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Abstract—A simple model for a distributed self-oscillatory system with cubic nonlinearity and delay is pre-
sented. Conditions for oscillation self-excitation and stationary oscillation conditions, as well as the stability of
the oscillations, are analyzed. Nonstationary self-modulation regimes (including conditions of complex dynam-
ics and chaos) are simulated numerically over a wide range of control parameters. As the factor of nonequilib-
rium grows, regular and chaotic regimes alternate in a complex manner. The transitions to chaos may follow all
scenarios known for finite-dimensional systems. The model suggested is somewhat akin to a number of earlier
finite-dimensional models aimed at studying mode competition in resonance electron masers. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Distributed self-oscillatory systems (DSOSs) with
delayed feedback (DF) are of great importance in radio-
physics, nonlinear optics, biophysics, etc. [1–4]. It is
well known that such systems can generate complex,
including chaotic, oscillations. Therefore, their study
may provide a better insight into the dynamics of sys-
tems with a large number of degrees of freedom. Spe-
cifically, the simulation of some properties of fully
developed turbulence by means of self-excited oscilla-
tors with delay has been discussed [2, 5]. Note also that
this problem is of great practical significance, since
self-excited oscillators with DF are the basis for many
devices of vacuum and plasma microwave electronics.
Typical examples are traveling-wave tubes (TWTs)
with DF [6–8], DF klystrons [9–12], free-electron
lasers (FELs) [13–15], electron linacs with external
feedback [16], etc. In backward-wave oscillators
(BWOs), the self-modulation and complex dynamics
are also associated with delayed internal feedback.
Note that recent attempts to develop controllable
sources of noise-like signals have sharpened interest in
chaotic oscillation conditions.

The complex dynamics of distributed systems is
extremely difficult to study because of an infinitely
large number of degrees of freedom. The presence of
several control parameters is an additional aggravating
factor. It would be therefore tempting to consider a sim-
ple model system that demonstrates all dynamics fea-
tures of DSOSs with DF and still can be investigated
numerically and, if possible, analytically. For this pur-
pose, we suggest the equation

(1)Ȧ γA+ α iΘ( ) 1 A t 1–( ) 2–( )A t 1–( ).exp=
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Here, A is the slowly varying complex amplitude of
oscillations; α and γ are the factors of nonequilibrium
and dissipation, respectively; and Θ is the phase shift in
the feedback loop. The right-hand side of Eq. (1)
depends on the amplitude value at the delayed time
instant t – 1 (the variables can always be normalized so
that the delay time is unity). Equation (1) describes, for
example, the dynamics of a van der Pol triode oscillator
with a delay line in the anode circuit in the case when
the grid–plate characteristic of the oscillator is approx-
imated by a cubic polynomial [17]. Without delay,
Eq. (1) becomes the reduced van der Pol equation

which describes the conditions of periodic one-fre-
quency self-oscillations near the self-excitation thresh-
old for a wide class of self-oscillatory systems [1, 4, 18].
It is therefore natural to use Eq. (1) as a universal model
describing the dynamics of self-oscillatory systems
with DF. Note that the equation

(J1 is the first-order Bessel function of the first kind),
which describes the operation of a self-excited DF
klystron oscillator [9–11], is also reduced to form (1) in
the case of weak nonlinearity, where one can expand
the function J1 into a series and leave the first two
terms.

Different problems associated with the complex
dynamics of a self-excited oscillator with cubic nonlin-
earity and delay have been considered in [19–21]. It has
been shown [19] that the stationary solution becomes
unstable and self-modulation appears as the factor of
nonequilibrium grows. With a further increase in α, the

Ȧ γA+ α iΘ( ) 1 A 2–( )A,exp=

Ȧ γA+ α iΘ( )J1 A t 1–( )( ) A t 1–( )
A t 1–( )

----------------------exp=
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situation becomes chaotic, following the Feigenbaum
scenario; that is, the system experiences a series of self-
modulation period doubling bifurcations [20]. Also, it
has been found [21] that so-called multimode chaos
sets in the system far above the threshold of the chaotic
regime. This is because the attractors related to differ-
ent modes combine.

In this work, we study at length the reduced version
of van der Pol equation with delay (1) over a wide range
of control parameters. Conditions for the self-excita-
tion of oscillations are analyzed, solutions meeting sta-
tionary oscillation conditions are found, and stability
conditions of the oscillations are determined. Since this
article elaborates upon works [4, 17, 19], we will
present only those results uncovered previously.

1. THEORETICAL ANALYSIS

1.1. Conditions for oscillation self-excitation. Lin-
earizing Eq. (1) and finding a solution in the form A ~
exp(pt), we come to the characteristic equation

(2)

Transcendent equation (2) has an infinite number of
complex roots because the system is distributed. Taking
into account that p is purely imaginary (p = iω, where ω

p γ+ α iΘ p–( ).exp=

Θ – π

Θ
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O
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Fig. 1. On determination of the eigenmode frequencies of
an oscillator with delay.

Fig. 2. Boundaries of the self-excitation regions on the
parameter plane (α, Θ). γ = 0 (1) and  >0 (2).
is the oscillation frequency) near the instability thresh-
old, we find from (2)

(3)

Eliminating α from Eqs. (3), one can find the equa-
tion for oscillation frequencies:

(4)

Equation (4) can be conveniently solved graphi-
cally. Let its roots be numbered as shown in Fig. 1.
From the physical meaning of the problem, the param-
eters α and γ are considered to be positive; hence, only
those for which cos(ω – Θ) > 0 (i.e., even-number
roots) should be left. The eigenmode frequencies
depend on γ as follows (Fig. 1). For γ  0,

where n = 2, 4, … .
For the fundamental mode (n = 0), ω0  0 regard-

less of the value of Θ. At γ  ∞, ω±n ≈ Θ ± πn.
One can also find the starting value of the parameter

α at which the nth mode is excited ( ). Squaring
both equations in (3) and adding them yields

(5)

where ωn(γ, Θ) is the nth-mode frequency defined
by (4).

It follows that the value Θ = 0 is optimal for the exci-
tation of the fundamental mode n = 0. Then, ω0 = 0 and
α0 = γ. For Θ = ±π, self-excitation is difficult. In this
case, the frequencies ω0 and  become roughly
equal. As Θ increases further, the second mode
becomes fundamental. Thus, the self-excitation bound-
ary in the plane (α, Θ) has the form depicted in Fig. 2.
The regions (2m – 1)π < Θ < (2m + 1)π will be called
oscillation generation regions. For Θ = 2πm, the param-
eter α takes the minimal value; for Θ = 2πm + π, the
maximal value.

1.2. Stationary oscillation conditions. Under sta-
tionary oscillation conditions,

(6)

where the amplitude A0 and the phase ϕ are constants.
Substituting (6) into (1) and separating the real and

imaginary parts, we have

(7)

Dividing one of the relationship in (7) by the other,
we arrive at Eq. (4). This means that the stationary
oscillation frequency equals one of the natural frequen-

γ α ω Θ–( ), ωcos α ω Θ–( ).sin–= =

ω
γ
---- ω Θ–( ).tan–=

ω n± Θ πn
π
2
---– 

  ,±≈

α st
n( )

α st
n( ) γ2 ωn

2 γ Θ,( )+ ,=

ω 2+−

A A0 i ωt ϕ+( )[ ] ,exp=

γ α 1 A0
2–( ) ω Θ–( ),cos=

ω α 1 A0
2–( ) ω Θ–( ).sin–=
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cies ωn and does not vary with oscillation amplitude.
From (7), one also readily finds the amplitude A0:

(8)

It is seen that if the supercriticality is weak, i.e.,

when α = (1 + ε), where ε is small, the amplitude

grows by the law A0 ~ , which is typical of
Andronov–Hopf supercritical bifurcation (i.e., of the
soft excitation of self-oscillations). If α greatly exceeds
its starting value, A0 tends to unity.

1.3. Conditions for self-modulation. Let us test the
solutions for stability. To do this, we set a small distur-
bance of the stationary regime as a pair of side-band
(satellite) modes equidistant from the fundamental fre-
quency:

(9)

Here, A0 satisfies Eq. (8) (|A±| ! |A0|), ωn is one of the
natural frequencies, Ω is the self-modulation fre-
quency, and ϕ is an arbitrary phase. One should substi-
tute Eq. (9) into starting equation (1), linearize the
resulting expression in terms of small disturbances, and
analyze the behavior of the satellite amplitudes A±. We
will consider only the case Θ = 0 (the center of the
oscillation generation region), for which an analytical
solution in explicit form can be found. At the stability
boundary, we have A± = const; that is, the small distur-
bances neither grow nor decay. After rearrangement,
we obtain the following equations:

(10)

System (10) has two kinds of solutions: A+ =  or

A+ = – . It can be shown that the former corresponds
to purely amplitude disturbances; the latter, to purely
phase ones [13]. Thus, the amplitude and phase distur-
bances split in this case and can be analyzed separately.

Consider the amplitude disturbances. The character-
istic equation for them takes the form

(11)

Separating the real and imaginary parts in (11), we
find

(12)

It can be shown that the self-modulation frequency
Ω also satisfies Eq. (4) for the eigenmode frequencies;
now, however, one has to take odd-number roots. Recall

A0 1
γ2 ωn

2+( )1/2

α
---------------------------– 1

α st
n( )

α
--------– .= =

α st
n( )

ε

A A0 A+ t( ) iΩt( )exp A– t( ) iΩt–( )exp+ +[ ]=

× i ωnt ϕ+( )[ ] .exp

γ iΩ α 2γ–( ) iΩ–( )exp+ +[ ] A+

=  α γ–( )A–* iΩ–( ),exp–

γ iΩ– α 2γ–( ) iΩ( )exp+[ ] A–

=  – α γ–( )A+* iΩ( ).exp

A–*

A–*

γ iΩ+ 2α 3γ–( ) i– Ω( ).exp–=

γ 2α 3γ–( ) Ω, Ωcos– 2α 3γ–( ) Ω.sin= =
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that we consider the case Θ = 0 and the parameters α
and γ are assumed to be positive (α > γ, as follows from
the self-excitation conditions; see Subsection 1.1).
Thus, the following conditions must be met:

(13)

(14)

From (14), it follows that odd roots of (4) should be
taken (see Fig. 1).

Since our system represents an amplifier with an
external DF loop, it is convenient to recast inequality (13)
in view of (8) in the form

where F(A0) = A0 –  is the amplitude characteristic
of the amplifier.

Thus, the physical meaning of condition (13) is that
the stationary amplitude must lie in the descending
branch of the amplitude characteristic.

From system (12), one can also find the critical

value of α, , at which the instability arises:

(15)

Here, Ωn is one root of Eq. (4). Note that n = ±1, ±3, …
in this case. Side-band modes that are the closest to the
fundamental frequency have the lowest instability
threshold. Since they are excited only when the funda-
mental mode is excited with a sufficiently large ampli-
tude, the associated disturbances will be referred to as
self-modulation modes.

Virtually, condition (15) means that the slope of the
descending branch must be sufficiently large. The self-
modulation arises in a soft manner through the appear-
ance of a pair of satellites equidistant from the funda-
mental frequency. Their frequencies are ω0 ± Ωn. In the
theory of distributed self-oscillatory systems (see, e.g.,
[8]), such a self-modulation mechanism is called the
amplitude mechanism.

We will not perform in-depth analysis of phase dis-
turbances. Note only that the stationary conditions are
stable against a constant phase shift; that is, when the
disturbance neither grows nor decays. This is an obvi-
ous consequence of the substitution A  Aexp(iϕ0),
where ϕ0 is an arbitrary constant.

In the general case Θ ≠ 0, the equations for the
amplitude and phase disturbances do not split and the
instability causes both amplitude and phase oscilla-
tions. Exact analytical conditions for self-modulation
are impossible to derive. However, on the whole, the
results obtained for the specific case Θ = 0 remain valid.
The self-modulation arises by the amplitude mecha-
nism and is accompanied by the soft excitation of a pair
of adjacent self-modulation modes. The self-modula-
tion frequency varies with Θ insignificantly. This is

2α 3γ– 0,>

Ωcos 0.<

1 3A0
2– dF/dA0 0,<=

A0
3

α sm
n( )

α sm
n( ) 1

2
--- 3γ γ2 Ωn

2++( ).=
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supported by the results of numerical simulation which
follow.

2. RESULTS OF NUMERICAL SIMULATION

The dynamics of the system described by the
reduced version of van der Pol equation with delay (1)
was numerically simulated with the fourth-order
Runge–Kutta method. The data were processed by con-
structing temporal realizations and bifurcation dia-
grams, reconstructing the attractors by the Packard–
Takens technique, and calculating the Fourier spectra.
The dissipation factor γ was taken to be rather small
(γ < 1), because the self-modulation oscillations are
quasi-harmonic in this case. At large γ, they are of a
relaxation character and the validity of the approxima-
tion of slowly varying amplitudes becomes question-
able. Looking ahead, we note that the self-excitation
threshold, the amplitude and frequency of stationary
oscillations, and the threshold and frequency of self-
modulation obtained by the numerical simulation
totally agree with the theoretical predictions (Subsec-
tion 1.1).

We studied in detail the transition to chaos over a
wide range of control parameters. It turned out that the
dynamics of the system exhibits a much wider variety
of forms than was earlier surmised [20, 21]. For
instance, the Feigenbaum scenario is observed only at
the center of the oscillation generation region. A typical
sequence of bifurcations for this case is illustrated in
Fig. 3, which shows temporal realizations, phase por-
traits, and spectra for different values of the factor of
nonequilibrium α (γ = 0.3, Θ = 0.1π). For the interval

 < α < , the transient ends with the establish-
ment of the single-frequency operation (Fig. 3a). Here,

 is the threshold for the fundamental mode and 
is the threshold for the excitation of the first self-mod-

ulation mode (see Section 1). For α > , this regime
looses stability against the first self-modulation mode
and the periodic self-modulation regime (Fig. 3b) to
which the limiting cycle in the phase space corresponds
sets in. The phase trajectory segments associated with
the transient are left in the phase portraits (Figs. 3a, 3b)
for clarity.

First, the self-modulation is quasi-harmonic. As α
grows, the self-modulation amplitude and the number
of harmonics in the spectrum rise. Simultaneously, the
shape of the limiting cycle becomes distorted: the cycle
increases in size, approaching the saddle equilibrium
state at the origin. This state repulses the phase trajec-
tory, which is wound on the unstable saddle manifold.
Because of this, loops arise in the limiting cycle
(Fig. 3c). A similar situation was described in [11].
Accordingly, the temporal realization of the output sig-
nal becomes more complicated: several local maxima
appear during one oscillation period. In addition, the
self-modulation frequency diminishes, since the phase

α st
0( ) α sm

1( )

α st
0( ) α sm

1( )

α sm
1( )
trajectory spends more time near the unstable equilib-
rium. There may appear a large number of variously
shaped cycles (i.e., cycles with a different number of
loops) depending on the parameter values. For γ ! 1,
the transitions from one cycle to another are soft. With
an increase in γ, hard transitions, which exhibit hyster-
esis, start to prevail. Such behavior is typical of many
self-oscillatory systems with delay (for example, of that
considered in [22]), as well as of microwave oscillators
based on a drift klystron, which were investigated the-
oretically and experimentally in [12].

As α increases, the transition to chaos proceeds
through a series of self-modulation period doubling
bifurcations. In this case, universal quantitative rules
characteristic of the Feigenbaum scenario [1, 18] are
corroborated. Figure 3d shows the temporal realization,
spectrum, and phase portrait under the chaotic oscilla-
tion conditions. The general picture is well illustrated
by the bifurcation diagram, which demonstrates the
positions of the amplitude maxima at various values of
α (Fig. 4). A hard transition between two cycles at α ≈
2.33, regions of period doubling bifurcations, and win-
dows of periodic motion in the chaos are clearly seen.
As α grows further, the regular and chaotic conditions
alternate, which is a characteristic property of such sys-
tems [11, 12]. The transitions to chaos proceed either
through period doubling or softly.

Near the boundaries of the oscillation generation
region, the dynamics is much more complex. Here, one
of the two adjacent modes may be excited depending on
the initial conditions; in other words, we observe a typ-
ical case of mode competition at strong coupling [18].
For either mode, the transition to chaos follows a par-
ticular scenario. By way of example, let us consider the
case when Θ is close to π, so that modes with n = 0 (fun-
damental) and n = 2 (side-band) can be excited (see
Subsection 1.1). The bifurcation diagrams for both
modes at γ = 0.3 and Θ = 0.9π are depicted in Figs. 5a
and 5b. As follows from the results of numerical simu-
lation, the Feigenbaum scenario is first realized, but
then (α = 3.722) the hard transition to the periodic self-
modulation conditions takes place. Subsequently, the
self-modulation becomes quasi-periodic (α = 3.76) and
one more transition to chaos, which breaks the three-
frequency quasi-periodic motion (Ruelle–Takens sce-
nario), is observed. Near the oscillation generation
region, the doubling cascade terminates and the hard
transition to the periodic regime takes place after a
finite number of bifurcations, the number of bifurca-
tions decreasing as Θ approaches the boundary of this
region.

For the side-band modes, the transition to chaos
occurs only by breaking the quasi-periodicity (Fig. 5b).
In this case, many windows of periodic behavior are
observed. Within some of them, period doubling bifur-
cation can be noticed. These bifurcations correspond to
the doubling of the resonance cycle on a torus.
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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Fig. 3. Time series, phase portraits, and spectra for various dynamic conditions near the center of the oscillation generation region
at γ = 0.3 and Θ = 0.1π. α = 1.3 (a), 1.4 (b), 2.35 (c), and 2.38 (d).
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Fig. 4. Bifurcation diagram near the transition to chaos
through a sequence of period doubling bifurcations for
γ = 0.3 and Θ = 0.1π.
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Fig. 5. Bifurcation diagrams for the (a) fundamental and
(b) side-band modes at γ = 0.3 and Θ = 0.9π.
It should be emphasized that our results are similar
to the experimental data obtained in [7], where a micro-
wave oscillator built around a TWT with DF was stud-
ied. The feedback loop of the oscillator contained a tun-
able narrow-band filter. When the resonance frequency
of the filter was close to that of one of the eigenmodes,
the transition to chaos followed the Feigenbaum sce-
nario. If the resonance frequency lay roughly in the
middle between the frequencies of two modes, the
quasi-periodic route to chaos occurs.

When the factor of nonequilibrium α far exceeds the
threshold of chaos initiation, the attractors correspond-
ing to the fundamental and side-band modes combine.
This effect was also observed earlier [21]. The dynam-
ics of the system with the combined attractor is shown
in Fig. 6. The temporal realization is highly irregular
and virtually exhibits random switchings between the
two attractors, i.e., chaotic intermittency. The spectrum,
being rather noisy, has two distinct peaks at the fre-
quencies of the modes. Any well-defined large-scale
structure can no longer be revealed in the phase portrait.
Such conditions have been called high-dimensional or
fully developed chaos and are a feature of distributed
systems, in particular, of many electron–wave DSOSs
(see, e.g., [7, 23, 24]).

3. THREE-MODE APPROXIMATION

Investigators of distributed systems often invoke
various simplifying finite-dimensional models, which
consider a small number of interacting modes. The
best-known example is the Lorentz system in the prob-
lem of thermal convection [1, 4, 18]. Let us construct a
model of system (1) where only the fundamental and
two self-modulation modes are involved. The solution
to this three-mode system is found in the form of (9),
where A0 and A± are slowly varying functions. We
assume that they change insignificantly within the
delay time (which equals unity in our normalization).
Certainly, the amplitudes of the satellites are no longer
small. Substituting (9) into (1) and applying the method
of averaging [17, 18], we easily come to

(16)

By passing to the real amplitudes and phases in (16)
provided that A0 = a0exp(iϕ0) and A± = a±exp(iϕ±), it is
easy to check that the phase space of the system is four-
dimensional (three real amplitudes and the phase Φ =

Ȧ0 γ iω+( )A0+

= αei Θ ω–( ) 1 A0
2– 2 A+

2– 2 A–
2–( )A0 2A0*A+A––[ ] ,

Ȧ+ γ iω iΩ+ +( )A++

= αei Θ ω– Ω–( ) 1 A+
2– 2 A0

2– 2 A–
2–( )A+ A0

2A–*–[ ] ,

Ȧ– γ iω iΩ–+( )A–+

= αei Θ ω– Ω+( ) 1 A–
2– 2 A0

2– 2 A+
2–( )A– A0

2A+*–[ ] .
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Fig. 6. Temporal realization, phase portrait, and spectrum after the combination of the attractors for γ = 1.0, Θ = 0.9π, and α = 5.68.
2ϕ0 – ϕ+ – ϕ–). In the single-mode case (A± = 0),
Eq. (16) becomes

This equation describes the conditions of single-fre-
quency oscillations at the fundamental mode, with the
self-excitation conditions, oscillation amplitude, and
oscillation frequency coincident with those found in
Section 1 [formulas (4), (5), and (8)]. In addition, from
(16), one can also derive stability conditions for the sin-
gle-frequency regime that are totally coincident with
those in Subsection 1.3.

It is important that system (16) coincides (up to fac-
tors) with finite-dimensional models widely used in the
analysis of mode competition in resonant electron
masers (free-electron lasers, gyros, etc.) [25, 26]. How-
ever, these models fail to describe the complex dynam-
ics inherent in such devices. For them, only constant-
amplitude (single-mode or three-mode) conditions are
stable. Therefore, we can argue that distributed model
with delay (1), providing a variety of dynamic condi-
tions, closer approximates actual systems.

CONCLUSION

Thus, the simple model of a self-excited oscillator
with cubic nonlinearity and delay exhibits a wide diver-
sity of self-oscillation conditions in the parameter
space. As the factor of nonequilibrium grows, a compli-
cated sequence of alternating regular and random self-
modulation conditions is observed prior to chaos sets in
the system. It is basically incorrect to consider a single
scenario of transition to chaos, since almost all scenar-
ios typical of finite-dimensional dynamic systems are
realized. A sequence of bifurcations ends with fully
developed chaos, which is characterized by a much
more uniform continuous spectrum and the absence of
any well-defined large-scale structure on the phase por-
trait projection. Such a situation is typical of electron
DSOSs, such as TWTs with DF [7] and BWOs [23, 24].

Ȧ0 (γ iω)A0+ + aei Θ ω–( ) 1 A0
2–( )A0.=
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
It should also be noted that in the three-mode approxi-
mation, model (1) may be transformed into model (16),
which was used earlier to analyze mode competition in
electron masers [25, 26]. The results of the stability
analysis for the single-mode conditions coincide for
both models; however, the distributed system, being
more advanced, allows one to describe the complex
dynamics and chaos. Thus, the reduced version of van
der Pol equation with delay (1) can be used as a refer-
ence model of oscillators with delayed feedback.
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Abstract—A simple model (ratchet model) of occurrence of directed motion under the action of a zero-mean
fluctuating force is proposed. The motion arises when the symmetry in the velocity space is violated by nonlin-
ear friction. The mechanism of the directed motion is discussed qualitatively. Existence conditions of the
motion are derived. The efficiency of conversion of the fluctuating random force to the directed motion is esti-
mated. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Over the past decade, interest has been rekindled in
the problem of rectification of fluctuations, i.e., in pro-
ducing a macroscopic flux of particles in the absence of
applied forces or pressure, temperature, concentration,
etc. gradients [1]. Not only conditions under which
related devices could function have been formulated
but also direct observations of the particle flux have
been accomplished [2–5]. The majority of such devices
(models) are called ratchets because interest in this
problem has been largely inspired by Feynman et al.
[6], who discussed the ratchet-and-pawl model (first
used by Smoluchowski [7]). Emphasis has been
focused on the problem of transport in spatially peri-
odic systems in the absence of external forces (i.e.,
when space-, time-, and ensemble-averaged driving
forces are zero). The most attention has been placed on
small-scale systems (the so-called Brownian world
[8]), in which thermal fluctuations cannot be neglected.
If transients are ignored, directed transport in these sys-
tems, being in contact with a single source of dissipa-
tion and fluctuations (a thermal reservoir), is forbidden
by the second principle of thermodynamics. The ques-
tion arises as to what the conditions are for ordered
Brownian transport to exist in the absence of directed
forces? These are nonequilibrium of the fluctuations
and a violated reflection symmetry. The first condition
is obvious in the context of the second principle of ther-
modynamics, while the second one is necessary for
selecting the preferred transport direction. By violating
the symmetry of detailed balance (i.e., by making fluc-
tuations nonequilibrium) and the reflection symmetry
of the spatially periodic potential, we eliminate all for-
bidding symmetries and thereby (in accordance with
the Curie principle [9]) allow the flux to exist in the
absence of macroscopic gradients. One of the best-
1063-7842/02/4707- $22.00 © 20803
studied techniques for creating nonequilibrium is to
make the temperature space- or time-dependent [10].
Such models have been called diffusion ratchets. In
terms of the Einstein relation for motion in a potential
field with violated reflection symmetry, nonequilibrium
can be achieved by introducing a space or time depen-
dence of the friction factor (model of a friction ratchet).
In this paper, we consider another approach; namely,
we introduce the dependence of the friction factor on
the direction of particle motion. In the simplest case,
this dependence can be induced by the shape of a parti-
cle or by its conformations. In our model, conformation
transitions are independent of intrinsic transitions in the
particle but are induced by the environment. Further,
we use the term “umbrella” to refer to particles that
undergo such conformations. For an umbrella subjected
to zero-mean forces, the question of existence of a non-
zero flux even at the zero potential may be posed,
because the reflection symmetry is violated even at the
friction factor level. The associated model can be called
the model of nonpotential friction ratchet. The main
purpose of this paper is to study the dynamics of this
model. We will derive conditions for the directed
motion of an umbrella under the action of zero-mean
random forces. The efficiency of such a mechanism is
discussed. The possibility of overcoming the constant
field of the forces is demonstrated and conditions
imposed on the noise amplitude for such a motion are
derived in terms of the kinetic approach.

MECHANISM OF THE DIRECTED MOTION

Consider the motion of an object (umbrella) in a
medium with friction under the action of a random
force F(t) (Fig. 1). The statistical characteristics of the
random force are assumed to be known. The main prop-
002 MAIK “Nauka/Interperiodica”
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erty of this force is 〈F(t)〉  = 0. The equation of motion
of this object can be written as

(1)

where α is the friction factor dependent on the motion
direction.

The reason for this dependence is clarified from
Fig. 1. Let us consider it in more detail. The simplest
reasoning is as follows. When the umbrella moves in
the positive x direction, it closes and the friction factor
is α1. When the umbrella moves in the opposite direc-
tion, it opens up and the friction factor increases to α2.
Such a variation is easily described as

(2)

Now, let us write the starting equation in terms of
velocity  = v :

(3)

For simplicity, this model assumes that the umbrella
opens up and closes instantaneously. Obviously, this
assumption is reasonable if the characteristic times Tc
of the random force and the characteristic times τc of
the umbrella satisfy the inequality Tc @ τc. More
sophisticated models can be constructed by introduc-
ing, for example, continuous α vs. velocity depen-
dences

(4)

Here, β is the characteristic scale of the transition
between the two values of the friction factor. The model
of the umbrella and its characteristics are specified by
this function. Another example is

(5)

where ε2 is the characteristic parameter of the transi-
tion.

Now, let us discuss the mechanism behind the
directed motion under the action of a fluctuating ran-
dom force. The reason for this effect is that the symme-
try of the equation of motion with respect to the change
of variables v  –v  is violated. To estimate the
directed velocity, we reason as follows. Let us average

m
d2x

dt2
-------- F t( ) α ẋ( )dx

dt
------,–=

α 1
2
--- α2 α2+( ) 1

2
--- α1 α2–( ) ẋ

ẋ
-----.+=

ẋ

mv̇ F t( ) 1
2
--- α1 α2+( )v α1 α2–( ) v+( ).–=

α e v( ) α1

α2 α1–
1 βv( )exp+
-------------------------------.+=

αp v( ) 1
2
--- α1 α2+( )

α1 α2–( )v

ε2 v 2+
---------------------------+

 
 
 

,=

Fig. 1. Object consisting of an axis, two movable blades,
and a stopper.
Eq. (3) over the random force. The steady state is given
by the equality

(6)

Now the average value of the velocity magnitude is
expressed through the quadratic moment:

The velocity pair correlator can be estimated from
the energy balance condition for the steady state:

The correlator on the left side is expressed in terms
of correlation characteristics of the force. This is easy
to do if we bear in mind the estimate

Then,

By substituting this expression into Eq. (6), we
finally obtain

(7)

Equation (7) specifies the velocity of the directed
motion due to the fluctuating random force with zero
mean. The magnitude and direction of the velocity is
defined by the difference (α2 – α1). Clearly, these sim-
ple estimates demonstrate only the possibility of the
directed motion and need more rigorous substantiation.
To this end, we will derive a kinetic equation for the
umbrella velocity distribution.

KINETIC EQUATION

To derive the kinetic equation, we use the usual def-
inition of the distribution function:

Here, v(t) is a solution to the dynamic equation with
random force over which averaging is performed. By
taking the time derivative of f(V, t) and using the equa-
tion of motion, we obtain

(8)

or, in a more convenient form,

(9)
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α2 α1–
α2 α1+
------------------ v〈 〉 .=

v〈 〉  . v 2〈 〉
1
2
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.
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2
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1
m
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m
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------- F t( )δ V v t( )–( )〈 〉 α V( )Vf–( )–=
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∂
∂V
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Thus, to solve the problem, we must average the
term on the right-hand side and to express it through the
distribution function. Using the conventional methods
(see, e.g., [11–13]), one arrives at a closed equation for
the distribution function when the random force is
Gaussian and δ-correlated:

(10)

Here, we use the notation dτ ≡ 〈F2〉τ c,

which has clear physical meaning. The steady-state
solution to this equation (the zero flux in the velocity
space) can easily be found for two-level model (2)
of α(V):

(11)

The constant factor C is defined by the normaliza-
tion condition:

Using the above equilibrium distribution function,
we obtain the umbrella average velocity:

(12)

This velocity differs from estimate (7) not only by
the constant factor but also by its more complex depen-
dence on the two-level friction factor. Now, let us esti-
mate the efficiency of such an umbrella motion in terms
of its average energy:

(13)

In a sense, this way of motion is sufficiently effec-
tive when the difference in the friction factors is large
(α2 @ α1). The standard efficiency is given by

This value is the maximum achievable efficiency for
this way of motion.
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ACTION OF CONSTANT FORCE

The efficiency of the resultant directed motion is
sufficiently high. To corroborate this statement, we will
consider the motion of an umbrella in a constant gravi-
tational field. This case is very close to the way of
motion of jellyfishes. Let a constant gravitational force
be directed in the negative x direction. Then, the kinetic
equation that describes the umbrella motion has the
form

(14)

A solution to this equation can easily be found. As
in the previous case,

(15)

Here, C is the normalization constant. This constant is
found from the normalization condition for the function f:

where q = 2gm2/〈F2〉τ c > 0 and Ii (i = 1, 2) are defined as

The parameters βi (i = 1, 2) are

(16)

Then, the condition for the directed motion in the
positive x direction is written as

(17)

It is easy to check that there exists a range of param-
eters where this condition is satisfied. This condition
can be qualitatively understood from simple physical
considerations. The Langevin equation that is used to
derive the kinetic equation is equivalent to the over-
damped case of the usual Langevin equation. This can
readily be shown by applying the substitutions V  x
and m  α. This means that the behavior of this sys-
tem can be described in terms of the overdamped Lan-
gevin equation, which essentially considers the particle
to execute finite movements in the field of the effective
potential
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It is clear that the global minimum of this potential
lies in the range of negative x (Fig. 2).

The foregoing implies that the average particle coor-
dinate is negative when the particle energy is low. Turn-
ing back to the initial variables, we find that the
umbrella has a negative average velocity and falls under
gravity. However, the situation changes with increasing
particle energy. The average coordinate of the particle
may become positive because of the different asymp-
totic behavior of the potential (α1 < α2). It can be
proved that the average coordinate is positive if the
energy satisfies the condition

In the overdamped case, the energy is defined by the
pair correlator of the random external force. This means

E
4 mg( )2 α1 α2+( )

α2 α1–( )2
-----------------------------------------.≥
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Fig. 2. Effective potential vs. coordinate.

Fig. 3. Parameter ranges in which the upward motion of the
umbrella is predicted by the crude (heavy shade) and exact
(light shade) conditions.
that, when

(18)

the umbrella will move in the positive x direction
(opposite to the gravity). Physically, this condition is
rather crude because it ignores the difference between
the motion characteristic times in the regions x > 0 and
x < 0. Taking this difference into account will predict
the antigravitational motion at β2 to be higher than
those given by (18). This also follows from exact con-
dition (17). Figure 3 illustrates the difference between
the exact and crude conditions. Thus, the efficiency of
this way of motion is sufficient to overcome the coun-
teracting constant forces. In a sense, this mechanism of
directed motion may be observed in micro- and macro-
fauna. In macrofauna, the role of random forces may be
played by periodic forces due to the suction and ejec-
tion of a medium (liquid). Such a mechanism is used by
many aquatic organisms, for example, by jellyfishes. It
should be noted that here, the ejection force does not
necessarily exceed the suction force. The period-aver-
aged values of these forces may and must be zero. Mol-
ecules of special asymmetric shape can use a similar
mechanism to move in random external fields.
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Abstract—It is suggested to describe the diffusion of nanoparticles in rarefied gases in terms of the kinetic the-
ory. For this purpose, the potential of interaction between a carrier gas molecule and a dispersed particle is con-
structed by summing the interactions of the given gas molecule with all atoms (molecules) of the dispersed par-
ticle. With this potential, a formula for the diffusion coefficient of the dispersed nanoparticle is derived.
The dependence of the diffusion coefficient on the radius and temperature is studied. Analytical results are com-
pared with experimental data. The well-known experimental Cunningham–Millikan correlation is shown to
apply only in the range of near-room temperatures, for which the parameters of this correlation were deter-
mined. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The rapid advance in nanotechnologies necessitates
the study of particle transport in gases and liquids. The
size of nanoparticles ranges from several tens to several
hundred of angströms. By nanoparticles, both individ-
ual dispersed particles and their clusters are meant. In
studying the transport processes, the diffusion of nano-
particles and the calculation of their diffusion coeffi-
cient are key points. However, there is no general agree-
ment among researchers as to how to treat the diffusion
process. Some argue that the diffusion of nanoparticles
can be described in the same way as that of usual
Brownian particles, that is, with the Einstein diffusion
coefficient

(1)

where η is the viscosity of the medium, R is the charac-
teristic radius of a Brownian particle, and T is the tem-
perature.

Other researchers, however, try to describe the dif-
fusion of nanoparticles in terms of the kinetic theory of
rarefied or dense gases, considering the particles as
molecules. Strictly speaking, it is unjustified to treat the
diffusion of nanoparticles by either of the two methods.
In fact, the nanoparticle sizes are on the order of the
hydrodynamic infinitesimal scale of a carrier medium.
Therefore, the use of the hydrodynamic approach to
characterize the drag to particle motion from the carry-
ing medium is incorrect; however, exactly this type of
approach is implied in formula (1), where the Stokes
force appears as the drag force. If the kinetic theory is
applied, an appropriate potential of interaction between
gas molecules and a nanoparticle should be chosen. The
use of the conventional intermolecular potential in this
case is also unjustified.

By means of the molecular dynamics method, it was
shown [1, 2] that the mechanism of diffusion of nano-

DE kT /γs, γs 6πηR,= =
1063-7842/02/4707- $22.00 © 20807
particles in liquids and gases differs radically from both
the Einstein mechanism (for Brownian particles) and
the molecular mechanism. If, however, the particles are
sufficiently small, their dynamics in rarefied gases can
be well described (at least in the first approximation) by
a set of Boltzmann kinetic equations [3–5]. In this case,
an appropriate interaction potential should be available,
as was noted above. Such a potential was constructed in
our earlier works [6, 7]. In this article, this potential of
interaction between gas molecules and dispersed parti-
cles is applied to calculate the diffusion coefficient of
nanoparticles in a rarefied gas.

MOLECULE–DISPERSED PARTICLE 
INTERACTION POTENTIAL

The interaction of a carrier gas molecule with a dis-
persed particle is an extremely complex process. In the
general case, its description requires the solution of a
quantum-mechanical problem. However, in a wide
range of dispersed system parameters, the interaction
can be described classically in terms of model potential
functions. Interactions between atoms and a solid sur-
face are usually treated in this way [8–10]. The models
have proven to be adequate in various aerodynamic
applications, microelectronics, reactor materials sci-
ence, and thermal nuclear materials science. The idea
behind such a model is fairly simple, which makes it
very attractive. A solid surface is considered a set of
atoms (or molecules), and the potential of interaction
between a carrier gas molecule and the surface is found
as the sum of the potentials of interaction of a given
molecule with all surface atoms. The same approach is
adopted in this article to simulate the molecule–solid
particle interaction potential.

Let a solid dispersed particle be simulated by a set
of atoms of a solid that are enclosed in a sphere of
002 MAIK “Nauka/Interperiodica”
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radius R. The interaction potential of a gas molecule
colliding with the ith atom of the particle is described
by the pair potential Φi(|rm – ri|), where rm and ri are the
radius vectors of the striking molecule and the atom,
respectively. Then, if it is assumed that the gas mole-
cule–atom interaction is additive, the molecule–particle
interaction potential Φ(|r|) has the form

(2)

where N is the number of atoms (molecules) of the par-
ticle.

There exist many models of pair interaction poten-
tials, among which the Lennard-Jones, Kihara, and
Morse potentials are the most popular. In numerical
simulations and direct calculations, the first-named
potential is usually used. We also will apply the Len-
nard-Jones potential to simulate the interaction of a gas
molecule with an atom of the solid surface. The Len-
nard-Jones potential has the form

(3)

where εii is the potential well depth and σii/2 is the
effective repulsion radius.

It is usually impossible to take the sum of series (2).
Therefore, summation in (2) is replaced by integration
in practice [8]. Physically, this means that the solid is
approximated by a continuous model.

We will also assume that the particle is spherical and
homogeneous and has a radius R. Then, series (2) to be
summed has a finite number of terms. Within the con-
tinuous model, the potential is calculated by taking the
triple integral. In this case, the potential is averaged
over current coordinates of integration. These are
radius a and two, polar (Θ) and azimuth, angles. More-
over, if the interaction potential does not depend on the
mutual arrangement of the gas molecule and the atom
(which is strictly valid only for monoatomic and
nonpolar molecules), formula (2) is reduced to the inte-
gral [6]

(4)

where x is the distance from the molecule to the center
of the sphere (where the origin is placed); ΦLJ is the
Lennard-Jones potential for the interaction of a gas
molecule with an atom (molecule) of the dispersed par-
ticle; V is the effective volume per molecule, 1/V =
ρ∗ NA/µ; ρ∗  is the density of the dispersed particle
material, NA is the Avogadro number, and µ is the
molecular weight of molecules (atoms) constituting the
dispersed particle; a and Θ are current coordinates of
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integration, which characterize the position and the
radius of the circle of integration; and dV =
2πa2dasinΘdΘ is the elementary volume of integra-
tion.

If Lennard-Jones potential 12–6 (3) is taken as the
molecule–atom interaction potential, potential (4) is
calculable and has the form

(5)

where

Potential (5) depends on the parameters εij and σij of
the pair interaction potential between gas molecules
and the dispersed particle and also on the size of the
particle. If the particle is coarse (with a characteristic
size of more than 10–5 cm), one can use, instead of for-
mula (5), the much simpler solid surface–gas molecule
interaction potential [8, 9]

(6)

where z = r – R. This follows from (5) for large R.

CALCULATION OF THE DIFFUSION 
COEFFICIENT OF RAREFIED GAS 

SUSPENSIONS 

It has been shown [1–3] that the dynamics of even
rarefied suspensions in gas (gas suspensions) can be
described by a set of kinetic equations that include
many-body collision integrals. However, rarefied
ultradisperse (and in some cases finely disperse) gas
suspensions can be well described by a set of Boltz-
mann kinetic equations. This, in particular, applies to
gas suspensions and aerosols wherein nanoparticles are
suspended. In the one-liquid approximation, the states
of the gas suspension are characterized by unified
mass-averaged macroscopic variables. The solution of
the set of Boltzmann equations yields Navier–Stokes
equations in which the transfer coefficients are defined
by well-known expressions. Specifically, for the diffu-
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sion coefficient, we have [11]

(7)

where µ = mM/(m + M); m and M are the masses of a
carrier gas molecule and a dispersed particle, respec-

tively; T* = T/εij; and  are the so-called Ω inte-
grals [11].

1. Calculation of Ω Integrals

Thus, to calculate diffusion coefficient (7) in our gas
suspension, it is necessary first to calculate the Ω inte-
grals for potential (5). To do this, one needs to know the
constants of the pair potential of interaction [specifi-
cally, Lennard-Jones potential (3)] between a gas mol-
ecule and an atom (molecule) of the particle. Force con-
stants are usually evaluated from experimental data for
transport coefficients (viscosity, thermal conductivity,
and diffusion coefficient) or virial coefficients. This can
be done reliably, rigorously, and fairly accurately only
for molecules of the same material. With these con-
stants known, one usually calculates the parameters of
the interaction potentials for dissimilar molecules using
so-called combination relationships. They allow deter-
mination of the force constants of the potentials for
molecular mixtures from the interaction constants for
pure (single-component) substances. Naturally, these
relationships can be derived only if the same potential
model is used for components and for the mixture as a
whole. The applicability of the conventional and origi-
nal combination relationships was studied in [6, 7]. In
this work, we took the simplest ones:

(8)

(9)

The Ω integral for potential (5) was calculated with
an original computer program. It was tested with avail-
able data for mixtures of rarefied gases and proved to be
highly accurate.

Ω integrals (and the transport coefficients as a con-
sequence) depend strongly on the parameters of the
molecular interaction potential in a rarefied gas (see,
e.g., [11, 12]). Therefore, one must choose the proper
combination relationships to calculate the integrals.
Extensive calculations showed that, in contrast to the
case of a rarefied gas, the Ω integrals for potential (5)
depend on the choice of combination relationships
insignificantly. Their dependence on the parameters of
the intermolecular potential, the published data for
which are very contradictory, is also weak. As an exam-
ple, Table 1 lists the calculated Ω(1, 1)* for condensation
nuclei in air. The parameters of potential (5) were deter-
mined with combination relationships (8) and (9) (see
the first column in Table 1) and five pairs of εii and σii

D
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for water [13] (Table 2). The parameters of the interac-
tion potential for air molecules were taken from the
monograph [12]: σij = 3.617 Å and εjj = 97 K. The
spread in the values of Ω(1, 1)* did not exceed 0.5% in all
cases.

The weak dependence of the Ω integrals on the
parameters of the potentials of interaction between gas
molecules and the dispersed particle is explained by the
fact that potential (5) was obtained by averaging over a
large ensemble of atoms in the particle. Such a weak
sensitivity of the transport factors of nanoparticles to
the parameters of the intermolecular potential is a very
important finding, because experimental values of these
parameters are often unreliable. Cases are known
where the parameters of intermolecular potentials
determined for the same material under similar condi-
tions greatly diverge.

2. Dependence of the Diffusion Coefficient 
on the Radius of the Dispersed Particle

The dependence of the diffusion coefficient of dis-
persed particles on their radius is a very important char-
acteristic. If the particles are coarse (R @ l, where l is
the free path of gas molecules), this dependence is
defined by formula (1); that is, the diffusion coefficient
is inversely proportional to the radius. In the other lim-
iting case R ! l, the diffusion coefficient is defined by

Table 1.  Interaction potential parameters, Ω integrals, and
diffusion coefficients (×10–5 cm2/s) for condensation nuclei

Formula σij, Å εij/k, K Ω(1,1)* D ∆D, %

(8) 3.13 222 1.040 1.997 10.9

(8) 3.02 274 1.040 1.997 10.9

(8) 3.10 279 1.043 1.992 10.7

(8) 3.18 159 1.038 2.001 11.2

(8) 3.10 192 1.040 1.996 10.9

(9) 3.16 208 1.041 1.995 10.8

(9) 3.07 249 1.040 1.997 11.0

(9) 3.13 259 1.042 1.993 10.7

(9) 3.21 151 1.038 2.001 11.2

(9) 3.13 179 1.039 1.999 11.1

Table 2.  Interaction potential parameters for water molecu-
les [13]

σii, Å εii/k, K

2.71 506

2.52 755

2.65 800

2.80 260

2.65 380
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the Epstein formula [14]

(10)

from which Dfm is inversely proportional to the particle
radius squared. Here, m is the mass of a carrier gas mol-
ecule, ρ is the gas density, and α is the accommodation
coefficient.

Formula (7) is much more complicated than (10),
since the value of the Ω integral also varies with particle
radius. This is shown in Fig. 1 for some fixed tempera-
ture. This dependence is well approximated by the rela-
tionship

(11)

Dfm
3 mkT /2π

8ρR2 1 απ/8+( )
----------------------------------------,=
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1 1,( )* 1
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R
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Fig. 2. Diffusion coefficient D vs. particle radius R. Solid
curve, potential (5); dotted curve, Cunningham–Millikan
formula; dashed line, Einstein formula; and ∆, data
point [17].
where a1 and a2 are temperature-dependent constants.
For R > 5 × 102 Å, the Ω integrals become virtually
independent of the radius and their values come close
to unity.

Thus, neither Einstein formula (1) nor formula (10)
give correct values for the diffusion coefficient of nano-
particles. By way of example, the dependence of this
coefficient on the radius at T = 288 K is shown in Fig. 2
for condensation nuclei in air under atmospheric pres-
sure. Here, the solid curve meets formula (7) and the
dashed curve reflects the Einstein formula (1). As was
expected, the discrepancy is especially noticeable for
fine dispersed particles. For example, for clusters with
a characteristic size of about 10 Å, the diffusion coeffi-
cient given by (1) is two orders of magnitude lower than
that defined by (7).

3. Temperature Dependence of the Diffusion 
Coefficient

It should be noted that the diffusion coefficient of
nanoparticles, like that of molecules and Brownian par-
ticles, depends considerably on the temperature. Under
free molecular conditions, it depends on the square root
of the temperature, as in (10). Taking the viscosity coef-
ficient in Einstein formula (1) in the Chapman–Enskog
form [11], we arrive at

(12)

where σ is the effective diameter of a molecule. For-
mula (12) involves the Ω integral for Lennard-Jones
potential 12–6. Its temperature dependence can be
approximated by the power relationship1

Then, the Einstein diffusion coefficient takes the
form

(13)

It is easy to check from (7) and (13) that

(14)

at a given density of the carrier gas. This ratio depends
on the temperature nonlinearly. The discrepancy is the
most pronounced for fine particles when the Ω integrals
are far from unity.

Figure 3 demonstrates the temperature dependence
of the diffusion coefficient for condensation nuclei of a
fixed radius (R = 300 Å) in air at atmospheric pressure.
Again, formula (7) is depicted by the solid curve; Ein-
stein formula (1), by the dashed curve. In the latter case,

1 This approximation is satisfactory when temperatures are not too
low (T* > 1). The exact relationship is more complex [15].
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the temperature dependence of the viscosity for air was
determined from tabulated data.

COMPARISON 
WITH EXPERIMENTAL DATA

Comparison of calculated and experimental data is a
necessary test for the applicability for any theory. Our
analytical results were compared with available experi-
mental data for the diffusion of condensation nuclei in
air [17]. The experiment was carried out at 288 K and
atmospheric pressure (p = 101325 Pa). It was found
that R = 285 Å and De = 1.8 × 10–5 cm2/s, where R is the
size of the aerosol particle and De is the experimental
value of the diffusion coefficient.

Diffusion coefficient (7) with potential (5) was cal-
culated with combination relationships (8) and (9) and
five pairs of σii and εii for water [13] (Table 2). The
parameters of the interaction potential for air molecules
were taken from monograph [12]: σjj = 3.617 Å, εjj =
97 K, and ma = 29 g/mol. The density of water, its
molecular weight κw, and the effective volume of a
water molecule Vw were set equal to 1, 18.0153 g/mol,
and 29.916 Å3, respectively. The parameters of the
interaction potentials determined with combination
relationships (8) and (9), Ω integrals, and diffusion
coefficients for the condensation nuclei are listed in
Table 1. The last column of Table 1 displays the relative
discrepancy between our analytical results and the
experimental data [17], ∆D = (D – De)100%/De.

The aggregate discrepancy, which is the sum of the
error of measurement and the processing error, is about
10% in all cases. In Figs. 2 and 3, the experimental
value of the diffusion coefficient (triangle) is applied on
the analytical curve. The agreement between the calcu-
lation and the experiment is seen to be good.

Formula (1) for the diffusion coefficient can be
applied directly only to liquids and sufficiently dense
gases. To extend the applicability of formula (1), Cun-
ningham suggested the following modification:

(15)

The constants appearing in (15) were found in the
Millikan experiments [16]: A = 0.864, Q = 0.29, and
b = 1.25. Below, formula (15) will be called the Cun-
ningham–Millikan formula. This formula is an experi-
mental correlation. In this sense, the comparison of our
results with those obtained by this formula is effec-
tively a comparison with experimental findings. Under
our conditions, the Knudsen number is relatively high;
thus it could be hoped that this formula would give ade-
quate results. Figure 2 shows the results obtained with
this formula under the conditions of our experiment
(dotted line). The Cunningham–Millikan formula does
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correct formula (1) considerably and fits our data well
nearly throughout the range considered. The discrep-
ancy (5–7%) is observed only at large and very small
radii.

