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Abstract—The structural components of a computer handbook on electrostatic fields and capacitive coeffi-
cients of 3D multielement sets of screens are described. The computer approach suggested is based on boundary
integral equationsfrom the 3D theory of harmonic potentials and fast algorithms of the finite-group method that
are realized on a Pentium-Pro 200 MHz 128-MB RAM PC. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The creation of radio engineering devices in many
cases requires the determination of electrostatic fields
and capacitive coefficients for multielement sets of
screens. For a given set of screens of specific configu-
ration, the solution of these basic problems of electro-
statics in the 3D case is known to be associated with
substantial difficulties. This, aswell asavariety of elec-
trostatic systems that should be analyzed in designing
radio engineering devices, cause researchersto discard
3D models in favor of qualitative 2D ones, which are
less accurate. However, many multielement systems of
a rather general form can be designed by using an
appropriate computer handbook involving fast algo-
rithms for numerically solving boundary integral equa-
tion of the first kind from the 3D theory of harmonic
potentials.

A computer handbook of electrostatic fields and
capacitive coefficients must allow researchersto design
systems close to or even coincident with adesired sys-
tem from a limited yet representative set of basic com-
ponents. It seems to be natural that the starting set of
basic components be as follows: flat symmetric screens
(triangles, rectangles, and circles), surfaces of revolu-
tion, parallelepipeds, and regular polyhedra. It is
assumed that all can have holes of a specific shape and
that the starting set of components can be supplemented
according to the design practice. The handbook must
provide a designer with electrostatic fields, as well as
self- and mutual capacitances, for a given layout of
basic componentsincorporated into a 3D set of screens.

Below, we will demonstrate that the computer hand-
book suggested can be based on fast algorithms used in
the finite-group method (FGM). With this method, the
computer simulation of 3D electron—optic systems
[1, 2] and the scattering of the electrostatic field of a

TEM chamber by local inhomogeneities [3] has been
performed.

STARTING RELATIONSHIPSIN THE HARMONIC
POTENTIAL METHOD

Consider aset { S} of N conducting screens § under
the assumption that { S} producesamultiply connected
surface Sin a 3D space R®,

N
s=[]s, sns =0, izj, (1)
i=1

and that each of the screens § isunder a given potential
Vii=1,2,...NIfE={E}(=1223)(i=1273)is
the vector of an electric field induced by the set of
screens S then E;(X) = —0¢(x)/0x;, where x = {x} are
the Cartesian coordinates of apoint x in R® and ¢(x) is
the potential of the field E that satisfies the Laplace
eguation with the Dirichlet conditionson S

AD(X) = 0, A=0°10%;+8°10x; + 0°19%,
x ORAS,
N 2
o) = > xs(x)Vi, x0OS.
i=1

Here, Xs (x) is the characteristic function of a set of
points on the surface S.

A solution to boundary-value problem (2) can be
represented as the potentia of alayer,

u(X,)

—L du(x,), X ORA\S,
X—x] H(Xy) 1

¢(x) =J’
S
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with adensity u(x) (x O 9 satisfying the boundary inte-
gral equation of first kind

[AU(x) = F(x), me=f”ﬁwmx
S

|x —x

X ©
f(x) = z Xs(X)Vi,

where du(x) is the contraction of a Euclidean volume
element on the surface S and |x — x| is the Euclidean
spacing between points x and X, .

Hence, the electrostatic field of the system (set) Sof
the screens will be defined if a solution to the boundary
integral eguation (3) is constructed. Next, if Q; is the
charge of ascreen S,

Q = J'Xs(X)U(X)du(X), 4)

and Q and V are considered as column matrices, Q =
(Qn Qy ..., Q) and V = (Vy, V,, ..., V), One can
write [4]

Q=ucv, ®)

wherec = |lcl| (M, n=1, 2, ..., N) isthe matrix of the
capacitive coefficients of the system S,

Putting V,=1andV,=0ati # g, we have from (4)
and (5)

Cq = I)(S(x)u(x)du(x), i=12,...,N. (6)
S

Hence, the matrix |lc|| Of the capacitive coeffi-
cients can be constructed by solving the family of
boundary-value prablems.

The associated solution is given by
Ad¥Y(x) = 0, xORAS,
(a) h (7
070) = 3 xs(08q xOS, a=12..,N,
i=1

where g, is the Kronecker symbol. It has the form

o, i=q
%= D ixq

provided that solution (7) is derived with boundary
integral equations like

N
AUV = $ X5(08q XOS, q=1,2,...,N.(§

i=1

Indeed, from (6)—(8) for the elements of the matrix
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lICrnl], We can find
Ca = [XsOUPA), 1,9 = 1,2,...,N. (9)
S

Furthermore, since

000 = Y Vo (0, xOR’,
g=1

the solution of the two basic problems of electrostatics
(the determination of the electrostatic field for given
potentials and of the capacitive coefficient matrix) for
the 3D system Sof the screensis reduced to a solution
of family (8) of boundary integral equations.

If the surface Sissimply connected and hasasimple
shape, Eq. (3) can be solved numerically and highly
accurately by the boundary-element method. If the sur-
face Sis multiply connected and has a complex shape,
the standard boundary-element method generates a
need for inverting dense matrices of avery high dimen-
sion (several tens of thousands or more), for which a
fast yet accurate inversion procedure is difficult to
devise within conventional approaches.

For electrostatic systems of more or less general
type [1, 2], fast and highly accurate algorithms for
numerically solving Eg. (3) can be constructed with the
FGM, which exploits local symmetries in subsystems
into which an initial system is divided.

BASIC IMPLEMENTATIONS
OF THE FINITE-GROUP METHOD
IN ELECTROSTATICS PROBLEMS

The FGM relies on the invariance of the Laplace,
Helmholtz, and Maxwell equations under the motion of
aEuclidean space[5, 6] and usesthe structural relations
in Fourier geometrical analysis of invariant boundary
operators on a surface with adisconnected group [7-9].
If a scattering body possesses an N-fold group of sym-
metries, one can construct afast algorithm that reduces
the number of operations by afactor of ~N?, represent-
ing the boundary equations as an operator convolution
on the group of the body’s symmetries [8]. An asym-
metric problem can be included, under certain condi-
tions, in the class of symmetric problems by using the
gluing approach. In this case, the boundary surface S of
aninitial boundary-value problem without symmetry is

embedded inthesurface S (SO S) of aproblem with a
finite group of symmetries. Then, the initial boundary-
value problem can be stated in the form of two subprob-
lems, one having a finite group of symmetries and the
other admitting a relatively simple numerical solution
[10, 11]. Note also that the partition of the initial sur-
face S (without symmetry) into constituents that have a
finite group of symmetries and the subsequent iterative
sewing based on triangular schemes allow the exten-
sion of the FGM for a wide class of complicated 3D
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boundary-value problems of great applied interest
[12-14].
(1) Let

f, [A¥](x) = _[A(x, X1) W (X)) dp(X1),
X X, OS

be aboundary integral equation of the first kind for the
Dirichlet problem of the Laplace equation and let rep-
resentation (1) be valid for the surface S. Applying (1),
we relate the function ¢(x) (defined on the multiply
connected surface S) to some function ¢;(x) taking (at
eachfixedi,i=1, 2, ..., N) avaluein the space of func-
tionsdefined on S,

¢ (x) — ¢i(x) = Xs(X)$(x),

and the boundary operator A on the multiply connected
surface S, to the operator matrix [|A;|,

A—[Aqyl, Ay = Xs()AXs (%),
x0OS, i,j=12..N.

At fixedi and j, the operator A; maps from the space of
functions defined on § into the space of functions
defined on S. Then, in view of representations (11) and
(12), boundary integral equation (10) can be written in
the form

Au =
(10)

(11)

(12)

ZAijuj(x) = f(x), x0OS, i=12,..,N.(13
j=1

A solution to Eqg. (13) will be constructed by itera-
tions with the use of a matrix triangular scheme:

k+1 K
Aiiui( "= (1_00)Aiiui()

+w[fi—ZA”u](k+l)—ZAHUEK)}, (14
j<i j>1
i=212..,N;, k=0,1,2,...; wd(0,2).

Note that for a specific parameter w, w [ (O, 2), itera-
tion procedure (14) offers a high rate of convergence
for problems of a certain class (in electrostatic prob-
lems, for w = 1) and admits the representation

u = (1-w)u®

+ WA fi—EAijuﬁk”)—ZAiju}k’} (15)
j<i i>1
i=212..,N;, k=01,2,...,
which is suitable for computer realization.
In this case, computational resources are spent basi-
cally on the construction of the operators Aﬁl recipro-
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ca toA;(i=1, 2, ..., N). Thereciprocal operators are
constructed once before iterations.

(2) The multiply connected surface S comprises
basicelements § (i = 1, 2, ..., N), each being described
(initially or after gluing) by a finite group of symme-
tries. This symmetry property can be realized directly
in acomputational algorithm for inverting operators A;;
at any fixedi (i =1, 2, ..., N). Introducing the designa-
tion

(k) _ (k+1) (k)
j<1 j>i
i=12..,N; k=0,1,2,...,
we rewrite the ith equation of iteration process (15) as

u " = (1-o)u+ 2",

(k)

where z isasolution to the equation

[AZ1(x) = F9(x), xOS. (16)

Let {Ty} beagroup of symmetries of an element §
on the surface S (M is the order of the group). Then, §
can be represented as

S= [ s int(tesn 1,%) =0,

T O{ty (17)

m#n,
where g is the fundamental region of the group { Ty}

disconnected on S,

Let usintroduce the invariant partition of unity that
corresponds to representation (17):

| = Z Xs,(TnToX) 0T, 0{134}
T O{tw
where X, () is the characteristic function of the funda-

mental region s, and the equality isfulfilled up to the set
of measure zero.

Using partition of unity (18), we relate each of the
functions ¢;(x), x 0 S, to afunction ¢ (1), T, O {T\},
from the group {t,,}. The latter function has valuesin
the space of functions L(s,) that are defined on s,

$i(¥) — () = X5,(Tm X)$:(X).
The operator A;; is related to an operator function
a (1., T,) with valuesin the set of operators{t,,} acting
inL(sy):
A — 8 (T Tp) = Xe(Tn ) AiXe (Tn X),
T T, O{T\y -

The operator of the first-kind integral equation of
the boundary-value Dirichlet problem for the Laplace

(18)
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equation isinvariant under symmetry transformation of
the boundary surface. In addition, we have

Aii = Xs(X)Axs(X).

From this directly follows the invariance of the
operator A; under the actions of the group {t\}; there-
fore, the associated operator function @ (T, T,) iS
invariant under left shifts on the group {Ty}:

c,i(-[l-[m’ TITn) = a(Tm’ Tn)’ DTI 0 {TM}

and we can write the equality

Y G é) = Y (e (),
T, 0{1\} T, 0{tw}
a(Ty,) =a(T €),
where e is unity of the group {Ty}.

Therefore, for an element S with the group of sym-
metries{t,,} of thesurface S Eqg. (16) takesthe form of
an equation for convolution on the group [8]:

G(T, T 2(Ty) = F(tn), TmO{Tsd. (19)

T, O0{tw}
Let U,, A O {A}, be irreducible representations of
the group { Tt} and dA be the degree of the representa-
tion U,. We introduce operator coefficients of the Fou-

rier functions G (t,), 2(t,), and F(t,) on the group

e

a(a) = Y a(t)Un(ty), AD{A}L,
T, O0{t
N =Y AU (),
T, 0{t
F) = 5 PV, AO{A
T, 0{t

By virtue of Eg. (19), we can write
a(M)z(h) = IE()\), AO{A}. (20

If z(A) is a solution to Eq. (20), the function z(t,),
T, O {1y}, iscaculated from the relationship

2t) = Y dtr@EMUN(T)), TO{Td

AO{A}
wheretr(-) meanstrace.

The construction of the operators Aﬁl by calculating

the operators & (A) reciprocal to & (A), A O {A}, is
~M? times more optimal (in terms of the number of
operations) than direct inversion of the operator A;; with
the standard procedures.

SAFRONOV,
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Now, let an element S of the surface Shave an asso-
ciated symmetry only after the gluing procedure (basic
screens with holes); that is, let there exist a surface §
with the group of symmetries{t,,} such that

S= [] 1,8 int(t,%n1,3) =0,
T, O{ty
m#n.

Here, &, is the fundamental region of the group {ty}
such that

sos, s” =8\

and the measure of the set S‘O) is less than that of the
Set S:

H(S”) <u(s). (21)
In this case, we pass from Eq. (16) to the problem
Xs(X)Bv(x) = Xs(x)n(x), x0O§,

XS(O)(X)V(X) = 0, xd SO),
where
[BW](x) = J’A(X, X)W (X)) du(Xy),

%% 0S8, Xs(X)Bxs(x) = A;
and
n(x) = Xs(X)n(X)+X§o>(X)n(X), x0O§,

Xson(x) = FY(x), xOS.

The transition from (16) to (22) is associated with
two main factors: the trace of the solution to (22) on §
isthe solution to (16),

Xs(X)v(x) = 29(x), x0O8,

and the operator B is invariant under the action of the
finite group { Ty} . The latter fact makes it possible [10,
11] to construct a solution algorithm for (22) that is
optimal in terms of the number of operations. Subject
to (21), this algorithm shrinks the number of operations
for inverting the operator A; by afactor of ~M? in com-

parison with the direct construction of the operator Aﬁl
reciprocal to A;;. A more detailed numerical solution of

boundary-value problems as applied to the Laplace
equation within the FGM was considered in [15].

COMPUTER DETERMINATION
OF ELECTROSTATIC FIELDS AND CAPACITIVE
COEFFICIENTS FOR 3D SETS OF SCREENS

Based on the fast algorithms within the finite-group
method, we created a suite for determining electrostatic
TECHNICAL PHYSICS  Vol. 47
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fields and capacitive coefficients for 3D sets of screens
composed of the basic components listed in the Intro-
duction. For a system to be designed, basic components
and their layout are selected in an arbitrary way. The
maximal number of the screens depends only on the
computer power and the analytical accuracy.

(1) Consider asystem of two spheres having radii R
(sphere §3) and r < R (sphere S). We assume that the
center of § isshifted relative to that of S; by adistance
H=h(R-r) (0<h<1).If h=0, the centers of S; and
S coincide (spherical capacitor), while at h = 1, the
spheres touch each other at asingle point. According to
[4], the normalized dimensionless capacitance C(h) of
such asystem isgiven by (for h O [0, 1])

Q:(h)
4dtier(V, —Vg)'
where Vi and V, are the potentials of the spheres S; and
S, respectively, Q,(h) is the charge on the sphere §,
and € isthe permittivity of the medium.

For R/r = 2 and several h J [0, 1], the calculated val-
ues of C(h) arelisted in Table 1.

Thesurface S, S= S0 S, was covered by 2 x 103
boundary components. The exact value of C(h) at h=0
isfound from theformulagivenin[4]: C,=R/(R-r) = 2.
Thus, our value of C(0) is accurate within 0.1%. Note
that in order to achieve computer accuracy, the number
of boundary elements covering S must be increased to
~5x 102,

Equipotential lines in the plane containing the cen-
ters of both spheres are shown for VR=0, V, =1V, R=
2m,r =1m, and h =0 (Fig. 1a) and 0.8 (Fig. 1b).

(2) Shushkevich [16] analyzed the axisymmetric
electrostatic problem for a thin nonclosed spherical
shell sand atorus T of small radiusr and large radius
R. The shell sisplaced on asphere S, of radiusd. Con-

c(h) =

1075
Table 1

h C(h)
0 1.998
0.2 2.0202
0.4 2.1022
0.6 2.2734
0.8 2.6739

sider another system comprising the same shell sand a
torus T; with arectangular cross section. The axial sec-
tions of both systems are depicted in Fig. 2a.

If c=|lc;ll(i,j = 1, 2) isthe matrix of capacitive coef-
ficients for a double-electrode system, the capacitance
C of the system is calculated from the formula

C11C —C1oCxy
Ci1 T Cpp+Cxy +Cxp

The normalized capacitances C = Cl/(4med) for
R/r =2, two ratios R/d, and several apex angles © of the
nonclosed thin spherical shell s are listed in Table 2.

The values of C for thefirst (SY =s 0 T) and second
(82 =s 0 T,) systems are given in the columns T and
T,, respectively.

Itisclear that C for the system S and C obtained
in [16] differ by no more than 1.8%. At the same time,
it is obvious that the capacitances of the systems SV
and 92 as functions of the apex angle © and ratio R/r
depend mostly on the mutual arrangement and size of
the screens and to a lesser extent on their shape. This
fact gives certain grounds for replacing actual sets of
screens by sets of approximating basic components.

TECHNICAL PHYSICS Vol. 47 No.9 2002
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Fig. 2.

Here, some comments should be made. Screens of
each of the three sets considered above produce a mul-
tiply connected surface of revolution. In this case, a
computational algorithm for solving Eg. (10) optimized
in terms of the number of operations is constructed
according to the technique described in [17]. If the
right-hand side of (10) isinvariant under shift on group
of rotation C,, (Eq. (3) and family of equations (8) are
examples), Eq. (10) can be rewritten as a 1D equation
over the generator of the surface of revolution. Methods
to attack such 1D equations have been suggested in
[18]. At present, axisymmetric problems of electrostat-
ics are solved by the FGM with a very high accuracy
and with minimal machine costs for almost any arbi-
trary surface of revolution.

Consider how the capacitance of the system 32 with
©=90° R/Ir = 2, and R/d = 0.5 varies with the angle a
made by the axes of the hemisphere s and torus T, . For

the normalized capacitance C (a), we have
C(0°) = 1548, C(45°) = 1517,
C(90°) = 1.493

and the matrix c(a) of capacitive coefficients takes the
form

c(0°) = 8.10071 -5.52312
—5.52312 6.42901

Table 2
Capacitance
O, deg Rid=05 R/d=0.1
T T T T,
10 0.111 0.117 0.653 0.678
30 0.334 0.359 0.108 0.115
60 0.754 0.837 0.128 0.138
90 1.291 1.548 0.135 0.146
120 1.592 1.977 0.138 0.150
150 1.612 2.042 0.139 0.151
170 1.615 2.048 0.139 0.151

o(45°) = | B0B4T6 —5.40814|
-5.40814 6.28437
c(90°) = | 7:99781 —5.31049|
531049 6.19082

Note that all elementsc; (i, j = 1, 2) of the matrices
c(a) are found by calculation; therefore, the relation-
ship ¢;, = C,; serves as a criterion of calculation accu-

racy.

Equipotential lines for the system S2 with V, = 0
and V; = 1V, where V; is the potential of the hemi-

sphereand V; isthat of thetorus, in the plane contain-

ing the axes of revolution of the hemisphere and torus
aredepictedin Fig. 3for a =0° (a), 45° (b), and 90° (c).
Figure 3d (a = 90°) also shows equipotential lines in
the plane containing the axis of revolution of the hemi-
sphere and the orthogonal axis of revolution of thetorus
T,. The equipotentiality of the screensis clearly dem-
onstrated (the field near the screen copies its shape).
From Fig. 3d, it aso follows that the decay rate of the
disturbance is high (the shape of the screen rapidly dif-
fuses away fromit).

(3) Consider several two-component systems S
comprising acanonical body of revolution (sphere, cyl-
inder, or cone) and a body made up of two coneswith a
mutual base and oppositely directed heights. The
capacitance and the capacitive coefficients of the sys-
tem Swill be normalized to 4mer, the potential of the
body V will be given in volts, and the linear dimensions
of the body will be dimensionless (normalized by the
unit radiusr).

L et the system Scomprise asphere S; of unit radius
R, =1and acylinder S, with abaseradiusR, =2 and a
height h = 2. A variety of the mutual arrangements of S;
and S, can be divided into two cases: S=S, 0 S, is, or
is not, a surface of revolution. In the former case, the
center of the sphere S; lies on the axis of revolution of
the cylinder S,. Then, for H = 2 (H is the spacing

between S, and S,), the capacitance C and the capaci-

TECHNICAL PHYSICS Vol. 47 No.9 2002
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Fig. 3.

tive coefficients ¢ = |Ic;|| (i, j = 1, 2) found by calcula-
tion are

—-0.521236 2.17735

In the plane containing the axis of revolution of S
(Fig. 4@), the electric potentia for the system consid-
ered takes the maximal value (0.99) at V; =V, =1 (V,
and V, are the potentials of the screensfrom S, and S,,
respectively). Therefore, sincethebodies S, and S, have
equipotential volumes (according to the internal field
criterion), the error of calculating the electrostatic field
of Sdoes not exceed 1%.

Let apoint M lie on the axis of revolution of the sys-
tem S and bisect the height of the cylinder S,. We
incline the cylinder in such a way that its axis crosses

TECHNICAL PHYSICS  Vol. 47

No. 9 2002

the axis of revolution of the system Sat the point M at
anangleof 45°. TheresultingsystemS,S=S5 0 S,,is
no longer a surface of revolution. For this system, the

calculated capacitance C and capacitive coefficients ¢;
are asfollows:

C = 1.01894, ¢ = 1.18618 —0.571091.
—0.570945 2.21928

Figure 4b shows the electric field potential of S at
V; =V, = 1in the plane containing the axis of revolu-
tion of the cylinder S, and the center of the sphere S;.
Asbefore, the maximal visualized value of the potential
equals 0.99. Thus, for the nonaxisymmetric system S,
the computational error remains within 1%.

Now, we passto a system comprising a sphere S; of
radiusR, = 1 and acone S, with abaseradiusR, = 2 and
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-3 -2 -1

Fig. 4.

aheighth=3. Itisassumedthat S=S, (1 S,isasurface
of revolution with aspacingH =1 between S, and S,.

For this system, the capacitance C and the capacitive
coefficient matrix ¢ = |[c;|| (i, j = 1, 2) are asfollows:

& - 0gsiges, o= | 112213 0410433
~0.419433 1.77205

Equipotential lines of the entire system S in the
plane containing its axis of revolution are depicted in
Fig. 4c for ¢ 0O [0.01, 0.99] withV; =0 and V, = 1
applied to the screens of S, and S,, respectively. In this
case, too, the error involved in the electric field compu-
tation is no more than 1%.

At a distance of 1/3h from the bottom of the cone,
wefix apoint M onits height and rotate the cone so that
its axis crosses the axis of revolution of Sat the point M
at an angle of 45°; that is, we pass from the initial sys-
temtosystem S, S = S, n S,, which does not posses
symmetry of rotation. For this system, the capacitance
and the capacitive coefficient matrix are as follows:

C = 087989, ¢ = 111655 -0.42029
—0.420219 0.77272

Figure 4d shows the cone-inclination-related distor-
tion of the isolines of the electrostatic field for the sys-
tem S (Fig. 4c¢) in the plane containing the axis of the

TECHNICAL PHYSICS  Vol. 47
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cone and the center of the sphere. In going from the sys-
tem Sto the system S, the computational error again
does not exceed 1%.

Consider the third two-component system Sconsist-
ing of the cone S, described above and a cylinder S;
with abase radius R; = 1 and a height h; = 3 under the
assumptionthat S= S, 00 S, is a surface of revolution.
The spacing between S, and S, is set equal toH = 1. For
this system, the capacitance and the capacitive coeffi-
cient matrix are asfollows:

C=112645 c = 1.82498 -0.557362
—0.557362 1.59009

Equipotential lines of the entire system S in the
plane containing its axis of revolution are depicted in
Fig. bafor ¢ O [0.005, 0.995] withV, =0and V,=1
appliedto S, and S,, respectively. In these calculations,
the internal field criterion is fulfilled with an accuracy
within 0.5%.

At adistance of 1/3h from the cylinder base nearest
to the cone, we fix a point M on the cylinder axis and
shift the cylinder S; so that the axes of the bodiesinter-
sect at the point M, making an angle of 45°. For such a
system S, S' = S, O S,, the capacitance and the capac-
itive coefficient matrix are as follows:

& = 113217, ¢ = | 182871 —0564409
—0.564409 1.59497

The inclination of the cylinder S, distorts electro-
static potential isolines for the system S (Fig. 5a), as
shown by Fig. 5b for the plane containing the axes of
revolution of the cylinder S, and cone S, (Fig. 5b). As
in the case of the axisymmetric system S, the error in
calculating the potential of S iswithin 0.5%.

TECHNICAL PHYSICS  Vol. 47
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To this point, the axisymmetric el ectrostatic fiel ds of
the systems Shave been compared with the 3D fields of
the systems S under the assumption that the equipoten-
tia linesof thelatter are visualized in the planes of mir-
ror symmetry. However, a fuller description of 3D
fieldsthrough their equipotential linesrequiresthelines
to be constructed at least in three orthogonal planes (in
practice, the number of sections for a given system S
may be as high as severa tens). By way of example,
consider the section of the above system S passing
through the axis of revolution of the cone S, perpendic-
ularly to theaxisof revolution of thecylinder S, that is,
the section normal to that considered above (Fig. 5b).
While the section of the cone remains an isosceles tri-
angle with a base of 4 and a height of 3, the section of
the cylinder S; becomes an ellipse instead of a2 x 3
rectangle. Figure 5¢ shows isolines for the electrostatic
field of the system S in this planefor the same potential
values as in Fig. 5b. It is easy to see that the error
involved in field calculation using the internal field cri-
terion does not exceed 0.5%, with the 0.005 isoline
being an ellipse.

Finally, we will consider a surface of revolution S=
S, 0 S,, where S, isthe surface generated by two cones
with a mutual base of radius R, = 0.5 and heights of

h, =1and h, =0.5and S, isacone with abaseradius

R, = 2and aheight h, = 5. The cone S, screens the sur-
face S,, whichislocated at adistance H = 1.5 from the
conebase. Theradial section of the system Sisdepicted
in Fig. 2b. The capacitance and the capacitive coeffi-
cient matrix for this system are as follows:

C = 0696219, ¢ = 2.58405 -0.696219|
—0.696219 0.696219
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Fig. 6.

It is noteworthy here that the relationships

C=—Cp—Cy=Cy (22)

are fulfilled with computer accuracy.

Equipotential linesfor thefield produced by the sys-
tem Swith potentials V; = 1 and V, = 1 applied to the
screens S, and S, are shown in Fig. 6ain theradia sec-
tion. The error iswithin 0.5%.

Now, we replace the axisymmetric system S by a
system S' = S, [ S, where the axis of revolution of the
body S, crosses the height of the cone S; at an angle of
45°. The point of intersection is 1/5h distant from the
cone base. The capacitance and the capacitive coeffi-
cient matrix for the system S are asfollows:

—0.706919 0.0707117

Here, equality (23) isfulfilled to four-place accuracy.

Thevariation of the electrostatic field structure (iso-
lines in Fig. 6a) due to the transition from Sto S is
shownin Figs. 6b and 6¢. Namely, Fig. 6b depicts equi-
potential lines of the system S in the plane containing
the axes of revolution of the surfaces S, and S,, while
Fig. 6c demonstrates these lines in the plane passing
through the axis of revolution of the cone S, orthogonal
to the axis of revolution of the body S,. According to
the internal field criterion, the error of calculating the
potential is no more than 0.5% for both systems (S
and S).

To conclude this section, we note that a computa-
tional accuracy of 1% was achieved when the surfaces
considered above were approximated by ~10* boundary
components.

(4) Consider asystem—-S=S, 0 S, 0 S; comprising
three basic components. S, isarod of length h, = 4 with

a2 x 2 cross section, S, isatorus with the generator in

the form of an isoscelestriangle with abase h, =2 and
aheight h, = 1.7 (the distance from the axis of revolu-
tion of the torus to the generator isR, = 2.5), and S; is
acylinder of height h; =1 and abaseradiusR; = 1. The
base of the cylinder has a hole of radius Ryy = 0.5. The
axes of the surfaces of revolution S, and S; intersect at
a right angle at the center of the square rod S;. The
spacing between S, and S, isH; = 1.5 and that between
S, and S;, H, = 0.8. The section P; passing through the
axes of revolution of the surfaces S, and S; is depicted
in Fig. 2c. For therod S;, this sectionisa 2 x 4 rectan-
gle; for the surface S,, two equal isosceles triangles

with abase h, = 2 and a height h, = 1.7 placed specu-
larly symmetrically with respect to the rectangle at a
distance H, = 1.5 from it; and for the cylinder S; with
the hole, a 1 x 2 rectangle with a hole of size 1 on the
side facing the rod. The section P, passing through the
axis of revolution of the cylinder S; and the center of the
rod S, (P, is orthogonal to the axis of revolution of the
torus S,) produces a2 x 2 square and a ring with inner

and outer radii R, =2.5and R, = 4.2 that is centered
at the center of the square. The section P, of the cylin-
der S; coincides with the section P;.

The capacitive coefficient matrix ¢ = ||c;|| (i, j = 1, 2,
3) for such a system has the form

3.28571 —2.69617 —0.0682739
—2.68915 5.60708 —0.669322 |-
—0.0672863 —0.669852 1.21556
Equipotential lines for the electrostatic field of the

system S in the sections P; and P, are depicted in
Figs. 7aand 7b, respectively, for potentialsV, =1, V, =

Cc =

TECHNICAL PHYSICS Vol. 47 No.9 2002
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0, and V; = 1 applied to respective screens S, S,, and
S;. Figure 7c showsthe potential distribution in the sec-
tion P,. The error in potential calculation iswithin 1%,
as demonstrated by Figs. 7a-7c.

Let uspassfrom system StoasystemS =S, 0 S, [
S; where the axis of the cylinder with the hole and that
of the torus intersect at the center of the rod, making an
angle of 112°. Note that the planes P; and P, are the
planes of mirror symmetry for the system Salone: the
system S has a single plane of mirror symmetry, P;.

The matrix of the capacitive coefficients has the
form

341561 —-2.84179 -0.0787125
—-2.85176 5.68682 —0.563878 |-
—0.0777562 —0.564894 1.13479

Equipotential lines for the electrostatic field of the
system S in the sections P, and P, are depicted in
Figs. 7d and 7e, respectively, for potentialsV, =1, V, =
0, and V; = 1 applied to respective screens S, S,, and
S;. Figure 7f shows the potential distribution in the sec-
tion P,. In going from Sto S, the error in potential cal-
culation remains unchanged.

Note that a computational accuracy of 1% in calcu-
lating the field potentials for the systems Sand S was
achieved when these multiply connected surfaces were
approximated by =2 x 10* boundary components.

All the calculations were performed with the single
software suite on a Pentium-Pro 200 MHz 128-MB
RAM PC. The machine time per computation cycle at
given screen potentials did not exceed 10 min.

Cc =
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Abstract—Within the framework of a phenomenological real optical potential, the elastic scattering of 0.5- to
500-eV electrons by argon atoms is studied in view of spin—orbit interaction. The energy dependences of the
angular positions of minimain differential cross sections are calculated and compared with those obtained in
experiments. The energies and angular positions of four critical points where the cross sections reach their min-
imal values are determined. It is found that the deepest minimum of three high-angle ones (with angles >90°)
islocated at (38.25 eV, 140.67°). The energy and angular neighborhoods of these minimawhere the parameter
of spin polarization, the so-called Sherman function, reaches its extreme values (+1 and —1) are determined.

© 2002 MAIK * Nauka/Interperiodica” .

INTRODUCTION

Over recent decades, elastic electron scattering by
argon atoms has been thoroughly studied both experi-
mentally and theoretically (see, e.g., reviews[1, 2]). Far
fewer works have been devoted to electron polarization
as aresult of the scattering of an initially nonpolarized
electron beam by argon atoms in the ground state.

The angular dependence of the spin polarization
parameter §O), the so-called Sherman function, was
measured in [3-5] for energies of incident electrons
from 10 to 150 eV in the angle range from 30° to 150°.
In the theoretical works [6-8], the angular dependence
of the parameter S©®) was calculated in the energy
range of 3-300 eV. The maximum value of the spin
polarization found in [3-8] did not exceed 20%.

Atthesametime, itiswell known (see, e.g., [9]) that
within small neighborhoods of the deepest minima of
the differential cross sections (DCSs), the so-caled
critical minima, there are energies and angles at which
the electron beam scattered can be completely, or
almost completely, polarized. On the one hand, infor-
mation about these energies and angles could help to
measure experimentally the extreme values of the Sher-
man function (+1 and —1). On the other hand, both
experimental techniques and theoretical models could
be verified more efficiently at these points.

The aims of this paper are (i) to determine the criti-
cal minima of the DCSs for elastic electron scattering
by argon atomsin the wide energy range of 0.5-500 eV
and (ii) to calculate the energies and anglesin thevicin-

ity of these minima at which the polarization of scat-
tered electrons could reach 100%.

THEORETICAL METHOD

Below, the variable phase method [10, 11] isused to
calculate the cross sections and parameters of spin
polarization. This method allows one to find the abso-
lute values of the phase shifts & = § "> of partial
scattering amplitudes as the limiting val ues of the phase

functions &, (r) at r —» c. The phase functions are
obtained from solving the phase equation

ddi(r) _  2V(r)
dr k (1)

x [ cos&(r)ji(kr) - sind; (r)n (k)]

where j, and n, are the Riccati—-Bessel functions (see,
e.g., [10]), | isthe orbital momentum, k = (2E)Y?isthe
momentum, E istheincident el ectron energy (hereafter,
the atomic unitse = m, = 4 = 1 are used), and V(r) is
the interaction potential of an incident electron with a
target atom.

