICONDUCTORS
AND DIELECTRICS

                                     
Capturing Properties of a Threefold Coordinated Silicon Atom
in Silicon Nitride: Positive Correlation Energy Model*

V. A. Gritsenko1, Yu. N. Novikov1, A. V. Shaposhnikov1, 
H. Wong2, and G. M. Zhidomirov3

1 Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
e-mail: grits@isp.nsc.ru

2 Department of Electronic Engineering, Hong Kong, China
3 Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

Received January 30, 2003

Abstract—The electronic structure and capturing properties of threefold coordinated silicon atoms (≡Si·) and
the Si–Si bond in silicon nitride (Si3N4) were studied using the ab initio density functional theory. The results
show that the previously proposed negative correlation energy (NCE) model is not applicable to Si3N4. The
NCE model was proposed for interpreting the absence of the ESR signal for threefold coordinated silicon
defects and suggested that an electron can transfer between two silicon defects. We proposed that the absence
of this ESR signal is due to the creation of neutral diamagnetic Si–Si defects in Si3N4. This model offers the
most fundamental theory for explaining the hole localization (memory) effect in silicon nitride. © 2003 MAIK
“Nauka/Interperiodica”.
* Carrier capturing in localized states or localization
of electrons or holes is a fundamental process that gov-
erns the electronic properties of many amorphous sol-
ids, such as amorphous silicon, amorphous chalco-
genides (a-Se, a-As2S3), and silicon nitride (Si3N4)
films [1–4]. Amorphous Si3N4 is the most common
material for observing this phenomenon, as it has a
gigantic cross section (5 × 10–13 cm) for carrier captur-
ing. An electron or a hole, after being injected into the
Si3N4 film, can be captured by a deep trap with a life-
time in the localized state of more than ten years at
room temperature [4]. This localization property is
treated as a memory effect from the standpoint of appli-
cation. Its practical application is the use of amorphous
Si3N4 as a gate dielectric in SONOS (silicon–oxide–
nitride–oxide–semiconductor) field effect transistors.
Although this memory effect was discovered for more
than thirty years ago and is widely used in modern sili-
con devices [2, 4–8], the exact nature and kind of
defects responsible for the carrier localization in nitride
films remain a subject of controversy. However, it has
already been agreed that the localization of electrons
and holes in the Si3N4 film is related to the intrinsic
defects created by excess silicon atoms [2, 4, 8, 9].

The intrinsic defects in amorphous solids are
believed to be due to dangling bonds. However, most of
the defects could not be detected with the electron spin
resonance (ESR) measurement in a number of amor-
phous semiconductors and wide-gap polar dielectrics,
such as amorphous SiO2 and Si3N4 films [1–4, 10]. The

* This article was submitted by the authors in English.
1063-7834/03/4511- $24.00 © 22031
signal for an N3Si· defect in silicon nitride, a threefold
coordinated silicon atom with an unpaired electron,
could be detected with ESR only after ultraviolet irra-
diation [11]. For a freshly synthesized nitride film, no
related ESR signal can be detected. This observation
was explained with the negative correlation energy
(NCE) model [12, 13]. This model suggested that two
diamagnetic defects, a positively charged N3Si+ and a
negatively charged N3Si–:, can be formed from an N3Si·
(paramagnetic neutral defects in Si3N4) pair via the fol-
lowing reaction:

N3Si· + ·SiN3  N3Si+: + :–SiN3. (1)

In the NCE model, the repulsive energy (UC) of the
two electrons localized in the Si atom is overcompen-
sated by the energy gain in lattice relaxation with an
energy of UL and the effective correlation energy U =
UC + UL becomes negative. According to the NCE
model, reaction (1) is energetically favorable in the
NCE model and the charged diamagnetic defects
(N3Si+, N3Si–:) are electron and hole traps supposedly
responsible for the memory effect in silicon nitride [2,
8, 14–17]. The most recent ab initio density functional
theory (DFT) calculations [18] showed that the correla-
tion energy for N3Si· defects is equal to 0.1 eV and the
distance between two N3Si· defects was about 3.1 Å.
Hence, the silicon dangling bonds can exchange elec-
trons and the Coulomb interaction at this distance is
strong. However, experiments in [4, 19, 20] showed that

the electron trap density ( ) and hole trap densityNt
e
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( ) in Si3N4 are almost the same and are about 5 ×
1018 cm–3. The mean distance (a) between two traps in
Si3N4 can be estimated from a ≈ (Nt)–1/3 and is about
60 Å, which is much larger than that used in the ab ini-
tio DFT calculation conducted by Pacchioni and
Erbetta in [18]. At the distance estimated from the
experimental trap density, the Coulomb interaction is
too weak to make electron exchange between two N3Si·
defects occur. This data suggests that the defect distri-
bution is highly localized within a tetrahedron or
between adjacent tetrahedra of the network. In addition,
if the distance between two defects is about 3.1 Å, other
mechanisms of carrier localization are also possible. It

Nt
h

(a)

(b)

(c)

Si

N

H

Fig. 1. Cluster models used in the simulation: (a) the 84-
atom cluster for bulk nitride simulation, (b) the 56-atom
cluster for the Si–Si bond simulation, and (c) the 55-atom
cluster for the ≡Si· defect simulation.
PH
has been suggested that electron and hole capturing
could also occur at a neutral diamagnetic ≡Si–Si≡
defect [2, 4, 10, 20, 21]. The validity of these two mod-
els for Si3N4 is still under discussion. This paper aims
to validate the NCE model and the Si–Si bond model in
silicon nitride by using quantum-chemical DFT simu-
lation. Quantum-chemical simulation has been success-
fully used for studying the electronic structures of the
defects in silicon oxide and the electronic properties of
other defects in Si3N4 films [18, 22–25].

The simulations were conducted on N3Si· and N3Si–
SiN3 defects created from the fragments of crystalline
β-Si3N4. Figure 1 shows three clusters used in the sim-
ulation. The 84-atom cluster (Si20N28H36) with a hydro-
gen-passivated surface (Fig. 1a) was used for simulat-
ing the bulk electronic structure of Si3N4 and for esti-
mating the energy gain for carrier capturing. The
56-atom cluster Si14N12H30 (shown in Fig. 1b) was used
for simulating the capturing properties of the N3Si–
SiN3 defect. The 55-atom Si10N18H27 cluster (shown in
Fig. 1c) was used for simulating the properties of the
N3Si· defect. Geometric relaxation of the Si atoms at
different charged states was allowed during the simula-
tion.

We performed ab initio DFT calculations using the
ADF program [26], where the exchange-and-correla-
tion (XC) functional consists of the generalized gradi-
ent approximation (GGA) part GGA–XC. The Kohn–
Sham molecular orbits were constructed using Slater-
type exponential basis functions, and the basis set
includes the double-zeta basis with the polarization
function for all atoms (i.e., the basis set III in ADF ter-
minology). All electrons were included in the valence
basis. In addition, the positions of all Si and N atoms
were fully optimized at the nonlocal DFT level using
the Becke form [27] of exchange and the Lee–Yang–
Parr theory [28].

The energy gains for capturing an electron (∆Ee) and
a hole (∆Eh) were calculated using the formulas

(2)

(3)

where , , and  are the total energies of
the “bulk” clusters for Si3N4 in neutral, negative, and

positive charge states, respectively, and , ,

and  are the total energies for the defect clusters
in neutral, negative, and positive charge states, respec-
tively. If the value of the energy gain is positive, then
capturing of an electron or a hole from the bulk of Si3N4
by the N3Si· or N3Si–SiN3 defect will result in a release
of energy.

The N3Si· defect has been discussed intensively in
the literature as a defect responsible for the carrier
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localization in Si3N4 films [4, 8, 9, 18, 29–31]. In agree-
ment with Pacchioni and Erbetta [18], our calculations
show that the N3Si· defect can be a trap for electrons.
However, our results show that the N3Si· defect cannot
capture a hole, as this process is energetically unfavor-
able. This result was also obtained previously by Pac-
chioni and Erbetta [18]. However, the absence of the
paramagnetic signal in a virgin Si3N4 film indicates that
the N3Si· defect should not be responsible for the mem-
ory effect [2, 10].

To ensure sufficient reliability of the cluster model
for simulating the electronic structure of silicon nitride,
we simulated the x-ray emission spectra of bulk Si3N4.
The calculations were performed in the frozen orbital
approximation. Dipole matrix elements were calculated
between core (Si 1s, 2p, N 1s) orbits and valence orbits.
These matrix elements include, in principle, all inter-
atomic matrix elements between the Slater-type func-
tions centered on different atoms. The calculated spec-
tra were then broadened by convoluting the Lorentz
curves with a width of 0.5 eV. We found that the Si 3d
polarization functions must be included in the basis set
in order to obtain an Si L x-ray emission spectrum that
agrees with the experimental results. Our calculations
also show that the contributions from Si K and N K
emission spectra to the nonlocal transitions are negligi-
ble. Figure 2 shows our calculation results. Previous
experimental results for Si K, Si L, and N K spectra [4]
are also shown for comparison. In general, good agree-
ment between the calculated and the experimental data
is observed. The simulation results show that the main
contributions to the valence band of silicon nitride are
from N 2p, Si 3s, 3p, and 3d orbits.

To verify the NCE model, we calculated the total
energies of the 55-atom cluster with the threefold coor-
dinated silicon atom in three different charge states,
N3Si·, N3Si+, and N3Si–:, using the DFT method. To
estimate the long-range order lattice polarization dur-
ing the charge trapping, we used the simplest approach
based on the classical Born model [18]. According to
this model, the long-range polarization will reduce the
total cluster energy of the defect by 0.7 eV. Our simula-
tion shows that the total energy of the two neutral clus-
ters with the N3Si· defect is 2.1 eV less than the total
energies of the negatively charged N3Si– defect and the
positively charged N3Si–: defects when the long-range
polarization is taken into account. This indicates that
the conversion of a pair of neutral threefold coordinated
silicon atoms N3Si· to a pair of charged diamagnetic
states (N3Si+ and N3Si–:) according to reaction (1) is
energetically unfavorable. Moreover, the energy gain
UL from the lattice distortion cannot overcompensate
the large Coulomb repulsive energy UC. Hence, the
NCE model is not applicable to the carrier capturing of
threefold coordinated silicon atoms in Si3N4. Instead,
we proposed the formation of a neutral diamagnetic
≡Si–Si≡ bond from the ≡Si· defect pair with a positive
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
correlation energy (PCE). The theory was proposed for
silicon defects (Si3Si·) in amorphous silicon [32, 33]
and the O3Si· defect in SiO2 films [34, 35].

The Si–Si bond length in silicon is 2.35 Å, and the
silicon–silicon distance in Si3N4 is about 3.1 Å [2]. In
order to estimate the Si–Si bond length in the N3Si–
SiN3 defect, we performed DFT calculations at MP2/6,
QCISD/6, and B3LYP/6 levels [26]. The (NH2)3Si–
Si(NH2)3 cluster was used for the simulation. To calcu-
late the energy change of the cluster when the Si–Si
bond length deviates from the optimized bond length,
we first fixed the N–H bond length and the angle of
SiNH in the cluster. According to the simulation, the
optimal Si–Si bond length is 2.35 Å, which is the same
as the Si–Si bond length in Si (see Fig. 3). To under-
stand the charged state of a (NH2)3Si–Si(NH2)3 species,
we calculated the Mulliken charge distribution on the
two Si atoms of a (NH2)3Si–Si(NH2)3 cluster. The
increase in the Si–Si bond length is accompanied by an
increase in the total cluster energy and gives rise to a
symmetric charge distribution in both of the Si atoms.
Consequently, two paramagnetic N3Si· species were
created by breaking the Si–Si bond, i.e.,

N3Si–SiN3  N3Si· + ·SiN3. (4)

The symmetric charge distribution obtained in this
work shows that the creation of two charged N3Si+ and
N3Si–: defects at a distance in the range of 2–3 Å is
energetically unfavorable. Instead, the creation of a dia-
magnetic symmetric Si–Si bond is more favorable.

To determine the most favorable state of the Si
atoms, we analyzed the total energies of different clus-
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Fig. 2. X-ray emission spectra of silicon nitride calculated
using the DFT theory (thin lines). Experimental results [4]
are also shown for comparison (thick lines).
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ters. The total energy of the (NH2)3Si–Si(NH2)3 cluster
is 3.15 eV less than that of the two (NH2)3Si· defects,
and the total energies of the N3Si+ and N3Si–: defects
are 2.1 eV greater than that of the two (NH2)3Si·
defects. Hence, the formation of neutral diamagnetic
Si–Si bonds is the most favorable, the neutral paramag-
netic state N3Si· is less favorable, and the formation of
diamagnetic charged N3Si+ and N3Si–: states is the least
favorable.

We also performed a DFT calculation for a Si–Si
bond with a captured hole or electron using the 56-atom
Si10N18H27 cluster. Our DFT simulation shows that the
Si–Si bond in Si3N4 can capture a hole. This result is
similar to the SiO2 case. The calculated energy gain for
the hole captured on the Si–Si bond is about 1 eV. The
hole capturing on a Si–Si bond plays an important role
in silicon devices with oxynitride acting as the gate
dielectric [36]. Si–Si bonds were observed experimen-
tally at the Si3N4–thermal oxide interface in [21].
Excess hole and electron capturings at the interface
have also been found [37, 38].

The presence of Si–Si bonds naturally explains the
absence of the ESR signal in the virgin Si3N4 film. The
model also predicts that the Si–Si defect becomes para-
magnetic after hole capturing. However, experiments
have shown that carrier capturing in Si3N4 cannot be
detected with ESR measurement [2, 10]. An explana-
tion for the absence of the ESR signal in Si3N4 with
captured carriers was proposed in [10, 38]. It was attrib-
uted to the spin coupling of the hole localized by the
Si−Si bond as a result of resonance tunneling via non-
occupied traps [10, 38]. In fact, both electron and hole
localization were found in silicon nitride. Since the
Si−Si bond can capture an electron in amorphous sili-
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Fig. 3. Plot of the total energy of the H6N3Si–SiN3H6 clus-
ter as a function of the Si–Si bond distance.
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con [32, 33], one may suggest that the Si–Si bond in
Si3N4 can also capture an electron. However, the DFT
results do not predict electron capturing by Si–Si bonds
due to the negative energy gain. Thus, we have to find
other possibilities for the electron capturing effect in
silicon nitride. We have suggested that the electron
localization in Si3N4 is due to the twofold coordinated
nitrogen atom [39].

In conclusion, we believe that the creation of a pair
of charged diamagnetic defects, ≡Si+ and ≡Si–:, from a
neutral diamagnetic ≡Si· defect pair with negative cor-
relation energy (NCE) is invalid in silicon nitride for
the following reasons.

(1) New ab initio DFT quantum-chemical simula-
tion results suggest that hole capturing in the N3Si·
defect is energetically unfavorable.

(2) The energy gain UL from the lattice distortion
cannot overcompensate the large Coulomb repulsive
energy UC in the NCE model.

In this connection, we proposed the formation of a
neutral diamagnetic ≡Si–Si≡ bond from the ≡Si· defects
pair with the PCE. Simulation shows that the ≡Si–Si≡
bond in Si3N4 can capture holes. This model explains
the memory effect in silicon nitride.
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Abstract—73As(73Ge) Mössbauer emission spectroscopy is used to ascertain that the transition of the
(Pb0.4Sn0.6)0.86In0.14Te solid solution to a superconducting state is accompanied by a change in electronic den-
sity at the cation sites, and spatial inhomogeneities in the Bose condensate of Cooper pairs are revealed. © 2003
MAIK “Nauka/Interperiodica”.
Semiconductors transfer to a superconducting state,
as a rule, at temperatures as low as a few tenths of a
degree Kelvin [1]. In this respect, (Pb1 – xSnx)1 – zInzTe
semiconductor solid solutions are highly remarkable,
as they exhibit the highest critical temperature observed
thus far in semiconductors, 4.2 K [2].

Following the Bardeen–Cooper–Schrieffer (BCS)
theory, superconductivity is due to the formation of a
Bose condensate of Cooper pairs described by a com-
mon coherent wavefunction, with the electronic density
distributions at lattice sites of the superconductor above
and below the superconducting transition temperature
Tc being different [3]. Studying superconducting mate-
rials with the use of the Mössbauer effect appears a
promising area of investigating the properties of the
Bose condensate; indeed, it becomes, in principle, pos-
sible to detect Bose condensation of Cooper pairs by
measuring the temperature dependence of the center of
gravity S in the Mössbauer spectra of superconductors
[4]. This dependence contains three terms [5]: the first
of them describes the dependence of the isomer shift I
on volume V, the second allows for the effect of the sec-
ond-order Doppler shift D, and the third describes the
temperature dependence of the isomer shift I. The last
term reflects the variation of electronic density at the
sites of Mössbauer nuclei, and it is this effect that is
expected to be observed as the matrix transfers to a
superconducting state.

To make such a study, one has to choose an appro-
priate Mössbauer probe. In particular, attempts at
detecting Bose condensation using Mössbauer spec-
troscopy on the 119Sn isotope in the Nb3Sn supercon-
ductor have not met with success [6]; the experimental
S(T) relation, in fact, could be fitted satisfactorily with
the second-order Doppler shift, and no features in the
behavior of S(T) that could be assigned to a change in
1063-7834/03/4511- $24.00 © 22036
the electronic density on 119Sn nuclei at lattice sites
were observed. In addition, no anomalous variation in
the magnitude of S in the Mössbauer spectra of 57Fe
impurity atoms in high-temperature superconductors
has been found [7]. These observations are accounted
for by the small magnitude of ∆/G (here, ∆ is the largest
attainable difference in isomer shifts of Mössbauer
spectra between the normal and superconducting
phases, G is the experimental width of the nuclear
level), which does not exceed 6 for Mössbauer spec-
troscopy using the 57Fe and 119Sn isotopes.

To detect Bose condensation using Mössbauer spec-
troscopy, one obviously needs to employ a probe for
which ∆/2G @ 10. In choosing objects for the study, the
need to place Mössbauer probes at lattice sites should
also be taken into account. These conditions were
shown in [4] to be met for the 67Zn Mössbauer probe in
cuprate lattices in the 67Cu(67Zn) Mössbauer emission
spectroscopy version. It was established, in particular,
that the transition to a superconducting state changes
the electronic density at the metal sites of cuprate lat-
tices, and a relation was observed experimentally
between the change in electronic density and the transi-
tion temperature of the crystal to a superconducting
state. The expected change in the electronic density at
the sites of 67Zn nuclei in materials with Tc < 10 K turns
out to be extremely small; therefore, reliable observa-
tion of a change in the electronic density upon the
superconducting transition in Pb1 – xSnxTe:In-based
semiconductors using 67Zn spectroscopy is very
unlikely [8].

The present paper reports on a study of Bose con-
densation in (Pb1 – xSnx)1 – zInzTe-type semiconductors
using Mössbauer emission spectroscopy on the
73As(73Ge) isotope. For 73As, we have ∆/2G ~ 2000 [9];
003 MAIK “Nauka/Interperiodica”
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furthermore, the parent isotope 73As can be doped dur-
ing the preparation of (Pb1 – xSnx)1 – zInzTe solid solu-
tions into the sites of both lead (tin) and tellurium [10].

The formation of the 73Ge Mössbauer level after
radioactive decay of the parent isotope 73As is dis-
played schematically in [11]. In view of the fact that the
73Ge daughter atom recoil energy due to the electron
capture in 73As and neutrino emission does not exceed
the energy needed to displace atoms from their normal
positions [12], one may reasonably expect the radioac-
tive transformation not to displace germanium atoms
from normal lattice sites and, hence, the parameters of
73As(73Ge) Mössbauer emission spectra to reflect the
state of 73Ge atoms localized on either the cation or the
anion sublattice.

The 73As radioactive isotope was obtained in the
74Ge(p, 2n)  73As reaction, and the carrier-free 73As
isotope was isolated following a technique based on the
large difference in volatilities between the target and
parent atoms [13]. For this purpose, a proton-irradiated
single-crystal germanium film containing ~98 at. % of
the 74Ge isotope was held for three months (to reduce
the content of radioactive 74As) and was then placed
into an evacuated quartz ampoule. The ampoule end
housing the target was heated for 5 h at 900 K in a tubu-
lar furnace. Upon opening the ampoule, ~80% of 73As
atoms turned out to be sorbed on its inner walls. The
carrier-free 73As deposit was removed with a nitric acid
solution.

Mössbauer sources were prepared through diffusive
doping of (Pb1 – xSnx)1 – zInzTe polycrystalline samples
by radioactive 73As in evacuated quartz ampoules at
773 K for 10 h, the concentration of arsenic impurity
atoms being no greater than 1016 cm–3. The starting
(Pb0.4Sn0.6)0.86In0.14Te samples became superconduct-
ing at Tc ≈ 4.2 K, whereas the starting
(Pb0.4Sn0.6)0.97In0.03Te samples remained in the normal
state down to 2 K. Diffusive annealing did not affect the
value of Tc of (Pb0.4Sn0.6)0.86In0.14Te noticeably.

The 73As(73Ge) Mössbauer spectra were measured
on an SM-2201 commercial spectrometer in the stan-
dard transmission geometry. The absorbers were either
single-crystal 73Ge (when obtaining spectra of the 73Ge
probe on the anion sublattice) or 73GeTe (when obtain-
ing spectra of the 73Ge probe on the cation sublattice).
All absorbers were enriched in 73Ge to ~90 at. %.

We measured spectra with these absorbers and a
Ge : 73As source (a proton-irradiated 74Ge single-crys-
tal target held for two months and subsequently
annealed at 500 K in a hydrogen environment for 5 h).
The spectrum obtained with a 73Ge absorber featured a
single line with a half-width at half-maximum Gexp =
30.8 ± 0.5 µm/s, which is substantially in excess of the
natural 73Ge line (Gnat ~ 6.98 µm/s) and is accounted for
by incomplete annealing of radiation defects in the tar-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
get used as the Mössbauer source. No resonance
absorption was observed with the 73GeTe absorber,
which can be assigned to the large isomer shift (at least,
larger than 103 µm/s) of the Mössbauer spectrum.

In full accordance with [10], the spectra of the
sources (Pb0.4Sn0.6)0.86In0.14Te:73As and
(Pb0.4Sn0.6)0.97In0.3Te:73As taken in the range 2–297 K
are single lines; the widths of these spectra far exceed
the natural width of the 73Ge spectral line (for the spec-
tra measured with the GeTe absorber, Gexp ~ 50 µm/s,
and in the case of the Ge absorber, Gexp ~ 100 µm/s). At
any rate, in the case of the 73GeTe absorber, this broad-
ening is partially due to the distorted cubic germanium
atom environment in the GeTe lattice.

The spectra obtained with the 73Ge absorber should
be assigned to 73Ge0 centers on the anion sublattice of
the (Pb1 – xSnx)1 – zInzTe solid solution (the local envi-
ronment of these centers contain lead atoms); the 73Ge0

atoms form from the 73As atoms on the anion sublattice
of (Pb1 – xSnx)1 – zInzTe. The spectrum measured with the
73GeTe absorber is due to 73Ge2+ centers on the cation
sublattice of (Pb1 – xSnx)1 – zInzTe (the nearest environ-
ment of these centers have tellurium atoms), which
obviously form from the 73As atoms on the cation sub-
lattice of (Pb1 – xSnx)1 – zInzTe. Thus, one may conclude
that arsenic impurity atoms in the (Pb1 – xSnx)1 – zInzTe
lattice are localized on both the anion and cation sublat-
tices.

As already mentioned, to detect Bose condensation
of Cooper pairs in superconductors using Mössbauer
spectroscopy, one has to measure the temperature
dependence of the center of gravity S of a Mössbauer
spectrum. At a constant pressure P, this relation can be
written as

(1)

(The physical meaning of all three terms in Eq. (1) were
given earlier.) Here, 

(2)

∆|Φ(0)|2 is the difference between the electronic densi-
ties on the nuclei under study in the two samples and α
is a constant depending on the nuclear parameters of the
isotope used.

As seen from the figure, the experimental tempera-
ture dependence of the center of gravity S of the spec-
trum corresponding to the 73Ge probe on the cation sub-
lattice of the (Pb0.4Sn0.6)0.97In0.03Te solid solution mea-
sured in the temperature range 2–297 K coincides with
the theoretical relation derived for the temperature
dependence of the second-order Doppler shift 

(3)

δS/δT( )P δI/δ Vln( )T δ V /δTln( )P=

+ δD/δT( )P δI/δT( )V .+

I α∆ Φ 0( ) 2
=

δD/δT( )P 3kE0/2Mc
2( )F T /Θ( )–=
3
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(k is the Boltzmann constant, E0 is the isomer transition
energy, M is the probe nucleus mass, c is the velocity of
light in vacuum, Θ is the Debye temperature, F(T/Θ) is
the Debye function), if one uses the Debye tempera-
tures derived from heat capacity measurements [14].

In the case of the (Pb0.4Sn0.6)0.86In0.14Te supercon-
ducting solid solution, the S(T) relation for the spec-
trum corresponding to the 73Ge probe located on the
cation sublattice of the solid solution at T > Tc is also
described by the second-order Doppler shift (3); for
temperatures T < Tc, however, the quantity S depends on
temperature more strongly than one would expect from
Eq. (3), which suggests that in Eq. (1) one should take
into account the temperature dependence of the isomer
shift.

The situation is different in the case of the 73Ge
probe on the anion sublattice of the (Pb1 – xSnx)1 – zInzTe
solid solutions. As is evident from the figure, the exper-
imental temperature dependence of the center of grav-
ity S of the spectrum in the 2- to 297-K temperature
range practically coincides with the theoretical temper-
ature dependence of the second-order Doppler shift for
both the superconducting and the reference samples.
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Temperature dependences of the position of the center of
gravity S (relative to its position at 4.2 K) of Mössbauer
spectra obtained for 73Ge located on (1, 2) cation sites and
(3, 4) anion sites of the solid solution sources (1, 3)
(Pb0.4Sn0.6)0.86In0.14Te and (2, 4) (Pb0.4Sn0.6)0.97In0.03Te.
The solid line plots the theoretical temperature dependence
of S for the case of the second-order Doppler shift at Θ =
130 K.
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This obviously indicates the presence of spatial inho-
mogeneities in the Bose condensate of Cooper pairs in
the lattice of the (Pb1 – xSnx)1 – zInzTe solid solutions.

Thus, it has been established that the transition to a
superconducting state brings about a change in the elec-
tronic density at the cation sites of the
(Pb0.4Sn0.6)0.86In0.14Te solid solution and that the Bose
condensate of Cooper pairs is spatially inhomoge-
neous.
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Abstract—Propagation of nonequilibrium acoustic phonons in coarse-grained ZnTe obtained through vacuum
sublimation was studied using the heat pulse method under both optical and metallic-heater phonon generation.
The phonon mean free paths in the samples studied were shown to be 14 µm and to be dominated by scattering
from twin boundaries. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Studies of wide band-gap II–VI semiconductor
compounds are stimulated by their numerous areas of
possible application. All these compounds are semicon-
ductors that exhibit direct transitions, which accounts
for the high efficiency of the recombination radiation.
In addition, they have fairly high electrooptical coeffi-
cients and comparatively low dielectric constants.
These features stimulated original ideas, some of which
have been implemented in new components and related
devices. These are, first and foremost, light-emitting
diodes and lasers operating in the near IR and visible
regions, optical filters, solar cells, x-ray and gamma-
radiation detectors, and high-sensitivity electrooptical
sensors for coherent detection at frequencies above
30 THz [1]. Even such a property as a fairly low ther-
mal conductivity, which is largely unfavorable for the
above applications, may find use in developing thermal
insulation layers (heat barriers) in some devices, as well
as in the intercalation of some special-purpose
ceramics.

Extensive application of the II–VI compounds is
still impeded, however, by the serious technological
difficulties inherent in preparing these substances with
controllable electrophysical parameters. To eliminate
these difficulties and develop a controlled technology
for preparing single crystals, granular and polycrystal-
line materials, films, and related multilayer heterostruc-
tures, comprehensive studies of the complex processes
involved in electron–phonon and interimpurity interac-
tions and of the role played by extended defects in the
formation of deep electronic states are presently being
carried out (see, e.g., [2, 3]).

Information on acoustic-phonon mean free paths in
the II–VI compounds, which is needed for low-temper-
ature heat transport calculations, is practically lacking.
This information can be derived, albeit very roughly,
from thermal conductivity measurements. At the same
1063-7834/03/4511- $24.00 © 22039
time, the heat pulse technique permits one to obtain
separate information on the propagation of longitudinal
and transverse phonons. Indeed, separate arrival of
phonons of different polarizations was detected in sin-
gle-crystal ZnTe in [4].

Photoluminescence shows coarse-grained ZnTe pre-
pared by vacuum sublimation to contain a considerably
smaller number of impurities [2]; nevertheless, acoustic
phonons should quite obviously undergo additional
scattering from grain boundaries (as demonstrated in
[5] for CVD-produced diamond films) and from twin-
ning planes (as observed in CdTe in [6]). The present
study was aimed at obtaining information on mean free
paths of acoustic phonons in a coarse-grained material
(ZnTe).

2. SAMPLE

Thick (1.5–2 mm) coarse-grained ZnTe condensates
close in composition to the stoichiometric composition
of the grains were deposited on the walls of a quartz
tube at temperatures below 650°C in dynamic vacuum.
The starting polycrystalline ZnTe was synthesized from
preliminarily purified components at a temperature
~0.5Tmelt, followed by triple purification from chemical
impurities until it reached the stoichiometric composi-
tion (the so-called Pmin point at 650°C). The total con-
tent of impurities was determined using spark mass
spectrometry at an analytical center (laboratory of mass
spectrometry and chromatography at GIREDMET).
The total content of impurities in polycrystalline ZnTe
(with exclusion of the gaseous impurities H, C, N, O, F,
S, Cl) was found not to exceed 0.0006 wt %.

The ZnTe sample under study (ZT04) was a plate
10 × 5 mm in size and 1200 µm in thickness. Figure 1
presents a photograph of its surface made with a
UNION-6551 optical microscope. To reveal the grain
boundaries and emergence of twinning planes more
003 MAIK “Nauka/Interperiodica”
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clearly, the sample was etched in a 12.5 N NaOH solu-
tion for 1 min. The sample is seen to consist of ran-
domly oriented grains, a few tens to hundreds of
micrometers in size, having a twin structure, with the
distance between the twinning planes ranging typically
from a few to tens of micrometers. In addition, on one
side of the plate, separate clusters of pits up to two hun-
dred micrometers in size were visible (Fig. 1).

X-ray characterization of the sample was carried out
on a DRON-2.0 standard diffractometer by using a spe-
cial technique [7] permitting determination of the ori-
entation and structural perfection of an individual

1000 µm

Fig. 1. Image of the ZnTe surface after etching with a
12.5 N NaOH solution. Polycrystalline structure of the
material with a grain size of ~200 µm and emerging twin
planes can be seen.

XY scan

G1 G2

1

2

3

4

5

D

Fig. 2. Schematic of the experiment and the main processes
occurring with nonequilibrium phonons. P stands for
phonon generation by a pulsed laser beam that can sweep
over the front surface of the sample; G1 and G2 refer to
phonon generation by photoexcitation and gold film heat-
ing, respectively; and D denotes a thin-film superconduct-
ing bolometer: case 1 is spontaneous anharmonic phonon
decay, 2 is phonon scattering from point defects, 3 is scat-
tering from plane defects, 4 shows phonons exiting the sam-
ple into liquid helium, and 5 shows bolometer shadowing.

P

PH
grain, as well as the presence of twins in it. The results
obtained agree fully with the etch pattern displayed in
Fig. 1. The reflection profiles corresponding to large
Bragg angles {531} (ΘB = 48.44°) and {620} (ΘB =
53.13°) consist of narrow, well-separated Kα1, Kα2
peaks. This implies that microstrains are absent in the
grains and that there are large regions of coherent x-ray
scattering (>1000 Å). In most grains, one of the 〈111〉
directions lies in the plane of the plate; therefore, the
grains in the plane of the plate are predominantly (100)
oriented. In a few grains, the [111] direction emerges
practically perpendicular to the sample surface. Such
grains do not contain any twin layer traces in the etch
pattern.

3. EXPERIMENTAL

The propagation of nonequilibrium acoustic
phonons was studied using the heat pulse technique in
transmission geometry, where phonons are generated
on the sample side facing the detector. The schematic of
the experiment and the main processes occurring with
phonons are shown in Fig. 2. Nonequilibrium acoustic
phonons are produced in the sample by pulsed excita-
tion P; in this case, two methods of generating nonequi-
librium phonons were employed, namely, photoexcita-
tion of the sample surface G1 by an LGI-21 pulsed
nitrogen laser (λ = 337 nm, τP = 10 ns) and heating by
these pulses of a 150-nm-thick gold film G2 deposited
on the sample surface. The spectra of emitted phonons
differ in these two cases; in fact, in the former case, the
generated phonons have a higher frequency (~3.1 THz)
than in the latter case (<1.5 THz). After this, the
phonons propagate along the sample while undergoing
(1) spontaneous anharmonic decay and elastic scatter-
ing from (2) point defects (isotopes, impurity atoms)
and (3) plane defects (grain boundaries, twinning
planes). If a grain boundary is in contact with liquid
helium, most of the phonons striking it leave the sample
(as indicated by arrow 4).

The arrival of nonequilibrium phonons was detected
on a thin-film bridge-shaped superconducting bolome-
ter D of granular aluminum [8], with a 50 × 70-µm
detecting area. The sample was immersed in liquid
helium at a temperature 1.8 K.

The measuring system included a RUZ-33 broad-
band preamplifier and a computer-controlled V9-5
gated voltage transducer. The time resolution of the
recording system was about 5 ns. The laser beam could
be swept over the front side of the plate to reveal fea-
tures in the spatial distribution of nonequilibrium
phonons in the sample.

The photoluminescence spectra were recorded at
5 K. Optical excitation was produced by a He–Cd laser
with a photon energy of 2.808 eV (441.6 nm). The
spectrum was analyzed using a double monochromator
with a resolution of 0.1 meV. The PM tube output was
measured in the photon-counting mode.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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4. RESULTS AND DISCUSSION

Figure 3 presents a photoluminescence spectrum of
the ZnTe sample. Note the high emission intensity in
the edge region, which exhibits, besides the brightest
A0X line due to photoluminescence of the excitons
localized at neutral acceptors, fairly intense radiation
originating from the lower (LP) and upper (UP) polari-
ton branches, as well as from the free-exciton excited
state (n = 2 FE). Note that the existence of fairly strong
intrinsic radiation in the exciton region, as well as its
shape, attests to the high perfection of the crystallites
and, furthermore, provides indirect evidence of a low
acceptor concentration, whose average value does not
exceed 1015 cm–3. It should also be pointed out that the
acceptor impurities are distributed nonuniformly in the
sample, which is indicated by the asymmetric shape of
the A0X line having a long-wavelength tail. In addition
to the main A0X line, the spectrum also reveals the so-
called two-hole transitions (the line notation is the same
as that in [2]).

The long-wavelength part of the spectrum has weak
lines (Y1, Y2) originating from extended defects. Note
also that our samples do not reveal radiation due to oxy-
gen, which is observed both in single crystals and in
MBE-grown films [2, 9].

Thus, the undoped polycrystalline ZnTe samples
studied here differ from the single crystals reported on
in [10], on the one hand, in that the content of residual
impurities in them is lower (by about two orders of
magnitude) and the concentration of point nonstoichio-
metric defects is a few orders of magnitude lower, and,
on the other, by the presence of a large number of plane
defects (grain boundaries and twinning planes). This
suggests that phonon scattering in polycrystalline sam-
ples should occur primarily from plane defects, such as
twinning planes and grain boundaries, and, hence, have
a different frequency behavior.

Figure 4 depicts a bolometer response over a time of
~50 ns recorded under photoexcitation of the ZnTe sur-
face. The observed peak was assigned in [10] to the
arrival of ZnTe photoluminescence, because direct
propagation of light with a wavelength λ = 337 nm is
ruled out. The amplitude of this peak and the decay
time are substantially less than those observed in ZnTe
single crystals [10], which should possibly be attributed
to the photoluminescence centers being different (in
[10] these centers are apparently oxygen atoms).

Figure 5 displays time-resolved bolometer
responses to the arrival of nonequilibrium phonons pro-
duced in photoexcitation (filled circles) and by a heated
gold film (open circles); the responses were measured
under conditions where the phonons were generated
directly opposite the detector. In these two cases, the
responses are seen to be practically indistinguishable
and to have a characteristic diffusive pattern, i.e., a long
duration (~10 µs) and a smooth leading edge (~2 µs)
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Fig. 3. Photoluminescence spectrum of polycrystalline
ZnTe at 5 K; pump power 20 mW, excitation photon energy
2.808 eV, and spot size 0.5 mm.
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Fig. 4. Bolometer response to the arrival of photolumines-
cence radiation in the sample under study (solid line) and in
a ZnTe single crystal [4, 10] (dashed line). The response
amplitude is normalized to unity to make comparison of the
time behavior possible.
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Fig. 5. Comparison of the experimental response obtained
under photoexcitation (filled circles) and with a heated gold
film (open circles) with Monte Carlo calculations per-
formed for a phonon mean free path λ = 14 µm (solid line).
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shifted noticeably with respect to the time of ballistic
phonon arrival.

Similar responses were observed earlier on samples
of coarse-grained CdTe [6]. These responses were ana-
lyzed by Monte Carlo modeling of nonequilibrium
phonon propagation in the geometry of the experiment
described in [11]. This analysis included a comparison
of the effects produced on the response pattern by spon-
taneous decay and elastic scattering from point defects
and from plane defects. It was shown that, in the cases
where elastic scattering from point defects is dominant,
the response observed even under very strong scattering
has a sharp leading edge starting at the time of ballistic
phonon transit. This is due to the fact that, because the
mean free path for elastic scattering from point defects
is strongly frequency dependent (τ ~ ν–4), a certain part
of the low-frequency phonons forming in the decay
may have mean free paths comparable to the sample
thickness; it is these phonons that account for the sharp
leading edge. By contrast, the intensity of scattering
from plane boundaries depends on phonon frequency
only weakly [12], which places a constraint on the
mean free paths of even low-frequency phonons.
Therefore, in the case where elastic scattering from pla-
nar defects (grain boundaries, twinning planes) is dom-
inant, the response has a characteristic diffusive pattern
with a smoothly rising leading edge. Furthermore, the
pattern of the response is, in this case, practically inde-
pendent of the method by which the phonons were gen-
erated.

The experimental responses demonstrated in Fig. 5
permit the conclusion that scattering from plane defects
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Y, mm

Fig. 6. Bolometer response intensity plotted vs. the position
of the generation area (laser beam spot) on the front sample
surface for detection time 6 µs. The bolometer was on the
rear side of the sample at point (51.2, 17.0).
PH
is dominant here. Therefore, in the model used in the
calculations (as in [6] for coarse-grained CdTe), the
variable parameter was the frequency-independent
phonon mean free path and the decay and scattering
from point defects were neglected. The solid line in
Fig. 5 shows the response calculated using the Monte
Carlo method for the case where the phonon mean free
path is 14 µm (the best fit value). Satisfactory agree-
ment between the calculated and experimental response
is seen. The fact that the mean free path is substantially
shorter than the characteristic size of the grains making
up the sample (Fig. 1) is accounted for by the additional
phonon scattering from twin boundaries inside the
grains, similar to the scattering observed in coarse-
grained CdTe [6].

Figure 6 displays the pattern of the spatial distribu-
tion of the detector signal intensity (bolometer
response) obtained by scanning the sample surface with
a laser beam for a detection time of 6-µs. If the material
were isotropic, the intensity would decrease smoothly
as the beam moves away from the detector. In contra-
distinction to this, spatial nonuniformities in phonon
arrivals, with dips in the signal intensity present in
some directions can be seen in Fig. 6. This nonunifor-
mity is apparently associated with the presence of
either pores or defect clusters in grains, which scatter
phonons significantly more strongly than does the sur-
rounding material and thereby shadow the detector, as
shown in Fig. 2 (case 5).

5. CONCLUSIONS

To sum up, photoluminescence and propagation of
acoustic phonons in high-purity stoichiometric coarse-
grained ZnTe prepared through vacuum sublimation
have been studied at liquid-helium temperatures.
Phonon scattering was shown to occur primarily from
twinning planes, and it is this scattering that determines
the phonon mean free paths of ~14 µm.
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Abstract—Phenomena that accompany optical excitation of eigenmodes of electron gas oscillation in semi-
conductors with an N-shaped current–voltage (I–U) characteristic in a strong electric field are investigated the-
oretically. The dependence of the current flowing through a sample on the oscillation frequency of the interfer-
ence pattern of light illuminating the sample is analyzed. Nonsteady-state and nonuniform illumination pro-
duces an internal electric field, which interacts resonantly with the eigenmodes when the oscillation frequency
of the interference pattern coincides with an eigenfrequency of electronic gas oscillation. As the maximum of
the I–U curve is approached, the interaction becomes nonlinear in character. © 2003 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

An electric current flowing through a semiconductor
gives rise to free oscillations of the electron charge den-
sity (and, hence, of the internal electric field), which are
called space-charge waves (SCWs). The theory of
SCWs was developed fairly long ago [1]; however,
experimental data on SCWs were very scarce [2] until
optical methods for exciting and detecting SCWs came
into use [3–7]. The most efficient method was devel-
oped only recently [8–10]. According to this method,
an interference pattern of light (periodic grating) oscil-
lating about a certain mean position is produced in a
crystal. An interference pattern oscillating with a small
amplitude can be represented as a combination of a
fixed interference pattern (grating) and two gratings
traveling in opposite directions. Illumination brings
about the photogeneration of carriers, and, since an
external electric field is applied to the crystal, a travel-
ing grating produces a forced SCW. If the period and
velocity of the forced SCW (which are dictated by the
period and frequency of the interference pattern) coin-
cide with the period and phase velocity of an SCW
eigenmode, the SCW is excited resonantly.

An important advantage in optical methods is that
an SCW can be excited that has a prescribed wave vec-
tor (by producing an interference pattern of the corre-
sponding period) and the excitation regime can be
changed (to linear or nonlinear) by varying the interfer-
ence contrast m. The excited SCWs can be detected by
both optical and electrical methods. For example, if a
crystal exhibits a noticeable electrooptic effect, an
SCW is accompanied by a refractive-index wave (trav-
eling phase grating), which can cause diffraction of
1063-7834/03/4511- $24.00 © 22044
light [9]. The intensity of a diffracted beam is propor-
tional to the SCW amplitude. In the case of the nonlin-
ear excitation mode (m ≈ 1), SCWs can be detected
using a purely electric method [10], namely, by measur-
ing the direct and the alternating current flowing
through the sample.

To date, SCWs have been studied using relatively
weak electric fields in which the current–voltage (I–U)
characteristics are linear (ohmic) in character. On the
other hand, materials that have N-shaped I–U character-
istics in a strong electric field have been currently
attracting considerable interest. In [11–14], it was
shown theoretically that semiconductors with narrow
electron energy bands have N-shaped I–U characteris-
tics due to heating of the electron gas. The differential
conductivity becomes negative in sufficiently strong
fields, which gives rise to instability of the system with
respect to inhomogeneous fluctuations in the electron
density. As a result, a spatially inhomogeneous moving
domain structure arises in the sample [15]. Phenomeno-
logically, this is similar to the formation of Gunn
domains in multivalley semiconductors [16]. The inter-
est in materials with N-shaped I–U characteristics
increased substantially after artificial GaAs/AlAs
superlattices were synthesized, in which the differential
conductivity becomes negative in relatively weak elec-
tric fields. In this respect, three-dimensional superlat-
tices, which can be fabricated on the basis of zeolite
matrices [17] or from artificial “quantum dots,” hold
even greater promise.

One might expect that, as the instability point is
approached as the electric field is increased, the decay
time of free electron density oscillations will increase
003 MAIK “Nauka/Interperiodica”
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and, therefore, the quality factor of resonance effects
caused by an external driving force will also increase.
It should be noted that in semiconductors, in general,
there are two branches in the spectrum of free oscilla-
tions of the electron density (and, therefore, of the inter-
nal electric field produced by the oscillating electron
density). One of them is the low-frequency branch, for
which Ω1τ < 1, where τ is the recombination time in the
case where free electrons are captured by traps [1, 18].
For the other, high-frequency, branch, we have Ω2τ > 1;
this branch is associated with electron gas oscillation
without electron trapping. Here, Ω1 and Ω2 are the char-
acteristic frequencies of free electron gas oscillations.
We note that, in semiconductors with a high density of
minority carriers, another type of instability can occur
if the carrier drift velocity is sufficiently high [19]; this
instability is not associated with the N-shaped I–U
characteristic and is not considered here.

In this paper, we theoretically investigate free elec-
tron density oscillations with a long decay time occur-
ring in semiconductor structures with N-shaped I–U
characteristics in a strong electric field near the instabil-
ity point. We also discuss possible experimental obser-
vations of such oscillations excited by an oscillating
interference pattern. For this purpose, we calculate the
dependence of the current flowing through a sample (in
the vicinity of the point at which a domain structure
forms) on the frequency of oscillation of the interfer-
ence pattern. Schemes for the corresponding experi-
ments are discussed briefly in the last section of this
paper.

2. NONLINEAR EQUATIONS OF THE MODEL

We assume that, in an illuminated crystal, an oscil-
lating interference pattern of light is formed and that its
intensity W depends on the coordinate x and time t fol-
lowing the law

(1)

where m is the interference contrast; Ω and Θ are the
frequency and amplitude of the phase modulation,
respectively; and Kg is the wave vector. Illumination of
the crystal causes photoexcitation of electrons into the
conduction band at a rate

where the rate g0 is proportional to the intensity W0,
with the proportionality coefficient depending on the
photon energy, absorption coefficient of light, and
quantum yield.

Photoionization produces a nonuniform concentra-
tion n(x, t) of free electrons, which, in turn, generate a
nonuniform electric field E(x, t) in the crystal. These

W x t,( ) W0 1 m Kgx Θ Ωtcos+( )cos+[ ] ,=

g x t,( ) g0 1 m Kgx Θ Ωtcos+( )cos+[ ] ,=
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quantities obey a conventional set of nonlinear differen-
tial equations [20] (see also [21, 22]):

(2)

(3)

(4)

Here,

(5)

 is the equilibrium concentration of free electrons,
ε is the dielectric constant of the crystal, j(x, t) is the
current density in the crystal, I(t) is the total current
density, v  is the drift velocity, and D is the diffusion
coefficient. Equations (2)–(4) are valid if there are
many empty traps in the crystal and, hence, saturation
effects are absent.

Note that the set of equations (2)–(4) differs essen-
tially from the model investigated in [21, 22]. First, in
this paper, we consider conducting crystals, for which
the concentration of free electrons in the dark is non-
zero,  ≠ 0. Second, the adiabatic approximation is not
used and, therefore, ∂n/∂t ≠ 0 in Eq. (2). Third, we do
not ignore the diffusion contribution to the current (pro-
portional to ∝ ∂n/∂x) in Eq. (4).

However, the most essential difference from the
study performed in [21, 22] is that, in this paper, we do
not use the linear approximation with respect to the
electric field in which Ohm’s law is obeyed, the drift
velocity is given by the relation v  = µE, the diffusion
coefficient D is independent of the field, and the Ein-
stein relation µ = eD/kT between the mobility and dif-
fusion coefficient takes place. In what follows, we
assume that the drift velocity v (E) becomes a decreas-
ing function in a certain range and that the D(E) depen-
dence should be calculated independently from a
microscopic model (see, e.g., [23, 24]). In particular, in
the extreme case of a very strong field, we have D(E) ∝
E–2. For superlattices, for example, in the simplest
relaxation time approximation, we have [12]

(6)

The diffusion coefficient can be estimated from the Ein-
stein relation

(7)

∂n x t,( )
∂t

-------------------
n x t,( ) ñ0–

τ
--------------------------+

=  g0 1 h x t,( )+[ ] ε
4πe
---------∂2

E x t,( )
∂x∂t

----------------------,–

ε
4π
------∂E x t,( )

∂t
------------------- j x t,( )+ I t( ),=

j x t,( ) = en x t,( )v E x t,( )( ) eD E x t,( )( )∂n x t,( )
∂x

-------------------.+

h x t,( ) m Kgx Θ Ωtcos+( ),cos=

ñ0

ñ0

v E( ) µE

1 E/E
0( )( )

2
+

-------------------------------.=

D E( ) kTµ/e

1 E/E
0( )( )

2
+

-------------------------------,=
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where E(0) = "/(eτsds) is a characteristic field, τs is the
lifetime of the Stark ladder state, ds is the superlattice
period, µ is the mobility (in the range where Ohm’s law
is obeyed)

In(x) are modified Bessel functions, and ∆ is the width
of the allowed band. A more detailed analysis of the
D(E) dependence shows that, in Eq. (7), the crystal lat-
tice temperature T has to be replaced by the effective
temperature of the electron gas Teff(E) [24].

In order to determine the current in the external cir-
cuit I(t), Eqs. (2)–(4) must be supplemented by a
“boundary” condition. In our case, this condition is the
Kirchhoff equation for the external circuit. If the exter-
nal circuit contains an emf source with a voltage U
across its terminals and a load of resistance R (includ-
ing the internal resistance of the source), then Kirch-
hoff’s law takes the form [22]

where L and S are the length and cross-sectional area of
the sample, respectively. Dividing this additional equa-
tion by L, we obtain

(8)

where Ξ = U/L and ρ = RS/L.
Nonlinear equations (2)–(4) are very complicated.

Therefore, in order to solve these equations analyti-
cally, we simplify them by assuming that the interfer-
ence contrast is low, m ! 1, and represent the sought
quantities in the form

(9)

where E0, n0, and I0 are the field, carrier concentration,
and the current in the external circuit, respectively,
when the illumination of the crystal is constant and uni-
form; that is, these quantities are independent of the
space coordinate and time and are a solution of
Eqs. (2)–(4) at m = 0, i.e., when h(x, t) = 0:

(10)

From condition (8), we obtain a third equation,

(11)

Combining Eqs. (10) and (11) gives the following tran-
scendental equation for the electric field E0 within the
sample under constant illumination and at the given

µ
eds

2τ s∆

2"
2

-----------------
I1 ∆/2kT( )
I0 ∆/2kT( )
-------------------------,=

xE x t,( )d

0

L

∫ RSI t( )+ U ,=

1
L
--- xE x t,( )d

0

L

∫ ρI t( )+ Ξ,=

E x t,( ) E0 δE x t,( ), n x t,( )+ n0 δn x t,( ),+= =

I t( ) I0 δI t( ),+=

n0 ñ0 g0τ , I0+ en0v E0( ).= =

E0 ρI0+ Ξ.=
PH
voltage Ξ across the terminals of the emf source and the
load (specific) resistance ρ:

(12)

The characteristic of the nonlinear element (the sample
under study) described by Eq. (12) gives an implicit
relation between the electric field within the sample and
the voltage across the external emf source. If the v (E0)
curve has a falling section, the following two different
regimes are possible. For sufficiently small values of ρ,
the E0(Ξ) function is single valued everywhere over the
range 0 < Ξ < ∞ (voltage-source regime). As ρ is
increased, the E0(Ξ) function becomes ambiguous and
Eq. (12) has three roots in a certain range of Ξ values
(current-source regime); in this case, the I–U character-
istic of the crystal exhibits hysteresis. In the falling sec-
tion of the I–U curve, due to instability, measurements
in the current-source regime are accompanied by the
formation of moving domains and in the voltage-source
regime, by the formation of a static inhomogeneous
charge distribution [16]. In what follows, we restrict
our consideration to the case of the voltage-source
regime, where the E0(Ξ) function is single valued.

The quantities δE, δn, and δI in Eq. (9) vanish at
m = 0. Therefore, they are small corrections in the case
of a low interference contrast and we can keep only
those nonlinear terms that are quadratic in δE and δn.
Expanding the nonlinear quantities in the field in the
vicinity of the working point E0, we have

where v 0 ≡ v (E0),  ≡ dv 0/dE0,  ≡ d2v 0/d , etc.
Introducing the dimensionless variables

we obtain the following equations for the dimension-
less internal field Y(z, T) and the nonuniform carrier
concentration λ(z, T):

(13)

E0 en0v E0( )ρ+ Ξ.=

v E0 δE+( ) v 0 v 0' δE
1
2
---v 0''δE

2
,+ +≅

D E0 δE+( ) D0 D0' δE,+≅

v 0' v 0'' E0
2

z Kgx, T Ωt, Y δE
v 0'

v 0
------, λ δn

n0
------,= = = =

f
δI

en0v 0
--------------, d v 0Kgτ ,= =

Λ
D0Kg

v 0
-------------, Λ'

D0' Kg

v 0'
-------------,= =

ΩτM
∂Y
∂T
------ Y λ Λ ∂λ

∂z
------ λY+ + + +

+
v 0''v 0

2v 0'
2
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2 Λ'Y

∂λ
∂z
------+ f T( ),=
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(14)

where  = 4π n0/ε.

3. DEPENDENCE OF CURRENT 
ON THE OSCILLATION FREQUENCY 
OF THE INTERFERENCE PATTERN

We seek a solution to Eqs. (13) and (14) in the form
of a Fourier series in terms of the space coordinates and
time:

(15)

In the Fourier representation, Eqs. (13) and (14) take
the form

(16)

(17)

(18)

where Jl(Θ) is a Bessel function.
Using Eq. (17), we eliminate λp, l and obtain a closed

equation for the Fourier components of the internal
electric field Yp, l:

(19)

The additional equation (8) for the current fl in the Fou-
rier representation takes the form

(20)

where σd = en0  is the differential conductivity of the
material at the working point E0.

Note that the Maxwell relaxation time τM, intro-
duced above, becomes negative in the falling section of
the I–U curve, which signifies that the ohmic compo-

Ωτ ∂λ
∂T
------ λ+

g0τ
n0
--------h z T,( ) ΩτMd

∂2
Y

∂z∂T
------------,–=

τM
1–

v 0'

Y z T,( ) Y p l, ipz ilT+( ).exp
p l, ∞–=

∞

∑=

Y p l, 1 iΩτMl+( ) λ p l, 1 iΛp+( )+

+ Y p p'– l l'–, λ p' l', 1 iΛ' p'+( ) Y p' l',
v 0''v 0

2v 0'
2

-------------+
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∑  = f lδp 0, ,

λ p l, 1 iΩτ l+( )
g0τ
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--------hp l, ΩτMdplY p l, ,+=

hp l,
m
2
----Jl Θ( ) δp 1, i

l δp 1–, i
l–
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f lδp 0, Y p l, 1 iΩτMl ΩτM pl
1 i∆p+
1 iΩτ l+
--------------------+ + 

 =

+
g0τ
n0
--------hp l,

1 iΛp+
1 iΩτ l+
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nent of the current “pulls” carriers into the region where
their concentration is higher. In the region where the
ohmic current component becomes greater than the dif-
fusion component, instability arises and a domain
structure can form.

The sought electric current fl can be found from
Eqs. (19) and (20) by setting p = 0:

(21)

Now, we find the Fourier components of the internal
field Yp, l with p ≠ 0 from Eq. (19). For m ! 1, these
components can be calculated analytically. Indeed, it is
easy to verify that, for m ! 1, we have Yp, l ∝  m|p| [22].
Therefore, for p ≥ 1, the summation over p' in Eq. (19)
can be performed from 1 to p. In this case, Eq. (19)
reduces to a recurrent relation, from which Yp, l can be
expressed in terms of Y1, l , Y2, l , …, Yp – 1, l. The Fourier
components with p ≤ –1 can be found from the symme-
try relations

(22)

In this approximation, to within terms linear in m, we
obtain from Eq. (19)

(23)

In Eq. (23), only components Y±1, l are nonzero [see
Eq. (18)]. From Eq. (21), to within terms of order m2,
we obtain a closed expression for the current:

(24)

Putting l = 0 in Eq. (24) and using Eq. (23), we
obtain, after simple algebra, the following final expres-
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sion for the time-independent component of the dimen-
sionless current in the external circuit f0:

(25)

In the most interesting case of a small amplitude of
phase modulation Θ ! 1, we obtain from Eq. (25) an
expression for the change in the direct current caused
by illumination of the sample:

(26)

where

(27)

(28)

Now, we derive an expression for the first temporal
Fourier component of the current. From Eqs. (24) and
(23), after some mathematical manipulation, we obtain

(29)

where

(30)

From Eqs. (26) and (29), it can be seen that δI0(Ω) and
δI1(Ω) have two resonance peaks, with resonance fre-
quencies equal to |ReΩ1, 2 |. These peaks become more
pronounced as the quality factor of the system is
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increased, i.e., with decreasing the quantities ImΩ1, 2.
In [22], only the branch associated with trap recharging
was considered and, therefore, only one extremum was
predicted and observed in the frequency dependence of
both the static and varying components of the current.
In this paper, we take into account both branches of the
oscillation spectrum, with the consequence that two
extrema (minima in the direct and maxima in the alter-
nating component) are found to occur in each current
component. The occurrence of these extrema in the
frequency dependences of the direct and the alternat-
ing current is due to nonlinear interaction of SCWs and
to scattering of SCWs by static charge grating associ-
ated with the static component in the interference
pattern (1).

The minima of the direct current are due to the inter-
action of two SCWs, one of which is proportional to
mΘexp(iKgx + iΩt) and the other to mΘexp(–iKgx –
iΩt). The product of these expressions, describing the
interaction between the SCWs, is equal to m2Θ2 and
does not depend on the space coordinates and time.
This effect is similar to the rectification of light waves
in nonlinear optics. The additional direct current due to
this effect depends on the oscillation frequency of the
interference pattern, because the excitation of SCWs is
resonant in character. In [10], this effect was called the
complete rectification of SCWs. The maxima in the fre-
quency dependence of the alternating current are due to
the scattering of waves mΘexp(iKgx + iΩt) by the static
charge grating, whose amplitude is proportional to
mexp(–iKgx). The product of these expressions,
describing SCW scattering, is equal to m2Θexp(iΩt)
and, hence, depends on time but does not depend on the
space coordinates. In [10], this effect was called the
spatial rectification of SCWs. Note that the complete
SCW rectification is independent of the technique used
to excite SCWs, whereas the spatial rectification effect
is closely related to the SCW-exciting technique (using
an oscillating interference pattern).

4. OSCILLATION EIGENMODES

Here, we show that, physically, the frequency
dependence of the current is resonant in character
because the periodic internal electric field produced by
nonuniform illumination of the crystal interacts with
oscillation eigenmodes of the system. For this purpose,
we show that the resonance frequencies Ω1, 2 given by
Eq. (28) coincide with the eigenfrequencies of electron
gas oscillation. Let us trace the evolution of our system
in the case where a nonuniform electron packet δn(0)(x)
is formed at t = 0. This evolution is described by linear-
ized equations (2)–(4):

(31)
ε

4πe
---------∂2δE x t,( )

∂x∂t
------------------------- ∂δn x t,( )

∂t
---------------------- δn x t,( )

τ
-------------------+ + 0,=
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(32)

Using the initial conditions δn(x, 0) = δn(0)(x) and
δE(x, 0) = 0, we take the temporal Laplace transform
and the spatial Fourier transform of both sides of
Eqs. (31) and (32):

(33)

(34)

Here,

(35)

The solution to Eqs. (33) and (34) has the form

(36)

where Ω1, 2(q) are the oscillation eigenfrequencies of
the system defined by Eq. (28) with Kg replaced by q.

Equation (28) gives the frequencies of two oscilla-
tion eigenmodes of the system consisting of the elec-
tron gas and electron traps in the crystal. It is conve-
nient to investigate these modes in the extreme case of

(qv 0)2 + (τ–1 +  + q2D0)2 @ |ττM |–1, where the fre-
quencies of these modes are sufficiently far apart from
each other. In this case, we have

(37)

(38)

The first mode, described by Eq. (37), is associated
with oscillations of the free electron gas, while the sec-
ond mode [Eq. (38)] is associated with trap-recharging
waves [1, 18].

It is important that these excitations are stable when
the differential conductivity is positive, τM > 0. In the
falling section of the I–U curve, at τM < 0, we have

either ImΩ1 > 0, ImΩ2 < 0 (if τ–1 +  + q2D0 < 0) or,

the reverse, ImΩ1 < 0, ImΩ2 > 0 (if τ–1 +  + q2D0 >
0). Therefore, in the falling section of the I–U curve,
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one of the oscillation eigenmodes is unstable. This con-
clusion becomes obvious if we take into account that

Ω1Ω2 = –(ττM)–1. At the singular point τ–1 +  +
q2D0 = 0, the decay times of both modes are infinite:
ImΩ1, 2 = 0, if (qv 0)2 > –4(ττM)–1.

The branch Ω1 is unstable with respect to long-

wavelength fluctuations when q2D0 + τ–1 < – . This
instability is convective [25], i.e., the quantity δn(x, t)
in Eq. (35) at x = 0 decays with time, if τ–1 +

/(4D0) > – ; therefore, in not very long samples,
this instability may not bring about the formation of
domains. The branch Ω2 in the falling section of the I–
U curve, on the contrary, is unstable to relatively short-

wavelength fluctuations, when τ–1 + /(4D0) < – ,
and its instability is absolute. The phase and group
velocities of this oscillation mode are very small. Insta-
bility with respect to trap recharging was discussed in
[26]. Note that, in the above treatment, we considered
the simplest linear case of carrier recombination, in
which the concentration of empty traps is high. In [1],
more general results are presented for the dispersion
relation of trap-recharging waves.

At a given sign of the wave vector q, the phase
velocities of these two oscillation modes are oppositely
directed, whereas the group velocities have the same
direction, because the phase and group velocities of the
mode Ω2, described by Eq. (38), are oppositely
directed.

5. DISCUSSION OF RESULTS

Relation (26) shows that the dependence of the dc
component of the current flowing through the sample
on the oscillation frequency of the interference pattern
exhibits, in general, two minima at frequencies Ω =
Ω1, 2, which are the oscillation eigenfrequencies of the
semiconductor plasma in the case where carriers are
recaptured by traps. One of these minima, at Ω = Ω2,
corresponding to the interaction with trap-recharging
waves, was observed in [10] in dielectrics Bi12GeO20

and Bi12SiO20 in the region of the linear section of the
I–U curve. In the case considered in this paper of a non-
linear I–U characteristic, this resonance occurs at the
frequency

(39)

where σ = en0v 0/E0 is the electrical conductivity of the
sample. In superlattices for which the I–U curve has a
falling section, the frequency Ωr2 in Eq. (39) decreases
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with increasing applied electric field and vanishes at the
inflection point of the I–U curve.

It should be noted, however, that in the vicinity of
the point σd = 0 the expansion in powers of the small
interference contrast m is invalid, because the m depen-
dence is not analytic in this region. Near the maximum
of the I–U characteristic, nonlinear effects become
important, because the instability point with respect to
spatially inhomogeneous electron density fluctuations
is approached. In our model of carrier recombination,
described by Eq. (2), in the falling section of the I–U
curve at τM < 0, one of the oscillation eigenmodes is
unstable; namely, the first mode becomes unstable to

long-wavelength oscillations at τ–1 +  + q2D0 < 0 and
the second mode becomes unstable to short-wavelength

oscillations at τ–1 +  + q2D0 > 0. The decay rates of
these modes depend on the character of carrier recom-
bination. In particular, even in the case of linear recom-
bination, the right-hand side of Eq. (2) can contain a
term proportional to the charge density, i.e., ∂E(x, t)/∂x,
which causes a significant renormalization of the decay
rates of the modes Ω1 and Ω2. In principle, the results
obtained above are valid not only in the stable section
of the I–U curve (where σd > 0) but also in the falling
section (at σd < 0) if the experimental conditions are
such that a domain structure does not arise. Measure-
ments near the maximum of the I–U curve (σd = 0) are
of particular interest, because the dependence of the
current on the interference contrast m is highly nonlin-
ear in this range and one might expect a sharp
decrease in the decay rate of free oscillations. How-
ever, the theory presented above is not valid in this
range and the basic equations are essentially nonlinear
even when the parameter mg0τ/n0 is very small. We
also note that the mechanism of the resonant depen-
dence of the current flowing through a sample on the
oscillation frequency of the interference pattern is
similar in nature to the well-known enhancement of
electromagnetic oscillations observed in multivalley
semiconductors near the threshold for the formation
of Gunn domains [16].

The results obtained above are valid for a wide
range of values of the external electric field strength. In
particular, in the case of a weak electric field, where

Ohm’s law is obeyed, v 0 = µE0,  =  =  = 0, and
diffusion can be ignored (D0 = 0), Eqs. (26) and (29) in
the adiabatic approximation (Ωτ  0) reduce to the
corresponding expressions for the direct and the alter-
nating current from [22].

In the case where there is no external electric field
and, hence, the current is diffuse in character, only an
alternating current flows through the sample [20]. In
this case, v 0 = 0 and, according to Eqs. (27) and (30),
we have

  

τM
1–

τM
1–

v 0' v 0'' D0'

A± Ω( )v 0 B± Ω( )v 0= ΩτMKgD0.±
PH
Both eigenfrequencies Ω1, 2 given by Eq. (28) are pure
imaginary in this case:

Therefore, in the absence of an external electric field,
we have from Eq. (26) that δI0 = 0 and, according to
Eq. (29), the alternating component of the current is

(40)

This diffusion current induced by an oscillating inter-
ference pattern was investigated theoretically and
experimentally in [27] in a dielectric (n0 = g0τ, τM @ τ)
in the case of zero external load (ρ = 0) in the low-fre-
quency limit Ω ! |Ω2 |. In this extreme case, we have

and Eq. (40) takes the form [27]

(41)

It is clear that, in the absence of an external field, the
current is diffusive in character and, hence, its fre-
quency dependence exhibits no resonance.

In closing, we make quantitative estimates and dis-
cuss possible experiments.

For well-studied sillenite-structure crystals
(Bi12MeO20, where Me = Si, Ge, Ti), when illuminated
with blue–green light of an intensity of the order of
100 mW/cm2, the typical values of the parameters are
µ ≈ 0.2–0.5 cm2/V s, τ ≈ 10–6 s, and τM ≈ 3 × 10–4 s.
Under these conditions, in fields of the order of
10 kV/cm, the low-frequency branch of the spectrum
lies around 100 Hz and the high-frequency branch lies
around 10 MHz for the wave vector Kg ≈ 104 cm–1. In
semi-insulating semiconductors GaAs : Cr and InP : Fe,
the parameters depend strongly on the impurity content.
For fairly high impurity concentrations (~1016 cm–3), the
low-frequency branch lies in the range 1–10 kHz in rel-
atively high electric fields and the high-frequency
branch is likely to lie in the range 10–100 MHz. In
well-conducting semiconductors, the conditions for the
experimental study of SCWs are less favorable,
because the relaxation times τM and τ are very short in
them (τM ~ 10–11–10–12 s, τ ~ 10–9–10–10 s). However, in
materials exhibiting a negative differential conductiv-
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ity, with τM < 0, the conditions for such experimental
studies, on the contrary, may appear to be very favor-
able, because the oscillation decay rate can reach even
zero in them.

We can propose two experimental schemes for
observing the effects in question depending on sample
size. If the spacing between electrodes is much larger
than the period of the interference pattern (equal to
λ/2sinα, where λ is the wavelength of light), then the
transmission geometry is more convenient (Fig. 1a). In
the case where the spacing between electrodes is small
(as is the case, e.g., with superlattices to which an elec-
tric field is applied perpendicular to the layer plane), the
geometry in which light beams propagate in opposite
directions is preferable (Fig. 1b). In this geometry, the
period of the interference pattern is λ/2n, where n is the

(a)

A1 A2 exp(iθcosΩt)

α α

R

+ –

(b)

A2 esp(iΘcosΩt)A1

R

+ –

Fig. 1. Experimental setup (schematic) for optical excita-
tion of space-charge waves by illuminating a crystal to pro-
duce an interference pattern oscillating about a mean posi-
tion. Oscillations of the interference pattern are caused by
phase modulation of one of the beams incident on the crys-
tal; Ω and Θ are the frequency and amplitude of phase mod-
ulation. A1and A2 are the beams forming the interference
pattern. R is the load resistance used to monitor both the
direct and the alternating current in the crystal. (a) Trans-
mission geometry (α is the angle of incidence of the beams)
and (b) geometry with counter-propagating beams.
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refractive index of the layer under study. The wave vec-
tor of the grating in this case is very large, and the avail-
able trap concentration may be insufficient to study the
low-frequency branch of the SCW spectrum. It should
also be noted that, in the geometry with counter-propa-
gating light beams, transparent electrodes have to be
used.
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Abstract—An electrostatic model describing the dependence of the thermal ionization energy of impurities on
their concentration, compensation factor, and temperature is developed. The model takes into account the
screening of impurity ions by holes (electrons) hopping from impurity to impurity, the change in the impurity-
band width, and its displacement with respect to the edge of the valence band for acceptors (conduction band
for donors). The displacement of the impurity band is due to the functional dependence of the hole (electron)
affinity of the ionized acceptor (donor) on the screening of the Coulomb field of the ions. The spatial distribution
of the impurity ions over the crystal was assumed to be Poisson-like, and the energy distribution was assumed
to be normal (Gaussian). For the relatively low doping levels under investigation, the behavior of the density of
states at the edges of the valence and conduction bands was assumed to be the same as for the undoped crystal.
The results of the numerical study are in agreement with the decrease in the ionization energy that is experi-
mentally observed for moderately compensated Ge : Ga as the temperature and the doping level are decreased.
It is predicted that the temperature dependence of the thermal ionization energy has a small anomalous maxi-
mum at small compensation factors. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The thermal ionization energy is the energy required

for the dissociation of the bound electron–donor (hole–
acceptor) state at a given temperature due to thermal
fluctuations.1 The value of the thermal ionization
energy determines the temperature dependence of the
concentration of free charge carriers. In doped semi-
conductors, this concentration is determined by ioniza-
tion–recombination equilibrium between the electrons
(holes) and impurity atoms (see, for example, [1]). For
hydrogen-like impurities, certain limiting dependences
of the low-temperature thermal ionization energy (E1)
on the concentration and compensation factor of these
impurities were analyzed in [2, 3]. While analyzing the
ionization equilibrium in doped semiconductors, the
energy E1 is usually supposed to be dependent on tem-
perature T by analogy with the temperature dependence
of the activation energy for the reactions occurring in a
molecular gas [4] or a plasma [5]. However, the partic-
ular E1(T) dependence for semiconductors has not been
reliably determined either theoretically or experimen-
tally. For example, the influence of the screening of
ions on the degree of ionization of noncompensated
hydrogen-like impurities was analyzed as a function of

1 The optical ionization energy is the minimum photon energy
required for the transition of the electron (hole) from the bound
state to the continuous-spectrum state at a fixed localizing poten-
tial (according to Franck and Condon).
1063-7834/03/4511- $24.00 © 22053
temperature for a special case in [6]. In [6–11], the dis-
persion of the impurity energy levels, i.e., the formation
of an impurity band with a finite width in the energy
gap of the semiconductor was not taken into account.
At the same time, knowledge of the E1(T) dependence
is of importance in analyzing the temperature depen-
dences of the electrical conductivity [12], the ther-
mopower [13], and the electron paramagnetic reso-
nance spectra [14].

As an illustration, let us consider the following two
examples. In [15], it was assumed that the nitrogen
impurity in 6H-SiC : N is almost completely ionized at
room temperature even at high doping levels; as a
result, a highly underestimated (in comparison with the
experimental data) critical concentration of about 2 ×
1019 cm–3 was obtained for the metal–insulator transi-
tion. Taking into account the actually small degree of
ionization of the nitrogen impurity leads to a quite dif-
ferent value of 2 × 1020 cm–3 [16]. According to esti-
mates made in [17], it follows from the experimentally
measured conductivity that the metal–insulator transi-
tion in type-IIa natural diamond single crystals (after
ionic implantation of boron followed by annealing)
occurs at a boron concentration of about 1021 cm–3. At
the same time, optical measurements (based on a sharp
decrease in the radiant energy of the bound exciton) on
growing boron-doped diamond films gave only
1020 cm–3 [18].
003 MAIK “Nauka/Interperiodica”
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This paper is devoted to a numerical study of the
thermal ionization energy of hydrogen-like impurities
in crystal semiconductors at relatively low doping lev-
els, that is, far from the metal–insulator phase transi-
tion. The contribution from the excited states of the
impurity to the statistics, as well as the broadening and
shift of the impurity band2 with respect to the edge of
the allowed band closest to it, is taken into account. A
comparison with the existing models [10, 21, 22]
describing the temperature, concentration, and com-
pensation dependences of the thermal ionization energy
is made.

2. NECESSARY FORMULAS

Let us consider a p-type crystal semiconductor.3 In
this case, the equation of electrical neutrality is

(1)

where p is the hole concentration in the valence (v)
band, N = N0 + N–1 is the concentration of acceptors in
charge states (0) and (–1), and K is the compensation
factor of the acceptors due to their compensation by
donors (KN is the concentration of positively charged
donors).