From physical considerations, it follows that the dif-
fusion coefficient must depend substantially on the gas
temperature. In Fig. 3, the diffusion coefficient of the
aerosol particle varies several tens of times as the tem-
perature grows from 100 to 1000 K. On the other hand,
according to the Einstein formula, the diffusion coeffi-
cient varies with temperature insignificantly (Fig. 3,
dashed curve). This should also be taken into account in
constructing experimental correlations. In the general
case, the coefficients A, Q, and b are temperature-
dependent. Unfortunately, Millikan, in his classical
experiments, determined these parameters in a very
narrow temperature range (19–24°C). Accordingly, the
temperature range where formula (15) applies is nar-
row. The dotted line in Fig. 3 is obtained with this for-
mula. It agrees with our data at temperatures between
100 and 300 K. At higher temperatures, the Cunning-
ham–Millikan formula strongly underestimates the dif-
fusion coefficient.

DISCUSSION

Our model of the interaction potential is straightfor-
ward and is, therefore, very attractive. Its basic assump-
tions are as follows.

(1) Molecule–surface interaction is potential and
adiabatic and can be described in classical terms.

(2) The potential of gas molecule–particle atom
interaction is pair and additive.

(3) The effect of the surface structure is ignored.
(4) Thermal oscillations of the particle surface are

not taken into account.
The question arises as to how serious these limita-

tions are.

0 200

D, cm2/s

T, K
600 1000400 800

10–4

Fig. 3. Diffusion coefficient D vs. temperature T. Designa-
tions are the same as in Fig. 2.
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The motion of electrons and nuclei is of quantum
nature; hence, the problem of finding the intermolecu-
lar potential is reduced, strictly speaking, to solving the
Schrödinger equation for interacting molecules. For
most systems, this problem can be solved only approx-
imately. It can be simplified by separating the nuclear
and electron motions and introducing the concept of
adiabatic potentials. This so-called adiabatic approxi-
mation is based on a great difference in the masses of
electrons and nuclei and allows researchers to study the
motion of electrons when the nuclei are at rest. With
such an approach, the Schrödinger equation does not
contain the operator of nucleus kinetic energy and the
nucleus coordinates are used as fixed parameters. As a
result, one can find the system energy as a function of
nucleus spacing. This energy is taken as the potential
energy of nuclei and is often referred to as the adiabatic
potential. Knowing this potential, one can study the
behavior of an ensemble of interacting molecules.

The principle of separation of the electron and
nuclear motions is not entirely incorrect when the elec-
tron terms come closer together and completely fails
when the electron states become degenerate. Therefore,
one should be especially careful when applying the adi-
abatic approximation to excited electron states of a sys-
tem. Moreover, the adiabatic approximation may be
invalid in high-energy collisions, where the operator of
nucleus kinetic energy can no longer be neglected: at
high velocities of atoms, the electrons have no time to
accommodate the instantaneous nuclear configuration
adiabatically.

The applicability of the adiabatic approximation is
specified by the Massey condition

(16)

where ωij is the frequency of electron–electron transi-
tions, v  is the atom velocity, and a is the length over
which the adiabatic wave function considerably
changes. With the condition (16) met, the collision time
a/v  far exceeds the time of electron–electron transitions

. This condition is usually satisfied in dispersed liq-
uids at moderate temperatures. At high collision ener-
gies, the adiabatic approximation must fail. However,
available experimental data suggest that the molecular
interaction is well described in terms of the adiabatic
approximation up to energies of several kiloelectron-
volts [18].

The model potential derived in this work can be
applied in both classical and quantum-mechanical cal-
culations. The limitations of the classical approach
refer not to the potential as such but to its applicability
within the classical transport theories. The classical
approach is valid if the de Broglie wavelength λ =
2π"/p is small in comparison with the characteristic
spatial scale of the problem. It is easy to check that this
condition is fulfilled if the temperatures are not too low.

ξ ij ωij
a
v
----  @ 1,=

ωmn
1–
Since the gas molecule–surface atom interaction
potential is assumed to be pair and additive, a carrier
gas, generally speaking, must be sufficiently dilute.
However, it should be noted in this respect that the Len-
nard-Jones potential used in the calculations is effec-
tive; hence, the nonadditivity of the interaction is also
taken into account (at least partially).

With the effect of thermal lattice vibrations and sur-
face structure taken into consideration, the quantitative
results may differ substantially. The potential model
suggested is thus only a zero approximation to what we
would like to have. However, the results obtained with
this model may fit the experimental data well. This is
because the potential is effective in essence owing to
the specific definition of its constants.

The comparison between the calculated diffusion
coefficient of the nanoparticles and the experimental
data suggests that the potential can successively be used
for studying the transport of nanoparticles in dilute
gases. In this work, the temperature dependence of the
diffusion coefficient of ultradispersed particles in a
dilute gas was investigated virtually for the first time.
Neither the Einstein formula (1) nor Cunningham–Mil-
likan correlation (15) describes this dependence cor-
rectly. To be more specific, the latter applies in a very
narrow temperature range near room temperature where
Millikan determined the constants in formula (15). For-
mula (10), using several constants found experimen-
tally, also gives incorrect values.

It should be noted that the majority of today’s stud-
ies of ultradisperse aerosols apply indirect methods to
find the dispersed particle size. As a rule, the diffusion
coefficient (or the mobility) of dispersed particles is
first found and then their radius is calculated with for-
mula (15). It can be concluded that such an approach to
finding the particle size yields error in the results. The
error grows sharply with carrier gas temperature. Direct
measuring methods, for example, with an electron
microscope, are therefore necessary.

Some comments on the applicability domain of for-
mula (7) for potential (5) follow. When studying trans-
port processes in gases, one should consider two simi-
larity parameters: the Knudsen number within the par-
ticle radius, KnR = l/R, and the Knudsen number away
from a particle, Kn∞. In the latter case, the Knudsen
number is defined as the ratio of the molecule free path
to the characteristic linear size of the system (such as
the transverse size of a flowed-around body, thickness
of the boundary layer, characteristic scale of the macro-
scopic parameter gradient, etc.). The Einstein formula
is valid for a continuous medium, where Kn∞ ! 1 and
KnR ! 1.

The theory put forward in this work is strictly appli-
cable if Kn∞ ! 1 or at least <1. In this case, the Boltz-
mann equations can be solved by the Chapman–Enskog
method, the result of which is formula (7). In addition,
a particle must be finely dispersed such that the condi-
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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tion

(17)

is fulfilled. Here, e is the van der Waals parameter for a
rarefied gas. Otherwise, the dynamics of particle–mol-
ecule collisions cannot be treated in terms of binary col-
lisions [1–3]. In this case, it is necessary to consider
many-body correlations and formula (7) may be modi-
fied to the form

(18)

where g is some correlation function.
As the rarefaction of a carrier gas increases (Kn∞ * 1

or @1), formula (7) becomes still more invalid. How-
ever, its applicability can be extended by introducing
the correction

(19)

where B and β are some temperature-dependent func-
tions and D is the diffusion coefficient defined by for-
mula (7) or formula (18). It is believed that formula (7)
for potential (5), rather than Einstein formula (1),
should be taken to describe the diffusion of nanoparti-
cles in rarefied gases. The applicability domain for for-
mulas (18) and (19) will be discussed later.
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Abstract—The electromagnetic field induced by shock compression of a current-carrying conductor is shown
to consist of two current waves. One propagates in the uncompressed material at the shock-wave velocity. The
other is due to current inward diffusion. As the shock wave propagates, the current passes from the first wave
to the second. At large observation periods, the situation resembles conventional current diffusion into a con-
ducting half-space. Control parameters for electrodynamic problems with shock waves are found. Their phys-
ical meaning is the ratio between the times of field convection and diffusion in different regions. In specific
cases, the problem is reduced to the motion of the surface of a current-carrying half-space and to shock metal-
lization of an insulator. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Shock compression of a current-carrying conductor
is a basic principle of operation of pulsed electromag-
netic systems (explosive magnetic cumulation genera-
tors, MHD generators, and current switches) [1]. Also,
this effect is used in shock-wave experiments to mea-
sure electrical conductivity, magnetization, and mass
velocity [2, 3]. The study of electrodynamic processes
accompanying shock compression of conductors would
help to improve the efficiency of related energy devices
and gain new information on the material state in
extreme conditions.

Upon shock compression of a material in a magnetic
field, the resulting electromagnetic pattern is governed
by two, diffusion and convective, mechanisms of mag-
netic field modification. When moving, the shock front
induces currents (specific current waves) in the conduc-
tor. The structure of the current waves depends on the
electrodynamic conditions and shock compression
parameters. The electrodynamics problem aimed at
finding the electromagnetic field due to material shock
compression has been known since the late 1950s [4–7].
It has become of still greater importance in recent years
owing to the development of novel dynamic methods
for diagnosing the material state at high energy densi-
ties [8–17]. With these methods, closed electrodynamic
models of shock compression are constructed to dis-
cover unknown material properties. Experimental data
are used as an input for solving inverse boundary-value
problems of shock compression electrodynamics. Here,
the exact solutions of direct electrodynamic problems
are of special value. In the quasi-stationary approxima-
tion, the direct problems are reduced to the equation of
1063-7842/02/4707- $22.00 © 20814
diffusion with nonstationary boundaries, which is hard
to solve. One of the boundaries of the conducting
region is the shock-wave front; therefore, correct state-
ment of the conditions at the shock front is needed.

In this work, we analyze the structure of the electro-
magnetic field resulting from shock compression of a
current-carrying conductor by extending a number of
known problems. The solution is based on a method
that is rather general and can be helpful in solving other
physical problems.

STATEMENT OF THE PROBLEM 
AND ELECTROMAGNETIC MODEL

In our consideration, we assume that (1) the shock
wave is nonrelativistic, i.e., the mass velocity u of the
material is much less than the velocity of light c; (2) the
shock wave is stationary and the mass velocity u and
the wave velocity D remain constant during wave prop-
agation; (3) the magnetic field is sufficiently weak and
has no effect on shock-wave propagation; (4) the shock
front width is negligibly small; (5) the conductivity of
the metal experiences a step at the shock front from σ1
to σ2; and (6) the conductor is made of a nonmagnetic
material.

These assumptions reasonably describe many
shock-wave experiments [2, 3]. Indeed, in metals, the
typical velocity of shock waves generated by chemical
explosives is about 5 km/s, which is much smaller than
the velocity of light. The stationarity condition is
readily fulfilled if the appropriate scale of the labora-
tory experiments is chosen. The shock-wave pressure in
metals under these conditions is above 10 GPa, which
002 MAIK “Nauka/Interperiodica”
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usually far exceeds the magnetic field pressure. The
shock wave front width in metals is on the order of 10
µm. Finally, it has been shown [17] that the step-con-
ductivity model fits the experimental data adequately.

Consider the simple 1D geometry. A plane shock
wave enters into the conducting space with a given cur-
rent passing over its surface at the time instant t = 0. The
coordinate system is related to the surface of the half-
space (Fig. 1). Figures 1 and 2 refer to the uncom-
pressed and compressed material regions, respectively.
Our goal is to find the magnetic field B(x, t) in the half-
space x ≥ 0 when the shock wave propagates in the
material (t > 0).

In the quasi-stationary approximation (u ! c), the
1D Maxwell equations and generalized Ohm’s law give
the following set of equations:

(1)

(2)

(3)

(4)

(5)

(6)

Here, Eqs. (1) and (2) describe the magnetic field diffu-
sion in the uncompressed and compressed regions,
respectively. Equation (1) includes the convective term
describing the motion of the material with the velocity u.
Equation (3) represents the initial condition, and
Eq. (4) specifies the boundary condition. Equations (5)
and (6) reflect the continuity of the magnetic and elec-
tric fields at the shock-wave front, which follows from
the boundary conditions for the shear component of the
related vectors [18]. In fact, the shock front is assumed
to be indefinitely thin; hence, it does not contain the
current. Equation (6), of electric-field continuity, com-
bines the differential Ampere law and generalized
Ohm’s law.

The set of Eqs. (1)–(6) specifies the boundary-value
problem for the magnetic field B(x, t). In the absence of
the shock wave, the problem is reduced to conventional
diffusion of a field into a half-space [1]. With the shock
wave present, the situation becomes more complicated.
Behind the shock front, the material is in the com-
pressed state and the size of the compressed region
grows monotonically. Moreover, compression changes
the conductivity of the material (the limit cases are
insulator–metal and metal–insulator transitions). The
problem stated by (1)–(6) is of a rather general charac-
ter. Its solution must describe the electromagnetic pat-
tern in different physical situations. For this reason, it is
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--------- 1
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-----------–– 0, D u–( )t x ∞,<≤=
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1
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∂2B2

∂x2
-----------– 0, 0 x D u–( )t,≤ ≤=
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B2 0 t,( ) B0,=

B1 D u–( )t t,( ) B2 D u–( )t t,( ),=

1
µ0σ1
-----------

∂B1

∂x
--------- uB1 x D u–( )t=+

1
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-----------∂B2
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---------

x D u–( )t=

.=
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hoped that general parameters controlling the electro-
dynamics of material shock compression will be found.

SOLUTION METHOD

The theory of solving boundary-value problems of
heat conduction with nonstationary boundaries has a
rich history. It dates back to the classical work [19] and
its subsequent criticism [20, 21]. Later, the special ana-
lytical methods developed in [22–27] were extended in
[28, 29]. The Green function method, the method of
thermal potentials, the method of series, and the
method of functional transformation have become the
most popular. A basically new approach to solving the
boundary-value problems with nonstationary bound-
aries, which can be called the method of extension, was
suggested in [13]. Its essence is in that an initial range
of variables (x, t), which is defined by the shock front
kinematics, is transformed into an extended range of a
simpler form. As an extended range, the quadrant x ≥ 0,
t ≥ 0 has turned out to be the most convenient. For this
quadrant with t = 0, a solution to the boundary-value
problem can be constructed with the Green function.
The unknown function at t = 0 is determined from the
condition at the moving boundary. The solution thus
obtained has physical meaning in the initial range of
variables (x, t). Once work [13] had been published,
associated solutions for a linearly extending range with
given edge fields were found by the Laplace–Carson
method of functional transformation [22] and by the
Green function method [26]. A comparison between the
three different solutions of this problem for the case of
stationary edge fields [13, 22, 26] shows that the
method of extension offers an advantage as applied to
similar physical problems. Subsequently, the method of
extension has been used to analyze electromagnetic
effects in double-line systems [14] and the behavior of
a shock wave entering into a half-space [16]. This
method is partly employed in the solution given below
[13, 14, 16].

0 xf = (D – u)t X

D – u

u

12

σ1σ2

B0

Fig. 1. Entering of a plane shock wave into a conducting
half-space with surface current. The reference system is
related to the free boundary of the half-space. (1) Uncom-
pressed material; (2) compressed material. The moving
position of the shock front is xf = (D – u)t.
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SOLUTION TO THE PROBLEM

Let us reduce problem (1)–(6) to the problem with
zero boundary conditions. To do this, we introduce the

new functions  and  (B1 = B0 , B2 = B0(1 + ))
and put B0 = 1 without loss of generality. Then, we
arrive at two boundary-value problems for the functions

(x, t) and (x, t):

(7)

(8)

which are related by the conditions

(9)

at the mobile boundary. Here, µ(t) is an auxiliary func-
tion. Problems (7) and (8) will be referred to as prob-
lems I and II, respectively. The solution to problem I is
given by

(10)

where x' = x – (D – u)t, h = (D/2 – u)µ0σ1, erfc(x) = 1 –
erf(x), and erf(x) is the error function.
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Based on the method of extension, we seek a solu-
tion to problem II in the form

(11)

In view of (8) and (9), we come to the following set
of equations for the functions µ(t) and f(t):

(12)

(13)

By applying the Laplace transformation to set (12)–
(13) and eliminating the Laplace transform from the
function µ(t), we obtain

(14)
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Here, F1(p) = L[ f (t) ] and F2(p) = L[ f (t) ]
are the Laplace transforms and

Taking the inverse Laplace transform from (14), we
arrive at the integro-differential equation for the func-
tion f(t):

(15)

for f(0) = – .

With the function f(t) found, the magnetic field
B2(x, t) is given by

(16)

where

Assuming that the magnetic field at the moving
boundary is found, we can state the problem for the
uncompressed material. It involves Eqs. (1), (3), and
(5). The last equation assumes that the edge field is
already known.

The magnetic field in the uncompressed material
has the form

(17)

tsinh tcosh

s
σ2

σ1
-----, k2 D2

D u–( )2
--------------------

σ1

σ2
----- 1.–= =

d
dt
----- f t( ) tcosh s tsinh+( )[ ] u

D u–
------------- f t( ) tsinh–

+ sk f τ( ) τ
J1 k t τ–( )( )

t τ–
----------------------------sinh τd

0

t

∫ 2u D–
D u–

---------------- tcosh=

– s t sk τ
J1 k t τ–( )( )

t τ–
----------------------------cosh τd

0

t

∫–sinh

s

B2 x t,( ) B0 B0
2

π
-------

R2ϕ
2

4
------------– 

 exp+=

× f R2τ( ) R2ϕτ( ) τ2–( )expsinh τ ,d

0

∞

∫

ϕ x
D u–( )t

--------------------, R2 µ0σ2 D u–( )2t.= =

B1 ξ t,( ) B0
2

π
-------

R2

4
-----– 

  R1ξ–( ) f R2τ( )
0

∞

∫expexp=

× R2τ( ) τ ξ+( )2–( )G ξ t τ, ,( )dτexpsinh

+
B0

2
----- 2 R1ξ–( )erfc ξ

R1

2
----------– 

 exp

+
B0

2
-----erfc ξ

R1

2
----------+ 

  ,
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
where

(18)

Formulas (16)–(18) and also Eq. (15) for the func-
tion f(t) yield a solution to the problem stated by
(1)−(6).

Figure 2 shows the distributions of the magnetic
field for R1 = R2 = R and u/D = 0.5. For the uncom-
pressed material, the spatial variable η = µ0σ1Dx' was
used. Figure 2b demonstrates the dependence of the
magnetic field at the shock-wave front on the parameter R.
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Fig. 2. Magnetic field distribution when the shock wave
enters into the conducting half-space (u/D = 0.5, s = 4, R1 =
R2 = R). (a) Magnetic field distribution in the conductor:
0 ≤ ϕ ≤ 1, compressed material; η ≥ 0, uncompressed mate-
rial (figures on the curves indicate the values of R); the
shock front position corresponds to ϕ = 1 and η = 0.
(b) Magnetic field at the shock front vs. R.
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The value of the field is descriptive of the ratio of the
currents in the compressed and uncompressed material.

If the time of shock propagation is small (R ! 1), the
thickness of the compressed region is also small and the
magnetic field at the front differs from that on the sur-
face only slightly. In this case, almost the entire current
passes in the uncompressed region before the front. As
the shock wave propagates, the compressed region
thickness grows and the magnetic field at the front
decreases. The current passes from the uncompressed
region to the compressed one. At large observation
times (R @ 1), the field at the front tends to zero and the
current occupies only a part of the compressed region.

Such a current pattern may be treated as the current
redistribution between two current waves. One propa-
gates through the uncompressed material at the shock-
front velocity. The maximal thickness of this wave is
given by the condition η ≈ 1. The other wave is a diffu-
sion wave in the compressed material. Its thickness
grows continuously. For short times, the current is uni-
formly distributed over the compressed material. For
long times, the shock front breaks away from the sec-
ond current wave, so that there is no current at the front.
It is essential that the value and the spatial distribution
of the resulting currents strongly vary with time.

The electromagnetic field pattern is readily illus-
trated by the asymptotes to the solution and specific
cases of the problem.

ASYMPTOTES TO THE SOLUTION

The asymptotes to the solution obtained are easy to
find. We will take advantage of the properties of the
function f(t), which follows from (15):

For short times (R1  0, R2  0), the field in the
uncompressed material is

(19)
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that is, the field rapidly drops with the distance from the
shock front. In the compressed material, the field is
given by

(20)

From (19) and (20), one finds the magnetic field Bf
at the shock front:

From the last two formulas, it follows that the field
in the compressed material varies with the coordinate
linearly and the field at the front diminishes with time

rather slowly: ≈1 – α , where α = const.
For long times (R1  ∞, R2  ∞), the asymp-

totes have the form

It is easy to see that the field B1(η, t) at the front
tends to zero. The expression for the field B2(x, t) in the
compressed material is the solution to the classical
problem of diffusion into a conducting half-space [1].

SPECIFIC CASES
Let R1 = R2; then, k = 0 and the function f(t) can be

found from (15) in explicit form:

In this case, G(ξ, t, τ) = 1, which simplifies the use
of (17).

Let σ1  0 and σ2 be finite. Then, R1  0, the
function f(t) can be found, and the solution to the prob-
lem is
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The latter formula, derived in [13], illustrates the
structure of the magnetic field for the insulator–metal
transition in a shock wave.

Now let σ2  0 and σ1 be finite. Then, R2  0
and the solution to the problem is

(21)

Formula (21) is the solution to the problem of
motion of the current-carrying half-space surface. This
problem is akin to the well-known problem of motion
in a medium with a heat source [19–21]. A correct solu-
tion to the thermal problem is given in [21]. Formula
(21) differs in that it uses the variables η and R1 and,
thus, has clear physical meaning. It is easy to check that
formula (21) is reduced to

(22)

at long times (t  ∞, R1  ∞, η/2  0).

Thus, for t  ∞, the magnetic field distribution
before the moving surface becomes stationary. In this
case, the magnetic field varies (and the associated cur-
rent concentrates) largely in a conductor layer of thick-
ness x∗  = 1/µ0σ1D. For short times, the effective thick-
ness of the current layer is less than x∗ . The magnetic
field distribution (22) becomes stationary at R1 ≈ 10.

Note in conclusion that the solution to (16)–(18)
offers sufficient generality and can be helpful in solving
well-known problems [13, 19–21] in specific cases.

PHYSICAL MEANING OF CONTROL 
PARAMETERS

The solution found depends on the parameters R1
and R2. The former can be represented as the ratio of

two times: R1 = t/µ0σ1 . The time t characterizes con-

vective motion. The quantity µ0σ1  is the time of
electromagnetic relaxation in a conducting layer of
thickness x∗ . The thickness x∗  and the related relax-
ation time are characteristic parameters in electrody-
namic problems with a moving (nonstationary) bound-
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ary. When a shock wave propagates in an infinite con-
ductor in a field, the current concentrates within a layer
of thickness x∗  before the front [6, 7]. When the wave
enters into the conductor, the thickness x∗  is the limit-
ing thickness of the current-carrying layer [16]. When
the surface of a half-space moves, the size of the region
with current is also x∗  for t  ∞ [see formula (22)].

Let the magnetic field before the front be kept con-
stant. Then, for R1 ! 1, the magnetic field distribution
in the uncompressed material is nonstationary. If
R1 @ 1, the distribution becomes stationary in the front-
related reference system. The distribution becomes sta-

tionary for t1 ≈ 10µ0σ1  ≈ 10/µ0σ1D2. If the magnetic
field at the wave front changes, it will take a time on the
order of t1 for the magnetic field distribution to “accom-
modate” this change.

The parameter R2 can be represented as R2 =
µ0σ1 /t. Here, the numerator is the diffusion time in

the compressed material (xc = (D – u)t) and the denom-
inator is the time of convective motion. Thus, the
parameter R2 is also the ratio of two times, the times of
diffusion and convection. For R2 ! 1, diffusion prevails
in the compressed material and the magnetic field dis-
tribution is near-equilibrium. If R2 @ 1, the effect of dif-
fusion is significant only in the region adjacent to the
free boundary of the half-space and the currents near
the front are absent. The condition for the separation of
the shock front from the diffusion wave (R2 @ 1) gives
an estimate for the time t2: t2 ≈ 10/µ0σ2(D – u)2. Within
this time, the magnetic field at the shock front dimin-
ishes considerably in our statement.

For a continuous metal (without phase transitions),
t1 and t2 are of the same order of magnitude. In the
shock-wave experiment [2, 3], the typical value of t1
was .10 ns for copper and .300 ns for constantan. Two
time ranges can be distinguished. For short times (t < t1,
t < t2), the magnetic field distribution is nonequilibrium
in the uncompressed material but is equilibrium in the
compressed state. For long times (t > t1, t > t2), the sit-
uation is reversed. In the latter case, the magnetic field
at the shock front is close to zero and the entire current
passes in the compressed region (in our statement).

The importance of the parameters R1 and R2 is that
they have clear physical meaning and allow for a sim-
pler representation of the nonstationary problem.
Owing to their generality, these parameters character-
ize solutions to the class of electrodynamic problems
involving shock waves. The parameter R2 has appeared
in the problem with one conducting region [13]; both
parameters were present in the two-region problem
[16]. The solution to specific electrodynamic problems
depends on the initial and boundary conditions. At the
same, these problems have mutual control parameters
and characteristic times specified by them.

x*
2

xc
2
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It should be noted that our approach can be extended
for the processes of heat transfer and molecular diffu-
sion, where nonstationary-boundary problems are fre-
quently encountered. In these cases, one can also deter-
mine the (thermal or molecular) skin depth and the
related diffusion time. The use of the associated dissi-
pation factor, instead of the conductivity, will then suf-
fice to find the control parameters R1 and R2. In the gen-
eral case, the parameters R1 and R2 can be written in the

form R1 = t/χ1 and R2 = (V1 – V2)2t/χ2, where V1 and
V2 are the velocities of the front and back boundaries,
respectively, and χi is the diffusion coefficient in the
associated region. In this case, the meaning of the
parameters R1 and R2 remains the same (the convection-
to-diffusion time ratio). The use of these parameters in
nonstationary-boundary problems makes it possible to
simplify the solution of nonstationary heat conduction
problems and make them physically more meaningful.

CONCLUSION

The method of extension of the operating domain
allows one to find the electromagnetic field upon shock
compression of a current-carrying conductor in the suf-
ficiently general statement of the problem. The specific
cases of our analysis are the problem of motion of the
half-space surface [19–21], the problem of shock-
induced insulator–metal transition [13], and the prob-
lem of classical current diffusion into the half-space. It
is important that the analysis reveals mutual parameters
and characteristic times in the class of electrodynamic
problems with shock waves. This is essential for devel-
oping new experimental techniques aimed at studying
the material state at high energy densities and in high-
energy electromagnetic systems. Our approach can be
helpful in treating diffusion and other thermal problems
with nonstationary boundary.
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Abstract—The pinning energy of plane (laminar) vortices in a 3D Josephson medium is calculated within a
continuous vortex model considering functions of two types: V = 1 – cosϕ and V = 2/π4ϕ2(2π – ϕ)2. The shape
and energy of the stable and unstable vortices are found with an algorithm for the exact numerical solution of
a set of difference equations. The vortex magnetic and Josephson energies diverge. The magnetic and Josephson
components of the pinning energy are close in magnitude but differ in sign; as a result, the total pinning energy
is smaller than its components by one order of magnitude. This result is confirmed analytically. An analytical
computing method within the continuous vortex model is suggested. This method preserves the difference terms
in the energy expression. The magnetic energy found by this method differs from the Josephson energy in mag-
nitude, and the magnetic component of the pinning energy is opposite in sign to the Josephson component.
Comparative analysis of the approximate approaches to energy calculation within the continuous vortex model
when the difference terms are retained and when they are replaced by derivatives is performed. It is shown that
the continuous vortex model gives incorrect values of the Josephson and magnetic components of the pinning
energy. The actual values are several tens or several hundreds of times higher than those obtained with the con-
tinuous vortex model. Yet, since the Josephson and magnetic components of the pinning energy have different
signs, the exact value of the total pinning energy and the approximate value obtained within the continuous vor-
tex model differ insignificantly. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recent studies of high-temperature superconductors
have shown that vortex structures are to a great extent
responsible for processes arising in the material. In par-
ticular, vortex pinning and interaction specify the pro-
cesses taking place when a high-temperature supercon-
ductor is placed in a magnetic field. The motion of vor-
tices results in non-Joule heat evolution in the sample.
The critical currents and fields can be increased (a fun-
damental problem in physics and technology) if the
vortex behavior, structure, and interaction, as well as
pinning mechanisms and forces, are adequately under-
stood.

In [1], plane (laminar) vortices in a 3D-ordered
Josephson medium representing a cubic lattice consist-
ing of superconducting wires were considered. Each
connection of the lattice contains a Josephson contact.
In such a structure, the energy of the current configura-
tion per unit length (1 m) is given by

(1)

where ϕk are the phase jumps at the contacts, I is the
pinning parameter, and ε0 is the normalizing constant.
Hereafter, the energies are expressed in terms of ε0. The

E ε0
1
2
--- ϕk 1+ ϕk–( )2 I 1 ϕkcos–( )+ ,

k ∞–=

∞

∑=
1063-7842/02/4707- $22.00 © 20821
first term in (1) describes the vortex magnetic energy;
the second, the energy of Josephson contacts.

The vortex equilibrium states, which correspond to
the energy extrema, are described by a set of difference

equations that follows from the condition  = 0:

(2)

A system of equations similar to (2) also describes
vortices in a long periodically modulated Josephson
contact [2, 3].

Nonlinear system (2) characterizes the behavior of
one type of soliton. Therefore, great interest has been
displayed in this set by physicists and mathematicians
and many interesting results have been found. This set
was first obtained by Frenkel’ and Kontorova when
considering the behavior of edge dislocations in a crys-
tal [4]. Because of its discrete nature, the system allows
researchers to analyze the soliton motion with allow-
ance for pinning. The pinning force was defined as the
finite energy needed for the vortex center to be dis-
placed from one cell to another.

The exact solution to nonlinear finite-difference sys-
tem (2) is impossible to find analytically. When the
parameter I is small (I < 1), the distribution becomes

∂E
∂ϕm

---------

ϕm 1+ 2ϕm– ϕm 1–+ I ϕm.sin=
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quasi-continuous and system (2) transforms into the
differential equation

(3)

The vortex Josephson, EJ, and magnetic, EH, ener-
gies obtained within the quasi-continuous approxima-
tion (when I tends to zero) approach their exact values.
However, the use of such an approximation for finding
the pinning energy is questionable. The point is that the
Josephson and magnetic components of the pinning
energy, which equal the differences between the associ-
ated energies in different vortex positions, have a much
higher order of smallness in I and may be beyond the
approximation error. It will be shown below that the
components of the pinning energy vary as exp(–1/I),
which makes our doubts still more justified.

In this work, Eq. (3) is used to compare different
approximate approaches to evaluating the energy val-
ues by comparing results obtained in various approxi-
mations with the exact solution to the problem stated.

Mathematically, the discrete nature of the problem
follows from (i) discrete summation in energy expres-
sion (1); (ii) the presence of difference terms in expres-
sions under the summation sign, e.g., (ϕk + 1 – ϕk)2 in
(1); and (iii) finding the vortex shape with finite-differ-
ence system (2).

The replacement of summation by integration, dif-
ference terms by derivatives, and finite-difference sys-
tem (2) by differential equation (3) would mean the
total abandonment of discreteness. Then, the Joseph-
son, EJ, and magnetic, EH, energies would equal each
other and both components of the pinning energy
would vanish.

In [5], another method of calculating the vortex pin-
ning energy was proposed. Here, summation in (1) is
retained but the term 1/2(ϕk + 1 – ϕk)2 is replaced by
1/2(ϕ')2 and the vortex shape is found from differential
equation (3). With this method, the pinning energy was
calculated from Eq. (1) in work [3]. The values of EJ

and EH turned out to equal each other and were given by
the same expressions as in the continuous approach. As
for the pinning energy components, they were exactly
equal to each other, being other than zero.

In this work, we suggest an algorithm for exact
energy computation that meets all points (i)–(iii). The
magnetic and Josephson energies differ. The magnetic
and Josephson components of the pinning energy are
close in magnitude and differ in sign; thereby, the total
pinning energy is one order of magnitude smaller than
its components. In addition, we use an analytical com-
putational method that retains the first two discrete-
nesses (summation and differences terms) but assumes
the vortex shape is found from a differential equation.
The magnetic energy EH is smaller than the Josephson

d2ϕ
∂x2
--------- I ϕ .sin=
energy EJ. The magnetic and Josephson components of
the pinning energy are opposite in sign.

VORTEX PINNING EVALUATION

1. Analytical Calculation Based on the Continuous 
Vortex Model with Summation and Differences Terms 

Taken into Account

Let the stationary vortex energy per unit length and
height (1 m) be expressed as [5]

(4)

where E0 is the normalizing constant. Hereafter, the
energies are expressed in terms of E0.

The equilibrium states of the vortex, which corre-
spond to its energy extrema, are given by the set of
finite-difference equations

(5)

We will seek the vortex pinning energy at I ! 1 by
expanding the δ functions into a Fourier series [5]:

(6)

For this purpose, we represent Eq. (4) in the form

(7)

where α is the coordinate of the vortex center relative
to the cell edge. If, for example, the vortex is centered
on the boundary between two cells, α = 0; if the vortex
is at the center of a cell, α = 0.5.

If the function f(x) is even, expression (7) takes the
form

(8)

In (8), a solution to the differential equation

(9)

is used as ϕ(x). Equation (9) replaces discrete equation (5).
For the boundary conditions ϕ  0, ϕ  2π,

E E0
1
2
--- ϕk 1+ ϕk–( )2 IV ϕk( )+ ,

k ∞–=

∞

∑=

ϕm 1+ 2ϕm– ϕm 1–+ IV' ϕm( ).=

δ x k–( )
k ∞–=

∞

∑

=  i2πnx( )exp
n ∞–=

∞

∑  = Re i2πnx( ).exp
n ∞–=

∞

∑

E f ϕk( )
k ∞–=

∞

∑ f ϕ x α+( )( ) δ x k–( )
k ∞–=

∞

∑ xd

∞–

∞

∫= =

=  Re f ϕ x( )( ) i2πn x α–( )( )exp
n ∞–=

∞

∑ x,d

∞–

∞

∫

E = 2 2πnα( )Re f ϕ x( )( ) i2πnx( )exp x.d

0

∞

∫cos
n ∞–=

∞

∑

d2ϕ
dx2
--------- IV' ϕ( )=

x → –∞ x → +∞
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and ϕ'  0 (which correspond to a single vortex),
Eq. (9) yields

(10)

from whence the solution is found.

This solution corresponds to a vortex in a continu-
ous medium. Below, it will be shown that the use of the
approximate solution that ignores the discreteness of
the medium in calculating the pinning energy is an
assumption that somewhat corrupts the real situation.
In [5], however, one more assumption is made (which
is omitted in this work). Namely, it is suggested to
retain summation and, at the same time, replace the
term 1/2(ϕk + 1 – ϕk)2 by 1/2(ϕ' )2 . In this case, as follows
from (10), the terms in (4) equal each other and the cal-
culation by (8) at f = 2IV would suffice to find the total
energy. As was already noted, this assumption is omit-
ted in this work, which greatly improves the accuracy
of the results, as comparison with the computer calcu-
lation shows (Tables 1, 2). In this case, the first and sec-
ond terms in (4) make different contributions to the vor-
tex total energy, as well as to the pinning energy.

Two forms of the function V(ϕ) will be considered:
V = 1 – cosϕ and V = 2/π4ϕ2(2π – ϕ)2. The former was
analyzed in [6]. It corresponds to the behavior of plane
vortices in a 3D Josephson medium [1] and in a long
periodically modulated Josephson contact [2, 3].
Therefore, the contributions from the first and second
terms in (4) to the total energy will be called the mag-
netic energy and Josephson energy, respectively.

The latter form is of independent interest, since it
also has been analyzed in a number of works. On the
other hand, it is reasonable to check the generality of
results obtained as applied to different forms of the
function V(ϕ) and to estimate the effect of the function
type on the energy values, especially on the values of
the pinning energy components. The function V =
2/π4ϕ2(2π – ϕ)2 approximates the function V = 1 – cosϕ
in the range 0 ≤ ϕ ≤ 2π, since ϕk for a single vortex var-
ies precisely in this interval. Both functions are sym-
metric about ϕ = π and have equal roots (ϕ = 0 and ϕ =
2π) and maxima (V = 2 at ϕ = π). However, in spite of
their similarity, the functions give greatly differing vor-
tex total energies and, particularly, pinning energies.
The generality of rules found for both functions is
therefore all the more convincing.

The case V = 1 – cosj. The solution to Eq. (10) for
a single vortex has the form

(11)

The plot of function (11) is depicted in the figure.

x → ±∞

ϕ'( )2 2IV ϕ( ),=

ϕ x( ) 4 x I–( )exp( ).arctan=
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
Substituting (11) into (8) and leaving the terms with
n = 0, ±1 yields

(12)

where ξ = x .

Consider the Josephson energy E = I 1 –
cosϕk). In this case,

(13)

Taking into account that f1 is even with respect to ξ
and using formula (3.985) from [7], we find

(14)

(15)

The energy EJ1 is maximal when α = 0, that is, when
the vortex is centered on the boundary between two
cells.

Now, consider the magnetic energy EH =

0.5 ϕk – ϕk + 1)2. In this case,

(16)

E
2

I
------ f 4 ξ–( )exp( )arctan( ) ξd

0

∞

∫=

+
4

I
------ 2πα( )Re f 4 –ξ( )exp( )arctan( )

i2πξ
I

----------- 
 exp ξ ,d

0

∞

∫cos

I

(
k ∞–=
∞∑

f 1 I 1 4 e ξ–( )arctan( )cos–( ) 2I

ξcosh
2

----------------.= =

EJ0 4 I
ξd

ξcosh
2

----------------

0

∞

∫ 4 I
bξ( ) ξdcos

ξcosh
2

--------------------------

0

∞

∫b 0→
lim= =

=  4 I
bπ

2 bπ/2( )sinh
-------------------------------

b 0→
lim 4 I ,=

EJ1 = 8 I 2πα( ) 2πξ/ I( ) ξdcos

ξcosh
2

-------------------------------------

0

∞

∫cos  = 
8π2

π2/ I( )sinh
----------------------------

× 2πα( )cos 16π2 π2

I
------– 

  2πα( ).cosexp≈

(
k ∞–=
∞∑

f 2 8 e x α+( ) I–( )arctan e x α 1+ +( ) I–( )arctan–( )
2

=

=  8
e α I– e α 1+( ) I––

e x I– e x 2α 1+ +( ) I––
---------------------------------------------.arctan

2

ϕ

π

–π
0 x

2π

Solution (11) to Eq. (10) for a single vortex.
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At α1 = –0.5, the function

(17)

is even. Expanding the function arctanx into a series in
x, squaring it, and integrating termwise yields

(18)

where η = .

Going from the series in η to that in , we obtain

(19)

To calculate EH1, we will use the methods of the the-
ory of complex variables [6]:

(20)

The vortex total energy is

(21)

By the pinning energy Ep, we mean the difference
between the maximal and minimal vortex energies. The
energy is maximal when the vortex is centered on the
boundary between two cells (α = 0) and minimal when
the it is concentric with a cell (α = 0.5):

(22)

According to the analysis performed, the quantities
∆EJ and ∆EH are given by

(23)

(24)

f 2 8 I/2( )sinh

x I( )cosh
---------------------------arctan

2
=

EH0
8

I
------ I/2( )sinh

ξcosh
---------------------------arctan

2 ξd

∞–

∞

∫=

=  
16η

I
--------- 1

4
9
---η–

184
675
---------η2 704

3675
------------η3– …+ + ,

I
2

------sinh
2

I

EH0 4 I
1
9
--- I3/2–

7
1350
------------I5/2 ….+ +=

EH1 = 16 π2/ I–( ) 2πα( ) 2.43766 I/12–( ).cosexp–

E E j0 EH0 E j1 EH1+( ) 2πα.cos+ +=

Ep E 0( ) E 0.5( )– ∆EJ ∆EH.+= =

∆EJ 32π2 π2

I
------– 

  ,exp=

∆EH 32 π2

I
------– 

  2.43766 I/12–( ).exp–=

Table 1.  Magnetic and Josephson energies for V = 1 – cosϕ
found by different ways

I

Theory 
(13)

Theory 
(19)

Numerical model 
(25) and (26) Exact solution

EJ0 EH0 EH0 EJ0 EH EJ

0.15 1.5492 1.5428 1.5428 1.5492 1.5525 1.5393

0.40 2.5298 2.5022 2.5022 2.5298 2.5452 2.4860

0.70 3.347 3.2836 3.2837 3.347 3.3853 3.2393

1.00 4.000 3.894 3.894 4.000 4.073 3.806
Note that expressions (23) and (24) in their analyti-
cal form cannot be expanded in powers of I; hence, they
could not be found by the method of successive approx-
imations.

To check the formulas obtained, we performed an
exact computer calculation of the quantities

(25)

for α = 0 and α = 0.5. Here, ϕk is taken in the form of
(11), which corresponds to a vortex in a continuous
medium:

(26)

According to (22), the difference between the asso-
ciated values for various α gives ∆EJ and ∆EH, while
their half-sum, according to (21), equals EJ0 and EH0.

The results thus obtained for several values of I, as
well as the energies EJ0, EH0, ∆EJ, and ∆EH calculated,
respectively, from (14), (19), (23), and (24), are listed
in Tables 1 and 2.

The case V = 2/p4j2(2p – j)2. To calculate the ener-
gies, one must substitute the solution to (10) for a single
vortex into (8). The solution in this case has the form

(27)

The plot of function (27) is shown in figure. Con-

sider the energy E = 2I (2 – ψ)2, where ψ =
ϕ/π. Then,

(28)

Taking into account the evenness of f1 with respect
to x and using formula (3.985) from [7], we arrive at

(29)

(30)

The energy EJ1 is maximal at α = 0, i.e., when the
vortex is centered on the boundary between two cells.

EJ α( ) I 1 ϕkcos–( ),
k ∞–=

∞

∑=

EH α( ) 1
2
--- ϕk 1+ ϕk–( )2

k ∞–=

∞

∑=

ϕk α( ) 4 –k α–( ) Iexp( ).arctan=

ϕ x( ) 2π
1 4x I/π( )exp+
------------------------------------------.=

ψ2

k ∞–=
∞∑

f 1 2Iψ2 2 ψ–( )2 2I

2x I/π( )cosh
4

-------------------------------------.= =

EJ0 2π I
ξd

ξcosh
4

----------------

0

∞

∫ 2π I
bξ( ) ξdcos

ξcosh
4

--------------------------

0

∞

∫b 0→
lim= =

=  2π I
bπ b2 4+( )

12 bπ/2( )sinh
----------------------------------

b 0→
lim

4π I
3

-------------,=

EJ1 8 I 2πα( )cos
2πξ/ I( ) ξdcos

2ξ /π( )cosh
4

--------------------------------------

0

∞

∫=

= 
π4 π4/I 4+( )

3 π3/2 I( )sinh
----------------------------------- 2πα( )cos

2π8

3I
-------- π3

2 I
---------– 

  2πα( ).cosexp≈
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Table 2.  Pinning energy components for V = 1 – cosϕ found by different ways

I
Theory (27) Theory (24) Numerical model (25) and (26) Exact solution Theory

(22)–(24)

∆EJ ∆EH ∆EH ∆EJ ∆EH ∆EJ Ep Ep

0.15 2.705 × 10–9 –6.6477 × 10–10 –6.6479 × 10–10 2.705 × 10–9 –6.095 × 10–8 6.617 × 10–8 5.22 × 10–9 2.04 × 10–9

0.40 5.27 × 10–5 –1.2849 × 10–5 1.2852 × 10–5 5.27 × 10–5 –6.21 × 10–4 7.14 × 10–4 9.29 × 10–5 3.99 × 10–5

0.70 2.38 × 10–3 –5.734 × 10–4 –5.738 × 10–4 2.38 × 10–3 –1.86 × 10–2 2.24 × 10–2 3.90 × 10–3 1.81 × 10–3

1.00 1.63 × 10–2 –3.897 × 10–3 –3.902 × 10–3 1.62 × 10–2 –9.5 × 10–2 1.21 × 10–1 2.6 × 10–2 1.24 × 10–2
Consider the energy EH = 0.5 ϕk – ϕk + 1)2.
In this case,

(31)

The function f2(x) is even at α = –0.5:

(32)

Substituting (32) into (8), we obtain for n = 0 [7]

(33)

where β = .

Leaving the first terms in , we find

(34)

To calculate EH1, we will use methods of the theory
of complex variable:

(35)

To obtain EH1 numerically, we will take the integral
over the contour bounded by the real axis and the upper
semicircle of radius R and then approach R to infinity.
Expression (35) satisfies the moderate Jordan lemma;
therefore, the integral over the larger semicircle tends to
zero at R  ∞. The integrand inside the contour of
integration has second-order poles at points

(36)

(
k ∞–=
∞∑

f 2 2π2 1

1 x α+( )4 I/π[ ]exp+
---------------------------------------------------------=

–
1

1 x α 1+ +( )4 I/π[ ]exp+
------------------------------------------------------------------

2

.

f 2 2π2 2 I/π( )sinh
2

4x I/π( )cosh 2 I/π( )cosh+( )2
---------------------------------------------------------------------------------.=

EH0
π3

I
------βcoshβ βsinh–

βsinh
--------------------------------------,=

2 I
π

---------

I

EH0
4π I

3
------------- 1 4I

15π2
----------- …+– 

  .=

EH1 π2 2πα( ) 2 I
π

---------sinh
2

cos=

× Re
i2πx( )exp

x 0.5+( )2 I/π( )cosh
2

x 0.5–( )2 I/π( )cosh
2

---------------------------------------------------------------------------------------------------------- x.d

∞–

∞

∫

z 0.5
π2

4 I
--------- 2k 1+( )i, k+± 0 1 2 3…., , ,= =
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The residues at the points z = ±0.5 + i (at k = 0)

play a dominant role in taking integral (35). Calculating
the integral and taking into account the initial shift α =
–0.5 for reducing the resulting expression to a single
frame of reference for α, we eventually obtain

(37)

where α = 0.5 corresponds to the position of the vortex
center at the center of the cell. The vortex total energy is

(38)

The pinning energy, that is, the difference between
the maximal (α = 0, the vortex is centered on the
boundary) and minimal (α = 0.5, the vortex is concen-
tric with the cell) energies of the vortex, is given by

(39)

According to the analysis performed,

(40)

(41)

To check the formulas obtained, we carried out an
exact computer calculation of the quantities

(42)

for α = 0 and α = 0.5. Here, ϕk is taken in form (31),
which corresponds to a vortex in a continuous medium:

(43)

According to (39), the differences between the asso-
ciated values obtained for various α give ∆EJ and ∆EH,

π2

4 I
---------

EH1
2π6

I
-------- π3/2 I–( ) 2πα( ),cosexp–=

E E j0 EH0 E j1 EH1+( ) 2πα.cos+ +=

Ep E 0( ) E 0.5( )– ∆EJ ∆EH.+= =

∆EJ1
2π4 π4/I 4+( )

3 π3/2 I( )sinh
------------------------------------ 4π8

3I
-------- π3

2 I
---------– 

  ,exp≈=

∆EH1
4π6

I
-------- π3/2 I–( ).exp–=

EJ α( ) 2I

π4
----- ϕk

2 2π ϕk–( )2,
k ∞–=

∞

∑=

EH α( ) 1
2
--- ϕk 1+ ϕk–( )2

k ∞–=

∞

∑=

ϕk
2π

1 4 k α+( ) I/π( )exp+
---------------------------------------------------------.=
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while their half-sums, according to (38), equal EJ0
and EH0.

The results thus obtained for several values of I, as
well as the energies EJ0, EH0, ∆EJ, and ∆EH calculated,
respectively, from (29), (34), (40), and (41), are sum-
marized in Tables 3 and 4.

2. Analytical Calculation Based on the Solution 
of Difference Equations

Let us evaluate the vortex total energy when it is in
different positions relatively to the center of the cell,
that is, at various α. To do this, we substitute the expres-
sion

(44)

into Eq. (8).
Taking the integrals by parts, we find for the terms

of the sum in (8) (n ≠ 0)

(45)

Substituting IV '(ϕ(x)) = ϕ(x + 1) – 2ϕ(x) + ϕ(x – 1)
into this expression yields

(46)

Dividing (46) by two parts and changing the vari-
ables (x  x + 1) in one of them, we come to

(47)

f ϕ x( )( ) 1
2
---((ϕ x 1+( ) ϕ x( ))2– IV ϕ x( )( )+=

En α( ) 2πnα( )cos
i2πn

---------------------------Im ϕ x 1+( ) ϕ x( )–(( )
∞–

∞

∫=

× ϕ' x 1+( ) ϕ' x( )–( ) Iϕ' x( )V' ϕ x( )( ) ) i2πnx( )dx.exp+

En α( ) = 
2πnα( )cos

i2πn
---------------------------Im ϕ' x 1+( ) ϕ x 1+( ) ϕ x( )–( )[

∞–

∞

∫
– ϕ' x( ) ϕ x( ) ϕ x 1–( )–( ) ] i2πnx( )dx.exp

E1 α( ) 2πnα( )cos
i2πn

---------------------------Im 1 i2πn( )exp–( )∫=

× ϕ' x 1+( ) ϕ x 1+( ) ϕ x( )–( )[ ] xd

∞–

∞

∫ 0.=

Table 3.  Magnetic and Josephson energies for V = 2/π4ϕ2 ×
(2π – ϕ)2 found using different methods

I

Theory 
(29)

Theory 
(34)

Numerical model 
(42) and (43) Exact solution

EJ0 EH0 EH0 EJ0 EH EJ

0.15 1.6223 1.6158 1.6158 1.6223 1.6256 1.6123

0.40 2.6492 2.6210 2.6210 2.6492 2.6645 2.6046

0.70 3.5046 3.4400 3.4400 3.5046 3.5422 3.3978

1.00 4.1887 4.0798 4.0798 4.1888 4.258 3.999
Thus, the total energy of a vortex having the shape
described by the exact solution of finite-difference sys-
tem (5) does not depend on its position relative to the
cells. In other words, the pinning energy equals zero.
This rather unexpected result is due to the fact that
expression (8) was derived under the assumption that
the shape of the vortex is independent of its position.
On the other hand, the solution to system (2) depends
on the position of the vortex relative to the center of the
cell. With this fact taken into consideration, the pinning
energy would be other than zero. However, such a cal-
culation is an independent mathematical problem, an
approach to which has not been found so far.