Using the phase shifts & , it is possible to find both
the direct scattering amplitude,

f(@) = %ﬂ;{(l +1)[exp(2i3) - 1] @

+I[exp(2i9,) —1]} P,(cos®),

1063-7842/02/4709-1083%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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and spin-flip scattering amplitude,

0(0) = 5 3 [exp(2i57) — exp(2i5)] P(c050), (3)
I=1

where © is the scattering angle; P,(cos®), Legendre
polynomials; and Pll (cos®), Legendre associated
functions of first kind (see, e.g., [12]).

The elastic scattering DCS and the parameters of
spin polarization of scattered electrons are expressed
through the amplitudesf and g as[9]

do(©) _

1o = |f@)*+lg@),
fg —f* g _ fg*r + f*g
S(@) =i=5——7F, U(©O) = =5—= 4
|f| +1gl” 1"+ 1l
[fI°—lgl”
T(O) =
©)= |17 +g*

In this paper, we are interested in energies and
angles at which & = 1; hence, since the polarization
parameters are related to each other by the condition
F+U2+T2=1,U2=T2=0, and we will restrict our
analysis to calculating the Sherman function S©®) and
the DCS.

The phenomenological real optical potential
VA(r, E) = V(r) + Veo(r) + Ve(r, E) + Vi (r)  (5)

isused here astheinteraction potential between aninci-
dent electron and atarget atom.

The electrostatic potential V(r) and the electron
density in an argon atom (the latter is necessary to cal-
culate the exchange potential V(r, E)) were found by
analytical expressions in [13], where these parameters
were determined with the Hartree-Fock method com-
bined with the |least-squares method.

Spin—orbit interaction istaken into account herevia
the potential [14]

j1dVs a’
Vaolr) = TG, rdr 24 o?[E-Vy(r)]’ ©
whereZ*(j, 1) =1/2atj =1 + U2 and Z-(j, 1) = (I + 1)/2

atj=1-1/2,]isthetotal angular momentum of an elec-
tron, and a is the fine structure constant.

Asin our previous papers[15, 16], we use the local
exchange potential foundin[17, 18] inthefree electron
gas approximation and the dipole polarization potential
with an adjustable parameter (see either (2) in [15] or
(10) in [16]) as the exchange potentia V(r, E) and the
polarization potential V,(r), respectively. The ioniza-
tion potential of an argon atom (I = 15.76 eV), whichiis
used to calculate V,, was taken from [19]; the dipole

polarizability of an argon atom (ay4 = 11.08a(3)), from

KELEMEN

[20]. Hereafter, a, is the Bohr radius of a hydrogen
atom.

Since potential (5) has a singularity r2v(r) —
r2Vg, (r) — const={*(j, 1) forr — 0, theinitial con-

dition for the phase equation at the initial point of inte-
gration r = € hasthe form [11]

. (k )2I+1
5 = 0 G oo
2l 20+1 * ¥
o 4+ +¢l) _( +¢) 4¢ 5
2 2 (21+1)

Thevariable ¢ liesintherange—1< g <1.Inthe

case of the attractive potentia Vg (r) (i.e., when - =
—(I + 1)/2, " must satisfy the condition - > —(I + 1/2)?,
resulting from the requirement that a particle not fall on
the center. Asis easily seen, this condition is satisfied
forany | > 1.

To numerically solve the phase equation, we used,
asin[15, 16], thefourth-order method with the Adams—
Bashfort prediction and Adams—Moulton correction
with modification [12]. The step size was controlled
automatically. The number of partial wavesinvolved in
the calculations by the phase equation depended on the
energy E. For example, six waves were taken into
account at 1 eV and 26 waves, at 500 eV. At any energy,

the phase shifts 8, and &, were calculated to | = L at
which |8 — &, | < 0.01%. For | > L, we assumed that

5 = & . Finally, for partial waves with a phase shift
smaller than 0.01 rad, the well-known formula for
asymptotic phases was used to calculate . In the case
when potential (5) decreases as —04/2r* at large dis-
tancesr, this formula has the form (see, e.g., [21])

_ gk’
O = At S o 2 D) ®)

In order to determine the parameter in the polariza-
tion potential V,(r), we took advantage of the well-
known fact that the Ramsauer—Townsend minimum is
present near 0.3 eV in the low-energy electron scatter-
ing by argon atoms (see, e.g., [22, 23] and refstherein).
For several values of this parameter, the energy depen-
dence of the s-wave phase shift &, was calcul ated at |ow
energies. It was found that when the parameter was
1.99a,, the phase shift d, first increased from 9.436 rad
at E=0.001 eV to 9.471 rad a E = 0.07 eV and then
decreased t0 9.426 rad = 3mtat E = 0.3 eV. Hence, for
potential (5) with the adjustable parameter thus vary-
ing, thereisadeep minimum in the swave partial cross
section at 0.3 eV and accordingly the Ramsauer—
Townsend minimum in the total cross section.

TECHNICAL PHYSICS Vol. 47

No. 9 2002



COMPLETE SPIN POLARIZATION

DISCUSSION

The DCSs of elastic electron scattering by argon
atomsin the energy range E = 3-140 eV have two min-
ima: low-angle (at angles <90°) and high-angle (at
angles >90°) (Fig. 1). Sincein our case the DCSvalues
are defined by the direct scattering amplitude f(©) for
almost all angles except the critical points, the angular
positions of the minimain the DCS depend on theinter-
ference of partial wave terms in this amplitude. Note
that the first three waves make a major contribution to
the amplitude f in our energy range (for instance, at
30 eV and 40°, their contribution is greater than 90%,
with the d-wave contribution being larger than 36%).
Therefore, two minima (low-angle and high-angle) of
| f [? are specified by the zeroes of the Legendre polyno-
mial P,(cos®) at 54.7° and 125.3°. Comparison of our
DCS with those calculated in [26] and experimentally
measured in [2, 24, 25] (Fig. 1) shows that two theoret-
ical results obtained by different approaches coincide
with each other, unlike the experimental data, at any
angle except the low-angle minimum.

Note that in [26] the partial phase shifts for | = 0-6
calculated at energiesfrom 0 to 54.4 eV in the nonrela-
tivistic approach are tabulated for 29 energies of an
incident electron, whereasthe DCS values are given for
nine energies and angles ranging from 0° to 180° with
a step of 5°. Therefore, in order to refine the angular
positions of the minima and the DCS values in these
minima, we cal culated the cross section with a smaller
angular step. For | = 7, the phase shifts were calculated
by asymptotic formula (8) asin [26]. For intermediate
energies, we approximated the phase shifts obtained in
[26]. Thus, our energy dependences of both the angular
positions and the minimum values of the DCSs from
[26] are found with both tabulated and approximated
phase shifts.

The energy dependences of the angular positions of
the DCS low-angle and high-angle minima are shown
in Figs. 2a and 2b. The experimental values of the
angles of the minima for energies 3-100 eV are taken
from both the tables and figuresin [2] and from Table 1
in [27]; for energies lower than 3 eV and higher than
100 eV, from [28], where the data of 16 experimentsare
shown in the figures.

As follows from Figs. 2a and 2b, our results are in
satisfactory agreement with most of the experimental
data. The curve of low-angle minima (Fig. 2a) reaches
a minimum value of 19.4° at 2.1 eV, passes through a
maximum of 73.2° at 18.1 eV, and then gradually
decreasesto 59.4° at 133 eV. The calculation involving
the phase shifts from [26] yields a minimum angle of
17° at 2.2 eV and amaximum value of 72.4° at 16.5 eV.
For other energies, both calculations almost coincide.
At energies higher than 133 eV, the low-angle minima
flatten and DCS values at 90° do not exceed those for
smaller angles.

In Fig. 2b, our calculation follows the trend of the
experimental data: the curve of the high-angle DCS
TECHNICAL PHYSICS  Vol. 47
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Fig. 1. Angular dependence of the differential cross section
of elastic scattering of 30-eV electrons by atoms. Data
points: O [2], + [24], and A [25]. Solid line, calculation in
[26]; dashed line, our resullts.

minima first gradually decreases to 119.7° at 9.6 eV,
then reachesamaximum of 141.7° at 32.1 eV, and grad-
ually decreases again to 96.6° at 500 eV. Starting from
3.5 eV, our calculation is also in good agreement with
the theoretical results from [26].

Of these minima, critical ones can be conveniently
found by plotting the energy dependence of the mini-
mum DCS values. Figures 3aand 3b show such depen-
dences calculated in this work. In Fig. 3a, the deepest
low-angle minimum is located at (30.25 €V, 71.05°),

where |f2 = 6.5x 102(a2) and | = 7.4 x 10-5(&}).

InFig. 3b, thethreelowest DCSvaluesat thecritical
points H; = (8.44 eV, 119.89°), H, = (38.25 eV,
140.67°), and H; = (126.33 eV, 118.12°) arereferred to
as high-angle criticd minima. At Hy, |f]? = 5.9 x

107(ad) and |g2 = 1.7 x 104(a3); at H,, |f = 1.8 x
108(a) and |gP = 1.05 x 105(a2); and at Hs, |f2 =

9.7 x 10%(a2) and |g]? = 1.45 x 10-5(a’). As can be
seen, the deepest minimum islocated at H,.

When comparing the values of the critical points
with experimental data, we had only two experimental
works at our disposal (Table 1) where the critical mini-
mum positionsin the DCS of elastic scattering of inter-
mediate-energy electrons by argon atoms are reported.
In[29], three critical pointswere found for electrons of
energies above 30 eV. In [2], the energy range from 30
to 60 eV and scattering angles from 60° to 150° were
thoroughly studied to exactly locate critical points, and
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Fig. 2. Energy dependence of the angular positions for (a)
low-angle and (b) high-angle minima of the differential
cross sections of elastic electron scattering by atoms. Data
points: O [2], A [24], 0 [27], x[28], and V [29]. Solid line,
calculation in [26]; dashed line, our results.

two were found. Comparison of the datain [2] and [29]
shows that the positions of the low-angle critical min-
imadiffer in both angle (by 3°) and energy (by 15 eV).
The angular positions of the high-angle critical minima
coincide with each other, whereas the energies differ
by 5 eV.

In [30], the angular dependences of the DCSs were
calculated for energiesand angles only inthevicinity of
the two critical pointsfound in [2]. The calculation was
performed in the relativistic approximation with exact
consideration of the exchange between an incident
electron and electrons of atarget atom and with regard
for the ab initio polarization potential found by the rel-
ativistic method of polarized orbits. The positions of
the critical minimafound in[30] arein good agreement
with the experiment [2]. However, there are differences
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Fig. 3. Energy dependence of the (a) low-angle and
(b) high-angle minima of the differential cross sections of
elastic electron scattering by atoms. Our results are shown
by the dashed line with the critical points H; = (8.44 €V,
119.89°), H, = (38.25 eV, 140.67°), and H3 = (126.33 eV,
118.12°). The calculation uses (+) tabulated and (dots)
approximated phase shifts from [26].

in both the energy (by 2 eV) and angle (by 2°) for the
high-angle minimum.

Table 1 showsthat the theoretical results confirm the
experimental data [2] for the angular position of the
low-angle critical minimum and the energy position of
the high-angle critical minimum. Asfor the differences
in the energies of the low-angle minimum, Fig. 2a
shows that the angular positions of the DCS low-angle
critical minima for energies between 30 and 40 eV
gradually vary from 71.1° to 68.5° and are within the
experimental angular error.

From Table 1, it followsthat in al the three theoret-
ical works, the angular position of the high-angle min-
imum H, isfound to be near 141°, whereasin the exper-
imental works, the associated value is 143.5°. The
energy of thisminimum lies apparently between 37 and
39 eV. Inany case, from Table5in[2] it followsthat at
2002
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Table 1. Energy and angular positions of the low-angle (E,, ©,) and high-angle (E., ©y) critical minima

E , eV O, deg Eq, eV Oy, deg Refs.
56.1+ 0.7 65.73 £ 0.05 42.3+0.9 143.8+0.20 [29]
132.3+0.3 120.90 + 0.05
126.1 1189
41.3+0.02 68.5+ 0.3 37.3+0.02 1435+ 0.3 [2]
30.25 71.05 8.44 119.89 Our calculation
38.25 140.67
126.33 118.12
31 704 8.76 119.22 Phase shifts from [26]
38.29 140.83
39.3 68.5 39.5 141 [30]

143.5°, the experimental DCSs take minimum values
between 37.3 and 39.3 eV.

Asfar asthe critical point H; is concerned, note that
the pronounced minimum inthe DCSat 10 eV and near
120° is well known from available publications. For
example, in our paper, the angular position of this min-
imumisequal to 119.68°; in the experimental works[2]
and [24], 115°; in[27] and [31], 118° and 119°, respec-
tively; and in the theoretical works [1] and [26], 115°
and 120°, respectively. In view of the fact that the DCS
values are usually reported with a step of 5°, one may
infer that the minimum at 10 eV is located between
115° and 120°. Figure 3b shows that the low-energy
dependence of the DCS minimafound in this paper has
aform similar to that constructed using the phase shifts
from [26]. The differencein the positions of the critical
minimum H, isonly 0.3 eV and 0.7°.

Since the energy position of the critical point H; is
greater than 100 eV, we can compare the position of this
point only with experimental data from [29]. Note that
the energy of Hj coincides with the theoretical result
(126.1 €V) in[29] and that the angular position of H;is
less than the theoretical value in [29] by only 0.8° and
less than the experimental one by 1.8°.

In order to find energies and angles at which the
Sherman function S(E, ®) may reach its extrema, we
performed calculations in small neighborhoods of the
three high-angle critica points, where |g|*> = |f]%. As
was noted [9], the parameters of spin polarization are
difficult to measure: the most thorough experiments
determine the Sherman function with an error no
smaller than £5. Therefore, Table 2 lists energies and
angles at which the function S(E, ©) takes its extreme
values. S=1for SO[0.90, 1] and S= -1 for SO [-1,
-0.90].

From Table 2, the Sherman function reaches its
maxima and minima in the neighborhoods of the criti-
cal points. We will refer to these neighborhoods as
extremal neighborhoods. In the case of H,, at 119.78°,
S=1inthe energy range [8.41, 8.44] €V, at 119.99°,
2002
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S= -1 in the energy range [8.45, 8.48] eV. Hence, the
sizes of this neighborhood are (0.07 eV, 0.21°). In a
similar way, we find that the sizes of the extremal
neighborhood for H; are (1.37 eV, 0.43°).

In contrast to the critical points considered above,
the energy of the point H, (38.25 eV) does not belong
to its extrema neighborhood. Figure 4 shows that
|S(38.25 eV, ©| < 0.5 (curve 4) for any angle from the
neighborhood of H,. The Sherman function reachesits
extreme values at other energies from this neighbor-
hood; namely, S = 1 in the energy range of 38.12—
38.20 eV withinthe angles 140.71°-140.74° (curves 1—
3) and S= -1 in the energy range of 38.29-38.17 eV
within the angles 140.61°-140.63° (curves 5-7). Con-
sequently, it may so happen that it is insufficient to
investigate only angular neighborhoods of the critical
minima; it may also be necessary to determine their
extremal energy neighborhoods in order to find the
energies and angles of a complete spin polarization.

Since predicting the sizes of the extremal neighbor-
hoods is a subject of theoretical study, the question
arises as to how these sizes depend on the potentia
selected. In order to answer this question, let us express

Table2. Extremevauesof thefunction S(E, ©) inthevicinity of
the criticd points H; = (844 eV, 119.89°), H, = (38.25 ¢V,
140.67°), and H; = (126.33 eV, 118.12°)

E, eV | ©,deg S E, eV | ©,degg S

H,; 8.41 | 119.78 | 0.93 8.45 | 119.99 | -1.0
8.43 | 119.78 | 1.0 8.46 | 119.99 | —0.99

8.44 | 119.78 | 0.99 8.48 | 119.99 | —0.91

H, | 38.12 | 140.74 | 0.90 | 38.29 | 140.63 | -0.90
38.17 | 140.72| 1.0 38.32 | 140.63 | -1.0
38.20 | 140.71| 0.93 | 38.37 | 140.61 | -0.92

H; |125.63 | 118.34 | -0.90 | 126.32 | 118.01 | 0.96
126.07 | 118.26 | -1.0 |126.58 | 117.98| 1.0
126.31 | 118.23 | -0.96 | 127.0 | 117.91| 0.90




1088

Sherman function S
1.0 -

0.5

-05 ¢

-1.0
140.5

140.7 140.8
Scattering angle, deg

140.6

Fig. 4. Angular dependences of the Sherman function S(E,
©) in the vicinity of the critical point H, for energies E =
(1) 38.12, (2) 38.17, (3) 38.20, (4) 38.25, (5) 38.37,
(6) 38.32, and (7) 38.29 eV.

Ref, Imf, Reg, Img (a)

0.003
0.002

0.001

—-0.001

—-0.002

—-0.003

1 1
140.70 140.75
Scattering angle, deg

1 1
140.60 140.65

Fig. 5. Angular dependences of thereal and imaginary parts
of the amplitudes f and g in the vicinity of the critical point
H,. The energies E for Ref are (1) 38.32, (2) 38.25, and
(3) 38.17; for Imf, (4) 38.17, (5) 38.25, and (6) 38.32; for
Img, (7) 38.25; and for Reg, (8) 38.25 V.

the Sherman function through the real and imaginary
parts of the amplitudes f and g:

_ 2(Reflmg—ImfReg)
(Ref)?+ (Imf)? + (Reg)” + (Img)”

9)

KELEMEN

As follows from (9), S= 1 when Ref = Img and
Imf = —Reg, and S = -1 when Ref = -img and Imf =
Reg. These two cases are demonstrated in Fig. 5 with
the critical point H,. In the extremal neighborhood of
this point (see Table 2), S= 1 at 38.17 eV and 140.72°
and S=-1 at 38.32 eV and 140.63°.

For all energies from this neighborhood, the values
of the amplitude g coincide with those for 38.25 eV.
Hence, we will assume that Reg = —2.95 x 10-3(a,) and
Img = -1.36 x 1073(a,) throughout the neighborhood.
For the energy 38.17 €V and the angle 140.72°, Ref =
-1.47 x 103(a,) and Imf = 2.97 x 103(ay); i.e., indeed,
Ref = Img and Imf = —Reg. For the energy 38.32 eV and
the angle 140.63°, Ref = 1.17 x 103(a,) and Imf =
-2.78 x 103(ay); i.e, indeed, Ref = —-Img and Imf =
Reg. At intermediate energies from this neighborhood,
e.g., at 38.25eV, |Reg| > |Ref | and |Img| > |Imf | (hence,
|g? > |f %) for any angle from the neighborhood. Thus,
the sizes of the extremal neighborhood depend on both
the value of |gJ? and the width of the minimum of |f|?
at the boundary of the neighborhood, where |f|? =
|gf=1.1x 10%ag).

From (3), it follows that the amplitude g depends on
the spin—orbit splitting of the phase shiftsA, = &, — &, .
We will consider only the correction due to spin—orbit
interaction of all relativistic corrections (the so-called
semi-relativistic approach) and compare our results
with the completely relativistic calculation, e.g., for an
energy and an angle close to the critical point H,,

namely, for 40 eV and 141°. Using the phases from [6],
we find for | = 1, 2, and 3 that A, = 0.0110 rad, A, =

0.0017 rad, Ay = —2 x 10 rad, and |g]? = 8.5 x 10%(a3).
Our results are A; = 0.0119 rad, A, = 0.0016 rad, A; =

7 x 105 rad, and |g[? = 1 x 105(a2). Thus, the semi-
relativistic approach yields almost the same values of A,

and | g ] as the completely relativistic one. Hence, the
potentials used in this work satisfactorily describe the
interaction of an incident electron with an argon atom
at small distances from the nucleus and allow one to
find reliable values of the amplitude g.

Figure 5 showsthat in the neighborhood of the min-
imum H,, Imf has asmaller slope than Ref and does not
even cross the zero axis for several energies. Thus, the
position of the minimum of |f|? is defined primarily by
the point where Ref crosses the zero axis, while the
minimum of | f [> depends chiefly on Imf.

The use of another optical potential, especialy
another polarization potential, will evidently result in
another energy dependence of the phase shifts and,
hence, another position of the DCS critical minimum.
At the same time, Ref and Imf calculated with the
approximated phase shiftsfrom [26] behavein the same
way as those in Fig. 5 within a small neighborhood of
the critical minimum (38.29 eV, 140.83°). Namely, Ref
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steeply crosses the zero axis. The crossing angle and,
accordingly, the angular position of the DCS minimum
shift toward smaller angles (see also Fig. 2b) with
increasing energy. Having a substantially smaller slope
than Ref, Imf becomes negative as the energy grows.
The width of the DCS minimum, where |f]? = 1.1 x

105(a3), is 0.1° for 38.29 eV, i..e., equals our value for
38.25¢eV.

For the high-angle critical minimum H,, the calcu-
lations with approximated phase shifts from [26] yield
the same behavior of Ref and Imf as that found in this
paper. The width of the DCS minimum, where |f|? =

|g[2 = 1.7 x 104(a3), is 0.05° for 8.76 eV, coinciding
with our result for 8.44 eV.

Sincein asmall neighborhood of the low-angle crit-
ical minimum, both Imf and Ref steeply cross the zero
axis, the minimum values of |f | equally depend on Imf
and Ref. Figures 1 and 2a show that our angular posi-
tions of the DCSlow-angle minimaat energiesfrom 20
to 50 eV perfectly agree with those abtained in [26].
However, asfollowsfrom Fig. 3a, at these energies, the
DCS low-angle minima at the crossing points of Ref
and Imf turn out to be more sensitive to small differ-
encesin the energy dependences of the phase shifts cal-
culated in [26] and in this paper than the high-angle
minima (Fig. 3b). Therefore, we propose to use the
extremal neighborhoods of high-angle critical points
for experimentally observing complete spin polariza-
tion of electrons scattered by argon atoms.

In conclusion, note that the positions of our DCS
minima are in good agreement with the experimental
data. The energy and angular positions of the minimum
H, perfectly agree with the experiment [2]; those of the
minima H,; and Hj, with other theoretical calculations.
Our energies and angles of complete spin polarization
of scattered electrons in the neighborhood of high-
angle minima may be employed in further polarization
experiments. Even if the positions of DCS critical min-
imaare refined in subsequent experiments, the extremal
neighborhoods of critical points found in this article
may be used for estimating the energies and angles of
complete spin polarization of scattered electrons pro-
vided that the condition |g|? = |f]? is satisfied in the
neighborhoods of the minima.
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Abstract—It is shown that the pressure of electrostatic fields induced by the self-charge of a drop and by the
polarization charge and aerodynamic pressure of a laminar gas flow around a moving charged drop acting
simultaneously reduce the critical instability conditions for the surface of the drop. For these conditions, the
spectrum of capillary oscillations of the drop is calculated. It isfound that, at various values of the charge, field
strength, and velocity of the drop, the vibrational instability of the drop surface developsthrough theinteraction
of different oscillation modes, namely, second and third, second and fourth, and third and fifth. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

Various problems of technical physics, geophysics,
and technology deal with charged drops moving in an
external electrostatic field [1-3], which motivates anal-
ysis of their stability. According to experimental data
[4], an air flow around a water-covered hailstone
decreases the critical strength of an external electro-
static field capable of initiating a corona discharge.
Theoretical calculations [5, 6] show that the motion of
a charged drop in the environment makes it less stable
againgt its self-charge because of atangential disconti-
nuity in the velocity field at the interface. A more gen-
eral problem of capillary oscillations and stability of a
charged drop movingin auniform electrostatic field has
not yet been solved, athough it is of great interest.

(1) We will find critical instability conditionsfor the
surface of acharged spherical drop of anonviscous per-
fectly conducting incompressible liquid of density p,.
The drop, having aradius R and a charge Q, movesin a
uniform electrostatic field of strength E, with a con-
stant velocity U through a perfect incompressible
dielectric fluid of density p; and permittivity €. The
interfacial tension is o, and the direction of the drop is
assumed to be aligned with the field.

Wave motions in the environment and in the drop
are assumed to be harmonic and potential with the
velocity potentials W, and W,, respectively. A perturba-
tion &(r, t) of the interface caused by the thermal
motion of molecules is assumed to be axisymmetric
and small, that is, |§(O, t)|/R < 1. The analysisis per-
formed in the spherical coordinate system with the ori-
gin at the center of the drop in the linear approximation
with respect to |&/R).

The assumption that the drop is spherical grestly
facilitating further calculations, is based on the foll ow-
ing reasoning. It is known [7] that a stagnant drop of a

conductive liquid placed in auniform electrostatic field
takes the shape of a spheroid extended along the field.
The pressure of alaminar flow around the drop actsin
the opposite direction, that is, flattens the drop, because
a reduction of the pressure due to an increase in the
velocity is the greatest near the equatoria area of the
drop according to the Bernoulli equation. Thus, when
the drop moves collinearly with thefield strength, these
two tendencies may balance and the drop will be near-
spherical.

To simplify calculations, let us introduce dimen-
sionless variables such that R=1, 0 = 1, and p, = 1.
Then, the rest of the variables involved in the problem
(designated as usual) will be expressed in units of their
characteristic values:

e =Rt = R0,
U _ R—]J2p—1/20_1/2’

P* - R_lc, Q* - 3/2 1/2

E. = R%0™, pip,=p.

The perturbed surface of the drop isdescribed by the
equation

r(e,t) = 1+¢&(0,1).

The mathematical statement of the problem has the
form

Ad =0, AW, =0(i=1,2), (@)
r=0.®=const, W, =0, 2
_ az 10¥,98 _ 0¥,

e M or o ar’ ®)
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o~ or @
aLIJj_ aLIJZ 1 2 _
_pw + W_Zp(mp 1) _PE+ PO’ - Ol (5)

-0 ®——E,[F, W ,— U. (6)

Here, @(r, t) isthe electric field potential; W,(r, t) and
W,(r, t) are the velocity field potentialsin the environ-

ment and in the drop, respectively; n, || Eq; Py = PS +
P,(€) is the pressure exerted by the surface tension

forces, Pg = PE + Pg(§) is the pressure of the electric
field on the surface of the drop (see Appendix); andAis

Laplacian. The quantities P2 and P are of the zeroth

order of smallnessin &/R, while P¢(€) and P4(§) are of
the first order of smallnessin |¢/R)].

(2) We will seek a solution to Laplace equations (1)
for the velocity potentials W,(r, t) and W,(r, t) subject
to boundary conditions (2) and (6). The perturbation
&(0, t) will be sought in the form of the expansion in
normalized axisymmetric spherical functions Y, (lL):

Wi(r ) = o)+ 5 ATV (wexp(sy),

n=0

Wy(r 1) =y Bar"Ya(k)exp(SY), (7)

E(1) = 3 ZaYa(W)exp(S),
n=2

where 1 = cos©; Sisthe complex frequency; the expan-
sion amplitudes A,,, B,,, and Z, are constant coefficients
of the same order of smallness; and ¢(r) is the velocity
field potential in the environment near the unperturbed
spherical surface.

For &, the summation in the expansion starts with
n = 2, because the zeroth mode corresponds to radial
vibrations that are impossible in an incompressible lig-
uid; consequently, Z, = 0. Thefirst mode correspondsto
the trand ational motion of the drop; in the frame of ref-
erence related to the center of mass of the drop, Z, = 0.

The gradient of ¢(r) defines the velocity field in an
undisturbed flow of a nonviscous fluid near a sphere

[8]:

RS

V = m) = ——

2r®

where n is the unit vector normal to the spherical sur-
face of the drop.

According to the aforesaid, the direction of the
velocity U coincides with the unit vector n, in the Car-

[3n(U [h)-U] +U,
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tesian coordinate system. Taking into account that e, =
€C0SO —ey,siNG@ and n = e, we write an expression for
the liquid flow velocity near a spherical drop in the
form

3 3

V= UCOS@[l——Rg}er—USinG[1+;—3}6@. )
r r

Substituting expressions (7) and (8) into boundary
conditions (3)—(5) and using the recurrent relation [9]

SlnG% = n(n+1) Yn+1
00  /(2n+1)(2n+3)
n(n+1)

~Jen+D(2n-1 "
weobtanforr=1

S SZ,Y,(Wexp(S)

3 n n(n+1)
-5UN 2, Yo+
2 z Ufen+1)(2n+3) "

9)
3 n(n+1)
J(2n+1)(2n— 1)Y”‘1%6Xp(8t)

+3 (+ DAY, (Wep(S) = 0,

> SZYa(Wexp(s) = NByr "Yo(H) exp(St), (10)

_psz AnYneXp(St) + Sz BnYneXp(St) - PE(E)

n(n+1) v (11)
Jen+)(2n+3) "

+Po(8) +3pU Y A

B n(n+1) _
T s 1)Yn_l} exp(St) = 0.

Here, it has been taken into account that, forr = 1,

L 1= |:_2An(n+ 1)Yn(p-)exp(8t)i|er
+ [—gu sn® + ZAn%\(—g-‘exp(St)}e@,

(W )%= %uzsjnze

B n(n+1)
) A”[J(zn +1)(2n+ 3)Y”+l

n
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n(n + 1) v the drop:
- -1
J@en+1@n-1) " [WeK, —WT,]Z,_,~ [PUSL, + JWWF,]Z,_,

The correction to the Laplace pressure Py(€) associ-  +{ K,S —WeM, +v,} Z,—[pUSI, + JWWX.] Z,,.1
ated with the nonsphericity of the drop is given by [10] +[Wed.~WG]Z,., = O,

}exp(St).

— _ 2 2
Po(8) = 3 (N=1)(n+2)Z,Yy(W) exp(SL). we=pu?, w= w=iE
n 4re 41
An expression for the pressure Pg(§) the electric K = 9a,,0,_4 _(9n+6)a,
field exerts on the surface perturbed by the capillary " 2n 7 " 2n(n+1)°
wave motion is derived in the Appendix. Substituting 1 >
the expressions for Pe(£) and P,(€) into (9)—<(11), mul- T =9—nM-1)(n-2) ,
tiplying (9)—<11) by Y,,(1), and integrating with respect J(Zn —3)(2n-1)*(2n+1)
to the angle © we come to a set of homogeneous equa-
tions for the amplitudes A,,, B, and Z,; F=3 n@n-3) K=—P 4 1
J@n-1)(2n+1) (n+1) n° (15)
SZ,~2U(00Z,-1~BuZosn) + (N+ 1)A, = 0, (12) Vo= (n=1)[n+2-W] -w,,
M =gaan—l+98nan+l
SZn = nB,, (13) n— 2n 2(n+2)’
~pSA, + 5B, + 3pU[0yAr_; ~ByAn.d + PP =0, (On + 12)B,

n = S+ D+ 2)’

n(n—1)
- ' 3
J(@n=1)(2n+1) (14) A, =90 n
g = (n+1)(n+2) 2n-1)(2n+1)
"T(2n+1)(2n+3)’ L, (n+1)*n+2)  4n(n+1)-2
- - 1
From (12) and (13), it is easy to find that (2n+1)(2n+3) (2n-1)(2n+3)
=3 (n+1)(2n_1) J =9Ban+l
1 8 O " fzn+1)(2n+3) " 2(n+2)
An = E_Zu(anzn—l_ann+1)_SzrDv
(n+1) 0 G.=9 n(n+1)(n+2)
1 J(2n+1)(2n +3)*(2n + 5)
B, = -SZ,. Here, the variables We, W, and w are the Weber, Ray-
leigh, and Taylor parameters, respectively.
Substituting these relationships into expression (14) The necessary and sufficient condition for set (15) to

yields an infinite set of homogeneous algebraic equa- have asolution isthat the determinant composed of the
tions for the amplitudes of the capillary vibrations of ~ coefficients at the amplitudes Z, equals zero:

K,S—WeM, +vy, pUSI,—(WW)"*X, WeJ, —wG, 0...
—pUSL;— (WW)"’F; K;S—WeM;+ys pUSI;—(WW)"’X;  Wed;—WGs...
WeK,-wT,  —pUSL,—(WW)"’F, Kk, S—WeM,+y, pUSI,—(wWW)"*X,| = 0. (16)
0 WeKs—WTs  —pUSLs — (WW)"Fy kS —WeM; + Vs

Relation (16) is a dispersion relation defining the of dimensionless physical parameters W, w, and We.
capillary oscillation spectrum of the drop asafunction When these values are varied, the spectrum changes
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and some of the solutions S. may become negative at
certain values of W, w, and We. If this condition is ful-
filled, the amplitudes of corresponding capillary oscil-
lations grow exponentially with time; in other words,
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the drop becomes unstable and disintegrates by the law
derived in [11]. The condition for the emergence of
zero solutionsto the dispersion relation is the vanishing
of the free term:

v,—WeM, —(wW)¥X, Wed,-wG, 0 0

—(WW)’F; ys—WeM; —(WW)"?X; Weds —wGs, 0

WeK, —wT, -(WW)"F, y,—WeM, —(wW)"*X, WeJ,-wG, ...
0 WeKg —WTg —(WW)"’Fy ve—WeMg —(WW)"X; ...
0 0

(17)

Set (15) isinfinite, and determinants (16) and (17)
are of an infinitely high order. Therefore, it is reason-
ableto seek critical conditionsfor theinstahility of cap-
illary vibrations (that is, a critical relationship between
W, w, and WE) by the method of successive approxima-
tions, considering two, three, etc. equations of set (15).
However, some conclusions concerning solutions to
Eq. (17) can be drawn at once.