At low temperatures, where the thermal ionization
energy E1 is determined, the de Broglie wavelength of
the delocalized holes is large and they are not affected
by the fluctuation potential; that is, the tail of the hole
density of states in the v  band can be neglected [26]. In
this case, the concentration of the free holes is deter-
mined by the equation [21, 22]

(2)

where gv =  is the density of states of

holes with effective mass mp and energy E in the v  band

of a crystal of unit volume, fp =  + exp

is the Fermi–Dirac distribution, kBT is the thermal

2 Here, the so-called classical impurity band is considered [19, 20]
for which the shift of the energy level of an impurity atom with
respect to the bottom of the conduction band or the top of the
valence band of the crystal can be assumed equal to the electro-
static potential energy of the interaction between the impurity
atom and the other charged impurities and delocalized carriers.

3 The conductivity type is not of importance. We choose a p-type
semiconductor in order to compare our results with the experi-
mental data for moderately compensated p-Ge : Ga samples
doped by thermal reactor neutrons [23–25].
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energy, EF < 0 is the Fermi level with respect to the top
of the v  band (the Fermi level lies in the band gap), and

=  

is the Fermi–Dirac integral.
It should be noted that the calculation of the effec-

tive (density-of-states) mass mp depends on the type of
the particular semiconductor. In p-Ge, for example, the
effective mass is determined by the effective masses of

the light (ml) and heavy (mh) holes: mp = (  +

)2/3 = 0.384m0 [27–29]. The spin–orbit split-off
energy subband is 290 meV below the top of the v  band
(at T ≈ 1.5 K), which significantly exceeds the energy
level of the Ga atoms (Ia ≈ 11.32 meV). Thus, the con-
tribution from this subband to the effective hole mass
can be ignored. In the crystalline diamond, however,
the contribution from the mass ms in the spin–orbit
split-off subband should be taken into account, because
its splitting from the v  band is only 6 meV in this case,
which is much smaller than the energy level of the main
acceptor impurity in diamond (Ia ≈ 370 meV) [30]. For
this reason, the effective hole density-of-states mass is

now mp = (  +  + )2/3 = 1.249m0, where
mh = 1.08m0, ml = 0.36m0, and ms = 0.15m0 [28, 29].

If the distribution of the energy levels of the ion-
ized acceptors is Gaussian, then the concentration of
the ionized acceptors in the energy gap of the crystal
is [2, 3]

(3)

where

(4)

is the normal (Gaussian) probability density of the
acceptor energy levels Ea with the average value ;

(5)

is the probability that an acceptor with energy level Ea
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acceptor [7–10, 21, 22] having lt levels, namely, the
ground state (l = 1) and lt – 1 excited states.

In Eq. (5), it is taken into account that the degener-
acy factor of the lth excited state of the acceptor in the
(0) charge state is larger than that of the ground state by
a factor of l2 and is equal to βal2. It is also assumed that
the ionization energy of the acceptor in the lth excited
state is E–1 – E0(l) = Ea/l2, where Ea is the ionization
energy of the ground state (l = 1).

For p-Ge, the degeneracy factor of the ground state
of hydrogen-like acceptors is βa = 4, because only light
and heavy holes are taken into account in the v  band.
For the p-type diamond, we have βa = 6, since three
hole subbands are of importance in considering at the
thermal ionization of boron atoms.

If only the Coulomb interaction with the nearest
neighbors (ionized impurities or holes) is taken into
account, then the root-mean-square fluctuation of the
acceptor potential energy in the (–1) charge state is [2, 3]

(6)

where ε = εrε0 is the dielectric permittivity of the crystal
lattice and 2N–1 = p + KN + N–1 is the total concentra-
tion of point charges in the crystal.

The energy of the average acceptor level (in the mid-
dle of the acceptor band) decreases as the doping level
increases, because the attracting Coulomb field of the
ions is screened by the holes from the acceptor and v
bands [2]:

(7)

where Ia = e2/(8πεaH) is the energy level of an isolated
acceptor above the top of the v  band, aH is the Bohr
radius, Λs is the screening length of the electrostatic
field, d ≈ 0.554[(1 + K)N]–1/3 is the average distance
between the nearest neighbor impurity atoms, and e is
the magnitude of the electronic charge.

The maximum number lt of levels of the neutral
acceptor can be estimated from the condition that the
Bohr radius of the outer orbit of a hole aH(lt) =

/(8πεIa) does not exceed half the average distance
between the nearest neighbor impurity atoms [5]. From
the equality aH(lt) = d/2, we obtain the following
expression for the number of levels (ground and excited
states):

(8)

where (1 + K)N is the total concentration of the hydro-
gen-like acceptors and donors in the crystal and lt = 1,
2, 3, … is the minimal integer.
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It should be noted that, in p-Ge : Ga (εr = 15.4, Ia =
11.32 meV, K = 0.35), according to Eq. (8), the hole–
acceptor bound state is absent at the concentration of
Ga atoms N > 2.23 × 1017 cm–3. The value of N esti-
mated using Eq. (8) is close to the critical concentration
of Ga atoms NM ≈ 1.85 × 1017 cm–3 [31], which corre-
sponds to the metal–insulator phase transition (Mott
transition) at the temperature T  0 for K = 0.35.

If the screening of the Coulomb field of an ion by
free holes (index p) and by holes hopping from acceptor
to acceptor (index h) is taken into account, the screen-
ing length Λs is determined by the formulas [32]

(9)

For p ! K(1 – K)N at low temperatures, when N–1 ≈
KN, Eq. (9) yields [2]

(10)

Substituting Eq. (6) into Eq. (10) at T  0, we

obtain Λs ≈ Λh ≈ 0.82K1/6N–1/3exp( /4), where the

value of γa = (EF + )/Wa can be found from the equa-

tion 1 – erf(γa/ ) = 2K.

3. NUMERICAL STUDY OF THE THERMAL 
IONIZATION ENERGY

Let us compare the numerical results obtained by
following this scheme and the experimentally observed
thermal ionization energy E1. The experimental value
of the thermal ionization energy of hydrogen-like
impurity atoms in a semiconductor can be found from
the temperature dependence of the free-hole concentra-
tion p(T) using the formula [10, 21, 22]

(11)

In what follows, we consider the E1(T) dependence
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metal–insulator transition. Therefore, the divergence of
the dielectric function at the critical point can be
neglected and the dielectric function can be taken to be
equal to its value for the pure material.

We calculate the temperature dependence of the
thermal ionization energy of Ga atoms in Ge : Ga sam-
ples with N = 1015 cm–3 and different compensation fac-
tors using the following parameters [27–29]: Ia =
11.32 meV, mp = 0.384m0, and εr = 15.4. The depen-
dences calculated using Eq. (11) by employing
Eqs. (1)–(9) are shown in Fig. 1a (curves 1–3). For
comparison, the temperature dependences of the ion-
ization energy of hydrogen-like Ga acceptors in p-Ge
are shown by dashed lines (curves 1'–3'), which are cal-
culated for the “ideal” semiconductor, that is, for an
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Fig. 1. Calculated temperature dependences of the thermal
ionization energy E1 of Ga atoms and of the screening
length Λs of the Coulomb field of an impurity ion for differ-
ent values of the compensation factor K of Ga atoms in p-
Ge: (1, 1') K = 0.1, (2, 2') 0.5, and (3, 3') 0.9. (a) Curves (1–
3) show E1 calculated for Ia = 11.32 meV and N = 1015 cm–3

from Eq. (11) with the use of Eqs. (1)–(9); curves (1'–3')
correspond to E1 calculated for the case when Wa  0

and   Ia simultaneously. (b) Curves (1–3) show Λs

calculated for N = 1015 cm–3 from Eq. (9) with the use of
Eqs. (1)–(8); curves (1'–3') are calculated from Eq. (9) for

Wa  0 and   Ia.

Ea

Ea
PH
infinitely narrow acceptor band (Wa  0) without
considering its shift with respect to the top of the v
band (   Ia). It is seen that if the broadening of the
impurity band and its shift towards the v  band are taken
into account in accordance with the experimental data
[33] for n-Ge : As, the thermal ionization energy E1 of
Ga atoms increases as the compensation factor
increases.

According to our model, the thermal ionization
energy E1 slightly increases at K = 0.1 (Fig. 1a) in the
low-temperature range, because the center of the impu-
rity band  shifts from the v  band deep into the band
gap (due to an increase in the screening length, see
Fig. 1b) and this shift exceeds the increase in the impu-
rity band width Wa on heating.

Figure 1b shows the dependence of the screening
length of the Coulomb field of an ion on the thermal
energy kBT; the screening length is measured in units of
the Bohr radius aH = ε2/8πεIa, and the thermal energy is
reduced to Ia. The dependence is calculated using
Eq. (9) taking into account Eqs. (1)–(8). The nonmono-
tonic behavior of the screening length is noticeable at
low temperatures, where the thermal ionization energy
E1 is virtually constant. If the finite width of the accep-
tor band is taken into account, then the screening length
at T  ∞ does not vanish but tends to a finite value,
because, in contrast to the case when Wa  0 and

  Ia (dashed curves), the screening length is
determined by the density of states in the impurity band
at the Fermi level in this case. At high temperatures,
where all acceptors are ionized, the screening length

becomes equal to the Debye screening length,  ≈

 = e2p/εkBT ≈ (e2/εkBT)(1 – K)N, because the holes
hopping from acceptor to acceptor do not contribute to
the screening length in this case.

It should be noted that, at p ! K(1 – K)N, the screen-
ing length given by Eq. (9) is equal to Λs ≈ Λh =
[εkBT/e2K(1 – K)N]1/2 for Wa  0 [34, 35]; therefore,
curves 1' (K = 0.05) and 3' (K = 0.95) coincide at low
temperatures.

Figure 2 shows the dependence of the Fermi level EF

(curve 1) on the compensation factor K for T  0.
This dependence is calculated from the equation of
electrical neutrality N–1 = KN by taking into account
Eqs. (3)–(8). The circles show the numerically calcu-
lated dependence obtained in [19, 36]; dashed line 2
corresponds to the analytical expression for –(EF +
Ia)/Ia derived in the framework of the model proposed
in [20]. It should be noted that, for the case when T 
0, Wa  0, and   Ia, the Fermi level tends to Ia

for compensation factors 0 < K < 1.
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4. COMPARISON WITH THE EXPERIMENT
In Fig. 3, the symbols (squares, circles, triangles)

show the temperature dependences calculated from
Eq. (11) with the use of the experimental data from [12]
for samples of the neutron transmutation–doped
Ge : Ga with different doping levels.4 The experimental
values of p(1/T) were approximated by a sixth-degree
polynomial on a semilogarithmic scale, and then the
reciprocal-temperature derivative was found analyti-
cally. It should be noted that, in the range of hopping
conduction via acceptors, the dependence of lnp on 1/T
was straightened according to the relationship p =
(eRH)–1(1 + σh/σv )–2 (see, for example, [7, 12, 37]),
where RH = Rv is the Hall coefficient for holes in the v
band and σv and σh are the conductivities correspond-
ing to the band (v) and hopping (h) mechanisms of the
hole transport, respectively. If 2 × 1014 < N < 2 ×
1016 cm–3 and K ≈ 0.35, then, according to the experi-
mental data [12, 37], the conductivity due to holes in
the v  band σv becomes equal to the hopping conductiv-
ity σh via Ga atoms at the temperature Th given by Th =
5.3 × 10–4N0.27, where [Th] = K and [N] = cm–3.

The curves in Fig. 3 show the temperature depen-
dence of the thermal ionization energy calculated from
Eq. (11) with the use of Eqs. (1)–(9). It is seen that the
result obtained in our model is in good agreement with
the experimentally observed dependence of the thermal
ionization energy on the doping level and temperature.

Let us compare curves 1–3 in Fig. 3 with those cal-
culated within a model that takes into account the “hop-
ping” screening of the Coulomb field of the impurity
ions at each act of thermal ionization of the correspond-
ing neutral atom [38]. According to [38], the energy
level of the “average” acceptor at high temperatures
(kBT @ Wa) is given by

(12)

Dashed line 1' in Fig. 3 shows the E1(T) dependence
calculated from Eq. (11) with the use of Eq. (12) for
N = 3.7 × 1014 cm–3 and K = 0.35 in the infinitely narrow
impurity band approximation, where ga tends to the

Dirac delta function δ(Ea – ). For the concentrations
corresponding to curves 2 and 3, the values of E1(T) cal-
culated from the model proposed in [38] are much
smaller than E1/Ia = 0.5.

Figure 4 shows the dependences of –kBT(dp/dEF) on
the position of the Fermi level EF < 0 in the energy gap
of p-Ge : Ga (N = 6.3 × 1015 cm–3, K = 0.35) as the tem-
perature increases from 10 to 100 K. These depen-
dences are calculated using the method proposed in
[39] with the use of Eqs. (1)–(9). It is seen that if the

4 In [12], the experimental data were processed under the assump-
tion that the Hall factor for holes in the v  band is equal to 1 over
the whole temperature range covered.
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finite width of the acceptor band and the shift of this
band towards the v  band are taken into account, the
agreement with the experimental data from [12] is, in
general, better than in the case where Wa  0 and
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Fig. 2. (1) Dependence of the Fermi level EF reduced to the
ionization energy of a single Ga atom Ia = 11.32 meV in ger-

manium on the compensation factor K for N = 1015 cm–3 at
temperature T  0 (1). Circles show the results of the
numerical study performed in [19, 36]; curve (2) corre-
sponds to –(EF + Ia)/Ia calculated in the framework of the
model proposed in [20].
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Fig. 3. Temperature dependence of the thermal ionization
energy of Ga acceptors in p-Ge (K = 0.35). The points cor-
respond to experimental data from [12]. Curves (1–3) show
the E1(T) dependence calculated from Eq. (11) with the use
of Eqs. (1)–(9); curve (1') is calculated using the model pro-
posed in [38]. (1, 1') N = 3.7 × 1014, (2) 2.3 × 1015, and
(3) 6.3 × 1015 cm–3.
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1015 cm–3 and K = 0.35. The experimental data (triangles)
are taken from [12]; the solid line is calculated from
Eqs. (1)–(9); the dashed line is calculated for Wa  0 and
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The adequacy of our model can also be tested by
analyzing the concentration dependence of the temper-
ature T1/2 at which exactly half the neutral (at T  0)
impurity atoms becomes ionized (Fig. 5). It can be
derived from Eq. (1) that the relationship p(T1/2) =
N−1(T1/2) – KN = (1 – K)N/2 holds for T1/2 (here, it is
taken into account that KN acceptors are already ion-
ized at T  0). Thus, p(T1/2) is the concentration of
holes at the temperature T1/2 where only half of the (1 –
K)N neutral acceptors are ionized: N–1(T1/2) = (1 +
K)N/2. Knowing the concentration of acceptors N and
their compensation factor K due to donors, one can esti-
mate the value of T1/2 from the experimental tempera-
ture dependence of the hole concentration by using the
expression for p(T1/2). Figure 5 shows the dependence
of the temperature T1/2 on the concentration of accep-
tors N (reduced to NM ≈ 1.85 × 1017 cm–3) calculated by
Eqs. (1)–(9) for p-Ge with the compensation factor K ≈
0.35. For comparison, the values of T1/2 found using
experimental data from [12, 37] and the procedure
described above are also shown in Fig. 5. The down-
ward deviation of the experimental point for the Ga
concentration N > 3 × 1016 cm–3 from the calculated
curve is due to the fact the metal–insulator transition is
being approached and, seemingly, due to the effect of
the tails of the density of states of the v  band on the
thermodynamics of the ionization processes. According
to Eq. (8), the break of the solid curve in Fig. 5 is asso-
ciated with the transition from the number of levels lt =
2 to lt = 1 (no excited states), which occurs as the con-
centration of the Ga atoms in Ge is increased. The
dashed line corresponds to the case where there are no
bound states in the system of a hole and a Ga atom (i.e.,
lt < 1) and the temperature T1/2  0. It should be noted
here that the calculated T1/2(N) dependence for the ideal

crystal (Wa  0;   Ia) actually coincides with
the above calculation (solid curve in Fig. 5). Therefore,
the finite width of the impurity band can be revealed
only by using differential dependences (Figs. 1, 3, 4).

5. CONCLUSIONS

Thus, a theoretical description of the dependence of
the thermal ionization energy of a hydrogen-like impu-
rity on the temperature, concentration doping-impurity,
and compensation factor of the impurity has been
developed for crystal semiconductors in a region that is
sufficiently far from the metal–insulator transition
point. The model developed in this paper predicts the
following feature in the temperature dependence of the
thermal ionization energy for different values of the
compensation factor: at intermediate and large values
of the compensation factor, the thermal ionization
energy drops with increasing temperature, whereas at
small values of the compensation factor this energy can
increase in a certain temperature range. The weak
increase in the thermal ionization energy with tempera-
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ture occurs because the center of the acceptor band
shifts from the v  band and this shift becomes larger
than the acceptor band broadening as the temperature
increases in the range kBT ! Ia.

The numerically calculated temperature depen-
dence of the thermal ionization energy has been found
to agree with the experimental data for moderately
compensated Ge : Ga samples produced by neutron-
transmutation doping.
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Abstract—The influence of the surface electric field on the low-temperature (T = 77 K) photoconductivity
spectra of CdS crystals in the region of exciton and interband transitions is experimentally studied by the field-
effect method. The photoconductivity spectra of a semiconductor are numerically calculated in the framework
of a model allowing for the dependence of the surface recombination rate of nonequilibrium charge carriers on
the surface electric field. It is demonstrated that the surface electric field plays a decisive role in the formation
of the fine spectral structure associated with the excitons. A correlation between the type of fine structure and
the surface bending of the energy bands is revealed. It is shown that the surface electric field can be evaluated
from the shape of the low-temperature photoconductivity spectrum of the semiconductor. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Low-temperature band-edge photoconductivity
spectra of CdS crystals and their evolution under the
action of external factors have been studied in a large
number of works.1 Despite the great variety of photo-
conductivity spectra, Gross and Novikov [1] succeeded
in separating characteristic types of spectra and, on this
basis, classifying semiconductor crystals. Photocon-
ductivity spectra are separated into two types, depend-
ing on whether maxima (first type) or minima (second
type) of photocurrent correspond to exciton absorption
lines. According to the spectroscopic classification pro-
posed for semiconductor crystals with a natural surface,
crystals can also be divided into two groups: the first
group of crystals is characterized by first-type photo-
conductivity spectra measured in a dc electric field at
T = 77 K, and the second group of crystals is character-
ized by second-type photoconductivity spectra mea-
sured under the same conditions.

Recent studies of low-temperature band-edge pho-
toconductivity spectra of CdS crystals revealed a high
sensitivity of these spectra and, especially, of their fine
structure to external factors acting on the semiconduc-
tor. In particular, the band-edge photoconductivity
spectra of CdS crystals at T = 77 K were investigated as
a function of the transverse electric field in [2] and
under exposure to IR light in [3]. In both works, it was
found that the photoconductivity spectra undergo radi-

1 Regarding band-edge photoconductivity, we distinguish intrinsic
band-edge photoconductivity due to exciton and interband transi-
tions and band-edge photoconductivity governed by transitions
involving small-sized (hydrogen-like) centers.
1063-7834/03/4511- $24.00 © 22060
cal transformations up to a change in their type under
external action. It was demonstrated that the inhomoge-
neous surface electric field together with small-sized
and deep bulk centers substantially affect the structure
of these spectra and, particularly, their fine structure.
Furthermore, it was established that the partial contri-
bution of bulk impurity states to band-edge photocon-
ductivity of a semiconductor is completely suppressed
upon exposure to IR light. A number of qualitative
models were proposed to explain the phenomena
observed.

According to [2], the influence of an inhomoge-
neous surface electric field on the photoconductivity
spectra of CdS is associated with the dependence of the
surface recombination rate of nonequilibrium charge
carriers on the bending of energy bands near the surface
of the semiconductor. Within this model, the type of
photoconductivity spectrum is determined by the char-
acter of surface band bending. In particular, the first and
second types of photoconductivity spectra correspond
to the enriching (positive) and depleting (negative)
band bendings, respectively. In the framework of the
model proposed in [2], the structureless band-edge pho-
toconductivity spectrum is attributed to flat (horizontal)
bands near the surface of the semiconductor.

This study is a continuation of our earlier investiga-
tions into the influence of the surface electric field on
the low-temperature photoconductivity spectra of CdS
[2]. In the present work, we analyzed the effect of the
surface electric field on the band-edge photoconductiv-
ity spectra of CdS crystals belonging not only to the
first group (as is the case considered in [2]) but also to
the second group. Moreover, the semiconductor sam-
003 MAIK “Nauka/Interperiodica”
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ples were exposed to IR light with the aim of excluding
the bulk effects caused by impurity centers in the band-
edge photoconductivity spectra. We also calculated
numerically the intrinsic band-edge photoconductivity
spectra of CdS crystals for different (in sign and
strength) surface electric fields. The calculations were
based on the solution of the continuity equation for
nonequilibrium electrons under the boundary condi-
tions determined by the surface recombination in an
electric field near the surface of the semiconductor [4].
The calculated spectra agree well with the experimen-
tally observed evolution of the photoconductivity spec-
tra of CdS in the range of exciton and interband transi-
tions in response to an external transverse electric field.

2. EXPERIMENTAL TECHNIQUE

The low-temperature (T = 77 K) photoconductivity
spectra were measured with undoped CdS single crys-
tals prepared in the form of plates 1–200 µm thick. The
samples were placed in a capacitor cell. The cell made
it possible to investigate the dependence of the photo-
conductivity spectrum on the potential of a field (con-
trol) capacitor plate with respect to the sample. Indium
conducting ohmic contacts were evaporated onto the
sample surface under vacuum with a residual pressure
of ~10–3 Pa. Photoexcitation was performed as viewed
from the control capacitor plate, which was a semi-
transparent tin dioxide (SnO2) layer on a glass. The
photoconductivity was excited by radiation separated
using an MDR-2 wide-aperture monochromator from
the continuous spectrum of a ribbon filament lamp with
a power of 250 W. The samples were exposed to
focused IR radiation separated by an IKS-1 glass opti-
cal filter from the radiation of a low-power (20 W)
incandescent lamp (when required, the IR radiation
intensity could be changed by varying the filament volt-
age). The pulling (measuring) voltage applied to the
samples was provided by a dc power supply and did not
exceed 100 V. The transverse electric field applied to
the sample surface through a thin (≤10 µm) mica (mus-
covite) plate was produced by a dc stabilized voltage
supply with the output voltage regulated in the range 0–
2.5 × 103 V. The photoconductivity spectra were
recorded with a V7-30 electrometric amplifier on the
recording chart of a potentiometer upon continuous
photoexcitation in the geometries E ⊥  C or E || C and k
⊥  C (where E is the electric vector of the light wave, k
is the wave vector of the light wave, and C is the hexag-
onal axis of the crystal). In all the experiments, the spec-
tral resolution was better than 8 Å.

3. RESULTS

Figure 1 shows the photoconductivity spectra of the
CdS crystals belonging to the first group for different
voltages Un applied to the control electrode. The appli-
cation of this voltage to the sample results in the deple-
tion of the surface layer in majority charge carriers,
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
namely, electrons. As can be seen from Fig. 1, the appli-
cation of the depleting transverse electric field leads to
a decrease in photosensitivity over the entire spectral
range covered. An increase in the field strength is
accompanied by a decrease in the photosensitivity. In
this case, the spectrum of the first type (Fig. 1, curve 1)
gradually transforms into a spectrum of the second type
(Fig. 1, curve 6). The observed transformation of pho-
toconductivity spectra of the first type with an increase
in the depleting transverse electric field is reversible
and occurs through an intermediate, virtually structure-
less photoconductivity spectrum (Fig. 1, curve 4).

Characteristic changes in the low-temperature pho-
toconductivity spectra upon application of an external
transverse field are also observed for CdS crystals of
the second group. For these crystals, as for crystals of
the first group, the photosensitivity in the range of exci-
ton and interband transitions increases at positive volt-
ages Un and decreases at negative voltages Un More-
over, the photoconductivity spectra of these crystals can
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Fig. 1. Experimental photoconductivity spectra of a CdS
crystal belonging to the first group for different voltages Un
applied to the control plate of the capacitor cell. E ⊥  C, k ⊥  C,
T = 77 K. Un = (1) 0, (2) –250, (3) –500, (4) –800,
(5) −1200, and (6) –1900 V. Here and in Figs. 2 and 3, fea-
tures A, B, and C are associated with the excitons generated
from valence bands due to the crystalline and spin–orbit
splittings.
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change qualitatively at positive voltages Un. Actually,
we observed for the first time that, for a number of CdS
crystals of the second group, the photoconductivity
spectrum of the second type reversibly transforms into
a photoconductivity spectrum of the first type with an
increase in the positive potential relative to the control
plate of the capacitor cell (Fig. 2, curves 1–5). Note that
the photoconductivity spectrum at the intermediate
stage of this transformation has a smooth (structure-
less) shape (Fig. 2, curves 3).

Thus, the CdS crystals under investigation are char-
acterized by the spectral photoresistive field effect,
which resides in the quantitative and qualitative
changes in the photoconductivity spectra in response to
an external transverse electric field. In this case, the
depleting transverse field (Un < 0) always brings about
a decrease in the photosensitivity and, at sufficiently
high strengths, transformation of the photoconductivity
spectrum of the first type to a photoconductivity spec-
trum of the second type. By contrast, the application of
an enriching transverse field (Un > 0) leads to an
increase in the photosensitivity and can result in the
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Fig. 2. Experimental photoconductivity spectra of a CdS
crystal belonging to the second group for different voltages
Un applied to the control plate of the capacitor cell. E ⊥  C,
k ⊥  C, T = 77 K. Un = (1) 0, (2) 150, (3) 300, (4) 500, and
(5) 600 V.
PH
transformation of the photoconductivity spectrum of
the second type to a photoconductivity spectrum of the
first type. In both cases, the transformation of the pho-
toconductivity spectra with an increase in the trans-
verse field strength involves two stages. At the first
stage, the fine structure of the spectrum is smeared and
almost completely disappears. Then, at the second
stage, a fine structure of another type appears and
becomes pronounced.

4. DISCUSSION

In semiconductors with direct allowed transitions,
the intrinsic band-edge photoconduction proceeds in a
thin surface layer (the layer thickness in CdS crystals is
approximately equal to 10–5 cm) owing to the large
optical absorption coefficient in the spectral region of
exciton and interband transitions. As a result, the
parameters (including the spectral characteristics) of
the photoconduction depend on external and internal
factors disturbing the state of the surface and (or) the
surface region in a semiconductor. In particular, the lat-
ter factors involve an inhomogeneous electric field of a
space charge generated in the surface layer due to the
localization of charge carriers at levels of surface elec-
tron states. This factor is decisive in many optical and
photoelectric processes [4, 5] occurring near the sur-
face of a semiconductor. The inhomogeneous electric
field can easily be controlled (over wide ranges) by
varying the magnitude and sign of the space charge in
the surface layer through an external transverse field
(the field-effect method). In this respect, investigation
into the influence of the external transverse field on the
band-edge photoconductivity spectra of semiconduc-
tors makes it possible to establish uniquely how the sur-
face electric field affects the photoconductivity spectra.

The mechanism of the influence of the surface field
on the band-edge photoconductivity of a semiconduc-
tor is associated with the dependence of the surface
recombination rate of nonequilibrium charge carriers
on the bending of energy bands near the surface of the
semiconductor. In monopolar semiconductors of the
CdS type, the surface recombination rate is determined
by the velocity of drift of minority charge carriers
(holes) to the surface and increases with an increase in
the drift velocity [4]. As a consequence, the lifetime of
nonequilibrium majority charge carriers (electrons)
near the surface of these semiconductors depends on
the sign and the magnitude of surface band bending.
Compared to the lifetime in the absence of band bend-
ing, the aforementioned lifetime increases with an
increase in the enriching (positive) band bending in the
vicinity of the surface and decreases with an increase in
the depleting (negative) band bending. Consequently,
the photoconductivity of a semiconductor upon excita-
tion with strongly absorbed light should increase with
an increase in the enriching band bending and decrease
with an increase in the depleting band bending near the
surface. Note that the most significant change in the
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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photoconductivity should be observed in the range of
exciton resonances with the largest absorption coeffi-
cients in the edge spectral range. These inferences are
supported by the experimental data (see Figs. 1, 2).

Therefore, the above mechanism of the influence of
the surface electric field on the band-edge photocon-
ductivity in monopolar semiconductors offers a qualita-
tive explanation of the spectral photoresistive effect
observed in the CdS crystals.

In order to describe quantitatively the influence of
the surface electric field on the band-edge photocon-
ductivity spectra of CdS crystals, we will use the results
obtained by Nyberg and Colbow [4]. These authors
solved the stationary one-dimensional continuity equa-
tion for nonequilibrium electrons under boundary con-
ditions allowing for the surface recombination in the
presence of an electric field at the surface of the semi-
conductor. The derived function of the electron distri-
bution in the semiconductor along the X axis normal to
the surface plane (the coordinate x increases from the
surface deep into the sample) has the form

(1)

Here, α is the absorption coefficient, I0 is the excitation
intensity (the number of photons absorbed by the semi-
conductor in a unit time per unit area), τn is the electron
lifetime, La is the ambipolar-diffusion length, Sn is the
surface recombination rate, µn is the electron mobility,
Es is the electric field strength at the surface of the semi-
conductor, and Dn is the electron diffusion coefficient.

Note that the parameters La and Dn entering into
relationship (1) can be expressed through the basic pho-
toelectric parameters of the semiconductor (such as the
lifetimes and mobilities of charge carriers) according to
the formulas [6]

(2)

where k is the Boltzmann constant, e is the elementary
charge, µp is the hole mobility, and τp is the hole life-
time (the second formula is known as the Einstein rela-
tion).

It should also be noted that expression (1) was
derived for strongly absorbed light corresponding to the
range of interband transitions under the implicit
assumption that the quantum yield β is equal to unity.
This assumption holds true in the spectral range of
intrinsic band-edge photoconductivity in which β ≈ 1
[7]. However, the validity of expression (1) over the
entire range of the long-wavelength wing of exciton
absorption line A (n = 1) is in doubt, because the quan-

∆n x( )
α I0τn

1 α La( )2
–

-------------------------=

– αx–( )exp
Sn µnEs– α Dn+

Sn µnEs– Dn/La+
------------------------------------------- x/La–( )exp– .

La

2µnτnkT /e
1 µnτn( )/ µpτ p( )+
-------------------------------------------, Dn µn

kT
e

------,= =
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tum yield in this spectral range should decrease with a
decrease in the photon energy.

The point is that the quantum yield in the spectral
range of exciton states is determined by the interaction
of excitons with phonons, defects [8, 9], and the surface
electric field [5, 10]. In the case of the exciton–phonon
interaction, the exciton dissociation is caused primarily
by the interaction with optical phonons [8]. This inter-
action is predominantly responsible for the central part
of the exciton absorption line, whereas the wings of the
line are attributed to the interaction with acoustic
phonons [11]. Therefore, in the long-wavelength range
of exciton absorption line A (n = 1), the probability of
exciton dissociation due to the interaction with phonons
should decrease from the maximum of the line to its
wing. The generation of free carriers through the inter-
action of excitons with defects is particularly efficient
in the surface layer of the semiconductor, in which a
higher concentration of defects leads to a severalfold
increase in the probability of this interaction [12]. Con-
sequently, in the spectral range of exciton state A (n =
1), the generation of free carriers through the exciton–
defect interaction channel is efficient in the range of the
absorption line at the maximum and is virtually sup-
pressed in the range of the long-wavelength wing. The
special role of the surface layer in the generation of free
carriers through the exciton states is also dictated by the
inhomogeneous surface electric field in which excitons
can undergo electric-field and tunnel ionization. As in
the preceding case, the efficiency of this channel of the
contribution from excitons to the photoconductivity of
the semiconductor changes in the range of the exciton
absorption line and decreases when going from the
range of the line maximum to the range of the line wing
due to an increase in the depth of exciton generation
owing to a decrease in the absorption coefficient.

From the above discussion, it follows that the quan-
tum yield in the range of the long-wavelength wing of
exciton absorption line A (n = 1) decreases with a
decrease in the absorption coefficient. Note that pro-
cesses responsible for the quantum yield in the range of
the exciton resonance predominantly determine the
shape of the exciton absorption line. Therefore, the
function β(ν) describing the dependence of the quan-
tum yield β on the frequency ν in this spectral range can
be represented in the Lorentzian form

(3)

where ν0 is the resonance frequency of the exciton and
γ is a parameter of the order of the width of the exciton
absorption line.

Relationships (1) and (3) allow us to calculate the
intrinsic band-edge photoconductivity spectrum of the
semiconductor. By integrating expression (1) from 0 to
d (where d is the sample thickness) and multiplying the
obtained result by β, we derive the expression for the

β ν( ) γ2

ν ν0–( ) γ2
+

------------------------------,=
3
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number of nonequilibrium electrons per unit area of the
illuminated sample surface:

(4)

Here, the quantum yield β depends on the frequency, is
defined by expression (3) in the frequency range ν < ν0,
and is equal to unity at ν ≥ ν0 [7]. Since the photocon-
ductivity is proportional to ∆N, relationship (4) pro-
vides a way of simulating the influence of the surface
electric field on the band-edge photoconductivity spec-
tra of the CdS crystal.

The photoconductivity spectra of the CdS crystal
were numerically calculated from relationship (4) by
varying the strength and sign of the electric field
(parameter Es) at the surface of the semiconductor. In
these calculations, we used the absorption spectrum of
CdS at T = 77 K taken from [8].2 The parameters La and
Dn were determined from formulas (2). The mobilities
of charge carriers at T = 77 K, µn = 4 × 103 cm2/(V s)
and µp = 3 cm2/(V s), were taken from [13]. The life-

∆N
αβ I0τn

1 α Ln( )2
–

------------------------- 1
α
--- 1 αd–( )exp–( )=
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Fig. 3. Calculated photoconductivity spectra of a CdS crys-
tal for different electric field strengths at the semiconductor
surface. Es = (1) 250, (2) 180, (3) 80, (4) 10, (5) –90,

(6) −500, (7) –5 × 103, and (8) –5 × 104 V/cm.
PH
times of charge carriers τn = 105 s and τp = 10–8 s corre-
sponded in order of magnitude to the averages of the
data available in the literature [6, 14, 15]: 10–6 ≤ τn ≤
10−3 s and 10–10 ≤ τp ≤ 10–6 s (when choosing τn, we also
took into account that the electron lifetime decreases
under exposure to IR light, which resulted in a decrease
in the photoconductivity [3]). The energy parameter γ
in expression (3) was taken equal to 2.2 × 10–2 eV.
According to [16], the surface recombination rates in
CdS fall in the range Sn = 4 × 104–7 × 105 cm/s. We
chose the surface recombination rate Sn = 4 × 104 cm/s
corresponding to the lower limit of this range. This
choice was determined by the fact that our samples
were optically perfect platelike CdS single crystals
with a natural surface that were grown from a gas
phase. The quality of the samples was checked against
the exciton reflection spectra, which were very sensi-
tive to the surface condition of the semiconductor [12].
This choice is justified by the high sensitivity of the
photoconductivity spectra of the studied samples to the
external transverse field. It is difficult to expect a simi-
lar sensitivity of the photoconductivity spectra to the
transverse field for CdS crystals with a high density of
surface states. Indeed, in this case, the observation of
the effects brought about by the transverse field is com-
plicated, because the charges induced by the field
should be captured by the surface states [17].

Figure 3 shows the photoconductivity spectra of a
CdS crystal (thickness d = 150 µm), which were calcu-
lated for different electric field strengths Es at the semi-
conductor surface under the assumption of a constant
excitation intensity I0. The results of calculations con-
firm the inference that the surface electric field affects
the photosensitivity and the shape of the photoconduc-
tivity spectrum of the semiconductor in the range of
exciton and interband transitions.

According to the calculations, the enriching (posi-
tive) and slightly enriching or depleting (negative)
fields satisfying the inequalities Es > Sn/µn and Es <
Sn/µn (Sn/µn = 10 V/cm) at the semiconductor surface
correspond to photoconductivity spectra of the first and
second types, respectively.3 In the range of weak fields
(|Es | < 102 V/cm), the excitonic structure of the photo-
conductivity spectra is either weakly pronounced or
absent altogether (Fig. 3, curves 3–5). As the strength
of the surface field increases, the excitonic structure
becomes pronounced. Moreover, the photosensitivity in
the spectral range under investigation changes signifi-

2 Since the experimental absorption spectrum of CdS in [8] did not
involve the necessary data on the absorption coefficient in the
range of the long-wavelength wing of exciton line A (n = 1), the
photoconductivity spectra of the CdS crystal in our case were cal-
culated using the Lorentzian approximation of the line shape [12].

3 Note that the range of positive fields in which the calculations in
terms of the model proposed in [4] have a physical meaning is
limited from above by the inequality Es < Sn/µn + Dn/(µnLa).
This limitation is caused by going beyond the scope of the used
model in the range of strong positive fields.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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cantly, i.e., increases for enriching surface fields and
decreases for depleting surface fields. The characteris-
tic values of |Es | at which the excitonic structure of the
photoconductivity spectra is sufficiently pronounced
are of the order of 102–103 V/cm for positive fields and
103–104 V/cm for negative fields (Fig. 3, curves 1, 7).
These fields are substantially weaker than the critical
field of exciton ionization Eion = 105 V/cm [5].

It should be noted that the structureless (smooth)
spectrum is reproduced by the calculations at a nonzero
positive field Es = Sn/µn = 10 V/cm (Fig. 3, curve 4). A
weakly pronounced excitonic structure of the second
type (this structure is indistinguishable on the scale of
Fig. 3) corresponds to zero field. This result is impor-
tant for the quantitative evaluation of the surface field
from the strength of the external transverse field corre-
sponding to the smooth photoconductivity spectrum.
The smooth shape of the low-temperature photocon-
ductivity spectrum of the semiconductor is usually
explained by the absence of band bending near the sur-
face of the semiconductor, i.e., by a zero value of Es

(see, for example, [18]). Now, it is clear that this holds
accurate to within the term Sn/µn.

Therefore, the calculation of the low-temperature
photoconductivity spectra of the CdS crystals in the
framework of the model proposed by Nyberg and Col-
bow [4] reproduces the specific features of the spectral
photoresistive effect observed in the semiconductor
crystals. These are a change in the photosensitivity in
the range of the exciton and interband light absorption
and also a smoothing and reversal of the fine structure
of the spectrum with an increase in the external trans-
verse field.

A comparison of the results of calculations (Fig. 3)
with the experimental data (Figs. 1, 2) shows that the
model used is adequate to the real physical situation.

It is evident that, in semiconductor crystals of the
first group, which, according to the results obtained in
[10, 18, 19] and our calculations, are characterized by
enriching band bending near the surface, the surface
electric field Es can change sign from positive to nega-
tive with an increase in the depleting transverse field. In
turn, in crystals of the second group, which are charac-
terized by photoconductivity spectra with a fine struc-
ture and, consequently, by depleting band bending near
the surface (see [10, 18, 19] and Fig. 3), the surface
electric field Es can change sign from negative to posi-
tive with an increase in the enriching transverse field.

The results obtained led us to the unambiguous
inference that the inhomogeneous electric field of the
space-charge surface layer is the main factor responsi-
ble for the photosensitivity and structure of the low-
temperature band-edge photoconductivity spectra of
pure CdS crystals with a low surface recombination rate
Sn. The space charge is generated upon the screening of
the bulk of the semiconductor from the surface-charge
field and brings about surface band bending. The sur-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
face electric field has a pronounced effect on the photo-
conductivity spectra of the CdS crystals, because it
affects the surface recombination and, hence, the life-
time of nonequilibrium charge carriers near the surface
of the semiconductor (see, for example, [20]). This also
follows from relationship (1), in which the difference
Sn – µnEs has the physical meaning of the effective sur-
face recombination rate [4]. Indeed, by designating

 ≡ Sn – µnEs in relationship (1) [4], we obtain an
expression that coincides with the solution of the sta-
tionary continuity equation for a nonequilibrium con-
centration of charge carriers in the presence of surface
recombination and the absence of a surface electric
field (see, for example, [21]).

The effect of the surface electric field on the intrin-
sic band-edge photoconductivity spectra of a semicon-
ductor can be phenomenologically taken into account
by introducing the coordinate dependence of the elec-
tron lifetime in the surface layer with a thickness of the
order of the depth of field penetration into the crystal.
In this case, the depleting, zero, and weakly enriching
surface fields (Es < Sn/µn) should correspond to the
function τn(x) increasing to a constant bulk value,
whereas the enriching surface field (Es > Sn/µn) should
correspond to the function τn(x) decreasing to a con-
stant bulk value (recall that the coordinate x is reckoned
from the surface deep into the sample). The introduc-
tion of such a photoelectrically inhomogeneous surface
layer enables us to simulate the effect of the surface
electric field on the photoconductivity spectra of the
semiconductor. In particular, this provides an explana-
tion for the occurrence of two types of low-temperature
photoconductivity spectra that directly (the first type)
and inversely (the second type) correlate with the exci-
ton optical absorption spectra [8].

It is obvious that the surface field Es = Sn/µn should
be related to the function τn(x) = const. This corre-
sponds to a photoelectric homogeneity near the surface
and in the bulk of the semiconductor crystal and, as a
consequence, a structureless (smooth) photoconductiv-
ity spectrum. In this situation, the positive surface elec-
tric field “compensates” for the photoelectric inhomo-
geneity that arises in the vicinity of the surface owing
to the presence of surface recombination centers. These
centers reduce the electron lifetime near the surface as
compared to that in the semiconductor bulk and, hence,
are responsible for the formation of the fine structure in
photoconductivity spectra of the second type (even for
an electrically neutral surface, i.e., at Es = 0).

5. CONCLUSIONS

The above investigation allowed us to draw the
inference that the intrinsic band-edge photoconductiv-
ity spectra of pure CdS crystals can be used as highly
sensitive indicators of the surface electric field. A vari-
ation in the strength and sign of the surface electric field

Sn*
3
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makes it possible to change the photosensitivity of the
semiconductor and also the structure and type of the
photoconductivity spectra. This effect of the surface
electric field on the photoconductivity spectra is associ-
ated with the dependence of the surface recombination
rate and, consequently, the lifetime of nonequilibrium
charge carriers on the bending of energy bands near the
surface of the semiconductor.

The results obtained have demonstrated that the sur-
face electric field is the decisive factor in the formation
of the fine structure of the intrinsic band-edge photo-
conductivity spectra of pure CdS crystals. Moreover,
these results give an insight into why a great variety of
types of photoconductivity spectra can be observed for
this compound and crystals of other II–VI semiconduc-
tors. It was shown that, in principle, the characteristics
of the space-charge surface layer can be determined
from the photoconductivity spectra of semiconductor
crystals. However, the practical solution of this prob-
lem calls for further, primarily, theoretical investigation
into the influence of the space-charge surface layer on
the photoconductivity spectra of the semiconductor.
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Abstract—Silver-intercalated zirconium diselenides of the general formula AgxZrSe2 are synthesized for the
first time. The phase diagram of the AgxZrSe2 compound is determined in the temperature range 423–523 K
and at room temperature. An analysis has revealed the coexistence of two compounds, namely, Ag0.125ZrSe2
and Ag0.25ZrSe2, of which only the latter compound is stable at room temperature. The structural and electrical
properties of AgxZrSe2 diselenides are investigated. The results obtained indicate a polaron nature of charge-
carrier localization. A comparison with isostructural intercalation compounds shows that free charge carriers
play a dominant role in screening of the impurity potential. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Intercalation of transition metals and silver into tita-
nium diselenide and titanium ditelluride leads to a lat-
tice distortion (layers of the host lattice approach each
other) and localization of charge carriers in the form of
polarons of small radius [1]. It should be noted that the
degree of localization of charge carriers for a heavier
chalcogen atom proves to be considerably greater than
that for other atoms. For example, no localization of
charge carriers occurs upon intercalation of silver into
titanium disulfide [2], whereas intercalation of iron into
titanium disulfide leads to a very weak localization of
charge carriers [3] (the polaron shift, which is defined
as the energy of lattice deformation, becomes close to
zero [4]). However, intercalation of these metals into
titanium ditelluride brings about strong localization of
charge carriers [1] even in the case where silver serves
as an intercalant [5]. The difference in the degrees of
localization of charge carriers in these lattices can be
explained in terms of polarizability: the higher the
polarizability of the lattice, the greater the degree of
localization of charge carriers. In this case, proper
allowance must be made for two main contributions to
the lattice polarizability, namely, the polarizability of
charge carriers, which is governed by the density of
states at the Fermi level [2], and the polarizability of ion
cores, which depends on the number of electron shells
of the ions. A more complex situation arises with inter-
calation compounds of titanium dichalcogenides. This
is associated with the fact that, in the sequence TiS2–
TiSe2–TiTe2, an increase in the density of states at the
Fermi level due to an increase in the degree of overlap
of the valence band and the conduction band [6] is
accompanied by an increase in the polarizability of ion
cores upon changing over to a heavier chalcogen atom.
1063-7834/03/4511- $24.00 © 22067
We believe that, in order to separate these contribu-
tions, it is necessary to investigate the structural and
electrical properties of intercalation compounds of zir-
conium dichalcogenides and, in particular, zirconium
diselenide ZrSe2. This compound is isostructural to tita-
nium dichalcogenides, exhibits semiconductor proper-
ties with a gap at the Fermi level (as is the case in TiS2),
and possesses an increased polarizability of ion cores
(as compared to TiSe2) due to the larger atomic weight
of zirconium as compared to titanium. Therefore, by
comparing the degrees of localization of charge carriers
of ZrSe2, TiS2, and TiSe2 upon their intercalation with
the same metal, for example, silver, it is possible to
determine the dominant contribution to the polarizabil-
ity in the course of the formation of polarons. The pur-
pose of the present work was to solve this problem.

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUE

Samples used in our experiments were synthesized
from the following elements: zirconium subjected to
iodine cleaning (purity, 99.95), selenium of the OSCh
19-5 grade (purity, 99.999), and silver subjected to
electrolytic cleaning (purity, 99.995). At the first stage
of the synthesis, weighed portions of granular zirco-
nium and selenium were placed in hermetically sealed
and evacuated (to 10–5 Torr) silica glass ampules and
were then sintered at temperatures in the range from
1100 to 1200 K for 7–10 days. Thereafter, the resultant
compound ZrSe2 and silver were mixed in the stoichio-
metric ratio. The mixture was placed in hermetically
sealed and evacuated (to 10–5 Torr) Pyrex glass ampules
and was then heated at temperatures in the range from
650 to 720 K for 100 h. The AgxZrSe2 compounds thus
003 MAIK “Nauka/Interperiodica”
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prepared, as a rule, were homogeneous to within the
accuracy of the x-ray diffraction analysis (DRON-4-13
x-ray diffractometer, CuKα radiation, room tempera-
ture). The electrical conductivity and the Seebeck coef-
ficient were measured according to the standard four-
point probe method with the use of polycrystalline
cold-pressed samples. The nitrogen atmosphere used in
the electrical measurements was preliminarily dried
and purified from oxygen. The residual pressure of
impurities was no higher than 10–15 Torr. Owing to the
high mobility of silver ions in AgxZrSe2 compounds,
the technique of measuring the voltage difference (elec-
tromotive force) across the electrochemical cell was
used to determine the concentration dependences of the
thermodynamic functions and to construct isothermal
sections of the phase diagram in the “silver content x–
temperature T” coordinates. In these experiments, the
silver content was varied using coulometric titration,
i.e., by passing a current pulse of specified amplitude
and width through the following electrochemical cell:

Ag/AgI/AgxZrSe2/graphite. (1)

For an electrochemical cell of this type, the operat-
ing temperature range is governed by the conditions
under which the ionic conductivity of AgI (an electron
filter suppressing electron conduction) is rather high
and far exceeds the n-type conductivity. These condi-
tions are satisfied in the temperature range 450–600 K,
in which the ionic conductivity exceeds the n-type con-
ductivity by a factor of 104. According to [7], the elec-
tromotive force E of electrochemical cell (1) is related
to the chemical potential µAg of a silver atom dissolved
in AgxZrSe2 through the expression

(2)eE µ0 µAg–( ),–=
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Fig. 1. Dependences of the partial free energy of formation
of the AgxZrSe2 compound on the silver content x at tem-
peratures of (1) 573 and (2) 423 K.
PH
where e is the elementary charge and µ0 is the chemical
potential of a silver atom in a standard state (in bulk sil-
ver). Therefore, knowing the dependences of the emf E
of electrochemical cell (1) on the temperature and sil-
ver content, we can determine the boundaries of the sin-
gle-phase regions in the phase diagram.

3. RESULTS AND DISCUSSION

Figure 1 shows the dependences of the partial free
energy of formation of the AgxZrSe2 compound on the
silver content x at two temperatures. As can be seen,
these dependences are characteristic of materials in
which the Fermi level is located between the bottom of
the conduction band and the center of an impurity band
of polaron nature [8]. This can also be judged from the
formation of a two-phase region, which manifests itself
in the form of a plateau in the dependence E(x) and can
be observed upon intercalation of even the first silver
atoms. According to the Gibbs phase rule, the fact that
the free energy of formation is independent of the con-
centration of one of the components under isothermal
conditions at equal pressures can be explained only in
terms of an inhomogeneous (non-single-phase) state of
the sample. It should be noted that the Ag–ZrSe2 system
is characterized by two single-phase regions. Their
boundaries are determined by the portions in the depen-
dence E(x) at T = 473 K in the concentration ranges
0.06 < x < 0.14 and 0.175 < x < 0.23.

Upon cooling of the sample to room temperature,
the phase with a lower silver content most likely under-
goes a decomposition of peritectic nature. This is indi-
cated by the fact that the lattice parameters at room
temperature do not depend on the content of interca-
lated silver in the range x = 0–0.175 (Fig. 2). In this
region of compositions, the x-ray diffraction patterns of
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Fig. 2. Dependences of the lattice constants a0 (open
squares) and c0 (closed squares) of the ZrSe2 compound
with a hexagonal structure on the intercalated silver content
x at room temperature.
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AgxZrSe2 intercalation compounds are identical to the
diffraction pattern obtained for the initial ZrSe2 com-
pound. The same situation was observed in the Ag–
TiSe2 system, for which the lattice parameters of the
TiSe2 and Ag0.25TiSe2 phases proved to be close to each
other to such an extent that the diffraction lines of these
phases could not be resolved [9]. These inference is in
agreement with the concentration dependences of the
half-width of the diffraction lines for the (110) and
(002) reflections which correspond to the parameters a0
and c0 of the hexagonal lattice, respectively (Fig. 3). It
can be seen from Fig. 3 that, in the system under inves-
tigation, there exist two composition regions for which
the diffraction lines differ in width. Apparently, this cir-
cumstance is associated with the fact that the lattice
parameters of the ZrSe2 and Ag0.175ZrSe2 phases are
also close to each other to such an extent that the dif-
fraction lines of these phases cannot be resolved.

In the homogeneity region of the sole room-temper-
ature stable phase, which can be designated as
Ag0.25ZrSe2 or, what amounts to the same, AgZr4Se8,
both lattice parameters, a0 and c0, decrease in the con-
centration range x > 0.175. This indicates that the vol-
ume of the unit cell of ZrSe2 decreases upon incorpora-
tion of silver. The above behavior differs from that
observed for intercalation compounds based on tita-
nium dichalcogenides in which the contraction of the
unit cell along the c axis is attended by an increase in
the lattice parameter a0, so that the total volume of the
unit cell slightly increases with an increase in the inter-
calant content. It is generally believed that the observed
decrease in the lattice parameter c0 for intercalation
compounds based on titanium dichalcogenides with
charge-carrier localization of the polaron type is asso-
ciated with a decrease in the distance between layers of
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Fig. 3. Concentration dependences of the half-width of
the diffraction lines (002) (open squares) and (110)
(closed squares) on the silver content x in AgxZrSe2 com-
pounds (half-widths are expressed in terms of the diffrac-
tion angle 2θ).
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the host lattice due to the formation of Ti–Me–Ti cen-
ters with covalent bonds (Me is an intercalated metal)
[1, 4]. Most probably, the same is also true for AgxZrSe2
intercalation compounds. The formation of these cen-
ters is usually explained by the hybridization of 

orbitals of the host transition metal (Ti or Zr) and
valence states of the intercalated metal (in our case, the
5s states of silver). The origin of the lattice contraction
in the basal plane is not yet entirely understood. This
behavior can also be explained by the formation of
covalent bonds. However, the question regarding the
sublattice and states associated with the formation of
these bonds remains open.

The x-ray powder diffraction pattern of the
AgZr4Se8 compound was indexed in a trigonal crystal

system with space group , which coincides with
the space group of the initial ZrSe2 compound. It is
worth noting that no indication of silver ordering
throughout the sample is revealed at room temperature.
This is another argument in support of the polaron
nature of the stability of the AgZr4Se8 phase, because
the ordered state of intercalated silver becomes unsta-
ble at temperatures well below the point of polaron
band collapse [10].

Figure 4 depicts the temperature dependences of the
electrical conductivity for two AgxZrSe2 compositions
with silver contents x = 0.20 and 0.25. It can be seen
from Fig. 4 that, although the concentration of electrons
introduced with intercalated silver is relatively high
(~1020 cm–3), the temperature dependence of the electri-
cal conductivity exhibits activation behavior. This sug-
gests that, in contrast to the predictions made in the
framework of the rigid-band model, the electrons intro-
duced are not involved in the conduction band of ZrSe2.
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Fig. 4. Temperature dependences of the electrical conduc-
tivity for two single-phase AgxZrSe2 compositions with sil-
ver contents x = (1) 0.20 and (2) 0.25 over the entire temper-
ature range covered.
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It seems likely that electron transfer upon intercalation
occurs toward the band of hybrid Ag 5s–Zr 4d states
localized in the vicinity of the Fermi level. The temper-
ature dependence of the electrical conductivity at tem-
peratures T > 300 K can be described by the expression
σ = σ0exp(U/kT), where U is the activation energy. An
increase in the magnitude of the electrical conductivity
and, correspondingly, in the activation energy with an
increase in the silver content x can be interpreted as
resulting from the increase in the contribution made to
the electrical conductivity by the localized electrons
introduced with intercalated silver. This interpretation
is in good agreement with the decrease in the Seebeck
coefficient with increasing x. An analysis of the temper-
ature dependence of the Seebeck coefficient revealed
the presence of several types of charge carriers in
AgxZrSe2 (Fig. 5). It can be assumed that these carriers
are silver impurity electrons and intrinsic electrons and
holes of ZrSe2. The Zr–Ag–Zr covalently bound centers
serve as centers of localization of conduction electrons
and strain centers of the lattice simultaneously. These
objects can be treated as covalent polarons.

Thus, the experimental results lend support to the
predicted polaron type of localization of charge carriers
in the Ag–ZrSe2 system. As was shown earlier in [8],
the boundary of the single-phase state with a minimum
intercalant content corresponds to the coincidence of
the energies at the Fermi level and at the center of the
polaron band (in our case, the band of hybrid Ag 5s–Zr
4d states). The concentration of electrons that need to
be introduced into the material in order to ensure half
filling of the polaron band depends on its position with
respect to the Fermi level in the initial material, which,
in turn, is determined by the effective ionization poten-
tial Ieff of the intercalated atom [4]. The effective ioniza-
tion potential Ieff differs from the tabulated value by the
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Fig. 5. Temperature dependences of the Seebeck coefficient
for two single-phase AgxZrSe2 compositions with silver
contents x = (1) 0.25 and (2) 0.20 over the entire tempera-
ture range covered.
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screening constant γ; i.e., Ieff = γIi, where Ii is the ioniza-
tion potential of a free atom or ion. For TiSe2-based
intercalation compounds, the screening constant is
determined to be γ = 1/33 [4]. The ionization potential
of the silver intercalated into TiSe2 is estimated as

 = γ7.5763 ≈ 0.23 eV [11], which corresponds to
the energy at the Fermi level located near the center of
the polaron band. Therefore, intercalation of atoms
whose ionization potential is less than Ieff = 0.23 eV
should not lead to the formation of covalently bound
centers. For TiSe2-based intercalation compounds, the

ionization potential of intercalated lithium  =
γ5.3918 ≈ 0.16 eV is the closest in magnitude to the

ionization potential of intercalated silver . It was
proved that intercalation of lithium results in charge
transfer from the intercalant to the lattice of TiSe2; in
this case, the introduced electrons remain completely
free without any indication of electron localization
[12]. This can be explained by the fact that the hybrid
band formed upon incorporation of lithium is located
very far above the Fermi level and, therefore, turns out
to be empty. It is evident that, in the situation where sil-
ver atoms are intercalated into the TiSe2 and ZrSe2
compounds, the positions of the hybrid bands with
respect to the Fermi level of the initial material should
differ from each other because of the difference in the
screening constants γ. Hence, if the dispersion of the
polaron band is ignored, the width ratio of the two-
phase regions for these materials should be equal to the
ratio of their screening constants γ(TiSe2)/γ(ZrSe2) =
1.31. As a result, we obtain the quantity γ(ZrSe2) ≈
1/25. Therefore, upon incorporation of lithium into
ZrSe2, the effective ionization potential of intercalated

lithium  is approximately equal to 0.22 eV. This
ionization potential is close to the critical value to such
an extent that the formation of Ti–Li–Ti covalent cen-
ters (polarons) becomes quite possible.

According to experimental data available in the lit-
erature on the structural and electrical properties of
ZrSe2 diselenides containing lithium, the lattice param-
eters of intercalation compounds in the Li–ZrSe2 sys-
tem do not depend on the content of intercalated lithium
up to x = 0.4. This composition corresponds to the
crossover from semiconductor conductivity to metallic
conductivity. An extended discussion of the nature of
this crossover and the relevant experimental results is
given in the review by Friend and Yoffe [13]. In our
opinion, Berthier et al. [14] most clearly demonstrated
that the two-phase region exists in the concentration
range 0 < x < 0.4. This suggests that intercalation of
lithium into ZrSe2 also leads to the formation of
polarons. The shift observed in the concentration
boundary of the phase instability upon replacement of
silver by lithium is in good agreement with the fact that

IAg

TiSe2

ILi

TiSe2

IAg

TiSe2

ILi

ZrSe2
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the ionization potential of intercalated lithium is less
than the ionization potential of intercalated silver.
Moreover, the fact that the lattice parameters of the
intercalation compounds do not depend on the intercal-
ant content in the concentration range below the critical
value confirms the validity of the proposed model.

4. CONCLUSIONS
Thus, the results obtained have demonstrated that

the screening constant of the potential of the interca-
lated metal in ZrSe2 is less than that in TiSe2. The fun-
damental difference between these materials lies in the
fact that, unlike the latter compound, the former com-
pound is characterized by a gap at the Fermi level.
Therefore, we can conclude that the presence of charge
carriers capable of screening the potential of the inter-
calated ion and, thus, preventing the formation of cova-
lent bonds between the intercalant and the host lattice is
of crucial importance.
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Abstract—Chemical bonding in MgO and TiO2 crystals is analyzed using a minimal basis consisting of
atomic-type Wannier functions (AWFs) centered at atomic sites in the crystal and constructed from Bloch
states of the energy bands originating from the valence states of the atoms. A method proposed earlier for con-
structing Wannier functions is improved. Symmetrization of the initial Bloch function basis and symmetrical
orthogonalization of the generalized Bloch functions greatly reduces computational effort. The prior symme-
trization of the Bloch function basis is of fundamental importance in constructing AWFs, because the latter
functions have to be centered at the atomic sites and possess the symmetry of the atomic functions in the crys-
tal. The principle that should be followed in selecting the conduction bands originating from the valence states
of the atoms of the crystal is formulated. The Bloch functions are calculated using the LCAO approximation
within the Hartree–Fock method and density-functional theory. Using the calculated Bloch functions, a min-
imal valence AWF basis is constructed and calculations of the local characteristics of the electronic structure
(atomic charge, bond order, atomic valence) are performed for the MgO and TiO2 crystals. According to the
analysis performed, the covalent component of the chemical bonding in the MgO crystal is negligibly small
and TiO2 is a mixed ionic and covalent crystal with pronounced covalent bonding. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The notion of chemical bonding [1–3] involves such
quantities as the electron population and charge of an
atom, bond population, bond order, etc. These quanti-
ties are local characteristics of the electronic structure
of a crystal and cannot be calculated directly by using
one-electron canonical orbitals of the crystal described
by Bloch functions (BFs). Therefore, it is advantageous
to use spatially localized Wannier functions (WFs) in
this case [4]. The local properties of the electronic
structure of a crystal are of importance not only in
describing chemical bonding but also in modeling the
charge transfer in a crystal, crystal defects, lattice
dynamics, etc. and, therefore, can be estimated indi-
rectly from experimental data.

The conventional scheme used to analyze the atomic
populations is based on atomic-type functions. The typ-
ical atomic-function basis has been used, e.g., in [5], to
calculate the electronic structure in the CO-LCAO
approximation. The results of such an analysis depend
on whether or not the diffuse AOs are included in the
basis. The inclusion of these AOs allows one to refine
variational calculations of energies based on BFs. How-
ever, when diffuse AOs are included, the results of pop-
ulation analysis depend essentially on the scheme (after
Löwdin or Mulliken [5]) used and the interpretation of
1063-7834/03/4511- $24.00 © 2072
the calculated local characteristics of the electronic
structure turns out to be difficult.

When the electronic structure is calculated in a
plane-wave basis (or another nonatomic basis), the
atomic-type function basis can generally be chosen
within a certain arbitrariness and paradoxical results
may be obtained. For example, in [6], the charges of the
oxygen atoms in the ionic crystal MgO and covalently
bonded crystal TiO2 were calculated to be approxi-
mately the same (~–0.7). At the same time, calculations
in the CO-LCAO approximation show that the crystal
MgO is ionic and TiO2 is partially ionic and partially
covalent. However, the values of the local characteris-
tics depend strongly on the scheme (after Löwdin or
Mulliken) used for calculations [5].

The analysis of atomic populations in which an
atomic-type Wannier function (AWF) basis is used does
not suffer from these drawbacks [1]. The AWFs are
constructed, by definition, from the BFs of occupied
and empty energy bands originating from the valence
states of the atoms (or ions) constituting the crystal.
The AWFs are centered at atomic sites and possess the
symmetry of the corresponding atomic functions in the
crystal. The results obtained by this method are inde-
pendent of the type of the basis (AO, plane-wave, or
any other basis) used for electronic-structure calcula-
2003 MAIK “Nauka/Interperiodica”
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tions and of the number of AOs in the basis and the
degree of their diffuseness. The AWFs used in analyz-
ing the atomic populations allow one to relate the local
properties of the electronic structure to the mutual
arrangement of the one-electron energy bands.

Because the methods previously used to analyze the
atomic populations in MgO and TiO2 are inadequate, as
indicated above, we describe chemical bonding in these
crystals in terms of the AWFs.

In Section 2, we define the WFs and the AWFs and
discuss their symmetry properties and a scheme for
analyzing the atomic populations in terms of these
functions. We also improve the method proposed in [7].
The improved method greatly reduces the magnitude of
the calculations and can be applied to complex crystals
with a fairly large number of atoms per unit cell. In Sec-
tion 3, our calculations of the electronic structure of
magnesium oxide MgO and titanium oxide TiO2 (with
the rutile structure) are described. The atomic-type
WFs for the crystalline MgO and TiO2 are constructed
in Sections 4 and 5, respectively. In Section 6, we dis-
cuss the results of analyzing the chemical bonding in
these crystals in terms of AWFs and the effect of elec-
tron correlation and of the size of a cyclic model on the
local characteristics of the electronic structure.

2. ATOMIC-TYPE WANNIER FUNCTIONS
AND CHEMICAL BONDING IN CRYSTALS

Wannier functions Wm(r – an) (where the index m
labels the WFs related to a unit cell specified by the
translation vector an) are constructed from the Bloch
functions ϕτk(r) of all states of the degenerate or nonde-
generate energy band in question:

(1)

(2)

Here, ϕτk(r) is the Bloch orbital corresponding to the
state with a wave vector k and belonging to the energy
band with the index τ and U(k) is an arbitrary matrix.
The functions ψmk(r) (the so-called generalized BFs)
are the Fourier transforms of the WFs Wm(r – an). The
WFs are orthonormalized if the matrices U(k) are uni-

Wm r an–( ) L
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e
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Uτ m, k( )ϕτk r( )
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∑
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∑
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∑=

=  Umτ
+ k( )ψmk r( ).
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∑
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tary. In the case of a nondegenerate energy band, matri-
ces U reduce to phase factors exp(iαk). The particular
choice of matrices U(k) determines the degree of local-
ization of the WFs.

It was shown in [8] that, in a one-dimensional model
of a centrosymmetric crystal, the most localized WFs
can be chosen real, possessing a certain inversion sym-
metry and decaying exponentially with distance. For a
three-dimensional crystal, these properties of WFs have
been proved only in the case of a nondegenerate energy
band [9–11]. In general, the form of highly localized
WFs in a three-dimensional crystal is nonunique and
depends on the criterion for their localization. In the
last decade, several efficient methods have been pro-
posed for constructing the most localized WFs [7, 12–
15]. Interest in the WFs has grown because of their
application for studying a number of phenomena in
solids.

(1) These functions are often used as a convenient
basis in studying local effects produced by defects,
excitons, etc. [16, 17].

(2) Certain physical quantities, such as the sponta-
neous polarization, dynamic Born charge, and piezo-
electric constants, are expressed more simply in the
basis of localized orbitals than in the Bloch function
basis [18, 19].

(3) The WFs are of importance in designing rapid
algorithms (“order N” methods) for calculating the
electronic structure of a crystal [20, 21].

(4) The WF basis can be conveniently used to
include the electron correlation effects in crystals [22].

(5) By using WFs, one can relate the electronic
structure calculated in the Bloch function basis to the
chemical bonding in the crystal [1–3].

There is a connection between the symmetry of the
BFs of one-electron energy bands (degenerate or non-
degenerate) and the symmetry of the corresponding
WFs, which is due to the fact that both sets of functions
are bases of a certain induced representation (IR) of the
space group of the crystal [23–26].

To construct the AWFs for the MgO and TiO2 crys-
tals, we employ the variational method proposed in [7]
and applied earlier for analyzing the chemical bonding
in silicon and gallium arsenide in [1] and in silver
halides in [2]. This method includes the following three
steps: (i) symmetry analysis and selection of BFs
(states of energy bands from which the WFs will be
constructed); (ii) construction of the functions Vm(r –
an) that are maximally localized (according to the crite-
rion chosen for localization) but are not orthogonal to
each other; and (iii) symmetric orthogonalization (after
Löwdin [27]) of these functions to obtain WFs.

In this paper, we improve the method proposed in
[7] as follows.

(1) As indicated above, the AWFs have to possess a
certain symmetry (they have to transform according to
a certain irreducible representation of the local site
03
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symmetry group of the crystal). In constructing the
functions Vm(r – an), we symmetrize the initial BF basis
ϕτk(r) with respect to the irreducible representation of
the local site symmetry group according to which the
functions Vm(r – an) and Wm(r – an) transform. This
procedure allows one to considerably reduce the num-
ber of variational parameters [independent elements of
the matrices U in Eq. (1)], because, in this case, linearly
independent symmetrized combinations of BFs (which
are usually smaller in number than the BFs themselves)
are used to construct the AWFs. Therefore, this symme-
trization noticeably reduces the computational effort
needed to perform the variational procedure. Further-
more, in constructing the AWFs, which have to be cen-
tered at the atomic sites and possess a certain symme-
try, the BF basis symmetrization must be performed
because, otherwise, the WFs obtained could be cen-
tered at points different from the atomic sites and might
not possess the necessary symmetry since the reduction
of a composite IR into simple IRs is ambiguous
[25, 26].

Calculations can be optimized further by taking into
account the time-reversal symmetry. In this case, for

real AWFs, we have Uτ, m(k) = (–k).

(2) To perform symmetric orthogonalization, we
pass over from the functions Vm(r – an) to their Fourier
transforms (r) by using relations similar to Eq. (2).

The functions (r) with different vectors k are
orthogonal to each other, because these functions are of
the Bloch type. Since the functions Vm(r – an) are not
orthogonal to each other, the functions (r) with the
same vector k can also be nonorthogonal [in contrast to
the functions ψmk(r)] and their normalization can be
arbitrary. We perform the symmetric orthonormaliza-
tion of these functions for each value of the wave vector
k separately by using the Löwdin method. After this
procedure, the functions (r) transform into ψmk(r).
Taking the inverse Fourier transform (1), we obtain
orthonormalized Wm(r – an).

In the unmodified version, the orthonormalization
was performed for all L · N Wannier functions, where N
is the number of energy sheets involved in the calcula-
tion and is equal to the number of WFs per primitive
cell and L is the number of primitive cells in the cyclic
model of the crystal. In the modified version, the
orthogonalization is performed for each set of N func-
tions separately. Since the orthogonalization after Löw-
din involves diagonalization of matrices whose dimen-
sion is determined by the number of functions to be
orthogonalized, the splitting of the space of nonorthog-
onal functions into orthogonal subspaces of a smaller
dimension can significantly reduce the amount of cal-
culations required.

(3) When choosing the BFs to construct the AWFs,
particular attention should be given to vacant states

Uτ m,*

ψ̃mk

ψ̃mk

ψ̃mk

ψ̃mk
PH
(the conduction bands). The evolution of the orbitals
involved in the formation of chemical bonding in a
crystal (from atomic orbitals to crystal orbitals) can be
described on the basis of the following qualitative
considerations. Let us mentally increase the inter-
atomic distances in a crystal to a large value without
breaking the symmetry of the crystal lattice and then
begin to decrease them to the equilibrium values.
When the atoms are still far apart, the atomic levels
corresponding to the minimal valence basis can be
split by the crystal field only slightly and form narrow
energy bands. In this case, the WFs are almost identi-
cal to the AOs. As the atoms approach each other fur-
ther, the energy bands are affected noticeably and can
even change their relative arrangement and the corre-
sponding functions transform into the WFs of the
crystal.

Therefore, in order to analyze the chemical bonding
in a crystal, it is advantageous to choose, as localized
functions, the AWFs corresponding to the minimal
valence atomic basis [1]. The energy bands correspond-
ing to such WFs are chosen so that the symmetry of the
BFs of these bands allows one to construct AWFs. Fur-
ther, since the positions of the bands originating from
the atomic valence levels are unknown, we assume that
these bands are such that their BFs allow one to con-
struct the most localized AWFs. Such bands are usually
the uppermost valence bands and certain empty bands,
which are not necessarily the lowest in energy. We will
specify an energy band by indicating the type of the
AWF corresponding to this band and the atom at which
this function is centered (e.g., s or p band of oxygen).
The problem indicated above does not arise when WFs
are constructed only from the BFs of occupied states (in
semiconductors and insulators).

Symmetrization of the initial BF basis and symmet-
ric orthogonalization of the generalized BFs signifi-
cantly reduces the amount of calculations required, thus
making it possible to apply this method to complex
crystals with a large number of atoms per unit cell in
which the states involved in the chemical bonding form
complicated multisheeted energy bands.

Once a minimal valence AWF basis has been con-
structed, it can be used as an atomic-type basis to cal-
culate the local characteristics of the electronic struc-
ture [1, 5]. Using the AWFs, analysis of the atomic pop-
ulations can be performed either before their
orthogonalization according to Löwdin or after it (ana-
log of the analysis of the atomic populations in the AO
basis after Mulliken and after Löwdin) [1]. Analysis of
the atomic population [5] involves calculation of the
density matrix in a basis of functions localized at
atomic sites, in our case, in the AWF basis. Since the
orthogonalized functions W and nonorthogonalized
functions V are similar, we may expect the results of
analyzing the atomic populations using these functions
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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to also be similar. Calculations performed for particular
systems provide support for this conclusion and are dis-
cussed in Sections 4 and 5.

3. CALCULATION OF THE ELECTRONIC 
STRUCTURE OF MgO AND TiO2 CRYSTALS

Crystalline magnesium oxide MgO and titanium
oxide TiO2 differ significantly in dielectric properties
and the character of chemical bonding, which is due to
the electron density distribution being much different in
them. Crystal MgO (NaCl structure, fcc Bravais lattice,

space group ) is ionic in character with a wide band
gap (Eg = 7.8 eV). The large width of the upper oxygen
valence band (approximately 8 eV) is indicative of sig-
nificant oxygen–oxygen interaction [28]. Titanium
oxide TiO2 in the rutile structure (simple tetragonal

Bravais lattice, space group , two formula units per
primitive cell) is a semiconductor with a band gap of
approximately 3 eV and with the metal–oxygen bond
having a large degree of covalent character [29]. The
upper oxygen valence band is also fairly wide (7.9 eV).
The electronic structures of both compounds have been
well studied experimentally and were calculated in sev-
eral papers using an AO basis and a plane-wave basis
[30, 31]. The calculations were carried out using the
Hartree-Fock (HF) method [28, 32] and the density-
functional theory (DFT) [30, 33], which includes elec-
tron correlations. The WFs of the valence bands of
MgO were calculated quite recently in [3, 7]. The WFs
for crystal TiO2 are first constructed and discussed in
this paper.