From the aforesaid, the following important conclu-
sion can be drawn: the total pinning energy is much
smaller than its magnetic and Josephson components;
that is, EJ and EH are nearly equal in magnitude and
opposite in sign. This conclusion will be supported by
the exact computer solution to the problem.

3. Computer Calculation of the Pinning Energy

The foregoing consideration was based on functions
(26) and (43), which correspond to the solutions to dif-
ferential equation (10), approximating finite-difference
system (5) at small I. To find the applicability limit for
such an approach, the results obtained should be com-
pared with the exact solution of system (5).

To obtain a numerical solution to system (5), we
write it in the form of the recurrent relationship

(48)

Then, knowing the values of the phase discontinuity
at two adjacent contacts, one can find the whole config-
uration. Let us consider a single (isolated) vortex. In the
stable equilibrium state [1], the phase discontinuities at
the contacts of the central cell are related as ϕ–1 = 2π –
ϕ1. Choosing a certain value of ϕ1 and substituting 2π –
ϕ1 and ϕ1 into (48) as two successive values of ϕk, we
start calculating the subsequent values of the phase dis-
continuity. From the vortex shape (see the figure), it fol-
lows that, if any of the next values is less than zero or
larger than the preceding one, the starting value of ϕ1 is,
respectively, increased or decreased and the calculation
starts anew. In this way, the whole set of ϕk values for a
single vortex can be found, after which the energies can
be calculated by formula (1).

A similar calculation can be carried out for the
unstable vortex configuration. In this case, ϕ–1 = π [1];
therefore, the values of π and ϕ1 are taken as two suc-
cessive values of ϕk and then the scheme of computa-
tion reverts the same as that previous.

Tables 1–4 list the computer-calculated Josephson
and magnetic energies (the half-sums of the values for
the stable and unstable configurations), as well as the
pinning energies for both forms of V(ϕ).

ϕm 1+ 2ϕm ϕm 1– IV'.+–=
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Table 4.  Pinning energy components for V = 2/π4ϕ2(2π – ϕ)2 found using different methods

I
Theory (40) Theory (41) Numerical model (42) and (43) Exact solution Theory 

(39)–(41)

∆EJ ∆EH ∆EH ∆EJ ∆EH ∆EJ ∆Ep ∆Ep

0.15 3.502 × 10–13 –1.058 × 10–13 –1.064 × 10–13 3.508 × 10–13 –2.08 × 10–11 2.2 × 10–11 1.16 × 10–12 2.4 × 10–13

0.40 7.269 × 10–7 –2.174 × 10–7 –2.174 × 10–7 7.269 × 10–7 –1.96 × 10–5 2.15 × 10–5 1.96 × 10–6 5.10 × 10–7

0.70 1.667 × 10–4 –4.926 × 10–5 –4.926 × 10–5 1.667 × 10–4 –2.69 × 10–3 3.07 × 10–3 3.85 × 10–4 1.17 × 10–4

1.00 2.436 × 10–3 –7.113 × 10–4 –7113 × 10–4 2.436 × 10–3 –2.76 × 10–2 3.26 × 10–2 5.04 × 10–3 1.72 × 10–3
4. Analysis of the Results

First of all, it should be noted that the magnetic and
Josephson energies and also the pinning energy compo-
nents obtained by the numerical computation based on
expressions (25), (26), (42), and (43) (Tables 1–4, col-
umns 4 and 5) agree well with those found with analyt-
ical formulas (Tables 1–4, columns 2 and 3). This sup-
ports the validity of the method for finding the sum of
the series and the absence of calculation errors, indicat-
ing the high reliability of the results obtained.

Now, we pass to the analysis of the results. First, we
will see how the preservation of the difference terms in
the expression for the magnetic energy in the continu-
ous vortex model influences the results. (i) In the case
V = I(1 – cosϕ), expressions (18) and (28) for the mag-

netic energies differ from the relationships EH = 4

and ∆EH = 32π2exp  obtained in [3]. While in the

formula for EH, small corrections are added, the value
of ∆EH is four times smaller and opposite in sign. At the
same time, expressions (13) and (27) for the Josephson
energies coincide with the formulas in [3]. (ii) In the
case V = 2/π4ϕ2(2π – ϕ)2, the slight discrepancy
between the energies EJ and EH and the great difference
between the pinning energy components persist. The
magnetic component turns out to be nearly 3.5 times
smaller than the Josephson component in magnitude
and also opposite in sign. (iii) The comparison of the
results obtained for the two forms of V(ϕ) shows that
even such an insignificant (at first glance) change in the
form of the function may considerably (by several thou-
sands of times) alter the pinning energy, affecting the
energies EJ and EH only slightly.

Now, let us contrast the results of the approximate
approaches with the true values of the energies obtained
in the computer calculation.

(1) The exact computer calculation of the vortex
energy (Tables 1–4, columns 6 and 7) showed that the
magnetic and Josephson energies differ and the mag-
netic and Josephson components of the pinning energy
are close in magnitude but opposite in sign. As a result,
the total pinning energy is one order of magnitude
smaller than its components.

I

π2

I
------– 

 
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The theoretical analysis [expression (47)] indicates
that the total energy of the vortex having the shape
described by finite-difference system (5) (on the
assumption that the shape is invariant under shift) is
independent of its position relative to the cell. In other
words, the pinning energy equals zero. This means that
the Josephson and magnetic components of the pinning
energy are equal in magnitude and opposite in sign. The
total pinning energy is other than zero, being much
smaller than both its components, if the shape of the
vortex depends on its position. Such a result is yielded
by the exact computer calculation.

Thus, the difference between the Josephson and
magnetic components of the vortex energy, as well as
the opposite signs of the Josephson and magnetic com-
ponents of the pinning energy and their rough equality,
can be considered specific features of the given prob-
lem.

(2) The comparison of the two approximate
approaches using the continuous vortex model leads us
to the following conclusions (in view of the above fea-
tures).

When the difference term 1/2(ϕk + 1 – ϕk)2 in the
expression for the magnetic energy is replaced by
1/2(ϕ' )2 , as was done in [5], the magnetic and Joseph-
son energies, as well as the magnetic and Josephson
components of the pinning energy, turn out to equal
each other.

With the difference terms in the expression for the
magnetic energy retained, the magnetic and Josephson
energies of the vortex differ in magnitude, while the
magnetic and Josephson components of the pinning
energy are opposite in sign. Thus, this approach reflects
both features mentioned above and is therefore a step
forward to the exact solution.

However, the comparison between the energies
obtained with this approach and those obtained by the
exact numerical solution of finite-difference system (5)
sheds light on a number of significant differences.

(i) The magnetic and Josephson energies obtained
by these two approaches (Tables 1, 3; columns 4 and
5−7) differ: in the approximate model, the magnetic
energy EH is lower than the Josephson energy at any I;
in the exact solution, the situation is reverse, since the
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exact values of EH and EJ are higher and lower than the
approximate values, respectively.

(ii) The exact values of the Josephson and magnetic
components of the pinning energy, ∆EJ and ∆EH

(Tables 2, 4; columns 6, 7), are many times higher than
those based on the approximate approach (Tables 2, 4;
columns 4, 5). In spite of this, since the Josephson and
magnetic components of the pinning energy are oppo-
site in sign, the exact values of the total pinning energy
Ep = ∆EJ + ∆EH (Tables 2, 4; columns 8) do not greatly
differ from the approximate results (Tables 2, 4; col-
umns 9).

Thus, the exact value of the total pinning energy is
well approximated by the continuous vortex model
with the difference term replaced by the derivative. This
fact is rather intriguing, because all other results based
on this approach are far from being an exact solution
even qualitatively. Specifically, the pinning energy
components have equal signs, the magnetic and Joseph-
son energies of the vortex are exactly equal to each
other, etc.

The good agreement between the approximate and
exact results for the total pinning energy and the sharp
discrepancy between the magnetic and Josephson com-
ponents individually are unlikely to be accidental. It
seems that this effect has some intrinsic reason. The use
of the approximate approach for finding the total pin-
ning energy remains to be substantiated. This is a sepa-
rate mathematical problem to which an approach has
not yet been found.

CONCLUSION
An algorithm for the exact numerical solution of a

set of difference equations describing the shape of a sta-
ble and an unstable vortex is suggested. It does not
require application of the continuous vortex model. The
calculation is based on two forms of the function V(ϕ):
V = 1 – cosϕ and V = 2/π3ϕ2(2π – ϕ)2. The vortex mag-
netic and Josephson energies diverge. The magnetic
and Josephson components of the pinning energy are
close in magnitude but differ in sign; as a result, the
total pinning energy is smaller than its components by
one order of magnitude. This result is confirmed theo-
retically.

An analytical computing method within the contin-
uous vortex model is suggested. This method preserves
the difference terms in the energy expression. The mag-
netic energy found by this method differs from the
Josephson energy in magnitude, and the magnetic com-
ponent of the pinning energy is opposite in sign to the
Josephson component.

A comparative analysis of the approximate
approaches to energy calculation within the continuous
vortex model when the difference terms are retained
and when they are replaced by the derivatives is per-
formed.

A comparison of the results obtained in various
approximations with each other and also with the exact
solution to the problem stated shows that the continu-
ous vortex model gives incorrect values of the Joseph-
son and magnetic components of the pinning energy.
The actual (exact) values of the Josephson and mag-
netic components of the pinning energy are several tens
or several hundreds of times higher than those obtained
within the continuous vortex model. However, since the
Josephson and magnetic components of the pinning
energy have different signs, the exact value of the total
pinning energy and the approximate value obtained
within the continuous vortex model differ insignifi-
cantly. It appears that this fact is not accidental and has
some intrinsic reason. The use of the continuous vortex
model for finding the total pinning energy remains to be
substantiated. This is a separate mathematical problem
to which an approach has not yet been found.
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Abstract—The formation and development of bubbles in a liquid under a drastic fall in pressure is numerically
studied. The mathematical model is based on the Lagrangian–Eulerian approach to the description of a two-
phase mixture and includes the conservation equations for the liquid, an equation describing the nucleation pro-
cess, and equations describing the development of a probe bubble. For numerical solutions of equations for the
liquid, we apply a high-resolution Godunov-type scheme, and a rigid set of ordinary differential equations
describing the bubble development is solved using Adam’s implicit method. The numerical simulation allowed
us to obtain fields of the gasdynamic functions for the liquid, the size and concentration of the bubbles, the
vapor temperature and pressure, and the range of parameters corresponding to a metastable liquid state. © 2002
MAIK “Nauka/Interperiodica”.
INTRODUCTION

Investigation of the processes of bubble formation
and development under a drastic change in the liquid
pressure is of great interest both for a wide range of
applications [1–3] and for developing the theory of
nonequilibrium multiphase media [4].

A convenient approach to solving such problems is
numerical simulation. The mathematical model should
include conservation equations for the mass, momen-
tum, and energy of the liquid and equations describing
the formation of nuclei of the vapor phase and their
development due to changes in the parameters of the
ambient liquid and the interphase mass transfer. Sub-
stantially different spatial and temporal scales of the
processes in the liquid and vapor phases and drastic
gradients of the gasdynamic parameters in the pro-
cesses under study necessitate the use of numerical
schemes of high resolution for integration of the equa-
tions describing the liquid behavior, on the one hand,
and solution of rigid sets of ordinary differential equa-
tions describing the bubble dynamics, on the other
hand.

The objective of this paper is a numerical investiga-
tion of the ebullition of water at a high pressure and
temperature in the wake of rarefaction wave propaga-
tion through it. To solve this problem, we have formu-
lated a mathematical model of the process in the frame-
work of the Lagrangian–Eulerian description of a mul-
tiphase medium that allows us to study the formation of
nuclei, interphase mass transfer, and bubble dynamics.
This model has been used for investigating a one-
dimensional nonsteady flow of a liquid coming to a
boil.
1063-7842/02/4707- $22.00 © 20829
MATHEMATICAL MODEL
In the framework of the Eulerian approach to

describing liquid behavior on the assumption of equal
velocities of the liquid and vapor phases, the conserva-
tion equations can be written in the following forms:

the equation of conservation of mass,

(1)

the equation of conservation of momentum,

(2)

and the equation of conservation of energy,

(3)

Here, u is the liquid–vapor mixture velocity; ρl and pl
are the liquid density and pressure, respectively; α is
the volume fraction of the vapor; El = clTl + u2/2 is the
specific total energy of the liquid; and Γ is the rate of
the interphase mass transfer, which can be written in the
following form [4]:

(4)

where Nb is the concentration of bubbles in the liquid;
Tl and Tv are the temperatures of the liquid and vapor

∂ 1 α–( )ρl

∂t
-------------------------

∂u 1 α–( )ρl

∂x
-----------------------------+ Γ ;–=

∂u 1 α–( )ρl

∂t
-----------------------------

∂u2 1 α–( )ρl

∂x
-------------------------------+ 1 α–( )

∂ pl

∂x
-------- uΓ ;––=

∂ρl 1 α–( )El

∂t
-------------------------------

∂ρl 1 α–( )Elu
∂x

----------------------------------+

=  –
∂ 1 α–( )plu

∂x
----------------------------- U lv HWcl.––

Γ 4πR2Nb

ηac

2πRv

-----------------
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T l
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pv
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 
 
 

,=
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phases, respectively; cl is the specific heat of the liquid;
Rv is the gas constant for the vapor; psat is the saturated
vapor pressure; pv is the actual vapor pressure; R is the
bubble radius; ηac is the accommodation coefficient (in
the case considered, ηac = 0.04); H is the nucleation
rate; Wcl is the work needed for the formation of a crit-
ical vapor nucleus;

(5)

is the interphase energy transfer resulting from the
phase transition; and γv is the polytropic exponent.

The set of Eulerian equations also includes an equa-
tion describing the formation and convective transfer of
bubbles,

(6)

and an equation of the water state in Tait’s form,

(7)

where pa and ρa are the water pressure and temperature
under normal atmospheric conditions, respectively; K =
3045; and β = 7.15.

The equations of the Lagrangian approach express-
ing conservation of mass and energy and describing the
interface motion for a size-averaged probe bubble can
be transformed into the following forms:

the equation of conservation of the vapor mass
inside the bubble,

(8)

the conservation equation for the bubble vapor energy,

(9)

and the Rayleigh–Lamb equation,

(10)

where µ is the liquid viscosity.
A relation between the volume fraction α of the

vapor phase, concentration Nb of the bubbles, and their
mean radius R is given by the obvious relationship

U lv 4πR2Nb
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(11)

One of the key points of the simulation is identifica-
tion of the formation mechanism of critical nuclei of
vapor bubbles. For extreme superheating of the liquid,
the density of nucleation centers calculated by the
known theory of homogeneous formation of nuclei [5]
is in good agreement with the experiment [6]. In this
case, the nucleation rate can be calculated as follows:

(12)

where m is the mass of a water molecule; σ is the sur-
face tension; Na is Avogadro’s number; kb is the Boltz-
mann constant; and Wcl is the work performed in the
formation of a bubble with a critical radius of Rcr =
2σ/(psat – pl), which is defined as

(13)

In practice, the formation and growth of nuclei start
at a considerably lower liquid superheating than the
theory [5] predicts because of the predominant role of
heterogeneous nucleation. Theoretical calculations of
the number of sites of heterogeneous nucleation fail
because, generally, there is no a priori data on its nature.
However, when considering small sites of heteroge-
neous nucleation, one can use a modified theory of
homogeneous nucleation by introducing a heterogene-
ity factor G(G ∈  (0, 1]), which characterizes reduction
of the work Wcl needed for nucleation on the existing
sites. Thus, one can allow for the heterogeneous char-
acter of the nucleation by using expression (12) for the
rate of homogeneous nucleation and substituting WclG
for Wcl.

In [3], on the basis of experimental data, the depen-
dence of the heterogeneous factor on the initial liquid
temperature and the rate of liquid depressurization are
obtained in the following form:

(14)

where Tcr is the critical liquid temperature and Vp is the
depressurization rate in units of Pa/s.

INITIAL AND BOUNDARY CONDITIONS

We assume that at the initial time instant, a homoge-
neous quiescent liquid with no vapor bubbles exists at a
given pressure and temperature of

(15)

α 4/3( )πR3Nb.=

H ρl

Na

m
------ 

 
3
2
---

2σ
π

------
Wcl

kbT l
----------–

 
 
 

,exp=

Wcl
16πσ3

3 psat T l( ) pl–( )2
--------------------------------------.=

G 1 1.4 10 10– Vp
0.8×+( )

Tl0

Tcr
------- 

 
28.46

,=

t 0: pl pl0, T l T l0, Nb 0, u 0.= = = = =
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Next, in the cross section x = 0 of a tube containing
the liquid, we impose a pressure drop rate of Vp and a
“soft” boundary condition for the liquid velocity,

(16)

After a bubble has arisen in the liquid, we postulate
the following initial conditions for the ordinary differ-
ential equations describing its development:

NUMERICAL APPROACH

The conservation equations for the liquid are solved
simultaneously with the nucleation equations with the
use of Godunov’s method of second-order accuracy in
time and space [7]. Fluxes of the mass and momentum
through the faces of the calculation cell are found by
solving Riemann’s problem for water. The ordinary dif-
ferential equations describing the development of bub-
bles are solved simultaneously with the equations for
the liquid. Because of the appreciably different charac-
teristic times of the processes in the liquid and the bub-
bles, we apply Adams’ implicit method for solving
rigid sets of ordinary differential equations [8].

For the calculations, we used a uniform grid with
cell dimensions sufficient for appropriate description of
the regions of large gradients of the parameters. It
should be noted that limitations imposed on the time
integration step by the depressurization rate are more
severe than the Courant–Friedrichs–Levi conditions.

DISCUSSION OF THE RESULTS

In the following, some results of the numerical sim-
ulation of a rarefaction wave propagating through a
tube filled with water at a high pressure and tempera-
ture are presented. A diagram of the flow of the boiling
water from the tube is shown in Fig. 1.

Under the boundary and initial conditions given
above, a rarefaction wave propagates inside the tube
with an intensive bubble nucleation in the wake of its
front followed by subsequent growth of the bubbles. We
assume that the opposite end of the tube is too far away
to influence the flow pattern. We analyzed the influence
of the pressure fall rate Vp and the initial temperature Tl0
and pressure pl0 on the formation and development of
the vapor bubbles.

To test the algorithm developed and the assumptions
made, we compared the simulation results with the
known experimental data [3, 9] (see Figs. 2, 3).

Figure 2 shows a typical variation of the pressure
with time in a tube cross section at a distance of x =
0.43 m from the open end of the tube at an initial liquid
temperature of Tl0 = 495 K and pressure falling at a rate
of Vp = 22 GPa/s. It is seen that the pressure first drops
to a magnitude that is considerably less than the satura-

x 0: pl pl0 Vpt,
∂u
∂x
------– 0.= = =

R Rcr, pv psat, Tv T l.= = =
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tion pressure and the liquid is found in a metastable
state. Then, intensive nucleation and growth of critical
nuclei begin. Ultimately, this process leads to an
increase in the pressure and its stabilization near the
saturation level. The difference between the saturation
pressure and the minimum liquid pressure is conven-
tionally called the pressure undershoot, the determina-
tion of which is one of the most important problems in
practical applications. In Fig. 3, the calculated pressure
undershoot as a function of the liquid temperature at
various pressure drop rates (circles) and approxima-

0x, m

Two phase flowRarefaction wave

Water at high
pressure and
temperature
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tions of experimental data [3] (solid lines) are shown.
Here, Vp = (1) 200, (2) 100, and (3) 10 GPa/s.

It is seen that the adopted flow model of a boiling
liquid with the use of the modified nucleation model
has allowed us to obtain good agreement between the
calculated and experimental data and to demonstrate
the applicability of the approach considered to the
problem arising when the pressure of a hot liquid falls
rapidly.

Figures 4 and 5 illustrate the influence of the initial
liquid temperature on variation with time of the liquid
pressure pl, the volume fraction of the vapor phase α,
and the nucleation rate H. Solid lines in the plots corre-
spond to a liquid temperature of Tl0 = 520 K; dashed
lines, to 560 K at a pressure drop rate of Vp = 180 GPa/s.

As seen in Fig. 4, the initial stage of decreasing the
liquid pressure in the rarefaction wave does not depend
on the liquid temperature, while the difference in the
pressure undershoots at the initial temperatures consid-
ered is about 106 Pa. Thus, an increase in the initial tem-
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perature leads to a widening of the region of the meta-
stable liquid state. A volume fraction of the vapor
formed also rises appreciably with the initial liquid
temperature.

On the basis of the plot in Fig. 5, one can draw a
conclusion that the “wave of boiling” propagating
through the liquid and corresponding to the maximum
nucleation rate and minimum liquid pressure is appre-
ciably shorter than the rarefaction wave.

Distributions of the water pressure, the vapor vol-
ume fraction, and the mean bubble radius along the tube
for the two instants t = 0.0002 (solid lines) and 0.0005 s
(dashed lines) at Tl0 = 560 K and Vp = 180 GPa/s are
presented in Fig. 6. The fast initial growth of the bub-
bles can be explained by dynamic processes initiated by
the high initial pressure and temperature of the vapor
inside the bubbles formed. The subsequent growth of
the bubbles and the increase in the vapor phase fraction
are governed by the predominant influence of the inter-
phase mass transfer. The pressure undershoot and the
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saturation pressure, as seen in the figure, are nearly con-
stant along the tube. This indicates that there are rela-
tively small changes in the liquid temperature.

Further development of the processes in the vapor
phase of the two-phase flow considered is determined
by the evolution of the bubbles formed. Figure 7 dem-
onstrates variations with the time of the bubble radius,
the interface velocity, and the vapor temperature at ini-
tial conditions of Tl0 = 560 K and Vp = 180 GPa/s.

The nonmonotonic interface velocity at the initial
process stage can be explained by irregularities in the
interphase mass transfer between the bubbles being
formed and the ambient liquid.

Figure 8 shows a mixture velocity distribution cor-
responding to initial conditions of Tl0 = 560 K and Vp =
180 GPa/s. In particular, one can see that in a certain
tube cross section, the mixture accelerates rapidly
behind the rarefaction wave front up to the maximum
velocity corresponding to the minimum liquid pressure
(see Fig. 4) and then decelerates with time due to a
growth in pressure caused by nucleation. The mixture
deceleration caused by the nucleation weakens near the
open end of the tube because of the assumed drop in
pressure in the tube.
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CONCLUSION
A mathematical model has been formulated that

allows one to study the nucleation, interphase mass
transfer, and development of bubbles as a result of vari-
ation in the liquid pressure. The numerical simulation
of the distribution of a rarefaction wave through a tube
filled with water allowed us to describe time-dependent
variation along the tube length of the liquid phase
parameters, volume fraction, temperature, and pressure
of the vapor phase and the concentration and sizes of
the vapor bubbles.

In the process under study, the following flow pat-
tern takes place: the liquid pressure in the rarefaction
wave propagating from the open end of the tube drops
below the saturation pressure (the liquid is found in a
metastable state); then, in the region of minimum pres-
sure, an intensive nucleation starts and the bubbles
grow quickly due to the interphase mass transfer, caus-
ing a growth in pressure and, ultimately, the liquid pres-
sure to stabilize at a level close to the saturation pres-
sure.

It has been demonstrated that in the case considered,
the introduction of the heterogeneity factor in the
expression for the formation energy of a critical nucleus
allows one to obtain correct values of the pressure
undershoot and to describe the behavior of a liquid in a
metastable state.
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Abstract—The pressure balance on the surface of a charged liquid drop moving along a uniform electrostatic
field is analyzed. The liquid is assumed to be nonviscous and incompressible. In the approximation linear in
deformation amplitude, the equilibrium shape of the drop as a function of the charge, field strength, and velocity
of travel can be both a prolate and an oblate spheroid. Critical conditions for the surface instability of such a
drop are obtained analytically in the form of a relationship between the charge, field strength, and velocity of
travel. An instability criterion is found by extrapolating to large Reynolds numbers. This makes it possible to
fit the earlier model of a corona-initiated lightning in the vicinity of large charged water drops or hailstones to
the charges of the drops, field strengths, and velocities of travel (relative to the medium) typical of thunder-
clouds. © 2002 MAIK “Nauka/Interperiodica”.
(1) The instability of the surface of a drop against
self-charge or induced charge is of interest for many
applications in geophysics, technical physics, technol-
ogy, and scientific instrument making (see, e.g., [1, 2]
and Refs. therein). However, associated research has
been concentrated mostly on elementary events in a
thundercloud. According to modern concepts, streak
lightning is initiated by a corona ignited in the vicinity
of a large drop or a flooded hailstone (with the resulting
instability of the charged surface of a water drop) [3, 4].
However, these ideas have not been corroborated by
full-scale experiments with thunderclouds. The maxi-
mum values of the self-charge of the drops and of intr-
acloud electric fields measured experimentally are
much less [5] than those necessary for the surface of the
drop to be unstable against self-charge or induced
charge [6]. It is likely that the available models of light-
ning initiation overlook some important factors, such as
the aerodynamic pressure near a falling drop, which
loosens critical conditions for the instability of the free
surface of the drop [7, 8]. Of significance also is the
equilibrium shape of a charged drop moving in an
external electric field, since analysis of the surface sta-
bility of the drop is impossible without knowing its
equilibrium shape.

(2) Let a laminar gas stream of density ρ and veloc-
ity U aligned with an external electrostatic field E0

(U || E0) flow around a drop of a nonviscous incom-
pressible liquid of charge Q. Our goal is to find the
equilibrium shape of the drop. We assume that the flow
velocity U is much less than the velocity of sound in the
gas and approximate the gas by a nonviscous incom-
pressible fluid.
1063-7842/02/4707- $22.00 © 20834
At Q = 0, E0 = 0, and U = 0, the spherical shape of
the drop and its radius R are easily found from the equa-
tion of pressure balance on its surface,

where σ is the surface tension coefficient and ∆ρ is the
pressure drop between the drop and the medium.

Now, let Q ≠ 0, E0 ≠ 0, and U ≠ 0. In this case, the
shape of the drop is other than spherical. Its new equi-
librium shape can be represented by

(1)

Here, Pn(µ) are the nth-order Legendre polynomials,
an are the amplitudes of disturbance individual modes,
µ ≡ cos(Θ), and h(Θ) is the virtual disturbance of the
spherical surface of the drop. We will seek for the dis-
turbance h(Θ) (or for the amplitudes an of the distur-
bance modes) again using the condition for the pressure
balance on the surface,

(2)

The terms on the right of (2) will be found on the ini-
tial spherical surface; the bubble pressure pσ on the left
of (2), on the virtually disturbed spherical surface.
Accordingly, pE is the electrostatic pressure of the field
of the self-charge and polarization charge on the spher-
ical surface and pσ is the aerodynamic pressure on the
spherical surface from the laminar gas flow.

Our aim is to find the amplitudes an of modes that
are excited when the virtual disturbance h(Θ) interacts
with the electric and aerodynamic fields in the vicinity

2σ
R

------ ∆ρ,=

r Θ( ) R h Θ( )+ R anPn µ( ).
n 0=

∞

∑+≡=

pσ ∆p pE pU.+ +=
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of a conducting spherical drop. Note first of all that
[9, 10]

(3)

(4)

(5)

Substituting (3)–(5) into (2) and equating the coeffi-
cients of the Legendre polynomials of different order,
we determine the amplitudes of the modes excited.
From (4) and (5), it is easy to see that only the first three
modes can be excited: ~P0(µ), ~P1(µ), and ~P2(µ). The
mode ~P1(µ) corresponds to the translational motion of
the drop and does not affect its shape. The modes
~P0(µ) and ~P2(µ) are easy to calculate, but the former
contains the pressure drop ∆p, which is unknown.
Therefore, a0 is more conveniently calculated through
a2 by using the fact that the volume of an incompress-
ible liquid drop is constant. For a2, we then have

(6)

The amplitude a0 calculated from the constant vol-
ume condition depends quadratically on the dimension-
less amplitude of the fundamental mode n = 2, (a0/R) ~
(a2/R)2, and the associated expression is ignored in the
linear approximation.

Thus, only the fundamental mode grows in the lin-
ear approximation. For (w/π) > We, the drop becomes a
prolate spheroid [6, 9]; for (w/π) < We, an oblate spher-
oid. Since we are interested in fine charged drops (with
small We) in strong (large w) electric fields of thunder-
clouds, further considerations will be restricted to the
case (w/π) > We. Therefore, we will subsequently
require that pressure balance condition (2) on the sur-
face of a prolate spheroid be fulfilled.

(3) We assume that U = 0 and Q and E0 are nonzero
at the initial time instant. According to [6], in the linear
approximation of the surface distortion amplitude, the
surface of the drop is a prolate spheroid with an eccen-
tricity e given by

(7)

pσ
2σ
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σ
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The parameter W is a measure of the drop stability
against its self-charge. The critical value of W at which
the drop loses stability equals unity [11]. We will
increase the velocity U of the flow along the axis of
symmetry of the drop to see how the aerodynamic
laminar flow around the drop affects its initially spher-
ical shape. We again require that pressure balance con-
dition (2) on the surface of the prolate spheroid be ful-
filled. The surface of the prolate spheroid is given by
the equation

(8)

where b = R(1 – e2)1/6 and a = R(1 – e2)–1/3 are the minor
and major semiaxes of the spheroid and the angle Θ is
measured from the direction of E0 (or U, which is the
same).

Instead of (1), the equation for the desired equilib-
rium surface will now be sought in the form

(9)

The pressure balance condition will be recast as

(10)

Here,  and  are the bubble and electrostatic pres-
sures under the spheroidal surface. In the approxima-
tion linear in e2, these pressures take the form [6]

The addition δ  to the bubble pressure is associ-
ated with the virtual deformation h(Θ) of the spheroidal
drop surface. In the approximation linear in e2, it is
given by [6]
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In the same linear approximation, the aerodynamic
pressure on the surface of a spheroid prolate in the
direction of its motion on the side of the laminar flow of
a nonviscous fluid is easily found as (see Appendix)

In (10), the sum of the terms , ∆ps, and  van-
ishes on the initial spheroidal surface with the eccen-
tricity e2. Eventually, we have

We substitute the above expressions for δ  and 
into this equality to find the additions to the amplitudes
of the modes that set in as a result of the interaction
between the aerodynamic pressure and the virtual addi-
tion to the bubble pressure. In the approximation linear
in e2, we find that only the addition to the fundamental
mode is nonzero:

This corresponds to a prolate spheroid for which the
eccentricity squared is decreased by δe2 = 9We/16 [6].
Thus, in the linear (in e2) approximation, the aerody-
namic laminar flow around the prolate spheroidal drop
along its axis of symmetry merely decreases the square
of eccentricity:

(11)

It follows from (11) that in the space of the parame-
ters W, w, and We, there exists a locus of functionally
related points forming a surface where the drop has a
spherical shape at W = 0, w = 0, and We = 0.

(4) Let us examine the effect of a laminar flow
around a charged drop placed in a uniform electrostatic
field on the stability of the drop. According to [12, 13],
the drop loses stability against its self-charge or the
polarization charge starting from the fundamental
mode (n = 2); that is, the fundamental mode causes the
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instability. The instability of higher (n > 2) modes
appears sequentially in order of increasing mode num-
ber. As they become unstable, the amplitude of the fun-
damental mode grows because of an increase in the sur-
face charge density at the vertices of the extending
drop. Therefore, we will study the stability of a spheroi-
dal drop with the eccentricity defined by (11) against
the virtual increment κ0P2(µ) of the fundamental mode
amplitude (here, P2(µ) is the Legendre polynomial, µ ≡
cos(Θ)). In the linear approximation, such a distur-
bance of the fundamental mode amplitude entails
growth of the square of the eccentricity by δe2:

As a result, the pressures  and  grow by δ  and

δ , respectively [6, 10]:

These expressions correspond to the terms ~δe2 in

the Taylor series for  and .

As a result of the interaction between the virtual dis-
turbance κ0P2(µ) of the surface shape and the electrical,
aerodynamic, and Laplace (bubble) forces, the shape of
the drop may change if its initial spheroidal shape is
ultimate in terms of stability against deformation.
A new shape of the drop is found from the pressure bal-
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ance condition [6]

(12)

Taking into account that the initial spheroidal shape
of the drop satisfies Eq. (10) and its eccentricity is
defined by (11), we find from (12) the relationship
between the additions to the pressures:

Substituting the expressions for δ , δ , and δ
into this relationship and equating the coefficients
before the equal Legendre polynomials, we arrive at the
expression for the addition to the fundamental mode
amplitude:

(13)

It is easy to see that if the expression in the braces in
(13) is less than unity, the virtual disturbance dimin-
ishes with time. This is evident from the following con-
siderations. Let us assume that the expression for the
addition to the fundamental mode amplitude is the ini-
tial virtual disturbance κ1 and repeat our calculation
from the beginning. According to (13), a new addition
to the fundamental mode amplitude will be smaller than
κ1; that is, the disturbance will decrease. If the expres-
sion in the braces in (13) exceeds unity, the addition to
the fundamental mode amplitude will grow with time;
that is, the fundamental mode, along with all higher
modes, will become unstable and the drop as a whole
will suffer from instability following the scheme
described in [14, 15].

Eventually, when a laminar gas flow passes around
a charged drop subjected to a uniform electrostatic
field, the critical condition for the instability of the drop
will have the form

(14)

For U = 0, this conditions is reduced to the instabil-
ity condition for a charged drop in a uniform electro-
static field [6].

The surface defined by (11) and (14) in the space of
the parameters We, W, and w is depicted in the figure; it
separates the stable (below the surface) and unstable
(above the surface) states of charged drops in the lami-
nar flow of a nonviscous fluid parallel to the electro-
static field.

pσ
s δpσ

s+ ∆ ps pE
s δpE

s pU
s δpU

s .+ + + +=

δpσ
s δpE

s δpU
s .+=

pσ
s pE

s pU
s

a2

R
-----

κ0

R
----- 27

70
------We 1

79
210
---------e2+ 

 




=

+ W 1
87
42
------e2+ 

  w
81

280π
------------ 1

4171
630
------------e2+ 

 




.+

27
70
------We 1

79
210
---------e2+ 

  W 1
87
42
------e2+ 

 +

+ w
81

280π
------------ 1

4171
630
------------e2+ 

  1.>
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
(5) Let us verify the validity of condition (14) by
using maximum values of the charges of the drops and
electric field strengths observed in thunderclouds.

Assume that a drop has the radius R = 100 µm; then,
it falls in a cloud at a velocity U = 72 cm/s and the Rey-
nolds number is Re = 9.61 [16]. The flow around the
drop can be considered laminar; thereby, all the above
results totally apply to it (and to finer drops). The self-
charge of the drop is small, Q ≤ 3 × 10–12 C [5]; hence,
the parameter W is low. The parameters We and w will
also be small (the former because of the small flow
velocity and the latter because of the small radius of the
drop). Eventually, we will find that condition (14) does
not hold; hence, this drop (and finer drops) is stable
against the electrostatic and aerodynamic forces.

Let a drop in a thundercloud have a radius R = 1 mm.
According to observations [5], its charge may reach
Q = 2 × 10–10 C. The maximum electrostatic field
strength in thunderclouds was measured to be E =
2000 kV/m [5]. We will, however, take a much lower
value, E = 1200 kV/m. This drop will fall in the gravi-
tational field at a constant velocity U = 6.49 m/s [16].
The flow around this drop is characterized by the Rey-
nolds number Re = 866 [13]. With so high Re, the flow
is turbulent; hence, criterion (14), which was derived
for laminar conditions, fails. Note however that the ful-
fillment or nonfulfillment of condition (14) indicates
whether our model is basically adequate or in-adequate
for analysis of the lightning initiation mechanism. With
the above parameter values substituted into (11) and
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(14), the criterion of drop instability is met. Thus, the
stability analysis of the charged drop surface must
include aerodynamic flow conditions.

Consider a feature of the behavior of the drop at
large flow velocities, where the flow is no longer lami-
nar. According to the analysis performed in [8] and
experimental observations of the shape of moving
drops [17], as the flow velocity rises (the Reynolds
number increases), lower modes of capillary oscilla-
tions become unstable (starting from the fundamental
one) owing to the unstable tangential discontinuity of
the velocity field at the boundary of the drop. The fun-
damental mode becomes unstable first, and the eccen-
tricity of the drop grows by a periodic law. This,
according to [18], may cause the instability of the
charged surface even if condition (14) fails.

(6) Relationships (11) and (14) can be used to
advantage for experimental verification of the condition
for stability against self-charge. In the experiments
[19], heavily charged drops were suspended in an elec-
trostatic field with an aerodynamic flow parallel to the
field. The radii of the drops were small, R ≤ 100 µm,
and the Reynolds number was Re ≤ 6. Under these con-
ditions, the charge of the drops was close to the limiting
value in terms of stability against self-charge (W ≈ 1).
The spread in experimental results was significant: the
deviation from the Rayleigh criterion for the stability of
a conducting nonviscous incompressible liquid spheri-
cal drop against its self-charge, W = 1 [11], was as high
as 17%. Such a large discrepancy occurs because the
shape of the drop was taken to be spherical, rather than
spheroidal, as (11), and the effect of the electrostatic
field and aerodynamic forces on stability condition (14)
was ignored in the experimental data processing.

(7) Of interest is the situation where the external
electrostatic field E0 and the velocity U are normal to
each other. This situation is typical of thunderclouds
and is common in experiments [20, 21] where a charged
drop falls in the gravitational field normal to the electric
field of a capacitor.

Assuming that the effect of the electric field on the
surface shape is stronger than that of the aerodynamic
forces and that the drop is almost spheroidal (see [20,
21]), we come to the problem of flow around a prolate
spheroid with the axis of symmetry aligned with the OY
axis (with the external electric field), which runs nor-
mally to the flow (the flow is directed along the OX axis
in opposition to the free-fall acceleration). Using the
well-known solution [10, 22] to the problem of poten-
tial flow around an ellipsoid oriented arbitrarily with
respect to the flow, one can find the velocity field poten-
tial ϕ(r) in the vicinity of the spheroid. Unlike the case
of axisymmetric flow around a spheroid considered
above, this case is nonaxisymmetric and an azimuth
dependence appears, which greatly complicates the
problem. Now, the aerodynamic (and also the bubble)
pressure must be expanded in spherical functions rather
than in Legendre polynomials, with regard for the azi-
muth dependence. Moreover, it is necessary to make an
asymptotic expansion in two independent parameters
characterizing the deformation of the drop in two mutu-
ally orthogonal directions. From general physical con-
siderations, it is clear that the equilibrium shape of the
drop will be ellipsoidal and have three different axes
under these conditions and that the effect of the laminar
transverse flow will show up largely in extending the
drop along the OZ axis transversely to the flow and to
the external electric field. In this situation, the effect of
the gas flow on the stability against self-charge and
field-induced charge is not obvious. We can only argue
that both the very fact of the flow (with the tangential
discontinuity of the velocity field on the surface of the
drop) and the transformation of the drop into a triaxial
spheroid reduce its stability [7, 8, 23].

(8) To conclude, we note that the aerodynamic pres-
sure on the surface of an extended spheroidal nonvis-
cous incompressible charged liquid drop moving in a
laminar nonviscous incompressible fluid and subjected
to an external electrostatic field parallel to the velocity
vector of the drop decreases its eccentricity and reduces
its stability because of the tangential discontinuity of
the velocity field on the surface. Thus, we have every
reason to resume the construction of physical models of
lightning initiation.

The above considerations are valid for laminar
flows, that is, for thunderclouds with drops of radius
R ≤ 100 µm. The majority of drops in the cloud meet
this condition, since, as is known [13], cloud water con-
centrates mostly in drops with a radius from 3–4 to 20–
30 µm.

APPENDIX

CALCULATION OF AERODYNAMIC PRESSURE 
ON THE SURFACE OF A SPHEROID 

IN A LAMINAR GAS FLOW

Let a spheroid of volume equal to that of a sphere of
radius R have its axis of symmetry along the OX axis.
The OX axis is directed along the laminar flow of a non-
viscous incompressible fluid of density ρ around the
spheroid. The flow velocity is U. The solution to the
problem of the laminar potential flow of a nonviscous
incompressible fluid around a rigid ellipsoid can be
found elsewhere [10, 22]. Using the results of [10, 22]
for the ellipsoid, we write the expression for the veloc-
ity potential ϕ(r) in the vicinity of the ellipsoid:

(15)
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where ξ is a spheroidal coordinate that is a positive root
λ ≡ ξ of the equation

(16)

This spheroidal coordinate specifies a family of con-
focal spheroids. The surface of the flowed-around
spheroid is defined by the relationship ξ = 0. Equation (16)
is quadratic in λ, and its second root λ ≡ ζ (–b2 ≥ ζ ≥
−a2) defines the second spheroidal coordinate, which
specifies a family of two-sheet hyperboloids orthogonal
to a family of spheroids specified by the coordinate ζ.
The unit vector nξ is normal to the surface of the spher-
oid, and the unit vector nζ is tangential to it.

The calculation of the flow velocity component Vξ
tangential to the spheroid will suffice in finding the
pressure the nonviscous fluid flow exerts on the surface
of the spheroid, since the normal component Vζ van-
ishes on its surface.

Let us find the tangential component Vξ by differen-
tiating potential (15) along the vector nξ and taking into
account the independence of the spheroidal coordinates
ζ and ξ:

(17)

where e is the eccentricity and hζ is the Lamé coeffi-
cient of the coordinate ζ [24]:

When deriving relationship (17), we took into con-
sideration that [24]
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and also that the condition

is fulfilled on the spheroidal surface at ξ = 0 [r(Θ) is
given by (8)].

The aerodynamic pressure on the surface of the
spheroid is given by (up to terms ~e4)

(18)

Expression (18) is written accurate to terms ~e4,
because this form is convenient for calculating the addi-

tion δ  by the relationship δ  ≈ (∂ /∂e2)δe2 when
the stability of the drop is studied (see Section 4).
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Abstract—The surface erosion of different sorts of tungsten subjected to high-power pulsed plasma streams
simulating plasma disruption is studied. With W-13I polycrystalline and (111) single-crystal tungsten samples
used as examples, the size distributions for the erosion products collected at different angles to the target are
compared. The typical drop erosion of the surface is observed. Fine drops either return to the surface or fly away
in a direction parallel to the surface. Coarse drops leave the surface nearly at right angles to the surface.
The single-crystal surface displays the absence of fine (<0.125 µm) drops typical of a polycrystalline tungsten
surface. The erosion of the single-crystal samples is least among the tungsten sorts considered. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In the design of the International Thermonuclear
Experimental Reactor (ITER), carbon–fiber compos-
ites are intended for in the most stressed parts of the
divertor; tungsten, in divertor elements operating under
less severe conditions. In view of the high threshold
energies of tungsten sputtering by light ions, the disrup-
tion of plasma streams, which results in surface melt-
ing, can be considered the most dangerous source of
tungsten erosion. In [1], we studied the surface erosion
and the morphology of erosion products for domestic
tungsten irradiated by a high-power pulsed deuterium
plasma simulating plasma disruption.

In this study, the surface erosion for a number of
tungsten materials exposed to high-power pulsed
plasma streams is studied. With W-13I polycrystalline
and (111) single-crystal tungsten samples used as
examples, we compare the size distributions of the ero-
sion products deposited on collectors made of single-
crystal silicon and SiO2 cloth, as well as on the surface
of the targets irradiated.

EXPERIMENTAL

Tungsten specimens (W-13I, PLANSEE doped by
La2O3 to ~1%, W(111) single crystal, and W–Re alloy)
were electrochemically polished and then irradiated in
the MKT plasma electrodynamical accelerator by ten
shots of a deuterium plasma with an energy density of
300 kJ/m2 and a duration of 60 µs. The experimental
setup is presented in Fig. 1. Single-crystal silicon sam-
ples were used as collectors of the erosion products.
The microstructure of the tungsten and silicon surfaces
irradiated was studied with a JEOL scanning electron
1063-7842/02/4707- $22.00 © 20841
microscope. Chemical analysis of the erosion products
was performed by X-ray micrography with the use of a
Link attachment to an electron microscope.

RESULTS

Figure 2 shows the surface topography of the elec-
trochemically polished tungsten samples. As is seen
from Fig. 2a, the electrochemical polishing of W-13I
uncovers grains from ~5 to 16 µm in size. La2O3 precip-
itates, most of which are spherical with a diameter vary-
ing between 2 and 6 µm, were revealed on the surface
of the W + 1% La2O3 target (Fig. 2b). Dislocation net-
works are visible on the W–Re surface (Fig. 2c).

2 1 X 4

6

5 X 4'
3

Fig. 1. Positions of the silicon collector relative to the tar-
get: (1) target, (2) quartz detector, (3) tungsten diaphragm,
(4) basalt filter, (4') silicon collector, (5) base, and
(6) plasma stream.
002 MAIK “Nauka/Interperiodica”
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Fig. 2. Surface topography of the electrochemically polished tungsten targets: (a) W-13I, (b) W + 1% La2O3, and (c) W–Re.

(‡) (b)

(c) (d)

1 µm

1 µm 1 µm

1 µm

Fig. 3. Surface microstructure of the tungsten targets exposed to ten shots of the deuterium plasma with an energy density of
300 kJ/m2: (a) W-13I, (b) W + 1% La2O3, (c) W–Re, and (d) W(111) face.
The microstructure of the same targets exposed to
the deuterium plasma shots is shown in Fig. 3. The
W-13I and W–Re targets crack along grain boundaries
and dislocations, respectively (Figs. 3a, 3b). Cracks are
also seen on the W + 1% La2O3 surface, which, in addi-
tion, exhibits voids formed at the sites of La2O3 precip-
itates. As for the (111) single-crystal tungsten surface,
it shows no visible damage, the surface layer is molten,
and some of the tungsten drops return from the screen-
ing plasma to the target. Tungsten drops are present on
the surface of all the samples. On the micrographs of
the irradiated targets, some drops lie on cracks, which
indicates that the drops appear after the melting and
cracking of the surface.

Figure 4a illustrates the surface of the silicon collec-
tor in experiments with polycrystalline W-13I. The col-
lector is placed parallel to the target. Its surface is cov-
ered by fine drops with a maximal diameter of no more
than 1 µm. The drops on the target surface and those on
the collector are close in size. This is clearly seen in
Fig. 5, which demonstrates the drop size distribution on
the Si and W-13I surfaces (curves 1 and 2, respec-
tively). Both distributions 1 and 2 peak between 0.1 and
0.125 µm. Figure 5 also shows the drop size distribution
for polycrystalline tungsten (curve 3) from our previous
study [1], where the arrangement of the erosion product
collectors (basalt filter and silicon) differed from that
used in these experiments.

Then, the collector was positioned in front of the tar-
get at a small angle to the normal to the surface.
A micrograph of the silicon collector surface with tung-
sten drops captured is shown in Fig. 4b. From Figs. 4a
and 4b, it follows that both the size of the drops cap-
tured and the position of the distribution peak depend
essentially on the position of the collector. In contrast
to distribution 1 in Fig. 5, drops with a diameter of
above 1 µm are detected in the case illustrated by
Fig. 4b. Curve 4 in Fig. 5 displays the size distribution
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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of the erosion products that returned from the screening
plasma to the W(111) target.

The diffraction pattern of the drop (Fig. 6) suggests
that the erosion product is tungsten (the molybdenum
impurity is likely to peel off from the chamber walls,
since molybdenum screws were used to fix the sam-
ples).

Thus, from Fig. 5, it follows that
(1) fine drops either return (curve 2 peaks in the size

range from 0.1 to 0.125 µm) or fly away in a direction
nearly parallel to the surface (curve 1 peaks in the same
range of sizes);

(2) coarse drops leave the surface in the near-normal
direction (curve 3). The size distribution of the drops
that are captured by the filter placed in front of the tar-
get at a nearly right angle to the surface has a maximum
in the range from 0.7 to 1.0 µm;

(3) drops of a diameter <0.125 µm are absent on the
single-crystal tungsten surface (curve 4).

DISCUSSION

Waves appearing at some sites of the molten metal
surface exposed to the plasma streams simulating
plasma disruption are capillary waves due to the tan-
gential instability on the liquid surface over which the
vapor (plasma) flows. This flow arises because of the
pressure gradient in the screening plasma and is
directed outward from the center. According to the the-
ory developed in [2], the frequency of such waves is
given by

(1)

where U and ρ' are the velocity and density of the vapor
above the surface, ρ is the density of the liquid, and κ is
the wave vector.