If the interaction between the modes is neglected,
critical conditions for nth mode stability that are found
by equating the nth diagonal component of determinant
(17) to zero have the simple analytical form

(n=-1)(n+2)-WeM,—-(n-1)W-wA, = 0. (18)

Figure 1 shows the critical dependence of the Ray-
leigh parameter W = W(\We, w) on the Weber and Taylor
parameters We and w calculated with (18) for the fun-
damental mode (n = 2). Three numbers corresponding
to the coordinates of apoint in the space of the variables
W, w, and We specify the critical values of the parame-
ters W w, and We, at which the fundamental mode
becomes unstable. From (18) and in Fig. 1, it is seen
that the pairwise dependences of the parameters on
each other are linear. If two of the three parameters
equal zero, the critical values of thethird oneare asfol-
lows: We =0.97, W= 4, and w = 0.86.

Figure 2 displays the dependence of the Rayleigh
parameter W on the Taylor parameter w for the funda-
mental mode (n = 2) and various U. It was calculated
with (17) and the 6 x 6-order determinant. Hereafter in
the figures, the ratio of the densities is p = 10 The
dependence W(w) in Fig. 2 allows for mode interaction
and, unlike that in Fig. 1, isnonlinear. Moreover, if the
Rayleigh parameter is zero, the critical Taylor parame-
ter is smaller than in the linear case: w [10.63. Asfol-
lows from Figs. 1 and 2, the critical conditions for the
instability of the charged surface of the drop depend
appreciably on its velocity, as expected in [12].
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Figure 3 plotsthereal and imaginary components of
the dimensionless frequency S vs. the dimensionless
velocity U of the environment at subcritical values of
the Rayleigh (W = 1) and Taylor (w = 0.1) parameters.

Fig. 1. Relationships between the critical values of the Ray-
leigh (W), Weber (W), and Taylor (w) parameters for the
fundamental (second) mode.

w

4

2

1
2
3 1

0 0.5 1.0

w

Fig. 2. Critica Rayleigh parameter W vs. dimensionless
Taylor parameter w for the fundamental mode at the dimen-
sionless velocity U =0 (1), 20 (2), and 30 (3).
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Fig. 3. Real, ReS, and imaginary, ImS, components of the
dimensionless complex frequency Sof capillary oscillations
vs. dimensionless velocity U of the flow around the drop for
the subcritical value of the Rayleigh parameter W = 1 and
Taylor parameter w = 0.1. Curves 2—7 refer to the associated
modes of capillary oscillations of the drop; curve 8, depict-
ing vibrationa instability, is a result of the interaction
between the second and third modes.

Curves 2—7 correspond to the associated mode num-
bers. Only the first six equations of set (15) were used
in the calculations. The critical dependences for the
second and third modes were calculated to three-place
accuracy, while those for the sixth and seventh modes
are virtually the zeroth approximation. It is of interest
that theinteraction between the second and third modes
causes vibrational solutions 8. In Fig. 3, the region
above the abscissa axis covers unstable solutions; that
is, the positive branches of curves 2-8 specify theinsta:
bility increment for the corresponding mode of the cap-
illary vibrations. Curve 8, unlike curves 2—7, has both
real and imaginary components. Thus, in a certain
range of the velocity U, the instability oscillates, which
istypical of Kelvin-Helmholtz instability and is asso-
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Fig. 4. Real, ReS, and imaginary, ImS, components of the
dimensionless complex frequency Sof capillary oscillations
vs. dimensionless velocity U of the flow around the drop of
zero charge (W = 0) in a strong electric field (w = 0.6).
Curves 2—7 coincide with the numbers of capillary oscilla-
tion modes. Curve 8, corresponding to the vibrationa insta-
bility, is aresult of the interaction between the second and
fourth modes, unlike Fig. 3.

ciated with the tangential discontinuity of the velocity
field at the interface [8, 13].

From Fig. 3, itis seen that, as the velocity increases,
theincrement of aperiodic instability for the third mode
exceedsthat for the second mode. Thismeansthat if the
velocities of the flow around the drop are sufficiently
high, the ellipsoidal drop transforms into a parachute-
like form. This must show up in the mechanism of drop
disintegration in the course of instability development
[1]. Thevibrational instability of afree-falling drop has
been also observed in experiments [1].

It should be noted that the critical velocities for the
sixth and seventh modes were cal culated at weak mode
interaction, because only the first six equations of
set (15) were used. Therefore, the critical dependences
for these modes contain large errors. This explains the
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Fig. 5. Real, ReS and imaginary, ImS components of the
dimensionless complex frequency Sof capillary oscillations
vs. dimensionless velocity U of the flow around the drop at
W =0 and asupercritical (for the fundamental mode) value
of the Taylor parameter w = 0.7. The numbering of the
curvesisthe same asin Fig. 4. Curve 9 reflects the interac-
tion between the third and fifth modes.

qualitative distinction of the dependences ImSU) for
the sixth and seventh modes from those for the lower
modes.

As the Taylor parameter w approaches its critical
value w = 0.63, the shape of the curves calculated and
their interaction become qualitatively different in com-
parison with the case w — 0. While the Rayleigh
parameter tends to its critical value, the run of the
curves remains practically unchanged (they merely
shift to the left along the abscissa axis (see [5] and fig-
urestherein)). In our case, however, the pattern changes
radically. Figure 4 shows dependences similar to those
in Fig. 3 but obtained at W = 0 and w = 0.6. Here,
curve 8 is the result of interaction between the second
and fourth modes and not between the second and third
as in Fig. 3. The vibrational instability described by
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curve 8 occursin arather narrow velocity range, and as
the velocity falls outside this range, the fourth mode
becomes unstable. Supposedly, this is associated with
the fact that the ambient pressure tends to shape the
drop into a spheroid flattened along the vector U (or
Ey), while the electric field pressure extends the sphe-
roidal drop in the same direction. Eventually, the drop
will assume a shape close to that specified by the
fourth-order polynomia P,(u), and the fourth mode
will become unstable.

Figure 5 demonstrates the dependences ReS(U) and
ImSU) calculated for the fundamental mode at a
slightly supercritical field Ey (W= 0.7 and W= 0). It is
seen that the behavior of the curves changes only
dlightly except that the second mode is initialy unsta-
ble and vibrational branch 9 appears as the result of the
interaction between the third and fifth modes.

CONCLUSIONS

Critical conditions for drop instability against the
induced charge loosen appreciably in the presence of
the self-charge of the drop and agas flowing around the
drop. This results from the superposition of two types
of instability: (i) instability of the free surface of the
drop against a tangential discontinuity in the velocity
field and (ii) instability against the self-charge and the
charge induced by an external field. Depending on the
ratio between the densities of the drop and the environ-
ment, the charge of the drop, the electric field strength,
and the velocity of the flow around the drop, the insta-
bility can be either aperiodic or vibrational . At low flow
velocities, the aperiodic instability shapes the drop into
an oblong spheroid and the excess chargeisremoved by
the gjection of finely dispersed heavily charged droplets
[11]; at high flow velocities, the drop takes the form of
a parachute (at low strengths of the electric field) or
becomes cross-shaped (at high strengths of the electric
field), disintegrating into many fine droplets and several
large drops.

APPENDIX

Pressure Exerted by an External Electric Field
and the Field of the Self-Charge of the Drop
on the Spherical Surface of a Charged Drop Disturbed
by Capillary Wave Motion

Let aperfectly conducting drop carrying a charge Q
bein adielectric medium under a uniform electrostatic
field E,.

In the spherical coordinate system with the origin at
the drop’s center of mass, the pressure of the electric
field on the conductor—dielectric interface disturbed by
capillary motion is given as follows:

r :1+E:PE: SEZ’

8_T[ E =-[® .
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Here, @ isthe potential of the total electric field in the
dielectric: ® = @, + O, = D + 6D, where d, = q:g +

®! is the potential of the electric field without distur-
bance, and d® = 0®, + d®, isacorrection to the poten-
tial d, dueto aweak thermal disturbance |¢| < R of the
spherical surface. The correction has the same order of
smallness as the disturbance (|d®| ~ |€]\R). The sub-
scripts q and e denote the partial potentials due to the
self-charge Q and to the external electrostatic field E,,
respectively. Thus,
r=1+&Pg = %T(mp o+ 06 ))2.

We expand this expression into a series accurate to

termslinear in [E\R and dP:

P, [ (@ )+ = 2@@@))}

r=1+¢
Te ;g d([® )’ ¢
~[5g@o)+§ﬁ — E+Z#@D&¢E¢»l:l

Since the €electric field on the conductor surface is
normal to the surface, we obtain

b _ £
r=121"°Pg= sy 0
(A1)
P Lrogogt | 100050
rDOrD 4t or  or

The contributions from the charge and external field
to the total potential ® are independent of each other.
We therefore divide the problem into two subproblems
and will seek the partial potentials separately.

The potential @, is a solution to the subproblem
AD, = 0,
r —so: ®, — —E,rcoso,

r—1+¢: ®d, = const.

For the zeroth, ®2, and first, 3®,, orders of small-
ness, we have the boundary-value problems

ADY =0, A(BD,) = 0, (A.2)

r— o: ®) —» —E;rcos®, dd,— 0, (A.3)
0

r=1:®) = 0, ®, = 0. (A.4)

Solving thefirst equation (A.2) in the zeroth approx-
imation subject to boundary conditions (A.3) and (A.4)
yields

®) = —E,rcosO(1-r7). (A.5)

KOROMYSLOV, GRIGOR’EV

A solution to the boundary-value problem in thefirst
approximation for d®, is natural to seek in the form

=y B, ()r " Y.

Taking into account boundary conditions (A.3) and
(A.4), expansion (7) for §(©, t), and the recurrent rela-
tionship for spherical functions [9]

_ (n+1)
CosOY, (M) Jen+1)(2n+ 3)Yn+ 00 (A.6)
n
" Jen+ - 1)Yn_l(u)’
we find
1 (n+ 1)Zn+l
dD, 3Eoz n+1[A/(2n+1)(2n+3) (A7)
(n+ 1)z,
oW

The potential @, isasolution to the boundary-value
problem

A®, = 0,

r— . ®,— 0,
r=1+¢& @, = const.

For the zeroth, CD?4 , and first, 6d>q, orders of small-
ness, we arrive at the boundary-value problems

A®; = 0, A(BD,) =0 (A.8)

F— 0 ®) —0, 3P, — 0, (A.9)
0]

r=1o,=Q, 3= —%-r—‘) . (A.10)

A solution to the first equation (A.8) in the zeroth
approximation subject to boundary conditions (A.9)
and (A.10) has the expectable form

o = 2

Qs o (A.11)

A solution for d®, will be sought in the form

=5 D, (t)r " Y.
n

Taking into account boundary conditions (A.9) and
(A.10) in view of expansion (7) for &(©, t), we obtain

-9y rn—{lann(u). (A.12)
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Abstract—A method and results of measurements are presented of the ion energy distribution in a deuterium
liner accelerated in the inverse Z-pinch, in which the plasma is accelerated electrodynamically from the liner
axis. Knowledge of the deuteron energy distribution is of primary importance for the correct interpretation of
the experimental results from the study of the dd-reaction in the range of infralow energies with the use of a
liner plasma. Experiments were carried out in a high-current pulsed accelerator (I = 950 kA, T = 80 ns) at the
Ingtitute of High-Current Electronics of the Siberian Division of the Russian Academy of Sciences (Tomsk,
Russia). In the initial state, the liner is a supersonic hollow deuterium jet 32 mm in diameter and 20 mm in
length. Theliner parameters were measured with the help of optical detectors of H, and Hg deuterium linesand
magnetic probesarranged in aradia direction (along the direction theliner expansion). In addition, scintillation
spectrometers and BF; counters were used to measure the intensity of the neutron flux produced in the d +
d — 3He+ nreaction. The results obtained by simultaneously analyzing the data from magnetic probes, opti-
cal detectors, and neutron detectors point to the possibility of using arather simple method for measuring the

parameters of the liner accelerated up to energies of 3-6 keV. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Interest in the study of strong interactions between
light nuclei in the range of infralow energies (~1 keV)
is motivated not only by the possibility of verifying the
fundamental symmetries, but also by the necessity of
solving a number of astrophysical problems [1]. Until
recently, experimental data on the cross sections for
reactions between light nuclel in the range of infralow
collision energies (from several electronvoltsto several
kiloelectronvolts) have almost completely been lack-
ing. Thisis explained by both the small values of the
cross sections (104-10-%? ¢cm?) and the very low inten-
sities of charged-particle beams.

Experimental studies of nuclear reactions in this
energy range have been stimulated by the proposition
of anew method for studying such reactions[1-4]. This
method is based on the use of high-intensity converging
ion flows generated in the process of the liner plasma
implosion (the formation of a straight Z-pinch). In
those experiments, the liner was a 32-mm-diameter
supersonic hollow cylindrical deuterium jet injected
through a Laval nozzle into a vacuum, and the target

was either a hollow deuterium jet with aradius smaller
than the liner radius or a CD, rod positioned along the
liner axis. With this method, a number of experiments
[5-9] were performed to study the nuclear reaction

d+d-—S%He+n (@)

in the deuteron collision energy range 0.05-2.3 keV.
The effective cross sections for the dd-reaction and the
astrophysical S-factor in the above energy range were
estimated. The results obtained testify that, on the one
hand, the proposed method deserves attention and can
be efficiently used to realize the program of studying
nuclear reactionsin the astrophysical energy range and,
on the other, this method can be regarded as a basis for
nuclear-physics diagnostics of the plasma processes.
Note that, when this method is used to obtain precise
data on the parameters of nuclear reactions (cross sec-
tions and astrophysical S-factors), it isrequired that the
energy distribution of the ions accelerated in the liner,
aswell asthe Coulomb deceleration of theliner ionsin
the course of interaction with the target, be known to a
sufficiently high accuracy [8-10]. This requirement is

1063-7842/02/4709-1098%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic of the experimental setup: (1) high-current generator, (2) accelerator load unit, (3) measuring chamber, (4) grid
cathode, (5) reverse-current conductor, (6) supersonic Laval nozzle, (7) liner, (8) current-interception rod, (9) scintillation detector
D1, (10) scintillation detector D2, (11) thermal neutron detector D3, (12) Pb protective shield, (13) light cone, (14) collimators,
(15) fibers, (16) dB/dt magnetic probes, and (17) CD, target. The electromagnetic valve is not shown.

imposed because the cross section for the nuclear reac-
tions under study show a sharp dependence on the col-
lison energy. In the range of infralow energies, this
dependenceis exponential .1 We also mention some dis-
advantages of the proposed method for studying
nuclear reactions. Because of the onset of varioustypes
of instabilities during the liner implosion (e.g., MHD
instabilities), high-energy (20-300 keV) ions can be
generated in the liner at a level of 10°-107? of the
total number of accelerated ions. This, in turn, pro-
motes nuclear reactions (the background process) and,
as a consequence, considerably increases the measured
yield of their products. In the straight Z-pinch scheme,
it isdifficult to resolve in time the processes of electro-
dynamic ion acceleration in the liner and the processes
of the liner interaction with the target; for this reason,
when analyzing the experimental data, it becomes
problematic distinguishing the background events and
the events under study. Another disadvantage of the
method proposed is the limitation of the maximum
attainable energy of the accelerated ions at alevel of <3
keV; otherwise, the contribution of the background pro-
cesses to the yield of the nuclear reaction under study
increases. To decrease the contribution of the back-
ground processes and to increase the maximum attain-
able energy of the accelerated liner ions up to ~15 keV,
we proposed a method based on the formation of an
inverse Z-pinch [11]. The production of high-energy
(6-15 keV) accelerated ions is required to compare the

L Information about the main parameters of the reactions under
study is obtained by using the parametrization of the energy
dependence of the reaction cross section, which can be repre-
sented as the product of the astrophysical S-factor and the barrier
factor related to the Coulomb repulsion of nuclei.
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parameters of nuclear reactions measured with use of
conventional and plasma accel erators.?

In the inverse Z-pinch, the liner plasma is acceler-
ated from the liner axis in the radia direction. This
makes it possible (i) to resolve in time the processes of
the liner electrodynamic acceleration and the processes
of the liner interaction with the target, (ii) to reduce the
intensity of the plasma flow onto the target, and (iii) to
substantially simplify the problem of measuring the
average density and the ion velocity distribution in the
liner asit approaches the target. The results of studying
the formation of an inverse Z-pinch [11] testify that
there is the possibility of time resolving “useful” and
background events; consequently, this method is appli-
cable to studying nuclear reactions in the infralow
energy range. However, even in this case, to obtain
information about the ion energy distribution in the
liner by the inverse-Z-pinch method is a rather compli-
cated problem that requires the use of various, suffi-
ciently simple and highly reliable methods. This study
isaimed at solving this problem.

EXPERIMENT

Experiments were carried out at the Institute of
High-Current Electronics (Siberian Division, Russian
Academy of Sciences) with the use of an SGM pulsed
high-current accelerator (the liner current was | = 950 kA
and the high-voltage pulse duration was 1 = 80 ns) [14].
Figure 1 shows a schematic of the experimental setup

2 The lowest energy for which the cross section for the dd-reaction
with the production of neutrons was measured by using conven-
tional accelerators is 6 keV in the center-of-mass frame of refer-
ence of the colliding deuterons [12, 13].
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Fig. 2. Sketch of the load used to form an inverse Z-pinch
and the positions of the optical detectors: (1) electrodes,
(2) Rogowski loop, (3) current-interception rods, (4) Laval
nozzle, (5) grid cathode, (6) reverse-current conductor,
(7) magnetic probes, and (8) target.

consisting of a high-current generator, a load unit (a
sketch of the load unit is presented in Fig. 2), and a
detecting and diagnostic facility.

1. Method for Producing an Inverse Z-pinch

An original deuterium liner is produced with the
help of a Laval nozzle (6) (Fig. 1) and a fast electro-
magnetic valve. The nozzle is placed on the grounded
electrode (1) of the diode of the high-current generator.
The liner mean radius amounts to 15 mm. A current-
interception structure (8) (CIS) is placed on the path of
radial expansion of the plasma shell; this structure has
the form of a 45-mm-radius squirrel cage made from
rods 1 mm in diameter. The CIS position radius deter-
minestheliner-accel eration length. The current flowing
through the liner was measured by a Rogowski loop
(Fig. 2). The liner mass was assessed by using a zero-
dimensional model and information about the time
dependence of the current flowing through the liner,
along with the start times of the magnetic probe signals

VIT. BYSTRITSKII et al.

(dB/dt), which correspond to the times when the cur-
rent-carrying shell passes through the probes.

The process of liner acceleration is monitored with
two dB/dt probes located at radii of 23 and 34 mm.

2. Method for Measuring the Deuteron Energy
Distribution in the Liner

The method proposed is based on the detection of
optical radiation propagating in the radia direction
from the axis of the deuterium liner. The liner radiation
is generated in the following processes: the charge
exchange of deuterium ions with molecules (atoms) of
theresidua gasin the measuring chamber of the accel-
erator and the subsequent emission of the deuterium H,
656.5-nm and Hg 486-nm lines and bremsstrahlung. To
separate the Balmer lines, we used glass filters in the
blue-green and red spectral regions. Three optical
detectors (LD1, LD2, and LD3) were arranged behind
the CIS in the radia direction (in the direction of the
liner expansion) (Fig. 1). The distance from the CIS to
the detector LD1, as well as the LD1-LD2 and LD2—
LD3 distances, was equal to 50 mm. Each optical detec-
tor consisted of a collimator, quartz fiber, and photo-
multiplier. The diameter and length of the collimator
amounted to 4 and 14 mm, respectively. The diameter
of the quartz fiber was 200 um, and its length was 7 m.
To protect the optical detectors from the background
light emitted during the breakdown of the gas jet
injected into the diode, the collimatorswere enclosed in
an oval truncated cone made from an opague dielectric.
The cone had the following dimensions: theinlet diam-
eter was 20 mm, the height was 220 mm, thelonger axis
of the cone base was 110 mm, and the shorter axis was
40 mm. The method for measuring the ion energy dis-
tribution in the liner is based on the relationships
between the start times of the signals from the optical
detectors located at fixed distances from the CIS, as
well as the durations of these signals. The signal dura-
tion is determined by the light-pulse duration, which is
afunction of the distance from the current-interception
rods. In this approach, the liner ion energy distribution
can be represented in asimplified form as

At[ns] = 16.09L(1/E)"*(AE/E), )

where At is the full widths at half-maximum (FWHM)
of the light pulse from the detector located at the dis-
tance L (in cm) from the CIS (it is assumed that, when
theliner reachesthe CIS, the liner current isintercepted
by the CIS and the further expansion of the liner pro-
ceeds without acceleration and is, in fact, the free
motion of a current-free shell), E is the most probable
energy of the liner ions (in keV), and AE is the full
width of their energy distribution at the distance L from
the CIS.

Hence, the broadening of the light-detector signals
with increasing distance between the liner and the CIS
corresponds to the spread in the energies of the liner
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ions. We should mention postulates adopted in the
approach described above. First, it is assumed that the
spatial extension of optical radiation in the Hy and Hg
lines corresponds to the distribution of the liner ions.
This postulate is based on the assumption that all the
liner ions start accelerating at the same time irrespec-
tive of their initial radia position (at the instant when
the high-voltage pulse is applied to the gas liner, its
radial thicknessis~1-2 cm). Second, it isassumed that,
by measuring the intensity of the H, and Hg lines, we
obtain information about the radial distribution of the
liner ion density. This assumption is valid if there is
thermodynamic equilibrium between the liner ions and
the excited neutrals emitting inthe H, and Hg lines. The
liner parameters were measured with a TEKTRONIX
oscilloscope, and the trigger signal was the current
pulse of the high-voltage generator.

3. Bolometric Sudies of the Liner Expansion

The purpose of the bolometric measurements was to
determine the energy flux density AW in the radially
expanding plasma shell. In our experiment, this quan-
tity was measured by a foil bolometer. The method of
bolometric measurements consists in deducing the
energy of the liner ions arriving at the foil from the
effects of the heating and associated change in the elec-
trical resistance of thefoil.

The bolometric measurement circuit includes aref-
erence-current generator, foil bolometer, and recording
channel on the basis of a TEKTRONI X oscilloscope.

The reference-current generator consists of an artifi-
cia forming line having a wave impedance of ~2 Q
which is switched to a matched active load ~2 Q by a
fast thyristor.

Thefoil bolometer with aresistance of ~0.05-0.1 Q
was connected in series to a load resistor. The foil
bolometer was a copper foil strip with a length of | =
45 mm, width of 2 mm, and thickness of = 17.5 pum.
This strip was placed in paralldl with the liner axis at a
radius of r = 360 mm. The amplitude and duration of
the reference current pulse of nearly squared shape
were ~60 A and ~10 s, respectively; this guaranteed
the low Joule heating of thefoail.

Theliner plasmaenergy flux per 1 cm? of the copper
foil surface isrelated to the relative change in the volt-
ageon it, AU/U, by the relationship

AW[Jem?] = CppdaAU/U = 156AU/U,
AU/U = aAT,

where C,, is the specific heat capacitance of the copper
foil (C,=0.39 JgK), a isthe temperature coefficient of
the foil resistance (a = 3.9 x 102 K1), p is the copper
mass density (p = 8.93 g/cm?), and AT is the change in
the temperature of the copper foil after absorbing the
incident energy flux.

©)
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Formula (3) was derived assuming the linear depen-
dence of AW on AU, which takes place if C, and a are
constant over the foil temperature interval AT. For the
given values of C, and a, formula (3) is valid in the
temperature range AT < 300 K, which is precisely the
temperature variation range under the conditions of our
experiments. For AT < 300 K, the bolometer design
described above allowed us to measure plasma energy
fluxes of up to AW = 1.8 Jcm?. The accuracy of the
bolometer measurements is limited by the accuracy of
electricall measurements and an uncertainty in the
energy absorption factor of the foil. The possibility of
measuring the energy flux of the light ions arriving at
the foil (H*, He*, and Li*) is provided by the relatively
low reflection coefficient (<20%) of the ionswith ener-
gies from several hundreds of electronvolts to tens of
kiloelectronvolts. The cathode sputtering of the bolom-
eter materia only dightly affects the accuracy of mea-
surements, because the sputtering factor is usually less
than unity and the mean particle sputtering energy does
not exceed several electronvolts.

It should also be noted that the condition of the weak
heating of the bolometer foil by the reference current
sets limits on the value of the voltage U across the foil
(severa volts) and the changein thisvoltage AU (~1V).
There are some problems in measuring such signalsin
the presence of large electromagnetic pickups arising
during the operation of the high-current generator. To
suppress thistype of pickup, the recording oscillograph
and the reference-current generator were placed inside
aspecial shielding box. They were supplied with power
through a supply-line filter. The signal cables were
enclosed into an additional shielding braid. The starts
of the high-current generator and reference-current
generator were synchronized with the help of a GI-1
6-channel delayed-pulse generator.

As an example, Fig. 3 shows the bolometer signal
obtained in one of the shots (curve 1). The figure also
shows the reference signal recorded without switching
on the high-current generator (curve 2). The instant at
which spikes appear in the reference signal coincides
with the start of the high-current generator. These
spikes are associated with both the transient processes
occurring in the reference-current generator circuit
when the resistance changes rapidly and the partial
shunting of the active element by the plasma flow. The
ratio AU/U was measured with atime delay At > 1 us
relative to the start of the high-current generator, i.e.,
after the transient processes in the circuits had come to
an end. Asis seen in Fig. 3, the relative change in the
voltage AU/U varies only dlightly over the measure-
ment time interval; thus, we could determine the
increase in the foil temperature and, consequently, the
energy flux density near the foil position with good
accuracy.

In this shot, we have AU/U = 0.26, which corre-
sponds to the energy flux density of the liner plasma
AW= 156AU/U = 0.4 Jcm? and the energy flux
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Fig. 3. Bolometer signals: (1) reference signal at the output
of the bolometer and (2) bolometer signal when the high-
current generator is switched on.
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Fig. 4. Signals from optical detectors LD1, LD2, and LD3
obtained in shot no. 3.

absorbed by thetarget E = AWS= 400 J (where S= 21| =
1017 cn?? is the area of the target enclosing the liner).
Zero-dimensional calculations of the liner acceleration
dynamicswith the use of the datafrom magnetic probes
placed on the liner-acceleration path show that energy
spent on the liner acceleration amounts to ~1 kJ (the
liner mass is ~8 pg, the length is 20 mm, and the final
liner velocity is ~5 x 107 cm/s). Consequently, the tar-
get of length 45 mm placed around the liner at aradius
of 360 mm absorbs ~40% of the liner kinetic energy. In
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the next shot, the bolometer was displaced by 5 cm
along the liner axis, its radial coordinate being the
same. In this case, the measured energy flux amounted
to ~200 J. From the results obtained, it follows that the
plasma expands predominantly in the radia direction
and its width (along the liner axis) at aradius of 36 cm
can be estimated at 10-15 cm. The measured kinetic
energy of the plasma flow agrees with that calculated
by the zero-dimensional model.

4. Liner Diagnostics with Neutron Detectors

To measure the energy of the dd neutrons produced
as a consequence of the liner—target interaction or aris-
ing due to the onset of instabilities during the liner
acceleration, we used the time-of-flight neutron detec-
tion technique.

The neutrons (Fig. 1) produced in reaction (1) were
detected with two scintillation detectors D1 (d = 5.3 cm,
| =5.0cm) and D2 (d =10 cm, | =20 cm) on the basis
of plastic scintillators and with a thermal-neutron
detector D3 (an assembly of ten BF; proportional
counters placed in a polyethylene moderator). Detec-
tors D1-D3 were placed at distances of 246, 410, and
277 cm from the liner axis, respectively. To protect the
detectors from high-intensity bremsstrahlung and X
radiation, they were surrounded by a 5-cm-thick Pb
shield. The neutron detection efficiencies of detectors
D1-D3 amounted to 2 x 1075, 4 x 106, and 4.3 x 1075,
respectively.

ANALYSIS AND DISCUSSION OF RESULTS
1. Optical Detectors

Asan example, Fig. 4 showsthe optical detector sig-
nals in shot no. 3 and their approximations by “pulse”
functions. The time shifts between the peaks of the
optical detector signals correspond to the average liner
velocity. Based on this information, the time depen-
dences of the optical detector signals can be easily
recalculated to the ion energy distributions (Fig. 5). In
principle, according to the dynamics of a current-free
liner, the shifts between the signals from detectors LD1
and LD2 and those from detectors LD2 and LD3 should
be the same. To verify thisinference, the optical detec-
tor signals were processed separately for intervals 1-2
and 2-3.

A scenario of the formation of optical radiation may
be described as follows. The liner, which has a certain
initial ion energy distribution after passing the current-
interception rods, expands radialy in the residua gas
with the density n ~ 10 cm™. This expansion is
accompanied by the charge exchange of the liner ions
with the residua gas (predominantly, nitrogen) mole-
cules,

D"+N,—= D*+N, —D+Nj +hv,

(4)
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Fig. 5. Energy distributions of the liner deuterons for inter-
vals 1-2 and 2-3 in shot no. 3.

as well as by bremsstrahlung emission and impact—
radiative recombination [15],

e+D'+e—D+e +hv, (5)

e +D"— D+hv. (6)

These processes determine the formation of optical
radiation from the liner; they are aso responsible for a
discrepancy between the values of the liner parameters
deduced from an analysis of the data for intervals 1-2
and 2-3 (Table 1). This discrepancy can be explained
by the fact that, at distances no longer than 5-10 cm
from the CIS, the light intensity [process (4)] is prima-
rily determined by the“fast” ion component of the liner
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Fig. 6. Signalsfrom optical detectorsLD1-LD3 obtained in
shot no. 7.

(the fraction of these ions amounts to a few percent of
the total number of the liner ions). This follows from
the shape of the dependence of the cross section for
process (4) on theion energy and from the fact that the
nitrogen atom density in the spatial region through
which the fast liner component has passed is substan-
tially lower thanitsinitial value. Fast excited deuterium
atoms [see process (3)] emit light for a characteristic
time of ~10 ns; then, these neutral atoms can be excited
in the processese + D — D +hvande + D —
D* + e [15]. Note that the cross section for these pro-
cesses (0 < 107Y7 cm?) ismuch less than for process (4).

At distances longer than 10 cm from the CIS, the
generation of optical radiation ismainly determined by

Table 1. Results of processing of signals from optical detectors

Shot no. 1 2 3 4 5 6 7
T,—Ty, ns 56 43 45 59 45 71 70
T3—T, ns 76 96 84 76 70 70 72
AT, — ATy, ns - 11 10 51 16 40 50
AT;—AT,, ns 45 77 60 37 28 35 55
Vy,, 107 cmi/s 89+04 11.6+09 11.1+06 8.4+0.3 11.1+ 06 7.0+0.2 7.1+03
E,q, keV 82+0.7 139115 128+14 74+£0.6 128+14 51%+03 52+04
AE,q, keV - 71+£25 57+20 | 129+0.8 9.1+20 58+05 8.2+05
Va,, 107 cmi/s 6.5+0.2 52+0.1 59+0.2 6.5+0.2 7.1+0.3 7.1+03 6.9+0.2
Egp, keV 45+03 28+0.1 36+0.2 45+0.3 53+04 5304 49+03
AEs,, keV 39+04 28+0.2 39+03 3.2+04 3.1+05 3.9+05 48+04

Note: Ty, T,, and T3 are the times corresponding to the amplitudes of the voltage pulses at the outputs of detectors LD1, LD2, and LD3,
respectively; ATy, AT,, and ATz are the FWHMSs of the signals; V4 and V3, are the deuteron velocities deduced from the time shift
of the signals from two neighboring detectors; E,; and E3, are the deuteron energies corresponding to the velocities V,; and Vay;
and AE;, and AEg, are the FWHM s of the deuteron energy distribution determined from the broadening of the signals from the two
detectors. The accuracy of estimates for T4, To, and T3 is 2.0 ns, and the accuracy of estimates for ATy, AT,, and AT;is3.0 ns. Bars
in the columns mean the absence of relevant information.
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Fig. 7. Energy distributions of the liner deuterons in shot
no. 7 at the shifted positions of the optical detectors with
respect to the current-interception rods. The shift from the
initial position is 5 cm. The solid line corresponds to inter-
val 1-2, and the dashed line corresponds to interval 2-3.
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Fig. 8. Signal from neutron detector D2 obtained in shot
no. 5.

processes (5) and (6) for a “slow” component of the
liner. To verify this model of the generation of optical
radiation, al three optical detectorsin shots nos. 6 and
7 were shifted away from the CIS by 5 cm from their
initial positions. Figure 6 shows the signals from three
optical detectorsin shot no. 7 and their approximations
by pulse functions. Figure 7 shows the deuteron energy
distribution obtained from an analysis of the signals
shown in Fig. 6. It is seen that the most probable values
of deuteron energies and the energy spreads obtained
by data processing for interval 1-2 are in good agree-
ment with those for interval 2—3. This coincidence of
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the results for two successive intervals supports the
validity of the above model of the formation of optical
radiation during the expansion of the deuterium liner. It
is seen from Table 1 that there is a significant scatter in
the liner deuteron energies (50-100%) for different
shots. This may be attributed to the nonoptimal rela-
tionship between the mass of the jet in the anode—cath-
ode gap and the current through the liner, aswell asthe
insufficiently accurate timing of the pulses of the high-
voltage switch, the pulsed-voltage generator, and the
electromagnetic valve. These issues require further
investigations and improvement of the method.