To construct AWFs by the method developed in [7],
we calculated the BFs of the electronic states of MgO
and TiO2 nonempirically, with the help of the Crystal
computer program [34] based on the Hartree–Fock
method and density-functional theory in the CO-LCAO
approximation. As a basis, we used atomic orbitals of
the Gaussian type. For crystal MgO, we used the 8–6–
1 basis (1s–2sp–3sp) for magnesium atoms and the 8–
5–1 basis (1s–2sp–3sp) for oxygen atoms. For crystal
TiO2, the effect of core electrons was described by the
Durand–Barthelat pseudopotential [35] and we used
the (4–1)/1 (d/sp) basis for titanium atoms and the 3–1
(sp) basis for oxygen atoms. In [28], the exponents of
the outer shell 3sp orbitals of Mg and O atoms in the
MgO crystal (0.4 and 0.21, respectively) were found
using the variational method in the HF approximation.
In [32], using the same method for the TiO2 crystal in
the valence approximation, the exponents of the outer
shell sp and d orbitals of titanium and sp orbitals of
oxygen were found to be 0.484, 0.225, and 0.281,
respectively. In both cases, by using the HF method and
varying the orbital exponents, the parameters of the
crystal structure were calculated and the results were
found to be in good agreement with the experimental
data: for MgO, the calculated lattice parameter is a =

Oh
5

D4h
14
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4.201 Å (the experimental value a = 4.21 Å), and for
TiO2, the calculated parameters are a = 4.555 Å, c =
2.998 Å, and u = 0.306 Å (the experimental values a =
4.594 Å, c = 2.959 Å, u = 0.305 Å). We note that the
calculated Gaussian outer shell orbitals are fairly dif-
fuse and, for oxygen, are different in both crystals.

In our calculations, we used the basis AOs indicated
above and the theoretical values of the structural
parameters corresponding to them [28, 32]. Summation
over the Brillouin zone (BZ) was performed using spe-
cial points of the Monkhorst–Pack type [36]. For MgO,
we used a 4 × 4 × 4 set of special points; i.e., the infinite
crystal is replaced, in fact, by a cyclic system of
64 primitive cells, for which the irreducible part of the
BZ contains eight special points. For TiO2, we used sets
of 4 × 4 × 4 and 2 × 2 × 3 special points (18 and 6 points
in the irreducible part of the BZ, respectively). For the
4 × 4 × 4 sets of k points, the balance between calcu-
lated sums over the direct and reciprocal lattices [37]
occurs if the sums over the direct lattice are calculated
with an accuracy of 10–6 for all integrals of atomic func-
tions except for the exchange integrals, for which the
accuracy was 10–12 [34]. The calculations are carried
out using both the HF method and the local-density
approximation (LDA) [38].

The calculated band structures (for both the valence
and conduction bands) of MgO and TiO2 are shown in
Figs. 1 and 2, respectively. In MgO (in accordance with
the results of other calculations), the highest two
valence bands are the oxygen s- and p-like bands,
respectively, whereas the conduction bands are more
complicated. The upper valence bands in TiO2 are also
oxygen s- and p-like bands; however, they consist of 4
and 12 branches, respectively, because the primitive
cell of titanium oxide contains four oxygen atoms. The
lowest conduction band in TiO2 (consisting of 10
branches) is formed by the d states of two titanium
atoms and is noticeably separated in energy from the
upper conduction bands.

4. ATOMIC-TYPE WANNIER FUNCTIONS 
AND LOCAL CHARACTERISTICS 

OF THE ELECTRONIC STRUCTURE
OF THE MgO CRYSTAL

Prior to constructing AWFs, one should analyze the
symmetry of crystal orbitals of the valence and conduc-
tion bands on the basis of IRs of space groups [7].
Table 1 lists the irreducible representations of the wave-
vector groups of symmetry points of the BZ induced by
the atomic-function basis that was used for calculating
the electronic structure of the MgO crystal. (The indi-
ces characterizing the irreducible representations of
space groups are the same as those in [39].) This table
also makes it possible to relate the symmetry of AWFs
to the symmetry of the Bloch states if, instead of the
atomic functions (the fourth column of the Table 1), the
AWFs of the same symmetry are considered.
03
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In the MgO crystal (space group , fcc lattice),
both atoms occupy the Wyckoff positions with local
symmetry Gq = Oh (positions a and b for magnesium
and oxygen atoms, respectively). The minimal basis

Oh
5

2.5

1.5

0.5

–0.5

–1.5

EF

E
, a

u

L Γ X W

(a)

2.5

1.5

0.5

–0.5

–1.5

EF

E
, a

u

L Γ X W

(b)

Fig. 1. Energy bands corresponding to occupied and empty
states of crystal MgO as calculated using (a) the Hartree–
Fock method and (b) density-functional theory. The Fermi
energy is denoted by EF and indicated by a dashed line.
PH
involves the oxygen s and p functions and the magne-
sium s function. As mentioned above, in terms of sym-
metry (Table 1) and according to the maximal-localiza-
tion principle for the corresponding WFs, the highest
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Fig. 2. Energy bands corresponding to the upper occupied
and lower empty states of crystal TiO2 as calculated using
(a) the Hartree–Fock method and (b) density-functional
theory.
Table 1.  Induced representations of space group 

Atom Wyckoff
position Gq AO Γ L X W

Mg a (000) Oh s a1g 1+ 1+ 1+ 1

x, y, z t1u 4– 2–3– 3–5– 25

O
b ( )

Oh s a1g 1+ 2– 1+ 2

x, y, z t1u 4– 1+3+ 3–5– 15

Oh
5

1
2
---1

2
---1

2
---
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Table 2.  Characteristics of the magnesium s band

k point (projections 
onto reciprocal lat-
tice basis vectors)

k-point symmetry
Numbers of sym-
metry-compatible 

empty states

Numbers of the levels 
corresponding to mag-

nesium s band

Magnesium s-band 
energy, au

Γ (0 0 0) Oh 1+ 1, 8 8 2.164

X (0  ) D4h 1+ 2, 5 2 0.821

L (0 0 ) D3d 1+ 2, 7 7 1.709

W (   ) D2d 1 3, 6 6 1.767

Λ (0 0 ) C3v 1 1, 2, 7, 8 8 2.195

∆ (0  ) C4v 1 1, 2, 5, 8 8 2.251

(0  ) C2v 1 1, 3, 6, 8 8 2.154

(0  ) Cs 1 1, 2, 3, 5, 7, 8 7 1.833

1
2
--- 1

2
---

1
2
---

1
4
--- 1

2
--- 3

4
---

1
4
---

1
4
--- 1

4
---

1
4
--- 3

4
---

1
4
--- 1

2
---
four-sheeted valence band is the oxygen sp band (with
s and p subbands separated by an energy gap). To cal-
culate the band structure, we chose a basis consisting of
18 AOs for which there are only eight energy levels in
the conduction band at each k point. Therefore, in order
to determine the magnesium s band, we must choose a
level with symmetry compatible with the symmetry of
the magnesium s function at each k point; these levels
will allow us to construct the most localized WFs. The
higher the symmetry of a point in the BZ, the smaller
the number of energy levels with the appropriate sym-
metry that can be used to construct the magnesium s-
like WF. For example, at the Γ or X point, only two of
the eight levels have symmetry compatible with the
symmetry of the magnesium s function. At a general
position point in the BZ, symmetry does not impose
any restrictions; therefore, any level can be used to con-
struct any WF (we note that special points in our 4 ×
4 × 4 set are not general position points). The maximal
WF localization principle allows us to conclude that the
magnesium s band is fairly high in energy. Table 2
shows the position of the magnesium s band for each
wave vector in the band structure calculated using the
HF method in the basis of 18 AOs for the set of 4 × 4 ×
4 k points. Figure 3 shows the magnesium s AWF; this
WF is constructed from the occupied states of the oxy-
gen sp bands and the vacant states of the magnesium s
band (Table 2).

Table 3 lists the values of the charge localized on an
oxygen atom in the MgO crystal that are calculated,
using different schemes, from the band structure deter-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
mined using the HF and DFT methods. The bond orders
and covalent contribution to the bonding calculated
within the AWF method are close to zero, and the
valence of both atoms is very accurately equal to 2.
These results adequately characterize the ionic nature
of the crystal MgO.
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Fig. 3. Atomic-type s-like Wannier function centered at a
magnesium atomic site (in units of a–3/2, where a is the
atomic length unit) along the [111] direction for a cyclic
4 × 4 × 4 model of crystal MgO as constructed from Bloch
functions calculated using the Hartree–Fock method.

r along [111] axis
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5. ATOMIC-TYPE WANNIER FUNCTIONS 
AND LOCAL CHARACTERISTICS 

OF THE ELECTRONIC STRUCTURE 
OF THE TiO2 CRYSTAL

The titanium and oxygen atoms in the TiO2 crystal
occupy sites whose symmetry is described by the local
groups Ga = D2h and Gf = C2v (Wyckoff positions a, f),

respectively. The representations of the group 
induced by atomic-type functions centered at these
sites are listed in Table 4. The indices characterizing the
irreducible representations are the same as those used
in [39].

The local symmetry of the positions of the metal and
oxygen atoms in TiO2 is lower than that in MgO. As a
consequence, WFs of different types can have the same
symmetry. In particular, the oxygen s and (x + y) func-
tions, included in the minimal basis, transform accord-
ing to the irreducible representation a1 of the group C2v

D4h
14

Table 3.  Atomic charges in crystal MgO

Scheme for analyzing
atomic populations

Oxygen atomic 
charge, |e|

HF Mulliken –1.98

Löwdin –1.82

Nonorthogonal AWFs –2.00

Orthogonal AWFs –1.98

DFT (LDA) Mulliken –1.90

Löwdin –1.76

Nonorthogonal AWFs –1.99

Orthogonal AWFs –1.97

Plane-wave basis [6] –0.76
PH
and the titanium s, 3z2 – r2, and xy functions transform
according to the representation ag of the group D2h.

The minimal valence basis for the TiO2 crystal con-
sists of the oxygen s and p functions and the titanium s
and d functions. Symmetry analysis of the band states
and of the degree of localization of WFs corresponding
to different bands shows that the oxygen sp bands form
the highest 16 bands of occupied states and the titanium
d bands form the lowest 10 bands of empty states. The
titanium s bands correspond to two bands of empty
states lying at high energies (at different k points, the
levels of these bands have indices from 39 to 44, as
reckoned from the lowest empty band). These energies
are ~3 au (the bottom of the conduction band corre-
sponds to an energy of ~0.1 au). The titanium d and s
AWFs (two d WFs and one s WF) of the same symme-
try ag are shown in Fig. 4 for the [001] and [110] direc-
tions.

To investigate the contribution from the titanium s
band to the local characteristics, we analyzed the
atomic populations both with the inclusion of the tita-
nium s WFs (28 WFs per unit cell) and without them
(26 WFs per unit cell). The data on the local character-
istics of the electronic structure of TiO2 are listed in
Table 5.

6. DISCUSSION

It can be seen from Tables 3 and 5 that our results do
not agree with the data from [6] not only in the values
of the atomic charges but also in the relationship
between the covalent contributions to the bonding in
MgO and TiO2. According to our results, the covalent
character of bonding is much more pronounced in TiO2
than in MgO, whereas according to the data from [6],
both these crystals are partially ionic and partially cova-
lent with a large amount of covalent character and with
Table 4.  Induced representations of space group 

Atom Wyckoff
position Gq AO Γ, M Z, A X R

s; 3z2 – r2; xy ag 1+4+ 1 2 1+

x + y b3u 5– 4 2 1–

x – y b2u 5– 3 2 1–

Ti a(000) D2h z b1u 2–3– 1 1 1–

x2 – y2 b1g 2+3+ 2 2 1+

z(x + y) b2g 5+ 3 1 1+

z(x – y) b3g 5+ 4 1 1+

s; x + y a1 1+4+5– 14 22 1+1–

O f(pp0) C2v z b1 2–3–5+ 31 11 1+1–

x – y b2 2+3+5– 23 22 1+1–

Note: D2h(E, C2z , Uxy, , I, σz, σxy, ); C2v(E, Uxy, σz, ).

D4h
14

Uxy σxy σxy
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Table 5.  Local characteristics of the electronic structure of crystal TiO2

Bloch function 
computing 

method

Cyclic 
model

Scheme for analyzing 
atomic populations

Oxygen 
atomic 

charge, |e|

Orders of 
the shortest 
two Ti–O 

bonds

Covalence Full valence

Ti O Ti O

HF 4 × 4 × 4 Mulliken –1.33 0.36, 0.30 2.15 1.24 3.94 2.08

Löwdin –0.86 0.56, 0.50 3.46 2.04 4.18 2.36

Nonorthogonal AWFs –1.38 0.35, 0.28 2.06 1.11 3.98 2.05

Orthogonal AWFs –1.30 0.38, 0.29 2.34 1.25 4.02 2.07

26 nonorthogonal AWFs –1.38 0.35, 0.28 2.06 1.11 3.98 2.05

26 orthogonal AWFs –1.35 0.37, 0.28 2.16 1.17 3.99 2.05

DFT 4 × 4 × 4 Mulliken –0.89 0.52, 0.44 3.30 1.93 4.09 2.28

Löwdin –0.52 0.66, 0.58 4.29 2.52 4.53 2.62

Nonorthogonal AWFs –0.99 0.51, 0.40 3.15 1.70 4.11 2.16

Orthogonal AWFs –0.92 0.53, 0.41 3.39 1.81 4.19 2.19

26 nonorthogonal AWFs –0.99 0.51, 0.41 3.16 1.70 4.12 2.15

26 orthogonal AWFs –0.96 0.52, 0.41 3.23 1.74 4.13 2.17

2 × 2 × 3 Mulliken –0.90 0.52, 0.44 3.30 1.93 4.08 2.29

Löwdin –0.52 0.66, 0.58 4.29 2.52 4.53 2.62

Nonorthogonal AWFs –1.00 0.51, 0.40 3.15 1.69 4.11 2.15

Orthogonal AWFs –0.93 0.53, 0.41 3.34 1.79 4.17 2.18

Plane-wave basis [6] –0.73 – – – – –
virtually equal charges localized on the oxygen atoms.
Our results agree with the conventional view on the
bonding in these crystals and with the results of other
calculations.

The DFT method for calculating the electronic
structure includes the effect of electron correlation. By
comparing the results of analyzing the atomic popula-
tions based on the BFs calculated by the HF and DFT
methods, we can estimate the effect of electron cor-
relation on the chemical bonding. It can be seen from
Table 3 that the electron correlation virtually does not
affect the local properties of the electronic structure of
the MgO ionic crystal. In the mixed ionic and covalent
crystal TiO2, on the contrary, the electron correlation
increases the covalent contribution to the bonding
(Table 5). This may be explained by the fact that the
electron correlation manifests itself in a repulsion of
electrons at small distances between them. This effect
becomes significant for electrons forming a covalent
bond. Therefore, the effect of electron correlation is
more pronounced for more covalently bonded crystals.

The accuracy of calculating WFs depends on the
number of BFs with different wave vectors included in
the sum in Eq. (1). For the MgO isotropic cubic crystal,
we used a set of 4 × 4 × 4 = 64 k points. Calculations
with a larger set of 8 × 8 × 8 = 512 k points gave virtu-
ally the same results for both the total energy per unit
cell (–274.6640 and –274.6642 au) and the energy at
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
the valence band top (–0.3106 and –0.3105 au, respec-
tively).

The crystal TiO2 is anisotropic (a ≅  1.5c). Therefore,
a set of k points might be obtained not only by a sym-
metrical split of reciprocal lattice vectors. With sets of
6 × 6 × 6 = 216, 4 × 4 × 4 = 64, and 2 × 2 × 3 = 12 k
points, the calculated total energy per unit cell is
−69.7758, –69.7756, and –69.7744 au and the calcu-
lated one-electron energy at the valence band top is
−0.3029, –0.3031, and –0.3030 au, respectively. There-
fore, the set of 64 k points is appropriate for calcula-
tions. Even the set of 12 points gives virtually the same
results for the WFs and, hence, for the local electronic
properties (Table 5). We note that, in the latter case, the
computational time is an order of magnitude shorter.

Now, we consider the dependence of the calculated
local electronic structure on the scheme used to analyze
the atomic populations. For the MgO crystal, the Mul-
liken and Lölwdin schemes for analyzing the atomic
populations give virtually the same results (Table 3).
The results are also not affected strongly when the AWF
approach is used. The difference between the results
obtained using these schemes is slightly larger for DFT
than for HF calculations. When the atomic populations
are analyzed in terms of an AO basis in the Löwdin
scheme, the bonding becomes more covalent in charac-
ter as one passes over from the HF to the DFT method.
At the same time, the results obtained using orthogonal
or nonorthogonal AWFs are similar for both the HF and
03
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Fig. 4. Three AWFs centered at a titanium atomic site and having symmetry ag for crystal TiO2 (in units of a–3/2, where a is the

atomic length unit): (a, b) s-like function, (c, d) d-like function of the 3z2 – r2 type, and (e, f) d-like function of the xy type along
(a, c, e) the [001] axis and (b, d, f) the [110] axis. The Bloch functions are calculated within a cyclic 4 × 4 × 4 model using the
Hartree–Fock method.
DFT method and correspond to almost ionic bonding
(with an oxygen charge equal to –2). Therefore, the
occupied Bloch states are virtually orthogonal to the
metal s AWF constructed from the entire set of valence
bands and from the magnesium s band. Thus, the
charge localized on the metal atom turns out to be
small.

A different situation occurs in the case of TiO2. The
Mulliken and Löwdin schemes for analyzing the
atomic populations give strongly different results.
When based on orthogonal or nonorthogonal AWFs,
the results of analysis become much less sensitive to the
scheme used. Nevertheless, orthogonalization of AWFs
affects the results more significantly than in the case of
MgO, because the titanium s AWF is weakly localized
and, therefore, overlaps noticeably with other AWFs.
Such an overlap of the functions causes their deforma-
tion within the orthogonalization process, which can
affect the values of the local characteristics calculated
on the basis of these functions.

To determine the contribution from the titanium s
states, we calculated the local characteristics with and
without inclusion of these states. As seen from Table 5,
the contribution from these states of the s band to the
titanium atomic population is negligible, as in the case
with the magnesium s band in MgO. The results
obtained using nonorthogonal and orthogonal AWFs
differ to a lesser extent if the s band is not included,
PH
because in this case the least localized titanium s func-
tion is not involved in the orthogonalization.

Thus, high-lying bands (in our case, metal s bands)
virtually do not contribute to the electron population of
the corresponding atoms. On the contrary, for low-lying
bands (titanium d bands), strong mixing of the corre-
sponding WFs with the oxygen states occurs, which
increases the degree of covalent bonding. In the MgO
crystal, there are no minimal-basis functions centered
at the metal atoms and associated with an energy band
lying near the oxygen bands. As a consequence, the
degree of ionic bonding in this crystal is noticeably
higher than that in titanium oxide, in which the minimal
AWF basis contains such functions. For the same rea-
son, the effect of electron correlation on the local char-
acteristics is different in TiO2 and MgO. Inclusion of
the correlation (by using the DFT method) decreases
the energy gap between the occupied and empty states
in comparison with HF calculations. For the high-lying
metal s bands in both crystals, this decrease in the
energy gap is less perceptible than that for the titanium
d bands; therefore, the covalent contribution from the
latter bands to the bonding increases with the inclusion
of electron correlation. We note that, in crystals with a
significant degree of ionic bonding, the metal s bands
lie at high energies; this fact is the reason for the ionic
picture of the chemical bonding when the local charac-
teristics are calculated using AWFs. However, if the
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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minimal basis includes metal AWFs corresponding to
empty states, which are closer to occupied states than
are the metal s states, then the degree of covalent bond-
ing increases.

7. CONCLUSIONS

The main results of our study are as follows:

(1) The method proposed in [7] for constructing
WFs has been improved:

(a) The initial BF basis has been symmetrized with
respect to the irreducible representations of the local-
symmetry groups of WF localization centers.

(b) Symmetric orthogonalization has been per-
formed in the space of generalized BFs.

(c) A principle has been formulated that should be
followed in selecting the conduction bands originating
from the valence states of the atoms of the crystal. 

The full inclusion of symmetry significantly reduces
the magnitude of computations. Therefore, this method
can be applied to complex crystals with a fairly large
number of atoms per unit cell. 

(2) The local characteristics of the electronic struc-
tures of the MgO and TiO2 crystals, calculated using the
HF and DFT methods, have been determined. In con-
trast to the earlier calculations, these results are self-
consistent and agree with the empirical notion of the
character of chemical bonding in these compounds.

(3) It has been found that the energy bands originat-
ing from the metal valence s states are empty and lie at
fairly high energies.

(4) The local characteristics of the electronic struc-
ture were related to the mutual arrangement of the
energy bands involved in the AWF construction.

(5) Using the TiO2 crystal as an example, it was
shown that the calculated atomic populations depend
on the size of the cyclic model crystal only weakly.

(6) It was explained why the DFT method gives a
larger degree of covalent bonding than the HF method
only for rutile, even though the former method gives a
smaller value of the band gap for both compounds
(MgO, TiO2).

We note that the method proposed in this paper for
constructing AWFs can be applied in the cases where
both an AO and a plane-wave basis are used to calculate
the electronic structure of a crystal. Bloch states can be
found both with inclusion of electron correlation (dif-
ferent versions of the DFT method) and without it (the
HF method). Once the AWFs have been found, they can
be used to calculate not only the local electronic struc-
ture of the crystal but also other physical properties that
depend on them.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
ACKNOWLEDGMENTS
This study was supported by the Russian Founda-

tion for Basic Research, project nos. 02-03-32738 and
03-03-06124.

REFERENCES
1. V. P. Smirnov, R. A. Evarestov, and D. E. Usvyat, Int. J.

Quantum Chem. 88, 642 (2002).
2. R. A. Evarestov, V. P. Smirnov, and D. E. Usvyat, Int. J.

Quantum Chem. (in press).
3. C. M. Zicovich-Wilson, A. Bert, C. Roetti, et al.,

J. Chem. Phys. 116, 1120 (2002).
4. G. Wannier, Phys. Rev. 52, 191 (1937).
5. V. A. Veryazov, A. V. Leko, and R. A. Évarestov, Fiz.

Tverd. Tela (St. Petersburg) 41, 1407 (1999) [Phys. Solid
State 41, 1286 (1999)].

6. M. D. Segall, R. Shah, C. J. Pickard, et al., Phys. Rev. B
54, 16317 (1996).

7. V. P. Smirnov and D. E. Usvyat, Phys. Rev. B 64, 245108
(2001).

8. W. Kohn, Phys. Rev. 115, 809 (1959).
9. J. Des Cloizeaux, Phys. Rev. 135, A698 (1964).

10. G. Nenciu, Commun. Math. Phys. 91, 81 (1983).
11. E. K. Kudinov, Fiz. Tverd. Tela (St. Petersburg) 41, 1582

(1999) [Phys. Solid State 41, 1450 (1999)].
12. B. Sporkmann and H. Bross, Phys. Rev. B 49, 10 869

(1994).
13. N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12 847

(1997).
14. C. M. Zicovich-Wilson, R. Dovesi, and V. R. Saunders,

J. Chem. Phys. 115, 9708 (2001).
15. I. Mayer, G. Räther, and S. Suhai, Chem. Phys. Lett. 293,

81 (1998).
16. P. Y. Yu and M. Cardona, Fundamentals of Semiconduc-

tors (Springer, Berlin, 1996).
17. J. P. Albert, C. Jouanin, D. Cassagne, and D. Bertho,

Phys. Rev. B 61, 4381 (2000).
18. Y. Noel, C. M. Zicovich-Wilson, B. Civalleri, et al.,

Phys. Rev. B 65, 014111 (2002).
19. P. Ghosez, J. Michenaud, and X. Gonze, Phys. Rev. B 58,

6224 (1998).
20. S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999).
21. C.-K. Skylaris, A. A. Mostofi, P. D. Haynes, et al., Phys.

Rev. B 66, 035119 (2002).
22. A. Shukla, M. Dolg, P. Fulde, and H. Stoll, Phys. Rev. B

60, 5211 (1999).
23. J. Des Cloizeaux, Phys. Rev. 129, 554 (1963).
24. O. V. Kovalev, Representations of the Crystallographic

Space Groups: Irreducible Representations, Induced
Representations, and Corepresentations (Nauka, Mos-
cow, 1986; Gordon and Breach, Yverdon, Switzerland,
1993).

25. R. A. Evarestov and V. P. Smirnov, Site Symmetry in
Crystals: Theory and Applications (Springer, New York,
1997), Springer Ser. Solid-State Sci., Vol. 108.

26. R. A. Évarestov and V. P. Smirnov, Local Symmetry in
Molecules and Crystals (S.-Peterb. Gos. Univ.,
St. Petersburg, 1997).
03



2082 ÉVARESTOV et al.
27. P. Löwdin, Adv. Phys. 5, 1 (1956).
28. M. Causa, R. Dovesi, S. Pisani, and C. Roetti, Phys. Rev.

B 33, 1308 (1986).
29. B. Silvi, N. Fourati, R. Nada, and C. R. A. Catlow, J.

Phys. Chem. Solids 52, 1005 (1991).
30. K. J. Chang and M. L. Cohen, Phys. Rev. B 30, 4774

(1984).
31. K. M. Glassford and J. R. Chelikowsky, Phys. Rev. B 46,

1284 (1992).
32. A. Fahmi, C. Minot, B. Silvi, and M. Causa, Phys. Rev.

B 47, 11717 (1993).
33. P. Reinhardt, B. A. Heβ, and M. Causa, Int. J. Quantum

Chem. 58, 297 (1996).
34. R. Dovesi, V. R. Saunders, C. Roetti, M. Causa,

N. M. Harrison, R. Orlando, and E. Apra, Crystal 95
User’s Manual (Torino Univ. Press, Torino, 1996).
PH
35. P. Durand and J. C. Barthelat, Theor. Chim. Acta 38, 283
(1975).

36. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188
(1976).

37. R. A. Évarestov and I. I. Tupitsyn, Fiz. Tverd. Tela (St.
Petersburg) 44, 1582 (2002) [Phys. Solid State 44, 1656
(2002)].

38. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048
(1981).

39. S. C. Miller and W. F. Love, Tables of Irreducible Repre-
sentations of Space Group and Co-Representations of
Magnetic Space Groups (Pruett, Boulder, Colo., 1967).

Translated by Yu. Epifanov
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003



  

Physics of the Solid State, Vol. 45, No. 11, 2003, pp. 2083–2092. Translated from Fizika Tverdogo Tela, Vol. 45, No. 11, 2003, pp. 1982–1990.
Original Russian Text Copyright © 2003 by Krygin, Prokhorov, Dyakonov, Borowiec, Szymczak.

                                                                                                                                                    

SEMICONDUCTORS
AND DIELECTRICS

                                                                    
Spin–Spin Interaction and the EPR Spectrum of KDy(WO4)2

I. M. Krygin1, A. D. Prokhorov1, V. P. Dyakonov1,2, M. T. Borowiec2, and H. Szymczak2

1 Donetsk Physicotechnical Institute, National Academy of Sciences of Ukraine, Donetsk, 83114 Ukraine
2 Institute of Physics, Polish Academy of Sciences, Al. Lotnikyw 32/46, Warsaw, 02-668 Poland

Received December 27, 2002; in final form, April 7, 2003

Abstract—The EPR spectrum of a KDy(WO4)2 monoclinic crystal is investigated. It is found that the EPR
spectrum of magnetically concentrated materials at a low frequency (9.2 GHz) undergoes a substantial trans-
formation in addition to the well-known broadening of the EPR lines. At low Dy3+ concentrations (x < 10–2),
the EPR spectrum of an isomorphic crystal, namely, KY(1 – x)Dyx(WO4)2, is characterized by the parameters gx
= 0, gy = 1.54, and gz = 14.6. For a magnetically concentrated crystal KDy(WO4)2, the g values are as follows:
gx = 0, gy = 0.82, and gz = 2.52. It is demonstrated that the difference in the parameters is associated with the
specific spin–spin interaction between Dy3+ ions, including the Dzyaloshinski interaction, which is not
observed at high frequencies. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable interest has been expressed by
researchers in crystals of double tungstates of mono-
clinic symmetry for a number of reasons. First, these
materials doped with rare-earth elements hold promise
for producing laser action with unique properties [1–4].
Second, KDy(WO4)2 and RbDy(WO4)2 crystals at low
temperatures undergo structural phase transitions of the
Jahn–Teller type, during which lattice distortions occur
without a change in symmetry [5–8]. At temperatures
below 1 K, these crystals also undergo antiferromag-
netic ordering [7–11].

Upon isomorphous substitution, the EPR spectra of
magnetically diluted and magnetically concentrated
compounds, as a rule, differ only in the absorption line
width. The large line width for magnetically concen-
trated materials is explained by the considerable contri-
bution of the spin–spin interaction to the EPR spec-
trum. This broadening leads to a smearing of the spec-
tral structure. The smearing is determined by the ratio
of the spin–spin interaction energy to the energy of the
interaction responsible for the formation of the spectral
structure. It should be noted that there are cases (see,
for example, [12, 13]) where the EPR spectra of mag-
netically concentrated compounds exhibit a structure
associated with the specific type of spin–spin interac-
tion.

The spectroscopic splitting factor g entering into the
Hamiltonian changes to a considerably lesser extent.
This factor is a characteristic of the ground state of an
impurity ion, which is determined by the symmetry and
the electric crystal field of the matrix. In the homolo-
gous series of crystals, the crystal symmetry remains
unchanged and only the unit cell parameters change
quantitatively. Consequently, the g factor should also
change only quantitatively, if at all. Numerous experi-
1063-7834/03/4511- $24.00 © 22083
ments have demonstrated that these changes in the g
factor are within the limits of experimental error.

The KDy(WO4)2 paramagnetic crystal and the
KY(WO4)2 diamagnetic crystal belong to the same
homologous series. The unit cell parameters of these
crystals differ by no more than 0.7%. Therefore, no
substantial differences in the g factor can be expected
for magnetically concentrated (x = 1) and magnetically
diluted (x < 10–2) KY(1 – x)Dyx(WO4)2 crystals. How-
ever, the characteristics of the EPR spectra of the mag-
netically concentrated [7] and magnetically diluted [14]
crystals differ qualitatively. At a frequency of
≈9.2 GHz, in crystals with a low dysprosium concen-
tration, the g factor has ordinary values: gx = 0, gy =
1.54, and gz = 14.6. In crystals with 100% Dy3+, the g
values are as follows: gx = 0, gy = 0.82, and gz = 2.52 at
temperatures above the phase transition point Tspt and
gx = 0, gy = 1.19, and gz = 1.98 at T < Tspt. Contradictory
data on the g factor have been obtained from analyzing
the magnetic susceptibility [10].

Earlier [15], we established that the strongest inter-
action is observed for Dy3+ ions located in the first (nn),
fifth (5n), and ninth (9n) coordination shells. In this
case, the spin–spin interaction is characterized by a
considerable axial anisotropy, i.e., |Kzz | @ |Knm | (n, m =
x, y, z). The spin–spin interaction energy is comparable
(Kzz(5n) = –0.407 cm–1, Kzz(9n) = −0.237 cm–1) and even
exceeds (Kzz(nn) = 1.49 cm–1) the energy of microwave
photons (hν = 0.308 cm–1) used in EPR experiments.
For the other coordination shells, the spin–spin interac-
tion is substantially weaker.

In the present work, we showed that the very spe-
cific, sufficiently strong spin–spin interaction between
impurity ions is responsible for the qualitative transfor-
003 MAIK “Nauka/Interperiodica”
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mation of the EPR spectra with an increase in the con-
centration of Dy3+ ions.

2. CRYSTAL STRUCTURE

Potassium yttrium and potassium dysprosium dou-
ble tungstates, KY(WO4)2 and KDy(WO4)2, are iso-
morphic crystals in the monoclinic system [16–18]

with space-group symmetry  = C2/c. The unit cell
contains four formula units. The unit cell parameters
for both crystals are listed in Table 1. The coordinates
of rare-earth ions in the unit cell are presented in Table 2.
A fragment of the KDy(WO4)2 crystal is depicted in
Fig. 1. To avoid overloading of the figure, only rare-
earth ions located in two adjacent planes ac are shown
by gray and open circles and bonding lines are drawn

C2h
6

Table 1.  Unit cell parameters (Å) and rhombohedral angles
β (deg) in the structures of KY(WO4)2 and KDy(WO4)2 sin-
gle crystals

Crystal a b c β Reference

KY(WO4)2 8.11 10.35 7.54 93.3 [1]

KDy(WO4)2 8.05 10.32 7.52 94.4 [2]

Table 2.  Coordinates A, B, and C (in terms of a, b, c) of rare-
earth ions in the unit cells of KY(WO4)2 and KDy(WO4)2
crystals

Ion no. A B C

1 0 0.2716 0.25

2 0.5 0.2284 0.25

3 0 0.7284 0.75

4 0.5 0.7716 0.75

nn

20°

β

6n
3n

4n
8n

i, j + 3

i, j + 2

i, j + 15n
9n i, j

2

1

1 2 3

1
2

3

4

nn
i + 1, j

i + 1, j + 1

8n
5n

9n i + 2, j + 2

i + 2, j + 3

i + 2, j + 1

i + 2, j

4n
3n

6n 7n
i + 1, j + 2

i + 1, j + 3

C, c

1

B, b

Fig. 1. A fragment of the KDy(WO4)2 crystal with sizes
L1 = 4 and L2 = 3 and the axes of the laboratory coordinate
system. β is the rhombohedral angle. Ions are numbered
according to Hamiltonian (1). Numbering in italic type cor-
responds to Table 2. Dashed lines depict the unit cell and
ions in it.

A, a
PH
only for the nn pairs. The central ion from which the
distances to the neighboring ions are reckoned is shown
by the closed circle. The Dy3+ ions forming the 2n pairs
(not shown in Fig. 1) occupy the lower ac plane and the
bc plane involving the 3n pairs. The ions located within
one unit cell bounded by the dashed straight lines are
numbered in italic type in accordance with Table 2.

The nearest neighbor rare-earth ions (nn) are located
in the ab plane and form slightly bent chains lying
along the a axis. The bonding direction of the nn pair
makes an angle of 6.3° with the ac plane. The Dy3+ ions
forming the 5n and 9n pairs are located in the chains
lying in the same plane ac at a distance C from the ini-
tial chain and, in turn, represent the nn pair. Therefore,
the chains of the Dy3+ ions form planes perpendicular
to the b axis. Note that the in-plane spin–spin interac-
tion (with the dominant interaction along the chains) is
appreciably stronger than the interplanar interaction.

3. THEORY

Let us consider a Dy3+ ion with the 4f 9 electron con-
figuration (S = 5/2, L = 5, J = 15/2, Landé factor gJ =
4/3). The ground state 6H15/2 is split by the crystal field
of monoclinic tungstate into eight Kramers doublets, of
which the lowest doublet exhibits an EPR spectrum.
The first and second excited doublets lie 10 and
135 cm–1 above the ground doublet, respectively [5, 6].
The even dysprosium isotopes (the natural abundance
evnc is 56.1%) have a zero nuclear spin, whereas the odd
isotopes 163Dy (163c = 24.97%) and 161Dy (161c =
18.88%) are characterized by the nuclear spin I = 5/2.
For Dy3+ single ions in the studied matrix, the tensor g
has the components gx = 0, gy = 1.54, and gz = 14.6 and
the components of the hyperfine interaction tensor for
the odd isotopes are as follows: 163Az = 582.8 × 10–4 cm–1,
161Az = 416.5 × 10−4 cm–1, 163Ay = 146 × 10–4 cm–1, and
161Ay = 104 × 10−4 cm–1 [14]. The directions of the prin-
cipal axes of the tensors g and A are shown in Fig. 1.
The y axis coincides with the b (c2) crystallographic
axis, and the z axis lies in the ac plane and emerges
from the acute angle between the a and c axes at an
angle of 20° to the c axis.

Since the hyperfine interaction is considerably
weaker than the spin–spin interaction, the former inter-
action is ignored in the further consideration, especially
as the contribution of the even dysprosium isotopes
(with a zero hyperfine interaction) amounts to more
than half the total intensity of the spectrum of
KDy(WO4)2. By disregarding also the interplanar inter-
action, the Hamiltonian for the plane formed by L1
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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chains, each consisting of L2 Dy3+ ions, at B || z can be
written in the form

(1)

Here, the first term describes the interaction of spins
with an external constant magnetic field with induction
Bz; the other terms characterize the spin–spin interac-
tion of ions located in the first (nn), fifth (5n), and ninth
(9n) coordination shells; the first and second subscripts

on the spin operator  indicate the number of the chain
and the number of the ion in this chain (Fig. 1), respec-
tively; µB is the Bohr magneton; K is the tensor of spin–
spin interaction; and S = 1/2. The principal axes of the
tensor of spectroscopic splitting g are used as the axes
of the laboratory coordinate system. The axes of the
laboratory coordinate system are shown in Fig. 1, in
which the numbering of Dy3+ ions corresponds to the
designations in Hamiltonian (1).

The contributions to the spin–spin interaction tensor
K can be made by different mechanisms of spin–spin
interaction, including the isotropic exchange (j) and
magnetic dipole–dipole (MDD) interactions:

(2)

To sufficient accuracy, we can calculate only the contri-
bution of the magnetic dipole–dipole interaction [19]:

(3)

where r is the interionic distance, ln and lm are the direc-
tion cosines of the bonding direction with respect to the
corresponding axis, and δnm = 1 at n = m and δnm = 0 at
n ≠ m (n, m = x, y, z).

The distance between Dy3+ ions is relatively large:
two oxygen ions and one potassium ion are located
even between the nearest neighbor Dy3+ ions. There-
fore, it is highly improbable that the direct exchange
interaction can occur between the Dy3+ ions. However,
in any case, whether the isotropic exchange interaction
is direct or indirect, this interaction can manifest itself
in an anisotropic manner. Indeed, by ignoring the
admixture of excited states, the tensor Kj (written in
terms of effective spins) takes the anisotropic form [19]

(4)

From relationships (3) and (4), it follows that KMDD

and Kj are symmetric tensors. With due regard for the
rather low symmetry of the matrix, we should expect
that the indirect exchange interaction is strongly aniso-
tropic and can be either symmetric (s) or antisymmetric

Ĥ gzµBBz Ŝz i j, ,

j 1=

L2

∑
i 1=

L1

∑ Ŝi j, K nn( )Ŝi j 1+,

j 1=
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(as); in this case, the components of the tensors Ks and
Kas satisfy the following conditions:

(5)

Consequently, relationship (2) can be rewritten in the
form

(6)

Here, the contributions to the tensor Ks can be made by
the magnetic dipole–dipole interaction and the direct
(j), indirect isotropic (jk), and symmetric anisotropic (js)
exchange interactions:

(7)

However, according to Borisov and Klevtsova [16],
pairs of Dy3+ ions in KY0.99Dy0.01(WO4)2 are character-
ized by the axial spin–spin interaction; i.e., all the com-
ponents of the spin–spin interaction tensor K are negli-
gible compared to the component Kzz. Hence, the solu-
tion of Hamiltonian (1) will be sought in the space of
the wave functions

(8)

where mp, i, j = ±1/2. The total number of states of the
spin system is equal to 2L, where L = L1L2.

Since Hamiltonian (1) in this case has only diagonal
terms, the energy spectrum represents a set of levels lin-
early dependent on the magnetic field induction Bz and
described by the pure wave functions (8); that is,

(9)

Here, p is the number of the energy level, Dp =
Dp, 0, 0Kzz(nn) + Dp, 1, 0Kzz(5n) + Dp, 1, 1Kzz(9n), and the non-
zero coefficients Dp, k, l and Ap are defined by the for-
mulas

The probability Wpq of the transition from the pth
level to the qth level is given by the relationship

(10)
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The right-hand side of relationship (10) is equal to
0.25 when the projection of only one out of all the spins
changes by 1 (mp, i, j = –mq, i, j). In all other cases, we
have Wpq = 0. Consequently, the probabilities of all the
allowed transitions are identical and the calculation of
the EPR spectrum is reduced to simple geometric cal-
culations involving the determination of all pairs of
straight lines (9) with Wpq ≠ 0 and calculation of the
magnetic induction Bz necessary to satisfy the condition
|Eq – Ep | = hν.

At high photon energies (hν > |Kzz(nn) |), the EPR
spectrum of an ion pair (L1 = 1, L2 = 2) is represented
by a doublet with lines at B0 ± Kzz(nn) /2, where B0 =
hν/gzµB. The EPR spectrum of an ion triad is given
below. Similar calculations for longer chains include an
exhaustion search for a very large number of straight
lines and can be conveniently performed using a com-
puter. As a result, we found that, at L1 = 1 and arbitrary
L2 > 2, the EPR spectrum is an equidistant pentad with
the lines located at

(11)

and the intensity ratio

(12)

This implies that, as the chain length increases, the EPR
spectrum transforms from the doublet B2 and B4 to the
triplet B1, B3, and B5. A similar result was obtained in
our previous work [13] for a chain of ions bound
through axial interaction.

Relationships (11) can be rewritten in the following
form:

(13)

where ∆mk = Bm – Bk and Bmk = (Bm + Bk)/2.
Similar calculations carried out for a square frag-

ment of the plane at L1 = L2 = 3 and 4 showed that, for
a sufficiently large fragment, each line of pentad (12) is
split by the interaction with the Dy3+ ions located in the
fifth coordination shell into the same pentad with
∆51(5n) = 2Kzz(5n), ∆42(5n) = Kzz(5n), and B0(5n) = B0. In turn,
each of the 25 lines obtained is split by the spin–spin
interaction with the Dy3+ ions located in the ninth coor-
dination shell into a similar pentad with ∆51(9n) = 2Kzz(9n)
and ∆42(9n) = Kzz(9n). For a real sample (L1, L2  ∞), the
EPR spectrum in the case of axial spin–spin interaction
should consist of 27 lines broadened because of the
interaction with more distant Dy3+ ions.

A decrease in the energy of microwave photons
leads to a transformation of the EPR spectrum. It can be
demonstrated that the transformation of the spectrum

B1 = B0 Kzz nn( ), B2–  = B0 Kzz nn( )/2, B3–  = B0,

B4 B0 Kzz nn( )/2, B5+ B0 Kzz nn( )+= =

1
2

L2

– 
   : 

4

L2

 : 2
4

L2

– 
   : 

4

L2

1
4

L2

– 
  .

∆51 2Kzz nn( ), ∆42 Kzz nn( ),= =

B51 B42 B3 B0,= = =
PH
with a decrease in the frequency is formally reduced to
reflection of the absorption lines located at negative
inductions on the positive half-plane. At hν < |Kzz(nn) /2 |,
the EPR spectrum of a chain formed by the nearest
neighbor ions is represented by pentad (12) with the
lines located at

(14)

Now, we consider how the symmetric and antisym-
metric spin–spin interactions affect the EPR spectrum
of the KDy(WO4)2 crystal. For this purpose, proper
allowance must be made for the fact that a triad of inter-
acting ions is the minimum configuration whose spec-
trum contains the lines observed not only in the spec-
trum of pairs but also in the spectrum of an infinite
chain. On this basis, from analyzing the influence of the
anisotropic exchange interaction on the locations of the
first, third, and fifth lines, we can draw inferences
regarding the transformation of the EPR spectrum due
to off-diagonal components of the spin–spin interaction
tensor K.

For the axial spin–spin interaction and B || z, the
energy spectrum of a triad formed by ions whose inter-
action is described by Kzz(nn) (L1 = 1, L2 = 3) can be eas-
ily calculated in analytical form. From relationships
(8)–(10), we derive the following energy spectrum and
wave functions:

(15)

where G = gzµBBz/2.
The E7 level intersects the E5 and E6 levels at Bk1 =

Kzz/4gzµB; the E2, E3, and E4 levels at Bk2 = Kzz/2gzµB;
and the E1 level at Bk3 = Kzz/gzµB. The allowed transi-
tions with the same probability Wpq ~ 0.25 between the
levels are as follows: E1  E5, E1  E6, ,

E2  E3, E2  E4, E2  E8, , E3 

E7, , E4  E7, E5  E8, and E6  E8.

The underlined transitions correspond to the spectrum
of the infinite chain. The calculated energy spectrum is
depicted by the solid lines in Fig. 2.

The tensor components Kyz and Kyy provide mixing
of all the states. In this case, the energy spectrum and

B51 Kzz nn( ), B42 Kzz nn( )/2,= =

∆51 ∆42 2B0, B3 B0.= = =

E1 –G Kzz/2, φ1| 〉– 1/2– +1/2 1/2–, ,| 〉 ,= =

E2 G Kzz/2, φ2| 〉– +1/2 –1/2 +1/2, ,| 〉 ,= =

E3 E4 G φ3| 〉– +1/2 –1/2 –1/2, ,| 〉 ,= = =

φ4| 〉 –1/2 –1/2 +1/2, ,| 〉 ,=

E5 E6 G φ5| 〉 –1/2 +1/2 +1/2, ,| 〉 ,= = =

φ6| 〉 +1/2 +1/2 –1/2, ,| 〉 ,=

E7 –3G Kzz/2 φ7| 〉+ –1/2 –1/2 –1/2, ,| 〉 ,= =

E8 3G Kzz/2 φ8| 〉+ +1/2 +1/2 +1/2, ,| 〉 ,= =

E1 E7

E3 E6

E4 E5
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the transition probabilities can be most conveniently
calculated with a computer. The results of calculations
are presented in Table 3 and Fig. 2. The component Kyy

leads to the appearance of the energy gap at the point

Bk1 (Fig. 2, line 4). The component  removes the
degeneracy of the E3–E6 levels at the point Bz = 0 and
results in the appearance of the energy gap at the point

Bk2 (Fig. 2, line 2). The component  is responsible
for the formation of the energy gap at the points Bk2 and
Bk3 (Fig. 2, line 3). These tensor components mix the
wave functions and lead to a change in the transition
probabilities at magnetic inductions Bz sufficiently
close to the characteristic points. For other magnetic
field inductions, the above components of the spin–spin
interaction tensor K do not affect the energy spectrum.

Therefore, the antisymmetric spin–spin interaction
has no noticeable effect on the B1 and B5 lines, shifts the
B3 line toward lower magnetic field inductions, and
decreases its intensity, which becomes equal to zero at

Bz = 0. By contrast, the component  virtually does
not affect the quartet E3–E6 and leads to a decrease in
the separation between the B1 and B5 lines and in their
intensities (the intensity of the B5 line decreases to a
greater extent).

Note that the aforementioned effects are most pro-
nounced at frequencies comparable to splittings caused
by the corresponding spin–spin interaction tensor com-
ponents. For the sufficiently high energies of micro-
wave photons used in experiments, the contribution
from the off-diagonal components of the spin–spin
interaction tensor K should be negligible in magnitude.

4. EXPERIMENTAL TECHNIQUE

Single crystals of KDy(WO4)2 were used as sam-
ples. The crystals were grown through spontaneous
crystallization from a K2W2O7 solution upon cooling
from 950°C at a rate of 3°C/h. The linear dimensions of
the grown crystals varied from 2 to 3 mm, and a number
of crystals possessed a clearly pronounced faceting.
The crystals were oriented using x-ray diffraction.

The EPR spectra measured at a frequency of
9244.5 MHz, B || z, and temperatures of 12 and 4.2 K
(above and below the phase transition point Tspt, respec-
tively) are shown by the solid lines in Fig. 3. Both spec-
tra contain a line with a width of ≈130 mT at a magnetic
field induction corresponding to gz = 2.53 at T = 12 K
and gz = 2.13 at T = 4.2 K. At low inductions, there is
an anomaly, which disappears with a decrease in the
temperature.

The EPR spectrum measured at a frequency of
72 240 MHz, B || z, and T = 4.2 K is depicted by the
solid line in Fig. 4. Unlike the low-frequency spectrum,
the high-frequency EPR spectrum exhibits a pro-
nounced triplet structure. The line intensities increase

Kyz
as

Kyz
s

Kyz
s
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Fig. 2. Calculated energy spectra of a triad of interacting
Dy3+ ions at B || z with due regard for (1) the axial spin–spin
interaction (Kzz = 1.9 cm–1) and (2–4) the low-symmetry
components of the spin–spin interaction tensor: (2) anti-

symmetric (Kzz = 1.9 cm–1,  = 0.3 cm–1), (3) symmetric

(Kzz = 1.9 cm–1,  = 0.3 cm–1), and (4) Kyy (Kzz =

1.9 cm–1, Kyy = 0.3 cm–1) components. In all calculations,
it is assumed that gz = 14.6. Components absent from the
spin–spin interaction tensor K are equal to zero. Arrows
indicate the allowed transitions for the axial spin–spin inter-
action at a frequency of 9244.5 MHz (0.3084 cm–1). Heavy
arrows correspond to the transitions in the EPR spectrum of
an infinite chain. The transition multiplicity is given near
arrows.

Kyz
as

Kyz
s

5004003002001000
Bz, mT

5

4

3

2
1

Fig. 3. (1, 3) Experimental and (2, 4, 5) calculated EPR
spectra of KDy(WO4)2 at a frequency of 9244.5 MHz, B ||
z, and T = (1, 2, 5) 4.2 and (3, 4) 12 K. The spectra are cal-
culated according to (2, 4) the data presented in Table 4 and
(5) the results obtained in [15]. All calculations are per-
formed at gz = 14.6 and ∆B = 70 mT for a Gaussian line
shape and with due regard for the freezing effect and the
spin–spin interaction in the fifth and ninth coordination
shells (Kzz(5n) = −0.4074 cm–1, Kzz(9n) = –0.2373 cm–1).
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Table 3.  Effect of the components Kzz, , , and Kyy of the spin–spin interaction tensor for Dy3+ ion triads in KY1 –  xDyx(WO4)2

(0 < x ≤ 1) on the splitting of energy levels ∆Epq = Ep – Eq (MHz) and the transition probabilities Wpq at characteristic points
of the energy spectrum

Kyy

Bz = 0

∆E43 W43 ∆E53 W53 ∆E63 W63 ∆E54 W54 ∆E64 W64 ∆E65 W65

0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0.25

0.3 0 0 0 0.41 8881 0 8881 0 8881 0 8881 0 0 0.11

0 0.3 0 0 0.14 0 0.027 0 0.052 0 0.042 0 0.17 4379 0

0 0 0.3 0 0.059 0 0.085 0 0.081 0 0.008 0 0.054 0 0.088

Kyy

Bz = Bk2

∆E32 W32 ∆E42 W42 ∆E52 W52 ∆E43 W43 ∆E53 W53 ∆E54 W54

0 0 0 0 0 0 0.25 0 0.25 0 0.25 0 0.25 0 0

0.3 0 0 4123 0.012 4811 0 8912 0 678 0.99 4789 0.012 4101 0

0 0.3 0 4379 0 4608 0.001 8984 0.001 229 0 4605 0 4376 0.001

0 0 0.3 693 0 693 0 927 0.85 0 0 233 0 233 0.002

Kyy

Bz = Bk3

∆E21 W21

0 0 0 0 0.25

0.3 0 0 236 0.24

0 0.3 0 8934 0.009

0 0 0.3 233 0.16

Note: All calculations are performed at gz = 14.6 and Kzz = 1.9 cm–1, which results in Bk2 = 139.37 mT and Bk3 = 278.74 mT. The energy
levels are numbered in increasing order. At Wpq < 10–3, it is assumed that Wpq = 0.
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with an increase in the magnetic field induction Bz, the
width of each line is approximately equal to 120 mT,
and gz ≈14.6.

5. DISCUSSION

Earlier [15], we studied the EPR spectra of Dy3+ ion
pairs in KY0.99Dy0.01(WO4)2. According to the data
obtained in [15], the dominant contribution to the spin–
spin interaction tensor K is made by the isotropic
exchange and magnetic dipole–dipole interactions [see
formula (2)] and the spin–spin interaction for all types
of pairs is axial in character. It is clear that the results
obtained in [15] cannot be applied for calculating the
spectrum of the crystal with the use of Hamiltonian (1)
due to a great number of particles. For this reason, we
will use a triad of interacting ions as a model. In this
case, only the lines that correspond to the spectrum of
the infinite chain, i.e., to the transitions between the E3,
E4, E5, and E6 levels at Bz < Bk1 and the E1 and E7 levels
at Bz > Bk2 (Fig. 2), are retained in the calculated spec-
trum. The calculations are performed taking into
account that, for the crystal, (i) each line is split by the
interaction with the Dy3+ ions located in the fifth and
ninth coordination shells and (ii) each line is broadened
PH
because of the spin–spin interaction with more distant
Dy3+ ions. The results of calculations at ∆B = 70 mT
(the width of each line is determined from the extrema
of the derivative) with due regard for the data obtained
in [15] (gz = 14.6, Kzz(nn) = 1.49 cm–1, Kzz(5n) = –0.4074
cm–1, Kzz(9n) = –0.2373 cm–1) are shown by curve 5 in
Fig. 3. It can be seen from this figure that the results of
calculations disagree with the experimental spectrum.

In [15], it was noted that, in the spectra of the 5n and
9n pairs, the hyperfine structure is identical to that of a
single ion. On this basis, the conclusion was drawn that
the nonaxial components of the spin–spin interaction
tensor K for these pairs make an insignificant contribu-
tion. On the other hand, the spectrum of the nn pair is
represented by a broad line without hyperfine structure.
This circumstance, which was not explained in [15],
may indicate that the spin–spin interaction tensor of the
nn pair includes components that provide mixing of dif-
ferent states and are responsible for the disappearance
of the hyperfine structure. The tensors Kas and Ks con-
tain such components.

An impurity ion substituting for an ion in the matrix
brings about distortion of the unit cell toward a unit cell
characteristic of the impurity ion due to the difference
in the ionic radii. A pair of closely spaced impurity ions
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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increases this distortion. For example, in rare-earth
ethyl sulfates Re(C2H5SO4)3 · 9H2O, the unit cell
parameter c is equal to the distance rnn between the
nearest neighbor rare-earth ions Re. According to [20],
in A(1 – x)Bx (C2H5H2SO4)3 · 9H2O single crystals (A =
La3+, Y3+, Tm3+; B = Nd3+, Ce3+; isomorphous substitu-
tion), the parameter c of unit cells depends on the num-
ber k of neighboring ions B as follows:

(16)

where ck is the parameter c of the unit cells in which the
B ion substitutes for the A ion and cA and cB are the
parameters c for the pure [A(C2H5H2SO4)3 · 9H2O] and
totally substituted [B(C2H5H2SO4)3 · 9H2O] matrices,
respectively. To put it differently, as the length of a
chain formed by impurity ions increases, the distance
rnn changes toward the distance characteristic of their
own matrix.

The distance between rare-earth ions in KDy(WO4)2
is less than that in KY(WO4)2 (Table 2). Therefore,
without going into detail on the quantitative analysis of
the applicability of relationship (16) to rare-earth tung-
states, we argue that the distance rnn in Dy3+ ion pairs in
KY0.99Dy0.01(WO4)2 can exceed the distance rnn in
KDy(WO4)2. Consequently, the spin–spin interaction
of Dy3+ ions in KDy(WO4)2 can be stronger than that in
the magnetically diluted matrix.

These circumstances were taken into account when

choosing the tensor components Kzz, , , and Kyy.
A comparison of calculated curves 2 and 4 with exper-
imental spectra 1 and 3 (solid lines) in Fig. 3 demon-
strates that the inclusion of the off-diagonal compo-
nents of the spin–spin interaction tensor K leads to sub-
stantially better agreement with the experimental data.
It should be noted that the component Kzz primarily
affects the location of the B1 and B5 lines and the com-

ponent  determines the separation between them,

whereas the components  and Kyy compete with
each other for the effect on the location and intensity of
the B3 line. In order to ensure uniqueness, the compo-
nent Kyy was calculated provided that relationships (4)

[i.e.,  = (gz/gx)2] and (7) are satisfied. Com-
pared to the Lorentzian line shape, the Gaussian line
shape is characterized by a flatter peak and steeper
wings. The calculated spectra are described by Gauss-
ian lines. This can be associated not with the random
distribution of particles but primarily with the fact that
the number of lines in the experimental spectrum is
greater than the number of the lines used in calcula-
tions.

This surprisingly good agreement between the
experimental and calculated data called for additional
verification. Measurements carried out at a substan-
tially higher frequency made it possible to draw the fol-

ck cB cA cB–( ) 0.592k–( ),exp+=

Kyz
as

Kyz
s

Kyz
s

Kyz
as

Kzz
j

/Kyy
j
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lowing inferences. (1) As follows from a theoretical
analysis, the off-diagonal components of the spin–spin
interaction tensor at a high photon energy do not signif-
icantly affect the absorption spectrum (curves 2 and 3
in Fig. 4 almost coincide with each other). (2) The pos-
itive sign of the component Kzz(nn) is correctly predicted
in [15], as can be judged from the “freezing” in the
spectral range at low inductions. (3) The component
Kzz(nn) determined from the data at the low frequency
corresponds to the spectrum observed at the high pho-
ton energy.

Note that the freezing effect at low frequencies
(hν ! kT) is substantially less pronounced than that at
high frequencies (hν ≥ kT). Therefore, the deviation of
the relative intensities of the spectral lines from ratio (12)
is determined by the low-symmetry components of the
spin–spin interaction tensor K at the low frequency and
the temperature at the high frequency. Thus, the results
of the investigations performed with the magnetically
concentrated materials at two considerably differing
frequencies are not only consistent but also comple-
ment each other and demonstrate that the use of even a
small chain fragment makes it possible to simulate the
EPR spectrum of the real crystal with a high degree of
accuracy.

The question arises as to why the off-diagonal com-
ponents of the spin–spin interaction tensor K were not
found in the spectrum of pairs in our previous work
[15], in which we also used low-energy photons
(9244.5 MHz).

Hamiltonian (1) for an ion pair at B || z can be easily
diagonalized at nonzero components Kzz and Kyy of the
spin–spin interaction tensor. At L1 = 1 and L2 = 2, we

10008006004002000
Bz, mT

3
2

1

Fig. 4. (1) Experimental and (2, 3) calculated EPR spectra
of KDy(WO4)2 at a frequency of 72 240 MHz, B || z, and
T = 4.2 K. The spectra are calculated for (2) the axial spin–
spin interaction (Kzz(nn) = 2.24 cm–1, all other tensor com-
ponents Knn are equal to zero) and (3) from the data pre-
sented in Table 4. All calculations are performed at gz = 14.6
and ∆B = 120 mT for a Lorentzian line shape and with due
regard for the freezing effect and the spin–spin interaction
in the fifth and ninth coordination shells (Kzz(5n) = –0.4074

cm–1, Kzz(9n) = –0.2373 cm–1).
3
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obtain the following energy spectrum and wave func-
tions:

(17)

where

E1 Kzz/4 Q–=

φ1| 〉 A+ 2G Q+( ) –1/2 –1/2,| 〉[=

– Kyy/4( ) 1/2+ +1/2, ] ,

E2 –Kzz Kyy–( )/4=

φ2| 〉 1

2
------- +1/2 –1/2,| 〉 –1/2 +1/2,| 〉–[ ] ,=

E3 –Kzz Kyy+( )/4=

φ3| 〉 1

2
------- +1/2 –1/2,| 〉 –1/2 +1/2,| 〉+[ ] ,=

E4 Kzz/4 Q+=

φ4| 〉 A– Kyy/4( ) +1/2 +1/2,| 〉[=

– 2G Q–( ) –1/2 –1/2,| 〉 ] ,

A±
1

2
------- Kyy/4( )2

4G
2

2GQ±+[ ]
1/2

,=

20

0

–20

E, GHz

100 200
Bz, mT

0

1
2
3

E4

B2

×2 Bk E3

E2

E1

×2

B4

Fig. 5. Calculated energy spectra of a pair of interacting
Dy3+ ions with due regard for (1) the axial spin–spin inter-
action (Kzz = 1.9 cm–1, all other components of the tensor K
are equal to zero) and (2, 3) the low-symmetry components
of the spin–spin interaction tensor K: (2) antisymmetric

(Kzz = 1.9 cm–1,  = 0.3 cm–1) and symmetric (Kzz =

1.9 cm–1,  = 0.3 cm–1) and (3) Kyy (Kzz = 1.9 cm–1,

Kyy = 0.3 cm–1) components. In all calculations, compo-
nents absent from the spin–spin interaction tensor K are
equal to zero and gz = 14.6. Arrows indicate allowed transi-
tions for the axial spin–spin interaction at a frequency of
9244.5 MHz. The transition multiplicity is given near
arrows. Curves 3 are numbered according to relation-
ships (17).

Kyz
as

Kyz
s

PH
The allowed transitions between the levels are as
follows: E1  E3 and E3  E4. At a low photon
energy, the lines in the absorption spectrum should be
observed at the magnetic field inductions

(18)

with the transition probability (10) W13 ~ [A+(2G + Q –
Kyy/4)]2. Consequently, an increase in the component
Kyy is accompanied by a shift in the spectrum of pairs
toward lower inductions of the external magnetic field,
an increase in the separation between the lines, and a
decrease in the spectral intensity.

Figure 5 shows the energy spectrum of the Dy3+ ion
pair, which was calculated using a computer. It can be

seen from this figure that the components  and 
manifest themselves in the same way (dashed curves 2)
and lead to the appearance of an energy gap in the
vicinity of the point Bk (a similar situation can be
observed in the vicinity of the point Bk2 in Fig. 2).
Therefore, the effect of each component under consid-
eration is reduced to a decrease in the separation
between the B2 and B4 lines as compared to the separa-
tion calculated for the axial spin–spin interaction [see
relationships (14)]:

(19)

As a consequence, the contributions of the symmetric
and antisymmetric spin–spin interactions to the EPR
spectrum of the pair cannot be separated even at a low
phonon energy.

Only one line, namely, B4 at 154.5 mT, is observed
in the absorption spectrum of the nn pairs of Dy3+ ions
in KY0.99Dy0.01(WO4)2. The B2 line overlaps with the
spectrum of single ions and can be located in the range
from 64.1 [see relationship (19)] to 69.2 mT (the upper
boundary of the spectrum of single ions). The spectrum
with B2 = 64.1 mT and B4 = 154.5 mT is uniquely

described as follows: Kzz(nn) = 1.49 cm–1 and  =

 = 0. At the same time, the computer simulation
of the EPR spectrum of pairs demonstrate that the spec-
trum with B2 = 69.2 mT and B4 = 154.5 mT can be
described using an infinite number of variants, namely,

from Kzz(nn) = 1.525 cm–1,  = 0.209 cm–1, and

 = 0 to Kzz(nn) = 1.522 cm–1,  = 0, and

 = 0.144 cm–1.

The results obtained are summarized in Table 4. By
using these data and relationship (4), we found that

Q 4G
2

Kyy/4( )2
+[ ]

1/2
, G gzµBBz/2.= =

B2 = gzµB( ) 1–
Kzz/2 hν–( ) Kzz/2 hν– Kyy/2–( )[ ] 1/2

,
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Table 4.  Experimental and calculated contributions of different interaction mechanisms to the spin–spin interaction tensor
for Dy3+ ions in the KY0.99Dy0.01(WO4)2 and KDy(WO4)2 matrices

Kzz Kyy

Experiment KY0.99Dy0.01(WO4)2 1.49–1.525 0–0.209 0–0.144 –

KDy(WO4)2 12 K 4.2 K 12 K 4.2 K 12 K 4.2 K 12 K 4.2 K

1.9 2.24 0.304 0.311 0.3 0.3 0.0282 0.0320

Theory Magnetic dipole–
dipole interaction

0.7011 0.7011 0 0 0.0197 0.0197 0.0149 0.0149

Isotropic symmetric 
(direct and indirect) 
exchange interaction

1.1989 1.5389 0 0 0 0 0.0133 0.0171

Antisymmetric 
exchange interaction

0 0 0.304 0.311 0.2803 0.2803 0 0

Note: Only nonzero components (cm–1) of the spin–spin interaction tensor K are given.

Kyz
as Kyz

s

jnn = (0.112–0.114) cm–1 for the nearest neighbor Dy3+

ion pair in KY0.99Dy0.01(WO4)2 and jnn = 0.143 cm–1 at
T > Tspt and jnn = 0.168 cm–1 at T < Tspt for a similar pair
in KDy(WO4)2. Therefore, we can make the following
inferences. (1) The spin–spin interaction of the nearest
neighbor Dy3+ ion pair in the magnetically diluted
material is weaker than that in the magnetically concen-
trated material. For the measurements carried out at the
same temperature, this unambiguously indicates a
decrease in the interionic distance with an increase in
the length of the chain formed by impurity ions; i.e., it
qualitatively confirms the validity of expression (16).
(2) The phase transition at 4.2 K < Tspt < 12 K is
attended by an enhancement of the spin–spin interac-
tion. It is unlikely that this circumstance can be associ-
ated with the thermal contraction of the crystal, because
the temperature range is too narrow at a sufficiently low
temperature. However, a unique conclusion cannot be
drawn because low-temperature crystallographic data
are not available.

6. CONCLUSIONS

Thus, the results obtained in this work can be sum-
marized as follows.

(1) The use of a triad of interacting ions makes it
possible to simulate the EPR spectra of magnetically
concentrated materials with a high degree of accuracy.

(2) In order to reveal the low-symmetry components
of the spin–spin interaction tensor, it is necessary to use
microwave photons with a sufficiently low energy.

(3) The informative capability of the EPR spectrum
of a triad formed by interacting ions is substantially
higher than that of the pair of interacting ions.

(4) The Dzyaloshinski interaction between Dy3+

ions in KY(1 – x)Dyx(WO4)2 (0 < x ≤ 1) was found exper-
imentally.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
(5) Upon substitution, an impurity ion distorts the
unit cell toward the unit cell characteristic of this ion.

(6) The phase transition in KDy(WO4)2 is accompa-
nied by an enhancement of the spin–spin interaction.

(7) The concentration dependence of the Dy3+ EPR
spectrum of KY(1 – x)Dyx(WO4)2 is associated with the
specific spin–spin interaction in this material, and the
spectrum of KDy(WO4)2 is adequately described by the
spin Hamiltonian parameters characteristic of a single
ion.
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Abstract—The thermal conductivity of three single-crystal samples of the quasi-one-dimensional spin system
of LiCuVO4 with different concentrations of defects (primarily, vacancies on the lithium sublattice) was mea-
sured along the crystallographic a axis (along the nonmagnetic lithium chains) in the temperature interval 5–
300 K. An increase in thermal conductivity from that of the crystal lattice was revealed for T > 150–200 K. This
increase can be accounted for only by assuming LiCuVO4 to be a superionic conductor. This assumption was
confirmed by measuring its electrical conductivity in the temperature interval 300–500 K. Li+ ions move over
vacancies on the lithium sublattice (conducting channels) and act as charge carriers in LiCuVO4. It is shown
that LiCuVO4 is a fairly good superionic conductor with application potential. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Studies of the thermal conductivity κ of low-dimen-
sional and, particularly, quasi-one-dimensional (spin
chains and spin ladders) and quasi-two-dimensional
systems, in which heat transport by spinons has been
detected, has spurred considerable recent experimental
and theoretical interest at leading laboratories in Swit-
zerland, Germany, Japan, France, and the USA (see [1–
7] and references therein).

Papers [1–7] reported primarily on the measurement
of κ of strontium cuprate single crystals of various
composition. The present communication deals with
the thermal conductivity of the quasi-one-dimensional
single-crystal antiferromagnet LiCuVO4.

LiCuVO4 crystallizes in an orthorhombically dis-
torted, inverted spinel structure. The V5+ nonmagnetic
ions occupy tetrahedral voids, and the nonmagnetic Li+

and magnetic Cu2+ (S = 1/2) ions are located in an
ordered manner in octahedral voids of the anion sublat-
tice [8] (Fig. 1a). The CuO6 and LiO6 octahedra form
magnetic and nonmagnetic chains, which are aligned in
LiCuVO4 with the b and a crystallographic directions,
respectively. Figure 1b presents the “rod” model of
LiCuVO4 [8, 9], which illustrates the arrangement of
the magnetic and nonmagnetic chains.

There is copious information on the main physical
parameters of LiCuVO4, namely, its crystal structure [9,
10], magnetic susceptibility [11], heat capacity [12],
1063-7834/03/4511- $24.00 © 22093
and optical IR [13], ESR [11, 14], and NMR [15, 16]
spectra, and techniques have been developed for grow-
ing fairly large single crystals [17] (see also references
in the above-mentioned publications). The thermal con-
ductivity of LiCuVO4 has not been studied, although an
analysis of its lattice, electronic, and magnon compo-
nents would yield new valuable information on the
physical nature of this compound.

The present communication reports on a study of the
thermal conductivity (κa) and electrical conductivity
(σa) of LiCuVO4 for the case where the heat flow and
electrical current propagate along the nonmagnetic lith-
ium chains (along the crystallographic a axis). Investi-
gation of the thermal conductivity of LiCuVO4 with
heat flow propagating along the magnetic copper chains
will be dealt with in a separate paper.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The LiCuVO4 single crystals intended for use in
measuring the thermal and electrical conductivity were
grown using the technique developed in [17]. Because
LiCuVO4 is a thermally unstable compound, it cannot
be melted. Therefore, LiCuVO4 single crystals were
grown from solutions below the decomposition temper-
ature. The solvents used were LiVO3 with a melting
point of 620°C and a eutectic 53% LiVO3 + 47% LiCl
solution with a melting point of 520°C. From these
003 MAIK “Nauka/Interperiodica”
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solutions, LiCuVO4 crystallizes at 550 and 460°C,
respectively [17].

LiCuVO4 crystals were grown under slow cooling of
the melts, in the interval 650–580°C from the solution
in LiVO3, and at 580–520°C from the solution in
LiVO3–LiCl. The LiCuVO4 single crystals thus
obtained will be called high- and low-temperature crys-
tals, respectively, in what follows.

It was found that these two types of single crystals
differ in both chemical composition and physical prop-
erties. This may be assigned to a different concentration
of thermally induced defects forming in the course of
their growth.

Our chemical analysis of a large number of the high-
and low-temperature LiCuVO4 single crystals prepared
showed, despite a certain scatter in the results, that
crystals of the first type have, on average, the composi-
tion Li0.92Cu1.03VO4 – x and those of the second type
have, on average, the composition Li0.97Cu1.00VO4 – x.
Therefore, the high-temperature crystals deviate from

V

Cu

Li

c

b
a

Li

Cu

(a)

(b)

Fig. 1. (a) Structure of LiCuVO4 [8]. One-dimensional (1D)
chains of edge-sharing Li octahedra propagate along the a
axis, and the 1D chains of Cu octahedra, likewise edge shar-
ing, align with the b direction. The V octahedral, isolated
from one another, connect the Cu and Li chains to form a 3D
structure. (b) Rod model of LiCuVO4 [8, 9]. Layers of Li
and Cu rods alternate, and their directions are mutually per-
pendicular.
PH
stoichiometry more strongly than do the low-tempera-
ture crystals. Also, the former crystals have a deviation
in the both lithium (a deficiency of about 8%) and cop-
per content (an excess of about 3%). As follows from
the above chemical formulas, the defects in both crys-
tals are primarily vacancies on the lithium sublattice,
and the high-temperature crystals also exhibit filling of
the lithium sublattice by excess copper atoms.

It should be pointed out that we did not succeed in
obtaining stoichiometric LiCuVO4 either in the form of
single crystals or in a powdered form even when the
original oxide mixture had an exactly stoichiometric
composition. Thus, lithium deficiency appears to be an
intrinsic property of this compound.

To measure the thermal and electrical conductivity,
we prepared three single-crystal samples of LiCuVO4.
Samples 1 and 2 were prepared from high-temperature
single crystals, and sample 3, from low-temperature
single crystals. According to x-ray diffraction analysis,
in the interval 20 < T < 400 K, none of the three samples
underwent structural phase transitions similar to that
observed in the strongly nonstoichiometric
Li1 − xCuVO4 [10].

Single-crystal samples 1, 2, and 3 had dimensions of
1 × 2 × 12 mm, 0.8 × 2 × 7 mm, and 0.7 × 0.8 × 6 mm,
respectively. The heat flow and electrical current were
directed along the greatest dimension of a sample (the
a axis of the crystal).

The thermal conductivity was measured in the 5- to
300-K temperature interval on a setup similar to that
employed in [18]. The electrical conductivity was stud-
ied in the interval 300–500 K using the dc two-probe
method.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The measured κa(T) dependences for samples 1, 2,
and 3 are shown in Fig. 2. Note several features in the
behavior of κa(T) of these samples. We readily see that,
in the κa(T) dependence, there are two characteristic
temperature ranges, 5–150(200) and 150(200)–300 K.

Consider first the behavior of thermal conductivity
in the range 5–150(200) K.

(1) The thermal conductivity measured in this

region is the crystal lattice conductivity , because,
as will be shown below, σa at 300 K in our samples is
~10–6–10–7 Ω–1 cm–1 (to become still smaller at lower
temperatures) and, thus, the electronic component of
thermal conductivity is negligible. No other compo-
nents of thermal conductivity are known to exist in this
temperature region.

(2) The thermal conductivity  of all three sam-
ples at low temperatures [T ≤ 10 K, below the maxi-

mum in (T)] increases with temperature (starting

κph
a

κph
a

κph
a
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from 5 K) following the law  ~ T2, which indicates
phonon scattering from dislocations [19].