The waves with κmax = 2ρ'U2/3α and λmax =
2π/κmax = 3πα/ρ'U2 have a maximal increment which
equals

For the parameters of the screening plasma ni =
1017 cm–3 and U = 3 × 105 cm/s, ω = 103 s–1, γ = 106 s–1,
and λ = 20–30 µm, which is in close agreement with the
wavelengths observed in the experiment.

Typical sizes of the escaping drops are less than the
wavelength by 1–1.5 orders of magnitude, which indi-
cates that only the tops, or crests, of the waves are sput-
tered. The wind pressure P = ρ'U2 acts only on the lee-
ward of the wave and blows off the crest. The drop sizes
thus estimated are actually one order of magnitude less
than the wavelength.

In this case, the escaped drop moves parallel to the
surface and has a velocity

ω κU ρ'/ ρ ρ'+( )( ),=

γ 2ρ'U3/3α ρ'/3ρ( )1/2.=

V || U ρ'/2πρ( )1/2 3 102 cm/s.×≅=
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The normal component of the velocity (the rise of
the wave) is also nonzero due to the development of
instability:

V ⊥ aγ 2aρ'U3/3α ρ'/3ρ( )1/2= =

=  Uπ2 ρ'/3ρ( )1/2 103 cm/s,≅

1 µm
(‡)

(b)
1 µm

Fig. 4. Surfaces of the silicon collectors positioned near the
target (a) parallel and (b) normal to it for the experiment
with polycrystalline tungsten.
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Fig. 5. Size distribution of the drops (1, 4) on the Si collec-
tor surface and on the (2) W-13I and (3) polycrystalline W
[1] targets irradiated.
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where a is the wave amplitude taken to be a = λ/4 at the
instant of separation.

Thus, the total velocity of the drop is the vector sum
V = V⊥  + V||, V ≅  103 cm/s.

It has been shown [3] that the normal velocity of the
drop decreases so that, after the drop has passed the
Knudsen layer (which is on the order of the ion or atom
range), its velocity in the screening plasma becomes

Hence, the finer the drop (smaller ∆), the more
effective the deceleration. The minimal size of a drop
that can overcome the Knudsen layer is

Drops of size ∆ < ∆min return to the surface. That is
why fine drops prevail among those that return to the
sample surface or settle on the silicon collector placed
near the sample.

Note that the velocity of the tungsten drops,
~103 cm/s, is about one order of magnitude lower than
that of graphite fragments caused by brittle fracture. As
a result, the drops travel a small distance (≈5 × 10–2 cm)
from the surface within the pulse duration. At such dis-
tances, the temperature of the screening plasma is not
very high and the drops do not burn out during the
pulse. Because of this, the tungsten drops are easier to
observe than the graphite dust, for example, in an MK-
200 setup.

Sometimes, the surface of the samples subjected to
the plasma shots was covered by the drops but the

V1 V ⊥
2 1.5 pl/ ρ∆( )+( )1/2

.=

∆min 1.5 pl/ ρV0
2( ).=

W

W

W

W

W

Fig. 6. Diffraction pattern of the drop shown in Fig. 3b.
waves were absent. This may be attributed to the fact
that the time it takes for the molten layer to cool,

(h is the melt thickness, χ is the thermal diffusivity,
T0 is the surface temperature during the pulse, and Tm is
the melting point) is sufficient for the waves to decay.
The decay time is estimated as

Usually, the drops are seen if the molten layer is thin
(h is small).

CONCLUSIONS
(1) Under conditions simulating plasma disruption,

the tungsten surface erodes in the dropwise manner.
(2) Fine drops either return to the surface or fly away

in a direction nearly parallel to the surface. Coarse
drops leave the surface at nearly right angles to the sur-
face.

(3) The dropwise erosion depends on the type of the
tungsten material. In particular, drops with sizes
<0.125 µm, which are typical of polycrystalline tung-
sten, are absent on the single-crystal tungsten surface.

(4) The experimentally found wavelengths and sizes
of the drops are in close agreement with the predictions
of the theory of capillary waves generated by screening
plasma wind and with the model of detachment of the
wave tops (crests).

(5) The screening plasma affects essentially the
angular distribution of escaping drops and the probabil-
ity of their return to the surface.
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Abstract—The propagation of electromagnetic surface waves with extraordinary polarization across the circu-
lar axis of a metal ring in a magnetized plasma is studied using perturbation theory. The amplitude of the fun-
damental mode of these waves is determined to within second-order terms, and the amplitudes of the nearest
satellite modes are found correct to first-order terms. The correction to the eigenfrequency that comes from the
nonuniformity of a constant toroidal magnetic field is shown be a second-order quantity. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Interest in studying the properties of electromag-
netic surface waves (SWs) propagating near plasma–
metal boundaries is related to the promising outlook for
the use of these waves in plasma electronics [1–3]. The
small toroidicity of the column of a gaseous plasma
[4, 5] manifests itself in the following factors: first, spa-
tial variations of a constant external toroidal magnetic
field; second, radial displacement of magnetic surfaces
in the direction of the major radius [6]; and, third, devi-
ation of the shape of the poloidal cross sections of mag-
netic surfaces from circular. The effect of the second
and third factors on the dispersion properties of azi-
muthal SWs (ASWs) propagating across a uniform
axial magnetic field (and, accordingly, along the minor
azimuthal angle) in a cylindrical plasma waveguide was
thoroughly investigated in [7], where it was mentioned,
in particular, that changing the sign of the curvature of
the plasma–metal boundary surface leads to insignifi-
cant changes in the dispersion properties of ASWs. The
distinctive features of the propagation of ASWs near
the surface of a metal cylinder immersed in a magne-
tized plasma were also pointed out in [8].

The objective of the present paper is to investigate
the effect of the spatial variations of an external mag-
netic field on the dispersion properties of ASWs propa-
gating in the poloidal direction near the surface of a
metal ring in a homogeneous magnetized plasma.

The paper is arranged as follows. In Section 1, the
model is constructed and the basic equations are written
out. In Section 2, the main dispersion properties of
ASWs propagating around a cylindrical metal rod [8]
are outlined in order to provide a starting point for fur-
ther analysis. In Section 3, Maxwell’s equations are
solved to first order in the small toroidicity parameter.
In Section 4, Maxwell’s equations are solved and the
dispersion relation is derived to second order in this
1063-7842/02/4707- $22.00 © 20845
parameter. In the conclusion, the main results are sum-
marized.

1. FORMULATION OF THE PROBLEM

We consider a perfectly conducting metal ring such
that the ratio of its minor radius a to its major radius R
is small, εt = a/R ! 1. A constant toroidal magnetic field
B0 = B0ζeζ is generated by a constant current in a
straight conductor placed at the center-line of the ring,
perpendicular to its symmetry plane (see figure):

(1)

where (r, ϑ , ζ) are quasitoroidal coordinates.

The radial coordinate r in the poloidal cross section
is measured from the circular axis of the ring, and ζ is
the major azimuthal angle of the torus. The minor azi-
muthal angle ϑ is measured from the direction toward

B0ζ B0/ 1 r/R( ) ϑcos–[ ] ,=

r

ϑ

ζ

Schematic of the waveguide structure and the coordinate
system.
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the center of symmetry of the ring. Assuming that this
waveguide structure is symmetric with respect to the
circular axis, ∂/∂ζ ≡ 0, we investigate the propagation
of an E-wave, i.e., a wave with the electromagnetic field
components Er, Eϑ, and Bζ (recall that the surface
H-wave, having the components Eζ, Br, and Bϑ, cannot
be excited in such a waveguide [8]).

Let us also assume that the density of the plasma
surrounding the ring is uniform. The reason for making
this assumption is twofold. First, it concerns an n-semi-
conductor plasma. In semiconductor physics, the SWs
under consideration are called magnetoplasma polari-
tons and the above orientation of the external magnetic
field with respect to the plasma–metal boundary corre-
sponds to the Voigt geometry. Second, a metal ring may
serve as an antenna for the excitation of ASWs in order
to maintain gas discharges. In this case, over distances
approximate the penetration depth of ASWs into the
discharge plasma, the plasma density can also be
assumed to be uniform.

The vectors of the electric induction and electric
field strength are assumed to be related by the dielectric
tensor of a cold, weakly collisional, magnetized
plasma. In what follows, we will use the following two
elements of the dielectric tensor:

(2)

(3)

where ωpα and ωcα are, respectively, the Langmuir and
cyclotron frequencies of the particles of species α.

The plasma around the ring is assumed to be dense

enough to satisfy the inequality  @ ε0 . (The
characteristic features of the propagation of ASWs in
cylindrical magnetized plasma waveguides satisfying

the opposite inequality  ! ε0  were investigated
in [9].) For a gaseous plasma, we have ε0 = 1. For an
n-semiconductor plasma, the dielectric constant of the
lattice is ε0 > 1; as a result, the only nonzero terms in
the sums over the charged-particle species in defini-
tions (2) and (3) are those describing the conduction
electrons.

We expand each of the dielectric tensor elements εij

in a series in the small toroidicity parameter εt:

(4)

The main terms in expansions (4),

(5)

are coordinate-independent,  = .

ε11 ε0
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The first-order corrections are linear in the minor
radius:

(6)

The second-order corrections are quadratic in the minor
radius:

(7)

In expansions (4), we can neglect the second-order
terms that are proportional to exp(2iϑ), because they
make third-order (and higher order) contributions to the
eigenfrequency of the ASWs. In expressions (5)–(7),
the cyclotron frequency ωcα is defined in terms of the

uniform (nonvarying) toroidal magnetic field B0:  =

, which corresponds to the zeroth order approx-

imation.
The toroidal component of the RF magnetic field is

determined from the equation

(8)

where ε⊥  =  – .

In the zeroth approximation, Eq. (8) describes the
independent propagation of ASWs with different azi-
muthal mode numbers. This circumstance and the sym-
metry of the problem [see expansions (4)] allow us to
represent the sought-for solution to Eq. (8) in the form

(9)

The electric field components of ASWs are
described by expressions analogous to formula (9). In
addition to the fundamental mode (represented by the
term ∝ expimϑ), this formula describes the two nearest
satellite modes (represented by the terms ∝ expi(m ±
1)ϑ). As will be shown below, the toroidal variations of
the external magnetic field give rise to only a second-

order correction  to the amplitude of the fundamen-
tal mode of ASWs.
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For further analysis, we need the relationship of the
poloidal component of the wave electric field Eϑ to Bζ:

(10)

(11)

(12)

where we have introduced the notation

(13)

The solution to Eq. (8) should satisfy the following
boundary conditions. First, the wave field is finite
everywhere outside the ring. Second, in order not to
formulate the boundary conditions at the major
(straight) axis of the torus, we assume that the wave
fields decrease away from the ring and become negligi-
ble at distances comparable to its major radius or
longer; in other words, we assume that the major radius
of the ring is much larger than the penetration depth of
the wave fields into the plasma. Third, the tangential (in
the case at hand, poloidal) component of the wave elec-
tric field vanishes at the surface of the ring, Eϑ|r = a = 0.

2. AZIMUTHAL SURFACE WAVES 
PROPAGATING AROUND A CIRCULAR 

CYLINDRICAL ROD (THE ZEROTH 
APPROXIMATION)

As a starting point for our analysis, we use the the-
ory of ASWs propagating in the azimuthal direction
around a cylindrical metal rod with a circular cross sec-
tion of radius a [8]. The rod is assumed to be immersed
in a homogeneous plasma, and a constant external mag-
netic field B0 is assumed parallel to the axis of the rod.
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Let us briefly outline the main dispersion properties of
such ASWs.

In the zeroth approximation, the amplitude (r)
of the fundamental harmonic is expressed through the
modified Bessel function of the second kind [10]:

(14)

The penetration depth  of the wave field into the
plasma is defined by the relationship

(15)

The solution  to the zero-order dispersion rela-
tion

(16)

is assumed to be known. The dispersion relation (16)

follows from the condition that the amplitude (r) of
the fundamental harmonic of the poloidal electric field
of an ASW vanishes at the plasma–metal boundary,

D(0) ≡ (a). The dependence of the eigenfrequency

 of the ASW on the plasma parameters in the zeroth
approximation, as well as on the magnitude of the
external magnetic field and the dimensions of the rod,
was thoroughly investigated in [8].

The frequencies of ASWs with negative azimuthal
mode numbers are low,

(17)

while the frequencies of ASWs with positive mode
numbers m are high,

(18)

where ωU =  is the upper hybrid fre-
quency.

3. AMPLITUDES OF THE SATELLITE MODES 
(THE FIRST APPROXIMATION)

We assume that the amplitudes  of the satellite
modes are first-order quantities. We substitute expres-
sion (9) for the field amplitude Bζ and expansions (4)
for the dielectric tensor elements εij into Eq. (8). In the
resulting equation, we single out first-order terms,
which turn out to be proportional either to exp[i(m +
1)ϕ] or to exp[i(m – 1)ϕ]. In other words, taking into
account first-order terms does not change the funda-
mental mode amplitude. Consequently, in the first
approximation, the toroidal variations of the external
magnetic field do not contribute to the eigenfrequency
of the ASW. These first-order terms enter the inhomo-
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geneous Bessel equations for (r) with the known
right-hand side. The inhomogeneous Bessel equations
have the following solutions, which satisfy the bound-
ary condition for the ASW field to be finite at infinite
distances from the ring:

(19)

where the operator  has the form

(20)

The integration constants C± can be found from the
condition that the amplitudes of the first satellite har-
monics of the poloidal electric field vanish at the metal

surface of the ring, (a) = 0:

(21)
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4. CORRECTION TO THE EIGENFREQUENCY 
OF THE ASW IN THE CASE OF TOROIDAL 

VARIATIONS OF THE EXTERNAL MAGNETIC 
FIELD (THE SECOND APPROXIMATION)

The second-order terms in Eq. (8) are proportional
to one of the three phase factors: expimϑ  or expi(m ±
2)ϑ . Retaining only the terms with expi(m ± 2)ϑ  yields
equations for the amplitudes of the second satellite
modes. In expansion (9), these modes are neglected
because they make third-order (and higher-order) con-
tributions to the eigenfrequency of the ASW. Keeping
the second-order terms that are proportional to expimϑ
gives an inhomogeneous differential Bessel equation

for the correction (r) to the amplitude of the funda-
mental harmonic of the ASW field. A solution to this
equation satisfying the condition for the ASW fields to
be finite at infinite distances from the ring can be found
by the method of variation of constants:

(22)

where the operator  is defined as

(23)

The boundary conditions formulated in Section 2
are insufficient to determine the integration constant C2
in solution (22). This constant, which is a second-order
quantity, can be found from the condition
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implying that the energy of the wave magnetic field cal-
culated in the second approximation should coincide
with the energy calculated in the zeroth approximation.
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In quantum mechanics, this requirement is analogous to
the normalization condition for the wave function [11].
At the same time, the form of the second-order disper-
sion relation, which will be derived below, is indepen-
dent of the value of the constant C2.

In the second approximation, the boundary condi-
tion for the fundamental harmonic of the poloidal com-
ponent of the wave electric field at the metal surface of
the ring has the form

(25)

where D(2) = (a).

The toroidal geometry of the ring gives rise to only

a second-order correction  to the eigenfrequency of
the ASW:

(26)

The applicability condition for the approach devel-
oped here to determine the dispersion properties of
ASWs propagating around a metal ring immersed in a
magnetized plasma implies the smallness of the sec-
ond-order correction with respect to the zero-order

eigenfrequency: | | ! .

The main mathematical advantage of the resulting
formula (26) is that it reduces the problem with two-
dimensional variations of the toroidal magnetic field (in
the poloidal cross section) to the problem with one-
dimensional variations (in the radial direction). The
obvious drawback of formula (26) is its complexity. In
the limiting case of thick rings (R @ a @ |m|/k⊥ ), the
eigenfrequency of the ASW can be calculated in the
low-frequency (LF) range (17) using the asymptotic
expressions

(27)

(28)

In the high-frequency (HF) range (18), the eigenfre-
quency can be calculated from the asymptotic expres-
sions

(29)

(30)

In these expressions, δ = c/ωpe is the skin depth.
Note that, in the case of thick rings, the amplitudes of
the satellite modes of an ASW have essentially the same
radial dependence. Of course, analytic solution (29) to
dispersion relation (16) refers to the HF range (18).
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-----------------------+ 
  ωm
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This necessary condition for the existence of HF ASWs
can be formulated as the inequality

(31)

This inequality implies that HF ASWs can propa-
gate only around sufficiently thick rings.

For the eigenfrequencies of LF ASWs propagating
around thin (a ! |m|/k⊥  ! R) rings, we obtain the fol-
lowing asymptotic expressions:

(32)

(33)

In the limiting case of thin rings, the radial depen-
dences of the amplitudes of the satellite modes of an

ASW are essentially different, (r) ∝  r–|m ± 1|; how-
ever, at the metal surface of the ring, these amplitudes
are of the same order of magnitude because of the cor-
responding difference in the numerical factors C±.

CONCLUSION

It has been established that ASWs can exist in a
magnetized plasma surrounding a metal ring. Spatial
distributions of the ASW fields have been derived [see
expressions (10)–(12), (19), and (22)]. It has been
shown that the toroidal variations of the external mag-
netic field in this waveguide structure cause ASWs to
propagate as wave packets. In such a packet, the ampli-
tudes Am + N of the satellite modes are proportional to

∝ exp[i(m + N)ϑ], so that they are small (Am + N ~ Am)
in comparison with the fundamental mode amplitude
Am, which is proportional to ∝ exp[imϑ]. The correc-
tions to the fundamental mode amplitude that come
from the toroidal variations of the external magnetic field
are second-order in the small toroidicity parameter εt.

The correction to the eigenfrequency of ASWs
caused by toroidal variations of the external magnetic
field has been determined [see expression (26)]. This
correction is found to be a second-order quantity. In the
limiting cases of thick and thin rings, simple analytic
expressions (27)–(30), (32), and (33) have been
obtained for the eigenfrequencies of ASWs in the two
frequency ranges in which the waves can exist.

It has been shown that HF ASWs cannot propagate
around relatively thin metal rings whose minor radius
does not satisfy inequality (31).

Note that ASWs can also exist in toroidal metal
waveguides entirely filled with plasma. In this case, the
correction to the eigenfrequency of ASWs that is intro-
duced by the toroidal variations of the external mag-
netic field is equal in magnitude but opposite in sign to
the correction obtained in the present paper.

δm/a( )2 ωce /ωpe.<

ωm
0( ) ωce 1 0.5a2/ mδ( )2–[ ] ,=

ω 2( ) εt
2

8m2
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Abstract—An atmospheric-pressure pulsed microwave discharge on the surface of an insulating plate and
between two insulating films is considered. The discharge is initiated in a quasi-optical microwave beam away
from the beam-forming elements. The TEM field of the beam is less than the critical breakdown value. The ini-
tiator is a metallic dipole placed either directly on the plate surface facing away from the radiation source or
between the films. The discharge has the form of branching streamer channels adjacent to the surface and filling
up the cross section of the microwave beam with a field level higher than the value separating the subcritical
and highly subcritical forms of the microwave streamer discharge. © 2002 MAIK “Nauka/Interperiodica”.
It is known that a microwave discharge can be initi-
ated in a quasi-optical electromagnetic (EM) cm-wave
beam even at electric field amplitudes E0 lower than the
critical breakdown value Ec [1]. The discharge can be
initiated, for example, by a thin metallic dipole placed
into an EM beam [2]. If E0 is slightly below Ec and the
air pressure p exceeds several tens of torr, a subcritical
discharge arising at the ends of the initiating dipole
propagates counter to the radiation in the form of
branching streamer channels growing with a velocity
Vstr of about 106 cm/s and gradually fills the beam vol-
ume [3]. The front of this discharge travels towards the
radiation source with a velocity Vfr of about 105 cm/s,
shielding the initiating dipole and the interior of the dis-
charge. For such a self-developing subcritical volume
discharge separated from the initiating dipole, intense
ionization processes take place at its approximately λ/2
thick front, where λ is the radiation wavelength.

When the initial field E0 becomes lower than Ec, the
microwave discharge cannot separate from the initiat-
ing dipole. At air pressures p higher than several tens of
torr and a pulsed field duration τpul of several tens of
microseconds, such a highly subcritical discharge splits
into a set of streamer channels. However, unlike a sub-
critical discharge with E0 < Ec, the streamer channels of
a highly subcritical discharge (E0 ! Ec) are in contact
with the ends of the dipole all through τpul. It has been
found [1] that, at atmospheric pressure (Ec = 42 kV/cm),
the threshold field Eth separating the subcritical and
highly subcritical forms of a microwave discharge is
2.5 kV/cm at λ = 8.9 cm.

In our experiments, a dielectric transparent shutter
was placed across the beam propagating toward the dis-
charge source in a subcritical initial field Eth < E0 < Ec.
The discharge was initiated by a dipole placed directly
on the shutter surface facing away from the radiation
1063-7842/02/4707- $22.00 © 20851
source. The shape of the discharge (from which its
structure can be judged), as well as its ability to sepa-
rate from the initiator, penetrate the barrier, and propa-
gate towards the source, were studied. In the experi-
ments, the material and thickness of the shutter, as well
as the number of initiators, were changed. Sometimes,
the initiator was placed between two closely spaced
dielectric surfaces.

The experimental setup was described in detail in
[3]. A linearly polarized radiation with the TEM field,
λ = 8.9 cm and τpul = 40 µs, is focused. The focus is sev-
eral tens of centimeters distant from the nearest parts of
the setup. In the focal plane, which is perpendicular to
the EM radiation direction, the field is roughly Gauss-
ian with the maximum amplitude at the focus, E0 =
6.5 kV/cm. The sizes of the focus spot measured at the
site where the field amplitude diminishes e times are
x0 = 5.2 cm along the vector E0 and y0 = 2.5 cm perpen-
dicular to the vector E0. The vector E0 is vertical. We
used microwave shots generated at an interval of 1 min
or more. The experiments were performed in atmo-
spheric air. A dipole initiating a microwave discharge
was placed in the focus spot of the EM beam parallel to
E0. The dipole, made of a tungsten wire with a diameter
2a = 3 × 10–2 cm and a length 2l = 1 cm, was fixed to
the surface of a thin (in comparison with λ/2) radiopar-
ent insulator on the side facing away from the radiation
source. The insulator was either KV quartz glass with a
permittivity ε ≈ 4 and a loss tangent  ≈ 10–4 or
polyethylene with ε ≈ 2.2 and  ≈ 10–4 [4]. The
insulating film was placed normal to the radiation
direction.

The discharge area was photographed with an expo-
sure time more than τpul. In such “integral” photos, the
radiation propagates from left to right, while the vector
E0 is vertical as in the experiments. The photos were

δtan
δtan
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Microwave streamer discharge initiated by one dipole on the surface of a quartz plate 1 cm thick (p = 760 torr).
taken on the dipole side along a line lying in the plane
almost perpendicular to E0 and crossing the EM beam
axis at a small angle to the plane of the insulator. The
size 2l of the initiator can serve as the vertical scale of
the image. To determine the horizontal scale of the
image, the aspect angle should be taken into account.
Therefore, sizes allowing one to estimate this scale are
given for each of the images.

In all the experiments, the discharge was found to
develop only on the surface where the initiator was
fixed. It had the form of streamer channels with a max-
imum diameter of several hundredths of a centimeter
filling up the cross sections of the beam. In other words,
the discharge can leave the initiator and extend as a
self-sustained surface streamer subcritical microwave
discharge. The streamer channels were blue violet
(which is also typical of streamer channels of volume
microwave discharge in air) with bright white portions
extended largely along E0.

A typical discharge on the surface of the quartz disk
with a diameter of 20 cm and a thickness d = 1 cm is
shown in Fig. 1. In the image, the disk side surface is at
the left. On both sides of the discharge, one can see two
vertical filaments confining the discharge in the EM
beam. The spacing between the filaments, 15.5 cm, can
be used as the horizontal scale. The discharge area is
symmetric in the direction transverse to the vector E0.
The total size of the discharge area is about 11 cm:
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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Fig. 2. Microwave streamer discharge initiated by two dipoles on the surface of a quartz plate 1 cm thick (p = 760 torr).
about 3 cm downward and 7 cm upward from the dipole
center. The ends of the dipole are brighter, indicating
the evaporation of its surface. The melting point of
tungsten is T ≈ 3400°C, and its boiling temperature is
5700°C [4]. Hence, the temperature of the streamer
channels in contact with tungsten lies in this range.

A discharge initiated by two dipoles fixed on the
same quartz disk within the focus spot of the beam is
shown in Fig. 2. The dipoles are 1.5 cm apart. The
shape of the discharge and its size remain almost
unchanged. As before, one sees streamer channels adja-
cent to the quartz surface and filling up the beam cross
section.
HNICAL PHYSICS      Vol. 47      No. 7      2002
A discharge ignited between two polyethylene
sheets with a thickness d ≈ 10–2 cm is shown in Fig. 3.
The sheets were punched and freely hung by their upper
ends. On the left of the image, one can see elliptical
holes (1 × 0.6 cm) used for hanging. The discharge in
the folder is seen to be qualitatively similar to the sur-
face microwave discharge shown in Figs. 1 and 2. How-
ever, the former is more symmetric about the initiator
and has brighter and thicker streamer channels in its
upper left part. Obviously, this is associated with the
melting of the film surface due to high-temperature dis-
charge channels because of the gap between the films
being narrower in this area. At the center of the folder,
the gap ∆ is defined by the diameter 2a of the dipole,
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Fig. 3. Microwave streamer discharge initiated by one dipole in the gap between two polyethylene sheetsness 10–2–9 × 10–3 cm thick
(p = 760 torr).
∆ = 2a. From this image, one can estimate the maxi-
mum vertical and horizontal sizes of the discharge area:
2xdis = 10.5 cm and 2ydis = 6 cm.

As was mentioned, for the given λ of the EM field in
air, the threshold field separating the subcritical and
highly subcritical forms of the discharge is Eth =
2.5 kV/cm. Under our experimental conditions, the
field amplitude in the focal plane of the beam falls to
this value when the focus is shifted by about x0 along
the vector E0 and by y0 perpendicular to it. Obviously,
the coincidence of the values xdis and ydis for the dis-
charge in the folder shown in Fig. 3 with x0 and y0 is not
accidental. This means that the same value of the field
Eth specified the boundary of the surface streamer sub-
critical discharge with the developed structure.

For the discharges on the quartz shown in Figs. 1
and 2, the vertical size also approximately equals 2x0,
while their vertical asymmetry about the dipole is prob-
ably due to its inaccurate position in the EM beam
focus. The reason for the large horizontal size of these
discharges is unclear and calls for further investiga-
tions. It can be assumed that the thick quartz disk influ-
ences the field distribution near the focus.

The propagation of streamer discharges in various
ranges of the EM field wavelength, including micro-
wave and constant fields, is caused by the enhancement
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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mechanism field at the ends of a streamer. The area of
enhanced field with E > Ec has a certain length. Our
experiments with polyethylene films having a thickness
d of several hundredths of a centimeter did not reveal
the transition of the discharge to the side opposite to the
initiator. Hence, the size of the enhanced field area at
the ends of the streamer channels is less than d. This
means that the diameter of the head of the streamer
channels is also no more than 10–3 cm at atmospheric
pressure.

Thus, we observed a surface subcritical pulsed
microwave discharge with a developed structure in air
at atmospheric pressure. The discharge was initiated in
a linearly polarized quasi-optical beam of the EM field
with a wavelength λ = 8.9 cm and a pulse duration
tpul = 40 µs. The initiator is a microwave dipole placed
on the side of a radioparent shutter (quartz disk or poly-
ethylene film) that faces away from the microwave radi-
ation source. The discharge develops in the form of
growing branching streamer channels with a maximum
diameter of several hundredths of a centimeter. The
channels can separate from the initiator and fill up the
beam cross section if the field amplitude is higher than
or equal to the threshold level Eth = 2.5 kV/cm. At atmo-
spheric pressure, this threshold coincides with the
known value separating the subcritical and highly sub-
critical forms of a volume streamer microwave dis-
charge. This corresponds to the subcriticality ratio
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
Ec/Eth ≈ 17. The subcritical microwave discharge can
also be initiated by several dipoles placed on the dielec-
tric surface. Also, it is initiated in the gap between two
dielectric surfaces with a gap size ∆ no greater than sev-
eral hundredths of a centimeter. If the experimental
subcriticality Ec/E0 > 6.5, the discharge propagates nei-
ther to the side of the polyethylene film facing away
from the initiator nor counter to the radiation for a film
thickness d exceeding several thousandths, of a centi-
meter.
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Abstract—A study is made of the electromagnetic instability of a homogeneous plasma with a highly aniso-
tropic one- or two-dimensional velocity distribution in the absence of a magnetic field. It is shown that, if the
velocity distribution has a center of symmetry, then the plasma is always unstable against sufficiently long elec-
tromagnetic waves. This instability plays an important role in both laboratory plasma devices and cosmic rays.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

As is well known, electromagnetic perturbations in
plasmas are those that generate plasma magnetic fields
strong enough to bend the particle trajectories. It fol-
lows from simple energy considerations that a plasma
with a spherically symmetric velocity distribution is
stable against electromagnetic perturbations. On the
contrary, an anisotropic plasma is subject to peculiar
electromagnetic instabilities, which have been studied
both theoretically (see, e.g., [1], Section 15) and
numerically (see, e.g., [2]).

However, in our opinion, Mikhailovskii [1] investi-
gated the simplest example of two counterpropagating
plasma flows in the absence of an external magnetic
field somewhat incompletely, because he assumed that
the electric field perturbations are directed exactly
along the flows. For this reason, it remains unclear
whether the relevant problem has been solved in full
measure and whether it can be generalized. In the
present paper, we analyze this issue in more detail and
suggest certain generalizations.

BASIC EQUATIONS

We consider a model in which a homogeneous
plasma consists of plasma flows designated as i = 1,
2, …, N and assume that the velocity vectors v i(ui, 0,
wi) of the flows lie in the same plane. We denote the
total density of the electrons by n (as usual, we take into
account only their motion) and the partial densities of
the flows by γin. Then, we have

(1)

We consider an electromagnetic wave propagating
in the z direction or, equivalently, in the plane of the
plasma flows. We treat an electromagnetic perturbation
in the linear approximation, in which case all local per-

γi 0, γ1 γ2 … γN+ + +> 1.=
1063-7842/02/4707- $22.00 © 20856
turbation parameters contain the factor exp(λt + ikz),
where t is time.

In the absence of perturbation, each particle moves
by inertia; therefore, its initial position vector r0i

changes according to the equation

(2)

In fact, we must take into account small perturba-
tions of both the electric (E) and magnetic (H) fields. In
order to obtain an equation describing the evolution of
the velocity vector of an individual particle, it is neces-
sary, first, to write the familiar equation for the particle
momentum,

(3)

(where e is the charge of an electron and c is the speed
of light), and, then, to take into account the algebraic
relationships between the momentum and the velocity,

(4)

Following what was said above, we can single out
the time and coordinate dependences in the expressions
for E and H:

(5)

r r0i vit.+=

dp
dt
------ e E + 

r H×
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E eeλ t ikz+ , H heλ t ikz+ .= =
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Linearizing Eq. (3) yields

(6)

Here and below, the symbol δ denotes the perturbation
of a given quantity.

However, note that the z coordinate on the right-
hand side of Eq. (6) refers to the instantaneous position
of a particle and thus should be determined from
Eq. (2), in which case the perturbation gives rise to only
a small (second-order) correction to Eq. (2). With these
remarks in mind, we integrate Eq. (6) from the infinite
past to find

(7)

Here, the sought-for quantity is expressed in terms of
the z coordinate of the particle in the absence of pertur-
bation. Since we are interested exclusively in unstable
perturbations, we set λ > 0. According to relationships (4),
we obtain from Eq. (7) the following equation for the
velocity perturbation:

(8)

We insert the instantaneous z coordinate from
Eq. (2) into Eq. (8) and integrate the resulting equation
over t to obtain

(9)

Equations (8) and (9) refer to any particle in any
plasma flow. In what follows, in order to distinguish
between the flows, we will mark them with the sub-
script i. The current at each point should be found from
the relationship

(10)

in which case the corresponding inverse relationship
has the form

(11)

The current J is the sum of all the contributions emv
from each particle in each plasma flow; of course, the
contributions should also be summed over i. In the
expansion of emv  exp(–ikz), the zero-order terms

dδp
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entirely cancel each other, reflecting the fact that, in an
unperturbed state, there are no currents. Accordingly,
we have

or

(12)

This way of deriving the perturbed current is advan-
tageous in that it clearly illustrates how the factor L =
1/(λ + ikw) arises in expression (12). The sought-for
current can also be obtained by linearizing the hydrody-
namic equations for each of the flows; in this way, we
again arrive at the above expression (12) for δj. Note
that, if k and λ are assumed to be of the same order, then
the generated current is inversely proportional to k.

Now, we must combine expression (12) into Max-
well’s equations. However, in the case at hand, we have
Hz = 0; as a result, Maxwell’s equations become

(13)

(14)

Solving the first of Eqs. (13) and the second of
Eqs. (14) separately from the remaining equations and
using expression (12), we obtain

We can see that, regardless of the structure of the
velocity distribution, there are two possible cases. The
first case is that with

This indicates that the system of particles undergoes

oscillations with the frequency ω = , which
is equal to the frequency of electromagnetic oscillations
in a cold plasma (here, ωp is the electron plasma fre-
quency). The second case is that with εy = hx = 0. This
latter case will be the subject of the further analysis.
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DERIVATION AND ANALYSIS 
OF THE DISPERSION RELATION

Now, we are left with the first and third of Eqs. (14).
Substituting hy from the second of Eqs. (13) and the
current from expression (12) into these two equations,
we arrive at the set of linear homogeneous equations for
εx and εz, which can be simplified to the form

(15)

where

The sought-for equation for λ can be obtained by
equating the determinant of Eqs. (15) to zero. Of great-
est interest to the present discussion is the asymptotic
limit k  0. If, in this limit, λ remains proportional to
k, then the first two terms in the expression for P are
small in comparison with the third term and the first
term in the expression for S is small in comparison with
the second term. As a result, after some simplifications,
the dispersion relation takes the form

(16)
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For the particular case of two counterpropagating
plasma flows of equal density, we can set N = 2, n1, 2 =
n/2, u1, 2 = ±u, and w1, 2 = ±w. In this case, the dispersion
relation (16), being simplified to the ultimate possible
extent, has only one pair of roots:

This formula clearly shows that the instability does
exist and that the perturbation grows exponentially with
time. The particular case considered by Mikhailovskii
[1] is that with w = 0 (in our notation) and without the
relativistic correction u2/c2. Below, we will verify
directly that the relevant dispersion relation presented
in [1], in a sense, follows from the formulas obtained in
the present work.

Now, we turn to the general case of a two-dimen-
sional distribution of the velocities of the electron
beams. We again assume that k and λ are both small and
are of the same order of magnitude. In this situation, in
contrast to the case of oblique perturbations in a plasma
with a one-dimensional velocity distribution, we cannot
speak of the separation of the unknowns εx and εz. Nev-
ertheless, under the additional assumption that the two-
dimensional velocity distribution has a center of sym-
metry, it is also an easy matter to show the exponential
growth of the instability. In other words, we impose the
requirement that each beam with the velocity vector
v (u, 0, w) be counterbalanced by another beam with the
velocity vector v(–u, 0, –w) and with the same density.
Then, for a real λ, the complex-conjugate terms in each
of the sums on the left-hand side of the dispersion rela-
tion (16) are added together; thereby, the left-hand side
itself, which will be denoted by F(λ), is real. In partic-
ular, we have

The physically obvious requirement u2 + w2 < c2

leads to
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which gives

Employing the Bunyakowsky inequality yields
F(0) < 0. As λ  ∞, the quantity F(λ) asymptotically
approaches zero according to the law

Since

the inequality F(λ) > 0 for large λ can be proved in the
same way as was done above. For all intermediate pos-
itive values of λ, the function F(λ) is regular; conse-
quently, the equation F(λ) = 0 has at least one positive
root, which was to be proved.

THE CASE OF A CONTINUOUS VELOCITY 
DISTRIBUTION

The instability described in the previous section can
partially originate from the discrete structure of the
velocity distribution of the electron flows. For this rea-
son, it is expedient to present at least one example of an
electron flow whose velocity distribution is continuous
in both n and w. In this case, all the sums in the disper-
sion relation (16) should be replaced by the correspond-
ing integrals with a certain velocity distribution func-
tion f(u, w). To be specific, we use a Gaussian distribu-

tion with the dispersions  and  and with the
correlation coefficient ρ. We restrict ourselves to non-
relativistic motions and, accordingly, omit corrections
proportional to w2/c2 and v 2/c2. The origin of the coor-
dinate system in velocity space may be chosen to be
located at the center u = w = 0 of the velocity distribu-
tion, in which case the function F(λ) is real. We discard
the corresponding relativistic corrections and switch
from the sums to the integrals in dispersion relation
(16):
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The integrals in Eq. (17) can be converted into a
more convenient form by using the familiar representa-
tion

(18)

In particular, with allowance for this representation,
the last of the integrals in Eq. (17) becomes

(19)

Here and below, the integration is carried out over the
entire (n, w) plane and over the positive values of time t.
Integral (19) can be further transformed using the char-
acteristic function ϕ. In the above particular case with a
Gaussian distribution, this function is known to have
the form [3]

(20)

We differentiate both sides of expression (20) with
respect to the parameter ξ and substitute ξ = 0 and η = kt
into the resulting expression to obtain

Therefore, we obtain
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Analogously (but without differentiating with
respect to the parameter), we find
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Simple manipulations yield

the corresponding asymptotic behavior at large values
of λ being F(λ) ≈ n2/λ2. A sufficient condition for the
instability has the form

If, in the case of an anisotropic distribution (i.e., of

different dispersions  and ), the wave vector is
oriented in the direction of the principal axis with the

smaller dispersion , then we have σu = σ1, σw = σ2,
and ρ = 0; therefore, the sufficient condition for the
instability is satisfied. The only exception to this is the
case of an isotropic distribution, for which we have
σu = σw and ρ = 0 regardless of the orientation of the
wave vector.

Recall that we are dealing with a two-dimensional
velocity distribution. The instability under consider-
ation also takes place in intermediate situations, in
which the dispersion in one direction (in the case at

hand, this is ) is nonzero and is smaller than the
other dispersions. The corresponding calculations will
be presented in a separate paper.

DISCUSSION OF THE RESULTS

We have proved that any two-dimensional velocity
distribution is electromagnetically unstable, at least
when it has a center of symmetry. However, this insta-
bility refers only to sufficiently long electromagnetic
waves, thereby raising a question as to the wavelengths
of unstable waves. In order to answer this question, we
again turn to the continuous velocity distribution,
retaining now all the terms in the general dispersion
relation
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analysis is valid, holds for roughly k < k*, where

(22)

Here, v  should be understood to be the characteristic
velocity of the beams. For large λ values, the first two
terms in the expression for P and the first term in the
expression for S produce positive terms in the expres-
sion for Ψ(λ); however, this positive contribution plays
an insignificant role in the problem under analysis.
Hence, we can suggest that unstable electromagnetic
waves are those with the wavelengths k < k*, therefore,
for the electromagnetic instability to occur, the system
must have sufficiently large dimensions. As for the
instability growth rate, the dispersion relation (16)
yields the estimate

(23)

which has already been presented in the literature (see,
e.g., [1]).

Now, let us again turn to the above particular case of
two plasma flows. We assume that the flows are both
perpendicular to the wave vector (i.e., w = 0) but use the
general dispersion relation (21). One can easily see that
this dispersion relation splits into two equations, P = 0
and S = 0, because, in the case at hand, we have Q =
R = 0. Equating S to zero yields λ = ±iωp. The equation
P = 0 is far more complicated:

(24)

Omitting the relativistic correction and taking into
account an obvious difference in the notation (in partic-
ular, in [1], the electron plasma frequency is defined for
each individual flow, whereas, in our study, it refers to
the entire system), we can reduce Eq. (24) to the corre-
sponding equation presented in [1], which was derived
earlier by Weibel [4]. Recall that Mikhailovskii [1] con-
sidered an electric field having the only component
along the flows. From a geometric standpoint, he lim-
ited himself to perturbations that are antisymmetric
with regard to mirror reflections in a plane perpendicu-
lar to the original motion of the flows. However, as was
shown above, symmetric perturbations manifest them-
selves as Langmuir oscillations rather than as electro-
magnetic waves. These symmetry considerations apply
also to the relativistic limit. If a one-dimensional veloc-
ity distribution is asymmetric (e.g., N = 2, but ni = n2),
then, neglecting the relativistic correction v 2/c2 all the
same yields Q = R = 0. However, this is not the case in
the relativistic limit, in which the components εx and εz

are coupled to one another.
Let us estimate the critical wavelength at which

electromagnetic waves become unstable. For the condi-
tions prevailing in fusion experiments with magnetic
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confinement systems [3], we can set the plasma temper-
ature to be about 107 K and take n ~ 1018 cm–3. The crit-
ical wavelength estimated for these values from for-
mula (19) is about several hundredths of a millimeter,
indicating that it is necessary to keep in mind the possi-
ble onset of electromagnetic instability in laboratory
devices.

The question as to the stability of a system of galac-
tic cosmic rays is somewhat more complicated. Based
on the above calculations, we can conclude with a high
degree of confidence that the anisotropy of the velocity
distribution of a system of cosmic rays cannot be large,
at least for stability reasons. In order to provide a stron-
ger justification for this conclusion, it is necessary to
carry out calculations for a significantly non-Gaussian
velocity distribution. We hope to do this in future work.

Another interesting example is a system of ion
beams with an energy ε = 1 MeV per nucleon emitted
by the Sun during solar flares and interacting with the
Sun’s atmosphere. Setting the density of an ion beam to
be 10% of the typical thermal plasma density in a coro-
nal loop, we find that the characteristic critical wave-
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
length is about 1 m. However, the corona plasma, in
which the ion beams propagate, may have a stabilizing
effect on them. This stabilization is sometimes pro-
vided by the efficient absorption of excited long elec-
tromagnetic waves in the thermal plasma as well as by
the transfer of the wave energy in k space.
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Abstract—The effect of dissipation on the propagation of magnetoacoustic waves in a cubic ferromagnet under
the action of applied stress s || [111] is studied theoretically. When the ferromagnet is in one of two symmetric
phases (M0 || [111] or M0 || [ ]), the magnetoelastic waves weakly decay and may transform into modes of
another type as the material approaches the point of spin-reorientation transition. It is also found that the prop-
agation velocity and attenuation rate of quasi-phonons exhibit anisotropy, which can be controlled by the
applied stress. © 2002 MAIK “Nauka/Interperiodica”.

110
† It is known that magnetoelastic interaction is rather
weak in most magnetic materials and exerts a minor
effect on their magnetic properties. However, near the
spin-reorientation phase transition (SRPT), where the
magnetic anisotropy is negligible, the magnetoelastic
interaction dominates. This enhances magnetoacoustic
effects in magnets and, in particular, softens the magne-
toacoustic mode [1]. In the presence of elastic and mag-
netoelastic anisotropy in crystals, this softening
depends on the crystallographic direction.

The allowance for dissipation may also affect signif-
icantly the softening of the magnetoacoustic mode and
the propagation of magnetoelastic waves on the whole.
This is because, spin waves in a dissipative magnetic
subsystem decay and their propagation depends to a
great extent on how close the subsystem is to the SRPT
point [2].

In this paper, we study the effect of relaxation pro-
cesses on the propagation of magnetoelastic waves in a
cubic ferromagnet with induced uniaxial anisotropy
(IUA), which is typical of many magnets used in prac-
tice, including garnet ferrites [3]. We assume that
uniaxial anisotropy is induced by an applied stress s ||
[111] (as in a (111) garnet ferrite plate).

The energy density in this magnet can be repre-
sented as

† Deceased.
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where A, B, and C are the exchange, magnetoelastic,
and elastic interaction factors; K1 and K2 are the first
and second cubic anisotropy constants; m = M/Ms is the
unit vector of magnetization; Ms is the saturation mag-
netization; Uij and σij are the strain and stress tensors
(s || [111]); and Hdem is the demagnetizing field deter-
mined from the magnetostatics equation

(2)

To find the magnetoelastic oscillation spectrum, it is
necessary to simultaneously solve the Landau–Lifshitz
equations with the Gilbert relaxation term and the equa-
tions of motion for the elastic displacement vectors U:

(3)

where γ is the gyromagnetic ratio, ρ is the density of the
crystal, Heff is some effective magnetic field, and r is the
dimensionless attenuation parameter.

Equations (3) constitute a complete system of mag-
netoelastic equations. It can be solved in the linear
approximation with respect to the dynamic variables
M(1) = M – M(0) and U(1) = U – U(0) [1]. The spontane-

ous strains  and the equilibrium directions of the
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magnetization vector M(0)(M(0) = M0) are found from
the minimum condition for the energy density E in the
homogeneous state. Phenomena associated with sur-
face effects are neglected.

Calculations for the ground state show that six mag-
netic phases may exist in the (111) plate. Two of them
are symmetric phases with M0 || [111] (phase F[111]) and

M0 || [ ] (phase ), three are angular phases,
and one is a phase of type [uvw] [4, 5]. Hereafter, we
assume that the magnet is in one of the symmetric
phases.

Consider the case M || [ ]. This phase is stable if

(4)

where Ku = 3σλ111/2 is the IUA constant and λ111 is the
magnetostriction constant in the [111] direction.

The dispersion relation for the coupled oscillations
is written as

(5)
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cosα)2 + 2C44(sinα – cosα)2] is the magnetoelastic
coupling coefficient and ωskII =

. The
remaining parameters and the velocities for the uncou-
pled components are given in [6].

When magnetoelastic coupling is absent, a solution
to Eq. (5) has the form
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width of the magnon gap.
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(for example, at the point ω2s  0, where ω2sk ! ω3sk

and ω1s  0, or when k  0), the situation may

change radically. When  ! r2[(ω3sk + 4πMsγcosα) –

(ω2sk + 4πMsγsinα)]2 + , solutions (6) describe
purely relaxation oscillations:

(7)

(8)

These expressions define the inverse relaxation
times for the transverse magnetization components.
The relaxation mode ω1 is soft, because its frequency
tends to zero at the stability limit as k  0. Near the
SRPT point (ω3s0  0), the solution is given by for-
mulas (7) and (8) with the subscripts 3 and 2 inter-
changed.

If magnetoelastic interaction is taken into consider-
ation, the spectrum of coupled oscillations near the
SRPT point (ω2s0  0) at k = 0 becomes

(9)

Therefore, with magnetoelastic interaction taken
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eration, waves of both types decay. One can show that
the propagation of such waves is pronouncedly aniso-

tropic (Fig. 1). In the ( ) plane, the magnetoacoustic
waves propagate with extremal velocities in certain
directions that are not crystallographic. These results
contradict those of [6], where it was erroneously argued
that these directions coincide with crystallographic
directions. The difference is caused by the fact that the
applied stress s || [111] breaks the cubic symmetry.
This effect can be avoided by applying the stress in the
directions along which the magnetoelastic waves prop-
agate with extremal velocities.
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Fig. 1. Surface of the quasi-elastic wave phase velocities in

Sm3Fe5O12 (T = 77 K) cut by the plane ( ) [8, 9]: (a) real
and (b) imaginary parts of the spectrum.

110
For the symmetric phase F[111], whose stability is
defined by the conditions

(12)

the situation is essentially different. In the absence of
magnetoelastic interaction, magnetization oscillations
away from the SRPT have the form of weakly decaying
spin waves; however, near the SRPT point, at the stabil-
ity limit of the phase F[111] (M0 || [111] and k || [111]),
these modes become soft. These modes are responsible
for the SRPT. With magnetoelastic interaction taken
into consideration and k ≠ 0, the spectrum of the magnet
near the SRPT point consists of weakly decaying quasi-
spin and transverse quasi-elastic branches.

Our calculations have shown that the propagation of
such waves in the (111) plane (M0 || [111] and k ⊥
[111]) is also anisotropic (Fig. 2). The anisotropy
increases as the system approaches the boundary of the
region where the phase exists, because the contribu-
tions of the elastic and magnetoelastic interactions
depend on the crystallographic direction. In preferen-

tial directions, such as [ ] and [ ], about which
the plots are symmetric, the behavior of the modes

changes. In the [ ] direction, mode 2 (Fig. 2a) is due
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Fig. 2. Surface of the magnetoacoustic wave phase veloci-
ties in Tb3Fe5O12 (T = 4.2 K) cut by the plane (111) [8, 9]
for the symmetric phase F[111] (k ⊥  [111]): (a) real and
(b) imaginary parts of the spectrum.
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to only weakly decaying transverse elastic oscillations
and has the minimum velocity of quasi-phonons. In this
and other directions, the variation of the attenuation
rate of this mode (Fig. 2b) is opposite in sign to that of
the propagation velocity. Mode 1 and mode 3 are
described, respectively, by quasi-transverse and quasi-
longitudinal weakly decaying elastic oscillations in

plane ( 10). In [ ], these modes are longitudinal
(mode 3) and transverse (modes 1 and 2) weakly decay-
ing elastic oscillations.

Our results suggest that the anisotropy of the veloc-
ity is specified by the symmetry of the plane in which
the magnetoelastic wave propagates. The symmetry of
the plots in Fig. 2 is associated with the fact that the
[111] direction is the hexagonal axis for the plane con-
sidered. At the same time, the anisotropy of the quasi-
phonon velocity in Fig. 1 is of a different symmetry,

because the [ 10] direction is the binary axis.
It should be noted that the above results agree with

experimental data obtained in [7], where the anisotropy
of the propagation velocity and attenuation rate of mag-
netoacoustic waves in Mn–Zn spinel was found.