2. Neutron Detectors

Figure 8 showsthe signal from the scintillation neu-
tron detector D2 for shot no. 5. The target placed
around the liner was a cylindrical sheath 36 cm in
radiusand 40 mm inlength; itsinner surface was coated
with CD,. The first spike responds to bremsstrahlung;
its source may be associated with either the initia
breakdown of the anode-cathode gap in the accelerator
load unit (the acceleration of the deuterium-plasma
electrons up to energies corresponding to the amplitude
of the high-voltage pulse and their subsequent interac-
tion with the anode material and the walls of the mea-
suring chamber) or the formation of the magnetic insu-
lation in the vacuum transmission line leading to the
load unit. The second spikeis associated with the back-
ground neutron emission arising from reaction (1) dur-
ing the electrodynamic acceleration of the liner (the
generation of high-energy deuterons dueto the possible
onset of MHD instability in the liner) [11]. The time
interval between the first and second spikes character-
izes the time required for a neutron from reaction (1) to
fly the distance | from the liner axis to scintillation
detector D2

At[ns] = t,-t,, (7)

where t, and t, are the times it takes for a neutron and
bremsstrahlung photon to fly from the liner axis to
detector D2.

For agiven value of L, the maximum energy of neu-
trons detected by detector D2 positioned at an angle of
56° to the anode—cathode direction in the load unit can
be easily determined from Eqg. (7), assuming that y-ray
photons and neutrons are generated simultaneously.
The corresponding energy of deuterons accel erated due
to MHD instabilities was cal culated according to reac-
tion (2).

The results of an analysis of the experimental data
obtained with the method described above are pre-
sented in Table 2. We note that the maximum values of
E, and E,, agree with the results obtained in [16]. Note
also that, according to [11], the background neutron
fluxes in shots nos. 1-3, 6, and 7 (in the absence of a

CD, target) are proportional to the ratio If/mL (where
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Table 2. Parameters of the deuteron and background neutron fluxes
Shot no. 1 2 3 4 5 6 7
t, NS 174+ 3 175+ 3 172+ 3 181+3 179+ 3 170+ 3 178+ 3
E,, MeV 290+010 | 287+010 | 297+011 | 268+0.09 | 274+009 | 3.04+011 | 277+0.09
Egy, keV +118 +113 +132 +76 +89 +141 +95
310 274 386 103 152 470 179
-101 -95 -112 -58 =71 -122 =77

Note: t,isthetimeit takesfor aneutron to fly from theliner axisto detector D2; E,, and E4 are the maximum neutron and deuteron energies,

respectively.

12 and m_arethe current and mass of the liner, respec-

tively). At present, the data obtained in shots nos. 4 and
5 are being analyzed in order to determine the yield of
the “target” neutrons produced in the interaction of the
liner deuterons with the deuterium target (the time
interval corresponding to the detection of the “target”
neutronsisindicated by arrowsin Fig. 8).

CONCLUSIONS

The results obtained allow us to draw the following
conclusions:

(i) A simple optical diagnostics for studying the
liner dynamics in an inverse Z-pinch has been devel-
oped.

(ii) The characteristics of the three-channel optical
detection system for measuring the ion energy distribu-
tion in the liner by the flight-of-time technique have
been studied.

(iii) The maximum energies of the accelerated deu-
terons generated due to the onset of MHD instabilities
and determining the intensity of the background neu-
tron emission have been measured with the use of scin-
tillation detectors.

(iv) A simultaneous anaysis of the data obtained
with the help of optical detectors, magnetic probes, and
neutron detectors, as well as the use of the results from
bolometric measurements, will make it possible to
obtain precise information about the ion energy distri-
bution in the liner.
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Abstract—Methods for analyzing statistical distributions of the breakdown delay time are generalized. A sta
tistical approach is used to study electric breakdown in n-hexane in a 2.1-MV/cm quasi-uniform electric field
at apulse duration of ~5 x 107 s. Two different mechanisms for the anode breakdown are shown to coexist and
compete with each other. One of them incorporates the “bubble’ stage, whereas the other oneisrelated to ion-
ization in the liquid itself. It is found that the weaker influence of the external pressure on the pulsed electric
strength of liquids in the nanosecond range is caused by atransition to the ionization mechanism for the anode
breakdown at elevated pressures. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The need for a detailed study of pulsed electric
breakdowns in liquid dielectrics stems mainly from the
wide use of these liquids in various electrophysical
devices (energy storage banks, high-current switches,
facilities for pulsed-discharge technologies, ionization
chambers in nuclear physics, etc.). Experimental data
obtained at high electric fields in the range 21 MV/cm
at nanosecond pulse durations are very scarce. There
are various hypotheses about the mechanismsfor nano-
second electric breakdown in liquid, which sometimes
contradict each other. For example, in [1] it was sug-
gested that the breakdown mechanism, being electrical
in nature, is induced by the ionization processes in the
liquiditself. In[2], athermal mechanism was proposed
in which the primary process was assumed to be the
formation of vapor-gas bubbles with their subsequent
ionization. Up to now, the ionization mechanism for
nanosecond breakdown is considered as arguable even
inthe case of the best liquid dielectrics[3]. The external
pressure is one of the factors that increase the electric
strength of liquid dielectrics. It was pointed out that the
effect of the external pressure on the breakdown delay
time in liquids decreases when passing over from
microsecond to nanosecond voltage pulses[4, 5]. Inter-
esting features of the electric breakdown in n-hexanein
a quasi-uniform field were found in [5]. It was shown
that, at the nanosecond pul se durations, two types of the
anode breakdown coexist and compete with each other.
The first type of breakdown starts to develop from a
slow first stage (in appearance, it resembles a deformed
microbubble), which then transforms into a rapidly
developing brush discharge (complex electric dis
charge). The other type of breakdown revealsitself asa
homogeneous electric discharge that does not exhibit
any slow first stage. The discharge develops immedi-

ately with a high speed approximately equal to the
speed of a brush discharge (~(1-2) x 10° cm/s for a
100-um-long discharge gap). By applying an external
pressure, these types of breakdown can be separated in
time, which indicates the different nature of the physi-
cal processes responsible for breakdown [6]. Ultrafast
optical studies of a discharge developing in distilled
water from a point anode confirmed the coexistence
and competition between the two different mechanisms
for nanosecond breakdown [7].

The statistical nature of breakdown requiresthe sta-
tistical treatment of experimental data. Important data
on prebreakdown processes can be obtained by analyz-
ing the probability distributions of certain characteristic
parameters, such as the breakdown electric field, the
breakdown delay time, and the duration of the preb-
reakdown glow.

This paper is devoted to the statistical study of the
mechanismsfor electric breakdown in n-hexane at volt-
age pulse durations of ~50-100 ns.

METHODS FOR ANALYZING STATISTICAL
DISTRIBUTIONS OF THE BREAKDOWN DELAY
TIME

In explaining the phenomenon of the delayed break-
downin gases, it iscommonly accepted that afree elec-
tron capable of ionizing must appear near the cathode
to giveriseto an electron avalanche. The appearance of
an electron near the cathode is a random (i.e., statisti-
cal) process. For this reason, the above phenomenon is
called the statistical delay of a discharge, whereas the
time lag between the instant when the voltage is applied
and the appearance of a primary electron inducing the
breakdown is called the statistical delay time t,. This
time differsfrom the discharge formation timet;, which
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is equal to the time interval between the appearance of
aprimary electron and the end of gap breakdown. Thus,
the breakdown delay time in gases can be represented
asthe sum of t,and t; [8].

By analogy with the breakdowns of gas gaps, we
represent the breakdown delay timein liquids as a sum
of two times: the statistical delay time t, and the dis-
charge formation time t;. In liquids, the former timeis
a time required to provide conditions required for the
onset of a certain perturbation near the electrode. The
formation time corresponds to the propagation time of
this perturbation between the electrodes. Dueto the sta-
tistical nature of the processes responsible for gap
breakdown, the delay time is a fluctuating quantity.

Satistical Delay Time

The distribution of eventsin a series of N indepen-
dent successive tests, or when simultaneously observ-
ing aset of N objects (provided that the event either occurs
or not), is described by Bernoulli’s binomial law [9].

Let us consider the probability of breakdown initia-
tion over atime interval t. We will investigate the prob-
lem using the following assumptions. whether theiniti-
ation over atime interval t will occur or not does not
depend on the history of the preceding events (indepen-
dent events); the probability of breakdown initiation
over ashort timeinterval At isproportional to the inter-
val duration (i.e., p = pAt, where | is the field-depen-
dent probability of the event occurrence per unit time);
and the probability of the simultaneous occurrence of
two or more events per time interval At is negligibly
low.

Let us divide the time interval t into the large num-
ber N of short intervals with the probability of break-
down initiation during each of them equal to p. The
total probability over al N intervalsis

P(t) = Np(1-p)""
Passing over to thelimit N — oo, we obtain a prob-
ability distribution with the density
f(ty) = nexp(-uty). D

Thus, the statistical delay time obeys an exponential
distribution [8, 10]. The mean duration of the statistical

delay (mathematical expectation) is t; = 1/u. The dis-
persion of the statistical delay timeis o(ty) = ()%

Total Delay Time

The probability that the breakdown will be initiated
over atime of no lessthan thetimetgis

00

Pty ) = If(ts)dts = exp(-td/ty). )

S
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Usually, the total delay time is measured at a fixed
voltage, pressure, and interelectrode gap length. Based
on the experimental results, one can determine the
event rate with which breakdown occurs over atime of
no less than the timet,

F(t, ) = N¢/N,,

where N is the number of pulses at which the break-
down delay time is no less than t and N, is the total
number of breakdowns.

It follows from Bernoulli’s theorem [9] that, given a
large number of tests, the event rate F(t, o) approaches
the probability of thisevent F(t, ©) (more exactly, con-
verges in probability). Assuming the discharge forma-
tion time t; to be approximately constant, expression
(2) takesthe form

N, = Noexp[—(t—t)/td. ©)

Hence, the dependence of —In(N;/N,) on t should be
linear. The slope of the line determines the mean statis-
tical delay time ts, whereas the point where this line
intersects the y axis gives the formation time t;. Thisis

a base for the Laue method for analyzing the distribu-
tion of the breakdown delay timesin gases [8].

Under actual experimental conditions, theformation
timet; fluctuates. The quantity At; related to the scatter
in the formation times can be represented as asum of a
sufficiently large number of independent (or weakly
dependent) elementary deviations (caused by different
factors), each of which relatively dightly affects the
sum. According to the central limit theorem, the distri-
bution law for the sum of a large number of indepen-
dent random variables, whatever distribution law
they obey (provided that the above soft constraints are
met), approximately corresponds to the normal distri-
bution [9].

If the mean statistical delay time satisfies the ine-
quality t; < t;, then the distribution of the formation

time t; can be determined experimentally. The mea-
surements of the breakdown delay times in n-hexane at
high electric fields (in the nanosecond pulse-duration
range) showed that the distribution of the formation
timeisindeed close to the normal distribution [11].

The normal distribution is characterized by the
probability density

f(t;) = (VoJ2mexp[—(t —t)*/207,  (4)

where t; and o? are the mean value (mathematical
expectation) and the dispersion of t;, respectively.

In this case, the distribution of the total breakdown
delay time can be described by a mathematical model
based on the superposition of the exponential distribu-
tion of the statistical delay time and the normal distri-
bution of the formation time [12]. Let usfind the distri-
bution of the breakdown delay time caused by two con-
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secutive processes. the onset and propagation of the
perturbation. We suppose that these processes are sta
tistically independent. L et the former process (with the

mean statistical delay time t,) occur within the interval
dt,. When this process is finished, the second process
with the mean formation time t; devel ops. We suppose

that the breakdown occurs within the interval dt. The
probability that the breakdown will occur within the
timeinterval (t, t + dt) is determined by the product of
the probabilities for these two processes

dP(t, t +dt) = (1/ts)exp[-t /i dtg
x (1/0/2T)) exp[—(t —ts—t;)?/207] dit.
For the probability of breakdown over the time

interval (0, t), we have
t

P(0,t) = (1/t) J'exp(—tS/tS)

: ’ (5)

x E(l/oﬁ) Iexp[—(t —t,—t)/207] du%dts.
O 4 O

Integrating expression (5) numerically and going
over to the opposite event, we find the probability
t(P(t, 0)) that gap breakdown will occur over atime of
no lessthan t.

Asan example, Fig. 1 showsthe computation results
inthe Laue coordinates (on asemilogarithmic scale) for

the following distribution parameters: t, =100ns, {; =
150 ns, and 0 = 25 ns. The left straight line shows the

distribution of the statistical delay time. It is seen that
the total distribution (the right curve) does not obey the

linear law. However, the mean stetistical delay time t,
and the mean formation time t; can be determined
from the linear segment of this curve. The computation

—InP(t, )

3 a b

2 L

1 f - ks :

0 100 200 300 400 500
t, ns

Fig. 1. Distributions of the (a) statistical and (b) total delay
times of abreakdown caused by two consecutive processes.
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results corresponding to the other distribution parame-
tersshow that, if t, > {; , then thetotal distribution dif-

fers dlightly from the exponential one; otherwise, it is
close to the normal distribution.

Parallel Processes

A method for analyzing statistical distributions of
the breakdown delay time in the case of parallel pro-
cesses was proposed in [13]. Due to the importance of
the results obtained and absence of readily availablelit-
erature on this problem, wewill describe thismethod in
more detail.

We consider two competing, statistically indepen-
dent events, e.g., gap breakdowns starting from the
anode or the cathode (or two breakdowns of different
types starting from the same electrode). For the sake of
simplicity, we suppose that the formation times for
these processes are slightly fluctuating quantities. The
probability that the first event will occur over atime of
no lessthan t is determined by the expression

Py(t, ) = exp[—(t—t;)/t] .
Similarly, for the second event we have

P,(t', @) = exp[—(t'—t,)/ts)] .
Lett;, > t;;. We note that

s, for t<t;,

P,(t) = 0 for t<t;y, and t' =
(1) " %for t>1t;,.

The probability of the gap breakdown occurring
over atime interval >t is the probability of the occur-
rence of the first and the second events. The total prob-
ability of the occurrence of two statistically indepen-
dent events is equal to the product of the probabilities
of these events (probability product rule [9])

P(t, o) = exp[—(t—tr1)/tsi] exp[—(t' —t1;)/ts5] . (6)
Taking the logarithm of expression (6), we obtain

—InP(t, 00) = (t—t1)/tsg + ('~ 1))/t (7)

As an example, Fig. 2 (curve ¢) presents the calcu-

lated total probability distribution in the Laue coordi-
nates for the following parameters: t;; = 100 ns, ty; =

100 ns, t;, = 150 ns, and ts, = 60 ns. Here, the distribu-
tions of theindividual probabilities of thefirst (curve a)
and second (curve b) events are also shown. One can
see a kink on the total distribution (curvec) at t = t;,.
The linear segment of the curve corresponding to the
time interval (t;;, t;,) characterizes the first event,
whereasat t > t;,, the curve describes the simultaneous
occurrence of the two events. From the slope of the
former segment, one can determine the mean statistical

delay time t,; . From the dope of the latter segment, it is
possible to determine the mean satistical delay time t, .

TECHNICAL PHYSICS Vol. 47 No.9 2002
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Indeed, at t > t;,, expression (7) takes the form
—InP(t, °°) = [(tsl + tsZ)ltsltsz]t
— (tr1tso + teotsr) /s tso,
where
Ut = (tg +t)/taty, = 1ty + 1t 8

isthe slope of the segment describing the simultaneous
occurrence of the two events.

From (8), we obtain

t32 = Ttsl/(tsl_r)' (9)

Thus, by analyzing the total distribution of the
breakdown delay time, one can estimate the parameters
of the processes responsible for the different types of
breakdown.

EXPERIMENTAL SETUP

The experimental setup consisted of a discharge
chamber and pulsed voltage generator. A manua
hydraulic press of a piston type was used to produce
elevated pressures in the discharge chamber. The dis-
tance between the two hemispherical 5-mm-radius
stainless-steel electrodes of the discharge gap was
~100 um. A movable grounded electrode system
allowed usto smoothly regul ate the gap length at a con-
stant pressure in the chamber. An automatic optical
measurement system was employed to monitor the gap
length by using the Fraunhofer diffraction patterns. The
relative error in measuring the gap length was ~5%. The
amplitude of the voltage pulse applied to the electrodes
was ~10-30 kV, therise time was ~10 ns, and the dura-
tion of the flat-top part was ~5 us. A processing system
based on an Elektronika-60 microcomputer with a
KAMAK interface [14] was used to obtain the statisti-
cal distributions of the breakdown delay time in the
course of the experiment. The time measurement error
was 10 ns. Simultaneoudly with an analysis of statisti-
cal distributions, prebreakdown phenomenain the dis-
charge gap were visualized with the help of a laser
schlieren system. A ruby laser with a pulse duration of
~5 nswas used as an illumination source. Experiments
were carried out with chemically pure n-hexane (with a
specific resistance of >10' Q cm); no outgassing of
the electrodes and liquid was performed.

EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 3 presents typical histograms of the distribu-
tion of the breakdown delay timein n-hexane at an elec-
tric field strength of ~2.1 MV/cm (which corresponds
to a nanosecond breakdown) and different external
pressures. It is seen that the increase in the pressure
changes the distribution shape from anearly symmetric
(at atmospheric pressure) to fairly asymmetric (at P =
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- Iy
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0 100 200 300 400 500
t, ns

Fig. 2. (a, b) Probability distributions for two independent
events and (c) the total probability distribution for two par-
alel processes.

() (b) (c)

Ne - _
30+ = N
= = 40
20+ - 30
i i 20
10+ -
L L 10
]
0 100 O 100 0 100 200 ¢, ns

Fig. 3. Distributions of the breakdown delay time for
(@t =53ns,0=11ns P=1am, and Ng=100; (b) t =
79ns, 0 =28ns, P=0.5MPa, and Ny = 150; and (c) t =
100 ns, 0 =68 ns, P = 0.9 MPa, and Ng = 136. Here, o isthe

root-mean-square deviation of an individual measurement
and Ny is the total number of measurements; the interel ec-

trode distance is 100 pm.

0.9 MPa) profile. The mean breakdown delay time t
also increases with pressure.

The distributions of breakdown delay time obtained
by the Laue method for different external pressures are
shown in Fig. 4. A characteristic feature of the distribu-
tions is the appearance of a kink at elevated pressures
(Fig. 4, curves 3, 4). This behavior of the Laue curves
can be described with the help of amathematical model
based on the superposition of two exponential distribu-
tions corresponding to the competing, statistically inde-
pendent events with different characteristic times.
Thus, a kink on the Laue curve points to the possible
coexistence of two independent competing breakdown
mechanisms. A comparison with the results of optical
monitoring showsthat breakdown occursviathe above-
discussed el ectric discharges starting from the anode. A
subsequent smooth transition to a straight line (Fig. 4,
curve 5) indicates that the increase in the external pres-
sure changes the breakdown mechanism.



1110

—In(N,/Ny)

5L

4+

3l

2L
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0 50 100 150 200 250 300

t, ns

Fig. 4. Distributions of the breakdown delay time in the
Laue coordinates at an electric field of 2.1 MV/cm for

()P=1am, t =53ns, and Ny = 100; (2) P = 0.3 MPa,
t =63 ns, and Ng = 130; (3) P=0.5MPa, t = 79 ns, and
Ng=150; (4) P =0.7 MPa, t =88 ns, and Ny = 150; and
(5) P=0.9MPa, t =100 ns, and Ny = 136. Nj is the total
number of measurements.

By analyzing the total distributions of the break-
down delay time (for successive and paralel pro-
cesses), one can estimate the mean statistical delay time

t; and the mean formation time t; for each of the

breakdown mechanisms and determine how they
depend on the externa pressure. These data are pre-
sented in Fig. 5. The strong influence of the pressure on
the first breakdown mechanism points to the important
role of the bubble stage during the bubble origin and
formation. At the same time, the fact that the pressure
does not affect the second breakdown mechanism indi-
cates that the bubble stage does not occur (or is not
dominant) in this case. The average rate of the electric

1, Iy, DS

i
1"
11
150+ I
7 1
/ 1
/ |
100+ lo!
ﬁ '¢ 03
50t s :
15} - + l4
Vi |
O 1 1 N 1
0.2 0.6 091.0
P, MPa

Fig. 5. Mean statistical delay time and mean formation time
vs. external pressure for the breakdowns of the first (1, 2)
and second (3, 4) type.
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discharge devel opment increases (due to the absence of
the bubble stage) and amounts to ~4 x 10° cm/s.

Figure 6 shows the mean breakdown delay time
deduced from analyzing statistical distributions (t =

ts + t; ) for thefirst (o) and second (00) mechanisms as
functions of the external pressure. Here, the results of
direct measurementswith the hel p of the automatic sys-
tem are also shown (®). Every point is an average of
100-150 measurements. It is seen that, at atmospheric
(or dightly higher) pressure, the first mechanism (cor-
responding to a complex discharge) mainly occurs. In
this case, t; > t; and the breakdown delay time has a
nearly normal distribution (Fig. 3a). Anincreasein the
pressure increases the breakdown delay time corre-
sponding to the first mechanism, which leads to the
coexistence of and competition between the two differ-
ent breakdown mechanisms. At elevated pressures of
P = 0.9 MPa, the second breakdown mechanism (it cor-
responds to a homogeneous discharge) mostly occurs.
Inthiscase, t > t; and the breakdown delay time has
a nearly exponential distribution (Fig. 3c). Thus, the
weaker influence of the external pressure on the mean
breakdown delay timeis related to the transition to the
ionization mechanism for the anode breakdown (homo-
geneous discharge) at elevated pressures.

Thevertical dashed linein Fig. 5 showsthe pressure
at which a complex electric discharge does not have
timeto form, and atransition to ahomogeneous el ectric
discharge occurs. The strong influence of a relatively
low external pressure on the statistical delay time of the
complex electric discharge starting from the anode
indicates the therma mechanism for the origin of the
bubble stage. Hence, the statistical delay time of the
complex electric discharge incorporates a process that
leads to the rapid local heating of the liquid near the
anode surface and the formation of a vapor microbub-

t,ns
200

150+

100+

50F

1
0 0.5 1.0 1.5
P, MPa

Fig. 6. Mean breakdown delay timevs. external pressurefor
the first (o) and second (O0) breakdown mechanisms; the
results from direct measurements of the breakdown delay
time are also shown (e).

TECHNICAL PHYSICS Vol. 47 No.9 2002



STATISTICAL STUDY OF NANOSECOND ELECTRIC BREAKDOWNS

ble. The formation time is determined by the bubble
growth, the development of ionization processesinside
it, and the initiation of the fast ionization processes in
the liquid itself due to the increased electric field near
the pole of the deformed bubble (which becomes con-
ducting after breakdown). For a homogeneous el ectric
discharge starting from the anode, the stetistical delay
time is the time it takes for the self-sustaining ioniza-
tion processes in the liquid to begin. Under these con-
ditions, not only the presence of sharp micropoints on
the anode surface, but also the properties of the liquid
near the point ends become especially important. The
formation time corresponds to the propagation of the
ionization processes from the anode to cathode.

CONCLUSION

Theresults obtained allow usto close the discussion
between the supporters of the bubble and electric mech-
anisms for nanosecond breakdowns. It turns out that
both of these mechanisms can operate. Which one pre-
vailsis determined by experimental parameters such as
the electric field, the interelectrode distance, and the
external pressure.
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Abstract—The diffusion of a pulsed electromagnetic field into massive conductors with an arbitrary smooth
surface is considered for the case where the field penetration depth is small. By using the boundary layer
method, an asymptotic solution for the electromagnetic field is constructed. First- and second-order corrections
to the limiting solution, which corresponds to the field distribution at an indefinitely high conductivity of the
conductors, are found. Time dependences of the first- and second-order approximations to the electric field on
the surface of the conductor are determined. © 2002 MAIK “ Nauka/Interperiodica’ .

INTRODUCTION

Massive conductors withstanding currents as high
as several megaamperes or severa tens of megaam-
peres are abasic component of devices generating high
current pulses[1]. The depth of penetration of apulsed
magnetic field into these conductors is much smaller
than their characteristic sizes; that is, their skin depthis
small.

The skin effect in massive conducting bodies has
been the subject of much investigation. When the skin
depth is small, an external quasi-stationary variable
electromagnetic field isusually calcul ated with approx-
imate techniques, using either of two approximate
boundary conditions. In the former case, the conductiv-
ity of the conductor is assumed to be indefinitely high
and the tangential component of the electric field vector
and the normal component of the magnetic field vector
on the surface are zero (perfect conductivity condi-
tions). In the latter case, impedance boundary condi-
tions are used. It is assumed here that a local e ectro-
magnetic wave penetrates into a metal in the same way
that a plane wave penetrates into a conductive half-
space [2]. For nonferromagnetic metals, the externa
field turns out to differ insignificantly from that
obtained with the boundary conditions of thefirst type.
This provides away of analyzing systems with massive
conductors by means of two successive approximations
[3]. Inthefirst approximation, one finds the distribution
of an external magnetic field and the linear current den-
sity in the conductor conditions of perfect conductivity.
In the second approximation, it is assumed that the
local distributions of the field and current at the surface
correspond to the penetration of a 1D field into a con-
ductive haf-space (that is, the impedance boundary
conditions are used).

One can evauate the field numerically by directly
using the impedance boundary conditions. In this case,
the boundary element method [4, 5] is employed and
the field in the outer region is described by integral
equations including the boundary conditions.

A relatively general approach to calculating variable
and pulsed electromagnetic fields in conductive bodies
was used in [6-9]. In [6], the field is determined in a
local system of curvilinear coordinatesthat isplaced on
the surface of a conductive sheath of arbitrary geome-
try. Such calculations are aimed at finding the field pen-
etrating into the sheath. Therefore, the field excited by
external current sources connected to a conductive
body was not considered.

To calculate the field when the skin depth is very
small, it is natural to take advantage of the boundary
layer method. Such an approach to determining the
field and to calculating the heating of a conductor by
eddy currents dates back to 1940 [7]. The boundary
layer method was al so applied to finding boundary con-
ditions on the conductor surface. The conditions found
were then used in integral equations of the boundary
element method [8, 9].

However, the problem of deriving general relation-
ships for the current-excited field in massive conduc-
tors still remains urgent. This problem can be resolved
for the case of the sharp skin effect, when an electro-
magnetic field propagates in a thin near-surface layer.
Such asituation istypical of sources and loads of high
current pulses. In this case, one can specify local curvi-
linear coordinates in the near-surface layer of a metal
and find asymptotic dependences between the electric
and magnetic field vectors on the surface of conductors
of arbitrary geometry. The purpose of this work is to
derive and substantiate such dependences.

1063-7842/02/4709-1112$22.00 © 2002 MAIK “Nauka/ Interperiodica’



SKIN EFFECT IN MASSIVE CONDUCTORS. |

BASIC RELATIONSHIPS

Let us consider a set of massive metallic conductors
with a current pulse I(t). The electromagnetic field in
the conductors (region Q;) and in the environment
(region Q) is described by the equation for magnetic
induction vector B:

0B
AB = Aoy «y

where a = 0 and 1 outside and inside the metal, respec-
tively; yisthe conductivity of the metal; t istime; i, =
41t x 107 H/m; and A is Laplacian.

If the skin depth is small, the magnetic induction
vector can be divided into two components:

B = By+Bg, (2

where By, is the electromagnetic field for the perfect
skin effect (y = o) and Bg takes into account the effect
of eddy currents in the metal on the resultant field.

At points lying on the surface I of the conductors,
the vector By, is directed tangentially to the metal sur-
face:

[N xBolr = Hod, ©)

where d isthe linear current density in the conductor in
the limiting case (the perfect skin effect) and n is the
outer normal to the surface .

Thefield B, defines the external inductance L of the
set of conductors. The calculation of the electromag-
netic field for the perfect skin effect and the determina
tion of theinductance L have been the subject of avari-
ety of works (see, e.g., [3, 10]). In thiswork, we do not
consider related computing methods. The property of
the field B, we areinterested in is that timet and space
variables can be separated in thisfield. Then, the linear
current density o can be represented as

o(r,t) = b(r)lI(t), 4
wherer isthe radius vector of apoint on the surfacel’,
b(r) isavector function that is specified on the surface

I" and depends only on the conductor geometry, and I (t)
isthe current in the conductors.

ELECTROMAGNETIC FIELD IN THE SURFACE
LAYER OF THE CONDUCTOR

We consider conductors with a smooth surface; that
is, the minimal radius of curvature is much larger than
the penetrating depth of the electromagnetic field. In
the surface layer of the conductor, wherethefieldiscal-
culated, the inner normals to the surface do not inter-
sect. Let usintroduce coordinates (x;, X,) along thelines
of curvature on the surface I'. Such coordinates are
orthogonal, and the first and second quadratic forms of
the surface I” are expressed as[11]

2 _ 2 2 2 2
dr® = hij,dx; + hydx;,
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—dr [N = k;h5,dx; + koh,dxd,

wherer(X;, X,) is the radius vector of a point (X;, X,) on
the surfaceI’, and k; and k;, are the principal curvatures
of the surface " at the point (X3, X,).

Let usintroducethethird spatial coordinate X; into a
layer adjacent to the surface " in such away that the x;
axis is aligned with the inner normal to the metal sur-
face. Thus, we are dealing with the orthogonal coordi-
nate system (X;, X, X3) in the vicinity of surface points
for which the Lamé coefficients are given by

hy = hyo(1—KkihgXg) = hyo(1—€X;X3),

h, = hy(1—KkohgXs) = hyp(1—€X5X3),

t
h, = [—X.
TR

Here, t; is the characteristic time of a pulsed process
(e.g., the current pulse duration); € = h;k < lisasmall

parameter; K = mgx( [y, [Ko]) or K = 1/a, whereaisthe

characteristic size of the conductor, which does not
exceed the radius of curvature of the surface I'; x; =
ki/K; and x, = k,/K. The coordinate system (X;, X,, X3)
on the surface I' is assumed to be right-handed.

Hereafter, the superscript I" will refer to field vectors
and their components at points on the metal surface.
The first subscript i will designate the related coordi-
nate from the local system. It equals 1 or 2, unless oth-
erwise stated. The second subscript, if any, at field com-
ponents indicates the serial number of the components
of asymptotic expansions.

It is assumed that all the functions considered (e.g.,
the components of the vector B and their derivatives)
are sufficiently smooth. This implies that any function
X(Xq, X, X3) changes insignificantly when its arguments
X; and X, are changed by hs:

h;aX

Ha—xl <€|X|.

Then, the derivatives of the Lamé coefficientsh; and
h, and the function X(x;, X,, X;) are estimated as

% S Khiohilo, Qﬁ S h|0K|X|1
aXi. aX,
ax ®)
‘hia_xi. < 2hiohy oKX,
wherei,i'=1, 2.

For the region Q; of the conductor, expressions (1)
and (2) and inequalities (5) yield the following relation-
ships for the Laplacian components (AByg); in the local
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coordinate system:

9°B;
h3(8Bg), = —
X3
Ll Xa X2 198 p - 9B
8Dl—z»:)(lx\g 1- sxzxﬁax3+€®' at’ ©)
2 _ _ 0Bg
h3(ABg); = e®; = IR

where B, B,, and B; are the components of the vector
Bs and T = t/t;. For the functions ®,, ®,, and ®5, we
have

B
®] < a—x +[[B] 2+ |XuXa— X)) + 2Ba_i| + 2B,
3
|y < 23‘;__51 +|9B20 + (2)B,| + 2B, + 2/By)).
X3 3

The electric field tangential components on the con-
ductor surface E" in the local coordinate system are
found from Ampere’s circuilal law E = (loy) 'V x B =

ht;'V x B:

0B _, h, 0B,
9X3 Xibi— h,oax}

Following asymptotic methods for solving bound-
ary-layer problems [12], we represent the electromag-
netic field components as series in powers of the small
parameter €:

EL. = (-1)°" 3[ 7)

B, = B o+&B 1 +&°B,+ ..., (8)
E = Eo+€eE +€E,+..., )
wherei =1, 2, 3.

Substituting series (8) into (6) and equating terms
with equal powers of €, we come to the set of 1D
boundary-val ue problems

9°B.o 0B o _ ) |
axg At 0. Bia0|x3:0 = (-1) HoOs_i, (10)
Bi'0|X3~0_>0’ Bi,0|r=0 =0,
0B;; 0B, 0B ¢
1951 _ + 0
ox; Ot (X2 *Xz) 0X, 1)
Bi,l|x3:o = B[l: Bi,1|x3a — 0, BI l|T 0 = =0.

Conditionsfor B; o|, ., aredefinedin (10) inview

of (3). Differential equations (11) take into account that
the normal component of the magnetic induction B; =
0 in the first approximation.

FRIDMAN

Substituting (9) into (7) and equating terms with
equal powers of €, we get

£, = (-1)"e0Bs_io| (12)
toox; |,
h .
£, = ()28 y, B B @3
r

t Y ox,

DIFFUSION OF ELECTROMAGNETIC FIELD
INTO A METAL

The application of the integral Fourier transforma-
tion in time T to (10) yields two boundary-val ue prob-
lems for ordinary differential equations. A solution to
them gives the Fourier transform for two tangential
components of the magnetic induction in the first
approximation:

éi, 0= (—1)i |J~083—i exp(—Bxs),

D\[(l+]) for w=0,

——(1—]) for

(14

w<0,

where Bio and & are the Fourier transforms of the
J-1.