(3) For temperatures above the maximum in thermal

conductivity, the temperature dependence of (T) is
different in the three samples studied. It is known that
in this temperature region the κph(T) dependence can
vary from κph = const for heavily defected (amorphous)
materials to κph ~ T–1 for defect-free crystalline materi-
als [19]. For samples 1 and 2 (high-temperature single

crystals), we obtained  ~ T–n with n equal to 0.25
and 0.37, respectively, which supports our conclusion
from the preceding paragraph that in LiCuVO4 single
crystals prepared using the high-temperature technique
there are a large number of defects which are, as
already mentioned, primarily vacancies on the Li sub-
lattice. As is evident from the thermal conductivity
data, sample 1 contains a larger number of defects than
sample 2. For sample 3 (a single crystal prepared using

the low-temperature technology),  ~ T–0.9, which is

close to  ~ T–1 for a defect-free crystal and implies
a substantially lower defect concentration in this single
crystal.

(4) The behavior of (T) of sample 1 reveals, at

about 5 K, a noticeable deviation from the  ~ T2

scaling obtained for the temperature range T > 6 K (see
inset to Fig. 2). Close to this temperature, LiCuVO4
also revealed a strong decrease in the magnetic suscep-
tibility [11]. The anomaly observed in the behavior of

 for T < 5 K is possibly due to a phase transition
occurring at T ~ 2.3–2.4 K [11, 12], which transfers
LiCuVO4 from the one-dimensional antiferromagnet,
by [12], according to a two-dimensional, or, according
to [11], three-dimensional, antiferromagnet.

Interesting results on the behavior of κa(T) were
derived from an analysis of data on the second temper-
ature range, 150(200)—300 K. It was found that, at T ~
150–200 K, all the samples studied here exhibit a devi-

ation from the corresponding dependences  ~ T–n

toward increasing thermal conductivity. The effect was
the strongest for the more defected sample, sample 1
(Fig. 2). Now, what is the origin of the excess thermal
conductivity∆κ in these samples?

As already pointed out, at  ~ 10–6–10–7 Ω–1 cm–1,
one cannot expect a contribution from the electronic
component of thermal conductivity. One could possibly
assign the excess heat transport to the photon compo-
nent of thermal conductivity, which scales as ~T3/α
(where α is the optical absorption coefficient) [19]. As
follows, however, from our preliminary data, at the
wavelength λ = 1.1 µm, α is ~500 cm–1 (and it is very
unlikely to become less for λ > 1.1 µm). For this value
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of α, the photon component of thermal conductivity
should be very small. One could expect the appearance
of an excess thermal conductivity due to the magnon
component. In our case, however, this component is
absent, because the measurements of κ(T) are per-
formed along the nonmagnetic lithium chains. There is,
however, one more possibility for accounting for the
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Fig. 3. (a) Temperature dependence of electrical conductivity σa of LiCuVO4 samples 2 and 3. (b) Comparison of the magnitude

and temperature dependence of σa of LiCuVO4 sample 3 (line 1) with literature data available for σof several lithium-based supe-
rionics [25] (lines 2–6). (2) Li2TiIn(PO4)3, (3) Li2ZrIn(PO4)3, (4) Li2FeCl4, (5) (La0.6Li01)(Mg0.5W0.5)O3, and (6) LiZrP.
excess thermal conductivity in the LiCuVO4 samples
studied by us.

There have been observations of excess thermal
conductivity above the Debye temperature in the supe-
rionic conductors Li2B4O7, LaF3 [20], α-LiIO3 [20, 21],
α- and γ-AgSI [22], and α-AgI [23]; this is associated
with an anomalous increase in the heat capacity of these
materials in the superionic phase. Note that α-LiIO3

and Li2B4O7 are quasi-one-dimensional superionics
with cation (Li+) conduction. If the quasi-one-dimen-
sional LiCuVO4 is also a superionic conductor, this
would account for the increase in the thermal conduc-
tivity it exhibits for T > 150–200 K.

We did not find any reports in the literature on mea-
surements of the ionic conductivity in LiCuVO4. A
study [24] of the electrochemical properties of
PH
LiCuVO4 pointed out, however, that this compound
could have a fairly high ionic conductivity.

We measured σa in samples 2 and 3 in the tempera-
ture interval 300–500 K. The experimental results
obtained are displayed in Fig. 3a. Figure 3b presents the
data on σ(T) for a number of lithium superionics taken
from [25]. We readily see that σa(T) for LiCuVO4
(straight line 1) lies in the middle of the band character-
izing the family of lithium superionics.

The temperature dependence of the ionic electrical
conductivity is described by the Arrhenius equation [25]

(1)

where ∆H is the enthalpy of activation of the electrical
conduction. The value of ∆Ha calculated for LiCuVO4
samples 2 and 3 using Eq. (1) was found to be ~0.46 eV,

σT σ0 ∆H/kT–( ),exp=
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which is in good agreement with the values of ∆H for
the lithium-based superionics (see table).

Thus, our analysis of the data on σa(T) for LiCuVO4
suggests that this compound is a superionic conductor.
The high concentration of vacancies on its lithium sub-
lattice accounts for the high mobility of Li+ ions at
fairly low temperatures.

LiCuVO4 can also be considered to be a superionic
conductor with certain application potential (Fig. 4).1 

Once LiCuVO4 has been proven to be a good supe-
rionic conductor, the behavior of κa(T) of LiCuVO4 can
be compared with that of the thermal conductivity of
the related lithium-based, quasi-one-dimensional supe-
rionics α-LiIO3 and Li2B4O7 [20] (Fig. 5). All three
superionics are seen to exhibit identical behavior. One
may thus conclude that the excess thermal conductivity
revealed to exist in LiCuVO4 for temperatures T >
150(200) K is connected with the nature of the superi-
onic state of this material.

As already mentioned, the increased values of κ can
be superionics is assigned to the heat capacity Cs of the
superionic phase being higher than the classical Debye

lattice heat capacity  (∆C = Cs – , where ∆C
relates to the excess heat capacity; see inset to Fig. 6).
Unfortunately, we could not measure the heat capacity

1 We also measured σ(T) of LiCuVO4 with the current flowing
along the b and c crystallographic directions. The data obtained
will be published in a separate paper.
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of LiCuVO4 at high temperatures and the literature does
not contain such information (the only data available
relate to the heat capacity at low temperatures [12]).
Therefore, our discussion of this problem can be based
only on fairly scarce reports on the heat capacity of
superionics [20].

Values of ∆H for some lithium-based superionics determined
for T > 300 K [25]

Compound ∆H, eV

Li2B4O7 0.36

Li3N 0.49 (|| c axis)

γ-Li3Sc2(PO4)3 0.37

Li3Fe2(PO4)3 0.38 (|| a axis)

0.59 (|| b axis)

LiZr2(PO4)3 0.43

α-LiIO3 0.30

LiCuVO4 0.46

3.0

100

LiCuVO4

α-LiIO3

Li2B4O7

150 200 250 300 350 400
T, K

3.5

4.0

4.5

5.0

κ,
 W
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 K

Fig. 5. Comparison of the behavior of κa(T) of LiCuVO4
(sample 1) and thermal conductivity of the quasi-one-
dimensional superionics Li2B4O7 and α-LiIO3 [20].
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The excess heat capacity of the superionic conduc-
tor LaF3 scales with temperature as T2 (∆CV ~ T2) [20],

and ∆κ = (κexp – ) of the superionics Li2B4O7 [20]
and α-Ag3SI [22] scales as T2.5 and T2, respectively.2

We thus see that ∆κ and ∆CV obey the same (or similar)
laws in the region of superionic conduction.

In the case of LiCuVO4, we obtained that ∆κ of sam-
ple 1 scales as T2 for T > 150 K (∆κ ~ T2, Fig. 6). This
may be considered one more argument for the conclu-
sion that the experimentally observed excess thermal
conductivity in LiCuVO4 is intimately connected with
the nature of the superionic state of this material.
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2 Here, κexp is the experimentally measured thermal conductivity

and  is the thermal conductivity extrapolated from the low-

temperature region using the scaling  ~ T–n, where n is differ-

ent for each of the samples studied (see separation of ∆κ in
Fig. 2).

κph
0

κph
0

κph
0

10

300

0.5

150

200

200 250 300

1.0

2.0

T, K

400 500 600 700

20

30

40

60

80

∆C
V
, J

/m
ol

 K

400 600 T, K

CD
ph

Cs

∆C

C
, a

rb
. u

ni
ts

∆κ

~T2

∆CV

~T2

∆κ
, W

/m
 K

T, K

Fig. 6. Temperature behavior of ∆κ for LiCuVO4 sample 1
and of ∆CV of the superionic LaF3 [20]. Inset shows sche-
matic of the temperature dependence of the heat capacity of
superionic Cs and of the theoretical Debye lattice heat

capacity .CD
ph
PH
REFERENCES

1. A. V. Sologubenko, K. Gianno, H. R. Ott, et al., Physica
B (Amsterdam) 284–288, 1595 (2000).

2. A. V. Sologubenko, K. Gianno, H. R. Ott, et al., Phys.
Rev. Lett. 84 (12), 2714 (2000).

3. A. V. Sologubenko, E. Felder, K. Gianno, et al., Phys.
Rev. B 62 (10), R6108 (2000).

4. A. V. Sologubenko, K. Gianno, H. R. Ott, et al., Phys.
Rev. B 64, 054412 (2001).

5. C. Hess, C. Baumann, U. Ammerahl, et al., Phys. Rev. B
64, 184305 (2001).

6. K. Kudo, S. Ishikawa, T. Noji, et al., J. Phys. Soc. Jpn.
70 (2), 437 (2001).

7. C. Hess, U. Ammerahl, C. Baumann, et al., Physica B
(Amsterdam) 312–313, 612 (2002).

8. M. A. Lafontaine, M. Leblanc, and G. Ferey, Acta Crys-
tallogr. C 45, 1205 (1989).

9. M. O. Keeffe and S. Andersson, Acta Crystallogr. A 33,
914 (1977).

10. R. Kanno, Y. Kawamoto, Y. Takeda, et al., J. Solid State
Chem. 96, 397 (1992).

11. A. N. Vasil’ev, L. A. Ponomarenko, H. Manaka, et al.,
Phys. Rev. B 64, 024 419 (2001).

12. M. Yamaguchi, T. Furuta, and M. Ishikawa, J. Phys. Soc.
Jpn. 65 (9), 2998 (1996).

13. B. Gorshunov, P. Haas, M. Dressel, et al., Eur. Phys. J. B
23, 427 (2001).

14. H. A. Krug von Nidda, L. E. Svistov, M. V. Eremin, et al.,
Phys. Rev. B 65, 134445 (2002).

15. Ch. Kegler, N. Büttgen, H. A. Krug von Nidda, et al.,
Eur. Phys. J. B 22, 321 (2001).

16. T. Tanaka, H. Ishida, M. Matsumoto, and S. Wada,
J. Phys. Soc. Jpn. 71 (1), 308 (2002).

17. A. V. Prokofiev, D. Wichert, and W. Assmus, J. Cryst.
Growth 220, 345 (2000).

18. A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl.
Phys. 7, 1247 (1974).

19. V. S. Oskotskiœ and I. A. Smirnov, Defects in Crystals
and Thermal Conductivity (Nauka, Leningrad, 1972).

20. A. É. Aliev, V. F. Krivorotov, and P. K. Khabibullaev, Fiz.
Tverd. Tela (St. Petersburg) 39 (9), 1548 (1997) [Phys.
Solid State 39, 1378 (1997)].

21. Ya. V. Burak, K. Ya. Borman, and I. S. Girnyk, Fiz.
Tverd. Tela (Leningrad) 26 (12), 3692 (1984) [Sov.
Phys. Solid State 26, 2223 (1984)].

22. F. Saito, K. Toraki, and A. Kojima, J. Phys. Soc. Jpn. 62
(9), 3351 (1993).

23. M. C. Goetz and J. A. Cowen, Solid State Commun. 41
(4), 293 (1982).

24. R. Kanno and Y. Kawamoto, Solid State Ionics 40–41,
576 (1990).

25. A. K. Ivanov-Shits and I. V. Murin, Ionics of Solids
(S.-Peterb. Gos. Univ., St. Petersburg, 2000), Vol. 1.

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003



  

Physics of the Solid State, Vol. 45, No. 11, 2003, pp. 2099–2103. Translated from Fizika Tverdogo Tela, Vol. 45, No. 11, 2003, pp. 1997–2001.
Original Russian Text Copyright © 2003 by Chaban.

                                                       

SEMICONDUCTORS 
AND DIELECTRICS

       
Effect of Magnetic Field on Tunneling Systems in Glasses
I. A. Chaban

Andreev Acoustical Institute, ul. Shvernika 4, Moscow, 117036 Russia
e-mail: chaban@akin.ru

Received April 29, 2003

Abstract—The effect of a magnetic field on two-level tunneling systems in dielectric glasses originates from
the magnetic-field-induced rotation of nuclear spins and the ensuing rearrangement of ordered regions (clus-
ters) in the glass structure. This process accounts for the observed variation of both the spontaneous-polariza-
tion echo amplitude and the dielectric constant in a magnetic field at low temperatures. The proposed theory is
compared with experiment. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Until the early 1970s, it was expected that crystals
and glasses would behave similarly at low tempera-
tures, with the heat capacity and thermal conductivity,
in accordance with the Debye model, scaling as T3 as
the absolute temperature tended to zero. It has been
found, however, that below 1 K the heat capacity of
glasses (we shall limit our consideration to dielectric
glasses), unlike that of crystals, scales as T and the ther-
mal conductivity scales as T2. This is a typical behavior
for the BaO–Al2O3–SiO2 and a-SiO2 + xCyHz glasses
(whose experimentally measured characteristics will be
treated below), as well as of the Ba2O3, Na2O–SiO2–
B2O3, and many other compounds. Glassy glycerol was
shown to behave in a similar manner [1]. Besides cer-
tain features revealed in the thermal properties, it was
found that dielectric glasses respond unusually to the
propagation of sonic, shear, and electromagnetic
waves. In particular, they exhibit a saturation effect;
namely, if a glass has been exposed to a high-intensity
ultrasonic signal, then the next signal, sonic or electro-
magnetic, close in frequency but of a lower intensity
propagates with a considerably lower damping than it
would in the absence of the signal. It can be added that
the glass will retain memory of the primary irradiation
for 10–6 s at 1 K. An extensive review on the properties
of glasses at low temperatures has been written by
Hunklinger and Arnold [2]. For later reviews, the reader
can be referred to [3, 4].

2. PROPOSED MODELS

Several models have been proposed to account for
these unusual properties of glasses. The model put for-
ward by Anderson, Halperin, Varma, and Phillips
(AHVP) has proved the most successful [5, 6]. This
model assumes that in a glass there are atoms or groups
of atoms which may reside in two potential wells sepa-
rated by a potential barrier from each other. The poten-
1063-7834/03/4511- $24.00 © 22099
tial-well depths and barrier heights are assumed to be
variable within broad ranges and to be distributed in
such a way that an ensemble of these two-level systems
(TLSs) is characterized by a constant probability den-
sity of energy level splitting E. The two levels are con-
nected by tunneling transitions.

This model is capable of accounting for many prop-
erties of glasses at low temperatures. However, in cer-
tain cases, it was found to disagree with experiment.
The disagreements relate to the dependence of the heat
capacity on the duration of measurement, to the differ-
ence between the E distributions derived from thermal
studies and sound absorption measurements, to the
temperature behavior of the velocity and damping of
sound, to the temperature dependences of the real and
imaginary parts of the dielectric constant, etc. These
discrepancies have recently been attracting particular
attention. It is presently assumed that glasses contain
tunneling TLSs, but their nature remains unclear.

It is the nature of these systems that was the subject
of our earlier study [7]. In that study, tunneling TLSs
were considered as ordered regions (clusters) in a glass
structure that have a nonequidistant set of energy levels;
consideration can be limited to the two lowest ones in
certain cases. This approach eliminated a number of
difficulties inherent in the AHVP model and provided a
correct estimate of the magnitude of E.

3. EFFECT OF A MAGNETIC FIELD 
ON TUNNELING SYSTEMS

This problem has again attracted attention of the
present author after the publication of the paper by Lud-
ing, Enss, Strehlow, and Hunklinger [8], which
describes a study of spontaneous-polarization echo in
the dielectric multicomponent glass BaO–Al2O3–SiO2
observed in static magnetic fields. The echo amplitude
was found [8] to grow quickly with increasing magnetic
field B. In certain cases, the echo amplitude increases
approximately threefold with B increasing from 0 to
003 MAIK “Nauka/Interperiodica”
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230 mT. This observation suggests, as pointed out in
[8], that the coupling of the tunneling systems with a
magnetic field is remarkably strong and cannot be
accounted for within current theories. It was also found
[8] that the relaxation times are practically independent
of magnetic field. The same glass as that investigated in
[8] was reported in [9, 10] to exhibit a variation in the
real and imaginary parts of the dielectric constant, ε'
and ε", under application of a static magnetic field. The
observed relative change in ε', δε'(B)/ε'(0), was of the
order of 10–4. Similar variations in the dielectric con-
stant in a magnetic field were observed to occur in the
a-SiO2 + xCyHz glass [11]. We show here that the inter-
pretation of TLSs proposed in [7] is capable of account-
ing for the strong coupling between tunneling TLSs and
a magnetic field.

Let us dwell in more detail on the ideas underlying
paper [7]. Molten glasses are typical high-viscosity liq-
uids. Such liquids exhibit characteristic features in the
propagation of sonic, shear, and electromagnetic
waves, more specifically, half-integral-power-law
dependences of the damping coefficient and velocity
dispersion on frequency, proportionality of the charac-
teristic time to viscosity, a shift in the damping maxi-
mum from the center of the dispersion curve, very
broad dispersion spectral ranges, etc. To explain these
features, a nonlocal diffusion theory was proposed in
[12], which treated a high-viscosity liquid as a two-
phase system consisting of a disordered liquid and
regions (clusters) ordered to a certain extent. It was
assumed that the concentration of voids (places not
occupied by molecules in the state of complete order)
in ordered regions has an equilibrium value character-
istic of the given external conditions. A variation in the
external conditions (for instance, a change in the pres-
sure) changes this equilibrium value and cause rear-
rangement of the ordered regions. Since this process
requires an additional free volume (voids) or elimina-
tion of its excess, new equilibrium concentrations of
voids set in through their diffusion through the bound-
aries of the ordered regions. Because this process takes
a certain time, the change in the volume lags behind the
change in the pressure. This lag entails anomalous
damping and dispersion in the propagation velocity of
sonic waves. This reasoning applies equally to shear
and electromagnetic waves. This theory provided an
explanation for numerous experimental data concern-
ing wave propagation in high-viscosity liquids (glyc-
erol, 1,3-butanediol, tetracetene, hexanetriol, 2-methyl
pentanediol-2,4, pentachlorobiphenyl, molten B2O3,
Na2O–SiO2–B2O3 glasses, etc.). Moreover, it was
shown in [13] that the features characteristic of the
glass formation point (such as jumps in the heat capac-
ity and in the thermal expansion coefficient) can be
accounted for by assuming that the ordered regions
begin to contact one another at this point, so that the rel-
ative volume occupied by them will virtually no longer
grow with decreasing temperature. This suggests that
PH
glass consists of nearly touching ordered regions sepa-
rated by layers of a disordered phase. The smallest pos-
sible change in the free volume of an ordered region is
associated with the appearance or elimination of one
void. Accordingly, an ordered region should have a dis-
crete nonequidistant set of energy levels. At low tem-
peratures, only the lowest two levels can play a signifi-
cant role and the ordered regions can be considered to
be TLSs.

Turning back now to the effect of a magnetic field on
TLSs observed in [8–11], it appears appropriate to
recall here the results reported in [14]. That communi-
cation deals with the unusual behavior of the longitudi-
nal relaxation time T1 of NMR observed to occur in
high-viscosity liquids with a variation in temperature. It
was found that in such liquids, in particular, in glycerol,
T1 varies as a square root of viscosity [15]. Such a
dependence cannot be interpreted in terms of the theory
of Blombergen, Purcell, and Pound [16] and Kubo and
Tomita [17], according to which the motion of mole-
cules in a liquid is no more than Brownian motion and
a rotation of individual molecules. This theory predicts
that T1 should be proportional to viscosity. It was found
possible to explain the half-integral-power-law depen-
dence of T1 on viscosity in terms of the same mecha-
nism as the features in wave propagation in high-vis-
cosity liquids [14]. Indeed, this was accomplished by
assuming a high-viscosity liquid to be a two-compo-
nent medium consisting of ordered regions embedded
in a disordered liquid. It was also assumed that a mag-
netic field aligns nuclear spins in ordered regions and
that it is this effect that brings about their rearrange-
ment. The initial state of an ordered region is recovered
through diffusion of voids through its boundary; this
process accounts for the half-integral-power-law
dependence of T1 on viscosity.

The increase in the amplitude of the spontaneous-
polarization echo observed in [8] can also be explained,
as will be shown later, in terms of rearrangement of the
ordered regions caused by a magnetic-field-induced
rotation of nuclear spins.

Molecules of dielectric glasses do not have constant
magnetic moments associated with their electron
shells. These molecules, however, have atoms possess-
ing nuclear spins. In glycerol and in the a-SiO2 + xCyHz

glass studied in [11], the hydrogen atom has a spin, and
in the BaO–Al2O3–SiO2 glass, the spin of an aluminum
nucleus is nonzero. The rearrangement of ordered
regions occurs, at both high and low temperatures,
through the removal or acquisition of voids. However,
at low temperatures, in contrast to the high-temperature
range, this process involves tunneling of atoms through
barriers.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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4. CALCULATION AND COMPARISON 
WITH EXPERIMENTAL DATA

Magnetic-field-induced rearrangement of ordered
regions may change the dipole moment of an ordered
region p, the tunneling probability (proportional to ∆0),
and the energy difference E between the lowest two
levels. All these quantities enter into the expression for
the amplitude A of the polarization two-pulse echo sig-
nal [8]:

(1)

where

τ1 is the duration of the first electromagnetic pulse
propagated (the second pulse is twice as long), N is the
number of ordered regions (TLSs), k is the Boltzmann
constant, h is the Planck constant, and F0 is the ampli-
tude of the ac electric field.

Now, let us discuss the following three questions:
which of the quantities p, ∆0, or E entering into Eq. (1)
contributes most to the variation of the echo signal
amplitude when a magnetic field is switched on; how
can we relate the observed relative variation of the real
part of the dielectric constant induced by a magnetic
field, δε'(B)/ε'(0), to the results obtained in [8] for the
echo signal amplitude; and at what temperatures and
magnetic fields does the echo signal amplitude become
magnetic-field independent? The conclusions we come
to will be compared with experimental data.

We may recall that the relaxation times were found
in [8] to depend only weakly on magnetic field. This
means that the potential barriers and, hence, the quan-
tity ∆0 vary only slightly when a magnetic field is
switched on. In this case, the splitting energy E should
also change only slightly. Therefore, the variation of the
echo signal amplitude should be associated primarily
with that of the dipole moment of the ordered region p.

According to [9, 10], in the BaO–Al2O3–SiO2 glass,
we have [ε'(B) – ε'(0)]/ε(0) ≅  10–4 at temperatures of the
order of a few tens of millikelvins, B values of about
0.1 T, and frequencies of about 1 kHz. The molecules
of this glass are polar and possess a fairly high dielec-
tric susceptibility χ compared to unity. Therefore, the
above relation can be recast as

where P is the polarization. Electric and magnetic fields
act directly on each molecule, with the order and
energy of an ordered region changing discretely. This
discreteness can be disregarded in the estimates made
below, although it does introduce some corrections.

A A0 θ1,sin
3

=

A0 N E/2kT( ) p∆0/E( ),tanh∝

θ1 2π∆0τ1/Eh( ) pF0( ),=

δχ B( )/ 1 χ 0( )+( ) δχ B( )/χ 0( )≅

=  ∆P B( )/P 0( ) 10
4–
,≅
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The polarization and dipole moment p0 of a molecule
for p0F0/kT ! 1 are related through

where F0 is the electric field strength, n is the number
of molecules per unit volume, and p0z is the component
of p0 along the electric field. Accordingly,

where µ is the nuclear magnetic moment, ∆p0(B) is the
magnetic-field-induced change of the dipole moment of
a molecule, and the last factor arises in averaging over
all molecules in a unit volume. The above expressions
can be combined to yield

The nuclear magnetic moments µ are of the order of
10−26 J/T. For B ≅  0.1 T and T ≅  0.1 K, we have
2µB/3kT ≅  10–3. Substituting this figure into the last
relation, we obtain

Because of the simplifications made, ∆p(B) = n0∆p0(B),
and p(0) = n0p0(0), where n0 is the number of molecules
in an ordered region. The quantity ∆p(B)/p(0) should
first grow linearly with increasing B for sufficiently low
magnetic fields and after that saturate.

The proportionality of δε'(B)/ε'(0) to the B/T ratio is
borne out by experiment. As seen from the graphs pre-
sented in [9, 10], δε'(B)/ε'(0) increases with decreasing
temperature and increasing magnetic field for not very
high µB/kT.

The above estimates can now be used to calculate
the quantity θ1 entering into Eq. (1) and its change
∆θ1(B) caused when a magnetic field is switched on.
Supposing that ∆0 ≅  10–26 J, E ≅  0.1 K = 10–24 J, τ1 =
10−7 s, F0 ≅  102 V/m, and p ≅  10–26 A s m (assuming an
ordered region to contain n0 = 103 molecules), we find
θ1 ≅  1 and ∆θ1(B) ≅  0.1. Thus, for F0 = 102 V/m, θ1 is
comparable to unity and ∆θ1(B) is an order of magni-
tude smaller. These quantities vary with temperature
and electric field strength. In addition, the quantity
∆θ1(B) also varies with magnetic field B. A more accu-
rate analysis of the experimental data presented in [8]
yields θ1 = 1/3 and ∆θ1(B) = 1/30 for F0 = 102 V/m. As
F0 increases by a factor of 4.5, θ1 approaches π/2 and
A(0) takes on its maximum value, which is in full agree-
ment with [8].

The amplitude ratio of the echo signals in a mag-
netic field and without it can be presented in the form

(2)

P 0( ) n p0z n p0 p0F0/3kT( ),= =

∆P B( ) 2n∆ p0 B( ) p0F0/3kT( ) µB/3kT( ),=

δε' B( )/ε' 0( ) ∆P B( )/P 0( )≅

=  ∆ p0 B( )/ p0 0( )( ) 2µB/3kT( ) 10
4–
.=

∆ p0 B( )/ p0 0( ) ∆p B( )/ p 0( ) 10
1–
.≅ ≅

A B( )/A 0( )

=  1 ∆p B( )/ p 0( )+[ ] θ 1 ∆θ1+( )/ θ1.sin
3

sin
3
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The smallness of ∆θ1(B) compared to unity permits us
to recast this expression as

(3)

Because θ1 varies with electric field amplitude and tem-
perature, the second term in the second set of brackets
in Eq. (3) can be both positive and negative, depending
on the sign of ; in other words, the echo signal
amplitude can both increase and decrease with the
application of a magnetic field. For large values of

, the echo signal amplitude can grow by a few
times, as observed experimentally [8]. As θ1 increases,
a second extremum (minimum) can appear in the graph
relating the amplitude of the echo signal to that of the
electric field, as observed in [8]. Thus, it follows that a
large variation in the echo signal amplitude and a small
variation in the dielectric constant are not in contradic-
tion. Figure 1 plots the echo signal amplitude vs. the
electric field amplitude F0 [in units of the maximum
echo signal amplitude with no magnetic field applied
A0(0)] for ∆p(B)/p(0) = 0.1, 0 (with no magnetic field
applied), and –0.1, as well as for θ1 = 1/3 and ∆θ1(B) =
1/30 for F0 = 102 V/m (curves 1–3). Figure 2 shows the
dependence of A(B)/A(0) on electric field amplitude F0
plotted for ∆p(B)/p(0) = 0.1 and –0.1 (curves 1, 2).

Let us estimate the values of the temperatures and B
values at which the magnetic field would no longer
affect the echo signal amplitude and the dielectric con-
stant. For B = 0.1 T, we have µB ≅  10–27 J. Because in
an ordered region there are about n0 = 103 molecules,
n0µB ≅  10–24 J. This quantity should be larger than the

A B( )/A 0( )

=  1 ∆p B( )/ p 0( )+[ ] 1 ∆θ1 B( ) θ1cot+[ ] 3
.

θ1cot

θ1cot

1.0

0.5

0 2 4 6 8 10
F0, 102 V/m

A(B)/A0(0)

2
1

3

Fig. 1. Echo signal amplitude plotted vs. electric field
amplitude F0 for ∆p(B)/p(0) equal to (1) 0.1, (2) 0, and
(3) −0.1, as predicted from theory.
PH
splitting energy E, which is also of the order of 10–24 J;
otherwise, a magnetic field will not be able to rearrange
an ordered region. This places a constraint on B;
namely, magnetic field B should be higher than approx-
imately 0.1 T. This is in accord with the experimental
data from [8]. On the other hand, the energy n0µB must
exceed kT. This imposes a constraint on temperature in
that it should be less than 0.1 K. Indeed, as revealed in
[11], the dielectric constant no longer varies in a mag-
netic field at temperatures above 0.1 K.

Magnetic fields less than about 0.1 T should also no
longer affect the echo signal amplitude. As a result, a
transition region appears in the B dependence of
A(B)/A(0) in which this ratio decreases with increasing
B (∆p(B)/p(0) < 0), exactly what was observed in [8].
The course of this dependence is shown graphically in
Fig. 3.

5. DISCUSSION OF RESULTS

The explanation of the effect of a magnetic field on
TLSs in terms of nuclear spin rotation was unjustifiably
rejected in [8] because of the large difference between
the longitudinal relaxation time T1 in NMR measured in
glasses at low temperatures [18] and the longitudinal

relaxation time  observed in spontaneous polariza-
tion echoes. As will be shown below, however, this dif-
ference does not give any valid grounds for ruling out
the explanation in terms of nuclear spin rotation.

Indeed, T1 in NMR is connected intimately with the
thermal motion (both Brownian and due to a rearrange-
ment of ordered regions) of the dipole–dipole interact-
ing nuclear spins, which generates ac magnetic fields
that return the magnetization to equilibrium after the

T1
0

1.5

2.0

0 2 4 6 8
F0, 102 V/m

A(B)/A(0)

2

1

1.0

0.5

Fig. 2. Ratio of echo signal amplitudes with a magnetic field
and in its absence, A(B)/A(0), plotted vs. F0 for ∆p(B)/p(0)
equal to (1) 0.1 and (2) –0.1.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003



EFFECT OF MAGNETIC FIELD ON TUNNELING SYSTEMS IN GLASSES 2103
magnetic field is switched off. The expression for T1
contains the time required for thermal motion to rear-

range the whole ordered region [14]. The time  in the
polarization echo is also connected with a rearrange-
ment of ordered regions, whose equilibrium state varies
under the action of an ac electric field at a frequency of
the order of 1 GHz. At such high frequencies, only nar-
row boundary layers in ordered regions will have
enough time to rearrange. In this time, only a small
number of tunneling transitions of atoms will occur
through barriers to new equilibrium positions. Reverse
transitions take place only through resonant one-photon

emission. It is these processes that govern the time ,
which is shown experimentally to be substantially
shorter than T1.

To explain the effect of a magnetic field on polariza-
tion echo amplitude, it was suggested in [8] that mag-
netic fields create mesoscopic current loops in glasses.
In the last paper that came to the attention of the present
author [19], nuclear quadrupoles were invoked to
explain this effect.

6. CONCLUSIONS

The main results of the above analysis are as fol-
lows. The effect of a magnetic field on the dielectric
constant and on the amplitude of the spontaneous-
polarization echo observed in dielectric glasses at low
temperatures has been connected with nuclear spin ori-
entation in a magnetic field and the associated rear-
rangement of ordered regions. This effect of a magnetic
field is a strong argument for the earlier assumption that
the tunneling two-level systems are actually ordered
regions (clusters) in the glass structure which have a

T1
0

T1
0

2

3

1

0
–200 –100 0 100 200

B, mT

A(B)/A(0)

Fig. 3. Echo signal amplitude ratio with and without a mag-
netic field, A(B)/A(0), plotted vs. magnetic field.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
discrete nonequidistant set of energy levels and are
readily capable of rearranging under variation of exter-
nal conditions (pressure, electric and magnetic field,
etc.). These clusters are natural nanostructures with a
high application potential.
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Abstract—A computer code for simulating the dynamics of an arbitrary 2D dislocation–disclination ensemble
is developed. The code is constructed according to the molecular-dynamics principles; individual interacting
particles are taken to be edge dislocations and dipoles of partial wedge disclinations. Pure copper is considered
as an example for simulating the glide of one dislocation near an immobile dipole for various orientations of
the dipole and under various initial conditions of the problem. The dislocation dynamics is shown to be mainly
determined by the distribution of the elastic field of the disclination dipole rather than by the initial velocity of
the dislocation. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the last two decades, disclination concepts have
been widely applied to describe mesoscopic defect
structures forming in metals and alloys subjected to
severe plastic deformation [1–6]. The notion of discli-
nation is also used to construct models that describe the
structural and mechanical behavior of nanostructured
and noncrystalline materials [7–9], interfaces in various
thin-film structures [10–14], martensitic transforma-
tions [15, 16], etc. Most disclination models of plastic
deformation include a dislocation–disclination elastic
interaction, which often plays a decisive role in these
models.

For example, in [17], a dislocation–disclination
model of propagation of a misorientation band (MB)
was proposed. The basic idea of this model consisted in
that the elastic-stress fields of a dipole of partial discli-
nations separate a neutral (with respect to a dislocation
charge [1]) ensemble of edge dislocations chaotically
distributed in front of an MB into groups of convention-
ally positive and negative dislocations. These positive
and negative dislocations are trapped by positive and
negative disclinations, respectively. The entrapment of
each new dislocation dipole is an elementary act of the
conservative propagation of the MB front. The mecha-
nism proposed in [17] was corroborated by the experi-
mental data reviewed in [1, 2] and then widely applied
to simulate dislocation–disclination kinetics in severely
deformed metals [4–6, 18–21]. Similar schemes were
used to design new disclination models of MB nucle-
ation and development near grain-boundary kinks and
junctions [22]. However, comprehensive analysis of
1063-7834/03/4511- $24.00 © 22104
this mechanism brings up questions that have not yet
been answered. In particular, the details of the process
of dislocation trapping by a disclination dipole have not
been determined. The effective entrapment length (i.e.,
the distance from a disclination line at which an edge
dislocation of the corresponding sign should stop in
front of an MB to make the conservative motion of this
disclination possible) has likewise not been estimated.

To obtain missing information, it is necessary to
study the dynamics of the development of complex dis-
location structures at the site of MB nucleation and then
in front of the nucleated MB. It is obvious that, in the
general 3D case, this problem is extremely complex.
However, for the 2D formulation of the problem, where
the lines of all dislocations and partial disclinations are
considered to be parallel to each other, the problem can
be solved using computer simulation in terms of dislo-
cation–disclination dynamics. Note that the simulation
of discrete dislocation ensembles is now one of the
most popular trends in theoretical materials science. 2D
and 3D models of the dynamics of interacting disloca-
tions have been extensively developed since the late
1980s (see, e.g., reviews [23, 24] and the recent papers
dealing with 2D [25, 26] and 3D [27, 28] mesoscopic
computer models). However, nobody has attempted to
construct a correct mesoscopic model for a dislocation–
disclination ensemble. The computational models pro-
posed in [4–6, 18–21] describe the joint evolution
kinetics of dislocations and partial disclinations but do
not take into account elastic interactions between them.

In this work, we present the first results of simulat-
ing the joint dynamics of a partial-disclination dipole
003 MAIK “Nauka/Interperiodica”
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and edge dislocations in a 2D approximation to reveal
elastic interaction between these defects. We consider
the particular case of one edge dislocation gliding near
a biaxial dipole of wedge partial disclinations. The data
obtained will be used to check and refine the existing
theoretical (not computational) models of developing
an MB. 

2. COMPUTATIONAL MODEL

To study the dynamics of a 2D dislocation–disclina-
tion ensemble under an applied load, we used a com-
puter code based on a program of molecular dynamical
simulation of point defects. Particles were considered
to be dislocations and dipoles of partial disclinations
having an effective mass and self-fields of elastic
stresses. Linear edge dislocations and wedge disclina-
tions were distributed over a 2D rectangular region in
an infinite elastically isotropic medium (Fig. 1). The
defect lines were normal to the plane of this region, and
its size was 1 × 1 mm.

Each edge dislocation was characterized by a Burg-
ers vector bx or by, coordinates (x (i), y (i)), and velocities

( , ); here, i = 1, …, n, with n being the number
of dislocations.

Dipoles were made up of unlike disclinations, which
were assumed to be immobile in test calculations and
considered only as sources of elastic fields. Each dipole
was characterized by a strength ω( j), the length and ori-
entation of its arm, and the coordinates of the central
point (X ( j), Y ( j)); here, j = 1, …, N, with N being the
number of disclination dipoles. As shown in Fig. 1,
each disclination represents the edge of a low-angle
dislocation tilt wall. This means that all disclinations
are partial rather than perfect [1].

In this model, dislocations can move by gliding or
climbing under the action of forces caused by an
applied load, the elastic fields of the other defects, and
dynamic friction. In this case, the p component of the
total force acting on dislocation i has the form

(1)

where  =  is the applied driving force,

 =  is the force of interaction with

the other defects,  = –τ(v )  is the dynamic-fric-
tion force, τext is the shear stress induced by the applied

load,  is the p component of the Burgers vector of

the ith dislocation, empl is the permutation symbol, 
is the total field of elastic stresses produced by the other
defects and operating at the point of location of the ith

dislocation, and  is the m component of the unit vec-
tor tangent to the dislocation line. All subscripts p, m, l,
and k can designate the x or y components. The shear

ẋ i( ) ẏ i( )

Fp
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Fp
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stress τ(v ) characterizes the friction of a crystal lattice
and depends on the dislocation velocity v.

Dislocation dynamics is described by Newton’s
equations

(2)

where m(i) is the effective mass of the ith dislocation

and  and  are the components of its acceleration.
Each defect receives initial coordinates and velocities,
and then Eqs. (2) are solved numerically to yield time
dependences of the defect coordinates (x (i), y (i)) and

velocities ( , ). When solving the equations, we
use periodic boundary conditions for the spatial vari-
ables.

Using this approach, we studied the elastic interac-
tion of a glide edge dislocation with a biaxial dipole of
wedge disclinations in pure copper. The Burgers vector
of the dislocation was taken to be bx = 0.256 nm, and
the effective mass per unit dislocation length [29] was

estimated to be m =  ≈ 1.4 × 10–9 kg m–1, where
ρ is the copper density. The middle of the disclination-
dipole arm was fixed at the central point (X = 500 µm,
Y = 500 µm) of the chosen region in the elastic space.
The dipole arm length 2a was constant (100 nm), and
only its orientation and the disclination strength were
varied. To analyze only the dislocation–disclination

interaction, the applied force  was assumed to be

zero. The elastic force  = σxybx was determined
using the stress field of a disclination dipole σxy [1]. The

dynamic-friction force  was taken in the form

(t) = –Bv (t), where B = 1.7 × 10–5 Pa s for pure cop-
per [30] (see also [29, p. 76]).

In test calculations, we considered some typical sit-
uations at various orientations of the dipole arm and the
initial dislocation positions and velocities. We took into
account only the conservative dislocation gliding, and

m
i( )

ẋ̇ i( ) Fx
i( )
, m

i( )
ẏ̇ i( ) Fy

i( )
,= =

ẋ̇ i( ) ẏ̇ i( )

ẋ i( ) ẏi

ρbx
2
/2

Fp
ext

Fp
def

Fp
fr

Fp
fr

lc

by
bx

y

x

y(i)

Y (j)

X (j) x (i)

+ω

–ω

Fig. 1. 2D region of simulation of a dislocation–disclination
ensemble. lc is the characteristic capture length of a disloca-
tion by a disclination dipole.
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dislocation climbing was blocked by an infinite resis-
tance to motion along the normal to the glide plane. The
results of calculations are given in the following sec-
tions. 

3. DISLOCATION GLIDE ALONG 
THE DISCLINATION-DIPOLE ARM

We first consider a disclination dipole of strength
ω = 0.01 and a dislocation gliding along its arm. The
dislocation begins to move when it is rather far from the
dipole, at the point (x0 = 499.0 µm, y0 = 501.1 µm), and
its initial velocity is v 0 = 0.01 m s–1. The initial position
of the dislocation with respect to the dipole is charac-
terized by the distances s = 1000 nm and l = 1100 nm,
which are substantially longer than the dipole arm
(Fig. 2). The solution to this problem is shown in
Fig. 2a in the form of the time dependences of the dis-
location coordinate x(t) (dashed line) and velocity
v (t) = (t) (solid line). For clarification, Fig. 2b gives
the contour distribution of the dipole elastic stresses σxy

measured in units of Gω/[2π(1 – ν)], where G is the
shear modulus and ν is Poisson’s ratio. The initial posi-
tion of the dislocation is marked by the open circle in
the top left-hand corner in Fig. 2b, and its final position,
by the solid circle in the top right-hand corner (all fol-
lowing figures are constructed similarly, and the desig-
nations in them are the same).
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Fig. 2. Accelerated motion of an edge dislocation along the
disclination-dipole arm: (a) time dependences of the coor-
dinate x(t) (dashed line) and velocity v (t) (solid line) of the
dislocation gliding in (b) the field of positive long-range
shear stresses σxy of the dipole.
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The initial dislocation position is seen to be chosen
so that the dislocation falls in the region of positive val-
ues of σxy from the very beginning of its motion. These
values first increase and then decrease as the disloca-
tion moves from left to right. Correspondingly, the dis-
location first strongly accelerates and its velocity
reaches a maximum in the region right above the
dipole, where the dipole stress σxy is maximum (Fig. 2).
Therefore, the dynamic-friction force, which is directly
proportional to the dislocation velocity, is also maxi-
mum in this region. When the dislocation starts to leave
the region of maximum stresses above the dipole, its
velocity sharply decreases. As a result, the dislocation
stops at the point where the stress σxy vanishes, i.e., at
the point of intersection of the dislocation glide plane
with the zero-level line of σxy (Fig. 2b). It is obvious
that, in this case, the dislocation simply passes by the
dipole without being trapped by it.

This raises the following question: What are the
conditions for the dislocation to be trapped by the
dipole (i.e., for the dislocation to stop immediately
above the positive disclination) in this configuration?
Our calculations showed that the capture is possible
only at a very low strength of the dipole ω and only in
the case when the dislocation is initially located imme-
diately above the dipole. For example, let us assume
that the strength of the dipole is ten times lower (ω =
0.001), the initial dislocation velocity is zero (v 0 = 0),
and the dislocation is initially located at the point (x0 =
500.050 µm, y0 = 500.001 µm), i.e., at a distance l =
1 nm from the dipole immediately above its center
(Fig. 3). In this case, from the very beginning, the dis-
location is in the region of the strong field σxy of the
dipole, rapidly picks up speed, and reaches the line of
zero σxy, where the dislocation stops in the immediate
vicinity of the positive disclination after several
damped oscillations. At such a small distance from the
disclination, the line of zero σxy virtually coincides with
the y axis and the dislocation may be trapped by the
dipole. However, this entrapment is possible only
within a very small distance from the dipole (here, l =
1 nm), which is significantly smaller than the distance
lc ≈ bx/ω = 256 nm between dislocations in low-angle
tilt walls whose edges are described by this disclination
dipole. Obviously, due to such a small capture length,
conservative motion of the disclination dipole along the
normal to its arm by trapped edge dislocations is impos-
sible.

Thus, simulation shows that the existing models of
the motion of a disclination dipole should be refined
with allowance for the findings of this study. New mod-
els are likely to have to include an intermediate rear-
rangement of a dislocation ensemble in front of a dis-
clination dipole and/or the transformation of the dipole
itself.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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4. DISLOCATION GLIDE 
ACROSS THE DISCLINATION-DIPOLE ARM

Now, we rotate the disclination-dipole arm of
strength ω = 0.01 by 90° (Fig. 4a) and consider a dislo-
cation gliding across this arm. The dislocation starts to
move at an initial velocity v 0 = 0.01 m s–1 from the
point (x0 = 499 µm, y0 = 501 µm), so that its initial posi-
tion with respect to the dipole is specified by the dis-
tances s = 1000 and l = 1025 nm. Thus, the dislocation
starts from a point located relatively far from the dipole,
in the zone where its shear stress σxy is negative
(Fig. 4b). As a result, the dislocation is repulsed by the
dipole, its velocity immediately changes sign, and the
dislocation moves with a negative acceleration from the
dipole until it achieves the line of zero value of σxy (the
top left-hand corner in Fig. 4b). The corresponding
time dependences of the dislocation coordinate x(t) and
velocity v (t) are given in Fig. 4a (dashed and solid
lines, respectively).

Keeping the same general geometry of the problem,
we displace the glide plane by 1 µm toward the dipole
(Fig. 5a). Let the dislocation start at the same initial
velocity from the point (x0 = 499 µm, y0 = 500 µm), for
which s = 1000 nm and l = 25 nm. Here, the dislocation
is in the zone of strong positive stresses σxy from the
very beginning (Fig. 5b). The dislocation picks up a
speed v  ≈ 450 m s–1 very rapidly (in t ≤ 0.1 ns), glides
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Fig. 3. Accelerated motion of an edge dislocation along the
disclination-dipole arm and its capture by this dipole:
(a) time dependences of the coordinate x(t) (dashed line) and
velocity v (t) (solid line) of the dislocation gliding in (b) the
field of positive short-range shear stresses σxy of the dipole.
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at approximately the same speed for the following
≈1.2 ns, and then decelerates and stops at the line of
zero value of σxy in ≈1.9 ns.

Let us return to the first example considered in this
section (Fig. 4) and interchange the positions of the
positive and negative disclinations, all other things
being equal (Fig. 6). The dislocation starts to move
from the same point at the same initial velocity. It first
accelerates under the action of increasing stress σxy and
then decelerates when this stress begins to decrease
(Fig. 6b). Within approximately 83 ns after the begin-
ning of motion, the dislocation reaches the line of zero
value of σxy and is trapped by the disclination dipole.
This example confirms that the dipole can move conser-
vatively along the direction parallel to its arm by trap-
ping dislocations, contrary to the case of its motion
along the normal to its arm (see Section 3).

The examples considered above show that the dislo-
cation dynamics is controlled completely by the elastic
field of the disclination dipole: the dislocation acceler-
ates, if it is in the region of the increasing field, and
then, when the field begins to decrease, the dislocation
is braked by the dynamic-friction force. The dislocation
always stops when it reaches the line of zero value of
the shear-stress field of the dipole. Thus, the behavior of
the dislocation is specified by its initial position with
respect to the dipole and is virtually independent of its
initial velocity (for the velocities considered in these
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calculations). Our computer simulation confirmed that
a dipole of wedge disclinations could move conserva-
tively along the direction parallel to its arm by trapping
edge dislocations; however, its motion along the normal
to its arm cannot be explained in the context of the
existing theoretical models and requires further investi-
gations.

5. CONCLUSIONS

The results of the test calculations show that the
computer code proposed here can be applied for simu-
lating more complex defect configurations under vari-
ous conditions of an applied load. At the same time,
these results are of interest in themselves, since they
clearly illustrate the dynamics of dislocation–disclina-
tion elastic interactions and raise interest in studying
the collective behavior of defects in solids subjected to
severe plastic deformation.
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Abstract—The deformation of an aluminum–lithium alloy under torsion in the temperature range 523–673 K
at angular velocities of 0.322 and 0.0322 rad/s is studied. The shear strain γ prior to failure is found to increase
with decreasing strain rate, and its temperature dependence has a maximum at 553 K (γ ≈ 30). The initial load-
ing-induced jump in the dependence of the torque on the angle of rotation (stress–strain curve) is followed by
a softening stage, which changes into a hardening stage or a stage with a constant torque at all temperatures
except those near 673 K. The stress distribution over a cross section is analyzed, and the dependence of the
shear-strain rate  on the stress τ and temperature T is found to be  ~ τnexp(–U/kT). The results are compared
with those obtained earlier from tensile tests of this alloy. © 2003 MAIK “Nauka/Interperiodica”.

γ̇ γ̇
1. INTRODUCTION

The superplasticity of microcrystalline materials
produced, in particular, through equal-channel angular
pressing (ECAP) has attracted considerable research
interest in recent years [1–6]. A titanium alloy [1], var-
ious aluminum alloys [2–5], and brass [6] were studied
under the conditions of uniaxial tension at constant
strain rates and temperatures. The strain rate was rather
high in those studies (10–3–10–1 s–1). The maximum
strains prior to fracture were found to be 575% in the
Ti–6Al–4V alloy [1], 1220 [2] and 1900% [4, 5] in var-
ious Al–Li alloys, 2280% in the Al–3Mg–0.2Sc alloy
[3], and 640% in the Cu–40Zn brass [6]. It is known,
however, that significantly higher strains can be
achieved under torsion [7–10]. The disadvantage of tor-
sion tests at high strains of continuous cylindrical sam-
ples is that the stress state at various distances from the
torsion axis cannot be calculated exactly. Thin-walled
tube samples, in which stresses can be considered to be
constant over a cross section, can be tested at only rel-
atively small strains, since such samples loose their sta-
bility upon high deformation. The authors of [7–10]
analyzed the stress state under torsion assuming that
tangential stresses in the cross section normal to the
sample axis were independent of the distance from this
axis. This assumption was based on the existence of a
sufficiently long steady-state deformation stage under
the conditions of both creep and tension at a constant
rate [7–10]. This means that deformation occurs under
the conditions of a constant structure, namely, without
hardening and softening. In this work, we analyzed the
1063-7834/03/4511- $24.00 © 22110
stress state under torsion of continuous cylindrical sam-
ples in the superplasticity region and obtained the
dependence of the shear-strain rate on the flow stress
and temperature.

2. EXPERIMENTAL

For experiments, we used an aluminum–lithium
alloy containing (in wt %) 5.5 Mg, 2.2 Li, 0.12 Zr, and
the balance in Al. The workpieces for ECAP were rods
15 mm in diameter and 80 mm long cut from a hot-
rolled plate with a recrystallized structure having
20-µm grains. The workpieces were water-quenched
from 743 K and then subjected to ten-times-repeated
ECAP in air at 643K [11]; a rod was rotated through
90° after each pass following the technique described in
[12]. The mean grain size after ECAP was about 2 µm.
Grains contained subgrains, dislocation cells and tan-
gles, and isolated dislocations. Moreover, precipitates
of the Al2LiMg phase and particles of the δ' (Al3Li)
phase were observed both inside the grains and along
their boundaries.

The rods subjected to ECAP were used to produce
samples for torsion tests; the sample axis coincided
with the rod axis, and the cylindrical gage portion was
3 mm in diameter and 5 mm long. The sample heads
had a 5 × 5-mm cross section. For torsion tests, we
designed a device in which the rate of rotation of a
mobile grip was set by an electric motor with a reduc-
tion gear. The force (torque) was measured with a stan-
dard Instron transducer having a range of 10 N. Signals
003 MAIK “Nauka/Interperiodica”
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from this transducer were processed using the control-
ler of an Instron testing machine and were recorded to
a computer hard drive. The strain rate (rate of rotation)
and torque were measured with an accuracy of 2.5 and
1%, respectively. During tests, the temperature was
maintained constant to within an error of ±3 K. Tests
were performed in the temperature range 523–673 K at
torsional rates (changes in the angle of rotation of the
mobile head of a sample with respect to its fixed head)
of 0.322 and 0.0322 rad/s.

3. RESULTS AND DISCUSSION

3.1. Torsional Stress–Strain Diagrams 
under the Conditions of Superplasticity

Figure 1 shows the typical dependences of the
torque M on the angle of rotation θ (torsion diagrams)
at various temperatures and strain rates. All curves ini-
tially exhibit a hardening stage, which is very short as
compared to the length covered by the whole diagram
and is followed by transition to the stage of softening.
As the temperature increases or the strain rate
decreases, this transition becomes more pronounced
and the hardening stage shortens. In most diagrams
recorded with a time resolution of 10–2 s, this stage can-
not be distinguished from the quasi-elastic segment,
whose slope is specified by the rigidity of the loading
device and force transducer (Figs. 1a–1c). The transi-
tion from the hardening to the softening stage becomes
smooth only at a high rate of rotation and at tempera-
tures close to the lower boundary of the temperature
range under study (Fig. 1d). At low temperatures and
strain rates, softening changes into hardening (Fig. 1b).
As the temperature or strain rate increases, this segment
becomes progressively less pronounced and transforms
into a horizontal line (Fig. 1c). Then, the torque
decreases as the angle of rotation increases at a rate
(slope) lower than that in the previous segment
(Fig. 1a). In all cases, the sample eventually fails by
shearing along the plane normal to its axis. The angle
strain prior to failure increases with decreasing strain
rate, and its temperature dependence has a maximum
θf  ≈ 100 rad at 553 K (see table); this maximum corre-
sponds to a surface shear γf ≈ 30. Note that this value
exceeds the shear strain of this material reached under
tension by a factor of more than three [4, 5].

As mentioned above, it is difficult to calculate the
shear (tangential) stresses and the shear strain under
torsion of a continuous cylinder at high strains. Based
on the hypothesis of plane sections and the assumption
of a linear increase in the shear with the distance from
the rotation axis (the radii remain straight lines), one
may conclude that, in the softening range, the inner lay-
ers of a sample rather than the outer ones become max-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
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imally stressed. In this case, in the formula for tangen-
tial stresses τa in the outer layers of a sample [13]

(1)

(a is the sample radius), the term dM/dθ is negative.
Under these conditions, τa < τm, where τm = 3M/2πa3.

τa
1

2πa
3

------------ 3M θdM
dθ
--------+ 

 =

Angle strain to failure θ at various temperatures for torsion

rates  = 0.0322 rad/s and  = 0.322 rad/s

T, K
θ, rad

for for 

523 69 –

553 100 40
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Fig. 2. Stress–strain curves for torsion plotted as tangential
stress τ versus shear strain γ for the torsion conditions cor-
responding to Figs. 1a and 1b. (1) Calculation with Eq. (1)
and (2) calculation for the case of radius-independent
stresses.
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This means that the surface stresses are lower than the
stresses corresponding to “ideally plastic” torsion,
where stresses in a cross section are independent of the
distance from the axis (see Fig. 2, showing τm and τa for
the torsion diagrams given in Figs. 1a, 1b). Since the
torque created by stresses should be equal to the applied
torque, the inequality τr > τa should be valid at certain
values of r < a when the inequality τa < τm holds true.
When plotting Fig. 2, we calculated τa using Eq. (1)
over the whole θ range, excluding the initial hardening
stage. In that stage, we assume that τa = τm, since, as
noted above, the slope of a stress-strain diagram in this
region is specified by the rigidity of the loading device;
the application of Eq. (1) here would result in overesti-
mated stresses.

It should be noted that the short analysis of torsion
(stress-strain) diagrams and the calculation of stresses
performed above are only a first approximation. The
calculation is based on assumptions which are not
always true at high strains. Our measurements show
that the gage diameter and length are not constant at
high angles of rotation. For example, an increase in the
diameter prior to the failure of the sample whose tor-
sion diagram is given in Fig. 1a is about 10%. If the
diameter is also assumed to increase in the hardening
stage (Fig. 1b), this reduces the effect by a factor of
approximately three and makes the diagram similar to
that calculated from the data in Fig. 1c. It is also essen-
tial that the increase in the diameter and decrease in the
length of a sample are not consistent with the accepted
calculation procedure based on the hypothesis of plane
sections. In earlier studies on torsion [14], samples
were found to elongate at low angles of rotation. Con-
ceivably, a sample subjected to torsion can be consid-
ered as a spring that is first wound up (the spring elon-
gates) and then unwound (shortens).

Although, as noted above, the stress calculation is
approximate, the conclusion that, at high torsional
strains, the layers close to the rotation axis rather than
outer layers can be stressed to the highest degree is
grounded physically. Indeed, if we assume that the
strain is proportional to the distance from the sample
axis, then the greater the strain, the less the shear stress
should operate in the softening range.

3.2. Dependence of the Strain Rate on Stress 
and Temperature

Deformation at elevated temperatures is described,
as a rule, by a power-law dependence of the strain rate
on stress [4, 9, 15]. For a shear-strain rate  and tangen-
tial stresses, this dependence has the form

(2)

where τ0 = 1 MPa is introduced from dimensional con-
siderations (τ is measured in megapascals), U is the
activation energy for plastic deformation, and the coef-

γ̇

γ̇ A τ /τ0( )n
U/kT–( ),exp=
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ficient A ~ T–1. Our estimations based on the experi-
mental variation of the stresses ∆τ with temperature
showed that the contribution from the factor T–1 to ∆τ
at a constant γ is less than 1.5% of the contribution from
the exponential in the temperature range studied. This
conclusion follows from a comparison of the quantities
ln T and Un/kT at the minimal and maximal test temper-
atures. The insignificant role played by the factor T–1 in
the determination of the activation energy from Eq. (2)
was also pointed out in [4]. Therefore, to determine n
and U, we can use the τ(T–1) dependences obtained for
two torsion rates. The stress τ is taken to be the stress τ1

corresponding to the transition from the initial harden-
ing to softening (the case of small strains), and the
stress τ2 is the flow stress at the given shear (γ = 10).

Figure 3a shows the τ1(T–1) dependences plotted for
two test rates. In the semilogarithmic coordinates, these
dependences can be approximated by the straight lines
τ1 = τ0exp(–2.17 + 3600/T) for  = 10–1 s–1 and τ1 =
1.76τ0exp(–2.17 + 3600/T) for  = 10–2 s–1. The data in
Fig. 3b can be approximated by the lines τ2 =
τ0exp(−4.8 + 4800/T) and τ2 = 2.8τ0exp(–4.8 +
4800/T) for the same rates, respectively. As can be seen
from Fig. 3b, the data for the maximum test tempera-
ture (673 K) and the low strain rate differ from the other
data in that the flow stresses are low, which is likely due
to changes in the structure that occur during long-term
holding at an elevated temperature.

The values of n and U can be determined using the
parameters of the dependences given above. By equat-
ing the natural logarithms of coefficients 1.76 and 2.8
to ln10/n, we find that n = 4.07 for small deformations
and n = 2.24 for large deformations. The coefficients of
1/T in the formulas for τ1 and τ2 give an activation
energy U = 1.28 eV for the initial deformation stage and
U = 0.94 eV for large deformations. The value of n
obtained for large deformations is close to that given in
[4] for a tensile test of this material and is typical of
superplastic deformation; this value corresponds to the
strain-rate sensitivity m = 1/n = 0.45. Such a high value
of n (close to four) is usually characteristic of the range
of small deformations or elevated temperatures [16],
which is likely the reason it appears in the initial defor-
mation stage. The value U = 1.28 eV is close to the acti-
vation energy measured under torsion of aluminum
samples and alloys with an ordinary grain size (about
50 µm or greater), and the value U = 0.94 eV is close to
that determined under tension of microcrystalline sam-
ples of this alloy [4].

To make a more reliable estimation of n and U at
large deformations, we determined them experimen-
tally by using the method of a temperature jump or a
jump in torsion rate. An example of a torsion diagram
with a strain-rate jump at large deformations is given in
Fig. 4. The values of n and U calculated using this

γ̇
γ̇

PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
method are n = 2.37 and U = 1.01 eV; they are close to
the values given above.

4. CONCLUSIONS

Thus, we showed in this work that samples of the
Al–Li alloy subjected to ECAP exhibit superplasticity
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Fig. 3. Inverse-temperature dependences (a) of the stresses
corresponding to the transition from the hardening to the
softening stage and (b) of the flow stresses for γ = 10 at
strain rates of (1) 10–1 and (2) 10–2 s–1.
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Fig. 4. Torsion diagram. At θ = 27 rad, the strain rate
increases jumpwise from 0.0322 to 0.322 rad/s. T = 643 K.
03



2114 SHPEŒZMAN et al.
under torsion at elevated temperatures. The torsion dia-
grams exhibit a short hardening stage followed by a
softening stage where the inner layers of a sample
rather than the peripheral layers are maximally
stressed. A comparison with the tensile-test data for
samples with the same structure shows that the shear
strains achieved under torsion are higher than those
achieved under tension. The superplasticity range as
detected under torsion shifts toward low temperatures.
It should be noted that the stresses required for reaching
the limiting strains under torsion are higher than the
corresponding stresses for tension. As for the mecha-
nism of superplastic deformation, it is likely the same
for deformation by tension and torsion.

ACKNOWLEDGMENTS
This work was supported in part by the Russian

Foundation for Basic Research (project nos. 01-02-
16505, 02-02-81021) and the Ministry of Industry, Sci-
ence, and Technologies of the Russian Federation (the
program “Solid-State Nanostructures”).

REFERENCES
1. A. V. Sergueeva, V. V. Stolyarov, R. Z. Valiev, and

A. K. Mukherjee, Scr. Mater. 43 (9), 819 (2000).
2. A. M. Shammazov, N. K. Tsenev, R. Z. Valiev, et al., Fiz.

Met. Metalloved. 89 (3), 107 (2000).
3. Z. Horita, M. Furukawa, M. Nemoto, et al., Acta Mater.

48 (14), 3633 (2000).
4. M. M. Myshlyaev, M. A. Prokunin, and V. V. Shpeœzman,

Fiz. Tverd. Tela (St. Petersburg) 43 (5), 833 (2001)
[Phys. Solid State 43, 865 (2001)].
PH
5. M. M. Myshlyaev, V. V. Shpeœzman, and M. M. Kama-
lov, Fiz. Tverd. Tela (St. Petersburg) 43 (11), 2015
(2001) [Phys. Solid State 43, 2099 (2001)].

6. K. Neishi, Z. Horita, and T. G. Langdon, Scr. Mater. 45
(8), 965 (2001).

7. V. A. Stepanov and V. V. Shpeœzman, in Thermal Stability
of Metals and Construction Elements (Naukova Dumka,
Kiev, 1969), p. 82.

8. G. V. Vladimirova, V. A. Likhachev, M. M. Myshlyaev,
and S. S. Olevskiœ, Fiz. Met. Metalloved. 31 (2), 177
(1971).

9. A. N. Orlov, V. A. Stepanov, and V. V. Shpeœzman, in
Physics of Metals and Physical Metallurgy (LPI, Lenin-
grad, 1975), No. 341, p. 3.

10. V. A. Likhachev, M. M. Myshlyaev, and O. N. Sen’kov,
Laws of the Superplastic Behavior of Aluminum in Tor-
sion (Lawrence Livermore National Laboratory, Liver-
more, 1987), p. 45.

11. M. M. Myshlyaev, M. M. Kamalov, M. A. Prokunin, and
M. M. Myshlyaeva, Metally, No. 1, 99 (2003).

12. M. Furukava, Y. Iwahashi, Z. Horita, et al., Mater. Sci.
Eng. A 257, 328 (1998).

13. A. Nadai, Theory of Flow and Fracture of Solids
(McGraw-Hill, New York, 1950; Inostrannaya Liter-
atura, Moscow, 1954).

14. J. H. Pointing, Proc. R. Soc. London 86, 534 (1912).
15. J. Friedel, Dislocations (Pergamon Press, Oxford, 1964;

Mir, Moscow, 1967).
16. J. Weertman and J. R. Weertman, in Physical Metallurgy,

Ed. by R. W. Cahn (North-Holland, Amsterdam, 1965;
Mir, Moscow, 1968), Chap. 16.

Translated by K. Shakhlevich
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003



  

Physics of the Solid State, Vol. 45, No. 11, 2003, pp. 2115–2118. Translated from Fizika Tverdogo Tela, Vol. 45, No. 11, 2003, pp. 2013–2016.
Original Russian Text Copyright © 2003 by Darinskaya, Hartmann.

                                                                    

DEFECTS, DISLOCATIONS, 
AND PHYSICS OF STRENGTH

                            
Effect of Point Defect Concentration in NaCl and LiF Crystals 
on the Saturation Field of the Magnetoplastic Effect

E. V. Darinskaya* and E. Hartmann**
* Shubnikov Institute of Crystallography, Russian Academy of Sciences, Leninskiœ pr. 59, Moscow, 119333 Russia

e-mail: darin@ns.crys.ras.ru
** Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest XII, H-1121 Hungary

Received April 14, 2003

Abstract—The effect is studied of the calcium impurity concentration in NaCl crystals and of preliminary
x-ray irradiation of NaCl and LiF crystals on the magnetic saturation field B0 characterizing the transition from
the conventional proportionality of the dislocation mean path length l to the magnetic induction B squared
(l ∝  B2) to saturation (l = const). B0 is shown to increase with the calcium concentration in NaCl crystals and
with the dose of x-ray irradiation of NaCl and LiF. This finding indicates that the dislocation breakaway from
local defects in weak magnetic fields is controlled by the mechanism of longitudinal spin relaxation in a system
of radical pairs that form due to interaction between dislocation cores and paramagnetic centers. © 2003 MAIK
“Nauka/Interperiodica”.
The magnetoplastic effect (MPE), detected as the
motion of dislocations in NaCl crystals in a static mag-
netic field in the absence of a mechanical load [1], has
been studied in detail on a number of alkali-halide crys-
tals, nonmagnetic metals, and semiconductors in the
last decade [2–6]. Moreover, the effect of a magnetic
field on the macroscopic characteristics (yield strength,
microhardness, internal friction, creep rate) of nonmag-
netic crystals has also been studied [7–12]. The experi-
mental data obtained indicate that an applied magnetic
field creates conditions for the breakaway of disloca-
tions from local defects either by changing the spin
state of the dislocation–paramagnetic center system [3,
13, 14] or by modifying the structure of point defects in
a crystal [4, 15, 16]. The first effect is more universal
and is observed in both annealed and quenched crystals.
The direct effect of a magnetic field on the restructuring
of impurity centers requires an initial nonequilibrium
structure of these centers and is detected only on
quenched crystals. Hereafter, we will discuss effects of
only the first type, i.e., the case where a magnetic field
directly affects the dislocation–impurity system and
lifts the forbiddenness of certain electronic transitions
in this system. As a result, a barrier for dislocation
motion decreases or even vanishes. However, the total
energy of the dislocation–paramagnetic center system
remains virtually the same, since the spin-dependent
transitions in question in a magnetic field do not require
energy delivery to this system. A similar principle of
spin selectivity is inherent to a set of phenomena related
to the effect of weak magnetic fields on various chemi-
cal and physical processes [17, 18].

In [13], a transition from the conventional propor-
tionality of the dislocation mean path length to the mag-
1063-7834/03/4511- $24.00 © 22115
netic induction squared (l ∝  B2) to saturation (l = const)
was observed when studying MPE in LiF crystals in
relatively high magnetic fields. Experimental points
[13] in the l(B) curve were found to be described well
by the dependence

(1)

typical of the known mechanism of longitudinal spin
relaxation in a system of radical pairs [19]. In Eq. (1),
B0 = "/µBτd is the saturation field (µB is the Bohr mag-

neton) determined by the characteristic frequency 
of natural oscillations of dislocation segments [1]. This
frequency depends on the average length ld of disloca-

tion segments as  ~ c/ld (c is the sound velocity) and
can depend on the impurity concentration. Since an
increase in the impurity concentration leads to a
decrease in the average length of a dislocation segment
and, hence, in the characteristic time τd, it was con-
cluded in [13] that B0 increases with the impurity con-
centration if the mechanism of longitudinal spin relax-
ation is actually predominant for the dislocation break-
away from a local obstacle in a magnetic field.

In this work, we study the effect of the calcium
impurity concentration on the magnetic saturation field
B0 in NaCl crystals. Since x-ray irradiation creates
additional magnetosensitive defects that change the
MPE kinetics [20], we also studied the effect of prelim-
inary x-ray irradiation of NaCl and LiF crystals on B0.

For experiments, we used NaCl crystals of two types
differing in calcium impurity concentration (NaCl-I
with C = 2 × 10–5 wt % and NaCl-II with C = 10–2 wt %)
and having yield strengths τy1 = 150 and τy2 = 600 kPa,

l B( ) B0/B( )2
1+[ ]

1–
,∝

τd
1–

τd
1–
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respectively. The concentration of other impurities was
lower than 5 × 10–5 wt % [21]. Fresh dislocations of
density ρd ~ p were introduced into preliminarily
annealed samples with a dislocation density of ρ ~
104 cm–2 through impaction. Their initial positions
were detected through selective etching of a crystal.
Then, a sample was exposed to a static magnetic field
B = (0.5–1.4) T for a time t = (1–15) min at room tem-
perature without mechanical loading. After the magnet-
ically induced breakaway from local defects, disloca-
tions moved under the action of long-range internal
stress fields created by other dislocations. The positions
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Fig. 1. Dependence of the normalized mean path length

 of dislocations on the time t of holding samples in a
magnetic field at various values of induction B: (a) NaCl-I
for (1) B = 0.5 [14], (2) 0.7, (3) 1, and (4) 1.4 T and (5) l0;
(b) NaCl-II for (1) B = 0.5, (2) 0.7, (3) 0.8, (4) 1, and
(5) 1.4 T and (6) l0; and (c) preliminary irradiated LiF for
(1) B = 0.6, (2) 0.8, (3) 0.7, (4) 1, and (5) 1.2 T and (6) l0.

l ρ
PH
of dislocations after the magnetic treatment was deter-
mined by repeated selective etching. In this work, we
studied the mobility of only edge dislocations, which
provide more complete path histograms. We also stud-
ied LiF crystals (with a total impurity concentration
lower than 10–4 wt %) belonging to the same series of
nonirradiated samples as that studied in [13]; these
crystals were preliminarily irradiated with x rays for
5 s. To analyze the effect of preliminary x-ray irradia-
tion of the NaCl-I crystals on the magnetic saturation
field B0, we used the data from [20].
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Fig. 2. Saturation of dislocation paths in high magnetic
fields at various times of (a, b) magnetic treatment t and
(c) preliminary x-ray irradiation tir of the NaCl crystals:
(a) NaCl-I (tir = 0) for (1) t = 2 and (2) 3 min; (b) NaCl-II
for (1) t = 5, (2) 8, and (3) 10 min; and (c) NaCl-I (t = 5 min)
for (1) tir = 5 and (2) 10 s.
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Figure 1 shows the dependence of the mean path
length of edge dislocations l normalized to the average

spacing of dislocations 1/  [3, 22] on the magnetic-
treatment time t at various values of B for the NaCl
crystals (Figs. 1a, 1b) and for the preliminarily irradi-
ated LiF crystals (Fig. 1c). The background mean path
l0 at t = 0 was determined by removing near-surface
barriers with etching and was found to be independent
of the experimental conditions. The slope of the linear
l(t) dependence is seen to be constant at rather high
fields. The saturation of the mean path length with
increasing magnetic field is most pronounced in ∆l ver-
sus B2 plots, where ∆l = l – l0 (Figs. 2a, 2b). Similar
dependences were obtained for the NaCl-I crystals
(Fig. 2c) preliminarily irradiated with x rays for 5 and
10 s and for the irradiated LiF samples. As in [13], the
level of saturation decreases with decreasing magnetic-
treatment time (Figs. 2a, 2b). Thus, the saturation level
turns out to be independent of the geometric limit

(1/  ≈ 1.4), which is characteristic of dislocation
relaxation in alkali-halide crystals in an internal-stress
field. Moreover, it is seen from Fig. 2c that an increase
in the time of preliminary irradiation decreases the level
mean-path saturation. The dependences obtained are
similar to the experimental curves given in [1]. In
Fig. 3, the experimental data from Fig. 2 are replotted

in the coordinates ∆lρ/At versus B2/  for four values
of parameter A determined from the slopes of the linear
dependence of the saturation level in Fig. 1. It is seen
that these data are described well by the function
[(B0/B)2 + 1]–1 (see Eq. (1)) at B0 lying in the range 0.5–
0.8 T (solid line). An increase in the calcium concentra-
tion in the NaCl crystals from C = 2 × 10–5 to 10–2 wt %
was found to increase B0 by a factor of more than 1.5
(B0 = 0.5 T for NaCl-I and 0.8 T for NaCl-II). The pre-

ρ

ρ

B0
2

1.0

0.5

0 2 84 6
B2/B2

0

0 0.5 1.0
B2/B2

0

0.5

2
1

3
4
5

∆
l

ρ/
tA

∆
l

ρ/
tA

Fig. 3. Experimental data from Fig. 2 [replotted in the coor-

dinates /At versus (B/B0)2] and the corresponding

theoretical dependence [(B0/B)2 + 1]–1 (solid curve 5) for
(1) NaCl-I, B0 = 0.5 T, A = 0.35; (2) NaCl-II, B0 = 0.8 T,
A = 0.16; (3) NaCl-I, tir = 5 s, B0 = 0.7 T, A = 0.3; and
(4) NaCl-I, tir = 10 s, B0 = 0.8 T, A = 0.28.

∆l ρ
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liminary x-ray irradiation of the NaCl-I crystals for 5 s
increases B0 from 0.5 to 0.7 T, and that for 10 s, to 0.8 T.
The same tendency is observed for the preliminarily
irradiated LiF samples.