Thus, when the attenuation parameter is small, the
spin waves decay weakly away from the phase transi-
tion points. Near these points, they may remain weakly
decaying or turn into purely relaxation waves. At the
stability limit of the phase F[111] in the absence of mag-
netoelastic coupling (k || M0), the weakly decaying spin
mode softens completely, whereas for the  phase

(M0 || [ ], k ⊥  M0), the relaxation mode becomes
soft. In both cases, these modes are responsible for the
transition. However, the motion of the lattice does not
become purely relaxation and remains weakly decaying
near the SRPT point (when magnetoelastic coupling is
taken into account). These results differ greatly from
those obtained theoretically in [2], where a biaxial fer-
romagnet with isotropic elastic and magnetoelastic
properties was studied. It was found that, near the

1 011

1

F
101[ ]

110
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SRPT points, the motions of the magnetization and lat-
tice may be purely relaxation oscillations. This differ-
ence is due to the fuller consideration of the symmetry
of elastic and magnetoelastic interactions in this work.

In conclusion, the propagation velocity of quasi-
elastic oscillations in a (111) ferromagnet plate exhibits
anisotropy, which depends on the symmetry of the
plane in which the magnetoelastic waves propagate.
The difference in the propagation velocities of quasi-
phonons in various crystallographic directions stems
from the anisotropy of magnetoelastic and elastic inter-
actions in the crystal. This effect is enhanced when the
system approaches the phase stability limit through
variation of the temperature-dependent anisotropic
constant or the magnitude and direction of the applied
elastic stress.
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Abstract—It is demonstrated experimentally that in the microindentation process, elastic deformation takes
place of the crystal surface region under load containing the forming imprint. A technique is proposed for deter-
mining this elastic deformation in alkali-haloid crystals. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Deformation of a material under an indenter
includes a plastic component, which is due to irrevers-
ible normal and tangential displacements of the mate-
rial, and an elastic component, which is considered to
be an elastic recovery of the imprint [1]. The latter is
evident as the difference in the shape and size of the
indenter imprint after it has been lifted. One of the
promising methods of studying the properties of plastic
deformation under indentation is continuous registra-
tion of the indenter penetration depth with increasing
load [2–6].

However, in their analysis of plasticity mechanisms
as they change with indenter penetration, the above
studies did not take into account the contribution of
elastic deformation [elastic bending of the surface
(Fig. 1)] to the total indenter displacement.

In view of the aforesaid, we aim to develop a method
for registration and qualitative estimation of the elastic
bending of the surface under different loads on the
indenter.

MATERIALS AND EXPERIMENTAL 
TECHNIQUE

Single crystals of LiF (10–3 wt %, Ca+2, Mg+2, Ba+2),
NaCl (10–2–10–5 wt %, Fe+2), KCl 10–2–10–5 wt %,
Mg+2) were used in the experiments. The sample
dimensions were 4 × 8 × 20 mm. The experiments were
carried out at a temperature of 293 K in a PMT-3 inden-
tometer with a standard indenter. The indenter load was
measured in the range of 0.1 ≤ P ≤ 1.0 N. Samples in all
experiments had freshly cleaved surfaces. Changes of
the crystal surface relief were controlled with an MII-4
Linnik microinterferometer.

To solve the problem, a (001) crystal face was
indented in the immediate vicinity of the banks of the
cracks intentionally introduced in the crystal.
1063-7842/02/4707- $22.00 © 20866
In the first series of experiments, cleaved 10–15 mm
long macrocracks were produced by applying a knife
blade to the sample end surface (Fig. 2a). In the second
series, microscopic cracks in LiF single crystals were
introduced in the {110} planes following a technique
described in [7] (Fig. 2b).

In the indentation process, the (001) crystal surface
near the crack bank subjected to the action of the
indenter experiences an elastoplastic bending. The
opposite bank of the crack does not bend and will,
therefore, be left with a trace from the indenter edge, a
notch (the imprint is oriented with its diagonal at right
angles to the crack plane).

In all experiments, the (010) crack banks before
indentation were on the same horizontal level.

EXPERIMENTAL RESULTS

Results of the first series of experiments are shown
in Fig. 3a: between the imprint and the notch from the
indenter on the opposite bank of the crack there is a
crystal surface region missing in the imprint. Such a
picture is observed not only near the crack tip, where
the distance between the banks is l ~ 1 µm, but also in
the region where the crack opening is large (l ≥ 10 µm).

In the second series of experiments, as in the first,
the banks opposite the indented ones also bear notches
left by the indenter (Fig. 3b).

P

1 2

P = 0

Fig. 1. Elastic deformation of the surface of the crystal
region under the indenter. (1) Under load, (2) unloaded.
002 MAIK “Nauka/Interperiodica”
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DISCUSSION OF RESULTS

The experimental results can be explained by com-
bined displacement of the indentured region of the
crack bank containing plastic and elastic components.

In order to essentially exclude the effect of the plas-
tic deformation that appears in the above experiments,
a third series of experiments was carried out.

On the (001) surface of NaCl and KCl crystals (in
these crystals, elastic recovery of the imprint does not
take place [1]), an imprint was indented near the contin-
uation of the trace of a cleaved crack in the (010) plane
produced in the crystal (Fig. 2c). Then, the crack
growth was initiated and its size made the same as in

[100]

[100](001)

(010)

(a)

1

23

(010)

(001)

(b)

[110]

[110]

1 4

3 3

(010)

(001)

[100]

(c) 1

5
3 2

Fig. 2. Schematics of the (a) first, (b) second, and (c) third
series of experiments. (1) (001) crystal plane to be indented;
(2) cleaved crack in the (010) plane; (3) indenter imprints on
the (001) surface regions under study; (4) microcracks
along the {110} plane produced by the technique described
in [7]; and (5) continuation trace of the cleaved crack.
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
Fig. 2a. Further, the indenter was applied again to the
initial imprint at the same orientation and load as in the
first instance. On the opposite bank of the crack, a notch
from the indenter similar to that seen in Fig. 3a was
observed.

This experiment proves that plastic deformation
cannot be the cause of the notch emerging at microin-
dentation. Therefore, the experimental results can be
explained by elastic bending of the region of the surface
being indented under load.

The elastic deformation (h, Fig. 4) of the crystal
under an indenter can be found from the expression

If β is the angle between the pyramid faces (β =
136°), then, expressing α in terms of β, we ultimately
get

Thus, by determining y experimentally, we get the
amount of elastic bending of the crystal surface under
the indenter. It is important to emphasize that the h(P)
dependences obtained by the methods illustrated in
Figs. 2a and 2c practically coincide.

h y
α
2
---.cot=

h 0.29y.≈

25 µm

25 µm

(‡)

(b)

2

3

1

(010)

Fig. 3. Indented surfaces of the single crystals: close to a
microcrack, NaCl (10–2 wt %), P = 0.3 N (a); close to
microcrack 3 along the {110} plane resulting from imprint
1 (b); 2 is the indentation that left a marking on the opposite
bank of the microcrack, LiF (10–3 wt %), P = 0.5 N (marks
are indicated by arrows).
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A
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1

α
aa

c

B

Fig. 4. Schematic used in the calculation of elastic deforma-
tion of the crystal surface by the indenter: AB, AC—indenter
edges; y—distance from the imprint edge to the marking;
α—the angle contained by the pyramid edges; aa and bb—
initial levels of the crack banks; cc—surface level resulting
from elastic displacement; h—magnitude of the elastic dis-
placement; and 1—marking.
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Fig. 5. Dependence of the elastic displacement of the
indented surface in alkali-haloid crystals with different con-
tent of impurities on the indenter load: (1) NaCl ((,) 10–5,
(e) 10, (+) 10–2 wt %); (2) KCl ((h) 10–5, (s) 10–3,
(n) 10−2 wt %).
Figure 5 shows h(P) dependences for NaCl and KCl
single crystals, in which elastic recovery of the imprint
does not take place [1]. The measurement error for
these quantities does not exceed 10%. It is seen that the
difference in impurity concentrations in the crystals has
almost no effect on the magnitude of elastic deforma-
tion, but in crystals with a high Young’s modulus
(NaCl), the magnitude of h is appreciably greater than
in samples with a lower Young’s modulus (KCl).

At the instant of indentation of the sample surface at
points far from the crystal edge, the elastic deformation
values (h) appear to be slightly less.

CONCLUSIONS
(1) In indentation of crystal surfaces, the total dis-

placement of the indenter is a sum of (i) the plastic flow
of the material (formation of an imprint) and (ii) the
elastic bending of the loaded surface region together
with the imprint being formed. The magnitudes of these
displacements are comparable.

(2) In indentation of crystals, the imprint is formed
in the elastically deformed region of the sample, which
apparently affects the quantitative estimates of not only
microhardness but also of the activation characteristics
of the plastic deformation processes occurring under
the indenter.
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with Nanocrystalline Structure

Kh. Ya. Mulyukov, I. Z. Sharipov, I. Kh. Bitkulov, and R. R. Mulyukov
Institute of Problems of Metal Superplasticity, Russian Academy of Sciences, 

ul. Khalturina 34, Ufa, 450001 Bashkortostan, Russia
e-mail: radik@anrb.ru

Received December 4, 2001

Abstract—The effect of the nanocrystalline structure of Fe(67.0%)–Ni(32.5%)–Co(0.5%) Invar alloy on its
thermal expansion is considered. It is found that the structure with grain mean sizes of about 100 nm increases
its temperature coefficient of thermal expansion in the range of “invarness,” i.e., in the temperature range where
the alloy offers the Invar properties. Reasons for this behavior are analyzed by taking the temperature depen-
dence of the saturation magnetization. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, materials with nanocrystalline struc-
ture (grain mean sizes of about 10–100 nm) have
attracted much attention. The physical properties of
these materials differ considerably from those of
coarse-grained ones [1–3]. Therefore, the investigation
of nanocrystalline alloys used in practice (including
Invar alloys) is of current interest. Because of the
anomalously low coefficient of thermal expansion in
the temperature range of invarness, these materials are
widely applied in instrument making [4]. It should be
noted that the nature of the Invar effect still remains
unclear even though the properties of the alloy have
been examined over the century. The study of the phys-
ical properties of this alloy in different structural states,
including nanocrystalline one, might provide additional
insights into this effect. In this work, we investigate the
thermal expansion of Fe(67.0%)–Ni(32.5%)–Co(0.5%)
Invar alloy with nanocrystalline structure as a function
of temperature.

EXPERIMENTAL TECHNIQUE

The nanocrystalline structure of the alloy was
formed by its severe plastic deformation on Bridgman
anvils at room temperature [2]. Specimens were cut
from a rolled sheet and annealed in vacuo at a temper-
ature of 1070 K for 2 h.

The temperature dependence of the saturation mag-
netization was taken with a vacuum self-correcting
magnetic balance [5] upon heating and cooling the
specimens at a rate of 15 K/min in the range from 78 to
1070 K. The thermal expansion of the specimens was
studied with a dilatometer at the same temperatures.
1063-7842/02/4707- $22.00 © 20869
The microstructures of the specimens were examined
with a JEM 2000EX electron microscope.

RESULTS

As follows from the electron microscopy data, the
severe plastic deformation of the Invar alloy produces a
nanocrystalline structure with a mean grain size of
about 100 nm (Fig. 1). The structure is heavily distorted
and cold-hardened. The dislocation density in nanoc-
rystalline structures is difficult to estimate. The ring

50 nm

Fig. 1. Microstructure of the Fe(67.0%)–Ni(32.5%)–
Co(0.5%) nanocrystalline alloy.
002 MAIK “Nauka/Interperiodica”
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electron diffraction pattern taken from an area of
0.5 µm2 indicates large-angle misorientations between
the grains. Two-hour annealing in vacuo at a tempera-
ture of 800°C recovers the structure. The grain size
increases to several microns.

Figure 2 shows the temperature dependence of the
saturation magnetization, σ(T), for the coarse-grained
structure. The shape of the curve is similar to that for
ferromagnets. The magnetization in the range between
78 and 250 K remains virtually unchanged and then
decreases. The decrease is the most significant in the
range from 270 to 520 K. At higher temperatures, the
magnetization smoothly tends to zero. The shapes of
the curves σ(T) upon (1) heating and (2) cooling of the
specimen are similar. However, there is a temperature
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Fig. 2. Temperature dependence of the saturation magneti-
zation for the coarse-grained specimen of the Fe(67.0%)–
Ni(32.5%)–Co(0.5%) alloy: (1) heating and (2) subsequent
cooling.

Fig. 3. Temperature dependence of the saturation magneti-
zation for the nanocrystalline specimen of the Fe(67.0%)–
Ni(32.5%)–Co(0.5%) alloy: (1) heating and (2) subsequent
cooling.
hysteresis: the curve obtained upon cooling shifts
toward lower temperatures by 15 K.

The curves σ(T) for the nanocrystalline specimen
recorded under the same conditions are presented in
Fig. 3. Their shape differs noticeably from that for the
coarse-grained structures (Fig. 2). First, note the differ-
ence between the heating curves (curves 1 in Figs. 2
and 3). The dependence σ(T) for the nanocrystalline
structure, in contrast to the corresponding curve for the
coarse-grained specimen, starts decreasing from the
very beginning of the temperature range. One can dis-
tinguish four portions in it. Within the first portion (80–
500 K), the magnetization decreases rapidly. Next,
between 500 and 700 K, a “plateau” on which it
changes insignificantly is observed. Within the third
portion (700–850 K), the magnetization rapidly
decreases again. At temperatures exceeding 850 K, the
magnetization smoothly tends to zero. For the nanoc-
rystalline specimen, the dependence σ(T) recorded
upon cooling (curve 2 in Fig. 3) differs significantly
from that taken upon heating. In the former, only two
distinct portions can be distinguished. When the speci-
men is cooled from 850 to 450 K, the magnetization
slowly grows. Within the second portion (between 450
and 80 K), the magnetization rapidly reaches its initial
value.

The curves σ(T) demonstrate one more difference
between the nanocrystalline and coarse-grained struc-
tures. As was noted above, the coarse-grained speci-
mens (Fig. 2) exhibit a minor temperature hysteresis:
curves 1 and 2 are shifted relative to each other by 15 K
along the temperature axis. For the nanocrystalline
specimens, the temperature hysteresis is as high as sev-
eral hundreds of degrees. Finally, it should be noted that
the magnetizations of both structures at 80 K are prac-
tically the same.

The measurements of the thermal expansion
[∆l/l](T) for specimens of both types are depicted in
Fig. 4. These curves have two characteristic sections:
with small and large slopes, i.e., with small and large
thermal expansion coefficients (TECs), respectively.
The basic requirement for Invar alloys is that they have
a small TEC value in a certain temperature range in
order to meet the Invar properties. In curve 1 (Fig. 4),
corresponding to the coarse-grained structure, the sec-
tion with a relatively small TEC extends to 400 K,
whereas in curve 2, corresponding to the nanocrystal-
line structure, it is limited by a temperature of 250 K.

Curves 1 and 2 in Fig. 4 differ not only by the tem-
perature ranges with small TECs but also by the slopes
of these sections. The slope of the small-TEC section in
the curve [∆l/l](T) for the nanocrystalline state is six
times larger than that for the coarse-grained state of the
specimen. Hence, the TEC in the former case is six
times larger than in the latter. Thus, the formation of the
nanocrystalline structure in the alloy adversely affects
its Invar properties, namely, increases the thermal
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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expansion coefficient and narrows the temperature
range of invarness.

DISCUSSION

Thus, the properties of the Invar alloy depend
strongly on its structure. This dependence is of particu-
lar interest in the range of small TECs. Severe plastic
deformation of the Fe(67%)–Ni(32.5%)–Co(0.5%)
alloy forms a microstructure with grain mean sizes of
about 100 nm and a high density of dislocations. As a
result, the Invar properties degrade, the temperature of
ferromagnetic disordering lowers, and the temperature
hysteresis of the saturation magnetization becomes
more pronounced.

Analysis of the results obtained is difficult because
there is no reliable physical model describing the
behavior of Invars. Invarness is often approximated by
the relationship [4]

(1)

Here, the first term is the contribution from the poten-
tial energy of atomic interaction into the thermal expan-
sion (σ' = ∂σ/∂T reflects the variation of the atomic
interaction forces with temperature, K is the compres-
sion modulus) and the second one due to the anharmo-
nicity of crystal lattice vibrations is the contribution of
the kinetic energy (γ is the Grüneisen constant, cV is the
specific heat at constant volume). The competition
between interatomic attractive forces growing with
temperature below the Curie point and the Grüneisen
thermal expansion specifies the Invar dilatation.

Earlier, it was shown [6–8] that the plastic deforma-
tion of Fe(64%)–Ni(36%) Invar alloy decreases the
TEC. In [8], the alloy was made nanocrystalline by
severe plastic deformation. For our Invar alloy, it was
found that the severe plastic deformation increases the
TEC. This difference is most likely to be associated
with the fact that, in [6–8], the thermal expansion due
to anharmonic atomic vibrations is partially compen-
sated for by a decrease in the interatomic spacing with
temperature due to magnetostriction. At the same time,
it is known that the heating of Fe–Ni Invars with less
than 34% Ni causes the α  γ martensitic transfor-
mation, which takes place at temperatures lower than
those of the magnetic transformation [4]. Conse-
quently, the reduction of interatomic attractive forces in
our alloy with increasing temperature is explained by
the martensitic transformation.

The temperature hysteresis of the saturation magne-
tization in our specimens also suggests the martensitic
transformation. In other words, the shapes of the curves
σ(T) for the nanocrystalline specimen (Fig. 2) and for
ferromagnets are similar only formally. A decrease in
the magnetization with increasing temperature is
caused by the transition from the ferromagnetic mar-
tensitic α phase to the paramagnetic austenitic γ phase.

α –
σT'

3K
-------

γcV

3VK
-----------.+=
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In the coarse-grained alloy, the ferromagnetic (marten-
sitic) phase is almost stable up to 270 K and intense
α  γ transformation with weak irreversibility is
observed only in the temperature range of 270–520 K.

From the curve σ(T) for the nanocrystalline speci-
men, it follows that its ferromagnetic α phase is of low
temperature stability and that the α  γ transforma-
tion in it is a rather complicated two-stage process. The
first stage begins at a temperature of about 200 K and
ends at 450 K. Next, in the range of 450–700 K, the
phase transformation nearly ceases and is completed at
higher temperatures. The lower temperature of phase
transformation in the nanocrystalline specimen as com-
pared to the coarse-grained one agrees with the well-
known fact that plastic deformation facilitates phase
transformations [2]. The poor temperature stability of
the α phase in the former specimen may be explained
by both the small grain sizes and high density of lattice
defects in small grains formed by severe plastic defor-
mation.

The complex transformation in the nanocrystalline
specimen is likely associated with the fact that severe
plastic deformation of the alloy causes α-phase modifi-
cations with different transition temperatures to appear.
It should be noted that some modification of this phase
disappears after heating to 1000 K and does not appear
again in the curve σ(T) taken on cooling the specimen.
It seems that this high-temperature α modification dis-
appears because of the recovery of the system and the
noticeable growth of the grains at high temperatures.

In addition, it is worth noting that the formation of
the nanocrystalline structure breaks the translation
symmetry, increases the volume fraction of grain
boundaries and other lattice defects, and generates
long-range internal stresses in the material [2]. All
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Fig. 4. Thermal expansion [∆l/l](T) of the Fe(67.0%)–
Ni(32.5%)–Co(0.5%) alloy with (1) coarse-grained and
(2) nanocrystalline structures.
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these factors enhance the anharmonicity of the crystal
lattice and, accordingly, deteriorate the Invar proper-
ties, i.e., raise the thermal expansion coefficient.

CONCLUSION
Thus, the formation of a nanocrystalline structure in

Fe(67.0%)–Ni(32.5%)–Co(0.5%) Invar by severe plas-
tic deformation significantly modifies its properties: the
TEC increases and the temperature range of the Invar
properties narrows. This is associated with the effect of
martensitic transformation on the Invar properties, spe-
cifically, with a decrease in the temperature of this
transformation when the alloy passes into the nanocrys-
talline state. In addition, the nanocrystallinity enhances
the anharmonicity of the crystal lattice, raising the ther-
mal expansion.
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Abstract—The effect of spin-polarized current on a domain structure in a magnetic junction consisting of two
ferromagnetic metallic layers separated by an ultrathin nonmagnetic layer is studied within a phenomenological
theory. The magnetization of one ferromagnetic layer (layer 1) is assumed to be fixed, while that of the other
ferromagnetic layer (layer 2) can be freely oriented both parallel and antiparallel to the magnetization of layer 1.
Layer 2 can be split into domains. Charge transfer from layer 1 to layer 2 is not attended with spin scattering
by the interface but results in spin injection. Due to s–d exchange interaction, injected spins tend to orient the
magnetization in the domains parallel to layer 1. This causes the domain walls to move and “favorable” domains
to grow. The average magnetization current injected into layer 2 and its contribution to the s–d exchange energy
are found by solving the continuity equation for carriers with spins pointing up and down. From the minimum
condition for the total magnetic energy of the junction, the parameters of the periodic domain structure in layer 2
are determined as functions of current through the junction and magnetic field. It is shown that the spin-polar-
ized current can magnetize layer 2 up to saturation even in the absence of an external magnetic field. The asso-
ciated current densities are on the order of 105 A/cm2. In the presence of the field, its effect can be compensated
by such a high current. Current-induced magnetization reversal in the layer is also possible. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Magnetic junctions involving two ferromagnetic
metallic electrodes and a nonmagnetic spacer have
recently become the subject of extensive investigation
from both the scientific and applied viewpoints [1–3].
In particular, of great interest is the effect of spin-polar-
ized current on the magnetic states of the junctions.
Two (surface and volume) mechanisms behind this
effect have been discussed. In the former case, charge
carriers experience spin-dependent scattering by the
interfaces. As a result, the angular momentum of the
spin is transferred from the charge carriers to a set of
localized spins. This causes magnetization reversal in
the electrodes. Such a mechanism was first considered
in theoretical works [4–8] and was then used in the
interpretation of experiments on magnetization switch-
ing [9–15].

The volume mechanism is based on spin injection,
which was first described in [16, 17] and later in
[18, 19]. On the one hand, the carrier spins add to the
magnetic moment of the electrode volume, thereby
changing the magnetic states. On the other hand, they
influence the magnetization orientation in the electrode
through s–d exchange interaction. Such an effect of
exchange was first discussed in terms of the micro-
scopic theory in [20, 21]. It was shown that this effect
can be viewed as a specific exchange interaction
between the electrodes via charge carriers, the so-called
1063-7842/02/4707- $22.00 © 20873
nonequilibrium exchange interaction (NEXI). Accord-
ing to [21], the NEXI energy may be several orders of
magnitude higher than the energy of exchange interac-
tion between electrodes in equilibrium. Within the
NEXI concept, another explanation (other than that in
[4–8]) of the magnetization switching was suggested
[22]. Experimental data for current hysteresis [23–25]
can also be considered in favor of the volume mecha-
nism. In our opinion, however, the issue of the prevail-
ing mechanism is still an open question. This work is
aimed at gaining additional information about possible
manifestations of the volume mechanism.

In pioneering works on the effect of current on the
magnetic state of the junction, no consideration was
given to the domain structure (DS) of the electrodes.
Nevertheless, such a structure has been repeatedly dis-
covered in experiments [2, 26–29]. It appears that, the-
oretically, the effect of current on the DS of a magnetic
junction has not been studied so far. However, a theo-
retical approach is necessary for the interpretation of
experiments. Here, we use a simple model of the junc-
tion and a phenomenological theory to show for the first
time that spin-polarized current can rearrange the DS
through the motion of the domain walls by means of
spin injection and s–d exchange interaction.
002 MAIK “Nauka/Interperiodica”
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MODEL OF THE JUNCTION

A three-layer magnetic junction is depicted in the
figure. All three layers are assumed to be extended in
the plane xy; therefore, edge effects can be neglected.
The side surface z = Lz/2 shows magnetic charges. Tak-
ing account of these charges with the total magnetic
energy of the layer minimized causes the DS to appear.
The structure is absent in layer 1, and it invariably
remains uniformly magnetized because of the contact
with an extra antiferromagnetic layer (omitted in the
figure), which produces high unidirectional anisotropy
in layer 1 (see, e.g., [30, 31]). Such “biased” layers are
widely used in experiments [2]; therefore, our assump-
tion is quite acceptable. It greatly simplifies the situa-
tion, since the current has an effect only on layer 2 in
this case.

Let layer 2 be an ultrathin ferromagnetic film of a
magnetically soft material with a high magnetization
(Fe, Co, Ni, or Pt). Such films are routinely used in
magnetic junctions. Also, let the easy magnetic axis lie
in the plane of the film parallel to the z axis. Then, the
magnetization vector is also parallel to the z axis.

For simplicity, we assume that layer 2 is extended
along the x axis (its length Lx  ∞), its width Lz is
limited, and its thickness Ly is small (Ly ! Lz). Under
these conditions, the DS represents a periodic (along
the x axis) set of domains with alternating magnetiza-
tion directions (parallel and antiparallel to the z axis;
see the figure). In total equilibrium (without the cur-
rent) and in the absence of an external magnetic field
(Hext = 0), the width wa of the “antiparallel” domains
(a domains), where the magnetization is directed oppo-

x

y
z

H

++ –

–

e–1 j

Ly

Lz 1

2

Schematic representation of the magnetic junction. 1, ferro-
magnetic metallic electrode with the fixed orientation of the
magnetic moment; 2, ferromagnetic metallic electrode with
the domain structure. Arrows show the directions of the
magnetization vectors in layer 1 and in domains of layer 2,
the direction of the carrier flux e–1j (e is the charge of a car-
rier), and the direction of the external field H. Shown also
are the coordinate axes, junction width Lz, and the thickness
Ly of layer 2.
sitely to that in layer 1, is somewhat larger than the
width wp of the “parallel” domains (p domains). This is
associated with the need for compensating for the mag-
netic field from layer 1 far away from the junction in
order to minimize the total magnetic energy.

Following [32], we will call DSs of this type Cotton
structures. Their properties differ markedly from those
of DSs where the magnetization is normal to the devel-
oped surface (Faraday structures in terms of [32]). The
differences were discussed in our previous article [33],
to which we will often refer below. Specifically, the
width of Cotton domains varies with Lz and the domain
wall energy linearly (not as the square root of them) and
is inversely proportional to the magnetization in the
second (not first) power.

Now, consider the effect of current on the magnetic
state of layer 2. We will take advantage of the fact that
the current passing normally to the interface from
layer 1 to any of the domains in layer 2 depends on the
magnetization orientation in this domain. This is an
experimental observation (see, e.g., [34]) that reflects
the fact that the direction of this vector specifies the
position of the energy bands and the density of states of
charge carriers. Thus, the currents passing into a and p
domains will differ from each other. Moreover, such
polarization currents will variously affect the associ-
ated domains, i.e. variously modify their width and the
integral (over the cross section) conductivity of the
junction. Below, we will evaluate only the width of the
domains in the presence of current.

The partial current densities jp and ja passing,
respectively, to p and a domains, as well as the external
magnetic field H, will be considered as factors influenc-
ing the DS. This means that we will analyze and evalu-
ate changes in the DS as functions of jp, ja, and H. We
will not find the dependence of the currents jp and ja on
the external voltage V, since this is an independent
problem having little to do with the aim of this work.
Note in addition that these currents have been theoreti-
cally evaluated within several specific models (the
model of uniformly magnetized electrodes under the
assumption of current tunnel passage through the
spacer [35, 36] is an example).

It is of interest that our model totally denies the sur-
face mechanism of spin scattering. Indeed, in our
model, the magnetization vectors in layers 1 and 2 and
the z axis are collinear. Therefore, the quantum state of
a charge carrier remains unchanged after it has been
transferred through the spacer from layer 1 to layer 2.
In other words, a transferred carrier will be in one of the
energy subbands of layer 2 and have a particular energy.
For such a carrier, the probability amplitude of quan-
tum transitions between various spin subbands equals
zero. Accordingly, for this amplitude, phase averaging,
which causes the effect of spin surface scattering [4–9],
does not occur. Thus, our model leaves room only for
the spin-injection mechanism of the effect of current on
the magnetic state of the junction.
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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EFFECT OF SPIN INJECTION 
ON THE JUNCTION ENERGY

For subsequent calculations, it is necessary to deter-
mine the magnetization of layer 2 as a function of the
current through the junction. This magnetization has
two components: one from the localized spins and the
other from the spins of charge carriers injected into
layer 2. We assume that the magnetization of the local-
ized spins M0 > 0 in p domains and M0 < 0 in a domains.
From what follows, it will be clear that the widths of
both domains, wa and wp, are much larger than the
thicknesses of layers 1 and 2 and than the spin relax-
ation length ls; that is,

(1)

Under these conditions, the problem of spin injec-
tion into an individual domain and current passage
through this domain can be considered to be one-
dimensional. Then, the magnetization of the charge car-
riers in the domains is

(2)

where µB is the effective Bohr magneton (i.e., the mag-
netic moment of a single charge carrier). The quantity

(3)

is the carrier polarization at a point y in layer 2. In (3),
n↑(y) and n↓(y) are the respective concentrations of car-
riers with spins parallel and antiparallel to the magneti-
zation in layer 1; n = n↑(y) + n↓(y) is the carrier total
concentration, which is assumed to be constant because
of the metal quasi-neutrality; and Pp, a is quantity (3) for
p and a domains. The polarization of the carriers in
layer 1 at the interface with layer 2 will be denoted by
P1; the equilibrium (without injection) polarization of
the carriers in layer 2 (in domains of both types), by P2.
As was already noted, under the injection, the polariza-
tion in layer 2 varies.

One more assumption is that the current passing
through the junction is stationary (time-invariable). The
spin flux density is given by

(4)

where j↑ and j↓ are the densities of the electrical cur-
rents for carriers with different spin polarizations.

To simplify the calculations, the mobility, diffusion
coefficient D, and the spin relaxation time τs of the car-
riers are taken to be independent of the spin polariza-
tion. Then, for the currents j↑ and j↓, we have

(5)

wp wa @ ls Ly.,,

mp a, y( ) µBnPp a, y( ),=

P y( )
n↑ y( ) n↓ y( )–

n
--------------------------------=

J
"
2e
------ j↑ j↓–( ),=

j↑ eD
∂n↑ y( )

∂y
---------------- en↑ y( )v ,+–=

j↓ eD
∂n↓ y( )

∂y
---------------- en↓ y( )v ,+–=
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where v  is the drift velocity in the external electrical
biasing field.

The concentrations n↑(y) and n↓(y) must satisfy the
steady-state continuity equations

(6)

where  and  are the equilibrium concentrations
and

(7)

Subtracting one equation in (6) from the other, sub-
stituting (5) in the resultant expression, and taking into
account (7), we find

(8)

where the upper and lower signs refer to p and a
domains, respectively.

As boundary conditions to Eq. (8), we take condi-
tion (4) of spin flux continuity at the interface y = 0 and
the condition of spin balance at y = Ly. Estimating the
spin flux at y = 0 with the electron concentration gradi-
ent in layer 1 neglected, we obtain

Eventually, the boundary conditions take the form

(9)

The solution to (8) that satisfies boundary condi-
tions (9) has the form

(10)

where

(11)

1
e
---
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τ s
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e n↓

e
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e n↑
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D
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–enD
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and it is assumed that

(12)

Owing to inequality (12), the second condition in
(9) is also satisfied.

In essence, the parameter rp, a characterizes the sig-
nificance of drift in charge transfer. If rp, a @ 1, drift
dominates over diffusion; then, within layer 2 (i.e., 0 <
y ! Ly), we have P(y) = P1 from (10). In other words,
the carrier polarizations in the layers equal each other
and are current-independent. This is the maximal pos-
sible effect of spin injection. Such a situation, however,
requires very high current densities, namely,

(13)

Since D ~ τp, the Fermi velocity vF ~ 108 cm/s,
and the momentum relaxation time τp of carriers is ≈3 ×
10–15 s, we find that j0 ≈ 5.4 × (1010–1011) A/cm2 for n ~
1022–1023 cm–3 and τs ~ 10–13 s. Thus, for not very high
currents, we can consider that rp, a ! 1; this relationship
will be used in subsequent calculations.

Now, let us consider the factors contributing to the
magnetic energy of the junction. The energy of s–d
exchange interaction in p and a domains is propor-
tional, respectively, to the magnetization products
mpM0 and –maM0. We introduce the relative widths of
the p and a domains:

(14)

where 0 ≤ ξ ≤ 1 and W = (wp + wa) is the DS period.

Then, the mean density of the exchange energy (that
is, the energy of the whole layer 2 divided by its vol-
ume) is given by

(15)

where α ~ A/ n is the dimensionless constant charac-
terizing the s–d exchange. Typical values of A lie
between 0.1 and 10 eV [37]. Then, α ≈ 2 × (104–107) @ 1.
In addition, expression (15) includes the mean magne-
tization of charge carriers

(16)

With expression (10) for Pp, a(y) (rp, a ! 1) substituted
into (16), we eventually arrive at

(17)

Ly

ls

1 rp a,
2+ rp a,–( )

----------------------------------------.>

jp a,  @ j0 2en
D
τ s
----.≡

v F
2

ξ
wp

W
------ and 1 ξ–

wa

W
-----,= =

Es–d α M0 mpξ ma 1 ξ–( )–[ ] ,–=

µb
2

mp a, µBnPp a,
µBn
Ly

--------- Pp a, y( ) y.d

0

Ly

∫≡=

mp a, µBn P2

jp a, τ s

enLy

------------ P1 P2+−( )+± .=
As follows from (17), the contribution of the
injected carriers to the magnetization of layer 2
depends linearly on the current through the junction.
This contribution is sufficiently small if

(18)

Substituting the numerical values of the associated
parameters (see the discussion following formula (13))
and Ly ≈ 50 nm, we find that jc ≈ 8 × (1010–1011) A/cm2;
that is, jc ≥ j0 in this case, so that condition (18) is well
met. Thus, the contribution of the injected carriers to
the total mean magnetization  ≡ (±M0 + ) is
rather small. Yet, in expression (15), this contribution is
multiplied by the large parameter α @ 1. This circum-
stance is of fundamental significance: it shows that the
effect of the carriers injected on the magnetic energy of
the junction is largely through strong exchange interac-
tion. Hereafter, we will therefore leave the spin-injec-
tion energy term in exchange energy (15), rejecting it in
the rest of the contributions to the energy. Specifically,
the effect of spin injection on magnetodipole interac-
tion in layer 2 is insignificant. When calculating the
energy of this interaction, we will use a simplified
expression for the total magnetization:

(19)

We must determine the mean density of the magne-
todipole interaction energy EM. It was calculated in
[33]. In the case we are interested in most, where the
relationships

(20)

are fulfilled, the formula derived in [33] has the form

(21)

where C = 0.5772… is the Euler constant and  is
substituted for M0 according to (19).

The mean energy density for uniaxial magnetic
anisotropy with the easy axis aligned with the z axis is
given (in our designations) by

(22)

where substitution (19) is also made.

Thus, EA in this situation does not depend on the
parameters W and ξ, which characterize the domains.

jp a,  ! jc

enLy

τ s
-----------.≡

Mp a, mp a,

Mp a, Mp a, M0 µBnP2+( )± M̃0.±≡≈ ≈
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EM
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2ξ 1–( )2 πLz
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– C
3
8
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4

π2
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n2
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∑
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,–+
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EA K Mp
2ξ Ma
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2
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Magnetic field H, produced by layer 1 and the exter-
nal source, adds to the energy density the value

(23)

We should also take into account the energy contri-
bution from the domain walls. This contribution per
unit volume can be represented as

(24)

where the parameter γ is the energy per unit area of the
domain wall. The factor 2 reflects the fact that each DS
period involves two domain walls.

Thus, the total magnetic energy of the junction is the
sum of the components dependent on the DS parame-
ters W and ξ:

(25)

EFFECT OF CURRENT ON THE DOMAIN 
STRUCTURE

Since the current passing through the junction is
spin-polarized, the distribution of the carriers over
momenta and spins may be steady-state but nonequilib-
rium. This does not mean that some partial equilibrium
in terms of other parameters is impossible when the
variations of the spins and momenta from equilibrium
are fixed. We suppose that there is partial equilibrium
with respect to the partition into magnetic domains.
Then, in the presence of the current, the parameters W
and ξ are found from the conditions

(26)

The former allows us to determine the DS period as
a function of ξ:

(27)

Period (27) is minimal, W0 = γLz/Ly , when ξ =
1/2, i.e., wp = wa. This value is reached in equilibrium
when the current and the field are absent. The period
grows indefinitely when ξ  0.1. We however
imposed conditions (20) and, in particular, the condi-
tion Lz @ W. Therefore, the calculation is valid when
ξ(1 – ξ) @ W0/4Lz. The quantity W0/Lz is much less than
unity; therefore can be as close as possible but not equal
to 0.1.

Consider now the latter condition in (26). According
to (21), the contribution EM(W, ξ) to the magnetic
energy E(W, ξ) includes the series. In taking the deriv-
ative, this series will also be differentiated. The sum of
the series resulting from differentiation is known (see,
e.g., handbook [38]).

EH H Mpξ Ma 1 ξ–( )+[ ]– HM̃0 2ξ 1–( ).–≈=

ED
2γ
W
------,=

E W ξ,( ) = Es–d ξ( ) EM W ξ,( ) EH ξ( ) ED W( ).+ + +

∂E W ξ,( )
∂W

----------------------- 0,
dE W ξ,( )

∂ξ
----------------------- 0.= =

W ξ( )
γLz

4LyM̃0
2ξ 1 ξ–( )

------------------------------------.=

M̃0
2
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Substituting expression (27) for the DS period into
the derivative thus found yields

(28)

where

(29)

R ≡ 2Lz/W0, and 0 ≤ ξ ≤ 1. Then, from the second con-
dition in (26), we come to the equation for ξ:

(30)

Equation (30) contains the “effective current den-
sity”

(31)

which also includes the degree of spin polarization.
The function f(ξ, R) [see (29)] is similar to that

introduced in [33]. However, Eq. (30), where this func-
tion is equated to an expression containing both the
field and the current, is new. Thus, with (30), we can
describe the combined effect of the field H and current
je on the DS.

To do this, it is sufficient to consider the function
reciprocal to (29), that is, ξ( f, R). From (30), the func-
tion f is a linear combination of the field and current. In
other words, the function reciprocal to (29) provides a
direct relationship between the DS parameter ξ, H, and
je. A family of the functions ξ( f, R) for various R is uni-
versal and is given in [33]. It has been shown [33] that
as |H | or |je| grows, a specific (saturation) state appears
where the parameter ξ may take either of its two maxi-
mal values (ξ = 0 or ξ = 1). As the magnitude of the field
(or current) increases further, this parameter remains
unchanged. The saturation is reached if

(32)

For example, for je = 0, the saturation field is given
by

(33)

and for H = 0, the saturation current is

(34)

Let us evaluate these parameters. Equation (24) for

γ can be represented as γ ~ δ , where δ is the domain
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wall width. According to [39], δ = , where αexc

is the nonuniform exchange constant (its typical value
is ~10–12 cm2) and β is the anisotropy dimensionless
parameter, which specifies the anisotropy field Han ≈
β . Let us apply our numerical values of the param-
eters to a Co film for which [40] M0 ≈ 0.14 T, n ≈
1022 cm–3, α ≈ 2 × 105, β ≈ 4.2, δ ≈ 5 nm, Lz ≈ 50 µm,
and Ly ≈ 50 nm. Then, we will find that W0 ≈ 5 µm,
Hsat ≈ 16.8 Oe, and je, sat ≈ 1.5 × 105 A/cm2.

These values of W0 and Hsat agree in order of mag-
nitude with experimental data reported in [2]. From the
estimate of the saturation current, a very significant fact
follows: namely, such a value is quite achievable and is
even low relative to those applied in experiments on
magnetization switching [9–15] (in those experiments,
the current densities were as high as 108–109 A/cm2).

Note also that the right-hand side of (30) vanishes at
certain values of H and je. This means that the effects of
the field and current in layer 2 may cancel. Under the
cancellation conditions, ξ = 1/2 and the DS does not
differ (in our model) from that existing in total equilib-
rium in the absence of the field and current. The cancel-
lation current is proportional to the field H:

(35)

For H = 20 Oe in the Co film, je, canc is estimated at
~1.6 × 105 A/cm2.

Obviously, we can not only compensate the effect of
H in layer 2 but also reverse the magnetization of this
layer by current. Let a field H < –Hsat be applied to layer 2.
This field sets the magnetization of this layer antiparal-
lel to that of layer 1. Now, we apply a current, which
injects the spins from layer 1 into layer 2. With this cur-
rent sufficiently high, namely,

(36)

magnetization reversal will take place; that is, the mag-
netization in all of layer 2 will be aligned with that in
layer 1.

DISCUSSION

Thus, we have described the effect of spin-polarized
current on the DS in the magnetic junction in terms of
the phenomenological theory. The proposal [25] that
current-injected spins may rearrange the DS by displac-
ing the domain walls has been substantiated. s–d
exchange (not magnetodipole) interaction of injected
and localized spins plays a dominant part in this pro-
cess. As for magnetodipole interaction, we showed in
the previous section that its role is negligible provided
the currents through the junction are not too high
(jp, a ! jc [24]).

α exc/β

M̃0

je canc,
2 jc

α
------- 1

M0
1

µBn
---------+

-----------------------
 
 
 
 

H .–=

je 2 je sat, ,>
The significance of the induced (self-magnetic) field
Hind deserves special attention. This field is defined by
the Ampere law curlHind = (4π/c)jp, a and can be esti-
mated in our geometry as

(37)

where j is the current density averaged over the cross
section (j ~ jp ~ ja) and c is the velocity of light.

The induced field should be compared with the field
Hs–d of s–d exchange interaction. Differentiating the
energy Es–d [see (15)] with respect to M0, we derive an
estimate for the nonequilibrium (that is, proportional to
the current jp, a) contribution to the effective s–d
exchange field:

(38)

where jc is given by (18) if Ly > ls.

From (37) and (38), the s–d exchange field prevails
if

(39)

Let A ≈ 0.1 eV, (P1 ) ≈ 1, jc = enLy/τs, n ~

1022 cm–3, Ly = ls ≡  = τpτs, vF ~ 108 cm/s, τp ≈
3 × 10–15 s, and τs ~ 10–13 s. Then, the ratio of the fields
in (39) is close to unity if Lz = 10 µm. With the trans-
verse dimension of the junction Lz ≤ 5–3 µm, condition
(39) is satisfied.

To conclude, let us discuss in more detail the rever-
sal of the magnetization in one of the electrodes [see
formula (36)]. The junction is exposed to an external
magnetic field that sets the magnetization over all of
layer 2 antiparallel to that in layer 1 (in the absence of
current). The application of the current, which injects
the spins from layer 1 into layer 2, first causes the DS
to appear. Then, favorable domains grow and eventu-
ally the single-domain state with reversed magnetiza-
tion arises.

Physically, this effect is likely to differ from the
switching effect predicted in [4, 6] and discovered
experimentally in [10, 11]. In the works cited, the cur-
rent resulted in unstable orientation of the magnetiza-
tion vector, which rotated within a domain. In our case,
the magnetization reversal is caused by the displace-
ment of the domain walls and the growth of favorable
domains. It appears that the threshold current of mag-
netization reversal in our work is three to four orders of
magnitude lower than in [4, 6, 10, 11] because of this
difference.

H ind 4π/c( )Lz j,∼

Hs–d
A
µB
------ 

  jp a,

jc
-------- P1 P2+−( ),∼

Hs–d

H ind
---------- A

µB
------ P1 P2+−( )/

2π
c

------ 
  jcLz 1> 

  .∼

 P2+−

Dτp v F
2
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Abstract—The determination of the energy of activation (barrier height) of elementary events involved in
relaxation (fluctuation) transitions in polymers from the temperature dependence of the specific heat is dis-
cussed. The dependence is derived by the method of differential scanning calorimetry. It is emphasized that the
correct determination of the energy of activation must include the temperature variation of the barrier. The devi-
ation of the preexponential in the Arrhenius temperature dependence from the value predicted theoretically
demonstrates that the barrier does depend on temperature. Experimental data from which the realistic energy
of activation of the α relaxation in polymers can be found are given. © 2002 MAIK “Nauka/Interperiodica”.
As the temperature of polymers grows from low to
high values, different forms of molecular mobility
(relaxation transitions) successively come into play [1].
Among these transitions, so-called β and α transitions
are the most typical [2, 3]. The former involve the
motion of relatively short segments of chain molecules.
β relaxation proceeds most effectively at an associated
temperature Tβ. α transitions imply the motion of
longer segments (or even molecules) in cooperation
with the motion of segments of adjacent molecules. The
onset of these transition is characterized by a tempera-
ture Tα, usually called the vitrification temperature. In
the context of this work, the term “devitrification tem-
perature” would be more adequate, since a polymer
passes from the glassy state to the high-elasticity state
(as the temperature grows) near Tα [4]. It can be said
that β relaxation opens the way to α relaxation [3]. Both
transitions take place owing to energy fluctuations,
which help to overcome the barriers Uβ and Uα to ele-
mentary transition events. The energy of activation, the
commonly accepted characteristic of relaxation pro-
cesses, is the value of these barriers. Knowledge of the
energy of activation is of great importance for con-
structing a model of process elementary events. There-
fore, the correct experimental determination of the
energies of activation for β and α transitions is an
important physical problem.

Among the many methods for studying relaxation
processes (mechanical, dielectric, and acoustic spec-
troscopies; X-ray diffraction analysis; etc.), differential
scanning calorimetry (DSC) occupies a prominent
place. The potentialities of DSC for the study of relax-
1063-7842/02/4707- $22.00 © 20880
ation processes in polymers were comprehensively
described in monograph [3]. DSC information on the
temperature dependence of the specific heat at constant
pressure Cp(T) allows the identification and character-
ization of the relaxation processes. For example, the
onset of various (previously “frozen”) forms of molec-
ular mobility in polymers shows up in a nonmonotonic
run of the curve Cp(T) (Fig. 1).

The relaxation nature of the α and β transitions
appears most vividly in the temperature position
depending on the rate of change of temperature VT =
dT/dt (the scan rate). The temperatures Tβ and Tα grow
with VT (Fig. 1) [3]. From the dependences Tβ(VT) and

Tβ' Tβ'' Tα''Tα' T

Cp II

I

1 2

2
1

Fig. 1. Schematic depiction of the temperature dependence
of the polymer specific heat at constant pressure. I, range of
β relaxation; II, range of α relaxation; 1, scan rate ;

and 2, scan rate  > .

VT'

V''T VT'
002 MAIK “Nauka/Interperiodica”
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Tα(VT), the energies of activation of the transitions are
determined [3]. These dependences are usually plotted
in the form lnVT(1/Tβ) and lnVT(1/Tα). The slopes of the
resulting straight lines yield the value of Uf =
−k(∆lnVT/∆(1/Ti)), which is frequently called the
energy of activation (here, k = 8.6 × 10–5 eV/K is the
Boltzmann constant).

Since the range of VT is usually small (about one
order of magnitude), the plots lnVT(1/Ti) are nearly lin-
ear, which argues for the use of this method in finding
the energy of activation.

However, the energy of activation of the α relax-
ation thus obtained turns out to be exceedingly too high
(3–5 eV or even higher [3]) in comparison with the
energy characteristics of molecular interaction. The
reason for such high values of Uf has long been dis-
cussed, and various explanations for this fact have been
provided [3, 5]. In particular, it is speculated that the
value of Uf (energy of activation) extracted from the
slope of the plot lnVT(1/Tα) does not have the sense of
a barrier to an elementary event of α relaxation. It was
suggested to call the parameter Uf the “apparent”
energy of activation. Naturally, it is proposed to find the
actual energy of activation of polymer devitrification
from DSC data.

In this work, we discuss a possible reason for unre-
alistically high values of Uf and substantiate a tech-
nique that provides true values of energy of activation
(transition barrier) from the dependence lnVT(1/Tα).

PHYSICAL GROUNDS

The theory [6] sets the correlation between the tran-
sition temperature Ti and the (constant) rate of rise of
temperature VT:

(1)

where τ is the relaxation time or the mean expectation
time for a transition elementary event.

The transitions occur owing to local energy fluctua-
tions when the energy fluctuation Efl ≥ U, where U is
the transition barrier. The mean expectation time for a
local energy fluctuation Efl (per atom or per small group
of atoms) is given by the fundamental expression [7]

where τ0 = 10–13–10–12 s is the period of atom oscilla-
tion in condensed media.

This expression for energy fluctuation has been sup-
ported by direct computer simulation of the atom
dynamics in solids [8]. Sharp localization of the fluctu-
ations in time (~τ0) and in space (atom-size range) has

VT
dτ
dT
------ 

 
Ti

1,–=

τ fl τ0

Efl

kT
------,exp≅
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been shown [9]. Then, for τ, we get

(2)

Expressions (2) and (1) establish a correlation
between the transition temperature Ti, transition barrier
Ui, and rate of change of temperature VT in the DSC
method.