In boundary-value problems (11), the boundary
conditions Bi,1|X3=O = B[l must be found from joining

conditions at the boundary I, i.e., from the condition
that the components of the vector B in Q; and Q. equal
each other at the boundary. In the second approxima-
tion (for the coefficients at €* in asymptotic expansions
(8) and (9)), theexternal field (in Q.) isgenerated by the
normal component Bg, , of the induction and depends
on its value at the boundary I'. The boundary value of

the normal component Bgv 1, initsturn, can befound by

expanding (in powers of €) the continuity equation
for magnetic induction flux, V - B = 0, in the metal
region Q;:

0B; _ 1 [a(hZOBl 0) a(hloBz o)}
0X;3 Khyohsg 0%, 0X,

functions B; o and 9, respectively, and j =

Hence, in view of (14), the Fourier transform of the
magnetic induction normal component at the boundary
is

af Ho d(h 051) 0(h2052)
Ba1 = BKthh20|: 0%, 0%, } (15)
TECHNICAL PHYSICS Vol. 47 No.9 2002
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Now, let us find in Q, the scalar potential U, for
the vector field B;, whichis correct to the second order:
YU, =-B;. The potential U, can befound asa solution
of the external Neumann problem for the Laplace equa-
tionin Q.

6n

From the values of U,, one can find the tangential
components of the second-order correction to the mag-
netic induction:

r
_83Y 1

B, = -~

16
hio 9. r (16

It should be noted that the frequency (w) depen-
dences of the functions B85, 1 and BB: 1 are defined by
the factors &; (0) = bi(r) T (w). Therefore, we can write

BBIL = MoK Fi(1)T(w), (17)
where f(r) is afunction dependent only on the position
of apoint onthesurfacel” and T (w) isthe Fourier trans-

form of the total current I(1).

Applying the Fourier transformation in time 1 to
(11), we reduce the second-order calculations to the
solution of ordinary differential equations

d B| 1 dB| 0
—-B°B | = + ,
e B°Bi1 = (Xi+X2) ax; |
IA3i,1|x3:o = Bir,l, |A3i,1|x3ﬁoo — 0.

Their solutions are given by
Bi1 = I:3{19)(!3(—[3)(3)

|Xl (18)

+(-1)

U-053 iX3€XP(—PBX3).

Solution (18) shows that in the second approxima-
tion the magnetic induction inside the metal dependson
the external field nonuniformity (the first term in (18))
and the curvature of the metal surface (the second term
in (18)).

With (12)—(14) and (18), we find the Fourier trans-
forms of the electric field components on the surface I’
in the first and second approximations:

Elo= [5285 = [H2Bbi(@),  (19)
el = () [ faes - e b
(20)
= (-1) ”t"lg(lzxzb K5 Oi(w).
TECHNICAL PHYSICS Vol. 47 No.9 2002
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Note that relationship (19) in view of (3) can be
written in vector form:

El = \%018[” x Bl

At w = 0, we obtain impedance boundary condi-
tions.

A second-order approximation for E[l closeto (20)

was derived by Rytov [7]. In[7], the solution was con-
structed in arbitrary local orthogonal coordinates onthe
conductor surface that were not related to the lines of
curvature. It should be emphasized that coordinates on
the surface " must be congruent with the lines of curva-
ture; otherwise, the orthogonality of the coordinates
breaksinside the metal. Rytov’'sformula[7] (similar to
(20)) contains the derivatives of metric coefficients
with respect to surface coordinates instead of the rela
tive curvatures X, and x, in (20).

In [8, 9], boundary conditions were determined in
higher order (€2 and €%) approximations for calculating
the field with the boundary-element method and rela-
tionships were set between the electric and magnetic
vectors in the second approximation. However, the
term allowing for a disturbance of the external field in
Q. (the second term in parenthesesin (20)) is absent in
those formulas. The inclusion of this component in the
relationships between the magnetic and electric field
vectors gives no way of applying the boundary element
method for calculating thefield of eddy currents, aswas
donein|[8, 9].

Applying the inverse Fourier transformation to first
approximations (19), we obtain

£ 5(9) 4
|,O - A/:ytlaTJ’

1(©)

| [Tae®

Since the coefficient at | (w) in (20) is w-indepen-
dent, the inverse Fourier transform for the second
approximations has the form

(21)

= (-1) Uo[Xl X25 (1) =K, II(T)}
(22)
= (-1) |-10|:X1 Xzb Kf,. }I(T)

Passing to dimension physical quantities, we find
from (9), (21), and (22) expressions for the tangential
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components of E at points on the conductor surface I :

) = «/7 'atfl(e)

kikoy

(23)
+(- 1)[ R ICE

Theprojection of E onto the vector of the linear cur-
rent density d(t) is

51EE + 62E2

ro_ _ I(O)
E_ ) ﬁ 6tL/t__@ 2
(ko—ky)(b;—b3) by f;—b,f,
+[ 2y + 5 }I(t)+....

The projection of E onto the direction perpendicul ar
too(t) is

ro_ (kl_kZ)ble b f,+b,f,
ED_[ Vb b ]'(t)+

Note that the first term in (23), which is the first
approximation to the asymptotic expansion of E, isan
analog of impedance boundary conditions for a pulsed
electromagnetic field. Vectorially, these conditions are
written as

mat“s(@) xn, }

This formula is a solution to the Abelian integral
equation [13]

wn = [HoY-E(O)
B(t) xn f’[md@

For alD field, aformulasimilar to (25) was derived
in[3, 14]. In the latter work, arelationship between the
field vectors at the metal boundary was deduced by
applying the Duhamel integral to the problem of the
penetration of a step magnetic field pulse into a con-
ducting half-space. In this problem, the field distribu-
tion over space coordinate and time is found with the
error function.

For the calculation of the E components on a con-
ducting surface in cases admitting an exact solution, see
Appendices 1-3.

(25)

CONCLUSION

If the skin depth is small, the electromagnetic field
in the conductors and dielectric environment can be
found by the boundary layer method. The limiting solu-
tion correspondsto the external field distribution for the
case when the conductivity of the conductor is indefi-
nitely high. Thefirst and next approximations are found

FRIDMAN

from joining conditions for the solutions at the bound-
ary (conductor surface) and depend on the limiting
value of the linear current density and the conductor
geometry.

The first approximation to the field is found from
joining conditions for the limiting external field on the
conductor surface and corresponds to impedance
boundary conditions. The second-order correction to
the externa field is defined by its disturbance arising
from the normal component of the second-approxima-
tion to the magnetic induction of the field in the metal.
It can be calculated as a solution to the Neumann prob-
lem in the environment. The second-order correction to
theinner field (in the metal) must join with the second-
order correction to the external field on the conductor
surface.

In the asymptotic expansion of the electric field
strength on the conductor surface, the first-order cor-
rection corresponds to impedance boundary conditions
for the limiting magnetic field and varies with time like
the Abelian integral of the derivative of thetotal current
in conductors. The second-order correction to the elec-
tric field strength on the conductor surface depends on
the geometry of this surface (on its principle curva-
tures) and varies with time like the electric current in
the conductors.

APPENDIX 1
Skin Effect in a Circular Conductor

A variable electric field in a circular conductor is
described by the equations

(AL1)

where w is the alternating current frequency, R is the
radius of the conductor, and d isthe linear current den-
sity when the conductivity of the conductor is indefi-
nitely high.

A solution to this problem can be expressed through
Besseal functions, which, in turn, can be represented in
terms of asymptotic expansions with the proviso
(Wpoy)Y2r — o, Thus, basically one can obtain the
expansion of E in powers of a small parameter and
compare it with (9), (19), and (20).

A simpler way is to seek a solution to problem
(Al1.1) inthevicinity of r = Rasan expansion in powers
of € = (WHLYR?)™2. To do this, we change variablesr =
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R(1—-¢x) in (Al.1) to obtain

d’E ¢ dE

@_1—sxdx_B E=0,
. 2 (A1.2)
d_ = B°A, E|qu—>0,

X x=0

where

Az@oa, B =.j.

Note that this value of 3 is equivalent to those used
in (14) and other formulasin thetext, since we can con-
sider that the characteristic timeist, = w™ for aternat-
ing current.

We seek asolutionto (A1.2) intheform of the series
E = E, + €E, + €%E, .... Substituting this series into
(A1.2) and equating the coefficients at equal powers of
€, we come to a set of boundary-value problemsfor the
ordinary differential equations

d’Ey _p%E, =0, 95| =pA, Ey,..—0O,
dx? dx | =o -
dEls =95 d& o g o
dx dx' dx |,
Hence
E) = p [2Ho5, (AL3)
Y
El = 1 [Qhog, (AL4)
2Ny

Formulas (A1.3) and (19) totally coincide. Formula
(A1.4) isaso coincident with (20), because the external
field does not influence the current distribution inside

the conductor in our case (éirul = 0) and the curvatures
are, respectively, X; =k;R=1and x, = k,R=0.

APPENDIX 2
Skin Effect in a Conducting Ball

Consider an electromagnetic field generated by
alternating current | with afrequency wthat passesin a
conducting ball of radius R. The ball is connected to an
ac source at the north and south poles. On the conduct-
ing space boundary I', which is a sphere, the magnetic
induction has only one component in the direction of
the latitude: B" = B,/sin©, where B, = pol/(21R) isthe
induction on the equator and @ [0 [0, 1 is the angular
coordinate (latitude) of a point.

In this example, the radial component of the mag-
netic induction on the boundary I is absent; therefore,
the distributions of the current and magnetic field inside
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the ball do not affect the external field in Q.. Hence,
boundary conditions for second approximation (11) are
uniform and the components of B; ; in the skin layer
depend only on the second term in (18), which takes
into account the curvature of I'. Then, according to
(22), the second-order component in the asymptotic

expansion of E" equals zero, E, 1 =0, and the second

terms on the right-hand side of (23) and (24) also equal
zero. We will try to verify thisresult by other analytical
approaches.

The distribution of B in aconducting bal (r < R) is
given by

2633 aBD 2 20
<9fol< oxJ S.n@a@Elﬁ nO=—==—-k’x°B = 0, (A2.1)

where k? = jopgyR? and x = r/R.

We seek a solution in the form of the sum

B(x,0) = Z W (x)P,(cosO), (A2.2)
=0

where P,(cos®) are Legendre polynomials.

Using the conventional method of separation of
variables, we obtain from (A2.1) and (A2.2) a bound-
ary-value problem for the ordinary differential equation

d quJrD 2.2 _
Ix de_[k X"=n(n+1]¥Y, = 0, (A2.3)
LIJnlle = LIJn(]_), |L|Jn|x=0<°°

where W, (1) is defined by expanding B" in Legendre
polynomials:

sn G (A2.4)

Z Y. (1)P,(cosO) =

n=0

A solution to problem (A2.3) can be expressed
through Bessel function of order n + 1/2, which, in turn,
can be represented as asymptotic expansions at |kx| —
0. Thus, basically the result desired can be obtained.

A simpler way is to seek a solution to problem
(A2.3) in the vicinity of x = 1 in the form of an expan-
sion in powers of the small parameter € = |kt =
(WPeYRY)Y2. Applying the conventional technique of
constructing an asymptotic solution of boundary layer
typeto (A2.3), we get

W, (8) = W, (1)exp(—BE)[1+€E +0(%)], (A2.5)

where& = (1-X)/e, B= /j, ReB> 0.
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The electric field strength on the surface of the ball
has only the meridional component

_1 4(xB)

Er:E ——
olr=1 = [ ax o1

L (A2.6)
= 'u—ovnzoq)n(l) Pn( COSG)),

where

D (x) = —)—1(%

Thefunction @, can be found in the form of aseries
in powers of the small parameter € from (A2.5) if the
variable x ischanged tox = 1 — €&

D(E) = Wo(1)exp(-BE)e™

x [-B—eBE+O(e")].
The first two terms in brackets in (A2.7) do not

depend on n. In view of this fact, substituting (A2.7)
into (A2.6) yields

r— _ H(*) q
= uovsmG)+

J‘*\’/”Oé(@) +0(e?),

(A2.7)

0(e?)
(A2.8)

since 8(©) = ' B,/sin@ is the linear current density
for the perfect skin effect. Comparing (A2.8) with (9),
(19), and (20), wefind that the component of the second

approximation E[ , inthe asymptotic expansion of the
electric field strength on the surface of the ball equals
zero: E{ , =0.

This example demonstrates that the second-order
correction in the asymptotic expansion of the electric

field on the surface of conductors of specific geometry
may equal zero.

APPENDIX 3

in Effect in a Nonuniform Electromagnetic Field
Excited in a Conducting Half-Space

Consider an electromagnetic field generated by a
fine single wire with an alternating current | of fre-
guency w. Theboundary I of the conducting half-space
(x> 0) isthe plane x = 0. The wire runs paralléel to this
planeinthedirection of thezaxisat adistanceafromit.

(i) Exact solution. Thefield in such a system can be
described by the Helmholtz equation for the electric
component of the fidd:

(3__|§+‘3__E_ak E = jopl8(x+a)d(y),

(A3.1)
X ay
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where k? = jwpyy, dis the delta function, E and dE/dx
are continuous functionsin the vicinity of the boundary
I, and

G_Eﬂ for x>0
for x<O0.

An exact solution to problem (A3.1) can be found
with the Fourier cosine transformation with respect to y:

[

E(x, S) = %{J’E(x, y) cos(sy)dy,
0

0

E(x,y) = IE(X, s)cos(sy)ds,

d’E

€= _($+ak)E = D&(x+a), E|,. . —0,
dx®

(A3.2)
where E(x, S) is the Fourier transform of the electric
field strength, E and dE /dx are continuous functions at
x=0, and D = jorrygl.

When solving boundary-value problem (A3.2), one
easily finds that

E(0,s) = k%exp(—sa)(s—dsz+k2)
(A33)

__D s, _ 0O
= kexp( sa)%l k+2k2 ot

Applying the inverse Fourier cosine transformation
to the components of (A3.3) yields
1 a’—y’

Blﬁ a
E(0.y) = Yy a® +yI Y(a® +yz)I
2a (a —3y)|+

TRy (@5 +Y %)’

where B, = J/jw and Rep, = 0.

(ii) Solution with the boundary layer method. In
the approximation of perfect skin effect, the magnetic
induction By in Q, and the linear current density 4 on
the boundary I' can be found by the image method:

Hoal _ al
ma'+y) - m@+y)

Let us define alocal system of coordinates (X, X,
X3) @ points near the flat surface of the conductor. Let
ushavex, =yla, X, = z/a, X3 = X/hg, hy = h;g =h, = hyy =
1Lt =w? K=a? hy= (wy) ™2, and € = h;K = hy/a.

(A3.4)

By = By(0,y) =
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In the first approximation, the magnetic induction
inside the conductor B, , and the electric field on the

surface E;O are given, according to (14) and (19), by

Hol
na(l+x5)

Er = i M BI
20" man y (1+xi)’

where B = ./j and Rep = 0.

In accordance with (15), the norma component of
the magnetic induction is

ro_ 20 X _ y
3,1 — - = ’
B 1exg)’ @y’
where C = 2u22/(TR).

The value of Bj, found defines the Neumann

boundary condition for the scalar potential U, in Q. in
the second approximation:

Bio = exp(—Bxs),

(A3.5)

2 2

9 U21+6 U21 =0, x<0, —w<y<o,

0x oy

Uy = By =c—Y (A3.6)
0X |x=0 (@+y)

UllXa—oo_>0’ Ullyaioo_>o'

To solve problem (A3.6), we apply the Fourier sine
transformation with respect to y:

00

0(x.5) = ==[Us(x )sin(sy)dy,
0

00

U, = CICJ 1(x, s)sin(sy)ds.
0

d?0,
dx?

dU, _ s
dx 2a

Hence, U, (X, s) = (2a)exp[s(x — a)] and

~s°U, = 0, x<0,

exp(-sa), Uiy . —= 0.

- C y
20 Baar

Then, the tangential component of the second
approximation of the external magnetic induction is
aU _ 2_ 2
" 1 _ _Cl(x-a) y]z' (A3.7)
0 2a[(x-a)’+y]

Expression (A3.7) defines the boundary condition
for the second approximation in terms of the boundary

B
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layerin Q;:
d’B
]é’l_BzBlyl = 0, X3ZO,
dxs
C(1-%0)
Biily-0=Bri=———>5 B, . .—0
2a’(1+xy)
2
Hol 1-X
Bi1 = —+ exp(—Bxs).
11 T[Ba(1+xi)2 P(—BXs)
Hence, according to (13), we obtain
| 1-%°
SR L (A3.8)

mayhs (1 +5d)°

Now, we substitute (A3.5) and (A3.8) into series (9)
and pass to the physical coordinates (X, y, z). Eventu-
ally, we come to expansion (A3.4) restricted to the first
two terms found by the boundary layer method.

This example demonstrates the effect of the external
magnetic field nonuniformity on the second-order cor-
rection to the e ectric field strength on the surface of the
conductor.
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Abstract—A pproximate rel ationshi ps between the current and voltage drop across a set of massive conductors
are established. They include two constant parameters. external inductance L of the conductors and skin param-
eter S Specific shapes of the voltage across the massive conductors are illustrated with oscillograms. Mathe-
matical processing of current and voltage oscillograms to estimate L and S is developed. © 2002 MAIK

“Nauka/Interperiodica” .

INTRODUCTION

In [1], an electromagnetic field generated by mas-
sive conductors with current was analyzed and asymp-
totic relationships for the field vectors on the conductor
surface were derived for a small skin depth. This work
extends the approach used in [1] for massive conduc-
tors as elements of the electric circuits of pulsed
devices.

Massive conductors withstanding currents as high
as several megaamperes or severa tens of megaam-
peres are a basic component of devices generating high
current pulses [2]. Such conductors usually operate
under conditions of small skin depth, and the depen-
dence of the current on the voltage drop across them
cannot, as arule, be adequately described with a set of
equivalent inductances and resi stances.

The problem of electrical circuits with massive con-
ductorsisnot new. In publications dealing with the sub-
ject, the pulsed current and voltage across massive con-
ductors are usually determined with Laplace or Fourier
transformations with respect to time with subsequent
calculation of the transient operator resistance of the
conductors. As a rule, conductor geometries used in
previous works allow for the mathematical description
of the magnetic field in 1D form. For given electric cir-
cuits, final analytical expressions for the current and
voltage involve integrals of inverse Laplace (Fourier)
transformation, which makes them approximate and
sometimes rather awkward [3, 4].

In spite of asubstantial number of previous publica-
tions, the problem of deriving general relationships
between the current and voltage across massive con-
ductors still remains urgent. This problem can be
resolved for any geometry of the conductorsin the case
of the sharp surface effect, which is typical of sources
of high current pulses and loads to which the pulses are

applied. Asymptotic relationships between the electro-
magnetic field vectors on the surface [1] admit general-
ization in the form of aformulawith current- and time-
independent parameters. Similar to Ohm'slaw, thisfor-
mula relates the current in massive conductors to the
voltage drop across them. The aim of this work is to
substantiate the use of these parameters and to develop
oscilloscopic techniques for their measurement.

We will follow designations adopted in [1].

SKIN PARAMETER OF MASSIVE CONDUCTORS

In the case of the sharp surface effect, the voltage
drop across asubcircuit with massive conductors can be
divided by convention into two parts:

U=U_+Ug
where

_,d

U =1L a0t

isthe voltage component due to the self-inductance emf
of the external field and

Us = [E
A

is the voltage component due to field penetration into
the metal (the integral is taken along a line A on the
conductor surface I" that coincides with any of lines of
the linear current density vector 9).

The dependence of Ug on the total current I(t) is
givenin[1] (formulas (24) and (4)):

Us(t) = SG [

Oﬁd@+RS|(t)+.... (1)
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Here,

- [Ho
S—J;{b(r)ml

is acurrent- and time-independent parameter, which is
suggested to be referred to as the skin parameter (skin
resistance), and

Rs = ‘/[[(kz -

is the coefficient at the second-order correction, which
hasthe property of active resistance and depends on the
external field nonuniformity and the principal curva-
tures of the surface I" on the current line trajectory A.

As arule, Rgis small for massive conductors in
actual megaampere devices.

The interna ac resistance of massive conductorsis
related to the skin parameter as

.= (1+j)@s+ R+

For extended parallel conductors, the parameter S
can be calculated with the method proposed in [3] for
calculating the internal ac resistance of massive
extended conductors,

k) (bg—b3) | blfl—bzfz}OII
2yb b

Zy(w) = BS+Rg+

1 oL
/y poa n
where dL/dn is a change in the external inductance of

parallel conductors when points on the conductor con-
tour are displaced normally by equal distances.

S =

MASSIVE CONDUCTORS IN ELECTRICAL
CIRCUITS OF PULSE DEVICES

We consider massive conductors for which the sec-
ond-order correction Rgin the asymptotic expansion of
Ugis smal. If 1(0) = 0, which is always the case for
pulsed devices,

|(@) I'(®)
Ug = dtI do = SIFdO )
where I'(t) = dI/dt.

Considering relationship (2) as an Abelian integral
equation [5], we obtain

U(@)
't = T[Sd'[_[ do
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or

U(G))

I(t) = ©)

nS_r

The voltage Usisimpossible to measurein practice.
Therefore, we deal with the voltage drop across a set of
massive conductors havi ng an external inductance L:

u=Lr +SI 't(f))_de (4)

Given U(t), L, and S the current I(t) is determined
from a solution to the Volterraintegral equation

(1) = T(t)— )\J’ 1(©) Ldo, )

where
t

T(t) = %J'U(@)d@, A =
0

mlo

Equation (5) is obtained by integrating (4).

A solution to Eq. (5) can be found by the iteration
scheme or by applying Fourier or Laplace transforma-
tion. Inthelatter case, the Laplace transform of the cur-
rent,

U(p)
L(p +A/p)

admits the definition of the current 1(t) by quadratures
[6]:

I(p) =

t

(1) = %J’U(@)K(t—@)d@, ©6)
0

where

00

U(p) = IU(t) exp(—pt)dt
0

isthe Laplace transform of the voltage U(t),

K(x) = exp(A\*X)[1—Erf(AJ/X)],
and

y
Erf(y) = % - [exp(2)cz

isthe error function.
Formulas (2) and (3) or (4) and (6) can be consid-
ered as a specific Ohm's law for massive conductors.

They can be used for finding currents and voltages in
branched circuits. In addition, these formulas can be
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Fig. 1. Voltage U across a set of massive conductors for a
half-period of acurrent pulsel. I, =1, wp=1,L =1, and
S=1

written in terms of Kirchhoff’s laws for multielement
circuitsof pulsed devices. Analysis of branched electric
circuits with massive conductorsis beyond the scope of
our article and may be the subject of further investiga-
tion.

The voltage U across a massive conductor possesses
specific features illustrated in Fig. 1 for a half-period
sinusoidal current pulse

gl mSin(wet) for 0<t<t; = MW,

(1) = [p for t=t; = WW,.

The plot U(t) in Fig. 1 shows that the voltage
changes stepwise initially, by an amount U, (0) = LI'(0),
and at the end of the pulse, by an amount U (t)) =
LI'(t,). These voltage steps are explained by a voltage
drop across the external inductance L of the set of con-
ductors. Immediately after the current pulse, the volt-
age across the conductors equals

ty

Uty = SJ' 1(©) Lo

— 0.

and then asymptotically fals to zero, U4 _. .,
Such a behavior results from the fact that, athough the
total current in the conductor equals zero, | = O, partial
currents may pass near the surface in opposite direc-
tions. In circuits with a low inductance L, the effect of
nonzero residual voltage can be observed in oscillo-
grams (Fig. 2).

MEASUREMENT OF SKIN PARAMETER
IN MASSIVE CONDUCTORS

The skin parameter S, as well as the ohmic resis-
tance, can be determined indirectly by measuring the
current | and voltage drop U across a set of massive

FRIDMAN

conductors. Basically, one can find S by measuring the
ac resistance of massive conductors

Z(w) = joL+JjuS

and by measuring the external inductance L separately
at ahigh frequency (1 or 10 MHz). However, in the case
of megaampere devices, the instruments cannot be con-
nected in such away that current lines coincide during
operation and measurement. Therefore, Sand L can be
reliably measured for normally operating pulsed cur-
rent sources and | loads by oscilloscopes measuring |
and U. To suppress nonlinear effects due to high cur-
rents, the measurements should be made at a reduced
pulse energy (5—20% of the typical value).

Figure 2 shows current (1) and voltage (U) oscillo-
grams taken from massive conductors (buses) of an
electrodynamic compression bench [7]. The buseswere
short-circuited by a copper rod 25 mm in diameter. The
voltage oscillogram exhibits a residual potential after
the end of the current pulse. This suggests that the skin
parameter S comprises a significant portion of the con-
ductor impedance.

Thevoltage U across a set of conductors can be rep-
resented in the form

u(t) = LI’ (t)+RI(t)+S—J’ () Lio. ()

Here, U(t) and I'(t) are dlscontlnuousfunctl ons. There-
fore, the formula

V(1) = LF,(t) + RF,(t) + SF4(1), (8)

obtained by integrating (7), is more suitable for calcu-
lating the coefficients L, R, and S. In (8),

t

V() = [u(@)de,
0

Fa(t) = 1(1),

t

F,(t) = J'I (©)do,

|(@)

Fs(t) = I

The functions entering into (8) are calculated from
current (I1(t)) and voltage (U(t)) oscillograms. Asarule,
an oscillogram contains no less than 512 readings, and
the time between readings is much shorter than the
characteristic time of signal variation. Therefore, the
simplest methods of numerical integration, such as
Simpson formulas, provide sufficient accuracy in cal-
culating V(t) and F,(t). The convolution singular inte-
gral F4(t) with asingularity at t = © can be taken with
the numerical integration formula derived in the
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Fig. 2. Current (1) and voltage (U) oscillograms for the massive conductors (buses) of the electrodynamic compression bench [7].

U, isvoltage calculated by (7) with L = 28 nH, R=0, and S=1.93 Q s'?

. The parameters were found by the least squares method

from the current and voltage oscillograms. A bank of twelve capacitor modules (E7-25 capacitive storage) with atotal capacitance
of 25.9 mF was discharged at an initial voltage across the capacitors of 2.05 kV.

Appendix:

Fo(iAt) = Fyi = J_tm—ll _ZFD ©

wherel; = I(iAt) are readings on the current oscillogram
().
Thevalue of R can be evaluated from (8) witht —»

oo, If the energy source is a capacitor bank of capaci-
tance C, the resistance is calculated by the formula

R= V() 1 fud, @)

F0), . CUc(0) - Uc(=)1)

where Uc(0) and U() are the voltages across the
capacitors before and after the pul sed process.

The parameters L and S can be found from the volt-
age steps at the beginning and end of the current pulse.
However, the measurements will be inaccurate, since
the voltage steps under actual conditions are accompa-
nied by high-frequency oscillations in both electric cir-
cuits and instruments, which makes it impossible to
measure the steps accurately.

The accuracy in determining the parametersL and S
will be the highest if one uses (totally or partially)
arrays of current I(t) and voltage U(t) readings mea-
sured on the related oscillograms. The high accuracy is
provided the least squares method. In this case, the
parameters L, R, and Sare found as a solution to a set
of third-order linear algebraic equations

gL +a,R+a;3S = d;;

i=123 (11
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where

t &

a = J'Fi(t)Fi-(t)dt, d = J'V(t)Fi(t)dt

(1,i"'=1,2,3),

and t, and t; are the initial and final time instants on the
oscillogram that are used for calculating the unknown
coefficients.t

As ty and t;, it is reasonable to take the instant of
high-frequency oscillation disappearance and the end
of oscillogram recording, respectively.

Figure 2 shows the current and voltage oscillograms
taken when the capacitive energy storage was dis-
charged into the buses of the electrodynamic compres-
sion bench [7]. From them, the parametersL, S and R
were found by the least squares method [Egs. (11)] (see
the caption to Fig. 2). This figure aso shows the func-
tion U, calculated by formula (7) with L, R, and S
found.

CONCLUSION

A new time-independent parameter (skin parame-
ter) for characterizing massive conductors of pulsed
devices in the case of the sharp surface effect is sug-
gested. It is a specific analog of resistance in conven-
tional Ohm’s law in the sense that it relates the current
and voltage drops across the massive conductors in the
time domain.

The voltage across the massive conductors has a
specific shape; namely, it is still retained after the cur-
rent pulse and asymptotically decays with time. This

L1f it is assumed that R = 0 or equality (10) is used to calculate R,
the least squares method leads to a set of second-order linear
equationsfor L and S.
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feature substantiates the use of methods for analyzing
transients in the time domain by invoking the skin
parameter, since an infinitely large time of voltage
existence across massive conductors is taken into
account in anatural way in this case.

The skin parameter (skin resistance) and the exter-
nal inductance can be measured indirectly by mathe-
matically processing current and voltage oscillograms
taken during the operation of pulsed devices.

APPENDIX
Calculation of Convolution | ntegral

0= [, s d

The singularity inthei ntegrand isremoved with the
transformation

I(t) 1(©)4

Fs(t)—l(t)I _@‘[ s do (A1)
= 2./t1(t) - J(1).

Theintegra

) = II (3_'((99)0@

has no singularities and can be taken with the Simpson

FRIDMAN

formula
I —1.0

J(iAt) = J, = J_tm—l" ZJ_D
|_

i=12,....

Substituting this equality into (A1) and taking into
account that 1, = 1(0) = 0, we come to formula (9) for
the function F.
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Abstract—The stagesin the plastic flow curve and the localization of plastic strains upon stretching Zr—1% Nb
alloy are considered. Thelocalization pattern isfound to correlate with astrain hardening law upon plastic flow.
Datafor the dislocation structure in strain localization regions are reported. © 2002 MAIK “ Nauka/lnterperi-

odica” .

INTRODUCTION

Recent in-depth speckle interferometry studies of
macrodeformation have revealed that the process is
microscopically nonuniform at any stage of stressing
[1, 2]. It has been found that plastic flow conditionsin
agiven portion of the stress—strain curve strictly corre-
late with the space—time distribution of the strain tensor
components. It turns out that the strain localization pat-
tern can serve asameasure, for example, of the material
moldability [3].

In thiswork, we elaborate upon our previous studies
[3, 4] and investigate strain localization in Zr-1% Nb
alloy [5]. The nature of deformation and its stages in
hcp Zr—Nb alloys are as yet little understood. There is
no agreement among researchers even regarding the
nature of plastic deformation and mechanisms of strain
hardening of pure zirconium [6]. Little has aso been
reported concerning the stages of the plastic flow curve
for Zr—1% Nb alloy, as well as their correlation with
deformation localization and the microstructure. These
data, however, are of great importancefor clarifying the
evolution of the microstructure; for finding reasons for
deformation localization at the macrolevel and, conse-
quently, for the formation of fracture nuclei; and even-
tually for estimating the ductility margin of Zr-1% Nb
aloy.

EXPERIMENTAL

The Zr-1% Nb alloy studied in this work consisted
of recrystallized a-Zr grains (of mean size 5 um) with
uniformly distributed 3-Nb precipitatesup to 0.1 umin
size. The recrystallization procedure took place in four
stages: (i) hot pressing inthe a range, (ii) water quench-
ing from the 3 range starting from 1050°C, (iii) anneal-
ing at 580°C for 3 h, and (iv) three cold rallings with
two intermediate annealings at 580°C for 3 h.

Flat specimens with the working part measuring
42 x 5 x 2 mm were stretched on an Instron-1185 test-
ing machine with a clamp rate of 0.1 mm/min. Stress—

strain diagramswere recorded by laser speckleinterfer-
ometry, and simultaneously the fields of point displace-
ment vectors r (X, y) [1] on the specimen surface were
fixed. From the latter, the components of the plastic
strain tensor 3 = O r (X, y) were calculated. For sim-
plicity, we hereafter will deal with only one component:
the local elongation €,, = du/ox (u is the component of
the vector r along the stretching axis X). Electron
microscopy studies were carried out in an EMV-125
microscope. Thin foils were prepared by polishing in a
90% CH;OH + 10% HCIO, electrolyte at atemperature
of —30°C.

STRESS-STRAIN CURVES

To make stress—strain o— curve anaysis more
informative, we additionally studied s—e curves (where
s and e are the true stress and strain, respectively) [7],
aswell asthe strain dependences of the strain hardening
coefficients do/de(¢) and ds/de(e). The aloy under
study hardensin three stages: transition, linear, and par-
abalic. In Fig. 1, where the stress—strain curve and the
strain dependence of the strain hardening coefficient
are plotted in the s—e coordinates, the linear stage is
within e = 1.2-1.8%; here, the hardening coefficient
ds/de roughly equals 600 MPa. The linear stage is fol-
lowed by the parabolic stage, where the hardening coef-
ficient continuously decreases. Starting with astrain of
4%, the coefficient becomes very small and approaches
zero. According to [8], thisisan indication of the fourth
stage of strain hardening.

The stages of plastic flow become more obvious
when the curve is constructed in the coordinates In(s —
So)-ne, where sy = 0y (1 + & ) (Fig. 2). Inthese coor-
dinates, the initial (nonlinear) portion of the curve
reflects the so-called transition stage [8], which setsin
after the yield point. This stage is not parabalic,
although the hardening coefficient decreases. This
stageisfollowed by the linear stage of strain hardening
(s~ €), occupying the range 1.2—1.8%.

1063-7842/02/4709-1125%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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Fig. 1. (a) Plastic flow curvefor Zr-1% Nb alloy in terms of
true stresses and strains and (b) strain dependences of the
strain hardening coefficient.
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Fig. 2. Stagesin the plastic flow curve.

Note that the parabolic stage of the stress—strain
curve, in its turn, splits into five portions with the suc-
cessively decreasing exponent of parabolas~ € n =
0.7, 0.5, 0.4, 0.3, and 0.2. The last portion of the para-
bolic portion with n — 0 manifests the formation of
the neck, which is observed visualy.