Thus, the prediction (made in [13]) that the mag-
netic saturation field B0 increases with the impurity
concentration in a crystal is confirmed, which further
supports the hypothesis that the mechanism of longitu-
dinal spin relaxation plays a decisive role in the process
of dislocations breaking away from local defects in a
magnetic field.
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Abstract—The effect of temperature (in the range 20–500°C) on the Young’s modulus of nanostructured nio-
bium with Ta impurity content <0.5 wt % and that of O2 < 0.1 wt % and with a mean grain size of ≅ 200 nm is
studied. The transformation of polycrystalline niobium into a nanostructured state is performed through severe
plastic deformation by equal-channel angular pressing. The Young’s modulus is found to increase in two stages
as the temperature of isothermal annealing is gradually increased. The mechanisms of recovery of the elastic
modulus upon annealing of the nanostructured niobium are discussed in the context of the modern concepts of
the defect structure of deformed metals. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nanostructured materials are of great interest from
both scientific and applied viewpoints owing to their
unique physical-mechanical properties and microstruc-
tural features [1–4]. Such materials have been studied
extensively over the past decade. A number of methods
for producing nanostructured materials have been
developed [4]. To produce bulky pore-free materials
with a superfine-grained structure, severe plastic sim-
ple-shear deformation during equal-channel angular
pressing (ECAP) is widely applied [5]. This treatment
allows one to refine a polycrystalline structure to nan-
ograins. It is well known [6] that plastic deformation
leads to a considerable decrease in the elastic moduli of
materials as a result of weakening of interatomic bonds
in a crystal lattice due to structural distortions and an
increase in the specific volume of a material. This
decrease in the elastic moduli is maximum in pure
materials (Al, Cu) and low alloys [7, 8].

In this work, we study the effect of temperature and
isothermal annealing on the Young’s modulus of nano-
structured niobium (NS-Nb). The results obtained are
used to discuss the possible mechanisms of recovery of
the Young’s modulus E upon annealing of NS-Nb to the
values characteristic of coarse-grained Nb.

2. EXPERIMENTAL

The initial 22 × 22 × 160-mm NS-Nb bar was pro-
duced through ECAP of polycrystalline coarse-grained
Nb having an impurity content of Ta < 0.5 wt % and of
O2 < 0.1 wt % subjected to electron-beam remelting.
The essence of ECAP consists in multiple pushing of a
1063-7834/03/4511- $24.00 © 22119
bulk workpiece through two orthogonally intersecting
channels of the same cross section; in the plane of inter-
section of these channels, a uniform high-intensity sim-
ple-shear deformation is concentrated [5]. This method
provides a uniform deformation of the whole volume of
a workpiece and virtually pore-free samples. High
internal stresses that appear during severe plastic defor-
mation of Nb relax through the formation and move-
ment of point defects and excess dislocations, which
results in restructuring into a superfine-grained state.
During such plastic deformation, when a structure is
strongly refined, the sizes of fragments and blocks
decrease and their misorientation with respect to each
other increases to form boundaries with a strongly dis-
torted crystal lattice. Electron microscopic examina-
tions showed that a nanostructure with a mean grain
size d ≅  200 nm uniformly distributed over the whole
cross section forms in Nb after ECAP.

Samples in the form of 3 × 3 × 15-mm bars were
spark-cut from the initial bar. To estimate possible
anisotropy in the elastic modulus because of a crystal-
lographic texture appearing upon severe plastic defor-
mation, the Young’s modulus was measured on samples
cut along three mutually perpendicular spatial direc-
tions, namely, (I) along the direction of the first chan-
nel, (II) along the axis of turning the channels, and
(III) along the direction of the second channel.

The Young’s modulus was determined using a reso-
nance method in which longitudinal elastic vibrations
of a sample were excited electrostatically; the modulus
was calculated from the formula E = 4ρl2f 2n–2/(1 +
∆l/l), where ρ is the material density, l is the sample
length, f is the resonance frequency of longitudinal
003 MAIK “Nauka/Interperiodica”
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vibrations of the sample, n is the index of the excited
harmonic (n = 1 in our case), and ∆l is the temperature-
induced elongation of the sample [9]. The density of the
samples was measured at room temperature by hydro-
static weighing. Direct measurements showed that the
density of the NS samples was identical to that of
coarse-grained undeformed Nb (8.57 g/cm3). The reso-
nance frequencies of longitudinal vibrations of the
samples were 117–129 kHz.

We performed the experiments at T = 20–500°C. To
improve heat exchange, the furnace containing a sam-
ple was located in a chamber filled with gaseous
helium. At temperatures above 300°C, measurements
were carried out in vacuum. The heating and cooling
rates were about 2 K/min. Each experimental point in
the E(T) dependences was measured after the tempera-
ture in the chamber was stabilized. The data on the ther-
mal expansion of Nb were taken from [10]. The grain
sizes of samples annealed at various temperatures Ta

were measured, using the linear intercept method, from
micrographs taken with electron (Ta < 250°C) and opti-
cal (Ta > 250°C) microscopes.

3. RESULTS AND DISCUSSION

Measurements at room temperature show that the
Young’s modulus of the NS-Nb samples depends on the
direction of their cutting from the deformed bar: EI =

104

103

102

101

100

99
0 100 200 300 400 500

T, °C

E, GPa

1
2
3

Fig. 1. Temperature dependences of the Young’s modulus
measured in the course of sequential thermal heating–
annealing cycles for 2 h at each temperature Ta followed by
cooling for an NS-Nb sample cut along direction II:
(1) heating, (2) cooling, and (3) data on E(T) for coarse-
grained niobium taken from [16].
PH
98.6 ± 0.3, EII = 99.8 ± 0.1, and EIII = 101.4 ± 0.3 GPa.
Small differences in the absolute values of E measured
along the different directions of propagating ultrasound
are likely due to a deformation texture. The Young’s
modulus of the samples of undeformed coarse-grained
Nb cut along direction II was found to be 103.8 ±
0.1 GPa at 20°C. Hence, the contribution of the defect
structure of the deformed Nb to the Young’s modulus is
about 4%.

This change in the Young’s modulus is caused by a
specific atomically disordered structure, which forms
during severe plastic deformation and is characterized
by imperfect nonequilibrium grain boundaries [11].
The structure and properties of grain boundaries under
nonequilibrium conditions differ substantially from
those of ordinary grain boundaries with a low-energy
structure. According to a structural model of nanomate-
rials [4], nonequilibrium boundaries, unlike ordinary
equilibrium high-angle boundaries, have long-range
elastic fields of internal stresses and a high energy due
to the high density of various defects (vacancies, inter-
stitial atoms, randomly distributed ensembles of dislo-
cations and disclinations) introduced into these bound-
aries during the formation of a nanostructure. The
experimentally detected decrease in the elastic modulus
of the NS-Nb as compared to the ordinary coarse-
grained Nb is caused by two factors. One of them is a
high density of excess vacancies pinned by impurity
atoms. Pinning is possible when a metal contains at
least an insignificant amount (up to 0.1 wt %) of impu-
rity atoms, which can trap vacancies and decrease their
mobility [12]. The other factor is related to the process
of dislocation redistribution and multiplication in grain
boundaries. The dislocation density in grain boundaries
can be as high as 1012 cm–2 for severe plastic deforma-
tion, although a relatively low dislocation density
(108 cm–2, which is characteristic of ordinary, well-
annealed, coarse-grained polycrystals) or even an
absence of dislocations is observed in the bulk of grains
[5, 13, 14]. The latter is caused by dislocations climb-
ing from the bulk of grains to their boundaries, i.e., by
their flowing to intergrain regions. The main contribu-
tion to the decrease in the Young’s modulus of NS-Nb
at room temperature is brought about by the second fac-
tor, i.e., by the motion of grain-boundary dislocations in
the field of mechanical stresses induced by the sound
wave. The dynamics of grain-boundary defects result-
ing in a decrease in the elastic moduli of severely
deformed metals is considered in [15].

Nonequilibrium grain boundaries also exert a signif-
icant effect on the behavior of materials upon anneal-
ing, in particular, on the recovery of their elastic moduli
[4]. In this work, the E(T) dependences of the NS-Nb
samples were measured in the course of sequential
experiments, including gradual heating to a certain
temperature, annealing at this temperature for 2 h, and
cooling at a constant rate to room temperature. The
results obtained during the treatment of sample II in the
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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temperature range 20–500°C are given in Fig. 1. The
elastic modulus is seen to decrease smoothly in the tem-
perature range 20–100°C. The coincidence of the E(T)
curves measured upon heating and cooling indicates
that we have a stable system in this temperature range.
At T > 100°C and certain annealing temperatures Ta, E
increases as a function of the holding time t. As an
example, Fig. 2 shows the E(t) dependence at Ta =
162°C. It can be seen that, during annealing, E first rap-
idly grows due to structural relaxation and then slowly
increases to saturation. The main changes (80%), fol-
lowed by saturation, occur in 1 h.

After annealing at various Ta in the range 100–
350°C, temperature hysteresis of the elastic modulus
(i.e., a difference between the E(T) curves recorded
upon heating and upon cooling) is observed. The E(T)
dependences measured upon cooling after annealing lie
above the heating curves and are stable. At the same
time, annealing at Ta ≥ 350°C results in the shape of the
E(T) dependence upon cooling becoming similar to that
observed for the coarse-grained Nb [16], with the char-
acter of the E(T) dependences remaining unchanged
during repeated thermal heating–annealing–cooling
cycles (the direct and reverse curves coincide). It is
notable that a weak and unusual T dependence of E
was observed after annealing in the temperature range
studied. For the coarse-grained Nb, a small change in
E and unusual behavior of E(T) were observed up to
1000°C [16].

Figure 3 shows the relative change in the Young’s
modulus of the NS-Nb measured at room temperature
after each annealing as a function of Ta. Data are given
for a large number of measurements performed on the
samples cut along directions I, II, and III. The sample
with orientation II was studied in detail. According to
these results, five stages can be distinguished in the Ta

dependence of ∆E/E0: (1) 20 < Ta < 100°C, with the
modulus E constant; (2) 100 < Ta < 175°C, with E
increasing; (3) 175 < Ta < 240°C, with E almost inde-
pendent of Ta; (4) 240 < Ta < 320°C, with E sharply
increasing; and (5) 320 < Ta < 500°C, with E only
weakly dependent on Ta. The dependences of ∆E/E0 on
Ta obtained for different samples demonstrate good
agreement. The recovery of the modulus E of the NS-
Nb upon annealing is seen to proceed in stages for all
directions of ultrasound propagation.

Figure 4 illustrates the dependence of the mean
grain size d in the NS-Nb on the temperature of two-
hour annealing. As is seen, annealing at temperatures
below 100°C does not affect d. A further increase in Ta

results in significant grain growth, with the grain size
increasing exponentially with temperature. A similar
d(Ta) dependence for NS-Cu was observed in [7]. Thus,
in the initial stage of annealing (stage 1), no consider-
able changes are detected in the Young’s modulus and
grain size of the NS-Nb.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
In stage 2, the Young’s modulus increases sharply
and grains start to grow, which indicates substantial
structural changes in the samples. Such an increase in E
upon annealing can be due to a combination of several
relaxation processes occurring in the defect structure of
the samples. In particular, the breakaway of vacancies
from impurity atoms, especially from atoms of dis-
solved oxygen (which is always present in Nb), occurs.
This is the so-called vacancy recovery or the “purifica-
tion” of vacancies from impurities. As a result, begin-
ning from a certain critical temperature, the impurities
precipitate and are accumulated at dislocations, thereby

101.0

100.6

100.2

99.8
0 10050 t, min

E, GPa

Fig. 2. Typical dependence of the Young’s modulus on the
time of isothermal annealing. NS-Nb sample with orienta-
tion II. Ta = 162°C.
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Fig. 3. Relative change in the Young’s modulus measured at
room temperature as a function of the annealing tempera-
ture for NS-Nb samples with various orientations: (1) I,
(2) II, and (3) III. E0 is the value of E before annealing for
samples of the corresponding directions.
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pinning them and hindering their motion. Firstov and
Sarzhan [11] showed that the modulus defect in
severely deformed metals could change by 1% because
of mobile-dislocation pinning (blocking) as a result of
the breakaway of vacancies from impurity atoms at a
vacancy concentration of 10–14 per atom. The kinetics
of annealing of ensembles of grain-boundary disloca-
tions introduced into nanostructured materials is
described in [17]. Annealing also leads to transforma-
tion of the grain-boundary structure; the structure of
nonequilibrium grain boundaries is rearranged to reach
a more equilibrium state, and the density of introduced
dislocations decreases gradually. These processes are
related to the development of primary recrystallization,
which decreases the level of internal stresses, changes
the grain sizes and the character of grain boundaries,
and removes most lattice distortions. The fraction of
regions with coarser grains increases to yield a struc-
ture with a mean grain size d = 0.3–0.9 µm. Grain
growth at relatively low temperatures has been detected
in many nanostructured materials [4, 7]. During recrys-
tallization, a structure with a minimum amount of
defects forms, which results in a significant decrease in
the total density of mobile dislocations and favors an
increase in E. The total increase in E in stage 2 is about
1.8%.

Annealing of the samples in stage 3 virtually does
not increase E; however, the mean grain size increases
to 6 µm. Such a considerable increase in d leads to a
decrease in the volume fraction of the grain-boundary
phase and is likely the main cause of the constancy of E
at this stage.

In stage 4, an increase in Ta again results in a rapid
increase in E by about 2%. It is known [3, 7, 18] that, as
NS metals are annealed at Ta values above the tempera-
ture of primary recrystallization, d still increases rap-
idly, the volume fraction of boundaries drops, and their

100

1

0 300 Ta, °C

d, µm

10

100 200
0.1

Fig. 4. Dependence of the mean grain size in samples of
deformed Nb cut along direction II on the temperature of
two-hour annealing.
PH
structure is transformed. As follows from Fig. 4, d = 6–
40 µm in this temperature range; that is, regions with
fine grains completely disappear. The processes of sec-
ondary recrystallization begin to operate. At this stage,
the grain boundary structure is close to equilibrium.
After the dislocation density has decreased to its ordi-
nary level (and become virtually constant), the main
factor that specifies changes in E becomes the mean
free path of lattice dislocations controlled by interac-
tion between dislocations and impurity atoms. An
increase in E could also result from changes in the tex-
ture of the samples. However, it can be seen from Fig. 3
that, after annealing, the values of ∆E/E0 are the same
for samples with different orientations. Hence, the tex-
ture of the NS-Nb samples prepared through ECAP
does not change upon annealing.

In stage 5, at Ta > 350°C, the Young’s modulus is
completely recovered to the level corresponding to the
undeformed state. The defects disappear, thus remov-
ing the majority of lattice distortions. Upon annealing
of the NS-Nb in all stages, the total modulus defect is
about 4%. The variation of the structural state during
annealing at temperatures up to Ta = 500°C is not
accompanied by a noticeable change in the density of
the samples measured at room temperature.

A multistage process of the irreversible recovery of
the Young’s modulus was also observed upon annealing
of NS-Cu [7], but it started at higher temperatures Ta

than in the case of the NS-Nb. The differences found
can be caused by a smaller impurity content in the case
of niobium or a higher deformation energy stored
because of a higher pressure being applied during
severe plastic deformation. The authors of [7, 19] also
detected different values of the Young’s modulus when
NS-Cu samples were cooled after annealing at various
fixed temperatures, which meant that they observed the
memory effect with respect to the value of the modulus
E in the preceding structural state. In the case of the
NS-Nb, no Young’s modulus memory effect was
detected.

4. CONCLUSIONS

Thus, the experimental data obtained by us indicate
that, when niobium is transformed into a nanostruc-
tured state, its Young’s modulus decreases and recovers
upon heating and subsequent isothermal anneals at
temperatures up to 350°C. The main recovery of the
elastic modulus proceeds in two stages. The dominant
mechanism of the variation of the modulus upon heat-
ing of the NS-Nb samples is irreversible structural
relaxation in the bulk of the metal, which decreases the
internal stresses, changes the grain sizes, transforms
nonequilibrium grain boundaries into equilibrium ones,
and results in a gradual removal of lattice defects.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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Abstract—The experimentally observed shapes of dynamic domains in garnet ferrite single-crystal films with
(110) and (210) orientations are explained in terms of in-plane magnetic anisotropy of these films. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Telesnin et al. [1] performed an electron optical
chronographic study of the collapse of bubble domains
in ytterbium-containing garnet ferrite single-crystal
films with the (111) orientation and revealed the thresh-
old effect of a drastic increase in the differential
domain-wall mobility in a portion (following the satu-
ration portion) of the dependence of the domain-wall
velocity V on the amplitude of the pulsed magnetic field
Hp. Later, Martynov et al. [2] carried out high-speed
photographic observations of dynamic domains in
samarium-containing films and established that a simi-
lar portion in the V(Hp) curve corresponds to a dynamic
domain wall with a broader image. The observed
broadening of the image of the moving domain wall
was explained as resulting from the local rotation of
magnetization in front of this wall [2].

Ivanov et al. [3] carried out high-speed photographic
investigations of the dynamic expansion of both bubble
and strip domains in thulium-containing garnet ferrite
single-crystal films with the (111) orientation in a pulsed
magnetic field Hp applied along the normal to the film
and revealed the generation of the so-called magnetic
perturbations. These perturbations brought about the for-
mation of microdomains in front of a moving domain
wall. As a result, the translational velocity of the region
separating magnetic domains with a polarity opposite to
the polarity of this region increased abruptly and a por-
tion with an increased differential mobility appeared in
the dependence V(Hp) [4].

A similar effect was also observed upon the expan-
sion of reversed domains during pulsed magnetization
reversal of garnet ferrite single-crystal films of different
compositions with the (111) orientation under the con-
dition that the content of rapidly relaxing rare-earth
ions was sufficiently low (the Gilbert damping parame-
ter α is less than 0.15) [5].
1063-7834/03/4511- $24.00 © 22124
Earlier [5], we made the assumption that the gener-
ation of microdomains in front of a moving domain
wall can be initiated by spin waves induced by this wall.
Khodenkov [6] theoretically considered this process
and demonstrated that the radiation of spin waves at a
pulsed magnetic field amplitude  < Hp < ,
where

(1)

(2)

Hb is the constant magnetic bias field, and HK is the field
of uniaxial magnetic anisotropy.

For the path length of a spin wave, Khodenkov
derived the following expression:

(3)

where ∆0 is the parameter characterizing the width of
the domain wall and H = Hp – Hb is the acting magnetic
field.

The validity of relationship (1) was experimentally
verified in [5]. It should be noted that, for nonuniform
garnet ferrite single-crystal films, this relationship
should involve the field HK for a layer with a weak mag-
netic anisotropy; i.e., it is in this layer that the generation
of microdomains starts. The validity of expression (2)
was demonstrated using the example of a special garnet
ferrite single-crystal film containing neither rapidly
relaxing ions nor a layer with weak magnetic anisot-
ropy [7].

In [8], it was established that application of a suffi-
ciently strong in-plane magnetic field Hin suppresses
the generation of microdomains in front of a moving
domain wall. On this basis, it was concluded that the
dimensionless damping parameter α is not a constant of
the material but depends on the in-plane magnetic field
Hin [8].

H p* H p**

H p* Hb HK/3,+≈

H p** Hb 2HK/3,+≈

λ sw 2π∆0/α( ) HK/H( ) 3H/HK 1–( )1/2,≈
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In my recent work [9], I inferred that spin waves
induced by a moving domain wall initiate local rota-
tions of the magnetization vectors in front of this wall.
For small parameters α, these rotations look like the
generation of microdomains. For large parameters α,
they manifest themselves as a broadening of the
domain-wall image. The presence of a portion with an
increased differential mobility in the V(H) curve is
common to both processes.

The investigation into the dynamics of domain walls
in (Bi,Y,Lu)3(Fe,Ga)5O12 garnet ferrite single-crystal
films with the (110) orientation demonstrated that,
despite the absence of rapidly relaxing ions in the films,
the generation of microdomains has never been
observed in front of a moving domain wall [10]. How-
ever, the broadening of the image of the domain wall,
which is nonuniform along the perimeter of the
dynamic domain, is observed in these films and leads to
the formation of diamond-shaped domains. The
dynamic domains in garnet ferrite single-crystal films
with the (210) orientation have a more complex shape
[11, 12].

In [13], it was assumed that the orthorhombic mag-
netic anisotropy and an external in-plane magnetic field
bring about an increase in the damping parameter α. In
this case, both the threshold field of spin wave radiation
and the damping parameter α depend on the direction
of the domain-wall motion in the film plane.

The purpose of the present work was to explain
qualitatively the main features of the formation of
dynamic domains in garnet ferrite single-crystal films
with orthorhombic magnetic anisotropy under the
assumption made in [13].

2. RESULTS AND DISCUSSION

For garnet ferrite single-crystal films with the (111)
orientation, the weakest possible in-plane magnetic
field, which is required to rotate the magnetization vec-
tor in the film plane (the saturation field Hs), is virtually
entirely independent of the direction of this field and is
close in magnitude to the field of uniaxial magnetic
anisotropy HK. Therefore, in relationships (1) and (2),
the saturation field Hs can be substituted for the field HK.

For garnet ferrite single-crystal films with orthor-
hombic magnetic anisotropy, the magnitude of the sat-
uration field Hs depends on the direction in the film
plane, which is specified by the azimuthal angle ϕ. As
an example, Fig. 1 shows the azimuthal dependence of
the saturation field Hs(ϕ) (curve 1), which is character-
istic of (Bi,Y,Lu)3(Fe,Ga)5O12 garnet ferrite single-
crystal films with the (110) orientation. The orientation
of the diamond-shaped domain in the film plane is also
shown in Fig. 1. It should be noted that the longer axis
of this domain is aligned with nearly the same direction
along which the saturation field Hs is minimum in mag-
nitude. It can also be seen from Fig. 1 that the maxi-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
mum and minimum values of the saturation field Hs dif-
fer by a factor of approximately 1.5.

Unfortunately, to date, a theory of spin wave radia-
tion induced by a moving domain wall in films with
orthorhombic magnetic anisotropy has not been devel-
oped. Under the assumption that relationships (1) and
(2) change insignificantly with the inclusion of the
orthorhombic magnetic anisotropy, they can be rewrit-
ten in the form

(4)

(5)

The azimuthal dependences of the threshold fields
H*(ϕ) and H**(ϕ) are depicted in Fig. 1 (curves 2 and
3, respectively). The set of (ϕ, H) values bounded by
these curves corresponds to conditions at which a mov-
ing domain wall induces spin waves. Specifically, for a
magnetic field H = H1 (Fig. 1, straight line 4), spin wave
radiation is possible in two ranges of angles ϕ = –21°–
97° and 161°–276°. This situation takes place with a

H* ϕ( ) Hs ϕ( )/3,≈

H** ϕ( ) 2Hs ϕ( )/3.≈

1
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Fig. 1. Azimuthal dependences of (1) the saturation field Hs
and threshold fields (2) H* and (3) H** in the range of act-
ing magnetic fields with possible radiation of spin waves (in
arbitrary units). Acting magnetic fields: (4) H1, (5) H2, and
(6) H3.
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dynamic domain for which local rotation of the magneti-
zation in the vicinity of the domain wall occurs at oppo-
site ends (Fig. 2a). At H = H2 (Fig. 1, straight line 5), spin
waves can be induced at all angles ϕ, i.e., along the
whole perimeter of the dynamic domain (Fig. 2b). This
situation becomes possible when the anisotropy in the
film plane is insufficiently strong.

For a magnetic field H = H2 (Fig. 1, straight line 6),
spin wave radiation is impossible at all angles ϕ. How-
ever, in the ranges ϕ = –4°–41° and 88°–132°, there
exist two regions in which the film undergoes mag-
netization reversal due to irregular rotation of the
magnetization. A similar situation was observed in
the experiments performed with the use of
(Bi,Y,Gd,Yb)3(Fe,Ga)5O12 garnet ferrite single-crystal
films with the (110) orientation [14].

Figure 3 shows the azimuthal dependence of the sat-
uration field Hs(ϕ) (curve 1), which is characteristic of

(a)

(b)

Fig. 2. Dynamic domains in the (Bi,Y,Lu)3(Fe,Ga)5O12 gar-
net ferrite single-crystal film with the (110) orientation in
acting magnetic fields (a) H = H1 and (b) H = H2 > H1.
PH
(Bi,Y,Lu,Pr)3(Fe,Ga)5O12 garnet ferrite single-crystal
films with the (210) orientation and the azimuthal
dependences of the threshold fields H*(ϕ) (curve 2) and
H**(ϕ) (curve 3).

For a magnetic field H = H1 (Fig. 3, straight line 4),
the threshold of generation of spin wave radiation is
slightly exceeded and the broadening of the domain
walls occurs in a narrow range (ϕ = 206°–265°); i.e.,
unidirectional anisotropy of the domain-wall velocity
takes place.

At H = H2 > H1 (Fig. 3, straight line 5), spin waves
are induced over a wide range (except for angles ϕ =
38°–129°). This situation can be interpreted as a unidi-
rectional decrease in the domain-wall velocity, even
though portions of the larger part of the domain perim-
eter are broadened.

At H = H3 > H2 (Fig. 3, straight line 6), the broaden-
ing of the domain wall occurs in the range ϕ = 0–160°;
i.e., unidirectional anisotropy (increase) of the domain-
wall velocity also takes place.

At H = H4 > H3 (Fig. 3, straight line 7), the spin wave
radiation and broadening of domain walls are observed
in a narrower range (ϕ = 62°–111°). However, in the
range ϕ = 154°–371°, dynamic domains are absent
because of irregular rotation of the magnetization.

The observed changes in the direction of the unidi-
rectional anisotropy of the domain-wall velocity can be
interpreted as a rotation of the dynamic domain with
variations in the acting magnetic field.

A variety of shapes of dynamic domains, a unidirec-
tional increase and decrease in the domain-wall veloc-
ity, instability and distortions in segments of domain
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Fig. 3. Azimuthal dependences of (1) the saturation field Hs
and threshold fields (2) H* and (3) H** in the range of act-
ing magnetic fields with possible radiation of spin waves (in
arbitrary units). Acting magnetic fields: (4) H1, (5) H2,
(6) H3, and (7) H4.
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walls, and changes in the orientation of a dynamic
domain have been observed experimentally [11, 15].

3. CONCLUSIONS
The dependences Hs(ϕ) presented in this paper

(Figs. 1, 3; curves 1) do not exhaust the great variety of
curves Hs(ϕ), because they strongly depend on the par-
ticular characteristics of garnet ferrite single-crystal
films with orthorhombic magnetic anisotropy. How-
ever, their use makes it possible to explain the dynamic
effects at least qualitatively. From analyzing these
dependences, one can determine only the directions
along which local rotation of the magnetization vectors
occurs at a given magnetic field. In order to establish
the shape of a dynamic domain, it is necessary to know
the dependence α(ϕ, H). Unfortunately, these investi-
gations have not been performed until now.
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Abstract—Single crystals of iron borate FeBO3, with part of the iron ions substituted for by Ga diamagnetic
ions, were grown through spontaneous crystallization from a melt solution. The chemical composition of the
crystals thus prepared, Fe1 – xGaxBO3 (x = 0, 0.15, 0.25, 0.3), was derived from x-ray microprobe analysis data.
Mössbauer spectroscopy and magnetometry were employed to determine the hyperfine interaction parameters
(effective magnetic fields at the iron nucleus sites, quadrupole splittings, isomer chemical shifts) and Néel tem-
peratures for these crystals and to derive their temperature behavior. © 2003 MAIK “Nauka/Interperiodica”.
FeBO3 and Fe3BO6 crystals, first prepared and
described in [1, 2], respectively, have been attracting
considerable interest because of their remarkable inher-
ent properties. For instance, Fe3BO6 was found to
undergo spin-orientational phase transitions [3, 4] with
characteristic features not observed earlier in other
compounds. Substitution of Ga or Al diamagnetic ions
for the iron ions in Fe3BO6 results in a substantial
downshift of the Néel and orientational transition tem-
peratures [5]. Replacing iron ions with a combination
of Co and Ti ions up to 6 at. % lowers the spin reorien-
tation temperature from 415 to 0 K [6]. A further
increase in the Co and Ti concentrations gives rise to
the formation of a new antiferromagnetic phase [6].
Studies of Fe3 – xGaxBO6 have revealed that substitution
of gallium ions for only 9 at. % of iron ions causes an
order of magnitude increase in the thickness of a sur-
face layer whose properties differ from those of the
crystal bulk [7].

While FeBO3 has a simple magnetic structure simi-
lar to that of hematite, its magnetic properties distin-
guish it from weakly ferromagnetic ferrites [8]. This
offered the possibility of using FeBO3 as a model single
crystal in studies of the properties of surface layers and
to detect a number of new phenomena (see [9, 10] and
references therein). Further investigation of the surface
properties of macroscopic crystals requires that the
scope of objects to be studied be broadened. This
accounts for the interest in the investigation of the
effect of diamagnetic substitution on the properties of
both the crystal as a whole and a thin surface layer by
using FeBO3 as a suitable example.

The goal of the present work was (i) to study the
conditions conducive to preparation of Fe1 – xGaxBO3
single crystals in which iron ions are partially replaced
(0 ≤ x ≤ 0.45) by gallium diamagnetic ions and (ii) to
1063-7834/03/4511- $24.00 © 22128
investigate the crystal and magnetic properties of the
compounds thus obtained. We chose spontaneous crys-
tallization from a melt solution to grow the single crys-
tals desired. The growth conditions accepted were
based on the observations [1, 8, 11] of growth of both
impurity-free FeBO3 crystals and of FeBO3 doped by
various ions. The solvent was a mixture of Fe2O3, B2O3,
PbF2 (all were of OSCh grade), and KhCh-grade PbO.
The iron oxide used had the natural content of the Fe-
57 isotope. The reagents were dried for 12 h at 200°C.
After the drying, the reagents were ground and sieved.
Next, the required amounts of the components were
weighed and intimately mixed. The charge thus
obtained was placed into an electric furnace with a pro-
grammed temperature ramp rate. The crystal growth
temperature regime was as follows. The charge was
melted at 1073 K, heated at a rate of 200 K/h to 1373 K,
and maintained at this temperature for 10 h. After this,
the temperature was lowered at a rate of 3 K/h. On
reaching 873 K, the furnace was switched off and left
to cool to room temperature. The crystals were
extracted from the solidified melt with a hot 20 vol %
water solution of nitric acid.

The Fe1 – xGaxBO6 crystals thus obtained, with the
gallium ion concentration 0 ≤ x ≤ 0.45, were in the
shape of hexahedral plates up to 6 × 6 mm in area and
up to 0.5 mm thick. The lattice parameters of the grown
crystals as derived from x-ray diffraction analysis coin-
cided with those quoted in [12].

The composition of these single crystals was studied
using x-ray microprobe analysis. The results of the
analysis identified the compositions as Fe1 – xGaxBO6
with x = 0, 0.15, 0.25, 0.3, and 0.45. The magnetic
properties of the crystals were studied using magneto-
metric techniques. Mössbauer measurements were con-
ducted with a computerized spectrometer in transmis-
003 MAIK “Nauka/Interperiodica”
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sion geometry. The time dependence of the velocity of
the gamma-ray source was described by a triangular
curve, with its linearity corrected by an additional chan-
nel. The gamma-ray source employed was Co57 embed-
ded in an Rh matrix. A small-gradient furnace was used
in temperature measurements. The studies were per-
formed on plate-shaped single crystals less than
0.1 mm thick.

As follows from the x-ray diffraction measure-
ments, the Fe1 – xGaxBO6 crystals prepared have the
orthorhombic crystal structure and belong to space

group . The crystallographic and magnetic cells areD3d
6
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Fig. 1. Dependences (a) of gallium ion concentration (x) in
the compounds synthesized on the composition of the
charge [Ga2O3/(Fe2O3 + Ga2O3)] and (b) of the Néel tem-
perature on the content of gallium ions (x) in the crystals.
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equivalent. X-ray diffraction identified the faces of the
single-crystal plates with the (111) basal plane. The
unit cell contains two magnetic ions, whose magnetic
moments lie in the basal plane and are almost oppo-
sitely oriented to create a weak ferromagnetic moment
directed along the [111] crystallographic axis.

Figure 1 relates the gallium concentration in the
charge to its content in the crystals obtained. The exper-
imentally obtained dependences of the magnetic
moment on temperature and gallium content were used
to derive the Néel temperatures presented in Fig. 1. The
transition temperature to the paramagnetic state was
also determined using Mössbauer spectroscopy meth-
ods: namely, (i) experimental spectra measured in the
region of the phase transition were used to construct the
spectrum with a zero Zeeman splitting and with only
the quadrupole lines of the paramagnetic phase present;
the temperature at which the Zeeman lines disappeared
was accepted as the Curie point; and (ii) temperature
sweeping was performed, and the phase transition point
was extracted from the temperature dependence of the
number of photons recorded by a detector when the
gamma-ray source moved with a constant velocity (or
was fixed). Figure 2 shows an experimental curve
obtained for x = 0 using the second method. To make
the graph more revealing, the plots drawn for crystals
with other gallium concentrations are not shown. As
seen from the experimental curve in Fig. 2, the number
of photons measured by the detector increases as one
approaches the phase transition point from the low-
temperature side. At the transition point, the curve sat-
urates, so that the number of recorded photons does not
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change with a further increase in temperature. The tran-
sition temperatures to the paramagnetic state obtained
using the above methods coincided both with one
another and with the data quoted in [13]. Doping with
diamagnetic ions lowers the magnetic moment and, as
is evident from Fig. 1, the Néel temperature as well.

Mössbauer spectra of our crystals measured in the
paramagnetic temperature region consist of two qua-
drupole-splitting lines. In the magnetically ordered
region, the spectra exhibit one Zeeman sextuplet,
whose linewidths increase with increasing gallium con-
centration in the crystals. The relative positions of the
lines in the spectra suggest that the magnetic moments in
the crystals lie in the (111) plane. The experimental spec-
tra were used to determine the hyperfine interaction
parameters. Figure 2 plots the effective magnetic fields
acting on the iron nuclei as a function of temperature and
of the iron ion content in the crystals. As seen from
Fig. 2, the effective magnetic fields in Fe1 – xGaxBO3
decrease with increasing gallium ion concentration.
The temperature dependences of the spontaneous mag-
netic moment and of the effective magnetic field, which
is proportional to the sample magnetization, coincide to
within experimental error. This gives one grounds to
conclude that the canting angle of the magnetic sublat-
tices is independent of temperature, which is in agree-
ment with the conclusions drawn in [7, 12]. The qua-
drupole splitting in the paramagnetic temperature
region is 0.76 ± 0.05 mm/s and does not change, to
within experimental error, with increasing gallium ion
concentration. This may possibly be accounted for by
the fact that replacement of the iron with gallium,
which has a similar ion radius, brings about only a
slight lattice distortion. The isomer chemical shift,
found to be 0.26 ± 0.05 mm/s with respect to the Co-57
source in Rh, is likewise independent of the extent to
which the iron ions were substituted in the compounds
under study.

The results obtained can be summed up as follows.
We have determined the composition of the compo-
nents and the temperature conditions favorable for
growing Fe1 – xGaxBO3 single crystals, with x varied
from 0 to 0.45. The magnetic properties of the
Fe1 − xGaxBO3 crystals with x = 0, 0.15, 0.25, 0.3, and
0.45 have been studied. It was found that at these levels
of diamagnetic substitution of Ga for iron (i) the crystal
and magnetic structures do not change and (ii) the Néel
temperature decreases with increasing gallium ion con-
centration.
PH
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Abstract—The phonon mechanism of generation of photogalvanic current in centroantisymmetric tetragonal
antiferromagnets with magnetic symmetry excluding the occurrence of a toroidal momentum is considered. It
is demonstrated that photocurrent can be caused by scattering of charge carriers by phonons with a polarization
other than longitudinal. The polarization of the phonons involved in scattering is determined by the long-range
part of the electron–phonon interaction induced by polarization of the lattice due to the magnetoelectric effect.
Conditions are given for the observation of photogalvanic current in easy-axis antiferromagnets. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The photogalvanic effect consists in the optical gen-
eration of direct current in a medium in the absence of
an external constant electric field and spatial inhomoge-
neities. This phenomenon has been thoroughly investi-
gated in nonmagnetic crystals without a center of sym-
metry [1].

The physical nature of the photogalvanic effect is
characterized by a number of features. One of these fea-
tures is that the detailed balancing principle does not
hold in materials without an inversion center, because
this principle does not account for any spatial–temporal
symmetry properties. The violation of the detailed bal-
ancing principle leads to asymmetry of electron scatter-
ing events, which substantially changes the kinetic
properties of the crystal and offers possibilities for gen-
erating electric current in a nonequilibrium stationary
state [1]. Photogalvanic current is generated in a non-
equilibrium state caused by external illumination, and
the direction of this current is determined by the crystal
symmetry alone.

Earlier [2], we predicted the antiferromagnetic pho-
togalvanic effect in centroantisymmetric antiferromag-
nets from symmetry considerations. The point is that,
when writing invariant relationships for material ten-
sors, energy, etc., within the phenomenological
description of a phenomenon, one should proceed from
crystal-chemical symmetry (Fedorov group GF), pro-
vided the vector parameter of antiferromagnetic order
L (antiferromagnetic vector) violating this symmetry is
given in an explicit form in these relationships. Under
these conditions, the transformation properties of the
vector L play a significant role in the atomic rearrange-
ment produced by an element of the GF group. In media
where all magnetic atoms belong to a single crystal-
1063-7834/03/4511- $24.00 © 22131
chemical position and the GF group contains the center

of symmetry , the symmetry element, depending on
its spatial location, can transfer a particular magnetic
atom either to the same magnetic sublattice (even ele-
ment) or to a sublattice with an oppositely oriented
magnetization (odd element). In the former case, the
action of the symmetry element on the vector L does
not at all differ from that of an element of the point
group, even if this element is a screw axis or a glide
plane. In the latter case (centroantisymmetric struc-
ture), the vector L additionally changes sign:

 (1)

The centroantisymmetric antiferromagnets under con-
sideration have no center of symmetry and, hence, can
exhibit a photogalvanic effect. In the framework of the
phenomenological description, the density of photoin-
duced direct electric current can be written in the form

 (2)

where e is the unit vector of polarization of a mono-
chromatic light wave and J is the light intensity. It is
evident that equality (2) is satisfied only in the case of
centroantisymmetric antiferromagnets for which the
change in sign of the vector j under the action of the

center of symmetry , according to relationship (1), is
compensated by the change in sign of the vector L on
the right-hand side.

In this paper, an attempt is made to elucidate one of
the possible microscopic mechanisms of the origin of
the antiferromagnetic photogalvanic effect, namely, the
phonon mechanism. Let us first call attention to the fact
that, among nonmagnetic crystalline materials, photo-
galvanic current has been observed in piezoelectric

1

1L L.–=

ji βijklL jekel*J ,=

1
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crystals [3]. The interaction of electrons with phonons
as one of the possible factors responsible for photocur-
rent in piezoelectrics was investigated by Belinicher
and Sturman [4]. It was demonstrated that a significant
role in the electron–phonon interaction is played by its
long-range part, which appears upon polarization of the
crystal lattice in the course of phonon propagation.

The centroantisymmetric antiferromagnets do not
exhibit a piezoelectric effect, as can be judged from the
symmetry of the crystals, and, seemingly, the phonon
mechanism does not work. However, it is necessary to
take into account the fact that these crystals are charac-
terized by the magnetoelectric effect, which can lead to
polarization of the crystal lattice.

2. ELECTRON–PHONON INTERACTION 
IN CENTROANTISYMMETRIC 

ANTIFERROMAGNETS

Let us consider a medium in the form of tetragonal
centroantisymmetric antiferromagnets [5] with the

exchange magnetic structure (–)4z(–)2d(+). As was
noted above, the polarization of the lattice of these anti-
ferromagnets arises from the magnetoelectric effect.
Consequently, the lattice polarization is indirectly
affected by phonons through the magnetic subsystem of
the crystal. In this situation, it is necessary to take into
account not longitudinal but transverse phonons,
which, as a rule, are related to the magnetic subsystem
in a linear approximation. Belinicher and Sturman [4]
described the short-range part of the electron–phonon
interaction in terms of the Frelich Hamiltonian and,
hence, ignored the polarization of phonons, because
this Hamiltonian accounts only for longitudinal lattice
vibrations. This Hamiltonian is unsuitable for the prob-
lem under consideration. The electron–phonon interac-
tion should be described using a more general relation-
ship that takes into account phonons with a polarization
different from the longitudinal polarization. The physi-
cal considerations allowing one to obtain a more gen-
eral expression for the short-range part of this interac-
tion are presented in monographs [6, 7]. The operator

, which describes the change in the energy of
charge carriers due to the displacement of the lattice
atoms, has the form [6]

 (3)

where εij(r) is the strain tensor. It is assumed that an
electron is localized in a nondegenerate band. In the
representation of secondary quantization, the Hamilto-

nian  can be written in the following form:

 (4)

1

Ĥep
1( )

Ĥep
1( )

Dij r( )εij r( ),
i j,
∑=

Ĥep
1( )

Ĥep
1( )

i Γ j
s p q,( )q jCp q+

+
Cp bq s, b q– s,

+
+( ),

p q s j, , ,
∑=
PH
where

 (5)

In relationships (4) and (5),  and Cp are the operators
of production and annihilation of electrons, respec-

tively;  and bq, s are the operators of production and
annihilation of phonons, respectively; e(q, s) is the
polarization vector of a phonon with wave vector q,
which is related to the sth acoustic mode; " is the
Planck constant; ρ and V are the density and the volume
of the medium, respectively; ωq, s is the phonon fre-
quency; and

 (6)

Equality (6) takes into account that the quantities Dij(r)
and Bloch amplitudes of the electron wave functions
uk(r) and up(r) are periodic functions. In this equality,
the integral does not vanish only in the case when p +
q = k (normal processes).

The number of components of the matrix element

(1/V) (r)uk(r) (r)dr is determined by the group

of the wave vector Gk [6]. As a consequence, for an
arbitrary wave vector k in the Brillouin zone of the
crystal, all nine components of the tensor Dij(r) can be
nonzero.

The Hamiltonian describing the change in the
energy of charge carriers with the participation of two
phonons can be represented in a similar manner:

 (7)

The designations in formula (7) are the same as
those in relationships (4) and (5), except for the vertex
part, which can be represented by the following expres-
sion:

(8)

(9)

Γ j
s p q,( ) Dij q p q,+( )ei q s,( ) "

2ρVωq s,
---------------------.

i
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+

bq s,
+

Dij p q+ p,( )δp q k,+

=  
1
V
--- Dij r( )uk* r( )up r( ) i p q k–+( )r{ } r.dexp

V

∫
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+
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∫
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Now, we consider the long-range part of the elec-
tron–phonon interaction associated with the lattice
polarization. Since this polarization in centroantisym-
metric antiferromagnets arises from the magnetoelec-
tric effect, we assume that an external constant mag-
netic field H is applied to the medium along the princi-
pal axis of the tetragonal antiferromagnet. We choose
the magnetic state of the crystal in such a way that the
antiferromagnetic vector at equilibrium will be oriented
along the principal axis.

Next, let us use the phenomenological description
and assume that the relationship between the lattice
polarization P and the antiferromagnetic vector L has
the same form for both the statics and dynamical pro-
cesses and that these vectors follow the elastic strains in
a quasi-equilibrium manner. In this case, we can dem-
onstrate the validity of the following relationships:

(10)

where εij are the components of the strain tensor; B44 is

the magnetoelastic constant;  is the renormalized
constant of the uniaxial anisotropy [8]; χ is the mag-
netic susceptibility; κ⊥ and κ are the transverse and lon-

gitudinal electric susceptibilities, respectively;  is the
reduced antiferromagnetic vector in the ground state;
and γ3, 4 are the magnetoelectric constants [8].

The polarization of the lattice gives rise to the scalar
potential acting on the charge carriers. In the represen-
tation of second quantization, the long-range part of the
electron–phonon interaction, which is related to the
scalar potential, can be represented by the following
expression for electrons:

 (11)

where

 (12)

Here, ξij are the components of the permittivity tensor,
e is the elementary charge, and e(q, s) is the phonon
polarization.

As is known [1], the properties of a scattering center
are characterized by the probability Wkk' of transferring
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a particle scattered by this potential from a state with
angular momentum k' to a state with angular momen-
tum k. In media without a center of symmetry, the prob-
ability Wkk' can be separated into two parts, one of
which is symmetric with respect to the permutation of
the angular momenta k and k' (this corresponds to
detailed balancing) and the other is antisymmetric with
respect to this permutation [4]:

 (13)

It is this antisymmetric part of the probability  that
is responsible for the effects associated with the
absence of a center of symmetry. In order to calculate
the antisymmetric part of the scattering probability, it is
necessary to go beyond the scope of the Born approxi-
mation. Then, it can be demonstrated that the antisym-

metric part of the probability  has the form [1]

 (14)

where Ek is the energy of an electron with wave vector

k and  is the scattering potential, which, in our case,

is defined as  +  + . Upon substituting
the last expression into equality (14), we obtain
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tron–phonon interactions and single-phonon interac-
tions of electrons with the lattice. The necessity of tak-
ing into account the long-range part of the electron–
phonon interactions is of considerable importance. For
this reason, we had to include the magnetoelectric
effect in the consideration of the antiferromagnetic
photogalvanic effect.

The photogalvanic current density is determined by
the following expression [1]:

 

where  is the antisymmetric part of the distribution
function for charge carriers and ε is the energy of the
charge carriers.

In order to determine the function  it is necessary
to know the processes responsible for electrons in the
conduction band of the antiferromagnet. For simplicity,
we consider only the excitation of photoelectrons at
impurity s centers, i.e., impurity–band transitions. In

this case, the function  can be represented by the
relationship [1]

 

Here, Γ–1 is the time of relaxation with respect to the
momentum. In the last formula, it is assumed that the
volume of the system is equal to unity and the quantity
Ik having the meaning of the electron excitation rate is
given by the formula

 

Here, e(k) is the polarization vector of the electromag-
netic wave; λ is the coefficient of light absorption; and
k0 is the limiting momentum of the photoelectron,
which is determined from the condition "ω = ∆ + .
As a result, the expression for the density of photocur-
rent takes the form

 (16)

3. RESULTS AND DISCUSSION

As was already mentioned, the antiferromagnetic
photogalvanic effect should be described with due
regard for the interaction of electrons and phonons
characterized by a polarization other than longitudinal.
It follows from relationships (12) and (15) that, for the
chosen direction of the external magnetic field, the
electrons interacting with two groups of phonons con-
tribute to the photocurrent. The first group consists of
transverse phonons that are polarized along the princi-
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pal axis of the crystal and propagate along the x or y
axis. The second group consists of phonons propagat-
ing in the xz and yz planes with the polarization vector
directed along the x and y axes, respectively. All other
phonons do not participate in the generation of the pho-
tocurrent.

Earlier [5], we performed a macroscopic analysis of
the antiferromagnetic photogalvanic effect and proved
that, for uniaxial tetragonal antiferromagnets at L || z,
the photocurrent can flow only along the fourfold axis.
On this basis, the direction of the external magnetic
field H was chosen in such a way that the occurrence of
additional components of the photocurrent would be
impossible.

In [4], the antisymmetric part of the probability 
of an electron transferring from a state with wave vector
k' to a state with wave vector k due to scattering by
phonons was calculated for normal processes of scatter-
ing in nonmagnetic crystals under the assumption that
electrons obey the square isotropic law of dispersion. In
our case, this assumption cannot be used, because,
according to this law of dispersion of charge carriers,
transverse phonons cannot initiate normal processes of
scattering [7]. Therefore, the analytical calculation of
Eqs. (15) should be carried out without invoking this
approximation, which significantly complicates its exe-
cution. However, even without these calculations, we
can draw certain conclusions regarding the possibility

of the quantity  nonvanishing in our case. Indeed,
for arbitrary wave vectors k, when the group of the
wave vector Gk contains only the unit element, the Fou-
rier components Dij(k) and Dijkl(k) and, correspond-
ingly, all the vertex parts considered above do not van-
ish upon the interaction of electrons with phonons hav-
ing the aforementioned polarizations. The last
circumstance allows us to state that the contribution to
the probability  from the summation over vectors q
for which k – q and k' – q are the low-symmetry points
of the Brillouin zone does not vanish. The contribution
associated with the high-symmetry points of the Bril-
louin zone can be totally absent because the tensors
Dij(k) and Dijkl(k) have no components for the descrip-
tion of the electron interaction with lattice vibrations of
the required polarization.

Let us estimate the photocurrent density. In the esti-

mation, we assume that the quantities (q, k – q) and

(k', k' – q, q – k) weakly depend on the wave vec-

tors and (1/V) (r)up(r)exp(i{p + q – k}r)dr ∝  1.

Then, the expression for the photocurrent density can
be represented in the form

 (17)
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Here, e is the electron charge, m is the electron mass,

 

 

 

Under the assumption that {Dxz , Dyz}max ∝  1.6 ×
10−12 erg, {Dzzxx , Dzzyy , Dzxzx , Dyzyz}max ∝  1.6 × 10–13 erg,
λ ∝  1 cm–1, cs ∝  105 cm s–1, T ∝  kB10 erg, H ∝  103 Oe,

ξ0 ∝  10, κ⊥ γ3χ  ∝  10–2, B44/  ∝  103, 2ρV ∝  1 g, "ω ∝
5 × 10–12erg, and k0 ∝  10–7 cm–1, we obtain j (CGS) ∝
10–5J (erg/cm2 s).

One additional remark needs to be made. In [9, 10],
when studying strong electron–hole correlations in
“exciton” dielectrics, considerable attention was given
to the current states and, in particular, the photogal-
vanic effect. It was demonstrated that the bulk photo-
galvanic effect manifests itself on the microscopic level
under the condition of existence of the imaginary part
of the singlet order parameter in the system [9, 10],
which is macroscopically equivalent to the existence of
the antisymmetric components of the magnetoelectric
tensor (toroidal momentum) of the medium. The occur-
rence of these components of the magnetoelectric ten-
sor in tetragonal crystals becomes possible in the case
when their class of magnetic symmetry is D4h(C4v )
[11]. However, the rare-earth phosphates and vanadates
which I considered in this paper have magnetic symme-
try D4h(D2d). Therefore, these crystals do not exhibit
effects that are associated with the electron–hole corre-
lations and cause photogalvanic currents.
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4. CONCLUSIONS
From the above analysis, it can be inferred that, in

centroantisymmetric antiferromagnets, the antiferro-
magnetic photogalvanic effect is caused by scattering
of charge carriers by phonons.

REFERENCES
1. B. I. Sturman and V. M. Fridkin, Photogalvanic Effect

(Nauka, Moscow, 1992).
2. V. V. Men’shenin and E. A. Turov, Pis’ma Zh. Éksp. Teor.

Fiz. 72 (1), 23 (2000) [JETP Lett. 72, 14 (2000)].
3. A. V. Andrianov and I. D. Yaroshchetskiœ, Fiz. Tekh.

Poluprovodn. (Leningrad) 16 (4), 706 (1982) [Sov. Phys.
Semicond. 16, 454 (1982)].

4. V. I. Belinicher and B. I. Sturman, Fiz. Tverd. Tela (Len-
ingrad) 20 (3), 821 (1978) [Sov. Phys. Solid State 20,
476 (1978)].

5. V. V. Men’shenin and E. A. Turov, Zh. Éksp. Teor. Fiz.
108 (6), 2061 (1995) [JETP 81, 1124 (1995)].

6. G. L. Bir and G. E. Pikus, Symmetry and Stain-Induced
Effects in Semiconductors (Nauka, Moscow, 1972;
Wiley, New York, 1975).

7. J. M. Ziman, Principles of the Theory of Solids, 2nd ed.
(Cambridge Univ. Press, Cambridge, 1972; Mir, Mos-
cow, 1974).

8. E. A. Turov, V. V. Men’shenin, and V. V. Nikolaev, Zh.
Éksp. Teor. Fiz. 104 (6), 4157 (1993) [JETP 77, 1014
(1993)].

9. A. A. Gorbatsevich, Yu. V. Kopaev, and V. V. Tugushev,
Zh. Éksp. Teor. Fiz. 85 (3), 1107 (1983) [Sov. Phys.
JETP 58, 643 (1983)].

10. Yu. A. Artamonov, A. A. Gorbatsevich, and Yu. V. Ko-
paev, Zh. Éksp. Teor. Fiz. 101 (2), 557 (1992) [Sov. Phys.
JETP 74, 296 (1992)].

11. Yu. A. Artamonov and A. A. Gorbatsevich, Zh. Éksp.
Teor. Fiz. 89 (3), 1078 (1985) [Sov. Phys. JETP 62, 621
(1985)].

Translated by O. Moskalev
3



  

Physics of the Solid State, Vol. 45, No. 11, 2003, pp. 2136–2139. Translated from Fizika Tverdogo Tela, Vol. 45, No. 11, 2003, pp. 2033–2036.
Original Russian Text Copyright © 2003 by Ol’khovik, Sizova, Kamzin.

                                         

MAGNETISM 
AND FERROELECTRICITY
Magnetic State of a System of Barium Hexaferrite Nanocrystals 
in the Vicinity of the Curie Temperature

L. P. Ol’khovik*, Z. I. Sizova*, and A. S. Kamzin**
*Kharkov National University, pl. Svobody 4, Kharkov, 61077 Ukraine

e-mail: Larisa.P.Olkhovik@univer.kharkov.ua
**Ioffe Physicotechnical Institute, Russian Academy of Sciences, 

Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
Received March 21, 2003

Abstract—In order to study the magnetic state of a system of nanocrystals of highly anisotropic hexagonal bar-
ium ferrite in the vicinity of the Curie temperature, a macrocrystal surface layer comparable in thickness to the
particles of the system is chosen as a model. As revealed by simultaneous application of gamma-, x-ray, and
electron Mössbauer spectroscopy, the transition of a ~200-nm-thick surface layer to the paramagnetic state
starts 55 K and is complete 3 K below the Curie temperature of the bulk of the crystal. This temperature range
overlaps the range where the particles transfer from the magnetically stable to the superparamagnetic state. The
data obtained made it possible to refine the high-temperature part of the H–T diagram for particles with a close-
to-critical volume. The regions of the diagram where mixed magnetic states originating simultaneously from
the size and surface factors coexist are identified. © 2003 MAIK “Nauka/Interperiodica”.
A number of publications deal with the issue of the
physical mechanisms responsible for the magnetic
properties of the nanocrystalline system of highly
anisotropic barium ferrite (BaFe12O19) [1–3]. In partic-
ular, an H–T magnetic state diagram has been con-
structed for the temperature range 300 K–TC and for
fields H extending from zero to 20 kOe. The diagram
specifies regions where the magnetic states specific to a
particle system under study exist. One of such regions
bounds the superparamagnetic (SPM) state. The tem-
perature extent of this region for a system acted upon by
an external magnetic field is ~300 K. In spite of the fact
that the smallest particle size of the system of interest is
close to the lower limit of the single-domain dimension,
only at 30 K below the Curie temperature of the system
does the high magnetocrystalline anisotropy energy
make possible a transition to the SPM state due to ther-
mal fluctuations with no magnetic field applied.

The goal of the present study was to refine the mag-
netic state diagram for a system of nanocrystals
approaching the Curie temperature.

Information on the magnetic structure can be gained
from using Mössbauer spectroscopy. The validity of
this approach as applied to a system of small particles
with a close-to-critical volume seems, however, ques-
tionable for a number of reasons. First, the dispersed
form of the material and the real particle size distribu-
tion bring about a considerable line broadening of the
barium ferrite spectrum, which is originally complex
and poorly resolvable at high temperatures. Second, the
transition of about 70% of the particles in a system to
1063-7834/03/4511- $24.00 © 22136
the superparamagnetic state [2] should become mani-
fest in the appearance in the spectrum of a paramag-
netic doublet in addition to the sextuplets, provided the
superparamagnetic relaxation time τ is much shorter
than the time of experimental observation τm [4]. Under
these conditions, unambiguous interpretation of a mag-
netic state at a temperature close to the transition tem-
perature to the paramagnetic state becomes dubious.

The earlier layer-by-layer analysis of the BaFe12O19

single crystal performed in [5] showed that the thick-
ness of the surface layer with a magnetic structure dif-
ferent from that of the bulk for T > 600 K is ~200 nm,
which is comparable to the thickness h even of the larg-
est nanocrystals of the system. This is why the surface
layer of a macroscopic sample was chosen as the model
for a nanocrystal in our Mössbauer studies.

This is the first time the problem of the mechanisms
through which the magnetic state of small particles
forms in the high-temperature range is treated using
this method.

The Mössbauer spectra were obtained through
simultaneous gamma-, x-ray, and electron Mössbauer
spectroscopy [6]. Measurements were performed on
the basal plane of a single crystal with a natural abun-
dance of 57Fe (2% of the total number of iron ions). This
choice is motivated by the fact that, compared to a side
face, a free basal-plane surface is a stronger source of
perturbation of the crystalline and, accordingly, mag-
netic structure of a platelet nanocrystal.
003 MAIK “Nauka/Interperiodica”
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The BaFe12O19 single crystal was grown from a melt
solution [7]. Plates 100 µm thick and 9 mm in diameter
were cut parallel to the basal plane from the single crys-
tal. The x-ray studies showed the c crystallographic
axis to be perpendicular to the plate surface prepared
for study. Particular attention was focused on the qual-
ity of the surface to be studied. Preliminary experi-
ments revealed that a high surface quality of a hexago-
nal single crystal can be reached through chemical pol-
ishing in orthophosphoric acid at 90°C for 1 min. This
treatment provided good reproducibility and, hence,
reliability of the results obtained.

The geometry of the experiment was chosen such
that the crystallographic c axis, which is the easy mag-
netization direction, was parallel to the wave vector of
the gamma radiation. This orientation makes an NGR
spectrum more revealing, because the second and fifth
lines of the sextuplets for a collinear magnetic structure
should have zero intensity in this case [8].

Figure 1 illustrates high-temperature Mössbauer
spectra obtained by detecting conversion and Auger
electrons emitted from a ~200-nm-thick surface layer.
The spectrum measured at T = 726 K exhibits a para-
magnetic doublet against the background of weakly
resolved sextuplets, which indicates the coexistence of
a magnetically ordered and a paramagnetic phase. The
intensity of this doublet, as seen from Fig. 2b, increases
with a further increase in temperature. The large width
of the paramagnetic phase transition in temperature
(680–732 K) may be attributed to the fact that the den-
sity of structural defects [5] and, hence, of broken and
modified Fe–O–Fe exchange bonds in the near-surface
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Fig. 1. Mössbauer spectra of a barium hexaferrite single
crystal obtained by measuring the conversion and Auger
electrons emitted from a surface layer ~200 nm thick.
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region falls off monotonically away from the surface. In
this case, the temperature T = 680 K may be identified
with the Curie point of the free crystal surface. At T =
732 K, the spectrum exhibits only the paramagnetic
doublet lines (Fig. 1), which indicates that the whole
near-surface region transferred to the paramagnetic
state. The temperature at which the Zeeman splitting
lines disappeared was assumed to be the Curie temper-
ature of the surface layer TCS. As seen from Fig. 2b, TCS

is 3 K lower than the Curie point of the crystal bulk, TCV

[9]. Note that the temperature and its gradient across
the sample were maintained to within ±0.1 K.

The information obtained on the variation of the
magnetic state in the crystal surface layer as the Curie
temperature was approached permitted us to refine the
high-temperature region of the H–T magnetic state dia-
gram obtained earlier for a system of BaFe12O19 nanoc-
rystals [2].

This system was prepared using a nonstandard cry-
ochemical technology, which provided chemical and
granulometric homogeneity of the ferrite-forming mix-
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Fig. 2. (a) High-temperature fragment of the H–T magnetic
state diagram of a system of barium hexaferrite nanocrys-
tals and (b) temperature dependence of the intensity of the
paramagnetic line in the Mössbauer spectrum obtained
from the surface layer of the macrocrystal. MS stands for
magnetically stable, SPM for superparamagnetic, and PM
for paramagnetic state.
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ture and thereby offered the possibility of carrying out
ferritization at comparatively low temperatures (800°C,
4 h) [10, 11], with the end product being a nanodis-
persed powder. Figure 3 presents electron microscopy
data on the size distribution of the particles.

A fragment of the H–T diagram is displayed in
Fig. 2a. The interval 650–740 K is rich in phase transi-
tions. A 100-K broad temperature region encompasses
three consecutively arising phases, namely, magneti-
cally stable (MS), superparamagnetic (SPM), and para-
magnetic (PM) phases. The regions of the diagram
where various phases exist are separated by the follow-

ing lines. Line (H) indicates the beginning of the
transition of particles in the system from the MS to

SPM state (at H = 0,  = 681 K), and line (H)
closes the region of the SPM transition for the particles
having critical volume in the specified temperature
interval [12]. The region beyond the dash-dotted line
relates to the paramagnetic state of a system of nano-
particles as a whole. The temperature TCN = 710 ± 2 K,
derived from the temperature dependence of magneti-
zation in a low field (H ~ 25 Oe) [1], was identified with
the Curie temperature of a nanocrystalline sample. The
fact that TCN is lower (by 20 K) than TCS should be
assigned to the exchange coupling in the surface layer
of a macrocrystal being less perturbed (because of the
favorable effect exerted by the bulk) than the coupling
in a nanocrystal.
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Fig. 3. Size distribution of nanocrystalline powder particles:
d is the diameter, h is the thickness, V is the particle volume,
and c is the lattice parameter. Sampling size N = 520 parti-
cles.
PH
The available high-temperature Mössbauer data for
a macrocrystal permitted us to correlate the H–T dia-
gram discussed here with the temperature region within
which the paramagnetic phase develops in a surface
layer comparable in thickness to nanocrystals. A
remarkable feature is the overlap of the temperature
range 680–700 K, where nanocrystals undergo an SPM
transition through thermal fluctuations alone (H = 0),
with the range where the transition to the paramagnetic
state begins (Fig. 2b). Accordingly, regions II and III in
the diagram correspond to mixed states; namely, region II
corresponds to MS + SPM + PM, and region III, to
SPM + PM.

The nanodisperse system under study is specific in

that the temperature  of the onset of the SPM tran-
sition in BaFe12O19 nanocrystals adjoins the lower
boundary of the temperature-broadened paramagnetic
region, because the effective magnetic anisotropy
energy is high. The paramagnetic phase in an ultrathin
particle (h/2c = 2–4, Fig. 3c) nucleates primarily on the
free surface containing iron vacancies and broken
exchange bonds [5]. The density of broken bonds
within the surface layer decreases monotonically with
depth, which makes propagation of the paramagnetic
phase extended in temperature. An additional energy
equivalent to 50 K is needed to completely destroy
magnetic order in the volume of such particles.

Note that the hypothesis put forward in [13] on the
existence of a magnetically dead (paramagnetic) layer
on the surface of small particles may be valid. In highly
anisotropic barium ferrite, however, this situation can
only be realized at temperatures above 650 K.
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Abstract—Simple analytical expressions are derived for the complex longitudinal susceptibility χ||(ω) of a sys-
tem of noninteracting superparamagnetic particles with uniaxial and cubic anisotropy within the continuous-
diffusion model in the cases of moderate and strong damping. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Single-domain ferromagnetic particles are charac-

terized by an internal anisotropic potential with several
minima separated by barriers. If the size of a particle is
small (~10 nm), the barriers are relatively low. In this
case, due to thermal fluctuations, the magnetization
vector M(t) can overcome a barrier and change direc-
tion. Thermal instability of magnetization accounts for
the phenomenon of superparamagnetism of particles
[1–3]; each particle behaves as a paramagnetic atom
with a magnetic moment of ~104–105 Bohr magnetons.
The dynamics of the magnetization of single-domain
ferromagnetic particles is described by the Landau–Lif-
shitz equation [4]. An analogous equation was pro-
posed by Gilbert in [5]. Based on these equations,
Brown [2, 6] has described the dynamics of the magne-
tization of an individual particle using the Langevin
equation method from the theory of Brownian motion.
The Langevin equation was taken in the form of the
Gilbert equation with a fluctuating field [5, 6]:

 (1)

where γ is the gyromagnetic ratio and η is the damping
parameter. The total magnetic field consists of exter-
nally applied fields, the effective magnetic anisotropy
field (all denoted by H), and a random field h(t). From
Eq. (1), Brown derived the Fokker–Planck equation for
the probability density function W(M, t) of magnetiza-
tion M [2, 6]:

 (2)

Here, LFP is the Fokker–Planck operator; ∆ and ∇  are
the Laplace operator and the gradient operator, respec-

Ṁ t( ) γ M t( ) H t( ) h t( ) ηṀ t( )–+[ ]×[ ] ,=

∂
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-----W LFPW

1
2τN

---------= =

× β α 1– u ∇ V ∇ W×( ) ∇ W∇ V( )+⋅[ ] ∆ W+{ } .
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tively, on the unit-sphere surface; V is the free energy
density of a particle; u is a unit vector along the magne-
tization vector M; β = v /kT, where v  is the volume of
the particle, k is the Boltzmann constant, and T is the
temperature; and τN = βMs(1 + α2)/2γα is the character-
istic (diffusion) time, where Ms is the magnetization of
the material of the particle and α = γηMs is the dimen-
sionless damping parameter, which characterizes the
intensity of thermal fluctuations. In deriving Eq. (1), it
was assumed that the magnetization is uniform over a
particle and that only the direction of the magnetization
and not its magnitude varies with time. Furthermore,
interparticle interactions and memory effects were not
taken into account. A detailed discussion of the condi-
tions under which the Gilbert equation (1) and the Fok-
ker–Planck equation (2) are valid can be found, e.g., in
[7, 8]. Formally, Eq. (2) can be solved by expanding the
distribution function W in spherical harmonics Yl, m(ϑ ,
ϕ) [7, 9] (ϑ  and ϕ are the polar and azimuth angles,
respectively). In this case, the problem reduces to the
solution of an infinite set of recurrence equations for
averaged spherical harmonics (moments) [9]. An
equivalent set of equations for the moments can be
derived by averaging the Gilbert equation (1) without
recourse to the Fokker–Planck equation [10, 11].

The kinetics of magnetization of single-domain par-
ticles is determined chiefly by the anisotropy of the free
energy V. In this paper, we consider two types of anisot-
ropy. One of them corresponds to uniaxial particles
placed in an external static magnetic field H0, which is
assumed to be directed along the symmetry axis of the
internal potential of a particle. In this case, the free
energy density has the form [6]

 (3)βV ϑ( ) –σ ϑcos
2 ξ ϑ ,cos–=
003 MAIK “Nauka/Interperiodica”
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where σ = vK/kT, with K being the anisotropy constant,
and ξ = vMsH0/kT. The other type of anisotropy corre-
sponds to particles of cubic crystals, for which the free
energy density is [6]

 (4)

where σ' = vK/4kT is a dimensionless anisotropy
parameter that can be both positive and negative.

The kinetic characteristics of magnetization of
uniaxial particles were investigated, e.g., in [2, 6, 12–
22]. In particular, the eigenvalue problem for the Fok-
ker–Planck operator (2) was considered in [2, 6, 12,
19]. An exact expression for the relaxation time τ of the
longitudinal magnetization was derived in [13, 14]. The
complex longitudinal susceptibility and the relaxation
time τ were calculated in [15] using the matrix contin-
ued fraction method. In the case of cubic anisotropy, the
discrete-orientation approximation has mainly been
used and the asymptotic solutions of the Fokker–Planck
equation (2) have been investigated (see, e.g., [6, 9, 23–
27]). In recent papers [28–31], the relaxation time τ of
the longitudinal magnetization and the dynamic mag-
netic susceptibility χ||(ω) of particles with cubic anisot-
ropy were calculated using the matrix continued frac-
tion method.

In this paper, we derive simple expressions for com-
puting the complex longitudinal magnetic susceptibil-
ity χ||(ω) of a system of noninteracting single-domain
particles with uniaxial and cubic anisotropy in the case
of moderate and strong damping (α ≥ 1), where the
effect of the transverse modes on longitudinal relax-
ation can be ignored. These expressions are shown to
agree with the results of numerical calculations carried
out by using matrix continued fractions [15, 29, 30].

2. LONGITUDINAL MAGNETIZATION 
RELAXATION

In terms of the linear-response theory [32], the lon-
gitudinal component χ||(ω) of the complex magnetic
susceptibility tensor is written as

 (5)

where

 (6)

is the normalized equilibrium autocorrelation function
for the longitudinal component of the magnetization M,

 (7)

βV ϑ ϕ,( ) σ' ϑ 2ϕsin
2

sin
4

2ϑsin
2

+( ),=

χ|| ω( ) χ||' ω( ) iχ||'' ω( )–=

=  χ|| 1 iω e
iωt–

C|| t( ) td

0

∞

∫– ,

C|| t( )
ϑ 0( ) ϑ t( )coscos〈 〉 0 ϑ 0( )cos〈 〉 0

2
–

ϑ 0( )cos
2〈 〉 0 ϑ 0( )cos〈 〉 0

2
–

-----------------------------------------------------------------------------------=

χ||
v

2
Ms

2
N0

kT
--------------------- ϑ 0( )cos

2〈 〉 0 ϑ 0( )cos〈 〉 0
2

–[ ]=
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is the longitudinal component of the static magnetic
susceptibility tensor, and N0 is the concentration of par-
ticles. The angular brackets 〈 〉 0 signify the equilibrium
ensemble average.

According to Eq. (5), in order to calculate χ||(ω), one
needs to determine the spectrum (one-sided Fourier
transform) of the equilibrium autocorrelation function
C||(t). Therefore, the spectrum of χ||(ω) is determined
entirely by the time evolution of the function C||(t),
which, in turn, depends on the kinetics of the magneti-
zation of a particle and is characterized by three time
constants. Variations in C||(t) on a long time scale are
controlled by long-lived relaxation modes, which are
associated with reorientation of the magnetization M
between metastable states. This (low-frequency) pro-
cess is characterized by the smallest eigenvalue λ1 of
the Fokker–Planck operator LFP in Eq. (2). The C||(t)
dependence on a short time scale is controlled by the
high-frequency intrawell modes and is characterized by
the effective relaxation time τeff, defined as

 (8)

In general terms, the C||(t) dependence is characterized
by the integral relaxation time τ, which coincides with
the correlation time of C||(t) and is defined as the area
under the C||(t) curve:

 (9)

The relaxation times τeff and τ can also be expressed in
terms of the eigenvalues λk of the Fokker–Planck oper-
ator LFP. Using the formal expansion of the function
C||(t) in terms of the relaxation modes

 (10)

we obtain from Eqs. (8)–(10)

 (11)

Here,  = 1. In general, the dependences of the

relaxation times τ, τeff, and 1/λ1 on the parameters of
the problem (such as the external field strength and
anisotropy constant) can differ considerably [15].

As seen from Eqs. (11), all eigenvalues λk contribute
to τeff and τ. For this reason, Eqs. (11) are unsuitable for
calculating τeff and τ and it is more convenient to use
Eqs. (8) and (9). In order to derive a working formula
for the effective relaxation time τeff from Eq. (8) for
anisotropy of an arbitrary type, we use the Gilbert equa-

τ eff
1/Ċ|| 0( ).–=

τ C|| t( ) t.d

0

∞

∫=

C|| t( ) cke
λkt–

,
k

∑=

τ eff λ kck

k

∑ 
 
 

1–

, τ ck/λ k.
k

∑= =

ckk∑
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tion for the average magnetization written in polar
coordinates:

 (12)

From Eq. (12), it follows that

 (13)

Using Eqs. (6), (8), and (13), we obtain

 (14)

For the particular case of uniaxial particles, Eq. (14)
was derived in [33]. The integral relaxation time τ can
be reduced to quadratures only for an axially symmetric
potential V [14, 34]:

 (15)

Here,

 (16)

For the case of arbitrary anisotropy, an analogous ana-
lytical expression for τ has not been derived. However,
the time τ can be calculated from Eq. (9) numerically
[15, 21, 29–31].

3. ESTIMATION OF THE MAGNETIC 
SUSCEPTIBILITY

Using Eqs. (5), (8), and (9) and certain properties of
the Fourier transformation, we obtain the following
expressions for the longitudinal susceptibility χ||(ω) in

2τN
d
dt
----- ϑcos –2 ϑcos β ϑ∂V

∂ϑ
-------sin

β
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---∂V
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ϑ d
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0

=  
1
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4
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1

2τN
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ϑcos
2〈 〉 0 ϑcos〈 〉 0
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Z
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e

βV x( )–
x   n = 1 2,( ).d

1–

1

∫=
PH
the extreme cases of low (ω  0) and high (ω  ∞)
frequencies:

 (17)

 (18)

According to Eqs. (17) and (18), the low- and high-fre-
quency parts of the spectrum of the magnetic loss

(ω) are determined by the relaxation times τ and τeff,
respectively. We note that the asymptotic expressions (17)
and (18) are general and hold for an arbitrary system of
noninteracting superparamagnetic particles.