(i) Consider first the case where the barrier is tem-
perature-independent; that is, U = const. Then,

(3)

Substituting (3) into (1) and taking the logarithm
yields

(4)

The first term on the right of (4) is logarithmic and
slowly varies with the parameters entering into it. This
is especially true in view of the fact that Ti actually var-
ies by as little as several degrees (typical values of Ti lie
between 300 and 400 K) for the range of the scan rate
VT used [3]. The actual barrier values Ui are close to
1 eV [1, 3]. Then, putting τ0 = 10–13–10–12 s, Ui = 0.5–

1.0 eV, and Ti = 300–400 K and designating k /τ0Ui =
V0, we find

(5)

and, from (1) and (3),

(6)

Thus, in view of (4) and (5), the plot of the depen-
dence lnVT(1/Ti) must be a straight line, which is
extrapolated to lnV0 ≅  30–32 (or  = 13–14) at
1/Ti = 0 (V0 is expressed in K/s) (Fig. 2, curve 1). The
slope of this line,

defines the energy of activation (transition barrier
height) Ui.

We stress that the mere linearity of the dependence
lnVT(1/Ti) does not yet mean that the slope of the
dependence lnVT(1/T) has the significance of the
energy of activation (as a rule, the linearity or quasi-lin-
earity takes place because of the small interval of ∆lnVT

and ∆(1/Ti), as was noted above). It is also necessary
that the value of V0 extrapolated to 1/Ti = 0 equal 1013–
1014 K/s (certainly with a logarithmic accuracy). The

τ τ fl τ0
U
kT
------.exp≅ ≅

dτ
dT
------ 

 
Ti

τ0Ui

kTi
2

----------
Ui

kTi

-------- 
  .exp–=

VTln
kTi

2

τ0Ui

---------- 
 ln

Ui

k
----- 1

Ti

----.–=

Ti
2

V0 1013–1014K/s≅

VT V0
Ui

kTi

--------– 
  .exp≅

V0log

∆ VTln

∆ 1
Ti

---- 
 

----------------
Ui

k
-----,–=
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fulfillment of this condition indicates that the energy of
activation is determined correctly. Otherwise (the value
of V0 differs from that predicted theoretically), the
problem of finding the energy of activation becomes

30

0

lnVT, K/s

1/Ti

1
2

3

Fig. 2. Schematic depiction of dependences lnVT(1/Ti).
(1) Barrier U = const and (2) U = U(T).

320 330 340 350 T, K

∆Cp

1 2 3

0.02 J/(g K)

Fig. 3. β relaxation in polystyrene at VT = 0.083 (1), 0.166
(2), and 0.333 K/s (3) [3].

Fig. 4. Temperature of the β transition vs. scan rate:
(1) polystyrene (from Fig. 3), (2) isopropylbenzene [3], and
(3) polydimethylsiloxane [3].

0

2.9

logVT, K/s

1/Tβ × 103, K–1
3.0 3.1 3.3 3.4 3.5 3.6

–0.5

–1.0
1 2 3
more complicated (even if the experimental depen-
dence VT(1/Ti) is linear).

(ii) Let the barrier be temperature-dependent; that is,
U = U(T) ≠ const. In this case,

where the value of τ0 is the same as indicated above.

The validity of such an expression for τ(T) at U(T) ≠
const was justified in [5, 10].

Taking into account the weak dependence of the
preexponential V0 in (6) on the parameters entering into
it, we can write the expression for VT at U(T) ≠ const as

(7)

where V0 remains constant and has its previous value,
1013–1014 K/s. Then, the slope of the dependence
lnVT(1/Ti) will have the form

(8)

that is, the slope of lnVT(1/Ti) is specified not only by
the barrier Ui but also by the derivative of the barrier
with respect to temperature. This important point was
indicated in [5].

If the derivative

is negative (i.e., the barrier decreases with increasing
temperature), which is typical of polymers [11], the
slope of lnVT(1/Ti) exceeds Ui/k. Clearly, the value of
“the energy of activation” derived from this slope will
exceed the barrier height. The quasi-linear portion of
lnVT(1/Ti) for this case is schematically depicted in
Fig. 2 (curve 2).

The linear extrapolation of the dependence
lnVT(1/Ti) to 1/Ti = 0 yields

(9)

i.e., a value greater than V0.

Thus, if the value of lnV0f obtained by extrapolating
the experimental dependence is much higher than
lnV0 = 30–32 (V0 in K/s), one can conclude that the
energy of activation varies with temperature. From the
difference lnV0f – lnV0, the derivative of the barrier
height  with respect to temperature at a temperature
Ti can be estimated.

τ τ 0
U T( )

kT
-------------,exp=

VT V0
Ui T( )

kTi

--------------– 
  ,exp≅

d VTln

d
1
Ti
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 

--------------- –
Ui Ti( )

k
---------------

Ti

k
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dUi T( )
dT

------------------ 
 

Ti

;+=

Ui' Ti( )
dUi T( )

dT
------------------ 

 
Ti

=

V0 fln V0

Ui' Ti( )
k

---------------,+ln=

Ui'
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The very energy of activation (barrier height) should
apparently be determined according to (7):

(10)

This expression corresponds to the slope of the
straight line connecting the points lnVT(1/Ti) and lnV0
(at 1/T = 0) (Fig. 2, curve 3).

EXPERIMENTAL RESULTS

Here, we use the DSC data for polymers reported in
[3]. An example of the experimental dependences
Cp(T) at various VT for the β transition in polystyrene is
shown in Fig. 3. The peaks of Cp(T) correspond to the
temperatures Tβ of the β transition. From Fig. 3, one
can find the dependence (1/Tβ) (Fig. 4, curve 1).
Figure 3 also demonstrates the dependences

(1/Tβ) for the β transition in two other polymers.

It should be emphasized that the nearly linear por-
tions of (1/Tβ) shown in Fig. 4 are extrapolated
(at 1/Tβ = 0) to values of 13–16; i.e., they are in satis-
factory agreement with the theoretical value  =
13–14 (V0 = 1013–1014 K/s).

Thus, the dependence of the temperature Tβ of the
β transition on the rate of change of the temperature VT

fits expressions (4) and (6). The slopes of (1/Tβ)
in this case give the energies of activation (barrier
height) Uβ of β-transition elementary events. These
energies are listed in the table, from which (and also
from [3]) it follows that Uβ fall into the interval 0.5–
1.0 eV. Such values appear to be quite reasonable for
the motion of short segments of chain molecules.

Note that an elementary event of the β transition
involves ten or more atoms. Therefore, if the β transi-
tion obeys theoretical dependence (6), corresponding to
expression (2), this means that an elementary event is
due to one energy fluctuation, which activates a group
of atoms participating in the β transition. The entropy
factor is of minor significance here, since the preexpo-
nential in (6) is close to the fundamental value τ0 =
10−13 s.

Now, consider data for α transitions. The depen-
dence Cp(T) for a typical amorphous polymer, polyme-
thyl methacrylate, near the α transition (devitrification)
is shown in Fig. 5 for various scan rates. It is assumed
that the half-height of the step in the Cp(T) curve corre-
sponds to the transition temperature Tα [3]. From
Fig. 5, we find the dependence (1/Tα), which is
plotted in Fig. 6 (curve 1). Curves 2 and 3 in Fig. 6
depict the same plot for two other polymers.

The dependences (1/Tα) in Fig. 6 are similar
to those for the β transitions in Fig. 4 in that they are

Ui Ti( ) kTi

V0

VT Ti( )
----------------.ln=

VTlog

VTlog

VTlog

V0log

VTlog

VTlog

VTlog
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
largely quasi-linear. At the same time, the upper (high-
temperature) parts of curves 1 and 2 in Fig. 6 deviate
markedly from a straight line. Such behavior is typical
of α relaxation, where the nonlinearity increases with
temperature (see below).

The slopes of (1/Tα) are several times larger
than for the β transitions. However, the most important
feature is that the linear extrapolation of (1/Tα)
to 1/T = 0 yields logV0 = 60–70, i.e., values far exceed-
ing 13–14. Such a large discrepancy between the
extrapolated and theoretical values of V0 suggests that
the parameter

does not have the meaning of the energy of activation in
this case and is much higher than the true energy of
activation Uα.

VTlog

VTlog

U f k
∆ VTln

∆ 1/Tα( )
--------------------–=

360 370 380 390 T, K

∆Cp

1 2
3

0.1 J/(g K)

400

4

Fig. 5. α relaxation in polymethyl methacrylate for VT =
0.042 (1), 0.166 (2), 0.333 (3), and (4) 0.666 K/s [3].

0

2.60

logVT, K/s

1/Tα × 13, K–1
2.65 2.75 2.80 3.15 3.20

–0.5

–1.0

1 2
3

–1.5

Fig. 6. Temperature of the [alpha] transition vs. scan rate:
(1) polymethyl methacrylate (according to Fig. 5), (2) poly-
vinylchloride [3], and (3) polyvinylacetate [3].
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Table

Polymer Uβ, eV Uα(Tα), eV Uf(Tα), eV (Tα), eV/K

Polystyrene 1.1

Isopropylbenzene 0.95

Polydimethylsiloxane 0.7

Polymethyl methacrylate 0.9 1.2 5.8 –1.3 × 10–2

Polyvinylchloride 0.7 1.1 6.0 –1.4 × 10–2

Polyvinylacetate 0.6 1.0 4.0 –0.9 × 10–2

Uα
'

According to (7) and (10), Uα is found from the
expression

(11)

The validity of (11), as applied to analysis of the
α transitions, is strengthened by the following consid-
erations. An elementary event of the α transition obvi-
ously involves a larger number of atoms than in the
β transition. It has been indicated, however, that the
number of atoms participating in the latter is also appre-
ciable (ten or more). Nevertheless, the β transition is
associated with a single local energy fluctuation
Efl > Uβ, as follows from the fact that expression (6) is
valid for this transition. When the number of participat-
ing atoms increases (several times), i.e., when we are
dealing with the cooperative α transition, it appears that
there are no reasons to discard the same single-fluctua-
tion mechanism of an elementary α transition event. We
believe, therefore, that one can determine the energy of
activation (barrier height) of the α transition from
expression (11), rather than from the slope of

(1/Tα) as many authors do without regard for the
value of the preexponential.

To analyze DSC data with expression (11), it is nec-
essary to take a value of logVT from the logVT interval
measured (e.g., the central value of the interval) and the
associated value of Tα. Note that the selection of any
other value from this interval will affect the value of Uα
determined insignificantly, because the logVT and 1/Tα
intervals are narrow (Fig. 6).

The values of Uα thus obtained are listed in the
table, where the “barriers Uf” found from the slope of

(1/Tα) are shown for comparison.

It is seen that Uα much exceed Uβ. This seems to be
natural because the α transition involves a larger num-
ber of atoms than the β transition. At the same time, Uα
is considerable lower than Uf.

As was noted above, the reason why the true energy
of activation exceeds Uf may be the temperature depen-
dence of the barrier height of the α transition with the

Uα Tα( ) kTα V0 VT Tα( )ln–ln[ ] .=

VTlog

VTlog
derivative

Then, from (8),

(12)

The values of (Tα) found from the tabulated data
with (12) are also summarized in the table. They are
close to values that take into account the temperature
dependence of barriers in the range of devitrification (α
relaxation). These values were obtained by the methods
of dielectric spectroscopy and mechanical spectros-
copy, as well as by measuring the viscosity [5, 12].
Unlike DSC, these methods feature wide rate (V) and
frequency (ν) ranges (up to 10–12 orders of magni-
tude). In this case, the curves (1/T) or (1/T)
become essentially nonlinear, which directly indicates
that the barriers to the α transition vary with tempera-
ture. It should be noted that for the β transitions, the
dependences (1/T) and (1/T) remain linear
in the same wide ranges of V and ν and are extrapolated
to their theoretical values for 1/T = 0 [12].

The temperature dependence of the barriers near the
point of polymer devitrification (α transition) is
explained by the extensive molecular rearrangement
and the change in the molecular dynamics (mobility) at
this point [4, 11].

With expression (10) used to determine the barriers
to both the α and β transitions, Uα and Uβ, we obtain,
for the same scan rate VT,

(13)

Obviously, the ratio Tα/Tβ does not remain
unchanged when VT is varied over a wide range. For VT

varying between 5 × 10–2 and 1 K/s (which is typical of
DSC), this ratio is roughly 1.5 for many polymers [3].
As VT grows, Tα/Tβ  1; as VT decreases, Tα/Tβ  ∞.
These limits for the temperature ratio (and, accordingly,
for the barrier ratio) have been found by other methods
covering a wide range of rates and frequencies [3].

Uα' Tα( )
dUα

dT
---------- 

 
Tα

.=

U f Tα( ) Uα Tα( ) TαUα' Tα( ).–=

Uα
'

Vlog νlog

Vlog νlog

Uα Tα( )
Tα

Tβ
------ 

 
VT

Uβ.=
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Thus, for scan rates VT typical of DSC, the ratio
between the energies of activation of the α and β tran-
sitions (≈1.5) is not as large as the ratio Uf /Uβ found
directly from the slope (1/Tα) (Uf /Uβ = 4–5 for
many polymers [3]). It seems that treating Uf as the true
energy of activation is not quite correct, since the true
energy of activation of the α transition is lower.

At the same time, the idea that the barrier to the α
relaxation varies with temperature and the ability of
DSC to detect this variation (by determining the deriv-
ative of the barrier with respect to temperature) favor a
deeper insight into the molecular dynamics in polymers
at the point of devitrification.

To conclude, we emphasize the need for taking into
account the value of the preexponential in the analysis
of temperature and rate dependences obtained with the
differential scanning calorimetry method. Such an
approach provides correct determination of the energy
of activation of relaxation transitions in polymers.

REFERENCES
1. Yu. K. Godovskiœ, Thermal Physics of Polymers

(Khimiya, Moscow, 1982).
2. Transitions and Relaxations in Polymers, Ed. by

R. Boyer (Interscience, Easton, 1966; Mir, Moscow,
1968).

VTlog
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
3. V. A. Bershteœn and V. M. Egorov, Differential Scanning
Calorimetry in Physics and Chemistry of Polymers
(Khimiya, Leningrad, 1990).

4. G. M. Bartenev and V. G. Nikol’skiœ, Encyclopedia of
Polymers (Sov. Éntsiklopediya, Moscow, 1977), Vol. 3,
pp. 489–498.

5. P. P. Kobeko, Amorphous Materials (Akad. Nauk SSSR,
Moscow, 1952).

6. M. V. Vol’kenshteœn and O. B. Ptitsyn, Zh. Tekh. Fiz. 26,
2204 (1956).

7. Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Mos-
cow, 1975).

8. A. I. Slutsker, A. I. Mikhaœlin, and I. A. Slutsker, Usp.
Fiz. Nauk 164, 357 (1994) [Phys. Usp. 37, 335 (1994)].

9. A. I. Slutsker, A. I. Mikhaœlin, and I. A. Slutsker, in Prob-
lems of Theoretical Physics: Collection of Articles
(Peterb. Inst. Yad. Fiz., St. Petersburg, 1994), pp. 42–69.

10. Yu. S. Lazurkin, Encyclopedia of Polymers (Sov. Éntsik-
lopediya, Moscow, 1972), Vol. 1, pp. 62–70.

11. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley,
New York, 1961; Mir, Moscow, 1963).

12. P. F. Veselovskiœ and A. I. Slutsker, Zh. Tekh. Fiz. 25,
1204 (1955). 

Translated by V. Isaakyan



  

Technical Physics, Vol. 47, No. 7, 2002, pp. 886–888. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 7, 2002, pp. 92–94.
Original Russian Text Copyright © 2002 by Tchen.

                                                                           

OPTICS,
QUANTUM ELECTRONICS

                   
On 2D Focusing of X Rays Bragg-Diffracted 
by a Biaxially Bent Crystal

T. Tchen
Lomonosov State Academy of Fine Chemical Technology, pr. Vernadskogo 86, Moscow, 117571 Russia

e-mail: docent65@mtu-net.ru, ttchen@e-mail.ru
Received November 30, 2001

Abstract—2D focusing of an X-ray wave Bragg-diffracted by a biaxially bent crystal is considered in terms of
quasi-back diffraction scattering in the meridional plane. Analytical expressions for the focusing geometrical
condition in the meridional plane and for the spatial distribution of the wave intensity in the same plane in the
neighborhood of the point source image are derived. They differ from those currently available from the theory.
© 2002 MAIK “Nauka/Interperiodica”.
Bent crystals are widely used as focusing mono-
chromators, spectrometers, and collimators incorpo-
rated into X-ray optics. The collection solid angle of
X-ray beams is the highest if a biaxially bent crystal,
providing point focusing, is used. The fundamental
possibility of focusing X rays when a plane wave is
Bragg-diffracted by a biaxially bent crystal was demon-
strated in [1]. In [2], the rigorous theory of 2D focusing
of a spherical wave Bragg-diffracted by a perfect biax-
ially bent crystal was elaborated. In [3], the theory of
2D diffraction focusing was extended for the case of
Johann–Hamos X-ray spectrometers. In this work, we
consider the focusing of a spherical wave by a biaxially
bent crystal with a geometry other than that used in
[2, 3].

By analogy with [2], the plane of diffraction scatter-
ing where the Bragg angle θB ≠ π/2 and the crystal is
bent with a bending radius Rx will be called the sagittal
plane (see the figure). The plane normal to it will be
called meridional (in this plane, the bending radius of
the crystal is Ry). We use the parabolic expansion of the
phases of the incident (spherical) and diffracted waves.
The infinite intensity arising in the Johann scheme [2]
in this case is removed by including terms ~x3 in the
expressions for the wave phase. Then, for the Johann
scheme, the intensity distribution in the neighborhood
of the focus is defined by the Airy function magnitude
squared [4].

According to [2], the amplitude of the wave dif-
fracted in a vacuum at a point rp(ξp, yp) is proportional
to the product of two integrals: the former is the integral
over plane harmonics in the sagittal plane, and the latter
is the integral along the coordinate y in the meridional
plane:

(1)Eh rp( ) Eh ξ p( )Eh yp( ),=
1063-7842/02/4707- $22.00 © 0886
where

(2)

(3)

Here, Gh(k + q0) is the Fourier component of the Green
function, q0 is a quantity dependent on the Fourier com-
ponent of the X-ray polarizability and taking into
account refraction (for the expression for χ0, see [2]),

α0 = /L0 – γ0/Rx, αh = /Lh + γh/Rx, γ0, h are the direc-
tion cosines for the incident and diffracted waves, L0, h

Eh ξ p( ) kGh k q0+( )d

∞–

+∞

∫=

× –ik2 1/α0 1/αh+( )/2κ ikγhξ p/αhLh+[ ] ,exp

Eh yp( ) y iκ y2–[expd

yeff/2–

+yeff/2

∫=

× 1/L0 1/Lh γ0 γh–( )/Ry–+( ) iκyyp/Lh ] .–

γ0
2 γh

2

X

ZY

S
S'

rp

2D focusing of a spherical X-ray wave by a biaxially bent
crystal. S, point source; S', source image; and rp is the radius
vector of the point of observation.
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are the distances from the spherical wave point source
to the crystal and from the crystal to the source image,
κ = 2π/λ, λ is the incident radiation wavelength, yeff ≤
Ry|χhr|1/2, and χhr is the Fourier component of the X-ray
polarizability. In addition, in (2) and (3), we put ξS =
yS = 0 for definiteness.

The distance yeff, introduced in [5], is the distance
within which the diffracted beam still meets the condi-
tion of total Bragg reflection:

(4)

where ∆θ = |χhr|/sin2θ is the half-width of the Bragg
reflection curve for θ < π/2.

It is seen that yeff defined by formula (4) differs from
yeff used in [2], but the typical square-root dependence
of the X-ray polarizability on the Fourier component is
retained.

From (2) and (3), one finds the geometrical condi-
tion for focusing in the sagittal and meridional plane
with the method of stationary phase:

(5)

From (5), we see that point-to-point focusing takes
place when Rx, Ry, and L0 are rigidly related:

(6)

The condition for stigmatic focusing, which follows
from (6) in the symmetrical case, has the form Ry =
Rxsin2θB. Conventional geometrical optics treats Eqs. (5)
as conditions under which Fresnel diffraction becomes
Fraunhofer diffraction.

Our approach to 2D focusing is as follows. In the
two-wave approximation of the problem posed, the dif-
fracted wave in the meridional plane can be considered
to be a wave quasi-backscattered in this plane. The
intensity distribution in the meridional plane is then
described by an expression like (2), where L0γ0 and
Lh|γh| should be substituted for L0 and Lh, respectively.
The corrected condition for focusing in the meridional
plane takes the form

(7)

From the first equation in (5) and Eq. (7), it follows
that the astigmatism is absent if the bending radii of the
crystal and the crystal–source distance are related as

(8)

It is easy to see that formulas (6) and (8) coincide
only if the diffraction geometry is symmetric. In this
case, the crystal surface is biaxially bent in the form of
a torus and Ry = Rxsin2θ.

yeff = L02∆θ θ/ θsin L0 1 θsin
2

+( )/Ry–( )cos{ }
1/2

,

γ0
2/L0 γh

2/Lh+ γ0 γh–( )/Rx,=

1/L0 1/Lh+ γ0 γh–( )/Ry.=

Ry RxL0=

× γ0 γh–( )γh
2
/ 1 γ0

2/γh
2–( )Rxγh

2 L0 γ0 γh–( )+{ } .

1/L0γ0 1/Lh γh+ 2/Ry.=

Ry = 2RxL0γ0 γh
3/ γ0 γh–( )γ0L0 γh

3 γ0
3–( )Rx+{ } .
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In the asymmetric case, where the relationship
between Rx, y, L0, and θB is arbitrary, the beam being
focused has an astigmatism and the diffraction image of
the point source is a spot. From (8), it follows that the
focusing of a plane wave to a point takes place if the
bending radii meet the condition

(9)

The intensity distribution of the diffracted wave in
the neighborhood of the image point (symmetric dif-
fraction) is given by

(10)

where J1(t) is the first-order Bessel function of the real
argument,

and Θ(t) is the Heaviside step function.
The diffraction broadenings of the focus in the sag-

ittal and meridional planes are derived from (10) if
tξ, y ≈ π:

(11)

Formulas (11) are valid for Lh ≠ RxsinθB.

The second term in our formula for ∆yp is the focus
size along the Y axis in [2].

Turning to formula (10), we note that in the para-
bolic approximation for the phase of the incident spher-
ical and diffracted waves, the position of the geometri-
cal focus (point source image) coincides with the max-
imum of intensity (10).

With the phase terms ~x3 taken into account, the
intensity spatial distribution (in either plane) will be
specified by the Airy function. If the phase is expanded
up to terms ~x4, the intensity distribution is easy to
obtain in the Pearsey integral squared. In both cases, the
intensity maximum and the geometrical focus, which is
located at the diffracted beam axis, are displaced rela-
tive to each other.

For back scattering (θB ≈ π/2), it follows from (11)
that the focus size in both planes are the same (if it is
taken into account that cosπ/2 ≤ ∆θ = |χhr|1/2: ∆ξp = ∆yp).
In this case, set (5) of two equations, which specifies
the geometrical condition for 2D (point) focusing, is
reduced to one equation, in which one should put γ0 =
|γh| = 1. For back scattering, point-to-point focusing
takes place for a spherically bent crystal (Rx = Ry).

Ry 2Rx γh
3/ γ0 γh–( ).=

Ih rp( ) Ih ξ p( )Ih yp( )=

∼ J1 tξ( )/tξ
2 J1 ty( )/ty

2Θ tξ( )Θ ty( ),

tξ 2ξ pγhσh/αhLh, σh κχ h/4 θB,cos= =

ty πyp χhr
1/2/ λ 1 Lh/Rx–( ),=

∆ξ p λ 2θB 1 L/Rx θBsin– / 2 χhr( ),sin=

∆yp λ 1 Lh/Rx– / χhr
1/2≅

≅ λ 1/ χhr
1/2 Lh/yeff–{ } .
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If back Bragg reflection is symmetric, the problem
is symmetric under rotation about the Z axis.

If the beam divergence in the sagittal plane is small
and in the meridional one is considerable (synchrotron
radiation), the geometrical condition for 2D focusing is
as follows:

(12)

Here, L0(y) is the distance from the X-ray wave source
to the crystal in the meridional plane and Lh(x) and Lh(y)
are the distances between the crystal and the point
source image in the sagittal and meridional planes,
respectively. From (12), it follows that 2D focusing of
synchrotron radiation with the formation of a point
focus is possible if

(13)

When synchrotron radiation is incident on the crys-
tal, the intensity distribution near the focus is given by
(10) and (12).

γh
2/Lh x( ) γ0 γh–( )/Rx,=

1/ L0 y( )γ0( ) 1/ Lh y( ) γh( )+ 2/Ry.=

Ry 2RxL0 y( )γ0 γh
3 γ0 γh–( )L0 y( )γ0 Rx γh

3+{ } .=
To conclude, formulas (7)–(13) can be used for cal-
culations in real physical experiments. In this respect,
the focusing of synchrotron radiation is of special
importance in view of the new-generation high-power
synchrotron sources recently commissioned.
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Abstract—The Z-scan method is used to study the variation in the nonlinear susceptibility χ(3) (–ω; ω, ω, –ω)
and nonlinear refractive index of colloidal silver with the degree of aggregation under the action of picosecond
and nanosecond radiation (λ = 1064 nm). The values of χ(3) for aggregated silver that are defined by Kerr non-
linearity and thermal self-focusing are found to be –1.5 × 10–14 and –4.4 × 10–11 esu, respectively. The time
evolution of the picosecond pulses passing through the colloid is investigated. © 2002 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Colloidal silver is one of the most extensively stud-
ied colloidal solutions. Its optical and nonlinear optical
parameters have been the subject of much investigation
[1–7]. This colloid is of considerable promise for use in
optical limiters, optoelectron devices, etc. The aggrega-
tion of microparticles in such structures increases the
nonlinear optical response, in particular, the efficiency
of degenerate four-photon scattering [8]. This is related
to the growth of the local field amplitude in fractal clus-
ters with a high polarizability. The optical characteris-
tics of colloidal silver are governed by the dependence
of its plasma oscillation frequency (the corresponding
wavelength is about 415 nm) and the long-wave edge of
its absorption spectrum on the degree of aggregation
[9]. Such a conclusion was drawn by Karpov et al. [10]
from theoretical [11] and experimental [6, 7] studies on
the absorption spectrum of colloidal silver in the vicin-
ity of plasma resonance. The interaction of multipoles
induced by an electromagnetic field in metallic clusters
causes broadening of the absorption spectra of aggre-
gated colloids [12]. The degree of aggregation specifies
the spatial parameters of the aggregates, making it pos-
sible to analyze their dimensional characteristics with-
out having to use electron microcopy methods.

The purpose of this work is to set a correlation
between the nonlinear optical characteristics of colloi-
dal silver and the degree of aggregation from the spec-
tral characteristics of the colloidal solution.

EXPERIMENTAL

The nonlinear optical characteristics of silver col-
loids at the wavelength λ = 1064 nm were studied by
1063-7842/02/4707- $22.00 © 20889
the conventional Z-scan technique [13]. A Nd:YAG
laser generated trains of picosecond pulses. A pulse (t =
35 ps and E = 1 mJ) selected from the train was focused
onto 5-mm-thick quartz cuvette 2 with colloidal silver
by lens 1 with a focal length of 25 cm (Fig. 1). Microp-
ositioner 8 moved the cuvette along the Z (optical) axis
so that it crossed the focal spot. The laser maximum
intensity (4 × 1011 W/cm2) was below the optical break-
down threshold for the colloidal solutions studied. The
energy of the pulses was measured by FD-24K cali-
brated photodiode 4 and then recorded by V4-17 digital
voltmeter 5. Calibrated neutral density filters were used
to vary the energy of the laser radiation.

A Q-switched Nd:YAG laser generated nanosecond
pulses of wavelength λ = 1064 nm, energy E = 18 mJ,
and duration t = 28 ns. The maximum intensity of the
nanosecond radiation at the focal waist was 8 ×
109  W/cm2.

An iris with a limiting diameter of 1 mm transmit-
ting about 3% of the laser radiation was placed at a dis-
tance of 150 cm from the focal spot. The energy of the

1 2
7

3 6

Z

8

5

4

9

Fig. 1. Experimental scheme: 1, focusing lens; 2, cuvette
with colloidal solution; 3 and 4, photodiodes; 5 and 6, digi-
tal voltmeters; 7, iris; 8, micropositioner; and 9, deflector.
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laser radiation transmitted by the iris was measured by
FD-24K photodiode 3. The signal from the photodiode
was applied to V4-17 digital voltmeter 6. The signal
detected by photodiode 3 was normalized to the signal
detected by photodiode 4 to eliminate laser output fluc-
tuations. The use of a limiting iris enables one to deter-
mine both the sign and the absolute value of the nonlin-
ear refractive index n2, as well as the nonlinear suscep-
tibilities χ(3), of silver colloidal solutions. To determine
the nonlinear absorption coefficient β, we opened the
iris to maximum and measured the transmission of the
colloidal solution vs. cuvette position relative to the
focal spot. The relatively large size of the detector mea-
suring the transmitted energy away from the cuvette
made it possible to detect the entire radiation transmit-
ted. Therefore, the decrease in the transmission in the
experiments with the open iris was due to the nonlinear
absorption in the cuvette.

The standard solution of silver was prepared by dis-
solving 20 mg of collargol in 200 mg of bidistilled
water. The solution was heated until it turned yellow.
The aggregation of the colloidal silver took place under
natural conditions (in the absence of UV light, stimulat-
ing aggregation).

We recorded the time waveforms of the nanosecond
pulses that passed through the cuvette with the colloidal
silver by means of an FK-39 coaxial phototube and an
S8-19 oscilloscope with a time resolution of no worse
than 2 ns. The sizes of the aggregates were determined
by electron microscopy. The absorption spectra of the
samples at various stages of aggregation were taken by
an SF-26 spectrophotometer.

–3 –2 –1 0 1 2 3
0.7

0.8

0.9

1.0

1.1

1.2

1.3

Z, cm

Normalized transmittance

1

2

3

4

Fig. 2. Normalized transmittance versus the position of the
cuvette with colloidal silver in the limiting-iris scheme. The
degree of aggregation A is (1) 0, (2) 0.16, (3) 0.54, and
(4) 0.8.
RESULTS AND DISCUSSION

Below, we present the results of the Z-scan experi-
ments, which demonstrate, in particular, the self-defo-
cusing of nanosecond pulses due to thermal energy
transfer from metal particles to the solvent (water). This
nonlinearity is too “slow” to be detected in experiments
with picosecond pulses. Our measurements show that
the nonlinear optical response of the colloidal structure
exhibits both “slow” and “fast” components related to
the thermal nonlinearity of the surrounding insulator
and the Kerr nonlinearity, respectively. We will analyze
mechanisms of self-defocusing in silver colloidal solu-
tions exposed to laser pulses of various duration and
determine the nonlinear susceptibilities of associated
processes.

Earlier, thermal self-defocusing in colloidal gold
(a medium similar to that under study) [14] was ana-
lyzed in terms of the time characteristics of a nanosec-
ond laser pulse (λ = 527 nm) transmitted through the
solution and limiting iris in Z-scan experiments and
heat transfer from the metallic clusters to the surround-
ing insulator. In these experiments, the nonlinear sus-
ceptibility was calculated (χ(3) = 4.5 × 10–11 esu) and it
was concluded that the Kerr mechanism of self-focus-
ing is of minor importance in the field of picosecond
pulses with a medium amplitude (I ~ 109 W/cm2). Also,
the upper limit of the Kerr nonlinearity (χ(3) = 2.9 ×
10−14 esu) was estimated. The intensity of the picosec-
ond radiation in the experiments cited was relatively
low [14] (1.4 × 109 W/cm2); as a result, the dependence
T(Z) typical of media with Kerr self-focusing was not
found. Subsequent experiments with picosecond pulses
of higher intensity allowed us to validate the conclusion
that the Kerr nonlinearity of colloidal gold is low (χ(3) =
1.8 × 10–14 esu). Below, we report the results of similar
experiments with colloidal silver.

Figure 2 shows a family of plots T(Z) for picosecond
pumping and various degrees of aggregation of colloi-
dal silver. Note the change of the sign of n2 (it is posi-
tive in curve 1 and negative in curves 2–4). A variable
parameter here is the degree of aggregation that is
determined from the absorption spectra [9, 10] by cal-
culating the difference between the integral absorptions
in the long-wave part of the spectrum for aggregated and
nonaggregated colloidal solutions. The results are nor-
malized by the maximum possible degree of aggregation
of the sol (that is, immediately prior to its precipitation).

The nonlinear optical characteristics of the colloidal
silver were determined by the relationship [13]

(1)

where ∆Tp – v is the normalized difference between the
peak and valley in the dependence T(Z), I is the inten-
sity of radiation, S is the transmittance of the iris (the
fraction of radiation detected by the diode), λ is the

∆Tp v– 0.404 1 S–( )0.25=

× 2π/λ( )n2I 1 αL–( )exp–[ ] /α , 
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wavelength of radiation, L is the length of the sample,
and α is the linear absorption coefficient.

The nonlinear susceptibility of the silver colloid is
represented as [15]

(2)

where n0 is the linear refractive index.
The nonlinear absorption coefficient is given by [16]

(3)

(4)

where T0 is the minimum normalized transmission in
the open-iris scheme and q0 is a dimensionless parame-
ter. The value of T0 was determined from the plot T(Z)
in the open-iris scheme (Fig. 3).

Figure 4 shows the absorption spectra of samples
with the same degrees of aggregation as in Fig. 2. It is
seen that the increase in the degree of aggregation
broadens the plasma resonance peak (415 nm) and
gives rise to a spectral feature at longer wavelengths. As
the degree of aggregation grows, the absorption coeffi-
cient increases (from 0.8 to 2.0 cm–1). Therefore, we
successively decreased the picosecond radiation inten-
sity to avoid optical breakdown of the sample. This was
taken into account in the calculations of the nonlinear
susceptibility, nonlinear refractive index, and nonlinear
absorption. The maximum nonlinear absorption (β =
3.8 × 10–11 W/cm) corresponded to the degree of aggre-
gation A = 0.8. Note the absence of two-photon absorp-
tion at the initial stages of aggregation.

Figure 5a plots the nonlinear refractive index
against the degree of aggregation A for the picosecond
pumping pulses. The values of χ(3)(–ω; ωω – ω) and n2

for the aggregated silver were found to be 1.5 × 10–14

and –1.1 × 10–13 esu, respectively. The same measure-
ments were made for the nanosecond pulses. Generally,
the variations in the nonlinear optical parameters with

χ 3( ) n0n2/3π,=

β q0/ILeff,=

T0 q0
1– 1 q0+( ),ln=

0.84
0.82

–2

Normalized transmittance

Z, cm
–1 0 1 2

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00
1.02

Fig. 3. The same as in Fig. 2 in the open-iris scheme for
A = 0.8.
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increasing degree of aggregation (n2 changes sign and
grows) remained the same (Fig. 5b). Note the absence
of nonlinear absorption in the field of the nanosecond
pumping radiation when the aggregation is maximum.
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Fig. 4. Absorption spectra of colloidal silver for various
degrees of aggregation. The values of A are the same as in
Fig. 2.
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Fig. 5. Nonlinear refractive index versus the degree of aggre-
gation for (a) picosecond and (b) nanosecond pumping.
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This would be natural for the nanosecond intensity
Imax = 8 × 109 W/cm2, which is substantially less than
the intensity of the picosecond radiation Imax = 4 ×
1011 W/cm2, for which two-photon absorption (Fig. 3)
related to the appearance of the absorption band at 520–
550 nm was observed (curve 4 in Fig. 4). In Fig. 5b, the
values of χ(3)(–ω; ωω – ω) and n2 were found to be
−4.4 × 10–11 and –3.2 × 10–10 esu, respectively. The pos-
itiveness of n2 at low degrees of aggregation is likely
associated with the strong effect of the solvent (water),
having a positive nonlinear refractive index, and with
the low concentration of the colloidal silver. The con-
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Fig. 6. Time waveforms of laser pulses having passed
through the cuvette and the iris at various positions of the
cuvette relative to the focus: (1) 0.8, (2) 1.5, (3) 1.9, and
(4) 3.5 cm.
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Fig. 7. Normalized transmittance of the cuvette with colloi-
dal silver versus the intensity of picosecond (closed circles)
and nanosecond (open squares) radiation with the wave-
length λ = 1064 nm.
centration characteristics of the nonaggregated silver
showed that n2 changes sign from positive to negative
when the initial concentration rises five- and tenfold.

Optical and electron micrographs of colloidal silver
particles settled on a substrate at various stages of
aggregation suggest that their size varies from 10 nm
(initial stages of aggregation) to 40–100 nm.

To discover the physical mechanisms of self-defo-
cusing of the nanosecond radiation in the aggregated
silver, we recorded the time waveforms of the laser
pulses that passed through the sample and the limiting
iris for different cuvette positions relative to the focal
spot (Z = 0). At a certain energy density, defocusing
took place, showing up as a decrease in the signal inten-
sity at the FK-39 photodetector. Figure 6 shows the
waveforms at various cuvette–focus distances. The
closer the cuvette to the position Z(Tmin) corresponding
to the minimum transmission, the earlier the maximum
of the pulse detected. Such a scenario is typical of ther-
mal defocusing. The thermal lens forms with increasing
the absorption. Therefore, such a lens mostly affects the
trailing edge of the pulse. For colloidal gold, the picture
is similar [14, 17].

Note the decisive role of the energy (not power) den-
sity of the nanosecond radiation in the development of
thermal self-defocusing. Our results can be interpreted
as thermal self-defocusing when part of the energy
absorbed by the clusters is transferred to water mole-
cules. The degree of thermal self-defocusing depends
on the integral value of the absorbed energy. That is
why the energy density, rather than the power density,
is a prime consideration.

As was mentioned above, media such as that consid-
ered in this article are of great promise for optical lim-
iters of laser radiation that provide an inertialess
decrease in the transmission when the energy density
rises. We examined the applicability of colloidal silver
for this purpose. In the Z scheme with the limiting aper-
ture, the cuvette was placed in the position of minimum
transmission and the normalized transmission as a
function of the pumping energy density was measured
(Fig. 7). When the energy density was increased to a
certain threshold value (about 3 J/cm2), the fraction of
the energy transmitted through the iris sharply
decreased. The faster decline of the picosecond pulses
is associated with the joint effect of Kerr self-defocus-
ing and nonlinear absorption. In the case of the nano-
second pulses, the latter effect is insignificant. Note that
the efficiency of the limiters based on colloidal silver is
less than that of the existing devices, employing
fullerenes and semiconductor structures.

CONCLUSION

Based on the spectral characteristics of the solu-
tions, we derived relationships between the nonlinear
optical parameters of colloidal silver exposed to laser
pulses of various duration and the degree of aggrega-
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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tion. The time waveforms of the nanosecond pulses that
passed through the colloidal solution at various posi-
tions of the sample in the Z scheme suggest the thermal
nature of defocusing in this medium. The behavior of
colloidal silver exposed to picosecond radiation is ana-
lyzed in terms of Kerr self-defocusing. The results are
compared with experimental data on colloidal gold
obtained by a similar technique. The promise of aggre-
gated silver for optical limitation of picosecond and
nanosecond laser pulses was investigated. The charac-
teristic feature of the results obtained is the change in
sign of n2 with increasing degree of aggregation for
both the picosecond and nanosecond pulses. The values
of the nonlinear refractive indices corresponding to
Kerr and thermal self-defocusing were found to be –
1.1 × 10–13 and –3.2 × 10–10 esu, respectively.

The nonlinear absorption becomes significant at the
final stages of aggregation, which are characterized by
the appearance of a long-wave branch in the absorption
spectrum and on increase in the probability of two-pho-
ton absorption for the case of picosecond radiation.

REFERENCES
1. D. Ricard, P. Roussignol, and C. Flytzanis, Opt. Lett. 10,

511 (1985).
2. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, Appl.

Phys. A A47, 347 (1988).
3. Yu. É. Danilova, V. P. Drachev, S. V. Perminov, and

V. P. Safonov, Izv. Akad. Nauk, Ser. Fiz. 60 (3), 18
(1996).

4. S. G. Rautian, V. P. Safonov, P. A. Chubakov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 47, 200 (1988) [JETP Lett.
47, 243 (1988)].
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
5. A. V. Butenko, Yu. É. Danilova, S. M. Ishikaev, and
V. P. Safonov, Izv. Akad. Nauk SSSR, Ser. Fiz. 53, 1195
(1989).

6. S. V. Karpov, A. K. Popov, and V. V. Slabko, Pis’ma Zh.
Éksp. Teor. Fiz. 66, 97 (1997) [JETP Lett. 66, 106
(1997)].

7. S. V. Karpov, A. K. Popov, V. V. Slabko, and G. B. Shevn-
ina, Kolloidn. Zh. 57, 199 (1995).

8. A. V. Butenko, V. M. Shalaev, and M. I. Shtokman, Zh.
Éksp. Teor. Fiz. 94 (1), 107 (1988) [Sov. Phys. JETP 67,
60 (1988)].

9. S. V. Karpov, A. A. Bas’ko, S. V. Koshelev, et al., Kol-
loidn. Zh. 59, 765 (1997).

10. S. V. Karpov, A. K. Popov, and V. V. Slabko, Izv. Akad.
Nauk, Ser. Fiz. 60, 43 (1996).

11. V. M. Shalaev and M. I. Shtokman, Zh. Éksp. Teor. Fiz.
92, 509 (1987) [Sov. Phys. JETP 65, 287 (1987)].

12. V. A. Markel’, L. S. Muradov, and M. I. Shtokman, Zh.
Éksp. Teor. Fiz. 98, 819 (1990) [Sov. Phys. JETP 71, 455
(1990)].

13. M. Sheik-Bahae, A. A. Said, T. Wei, et al., IEEE J. Quan-
tum Electron. 26, 760 (1990).

14. S. C. Mehendale, S. R. Mishra, K. S. Bindra, et al., Opt.
Commun. 133, 273 (1997).

15. J. F. Reintjes, Nonlinear Optical Parametric Processes
in Liquids and Gases (Academic, New York, 1984; Mir,
Moscow, 1987).

16. C. H. Kwak, Y. L. Lee, and S. G. Kim, J. Opt. Soc. Am.
B 16, 600 (1999).

17. G. A. Swartzlanger, B. L. Justus, A. L. Huston, et al., Int.
J. Nonlinear Opt. Phys. 2, 577 (1993).

Translated by A. Chikishev



  

Technical Physics, Vol. 47, No. 7, 2002, pp. 894–899. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 7, 2002, pp. 100–105.
Original Russian Text Copyright © 2002 by Baksht, Lapshin.

                                                                                        

OPTICS,
QUANTUM ELECTRONICS

                               
Pulsed–Periodic Discharge in Cesium 
as an Effective Source of Light

F. G. Baksht and V. F. Lapshin
Ioffe Physicotechnical Institute, ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia

e-mail: baksht@pop.ioffe.rssi.ru
Received December 19, 2001

Abstract—The spectrum of visible radiation from an inhomogeneous cesium-plasma column is evaluated in
the approximation of locally thermodynamically equilibrium plasma. The plasma parameters correspond to a
pulsed–periodic low-power discharge at pressures of 0.1–1.0 atm and the axial temperature T = 5500 K. Under
these conditions, the visible spectrum of the cesium plasma changes from discrete (line) to continuous as the
pressure varies from 0.1 to 1.0 atm. This is associated largely with an increase in the intensity of the 6P and 5D
recombination continua and an appreciable shift of the thresholds of the continua toward larger wavelengths
(by ≈100 nm for 6P and by ≈150 nm for 5D) when the plasma density rises to ≈4 × 1017 cm–3. In this case, the
optical thickness of the plasma column approaches unity and the average luminous flux per unit length of the
arc column is close to 6500 lm/cm at the column radius R = 2 mm and a duty ratio of 0.1. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The fast development and cheapening of start-con-
trol electron equipment open up possibilities of fabri-
cating environmentally safe effective radiation sources
based on a pulsed–periodic discharge (PPD) in alkali
metal vapors. Such a discharge has been shown to offer
a number of advantages over a static arc [1–5]. For
example, one can produce a high-density plasma with
an electron concentration ne > 1017 cm–3 by delivering a
relatively low power W = 10–60 W/cm at temperatures
of 5000–6000 K. This greatly increases luminous
fluxes from the plasma, as well as improves the energy
efficiency of the arc as a source of light and its color
characteristics. Moreover, the requirements for the
buffer gas considerably loosen: its basic function is
only to provide the initial breakdown of the discharge
gap. Therefore, one can do away with mercury sources
of light. Finally, it should be noted that conventional
sources of light have largely line spectra. It has been
reported [6] that the spectrum of the cesium plasma
demonstrates a progressively increasing fraction of
continuous radiation as the plasma density rises. This is
because bright 6P and 5D recombination continua are
produced and the thresholds of these continua shift
toward larger wavelengths. As a result, with the PPD
used, the optical thickness of the cesium plasma may
approach unity at T = 5000–6000 K, at which the peak
of the Planck radiation intensity lies in the range of the
maximum sensitivity of the eye. Today, the continuous
spectrum is usually provided with a xenon arc plasma,
which becomes optically dense at temperatures as high
as T > 104 K [7]. Calculations of the radiation spectrum
and luminous fluxes carried out in this work show con-
1063-7842/02/4707- $22.00 © 20894
vincingly that a PPD in cesium is promising as an effi-
cient source with the recombination mechanism of
radiation. Preliminary results were reported in [8].

LOCAL THERMODYNAMIC EQUILIBRIUM 
IN A RADIATING CESIUM PLASMA

The visible spectrum from an inhomogeneous col-
umn of the Cs plasma was calculated at pressures p =
0.1–1.0 atm. The plasma parameters, specifically, the
radial temperature distribution T(r), correspond to a
low-power (≈30 W/cm) PPD [4, 5]. In this discharge,
current pulses of certain shape and an amplitude of
≈10 A pass through the plasma of a low-current
(≈0.1 A) pilot discharge with a repetition rate ν ~ 103 Hz.
Figure 1 shows the analytical temperature profile T(r) =
T1[1 – a(r/R)2] + T2exp{–(r/bR)4} (T1 = 3500 K, T2 =
2000 K, a = 9/14, and b = 0.6), which approximates
well the results of numerical simulations [4, 5]. The
spectrum was calculated for a locally thermodynami-
cally equilibrium (LTE) plasma.

Let us see how the conditions of local thermody-
namic equilibrium are disturbed when the plasma emits
in the bright 6P and 5D recombination continua, as well
as produces a line spectrum corresponding to the 6S–6P
and 5D–4F transitions in a Cs atom. We will also take
into consideration all disturbances of the LTE condi-
tions due to radial plasma inhomogeneities. To do this,
we introduce the parameters δk (k = 1–5):

δk neni v eσrec γ,
ph〈 〉 /αγne

2ni; k 1 2,,= =

δk Aγ γ'Θγ γ'/ne v eσγ γ'〈 〉 ; k 3 4,,= =
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Here, ne = ni is the charge carrier concentration in the

plasma, (v e) is the cross section of radiation
recombination, αγ is the coefficient of three-body colli-
sional recombination into the final state γ in the Cs
spectrum (γ = 5D for k = 1 and γ = 6P for k = 2), Aγγ' is
the associated Einstein coefficient [9], Θγγ'(r) is the
probability of a photon escaping from the plasma (see
[10, p. 81]), and σγγ' is the cross section of de-excitation
by electron impact (γ = 4F, γ' = 5D for k = 3 and γ = 6P,
γ' = 6S for k = 4). The symbol <…> means averaging
over the Maxwell distribution of the electrons, Dia is the
coefficient of Cs+ ambipolar diffusion, and τrec is the
time of three-body electron–ion recombination. The

values of σγγ', αγ, and  were calculated via the
principle of detailed balance with the theoretically
found values of the cross sections of excitation and ion-
ization by electron impact [11] and those of photoion-
ization [12]. The values of Dia were found [13] from the
cross sections of resonant charge exchange [14]. The
results for δk are shown in Fig. 1. To check the results
for δ4, we also used experimental values of the cross
sections for electron impact excitation [15] (dotted
lines). It is seen that the values of δ4 obtained by using
the theoretical and experimental cross sections virtually
coincide.

The LTE conditions occur in the range δk ! 1.1 As
follows from Fig. 1, the processes that disturb the
plasma equilibrium are of minor importance. The
plasma is in the nearly LTE state in the most part of the
gas-discharge tube volume. The LTE conditions are dis-
turbed only near the walls, where the plasma is cold
(T ≤ 2000 K). The cold plasma effectively absorbs the
radiation only near the resonance lines of cesium
(852.1 and 894.6 nm) and is almost transparent to visi-
ble radiation. Therefore, when calculating the visible
spectrum, we ignored the disturbances of the LTE con-
ditions and assumed that these conditions are fulfilled
throughout the discharge tube. The decrease in the atom
ionization energy was evaluated in the Debye approxi-
mation, and the partition function for a Cs atom was
calculated by the Planck–Larkin method [16].

1 The value of δ5 is the ratio of the ion recombination diffusion
length to the characteristic scale of plasma inhomogeneity. As
was shown in [4], the condition (Diaτrec)

1/2 ~ Viτrec, where Vi is
the hydrodynamic velocity of the ions, holds almost throughout
the pulse duration. Therefore, the condition δ5 ! 1 also means
that the convective length of ion recombination is much smaller
than the scale of inhomogeneity.