According to [6, 9], zirconium single crystals
deform through prismatic dip and their stress—strain
curve consists of three portions like that of better stud-

POLETIKA et al.

ied hep Zn and Cd single crystals, whose orientation
prevents basal slip [10]. Thefirst stage of prismatic slip
in Zr is characterized by the motion of screw disloca

tions with the Burgers vector 1/3[1210[JAt the second
stage of Zr hardening, screw dislocations gliding in two
sets of prismatic planes interact. The third stage is the
stage of dynamic recovery by means of cross dlip from
the prismatic to basal planes. When studying the strain
hardening of Zr polycrystals, Akhtar and Teghtsoonian
[9] also described the process by a parabolic function.

They found that, when constructed in the 6—./e coor-
dinates, the curve is divided into three straight portions
with different slopes.

In the case of Zr-1% Nb alloy deformation, the sit-
uation is similar except that the number of stages
increasestofive. It can be supposed that, unlike pure Zr,
basic factors responsible for plastic deformation in the
aloy are the presence of matrix-incoherent 3-Nb hard-
ening disperse precipitates [5] and impurities such as
oxygen, which are inevitably present in zirconium
aloys[5, 11].

Both factors are of prime importance in the initial
(nonparabolic) portion of the curve (the glide of screw
dislocations over conjugate prismatic planes). At this
stage, one can expect that the formation of dislocation
loops and subsequently dislocation clusters around
-Nb particles may lead to strain hardening by the well-
known Orovan mechanism [12]. A similar structure
(dislocation clusters around Zr hydride precipitates)
was observed in [13] at the linear stage of the stress—
strain curvefor Zr single crystals. Thisprocessis likely
to develop at the linear stage in the strain range of
1.2-1.8%.

Impurities may also contribute greatly to strain
hardening at the initial stage of plastic deformation.
Here, oxygen-related effects [6] may become essential.
For exampl e, oxygen atoms may pin dislocations by the
Cottrell atmosphere mechanism [12]. Another possibil-
ity is the stopping of dislocations by O-O pairs. The
parabolic stage of hardening is apparently associated
with cross dip to the Zr(0001) basal plane. This
assumption is consistent with Bailey’s data [13], who
discovered basal dlip near the hydride particles.

In all Zr-1% Nb specimens, the third stage began at
astrain of =2%. Once basal slip has been initiated, the
strain hardening coefficient starts decreasing. Long-
term basal slip does not cause hardening [9, 10], hence,
an extended portion of the stress—strain curve (4-12%)
with asmall exponent of parabola.

DEFORMATION LOCALIZATION
PATTERNS

Laser speckle interferometry made it possible to
visualize the distribution of €,, maxima at the various
stages. At the very beginning of the curve (transition
stage; € < 1.2%) and at thelinear stage (1.2% < € < 1.8%),
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Fig. 3. Evolution of the strain localization pattern during stretching.

thelocal elongation maximamove. When the exponent
of parabolais closeto 0.7, a steady set of local elonga-
tion maxima arises (Fig. 3a) with a partial period A =
4.5 mm.

Transition portions between the stages (nearly hori-
zontal parts of the curve, do/de = ds/de = 0) deserve
attention. Here, the distribution of local elongation (g,,)
maximachanges. first, the spacing between the maxima
shrinks roughly twofold (Fig. 3b), and then the maxima
start moving, decreasing in height (Figs. 3c, 3d); that is,
strain localization is absent. The same evolution of
strain localization in the transition portions of the curve
was observed in Al polycrystals with various grain
sizes[14].

At the substage with n < 0.5, equidistant strain local -
ization maxima begin to move until a neck forms, with
the spacing between the localization fronts gradually
decreasing. Figure 4 shows the position X of localiza-
tion maxima in the specimen axis vs. total strain. The
evolution of the strain localization pattern due to the
changeinthe parabolicity exponent isclearly seen. Fig-
ure 5 demonstrates the dependence A(n), from which it
follows that, in going from the linear stage to the para-
bolic one, A first somewhat decreases, then (0.3 < n <
0.5) remains nearly constant, and finaly (n = 0.3)
decreases again.

Thus, the evolution of strain localization intimately
correlates with the stages of the stress—strain curve. At
the parabolic stageswith n = 0.7 and 0.5, the steady set
of strain localization maximais observed. With n < 0.4,
the localization fronts begin to move and the spacing
between them diminishes.

Earlier [1, 2, 15], it was shown for various materials
that strain localization fronts produce a steady set at the
parabolic stage. Inthiswork, asteady set of the maxima
is found to occur only at n = 0.5 for Zr—1% Nb alloy.
For n < 0.5, strain localization maxima move synchro-
nously (A isconstant) up to n= 0.3. At small exponents

TECHNICAL PHYSICS  Vol. 47
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n (n < 0.3), the motion loses synchronism and the max-
ima unite into a single localization peak, which then
transforms into a microneck.

To conclude, the results obtained support our idea
[16] that various forms of strain localization should be
considered as self-organization in the imperfect struc-
ture of adeformed material [17].
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Fig. 4. Kinetics of strain localization: (a) initial and (b) final
stage of the process.
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DISLOCATION STRUCTURE
OF THE DEFORMED ALLOY

Electron microscopy studies were performed on
specimens strained to 7 and 12%, i.e., at those stages of
the parabolic stress-strain curve where the strain local-
ization fronts move and the spacing between them
decreases. The banded substructure, which istypical of
the substage with n= 0.4 (atotal strain of 7%), isshown
in Fig. 6a. It is seen that the bands are cut in the shear

directions [1210L] The subboundaries of the bands are
separated by acellular—etlike dislocation substructure.
Such a deformation pattern was observed in Zr single-
and polycrystals at the third stage of strain hardening
[6, 13]. The banded structure evolvesinto a 2D banded
structure (Fig. 6b) at astrain of 12%. According to [8],
the 2D structure appears because the number of locally
active slip systemsincreases. It isknown that gliding in
Zr takes place largely over prismatic planes. If the
strain (or temperature) is high, cross slip onto a basal
plane is possible [6, 9]. In our dispersion-hardened
aloy, cross dip is facilitated. This causes the 2D
banded structure shown in Fig. 6b to form.

The microstructure of the alloy strained to 12% near
the strain localization peak is depicted in Fig. 6¢. The
banded structure evolves further. Because of the inter-
action between variously directed subboundaries, the
banded structure loses the clear-cut crystallographic
orientation and splits into microbands that have a par-
tially fragmented structure and a substructure with mul-
tidimensional discrete and continuous misorientations.
Thus, for the parabolic substages with n < 0.5, first the
1D banded structure forms, which is followed by the
2D one (at n = 0.4) and the structure with multidimen-
sional misorientations (at n < 0.2).

It is known that the formation of multidimensional
banded structures and structures with multidimensional
discrete and continuous misorientations takes place
when dislocations of opposite sign annihilate. Accord-
ing to [8], thisistypical of the fourth stage of fcc mate-
rial deformation. A similar evolution of the dislocation
structureisalso observed in hcp materias, in particul ar,
in Zr—1% Nb alloy hardened by disperse 3-Nb parti-
cles.

The formation of the substructures typical of the
fourth stage is accompanied by the motion of strain
localization fronts and a decrease in the front spacing.
Such an evolution of the component ¢,, at the fourth
stage makes the strain distribution over the specimen
more uniform. The high ductility of the material in this
state is explained by successively involving its new
constituentsin the deformation process. That iswhy the
alloy has agood cold ductility.

Fig. 6. Microstructures of the deformed Zr-1% Nb alloy.
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CONCLUSIONS

(2) Itisfound that the stress—strain curve for disper-
sion-hardened Zr-1% Nb alloy is multiple-stage: it has
atransition stage, aswell aslinear and parabolic stages
of hardening. The last stage, in itsturn, consists of five
substages with different parabolicity exponents.

(2) The results of the laser speckle interferometry
study suggest that the local elongation (g,,) distribu-
tions corresponding to the stages and substages are the
following: (i) transition stage, origination and move-
ment of strain localization sites; (i) linear stage, move-
ment of strain localization fronts; (iii) parabolic stage:
steady set of strain localization fronts for n < 0.5, syn-
chronous motion of strain localization fronts at 0.3 <
n < 0.4, and merging of thefrontsinto asinglelocaliza-
tion sitewith the resulting formation of aneck (n<0.3).

(3) The electron microscopy examination of the
alloy microstructure at the parabolic substages with n <
0.4 shows that the imperfect structure consists of 1D
and 2D banded substructures, as well as substructures
with multidimensional discrete and continuous misori-
entations. Such a dislocation structure is typical of the
fourth stage of strain hardening.
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Abstract—The patterns of plastic flow localization in high-manganese y-Fe fcc single crystals oriented for
twinning upon stretching are obtained. Basic space-time features of strain localization at the stages of yield pla-
teau, easy glide, and linear hardening are established. The velocity of strain localization sites during stretching
is determined. Conditions under which plasticity autowaves appear in the strained medium are discussed. It is
demonstrated that the local strain distributions in the case of twinning are similar to those due to dislocation

glide. © 2002 MAIK “ Nauka/lInterperiodica” .

INTRODUCTION

Plastic deformation is known [1-3] to proceed
locally over the entirerange o, < 0 < g, (0, istheyield
point and g, is the ultimate strength). The macroscopic
forms of localization are few [2], and they are closely
related to a strain hardening law, i.e., to the strain
dependence of the hardening coefficient do/de = 6(g).
Most experimental datafor theformsof localization are
concerned with plastic deformation via dislocation
glide. The no less important twinning mechanism [4]
hasreceived little attention [5, 6]. However, the charac-
ter of plastic flow localization under the action of this
mechanism, which isan aternative to dislocation glide,
is of undeniable interest. In particular, since the local-
ization of strain can be described in terms of an auto-
wave process [1-3], it is necessary to realize whether
such autowaves can form when plastic flow is of an
essentially different nature.

EXPERIMENTAL

Samples used were single crystals of austenite high-
manganese Hadfield (Fe-13wt % Mn-1.03wt % C)
stedl [7] grown by the Bridgman method in a helium
atmosphere. An electrical discharge machine was used
to cut out samplesin the form of a double spade with a
cross section of 1.6 x 5 mm and an operating length of
28 mm. The wide face, intended for observation, coin-
cided with the (011) plane. A tensile stress was applied

along the x axis aligned with the [ 355] direction. The
samples were homogenized for 24 h at 1373 K in an
inert gas and quenched in water.

The samples thus prepared were stretched on an
Instron-1185 testing machine at 300 K at a constant
strain rate € = 1.2 x 10 s (the velocity of the mov-

able grip is Vg = 0.2 mm/min). The field of displace-
ment vectors r (X, y) on the sample front surface was
determined by speckle interferometry [8] in the range
between the yield point and tensile strength at ot = 36 s
intervals (incrementsin the total strain Ag,,; = €t =4 x
102 = 0.4%). By numerica differentiation of r(x, y)
with respect to coordinates x and y, the distributions of
the longitudinal (g,), transverse (g,,), shear (&), and
rotational (w,) components of the plastic strain tensor
B; = Or were calculated at each point of the surface
under study. Then, for different time instants or various
values of thetotal strain €y, thelocal strain distribution
over the whole sample or along its axial line was plot-
ted. For this purpose, the local €longation in the stretch-
ing direction, €,, = du/ox (u is the r component along
the stretching direction x), seemsto be the most conve-
nient component of the (3; tensor. The space-time dis-
tributions €, = (X, y, t) will be correlated with different
stages of the stress—strain curve o(g).

PLASTIC FLOW AND STRAIN LOCALIZATION
PATTERNS

Hadfield steel single crystals are especialy conve-
nient for correlating the shape of the stress—strain curve
with the local strain distribution, since strain hardening
parameters and the deformation mechanism depend on
the crystallographic direction of stretching and the car-
bon content in y solid solution in this case [9].

Because of the high deformation stress, whichisdue
to the hardening of the solid solution by carbon, and the
low stacking fault energy (=2.3 x 102 Jm?) in the y-Fe
single crystals studied, twinning induces strain imme-
diately after the yield point [9]. The stretching of y-Fe
single crystals with a carbon content of =1% along the
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[111] axis is known to result in compound twinning,
while the stretching along the [377] axis results in
ordinary twinning in the [211](111) system [9]. The

intermediate [ 355] orientation lies on the same side of
the standard crystallographic triangle. The flow curve
of such crystals (Fig. 1) is therefore similar to that of

the crystals oriented along the [377] axis; i.e., a sharp
yield point and ayield plateau with 6 = O are observed.
However, a relatively small (=13°) deviation of the

stretching axis from the [111] pole gives rise to stage
I, where 6, is small but nonzero. Finaly, the activation
of additional twinning systems and their interaction
with each other and with rarely occurring acts of dislo-
cation glide [5] increase to 6, at stage Il of the o(g)
curve.

All the features outlined above are observed in
stress—strain curves 1-3in Fig. 1. The sharp yield point
is clearly seen. The following three stages of plastic
flow are characterized by constant values of the strain
hardening coefficient  and are clearly defined in the 6—
€ and 6—o coordinates[10] (Figs. 2a, 2b): theyield pla-
teau (the sharp yield point included) covers the range
0.7% < g, < 4% with 8 = 0; stage |: 4% < g,,; < 10.9%
and 6, = 337 MPa= 3 x 102 G; and stage I1: 11.6% <
€t < 32% and 6, = 1045 MPa= 102 G.

In the range 11% < g < 11.5%, stage | ends and
stage Il begins. The stage of parabolic hardening was
observed in none of the crystals studied: they fail
immediately after linear hardening.

We analyzed the local strain distributions by plot-
ting the coordinates of the local strain peaks versusthe
stretching time't (at € = const [t ~ €) (Fig. 3). At the
yield plateau stage, a single wide deformation zone,
separating the strained and unstrained parts of the sam-
ple, starts propagating from the grip of the testing
machine (Fig. 4). The strain is localized in this zone,
while the rest of the sample remains almost unstrained.
The velocity of the zone of local plastic flow was esti-
mated from the slope of the plot in Fig. 3at V= 1.9 x
105 m/s.

At the beginning of stage |, another strain front sep-
arates from this zone and propagates in the opposite
direction over the strained part of the sample with a
velocity of V, = -5.5 x 10 m/s (Fig. 5). Prior to the
separation, the velocity of the main zone, propagating
inthe unstrained part of the sample, decreases. Thissit-
uation repeats twice during stage | (Fig. 3). The transi-
tion from stage | of easy glide to stage Il is manifested
by several local elongation peaks as the main strain
zone passes to the grip (Fig. 3). At stage |1, equispaced
local-strain zones move synchronously with a constant
velocity V,, = 4.2 x 10 m/s (Fig. 6). The spacing
between the waves (wavelength) isA = (5+ 1) x 103 m.
Thedistributions of thelocal-strain zones here are more
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complicated than those observed in previous studies.
Stage Il is characterized by the redistribution of the
amplitudes of the local elongation peaks; however, the
velocity and the wavelength of the strain localization
remain constant.

When compared with the previous results [1-3, 11],
our data allowed us to relate the stages in the stress—
strain curve a(g) to the space-time distributions of the
strain tensor components. Our conclusions are as fol-
lows. (1) At the stage of yield plateau, deformation is
due to the propagation of asingle plastic front (L Uders
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bands), which separates the elastic and plastic states of
the material; (2) at stagel, such awave givesriseto sec-
ondary waves (only one secondary wave can exist at
each time instant), which propagate in the opposite
direction in the strained medium; (3) at stage Il, the
generation of secondary waves becomesregular, so that
a steadily moving sequence of equispaced plastic strain
sites, i.e., alocal-strain autowave, appears[3].

It should be noted that such a behavior of y-Fe sub-
jected to twinning deformation closely correlates with
the behavior of single-crystal and polycrystalline met-
as and alloys subjected to dislocation glide deforma-
tion [2, 3, 11]. This means that the character of plastic
strain localization is defined by the 6(¢) dependence
rather than by a plastic flow microscopic mechanism.

DISCUSSION

The most important result of our study on plastic
flow localization in Hadfield steel single crystas
strained by twinning is the observation of plastic flow
sites arising in the strained parts of the samples at
stages| and I1.

Figure 3 suggests the following scheme of the plas-
tic flow process: once the lower yield point has been
attained, a local plastic strain front starts propagating
from one grip of the testing machine to the other with a
constant velocity. Secondary fronts separate from the
main one and move in the opposite direction also with
acongtant vel ocity. These fronts appear singly at stagel,
while at stage |1, a set of such parald fronts forms a
typical phase autowave with a wavelength A = 5 x
103 m, avelocity |V, | = 4.2 x 10> m/s, and frequency
f=V, /A =8.4 x 103 Hz. Thus, theinitial site of plastic
flow, i.e., the boundary between the strained and
unstrained parts of the medium, generates the wave
processes in the same manner as described in [12].

The sequence in which the secondary strain sites
(local-strain zones) appear at stage | is of the most
interest. It is known that, as twinning deformation
occurs in one crystallographic system, the axis of ten-

sion precesses toward the [111] pole, thus causing
compound twinning. Thisistrueif the strain isuniform
over the sample. For a localized strain, the conditions
required are met near the primary front, which slows
down in this case. After the conjugate twinning system
has come into action, an additional front arises, the

stretching axis [355] restoresits initial direction, and
the primary front velocity increases (Fig. 3). Additional
sites develop in the prestrained zone and lead to mate-
rial hardening. On the other hand, one may infer that
the state of the medium changes drastically after the
LUders strain front has passed across it. Within the con-
cept of an active medium where autowave processes are
possible, this means a change in the type of an active
medium [13]; for example, a medium that is bistable
during the propagation of a single plasticity site
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becomes self-oscillating at the stage of linear harden-
ing.

CONCLUSION

Thus, thelocalization of plastic flow obeys much the
same laws when plastic deformation is due to twinning
and dislocation glide. The boundaries between the
strained and unstrained parts are of key importance,
since they may act as sources of autowaves of different
types. It is worth noting that a similar situation with a
pulse propagating in an inhomogeneous active medium
was numerically studied in[14]. The solutions obtained
in [14] relate the local characteristics of the active
medium to the parameters of autowave processes,
which are very closeto the results of this study.
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Abstract—Thermal hysteresis of the reflectivity of vanadium dioxide films observed upon the metal—semicon-
ductor phase transition is studied. The major hysteresis loop is assumed to form when the phase equilibrium
temperature in film grains and the grain size vary and correlate with each other. Within the suggested concept
of hysteresisloop formation, it isdemonstrated that the major |oop may be asymmetric, i.e., broadened (shifted)
toward lower temperatures. Unlike hysteresis branches for VO, bulk single crystal, those for VO, films are
extended along the temperature axis and may exhibit a step if the grain size distribution has several maxima.
Thevalidity of the concept is verified experimentally. It is also shown that atomic force microscopy (AFM) data
for the grain size distribution can serve to determine the distribution parameters from the phase equilibrium
temperatures without constructing a complete set of minor hysteresis loops, as was required before. © 2002

MAIK “ Nauka/Interperiodica” .

Vanadium dioxide, a material with metal—semicon-
ductor phase transition, continuesto attract widespread
attention as a material for film interferometers used as
areversible holographic medium, optical limiters, tem-
perature-sensitive elements, bolometers, etc. [1-3]. The
deviceslisted exploit thefact that either the optical con-
stants or the conductivity of vanadium dioxide changes
stepwise as a result of the phase transition [4]. For
example, a jump of optical constants of a VO, film
placed between the mirrors of a film interferometer
changes the optical path difference of the beams
reflected from the mirrors, causing ajump in the reflec-
tivity of the interferometer. The presence of thermal
hysteresis allows for optical data storage. It is known
[5] that optical memory devices operate reliably if the
thermal hysteresis loop of the interferometer reflectiv-
ity is wide (15-20°C) and its branches are extended
along the temperature axis as little as possible (4-6°C).
The latter condition is necessary to provide the maxi-
mum modulation depth of the sensing radiation. In con-
trast, optical limitersrequirethethermal hysteresisloop
to be as narrow as possible (3-5°C) with its branches
extended along the temperature axis (25-35°C). Thisis
necessary for the limitersto have a sufficient amount of
linear negative feedback [2]. Asfollowsfrom the afore-
said, the development of methods for controlling the
parameters of the hysteresis loop during VO, film syn-
thesisis of great practical interest. To do this, it is nec-
essary to establish a correlation between the structure

and physical properties of aVO, film used in the inter-
ferometer.

It is noteworthy that the thermal hysteresis loop of
the reflection coefficient in an interferometer based on
aVo, film is several times wider than that in an inter-
ferometer using aVVO, single crystal (15 against 2°C).
Moreover, it has extended (20-30°C) branches and is
shifted toward lower temperatures (by 10-20°C). Rea-
sonsfor such adifference have been discussedin [6]. In
the work cited, hysteresis phenomena during the phase
transition were treated in terms of the phase equilib-
rium temperature, T, and coercive temperature distri-
butions over microareas of the material. These distribu-
tions show to what extent one should recede from T
for the phase transition to occur intensely. According to
[7], such microareas are film grains, and the deviation
AT from the phase equilibrium temperature T, at which
agrain experiences the phase transition depends on the
grain size [8]. The elementary hysteresis loop for each
grainis“vertical” with respect to the temperature axis.
This meansthat the reason for the differencein the hys-
teresis loop parameters for VO, films and bulk single
crystals is the presence of alarge number of grains of
various sizein VO, films. The grain size distribution in
a 1080-A-thick VO, film grown on a single crystal
rutile substrate is visualized with the AFM image
shownin Fig. 1. Notethat the grains generally have not
only different sizes but also different degrees of oxygen
nonstoichiometry.
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The am of this work was to elucidate factors
responsible for the shape of the VO, hysteresis loop
during VO, film synthesis. Preliminary studies have
shown that our synthesis techniques cause a substantial
spread in grain sizes and oxygen nonstoichiometry.
This should be taken into account in treating experi-
mental hysteresis data.

Let us consider the effect of a spread in the grain
sizes more closely. We assume that each grain of the
film has its own elementary hysteresis loop and each
elementary loop is located normally to the temperature
axis. Thelatter meansthat, at the transition temperature
T* for a specific grain, a nucleus of the metal phase
grows through the semiconductor grain with the acous-
tic velocity [8]. A spread in the grain sizes causes a
spread in the temperatures T* of the transition to the
metallic state (in the range from several degreesto sev-
eral tens of degrees). The same is true for the tempera-
tures T** of the reverse transition to the semiconduct-
ing state (generally they vary in another range). The
temperature spread is explained as follows. When the
film is heated, the growth of a metallic nucleus in the
semiconducting phase is stable if the temperature dif-
fers from the phase equilibrium temperature T, by a
value of AT, inversely proportional to the square root of
the grain diameter (because of the martensitic character
of thetransition[7]). Inthereversetransition, the stable
growth of a semiconducting nucleus in the metallic
phase takes place, as before, only if there is atempera-
turedifference AT_that also variesininverse proportion
with the squareroot of the grain diameter. In the general
case, the proportionality coefficientsin the dependence
of the temperature deviation on the grain diameter are
different for cooling and heating. Since the major hys-
teresis loop is the mere sum of the elementary loops of
the grains, the distribution of the temperatures T* and
T** in awideinterval widensthe branches of the mgjor
loop of the film along the temperature axis compared
with the vertically running branches of the major loop
for bulk single-crystal VO,. In addition, since the devi-
ations AT, and AT_from T, for the film amount to sev-
eral tens of degrees (against one or two degrees for the
single crystal), the loop for the film is aso much wider
than for the single crystal.

Consider the formation of the magjor hysteresisloop
for the film on aquantitative basis, i.e., by summing the
elementary loops for grains. First, we assume that sin-
gle-crystal grains of VO, differ in size rather than in
oxygen nonstoichiometry. In this case, the elementary
loops have equal positions on the temperature axis,
T, = T., and the grain size distribution can be postu-
lated or found from AFM imagesin the form of afunc-
tion p(d) (Fig. 1b). The histogram p(d) makes it possi-
bleto find the dependence of the number of grainsN vs.
the deviation AT from T, N(AT), and determine the
parameters of this function.

TECHNICAL PHYSICS Vol. 47 No.9 2002
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Fig. 1. (8 AFM image of the surface of the 1080-A-thick
vanadium dioxide film synthesized by laser ablation on a
single-crystal rutile substrate, (b) distribution of grains of
this film over sizes, and (c) normalized hysteresis loop for
the reflectivity of a VO, film—based Fabry—Perot interfer-
ometer. In Fig. 1c: filled circles, data points; dashed line,
calculation including only the grain size distribution; and
solid curve, calculation including the distribution of grains
over sizes and phase equilibrium temperatures. Experiment
and calculation agree well if the grain distribution over
phase equilibrium temperatures is Gaussian, the distribu-
tion maximum lies at 28.5°C, and the half-width of the dis-
tribution is 24°C.
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The histogram in Fig. 1b depicts the simplest grain
size distribution. Dependences N(AT,) and N(AT))
derived from such a distribution can be approximated
by the Gaussian law: N(AT,) = A,exp{{(V/2)[(AT, —
Tra)/AT, ] and N(AT) = Aexp{—(V2[(AT. —
Trad)/AT,]%}, Where N(AT) isthe number of grainswith
a given temperature deviation. The meaning of the
other parameters is clear from the definition of the
Gaussian function.

To construct a mathematical model of the major
hysteresis loop, it is necessary to know the grain size
distributions N*(T*) and N**(T**), where T* and T**
are the temperatures of the semiconductor—-metal and
metal—semiconductor transitions. These functions can-
not be found analytically, since any phase transitions
beyond the hysteresis loop are absent. For the heating
and cooling branches of the major loop, we have,
respectively,

N(AT,) = N(T*=T.) = N*(T*)
o for

—0<T*<T,,

_D ) 2 (1a)
=0Aexp[(-1/2)(T* = Tra) /(ATy.) ]
for T.<T* <+,
N(AT.) = N(T,—=T**) = N**(T**)
BA_GXIO[(—UZ)(T* ~ Trna) /(AT 1)’] (1b)

=for —oo<T** <T,,
O
M0 for T.<T** <+oo,

where T, is the phase equilibrium temperature, T, =
Te+ AT a0 Toae = To—AT e @nd A, and A_are con-
stants.

For the histogram in Fig. 1b, the heating and cooling
branches of the major loop of the transition-induced
jump AR in the reflectivity are expressed by the inte-
grals

T

AR,(T) DJ’ N*(T*)(D, + T* = T.) °dT*

) (22)
= [N*(T#)(D, + T+ =T dT*,
TC

T

AR(T) DJ' N**(T**)(D_+ TC—T**)_edT**. (2b)

Note that integration in (2a) is over temperatures
T* =T, + AT, of thetransition to the metallic state. The
function N(T* —T,) = N*(T*) representsthe distribution
of grains over the temperatures T* of their transition to

KLIMOV et al.

the metallic state. Thisfunction hasamaximum T, =
T. + AT, Theadditional weighting factors (D + T* —
T.)®, where D = const, take into account the fact that
the contribution of grains of a given size to the major
loop is proportional to the total volume fraction of the
new (metallic) phaseinside the old one. In other words,
this contribution depends not only on the number of
grains of agiven size but also on the metalic grain vol-
ume (i.e., on its mean diameter cubed). At the same
time, the temperature deviations AT, and AT_ from the
phase equilibrium temperature T, vary inversely with
the square root of the grain diameter [7]. When com-
bined, these two dependences give the factors (D, +
T* —T)%and (D_+ T, —T**)5.

In (2b) (the cooling branch of the major loop), inte-
gration is over temperatures T** = T, — AT_ of the
reverse phase transition to the semiconducting state.
The function N(T, — T**) = N**(T**) has a maximum

Tra = T. — AT 4 Which is shifted with respect to
T by themajor loop width. Here, one more assump-
tion is made, namely, that the deviations AT, and AT_
upon heating and cooling are the same for al grains.

This makes elementary loops symmetric about the
phase equilibrium temperature T...

Both the cooling and heating branches of the hyster-
esis loop thus constructed have inclined temperature-
dependent portions and also horizontal temperature-
independent segments of length that is nearly equal to
the half-width of the widest elementary loop (Fig. 1c,
dashed ling). The loop fits the experimental data well
(Fig. 1c, data points) as regards its width and position
on the temperature axis. However, the analytical and
experimental shapes of the loop disagree. The discrep-
ancy can be diminished by including the grain distribu-
tion over phase equilibrium temperatures T, as men-
tioned above.

In fact, grains in the film are usually nonstoichio-
metric to avariable extent in oxygen, which means that
elementary loops are distributed not only over widths
but also over phase equilibrium temperatures (T # T,).
Oxygen nonstoichiometry stems from the fact that the
equilibrium oxygen pressure over a grain depends on
its radius of curvature. Because of this, the oxygen
vacancy concentration varies from grain to grain in
films synthesized. Oxygen vacancies behave like
donors [9], causing a spread in phase equilibrium tem-
peratures: the higher the free carrier concentration due
to donors in a grain, the lower these temperatures. It
should be noted that the dependence of the phase tran-
sition temperature on the free carrier concentrationisa
basic property of an electronic phase transition, which
the metal—semiconductor transition in vanadium diox-
ideis, in our opinion [10]. Mathematically, a spread in
temperatures T, can be included by introducing an
additional (for example, Gaussian) grain distribution
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over phase equilibrium temperatures under the integral
sign:
T-T

AR(T.) O I{ [N (T*)(D,+ T —Tc)“SdT*} )

x exp[ (—1/2)(To = Toma) /(AT d T,
AR(To) DI[I N**(T**)(D_+TC_T**)—edT**}

—00 ——00

x exp[(=1/2) (Te = Temad) /(AT dT,..

Here, the second integration is over phase equilibrium
temperatures T.. The meaning of the constants T,
and AT, is obvious from the definition of the Gaussian
function.

The grain distribution over T, causes a fundamental
changein the major loop shape: inclined portions of the
branches appear in place of the horizontal segments.
The branches of the major loop constructed with for-
mulas (3) are shown in Fig. 1c. This loop is consistent
with experimental data for the distribution parameters
indicated in the caption to Fig. 1.

A more complex grain size distribution is exempli-
fied in Fig. 2a, which is the AFM image of a (480 +
80)-A-thick VO, film synthesized on a quartz substrate
by laser ablation, and in Fig. 2b, where the grain size
distribution histogram is shown. As follows from the
histogram, the distribution has at least two distinct
peaks, namely, this film contains mostly 35- and
110-nm grains. This should be taken into consideration
which constructing the major hysteresisloop. Figure 2c
shows a hysteresis |oop with step branches that is con-
structed according to (1) within our simple model,
which ignores the spread in phase equilibrium temper-
atures between grains in this case. By comparing this
analytical loop with that found experimentally by using
formulas (3), one can extract information on the grain
distribution over phase equilibrium temperatures, i.e.,
grain distribution over oxygen nonstoichiometry.

Preliminary conclusions are as follows. The simple
model (grain distribution over sizes and oxygen nons-
toichiometry) based on the findings in [6] alows us to
explain why the major hysteresis loop of the reflection
coefficient jump AR in the film is wider and shifts
toward lower temperatures compared with that for bulk
single-crystal VO, and why it has inclined portions
instead of horizontal and vertical segments observed in
the single crystals. At the same time, despite the asym-
metry of its branches, the major loop remains symmet-
rical with the binary axis at the point O (Fig. 1c).

However, in many experiments [11], the hysteresis
loop of the reflection coefficient for avanadium dioxide
interferometer was found to be asymmetric; that is, the
heating and cooling branches ran in a different manner.
Figure 3ashowsthe asymmetric loop of ARfor aninter-

(3b)
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Fig. 2. (8) AFM image of the surface of the 480-A-thick
vanadium dioxide film synthesized by laser ablation on a
single-crystal quartz substrate, (b) histogram of grain distri-
bution over sizes, and (c) normalized therma hysteresis
loop (1) for the reflectivity of a VO, film-based Fabry—
Perot interferometer constructed from the histogram in
Fig. 2b onthe assumption that aspread in phase equilibrium
temperatures between grains is absent and (2) for the con-
ductivity of this film. The histogram has two distinct max-
ima, as a result of which the theoretical and experimental
hysteresis branches have a step form.
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Fig. 3. (a) Experimental asymmetric hysteresisloop for the
reflection coefficient and (b) the construction of the correla-
tion asymmetry for thisloop. In Fig. 3b, broken line 1 (1a,
heating; 1b, cooling) depicts the summation of several sets
of elementary loops whose width AT is alinear function of
the phase equilibrium temperature T, (the base of the rect-
angles). The heights of the rectangles are proportional to the
number of loops (defined by the Gaussian distribution) in a
set. Curves 2a and 2b for heating and cooling are found
from formulas (3a) and (3b), respectively, on the assump-
tion that AT, = AT_= AT arelinear functions of T.. Arrows
indicate the temperature change direction.

ferometer with a 680-A-thick vanadium dioxide film
synthesized on a pyroceramic (Sitall) substrate. The
film was synthesized by the electron-beam evaporation
of metallic vanadium with subseguent annealing in
oxygen under heavily nonequilibrium (oxygen-defi-
cient) conditions.

Let us discuss various models allowing for the
asymmetry of the magjor loop in thisfilm.