According to Eq. (10), the correlation function C||(t)
generally involves an infinite number of exponentially
decaying modes with characteristic frequencies equal
to the eigenvalues λk. For bistable and multistable
potentials (to which the free energies of uniaxial and
cubic crystals belong), the eigenvalues λk can be classi-
fied into two groups. One group consists of eigenvalues
(or, in certain cases, of only one eigenvalue λ1, as in the
case of uniaxial particles [12, 19]) that characterize
long-lived longitudinal modes associated with magne-
tization reorientation through overcoming potential
barriers. With decreasing temperature (increasing bar-
rier heights), such eigenvalues vanish exponentially, so
that we have λ1τN ! 1. The other group includes all
remaining eigenvalues, which characterize high-fre-
quency intrawell modes. As the temperature is
decreased, the characteristic frequencies of these
modes increase and the main contribution to the sus-
ceptibility comes from a few modes with frequencies
close to each other [15, 19]. For uniaxial and cubic
anisotropy, the eigenvalues exhibit such behavior in the
cases of moderate and strong damping [15, 19, 24–26].
Therefore, in these cases, diffusion within a potential
well is a much faster process than are jumps over a bar-
rier and we can use the following expression to describe
the correlation function C||(t) in Eq. (10):

 (19)

Accordingly, the spectrum of χ||(ω) can be represented
as the sum of two Lorentzians with the characteristic

frequencies λ1 and :

 (20)

The parameters ∆1 and τW can be determined by com-
paring Eqs. (19) and (20) in the extreme cases of low

χ|| ω( )
χ||

-------------- 1 iω C|| t( ) td
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χ||
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(ω  0) and high (ω  ∞) frequencies with asymp-
totically exact Eqs. (17) and (18):

 (21)

 (22)

(∆1 and τW are found by solving a quadratic equation,
only one root of which has physical meaning). Thus, by
making the estimates of τ, τeff, and λ1 independent, one
can calculate ∆1 and τW from Eqs. (20)–(22) and predict
the spectrum of χ||(ω) over the entire spectral range 0 ≤
ω < ∞.

It should be noted that, for a superparamagnetic par-
ticle with arbitrary anisotropy, the contribution from the
high-frequency intrawell modes to the quantity given
by Eq. (20) can be approximated by one Lorentzian
only in the case of moderate and large values of the
damping parameter, α ≥ 1, because only in this case can
the effect of the transverse modes on the longitudinal
response be neglected. The exception to this conclusion
is the case of a uniaxial particle in an external static
field H0 applied along the anisotropy axis. In this case,
the quantities χ||(ω), τ, τeff, and 1/λ1 do not depend
explicitly on α.

4. UNIAXIAL PARTICLES

The complex longitudinal susceptibility of uniaxial
particles with the free energy density V given by Eq. (3)
was calculated in [15] by exactly solving (in terms of
matrix continued fractions) an infinite set of recurrence
equations for longitudinal correlation functions fn(t):

 (23)

where

 

with Pn(z) being the Legendre polynomials. Introduc-
ing the quantity f1(t)/f1(0) ≡ C||(t) and using Eq. (5), we
can calculate the complex susceptibility [15]. The
smallest eigenvalue λ1 of the Fokker–Planck operator

∆1
τ /τ eff
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λ1τ 2– 1/ λ1τ
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-----------------------------------------------,=

τW
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can be found from the set of recurrence equations (23),
which we represent in the matrix form [15]

 (24)

where  is a five-diagonal matrix and X is a vector
consisting of the functions fn(t). The effective relax-
ation time τeff can be found from Eq. (14), in which the
equilibrium averages (16) are calculated for the given
potential (3). Finally, the general relaxation time τ can
be calculated from the analytical formula (15).

Figures 1 and 2 compare the results from calculating
the spectrum of the imaginary part χ||(ω) of the complex
susceptibility of uniaxial particles using matrix contin-
ued fractions [15] and approximate expressions (20)–
(22) for various values of the parameters ξ and σ and of
the quantities 1/λ1, τ, and τeff listed in the table (in the

Ẋ ÂX,=

Â

1
24 3

100

10–2

10–4

χ |
|'' 
(ω

)

10–6 10–4 10–2 100 102 104

ωτN

Fig. 1. Calculated (ω) for ξ = 2 and different values of σ:

(1) 1, (2) 5, (3) 10, and (4) 15. Solid curves are the exact
solution found in terms of matrix continued fractions [15];
dots are calculations from Eq. (20) with values of τ, τeff, and
1/λ1 taken from the table; and dotted and dashed lines are
low-frequency and high-frequency asymptotes calculated
from Eqs. (15), (17) and Eqs. (14), (18), respectively.
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Fig. 2. Same as in Fig. 1 but for σ = 10 and various values
of ξ: (1) 0, (2) 2, (3) 5, and (4) 10.
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Values of τ, τeff, 1/λ1, and τW as calculated from Eqs. (15), (14), (23), and (22), respectively

σ = 10 ξ = 0 ξ = 2 ξ = 5 ξ = 10

τN/λ1 693.9 232.5 26.82 2.265

τ/τN 691.0 224.1 3.398 0.0386

τeff/τN 16.64 1.690 0.0565 0.0384

τW/τN 0.0714 0.0615 0.0495 0.0384

ξ = 2 σ = 1 σ = 5 σ = 10 σ = 15

τN/λ1 0.9763 6.387 232.5 16484

τ/τN 0.8912 5.720 224.1 16221

τeff/τN 0.7528 1.097 1.610 2.366

τW/τN 0.2866 0.1383 0.0615 0.0377
calculations, it was assumed that v 2 N0/kT = 1).
Two clearly defined bands can be seen in the spectrum
of χ''(ω). The frequency and half-width of the low-fre-
quency band are determined by λ1. The high-frequency
band is associated with the high-frequency intrawell
modes. Despite the large number of such modes
involved in relaxation, the latter band can be closely
approximated by one Lorentzian. From Figs. 1 and 2, it
is seen that approximate expression (20) adequately
describes the exact solution [15] (the maximum differ-
ence between the results is observed in the range 0.1 <
ωτN < 10 and is of the order of 5%). Calculations also
show that there is good agreement between the exactly
and approximately calculated values of the real part of
the susceptibility χ||(ω) in the range of parameter values
0 ≤ (σ, ξ) < 100.

5. CUBIC ANISOTROPY

The longitudinal susceptibility of particles with
cubic anisotropy described by Eq. (4) was calculated in
[28–30] (using matrix continued fractions) by exactly
solving an infinite set of recurrence equations for the
equilibrium correlation functions cl, m(t) =
〈cosϑ(0)Yl, m[ϑ(t), ϕ(t)]〉0. In the extreme case of α @
1, this set can be represented in the form

(25)

Explicit expressions for the coefficients dn, m, r, s can be
found in [29, 30]. The longitudinal susceptibility is
given by Eq. (5), where C||(t) = c1, 0(t)/c1, 0(0). The static

susceptibility is χ|| = v 2 N0/3kT, because, in terms of
the symmetry, we have

 (26)

Ms
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d
dt
-----cl m, t( ) dl m l 2r m 4s+,+, , cl 2r m 4s+,+ t( ).

r 2–=

2

∑
s 1–=

1
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2

ϑcos
2〈 〉 0 1/3.=
PH
The effective relaxation time τeff can be calculated from
Eq. (14). Using Eq. (26), we obtain

 (27)

The dependence of the relaxation time τ on σ' was
investigated in detail in [29, 30], where it was shown, in

particular, that τ ≈  at any temperature in the case of
moderate and strong damping; therefore, the value of τ
is mainly determined by the lowest frequency relax-
ation mode. The exact values of λ1 and τ|| can be found
from the recurrence equation (25), represented in the
matrix form (24), or by using matrix continued frac-
tions [29, 30]. In the case of cubic anisotropy, the val-

ues of  can also be calculated from the approximate
formulas [35]

 (28)

for σ' ≥ 0 and

 (29)

for σ' ≤ 0. Equations (28) and (29) closely approximate

both  and τ in the entire range of values of the
parameter σ' [35]. In addition, the amplitude ∆1 and the
time τW in Eq. (20) can also be evaluated (for |σ' | > 3)
from the simple expressions [35]

 (30)

for positive values of the anisotropy constant and

 (31)

for a negative anisotropy constant.
Figures 3 and 4 compare the calculated spectra of

χ''(ω) using approximate and exact formulas for differ-
ent values of σ'  in the case of cubic anisotropy. It can
be seen that the approximate expression (20) ade-
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quately describes the spectrum of χ''(ω) in both the case
of positive and negative values of the anisotropy con-
stant. In accordance with Eq. (20), the low-frequency
and high-frequency modes are each approximated
closely by one relaxation mode. Calculations show that
approximate formula (20) is fairly accurate even in the
case of small values of the parameter σ'  (1 ≤ |σ' | ≤ 3).

6. CONCLUSION

Thus, we have developed a simple method for calcu-
lating the longitudinal magnetic susceptibility χ||(ω) of
a system of superparamagnetic particles with uniaxial
and cubic anisotropy in the case of moderate and strong
damping. It has been shown that, using three time con-
stants characterizing the magnetic relaxation, namely,
the correlation time τ, the effective relaxation time τeff,
and the reciprocal of the smallest eigenvalue λ1 of the
Fokker–Planck operator, the spectrum of χ||(ω) can be

124 3
100

10–2

10–4

χ |
|'' 
(ω

)

10–10

ωτN

10–6

10–8 10–6 10–4 10–2 100 102 104

Fig. 3. Calculated (ω) as a function of ωτN for various

values of σ' > 0: (1) 5, (2) 10, (3) 15, and (4) 20. Solid curves
are the exact solution found in terms of matrix continued
fractions [29, 30], and asterisks are calculations from
Eqs. (20), (28), and (30).

χ||''

124 3
100
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10–4

χ |
|'' 
(ω

)

10–5

ωτN

10–3 10–1 101 103

Fig. 4. Same as in Fig. 3 but for various values of σ' < 0:
(1) –10, (2) –15, (3) –20, and (4) –30. Asterisks are calcula-
tions from Eqs. (20), (29), and (31).
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adequately described over a wide frequency range. Fur-
thermore, calculations showed that Eq. (20) can also be
used for particles with other types of anisotropy (for
example, for particles of a cubic crystal in a strong dc
magnetic field). These results will be published else-
where.
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Abstract—The {1/2, 0, 1/2} nuclear superstructure in an La0.93Sr0.07MnO3  manganite orthorhombic crystal is
revealed using thermal-neutron diffraction. It is demonstrated that this superlattice belongs to the class of dis-
tortion-type structures and is directly associated with a 1/16-type ordering of Mn4+ and Mn3+ ions in a collinear
ferromagnetic phase of the La0.93Sr0.07MnO3  manganite. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Yamada et al. [1] and Vasiliu-Doloc et al. [2] dem-
onstrated that La1 − xSrxMnO3 manganite crystals have a
nuclear superstructure with the wave vector

. (1)

According to the neutron diffraction data obtained in
[1, 2], the superstructure with wave vector (1) in these
manganites is observed only in the orthorhombic phase
in the range 0.1 ≤ x ≤ 0.15. The location of superstruc-
ture reflections of type (1) in the a*c* plane of the
reciprocal lattice of the La0.85Sr0.15MnO3 manganite
orthorhombic crystal studied in [1] is schematically
drawn in Fig. 1. In this figure, the main Bragg reflec-
tions of the orthorhombic crystal are depicted by closed
circles. The superstructure reflections are indicated by
open circles. Yamada et al. [1] made the inference that
the superstructure with wave vector (1) belongs to the
class of distortion-type structures. However, the origin
of this superstructure was not discussed in [1].

Vasiliu-Doloc et al. [2] assumed that the scattering
pattern shown in Fig. 1 corresponds to the superstruc-
ture with another wave vector,

 (2)

which is very close in magnitude to wave vector (1).
This superstructure can also be schematically drawn in
the a*c* plane with due regard for the domain structure
of manganite crystals. In principle, this situation can
take place. However, in our earlier work [3], in which
the diffraction experiments were performed with an
La0.85Sr0.15MnO3 manganite crystal of good quality, we
did not reveal indications of b*-type domains in the
a*c* plane of the reciprocal lattice but observed the
superstructure with wave vector (1).

In our opinion, the superstructure with wave vector (1)
is directly associated with charge ordering of Mn3+ and
Mn4+ ions in the crystal lattice of the La0.85Sr0.15MnO3

q 0.5 0 0.5, ,( )0=

q 0 1 0, ,( )0,=
1063-7834/03/4511- $24.00 © 22147
orthorhombic manganite. In this case, the nuclear com-
ponent of the intensity of the superstructure reflection
appears in the neutron diffraction pattern of the crystal,
because the Mn4+ ions do not affect the surrounding
oxygen octahedra (since these ions have no orbital
angular momentum), whereas the Mn3+ ions strongly
distort their own oxygen environments due to interac-
tion of the d(z2) orbitals of the ions with the crystal lat-
tice. Within this model, the unit cell parameters of the
superstructure with allowance made for wave vectors
(1) and (2) should be determined by the quantities 2a,
2c, and b (where a, c, and b are the parameters of the
original orthorhombic crystal lattice). It is easy to ver-
ify that the unit cell with the above parameters contains
16 manganese ions [4]. In particular, for charge order-
ing with the ion ratio xMn4+/[xMn4+ + (1 – x)Mn3+] =

(004)

(000) (400)

Fig. 1. Schematic drawing of the {1/2, 0, 1/2} nuclear
superstructure in the a*c* plane of the La0.85Sr0.15MnO3
manganite orthorhombic crystal at 4.2 K [1].
003 MAIK “Nauka/Interperiodica”
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Basic parameters of the spin system of the La0.93Sr0.07MnO3 manganite

Phase 1 (O') Phase 2 (O*)

volume fraction
in the crystal canting angle, deg TN, K TC, K volume fraction

in the crystal TC , K

0.9 25 121 128 0.1 ≅ 128
1/8, this means that two out of sixteen positions in the
unit cell are occupied by Mn4+ ions. This situation
occurs in the La0.85Sr0.15MnO3 crystal [4]. In the afore-
mentioned unit cell, the charge ordering corresponding
to a stoichiometry of 1/16 becomes possible as well. In
this case, only one out of sixteen positions in the unit
cell is occupied by Mn4+ ions. It is this assumption of a
1/16-type charge ordering that provides the simplest
explanation of large-scale phase separation of the spin
system in the La0.93Sr0.07MnO3 manganite crystal [5].

The main objective of the present work was to vali-
date the proposed hypothesis for an La0.93Sr0.07MnO3
manganite crystal (0.07 ≅  1/16). In this study, the neu-
tron diffraction technique was used as a direct method
of revealing and characterizing superlattices of type (1).

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The La0.93Sr0.07MnO3 manganite crystal was grown
by zone melting upon radiation heating in an argon
atmosphere [6]. A sample was prepared in the form of
a cylinder with linear sizes d = 4 mm and l = 10 mm.
The manganite compound had a single-phase compo-
sition and an O' orthorhombic structure with the unit
cell parameters a0 = 5.600 Å, b0 = 7.753 Å, and c0 =
5.549 Å, which were determined by x-ray diffraction
at room temperature in [7].

Experiments on elastic scattering of thermal neu-
trons were performed using a special multidetector dif-
fractometer designed for single-crystal investigations.
The wavelength λ of neutrons incident on the sample
was equal to 1.567 Å. This was provided by a double
crystal monochromator prepared from pyrolytic carbon
and germanium. The efficient monochromatization of
the primary beam and the appropriate choice of the
wavelength of monochromatic neutrons made it possi-
ble to suppress multiple diffraction harmonics in the
neutron diffraction pattern of the single crystal. This
appreciably increased the sensitivity of our neutron dif-
fraction technique.

3. RESULTS AND DISCUSSION

Before proceeding further, we recall the important
parameters determined for the spin system of the
La0.93Sr0.07MnO3 manganite crystal in our previous
work [5]. In [5], we established that this compound in
the magnetic state holds a unique position among solid
solutions in the La1 − xSrxMnO3 system, in which an
PH
increase in the content x leads to a transition from anti-
ferromagnetic ordering (LaMnO3, TN = 139.5 K) to fer-
romagnetic ordering (La0.9Sr0.1MnO3, TC = 152 K). The
basic parameters of the spin system of the
La0.93Sr0.07MnO3 manganite crystal are presented in the
table.

As can be seen from the table, the transition state in
the La0.93Sr0.07MnO3 compound is governed by large-
scale spin configurations of two types: (i) regions of the
collinear ferromagnetic phase (phase 2) with a mean
linear size of 200 Å occupy approximately 10% of the
volume of the crystal [5], and (ii) the other volume of
the crystal is occupied by the phase with an inhomoge-
neous canted magnetic structure (phase 1). Information
on the spin configuration in the ground state is neces-
sary for analyzing the nuclear superstructure of the
La0.93Sr0.07MnO3 manganite.

In our opinion, the most characteristic neutron dif-
fraction patterns of the La0.93Sr0.07MnO3 manganite
crystal are observed in the a*c* plane of the reciprocal
lattice in the vicinity of the (1.5, 0, 1.5) point. In these
diffraction patterns, the scattering angle is relatively
small (2θ ≅  35.5°), which ensures sufficient (for our
purposes) instrumental resolution. The experimental
intensities of neutron scattering in the diffraction pat-
tern of the crystal upon scanning along the scattering
vector κ = 4πsinθ/λ over a wide temperature range
(78–550 K) are presented in Fig. 2. In this figure, closed
circles are the experimental intensities measured upon
cooling of the sample from a temperature of 550 K and
open circles are the experimental intensities measured
upon subsequent heating from the liquid-nitrogen tem-
perature.

It can be seen from Fig. 2 that the La0.93Sr0.07MnO3
manganite crystal is characterized by a superstructure
of type (1). However, the diffraction pattern of this
crystal is rather complicated. For example, the diffrac-
tion reflections exhibit a complex structure at certain
temperatures and a temperature hysteresis of the inten-
sity of diffraction reflections is observed in the range
78 < T < 380 K. In order to elucidate the nature of the
superstructure observed, we examine in more detail the
neutron diffraction patterns shown in Figs. 2a and 2c.

(i) First, we consider the experimental diffraction
pattern depicted by open circles in Fig. 2c. As is seen
from this figure, the diffraction pattern measured at a
temperature of 290 K (i.e., above the Curie point TC of
the manganite) exhibits a single nuclear superstructure
reflection corresponding to the (1.5, 0, 1.5) indices.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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Fig. 2. Experimental intensities of neutron scattering in the vicinity of the (1.5, 0, 1.5) reciprocal lattice point in the diffraction pat-
tern of the La0.93Sr0.07MnO3  crystal at different temperatures.
Figure 3 shows the neutron diffraction pattern of the
La0.93Sr0.07MnO3 manganite crystal measured along the
[ξ, 0, 0.5] crystallographic direction (Fig. 1) under the
same temperature conditions. This diffraction pattern
contains three reflections of series (1), namely, the (2.5,
0, 0.5), (3.5, 0, 0.5), and (4.5, 0, 0.5) reflections. It can
be seen from Fig. 3 that the intensities of the reflections
increase monotonically with an increase in the distance
from the origin of the reciprocal lattice. This is consis-
tent with the standard relationship

 (3)

where u is the small vector of structural distortions and
k is the scattering vector. Therefore, the nuclear super-
structure observed belongs to the class of distortion-
type structures.

(ii) Second, let us demonstrate that nuclear super-
structure of type (1) in the case under consideration is
characteristic not of the whole volume of the sample
but only of the crystal regions occupied (in the ground
state) by the collinear ferromagnetic phase 2 (see table).

In this respect, we discuss in greater detail the dif-
fraction pattern depicted by closed circles in Fig. 2c.
The same pattern is shown on an enlarged scale in
Fig. 4. Dashed and solid lines in this figure correspond
to the results of the profile analysis of the intensities of

I κ( ) k u⋅( )2
,∼
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the studied reflections. As can be seen from Fig. 4, the
experimental data fit two peaks (1, 2) with a Gaussian
shape fairly well (in this case, the R factor is approxi-
mately equal to 1%). It is easy to verify that the diffrac-
tion doublet is associated with the domain structure. In
actual fact, any coherent effect of scattering measured
in the diffraction pattern of the domain orthorhombic
crystal along the [101] direction can exhibit no more

(2.5, 0, 0.5) (3.5, 0, 0.5)

(4.5, 0, 0.5)
1600

1200

800

400

0

C
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s

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
[ξ, 0, 0.5]

Fig. 3. Neutron diffraction pattern of the La0.93Sr0.07MnO3
crystal measured at 290 K (after preliminary cooling to
78 K) along the [ξ, 0, 0.5] crystallographic direction.
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than two closely spaced peaks. In our case, the first
peak in Fig. 4 should represent a superposition of (1.5,
0, 1.5) reflections of two domains, namely, a*c* and
c*a*, with identical scattering angles. The second peak
in Fig. 4 should correspond to the (030) reflection of the
b* domain. This model is confirmed by the fact that the
lattice parameters determined from the angular posi-
tions of peaks 1 and 2 in Fig. 4 are in good agreement
with the unit cell parameters a0, b0, and c0 obtained in
[7] (see above).

Let us now compare the shapes and half-widths at
half-maxima of the superstructure reflections in Fig. 4
with those of the main Bragg reflections (101) and
(202). The main Bragg reflections in the neutron dif-
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Fig. 4. Profile analysis of the intensity of neutron scattering
in the vicinity of the (1.5, 0, 1.5) reciprocal lattice point in
the neutron diffraction pattern of the La0.93Sr0.07MnO3
crystal measured at 290 K (after cooling from T = 550 K)
along the [101] direction. Points are experimental data. The
solid line corresponds to the results of calculations. Dashed
lines indicate the contributions of domains 1 and 2 to the
intensity of neutron scattering.
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Fig. 5. Neutron diffraction pattern of the La0.93Sr0.07MnO3
crystal at 78 K along the [101] direction.
PHY
fraction pattern of the La0.93Sr0.07MnO3 manganite crys-
tal at 78 K are shown in Fig. 5. The half-widths of these
reflections are equal to 0.52° and 0.85° (it is known that
the instrumental width of reflections increases with an
increase in the scattering angle), which is considerably
less than the total half-width [∆(2θ) = 1.15°] for the
coherent effect of scattering observed in Fig. 4.

The above experimental results (Figs. 4, 5), which
might appear at first glance to be contradictory, can be
explained as follows. The {1/2, 0, 1/2} nuclear super-
structure corresponds to the crystal regions occupied by
domain phase 2 whose volume fraction in the crystal is
approximately equal to 10%. At the same time, the
shape and half-width of the high-intensity superstruc-
ture reflections in the diffraction pattern are governed
primarily by phase 1 in which the b* domains are
absent in the a*c* plane of the reciprocal lattice. The
proposed scheme agrees well with the neutron diffrac-
tion pattern shown in Figs. 2a and 5. This pattern will
be analyzed below.

Figure 5 shows the neutron diffraction pattern of the
La0.93Sr0.07MnO3 crystal along the [101] direction. This
pattern was measured at the liquid-nitrogen tempera-
ture, i.e., below the Curie point TC = 128 K and the Néel
point TN = 121 K of the manganite crystal. The diffrac-
tion pattern contains two superstructure reflections of
series (1), namely, the (0.5, 0, 0.5) and (1.5, 0, 1.5)
reflections (Fig. 2a shows only one reflection). The low
intensity of the (0.5, 0, 0.5) reflection in Fig. 5 is of spe-
cial interest for the following reasons. Indeed, if struc-
tural domains of the b* type in the original crystal were
oriented with an equal probability with respect to three
axes of the perovskite cube, the intensity of the (0.5, 0,
0.5) superstructure reflection at our times of exposure
would be one order of magnitude higher than the exper-
imental intensity, because the intensity of this reflection
would be determined primarily by the large antiferro-
magnetic contribution, i.e., (010)b* [5].

The relatively low intensities of the superstructure
reflections (Fig. 5) indicate that the {1/2, 0, 1/2}
nuclear superstructure is formed not in the whole vol-
ume of the sample but only in the crystal regions occu-
pied (in the ground state) by the collinear ferromagnetic
phase 2 (crystal structure O*). It is in these crystal
regions that the superstructure of the manganite has a
domain character at higher temperatures (Fig. 4).

The size of regions occupied by phase 2 can be
determined from the data presented in Fig. 2a. It is
common knowledge that the size  of a crystal region
can be calculated from the formula

 (4)

where ∆q is the half-width of the (1.5, 0, 1.5) super-
structure reflection in the wave vector space. For a neu-
tron diffraction peak of Gaussian shape, the half-width
∆q can be expressed through the observed half-width
∆qobs and the instrumental half-width ∆qinst according

L

L 2π/∆q,≅
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to the standard relationship ∆q = (∆qobs – ∆qinst)1/2. In
our case, the effective instrumental half-width at half-
maximum of the (1.5, 0, 1.5) reflection is determined by
two terms: (i) the true instrumental resolution in this
range of scattering angles and (ii) the physical broaden-
ing of the peak due to deviation of the real structure O*
from a perfect cubic structure. The lattice parameters of
the manganite crystal with an O* structure were taken
from [8]. Within the approximations used in the present
work, the size of regions with ordering of type (1) is
approximately equal to 150 Å. This value is in good
agreement with more accurate estimates obtained in
our previous work [5] for the linear size of regions
occupied by phase 2.

Thus, the results of the detailed analysis of the char-
acteristic diffraction patterns make it possible to inter-
pret the diffraction patterns shown in Fig. 2. Let us first
consider the high-temperature diffraction patterns. It
can be seen from Fig. 2g that electron correlations of
the Mn3+–Mn4+–Mn3+ type appear in the
La0.93Sr0.07MnO3 crystal at high temperatures, i.e.,
when the cooperative Jahn–Teller effect does not man-
ifest itself in the manganite. According to the experi-
mental data, the correlation wavelength in the perovs-
kite cubic lattice corresponds to wave vector (1). It is
known that a decrease in the temperature (see Figs. 2f–
2b) leads to a structural phase transformation of the
manganite into the phase with an O' structure. The crys-
tal lattice of this phase is characterized by two types of
electron correlations along the [101] direction: (i) elec-
tron correlations with a larger (compared to the case of
a perovskite cubic lattice) wavelength (domains of the
a*c* and c*a* types) and (ii) electron correlations with
a smaller wavelength (domains of the b* type).

The diffraction pattern of the manganite crystal sub-
stantially changes upon cooling to 78 K, i.e., below
temperatures TN and TC, at which the spin system
undergoes large-scale separation (first-order magnetic
phase transition) [5]. As can be seen from Fig. 2a, the
diffraction pattern exhibits a single peak whose inten-
sity increases significantly. This finding is the main
result of the present work, because it indicates that fer-
romagnetic crystal regions with finite linear sizes
undergo an O'  O* structural transformation due to
charge ordering of Mn4+ and Mn3+ ions.

Upon subsequent heating of the manganite crystal
(Figs. 2b–2d), the O*  O' reverse structural transi-
tion in phase 2 is observed only at room temperature. It
is well known that temperature hysteresis is a character-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
istic feature of first-order structural phase transitions,
because these transitions occur through a number of
metastable states.

4. CONCLUSIONS
The main result obtained in this study can be formu-

lated as follows. The {1/2, 0, 1/2} nuclear superstruc-
ture was revealed in an La0.93Sr0.07MnO3 manganite
orthorhombic crystal. It was demonstrated that this
superlattice belongs to the class of distortion-type
structures and is directly associated with a 1/16-type
ordering of Mn4+ and Mn3+ ions in the collinear ferro-
magnetic phase of the La0.93Sr0.07MnO3 manganite.
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Abstract—Changes in local magnetic fields on 57Fe nuclei of Fe3+ ions in bipyramidal (2b) and tetrahedral (4f1)
positions of the BaFe12O19 hexaferrite with variations in temperature are investigated using nuclear magnetic
resonance in the temperature range 4.2–295 K. The applicability of the Bloch spin wave theory to the descrip-
tion of the thermal behavior of local magnetic fields on 57Fe nuclei is considered. Low-temperature deviations
from the Bloch law are revealed for bipyramidal positions. The model describing the dynamics of an iron ion
in these positions is refined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Hexaferrites of the structure type M, namely,
MeFe12O19 (where Me = Ba2+, Sr2+, or Pb2+), contain only
one type of magnetoactive ions, Fe3+ ions. These ions are
located at lattice sites with octahedral (4f2, 2a, 12k), tet-
rahedral (4f1), and bipyramidal (2b) oxygen environ-
ments [1]. The bipyramidal environment has the form of
a trigonal bipyramid. This environment is not character-
istic of iron oxides and has been the subject of many
investigations. In particular, Townes et al. [2] performed
an x-ray diffraction study of the BaFe12O19 hexaferrite
and drew the conclusion that, at room temperature, the
iron ions occupying the 2b positions in this structure are
located not in the mirror plane of the bipyramid but are
randomly arranged on each side of this plane at a mean
distance of 0.16 Å. Mössbauer investigations of
BaFe12O19 (BaM) and SrFe12O19 (SrM) hexaferrites [1,
3] revealed strong anisotropy of thermal vibrations of
iron ions in the 2b positions at high temperatures. It was
also inferred that, at low temperatures (T < 100 K), these
ions occupy two pseudohedral positions inside the bipyr-
amid. The specific dynamics of iron ions in the 2b posi-
tions can affect the distribution of the electron and spin
densities and, correspondingly, the local magnetic fields
on 57Fe nuclei. In our earlier work [4], the BaM hexafer-
rite was studied using the nuclear magnetic resonance
(NMR) method in the temperature range 4.2–77 K. It
was found that a decrease in temperature in this range is
accompanied by an anomalous decrease in the local
magnetic field on iron nuclei in the 2b positions. In the
present work, we carried out an NMR investigation of
the local magnetic fields on 57Fe nuclei of Fe3+ ions in
bipyramidal (2b) and tetrahedral (4f1) positions of the
BaM hexaferrite in the temperature range 4.2–295 K.
Moreover, we analyzed the applicability of the Bloch
spin wave theory to the description of the changes
observed in local magnetic fields in the 4f1 and 2b posi-
tions with variations in temperature.
1063-7834/03/4511- $24.00 © 22152
2. SAMPLES AND EXPERIMENTAL TECHNIQUE

The experiments were carried out using BaM single
crystals enriched to 95% with a 57Fe isotope. The single
crystals were grown from a BaO · B2O3 melt according
to the solution-growth technique. The synthesis was
performed through crystallization on a rotating seed in
the temperature range 1420–1300 K. The phase compo-
sition of the crystals grown was checked using x-ray
diffraction. The lattice parameters at room temperature
are a = 0.589 nm and c = 2.319 nm. The 57Fe nuclear
magnetic resonance was examined in domain regions
of the Bloch domain walls according to the stationary
technique with the use of an instrument described in
[5]. The rf voltage across the LC circuit containing the
studied sample did not exceed 10–2 V. The frequencies
of NMR signals from domain layers (domain-wall
edges), which were determined by the stationary tech-
nique at a temperature of 77 K, coincided accurate to
within 0.2% with the frequencies of nuclei signals in
the domains, which were determined using the spin-
echo method at a high level of the excitation voltage
(~1.5 kV). The error in determining the frequencies of
NMR signals did not exceed 0.1%.

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature dependences of
local magnetic fields Hloc on 57Fe nuclei of iron ions in
bipyramidal 2b and tetrahedral 4f1 positions. It can be
seen from Fig. 1 that, for the 2b positions, a decrease in
the temperature from 77 to 4.2 K leads to an anomalous
decrease in the local magnetic field Hloc. For the 4f1
positions, no anomaly is observed and the local field
increases monotonically as the temperature decreases
from 295 to 4.2 K.

As is known, the dominant contribution to the local
magnetic field on nuclei of Fe3+ ions is made by uncom-
003 MAIK “Nauka/Interperiodica”
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pensated spins of the electron shell; hence, it is
assumed that, to a first approximation, the local mag-
netic field Hi(T) on nuclei of iron ions of the ith sublat-
tice is proportional to the magnetization of this sublat-
tice Mi(T) [6]. It follows from the spin wave theory that,
if the interionic dipole–dipole interaction and the inter-
action of spin waves are ignored, the square dispersion
law for acoustical magnons holds at low temperatures.
In the M-type hexaferrites, the dipole magnetic fields of
the sublattices are two orders of magnitude smaller than
the effective exchange fields [7, 8]. Therefore, in this
case, the magnetization of the sublattices should obey
the Bloch three-halves power law [9]:

 (1)

where i is the index of the sublattice and Ai is the tem-
perature-independent quantity.

It follows from expression (1) that the local mag-
netic field Hi(T) of the ith sublattice has the form

 (2)

where Hi(0) is the local magnetic field for 57Fe nuclei
of the ith sublattice at T  0 and Bi is the temperature-
independent quantity.

The dependences ∆Hi(T) obtained from experimen-
tal data on the local magnetic fields Hi for the sublat-
tices e (positions 2b) and c (positions 4f1) are shown in
Fig. 2. As can be seen from this figure, the experimental
data for Fe3+ ions in the tetrahedral positions are ade-
quately described by relationship (2). For Fe3+ iron ions
in the bipyramidal positions, relationship (2) does not

Mi t( ) Mi 0( ) AiT
3/2

,–=

Hi 0( ) Hi T( )– ∆Hi T( ) BiT
3/2
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400

H1, kOe

0 100 200 300
T, K

e(4f1)

e(2b)

Fig. 1. Temperature dependences of the local magnetic field
on 57Fe nuclei of the sublattices c and e of the BaFe12O19
hexaferrite.
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hold at low temperatures. This result is in rather poor
agreement with the model concepts advanced by Beloz-
erskiœ and Khimich [1], according to which the iron
ions in bipyramidal positions at T < 100 K are located
at two tetrahedral sites of the trigonal bipyramid. For
this arrangement, one could expect a linear dependence
of the change in the local magnetic field ∆Hi on the
quantity T3/2 at low temperatures, as is the case with the
tetrahedral positions.

The experimental results obtained are consistent
with the model proposed by Fontcuberta et al. [10].
These authors argued that the tunneling mechanism of
iron ion transfer through a barrier between two poten-
tial wells is in good agreement with the experimental
data of Mössbauer investigations. The change in the
length of the jump between the pseudotetrahedral sites
is due to the evolution of the double potential well,
which, at temperatures close to absolute zero, trans-
forms into a single well and corresponds to the arrange-
ment of iron ions in the mirror plane of the bipyramid.

The evolution of the potential barriers can manifest
itself in anharmonicity of thermal lattice vibrations. In
this connection, we examined the temperature depen-
dence of the lattice parameter along the hexagonal axis
c. Figure 3 depicts this dependence in the temperature
range 80–295 K. As can be seen from Fig. 3, the tem-
perature dependence of the lattice parameter c(T)
exhibits specific features in the temperature range 80–
150 K. A comparison of Figs. 2 and 3 shows that the lin-
ear temperature dependence of the lattice parameter
c(T) in the temperature range 150–295 K corresponds
to the linear dependence of ∆Hi on the quantity T3/2 for
iron ions in the 2b positions (sublattice e).

40

20

0

0 2 4 6
T3/2, 103 K3/2

∆H1, kOe

e(4f1)

e(2b)

Fig. 2. Temperature dependences of the change in the local
magnetic field on 57Fe nuclei of the sublattices c (4f1) and e
(2b) of the BaFe12O19 hexaferrite.
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Belozerskiœ and Khimich [1] carried our the Möss-
bauer investigation of the temperature dependence of
the lattice parameter a, which characterizes the anisot-
ropy of thermal vibrations of iron ions in the 2b posi-
tions of the BaM hexaferrite:

 (3)

where  is the mean-square displacement along the c

axis,  is the mean-square displacement in the direc-
tion perpendicular to the c axis, and λ is the wavelength
of gamma quanta.

It follows from the results obtained in [1] that, in the
temperature range 100–300 K, the BaM hexaferrite is
characterized by a strong anisotropy of thermal vibra-
tions and the lattice parameter a increases linearly with
an increase in the temperature.

4. CONCLUSIONS

The results of our investigation and the data
obtained in [1, 3] demonstrate that the low-temperature

a χ||
2 χ⊥

2–( )/λ 2
,=

χ||
2

χ⊥
2

23.20
c, Å

23.18

23.16

23.14

100 200 300
T, K

Fig. 3. Temperature dependence of the lattice parameter c of
the BaFe12O19 hexaferrite.
PH
deviations from the Bloch law are associated not with
the anisotropy of thermal vibrations but with the redis-
tribution of the spin and electron densities due to the
low-temperature evolution of the potential barriers in
the region of pseudotetrahedral sites of the bipyramidal
2b positions of the iron ions.
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Effect of Gd–Mn Exchange on Phase Transitions in GdMn2O5 
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Abstract—Complex studies of the magnetic, magnetoelectric, and magnetoelastic properties of GdMn2O5 sin-
gle crystals in strong pulsed magnetic fields are carried out in order to obtain additional indirect information on
the character of the rare-earth and manganese spin ordering. It is shown that magnetic ordering of Gd3+ spins
affects the manganese sublattice spin orientation and initiates new magnetic phase transitions. The observed
magnetoelectric properties of the GdMn2O5 system are interpreted in terms of the theory of phase transitions.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rare-earth manganates of the RMn2O5 family,
where R3+ stands for a rare-earth ion, are ferroelectric
antiferromagnets, i.e., systems exhibiting not only the
onset of antiferromagnetic (AFM) order but also ferro-
electric properties [1]. The crystal structure of these
manganates has been studied in detail only for
DyMn2O5 at a temperature of 298 K [2]. The data pre-
sented in [2] favor assigning these systems to orthor-

hombic space group Pbam ( ). The unit cells of the
RMn2O5 compounds contain four formula units. Three
magnetic subsystems made up by the R3+, Mn3+, and
Mn4+ ions account for the specific physical properties
of these compounds. The Mn3+ and Mn4+ ions occupy
the 4h and 4f positions inside the oxygen pyramid and
octahedron, respectively. As follows from neutron dif-
fraction data [3, 4], their spin moments order at a tem-
perature TN1 ~ 40 K to form a spatially modulated (heli-
cal) spin structure with a wave vector k = (1/2, 0, τ),
with τ ~ 1/3. In the low-temperature range, below TN2,
the spins of the R ions occupying the 4g crystallo-
graphic position also form an antiferromagnetically
ordered inhomogeneous structure. In the case of
GdMn2O5 of interest here, the Gd3+ spins order at TN2 =
15 K. At TC = 26 K, a ferroelectric phase transition
occurs, which is accompanied by the onset of spontane-
ous electric polarization along the b axis of the crystal
[5]. It should be pointed out, however, that no neutron
diffraction measurements are available for GdMn2O5,
which leaves its magnetic structure an open problem. It
was of interest to conduct a complex investigation of
the magnetic, magnetoelectric, and magnetoelastic
properties of GdMn2O5 single crystals in strong pulsed
magnetic fields to obtain indirect additional informa-
tion on the character of magnetic ordering of the rare-

D2h
9
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earth and manganese spins. It was expected that the
magnetic ordering of the Gd3+ spins should modify the
spin orientation of the manganese sublattices and ini-
tiate new magnetic phase transitions.

2. EXPERIMENTAL

We studied the magnetization, electric polarization,
and longitudinal magnetostriction in GdMn2O5 single
crystals along the a, b, and c axes in strong magnetic
fields up to 250 kOe and in the temperature interval 10–
50 K. The magnetization was measured using the
induction method, and the electric polarization and
magnetostriction, by following the technique described
in [6]: the GdMn2O5 single crystals were grown
through spontaneous crystallization from a melt solu-
tion [7].

To make the discussion of the experimental results
obtained more revealing, we split the analysis into three
cases covering three magnetic field orientations,
namely, H || a, H || b, and H || c.

2.1. H || a Case

With the magnetic field oriented along the a axis of
the GdMn2O5 single crystal, a strong increase was
observed in the magnetization and magnetostriction at
low temperatures, T ≤ 15 K, in fields Hp ~ 60 kOe
(Fig. 1), which is associated with a spin-flop transition
of ordered Gd3+ ions. Measurements of the electric
polarization Pb(Ha) at T ≤ 15 K revealed a clearly pro-
nounced maximum in the field dependence of the polar-
ization at the spin-flop transition field (Fig. 2). In addi-
tion to the spin-flop transition, a second field-driven
transition occurred at temperatures T > 15 K, which
was accompanied by noticeable jumps in the electric
polarization and was apparently caused by the magnetic
003 MAIK “Nauka/Interperiodica”
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structure of the manganese subsystem undergoing rear-
rangement. This transition was also accompanied by
the onset of magnetostriction-induced strains.

As the temperature was increased, the transition
changed in character. At 35 K, the electric polarization
Pb(Ha) was zero up to 150 kOe and then increased sub-
sequently in a jump (Fig. 2). This is possibly due to the
a-oriented magnetic field ~150 kOe inducing a ferro-
electric transition (similar to that observed in YMn2O5
[8]) accompanied by the onset of spontaneous electric
polarization along the b axis of the crystal at 35 K; with
no field applied, this transition occurred at 26 K. In
other words, a magnetic field ~150 kOe shifts the ferro-
electric transition point up by 9 K. Note that no polar-
ization jump was observed in a strong magnetic field
along the a axis.

2.2. H || b Case

When the magnetic field was applied along the b
axis of the crystal, jumps in the longitudinal polariza-
tion in the range 10–40 K were only observed in strong
fields, Hp ~ 150 kOe (Fig. 3). The transverse polariza-
tion components along the a and c axes behaved simi-
larly, but their jumps were substantially smaller than
the jumps in the component along the b axis, which was
apparently due to the spontaneous polarization in
GdMn2O5 being aligned with the b crystal axis. At
TN1 ~ 40 K, the electric polarization decreased by an
order of magnitude, reversed sign, and did not exhibit
any anomalies in strong magnetic fields because the
crystal was in the paramagnetic state.
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In the temperature interval TN2 < T < TN1, we also
measured the longitudinal magnetostriction, which
likewise exhibited an abrupt change at Hp ~ 150 kOe
(Fig. 4). Contributions to the magnetostriction came
apparently not only from the manganese but also from
the gadolinium subsystem, because for T ≤ 15 K the
Gd3+ spins were ordered and the magnetostriction jump
was a few times greater than its values observed in the
range TN2 < T < TN1. A comparison of the polarization
jump behavior in various temperature intervals sug-
gests that it was the manganese subsystem that was pri-
marily responsible for the jumps observed in the region
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Fig. 2. Dependence of the electric polarization P || b in
GdMn2O5 on magnetic field H || a measured at different
temperatures.
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Fig. 3. Dependences of the electric polarizations P || a and
P || b in GdMn2O5 on magnetic field H || b measured at dif-
ferent temperatures.
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TN2 < T < TN1. The above anomalies observed for H || b
in fields Hp ~ 150 kOe indicate rearrangement of the
magnetic structure of the manganese subsystem, which
is correlated (due to the Gd–Mn exchange) with the
gadolinium subsystem undergoing ordering with
decreasing temperature.

2.3. H || c Case

When the magnetic field was oriented along the c
axis, the electric polarization along the a, b, and c axes
of the crystal and the magnetostriction (along the c
axis) also exhibited jumps at a certain threshold field,
whose magnitude varied with increasing temperature
from Hp ~ 140 kOe at 10 K to Hp ~ 80 kOe at 35 K
(Figs. 5, 6). No anomalies were observed at 40 K in the
λc(Hc) and Pa, b, c(Hc) dependences because the crystal
transferred to the paramagnetic state. At the threshold
fields specified in Figs. 5 and 6, the magnetization
curves obtained along the c axis for T < TN2 revealed
clearly pronounced magnetization anomalies, which
indicate spin rearrangement of the antiferromagneti-
cally ordered gadolinium subsystem (Fig. 7).

These findings suggest that, for T < TN2, the spins of
at least the Gd3+ ions have components not only in the
ab plane but also along the c axis, which, due to the Gd–
Mn exchange, gives rise to spatial reorientation of the
Mn3+ and Mn4+ spins and their eventually leaving the ab
plane. This conclusion is supported by the above-men-
tioned anomalies in the magnetic, magnetoelectric, and
magnetoelastic properties of the GdMn2O5 system
observed to occur with the magnetic field H oriented in
the a, b, and c axes of the crystal.

3. DISCUSSION OF RESULTS

As already pointed out, the unit cell of the GdMn2O5

crystal contains four ions of each of the species Gd3+,
Mn3+, and Mn4+. Therefore, magnetic order in the sys-
tem should be governed by the behavior of the spins of
Gd3+ (σ1, σ2, σ3, σ4), Mn3+ (S1, S2, S3, S4), and Mn4+ (S5,
S6, S7, S8). In accordance with the theory of space group
representations, in order to construct the thermody-
namic potential of a system (we use here the approach
developed in [9]), one has to construct (on the basis of
individual spins of the Gd3+, Mn3+, and Mn4+ ions) basis
functions of irreducible representations that corre-
spond, in general, to the star of the wave vector k =

, i.e., the vector of propagation of the magnetic

structure forming below TN1. One can readily verify
that, in our case of one-ray ordering, the magnetic
amplitudes of the corresponding basis functions will be
the spin basis functions of irreducible representations
of the wave-vector group Gk. Therefore, the irreducible
magnetic representation of interest to us here is two-
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dimensional, with the basis function pairs (in the
exchange approximation) given by the combinations

(1)

These combinations allow for the character of the
Mn3+–Mn3+ and Mn4+–Mn4+ exchange interactions [3]
and correspond to the case of antiferromagnetic Gd3+–
Gd3+ exchange (the case of their ferromagnetic
exchange can be considered in a similar manner and
does not significantly affect the conclusions drawn fur-
ther on). The quadratic-in-spin contribution to the free
energy of the system can be written as

(2)

Obviously enough, the type of the magnetic structure
appearing in a phase transition should depend on which
of the quantities Λ1, Λ2, and Λ3 in Eq. (2) will be the
first to vanish with decreasing temperature. Let it be Λ1
(as in paper [8], where the behavior of the YMn2O5 sys-
tem is discussed), which corresponds to the AFM phase
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S5 S6 S7 S8+ + +  = F2 
 
 

;

σ1 σ2– σ3– σ4+ A3=

σ1 σ2– σ3 σ4–+ G3= 
 
 

.

∆F
2( ) Λ1 A1

2
G1

2
+( ) Λ2 F2

2
C2

2
+( ) Λ3 A3

2
G3

2
+( )+ +=

+ Λ12 A1C2 G1F2+( ) Λ13 A1A3 G1G3+( )+

+ Λ23 C2A3 F2G3+( ).

0
Magnetic field, kOe

M
ag

ne
tiz

at
io

n 
σ c

, e
m

u/
g

15 K

50 100 150 200 250

10

20

30

40

50

60

70
10 K

20 K

Fig. 7. Magnetization curves measured in GdMn2O5 at low
temperatures along the c axis.
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transition at T = TN1. The presence of cross terms in
Eq. (2) is evidence of a correlated rearrangement of the
Mn and Gd subsystems due to the f−d exchange below
TN1. In these conditions, the general pattern of the
ordering is determined by the Mn3+–Mn4+, Mn3+–Mn3+,
and Mn4+–Mn4+ exchange energies, with the f−d
exchange playing the role of a correction only. How-
ever, as the temperature decreases, the Gd–Mn
exchange gains importance and independent Gd ion
spin ordering occurs, with the consequence that one
more phase transition will appear at T = TN2 and will

have the same magnetic structure vector k = .

Analyzed from the symmetry viewpoint, our system
allows the existence of two independent Lifshitz invari-
ants with linear derivatives along the c and a axes,
respectively; therefore, in this phase transition, inho-
mogeneous exchange could, in principle, produce an
incommensurate magnetic structure along the a axis as
well, exactly as was observed to occur in EuMn2O5 in
[10]. Each of the above structures (which appear at T =
TN1 and TN2) is exchange-noncollinear, and each of
them can be characterized by a pair of vectors, L1, L2
and L3, L4, respectively. Because of the Gd–Mn
exchange (in contrast to the YMn2O5 system), the ferro-
electric ordering temperature will be TC ~ 26 K. The
presence of the exchange invariants PY(L1L3 – L2L4) and
Px(L1L4 – L2L3) will give rise to jumps in the electric
polarization vector in a strong magnetic field along
both the b and the a axes, which are not present in the
YMn2O5 system. In addition, if we include the obvious
invariant contributions of the form

 (3)

a shift of the Curie point will become possible in a
strong magnetic field, exactly as is observed in the
curves in Figs. 2–5.

Observation of spin-flop transitions with a magnetic
field applied along any coordinate direction suggests
that the magnetic structure is three-dimensional rather
than planar (as in [8]). Treated phenomenologically,
this means that even if the pair of vectors L1 and L2 lies
in the basal ab plane, the vector pair L3 and L4, appear-
ing with increasing Gd–Mn exchange, will lie in the ac
plane, and therefore the total magnetic structure will
become three-dimensional.

The behavior of magnetostriction is well known to
be directly determined by the symmetry of the strain
tensor, i.e., in our particular case, by the symmetry of
the three longitudinal components, which correspond
to the diagonal components of the shear strain tensor.

Because all longitudinal components of the strain
tensor correspond to the unit representation of the point
group of the high-symmetry phase, all spin-flop transi-
tions possible in the system will be accompanied by
jumps in the field dependences of the magnetostriction
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because of a reorientation of the antiferromagnetism
vectors.
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Abstract—The general regularities of the evolution of the spectrum of magnetostatic waves in a periodic sys-
tem composed of alternating ferromagnetic and nonmagnetic layers are analyzed. The spectrum of electromag-
netic waves in an infinite periodic system and the coefficient of reflection of a plane electromagnetic wave from
a half-space periodically filled with ferromagnetic and nonmagnetic layers are calculated. The dispersion rela-
tion is derived and analyzed for surface magnetostatic waves at the interface between the periodic system of
layers and vacuum. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable interest has been
expressed by researchers in the properties of different-
type waves propagating in periodic structures. First and
foremost, the case in point is photonic crystals. Photo-
nic crystals belong to artificially created structures
whose refractive index varies periodically. The proper-
ties of electromagnetic waves in these structures resem-
ble the properties of electrons in crystals. The spectrum
of electromagnetic waves involves band gaps similar to
those observed for semiconductors. At present, the
properties of the photonic crystals grown have been
studied in sufficient detail (see, for example, [1–4]).
This has given impetus to the study of other materials
in which waves of different natures, namely, phonons
(acoustic waves) and magnons (spin waves), possess
similar properties. These materials are referred to as
phononic [5–7] and magnonic [8–10] crystals. The
properties of spin waves in magnonic crystals have
become subjects of scientific research only in recent
years. The spectrum of spin-wave excitations in ferrites
has a number of specific features (for example, the
occurrence of surface waves, angles of cutoff, etc.).
Therefore, the band structure of the spectrum of mag-
nonic crystals should differ significantly from those of
photonic and phononic crystals. Investigation of the
propagation of magnetostatic waves in magnonic crys-
tals is of great practical importance.

The region of slow spin waves with wave vectors
k0 ! k ! α–1/2 (where k0 = ω/c, ω is the wave frequency,
c is the speed of light in free space, and α is the inho-
mogeneous exchange constant) is conventionally
termed the magnetostatic-wave region [11]. The disper-
sion of magnetostatic waves in sufficiently thick ferro-
magnetic films weakly depends on both the electro-
magnetic retardation and the inhomogeneous exchange
and is determined primarily by the film thickness. To
1063-7834/03/4511- $24.00 © 22160
put it differently, the dispersion of magnetostatic waves
is geometric in character. Magnetostatic waves cannot
propagate in bulk samples. Since the frequency of mag-
netostatic excitations depends only on the direction of
the wave vector, their spatial damping decrement
appears to be large. In multilayer systems, unlike iso-
lated ferromagnetic films, the energy can be transferred
by magnetostatic waves in the plane of layers and in the
direction perpendicular to this plane due to the mag-
netic dipole interaction between layers.

2. THEORETICAL ANALYSIS

Let us consider a periodic structure composed of
alternating ferromagnetic and nonmagnetic layers with
different material parameters. The period of the struc-
ture involves 2n components. The parameters of the ith
pair of ferromagnet–nonmagnet layers are designated
by the index i. For definiteness, it is assumed that, in
each pair, a nonmagnetic layer is located above a ferro-
magnetic layer. The number of a layer pair increases
with an increase in the coordinate of its surfaces. We
assume that the layer surfaces are parallel to the yz
plane of the Cartesian coordinate system. The structure
is placed in a constant external magnetic field He

aligned with the nz axis in the layer plane. We will
restrict our consideration to the transverse electric
mode with the polarization (hx , hy , ez) of the high-fre-
quency field and the wave vector k perpendicular to the
external field (kz = 0).

The general expression for the electric field compo-
nent ez, i in the ith ferromagnetic layer can be written in
the form

 (1)
ez i, a1 i, γixi( )exp a2 i, γixi–( )exp+[ ]=

× i ωt kyy–( )[ ] ,exp
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where xi = x – ∆i, ∆i is the coordinate of the upper sur-

face of the ith ferromagnetic layer, γi = (  –

)1/2, µ⊥ i = (  – )/µi, µi = 1 + ωHiωMi/(  –

ω2), νi = –ωωMi/(  – ω2), ωHi = |gi |(He + j∆Hi),
ωMi = 4π|gi |M0i, εfi is the permittivity of the lattice, ∆Hi

is the half-width of the resonance line, gi is the gyro-
magnetic ratio, and di is the thickness of the magnetic
layer.

Let the vector with components (a1i , a2i) be desig-
nated as ai. Then, from the Maxwell equations, the con-
stitutive equations, and the conditions at the interface,
we obtain the equation relating the components of the
vectors ai + 1 and ai:

 (2)

The elements of the matrix  =  are as follows:

 

 

 

(3)

 

 

 

Here, ρ0i = µ⊥ i + 1βi/(4γi + 1), pi = (µiγi – νiky)/(µiµ⊥ i), qi =

(µiγi + νiky)/(µiµ⊥ i), γi = (  – )1/2, βi = (  –

)1/2, εsi is the permittivity of the lattice, and bi is the
thickness of the nonmagnetic layer. When nonmagnetic
layers are absent in the structure, the values of bi should
be taken equal to zero.

According to the Bloch theorem [12] and formula
(2), the vectors ai + n and ai are related by the expression

 (4)

where  =  × … × , D =  is
the period of the structure, and kx is the wave vector
component along the x axis (–π/D ≤ kx ≤ π/D). Equation
(4) is a set of two homogeneous linear equations. From
the condition for the existence of a nontrivial solution
of this set of equations and the equality

 (5)

ky
2

k0
2ε fiµ⊥ µi

2 ν i
2 ωHi

2

ωHi
2

ai 1+ ρ̂iai.=

ρ̂i ρ0iρ̂i'

ρ11i' γi 1+ di 1+( ) βibi–( ) 1 pi 1+ /βi–( )exp[exp–=

× 1 qi/βi–( ) βibi( ) 1 pi 1+ /βi+( ) 1 qi/βi+( )exp– ] ,

ρ22i' γi 1+ di 1+–( ) βibi–( ) 1 qi 1+ /βi+( )exp[exp=

× 1 pi/βi+( ) βibi( ) 1 – qi 1+ /βi( ) 1 – pi/βi( )exp– ] ,

ρ12i' γi 1+ di 1+( ) βibi–( ) 1 pi 1+ /βi–( )exp[exp–=

× 1 pi/βi+( ) βibi( ) 1 pi 1+ /βi+( ) 1 – pi/βi( )exp– ] ,

ρ21i' γi 1+ di 1+–( ) βibi–( ) 1 qi 1+ /βi+( )exp[exp=

× 1 – qi/βi( ) βibi( ) 1 – qi 1+ /βi( ) 1 + qi/βi( )exp– ] .

ky
2

k0
2ε fiµ⊥ i ky

2

k0
2εsi

ai n+ ai ikxD–( )exp λ̂niai,= =

λ̂ni ρ̂n i 1–+ ρ̂i bl dl+( )
l 1=
n∑

det λ̂ni 1=
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we obtain the following dispersion relation for electro-
magnetic waves in the structure:

 (6)

Since Sp  = Sp(  × … × ) is invariant with
respect to the cyclic permutation of factors, relation (6)
does not depend on the index i. The solution of this
equation has the form

 (7)

The choice of the branch of the logarithm in expression
(7) is immaterial, because the quantity kx enters only
into the term exp(–ikxD) and the two signs in this
expression correspond to two directions of electromag-
netic-wave propagation. In the absence of damping in

the system, the values of kx are real at  ≤ 4. In
the general case, the values of kx are complex.

The wave polarization, i.e., the relation between the
quantities ai1, 2, is defined by either of the two equations
from set (4):

 (8)

where

 

The second term in relation (6) depends on the fre-
quency ω and the wave vector component ky. It can be
seen from relation (6) that the function kx(ω) is a single-
valued function in either of the two ranges –π/D ≤ kx ≤
0 and 0 ≤ kx ≤ π/D.

The spectrum of magnetostatic waves with a field
distribution over the thickness of ferromagnetic layers,
which is described by hyperbolic functions, can be
obtained from relation (6) by changing over to the mag-
netostatic case (βi = γi = |ky |). In the absence of damping
at fixed kx and ky, Eq. (6) possesses n roots, so that the
number of branches of magnetostatic waves ω(ky) at
fixed kx coincides with the number of ferromagnetic
layers in the period of the structure.

If all ferromagnetic layers consist of the same mate-
rial, the spectrum of magnetostatic waves in the peri-
odic structure exhibits two features. First, by using the
symmetry properties of the matrix  in the magneto-
static case,

 (9)

it is easy to show that the dispersion relation remains
unchanged upon replacing ky by –ky. Hence, it follows
that the spectrum is symmetric with respect to a change
in the sign of any wave vector component of magneto-

2 kxDcos Sp λ̂ni– 0.=

λ̂ni ρ̂n i 1–+ ρ̂i

kx
i
D
---- Sp λ̂ni Sp λ̂ni( )

2
4–±

2
------------------------------------------------------.ln=

Sp λ̂ni

ai2 ai1 λni21/ ikxD–( )exp λni22–[ ]{ } Γ iai1,= =

Γ
Sp λ̂ni 2λni11– Sp λ̂ni( )

2
4–±

2λni12
--------------------------------------------------------------------------.=

ρ̂i

ρrli ky( ) ρrli ky–( ), r l,= =

ρrli ky( )ρrlj ky( ) ρrli ky–( )ρrlj ky–( ), r l,≠=
3
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static waves in ferromagnet–nonmagnet layered struc-
tures, including nonperiodic structures. Second, the
spectrum of magnetostatic waves is invariant with
respect to the replacement bi  di, i.e., the replace-
ment of a ferromagnetic material by a nonmagnetic
material and vice versa. Apparently, this property of the
spectrum of magnetostatic waves is observed for both
periodic and nonperiodic structures; however, this is
true only in the case when kz = 0.

The spectrum of magnetostatic waves in structures
containing magnetic layers with different magnetic
parameters is also symmetric with respect to the
replacement ky  –ky when the structure has a sym-
metry plane parallel to the layer surface. In the general
case, this symmetry of the spectrum is absent.

Now, we analyze in greater detail the simplest peri-
odic structure in which all ferromagnetic and all non-
magnetic layers are identical (bi ≡ b, di ≡ d, βi ≡ β, γi ≡ γ,
µi ≡ µ, νi ≡ ν, µ⊥ i ≡ µ⊥ . In this case, relation (6) takes the
form

 (10)

Note that the expression on the left-hand side of rela-
tion (10) has no branch points. The same holds for the
general relation (6).

According to relation (10), the dispersion of the
magnetostatic wave is described by the expression

 (11)

The spectrum of magnetostatic waves in the periodic
structure, like the spectrum of surface magnetostatic
waves in an isolated ferromagnetic layer, lies in the fre-
quency range [ωH(ωH + ωM)]1/2 ≤ ω ≤ ωH + ωM/2. At a
fixed wave vector component ky, the smaller the value
of coskxD, i.e., the closer the value of kx to the Brillouin
zone boundaries kx = ±π/D, the lower the wave fre-
quency. The case kx = 0, when the frequency is lowest,
corresponds to inphase perturbations of the magnetiza-
tion in all the ferromagnetic layers, and the case kx =
±π/D, when the frequency is highest, corresponds to
antiphase perturbations of the magnetization in adja-
cent layers. The group velocity component along the
normal to the interfaces becomes zero at the center and
boundaries of the Brillouin zone. The energy transfer in
the transverse direction also vanishes in the limiting
cases |ky |  0 and |ky |  ∝ . As for the isolated fer-
romagnetic layer, magnetostatic modes with a field dis-
tribution over the thickness of ferromagnetic layers,
which is described by trigonometric functions, are
absent for the direction of the wave vector under con-
sideration.

kxDcos γd βbcoshcosh–

–
µ⊥

2βγ
--------- β2 γ2

µµ⊥
----------+ 

  βb γdsinhsinh 0.=

ω2 ωH ωH ωM+( )
ωM

2

2
-------

kyb kydsinhsinh
kyDcosh kxDcos–

----------------------------------------------.+=
PH
In the microwave frequency range, the electromag-
netic wavelength in free space, as a rule, considerably
exceeds the period of the structure. Therefore, at fre-
quencies far from the frequency of uniform ferromag-
netic resonance ω = [ωH(ωH + ωM)]1/2 (µ⊥   ∝ ), the
following conditions are satisfied:

 (12)

Taking into account terms up to the second order in the
expansions of trigonometric and hyperbolic functions
in terms of small parameters βb and γd, we obtain the
expression characterizing the electromagnetic-wave
dispersion for the structure:

 (13)

where k = (  + )1/2 and ϕ = . The con-
dition of vanishing the wave vector of the electromag-
netic wave (k = 0) is reduced to the condition ω = 0 and
the biquadratic equation for determining two additional
intersection points of the dispersion surface with the ω
axis. The roots ω1, 2 of this biquadratic equation at d =
b and εf = εs are represented by the expression

 (14)

It should be noted that a thick ferromagnetic layer
with permittivity εf and transverse permeability µ⊥ does
not transmit electromagnetic waves in the frequency

range  ≤ ω ≤ ωH + ωM, because the per-
meability µ⊥  is negative at these frequencies. At the
same time, the periodic structure can transmit a high-
frequency signal in this frequency range.

For convenience of numerical analysis, we intro-
duce the dimensionless frequencies ΩH = ωH /ωM and
Ω = ω/ωM. The dispersion of electromagnetic waves
in the periodic structure composed of alternating lay-
ers of yttrium iron garnet (4πM0 = 1750 G, g = 2.8 ×
106 Hz/Oe) and gadolinium gallium garnet is illus-
trated in Figs. 1–5. In this case, only the solutions of
Eq. (6) with Re[kx(Ω, ky)] > 0 are given because rela-
tion (6) involves the square of the wave vector compo-
nent kx. In calculations, it is assumed that ΩH = 1/2 and
the thicknesses and the permittivities of the magnetic
and nonmagnetic layers are identical: d = b = 5 × 10–4

cm and εf = εs = 16.
The dispersion surface of magnetostatic waves over

a wide range of wavelengths and the dispersion surface
of electromagnetic waves in the long-wavelength range
are depicted in Figs. 1 and 2, respectively. It can be seen
from Fig. 2 that the transmission of electromagnetic
waves with wave vectors k < 16 is absent in the fre-
quency range corresponding to the existence of magne-

βb  ! 1, γd  ! 1.

k
2

k0
2 εzzµb

2 ε f µ⊥ µd
2 µ⊥ εzzµ ε f+( )bd+ +[ ]=

× µD
2 µ 1–( )2 ν2

–[ ] bd ϕsin
2

+{ }
1–
,

kx
2

ky
2

ky/kx( )arctan

ω1 2,
2

8ωH
2

10ωHωM 3ωM
2

+ +[=

± ωM 20ωH
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2
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tostatic waves. This fact and the numerical estimates
indicate that the magnetostatic approximation for the
system with the aforementioned parameters becomes
applicable beginning with k ∝  102 cm–1. The dispersion
of long electromagnetic waves is well described by for-
mula (13) over the entire microwave range, except for a
narrow frequency range close to the frequency of uni-
form ferromagnetic resonance Ω = [ΩH(ΩH + 1)]1/2.

Figure 3 shows the dependence Re[kx(Ω, ky)] in the
frequency range 0 ≤ Ω ≤ [ΩH(ΩH + 1)]1/2. The wave vec-
tor of electromagnetic waves vanishes at the frequen-
cies Ω = 0 and Ω = Ω1 = ω1/ωM [see formula (14)]. In
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Fig. 1. Spectrum of magnetostatic waves in a periodic sys-
tem composed of alternating ferromagnetic and nonmag-
netic layers.
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Fig. 3. Dependence Re[kx(Ω, ky)] in the frequency range 0 ≤
Ω ≤ [ΩH(ΩH + 1)]1/2.
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the nonpropagation region, we have Re[kx(Ω, ky)] = 0
and Im[kx(Ω, ky)] ≠ 0.

The dependence Re[kx(Ω, ky)] over a wide range of
wavelengths in the frequency range [ΩH(ΩH + 1)]1/2 ≤
Ω ≤ ΩH + 1/2 is plotted in Fig. 4. A comparison of
Figs. 1 and 4 shows that the effect of electromagnetic
retardation on the spectrum of short electromagnetic
waves is negligible. In the nonpropagation region, we
have Re[kx(Ω, ky)] = π/D and Im[kx(Ω, ky)] ≠ 0.

The dependence Re[kx(Ω, ky)] in the frequency
range Ω ≥ ΩH + 1/2 is depicted in Fig. 5. The wave vec-
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Fig. 2. A general view of the dispersion surface Re[kx(Ω, ky)]
in the range of long electromagnetic waves.
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tor of electromagnetic waves becomes zero at Ω = Ω2 =
ω2/ωM, where ω2 is given by expression (14). In the
nonpropagation region, we have Re[kx(Ω, ky)] = 0 and
Im[kx(Ω, ky)] ≠ 0.

Now, we assume that the half-space x > 0 is a homo-
geneous isotropic medium with permittivity ε0 and per-
meability µ0 = 1 and the half-space x < 0 represents the
above medium composed of alternating ferromagnetic
and nonmagnetic layers with a period equal to two lay-
ers. All magnetic and all nonmagnetic layers have iden-
tical parameters. For definiteness, we assume that, in
the periodic structure, the upper layer is ferromagnetic
and its upper surface coincides with the plane x = 0. We
calculate the reflectivity for a plane electromagnetic
wave that has the polarization (hx , hy , ez)] and is inci-
dent on the periodic structure. The expression for the
sole nonzero component of the electric field in the half-
space x > 0 is conveniently represented in the form

 (15)

where

 

and R is the amplitude reflectivity of the electromag-
netic wave. The electric field and its polarization in the
ferromagnetic layer are described by expressions (1)
and (8). From the boundary conditions at the surface
x = 0, we find that the reflectivity R is given by the
expression

 (16)
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Fig. 5. Dependence Re[kx(Ω, ky)] in the frequency range
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It is easy to demonstrate that the reflectivity defined by
expression (16) does not depend on the choice of the
branches β and γ.

The condition for the nonpropagation of the electro-
magnetic wave |R | = 1 in the absence of damping at
Imkx0 = 0 is satisfied at γ2 > 0 if

 (17)

The first and second factors in expression (17) vanish at
the frequencies ω = [ωH(ωH + ωM)]1/2 and ω = ωH + ωM,
respectively. The equality kx0 = 0 is the condition for
propagation of the electromagnetic wave along the yz
plane. From matrix (3) and expression (7), it follows

that the inequality (Sp )2 > 4 is a sufficient condition
for Γ to be a real quantity.

At Imkx0 = 0 and γ2 < 0, the equality

 (18)

is the condition for total reflection of the electromag-
netic wave from the boundary with the periodic
medium.

In the general case, the system without damping
does not transmit the electromagnetic wave when real
roots kx(ω, ky) of the dispersion relation (6) are absent,

i.e., at (Sp )2 > 4.
In the system formed by the homogeneous half-

space and the periodic structure, there can exist surface
electromagnetic waves whose field amplitude is maxi-
mum at the boundary of the upper ferromagnetic layer
x = 0 and exponentially decreases deep in the periodic
structure. The dispersion relation for these waves is the
condition of vanishing the denominator in expression
(16); that is,

 (19)

In addition, the electromagnetic wave radiation
should be absent in the half-spaces x > 0 and x < 0; i.e.,
the following conditions should be satisfied:

 (20)

At γ2 > 0 and in the absence of damping, the quantity Γ
is real and Eq. (19) does not involve the imaginary part.
At γ2 < 0, the left-hand side of Eq. (19) is complex and
it does not possess solutions.

For surface magnetostatic waves, dispersion rela-
tion (19) takes the form

 (21)

where ky ≡ k and ξ = k/ . Recall that, in a semi-infi-
nite ferromagnet, surface magnetostatic waves are
absent because the frequency of magnetostatic excita-
tions does not depend on the magnitude of the wave
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vector. For surface magnetostatic waves described by
relation (19), the dispersion is observed because the
system is characterized by two spatial scales, namely,
the thicknesses of ferromagnetic and nonmagnetic lay-
ers. The results obtained from analyzing relations (19)
and (21) and also the dependences Im[kx(Ω, ky)] are not
presented to economize space.

3. CONCLUSIONS

Thus, it was demonstrated that the magnetic interac-
tion of partial surface magnetostatic waves in ferro-
magnetic layers leads to the formation of a magneto-
static-wave region and provides the possibility of trans-
ferring the energy of the high-frequency magnetic field
in the direction perpendicular to the layer interfaces.
The group velocity of these waves becomes zero at the
center and at the boundary of the Brillouin zone. The
situation considered in the present work differs from
that observed in nongyrotropic crystals, in which, by
contrast, the periodic inhomogeneity brings about the
formation of energy band gaps.

The standard band structure of the spectrum of elec-
tromagnetic waves was not analyzed in this work. Since
the thickness of ferromagnetic layers is usually equal to
10–100 µm, the band gaps should be located in the
high-frequency range ω ∝  1013–1014 s–1.
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Abstract—Nonuniform distributions of the order parameter in a film of an incommensurate ferroelectric whose
free energy expansion does not contain Lifshitz invariants are considered. An equation describing the order
parameter distribution over the film thickness is derived in the approximation of slowly varying amplitudes. The
effect of film thickness and surface properties on the temperature of transition to the incommensurate phase is
analyzed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A large number of publications dealing with exper-
imental [1–4] and theoretical [5–8] investigations of the
ferroelectric transition in samples with significantly
limited spatial dimensions, such as films, small parti-
cles, and clusters, are presently available. Size con-
straints entail, as a rule, a decrease in the temperature of
the phase transition and its becoming diffuse, which
makes transformation into an ordered state impossible
starting from a certain size. This is accompanied by a
change in the spontaneous polarization, susceptibility,
and coercive and switching fields.

Many of these features can be described in terms of
a theoretical model developed recently for ferroelec-
trics (see [5–8] and references therein). Specifically, a
phenomenological approach to ferroelectric phase tran-
sitions in thin films and small particles was proposed in
[5]. The phase transition in thin films and small parti-
cles was treated later in terms of the Landau theory [8].
All those studies dealt with a transition to a nonmodu-
lated phase; for this reason, a nonuniformity in the
order parameter could appear only as a consequence of
boundary conditions, with domains and fluctuations
disregarded altogether.

We consider here the effect of a limited size of the
sample and of boundary conditions on the modulated
structure that arises during a phase transition to an
incommensurate phase. It is worth mentioning that
experiments have been performed recently on thin films
of an incommensurate ferroelectric [9].

Below, we present a phenomenological description
of a phase transition in thin films of an incommensurate
ferroelectric.
1063-7834/03/4511- $24.00 © 22166
2. EQUATION FOR THE ORDER PARAMETER

We analyze the case where incommensurability
appears not as a result of symmetry, as in the presence
of the Lifshitz invariant, but rather accidentally,
because of phonon mode softening at an arbitrary point
of the Brillouin zone. In these conditions, one can
choose a one-component order parameter (correspond-
ing to the maximum bare instability of the homoge-
neous state); in contrast, however, to the cases of ferro-
electrics and antiferroelectrics [10], the equation writ-
ten in the self-consistent field approximation for the
order parameter is a fourth-order nonlinear differential
equation and it is the associated problems whose solu-
tion is dealt with in this communication. In particular,
the de Gennes boundary conditions [11], introduced for
phenomenological description of superconducting
films and employed subsequently for similar treatment
of the size effect in substances of various natures, were
found to be inadequate here.

Consider a one-dimensional distribution of the order
parameter in a film of thickness L, with the origin x = 0
placed at the center of the film. The dependence of the
order parameter on x can be determined by minimizing
the thermodynamic potential described by the Landau
functional

 (1)

By varying functional (1), one can obtain Euler’s equa-
tion complete with the corresponding natural boundary
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conditions [12]. Because more symmetric (in particu-
lar, even) distributions usually have a lower free energy,
we limit ourselves, in what follows, to order parameter
distributions which are even functions of the x coordi-
nate, η(–x) = η(x), and discuss the behavior of the order
parameter only for x ≥ 0:

 (2)

 (3)

 (4)

where F(η(x), η', η'') is the integrand of functional (1),
η' = dη/dx and η'' = d2η/dx2; ϕ(η(–L/2)) and ψ(η(L/2))
are given functions of the order parameter at the bound-
aries x = ±L/2. It appears only natural to consider these
functions as a surface energy contribution, which can
be approximated by a quadratic expression of the type

 (5)

In view of Eqs. (3)–(5), as well as recalling the form
of functional (1), the natural boundary condition for x ≥
0 becomes 

 (6)

 (7)

The nonlinear fourth-order differential equation thus
obtained allows us to find only a numerical solution. It
appears, however, important to derive a more tractable
equation which could be solved analytically and, thus,
would permit a comparatively simple analysis of the
results.