δ5 Diaτ rec( )1/2/
ni

∂ni/∂r
--------------- 

  .=

σrec γ,
ph

σrec γ,
ph
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SPECTRAL RADIATION FLUX 
FROM PLASMA IN THE VISIBLE RANGE

The spectral radiation flux per unit surface area of a
plasma column under the LTE conditions is given by

(1)

Here, Iλ(s, W) is the spectral radiation intensity at a
point s on the plasma column surface, W and er are the
unit vectors specifying the direction of the radiation
beam and the normal to the surface (Fig. 2), Tw is the
tube wall temperature, FλP(T) = πIλP(T) =
2πhc2λ−5/[exp(hc/λkBT) – 1] is the radiation flux from
the black body surface, λ is the wavelength, IλP(T) is the
Planck radiation intensity,

(2)

Fλ Iλ s W,( ) Wer( ) Wd

2π( )
∫ FλP Tw( )ελ .= =

ελ
4
π
--- Θ Θ ψ ψ kλ' l( )

IλP T l( )( )
IλP Tw( )

----------------------

0

I0

∫dcos
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π/2
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π/2
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× 1
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Fig. 1. Radial distribution of the plasma temperature T and
the values of the (1) δ1, (2) δ2, (3) δ3, (4) δ4, and (5) δ5 for
plasma pressures of (a) 0.1 and (b) 1.0 atm.
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 is the reduced absorption coefficient (taking into
account induced emission), l0 = 2RcosΘ, and l is the
distance from the point s measured along the projection
of the beam onto the plane normal to the discharge axis
(0 ≤ l ≤ l0). In the inhomogeneous plasma, 0 < ελ < ∞.
For the homogeneous plasma, ελ is the conventional
spectral emissivity of the column:

(3)

where τλ = 2R .

In this case,  meets the usual inequality 0 ≤

 ≤ 1. If the plasma is optically dense (R (R) @ 1),
one can expand ελ in the parameter ξ =
[(hc/λ)/kBT]/R (R) by integrating (2) by parts:

(4)

Expressions (3) and (4) were used to check the cal-
culation of ελ by formula (2). The absorption coefficient

 was calculated (as in [6]) as the sum of the absorp-
tion coefficients corresponding to free–free (f–f),
bound–free (b–f), and bound–bound (b–b) transitions:

(5)

The absorption coefficient of bremsstrahlung radia-
tion was calculated in the Kramers approximation [17].
Note that the contribution of the f–f transitions to  is

small under our conditions. When calculating , we
took into account the following transitions in the dis-
crete spectrum of a Cs atom: 6S1/2 – nP1/2, 6S1/2 – nP3/2

kλ'

ελ
h( ) τλ( ) 4

π
--- Θ Θ ψ ψcos

2
d

0

π/2

∫cosd

0

π/2

∫=

× 1 τλ Θ/ ψcoscos–( )exp–[ ] ,
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dT /dr( ) r R=
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Fig. 2. Geometry of the problem. W and er are the unit vec-
tors of the radiation direction and the normal to the surface,
respectively.

Ψ

(n = 7, 8), 6P1/2 – nS1/2, 6P3/2 – nS1/2 (n = 8–13), 6P1/2 –
nD3/2, 6P3/2 – nD5/2 (n = 7–13), 5D3/2 – nF5/2, and 5D5/2 –
nF7/2 (n = 5–12). Accordingly, it was assumed that

where

is the cross section of photoabsorption for the γ–γ' tran-
sition and fγγ' is the oscillator strength [9].

The shape of the line ϕγγ'(λ) was assumed to be
Lorentzian and only the Stark broadening due to elec-
trons was taken into account [18]. When calculating

, we considered the photoionization (PI) of the 7S,
6P, 7P, 8P, 5D, 6D, 7D, 4F, 5F, and 5G levels in the vis-

ible range. The calculation procedure for  was the
same as in [6]. The concentration nγ of excited Cs atoms
and the plasma concentration were determined from the
Saha–Boltzmann equation.

As was noted, an important feature of the Cs spec-
trum is the existence of bright 6P and 5D recombina-
tion continua in the visible range (the associated thresh-
olds are λth(6P) = 504 nm and λth(5D) = 594 nm). Let
us discuss some points regarding the calculation of kλ
for λ > λth slightly exceeding these thresholds. In the
dense plasma, the broadening of the spectral lines
causes higher order terms approaching the PI threshold
to merge. We assumed in this work that adjacent lines
overlap if the sum of their half-height widths wn and
wn + 1 is larger than the their center distance: wn +
wn + 1 > λn – λn + 1. In either spectral series (6P–nD or
5D–nF), one can find lines for which wn – 1 + wn <
λn − 1 – λn but wn + wn + 1 > λn – λn + 1. In the range λth ≤
λ ≤ λn + 1, the spectrum was considered to be continuous
and the absorption coefficient for the given spectral
series γ (γ = 6P or 5D) was found from the relationship

 ≡  = nγ (E), where the cross section of

photoionization  from the state γ was determined
through the spectral density of the oscillator strengths,
as in [6, 12]. In the range λ ≥ λn, the γ spectrum was

considered to be discrete; thereby,  ≡  =

σγγ'(λ). In the intermediate range λn + 1 < λ < λn,
we used the linear interpolation

kλ
bb( ) nγσγ γ'

ph( ) λ( ),
γ γ',
∑=

σγ γ'
ph( ) λ( ) πe2

mc2
---------λγ γ'

2 f γ γ'ϕγ γ' λ( )=

kλ
bf( )

kλ
bf( )

kλ γ,
bb( ) kcont

γ( ) σγ
ph( )

σγ
ph( )

kλ γ,
bb( ) kdisc

γ( )

nγγ'∑

kλ γ,
bb( ) kdisc

γ( ) λ λ n 1+–( )/ λn λn 1+–( )=

+ kcont
γ( ) λn λ–( )/ λn λn 1+–( ).
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Fig. 3. Absorption spectrum of the cesium plasma under thermodynamic equilibrium at T = 5500 K for pressures of (1) 0.01, (2) 0.1,
and (3) 1.0 atm. (a) Spectral series 5D–nF, (b) spectral series 6P–nD, and (c) absorption spectrum. R = 2 mm.
RESULTS OF COMPUTATION

Figure 3 shows the calculated values of the absorp-
tion coefficient for the cesium plasma at T = 5500 K and
pressures of 0.01, 0.1, and 1.0 atm. The associated elec-
tron concentrations are ne = 6.58 × 1015, 5.89 × 1016,
and 3.67 × 1017 cm–3. The individual absorption coeffi-
cient for the spectral series 6P–nD and 5D–nF near the
continuum threshold are shown in Figs. 3a and 3b,
respectively. The threshold wavelengths of the 6P and
5D continua for an isolated Cs atom are 504 and
594 nm (indicated by arrows in Figs. 3a and 3b). It is
seen that the continua shift toward larger wavelengths
with increasing pressure. This is because two effects set
in simultaneously: the atom ionization energy dimin-
ishes and higher terms of the spectral series converging
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
to the PI threshold merge (due to the broadening). As a
result, the continua overlap nearly in the entire visible
range of the spectrum at p ≈ 1.0 atm (Fig. 3c). In this
case, the optical thickness of the plasma approaches
unity in most of the spectrum. Figure 4 demonstrates
the calculated spectral flux Eλ (continuous curve) per
unit surface area of the inhomogeneous plasma column
for the temperature profile T(r) mentioned above and
also the Planck flux FλP(T∗ )/3 (dashed curve) from the
black body surface at T∗  = 5000 K. At p = 0.1 atm
(Fig. 4a), the optical thickness of the plasma in the con-
tinuum is small. The plasma radiation is volume, and its
spectrum is discrete. The radiation flux Fλ is smaller
than the Planck flux. At p = 1.0 atm (Fig. 4b), the opti-
cal thickness approaches unity and the spectrum
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Fig. 4. Spectral density of the radiation radial flux in the visible range for pressures of (a) 0.1 and (b) 1.0 atm.
becomes almost continuous. In this case, the flux Fλ
amounts to a considerable fraction of the Planck flux
FλP(T∗ ). Note that the emission spectrum of the inho-
mogeneous arc plasma is much smoother than the spec-
trum from a plasma homogeneous column [6]. This is
because the outer (colder) plasma region intensely
absorbs the line radiation.

An important parameter of radiation sources is the
luminous flux Φ per unit length of an arc column: Φ =

2πRKmax V(λ)dλ, where V(λ) is the spectral lumi-

nous efficacy of the radiation and Kmax = 680 lm/W is
the maximal value of the luminous efficacy (which is
achieved at λ = 555 nm). The mean values of the lumi-
nous flux, Φ* = ν tpΦ, calculated for the characteristic
duty ratio of current pulses in the PPD ν tp = 0.1 [4, 5]
(tp is the current pulse duration) and R = 2 mm were

Fλ∫
found to be Φ* = 0.48 × 103 lm/cm at p = 0.1 atm and
Φ* = 0.65 × 104 lm/cm at p = 1.0 atm.

CONCLUSION

Thus, under the PPD conditions, a rise in the cesium
plasma pressure to 1 atm causes qualitative changes in
the arc radiation spectrum. The intensities of the bright
6P and 5D continua rise and their thresholds shift mark-
edly (by more than 100 mm) toward larger wave-
lengths, resulting in a virtually continuous radiation
spectrum in the visible range. Under these conditions,
the optical thickness of the plasma approaches unity,
which provides high mean values of the luminous
fluxes Φ* from an arc column. The calculated values of
Φ* far exceed luminous fluxes provided by continuous-
spectrum radiation sources at a comparable energy con-
sumption, W = 30–50 W/cm (for example, by high-
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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pressure xenon lamps [19]). Therefore, a PPD in
cesium vapor seems to be a promising effective source
of recombination-induced radiation.
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Abstract—Collective processes taking place in the space charge of a microsecond relativistic electron beam
with magnetic insulation are considered. The space–time characteristics of the low-frequency and high-fre-
quency oscillations are found, and the effect of the magnetic compression of the beam near the cathode on these
oscillations is studied. It is shown that the basic source of the low-frequency oscillations is the collective motion
of the space charge, which takes place in crossed electric and magnetic fields near the cathode, while the
primary reason for the high-frequency oscillations is two-stream instability in the beam. The possibility of
suppressing both types of oscillations by compressing relativistic electron beams near the cathode is demon-
strated. The effect of nonuniform magnetic fields, including their effect on the cathode plasma motion, is elu-
cidated. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The successful development and application of
high-power microwave devices imply the generation of
high-quality relativistic electron beams (REBs) (see,
e.g., [1]). Space-charge oscillations occurring in the
beam worsen its quality, since they disturb the magnetic
insulation and cause spurious signals. Early investiga-
tions [2–4] discovered a number of basic properties of
space-charge oscillations in long-pulsed (microsecond)
REBs. In a typical REB-forming system, a type-1 coax-
ial diode with magnetic insulation (CDMI-1) and an
explosive emission cathode, two branches of space-
charge oscillations (SCOs) typical of such beams have
been revealed: low-frequency (LF) oscillations in the
frequency interval 100–300 MHz and high-frequency
(HF) oscillations with maximal amplitudes in the fre-
quency interval 400–800 MHz. It has been found that
the HF oscillations are related to the motion of the cath-
ode plasma. Another reason for the HF oscillations is an
electron stream propagating with a large transverse
velocity from the side surface of the plasma emitter in
the REB halo. Two mechanisms behind the HF oscilla-
tions where the role of the electrons with a high trans-
verse velocity is significant have been considered [4].
One is the development of two-stream instability due to
the interaction of the low-density stream in the REB
halo with the main electron stream from the end face of
the plasma emitter. The other mechanism is diocotron
instability in the electron stream from the side surface
of the plasma emitter. Both mechanisms must lead to
the development of SCOs in an REB at frequencies
where the intensity of the HF oscillations observed
experimentally is the highest.
1063-7842/02/4707- $22.00 © 0900
Reasons for the LF oscillations have also been con-
sidered [4]. It was suggested that they are excited in a
stream of electrons reflecting from a collector and move
between the collector and the cathode for a long time.
However, the nature of the LF oscillation is also
entirely understood. Experimental data obtained in
experiments with the CDMI-1 are scarce because of the
device’s particular geometry and fixed ranges of elec-
tron energies (200–240 keV) and magnetic fields
(≈1 T). This does not allow one to judge the generality
of results reported in [2–4]. Another difficulty associ-
ated with the interpretation of the results found is that
we do not know the properties of the collective pro-
cesses in the near-cathode zone. Moreover, little is
known of how magnetic field nonuniformities near the
cathode, which are used to compress REBs, influence
these processes. In this work, we report new data that
might clarify the nature of the collective processes in
REBs. Our experiments were performed with a type-2
CDMI (CDMI-2), which has an essentially different
geometry of REB formation and transport. SCOs were
detected both in the beam transport channel and near
the emitter. Specially designed magnetic-field-generat-
ing devices allow for control of the field strength and
the beam compression at the cathode.

EXPERIMENTAL SETUP AND MEASURING 
TECHNIQUES

Our experiments were carried out on an SÉR-1
setup [2–4]. Table 1 compares the parameters of
CDMI-1 and CDMI-2.

The properties of the oscillations were studied in
devices with edge explosive-emission cathodes made
2002 MAIK “Nauka/Interperiodica”
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of stainless steel over a wide range of REB-confining
magnetic fields (0.6–1.4 T). Accelerating voltage
pulses had a peak amplitude U ≈ 220 kV. Their duration
was limited by the magnetic insulation of the REBs and
varied roughly between 2 and 5 µs.

The cross section of the CDMI-2 is shown in Fig. 1.
Electrons emitted by the cathode are accelerated in the
anode–cathode space; move in the grounded transport
channel electrically connected to the anode; and were
collected on the inner surface of the collector, which is
insulated from the channel. The distribution of the mag-
netic field B is specified by solenoids S1–S5. With sole-
noid S5 switched off, the magnetic field is roughly uni-
form throughout the accelerating and transport regions,
except in the collector area. The field of correction coil
S4 prevents electrons of the cathode from penetrating to
the grounded electrodes placed on the side opposite of
the entrance to the transport channel. With solenoid S2
switched off, the beam area shrinks nearly twofold.
With solenoids S2 and S3 switched off simultaneously,
the compression increases fourfold. Solenoid S5 is used
to produce a locally nonuniform magnetic field in front
of the collector.

Under these conditions, the beam current Ic toward
the collector varied from 0.7 to 2 kA. The leading edge
duration of the pulse U was no more than ≈0.4 µs. On
the top of the pulse, the voltage slowly declined
because of the discharge of the voltage pulse generator
capacitors. A plasma short, formed between the cath-
ode and the grounded electrodes as a result of cathode
plasma expansion [1], caused a voltage sharp drop at
the trailing edge of the pulse U.

To characterize SCOs in the REB, probes P1, P2,
and P3 were used. The first two were placed at dis-
tances of 40 and 80 cm from the cathode. Probe P3 was
placed over the cathode holder. Detecting the probe sig-
nals at various time instants during a current pulse, one
can keep track of the SCOs. The Fourier analysis of
short (30–120 ns) temporal realizations [2–4] made it
possible to find the shape of “instantaneous” oscillation
spectra. Probes P1 and P2 were connected to the REB
transport channel through small (diameter 5 mm) holes
and detected signals coming from the nearest zone
[2−4] at distances of ~40 and ~80 cm, respectively.
Probe P3 detected HF signals coming from the near-
cathode zone along the coaxial line formed by the cath-
ode holder and the external electrode (sheath) of the
device. Signals of frequencies less than 1 GHz coming
from distant (relative to the cathode) areas of the trans-
port channel could not reach this coaxial line, since the
cutoff wavelength of the circular drift tube of the beam
did not exceed roughly 20 cm.

RESULTS AND DISCUSSION

The spectral characteristics of SCOs in the REBs
turned out to be qualitatively similar throughout the
range of magnetic fields and current beams. To describe
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
them, we will make use of experimental data obtained
for the magnetic field B = 1 T. These data are conve-
nient to correlate with those obtained with the CDMI-1
[2–4]. First, we will consider SCOs in an REB confined
by an axially uniform magnetic field.

In remote areas (at distances L ≥ 40 cm from the
cathode), the oscillation spectra were determined with
probes P1 and P2. The spectra recorded at various time
instants (with different delays τ from the onset of the
REB) are shown in Figs. 2 and 3. In this and subsequent
figures, U = 220 kV. For 0.3 ≤ τ ≤ 1.0–1.2 µs, one can
distinguish two frequency domains (100–300 and 400–
800 MHz) wherein the oscillation amplitudes are
increased.1 The maximal amplitudes Am in both
domains vary with time nonmonotonically and peak
(without compression at the cathode) at τ = 0.5–0.8 µs,
that is, with delay relative to the leading edge of the
voltage pulse U, under all conditions studied. Figures 4a
and 4b show the typical maximal amplitude Am vs.
record instant τ dependences that follow from the sig-
nals coming to probe P1. The ratios between the maxi-
mal amplitudes of the LF and HF branches (ALFm and
AHFm, respectively) at probes P1 and P2 are different. At
probe P1 (that nearest to the cathode), the amplitudes
are roughly equal to each other, while at remote probe
P2, AHFm @ ALFm.

To summarize the measurements performed with
probes P1 and P2, one can conclude that the basic char-
acteristics of the SCOs in the REB passing in the trans-
port channel are qualitatively similar in the CDMI-1
and CDMI-2, which differ in size, if there are no strong
variations of the magnetic field in the beam formation
and transport regions. The remarkable general features
are almost identical structure of the spectra, including
the HF and LF oscillation branches, and an increase in

1 Along with these oscillations, those at frequencies below 50 MHz
are sometimes observed. Such poorly reproducible oscillations
can be associated with fluctuations of the electron current from
the explosive emission cathode [1]. Here, we consider only the
range f > 50 MHz.

P3 S4

S3
S2

S1 S5 5

P1 P23 421

Fig. 1. CDMI-2 used in the experiments: 1, cathode; 2, cath-
ode plasma; 3, anode; 4, drift channel; 5, collector; S1–S5,
solenoids; P1–P3, probes. Arrows indicate the direction of
the lines of the electric field at the “inner” surface of the
cathode plasma.
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the oscillation amplitude after the leading edge of the
accelerating voltage pulse. As was already noted, such
an increase, first discovered in [4] with the use of the
CDMI-1, has been explained by the motion of the cath-
ode plasma in the accelerating space and, accordingly,

Fig. 2. Typical SCO spectra from probe P1 at the magnetic
field B = 1 T at various time instants after the onset of the
voltage pulse.

Table 1

Basic parameters CDMI-1 CDMI-2

Cathode diameter, mm 20 37

Transport channel diameter, mm 32 52

Cathode–anode spacing, mm 12.27 30

Transport channel length, mm ≈1200 ≈1450

0 500 1000 1500
f, MHz

0.5

1.0

τ = 1.5 µs

0.5

1.0

τ = 1.1 µs

0.5

1.0

τ = 0.6 µs

A

with the appearance of electrons having high transverse
velocities. The difference between the ratios ALFm/AHFm
at probes P1 and P2 may be related to an HF oscillation
build-up from P1 to P2 (see also [4]). Basically, such a
variation of the HF oscillation amplitude may be
observed in the case of both two-stream instability in
the REB and diocotron instability at the side surface of
the cathode plasma [4]. The data found in [4] provide
no grounds to decide between the two models. Our
measurements indicate that the HF oscillation ampli-
tudes at probes P1 and P2 are always maximal at fre-
quencies in the interval 400–800 MHz irrespective of
the magnetic field. This is illustrated by typical spectra
for probe P2 taken at magnetic fields of 1, 0.8, and
0.6 T (Figs. 3, 5). The fact that the typical frequencies
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Fig. 3. The same as in Fig. 2 for probe P2.
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of the HF oscillations do not depend on the magnetic
field seems to be in favor of the “two-stream” mecha-
nism of their origination. If the HF oscillations were
related to diocotron instability and the associated azi-
muth motion of space-charge bunches in the crossed
fields at the side surface of the plasma emitter, one
could expect a rise in their frequency with decreasing
magnetic field because of the enhanced drift velocity Vd
(Vd = E⊥ /B) of the azimuth motion of the bunches.

Thus, the data obtained with the CDMI-2 suggest
the generality of the collective processes in greatly dif-
fering REB formation systems and, hence, under essen-
tially different experimental conditions. In addition,
our data shed light on a model of the HF oscillation
branch.

Probe P3 provided information on the SCOs in the
near-cathode zone of REB formation. Associated spec-
tra are shown in Fig. 6. As for probes P1 and P2, the
oscillation amplitude is maximal for τ = 0.5–0.8 µs.
However, the LF oscillations in the signal coming to
probe P1 far exceed the HF ones in amplitude if τ ≤
1.0–1.1 µs. The difference is especially noticeable at
τ = 0.5–0.8 µs, where the ratio ALFm/AHFm exceeds 100.
At longer delays (1.1 ≤ τ ≤ 1.5 µs), the amplitude of the
HF components in the signal from P1 grows and the
ratio ALFm/AHFm decreases, yet remaining greater than
unity. In P3 spectra taken at τ ≥ 1.1–1.2 µs, one can dis-
tinguish the components at frequencies that are roughly
multiples of the fundamental low frequency. Taking
into account that signals at the frequencies of the basic
spectrum peaks cannot reach probe P3 from the beam
transport channel, one can relate these signals to the
development of nonlinear oscillations and the subse-
quent formation of higher harmonics of the LF SCOs in
the immediate vicinity of this probe.

In our opinion, the spectra obtained with probes P1–
P3 (Figs. 2–6) suggest that the near-cathode zone is the
basic source of the LF oscillations in the interval τ ≤
1.0–1.2 µs, while the electron beam in the transport
channel is responsible for the HF oscillations in this
delay range. The oscillations at 100–300 MHz may be
associated with the collective motion of electrons in a
specific magnetron diode formed by the cathode holder
and outer metallic enclosure of the experimental setup
(Fig. 1). However, the electron cloud may initially be
formed by an electron stream generated by the plasma
emitter and aimed away from the cathode. In fact,
because of the radial expansion of the cathode plasma,
electric fields directed toward the cathode holder must
arise at the plasma surface facing away from the trans-
port channel. Arrows in Fig. 1 indicate the direction of
the lines of the electric field at the “inner” surface of the
cathode plasma. If the velocity of the plasma radial
expansion is assumed to be ≈5 × 105 cm/s [1], then a
specific plasma emitter–igniter is produced by the time
instant the amplitude of the LF oscillations becomes
maximal (0.5–0.8 µs). The igniter rises above the cath-
ode surface by 2.5–4.0 mm. Even a low-density elec-
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
tron stream from the igniter is capable of causing sec-
ondary emission from the cathode holder. This emis-
sion will favor the space charge accumulation at the
side surface of the holder. The LF signals detected by
probe P3 may be due to the bunching of the electron
space charge in both the azimuth and the axial direc-
tions. The mechanism of space charge accumulation
and development of oscillations in cold-cathode mag-
netron systems was described elsewhere (see, e.g., [5,
6]). Oscillation frequencies in the magnetron diode
considered above are difficult to determine exactly.
Estimates made with the relationships derived in [6]
show that the typical frequencies 100–300 MHz may be
observed at the lower order azimuth (nϕ = 1–3) modes
and/or at higher order axial modes.

Data that can provide a better insight into the SCO
nature were obtained when the oscillations were sub-
jected to magnetic field local nonuniformities in the
CDMI-2 collector region that were created with sole-
noid S5 (Fig. 1). By decreasing the magnetic field near
this solenoid almost to zero (the solenoid produced a
field of reverse polarity relative to the field of the main
solenoid), we did not affect the collective processes in
the REB in the delay interval τ > 1.0–1.2 µs. However,
at the beginning of the accelerating voltage pulse (τ <
1.0 µs), this nonuniformity markedly diminished the
rate of LF and HF oscillation build-up.

0 1 2
τ, µs

0.5

1.0 (a)

C = 1

2

4

Am

0 1 2

(b)

C = 1

2

4

0 1 2

(c)

C = 1

2

4

Fig. 4. Maximal amplitude Am of the components of the
SCO spectrum vs. record time τ at various levels of com-
pression C in the magnetic field B = 1 T. (a, b) Probe P1 and
(c) probe P3. (a, c) LF component of the spectrum and
(b) HF component of the spectrum.

Table 2

Probe P1 P2 P3

C 1 2 4 1 2 4 1 2 4

ALFm/AHFm 0.6 1.5 1.0 0.2 2 – 115 10 1.3
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Such an effect on the HF oscillations seemingly
argues against the assumption that they are localized
largely in the magnetron diode. In fact, the local mag-
netic disturbance due to the short (≈15 cm) coil at a
large distance (≈100 cm) from the cathode could not
directly affect the motion of electrons in the magnetron
diode. However, the indirect effect of this disturbance
on the collective processes at the cathode, such as a
change in the effective REB length, may still take place.
Indeed, by introducing the “demagnetizing” magnetic
field, we were able to deposit the beam on the transport
channel surface nearer to the cathode, thereby cutting
the beam effective length roughly by 30%. The effect of
this factor on the LF oscillations at the cathode can be
explained if the stream of fast secondary electrons from
the collector that arises due to collector bombardment
is taken into consideration. If the oscillations produce
near-cathode space-charge bunches in the stream of
electrons that initially move toward the collector, the
backward stream of electrons reflected from the collec-
tor (or from the beam transport channel) will also be
density-modulated. In other words, the system contains
feedback. Its effect on the LF oscillations in the magne-
tron diode will depend on the phase with which the
electron bunches fall into the near-cathode zone and,
hence, on their travel. If the modulation of the back-

0 500 1000 1500
f, MHz

0.5

1.0

B = 0.6 T

0.5

1.0

B = 0.8 T

A

Fig. 5. SCO spectra from probe P2 at the time instant τ =
1.1 µs after the onset of the voltage pulse U for two values
of the magnetic fields.
ward electron stream is low, the effect of the feedback
is the strongest at the early stage of the LF oscillation
amplitude growth, as was observed in our experiments.

The experimentally observed decrease in the rate of
HF SCO growth at the beginning of the pulse U when
the magnetic disturbance at the collector is introduced
can be explained in a similar way (that is, through the
production of feedback).

Finally, consider the effect of beam compression at
the cathode on collective processes in the REB. Figure 4
plots the SCO maximal amplitude Am against record
time τ without compression (C = 1) and with compres-
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Fig. 6. Typical SCO spectra from probe P1 in the magnetic
field B = 1 T at various time instants after the onset of the
voltage pulse.
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sion (C = 2 and 4). The effect of compression on the sig-
nals from probes P1 and P2 was similar; therefore, the
dependence Am(τ) for the LF and HF oscillations is
shown only for probe P1 (Figs. 4a and 4b, respec-
tively). For probe P3, we give only the variations of the
fundamental LF component of the spectrum (Fig. 4c).
The effect of compression is found to be extremely
strong. As the compression increases, the oscillation
amplitude decreases sharply. Simultaneously, the posi-
tion of the peaks in the Am(τ) curves and the ratio
ALFm/AHFm of the peak amplitudes change (Table 2).
Typical values of ALFm/AHFm for all three probes at dif-
ferent C are listed in Table 2. The oscillation amplitudes
reached the maximal values at high levels of compres-
sion. The delay in the oscillation development seems to
be associated with the effect of the magnetic distur-
bance on the cathode plasma motion. In fact, the
increase in the compression diminishes the axial veloc-
ity of the cathode plasma. This must inevitably lead to
a decrease in the HF oscillation growth rate if the oscil-
lation enhancement mechanism put forward in [4] (the
advance of the cathode plasma toward the anode) is
valid. The rate of LF oscillation build-up declines pos-
sibly because the plasma emitter shrinks in a magnetic
field that increases toward the collector. Because of
this, it is harder for the electrons to penetrate into the
magnetron diode (the source of the LF oscillations)
from the back side of the collector.

CONCLUSION
Our results can be summarized as follows.
Collective processes taking place in long-pulsed

REBs of different geometry and in a wide range of
beam-confining magnetic fields are of a general nature.

Collective processes play an essential role in the
crossed fields of a magnetron diode formed by a cath-
ode system and the enclosure of a device, as well as in
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
the generation of LF SCOs in magnetically insulated
coaxial diodes.

Data obtained indicate that the HF SCOs are related
to two-stream instability in the beam transport channel.

SCOs can be suppressed by means of REM com-
pression in the near-cathode zone. The effect of mag-
netic disturbances produced in this zone, including
their effect on the cathode plasma motion, is clarified.
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Abstract—The results of a number of studies on virtual cathodes in electron beams subjected to a high mag-
netic field are shown to be erroneous. The possibility of a virtual cathode occurring in coaxial hollow beams at
currents below the limiting value is proved rigorously. © 2002 MAIK “Nauka/Interperiodica”.
(1) Recently, a series of studies devoted to virtual
cathodes was published, including the work in this jour-
nal [1]. This interesting issue, having a great variety of
applications, was also discussed in earlier publications
(see, e. g., [2]). Nevertheless, some results of the recent
studies and conclusions reached therein seem to be
questionable, if not faulty. We believe that the errone-
ous results can be traced back to inadequate initial
statements. In this paper, we consider only one of the
doubtful points in [1], concerning the stationary states
of highly magnetized electron beams in regular drift
channels. It is concluded in [1] that a virtual cathode
can exist only if the injection current I0 exceeds the lim-
iting value Ilim and the current I that passes the drift
space after the virtual cathode has been formed is equal
to the limiting current:

(1)

According to [1], both assertions are valid for plane
(Fig. 1a) and thin-walled tubular beams (Fig. 1b). It is
well known [2], however, that the dependence

(2)

is essentially different; for example, it may be similar to
that shown in Fig. 2 for the planar model of the drift
space and nonrelativistic electron energies. As is seen
from the diagram of currents in Fig. 2, function (2) is
ambiguous; as a result a virtual cathode may also exist
when the injection current is below the limiting value
(0.5Ilim < I0 < Ilim) and the current that crossed the vir-
tual cathode is necessarily smaller than the limiting cur-
rent:

On the assumption of an adiabatically smooth
increase in the injection current I0(t), the transition
from the single-stream state to that with a virtual cath-

I I lim.=

I I I0( )=

I
1
8
--- I lim

1
2
--- I lim, 

 ∈ I lim.<
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ode (dashed arrow in Fig. 2) occurs at I0 > Ilim due to the
Bursian instability. In the opposite case of a slow
decline of I0(t), the virtual cathode disappears also
because of the Bursian instability but at another value
of the injection current (I0 = IF):

(3)IF 0.5I lim I lim.<=

ϕ = Ua

e–

e–

e–

(a)

1 23

d

V

ϕ = Ua

(b)ϕ = Ua

e–

e–

V

3 z

21

2R
b

2R
t

Lt

Fig. 1. (a) Planar and (b) coaxial models of the drift space.
Ua is the accelerating voltage. (1) Electron (e–) injection
end face, (2) collector end face, and (3) electron beam.
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The virtual cathode position is also I0-dependent; in
particular, the cathode appears at a distance z ≈ 0.3d
from the injection plane (z = 0) and disappears at
z = 0.5d.

(2) The inclusion of relativistic effects does not
change the current diagram in Fig. 2 qualitatively.
A similar diagram applies also to a highly magnetized
cylindrical thin-walled beam in a coaxial tube (Fig. 3)
[3]. As the length of the drift tube increases (Lt/Rt 
∞), the limiting current asymptotically approaches the
value

(4)

where 

Ua is the accelerating voltage applied to the electron
gun, m and e are the mass and the charge of an electron,
c is the velocity of light, Rt is the drift tube radius, and
Rb is the thin-walled beam radius.

At Lt  ∞, the electron-beam current I behind the
virtual cathode also decreases to its asymptotic value
(Fig. 3),

(5)

The need for introducing the current  for coaxial
systems was first substantiated in [4] (see also [3]),
where it was derived analytically:

(6)

(7)

(3) For nonrelativistic electron beams, current dia-
gram (2) for the planar model can be constructed ana-
lytically by the formulas from [2]. For the coaxial
model with a relativistic electron beam, on which much
attention was focused in [1], the approximate current
diagram was constructed in [3]. However, the existence
of virtual cathodes at currents below the limiting value
(a fact that was disregarded in [1]) is easy to prove for
the cylindrical model as well.

For this purpose, consider the stationary injection of
a thin-walled circular electron beam into the tube
through its left end face, which must be nontransparent
to electric fields (let the end face be covered by a thin
metallic foil may) (Fig. 4). A uniform longitudinal
magnetic field H0 is applied to the system. At the end of

I lim
mc3

2e
Rt

Rb
-----ln

------------------ γa
2/3 1–( )3/2

,=

γa 1
eUa

mc2
---------;+=

I IF I lim.<=

IF

IF
mc3

2e
Rt

Rb
-----ln

------------------ γa γF–( )
γF

2 1–
γF

------------------,=

γF 2γa 0.25+ 0.5.–=
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the drift space, the electrons meet a thin-walled edge
collector that is under the cathode (or slightly higher-
than-cathode) potential:

(8)

The drift channel length Lt is taken to be much
greater than the stopping range of the electrons at both
the end face and the collector; as a result the highly uni-
form state of the beam in the central part of the drift
tube is set ( γ/dz = 0).

ϕcol +0.=

d
Lt ∞→
lim

I0Ilim1/2Ilim

1/8Ilim

1/2Ilim

Ilim

1

2

3

I

Fig. 2. Current I having passed through the equipotential
planar region versus injection current I0: (1) stable and
(2) unstable single-stream states and (3) states with virtual
cathode.

Ilim I0IF

Ilim

I
(‡)

(b)

–

IF
– 1 2

3

I0IlimIF
–1

γa

γmin

1

2
3

Fig. 3. (a) Current I having passed through the drift space
and (b) minimal energy of the electrons versus injection cur-
rent I0 for the coaxial model. (1)–(3) The same as in Fig. 2.
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As in [4], we apply the law of conservation of the z
component of the momentum,

(9)

to the volume bounded by the closed surface (S = S0 +
S1 + S2 + Sw + Scol) shown in Fig. 4 by the dashed line.
It is assumed that the electron motion is unidirectional
and that there is a spread in their velocities. The trans-
verse component of the electron motion may be disre-
garded because of the high value of the magnetic field
(|H0|  ∞). In (9), E and H are the electric and the
magnetic field vectors, ρ is the volume charge density
in the beam, V is the velocity of the electrons, and

is their relativistic factor.
The electric field has a singularity at the edge of the

collector; therefore the contribution to integral (9) over
the surface S0 (with its radius to tending to zero) is
given by only a part of the field. The field potential, in
view of (8), can be conveniently represented in the form

(10)

accordingly,

(11)

E2 H2+
2

------------------z0 EzE HzH– 4πρ
l
---γmVzV+–

 
 
 

dS∫° 0,=

γ 1 V2

c2
------– 

 
1/2–

=

ϕ Ar1/2 θ
2
---;sin=

…{ } dS
S0

∫°r0 0→
lim

π2

2
-----RbA2.–=

e–

e–

Lt

V

H0 Scol
Swϕ = Ua

ϕ = 0

ϕ = 0

S0

S2

S1 z0

2R
b

2R
t

Fig. 4. Coaxial model with a slowing-down collector. S =
S0 + S1 + S2 + Sw + Scol is the surface of integration.

e– V

r

θ

S0
Scol

Fig. 5. Local coordinate system (r, θ) at the edge of the col-
lector; S0 and Scol are the surfaces of integration.
The local coordinate system (r, θ) used in (10) and
(11) is shown in Fig. 5. The cross sections S1 and S2 are
considered to be within uniform regions, which allows
us to calculate all the integrals in (9). With the energy
conservation law taken into account, we arrive at the
following system of equations:

(12)

from which the value of A2 can be calculated with I0

known. In (12), γ is the normalized energy of beam
electrons at the cross section S1, i. e., in the uniform
part of the drift channel (Fig. 4). With an increase in the
injection current I0, the amplitude squared (A2)

decreases monotonically and vanishes at I0 =  < Ilim

[see (6)]. With further growth of the current (I0 > ),
the amplitude A becomes imaginary, which is physi-

cally impossible. Therefore, at high currents (I0 > ),
a virtual cathode due to the Bursian instability appears
and reflects a part of the current back to the injection
plane.

The foregoing also suggests that the current of the
electron beam having passed through the virtual cath-
ode cannot be equal to the limiting value (I ≠ Ilim) as
was argued in [1]. In accordance with (12), this current

does not exceed  at Lt  ∞.

(4) In [1] and in earlier works (see Refs. in [1]), no

mention was made of the current , which, as has been
shown above, is of no less importance than Ilim in con-
sidering the virtual cathode properties. Nor has atten-
tion been given to the uncertain current behavior in the
drift space and related hysteresis phenomena typical of
the systems in question. In our opinion, all these omis-
sions cast doubt on the results and conclusions in [1]
and call for their refinement or even revision.

The above discussion touches upon only the station-
ary states of highly magnetized electron beams in drift
channels. This point is certainly of importance for
understanding and systematizing the properties of high-
current electron beams and associated devices. It is evi-
dent, however, that further advances in the theory of the
beams are related to investigation of their dynamic

π
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--------- 
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states. Problems, such as stability, the excitation of var-
ious linear and nonlinear, including stochastic, oscilla-
tions, the behavior under the action of external forces,
etc. should be of primary concern. There is still much
we need to learn in this intriguing field.
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Abstract—The radiation-induced erosion of the tungsten field emitter surface exposed to low-energy ions is
studied by field ion microscopy and electron microscopy. During the bombardment, surface atoms are displaced
to sites with lower coordination numbers and nanoasperities, generating a locally enhanced electric field, arise
on the surface in a jump-like manner, which modifies the characteristics of the emitters. The field evaporation
of the asperities produces cavities; hence, the erosion can be described in terms of blistering. Quasi-static sur-
face erosion mechanisms are considered. It is shown that nanoblistering can be related to helium absorption in
metal surface layers. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Radiation-induced surface erosion plays an essen-
tial part in discharge-initiating processes and is a basic
mechanism of damage to field emitters [1–4]. Interest
in surface erosion has quickened in recent years
because modern nanotechnology extensively uses the
process of tunnel electron emission and, accordingly,
highly localized coherent field-ion and electron emit-
ters [5–7]. The evolution of the atomic topography of
probes with a submicron radius of curvature of the
emitting surfaces (which is inevitable during ion bom-
bardment) is governed largely by radiation-induced dif-
fusion processes [1, 4].

During ion bombardment, the emitters become
atomically rough, which is associated with atom colli-
sions on the surface [1–4, 8] and the surface exposure
of radiation-induced interstitials [9]. The atomic rough-
ness enhances the mobility of surface atoms. However,
the use of this effect for the formation of appropriate
nanoemitters that are characterized by low operating
voltages and, accordingly, low mean energies of bom-
barding ions [7, 8] is a challenge, because there is no
reliable collisional mechanism of surface erosion. In
this work, we study the radiation-induced erosion of
tungsten field emitters exposed to low-energy ions by
the methods of field ion microscopy and electron
microscopy.

EXPERIMENTAL

The study was carried out in a two-chamber field
emission microscope where samples and cryogenic
sorption ultra-high-vacuum pumps are cooled by liquid
hydrogen. In the ionic regime, the operating voltage
was varied from 2 to 15 kV; in the field-emission
regime, from 0.2 to 1.0 kV. The residual gas pressure in
1063-7842/02/4707- $22.00 © 20910
the inner chamber was kept at 10–7–10–6 Pa; the pres-
sure of the image gas, at (2–4) × 10–3 Pa. Needle-like
samples were made from 99.98%-pure VA-3 tungsten
by electrochemical etching. The radius of the tip curva-
ture was 5–40 nm. The samples were heated to temper-
atures in the interval 21–300 K by passing the current
through a supporting ear. The temperature was deter-
mined from the threshold field of evaporation [10]. The
emitting surface of the field emitters was cleaned and
then finished by evaporation at 21 K at a rate of 10–3–
10−2 nm/s in a positive-polarity field of 5.8 × 1010 V/m.

The parameters of the helium-ion irradiation of the
field emitters at a field strength E = (2–4) × 109 V/m
were determined by the technique described in [1, 11].
The energy of bombarding ions was varied over a wide
range, from the ionization energy of helium atoms to an
energy corresponding to the operating voltage
(24.5 eV). The mean helium ion energy is roughly
eEr0, where e is the charge of an electron and r0 is the
curvature radius of the hemispherical part of the emitter
surface. In our experiments, the mean energy was var-
ied between 25 and 200 eV. To prevent vacuum break-
down, resistors limiting the short-circuit current at a
level of 10–15 µA were connected in series with the
emitters. Once the emitters had been irradiated, the
voltage polarity was reversed and the surface erosion
was studied in the field ion regime.

EXPERIMENTAL RESULTS

The ion bombardment of needle-like emitters at
temperatures of 21–300 K results in an increase in the
electron current and, as a rule, in the breakdown of the
emitters at moderate mean current densities (109–
1010 A/m2). At fluences above 5 × 1018 ions/m2, ampli-
tude jumps by up to 50% are observed against the back-
002 MAIK “Nauka/Interperiodica”
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ground of a monotonically increasing current (Fig. 1).
At the instants of the jumps, the emission is highly
localized on the surface. Figure 2 shows the field ion
micrographs of a needle-like emitter of radius 30 nm
(a) before and (b, c) after irradiation by helium ions of
mean energy 150 eV at 21 K. The fluences were (b)
3.5 × 1018 and (c) 8.8 × 1018 ions/m2. After the irradia-
tion, the regular atom arrangement in the surface layer
and the ring-shaped configuration of atomic steps typi-
cal of atomically smooth surfaces are disturbed. At flu-
ences below 5 × 1018 ions/m2, emission centers are ran-
domly arranged on the surface (Fig. 2b). Most of them
are images of individual atoms. The slight local
increase in the contrast is due to the fact that, during the
bombardment, these atoms are displaced to sites with
lower surface coordination numbers, where the field
strength is locally enhanced. As the fluence rises to 5 ×
1018–1019 ions/m2, microasperities 1–5 nm across, in
addition to the already existing individual adatoms,
appear on the surface (Fig. 2c). Unlike the gradual
growth of these asperities due to irradiation-stimulated
diffusion, which was observed in [1, 4], some of them
grow jumpwise. Their occurrence causes associated
jumps of the field-emission current (Fig. 1). Detailed
study of the surface atomic structure near the microas-
perities by field ion microscopy is difficult, since
attempts to image them in the ion regime usually fail
because of their destruction by the action of electric-
field-induced mechanical stresses. However, field evap-
oration of asperities (domes) under controllable condi-
tions discovers microcavities (Fig. 3). The depth of
microcavities, which are discovered by field evapora-
tion or mechanical destruction, is nearly proportional to
the diameter of the microasperities, 3−6 nm.

DISCUSSION

The atomic topography of the nanoemitter surface
exposed to slow ions did not display any traces of
cumulative cathode sputtering. This is consistent with
the investigations into the radiation resistance of field-
emission cathodes with micron and submicron sizes of
the emitting surface [1–4]. However, the description of
field emitter surface erosion within the model of radia-
tion-induced surface self-diffusion needs considerable
refinement. The atomic roughness due to the ion bom-
bardment (that is, the displacement of atoms to low-
coordination sites on the surface) observed in this work
(Fig. 2b) increases the atom mobility and can be con-
sidered to be a mechanism of radiation-induced surface
self-diffusion. When the surface of low-voltage emit-
ters is modified, the energy imparted to tungsten sur-
face atoms by irradiation does not exceed 10% of the
helium ion energy. In most experiments performed in
this work, the transferred energy was much less than the
radiation energy threshold for the formation of stable
Frenkel pairs (the displacement threshold), heat of sub-
limation, or the energy of surface self-diffusion all con-
trolling the radiation-induced reconstruction of the sur-
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
face. Thus, the radiation resistance of the emitters bom-
barded by ions with a low (subthreshold) mean energy
cannot be described in terms of collisional mechanisms
of radiation-induced surface erosion.

When the nanoemitters are irradiated by slow ions
(i.e., when dynamic channels are virtually absent),
relaxation processes in surface layers containing a large
amount of embedded helium atoms may play an essen-
tial role. Specifically, it is known that blistering (the
formation of gas-filled domes on a metal surface) takes
place as a result of internal stress relaxation when
helium fluences are relatively high. Blistering in metals
has been studied at length only for high-energy (104–
106 eV) ions of inert gases [12–14]. However, the jump-
like formation of asperities discovered in this work
(Fig. 2c) seems to be of a similar nature. Metal damage
due to the pressure of helium embedded deep into the
material is well studied in relation to reactor building
problems [12–14]. At the same time, the behavior of
surface helium has been poorly studied. It is known that
the interaction between helium and metal atoms is
repulsive and the incorporation of helium atoms into
the crystal lattice causes local displacements of sur-
rounding matrix atoms. The energy of formation of a
helium interstitial depends on its location in the lattice,
varying from 5.5 to 7.4 eV in tungsten [12].

The quasi-static behavior of helium atoms in metal
surface layers is convenient for description starting
from the dependence of the energy of helium atom
incorporation into the electron gas. It has been shown
[15] that the energy of incorporation into the electron
gas of local concentration n at a point r is related to the
kinetic energy of conduction electrons as

(1)Ehe 2πLn r( ),=

2.0

0 20

I, µA

t, s
40 60 80 100 120 140 160

1.5

2.5

3.0

4.0

3.5

4.5

Fig. 1. Time variation of the field-emission current from the
tip of the tungsten emitter of initial radius 30 nm at a helium
pressure of 4.8 × 10–4 Pa.
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where L is the length of scattering of an electron by a
helium atom (in this relationship, the atomic system of
units is used: " = e = m = 1).

At the metal surface, the electron concentration
drops from the bulk value to zero virtually jumpwise.
The width of the transition region is on the order of the
Debye screening radius. The local electron concentra-
tion at some point k where the atom being analyzed is
placed can be determined by summing the electron con-
centrations na produced at this point by individual

(‡)

(b)

(c)

Fig. 2. Field ion images of the field emitter (a) before irra-
diation and after irradiation with helium ion fluences of
(b) 3.5 × 1018 and (c) 8.8 × 1018 ions/m2.
atoms [16]:

(2)

When quantitatively analyzing the distribution of
the electron concentration near the surface, one must
take into account the oscillatory character of the relax-
ation displacements of atomic planes in the surface
layer. Most quantitative data for the surface structure
and its interaction with various lattice defects have been
obtained in the pair potential approximation. The recent
method of many-particle potentials has made it possible
to refine considerably the character of atom displace-
ments in surface layers. The relaxation of the surface
layers and the distribution of the electron concentration
in them can be described in terms of the embedded
atom method [16, 17].

To find the electron concentration nk, we replace the
atomwize summation in (2) by the calculation of the
overall contribution from layers parallel to the surface
to the electron density. An analytical expression for
electron concentration can be derived by the method
elaborated in [18, 19]. Let {Xj} be a set of sites in the
jth atomic layer and {Gj} be a set of vectors in the

nk na r jk( ).
j

∑=

(‡)

(b)

Fig. 3. (a) Electron image of a surface microasperity and
(b) field ion image of a microcavity discovered after
removal of the microasperity.
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Fig. 4. Electron concentration distribution in the (100) plane 0.233 nm distant from the surface. n = 1 corresponds to the average
concentration in this section.
reciprocal space. Atoms in the jth plane contribute to
the electron density at the point k as

(3)

Here, Aj is the area of a primitive cell of the planar lat-
tice, zjk is the distance from the point k to the jth lattice,
G is a 2D vector of the reciprocal lattice, Tjk is the vec-
tor of displacement of the point k from the origin
related to the planar lattice, and  is the 2D Fourier
transform of the electron concentration.

For an arbitrary 2D wave vector, the Fourier trans-
form of the electron concentration is given by

(4)

where J0 is the zero-order Bessel function.

Let us introduce the orthogonal coordinate system
(x, y) related to the 〈100〉  crystallographic directions.
For {100} planes, the lattice spacings in the directions
x and y are designated as ax and ay, respectively (ax =

ay = a), and |G| = , where gxl = 2πl/ax and
gym = 2πm/ay (here, l and m are the indices of summa-
tion in the reciprocal space and a is the 3D lattice spac-
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ing). The displacement vector magnitude for the point

k is |Tjk| = .

To derive the dependence of na on rjk in tungsten, we
make use of the empirical relationship for the function
na(rjk) obtained in [17]. For distances far exceeding the
spacing between the nearest neighbors, we can apply
the exponential approximation

(5)

where n0 = 417.04 and c = 2.2046.
Substituting (5) and (4) into (3) and subsequent inte-

gration yield

(6)

where tlm = .