The major loop constructed by summing elementary
loops becomes asymmetric if the grain distributions
over temperatures T* of the semiconductor—metal tran-
sition (heating branch) and over temperatures T** of
the reverse transition (cooling branch) differ. A reason
for such a difference may be a correlation between the
grain size and oxygen nonstoichiometry. In other
words, a correlation model suggests that a grain of a
given size has a certain concentration of free carriers
supplied by donors and thus a certain phase equilibrium
temperature. Such an idea seems to be quite natural.
Indeed, when VO, films are synthesized under condi-

KLIMOV et al.

tions of oxygen deficiency, it is reasonable to suggest
that fine grains have a higher concentration of oxygen
vacancies (which behave like donors) and thus a lower
T, than coarse crystalites. The reason is that the equi-
librium vapor pressure over a curved (liquid or solid)
surface is aways higher than over a flat surface; the
larger the curvature, the larger the difference [12]. This
means that oxygen atoms leave a curved surface more
readily than aflat one, which leads to a higher satura-
tion vapor pressure (recall that if we formally let the
atom extraction energy approach infinity, the equilib-
rium vapor pressure will tend to zero [13]). Conse-
guently, under oxygen-deficient conditions for VO,
film synthesis, oxygen vacancieswill arise primarily in
grains with a low atom detachment energy (which
require an increased vapor pressure to provide the sto-
ichiometric composition), i.e., in fine grains (with the
highest curvature). These grains, which have a lower
phase equilibrium temperature, make a significant con-
tribution to the low-temperature part of the magjor hys-
teresisloop. In fact, asmall atom detachment energy in
fine grainsrai sesthe probability of oxygen vacancy for-
mation in them compared with coarse crystallites. The
presence of the vacancies |owers the phase equilibrium
temperature. 1t should be noted that the VO, film syn-
thesis techniques applied in thiswork include the stage
of oxidation of vanadium grains deposited on the sub-
strate (resistive, electron-beam, and magnetron sputter-
ing) or the oxidation of vanadium lower oxides (in laser
sputtering) [14]. A correlation between grain sizes and
degrees of nonstoichiometry ratios appears precisely at
this stage.

In view of this correlation, formulas (3a) and (3b)
should be integrated over elementary loops so that each
successive term of the integral sum, which corresponds
to a set of coarser grains with a higher phase equilib-
rium temperature, takes a temperature T* = T, +
AT, (T,) of the semiconductor—metal transition that dif-
fers dightly from that for the preceding term (Fig. 3b,
broken line 1a). This makes the heating branch of the
major |oop steeper than the cooling branch. Anincrease
in the temperature T, turns out to be strongly compen-
sated for by adecrease in the deviation AT, from T.. As
was indicated, this decreaseis dueto the correlation. At
the same time, for each successive term of the integral
sum, which corresponds to a set of coarser grains, the
temperature T** = T, — AT_(T,) of the reverse metal—
semiconductor transition shifts strongly toward higher
temperatures. Such asignificant shift is associated with
both a decrease in the deviation AT_ from T, and an
increasein T, (Fig. 3b, broken line 1b). Because of this,
the heating branch runs more smoothly than the cooling
branch. When combined, both effects make the major
loop asymmetric.

Mathematically, an expression for both branches of
an asymmetric hysteresis loop can be derived as fol-
lows. Above it was assumed that the deviations AT, and
AT_from T, for agiven grain are the same: AT, = AT_=
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AT. Then, solving expressions T* = T, + AT, (T,) and
T** = T, — AT(T,) for T* and T**, respectively, and
changing the variables in integrals (3a) and (3b), we
reduce double integrals to repeated integrals. In this
case, the integrands in formulas (3a) and (3b), which
describe the heating and cooling branches, respectively,
are different, although AT, = AT_. As a result, the
shapes of the heating, AR,(T), and cooling, AR(T),
branches of the major loop will be different; that is, the
loop will be asymmetric.

Curves 2a and 2b in Fig. 3b are the branches of an
asymmetric major loop constructed with formulas (3a)
and (3b), respectively, with the proviso that AT, and
AT_ are linear functions of T.. A specific relationship
between the width of an elementary loop and the phase
equilibrium temperature for a grain is specified from
physical considerations.

Comparing experimental asymmetric loops with
those constructed by the approach suggested may pro-
vide important physical information about the mecha-
nisms behind the action of intense particle fluxes, pen-
etrating radiation, thermal or laser annealing, etc. on
VO, films. These effects may disturb the stoichiometry
ratio in the films and thus cause the asymmetry of the
major hysteresis loop. These phenomena will be the
subject of further investigation.

Thus, based on model assumptions (most of which
were supported by direct AFM studies), we proposed a
scheme for the formation of the major hysteresis loop
of the reflection coefficient in aVO, film interferome-
ter. In particular, it is assumed that a single new-phase
nucleus originates in a grain. Then, it spontaneously
grows and occupies the grain completely when the
phase transition temperature is reached. Another
assumption is that the nucleus grows in the grain at a
fixed temperature, hence, the vertical run of elementary
loops of the hysteresis branches. Finally, the most
important feature of our approach is that a VO, film,
unlike bulk single-crystal VO,, consists of many grains,
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which aredistributed over sizes and oxygen nonstoichi-
ometry.
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Abstract—Optical damage of pure transparent dielectrics in laser fields is considered. An elasticity theory
problem concerning mechanical stressesthat appear in the crystal lattice subjected to arbitrary spherically sym-
metric forces with a specified density is stated. A mathematically rigorous general solution to this problem is
found, and arising boundary conditions are studied. A model of volume forces due to the action of hot nonequi-
librium electrons on the lattice is described. In general, the early approximate results [1] are confirmed. The
mechanism behind radiation-induced mechanical fracture of dielectrics proposed in this work is found to be
adequate. Ways for the further study of this nonthermal inertia-free mechanism of optical damage, which hasa
purely mechanical nature, are discussed. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Optical damage to pure transparent dielectrics
induced by focused laser radiation has been studied
over many years. Associated results are embodied in
many reviews and origina papers. One of the latest
reviews on this subject reports preliminary results of
investigating a new nonthermal mechanism of optical
damage [1].

Briefly, the damage mechanism [1] isasfollows. An
intense laser radiation causes the violent ionization of
the material in the focal plane. As aresult, a spatially
inhomogeneous cloud of hot nonequilibrium electrons
appears. The cloud swells the crystal, causing it to be
damaged.

A more consistent description of the damage should
take into account the momentum and energy fluxes
transported by electrons from the center of the focal
spot toward its periphery. When scattered by impurities
or lattice imperfections, such fluxes produce volume
forces, which strain thelattice. The strainsarerelated to
the mechanical stress tensor. The sample failswhen the
stresses exceed a threshold value (this is the natural
way of mechanical fracture of a dielectric in a laser
field). This process includes the formation of aprimary
crack, which is a macroinhomogeneity of the crystal.
Electron scattering by the crack should be considered
as the onset of the feedback mechanism, making the
fracture process avalanche-like.

In this work, the stages of the primary crack forma-
tion will be given a detailed mathematical description.

It should be noted that fracture processes depend on
experimental conditions, particularly, on radiation
focusing. The distribution of the electron cloud param-
eters and the related momentum and energy fluxes can
be considered as spherically symmetric if a short-focus

lens is used for focusing. This case will be studied
below. For along-focus lens, acylindrically symmetric
model is more appropriate. It would be of interest to
compare theoretical distinctions following from spher-
ical and cylindrical modelswith the differencesin asso-
ciated experimental data. In particular, the shapes of the
primary crack may differ.

For the spherically symmetric model, it is necessary
to consider the radial stress tensor o,, = 0,,(r) and two
coincident tangential tensors Ogg = Ogg(r) = Ty (r). IN
what follows, it isshown that at certain distancesr from
the focal spot center, a,, > 0 (i.e., the lattice stretches),
while in other regions, the lattice is compressed (o,, <
0). Under the conditions of our problem, the stresses
Ogg(r) are always positive and stretch spherically sym-
metric layers of the sample. The sign of agg(r) issignif-
icant for the fracture of crystalline samples, since ten-
sile strengths are approximately one order of magni-
tude lower than compression strengths.

Elaborating upon work [1], we will consistently
state the physical problemin order to determinerelative
displacements and stress tensors. An equation for rela-
tive displacements and mechanical stresses will be
solved in terms of the elasticity theory [2]. We will
show that the problem can be solved exactly in the gen-
eral form without invoking approximations used in [1].
A model of density of volumeforces F(r) exerted by the
electronic subsystem on the lattice in the spherically
symmetric approximation will be discussed, and for-
mulas enabling the numerical evaluation of arising
mechanical stresses will be derived.

A solution will be found for the case of electron
scattering by residual impurities in a pure transparent
dielectric; however, the results will also be applicable
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to other scattering modes and spherically symmetric
forces F(r).

ELASTICITY EQUATION
AND ITS SOLUTION

For a homogeneous elastic medium in the spherical
coordinate system, one can introduce the relative dis-
placements u = u(r) of pointsinthe medium, strain ten-
SOr'S Uy = Up(I), Ugg = Ugg(r), and Uyg = Uy (1) (y virtue
of symmetry, Ugg = Uyy), @ Well as mechanical stress
tensors oy, = 0y(r), Ogp = Tpe(r), aNd Ty = O (1) (T =
04¢)- Once forces acting on the medium are spherically
symmetric and have adensity F(r), thefunction u=u(r)
must obey the equation from the elasticity theory (for
details, see [2])

diid, > 0
G g U0 = AR, )

where

_ (1+0)(1-20)
~ E(1-0) &)

is a constant factor depending on the modulus of elas-
ticity E and Poisson’sratio 0. Recall that o usually var-
iesfrom 0 to 0.5.

It should be emphasized that Eq. (1) is not the
Laplace equation and contains the product r2u(r),
unlike the latter. Therefore, singularities of the solution
at the point r = 0 may appear. The point r = 0 deserves
special mathematical study, although physically it is of
no interest since the smallest values of the coordinate r
that are physically justified depend on the lattice con-
stant, Debye length, electron free path, and probably on
other factors.

Integrating Eq. (1) twice yields its solution:

A

_cr+C A
u(r) = Clr+r2 r2J'{r J'F(r)dr} dr. 3

The quantities C, and C, are arbitrary constants of
integration. It is important that one can add additional
constants S, and S; to the integralsin (3). The values of
S, and S, are taken for convenience (it is easy to check
that S, and S, are merely added to C, and C, and have
no influence on the form of the solution). With the con-
stants S; and S,, we can rearrange solution (3). To do
this, we take into account that, according to the proper-
ties of integrals,

X

If(X)dX = J’f(x)dx+ const, (4)
0

where const is defined by the lower limit of integral (4).
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In view of this property and letting ¢, and ¢, stand
for combinations of the constantsC,, C,, S;, and S,, we
write solution (3) in the form

u(r) = c1r+c—l—ézIEr2IF(r)drEdr. )
rrioq O

The introduction of the definite integrals makes it
possible to numerically evaluate the values sought and
is of considerable help in studying the behavior of the
solution in the vicinity of zero.

Integrating the outer integral in (5) by partsyields

r r 3I’ r

IHZJ’F(r)drEdr = r—IF(r)dr—lJ’rsF(r)dr. ©)
3 3

0|:| 0 O 0 0

It turns out that the rearrangement performed sim-
plifies appreciably the mathematical solution of the
problem and allows for the exact solution for an arbi-
trary function F(r).

Taking into account transformation (3), we can
write the solution to (1) in the form

u(n) = e+ E-FL0 S0,

where

1,(r) = IF(r)dr, 1(r) = J’rsF(r)dr. (8)
0 0

So far, no assumptions regarding the function F(r)
have been made, except that it must be spherically sym-
metric. Now, it isclear that it must be integrable so that
integrals (8) be meaningful at any r. Any “physical”
function meets this requirement.

BOUNDARY CONDITIONS

Boundary conditions for the problem under consid-
eration must reflect two obvious physical requirements.
First, the solution at zero should be either limited,
u(0) <0, or zero:

u(0) = limu(r) = 0. 9)

The boundedness of the solution at zero would be a
less strict requirement than condition (9). It might
appear if condition (9) could not be met. Indeed, under
certain conditions, requirement (9) is unsatisfiable;
hence, u(r) = uy > 0. Thisresult would mean that a vac-
uum cavity surrounded by a compressed high-density
material forms at the center of the focal spot. The
appearance of such a cavity in the focal region is an
interesting physical phenomenon, which deserves fur-
ther investigation.

The second boundary condition stems from the rea-
sonable assumption that the radial component of the
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mechanical stressmust vanish at apoint at infinity or on
the free surface of the sample:
0, () = limao,(r) = 0. (10)
r - o

Boundary conditions (9) and (10) alow the
unknown constants ¢, and ¢, to be determined.

Note that in the limit r — 0, we have for I,(r) and
I5(r) in (7):

liml,(r) =0, limly(r) = 0. (12)
r-o0 r-o0

The vanishing of the second limit (11) implies that
the limit of solution (7) itself at r — 0 hasthe form of
0/0 uncertainty. Therefore, to verify the fulfillment of
boundary condition (9), the L'Hospital rule should be
applied (arather rare case for the solution of problems
of mathematical physics). Separately differentiating the
denominator r, and numerator |,(r) yields

I r’F(r)dr = 0.

0r-20

. _A. 1d
!I%u(r) - 6“mrdr

(12)
Thus, the first boundary condition can be met only
by using the L' Hospital rule with c, = 0.

MECHANICAL STRESS TENSORS
AND THE SECOND BOUNDARY CONDITION

The detailed derivation of formulas relating relative
displacementswith strain tensors and mechanical stress
tensors was carried out in [2]. In the sphericaly sym-
metric system,

u(r)

Uelr) = B, () = uyy() = X0 ag)
and
0(r) = DI(L-0)u, +200o()],  (14)
Ooo(r) = Dluge(r) +20,,(1)], (15
where
; (16

D= Tvoyi=20)

For our problem, formulas (13)—16) enable one to
find the mechanical stresstensors:

0, (r) = D[ (1+0)c,~ AL+ 0)L4(1)
oA a7
-S5a-20)10) |
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0ue(r) = D[ (1+0)c,~3A(L+0)14(1)
. (19
+3—r3(1—2o)|2(r)]

Let the second boundary condition be fulfilled.
Assuming that the integral 1,(r) is meaningful, we find
that

IimlfrsF(r)dr - 0. (19)
0

r-.Or3

Then, for the second boundary condition to be fulfilled,
the equality

1 = ZAI(w) (20)
must be valid. Without constant (20), the tangential
mechanical stresses also vanish at infinity (0gg() =
Oge(0) = 0), which seems to be reasonable from the
physical point of view and can serve as an argument in
favor of the validity of the solution obtained.

Thus, once boundary conditions (9) and (10) have
been satisfied, we find

0ri(r) = SAD(1+0)[1(e) ~1(r)]

(21)
—2?—r?(1—20)|2(r),
Ga(r) = ZAD(L+0)[14() = 1(r)]
(22

+¥(1—20)I2(r).

Formulas (21) and (22) are derived in general form
for an arbitrary density of forces F(r) for thefirst time.

It can be shown that tensor o,,(r) (21) may change
sign asthe coordinate of the point of observation isvar-
ied. In other words, both stretched and compressed
regions are present in the focal volume. Tensor age(r)
(22) is however aways positive; i.e., the tangential
stresses always stretch the sample. Thisisin agreement
with the original concept of the mechanism behind the
h-layer breakdown [1, 3]. It seemslikely that these ten-
sile stresses are largely responsible for the damage of
the crystal in the region of laser radiation focusing.
Note that the stresses specified are unrelated to the lat-
tice heating. They appear instantaneously immediately
after the appearance of the hot electron cloud and adia-
batically follow changesin the cloud parameters.

The method used for solving the elasticity equation
casts some doubt on the existence of extreme points
discovered in the early solution to the problem found
with the mean-value theorem [1]. Taking into account
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(22) and writing the extremum condition for the func-
tion agg(r) in the form

doge(r) _
we come to the relationship equivalent to (23):
o 4 _
[,(r) + 1_Gr F(r) = 0. (24)

Equation (24) applies to any model of forces F(r).
However, all the components of this equation are non-
negative. This means that the only extreme point is the
center of thefocal spot. We have already mentioned that
the study of this center is physically incorrect. Another
“suspicious’ point is the inflection of the function
Ogg(r), as was mentioned earlier [3]. We will consider
mechanical stresses near this point (here, the stresses
aredightly different from theformal results obtained at
r = 0). The extrema of the radial stresses a,,(r) may be
of some significance. However, these are most probably
the points of minimum, rather than maximum, and so
influence the total mechanical stress only dlightly. The
in-depth study of this problem is possible only after the
model of forces F(r) has been strictly defined.

DENSITY OF VOLUME FORCES INDUCED
BY NONEQUILIBRIUM ELECTRONS

In[1], amodel of density of forces F(r) wastouched
upon to aminor extent. Here, we consider this point in
detail. Two approaches to the description of these
forces can be distinguished.

Thefirst, most consistent approach implies the solu-
tion of nonegquilibrium quantum kinetic equations
including all effects significant for the problem. These
are equations like those used in [4, 5] taking into
account the interaction of electrons with intense light
and scattering centers (phonons and impurities). They
should be supplemented by similar equations for other
(phonon and impurity) crystal subsystems. When com-
bined, these kinetic equations must take into account
the spatial inhomogeneity of al distribution functions.
Then, the desired force F(r) can be found from the col-
lison integral

d

'Jcol = d_t EDD (25)

The available apparatus of quantum statistics
enables us to write expression (25) in explicit form.
However, the mathematical solution of the problem that
makes it possible to find a specific form of F(r) is till
more complicated than the solution of the equationsin
[4, 5]. Therefore, another, less strict method to deter-
mine F(r) should be looked for.

The second approach assumes [1] that some quasi-
steady-state distribution of hot electrons, n, = ny(r), and
some distribution of their “temperatures,” T, = T(r),
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have aready been found. Since Bloch electrons in a
perfect crystal do not interact with the lattice, lattice
imperfections alone should be taken into account (let
them be residual impurities uniformly distributed over
the crystal). When scattered by the imperfections, elec-
trons transfer a certain momentum to the lattice. This
momentum per unit volume and unit time equals the
desired value of F(r).

Mathematically, the aforesaid takes the form
F(r) = Ipr(p, r)w(p)dp,

where pg. isthe momentum transferred to the lattice per
one quantum-mechanical act of scattering and w(p) is
the probability of anonequilibrium electron being scat-
tered by a given lattice imperfection per unit time. The
distribution function of nonequilibrium electrons, f(p,
r), isassumed to be normalized to their density.

For our purposes, we only need to consider the
spherically symmetric electron distribution and take
into account that only one third of electrons moving in
the radial direction transfers the momentum pg. to the
lattice. Then, instead of (26), we have

F(r) = 3¢ [Iplf(p. D )w(p)dp.

In view of the relation between the scattering prob-
ability and thetotal scattering cross section o; N; (where
0, isthe cross section of €lectron scattering by alattice
imperfection),

(26)

(27)

o;N; o;N;

w(p) = Vv =~ P (28)

where N; is the total number of scattering centers, V is
the crystal volume, N,/V = n, is the density of the cen-
ters, and misthe mass of an electron, we arrive at

_or op’
F(r) = 3r0ini.[2mf(p,r)dp.

Here, we took into consideration that the cross section
0; depends on the electron momentum only slightly.

The integral in (29) is the average electron kinetic

energy
p°\ _ 3
<§> = éTe(r)ne(r)v

where the “temperature” T, has the dimension of
energy.
Eventually, the formulafor the radial component of

the force density (other components are absent) takes
the form

(29)

(30)

F(r) = oimine(r)Te(r). (31)

Such an expression for the force density wasused in
[1], where it was derived somewhat differently, i.e.,
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through the effective electron gas pressure on lattice
imperfections with the scattering cross-section o;.

ESTIMATES AND CONCLUSIONS

To estimate whether the mechanical stresses ggg can
readily lead to the fracture of the sample subjected to a
focused laser radiation, let ustake the set of parameters
used in [1] and consider the natura fracture criterion
Ogg > Omax (Where g, isthetensile strength). Asin[1],
we assume that

O r20
ne(r) = neoexpmr—% (32)
O a
and
O r0
Te(r) = TeOeXpD_—%v (33)
oa

where ny, and T, are the values typical of the center of
the focal spot and a is the parameter of the Gaussian
distribution of the laser radiation intensity over the
focal spot.

Substituting expressions (32) and (33) into formula
(22) and setting b = a/ /2, we get

S/ - 0)[1 CD%}

Oee(r) 6(1 o.)

. - (34)
b
+ F(l—o){ %1”’— eXPD—b%}

In the framework of our model, result (34) has been
obtained without any mathematical approximations
and is exact in this sense.

L et us estimate tangential mechanical stress (34) by
using the same set of parameters as before [1], i.e., by
taking 0; = 10 cm?, n; — 10 cm3, 0 = 0.25, Ny = 3 %
10?2 cm=3, Tn=05eV =8x 102 erg, and a=0.1 cm.
Then, at the inflection point, r, = 0.8a and G4 = 1.1 X
10° dyn/cm?, which is roughly 60% higher than in [1].
With regard for the great difference between the meth-
ods of calculation, the agreement seems to be fairly
good.

The value found exceeds typical tensile strengths.
Therefore, the mechanism proposed may be responsi-

STREKALOV

ble for the optica damage of pure transparent dielec-
trics.

Thus, we come to the following conclusions.

(1) The problem of elastic stressesin the spherically
symmetric focal region of a pure transparent dielectric
exposed to intense laser radiation is stated and exactly
solved.

(2) Themodel for the density of forces acting on the
crystal lattice due to a spatially nonuniform ensemble
of nonequilibrium electrons laser-heated to high “tem-
peratures’ is refined and supplemented. These forces
are by no meansrelated to the | attice heating or thermal
stresses in the | attice.

(3) The preliminary estimates [1], which show that
the mechanism proposed does provide the optical dam-
age of transparent dielectrics, are confirmed with a suf-
ficiently high accuracy.

(4) The validity of using the natura criterion for
optical damage, Ogg = O, 1S CONfirmed.

(5) The role of electron scattering by phonons, as
well as on the sample surface, still remainsunclear. The
solution of the problem in the cylindrical coordinate
system and a comparison of theoretical results with
data derived with specially designed experiments
where short-focus and long-focus lenses are used for
radiation focusing seem to be of great importance.

(6) The mechanism considered is inertia-free. The
volume forces F(r) appear simultaneously with the
electron cloud generation; therefore, this damage
mechanism can be expected to be valid under the action
of femtosecond laser pulses as well.
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Abstract—The effect of optical nonuniformities on the end of a fiber on optical radiation input is analyzed.
Simple relationships for angular characteristics and input efficiency are derived. The analytic expressions are
compared with experimental data. © 2002 MAIK * Nauka/Interperiodica” .

INTRODUCTION

The quality of fiber end faces has an effect on the
parameters of fiber joints and radiation propagation in
the fiber. Defects on the ends may appear during the
fabrication process and exploitation. The end faces may
be damaged mechanically (scratches and surface
roughness) or for other reasons, such as surface con-
tamination; the presence of moisture on the fiber end
faces, which condenses under drastic temperature
drops; or the action of intense laser radiation.

A number of works [1-5] have been devoted to the
effect of end face defects on the parameters of fiber
joints. In this work, we generalize available theoretical
and experimental data on the efficiency of input of a
plane el ectromagnetic wave into a fiber with allowance
for an optical nonuniformity of the end face.

The prablem of calculating the radiation power in a
fiber is divided into two parts: the determination of the
light scattering indicatrix (SI) and the calculation of the
fiber-filtered optical power. The first subproblem is
associated with the effect of nonuniformities and con-
taminations present on the fiber optical surfaces on
radiation scattering. It was attacked by numerically
simulating and measuring the Sl on plane-parallel opti-
cal plates made of the same material as the fiber core.
On the test plates, researchers measured the surface
roughness and determined the Sl and attenuation of
transmitted radiation using profilometry techniques.
Results thus obtained were applied for the analysis of
radiation input into fibers with different aperture angles
and core diameters.

APPROXIMATION OF LIGHT SCATTERING
INDICATRIX ON ROUGH SURFACES

We represent the scattering indicatrix f(y, 6, y, 6") of
a plane monochromatic electromagnetic wave on a
rough surface normalized to the incident power F, as

the sum of two, nonscattered and diffusely scattered,
components [6, 7]:

f(v,8,v,9)
= kad(y—¥)0(6-8) +kyfuly, 8,0,

wherey, 6, y, and 0' are the azimuth and radial angles
for the incident and scattered waves, respectively; k, =
F./Fo kg = Fy/Fo; and F,, and F, are the powers of the
nonscattered and diffusely scattered indicatrix compo-
nents at a normal angle of incidence (y = 0).

When radiation enters afiber, the scattered radiation
distribution in anarrow angular range (y < 15°, accord-
ing to the aperture angle of the fiber) is usually taken
into account. Within this range, the diffuse component
of the Sl, 4, can be approximated by the Gaussian func-
tion. Then, in acylinder coordinate system,

f(v, 8,¥,0) = k.d(y—Y)5(0-8)

Kg 1 : . 1
+ e (v - (v)") ~2005(8 - O)yY |
no o

where o isthe Sl half-width, k; = F,/Fy, and F; isthe
power scattered in accordance with the Gaussian distri-
bution.

The coefficients k,,, k;, and ky are determined from
Sls measured on plane-parallel plates with regard for
the coefficient of Fresnel reflection at the interface and
statistical characteristics of the scatterer surface relief.
The use of the Gaussian approximation makes it possi-
ble to derive simple expressions for the efficiency of
radiation input into light guides with damaged end
faces and set typical relationships.

If the input efficiency (IE) is estimated for a wide
range of angles of entry y (for example, when radiation
sources have a wide radiation pattern), an expression
for the SI should include the shading effect [8], SI vari-
ation with angle of incidence [6], and an increasein k,
for y — 172. With such an approach, the calculations
become very tedious, and, moreover, an adequate scat-

1063-7842/02/4709-1145%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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terer model isdifficult to select. In thiscase, it is appro-
priate to use the relative transmission coefficient Kk
which is experimentally found as the ratio of the total
radiation power passed through a plane-paralel plate
with a scattering entrance surface, F,, to the power
passed through a nonscattering plate, Fy:

ks = FJ/F,. 2

For phase scattering, the difference between k, and
unity is due to the reflection of the scattered radiation
incident on the second (nonscattering) surface of the
plate at an angle larger than the angle of total internal
reflection y;. If the end face of a fiber serves as a dif-
fuser, the radiation scattered through angles larger than
Vi is not captured by core and cladding modes. In this
situation, the value of k can be viewed as the maximal
achievable input efficiency for a light guide with the
scattering end face. It will be shown below that the
introduction of the coefficient k, found experimentally
allows oneto take into account the non-Gaussian shape
of theactual Sl and, accordingly, to improvethe | E esti-
mate.

RADIATION POWER FILTERED
BY A FIBER

Considering afiber as afilter with the transfer char-
acteristic G(y, 6), we can write the expression for its
output optical power P(y, 0) in the form

221

mme)=NijN©0ﬂanihku& ©)

where N is a normalizing factor and y' and ©' are the
scattering angles “inside” the fiber in a medium with a
refractive index n,, which equals that of the core at the
point of scattering.

The scattering parameters and angular characteris-
tics[2, 9] are determined for the anglesy and 6' mea-
sured in free space; therefore, it is appropriate to per-
form integration in (3) in the same angular range using
the conversion relationship siny = n;siny'. Hereafter,
by the term “variation of input efficiency” we mean the
relative variation of the output power (transferred by
both core and cladding modes) under different input
conditions. Any variation of the radiation power
because of different dampings of various modes will
also be considered as the | E variation.

Integration in (3) implies that the input power is
additive with respect to angle of incidence and wave
scattering. Such an approach, which is beyond question
if the source is noncoherent, is admissible for coherent
waves if their interference provides a statistically ran-
dom speckle pattern with a characteristic speckle size
S <m?< S, whereaisthefiber coreradiusand S, is
the surface area of abeam illuminating the end face. In

KIESEWETTER, MALYUGIN

determining the transfer characteristics, it is also
assumed that the differential mode damping, scattering,
and mode coupling are linear. If the radiation is intro-
duced with a focused beam, the transfer characteristic
(or the angular input characteristic (AIC) in terms of
relative quantities) should be measured under similar
conditions. The model used al so enablesthe mode com-
position of the radiation to be determined if the transfer
function isexpressed through the excitation coefficients
for a given waveguide mode or group of modes[1].

Our approach aso applies to the estimation of the
scattered power filtered by various optoel ectron devices
even if the source has a complex radiation pattern.
However, this problem calls for special consideration.

The input power can be split into two parts associ-
ated with the nonscattered (directed), P,,, and diffuse,
P4, components of the SI. Accordingly, the variation of
the input characteristics due to scattering by the
entrance end face also depends on two components;
however, the variation of the angular relationshipsis a
function of P4 alone. Using the relationships for Bessel
functions[10]

211

Iexpacos(e e)ZWDexp(ueome' = 1,000

g2l

1 2 1
J’IOEZVQ’EeXD[ =(y° = (v) )}v dy = md’,
we rearrange expression (3) into the form

POU Q r
tm—mmw+—1mwméﬂﬁ

(4)
ooV = (DT
X pEr—Dv,dvr,
UJ UJ

r

where P, isthe output; P, isthe input (the power inci-
dent ontheend face); |, isthe modified Bessel function;
V. = YY; and o, = oly; are the relative angle of entry and
the SI half-width normalized to the aperture angle of a
fiber v;, respectively; g(y) = G(y)/G(y = 0) is the input
angular characteristic; and N, is a normalized factor
dependent on the transfer properties of the fiber and
radiator parameters.

Passing to therel ative values of the power, for exam-
ple, relative to the power for the nonscattering end face
p(y) =P(a, y)/P(c — 0, y), or to the dependence of the
power on the angle of entry, p(y) = P(y)/P (y = 0), one
can analyze resulting effects without calculating the
normalizing factor N,,.

Let us consider a plane wave entering afiber with a
diffusely scattering end face (k, = 0 and k, = 1) and esti-
mate the IE for various AIC types. In particular, we
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approximate the AIC by a step function,

_...y,=1
gst(yr) - %)“.yr>1’

and by a Gaussian function,

9a(yy) = exp(-y?).

For a wave propagating along the fiber axis (y = 0),
the lE

Ps(0n Yr) = P(Cy Y, = 0)/p(c, —0,y, = 0)
is described by the simple analytic expressions
1

Po(0, Y, = 0) = 1-exp- o1 for g¢, (9
a1

pc(0r1yr_0) - 2 for Je- (6)
1+ 07

For theinclined incidence of thewave (y# 0), the IE
variation is calculated by numerically integrating (4)

(Fig. 1). For high values of (y,y,/0?), the asymptotic
formula

JeaL ydjexp[——{v, -3

_ 1
= exp|:—0_r2{ yr —(¥r) } } m%‘ 16yryr%

is used. The dependence

py, O'(Gﬁ yr) = p(or’ yr)/p(or — 0, Yy = 0)

virtually characterizes a change in the |E compared
with the case of a honscattering end face, and

p/(0r, Y) = p(T;, Y)/p(O;, ¥, = 0)

describesthe | E variation with angley;, that is, the AIC
for a scattering end face. For the Gaussian AIC, the
dependence p,(o;, Y) can be obtained in the analytical
form

P, (0, V) = exp(=yi/(1+07)). @

Thus, when light is scattered by the entrance end
face (Fig. 1), waveguide modes are excited in a wider
range of angles of incidence of the plane electromag-
netic wave. Thisisequivalent to an increase in the input
aperture angle. Such an effect can be explained in sim-
ple physical terms. Upon diffuse scattering by the
entrance end face, the angul ar aperture coll ectsthe scat-
tered radiation if angles of entry y > y;. The AICsfor a
fiber with ascattering end are similar to those for afiber
with anonscattering end if the aperture angle of the lat-

ter, yf, is larger but its IE lower. Figure 2a demon-
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Fig. 1. Variation of the (1-10) AICs py(o;, V) = p(o;,
Yo/P(o;, ¥, = 0) and (11-18) input efficiency pq(0y, V) =
p(oy, ¥, = 0)/p(o, — 0, y; = 0) in comparison with those
for the nonscattering entrance end face versusrelative angle
of entry y, = y; for afiber with thestepAIC. 0, =0.25(1, 11),
05(2,12),1(3,13), ..., and 2.5 (10, 20). Curves 1, 11 and
2, 12 coincide.

strates the dependences of the equivalent aperture angle
of entry X. = Y7 /¥ on the Sl haf-width that are
obtained by solving the equation p,(a;, y;) = u (uisthe
aperturelevel, 0<u<1). If g, > 1, we havethesimple
asymptotic solution X, = a,(-Inu)¥2, which applies even
too, > 1.5. For g, > 1, the dependence X¢(o,) isamono-
tonically increasing function, while for o, < 1, it
depends on u.

To estimate the effect of the AIC shape on x(u), the
equation p,(a;, y;) = uwas solved for step, Gaussian, tri-
angular, and trapezoidal AICs (Fig. 2b). For the Gauss-
ian AIC, the solution has the analytical form

X = (vi+09", ®
where, y;, and o are defined by the 1/elevel.

For any of the AIC shapes (Fig. 2b), the values of
X(o) differ from those obtained by (8) by 10-20%.
Thus, relationship (8) isfairly accurate for virtualy al
real types of optical waveguides if Py > P,. Note that
X(0,) & o, — 0 depends on u for al of the AICs
except for the step function. Asthe Sl widens, the rela-
tionship p,(o;, y;) depends to an ever decreasing extent
on the fiber AIC but more and more strongly on the
scatterer parameters. However, the possibility of x(o)
being approximated by function (8) for various light
guides with a diffusely scattering end face implies that
this expression is also applicable in the more general
casek, # 0.
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Fig. 2. (a) Relative equivalent aperture anglex, vs. therela-
tive half-width o, of the radiation pattern for the aperture
level u=0.9 (1), 0.8 (2), 0.7 (3), ..., 0.1 (9). (b) Relative
equivalent aperture angle X vs. the relative half-width o, of
the radiation pattern for fibers with (1) step, (2) trapezoidal,
(3) triangular, and (4) Gaussian AlICs. Curve 4 coincides
with the approximation x = (1 + 6~ )Y2. (c) (4-6) The rel-
ative input efficiency P/P(T;, — 0) and (1-3) equivalent
aperture angle x vs. relative surface roughness height Rq/A:
O, =V/2 (1, 4) v, and 2; (3, 6).