3. METHOD OF SLOWLY VARYING 
AMPLITUDES

This method can be used assuming the film thick-
ness to be large compared to the period of spatial oscil-
lations of the order parameter in an incommensurate
ferroelectric, qL @ 1, where q is the oscillation wave-
number. Following the method of slowly varying
amplitudes, we make the substitution

 (8)

where u(x) is the slowly varying amplitude and the
wavenumber q can be found by minimizing the sum of
terms with derivatives in functional (1) for u = const.
We do this under the assumption that the boundary con-
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ditions in a thick enough film virtually do not affect the
spatial oscillation frequency

. (9)

Substituting Eq. (8) into Eq. (2) and neglecting all
higher derivatives of the amplitude u(x), we come to a
second-order differential equation,

 (10)

which can now be solved analytically. This equation,
combined with general homogeneous boundary condi-
tions (which were employed by de Gennes and define
the extrapolation length in the Ginzburg–Landau phe-
nomenological theory of superconductivity [11]),

 (11)

constitutes the boundary-value problem to be consid-
ered below. As in the Ginzburg–Landau theory, we call
the parameter δ the extrapolation length. It describes
the effect of the surface on the order parameter distribu-
tion over the film thickness. Prior to solving the equa-
tion, however, we consider the relation between the
boundary conditions for the fourth- and second-order
equations.

4. BOUNDARY CONDITIONS 
FOR THE SECOND-ORDER EQUATION

Equation (10) for the amplitude u(x) should be com-
plemented by boundary conditions, which can be
derived from Eqs. (6) and (7) by using the method of
slowly varying amplitudes. To do this, we substitute
Eq. (8) into Eqs. (6) and (7) and, neglecting all but the
first derivatives of u(x), we obtain coupled equations

 (12)

 (13)

Eliminating the sine and the cosine in Eqs. (12) and
(13) and recalling Eq. (11), we obtain a quadratic equa-
tion for the logarithmic derivative (11),

 (14)

Its solution can be written as

 (15)
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Relation (11) plays the part of a boundary condition for
the amplitude equation. Because δ is real, the inequality
α2 – 2(C + Dq2)(C + 3Dq2)q2 ≥ 0 should be met. Insert-
ing Eq. (9) for q, we come to

 (16)

The discriminant α2 – C3/4D is always positive,
because C < 0 and D > 0; hence, δ is always real. The
two roots of Eq. (14) have opposite signs, but only one
of them has physical meaning for the given value of qL.
Indeed, the compatibility of Eqs. (12) and (13) requires
that the equality

 (17)

be met.
We assumed the quantity q to be strictly defined by

condition (9). In this case, we obtain an oscillatory
dependence of the logarithmic derivative of the ampli-
tude at the boundary on the “phase thickness” of the
sample at the boundary qL and, hence, on temperature.
This is not, however, the only possible scenario. The
behavior of a real system is governed by more complex
equations than those derived by us in the slowly varying
amplitude approximation. This means that, in searching
for a configuration that would minimize the free energy,
a real system can violate some of our assumptions. A
possible scenario is to adjust the value of q such that the
energy is minimum. For films that are thick enough, qL
is large and a small correction to it may suffice to min-
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Fig. 1. Phase portrait of Eq. (10). A = 10 000, B = 100, C =
–200, D = 1, and T0 = 1. The separatrices are shown by
dashed lines. The inclined straight lines relate to linear homo-
geneous boundary conditions (11) for (1) δ = 1 and (2) –1.
PH
imize the energy. Another possibility consists in vary-
ing the wavenumber q only within a certain boundary
layer. Only numerical analysis of the fourth-order equa-
tion can determine the path a real system would follow.

Obviously enough, under our assumptions, the
problem of a phase transition to an incommensurate
phase reduces to a boundary problem that is similar,
from a mathematical viewpoint, to that of a ferroelec-
tric phase transition in a thin film. The extrapolation
length δ in Eq. (11) describes the difference between
the surface and bulk properties and can be both positive
and negative. It appears natural to assume that δ should
be positive for a film with a free surface. Size effects in
a thin film become noticeable when the extrapolation
length is comparable to the film thickness. Thus, if the
film thickness L is large compared to the spatial modu-
lation period 2π/q, then we also have δ @ 2π/q. In the
next section, we treat analytical solutions to the second-
order equation.

5. ANALYSIS OF SOLUTIONS 
TO THE SECOND-ORDER EQUATION

We start our discussion appropriately with an analy-
sis of the phase portrait of Eq. (10) displayed in Fig. 1.
The two regions of solutions are separated in Fig. 1 by
dashed lines representing separatrices. The closed
curves, corresponding to the periodic solutions of
Eq. (10), lie within the region Ω bounded by the sepa-
ratrices. The boundary conditions (11) are represented
in the phase diagram by straight lines with a negative
and a positive slope for positive and negative extrapola-
tion lengths, respectively. As seen from Fig. 1, in the
case of positive extrapolation lengths, all possible solu-
tions are confined within Ω .

The analytical solution to Eq. (10) can be written as

 (18)

where u0 = u(x = 0) is the value of u at the film center
and k is the elliptic modulus

 (19)

with u0 being related to δ as

 (20)

Here, cn, tn, and dn are Jacobian elliptic functions [13].
The solutions obtained by us describe the order-param-
eter amplitude distribution over the sample thickness
for arbitrary values of the phenomenological parame-
ters of the substance, film thickness, and temperature.
They also permit one to find the dependence of the tran-
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sition temperature Ti on film thickness for various val-
ues of the phenomenological parameters (Ti is the tem-
perature at which u0 and, hence, u(x) vanish).

The dependences of the order-parameter amplitude
u on x for positive and negative values of δ are depicted
in Figs. 2 and 3 for several temperatures. The phenom-
enological parameters used are given in the caption to
Fig. 1. The behavior of u(x) for positive δ is similar to
that of the spontaneous polarization in thin ferroelectric
films; namely, the amplitude u decreases as one
approaches the film surface and its value at the film cen-
ter is less than that in the corresponding bulk sample
(Fig. 2).

For negative extrapolation lengths, according to the
phase diagram (Fig. 1), there are two types of solutions
for u(x). The solutions displayed in Fig. 3 behave simi-
larly to the polarization in ferroelectric films; more spe-
cifically, the amplitude u increases as one approaches
the film surface and its magnitude at the film center is
higher than that in the corresponding bulk sample.

For the second type of solutions, the amplitude u in
the film is smaller than that in the bulk sample and its
magnitude decreases as one approaches the surface,
with the amplitude reversing sign at a certain value of
x, which corresponds to a jump in the wave phase. Cal-
culation of the contributions from the two solutions to
the thermodynamic potential of the film made for neg-
ative δ reveals, however, that the solution of the first
type (for which the value of u at the boundary is larger
than in the bulk) is energetically preferable.

The dependence of the incommensurate phase tran-
sition temperature on film thickness is plotted in Fig. 4
for both positive and negative extrapolation lengths. Ti

6
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2

u

0 0.2 0.4 0.6 0.8 1.0
x

T = 1.7 T0

T = 1.8 T0

T = 1.9 T0

δ = 1

Fig. 2. Order-parameter amplitude u plotted vs. coordinate
x ≥ 0 for positive values of δ and various temperatures. The
values of the phenomenological parameters are the same as
those in Fig. 1; L = 2. Dashed straight lines specify the
amplitudes in bulk samples for the same temperatures.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
is seen to decrease with decreasing film thickness for a
positive extrapolation length δ and vanishes at a certain
critical thickness. A similar dependence has been
obtained for a ferroelectric and an antiferroelectric film
with δ assumed to be positive [5, 8]. The thickness
dependence of Ti obtained for negative δ follows the
reverse pattern.
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0 0.2 0.4 0.6 0.8 1.0
x

T = 1.7 T0

T = 1.8 T0

T = 1.9 T0

δ = –1

10

Fig. 3. Order-parameter amplitude u plotted vs. coordinate
x ≥ 0 for negative values of δ and various temperatures. The
values of the phenomenological parameters are the same as
those in Fig. 1; L = 2. Dashed straight lines specify the
amplitudes in bulk samples for the same temperatures.
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Fig. 4. Temperature Ti of the transition to an incommensurate
phase plotted vs. film thickness L for δ = 1 and –1. The phe-
nomenological parameters are the same as those in Fig. 1.
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Abstract—The dielectric properties of strontium–barium niobate crystals with a strontium concentration of
0.75, which corresponds to the most smeared ferroelectric phase transition, were measured. The dielectric hys-
teresis loops and the polarization relaxation are shown to exhibit clearly pronounced features characteristic of
crystals with structural disorder and a broad distribution of a random internal electric field. The measurements
were performed in dc, slowly varying (quasi-static), and pulsed electric fields. The experimental data obtained
are used to construct the distribution function for the coercive field in the crystal bulk. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Oxide solid solutions with perovskite-like crystal
structure (general formula ABO3) [1–4] are highly inho-
mogeneous materials with structural disorder which
reveal unusual ferroelectric properties. Such crystals
have been named relaxor ferroelectrics (or relaxors). In
particular, structural disorder in SrxB1 − xNb2O6 crystals
with tungsten bronze structure, which are the subject of
the present study, originates from 1/6 of the A-cation
positions being unfilled [2, 3], with the degree of disor-
der being determined by the pattern of filling of the A2
structural channel by Ba and Sr ions [5]. The structural
disorder brings about inhomogeneous strains and inter-
nal electric fields in the bulk of the crystal, due to which
the local site symmetry is reduced and the symmetric
double-minimum local free energy function of polar-
ization transforms into an asymmetric function, with a
random distribution of its parameters over the crystal
volume [4]. As a result, dielectric hysteresis loops
acquire (as shown to be valid for SBN crystals of vari-
ous compositions [6–8]) an anomalous shape with open
and nonreproducing first polarization switching cycles
and with clear indications of the absence of a definite
coercive field. The actual degree of diffuseness of the
phase transition and the relaxor properties of the SBN
compounds are determined by the chemical composi-
tion. Increasing the Sr content [2, 3] and doping the
compound with rare-earth elements [9] lowers the tem-
perature of the maximum of dielectric permittivity con-
siderably increases the diffuseness of the phase transi-
tion, and makes the characteristic properties of the
relaxors more pronounced.

The goal of the present work was to investigate the
polarization processes occurring in the relaxor ferro-
electric SBN-0.75. The behavior of the various proper-
ties of SBN-0.75, in particular, of the dispersion char-
acteristics of its dielectric permittivity in the region of
1063-7834/03/4511- $24.00 © 22171
the phase transition, has been a subject of many publi-
cations (see, e.g., [10]). Research has been focused on
SBN-0.75 because it has the largest diffuseness of the
phase transition and the most clearly pronounced
relaxor properties of this composition among all other
SBN compounds. It is in SBN-0.75 that nanodomains
[11] known to be specific to relaxor ferroelectrics have
been observed. At the same time, polarization processes
(polarization kinetics, quasi-static dielectric hysteresis
loops), whose investigation in other compositions have
revealed a number of features characteristic of relaxors
[6–8], have not been studied in the SBN-0.75.

Our present investigation of polarization processes
in SBN-0.75 was performed in various field regimes,
namely, under the application of dc, slowly varying
(quasi-static), and pulsed electric fields. Measurements
in dc and quasi-static fields make it possible to obtain a
response of longest lived metastable states of a crystal
and polarizations which most closely approach levels
of thermodynamic equilibrium. The experimental tech-
nique employed in our previous studies [6, 7] offered
the possibility of investigating the slow part of the
polarization kinetics for times in excess of 15 s. The
broadened scope of techniques employed in this study
also made it possible to explore the kinetics of the fast
stage of the process.

2. EXPERIMENTAL TECHNIQUES

The polarization variation in dc and quasi-static
fields was measured with an equal-arm electrometric
bridge, with the sample under study and the source of
polarizing voltage V connected in one arm, a reference
capacitor C and the source of compensating voltage v
connected in the other, and a V7-29 electrometer serving
as a null indicator when balancing the bridge across the
bridge diagonal. The voltage compensation across the
diagonal was attained automatically with an IBM PC and
003 MAIK “Nauka/Interperiodica”
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controllable peripherals. The maximum bridge sensitiv-
ity in voltage was 20 µV, and in charge, 2 × 10–9 µC
(C = 10 pF). The compensating voltage v  displayed on
the monitor, the time t, the field strength E = V/d, and
the polarization P are related through the expression
v (t) = SP(t)/C + ESt/ρC, where S is the sample elec-
trode area and ρ is the sample electrical resistivity.
After estimating the smallest possible value of ρ for
long times, where the relaxation of the polarization P
practically stops and the v (t) curve becomes a straight
line (v (t) = ESt/ρC), the polarization P was calculated.
For a high electrical resistivity ρ, the electrical conduc-
tivity may be neglected and we can write P(t) = Cv (t)/S
to sufficient accuracy. All measurements of the SBN-
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Fig. 1. Temperature behavior of the dielectric permittivity ε
of (1) SBN-0.61 and (2) SBN-0.75.
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Fig. 2. Variation of the polarization ∆P of the SBN-0.75
crystal with temperature in a zero electric field.
PH
0.75 polarization were corrected for the electrical con-
ductivity. The computerized bridge used for electro-
metric measurements of the polarization is described in
considerable detail in [12, 13]. The polarization was
measured in two electric field variation modes; in one
of them, the polarization relaxation after switching on
and switching off the dc field (the polarization and
depolarization processes) was investigated, and in the
other, the polarization was measured under a slow peri-
odic field variation (quasi-static loops of the dielectric
hysteresis). The fast component of the polarization
relaxation was determined under application of pulsed
fields by measuring the switching currents using the
Merz technique [2]. We used pulsed fields with a lead-
ing edge of not longer than 25 × 10–9 s and a duration
from 3 × 10–4 to 10 s; the highest field strength was 10–
12 kV/cm. The signal was measured with a high-fre-
quency ADC board interfaced with an IBM PC, and the
variation of the polarization (switching) current with
time, i(t), was displayed in real time on the monitor.
The maximum signal resolution was 2 × 10–8 s. The
dielectric permittivity was measured using the standard
bridge method at a frequency of 1 kHz. The sample
used in the studies was a rectangular plate 3 × 3 ×
0.5 mm in size whose major faces were perpendicular
to the Z axis. Electrodes were deposited on these faces
with conducting silver paste.

The ferroelectric characteristics of the crystals stud-
ied are displayed graphically in Figs. 1 and 2. Figure 1
presents temperature dependences of the dielectric per-
mittivity ε33 of SBN-0.75 and SBN-0.61 crystals. The
greater part of the diffuseness in ε33(T) for SBN-0.75 is
in agreement with the data reported in [2, 3, 10]. The
variation of the polarization with temperature in the
SBN-0.75 sample was measured in a zero electric field
is shown in Fig. 2 (the pyroelectric effect); the variation
is seen to extend over a broad temperature range includ-
ing the maximum in dielectric permittivity as a result of
the total sample polarization being uncompensated (the
unipolarity). We readily see that the polarization grows
nearly linearly with temperature under cooling and that
the pyroelectric coefficient is a constant and does not
exhibit any anomalies; furthermore, there is a clearly
pronounced temperature hysteresis. The pyroelectric
coefficient is 0.04 µC/K.

3. RESULTS AND DISCUSSION

Recall that in conventional homogeneous ferroelec-
trics that are described satisfactorily in terms of the
Landau–Ginzburg–Devonshire theory [1, 2] the free
energy F = α0(T – Θ)P2/2 + βP4/4 in the polar phase at
T < Θ has the form of a double-minimum function of
polarization P, where α0 and β are constants; the spon-
taneous polarization Ps = [α0(T – Θ)/2β]1/2 and the
coercive field Ec = [2α0(T – Θ)/3][2α0(T – Θ)/3β]1/2,
which is equal to one half the width of the dielectric
hysteresis loop, are unambiguously defined, while the
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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Fig. 3. (a, b) Slow stage in relaxation of the polarization P and (c, d) distribution spectra g(lnτ) of relaxation time τ measured on
SBN-0.75 at (a, c) E = 2 kV/cm (polarization process) and (b, d) E = 3.75 kV/cm (depolarization). T = 279.7 K. Experimental data
are shown by symbols, the solid line represents calculation, and the nonlinear and linear polarization components and the equilib-
rium polarization Pe are plotted in dashed lines. Inset shows the onset of relaxation (a polarization jump, identified by an arrow).
experimentally measured values of Ec, as is well
known, can be substantially smaller than those pre-
dicted from theory. The polarization relaxation in the
polar phase after application of a field E < Ec is a slow,
thermally activated process, without an initial jump in
the polarization P. A jump appears only in high fields,
E > Ec, when one of the two minima in function F dis-
appears under application of the field and a fast, ava-
lanche-like poling process sets in. The equilibrium
polarization Pe is always equal to the spontaneous
polarization Ps, irrespective of the magnitude of the
external field E applied [14]. The polarization kinetics
of SBN-0.75 crystals described below, like that of other
SBN compositions studied earlier [6, 7, 13, 14], differs
radically from this model scenario.

3.1. Polarization Kinetics

Let us discuss the kinetics of the slow (t > 15 s) and
fast (3 µs < t < 10 s) polarization stages.
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
3.1.1. The slow polarization relaxation stage

Figure 3a illustrates the slow stage in the relaxation
of polarization P in a dc field E = 2 kV/cm, which is
lower than the half-width of the hysteresis loop; this
stage follows the fast stage (starting from the polariza-
tion P0 = 4 µC/cm2). The polarization P was calculated
with allowance for the conductivity. In the depolariza-
tion process, the polarization behaves similarly;
namely, the first, fast stage is followed by a slow decay
(Fig. 3b). The variation of P(t) with time can be fitted
satisfactorily by a power law,

 (1)

where a and n, as well as the equilibrium polarization
Pe, are free parameters.

The solid lines in Fig. 3 plot the results of calcula-
tion made with the parameters a and n listed in the
table, Pe = 15 ± 0.11 µC/cm2 for the polarization pro-
cess, and Pe = 9.97 ± 0.01 µC/cm2 for the depolariza-

p t( ) Pe P t( )–( )/ Pe P0–( ) 1/ 1 t/a+( )n
,= =
3
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Relaxation parameters (a, n) of SBN-0.75 crystals

Process
a n

fast stage slow stage fast stage slow stage

Polarization, E = 2 kV/cm 0.68 µs 0.52 ± 0.008 min 0.035 0.206 ± 0.004

Depolarization 0.51 ± 0.02 min 0.32 ± 0.01
tion process. The symbols indicate experimental data.
The nonexponential relaxation p(t) is related to the nor-
malized distribution function f(τ) of relaxation times τ
(assuming the relaxation centers to be independent)
through

 (2)

and the normalized dimensionless function g(lnτ) =
τf(τ), which characterizes the lnτ distribution, or the
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Fig. 4. Evolution (a) of the switching current i and (b) of the
polarization P in the fast polarization relaxation stage
obtained on an SBN-0.75 crystal in various pulsed electric
fields E: (1) 1, (2) 2, (3) 4, (4) 6, (5) 7, (6) 8, and (7) 9 kV/cm.
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distribution of barrier energies for relaxation centers
U = kTln(τ/τ0), is connected with the power-law relax-
ation (1) through the Laplace transform [15] and can be
written as

 (3)

Broad g(lnτ) functions including very large values of τ
characteristic of relaxors are also presented in Fig. 3 for
the polarization and depolarization processes.

3.1.2. The fast polarization relaxation stage 

Figure 4 displays the fast stage of the polarization
(polarization jump) in SBN-0.75, which ends at the ini-
tial point P0 of the slow relaxation in Fig. 3. In contrast
to homogeneous ferroelectrics [1, 2], where switching
currents for E > Ec exhibit characteristic maxima indi-
cating a change in polarization with acceleration, in
SBN-0.75 crystals an abrupt process starts, as a rule, in
fields far exceeding the half-width of the dielectric hys-
teresis loop or is not observed altogether up to break-
down fields. Figure 4a illustrates the dependence of the
switching currents i(t) on time in an (originally polydo-
main) SBN-0.75 crystal. An abrupt process, qualita-
tively similar to that observed to occur in homogeneous
ferroelectrics, starts in fields considerably in excess of
the coercive field Ec (the quantity Ec is discussed
below). In lower fields, including those less than the
half-width of the hysteresis loop, the switching currents
decay rapidly and nonexponentially. The variation of
polarization P(t) with time for this interval of fields
(Fig. 4b) follows power-law relation (1) to sufficient
accuracy. The parameters a and n of the polarization
relaxation are listed in the table. Figure 5 displays the
P(E) relations for the original poly- and single-domain
crystals; these relations were obtained by integrating
the current i(t) (Fig. 4) with respect to time. The P(E)
relations are characterized in all the crystals by a
smooth growth of P with increasing field (up to E @ Ec

in polydomain samples, which indicates the increase in
the poled volume with the field), with the saturated
value of the switched charge P in the single-domain
state being far less than that in the polydomain state. It
should be stressed that the P(E) curves obtained on
samples of the same composition differ strongly in
shape; therefore, the case illustrated in Fig. 4 is not
actually characteristic of the given composition. The
absence of a switching fields maximum over a broad
interval of currents in SBN crystals may be accounted

g τln( ) 1/Γ n( )( ) a/τ( )n
a/τ–( ).exp=
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for qualitatively as being due to the broad distribution
of relaxation times within the volume of an inhomoge-
neous crystal. The abrupt process observed to occur in
higher fields, which qualitatively resembles that seen in
homogeneous ferroelectrics, likewise cannot be dis-
cussed in terms of the switching times, the language
accepted for a model description of the process [2],
because the polarization P (proportional to the poled
volume) grows as the field increases.

Summing up the above studies of the fast and slow
polarization stages, one may conclude that the poling
kinetics in external fields, both less and larger than the
half-width of the hysteresis loop, can be fitted satisfac-
torily, on the whole, by power law (1). The table lists
the polarization relaxation parameters for the fast and
slow stages calculated for a field of 2 kV/cm.

3.2. Quasi-Static Dielectric Hysteresis Loops

Structural disorder, which is responsible for the gen-
eration in relaxor ferroelectrics of an internal electric
field randomly distributed over the crystal volume, not
only smears the dielectric permittivity maximum and
the phase transition to the polar state but also brings
about an anomalous shape of the dielectric hysteresis
loops. Figure 6 displays hysteresis loops in the depen-
dence of polarization P on field E obtained in SBN-
0.75 in a slowly varying (quasi-static) periodic field
with a period of 1 h, which corresponds to a frequency
of 10–4 Hz, and in a 60-Hz field at T = 275.7 K. The
loops obtained in the quasi-static field feature an
unusual shape; indeed, the first cycles are open nonre-
producing trajectories with a gradually decreasing
polarization amplitude, after which the amplitude prac-
tically ceases to decrease, thus making all subsequent
cycles reproducing. The first cycles obtained in a 60-Hz
ac field are not fixed; therefore, the loops have the com-
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Fig. 5. Switchable polarization P plotted vs. electric field E
for (1) a polydomain and (2) a single-domain SBN-0.75
crystal.
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mon elongated, nonsquare shape typical of most con-
ventional ferroelectrics and their amplitude is small
because only part of the crystal volume is involved in
polarization switching in the field of chosen strength
and frequency. Both loops have unipolarity of the same
sign, which sets in in the sample after the first few
switching cycles. Note that the difference in the polar-
ization amplitudes between the first few quasi-static
dielectric hysteresis loops and the diffuseness of the
phase transition are particularly large in SBN-0.75 and
SBN-0.61 doped by La and Ce [6, 7].

The randomly distributed internal field Ei can quite
possibly affect the observed shape of the quasi-static
hysteresis loop. The field Ei distorts the symmetric dou-
ble-minimum free-energy function, which becomes
asymmetric with minima of different depth correspond-
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Fig. 6. Dielectric hysteresis loops obtained in SBN-0.75 in
(a) a quasi-static and (b) a 60-Hz electric field.
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ing to a metastable and a stable state. Because Ei is a
random quantity, the depths of the minima, their mutual
positions in the sample volume, and the heights of the
barriers separating these states are likewise random
quantities. Before application of an external electric
field, the crystal sample resides in a mixed state, with
one part of the crystal being in the stable and the other
in the metastable state, with a deep and a shallow min-
imum, respectively. After a field of a given strength and
duration has been switched on, transitions from meta-
stable to stable states with deep minima start in the vol-
ume of the crystal and will be accompanied by an
increase in the polarization opposing the applied field.
The reverse transition in an oppositely directed field of
a limited magnitude may turn out impossible in prac-
tice, because the barriers are too high, as a result of
which part of the crystal will not be capable of partici-
pating in further polarization switching and the loop
amplitude will decrease [6]. It may also be conjectured
that at certain fields the deep minima act as local traps,
or pinning centers for the polarization, thus eliminating
it from the further process [8]. Complete susceptibility
of the loop can possibly be reached if the external field
is so strong that the internal fields Ei are exceeded
throughout the crystal volume.

3.3. Distribution of the Coercive Field in a Relaxor 

Investigation of the relaxation within a broad range
of dc electric fields E shows that relaxors do not have a
definite coercive field Ec, because (unlike the case of a
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Fig. 7. (1) Dependence of polarization P on field E and
(2) distribution D(Ec) of the coercive field Ec in the SBN-
0.75 crystal. Circles are experimental data on P, solid line is
the calculated power-law dependence of P on E, squares are
jumps in P upon sudden application of a field E, and dashed
lines relate to the linear and nonlinear components of the
polarization P(E).
PH
homogeneous ferroelectric), irrespective of the field E,
a large part of the initial variation of the polarization in
a relaxor is always a fast (jumplike) process which
apparently takes place in the crystal regions where the
shallow metastable minimum of the local free energy in
a field E is either very small or altogether absent (see
Section 3.1). Our experimental data, complemented
with fairly simple assumptions, make it possible to con-
struct a possible distribution of the coercive field over
the SBN-0.75 crystal volume. The fractional volume
with a definite coercive field Ec is proportional to the
amplitude of the fast polarization appearing abruptly
upon application of a field E = Ec, without taking into
account its linear component along this field. Figure 7
presents, in graphical form, the dependence of polariza-
tion P on field E, which is one quarter of the period of
the hysteresis loop shown in Fig. 6a. The values of P are
close to those of the jumps in P denoted by squares in
Fig. 7, which permits us to assume that the P(E) depen-
dence roughly reflects the behavior of the fast part of
polarization under application of the field E. The P(E)
dependence can be satisfactorily described by the same
power-law function as the polarization relaxation P(t):

 (4)

where Pn(E) = P∞ – (P∞ – P0)/(1 + E/b)c is the nonlinear
component, P∞ is the limiting value of Pn for E  ∞,
and P∞, b, and c are free parameters used in fitting the
experimental data. The solid line in Fig. 7 is a calcu-
lated curve with parameters χ = 0.44–0.47 µC/kV cm,
P∞ = 15.3–14.7 µC/cm2, b = 2.0–3.5 kV/cm, and c =
1.4–2.7, and the circles are the experimental data. Con-

sider the integral  = P∞. Because Pn(E)

may be considered proportional to the fraction of the
crystal volume becoming poled under the application of
field E, which is the coercive field for this volume frac-
tion (Pn = kv ), and P∞ = kV (V is the total volume of the
crystal), the function D(Ec) = dv /VdEc = dPn/P∞dEc

characterizes the probability density of the coercive

field Ec in the crystal and  = 1; i.e., this

function is normalized. The most probable value of Ec

coinciding with the maximum in the D(Ec) distribution
is seen to correspond to 2 kV/cm.

The probability density D(Ec) of Ec should vary
slightly, because the P(E) curves used to construct it
are, generally speaking, not reproducing. In particular,
the P(E) curves and the distribution functions D(Ec)
will be different in the cases where a crystal is polarized
from initial polydomain and single-domain states. Note
that homogeneous ferroelectrics with a slim canted
hysteresis loop may also have broad coercive-field dis-
tributions [16] (in contrast to a homogeneous ideal fer-
roelectric with a square-shaped hysteresis loop, whose
D(Ec) is always a delta function).
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Pn E( )d
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4. CONCLUSIONS

Thus, the features observed in the dielectric proper-
ties of SBN-0.75 crystals and reported here are indica-
tions of a structural disorder characteristic of ferroelec-
tric relaxors. These features are most pronounced in
this composition of the strontium–barium niobate solid
solution and may be considered as a measure of disor-
der in the structure. Because of the long relaxation
times and of the broad distribution spectrum of these
times in the crystal volume, they are reliably revealed
only in slow measurements.
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Abstract—This paper reports on the results of investigations into the electroluminescence induced by polar-
ization switching of a ferroelectric ceramic material in an electric field with a rapidly increasing strength. A
correlation between the polarization switching and luminescence kinetics is revealed. It is demonstrated that
tunneling of electrons to the conduction band and impact ionization in field concentrators are the main mecha-
nisms of generation of free charge carriers responsible for the electroluminescence and internal screening of
switching domains. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that, during polarization switching of
ferroelectrics, nucleation and growth of domains can be
retarded by a depolarizing field of bound polarization
charges. This effect becomes weaker due to compensa-
tion of the polarization charges. The screening of polar-
ization charges substantially affects the domain struc-
ture and the mechanism of polarization switching [1].
The transformation of the domain structure in an exter-
nal electric field is accompanied by screening through-
out the switching of domains. Although the problem of
screening has attracted considerable research attention,
the mechanism of this process remains unclear. It has
been experimentally demonstrated that the time of
polarization switching depends on the conditions of
screening of the spontaneous polarization Ps. The
screening occurs through the capture of charge carriers
by local active centers in a surface region of the ferro-
electric and in the vicinity of the domain walls. In poly-
crystalline (ceramic) materials, the polarization charge
can be compensated by both free charges in the bulk of
grains and charges at grain boundaries [2]. The screen-
ing can be external (dependent on the external compen-
sation for the bound charge) and internal (produced by
the space charge). In ferroelectric materials, the bulk
internal screening plays an important role, because the
external screening is not complete owing to the occur-
rence of a surface dielectric gap [2].

As a rule, the time characteristics of polarization
switching can be related to the time constant of the
Maxwell relaxation of a nonequilibrium screening
space charge. In turn, the Maxwell relaxation time τd =
ε/σ ~ 10–1–105 s depends on the permittivity ε and the
conductivity σ of the material [3, 4]. For a short polar-
1063-7834/03/4511- $24.00 © 22178
ization switching pulse (τ < τd), space-charge carriers
have no time to respond to this pulse and the residual
depolarizing field can induce spontaneous inverse
polarization switching of the ferroelectric material.
However, in our earlier works [5–7], we demonstrated
that, upon exposure of ferroelectric ceramic materials
to a steep high-voltage pulse, an equilibrium internal
field is induced by space charges for times considerably
shorter than the Maxwell relaxation time. This makes
polarization of ferroelectric ceramic materials for times
lying in the microsecond range possible. Note that, at
τ ! τd, slow (primarily, electrodiffusion) mechanisms
of bulk screening are highly improbable. The question
now arises as to how the domain structure will behave
in the case of ultrafast polarization switching when the
response times of the ionic and electronic subsystems
are comparable in magnitude (<10–6 s).

Earlier [5], it was assumed that the main mechanism
responsible for the generation of an internal field is
associated with the impact ionization of deep levels (at
activation energies of 1.5–3.0 eV) with the formation of
a short-lived solid-state plasma. The subsequent recom-
bination of charges, charge trapping, and interband
transitions through levels of defects are accompanied
by emission in the visible range, because, for the major-
ity of the studied materials, luminescence has been
observed during the course of pulses. However, the
strength of the applied external field (~1 MV/m) was
less than the field strength necessary for impact ioniza-
tion (~10 MV/m). As was shown by Darinskiœ and
Sidorkin [8], these fields can be locally induced in the
bulk of samples during the transformation of the
domain structure due to interaction of domain walls
with point or nonlinear defects.
003 MAIK “Nauka/Interperiodica”
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The electroluminescence induced by polarization
switching in ferroelectrics is a sensitive tool for investi-
gations into the mechanism of transformation of the
domain structure and specific features of the electron
screening associated with this mechanism. The aim of
the present work was to elucidate the mechanism of
polarization switching in strong electric fields with a
rapidly increasing strength and the role played by bulk
screening in the process. For this purpose, we analyzed
the kinetic characteristics of polarization switching and
the attendant luminescence in ferroelectric ceramic
materials.

2. EXPERIMENTAL TECHNIQUE

In our experiments, we used a PKR-1 ferroelectric
ceramic with the Curie temperature TC = 628 K and a
relatively weak coercive field Ec ≈ 1.0 kV/mm, which

belongs to the PbTiO3–PbZrO3–Pb O3 system
of multicomponent solid solutions [9]. Samples in the
form of disks 1 mm thick and 10 mm in diameter were
prepared by hot pressing. Silver electrodes without
rims were applied to the flat surfaces of the disks.

The measurements were performed on a high-

voltage setup at rates of electric field rise  = 0.1–
80 kV/(mm · µs) according to the technique described
in [10]. The specific feature of this technique is that a
lumped capacitor is connected in the electric circuit in
series with a ferroelectric ceramic sample in order to

generate pulsed fields with a specified value of .
When the electric field is applied along the direction of
polarization switching (the electric field vector is anti-
parallel to the polarization vector), the polarization
switching current passes through the sample in addition
to the capacitive current. Note that the intensity of the
former current considerably exceeds the intensity of the
latter current. In this case, the voltage oscillogram V(t)
is characterized by a plateau corresponding to rapid
switching of domains. This process proceeds at the
same voltage (Fig. 1a) at which the strength of the elec-
tric field playing the role of a dynamic coercive field

 > Ec reaches a steady-state value in the bulk of the
ferroelectric ceramic sample.

For the studied rates of electric field rise, the
dynamic coercive field  monotonically increases

with an increase in  [10]. The time interval between
the point in time at which the electric field in the sample
reaches the dynamic coercive field  and the point in
time at which the polarization switching is completed,
i.e., the plateau length, can be treated as the polarization
switching time τs. After the completion of the main
stage of polarization switching, the current decreases
and the electromotive force of the induction changes
sign, which leads to a further increase in the field

B1/2' B1/2''

Ė

Ė

Ec'

Ec'

Ė

Ec'
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strength to (2–3) . The switching-current curve has a
characteristic asymmetric shape with a smooth maxi-
mum and a steeply descending tail portion (Fig. 1b).
This indicates that, in the course of polarization switch-
ing, the voltage across the ferroelectric ceramic sample
is controlled by the transient current and the switching
processes proceed in the self-consistent electric field.

Luminescence pulses induced by polarization
switching of the ferroelectric ceramic sample were
measured at lateral surfaces of the sample with the use
of photomultipliers covering the spectral range 300–
1200 nm. In order to prevent the luminescence stimu-
lated by microdischarges in the electrode regions, the
samples were placed in a silicone oil. We investigated
the temperature and time dependences of the intensity
Irad and energy Erad of electroluminescence of the ferro-
electric ceramic material and their relation to the inte-
grated characteristics of polarization switching (such as

the time τs, the current js, and the coercive field . The
luminescence intensity Irad was determined from the
amplitude of the luminescence pulse, and the total radi-
ant energy Erad was calculated from the area of the lumi-
nescence pulse oscillogram.

Ec'

Ec'

(a)

(b)

Fig. 1. Correlation of luminescence pulses (upper curves)
with (a) the polarizing voltage and (b) the switching current
for a PKR-1 ferroelectric ceramic sample. Scale division:
1 µs/div for time, 1.5 kV/div for voltage, and 6 A/div for
switching current. T = 293 K.
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3. EXPERIMENTAL RESULTS

An analysis of the data presented in Fig. 1 shows
that there exists a clear correlation between the kinetics
of polarization switching of the ferroelectric ceramic
material and the electroluminescence kinetics. The
luminescence is observed at all stages of polarization
switching. The luminescence curve is characterized by
several (most frequently, two) pronounced peaks that
merge together with an increase in the rate of electric
field rise. The specific features in the physical mecha-
nisms of transformation of the domain structure in a
self-consistent electric field manifest themselves not
only in the shape of the switching-current pulse but also
in the luminescence kinetics.

An increase in the rate of electric field rise  leads
to an increase in the luminescence intensity. The maxi-
mum in the luminescence intensity is observed not at
the final stage of polarization switching, as is the case
in rectangular pulsed fields [11, 12], but is shifted
toward the ascending branch of the switching current
due to a change in the conditions of nucleation and
growth of domains. In the self-consistent field, the
luminescence peaks are clearly resolved even at high
rates of electric field rise. It is worth noting that the
shorter the polarization switching time τs, the higher the
intensity of the first luminescence peak corresponding
to an increase in the current. At short times of polariza-
tion switching (τs ≤ 1 µs), the luminescence is observed
after vanishing the polarization switching current. This
indicates that the processes of screening and domain-
wall pinning at defects are incomplete. A decrease in
the polarization switching time τs leads to an increase
in the luminescence intensity Irad (Fig. 2) due to rapid
switching of domains.
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2') unannealed PKR-1 ferroelectric ceramic samples. T =
293 K.
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An increase in the domain-wall velocity can result
in an increase in the rate of radiative recombination of
charges produced during transformation of the domain
structure. Nonetheless, the radiant energy Erad
decreases. Preliminary annealing of the samples at a
temperature above the Curie point (t = 5 h, T = 770 K)
leads to an increase in the energy Erad and the intensity
Irad of luminescence (Fig. 2), most likely, due to the dis-
sipation of space charges at domain walls. Upon heat-
ing to temperatures considerably above the Curie point,
the volume distribution of defects in the sample
becomes statistically uniform, which results in the loss
of defect memory of the material. The metastability of
this state is responsible for the high mobility of domain
walls and the related increase in the electrolumines-
cence energy efficiency of the ferroelectric ceramic
material. The intensity of the second luminescence
peak for the annealed samples is higher than that for the
unannealed samples.

The temperature dependences of the intensity Irad
and the energy Erad of electroluminescence are similar
to those of the integrated characteristics of polarization
switching (such as the time τs, the current js, and the

coercive field ). The behavior of the dependences
Irad(T) and Erad(T) is governed by the specific features of
the polarization switching voltage pulse, which depend
on the polarization switching temperature (Fig. 3a). As
the Curie temperature TC is approached, the coercive

field  and the polarization switching time τs decrease
(Fig. 3b). A decrease in the time τs corresponds to an
increase in the recombination rate of screening charges,
which become nonequilibrium after depinning of
domain walls from defects. This results in an increase
in the luminescence intensity. It should be noted that
the increase in the transformation rate of the domain
structure upon heating of the ferroelectric ceramic sam-
ple is caused by the increase in the mobility of domain
walls, whereas the transformation of the domain struc-
ture at room temperature is initiated by the relatively
strong dynamic coercive field . As was shown by
Novitskiœ et al. [10], at room temperature, an increase

in the rate of electric field rise  and, hence, the

dynamic coercive field  is accompanied by a
decrease in the polarization switching time τs and vice
versa. For fields exceeding 2–2.5 MV/m, the polariza-
tion switching time is inversely proportional to the field

in which the process takes place: τs = const . For

weaker fields, the dependence of τs on  is described
by an exponential law.

As can be seen from Fig. 3b, the total radiant energy
Erad exhibits a clear tendency toward a decrease with
increasing temperature T and the temperature depen-
dence of the total radiant energy Erad is similar to that of
the remanent polarization Pr(T) for ferroelectric ceram-
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ics. The temperature dependence of the luminescence
intensity Irad(T) exhibits a maximum. The results
obtained indicate that an increase in the temperature
brings about not only a decrease in the dynamic coer-
cive field  (which leads to an increase in the
switched volume of the sample) but also thermal depo-
larization of the ferroelectric ceramic material. The
decrease in the switched charge is the main reason for
the decrease in the total radiant energy, even though the
luminescence intensity slightly increases.

4. DISCUSSION

The luminescence occurring during polarization
switching was explained by Guro et al. [13] in terms of
the semiconducting properties of BaTiO3. It was
assumed that the internal depolarizing field Ei ≈
4πPs(according to the estimates made by Miller and
Savage [14], Ei ~ 3 × 108 V/m) leads to band bending
and generates electron–hole pairs until thermodynamic
equilibrium is attained when the field Ei turns out to be
screened by excess charge carriers. Therefore, the
screening is provided by electrons generated from the
valence band through field emission rather than by car-
riers transferred from the conduction band. Aœrapetov et
al. [15] held the same viewpoint. It is their opinion that,
owing to the Zener effect, electrons that ensure the
screening of bound charges on ends of growing nuclei
are transferred from the valence band. Consequently,
the growth of nuclei and the screening of their polariza-
tion are concurrent processes in the course of rapid
switching.

On this basis, the results presented in Figs. 1 and 2
can be interpreted as follows. The mechanism of nucle-
ation is such that, at the initial stage, domains smaller
than the critical size continuously nucleate and annihi-
late in the sample. The domains reach the critical size
when the field in the sample approaches the dynamic
coercive field . In this case, the voltage oscillogram
exhibits a characteristic plateau that indicates the onset
of transformation of the domain structure. At the lead-
ing edge of the voltage pulse, 180° domain walls are
destabilized and their mobility increases without trans-
forming the original domain structure. Then, 180°
tapered domains oriented along the field nucleate and
grow in the sample.

It can be assumed that, at the initial stages of polar-
ization switching, the luminescence in the ferroelectric
ceramic material is caused by the increase in the mobil-
ity of domain walls and the number of domains
involved in the switching. These processes lead to an
increase in the real part of the permittivity ε' of the sam-
ple [7] at the leading edge of the voltage pulse.

In the bulk of the ferroelectric ceramic sample, the
inhomogeneity of the electric field, which is especially
pronounced on the ends of growing spike-shaped
domains, directly determines the probability of electron

Ec'

Ec'
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tunneling to the conduction band. The screening is pre-
dominantly enhanced in the immediate vicinity of
growing spike-shaped domains and, hence, weakens
the depolarizing field in this region. Therefore, the
nucleation rate in these regions is considerably higher
than that in unswitched regions, which results in inten-
sive nucleation at domain walls.

The concurrent processes of recombination of elec-
trons are responsible for the quasi-equilibrium state of
the electronic subsystem in which the carrier concen-
tration remains relatively high. The recombination is
accompanied by the luminescence. The intensity of the
luminescence observed at the early stage of polariza-
tion switching in the ferroelectric sample increases out
of proportion to the increase in the voltage (Fig. 1). This
confirms the assumption regarding the autoelectronic
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Fig. 3. (a) Oscillograms of the polarization switching volt-
age V(t) (solid lines) and the polarization switching current
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at T = (1) 293 and (2) 423 K. (b) Temperature dependences
of (1) the polarization switching time τs and (2) the coercive
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nature of the internal screening at the initial stage of
polarization switching.

The screening of free domain walls leads to the pin-
ning of 180° domains due to the formation of bound
space charges. The mobility of screened domain walls
is substantially less than that of free domain walls. This
brings about a decrease in the domain mobility and, as
a consequence, the retardation of polarization switch-
ing. Therefore, the screening is attended by a decrease
in the luminescence intensity. The participation of 90°
domains in the final stage of polarization switching
leads to a further increase in the luminescence intensity
Irad. Electron microscope examinations of the domain
structure of ferroelectric ceramic samples partially
polarized in a self-consistent field demonstrated that
the transformation of mobile 90° domain walls occurs
almost simultaneously with the appearance of the sec-
ond luminescence peak.

5. CONCLUSIONS

Thus, we proposed a model according to which
local inhomogeneous electric fields are induced in the
bulk of a ferroelectric material due to the growth of
antiparallel spike-shaped domains. These fields provide
conditions favorable for the generation of electrons tun-
neling to the conduction band owing to a considerable
band bending. This leads to the formation of an inho-
mogeneous electron liquid that is predominantly con-
centrated in the vicinity of the growing-domain ends.
The proposed mechanism of the phenomenon under
investigation is quasi-static; i.e., it is retained through-
out the polarization switching and determines the
dynamic features of the rapidly switching domain
structure.

The tunneling of electrons to the conduction band
and impact ionization in field concentrators are the
main mechanisms of generation of free charge carriers
responsible for the electroluminescence and internal
screening of the domain structure upon ultrafast polar-
ization switching of ferroelectrics in self-consistent
electric fields.
PH
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Abstract—The spinel structure of lithium titanate Li4Ti5O12 is refined by the Rietveld full-profile analysis with
the use of x-ray and neutron powder diffraction data. The distribution and coordinates of atoms are determined.
The Li4Ti5O12 compound is studied at high temperatures by differential scanning calorimetry and Raman spec-
troscopy. The electrical conductivity is measured in the high-temperature range. It is shown that the Li4Ti5O12
compound with a spinel structure undergoes two successive order–disorder phase transitions due to different dis-
tributions of lithium atoms and cation vacancies (h, V) in a defect structure of the NaCl type:
(Li)8a[Li0.33Ti1.67]16dO4  [Lih]16c[Li0.33Ti1.67]16dO4  [Li1.33h0.67]16c[Ti1.67h0.33]16dO4. The low-tempera-
ture diffusion of lithium predominantly occurs either through the mechanism …  Li(8a)  V(16c) 
V(8a)  … in the spinel phase or through the mechanism …  Li(16c)  V(8a)  V(16c)  … in
an intermediate phase. In the high-temperature phase, the lithium cations also migrate over 48f vacancies: … 
Li(16c)  V(8a, 48f )  V(16c)  …. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Lithium titanate Li4Ti5O12 has a cubic spinel struc-

ture with space group  [1–4]. According to
Blasse [2], three-fourths of the lithium ions can occupy
8a tetrahedral positions, the other Li+ ions and Ti4+ ions
are statistically distributed over 16d octahedral posi-
tions in the ratio 1 : 5, and the formula for this com-
pound is Li[Li1/3Ti5/3]O4. Owing to the presence of
vacant cation positions and titanium ions with a vari-
able valence in the spinel structure, this compound can
be used as a cathode material for lithium batteries.
Ohzuku and Veda [4] synthesized the Li2[Li1/3Ti5/3]O4
compound with completely occupied 16c and 16d octa-
hedral positions through the electrochemical intercala-
tion of lithium. These authors made the inference that
16c octahedral positions in the initial sample are half-
occupied by lithium ions. Proskuryakova et al. [5] ana-
lyzed the IR and Raman spectra of the Li4Ti5O12 spinel
and drew the conclusion that titanium and lithium ions
occupy both octahedral and tetrahedral positions and
that the studied compound has the crystal chemical for-
mula Li4/9Ti5/9[Li8/9Ti10/9]O4.

The low electrical conductivity (σ = 5.8 × 10–8 S/cm)
of the Li4Ti5O12 spinel [6] suggests that the 8a tetrahe-
dral positions are occupied. The higher electrical con-
ductivities (σ ~ 10–3 S/cm) measured at 670 K [7], most
likely, correspond to a disordered state observed in this
compound upon a transfer of lithium ions from the 8a
positions to vacant 16c octahedral positions, as is the

Fd3m
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case in Li2MCl4 chloride spinels (M = Mg, Mn, Fe) [8–
12]. Neutron diffraction and Raman spectroscopic
investigations of these compounds at high temperatures
have demonstrated that the spinel structure transforms
into a defect structure of the NaCl type due to a redis-
tribution of lithium ions.

In this work, the occupancies of cation positions
were determined using x-ray and neutron diffraction at
room temperature. The electrical conductivity and
Raman spectra were studied at high temperatures. It
was found that the high lithium conductivity in the
Li4Ti5O12 compound is caused by two successive phase
transitions associated with different distributions of
lithium ions in the cubic structure.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

The samples used in our experiments were prepared
through solid-phase synthesis. Lithium carbonate
Li2CO3 and titanium oxide TiO2 (the content of the
main component was no less than 99.9%) served as ini-
tial reactants. The initial mixtures of reactants were
carefully mixed in a jasper mortar and then were
pressed into pellets. The synthesis was performed at
temperatures ranging from 800 to 1170 K for 80–100 h
with homogenization of intermediate products at 20- to
30-h intervals. The charge transfer was studied using
samples in the form of pellets 5–6 mm in diameter and
4–5 mm in height. The density of the ceramic materials
synthesized was measured by hydrostatic weighing and
003 MAIK “Nauka/Interperiodica”
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amounted to 85–90% of the x-ray density. Platinum
electrodes were applied to flat surfaces of the pellets
with the use of a paste prepared from a finely dispersed
platinum powder. The platinum electrodes were fired at
1220 K. After this procedure, the cooling rate was
200 K/h in the range 500–1220 K and did not exceed
60 K/h upon cooling to room temperature.

The structural investigation and x-ray powder dif-
fraction analysis were performed on a Stadi-P (Stoe)
diffractometer (CuKα radiation). The intensities of x-
ray reflections were measured in the range 2θ = 5°–
120° with a step width of 0.02°. The neutron diffraction
data were collected on a D7a multidetector diffracto-
meter (wavelength λ = 1.515 Å, angular resolution
∆d/d = 0.2%). The measurements were carried out at
room temperature in the 2θ range from 5° to 111° with
a step width of 0.1°. The occupancies of cation and
anion positions were determined using the Rietveld
full-profile analysis with the Fullprof program [13].
The electrical conductivities were measured by imped-
ance spectroscopy on a Solartron 1260 frequency
response analyzer in the frequency range 10–100 kHz,
in which the real part of the impedance Z' of the sample
remained nearly constant. The activation energy for
electrical conduction was calculated from the slope of
the dependence lnσT on the reciprocal of the tempera-
ture. The partial pressure of oxygen in the range 10–12–
1 atm was maintained and controlled using an electro-
chemical oxygen pump and sensor, which were fabri-
cated from an yttria-stabilized cubic zirconia. The time
required for attaining an equilibrium varied from
20 min to several hours depending on the composition
of the gas phase and the temperature of the experiment.
The Raman spectra were recorded in the temperature
range 300–1000 K on a Renishaw-1000 spectrometer
(Ar+ laser, λ = 514 nm) equipped with a TS-1500 high-
temperature attachment and then were processed with
the TMS software package. The differential thermal
analysis (DTA) was performed a TG-92 (Setaram) ther-
moanalyzer.

Structural parameters of Li4Ti5O12

Atom Position
Atomic 

coordinates 
x = y = z

Site
occupancy

Thermal 
parameter 

B, Å2

Li 8a 0 1.00(6)* 0.32*

Li 16d 0.625 0.16 0.74

Ti 16d 0.625 0.84(3)** 0.74**

O 32e 0.3878(6) 1.00(3)* 0.77*

  * Parameters determined from the neutron diffraction data.
** Parameters determined from the x-ray diffraction data.
PH
3. RESULTS AND DISCUSSION

3.1. Distribution of Cations over Crystallographic 
Positions

The structure of the Li4Ti5O12 lithium titanate was

refined in space group  by varying the unit cell
parameters, the coordinates of oxygen atoms, the site
occupancies g, and the isotropic thermal parameters B.
The site occupancies and coordinates of oxygen atoms
and the occupancies of lithium atoms in the 8a posi-
tions were determined from neutron diffraction data.
The occupancies of octahedrally coordinated titanium
atoms in the 16d positions were refined using x-ray dif-
fraction data, because titanium is more sensitive to x
rays. The occupancies of lithium atoms in the 16d posi-
tions were determined as g[Li(16d)] = 1 – g[Ti(16d)];
in this case, the thermal parameters were taken to be
B[Li(16d)] = B(Ti). In the final refinement of the x-ray
diffraction data, the reliability factors were as follows:
Rp = 12.3, Rwp = 14.3, RB = 6.2, RE = 4.7, and RF = 5.0.
The results of the refinement are presented in the table.

It was found that, in the structure of the Li4Ti5O12
titanate, the unit cell parameter is a = 8.3538(2) Å and
the M–O bond lengths in the tetrahedral and octahedral
environments are equal to 1.9939 and 1.9873 Å, respec-
tively. Since the assumption regarding the possible
occupation of the 8a positions with titanium atoms led
to deterioration of the reliability factors, the presence of
the titanium atoms in the tetrahedral positions was
ruled out. The above analysis of the site occupancies
showed that the compound under investigation has the
crystal chemical formula (Li)[Li0.33Ti1.67]O4.

3.2. Electrical Conductivity

The temperature dependence of the electrical con-
ductivity for the Li4Ti5O12 titanate in the Arrhenius
coordinates is shown in Fig. 1. The low conductivities
σ at low temperatures can be explained by the absence
of both vacancies in the 8a positions and interstitial
lithium ions in the 16c positions. As the temperature
increases from 430 to 1230 K, the electrical conductiv-
ity increases by almost six orders of magnitude. It can

be seen that the dependence  exhibits a com-
plex behavior and involves portions with high activa-
tion energies. This suggests that, upon heating, the low-
temperature phase of the Li4Ti5O12 titanate with a
spinel structure transforms into high-temperature
phases with other distributions of lithium cations over
sites. An increase in the electrical conductivity of the
Li4Ti5O12 titanate spinel, unlike the Li2MCl4 chloride
spinels, can also be associated with the contribution of
the electronic conductivity to the total conductivity due
to the nonstoichiometry of the sample with respect to
oxygen at high temperatures. In order to estimate the
electronic contribution, we measured the dependence
of the electrical conductivity on the oxygen pressure in

Fd3m
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the gas phase (Fig. 2). It can be seen from Fig. 2 that the
electrical conductivity σ does not depend on the oxygen
partial pressure  at T = const. This indicates that the

oxygen content in the Li4Ti5O12 compound remains
constant and the measured conductivity σ is determined
by the lithium conductivity, which, in turn, does not
depend on the oxygen partial pressure .

Therefore, the substantial increase in the electrical
conductivity of the Li4Ti5O12 titanate is caused only by
the disordering of the original spinel structure due to a
redistribution of lithium ions among occupied and
empty sites. The temperature dependence of the activa-
tion energy for lithium conduction Ea(T) exhibits min-
ima at temperatures close to 800 and 1100 K, most
likely, upon the completion of two transitions to high-
temperature phases of the Li4Ti5O12 titanate. These
phase transitions can be transformations of the spinel
structure, first, into an ordered NaCl-type defect struc-

ture (space group ) and then into a disordered

NaCl-type structure (space group ), as is the
case in Li2MgCl4 chloride spinels [10]. The absence of
thermal effects in the DTA curves suggests a gradual
redistribution of cations over wide temperature ranges
and the occurrence of order–disorder phase transitions.
In situ investigation into the evolution of the Raman
spectra with variations in the temperature can provide
important information on phase transitions of this type,
which was convincingly demonstrated by Wussow
et al. [10] for lithium chloride spinels.
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Fig. 1. Temperature dependences of (1) the electrical con-
ductivity and (2) the activation energy for electrical conduc-
tion of the Li4Ti5O12 compound.
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3.3. High-Temperature Raman Spectroscopy

The Raman spectra of the Li4Ti5O12 compound at
different temperatures are shown in Fig. 3. It can be
seen from this figure that an increase in the temperature
leads to noticeable changes in the Raman spectra. As a
result, only three broad lines are observed at 973 K. The
temperature dependences of the frequency location of
the principal lines in the Raman spectra are shown in
Fig. 4.
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Fig. 2. Dependences of the electrical conductivity of the
Li4Ti5O12 compound on the oxygen partial pressure at T =
(1) 1023, (2) 1073, and (3) 1123 K.
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Fig. 3. Raman spectra of the Li4Ti5O12 compound at differ-
ent temperatures.
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Proskuryakova et al. [5] thoroughly analyzed the IR
and Raman spectra of the Li4Ti5O12 spinel at room tem-
perature. In particular, it was demonstrated that the fre-
quencies of the Ti–O stretching vibrations lie in the
range above 460 cm–1. The stretching–bending vibra-
tions of the Li–O bonds in LiO4 and LiO6 polyhedra are
observed at 430 and 335 cm–1, respectively. The bending
vibrations at frequencies below 300 cm–1 correspond to
the O–Ti–O (235 cm–1) and O–Li–O (160 cm–1) bonds.
In the Raman spectra, the lines observed at higher fre-
quencies (675, 740 cm–1) [as compared to the frequen-
cies of the Ti–O stretching vibrations in compounds
with octahedral coordination of titanium (BaTiO3,
SrTiO3)] were assigned in [5] to vibrations of Ti–O
bonds in TiO4 tetrahedra. However, according to struc-
tural investigations (see table), titanium atoms occupy
only the 16d octahedral positions. Therefore, the high-
frequency lines at 675 and 740 cm–1 should be attrib-
uted to vibrations of Ti–O bonds in TiO6 octahedra. In
AB2O4 spinels, oxygen atoms are coordinated by three
B atoms and one A atom (Li atoms at the 8a positions).
Consequently, the presence of Li+ ions in the 16d posi-
tions leads to the nonequivalence of Ti–O bonds. A
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Fig. 4. Temperature dependences of the frequency of bond
vibrations in the Li4Ti5O12 compound.
PH
number of bonds (Ti–O…Li+) become shorter, and the
frequency of their vibrations is higher than the fre-
quency of vibrations of Ti–O bonds in ATiO3 perovs-
kites.

The redistribution of lithium ions in the structure of
the Li4Ti5O12 titanate upon heating brings about consid-
erable changes in the location and intensity of the lines
in the Raman spectra (Figs. 3, 4). A decrease in the
intensity ratio of the lines at 430 (LiO4) and 340 cm–1

(LiO6) is due to a transfer of lithium ions from the 8a
tetrahedral positions to vacant 16c octahedral positions.
At 773 K, this transfer is virtually complete and the
Raman spectrum exhibits three lines.

An increase in the intensity of the line at ~740 cm–1

can be associated with the appearance of a new mode of
vibrations of Ti–O … Li(16c) bonds. An increase in the
frequency of vibrations of Ti–O bonds in TiO6 octahe-
dra from 675 to 685 cm–1 at T > 800 K is most likely
caused by the transfer of lithium ions from the 16d
positions to the remaining vacant 16c positions. As a
consequence, the Coulomb attraction of Ti4+ and O2–

ions is enhanced and the Ti–O bond becomes shorter.
At these temperatures, two lines attributed to vibrations
of Li–O bonds in Li(16d)O6 and Li(16c)O6 octahedra
merge together.

3.4. Structural Prerequisites of Disordering 
and Migration of Lithium Ions 

in the Li4Ti5O12 Compound

In the structure of AB2O4 spinels, BO6 octahedra are
linked by AO4 isolated tetrahedra through common ver-
tices (oxygen atoms) into a three-dimensional frame-
work. The schematic diagram of the bonding of coordi-
nation polyhedra in spinel structures is drawn in Fig. 5.
In each pair, BO6 octahedra are shared by the edge. The
framework involves 56 empty tetrahedra of two types,
namely, T1(8b) and T2(48f), and 16 empty octahedra
Oc(16c). The occupied cation polyhedra and empty
polyhedra are shared by their faces: each A position is
surrounded by four empty octahedra, four B positions
surround a T1 tetrahedron, and two occupied B octahe-
dra and two empty octahedra surround a T2 tetrahedron.

Let us consider possible paths of migration of lith-
ium ions in the Li4Ti5O12 spinel. In the case when
vacancies in A positions are absent, an Li+ ion occupy-
ing an A position can migrate into an empty octahedron
through a common face. Then, the Li+ ion can either

A(8a) – Oc(16c) × 4

T2(48f) × 6

A(8a) × 2

B(16d) × 2

Oc(16c) × 2

T1(8b) × 2 – B(16d) × 4

T2(48f) × 6

Fig. 5. Schematic diagram of the bonding of coordination
polyhedra in the AB2O4 spinel structure [14].
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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leave this octahedron and occupy an empty T2 tetrahe-
dron (scheme I) or shift Li from the adjacent position A'
to an Oc' octahedron (scheme II). The lithium ion will
follow both paths until it occupies a vacancy at an A''
position formed after the escape of another migrating
lithium ion. The activation energy for migration of lith-
ium ions over these sites is higher than the energy for
migration of the lithium ion from the A position into the
empty octahedron, because lithium ions migrating
through the T2 position are repelled either by multiply
charged Ti4+ ions occupying adjacent positions B or by
Li+ ions located at the A' positions. However, it seems
likely that this activation energy is less than the
enthalpy of formation of thermodynamically stable
vacancies at the A positions due to the transfer of lith-
ium ions to vacant octahedral positions with an increase
in the temperature. The particular scheme (I or II) for
migration of the Li+ ion can be judged from the low-

temperature portion of the curve  with the
activation energy for electrical conduction Ea ~ 0.6 eV.

A considerable increase in the conductivity of the
Li4Ti5O12 titanate above 450 K indicates that the V(8a)
vacancies are formed in the 8a positions due to the trans-
fer of the fraction α of lithium ions to V(16c) empty octa-
hedra in the 16c positions. In this case, cations can
migrate over the trajectories … Li(8a)  V(16c) 
V(8a)  … (scheme III) and Li(16c)  V(8a) 
V(16c)  … (scheme IV). The probability of hopping
following scheme III is proportional to the product of
the fraction of charge carriers (Li+ ions) in the 8a posi-
tions by the fraction of vacant intermediate positions
[(16 – α)/16] and the fraction of vacancies in the 8a
positions (α/8): W3 ~ (8 – α)(1 – α/16)(α/8). The prob-
ability of hopping following scheme IV is proportional
to the product of the fraction of Li+ ions in the 16c posi-
tions (α) by the fraction of intermediate positions or
vacancies in the 8a positions (α/8) and the fraction of
the remaining vacant 16c positions: W4 ~ α(α/8)(1 –
α/16). The dependences of  and  +
W4) on the fraction of lithium ions α are shown in
Fig. 6. For close values of the activation energies for
migration of Li+ ions according to these two schemes
and small values of α, the lithium conduction is gov-
erned by lithium migration following scheme III. If the
quantity α varies over a wide range, lithium ions in both
positions are involved in the transfer.

In the case when half the number of lithium ions
transfer from the 8a positions to the 16c positions, the
migration of cations following scheme IV becomes
dominant. The lowest activation energy (0.3 eV) for
ionic conduction at approximately 800 K corresponds
to the energy of lithium migration following scheme IV
and indicates a complete transformation of the
Li4Ti5O12 spinel structure into an NaCl-type structure
with ordered cation vacancies in the 16c positions

(space group ). The crystal chemical formula

σ T
1–( )log

W3 4,log W3(log

Fd3m
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can be written as follows: [Lih]16c[Li0.33Ti1.67]16dO4,
where h is a vacancy. According to the group-theoretic
analysis performed for Li2MCl4 compounds with a sim-
ilar distribution of cations [10], the Raman spectrum
should involve four active modes (A1g, Eg, 2F2g) instead
of five modes characteristic of the spinel (A1g, Eg, 3F2g).
In the Raman spectrum of the Li4Ti5O12 titanate, three
modes are clearly observed at 873 K.

The transfer of lithium ions from the 16d positions
to vacant 16c octahedral positions is most likely
responsible for the drastic increase in the electrical con-
ductivity at T > 800 K. For Li2MCl4 chlorides, the high-
temperature phase transition is associated with the
transformation of the NaCl-type structure with ordered
cation vacancies into a disordered structure and the
Raman spectra at temperatures above the phase transi-
tion point involve only one line A1g [10]. Note that this
transition should be accompanied by the redistribution
of multiply charged ions over octahedral positions.
Moreover, the diffusion of Ti4+ ions in the Li4Ti5O12

compound is unlikely. Hence, it can be assumed that the
high-temperature kink in the temperature dependence
of the electrical conductivity at ~1050 K corresponds to
the completion of the second phase transition, which
results in the complete transfer of lithium ions from the
16d positions to the 16c positions. In this case, the crys-
tal chemical formula for the Li4Ti5O12 compound can
be written as follows: [Li1.33h0.67]16c[Ti1.67h0.33]16dO4.
Since the Raman spectrum at 973 K is characterized by
three modes, we can assume that the structure of the
Li4Ti5O12 titanate does not transform into a disordered
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logWk

0 2 4 6 8
α

2

1

3

Fig. 6. Dependences of the probability of lithium ions
migrating over different trajectories on the fraction α of
lithium ions in the 16c positions: (1) , (2) ,

and (3)  + W4).
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NaCl-type structure with one imperfect octahedral cat-
ion sublattice. At the same time, a decrease in the inten-
sity of the line at ~350 cm–1 with an increase in the tem-
perature from 873 to 973 K suggests that the lithium
sublattice is disordered.

The probability of Li+ ions migrating from the 16c
positions to empty octahedra at the 16c positions dras-
tically increases at T > 800 K, because these ions can
move not only through vacant 8a positions (Fig. 6) but
also through a number of vacant 48f tetrahedral posi-
tions [V(48f)] which are adjacent to vacancies in the
B(16d) positions. Earlier, Abrahams et al. [15]
observed vacancies in the titanium sublattice of the
Li2Ti3O7 ramsdellite whose composition is close to that
of the Li4Ti5O12 titanate. The 7Li NMR spectra of
Li2Ti3O7 exhibit one peak associated with one sort of
crystallographic position of Li+ cations [16].

It should be noted that the ionic conductivities of
Li2Ti3O7 [17, 18] and Li4Ti5O12 compounds at ~1000 K
are rather close to each other. An activation energy of
~0.5 eV corresponds to the migration of lithium ions
over the trajectory …  Li(16c)  V(48f ) 
V(16c)  …. This activation energy is substantially
higher than the activation energy for lithium migration
following scheme IV, because the Ti4+ ion occupies one
of two positions B surrounding the T2(48f) tetrahedron.
An increase in the activation energy for lithium conduc-
tion at T > 1150 K can be explained by the fact that the
other T2(48f) tetrahedral positions surrounded by two
TiO6 octahedra are involved in the ion transfer. This
leads to a strong enhancement of the Coulomb interac-
tion of migrating lithium ions with immobile cations.

4. CONCLUSIONS

Thus, the above investigation demonstrated that, in
the Li4Ti5O12 spinel structure, Li+ ions in the 8a regular
positions and interstitial ions in the 16c positions are
involved in diffusion. In high-temperature modifica-
tions of the Li4Ti5O12 compound with an NaCl-type
structure, Li+ cations in the 16c positions are charge
carriers: lithium cations migrate over vacant 8a tetrahe-
dral positions at moderate temperatures and 48f posi-
tions at temperatures above 800 K.
PH
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Abstract—The conditions for spontaneous spin polarization in a two-dimensional system in a zero magnetic
field are considered in the case of a partial filling of the lower quantum-well subbands when the energy of
exchange interaction of charge carriers exceeds their kinetic energy. The critical density above which the two-
dimensional gas of charge carriers undergoes complete spin depolarization is determined in the Hartree–Fock
approximation. It is assumed that this process can be due to a transition of the two-dimensional gas to a metallic
state.© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent considerable progress achieved in nanotech-
nology has provided a way of producing two-dimen-
sional semiconductor systems characterized by a low
density of charge carriers with a high mobility. These
systems exhibit ballistic properties under the condition
kBTτ/" > 1, where "/kBT is the time of electron–electron
interaction and τ = m*µ/e is the transport relaxation
time [1–14]. It should be noted that the ballistic trans-
port is governed by spin correlations to a greater extent
than the diffusive transport (kBTτ/" < 1) [2–4]. A clear
manifestation of spin correlations in charge-carrier
transfer is a metal–insulator transition revealed recently
in silicon metal-oxide semiconductor (MOS) transis-
tors in a zero magnetic field [1], even though the obser-
vation of this phenomenon contradicts the predictions
made in the framework of the one-parametric scaling
theory of localization, according to which the existence
of a metallic state in two-dimensional systems is
impossible [5]. Furthermore, the metallic state has been
observed in a two-dimensional electron (or hole) gas in
Si–Ge [6] and GaAs–GaAlAs [7, 8] heterojunctions.
The spin nature of the metallic state primarily manifests
itself in the fact that this state is destroyed in a magnetic
field applied in the plane of the two-dimensional sys-
tem and restoring the regime of weak (or strong) local-
ization. It has been found that the contribution to the
metal–insulator transition occurring in two-dimen-
sional systems is made by both the spin–orbit interac-
tion [2, 9, 10, 11] and spontaneous spin polarization
due to exchange and correlation interparticle interac-
tions [4, 12, 13]. Nonetheless, the mechanism of this
transition in two-dimensional systems is not clearly
understood. In particular, the field dependences of the
conductivity of a two-dimensional electron gas at an
electron density close to the critical value nc corre-
sponding to a metal–insulator transition indicate that,
1063-7834/03/4511- $24.00 © 22189
under these conditions, there occurs spontaneous polar-
ization [12, 15]. However, these results disagree with
data on the Shubnikov–de Haas oscillations and spin
susceptibility, according to which the tendency toward
ferromagnetic ordering is accompanied by the transfor-
mation of a normal metal into a two-dimensional insu-
lator without transition to a spontaneously polarized
state with delocalized wave functions [9, 14, 16]. In this
respect, the interrelation between the metal–insulator
transition and the critical density of charge carriers
above which a spontaneously polarized two-dimen-
sional gas undergoes complete spin depolarization
remains a key problem. In the present work, the critical
density of charge carriers above which the two-dimen-
sional gas undergoes complete depolarization was
determined in the Hartree–Fock approximation. Within
this approximation, we analyzed the conditions at
which spontaneous spin polarization can arise in a two-
dimensional system in a zero magnetic field.

2. SPONTANEOUS SPIN POLARIZATION 
IN A TWO-DIMENSIONAL SYSTEM IN A ZERO 

MAGNETIC FIELD

Let us consider a system of fermions described by
the Schrödinger equation

 (1)

Here, H = H0 + H1, where H0 is the Hamiltonian of non-
interacting fermions, which depends on the dimension-
ality of the system under consideration, and H1 is the
Hamiltonian accounting for the interaction of these fer-
mions.

For two-dimensional systems, specifically for a fer-
mion gas in a quantum well, the kinetic energy is added
to the potential energy corresponding to the quantum
confinement of motion of a charge carrier along the z
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direction perpendicular to the plane of the quantum
well; that is,

 (2)

The unperturbed single-particle wave functions are rep-
resented by the products of the wave functions of quan-
tum confinement and the wave functions of plane waves
propagating parallel to the quantum well:

 (3)

where m is the number of the quantum-well subband
along the z axis, r = ix + jy, and Ω2D is the two-dimen-
sional volume.

If the density of noninteracting carriers is suffi-
ciently low (such that they occupy only the lowest
quantum-well subband), the total energy of the electron
gas is equal to the kinetic energy and the density of the
kinetic energy can easily be calculated from the rela-
tionship

 (4)

Here, kF is the Fermi wave number, which can be deter-
mined from the condition

 (5)

n2D is the charge-carrier density in the two-dimensional
gas; and gs is the spin factor, which is equal to the num-
ber of electrons in a unit cell of the phase space. For a
two-dimensional gas, gs = 2 in an unpolarized state, gs =
1 in a completely polarized state, and 1 < gs < 2 in a par-
tially spin-polarized state.

Let us now analyze the possibility of spontaneous
polarization arising in a quasi-two-dimensional system
due to an exchange interaction. The polarized state of a
two-dimensional gas of noninteracting fermions is
always less energetically favorable, because the kinetic
energy of this state is universally higher than that of the
unpolarized state. However, for a system of interacting
particles, there appears an addition to the energy E1,
which can be illustrated using an infinite sequence of
diagrams:

It can easily be seen that the third and fifth exchange
diagrams substantially depend on the spin polarization.
Indeed, the spin should be conserved at the vertices of
the diagram, because the interaction does not depend
on the spin. Therefore, the processes described by the

H0
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exchange diagrams can proceed only between particles
with identical spins. Consequently, the contribution
from these diagrams for polarized systems is more sig-
nificant than that for unpolarized systems. Since the
second diagram makes a negative contribution, the
spin-polarized state can be more energetically favor-
able than the unpolarized state.

We will restrict our consideration to the case of the
first two diagrams. This corresponds to the inclusion of
interparticle interactions in the framework of the Har-
tree–Fock approximation. As a result, we have

 (7)

where the first and second terms are the Hartree and
Fock exchange additions to the energy, respectively,
and the sum involves summation over spin indices. The
first term diverges in the thermodynamic limit N  ∞,
Ω2D  ∞, and N/Ω2D = n2D = const. However, this
term is canceled out by the term of interaction with a
positive background. Therefore, to a first approxima-
tion, the exchange component of the interaction plays
the decisive role and can be represented in the form

 (8)

Here, the quantum-well area Ω2D and the spin factor gs

are introduced when calculating the matrix element of
the exchange interaction as the result of summation
over spins. The calculation of the integrals with respect
to k and l leads to the following expression for the
exchange interaction energy:

 (9)

where J1(kFρ) is the Bessel function. In this expression,
the integral I with α = kF |z – z' | ~ kFd (d is the quantum-
well width) can be conveniently estimated under the
condition

 (10)

which corresponds to a partial filling of the lower quan-
tum-well subbands. In this case, we obtain I = AkF,
where A ~ 0.424. As a result, the density of the
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exchange interaction energy for the two-dimensional
gas of charge carriers can be written in the form

(11)

where β2D = 2 Ae2. Note that the derived expression
for the exchange energy density has negative sign and
does not depend on the wave functions of noninteract-
ing particles, i.e., on the quantum-well shape. The
dependence of the exchange energy density on n2D can
be predicted from dimensional considerations. It
should be emphasized once again that expression (11)
for the exchange energy density of a two-dimensional
electron gas holds only for sufficiently low densities of
charge carriers when condition (10) is satisfied.