Near the {100} surface of tungsten single crystals,
multilayer atomic relaxation of the oscillatory type is
observed: the spacing between the first and second lay-
ers diminishes by 5.5%; between the second and third
layers, increases by 2.3%; and between the third and
fourth layers, diminishes again by 0.6% [17]. Expres-
sion (6) shows that the minimal electron concentrations
lie on a straight line passing parallel to one of the 〈100〉
directions through the centers of octahedral and tetra-

T xjk
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hedral voids in the crystal lattice. The deepest mini-
mum of the electron concentration is observed at a dis-
tance of 0.233 nm from the surface. Figure 4 demon-
strates the distribution of the electron concentration in
the (100) plane 0.233 nm distant from the surface. The
concentration is normalized to the average concentra-
tion in the given cross section. Its minimum is at the
center of an octahedral void; hence, as follows from
relationship (1), a helium atom that occupies this posi-
tion must have the highest binding energy. Thus, {100}
layers of the tungsten surface act as traps for helium
atoms. To find the absolute binding energy of helium
interstitials in surface layers by formula (1), one must
perform a self-consistent calculation of the relaxation
in the neighborhood of the helium atom. At sufficiently
low temperatures, one can expect the appearance of
helium clusters near the surface, which cause groups of
tungsten atoms to be displaced, i.e., nanoblistering. In
this work, nanoblistering on the field emitter surface
was observed during low-energy bombardment with
fluences on the order of 1019 ions/m2. This value is
much less than the critical fluences at which blistering
was observed in macrocrystals exposed to fast helium
ions [13]. It should be noted that low-energy (sub-
threshold) ion bombardment does not produce point
trapping centers (vacancies and intrinsic interstitials)
for helium atoms in the bulk of the microtarget. There-
fore, a major fraction of the helium atoms may be cap-
tured in the surface layer of the crystal even at low flu-
ences. In this case, the local helium concentration in the
surface layer may reach a level close to the saturation
limit in bcc metals (0.6 helium atom per metal atom
[13]). This is a possible explanation for the low fluences
causing nanoblistering
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Abstract—Ion emission due to the sputtering of metallic cadmium by α particles from 238Pu is studied. Exper-
iments are carried out in helium at different cadmium foil temperatures (from 20 to 280°C) and gas pressures
(from 75 to 2200 torr). The sputtering of the metallic cadmium causes the emission of Cd(II) excited ions in the
4d95s22  D3/2, 5/2 and 4d106s2S1/2 states. Above 160°C, the population of these stares grows exponentially. At a
temperature of 240°C and a helium pressure in the chamber of 600 torr, the sputtering ratio of metallic cadmium
is found to be 6.26 × 10–14 g per α particle; i.e., one α particle knocks out about 108 cadmium atoms from the
foil. From spectroscopy and microphotography examinations of the metallic sample surface, a two-step model
of ion emission is suggested. The model involves (1) the formation of a high-temperature wedge, which ejects
a cadmium droplet, and (2) self-diffusion of displaced cadmium atoms in the droplet toward the surface. © 2002
MAIK “Nauka/Interperiodica”.
The bombardment of a solid surface by energetic
particles sputters the target material and causes the
emission of secondary particles, such as electrons, ions,
and neutral atoms [1, 2]. This effect is widely used in
applications. Beams of heavy Ar or Kr ions with ener-
gies of 10–14 keV are applied in etching semiconduc-
tors [3]. Cathode sputtering by electrons produces
metal vapors of density ~1014 at/cm3 in hollow-cathode
laser tubes [14]. Such a vapor density is sufficient for
the operation of copper-vapor [5] and other metal-vapor
lasers [6].

Materials can also be sputtered by nuclear particles.
It is known that an uranium fission fragment escaping
the fisser entrains different particles, in particular, par-
ticles of the unfissioned substrate, in amounts up to ten
atoms per fission [7].

Material sputtering is accompanied by photon emis-
sion, because some ions and neutrals turn out to be
excited [1]. Intense photon emission was observed
when Cd, Zn, Pb, Ag, Bi, and Cs films applied on quartz
glass were sputtered by the energetic products of the
3He(n, p)3T nuclear reaction [8, 9]. The intensity of the
emission grew upon heating the quartz substrates to
70°C (Cs), 140–240°C (Zn, Pb, Bi, and Cd), and 560°C
(Ag). It was also shown [9] that a nuclear-pumped laser
that has a cadmium film and is excited by the products
of the 3He(n, p)3T nuclear reaction may have a low las-
ing threshold at substrate temperatures of 162–206°C
when utilizing the 5s2 2D5/2–5p2P3/2 transition of a
Cd(II) ion (λ = 442 nm).

In this work, we study luminescence arising when a
1-mm-thick cadmium metal foil is sputtered by α parti-
1063-7842/02/4707- $22.00 © 20915
cles from 238 plutonium. For many applications, the
use of a thick metallic foil may turn out to be more effi-
cient than a thin foil applied on a quartz substrate.

The process was carried out in the setup described in
[10]. A cadmium target (a disk of diameter 40 mm) and
a planar source (diameter 25 mm) of α particles were
placed in a stainless steel chamber (diameter 80 mm,
length 80 mm). The target and the source mounted ver-
tically and parallel to each other were 40 mm apart.
Their planes were parallel to the chamber axis and to
the entrance slit of the monochromator. The target was
placed near the chamber axis, but its surface could not
be scanned by the photodetector. The source of α parti-
cles was near the side wall of the chamber and also

1 2 3 4
5 6

7

8

9

10

Fig. 1. Experimental setup for the study of luminescence
arising when cadmium metal is irradiated by alphas of
energy 5.3 MeV. 1, heater; 2, chamber; 3, movable shutter;
4, quartz window; 5, entrance slit; 6, MDR-23 monochro-
mator; 7, objective lens of monochromator (100 × 100-mm
mirror); 8, cadmium metal (foil); 9, α source (238Pu); and
10, light collection region.
002 MAIK “Nauka/Interperiodica”
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Fig. 2. Luminescence spectrum observed when cadmium metal is sputtered by alphas in helium. The He pressure is 600 torr, the
Cd temperature is 240°C, and the monochromator slit width is 2.2 mm. 1200-II diffraction grating is used (1200 lines/mm). The
insert shows a part of the spectrum near 325 nm taken with a high resolution.
could not be scanned by the photodetector. The optical
emission was incident on the photodetector from a
region between the target and the source. The bound-
aries of the region were offset by ±10 mm from the
chamber axis.

A movable shutter making it possible to vary the
location of the boundary on the side of the cadmium
target was placed between the entrance slit of the
monochromator and the target (Fig. 1). The total α par-
ticle flux toward the target surface was 3.75 × 107 par-
ticles/s. The energy of the particles was defined by the
gas pressure in the chamber.

The chamber was equipped with a heater, which
raised the cadmium foil temperature from 20 to 280°C.
The foil temperature was monitored by a Chromel–
Copel thermocouple.

The photon emission was detected by FÉU-100
(wavelengths of 200–800 nm) and FÉU-112 (wave-
lengths of 600–1200 nm) photomultipliers. Both photo-
multipliers were cooled to –60°C to suppress the noise
level and operated in the photon counting regime. After
being evacuated to a high vacuum, the chamber was
filled with a gas or a gas mixture to a pressure of 75–
2200 torr. During the time of measurement, the gas was
continuously purified with sponge titanium heated to
600–700°C to prevent the quenching effect of the impu-
rity gases (H2O, N2, CO2, etc.) desorbed from the
chamber walls. Usually, pure He was used, since other
inert gases (Ne, Ar, or their mixtures) have a strong
quenching effect on the luminescence associated with
the Cd(II) 5s2 2D levels. Note that the range of α parti-
cles in helium exceeded 4 cm even at a pressure of
2200 torr and they reached the cadmium target in all
cases because of their high initial energy (5 MeV).

A typical luminescence spectrum arising when a
cadmium foil is irradiated by α particles with He as a
buffer gas is shown in Fig. 2. The spectrum contains
largely Cd(II) ion lines, which are related to the Cd(II)
5s2 2D5/2, 3/2 Beitler levels at 325, 441.6, 214.4, 226.5,
and 353.6 nm directly or through cascade transitions.

Of atom lines, the spectrum contains only Cd(I) res-
onance lines at wavelengths 326.1 and 228.8 nm; other
ion lines are transitions from the Cd(II) 6s2S1/2 level.
The energy diagram for the cadmium atom and the cad-
mium ion is displayed in Fig. 3, wherein these transi-
tions are depicted.

The ion line intensity depends on the Cd foil tem-
perature. As the temperature grows, the intensity of all
the lines increases sharply but the spectrum as a whole
and the intensity ratio between individual lines remain
unchanged. The temperature growth of the intensity of
the line at 441.6 nm and of the two unresolved lines at
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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325 + 326.1 nm is shown in Fig. 4 in the logarithm of
intensity–reciprocal temperature coordinates. The
exponential growth of the luminescence starts at tem-
peratures exceeding 150–160°C and is well approxi-
mated by the expression

(1)

where A is the energy of activation of thee process, k =
8.6153 × 10–5 eV/K is the Boltzmann constant, and T is
the absolute temperature of the cadmium foil. For the
unresolved lines at (325 + 326.1 nm), A = 0.85 eV or
20.41 kJ/mol. For the 441.6-nm line, A = 0.749 eV or
17.98 kJ/mol. All these values agree well (within the
accuracy of measurement) with the energy of activation
Q of self-diffusion in metallic cadmium, 18.2–
19.1 kcal/mol [2]. Thus, one can suppose that the
growth of the Cd(II) ion line intensity after the α irradi-
ation is related to the enhanced self-diffusion rate of
cadmium atoms in the foil.

The range of alphas in the cadmium foil depends on
their energy and the angle of incidence. Therefore, the
growth of the Cd line intensity with increasing buffer
gas pressure (Table 1) can be associated with a decrease
in the alpha range in the substrate, since the particles
lose their initial energy when passing through the buffer
gas.

We performed tests experiments to find the contri-
bution from the luminescence due to the Cd vapor exci-
tation, since the Cd vapor partial pressure in helium was
other than zero at the experimental temperatures (200–
260°C) and equaled 10–3 torr or less. Under such condi-
tions, the Cd(II) Beitler levels can be occupied via the
Penning reactions or via charge exchange with He+,

, He*, or  produced by alphas passing through
the gas. Our experiments showed that in the case when
alphas could not strike directly with the metallic foil but
freely passed through the gas space, the luminescence
due to the cadmium vapor excitation at temperatures of
200–260°C was five to six times lower than that due to
direct sputtering by alphas.

The spectrum of the luminescence associated with
the α particle bombardment depends on the choice of
the buffer gas. Figures 5 and 6 demonstrate the spectra
obtained when the chamber was filled with pure Ne and
pure Ar, respectively. The difference in these spectra is
explained by the quenching effect the buffer gas has on
the Cd ion emission from the foil. The presence of the
excited states of the buffer gas may also be a factor. To
estimate the quenching effect of Ne and Ar atoms on the
ion level 5s2 2D, we measured the intensity of the line at
325 nm (the Cd(II) 5s2 2D3/2–6pP transition) when a
small amount of Ne and Ar was added to the He buffer
gas. As the concentration of the impurity gas rises, the
luminescence is quenched smoothly in both cases. The
rates of quenching of the Cd(II) 5s2 2D3/2 level were
estimated at 1.8 × 10–10 cm3/s (Ar) and 10–10 cm3/s
(Ne). For the 5s2 2D5/2 level, the rates were found to be

I A/kT–( ),exp∼

He2
+ He2*
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Fig. 4. Temperature dependence of the Cd(II) Beitler line
intensities. (h) 441.6 nm, He buffer gas, pressure 300 torr
and (d) 325.0 nm (together with the unresolved resonance
line at 326.1 nm), He buffer gas, pressure 50 torr.
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Fig. 5. Luminescence spectrum observed when cadmium metal is sputtered by alphas in neon. The Ne pressure is 360 torr, the Cd
temperature is 240°C, and the monochromator slit width is 2.2 mm. A 1200-II diffraction grating is used (1200 lines/mm).
1.3 × 10–10 cm3/s (Ar) and 10–10 cm3/s (Ne). These find-
ings correlate well with those in [13], where an increase
in the threshold and a decrease in the lasing power for
the Cd(II) ion line at 441.6 nm were observed with
small amounts of Ar or Ne added to He.

The lifetime of the Cd(II) 5s2 2D Beitler levels is
long. According to [11, 12], the spontaneous emissivity
for the line at 442 nm is 1.4 × 106 s–1 (the Cd(II)
5s2 2D5/2–5p 2P3/2 transition) and 2.85 × 106 s–1 for the
line at 325 nm (the Cd(II) 5s2 2D3/2–5p 2P1/2 transition).
These levels are used for obtaining the lasing effect,
including in lasers pumped by nuclear reaction prod-
ucts [13, 14]. The population efficiency for the Cd(II)
ion levels upon sputtering of a metallic foil can be esti-

Table 1.  Intensity of Cd(II) ion lines vs. buffer gas pressure.
The Cd temperature is 220°C

He pressure, torr
Line intensity, arb. units

λ = 325 nm λ = 442 nm λ = 275 nm

150 2584 1494 775

300 3170 1780 643

600 3930 1839 842

1900 4443 1658 724
mated by comparing the Cd spectra with luminescence
spectra taken in He–Ne–Ar (He, 760 torr; Ne, 15 torr;
and Ar, 7.5 torr) and Ar–Xe–CCl4 (Ar, 760 torr, Xe,
76 torr; and CCl4, 3.8 torr) mixtures under identical
conditions. With the technique described in [10], we
found that the lasing threshold of a nuclear-pumped
cadmium laser utilizing the emission of excited ions
due to bombardment by nuclear particles is comparable
to the lasing threshold of a nuclear-pumped He–Ne–Ar
laser, about 1015 Td/(cm2 s) [15]. It was shown that the
populations of the Ne(I) 2p1 level, Cd(II) 5s2 2D level,
and B state of a XeCl* molecule are related as 0.011
(Ne) : 1 (Cd) : 18.2 (XeCl*). Thus, the sputtering mech-
anism of populating Cd(II) ion levels is close to exci-
mer media in nuclear-to-optical energy conversion effi-
ciency.

By varying the acceptance solid angle (Fig. 1) with
the shutter, we measured the spatial distributions of the
density of excited ions emitted at wavelengths of 325,
441.6, and 274.9 nm (Fig. 7). In spite of the great dif-
ference in the de-excitation times of these levels
(roughly by 300 times), all three curves are nearly coin-
cident with each other. Since the line at 274.9 nm (the
Cd(II) 6s 2S1/2–5p 2P3/2 transition) can by no means be
related to the Beitler long-lived levels through cascade
transitions, this fact can be explained only if a two-step
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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The insert shows a part of the spectrum near 325 nm taken with a high resolution.
ion emission mechanism is assumed. At the first step,
an α particle, when being decelerated in the cadmium,
interacts with the lattice atoms, displacing some of
them into interstices. Some the atoms displaced may be
in the excited state. The kinetic energy of the particle
rapidly heats a limited region of the lattice, causing the
ejection of a heated metal droplet containing cadmium
atoms displaced from the lattice sites.

The size and initial velocity of the droplet depend on
the particle energy, foil temperature, and the angle of
incidence of the particle on the surface.

At the second step, due to the self-diffusion of the
atoms displaced, the flying droplet emits excited ions in
the states Cd(II) 5s2 2D (λ = 325 and 442 nm) and Cd(II)
6s 2S1/2 (λ = 274.9 and 257.3 nm). The atoms diffuse
into the droplet to combine with vacancies. At cadmium
temperatures of 160–260°C, the self-diffusion coeffi-
cient increases by many orders of magnitude and the
displaced atoms readily emerge on the droplet surface.

The fact that the Cd(II) 4d95s2 2D states of the
excited ions prevail can be associated with the decay of
the autoionized states of the excited cadmium atoms
[16]. The autoionized states of cadmium, which have
the configuration Cd(I) 4d95s25p, appear when an elec-
tron from the 4d10 closed shell is excited. Then, the
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
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Fig. 7. Spatial distributions of the density of Cd(II) excited
ions when cadmium metal is sputtered by alphas in helium.
L is the distance from the Cd foil surface. The He pressure
is 1900 torr, and the Cd foil temperature is 220°C. λ = (h)
325, (o) 441.6, and (m) 274.9 nm.
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transitions Cd*(4d95s25p)  Cd+(4d95s2) + e + ∆E
will produce the desired ions.

We estimated the size of the droplets by weighing
the alpha-melted metal at various energies of alphas.
The cadmium film was weighed on an analytical bal-
ance before and after it had been irradiated in a cham-
ber filled with helium to various pressures. The irradia-
tion was carried out at a constant temperature of 240°C
within a fixed time interval. Since the flux and energy
of alphas striking the target were known, one could
determine the weight of the metal knocked out by one
particle. The results are summarized in Table 2, which
lists the sputtering ratio for the cadmium metal at room
temperature. The sputtering ratio was measured after
two-month exposure in vacuo.

The microphotographic examination of the cad-
mium foil irradiated surface showed that the metal is
ejected from the interior of the film. Each of the alphas
produces a near-cylindrical ejection region about
1.0 µm across. The longitudinal size of the region is on
the order of the particle range. Thus, the droplets have
various sizes and temperatures depending on the initial
energy of the particle. These parameters govern the
self-diffusion rate of the atoms and their escape from
the metal.

Table 2.  Sputtering ratio of cadmium metal exposed to
alphas with an energy of 5.3 MeV in a helium atmosphere for
various gas pressures

He pressure, torr Cd temperature, °C Sputtering ratio,
g/particle

0 20 4.43 × 10–18

150 200 2.55 × 10–14

300 200 3.57 × 10–14

600 200 6.26 × 10–14

1900 200 3.21 × 10–14
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Abstract—Based on the data obtained by developmental biology, molecular biology, and biochemistry, growth
processes in living cells are described. These processes are discussed in terms of radiation chemistry, integrated
optics, and nanooptics. Approaches to experimental fiber growth for the purposes of informatics and nanome-
chanics are proposed. © 2002 MAIK “Nauka/Interperiodica”.
Membranes and fibers are the basic structures of liv-
ing organisms, since they are involved in energy supply,
locomotion, information processing, and other basic
functions. Biochemists and microbiologists have devel-
oped technologies for producing artificial nanomem-
branes and membrane particles, such as micelles, lipo-
somes, and vesicles, ranging in size from 250 Å to
300 µm [1]. Data obtained in studies on these particles
explain many mechanisms of the growth and function-
ing of cellular and noncellular organisms (viruses) [3].
Lipids are the basic components of membranes.

Amphiphilic molecules (including lipids) in aque-
ous solutions form spontaneously ordered monolayers
on a water surface and bilayered liposomes (vesicles) in
a water column. The kind of structures for a given sub-
stance (lipid) depends mainly on its concentration in
water and on the water temperature. Figure 1 schemat-
ically shows the formation of an artificial lipid bilayer
structurally similar to the membrane of a living cell.
The properties and structure of lipid vesicle membranes
in aqueous solutions can be modified by adding other
types of lipids, cholesterol, proteins, calcium ions, etc.
to these solutions.

In living organisms, the growth of cell membranes
depends both on external factors (such as the composi-
tion of the extracellular medium and the properties of
neighboring cells) and on the functional properties of
intracellular organelles and substances (nucleus, ribo-
somes, cytoplasmic proteins, etc.). Of the many phe-
nomena governing growth and evolutionary processes
in a cell, we will concentrate on the formation of axons,
the long output fibers of nerve cells (neurons), bearing
in mind the growth of artificial neural networks.

One of the basic ideas of neurobiology is that an
axon is a long fibrous outgrowth of the nerve cell body:
in neurons with a diameter of about 100 µm, the axon
length may exceed 1 m [2].

Neurons differentiate from neuroblasts, which are
rounded cells whose neural fate is specified at early
1063-7842/02/4707- $22.00 © 20921
stages of embryonic development (Fig. 2). These cells
subsequently elongate due to the deployment of micro-
tubules and actin filaments, which are cytoskeletal pro-

(a) (b) (c)

3

2

1

5

Fig. 1. Production of a lipid bilayer: 1, vessel with 2, solvent
(water); 3, surface film with a lipid monolayer; 4, pipette (a)
before immersion, (b) after first immersion, and (c) after the
second immersion into the solvent; 5, vesicle with protein
molecules incorporated into it (if these molecules are
present in the solution).
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tein structures connected to transmembrane linker pro-
teins of the integrin family (Figs. 2, 6). At the point of
connection, an extension (spike) is formed on the mem-
brane, facilitating the growth of a fiber out of a cell in
the corresponding direction. The growth processes
interconnect neurons, and the development of this sys-
tem continues virtually throughout a human’s life. The
most general (thermodynamic) theory explains the for-
mation of the branching cell network through the
resulting decrease in its free energy, which is due pri-
marily to cell–cell adhesion forces.

To construct a more complete model of fiber growth,
let us also consider the growth of flagella in some bac-
teria, which is similar to the growth of axons [2, vol. 1]
(Fig. 3). A flagellum is the simplest biological machine
providing bacterial motility and some other functions.

The growth of flagella proceeds in several stages:
(1) the synthesis of tubulin, their basic construction
material, on an RNA template by the protein-synthesiz-
ing cell machinery; (2) tubulin polymerization and

(a)

(b)
1

3

2

Fig. 2. Formation and structure of neuroblasts. (a) Forma-
tion of neuroblasts in the ectoderm; (b) neuroblast structure:
1, microtubules; 2, membrane-bound protein microfila-
ments; and 3, cell nucleus.
arrangement into microtubules 10–20 Å in diameter;
(3) the stochastic formation of growth points (outward
extensions, or spikes) in the membrane; and (4) flagel-
lum formation from the spike in which microtubules
grow most steadily. Figure 4 shows microtubule forma-
tion via protein polymerization in the flagellum.

1

4

3
2

Fig. 3. Schematic representation of bacterial flagellum:
1, tubulin microtubules; 2, myosin globules; 3, lipid bilayer
(inner cell membrane); and 4, glycogen layer (outer cell
membrane).

1

2

Fig. 4. Microtubule assembling by polymerization of pro-
tein globules (macromolecules): 1, growth direction;
2, local electric vector of the wave stimulating the process.
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The mechanisms (stages) of axon and flagellum
growth are compared in Fig. 5. The initial stages are
similar, but subsequently some differences appear: the
flagellum grows as a multilayer tube; the axon, as a sin-
gle-layer branching tube. However, the growing tips in
both processes remain similar in the following aspects:
(1) the pointed growth cone at the tip of each process is
formed due to membrane deformation by protein
microtubules; (2) “building blocks” for the growth are
supplied to the growth cone from the cell body; (3) the
membrane of the growth cone contains anchor and
receptor proteins that (which) provide its adhesion to
the extracellular matrix and define the growth direction
(via the gradient of adhesion forces or chemotaxis); and
(4) building blocks are synthesized in the cell body
under the genetic control of the cell nucleus (DNA–
RNA–protein); this process is corrected by feedback
signals coming from the growth cone proteins.

Figure 6 shows a general scheme of the “construc-
tion process.” In the simplest terms, this process can be
described as follows:

(a) (b)

1

2

3

Fig. 5. (1–3) Growth stages of (a) flaggellum and (b) axon.
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
(1) Nutrients (building blocks) enter the cell through
the membrane by diffusion. Inside the cell, they are dis-
tributed over various organelles, including ribosomes.

(2) Ribosomes use these nutrients (amino acids) for
synthesizing protein molecules (e.g., actin and tubulin).
This synthesis occurs on RNA templates and is hence
controlled by the cell nucleus.

(3) Actin and tubulin molecules are transported to
the “assembling site,” i.e., to the spike that will give rise
to an axon or a flagellum.

(4) Actin and tubulin molecules are polymerized to
form the extension of microtubules and filaments ini-
tially present on the as yet smooth membrane, using
them as a substrate.

(5) New microtubules and filaments grow, extending
the membrane, and so on.

Now, using the model of radiation chemical pro-
cesses in a cell [3], we consider the role of sub-mm
electromagnetic waves in axon growth and, more spe-
cifically, in microtubule polymerization. The possible
role of electromagnetic waves in the feedback between
membrane protein and nuclear DNA and RNA mole-
cules was discussed in general terms elsewhere [3].

Figure 4 shows the scheme of actin polymerization
resulting in microtubule formation [2, vol. 2]. Unpoly-
merized actin is a globular monomer with a molecular
weight of about 40 000. The polypeptide chain of a
monomer carries one molecule of bound guanosine
triphosphate (GTP), which loses one phosphate residue

7
6

5

4
3 2

1

8

4

Fig. 6. Transport and synthesis of substances in the cell (the
exocytosis path) and transport of electromagnetic energy in
the cell (radiotaxis; feedback omitted): 1, cell nucleus con-
taining DNA molecules; 2, cell membrane; 3, ribosome;
4, actin microtubules (cytoskeleton); 5, membrane proteins
(integrins); 6, growing spike giving rise to a fiber; 7, wave
output in the direction of absorption; and 8, control wave
(photon).
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upon hydrolysis to form guanosine diphosphate (GDP).
Two forms of actin globules are schematically shown in
Fig. 7. A change in the number of bonds between this
molecule and protein loops changes the shape and abil-
ity of the loops to polymerize and form a microtubule.
This supposedly occurs under the effect of a certain
external mitogenic signal of chemical nature (i.e., a
special substance) [2, vol. 3]. However, a quantum of
electromagnetic radiation can also cause such a change
in the protein conformation [4]. This process has been
studied in detail for the protein systems involved in
photosynthesis [5]. The same applies to the system of
light detection in the vertebrate eye, where G protein
called transducin (which also carries a GTP molecule)
relates the reception of a quantum of light by rhodopsin
to an electric change in the photoreceptor cell. Rhodop-
sin, or visual pigment, is a complex protein consisting
of opsin (a glycoprotein–lipid complex) and a small
molecule of retinene, vitamin A aldehyde. According to
[1], rhodopsin converts a photon with an energy of
about 1 eV to a quantum of the rotational transition of
atoms (with an energy of about 0.01 eV) in the polar
groups of its retinene-bound glycoprotein component.
It is also known that EHF radiation stimulates ATP syn-
thesis in microorganisms and causes the conforma-
tional conversion of proteins to an active form in aque-
ous solutions [6, 7]. Apparently, quanta with the rota-
tional transition energy strongly affect the activation
energy of GTP–GDP transformation by hydrolysis

(a)

(b)

Fig. 7. Actin globules: (a) the dark globule contains a GTP
molecule and may be involved in polymerization; (b) the
dark globule contains a GDP molecule and is not involved
in microtubule formation.
(Fig. 8), which is similar to the catalytic effect of
enzymes (hydrolases) [8].

Taking into account the aforesaid, let us discuss the
possibility of simulating the electroradiochemical
aspect of fiber growth from a rounded cell (vesicle). To

N

C

NH2

NH

C=0

N=0

C

P P PO O O O

O

OOO

OO

N+

1

2

C C

Fig. 8. (1) GTP and (2) GDP molecules. Arrows show the
points of attachment to protein.

1

3

4

2

5

Fig. 9. Scheme of experiment: 1, growing spike giving rise
to a fiber; 2, wave (phonon or soliton); 3, vesicle in solution;
4, tubular waveguide; and 5, sub-mm wave pulsed maser.
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this end, it is necessary to maximally simplify the
scheme shown in Fig. 6. For example, we can consider
a simple bilayered lipid vesicle (Fig. 9) containing
membrane protein integrin connected to actin microtu-
bules which are in equilibrium with a spherical vesicle.
Assume that some amount of unpolymerized actin and
lipids is in the intracellular (intravesicular) space and
that the vesicle is in a solution well permeable to sub-
mm waves (i.e., in water with an appropriate pH). Such
initial conditions can be provided by biochemical meth-
ods (see above). Let us now introduce a thin polymer
waveguide made of a polar dielectric [1] into the cell.
The waveguide is structurally similar to the actin fila-
ment and is connected to a pulsed maser (a source of
sub-mm radiation) [4]. This device is intended to func-
tionally substitute for the nucleus, ribosomes, and other
cell organelles. Let the frequency and intensity of the
electromagnetic radiation provide actin polymerization
(in the range 50–200 cm–1). This will cause microtubule
growth in the direction of emission from the waveguide
and change the shape of the smooth membrane; i.e., a
spike will form. Membrane deformation will increase
its permeability to lipids dissolved in the intracellular
liquid, allowing new molecules to incorporate into the
membrane and participate in cell formation.

Apparently, the problem has only been formulated
in this paper, but formulating the problem is no less
important than solving it.
TECHNICAL PHYSICS      Vol. 47      No. 7      2002
CONCLUSIONS
(1) Quantized electromagnetic pulses with the

rotational transition energy can stimulate the growth
(polymerization) of microtubules and the formation of
fiberlike structures in bioorganic systems.

(2) Combining the methods of biochemistry, micro-
biology, nanotechnology, and nanooptics, researchers
can experimentally simulate the growth of fibers in liv-
ing cells.
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Abstract—Conditions for the electric breakdown of the accelerating gap of a plasma electron source are deter-
mined. It is shown that, depending on the gas pressure and the size of openings in the emission electrode, two
types of breakdown can occur. One of them is due to the ignition of a low-voltage discharge between the elec-
trodes of the accelerating system, and the other one is caused by switching of the main discharge from the anode
to the accelerating electrode. © 2002 MAIK “Nauka/Interperiodica”.
The production of emitting medium in plasma elec-
tron sources (PESs) [1] requires either puffing of the
working gas (in systems based on low-pressure dis-
charges [2]) or the use of a cathode material vapor as a
plasma-forming medium (in vacuum-arc sources [3]).
In both cases, the gas pressure in the accelerating gap is
elevated and, consequently, the electric strength of the
gap decreases. This problem is of special importance
for electron sources operating at rough vacuum [4, 5].
The aim of this study is to investigate the conditions
and cause for the electric breakdown of the PES accel-
erating gap at elevated gas pressures.

In the experiments, we used an electron source
based on a hollow cathode discharge and a plane-paral-
lel accelerating system (Fig. 1), which are described in
detail in [5]. To enable visualization, the high-voltage
insulator was made of Plexiglass. Electric breakdown
of the gap was initiated by an increase in either the
accelerating voltage or the discharge current. Experi-
ments were carried at different gas pressures and elec-
trode configurations. The instant of breakdown was
detected by the sharp increase in the current Ie through
a high-voltage rectifier connected to the accelerating
gap and the onset of a bright glow between the elec-
trodes of the accelerating system. The dependences
obtained are the result of statistical treatment of multi-
ple measurements.

Two types of breakdown of the accelerating gap
were observed. The first type of breakdown, conven-
tionally called “interelectrode breakdown,” occurs
between the accelerating electrode and the outer sur-
face of the anode. In this case, a sharp increase in the
current is observed only in the high-voltage rectifier cir-
cuit. The second type of breakdown occurs between the
discharge plasma and the accelerating electrode. The
breakdown current, which flows in the accelerating
electrode–plasma–hollow cathode circuit, is recorded
in both the high-voltage rectifier circuit and the power
1063-7842/02/4707- $22.00 © 20926
supply circuit. This type of breakdown, further called
“plasma breakdown,” is preceded by the onset of low-
frequency (0.1–10 kHz) discharge-current fluctuations.

The type of breakdown is mainly determined by the
size h of the PES emission openings and the gas pres-
sure in the accelerating gap. Relatively small openings
and low pressure result in interelectrode breakdown,
whereas large openings and high pressure lead to
plasma breakdown.

In our experiments, a 0.5-mm-thick Ti plate with
openings 0.6 mm in diameter was used as an emission
electrode. The first type of breakdown was forced by
increasing the voltage across the accelerating gap at a
constant emission current. Experiments with different

1

5

3

2

4

5

Id

Ie

7Ud

7Ue

Fig. 1. Schematic of the electron source: (1) hollow cath-
ode, (2) anode, (3) grid or perforated plate, (4) extractor,
and (5) insulator.
002 MAIK “Nauka/Interperiodica”
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anode electrodes (grids or plates with a different num-
ber of openings) show that it is the emission current that
affects breakdown. Figure 2 presents the dependences
of the accelerating-gap breakdown voltage Uem on the
electron emission current Ie (recorded just before break-
down) for different gas pressures. The experimental
results allow us to conclude that the electron beam pro-
vokes the breakdown of the accelerating gap. When inves-
tigating the interelectrode breakdown, it was also estab-
lished that the increase in the emission current over a
certain threshold value increased the breakdown volt-
age Uem, which was first mentioned in [4].

The second type of breakdown occurred when the
discharge current was increased at a constant voltage
across the accelerating gap. The maximum discharge
current Idm versus the accelerating voltage Ue is plotted
in Fig. 3. It is seen that the behavior of the current–volt-
age characteristic is opposite to that for the first type of
breakdown. The increase in the anode transparency by
increasing the number of openings results in an increase in
the current Idm. The experimental data indicate that, in this
case, it is the discharge current (rather than the emission
current) that is responsible for breakdown.

The different operating conditions and different
behaviors of these types of breakdown point to their
different physical mechanisms. It should be taken into
account that, if there is no emission (i.e., the discharge
current is Id = 0) in the case of interelectrode break-
down, then applying the accelerating voltage to the
accelerating gap results in ignition of the well-known
high-voltage glow discharge with a current of several
milliamperes. Actually, electric breakdown corre-
sponds to a transition from the high-voltage to low-
voltage discharge. This transition is caused by an addi-
tional ionizer (in our case, an electron beam).

The data on the second type of breakdown can be
explained based on the model proposed in [4]. This

6

40

Uem, kV

Ie, mA

10

80

1

2

4

8

200120 160

Fig. 2. Maximum accelerating voltage Uem vs. emission
current Ie for p = (1) 10 and (2) 9 Pa.
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model assumes that the breakdown of the accelerating
gap occurs when the plasma from the discharge region
penetrates into the gap. Two conditions must be satis-
fied for this penetration to occur. First, the thickness of
the anode sheath, which separates the discharge plasma
from the anode, must be much less than the emission
opening. Second, the distance between the plasma and
the accelerating electrode (which can be estimated from
the Child–Langmuir law) must be shorter than the accel-
erating gap length. When these conditions are satisfied, the
discharge current switches from the anode to the acceler-
ating electrode and the voltage across the accelerating gap
sharply falls [6], which is treated as breakdown. The
dependence of the maximum pressure on the emission
opening size noted in [4], as well as the fact that the dis-
charge current (rather than the emission current) gov-
erns the breakdown, shows that the overlap of the beam
and discharge plasmas cannot be treated as the main
mechanism of breakdown (as was proposed in [7]).

The main reason for the decrease in the anode
sheath thickness is the increase in the plasma density
due to both the increase in the discharge current and the
influx of gas ions from the accelerating gap. However,
the increase in the plasma potential caused by the
increase in the potential of the accelerating electrode
increases the sheath thickness. The plasma potential is
assumed to be positive with respect to the anode, which
is confirmed by direct measurements with the help of an
emission probe. Taking into account the current balance
and the possibility of the accelerating-electrode field
penetrating into the emission openings, we obtain the
following expression for the plasma potential ϕp:

(1)ϕp

kTe

e
--------

Sa jex 1 ξ
eDϕe

kTe
------------- 

 exp 
 + 

 

Id
--------------------------------------------------------------- ,ln=

1
2
3
4

2

40

Ue, kV

Idm, mA

6

80

1

120 160

3

4

5

Fig. 3. The greatest possible discharge current Idm vs. accel-
erating voltage Ue for p = (1, 2) 14.6 and (3, 4) 15.3 Pa.
Curves 1 and 3 show the experimental data, and curves 2
and 4 show the results of calculations.
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where jex is the density of electron current fluctuations
in the plasma, ϕe is the accelerating electrode potential,
D is the anode “electric transparency,” Sa is the anode
area, and ξ is the ratio of the emission area to the anode
area.

Using the expression for the anode sheath thickness
l from [4] and suggesting that the condition for plasma
penetration from the discharge region into the acceler-
ating gap is l = βh, we obtain a formula relating the
maximum discharge current to the parameters of the
discharge–emission system, as well as to the gas spe-
cies and pressure:

(2)

where nn is the density of neutrals in the accelerating
gap, Qe is the cross section for electron–impact ioniza-
tion of gas molecules by fast electrons, Qi is the total
cross section for the interactions of a slow ion in
plasma, Qn is the cross section for charge exchange of
fast ions, M is the ion mass, Ti is the temperature of
plasma ions, d is the accelerating gap length, the param-
eter β is determined experimentally (β < 1), and the
anode potential is assumed to be zero.

The results of calculations by formulas (1) and (2)
presented in Fig. 3 agree satisfactorily with the experi-
mental data, which confirms the proposed model of the

Idm
4

βh( )2
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ε0ϕp
3/2

ekTe

--------------- 1
3
4
---nnQed

Qi

Qn
------

MTe

mT i
-----------– 

 =

× 0.4eSc
2kTe

M
----------- 

  ,
second type of breakdown. The model also accounts for
the increase in Idm with increasing number of openings
in the anode diaphragm because, according to Eq. (1),
the increase in the transparency D leads to an increase
in ϕp, which, according to Eq. (2), increases Idm.

Thus, the experimental data obtained allow us to
conclude that the main reason for the breakdown of the
PES accelerating gap at elevated pressures is the pene-
tration of plasma from the discharge region into the
accelerating gap.
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Abstract—The properties of the Shannon and Tsallis informations in diagnosing laminar and turbulent
motions are compared by solving the set of Lorentz equations. A method for analyzing the mode of dynamic
behavior by constructing the function of number of states is proposed. © 2002 MAIK “Nauka/Interperiodica”.
The Shannon information is employed for the iden-
tification of nonlinear-system dynamic behavior and
makes it possible to distinguish laminar and turbulent
motions [1]:

(1)

Here, N is the number of system states and pi is the
probability of the system being in the ith state. In order
to apply (1) in the analysis of the time realization of a
signal, one has to define the state space of a dynamic
system and find the probabilities of these states. The
time slot principle [2] is commonly used to find time-
dependent information. First, the slot ∆T is chosen on
the time axis and information (1) found for this slot is
assigned to the time instant corresponding to either the
center or the right boundary of the slot. Then, the slot
moves along the time axis, allowing one to construct
the time dependence of the information. The space of
states may be defined, for instance, by superimposing a
mesh with a given partition on the attractor in the phase
space (Fig. 1). The state when a point of the attractor
falls into a cell (j, k) is taken to be the system state with
the number (k – 1)J + j. Within the current slot, the total
number N of different system states constituting the
complete set of events is determined, the probabilities
pi [i = (1, N)] of the realization of these states are found,
and the information at t = ∆T/2 is calculated. Then, the
slot is shifted by ∆τ, the information for t = ∆T/2 + ∆τ
is calculated, etc. The Shannon information is a specific
case of the Tsallis information [2],

(2)

having a wider variety of properties than the Shannon
information. As was shown in [3], IT  IS as the numer-

IS pi pi.log
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N
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 
 
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ical parameter q tends to unity. Let us compare the proper-
ties of the Shannon and Tsallis informations, as applied to
the diagnostics of laminar and turbulent modes, by the
example of solving the set of Lorentz equations

(3)

with the control parameters σ = 10, b = 8/3, and r =
170.5. In this case, the supercriticality parameter r –
rv = 170.5 – 166.07 = 4.43.

Set (3) was solved numerically. The values of the
functions x, y, and z at the time instant tn + 1 were repre-
sented as a truncated Taylor series about the time point tn.
Higher derivatives were expressed in terms of first-order
derivatives. This made it possible to turn to the (n + 1)th
time layer. The first four terms of the Taylor series were
used, so that the method was accurate to the 4th order.
In the calculations, the time step was ∆t = 0.0001.

Figure 2a shows the time realization of the x compo-
nent of the solution involving alternating laminar and

ẋ σ y x–( ), ẏ rx xz– y,–= =

ż xy bz,–=

K

k

j J

Fig. 1. Introduction of the state space of a dynamic system
by superimposing a mesh on the phase space area occupied
by the attractor. J and K are the numbers of cells in the x and
y directions, respectively.
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Fig. 2. (a) Time realization x(t) plotted by 104 points; (b) the
Shannon information; and (c) and (d) the Tsallis informa-
tion at q = 0.999 and 1.001, respectively. The state space is
introduced in the plane x(t)–y(t) by superimposing a mesh
with J = 30 and K = 30 on the area occupied by the attractor.
The time slot consists of 100 points.
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Fig. 4.
turbulent modes for x(0) = 0, y(0) = 0.01, and z(0) = 0.
In Figs. 2b–2d, the Shannon and Tsallis informations
for q close to unity are presented. As is seen, to the lam-
inar modes in the time realization, there correspond
information oscillations about the slowly varying mean
value. The turbulent modes are described by informa-
tion oscillations with amplitudes substantially exceed-
ing the noise. At q ≈ 1, the Shannon and Tsallis infor-
mations are close to each other (Figs. 2b–2d). As q
increases, the signal-to-noise ratio for the Tsallis infor-
mation changes (Figs. 3a, 3b).

The effect of noise suppression stems from the fact
that the noise in the current slot has the form of a series
of states with a low relative frequency of occurrence.
When raised to a power q > 1, the weight of low-fre-
quency states decreases compared to that of higher fre-
quency states (corresponding to the signal). At q = 0,
the Tsallis information IT(t) = N(t) – 1, where N(t) is the
number of system states at a time instant t. Thus, when
the turbulent motion arises, the number of system states
changes abruptly compared to that in the laminar mode
(Fig. 4). The further decrease in the parameter q (in the
range of negative values) does not affect qualitatively
the behavior of IT(t) when the laminar and turbulent
modes alternate. With decreasing q, the signal level
(Fig. 5) and the noise level increase. The increase in the
noise intensity for q < 1 is because the weight of low-
frequency states grows.

Turbulent and laminar modes differ from each other
in number of possible system states. Therefore, the cur-

0.662

0 20

IT(t) (a)

40 60 80 t

q = 2.5

0.664

0.660

500

1.0 1.5

η (b)

q

y = 1.186exp(2.69q)

1000

0
2.0 2.5

*

*

**

Fig. 3.
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rent number of system states is an appropriate parame-
ter for identifying the dynamic mode. Let us use the fol-
lowing rule to count the number of system states: the
number of system states S increases by unity if some
state occurs for the first time. Depending on the depth
of analysis, by a “state” one means either a state at the
current time instant, S(tn), or a set of states, (S(tn),
S(tn − 1), …, S(tn – k)).

The initial growth of the function S(t) (Fig. 6a) is
associated with the accumulation of nonrepeating
states. In the course of time, the function S(tn) saturates:
the space of its states becomes exhausted rather rapidly.
For the more complicated notion of state, the saturation
proceeds more slowly (curves 2 and 3 in Fig. 6a). To
laminar slots of the function y(t) (Fig. 6c), there corre-
spond horizontal segments of the function S. In ranges
of turbulence, S increases because new states appear in
the dynamic process. It is worth noting that in the
framework of this approach, a turbulent burst observed
in previous time instants will be perceived as laminar in
subsequent time instants. This causes the saturation of
S(T) and leads one to analyze the next (in terms of the
depth of embedding) notion of system state.

The saturation of S(T) can be avoided by limiting the
set of states being analyzed. Let us introduce a time slot
of width ∆T. In order to relate the number of states and
time, S(tn), we consider the states realized within the
slot in the range tn – ∆T < t < tn. Information about the
states having occurred by a time t < tn – ∆T is lacking.
The function S(tn) increases by unity if the state corre-
sponding to the time instant tn has not been occurred in
the current slot (within the interval tn – ∆T < t < tn). Fig-
ure 6b shows the results of analysis of the laminar and
turbulent modes for the y component of the Lorentz
system. They were obtained by calculating the number
of system states that occur in the time slot of width
∆T = 3 moving along the time axis. A comparison of
curves 1 and 2 in Figs. 6b with the curve y(t) in Fig. 6c
shows that the slot function S(tn) does not saturate. This
makes it possible to diagnose turbulent modes more
precisely. We suppose that the slot width ∆T is defined

2000

0 20

IT(t)

q = –1

40 60 80 t

3000

1000

Fig. 5.
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by the setting time of the laminar mode: the slot has to
cover at least one period of the laminar motion.

Thus, it is possible to specify the signal-to-noise
ratio for the time-dependent Tsallis information by
varying the parameter q. The analysis of the number of
system states with the use of the Tsallis information at
q = 0 has shown that laminar and turbulent motions dif-
fer in the number of states. Our results offer possibili-
ties of developing an effective method for diagnosing
laminar and turbulent modes. This method is based on
the calculation of the number of system states within a
current time slot and is easy to implement.
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Fig. 6. (a) Number of states of a dynamic system for various
depths of analysis: (1) S = S(tn), (2) S = S(tn, tn – 1), and
(3) S = S(tn, tn – 1, tn – 2). (b) Comparison of the numbers of
states S(tn) found (1) without and (2) with the use of the
time slot. (c) Time dependence of the y component of the
Lorentz system.
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Abstract—A model of the nonequilibrium semiconductor–metal phase transition in narrow-gap transition met-
als due to self-heating is considered. It is shown that self-heating may diminish the energy gap and, as a conse-
quence, increase the current. Parameters resposible for the bistable behavior of the system are found. © 2002
MAIK “Nauka/Interperiodica”.
There is a wide group of narrow-gap transition met-
als that undergo the reversible insulator–metal transi-
tion without changing their aggregative state [1, 2].

At the phase transition temperature Ttr, the tempera-
ture dependence and the value of the conductivity
change drastically. Below Ttr, it varies by the exponen-
tial law (which is typical of insulators and semiconduc-
tors); above Ttr, the conductivity weakly declines,
which is characteristic of metals.

Mechanisms responsible for electron transitions still
remain unclear (see, e.g., [3, 4]). However, since tem-
perature variations may happen as a result of self-heat-
ing of a material (in this case, the conductivity changes
stepwise by several orders of magnitude), the behavior
of these substances can be described in terms of heat
exchange with the environment and resulting current
instabilities.

In insulators and semiconductors, the temperature
dependence of the charge carrier concentration obeys
the law

(1)

According to the electron theory of metal–semicon-
ductor phase transition [1], the energy gap decreases
with increasing temperature due to the growth of the
charge carrier concentration n. This decrease can be
represented approximately in the form

(2)

where Eg0 is the energy gap at n = 0 and K is the elec-
tron–phonon interaction constant.

Then, the expression for the conductivity takes the

n n0
Eg

2kT
---------– 

  .exp=

Eg Eg0 Kn,–=
1063-7842/02/4707- $22.00 © 20932
form

(3)

where M = n0/σ0 is a constant.

Let us consider a conductor with a circular cross
section of radius R where the insulator–metal phase
transition may take place and find its I–V characteris-
tics. We assume that the heat being released in the sam-
ple is spent on its warming. Under steady-state condi-
tions, the direct current power is equal to the thermal
flux dissipating from the surface into the environment:

(4)

where j is the current density in the sample and ∆ϕ is
the potential difference across the sample.

We assume that the sample surface makes a major
contribution to the thermal resistance and that the sam-
ple temperature is uniform. This situation corresponds
to the case when the radius of a current filament [5]
equals the radius of the conductor. Then, in view of
Eqs. (3) and (4), the expression for the I–V characteris-
tic of the sample can be written in the form

(5)

Due to the presence of feedback, the I–V character-
istic is nonlinear.

σ σ0
Eg0 Mσ–

2kT
-----------------------– 

 exp=

=  σ0
Eg0

2kT
---------– 

  Mσ
2kT
--------- 

  ,expexp

jπR2∆ϕ α 2πR T T0–( ),=

j σ0∆ϕ
Eg0 M

j
∆ϕ
-------–

2k T0
jR∆ϕ
2α

--------------+

--------------------------------------–

 
 
 
 
 

.exp=
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To analyze the S-shaped regions of the I–V charac-
teristic, we will pass to the dimensionless variables

and find its singularities:

(6)

In general, the number of singularities may equal
two, one, or zero. The transition from the S-shaped
curve to the monotonic (critical) I–V characteristic
implies that the condition

must be satisfied at the critical point.
Then, from Eq. (6), it follows that

(7)

Equating the second derivative to zero, we find that

(8)

Combining Eqs. (7) and (8), we come to the qua-
dratic equation

hence, Xc = 3.
Then, from the condition that the first and second

derivatives equal zero, we have

Using (5), we arrive at

Earlier, for pure semiconductors, we estimated the
critical energy gap at [6] E0 = 4 or approximately
0.2 eV. Denoting

we obtain the phase diagram of the system (see figure):

In the figure, the hatched region corresponds to the
absence of bistability (nonequilibrium phase transi-
tions); the straight line, to the zeroth gap width. Only
the states below this line seem to have physical mean-
ing.

Mj
2kT0∆ϕ
-------------------- Y ,

R
2αT0
------------- j∆ϕ X ,

Eg0

2kT0
------------ E0= = =

∂∆ϕ
∂j

---------- 0
1
σ0
-----

E0 Y–
1 X+
--------------- 

  1
–Y E0X–

1 X+[ ] 2
-----------------------+

 
 
 

.exp= =

∂2∆ϕ
∂ j2

------------- 0=

X2 2 E0–( )X Y– 1+ + 0.=

–E0X 4 1 X+[ ]+ Y .=

X2 2X– 3– 0;=

16 3E0c Yc–– 0.=

kT0

Mσ0
----------- 16 3E0–( ) 4 E0–( ).exp=

Mσ0

kT0
----------- ∆Eef,≡

∆Eef E0 4–( ) 16 3E0–( ).exp=
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For example, for VO2, the energy gap is about
0.5 eV [1]. Therefore, this material falls into the region
of bistability. The formulas found above are valid in the
case when the hot (or cold) phase occupies the entire
conductor. The minimum temperature is expected on
the sample surface. If this temperature is so low that the
hot phase cannot exist, the transition to the cold phase
occurs and a two-phase system forms. In this case, the
I–V characteristic changes, since the interface shifts
when the potential difference varies. We intend to con-
sider this situation in subsequent works.

Thus, the analysis of the I–V characteristic for nar-
row-gap transition metals demonstrates that self-heat-
ing may cause a step in the conductivity. The parame-
ters responsible for the bistable behavior of the system
are found.
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