Now, we estimate the Fermi wave number kF corre-
sponding to the onset of the filling of the second quan-
tum-well subband. Since the energy at the bottom of the
jth subband in a square well is defined as Ej =
π2"2j 2/2m*d2, the wave number k0 corresponding to the
onset of the filling of the second subband can be esti-
mated as follows: E2 – E1 ≈ 3π2"2/2m*d2 ≈ "2k0/2m*

and k0d ≈  ≈ 5.44. Therefore, approximation (10)
does not hold for any quantum well with a sole filled
subband. In this respect, it is of interest to evaluate the
integral I in a limit opposite to the limit specified by
relationship (10), i.e., under the condition kFd @ 1. In
this case, we have I = B/ |z – z' |, where B ~ 0.498. Hence,
the exchange energy density can be represented in the
form

(12)

Therefore, the dependence of the exchange energy
density on the charge-carrier density in a two-dimen-
sional system at high carrier densities differs signifi-
cantly from that at low carrier densities. It is interesting
to note that, in the limit of high carrier densities, the
exchange energy does not depend on the degree of
polarization, because the two-dimensional systems are
characterized by the short-range exchange interaction
in the k space.

In order to answer the question as to whether the
exchange interaction can be responsible for spontane-
ous spin polarization in low-dimensional systems, it is
necessary to compare the total energies of the two-
dimensional gas of charge carriers in polarized and
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unpolarized states. In the limit of low carrier densities,
the energy density can be written in the form

 (13)

Here, the first and second terms characterize the kinetic
energy and the exchange interaction energy, respec-
tively. The energies of the two-dimensional gas in the
polarized (gs = 1) and unpolarized (gs = 2) states are

given by the relationships  ≈ π"2 /m* –

β2D  and  ≈ π"2 /2m* – β2D / ,
respectively.

It can easily be seen from expression (13) that, in the
case where the charge-carrier density is higher than the
critical density n0 defined by the formula

 (14)

the kinetic energy exceeds the exchange interaction
energy and the unpolarized state is more energetically
favorable than the completely polarized state. By con-
trast, if the charge-carrier density does not exceed the
critical value n0 and the exchange interaction energy is
higher than the kinetic energy, the polarized state
becomes more energetically favorable. Note that the
critical density n0 depends solely on the effective mass
of charge carriers and increases with an increase in its
value. In turn, the effective mass decreases with an
increase in the charge-carrier density in the two-dimen-
sional system.

It should be noted that the analysis of the mecha-
nism responsible for spontaneous spin polarization of a
two-dimensional gas of charge carriers involves two
features. First, our consideration refers to the quasi-
two-dimensional case where the quantum-confinement
functions are introduced in an explicit form. It turns out
that nothing depends on these functions in the limit of
low carrier densities n2D. Moreover, the possibility of
ferromagnetic ordering arising in a quasi-two-dimen-
sional system in the limit of low carrier densities is ana-
lyzed for the spontaneous spin polarization in a two-
dimensional case where the stability of the ferromag-
netic state associated with the exchange interaction is
proved with due regard for the correlation corrections
[17–19]. Second, the inclusion of the correlation energy
is of fundamental importance in determining the
charge-carrier density at which the Wigner crystalliza-
tion takes place in a two-dimensional gas. This process
is quite competitive with the above transition to a spon-
taneously polarized state with delocalized wave func-
tions [20–25]. However, according to theoretical esti-
mates [22–25], a Wigner crystal can be formed when

the carrier density n2D is less than ≅ m2e4/ . Here,
the parameter rs is the potential-to-kinetic-energy ratio
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corresponding to the transition to a crystalline state.
Depending on the chosen model, the parameter rscan
vary from 30 to 100 [22–25]. The critical carrier density
at which the spontaneously polarized two-dimensional
gas of charge carriers undergoes a complete depolariza-
tion [see relationship (14)] is estimated as n0 ~
0.5m2e4/"2. Therefore, the spontaneous spin polariza-
tion arises in a two-dimensional system when the
kinetic energy is of the order of the potential energy,
whereas the Wigner crystallization occurs when the
potential-to-kinetic-energy ratio is of the order of
1 : 100. To put it differently, the transition to a crystal-
line state occurs when the carrier density n2D is two to
four orders of magnitude lower than the density corre-
sponding to the transition to a spontaneously polarized
state with delocalized wave functions. According to
more exact calculations [23–25], the spontaneous spin
polarization is limited by the potential-to-kinetic-
energy ratio in the range 10 < rs < 30. At smaller ratios
rs, the degree of polarization decreases drastically, most
likely, due to rigid condition (10). However, this restric-
tion is of no significance in applying the Hartree–Fock
approximation to an analysis of ferromagnetic ordering
under conditions of exchange interaction (even with the
inclusion of correlation corrections) and only indicates
the carrier-density range in which the plane-wave
approximation can be used as the initial approximation.

It should be emphasized that the above analysis cor-
responds to the limit of low charge-carrier densities in
a two-dimensional system, i.e., the condition kFd ! 1,
which imposes severe restrictions on the quantum-well
width (d ≤ 20 nm), especially when the experimental
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Fig. 1. Dependence of the critical electron density n0 (cor-
responding to complete spin depolarization of the two-
dimensional electron gas in silicon MOS structures) on the
effective mass m*/mb and the dependence of the effective
mass m*/mb on the electron density n2D (taken from [9]).
Designations: mb = 0.19m0 and nc is the critical electron
density corresponding to a metal–insulator transition in sil-
icon MOS structures [9].
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values of nc are taken into account [15, 16]. If this con-
dition is not satisfied, the two-dimensional system
should be examined in the limit of high charge-carrier
densities, i.e., under the condition kFd @ 1. In this case,
the unpolarized state is always more energetically
favorable than the polarized state, because the
exchange energy does not depend on the spin factor gs.

3. ON THE POSSIBLE INTERRELATION 
BETWEEN SPIN DEPOLARIZATION 

AND A METAL–INSULATOR TRANSITION 
IN A TWO-DIMENSIONAL SYSTEM

The dependences of the critical density n0 (p0) of
two-dimensional electrons (holes) on their effective
mass m* at an electron (hole) density close to the criti-
cal value nc (pc) corresponding to a metal–insulator
transition (Figs. 1, 2) were determined from the data
obtained in studies on silicon MOS transistors [9] and
GaAs–AlGaAs heterojunctions [7]. It can be seen from
Figs. 1 and 2 that the spontaneous spin polarization
decreases drastically when the density of two-dimen-
sional electron (hole) gas exceeds the critical value nc.
The dependences shown in these figures indicate that
fluctuations of the critical carrier density nc can play a
very important role in the elucidation of the tendency
toward ferromagnetic ordering of a two-dimensional
electron gas in silicon MOS transistors. A comparison
of the carrier densities n0 at nc = 8 × 1010 cm–2 (sponta-
neous polarization [12, 15]) and nc = 1.0 × 1011 cm–2 (no
indication of ferromagnetic ordering [9, 16]) shows that
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Fig. 2. Dependence of the critical hole density p0 (corre-
sponding to complete spin depolarization of the two-dimen-
sional hole gas in the GaAs–GaAlAs heterostructure) on the
effective mass m*/mb and the dependence of the effective
mass m*/mb on the hole density p2D (taken from [7]). Des-
ignations: mb = 0.38m0 and pc is the critical hole density
corresponding to a metal–insulator transition in the GaAs–
GaAlAs heterostructure [7].
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these values of n0 differ by two orders of magnitude.
Possibly, this difference in the critical density n0 leads
to a drastic decrease in the degree of spontaneous spin
polarization of the two-dimensional electron gas in the
vicinity of the metal–insulator transition in a two-
dimensional system with a higher electron density nc

[9, 16]. However, in this case, the residual effect of spin
polarization can manifest itself in deviations of the tem-
perature dependences of the spin susceptibility from
the Curie law [14], which makes it possible to reveal a
tendency of the two-dimensional electron gas toward
superparamagnetism. This explanation is based on the
coincidence of the critical carrier densities correspond-
ing to the metal–insulator transition (nc) and spontane-
ous spin polarization (nx) [12, 15] and disagrees with
available data on the Shubnikov–de Haas oscillations,
which do not confirm the occurrence of spin polariza-
tion of charge carriers even at n2D ≈ 7.5 × 1010 cm–2 [9,
16]. The question as to whether this fact can be
explained in terms of a decrease in the carrier density n0
due to a greater degree of disordering of the MOS struc-
tures studied in [9, 16] as compared to those examined
in [12, 15] remains open. In this respect, the possible
interrelation between the critical carrier densities nc, nx,
and n0 calls for further investigation.
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Abstract—The formation of heteroepitaxial structures with InAs nanoclusters in an Si matrix during molecu-
lar-beam epitaxy and variations in the parameters of these structures due to thermal annealing are investigated
by reflection high-energy electron diffraction (RHEED), medium-energy ion scattering (MEIS), and scanning
electron microscopy (SEM). It is demonstrated that the deposition of InAs onto the Si(100) surface at certain
temperatures brings about the formation of tetrahedral nanopyramids with {111} orientation of the lateral faces.
It is revealed that InAs nanoislands can be epitaxially overgrown with silicon, which leads to gradual smoothing
of the three-dimensional relief. After annealing under vacuum, the Si/InAs/Si(100) structures are stable at tem-
peratures up to 700°C. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, silicon is the most promising material
for use in semiconductor electronics. In many respects,
this is explained by the natural properties of silicon as
an easily producible and relatively inexpensive mate-
rial. Further progress in silicon microelectronics
requires an increase in the integration density and oper-
ating frequency, a decrease in the power consumption,
and the fabrication of combined microelectronic and
optoelectronic integrated circuits in one crystal. How-
ever, silicon is an indirect-band-gap semiconductor
with a low efficiency of interband radiative recombina-
tion, which imposes severe limitations on its applica-
tions in optoelectronics. Therefore, the design of new
optoelectronic devices that can be physically and tech-
nologically compatible with the existing silicon planar
technology is an important problem in modern solid-
state electronics.

A possible way to solve this problem is to provide
the formation of an Si matrix involving a large number
of optically active centers: an array composed of
closely spaced nanoclusters of a direct-band-gap semi-
conductor with a band gap narrower than the band gap
of silicon [1]. Tsyrlin et al. [2] proposed to produce
such structures with the use of InAs molecular-beam
epitaxy on Si. In this case, the array of nanoclusters is
initially formed on the surface due to the formation and
self-consistent growth of coherently strained nanois-
lands during heteroepitaxy of materials with a consid-
erable lattice mismatch. The subsequent overgrowth of
nanoclusters with a layer of the main material results in
the formation of a structure with quantum dots. This
technique was applied by Ledentsov et al. [3] to fabri-
cate laser structures with InAs quantum dots in an
1063-7834/03/4511- $24.00 © 22194
active region in the traditional InGaAs–AlGaAs hetero-
system. In recent years, Si1 − xGex/Si(100) structures
characterized by quasi-direct-band-gap radiative
recombination between electrons of silicon and holes
of silicon–germanium nanoislands have been investi-
gated extensively [4].

For the InAs–Si heterosystem composed of elemen-
tal nonpolar and binary polar semiconductors, the
molecular-beam epitaxy has a number of specific fea-
tures, namely, a large mismatch between the lattice
parameters (InAs/Si, 11%; InAs/GaAs, 7%; Ge/Si,
4%), interdiffusion of the heterojunction materials, and
the possibility of forming antiphase domains. It should
be noted that the InAs and Si homoepitaxy conditions
also differ significantly. Actually, InAs is grown at tem-
peratures of 400–500°C and an As vapor pressure of
~10–6 Torr [5, 6]. High-quality Si epitaxial layers are
prepared at growth temperatures of 600–800°C and a
background residual pressure of ~10–8 Torr or lower [7]
(under these conditions, InAs undergoes thermal disso-
ciation [8]).

In the present work, the specific features of forma-
tion and the properties of InAs–Si heterostructures con-
sisting of an Si matrix with an embedded layer of InAs
three-dimensional nanoclusters prepared by molecular-
beam epitaxy on Si(100) wafers were investigated by
reflection high-energy electron diffraction (RHEED),
medium-energy ion scattering (MEIS), and scanning
electron microscopy (SEM).

2. EXPERIMENTAL TECHNIQUE

Heterostructures in the InAs–Si system were grown
by molecular-beam epitaxy on an SUPRA-32 apparatus
003 MAIK “Nauka/Interperiodica”
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equipped with an electron-beam evaporator for produc-
ing an Si flow and effusion cells for the evaporation of
In and As. The initial pressure in a growth unit of the
apparatus was no higher than 3 × 10–10 Torr. When oper-
ating the electron-beam evaporator (power, ~1 kW; Si
deposition rate, ~1.0 Å/s), the pressure did not exceed
1 × 10–8 Torr. The pressure in the growth chamber and
the composition of the background atmosphere were
controlled using a Bayard–Alpert vacuum gauge and a
quadrupole mass spectrometer. The design of the
manipulator made it possible to continuously rotate the
sample in the course of growth. A standard tantalum
ribbon heater provided thermal heating of the sample to
800°C. The sample temperature was measured by an
IRCON-V IR pyrometer and a W–Re thermocouple.
The morphology of the growth surface was monitored
in situ with an RHEED instrument (electron beam
energy up to 10 keV) and equipment for recording the
diffraction patterns on the basis of a compact digital
camera. The epitaxy was performed on n-Si(100) sub-
strates with a dopant concentration of 2 × 1015 cm–3.

The structures grown were studied using scanning
electron microscopy and medium-energy ion scatter-
ing. The electron microscope images of the sample sur-
face were obtained with the use of a CamScan S4-90FE
electron microscope. The secondary-emission images
were recorded at a probing beam energy of 20 keV.
Examination of the samples by medium-energy ion
scattering was carried out on a setup described in [9].
Probing was performed with He+ ions at energies of 96
and 191 keV. Ions backscattered at an angle of 120°
were detected using an electrostatic analyzer at a reso-
lution ∆E/E = 0.005 in a random geometry or a chan-
neling geometry along the [100] axis. The samples used
in our experiments correspond to the main stages of the
formation of the heterostructures with InAs nanoclus-
ters in the Si crystal matrix through molecular-beam
epitaxy: (1) Si/Si(100) [the preparation of chemically
pure, atomically smooth, structurally perfect Si(100)
surface], (2) InAs/ Si(100) (the formation of an array
of InAs nanoislands on the Si surface), and (3)
Si/InAs/Si(100) (the overgrowth of InAs nanoislands
with an Si layer).

In order to obtain reliable information on the nucle-
ation and growth of InAs nanoislands during heteroepi-
taxy, the surface condition of the initial Si substrate
must be taken into account. The use of only reflection
high-energy electron diffraction for monitoring the pre-
growth treatment of substrates can lead to incorrect
inferences, because etch pits can be formed during the
removal of the protective oxide [10, 11]. For this rea-
son, the surface condition at all stages of the pre-epitax-
ial preparation was additionally examined by scanning
electron microscopy.

The pregrowth chemical treatment of Si substrates
consisted in cleaning and forming a protective thin
layer of nonstoichiometric silicon oxide on the operat-
ing surface according to the Shiraki method [12]. The
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
samples thus prepared were immediately placed in the
apparatus. Immediately prior to the growth, the sub-
strate was sequentially degassed at temperatures of 400
and 750°C for 50 and 20 min, respectively. Then, the
silicon oxide layer was removed from the surface in an
Si flow (~0.02 Å/s) at a temperature of 750°C for 15–
20 min. The pre-epitaxial preparation of substrates
under vacuum was monitored by reflection high-energy
electron diffraction.

The silicon substrates used for the growth experi-
ments had a microscopically smooth surface. This
could be judged from the absence of topographic con-
trast in the SEM images. The chemical treatment did
not lead to a change in the surface morphology of sub-
strates on the microscopic level. The RHEED patterns
of these substrates involve extended diffraction reflec-
tions (Fig. 1) corresponding to the Si lattice. This indi-
cates that the substrate surface is atomically smooth
and that the thickness of the SiO2 layer does not exceed
several monolayers. According to the SEM and
RHEED data (Fig. 2), the removal of the protective
oxide layer through heating at 750°C in a flow of Si
atoms (~ 0.02 Å/s, t ~ 15–20 min) or heating at 800°C
(t ~ 10–15 min) provides a way of producing an atomi-
cally smooth, structurally ordered silicon surface. As
follows from the x-ray photoelectron spectroscopic
data, the surface was free of contaminations to within
the sensitivity of the method (less than 0.1 monolay-
ers). The check Si layers 100–500 Å thick were grown
on the prepared substrates at temperatures from 350 to
750°C and a deposition rate of 1.0 Å/s. All the samples
grown exhibited (2 × 2) diffraction patterns and had
surfaces with no microroughnesses.

Fig. 1. RHEED pattern of the surface of the Si(100) sub-
strate after pregrowth chemical treatment. The electron
energy is equal to 10 keV. The electron beam is incident
along the [011] direction.
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Prior to the growth of InAs, the As vapor pressure in
the chamber was raised to ~10–6–10–5 Torr. Under this
pressure, the number of molecules from the back-
ground atmosphere that find their way to the sample
surface corresponds to approximately a monolayer
(ML) formed by adsorbed atoms in a matter of seconds
[for the Si(100) surface, 1ML = 6.8 × 1014 atoms/cm2].
However, since the saturation vapor pressure of As at a
temperature of 200°C is approximately equal to 10–5 Torr,
more than one monolayer of As atoms cannot be
adsorbed on the silicon surface heated to temperatures
above 200°C. This is confirmed by the data on the elec-
tronic state of As atoms on Si [13, 14] and the fact that
the As deposition from the background atmosphere or
from the flow emerging from the effusion cell does not
lead to a change in the (2 × 2) diffraction pattern of the
Si(100) surface heated to temperatures above 200°C.
On the other hand, according to x-ray photoelectron
spectroscopy, thermal desorption of As from the
Si(100) surface is observed at temperatures above
600°C [15, 16]. Consequently, even prior to the growth,
the Si surface is covered with a monolayer of regularly
arranged As atoms, which is in agreement with the con-
clusions drawn by Alstrin et al. [17].

The deposition of InAs was performed under the fol-
lowing growth conditions: the As vapor pressure in the
chamber was approximately equal to ~2–5 × 10–6 Torr,
the rate of In flow from the effusion source was speci-
fied so that the growth rate of InAs was equal to
0.1 ML/s, and the ratio between the In and As flow rates
was maintained in the range from 1 : 2 to 1 : 5. The tem-
perature of different samples was varied from 350 to
500°C. The heteroepitaxial growth of InAs on the
Si(100) surface was controlled using the RHEED pat-
terns.

Fig. 2. RHEED pattern of the surface of the Si(100) sub-
strate after removal of the oxide layer. The electron energy
is equal to 10 keV. The electron beam is incident along the
[011] direction.
PH
3. RESULTS AND DISCUSSION

At the early stage of the InAs deposition, the initial
(2 × 2) diffraction pattern corresponding to the Si(100)
surface changes in the same way in all the growth
experiments. The superstructure reflections disappear
at a deposited InAs layer thickness of ~ 1/3 ML. The
deposition of ~ 2/3 ML InAs results in a weakening and
smearing of the main reflections and in an enhancement
of the diffuse background.

Further evolution of the diffraction pattern in the
course of the InAs deposition is governed by the sample
temperature. At 400°C and lower temperatures, the
point reflections appeared almost simultaneously with a
weakening of the main reflections. In the range from
410 to 440°C, the point reflections became noticeable
when the thickness of the InAs layer on Si was equal to
2–20 ML. Note that, as the upper limit of this tempera-
ture range was approached, the point reflections
became less pronounced and the amount of deposited
InAs necessary for their appearance must be increased.
For the samples heated above 450°C, no point reflec-
tions were observed even after deposition of several
tens of InAs monolayers. In this case, the RHEED pat-
tern exhibits a specular reflection against the back-
ground of strong diffuse scattering.

The appearance of point reflections in the RHEED
patterns (Figs. 3, 4) unambiguously indicates the three-
dimensional character of InAs growth. An analysis of
the geometry of the diffraction patterns along different
directions showed that the lattice spacing of deposited
InAs corresponds to the lattice spacing of the bulk
material and the lattice orientation coincides with the
orientation of the Si substrate. Along the [011] direc-
tion, there appear point reflections and, simultaneously,
diffraction lines corresponding to a faceted surface with

Fig. 3. RHEED pattern of the surface of the InAs/Si(100)
structure. The number of InAs monolayers deposited at
400°C is 4. The electron energy is equal to 10 keV. The elec-
tron beam is incident along the [011] direction.
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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{111} microfaces. The diffraction patterns of the sam-
ples grown at temperatures below 400°C also exhibit
the main and superstructure reflections associated with
the Si(100) surface. The RHEED patterns of the sam-
ples deposited at higher temperatures involve only the
point reflections of InAs. Figure 5 displays the SEM
image of the surface that is typical of InAs/Si(100)
structures. Nanoobjects formed on the initially smooth
surface are clearly distinguished in the SEM image.
The foregoing allows us to make the inference that the
three-dimensional relief arising upon InAs deposition
on the Si(100) surface at temperatures of 350–430°C is
formed by an array of InAs nanoislands in the form of
tetrahedral pyramids with lateral faces parallel to the
{111} planes. The lateral sizes and the surface density
of three-dimensional islands were estimated from the
SEM data at ~200–400 Å and ~1–3 × 1010 cm–2, respec-
tively. The islands in the form of regular tetragonal pyr-
amids faceted by the {111} planes are easily calculated
to have a height of ~140–280 Å. From these estimates,
it follows that the total number of InAs molecules in
islands is equal to (1–7) × 1015 per square centimeter
and the fractional coverage of the substrate surface is
10–60%.

It should be noted that even the deposition of less than
1.0 ML InAs leads to a considerable change in the initial
(2 × 2) diffraction pattern. Most likely, this is caused by
the aforementioned difference between the lattice
parameters of components in the InAs/Si heterostruc-
ture. The 1.0-ML-thick InAs islands occupying slightly
more than 1/3 of the area induce elastic stresses in the
surface layer, which results in disappearance of the
ordered reconstruction of the Si(100) surface. Upon dep-
osition of 2/3 ML InAs, the crystal lattice of the Si sur-
face layer is distorted to a depth of several monolayers.

Fig. 4. RHEED pattern of the surface of the InAs/Si(100)
structure. The number of InAs monolayers deposited at
400°C is 4. The electron energy is equal to 10 keV. The elec-
tron beam is incident along the [010] direction.
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This is accompanied by a weakening of the main reflec-
tions and an enhancement of the diffuse background.

Thus, from the above analysis of the RHEED pat-
terns, we can draw the inference that the critical thick-
ness at which the deposited InAs layer undergoes trans-
formation depends on the deposition temperature. At
400°C and lower temperatures, the nanoislands are
formed directly on the Si surface. In this case, owing to
the partial release of elastic stresses, open Si surface
regions contribute to the diffraction pattern and are
responsible for the main and superstructure reflections.
At temperatures in the range 410–430°C, the nanois-
lands grow above the wetting InAs layer. This layer is
pseudomorphic and merely enhances the total diffuse
background during electron diffraction. The deposition
at temperatures above 440°C results in the growth of
the InAs layer with a disordered crystal lattice (the
evaporation rate of stoichiometric InAs at 440–500°C
is substantially less than 0.1 ML/s [18]) without the for-
mation of nanoislands.

Investigation of InAs/Si(100) structures by
medium-energy ion scattering made it possible to
obtain both information supporting the inferences
drawn on the basis of the RHEED study and new data
on the InAs nanoclusters.

The MEIS spectra of one of the studied samples are
depicted in Fig. 6. The He+ ions with initial energy E0 =
96 keV were used as probing particles. The scattering
angle was equal to 120°. Channel no. 329 corresponds
to the initial energy E0. Figure 6 shows two experimen-
tal spectra measured in channeling (I) and random (II)
geometries. In the former case, the ion-beam direction
coincided with the [100] axis of the Si single-crystal
substrate. There are a number of points to be made. The

20 kV 00810 100 nm

Fig. 5. SEM image of the surface of the InAs/Si(100) struc-
ture. The number of InAs monolayers deposited at 400°C
is 4. Image sides are parallel to the [011] and [0 –11] direc-
tions.
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intensity ratio of the channeling and random spectra or
the minimum yield χmin (the dot-dashed line in Fig. 6)
for the spectral portion corresponding to the Si surface
layers (channel nos. 190–210 in Fig. 6) is equal to 5%,
which is characteristic of a good Si single crystal.
Channeling is also observed in the spectral portions
corresponding to In and As (channels no. 260–300).
This suggests an ordered crystal structure of nanoclus-
ters. Note that the minimum yield χmin = 0.75–0.85 for
the peak associated with the ion scattering by As atoms
(channel nos. 280–285) exceeds the minimum yield
χmin = 0.55–0.75 for the peak attributed to the ion scat-
tering by In atoms (channel nos. 285–300). These find-
ings can be explained only by the fact that a number of
As atoms are not involved in the composition of InAs
single crystals and form a polycrystalline or amorphous
phase. This agrees with the fact that the amplitude ratio
of the peaks corresponding to scattering by As and In
atoms is close to unity, whereas, for the InAs single
crystal, it should be equal to the ratio of the nuclear
charges squared, i.e., 0.45. Consequently, we can
assume that excess amorphous As is deposited on the
surface upon cooling of the sample.

More detailed information on the structure of InAs
clusters can be obtained from the simulation, i.e., com-
parison of the calculated and experimental spectra. In
some cases, only the simulation makes it possible to
draw unique inferences. The simulated spectrum that is
in best agreement with the experimental spectrum is
depicted by the solid line in Fig. 6. The dashed and dot-
ted lines indicate the partial spectra of In (curve 1) and
As (curves 2, 3). The spectrum of As is represented as
the sum of two components, namely, spectrum 2 cor-
responding to stoichiometric arsenic in the InAs
compound and spectrum 3 corresponding to excess
arsenic. The amount of excess arsenic was estimated at
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Fig. 6. MEIS spectra of the InAs/Si(100) structure:
(I) channeling spectrum, (II) random spectrum, (III) mini-
mum yield χmin, (IV) simulated spectrum, (1) partial spec-
trum of In, (2) partial spectrum of As, and (3) partial spec-
trum of excess arsenic.
PH
2.6 × 1014 atoms/cm2. We considered two variants of
the structure of the excess arsenic. In the first case, the
excess arsenic formed a monolayer on the sample sur-
face. This variant led to a considerable discrepancy
between the calculated and experimental spectra. In the
second case, the structure of the excess arsenic was
simulated in the form of islands having a mean thick-
ness of 8.8 × 1015 atoms/cm2 and occupying 3% of the
substrate surface. The latter variant provided good
agreement with the experimental spectrum.

The results of simulation can be summarized as fol-
lows. (i) The InAs clusters occupy 7% of the substrate sur-
face. (ii) The mean cluster thickness is determined to be
hmean = 8.4 × 1015 InAs molecules/cm2, which corresponds
to 47 Å for single-crystal InAs. (iii) The scatter in the
thicknesses is evaluated to be σ = 7 × 1015 molecules/cm2

[19]. It follows from these data that the total amount of
InAs in the clusters is equal to 6 × 1014 molecules/cm2.

The relationship hmean ≅ σ  agrees with the above
inference regarding the pyramidal shape of the clusters.
Under this assumption, it is possible to determine the
total height of the pyramids, which is equal to 3hmean,
i.e., approximately 150 Å.

Therefore, the results obtained in the analysis of the
MEIS spectra are in reasonable agreement with the
above estimates made for the geometric parameters of
clusters on the basis of the SEM and RHEED data.

The overgrowth of InAs nanoclusters with an Si
layer was investigated under the conditions correspond-
ing to the maximum and minimum As vapor pressures
in the growth chamber: ~10–6 Torr in the first series of
experiments (as in the case of the InAs deposition) and
lower than 10–8 Torr in the second series of experiments
(as for the Si homoepitaxy). The substrate temperature
and the Si deposition rate for all samples were equal to
400°C and 1.0 Å/s, respectively. A relatively low sub-
strate temperature for the silicon molecular-beam epit-
axy during overgrowth was chosen in order to avoid
undesirable processes, such as thermal decomposition of
InAs and interdiffusion of heterosystem components.

In the first series of experiments, an Si layer up to
400 Å in thickness was grown immediately after InAs
deposition. The growth was attended by an insignificant
change in the point reflections in the RHEED pattern.
The Si deposition led to an increase in the intensity of
the background associated with the diffuse scattering
and to smearing of the point reflections.

In the second series of experiments, the samples
were overgrown with Si after reducing the background
arsenic pressure. The holding of the InAs/Si(100)
structures for several tens of minutes at a temperature
of 400°C and a pressure lower than the growth pressure
by several orders of magnitude was not accompanied
by a noticeable change in the diffraction pattern. Under
these conditions of the overgrowth of InAs clusters, the
point reflections in the diffraction patterns were
observed only at the early stage. Then, the Si deposition
YSICS OF THE SOLID STATE      Vol. 45      No. 11      2003
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led to a weakening of point reflections and the appear-
ance of the main reflections. As a result, the diffraction
pattern corresponding to the (1 × 1) structure of the Si
surface was observed at an Si layer thickness of ~150 Å
(Fig. 7). It should be noted that the diffraction patterns
do not contain superstructure reflections but involve
more intense main reflections, which form the pattern
typical of diffraction by a three-dimensional crystal lat-
tice of silicon.

The overgrowth of InAs nanoclusters was also
investigated by medium-energy ion scattering. Figure 8
depicts the fragments of the MEIS spectra (He+ ions,
E0 = 191 keV) of the initial uncovered sample (curve 1)
and the samples with Si overlayers ~50 Å (curve 2) and
~130 Å (curve 3) thick. Only the signals (peaks) corre-
sponding to ion scattering by In atoms are shown. The
specific feature of spectrum 1 is that the slope of the
ascending Branch (channel nos. 585–595) is consider-
ably larger than the slope of the descending Branch
(channel nos. 565–580), which suggests that InAs clus-
ters are pyramidal in shape. The data presented in Fig. 8
indicate that, at an Si overlayer thickness of ~50 Å, the
InAs islands are incompletely covered with silicon and
partially extend above the surface. This can be judged
from the coincidence of the initial points (channel no.
593) of the ascending Branches of spectra 1 and 2. At
the same time, the shift in the upper part of the ascend-
ing Branch of spectrum 2 with respect to spectrum 1
(channel nos. 580–585) is caused by the partial cover-
age of InAs nanoclusters with silicon. For an Si over-
layer thickness of ~130 Å (spectrum 3), no indium
occurs on the surface, because the peak is shifted
toward the low-energy range. By using the simulation, it
is possible to show that the spectrum of In (spectrum 3)
in which the slope of the ascending Branch (channel
nos. 560–580) is substantially smaller than the slope of
the descending Branch (channel nos. 550–560) corre-
sponds to the situation where the pyramidal islands are
completely covered with silicon and the overlayer sur-
face is smooth and does not follow the relief of the ini-
tial structure.

In the third and fourth series of experiments, InAs
was not deposited. The Si(100) substrates were exposed
to an As flow from the effusion source at a background
pressure of ~10–6 Torr in the chamber, followed by Si
homoepitaxy under the conditions corresponding to the
overgrowth of InAs nanoclusters in the first and second
series of experiments.

At a pressure of ~10–9 Torr in the chamber, the
homoepitaxial growth of silicon proceeded through the
two-dimensional mechanism. The observed diffraction
patterns exhibited a (2 × 2) structure. According to the
SEM data, the surface remained microscopically
smooth. An increase in the background arsenic pressure
to ~10–6 Torr led to three-dimensional growth. A three-
dimensional relief was observed in the SEM images
(Fig. 9). The RHEED patterns showed almost point
reflections [15].
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The MEIS investigation into the formation of the Si
layer covering the InAs nanoclusters revealed that the
relative concentration of arsenic in this layer can be as
high as 6.5% depending on the growth conditions (pri-
marily, on the silicon substrate temperature). Figure 10
shows the MEIS spectra of the sample that does not
involve InAs clusters, i.e., that was prepared through
the deposition of silicon onto the clean Si(100) sub-
strate under exposure to an As flow. The spectra
depicted in Fig. 10 were recorded for two orientations
of the probing beam: (i) the beam incident along the
[100] direction of the normal to the Si substrate surface
(channeling spectrum I) and (ii) the beam deviating
from this direction by angles larger than 9° (random
spectrum II). The solid lines represent the simulated

Fig. 7. RHEED pattern of the surface of the Si/InAs/Si(100)
heteroepitaxial structure. The number of InAs monolayers
deposited at 400°C is 4. The Si overlayer 200 Å thick is
grown at 400°C and a background pressure of 9 × 10–9 Torr.
The electron energy is equal to 10 keV. The electron beam
is incident along the [011] direction.
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atoms) of (1) the uncovered InAs/Si(100) heteroepitaxial
structure and the Si/InAs/Si(100) heteroepitaxial structures
with Si overlayers (2) ~50 and (3) ~130 Å thick.
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partial random spectra of the substrate (spectrum 1), the
deposited Si layer (spectrum 2), and As atoms (spec-
trum 3). Analysis of the spectra allows us to make the
following inferences.

(1) The minimum yield χSi for the grown Si layer is
approximately equal to 5%, which corresponds to a
good Si single crystal.

(2) In the Si layer, As atoms are characterized by the
channeling with the minimum yield χAs ~ 15%, which
suggests that As atoms are incorporated into the Si
matrix. This assumption is confirmed by the results of
investigation into the dependence of the yield of back-
scattered ions on the angle between the beam direction
and the [100] crystallographic direction of the sample
(with the use of the electrostatic analyzer tuned to chan-
nel no. 530).

(3) No channeling effect is observed for the initial
(closest to the surface) portion of the spectrum of As
(channel nos. 540–555). This can be explained by the
fact that this portion of the spectrum corresponds to As

20 kV 00000 1 µm

SiD

FE 19 Feb 00

Fig. 9. SEM image of the surface of the Si homoepitaxial
layer grown in the presence of background arsenic. The
thickness of the Si layer deposited at 400°C is equal to 130 Å.
Image sides are parallel to the [011] and [0 –11] directions.
PH
atoms deposited on the Si layer from the background
atmosphere after the growth is complete. This inference
is supported by the results obtained for the Si layer
grown at higher temperatures, in which the concentra-
tion of As atoms incorporated into the Si lattice is sev-
eral orders of magnitude lower (see table) while the
intensity of the peak attributed to the As surface is close
in magnitude.

The characteristics of a number of samples with an
Si overlayer grown at different substrate temperatures
Ts and background arsenic pressures PAs are listed in the
table. The parameters used are as follows: the relative
atomic concentration of arsenic nAs/nSi, the minimum
yield χSi characterizing the ordering of the crystal lat-
tice of the Si layer, the minimum yield χAs characteriz-
ing the incorporation of As atoms into the Si lattice, and
the silicon layer thickness dSi.

The data presented in the table demonstrate that, at
identical background arsenic pressures, an increase in
the substrate temperature used during growth of the Si
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Fig. 10. MEIS spectra of homoepitaxial silicon grown in the
presence of background arsenic: (I) incidence of the ion
beam along the [100] direction of an Si single crystal,
(II) random (nonchanneling) direction of incidence of the
ion beam, and (III) the intensity ratio of the channeling and
random spectra. Solid lines are the simulated spectra of
(1) the silicon substrate, (2) homoepitaxial silicon, and
(3) As atoms.
Characteristics of the Si overlayer grown under different conditions

Sample no. Tsub, °C PAs, Torr nAs/nSi χSi χAs dSi, nm

1 700 1.2 × 10–9 1.4 × 10–4 0.033 0.44 17.0

2 700 1.0 × 10–8 3.0 × 10–4 0.034 0.27 17.0

3 600 1.0 × 10–8 3.4 × 10–4 0.048 0.41 27.0

4 550 1.0 × 10–8 4.0 × 10–4 0.025 0.21 >27

5 400 3.4 × 10–7 6.5 × 10–2 0.040 0.15 10.8

6 400 7.1 × 10–8 1.0 × 10–2 0.040 0.20 13.6

7 400 5.3 × 10–9 0.5 × 10–2 0.025 0.20 12.8
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layer results in a sharp (by two orders of magnitude)
decrease in the number of As atoms incorporated into
the Si lattice. As follows from our data, the quality of
the crystal structure of the Si layer is virtually indepen-
dent of the temperature.

Therefore, the overgrowth of InAs nanoclusters
with silicon is epitaxial in character and occurs with a
gradual smoothing of the initial three-dimensional
relief. It is clear that the height of InAs pyramids in the
samples of the second series does not exceed 150 Å.
The three-dimensional relief and the strong diffuse
background in the RHEED patterns of the samples of
the first series are associated with the influence of As
vapors on the growth of the Si overlayer.

The thermal stability of the InAs/Si(100) structures
was studied at an As vapor pressure of ~10–6 Torr,
which corresponds to the conditions of InAs deposition
in our experiments. The results obtained demonstrate
that the temperature of thermal dissociation of the
deposited InAs on the Si(100) surface is higher than
that of the bulk InAs. Actually, with an increase in the
temperature above 500°C, a (2 × 4) diffraction pattern
of an atomically smooth As-terminated InAs(100) sur-
face transforms for a minute into a diffraction pattern
with point reflections and then the intensity of the
RHEED pattern decreases considerably. For
InAs/Si(100) structures with an array of coherent InAs
nanoclusters, the diffraction pattern with point reflec-
tions remains unchained up to 540°C. With a further
increase in the temperature, the point reflections are
smeared and completely disappear at 560–590°C; as a
result, there appears the (2 × 2) RHEED pattern corre-
sponding to the pattern of the Si(100) surface. The dif-
fraction pattern of the samples with a continuous InAs
layer deposited at temperatures above 440°C changes
in the same manner upon heating. According to the
RHEED data, the InAs layer remains stable up to
540°C. At higher temperatures, the intensities of the
diffuse background and the specular reflection in the
diffraction pattern decrease and the (2 × 2) pattern of
the Si(100) surface appears at 560–590°C. The same
temperatures were obtained by Oostra et al. [20], who
applied the thermally stimulated desorption technique
to investigate the adsorption and desorption of indium
on an Si(100) surface partially covered with arsenic.

The thermal stability of the Si/InAs/Si(100) over-
grown structures was investigated upon short-term (for
~ 10–20 min) annealing at 700°C. We studied the sam-
ples with the Si overlayer grown at low (~10–9 Torr) and
high (~10–7–10–6 Torr) background arsenic pressures.
In both cases, the diffraction patterns with point reflec-
tions and the (1 × 1) diffraction patterns transform into
(2 × 2) diffraction patterns at 650°C. For a layer thick-
ness of 50 Å, uncovered InAs islands undergo complete
thermal desorption upon annealing. In the samples with
an Si overlayer 150 Å in thickness, InAs nanoclusters
in the Si matrix are retained and can be seen using a
scanning electron microscope after annealing. This
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      200
implies that an Si layer with a thickness of 100 Å or
greater protects the heterostructures with InAs nano-
clusters from thermal desorption in the temperature
range up to 750°C.

The amount of the material retained in the InAs nan-
oclusters after heat treatment was estimated from the
integrated intensity of the peak attributed to indium in
the random MEIS spectra. The results obtained are pre-
sented in Fig. 11, in which the ratios (in percent)
between the amounts of indium in the annealed and
unannealed structures (the amounts of as-deposited
InAs and Si in the corresponding pairs of structures
were identical) are plotted on the vertical axis and the
thicknesses of the Si overlayer are plotted on the hori-
zontal axis.

It can be seen from Fig. 11 that, even for the Si over-
layer 200 Å thick, a substantial part (~30%) of the
indium evaporates upon annealing. In our opinion, this
can be explained by the following mechanism of over-
growth of InAs nanoclusters. The Si adatoms migrate
over the surface, are predominantly incorporated into
the crystal lattice in planar surface regions between
InAs nanoclusters, occupy the initial three-dimensional
surface of the InAs/Si(100) structures, and, thus,
smooth down the surface. In this case, since InAs nan-
oclusters differ in height, the vertices of the largest
clusters remain uncovered with the Si layer and these
nanoclusters evaporate upon annealing. As the amount
of deposited Si increases, the number of uncovered
nanoclusters decreases, which leads to an increase in
the fraction of indium retained after annealing.

It seems likely that morphological transformations of
the surface at 650°C are caused by the thermal desorption
of arsenic, because the diffraction pattern with point
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Fig. 11. Dependence of the fraction of InAs not evaporated
upon annealing on the thickness d of the Si overlayer in the
Si/InAs/Si(100) heteroepitaxial structures.
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reflections transforms into a (2 × 2) diffraction pattern at
the same temperature during Si homoepitaxy at high back-
ground pressures of As vapors (~10–7–10–6 Torr) [15].

4. CONCLUSIONS

Thus, the results obtained allowed us to draw the
following inferences.

(1) Depending on the deposition conditions, the for-
mation and growth of InAs nanoclusters in the InAs–Si
heterosystem during molecular-beam epitaxy can pro-
ceed through both the Volmer–Weber mechanism, i.e.,
directly on the Si(100) surface (at lower temperatures),
and the Stranski–Krastanov mechanism, i.e., above the
wetting layer (at higher temperatures). In this case,
nanoislands can be formed even when less than one
InAs monolayer occurs on the surface. At temperatures
above the critical point (in our case, 440°C), nanoclus-
ters are not formed and InAs is deposited on the Si(100)
surface in the form of a layer with a poorly ordered
crystal lattice.

(2) The orientation of the crystal lattice in InAs nan-
oclusters is identical to that in the initial Si(100) sub-
strate. The nanoclusters have the shape of regular tet-
ragonal pyramids with {111} lateral faces. The elastic
stresses caused by the mismatch between the lattice
spacings of Si and InAs relax within the bulk of nano-
clusters. The characteristic lateral size of nanoislands,
their surface density, and the fractional coverage of the
Si(100) surface upon deposition of several InAs mono-
layers are equal to ~200–400 Å, 1–3 × 1010 cm–2, and
10–60%, respectively.

(3) It was revealed that InAs nanoclusters grown on
the Si(100) surface can be epitaxially overgrown with
the formation of Si/InAs/Si(100) planar structures. In
this case, the Si deposition does not occur in the form
of a uniform layer but provides a gradual smoothing of
the initial three-dimensional relief. The lateral faces of
InAs nanopyramids are overgrown with an increase in
the thickness of the Si layer on planar surface regions
between nanopyramids.

(4) The structures with InAs nanoclusters embedded
in the Si crystal lattice are thermally stable upon short-
term (~ 10–20 min) heating to 700°C. In the course of
annealing, the thermal desorption of part of the as-depos-
ited InAs is most likely associated with the size spread of
the InAs nanoclusters and, as a consequence, with the
incomplete overgrowth of the highest nanoclusters.

(5) The presence of background arsenic vapors dur-
ing molecular-beam epitaxy of the InAs/Si(100) and
Si/InAs/Si(100) heterostructures results in the capture
and incorporation of a large number of As atoms (up to
6.5% in the Si layers grown at 400°C and an As pres-
sure of ~10–6 Torr) into the lattice sites of the growing
Si layer and also in the precipitation of arsenic in the
form of amorphous islands on the surface upon cooling.
PH
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Abstract—This paper reports on the experimental results of investigations into the mechanism of formation
and dielectric characteristics of multilayer nanostructures prepared through the molecular layer-by-layer
growth of tantalum and aluminum oxides. It is demonstrated that the permittivity of the multilayer nanostruc-
tures varies almost linearly with a change in the content of the components. The electrical conductivity depends
on the ratio between the Al2O3 layer thickness di and the Ta2O5 layer thickness dj. For a layer thickness di (dj) <
5 nm, the tunneling phenomena contribute significantly to the permittivity and conductivity of these nanostruc-
tures. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recent progress in nanoelectronics has been
achieved in many respects owing to the considerable
advances made in research into the mechanism of for-
mation and the properties of low-dimensional systems,
which, in turn, has given impetus to the development of
nanotechnology for these systems. Among the large
variety of methods used in the chemical nanotechnol-
ogy of low-dimensional systems, the molecular layer-
by-layer growth technique has enjoyed the widest
application. This technique involves the growth of
nanostructures due to a chemical surface reaction upon
sequential introduction of reactants and makes it possi-
ble not only to control the composition and thickness of
prepared nanostructures within a monolayer but also to
synthesize multilayer nanostructures whose properties
differ significantly from those of the constituent mate-
rials.

Multilayer nanostructures based on tantalum and
aluminum oxides are very promising for use as dielec-
tric materials in microwave technology. Moreover, they
can be used in the design of metal–dielectric–semicon-
ductor structures. For a dielectric superlattice of this
type, the permittivity and distribution of the electrical
potential over the layer thickness can be varied depend-
ing on the superlattice composition and the sequence of
layers.

This paper reports on the results of investigations
into the dielectric characteristics (such as conductivity
and permittivity) of multilayer nanostructures consist-
ing of tantalum and aluminum oxide layers of different
thicknesses.
1063-7834/03/4511- $24.00 © 22203
2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Multilayer nanostructures composed of tantalum
and aluminum oxide layers of different thicknesses
were prepared using the molecular layer-by-layer
growth technique. The layer thickness was determined
by measuring the elliptic polarization angles ∆ and Ψ
and was then calculated in the framework of the Drude–
Tronston single-layer model [1]. The angles ∆ and Ψ
were measured on an ellipsometer assembled according
to the PQSA scheme [2] with a static compensator. An
LG-75 laser with an emission wavelength of 632.8 nm
served as a source of linearly polarized light. In order to
increase the accuracy of measurement, the light beam
was subjected to magnetic modulation. The error in
determining the angles ∆ and Ψ did not exceed ±0.01′.

The composition of ultrathin layers was controlled
using x-ray photoelectron spectroscopy. The x-ray pho-
toelectron spectra were recorded on NR-5950A (AlKα
radiation, EKα = 1486 eV) and SÉR-1 (MgKα radiation,
EKα = 1253 eV) spectrometers. The energy was mea-
sured with respect to the C 1s1/2 line (Est = 285.0 eV).
The maximum depth of penetration of the probe into
the surface layer at the above energies did not exceed 8
nm [3]. The assignment of the lines observed at ener-
gies Es in the x-ray photoelectron spectra was per-
formed according to the data taken from [4, 5]. For
quantitative analysis of the composition of the surface
layers, we used the relationship [3]

 (1)

where I1 and I2 are the intensities of the lines of alumi-
num and tantalum atoms, respectively; σ1 and σ2 are the

I1

I2
----

n1σ1 EK2

n2σ2 EK1

------------------------,≈
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relative ionization cross sections of the corresponding
energy levels; n1 and n2 are the concentrations of alumi-
num and tantalum atoms, respectively; and EK1 and EK2
are the kinetic energies of electrons of aluminum and
tantalum atoms, respectively. Here, EK = EKα – Es – ϕs,
where ϕs is the work function of the spectrometer mate-
rial. The spectra were processed with a special com-
puter program using the Gaussian approximation of the
curves. Moreover, the composition of the layers was
controlled ellipsometrically against the refractive indi-
ces, which were determined by the Holmes method [2].

The nanostructures were prepared using sequential
treatment of the surfaces of KÉF-7.5 silicon(100), alu-
minum, and tantalum matrices in vapors of halides of
the corresponding metal (P = 1–10 Pa) and water (P ~
100 Pa) in a vacuum–flow-type chamber. The residual
pressure was no higher than 10–1 Pa. Metallic substrates
in the form of 0.1- to 0.2-µm-thick films of aluminum
or tantalum on silicon were prepared by vacuum depo-
sition or magnetron sputtering.

The preparation of oxide layers through the molec-
ular layer growth is based on self-organization pro-
cesses of chemisorption of a metal halide and water
vapors with a limiting (close to a monolayer) coverage
of the surface. For example, this process on a hydroxy-
lated silicon surface proceeds through the following
reactions:

 (I)

 (II)

Reactions (I) and (II), when repeated as many times
as necessary, result in the formation of an oxide layer of
a specified thickness d. As was shown earlier by

≡Si–OH( )m MeCln+

≡Si–O–( )mMeCln m– mHCl,+

≡Si–O–( )mMeCln m– n m–( )H2O+

≡Si–O–( )mMe OH( )n m– n m–( )HCl.+

*
******

*

*

0.6
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1

2

Fig. 1. Dependences of the growth parameter for (1) tanta-
lum and (2) aluminum oxide layers on the synthesis temper-
ature.

d0, nm
PHY
Kol’tsov et al. [6, 7], the thickness d is proportional to
the number of cycles N of surface treatment:

 (2)

where d0 is the proportionality coefficient, which char-
acterizes the structure of the prepared layer and corre-
sponds to the film thickness averaged over one com-
plete cycle of treatment with both components.

Relationship (2) is characteristic of processes of
chemical assembly [8]. Experimental verification of
this relationship for multilayer structures was carried
out using the example of alternating layers of silicon
and titanium oxides [8] and chalcogenide structures [9]
on a silicon surface.

The coefficient d0 is referred to as the layer growth
parameter. This parameter is an important characteristic
of the process and makes it possible to evaluate the cov-
erage of the surface, which serves as a guideline in elu-
cidating the mechanism of formation of nanostructures.
At present, particular interest has been expressed by
researchers in the layer mechanism of formation of
nanostructures. The formation of nanostructures
through the layer mechanism occurs upon complete
hydroxylation of the surface and under nonequilibrium
conditions of the proceeding reactions (I) and (II).
These conditions can be provided by rapid elimination
of liberated hydrogen chloride in combination with a
sufficiently high reactivity of OH groups of the hydrox-
ylated surface. Earlier [10, 11], it was demonstrated
that hydroxyl groups on a silicon surface with an oxide
layer thinner than 1 nm exhibit weak proton-donor
properties. Taking into account these results, the activa-
tion of the surface reactions of aluminum and tantalum
halides with hydroxyl groups was carried out with an
exchange activator, namely, triethylamine. Owing to its
well-pronounced proton-acceptor properties, triethy-
lamine stabilized the hydroxylated surface via hydro-
gen bonds, activated the surface reaction due to the for-
mation of an intermediate complex, and bound hydro-
gen chloride. A similar situation most likely occurs
with a metallic matrix involving a thin oxide layer. In
this case, the inhibiting effect caused by the electron-
saturated metallic matrix also decreases the proton-
donor ability of the hydroxyl groups. In the course of
the synthesis, triethylamine (incapable of entering into
nucleophilic substitution reactions) was introduced
together with water vapors H2O + N(C2H5)3.

From analyzing the dependences of the layer thick-
ness on the number of cycles of surface treatment d =
f(N) at different substrate temperatures Ts for Al2O3 and
Ta2O5 layers, we determined the growth parameter d0
involved in expression (2) for each temperature Ts.
Moreover, it was established that, in the temperature
range Ts = 443–553 K, the formation of nanostructures
occurs through the layer mechanism (Fig. 1). Under
these conditions, the growth parameter d0 was found to
be approximately equal to double the metal–oxygen
interplanar spacing typical of the given oxide. It turned

d d0N ,=
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out that the growth parameter d0 for aluminum oxide
exceeds the growth parameter for tantalum oxide. This
can be associated with the chemisorption of an Al2X6
dimer (X = Cl, Br) in different orientations [12], which,
in turn, brings about the formation of bimolecular lay-
ers. In all cases, the coverage of the silicon surface with
hydroxyl groups ensured bonding with no more than
two hydroxyl groups of the surface [11]. It is worth
nothing that the vapor pressures of tantalum and alumi-
num halides are close to each other. Moreover, the tem-
perature conditions of layer growth of the tantalum
oxide system are similar to those of the aluminum oxide
system. This circumstance considerably simplified the
synthesis of multilayer nanostructures based on tanta-
lum and aluminum oxides, which required heating the
whole system for supplying reactants into the reaction
chamber to a temperature of the vapor source.

It should be noted that the preparation of aluminum
oxide layers through treatment of the tantalum oxide
surface in aluminum halide vapors can be accompanied
by the substitution reaction

Ta2O5 + AlX3  Al2O3 + TaX5. (III)

In this case, we evaluated the thermal effects and calcu-
lated the equilibrium constants Kf, T according to the
Temkin–Schwartzman method in terms of the equa-
tions for the thermodynamic potential: ∆GT =

2.3RT  and  =  – .

The calculations performed for aluminum chloride
and aluminum bromide showed that the substitution
reaction is virtually ruled out when the molecular layer-
by-layer growth of multilayer structures occurs at Ts <
470 K for AlBr3 and Ts < 600 K for AlCl3. Making allow-
ance for these conditions, we prepared layers with the
use of tantalum and aluminum chlorides at Ts = 473 K,
which corresponds to the layer growth conditions of each
component of the multilayer nanostructure (Fig. 1).

3. RESULTS AND DISCUSSION

The ellipsometric investigation into the growth
kinetics of the multilayer nanostructures demonstrated
that, for all the studied matrices, the dependence d =
f(N) at parameters d0 ≈ 0.3 nm for Ta2O5 and d0 ≈
0.45 nm for Al2O3, which are characteristic of the layer
growth of these oxides, remains linear within a layer
(Fig. 1). Figure 2 depicts the dependences of the thick-
ness of multilayer oxide nanostructures prepared on a
silicon surface on the number of cycles N of layer
growth. As can be seen from Fig. 2, the thickness of the
multilayer nanostructure varies in proportion to the
growth parameter for both oxides. Hence, it can be con-
cluded that the multilayer nanostructures are formed
through the layer mechanism irrespective of the num-
ber of growth cycles and that no diffusion processes
leading to mixing occur. This inference is confirmed by
the results of x-ray photoelectron and Auger spectro-
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Fig. 2. Dependences of the thickness of multilayer oxide
nanostructures prepared at Ts = 473 K on the number of
cycles N of layer growth: (1) 40Ta2O5 + 40Al2O3,
(2) 20Ta2O5 + 20Al2O3 + 20Ta2O5 + 20Al2O3, (3) 30Al2O3 +
30Ta2O5 + 20Al2O3, and (4) 40Ta2O5 + 40Al2O3.
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by-layer etching of (a) Si–Ta2O5–Al2O3 and (b) Si–Al2O3–
Ta2O5 nanostructures with a layer thickness of approxi-
mately 10 nm.
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scopic investigations into the composition and distribu-
tion of elements over the layer thickness for Si–Al2O3–
Ta2O5 and Si–Ta2O5–Al2O3 bilayer structures with a
layer thickness not exceeding 20 nm. It turned out that
the x-ray photoelectron spectra do not exhibit maxima
characteristic of halogens and silicon. This indicates
that, in our case, the surface reactions proceed to com-
pletion and the prepared layers of the specified thick-
ness are continuous.

The x-ray photoelectron spectra of the multilayer
nanostructures prepared contain lines at energies Es =
118.9 and 74.8 eV, which correspond to the Al 2s and
Al 2p levels, and lines at energy Es = 26.8 eV, which is
characteristic of the Ta 4f level.

The Auger electron spectra were recorded upon
layer-by-layer etching with argon ions. The etching rate
was equal to 0.5 nm/min. An analysis of the Auger elec-
tron spectra (Fig. 3) revealed that, for nanostructures
(d0 > 10 nm) prepared at Ts = 473 K, the distribution of
tantalum and aluminum corresponds to the sequence of
their oxide layers. It should be noted that, upon prepa-
ration of multilayer nanostructures at Ts = 573 K with
the use of aluminum bromide, the distribution of tanta-
lum and aluminum corresponds to a greater extent to a
mixture of their oxides. This confirms the correctness
of the estimate obtained for the synthesis conditions
from the change in the thermodynamic potential of the
system.

As can be seen from Fig. 3, the signal associated
with the silicon matrix is observed only after etching
for 40 min. This is in good agreement with the total
thickness of the oxide structure for a given eating rate.
For aluminum and tantalum matrices, the formation of
multilayer nanostructures proceeds in a similar way.

An analysis of the Auger electron spectra demon-
strated that, unlike the oxide mixtures, the materials
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Fig. 4. Dependences of (1, 2) the conductivity and (3) the per-
mittivity of the Al2O3–Ta2O5 multilayer nanostructure on the
fraction x of Ta2O5 layers at a total thickness d ≈ 40 nm:
(1) di (dj) ≥ 5 nm and (2) di (dj) ≈ 1 nm.
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prepared are characterized by a zonal distribution of
each metal (Fig. 3). Therefore, these materials should
exhibit a number of specific properties, the most impor-
tant among which are permittivity, conductivity, and
electric strength.

The electrical properties of nanostructures were
investigated using the example of Al(Ta)–Al2O3(di)–
Ta2O5(dj)–Ni and Si–Al2O3(di)–Ta2O5(dj)–Ni structures
synthesized at Ts = 453 K. For these nanostructures, we
varied the Al2O3 layer thickness di, the Ta2O5 layer
thickness dj, and the sequence of layers. The total thick-
ness of each nanostructure ranged from 50 to 60 nm. The
influence of high-temperature treatment (at T = 873 K)
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(4) –V for the Ta–Al2O3–Ni tunneling nanostruc-
ture with a dielectric layer thickness d = 5 nm and sign “±”
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Permittivities ε of Al2O3–Ta2O5 multilayer nanostructures of different compositions

Sample no.
Al2O3 

layer thick-
ness di , nm

Number ni 
of Al2O3 

layers

Ta2O5 layer 
thickness 

dj , nm

Number nj 
of Ta2O5 

layers

Sequence
of layers in the 
nanostructure

ε

Experiment Calculation
Experiment 
after heat 
treatment

1 5 6 5 6 ATATATATATAT 13.6 14.8 14.8

2 10 3 10 3 ATATAT 13.7 14.8 14.7

3 25 1 25 1 AT 13.7 14.8 14.1

4 10 3 5 4 TATATAT 12.2 13.0 12.8

5 20 2 5 3 TATAT 11.2 11.7 11.2

6 20 2 10 2 TATA 12.2 13.0 12.7

7 10 2 20 2 ATAT 15.8 16.9 16.2

8 10 1 50 1 AT 18.1 19.35 18.5

9 5 3 20 2 ATATA 17.7 18.7 18.7

Designations: A is a layer of aluminum oxide, and T is a layer of tantalum oxide.
on the properties of dielectric multilayer nanostructures
was examined using structures with a silicon matrix. As
was noted above, the permittivity ε is an important
characteristic of multilayer nanostructures. This quan-
tity can be estimated by different techniques [13]. A
comparison of the experimental data with the permittiv-
ities ε calculated according to the Landau–Lifshitz
model for a statistical mixture of dielectric materials
showed that, in all cases, the experimental permittivity
of the multilayer nanostructure does not exceed the cal-
culated value (see table). Therefore, the dielectric mul-
tilayer nanostructure prepared cannot be considered a
mixture of oxide layers. However, after a two-hour heat
treatment of multilayer nanostructures at T = 873 K, the
experimental values of ε become close to the permittiv-
ities calculated for a mixture of dielectrics. The best
agreement was achieved for samples with a small layer
thickness (di , dj ≅  5 nm) for at least one component of
the multilayer nanostructure (sample nos. 1, 4, 5, 9 in
table). This suggests that the diffusion processes occur-
ring at T = 873 K contribute to the permittivity only for
nanostructures with layers of a small thickness.

Examination of the dependence of the permittivity of
multilayer nanostructures on their composition (Fig. 4,
curve 3) revealed that the permittivity ε almost linearly
depends on the ratio of the components rather than on
the layer thicknesses di and dj. At the same time, the
electrical conductivity of multilayer nanostructures is
governed not only by the ratio of the components but
also by the thicknesses of their constituent layers.

Let us now consider a multilayer nanostructure in
the form of a chain consisting of resistors that are con-
nected in series and possess conductivities σi and σj.
For a layer thickness di (dj) > 5 nm, the electrical con-
ductivity of this nanostructure can be adequately
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
described by the relationship for the conductivity of an
equivalent circuit:

.

In this case, the electrical conductivity exhibits almost
linear behavior in the –x coordinates, where x is
the fraction of Ta2O5 layers (Fig. 4, curve 1). When the
layer thickness of at least one component of the multi-
layer nanostructure decreases and becomes less than
5 nm, the dependence of the electrical conductivity on
the fraction x changes and gradually becomes similar to
curve 2 (Fig. 4), which is characteristic of layer thick-
nesses di (dj) ≈ 1 nm. In our opinion, the above behavior
of the electrical conductivity can be associated with
both the tunneling mechanism of charge transfer at di

(dj) < 5 nm and the formation of charge states at inter-
faces of the multilayer nanostructure. This assumption
is confirmed by the current–voltage characteristics of
oxide nanostructures (Fig. 5). It can be seen from
Fig. 5a that, for nanostructures with a layer thickness
d > 10 nm, the ohmic behavior of the current–voltage
characteristics in weak fields (E < 105 V cm–1) gives
way to an exponential behavior. This dependence is
typical of charge transfer occurring in disordered sys-
tems through the mechanism of electron hopping over
localized states [14]. Judging from the current–voltage
characteristics, the tunneling mechanism of charge
transfer dominates in nanostructures with a dielectric
layer whose thickness is less than 5 nm. This inference
is also supported by the fact that the current–voltage
characteristics are linear in the –V coordi-
nates, where J is the current density. Even with elec-
trodes characterized by close values of the work func-
tions (ϕNi = 4.84 eV, ϕTa = 4.45 eV [15]), the asymmetry
observed in the electrical conductivity (Fig. 5b) stems
from the fact that the barrier height is determined by the

1/σ 1/σi 1/σ j∑+∑=

σlog

J /V( )log
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charge states at the metal–dielectric interface rather
than by the work function. In dielectric multilayer
nanostructures, the presence of additional interfaces
between oxide layers and interfaces with the metal
oxide of the matrix should decrease the tunneling cur-
rent.

It should be noted that, for a dielectric layer with a
total thickness d > 3 nm, no short circuits are observed
in tunneling structures, even though there exist regions
with a decreased electric strength. For the multilayer
nanostructures under investigation, the electric strength
falls in the range from 3 × 105 (small fractions of Al2O3

layers) to 5 × 106 V cm–1 (small fractions of Ta2O5 lay-
ers) and depends linearly on the ratio of their constitu-
ent layers. It is established that even small fractions of
aluminum oxide in the Al2O3–Ta2O5 multilayer nano-
structure bring about a substantial increase in the elec-
tric strength due to the specific features of the field dis-
tribution in the system and charge states at the inter-
faces.

4. CONCLUSIONS

The results of the above investigations have demon-
strated that, by varying the composition and the thick-
ness ratio of the constituent layers in a multilayer nano-
structure, it is possible to prepare a dielectric material
that will be characterized by a conductivity and (or)
electric strength of one component and a permittivity
predominantly determined by another component.
These nanostructures can be used as materials in micro-
and nanoelectronic devices.
PH
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Abstract—Luminescence spectra of Cr3+ ions in nanocrystalline MgO obtained by sol-gel technology were
studied. The radiative lifetime of excited 2E states of cubic and tetragonal Cr3+ centers was found to be consid-
erably longer than that of bulk single crystals. This effect is caused by a modified effective refractive index of
the inhomogeneous medium. Burning of long-lived spectral holes in the 4A2–2E transition profile of cubic cen-
ters was observed, which sets nanocrystalline samples strongly apart from bulk crystals, where no hole burning
was found. © 2003 MAIK “Nauka/Interperiodica”.
Dielectric nanocrystals doped by rare-earth (RE) or
transition metal (TM) ions are of considerable interest
because of their optical properties. Impurity ions can
serve as spectroscopic probes for exploring dynamic
processes in nanocrystals. Another feature that attracts
attention is the modification of the spectroscopic prop-
erties of impurity ions induced by spatial confinement.
To date, a number of effects in optical properties that
are directly associated with spatial confinement have
been revealed (see [1] and references therein). Interest
in the optical properties of dielectric nanocrystals
doped by RE and TM ions is spurred to a considerable
extent by the possible application potential of these
materials. Indeed, in view of doped crystals and glasses
being employed in laser technology and as lumino-
phors, the new properties induced by nanocrystallinity
may prove useful for applications.

MgO : Cr3+, as well as ruby, is a classical subject in
the spectroscopy of doped crystals. MgO : Cr3+ crystals
were used in the pioneering studies of piezospectro-
scopic effects in spectra of impurity centers [2] and of
inhomogeneous spectral-line broadening caused by
two-phonon Raman processes [3]. The Cr3+ ions in the
MgO cubic lattice substitute for Mg2+ ions, and the
excess charge of the impurity ions needs to be compen-
sated. The excess positive charge of Cr3+(Mg2+) in
MgO : Cr3+ is compensated by cation vacancies. These
vacancies can occupy a cation position close to the Cr3+

ion or be at a large distance from it. As a result, the Cr3+

ions in the MgO lattice form both Cr3+(Mg2+)–vacancy
complexes and Cr3+(Mg2+) cubic centers [2, 4, 5]. In a
center with a nearby cation vacancy, the latter may be
located differently with respect to the Cr3+ ion, which
gives rise to the existence of a variety of noncubic cen-
1063-7834/03/4511- $24.00 © 22209
ters (tetragonal, rhombic) differing in symmetry [4, 5].
The presence of centers of different symmetries in
MgO : Cr3+ crystal makes it particularly attractive for
spectroscopic studies. The lowest 2E excited level of the
Cr3+ ion in the spectra of cubic centers is not split;
therefore, the spectra exhibit a single 2E–4A2 (R) line,
whereas in centers of lower symmetry the 2E state splits
into a doublet, with the spectra revealing pairs of 2E–
4A2 lines (sometimes called N lines) [4, 5].

We studied the luminescence spectra of nanocrystal-
line MgO : Cr3+ samples. The samples were prepared
using sol-gel technology [6], with magnesium alkoxide
used as the starting material. The final annealing was
carried out at 750 or 850°C. In the course of the sol-gel
process, chromium (~0.1%) was added to the samples.
The samples were fine-grained powders consisting of
nanocrystals merged in clusters. X-ray analysis showed
(through x-ray reflection broadening) the nanocrystals
in the samples to be ~5 nm in size.

Figure 1 presents a luminescence spectrum of
nanocrystalline MgO : Cr3+ in the 2E–4A2 transition
region excited at T = 77 K by an argon laser. Also
shown for comparison is the spectrum of an MgO : Cr3+

single crystal taken in the same conditions. The lumi-
nescence spectra are seen to be practically identical.
The spectrum is dominated by lines due to cubic and
tetragonal centers. The only difference is the larger
inhomogeneous broadening of the 2E–4A2 transitions in
nanocrystalline MgO : Cr3+, which is 0.25 nm for cubic
centers, compared with 0.03 nm for the bulk sample.
This broadening originates from the contribution of
Cr3+ ions located close to the surface and/or a larger
concentration of defects in the nanocrystals.
003 MAIK “Nauka/Interperiodica”
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Figure 2 displays luminescence decay in the Cr3+

cubic and tetragonal centers in nanocrystalline and bulk
MgO measured at the frequencies of zero-phonon 2E–
4A2 transitions at T = 77 K under modulated Ar-laser
radiation. The powder samples were pressed between
two thin glass plates fixed by glue around the perimeter
and were isolated against penetration of liquid nitrogen.
One readily sees a sharp (nearly twofold) slowing of the
luminescence decay in nanocrystalline MgO.

At low temperatures, the quantum yield of Cr3+ flu-
orescence is close to unity and its decay is fully due to
radiative transitions [5]. Thus, the 2E–4A2 fluorescence
decay at 77 K is dominated practically completely by
radiative relaxation, with nonradiative processes being
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Fig. 1. 2E–4A2 luminescence lines of Cr3+ ions in bulk and
nanocrystalline MgO.
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insignificant. The large difference in the radiative life-
time τR between the nanocrystalline and microcrystal-
line samples may be accounted for by the changes in
the nanoparticles induced by the surrounding medium
[7]. When the particle size is substantially smaller than
the light wavelength, the local electric field acting on
the Cr3+ ion is determined both by the material of the
particles and by the substance filling the space between
them. The radiative lifetime of an ion embedded in a
medium can be written as

 (1)

where f(ED) is the oscillator strength for an electric
dipole transition, λ0 is the wavelength of light in vac-
uum, and n is the refractive index. The dependence of
τR on the refractive index n originates from (i) the
change in the photon density of states in a medium with
a lower velocity of light and (ii) modification of the
polarizability of the medium in which the ion is embed-
ded. Nanoparticles occupy only a fraction of the sample
volume. Therefore, in order to make possible compari-
son of experimental data with Eq. (1), one has to intro-
duce an effective refractive index neff of the medium
consisting of MgO nanoparticles (n = 1.735) sur-
rounded by air with a refractive index n = 1. We assume
that neff(x) = xnMgO + (1 – x), where x (<1) is the filling
coefficient specifying the fraction of space occupied by
MgO nanoparticles. For the nanoparticles, n in Eq. (1)
is replaced by neff(x). Using neff is valid if the average
nanoparticle size is far smaller than the wavelength of
light; this condition is definitely met for the samples
studied here.

The experimentally observed values of τR in nanoc-
rystalline MgO : Cr3+ were 19 ms for the cubic centers
and 14 ms for the tetragonal centers (compare with τR =
11.7 ms for the cubic centers and 8.4 ms for the tetrag-
onal centers in bulk single crystals; see also [5]). To
account for the experimentally observed increase in τR

by a factor of approximately 1.6 for centers of both
types, one has to set n = neff = 1.49 in Eq. (1), which cor-
responds to x = 0.67 and means that MgO nanocrystals
occupy 67% of the sample volume.

The use of Eq. (1) for τR for an electric dipole tran-
sition in cubic centers, in which Cr3+ ions occupy posi-
tions with inversion symmetry (Oh) and the zero-
phonon line is associated with a magnetic dipole transi-
tion, requires validation. The excited-state lifetime is
governed by both pure electronic and vibronic transi-
tions. According to [8, 9], vibronic sidebands of a zero-
phonon (magnetic-dipole) line in cubic centers origi-
nate from electric dipole transitions induced by the
interaction with odd-parity lattice vibrations. The inten-
sity ratio of the vibronic sideband to zero-phonon line
is 4 : 1 [5]. Thus, τR in cubic centers is dominated by
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vibronic electric-dipole transitions and, hence, the use
of Eq. (1) is valid. Application of Eq. (1) to tetragonal
centers, in which zero-phonon transitions are primarily
of the electric-dipole type, with the addition of a mag-
netic-dipole component [4] is even more valid.

Our experiments provided supportive evidence for
the conclusion [7] that nanocrystalline materials offer
the unique possibility of modifying the refractive index
of a medium without changing the local structure of the
centers. This permits one to verify Eq. (1), which
relates the oscillator strength to the radiative lifetime.
The observed effect permitted us to determine the fill-
ing coefficient, i.e., the fraction of the sample volume
occupied by nanocrystals.

The materials in which long-lived holes can be
burned in inhomogeneously broadened spectra of
impurity ions by a photophysical or a photochemical
method are of considerable interest both from the view-
point of fundamental investigation of the processes
occurring in impurity centers and in connection with
the possibility of using them in optical information
recording systems. This stimulated our search for new
objects for hole burning among materials prepared
using sol-gel technology. It was demonstrated in [10]
that a nanocrystalline structure offers specific possibil-
ities for burning narrow holes in Eu3+ spectra in γ-Al2O3
obtained through sol-gel technology. It was conjectured
in [10] that photoinduced reorientation of nanocrystals
enhanced by localization of the excitation energy in
nanocrystals can favor burning of long-lived holes in
the Eu3+ spectrum. Effective photochemical spectral-
hole burning caused by two-step photoionization of
impurity centers was observed to occur in
α-Al2O3 : Mn4+ ceramics prepared using sol-gel tech-
nology [11].

Experiments on spectral-hole burning in MgO : Cr3+

crystals were carried out at a temperature of 1.7 K. A
single-mode ring dye laser (Coherent 899-21, fre-
quency instability ~2 MHz) was tuned to the 4A2–2E
transition. The beam power was 50 mW, and the beam
was focused to a 1-mm spot on the sample. To detect
holes, the laser frequency was swept within a range
5 GHz wide in a time of ~0.5 s. Holes were detected
using the fluorescence in the vibronic sideband of the
Cr3+ 4A2–2E transition, which was isolated with an
interference filter. Figure 3 shows a typical spectral
hole observed in our experiments in the R line of cubic
Cr3+ centers. The hole width was ~0.4 GHz, and the rel-
ative depth was ~1%; i.e., it was very small. Neverthe-
less, holes were reliably observed in the R lines of cubic
Cr3+ centers in all the samples studied. The holes lived
for at least a few minutes. No hole burning was
observed in the spectrum of tetragonal centers (proba-
bly, for technical reasons). Nor was hole burning
detected in bulk MgO : Cr3+ crystals.

We believe the hole burning in MgO : Cr3+ nanoc-
rystals to be due to the photophysical process of rear-
PHYSICS OF THE SOLID STATE      Vol. 45      No. 11      20
rangement of the Cr3+ environment, in particular, due
to photostimulated processes on the surface of nanoc-
rystals and/or photoinduced nanocrystal rearrange-
ment in clusters. As follows from our experiments, the
possibility of photophysical hole burning in nanocrys-
talline systems is a fairly general property of these sys-
tems [10–12]. Indeed, both in MgO : Cr3+ and in
Li2Ge7O15 : Cr3+ [12], spectral-hole burning is
observed to occur in nanocrystalline samples only,
whereas in the bulk material no hole burning is seen.
This indicates that nanocrystalline systems are more
susceptible to photoinduced processes. One cannot,
however, totally exclude the photochemical mecha-
nism of hole burning involving capture of the
detrapped carrier at the nanocrystal surface.

On the whole, the experiments performed have once
more demonstrated the common nature of a number of
effects observed in the optical properties of nanocrys-
talline materials prepared by sol-gel technology and
originating from the smallness of crystal particles.
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