THE EFFECT OF END FACE ROUGHNESS
ON THE INPUT EFFICIENCY

Let us consider the variation of the input character-
istics with the rms height R;, of surface roughness with
regard for the coefficients k, and k;. For light guides
with relatively smooth surfaces (y; < o and P, > Py),
the |E depends on the nonscattered component of the
indicatrix, k,. As the roughness increases, the diffuse
component of the indicatrix becomes significant and
both components should be taken into account in (4). If
R, > A/2, the second term P,, < P, related to scattering
by the entrance end face, dominates. Using k,, ky, and o
measured on plane-parallel plates, one can calculate the
angular characteristics and efficiency variation as func-
tions of R, [4, 11]. Of interest is the theoretical depen-
dence of the relative efficiency p.(y, R,) = p(y, R.)/p(Y,
R, — 0) for various degrees of roughness. Let us find

the R, dependence of pi(y, Ry) = p(y, R)/p(y, R, — 0)
using the expression [6, 8]

OurR:  , 0
kn(Ry) = expE-—Ycosy0 ©
0A O

as an estimate of the nonscattered component of the
indicatrix. Here, A isthewavelength, cos?y=1, and u =
T2 (for the reflected wave, u® = 1618).

If the AIC shape is Gaussian, formulas (4) and (9)
yield the expression for the AIC when the end face is
rough,

ks

0,.Y,) = k:exp(—y?)+
py(0y, Yy) p(-=yr) s

O 2 0O
s expG- Ve ,
o, U1l+o;

and the expression for the | E variation relative to the |E
for the smooth (nonscattering) end face,

k** 0 2
pIp(0—0) = ki + = expi—r g,

2
+ 0, L+ o,

where Ky = ki/(k, + ko/(1+ 07)), K§ =kol(ky + ko/(L +

7)), Ki* = k(Ko + ko), and K§* = ko/(k, + ko).

It should be noted that, when y, > 1, the relative |IE
p/p(c —= 0) may exceed unity (that is, the IE may
exceed that for a nonscattering entrance end face). In
the case of normal incidence (y = 0), we have

p/p(0 —= 0,y = 0) = kK** + K**/(1+ 7).

Inthesimplest casek, =1k, Ki* =k,,and k}* =
k;. The equivalent aperture angle X, can be calculated
only by numerically solving the egquation p(y, R, = u.
The dependences p(R,) and X«(R,) for various ratios
between the S| half-width and aperture angle (y; = 0:/2,
V; = &, and y; = 20;) are demonstrated in Fig. 2¢. The
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dependence x(R,) can be subdivided into three stages.
At the initial stage (R/A < 0.1), the scattering is rela
tively low and does not markedly affect the value of the
equivalent aperture angle (X, = 1) and the |E. At stage 2
(0.1<R/A <0.5), thecurvesx(R,) and p(R,) vary most
significantly. At the third stage (R, > 0.5), the surface
scatters the light diffusely (k, = 0); therefore, as R,
increases further, the aperture angle and the |E remain
unchanged. The asymptotic values of p(R,) and X.(R,)
at R/A > 0.5 are given by expressions (6) and (8).

If R/R, = const, where R. isthe correlation distance
of surface roughness, the Sl half-width o can be consid-
ered as R, -independent, a(h) = const, and, as a conse-
guence, the function X(R,)) isconsidered to vary dightly
with the microrelief height. For actual rough surfaces
obtained by grinding with abrasives, both R, and the Sl
half-width grow with increasing grain size because of a
change in the correlation distance of surface roughness
[5]. Accordingly, at R/A > 0.5, the function x(R,) will
dightly increase, while p(R, decrease, as was
observedin [2].

EXPERIMENTAL STUDY
OF INPUT EFFICIENCY

We studied the input characteristics of fiber light
guides with arough end face, R, = 0.1-0.8 pm. The end
faces of the fibers and reference plane-parallel plates
were ground by powders with different grain sizes.
Grinding conditions, roughness statistical characteris-
tics, and Sl parameters can be found elsewhere [4, 11—
13]. Using the angular characteristic measurement
technique [2, 9], we found the dependences X(R,) and
p(R,) for various types of fiber light guides at wave-
length A = 0.63 um (Figs. 3, 4) by using analytical
dependence (9) in contrast to [1, 3], where the experi-
mental values of k, and k; were used. The dependence
0(R,) was defined as alinear function o(R,) = a + BR,
with the coefficients a and 3 obtained by approximat-
ing the experimental datain [4, 11]: o = 3.7 and 3 =
9.05 (o isgivenindegreesand R, in micrometers). The
analytical and experimenta datafor x(R,) are found to
be in good agreement. For p(R,), our simple model
gives an overestimated value. For light guides 1-3 in
Fig. 3, thermsdeviationsfor p(R,) and x(R,) are 19, 10,
and 17% and 5-6%, respectively. The discrepancies are
explained largely by the use of the approximation k; =
1-k,, sincefor red Sls, (k; + k,) < 1, asindicated by
the measurement of the relative transmission coeffi-
cient k..

The coefficient k; was measured on the reference
plane-parallel plates with a rough entrance face. The
radiation transmitted through the plate was detected by
aphotoel ectric multiplier with ahigh surface areaof the
photocathode. The power transmitted through the
rough plate was lower than that passed through the
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Fig. 3. Input efficiency asafunction of thermssurfacerelief
height R, for various fibers: (1-3) experiment, (4-6) calcu-
lation by (6), (7) ks found experimentally, (8) linear approx-
imation of kg, and (9-11) calculation by (10). Curves 1, 4,
and 9 correspond to afiber with a step profile of the refrac-
tiveindex for acoreradiusa= 100 pm and an apertureangle
relative to the 1/e level y; = 4.34°; 2, 5, and 10, to a 50/125
gradient fiber with a =25 pm and y; = 5°; and 3, 6, and 11,
to “polymeric” quartz with a = 100 pm and y; = 12.4°.

Xe(Rp)> deg
20
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Fig. 4. Equivalent aperture angle X, vs. rms surface relief
height R, (1-3) experiment; (4) Sl half-width [11];
(5) approximation of data points4; and (6-8) calculation by
(8). yy=4.34° (1, 6),5° (2, 7), and 12.4° (3, 8).

plate with the smooth surface (curve 7 in Fig. 4)
because of the reflection from the second face of the
rough plate at angles of incidence larger than vy;. Esti-
mates made with the Beckmann formula [4, 6, 7] indi-
cate that the power scattered through anglesy >y, must
be three to five orders of magnitude lower than the
value found experimentally. Thisis likely to be associ-
ated with the non-Gaussian statistics of glass surface
roughness and the effect of subsurface scattering. The
formulafor |E can be refined by putting k; = k(1 —k,);
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then,

[1 - kn( Rn)] ks
1-a’ly?
Taking ky=0.75for all roughnesstypes and estimat-

ing p(R,) with (10), we come to a better coincidence

with the experiment (curves 9-11). For p(R,), the dis-
crepancies now are 13, 6, and 7%, respectively.

Having found experimentally the specular compo-
nent kﬁf) of the Sl for the radiation reflected from the

fiber end face, one can estimate k, for the radiation
transmitted. Since pu = @ and p® = 1612, we have

P(Ry) = kn(Ry) + (10)

16

k, = (K)". (12)

For example, if the coefficient kﬁf) of specular
reflection from a uniformly rough end face exceeds
0.44, then k, > 0.95; that is, scattering losses are no
more than 5%.

It is of interest to estimate a change in the power
introduced into the fiber for the case of amplitude—
phase scattering, for example, if the entrance face is
partially contaminated. For aweakly contaminated sur-
face (assuming that contaminants are randomly distrib-
uted over the end face; that is, S, << Siore Where S is
the surface area of contaminated regions and S, = T2

is the core cross section surface area, and neglecting
their scattering properties), we can write

K? = S = Seonl Seons k7 = K%k
i ={no0,d,¢,
where k@ is the amplitude transmission coefficient;

K® k9, and k{ are the resulting coefficients of

g 1’

(12)

directed transmission and diffuse scattering; and k& is
the resulting relative transmission coefficient.

The power introduced into a fiber can also be esti-
mated with relationship (4) or (10) if k¥ and k¥ are
substituted for k, and k; and inhomogeneities are uni-
formly distributed over the surface. However, the latter
condition for rough surfaces frequently fails (contami-
nants are concentrated largely on recessed regions of
the surface). If contamination increases the skewness
and kurtosis of the surface profile height distribution,
the scattering properties of such a surface are insignifi-
cant and relationship (6) may underestimate p(R,) if the
concentration of inhomogeneities is low [4]. It should
be noted that relationship (11) cannot be used for
amplitude—phase scattering and statistically inhomoge-
neous surfaces, for example, surfaces with scarce
defects.

In the case of a wavy surface, the Sl can be calcu-
lated by applying the geometrical model of refraction

KIESEWETTER, MALYUGIN

of light by such surfaces and setting the coefficient k; to
be equal to unity.

Let us make estimates for other types of end face
defects, for example, for a skewed surface. At small
skew anglese, the SI of such an end face (k, =1, ky=0)
can be represented as

f(y,8,v,0) = d(y—y +€)d(6-9),

hence,
P(e) _ G(g)
P(0)  G(0)

where G(0), P(0) and G(g), P(¢) arethe angular charac-
teristics and the input powers for normal (¢ = 0) and
skewed end faces, respectively.

or p(g) = g(e),

CONCLUSION

We showed that scattering by the end face of amul-
timode fiber may both decrease the input efficiency and
change theinput angular characteristics. Irrespective of
the type of the fiber and its transfer characteristics, the
effect of end face scattering can be estimated by using
the Gaussian approximation for the diffuse component
of the Sl and the delta approximation for its nonscat-
tered (directed) component. This resultsin simple ana-
lytical expressions. If the theoretical values of the coef-
ficient k,, are used (which imply the Gaussian model of
rough surface), it is necessary to introduce a correction
coefficient ks that allows for the non-Gaussian shape of
the actua Sl. For abrasive-ground quartz glasswith rms
surface relief heights in the range 0.2-0.8 um, k; is
close to 0.75; accordingly, the actua input efficiency
equals 75% of the theoretical value.
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Abstract—A quasi-optical mixer containing two Nb/Al/AlO,/Nb superconducting tunnel junctions integrated
into a NbTiN/SiO,/Al microstrip line is studied experimentally in the 8001000 GHz frequency range. The
mixer is developed as an optional front end of the heterodyne receiver operating in frequency band 3 or 4 and
incorporated into the HIFI module of the Herschel space-borne telescope. The double-dipole antenna of the
mixer is made of NbTiN and Al films; the quarter-wavel ength reflector, of a Nb film. The mixer is optimized
for the IF band of 4-8 GHz. The double-sideband noise temperature Tryx measured at 935 GHz is250 K at a
mixer temperature of 2 K and an IF of 1.5 GHz. Within 850-1000 GHz, Try remains below 350 K. The antenna
pattern is symmetrical with a sidelobe level below —16 dB. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Low-noise heterodyne receivers of the terahertz
range are necessary for designing high-efficiency
space-borne telescopes, which are being developed for
submillimeter spectral astronomy, for example, for the
HIFI [1]. Upon tackling the problem of designing a
high-sensitivity 1-THz receiver, it is reasonable to ana-
lyze the key parameters of superconductor—insulator—
superconductor (SIS) mixers built on tunnel junctions.

Nb/AI/AIO,/Nb tunnel-junction mixers are known
as low-noise heterodyne converters. Their noise tem-
perature on the order of hf /kg (whereh, f, and k; arethe
Planck constant, frequency, and Boltzmann constant,
respectively) [2] is limited by quantum fluctuations.
Such mixers have been studied experimentally at 30—
1500 GHz, and their noise temperature has been esti-
mated at about (2-3)hf/kg at frequencies below
680 GHz (the niobium gap frequency [3, 4]). Above
this value, the sensitivity decreases rapidly primarily
because of increased losses in niobium tuning circuits.
Theoretically, the frequency range of a niobium-based
SIS heterodyne converter islimited by the doubled nio-
bium gap frequency, i.e., approximately by 1300 GHz
[5]. Thisis because the conversion efficiency is associ-
ated with the nonlinear tunnel current of quasi-particles
in SIS junction and thus does not depend directly on
losses in the feeding circuits.

Designing a wide-band SIS mixer that would cover
a substantial part of the subterahertz range is a chal-
lenge, since the capacitance per unit area C of an SIS
junction is high. Accordingly, the loaded Q of the cir-
cuitisalso high (typically about 10 at 1 THz). The high

value of Q poses at least two problems: the bandwidth
narrows and the losses increase. The rea part of the
microwave impedance of a superconducting film [6]
raises the loss in proportion to the current density
sguared, i.e., to Q?. Theoretically, the system’s Q factor
can be lowered by reducing the resistivity of the tunnel
barrier, i.e., by increasing J.. Unfortunately, thisis dif-
ficult to doin practice, because the |-V characteristic of
the SIS junction degrades when J, > 10-15 kA/cm? [7].
Another possibility of decreasing the microwavelossis
to reduce the SIS junction area, which also lowers the
current density in the feeding circuits. Thus, it is clear
that, in general, quantum-sensitive SIS mixers are diffi-
cult to design for the frequency range where the lossin
the feeding circuits is high. That is why, along with
efforts in minimizing the high-frequency loss by
increasing the tunnel current density and shrinking SIS
junctions, advanced designs of low-loss tuning circuits
based on novel materials[8-12] are of great importance
for developing a terahertz-range quantum-sensitive
mixer.

The capacitance of an SIS junction together with
that of the integrated tuning circuits may hamper the
matching of the mixer’s output at the IF due to the high
dynamic resistance of the junction. Under operating
conditions, this resistance may be within 0.2-1.0 kQ
and even become negative [2], which leadsto ahigh Q
of the mixer's output, especially at high IFs. The prob-
lem of wide-band matching the mixer’s output can be
solved by decreasing the capacitance of al tuning and
connecting circuits and applying a special matching
transformer.
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A high-frequency signal can befed to the SIS mixer
by two basic ways: through a rectangular waveguide or
with the help of aquasi-optica antennaintegrated with
the SIS junction. The problems mentioned above are
common to both designs. Specific problems may arise
in fabricating precision mechanical parts of waveguide
mixers. For example, the cross section of asingle-mode
terahertz waveguideisas small as 120 x 240 pum, which
means that other parts such asascalar horn, tuning pis-
tons, a chip mounting channel, etc. must be fabricated
with a micrometer precision. Auxiliary stages of chip
preparation (especially dicing and grinding), aswell as
the assembling of a waveguide mixer, are also critical
operations.

Unlike waveguide mixers, quasi-optical mixers can
be fabricated on relatively large and easy-to-handle
substrates, which are a part of the optical system. The
parameters of these mixers depend primarily on the
photolithography resolution, which is several fractions
of a micron. It should be noted that the pattern of the
antenna—lens system is defined by both the quality of
the microwave lens and the accuracy of placing the
antennaon the optical axisof thelens[13, 14]. Thethe-
oretical level of the first sidelobe of integrated lens
antennas, which are most widely used, isabout —18 dB,
that is, dlightly higher (worse) than that of scalar horns
used with waveguide mixers. However, this value is
adequate for most applications.

Double-slot and double-dipole antennas are widely
used in planar receivers [10, 15-18]. When incorpo-
rated into an integrated lens antenna, these have similar
patterns and close values of impedance. An advantage
of adot antenna is its wide ground plane, which can
accommodate comparatively complex circuits near the
antenna. At the same time, adoubl e-dipole antennawas
successfully used in a complex superconducting inte-
grated receiver [16]. The back lobe of a ot antenna
cannot be used as in the case of a dipole antenna,
because the convergent reflector becomes inefficient.
A double-dipole antenna is usually free of capacitive
coupling elements, so that the average capacitance of
the structure can be made lower, which is important
when the IF is high.

The primary goa of this study was to develop and
experimentally demonstrate a quasi-optical SIS mixer
with an integrated lens antenna that meets the HIFI
requirements for frequency bands 3 and 4 [1].

GENERAL APPROACH

The structure of choice is atwin-type mixer, which
contains two Nb/AI/AIO,/Nb SIS junctions connected
in antiphase and a double-dipole antenna as shown in
Fig. 1. Thisresonant structure of SIS junctions has been
theoretically and experimentally shown to have awider
matching band and alower loss than acircuit where the
junction terminates a tuning microstrip line [10, 18].
Thelower losses can be explained by the low density of
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Fig. 1. Circuit diagram of a planar quasi-optical SIS mixer
with a double-dipole (Al and A2) antenna. The mixer com-
prises two SIS junctions (J1 and J2) that operate in
antiphase and are parallel-connected in terms of IF current
but series-connected in terms of microwave current. Induc-
tanceL1=0.7 nH isatuning element at the IF output, C and
L2 constitute the filter of the bias source, and F1 and F2 are
the band-stop filters of the antenna.

Fig. 2. SIS mixer with a double-dipole antennaon asilicon
substrate. Two micron-size SIS junctions are seen at the
center. Bright metal stripsare aluminum; dark lines, NbTiN.
The SiO, insulator between the electrodes is almost trans-
parent.

the microwave current at the input of the impedance
transformer, which istypical of twin SIS structures. To
minimize the ohmic loss in the tuning circuit, we used
microstrip lines made of NbTiN alloy, for which the
superconductor critical temperature is about 16 K and
the gap frequency is about 1 THz [19, 20]. Theoreti-
cally, such values of the parameters can provide very
low losses at thisfrequency. The trade-off in our design
is the microstrip line on the NbTiN/SIO,/Al structure.
First, the upper aluminum electrode minimizes the
effect of thermal trapping and, as a consequence, elim-
inates the overheating of the junction, which is
observed in all-NbTiN tuning circuits [19]. Second,
SO, is far from being the optimal underlayer for the
regular growth of NbTiN films, which may cause too
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Fig. 3. Signal on the SIS junctions (circles) measured with
a Fourier spectrometer and the computed values (S) (solid
line). The signal level at the antenna (dashed line) is seen to
be significantly higher than the signal applied to the SIS
junctions because of ohmic losses in the aluminum conduc-
tors of the NbTiN/SiO,/Al microstrip line.
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Fig. 4. (a) Autonomous and (b) pumped |-V characteristics
of the SIS mixer at 955 GHz and the response to (c) “cold”
and (d) “hot” antennaloads at |IF = 1.5 GHz.

high losses near 1 THz due to a lower gap frequency
[20].

Two identical mixers were placed 500 um apart in
the central part of a2 x 2-mm 300-pum-thick high-resis-
tivity silicon substrate, which was mounted on the flat
back surface of a silicon elliptic lens at its focus. Such
dimensions of the chip cut a 120°-wide portion from
the pattern of the planar antenna, beyond which the sig-
nal is negligibly small. The second mixer on the same
chip is spare. The lens diameter, 10 mm, specified both
the diffraction divergence of the beam at 1 THz (about
2°) and the chip mount accuracy (about 10 um). The IF
matching circuit was designed so as to keep the reflec-
tion losses below —10 dB over the IF range of 4-8 GHz
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with the dynamic resistance of the mixer varying within
R;=50-150 Q.

DESIGN

The mixer was designed for two frequency ranges:
800960 and 9601120 GHz. The integrated structure
was optimized individually for each of the bands sepa-
rately. The double-dipole antenna shown in Fig. 2 isa
scaled copy of the antenna of a 500-GHz integrated
receiver [16]. The overall dimension of the antenna is
34 x 40 um, and its elements are 4 um wide. Initially,
we assumed that the low density of the microwave cur-
rent on the surface of the convergent reflector film can-
not cause asignificant signal loss and allows the use of
amost any metal, for example, Nb. The convergent
reflector chip measures 0.5 x 0.5 mm. At about 1 THz,
itsthickness, 22 um, equals aquarter of the wavelength
in single-crystal silicon (¢ = 11.7) coated with a
200-nm-thick Nb film on one side. The antireflection
coating of the microwave lens, a 46-um-thick layer of
Stycast™-1264 (¢ = 2.9) epoxy compound, is opti-
mized for 960 GHz.

Two Nb/AI/AIO/NDb SIS junctions of area 1 pm?
each are integrated with the antenna as shown in
Figs. 1 and 2. The 3-um-wide transmission line, which
connects the antenna and two junctions placed 3.6 or
3.0 um (depending on the frequency range) apart, is a
microstrip line with a narrow (4-pum-wide) ground
plane. The mixer was designed under the following
assumptions. Since the configuration of the transmis-
sion line is amost symmetric, the strip and its screen
can be considered interchangeable; therefore, they are
connected to the antennas symmetrically. Because of
the symmetry of the structure, its center can be
regarded as a virtual grounding point in the middle
between the two SIS junctions. Thus, the segment of
the microstrip line that connects the junctions can be
viewed astwo independent short-circuited stubs, which
are equivalent to two high-frequency tuning inductors
parallel-connected to either of the SIS junctions [10].

The match of the antenna and the efficiency of trans-
mitting the signal to the SIS junctions were computed
with allowance for ohmic lossesin the tuning elements.
As shown in Fig. 3, the results computed are in good
agreement with the experimental data obtained with a
Fourier spectrometer. Our simulations assumed that the
NbTiN base electrode is a perfect superconductor with
a 300-nm London penetration depth. For the aluminum
strip, the sheet resistance was assumed to be 0.15 Q.
Band-stop filters F1 and F2 are connected to both
dipolesas shown in Fig. 1 to make the radiation pattern
of the antenna system as symmetric as possible. Note
that, as usual, only one filter is connected to the IF
channel. The filters are designed as a periodic structure
composed of quarter-wavelength sections of coplanar
and microstrip lines in order to provide a high perfor-
mance while retaining the small size of the device. The
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ohmic loss in the antenna filters turned out to be appre-
ciable. The attenuation in the three-section filter was
estimated at 6%. Basically, this value can dightly be
reduced by adding sections; however, thisincreases the
filter capacitance, making the IF matching of the mixer
difficult. The curvesin Fig. 3 are obtained with regard
for unwanted effects, such as the inductance of the SIS
junction and the inductance of current spreading
around the junction window. The current spreading
inductance was estimated at 0.1-0.2 pH [21].

EXPERIMENTAL RESULTS

Pilot mixers were fabricated by the process used to
make waveguide deviceswith NbTiN and Al tuning cir-
cuits[20]. We applied conventional optical lithography.
The NbTiN ground plane of the microstrip line was
300 nm thick. It was deposited at room temperature.
The thickness of the SiO, insulator was 250 nm. The
conductivity of the 400-nm-thick aluminum layer was
2x 108 Q' m™at 4 K, which most likely corresponds
to theanomalouslimit [22]. The adluminum layer is pro-
tected against environmental attack by a 200-nm-thick
SO, film. A typical |-V characteristic of the pilot SIS
mixer is shown in Fig. 4.

The parameters of several devices designed for fre-
guency range 4 (960-1120 GHz) were measured in a
standard vacuum cryostat with optimized IR filterswith
lossesof 1.2 dB at 1 THz [23]. The Fourier spectrome-
ter datasuggested that the frequency response hasafea-
ture very much like the high-frequency cutoff near
1 THz. This cutoff frequency is almost independent of
the SISjunction dimensions and other important tuning
parameters. The double-sideband noise temperature
Tex for several mixers was about 500 K above
950 GHz. Since the noise temperature decreased with
increasing frequency, we inferred that the device was
tuned to a lower-than-optimal frequency. Eventually, a
device with a center frequency dlightly below 1 THz
was sdlected. The 3-dB frequency band of this mixer
determined with the Fourier spectrometer was 800—
1050 GHz (Fig. 3). The responses to the change in the
temperature of the matched antennaload were 1.6 dB at
a mixer temperature of 4.2 K and 1.8 dB at 2 K for
935 GHz in the case of a 15-um-thick mylar diplexer
(Fig. 4). With a thinner diplexer (6 um), the response
increased to 2.1 dB, which corresponds to the double-
sideband noise temperature Ty = 260 K. With the cor-
rection for reflection, both diplexers gave a noise tem-
perature of about 245 K. A water-vapor absorption line
near 990 GHz isclearly seenin Fig. 5; these data were
obtained at IF = 1.5 GHz.

Figure 6 shows the reflection coefficient at the IF
output calculated as a function of the mixer’s dynamic
resistance for a total capacitance of the structure
(including SIS junctions, microstrip lines, and antenna
filters) of =0.5 pF. Asfollowsfrom Fig. 6, thereflection
coefficient can be kept below —10 dB for most of the
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Fig. 5. Noise temperature Try in the double-sideband mode
versus frequency f| o of the local oscillator. The values of
Trx Measured at about 2 K and corrected for reflection from
the 15-um-thick diplexer (squares). The triangle is a refer-
ence data point measured for the 6-um-thick diplexer
(uncorrected).
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Fig. 6. Reflection losses at the IF output versus dynamic
resistance of the mixer with atuning inductanceL1=0.7 nH
(Fig. 1) computed at a frequency of 1.5 (solid line),
4 (dashed line), 6 (dash-and-dot line), and 8 GHz (dash-
and-double-dot line).

4-8 GHz range. For a 50-Q transmission line, this
match can be achieved by using a series-connected
inductance (Fig. 1). Such an inductance can be pro-
vided by bonding wires on the mixer chip. According to
our calculations, the required inductance of L = 0.7 nH
can be obtained with 1-mm-long wires that are 20—
50 pm in diameter and placed 0.2 mm apart.

The antenna pattern (Fig. 7) was recorded with a
narrow-beam monochromatic source with the mixer
operating as a demodulator. Under such conditions, a
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Fig. 7. Antenna pattern at 915 GHz. On both coordinate
axes, the angle is plotted in degrees. The intensity isolines
are spaced at 1-dB intervals. The darker the color, the lower
theintensity. All sidelobes are below —16 dB. The spot inthe
upper right corner is most likely spurious reflections in the
radiator—antenna system.

40-dB dynamic range was achieved. The receiver was
turned about the phase center of the antenna. The cross
section of the main lobe at 915 GHz is amost circular.
The —11-dB half-width of the beam is about 1.8°; the
first-order sidelobes are no higher than —16 dB. The
quality of the beam remains the same up to 850 GHz.
At higher frequencies, the beamwidth is smaler, as
could be expected for an optical system operating inthe
diffraction limit. For the beamwidth to meet the HIFI
requirements (F/3-F/5), we propose to supply the
device with an ellipsoidal correcting mirror. The
response to the cross-polarized signa component at
850 GHz is no higher than —24 dB relative to the maxi-
mum signal. Thisis an experimental corroboration that
alens combined with a double-dipole antennais polar-
ized.

CONCLUSION

A terahertz heterodyne receiver built around a
quasi-optical Nb/AI/AIO,/Nb superconducting SIS
mixer integrated with a double-dipole antenna is
designed, fabricated, and experimentally studied for the
first time. The noise temperature of the receiver is
equivalent to as little as ten photons. The device covers
the 800-1000 GHz range, demonstrating a cutoff fre-
guency of slightly above 1 THz. Thisresult allows usto
conclude that a NbTiN/SiO,/Al tuning microstrip line
deposited at room temperature may have relatively low
losses at least up to 1 THz. The double-sideband noise
temperature was about 250 K at 935 GHz and 360 K at
1 THz, which are the best values achieved to this point
in this frequency range. The experimental results are
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consistent with the computed value of the effective
sheet resistance of the NbTiN/SiO,/Al microstrip line
(0.2-0.2 Q). The simulations show that atwin-type SIS
mixer with a double-dipole antenna can be matched at
IF in the range of 4-8 GHz. A double-dipole antenna
combined with an elliptic silicon lens efficiently
receives the signal in the terahertz range. The sidelobe
level is below —16 dB; the cross-polar pattern is below
—24 dB, which shows that a lens antenna combined
with a double-dipole antennais polarized.
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Abstract—A method for the synthesis and analysis of SAW filters and delay lines that use dispersive ladder
interdigital transducersis described. A method for designing SAW devicesthat relies on modified equations for
coupled wavesis proposed. A singular integral equation for the surface current density in the transducer’s elec-
trodes is derived and solved. Theoretical data are compared with experimenta results. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

Dispersive interdigital transducers (IDTs) in which
the center line of the electrode apertures is inclined to
the direction of SAW propagation (ladder-type IDTs)
[1] are widely employed in SAW devices. The main
purpose of using ladder geometry in dispersive IDTsis
to suppress second-order effects in the device's fre-
guency response. In ladder geometry, the regions of
excitation and propagation of SAWs with different fre-
guencies can be spatially separated. The electrodes that
do not excite an SAW of aparticular frequency are dis-
placed from the SAW propagation path; accordingly,
the number of electrodes in each cross section of an
IDT decreases (Fig. 1). Asaresult, second-order effects
in the amplitude—frequency response (AFR) and the
phase—frequency response (PFR) of the device are sup-
pressed. The inclination of the electrode center line
depends on the electrode arrangement inan IDT and on
adesired electrical performance of the device.

Dispersive ladder IDTs can be used in dispersive
delay lines with a quadratic PFR and in filters with a
linear PFR. The shape of the characteristic (linear or
quadratic) depends on the slopes of the dispersive char-
acteristics of theinput and output IDTs. When the signs
of these dlopes are the same, the device operates as afil-
ter (Fig. 1) or anondispersive delay lineand hasalinear
PFR. When the dlopes are of opposite sign, the device
operates as a dispersive delay line (Fig. 1) and exhibits
aquadratic PFR.

The synthesis method for ladder IDTs was proposed
in [1], and the method of analysis based on a physical
model and on partitioning the layout into channels was
reported in [2]. The key ideain the synthesis of aladder
IDT is that the optimal number of electrodes in each
IDT cross section must equal the effective number of
electrodes: N () = f[T/Af]V2, where f is the synchro-
nism frequency, T isthe IDT delay due to dispersion,
and Af is the operating bandwidth. However, approxi-

mate relationships for the synthesis of SAW devices[1]
are often far from accurate. Also, the physical model
sometimes does not provide a reliable procedure for
calculating the AFR from a given IDT layout. There-
fore, at the design stage, one may fail in properly
choosing an IDT layout that provides aflat (or another
given) AFR, and it becomes necessary to correct the
layout after fabricating the device. The physical model
also neglects the effect of three-transit signals and
reflections from the electrodes on the AFR and PFR.

In this paper, we propose modified equations for
coupled modes (COM equations) that describe a wide
classof SAW devices: filters, resonators, and dispersive
and nondispersive delay lines. The modified COM
equations are central to a method for the synthesis and
analysis of SAW filters and dispersive delay lines that
employ dispersive ladder IDTs. A singular integra
equation for the surface current density on the IDT

Filter
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XA f @ IQ IDT-B,
Channel / < 4 Y
Channel K i
-

Channel Ng @

T

T

7 7 '\ \ZIB'\B\Z
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Fig. 1. Geometry of adispersivedelay line (DDL) and filter.
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electrodes that includes edge effects, the finiteness of
the IDT length, the effect of the acoustic field, and the
variation of the acoustic wave amplitude under the el ec-
trodes is derived and solved. The designs of afilter and
adispersive delay line based on dispersive ladder IDTs
are presented. The theoretical results are compared
with experimental data.

SYNTHESIS OF SAW DEVICES BUILT
ON DISPERSIVE LADDER IDTs

Let it be necessary to design a SAW device with a
ladder IDT where losses decrease or increase linearly
with frequency. We will use a method similar to that
reported in [1]. In this case, the power emitted by the
IDT in afrequency range of interest is given by

UsGA(T) = PoKo(f), (1)

where G,(f) is the IDT admittance, P, is the power
emitted by the IDT at the center frequency fy, Ko(f) =
1+ K f—fo)/Af, Uy = const(f) is the amplitude of the
input signal, and K, = const(f) is the slope of the fre-
quency response.

For the insertion losses to decrease linearly with
increasing frequency, it is necessary that K¢ > 0; for the
losses to increase linearly with frequency, K, < 0.
Manipulations similar to those used in [1] yield the fol-
lowing frequency dependence of the IDT aperture:

W(T) = W(To)[fof f]1Ko(F)

x{[(Ra)? + X*(D)]/[(Re)*+ X2(fo)l} 2,

where W(f,) isthe IDT aperture at the center frequency,
which is chosen so asto suppress diffraction effects and
provide reasonable insertion losses, Ry, is the imped-
ance of the signal generator, and X(f) is the imaginary
(reactive) part of the IDT input impedance.

The position of the center line of the electrode aper-
tures (or the coordinates of their centers) will be found
from the condition that the IDT dimension in the trans-
verse direction is independent of the X coordinate:
Ler(X) = Ngr(f)A/2 = const [1]. Note that each of the
X coordinates is related to a particular frequency f
within the passband. From Fig. 2,

tang, = Wi/Lg, (3)
tang, = AX/AZ;, (4)

where AX, = X;, , — X, and AZ; = Z; , , — Z; are the center
distances of theith and (i + 1)th electrodesin the X and
Z coordinates, respectively; W is the aperture of theith
electrode; and @, and @, are, respectively, the angles
made by the aperture boundary and the electrode center
line with the Z axis (Fig. 2).

If the IDT aperture varies slowly (W., —
W)/W , ; < 1), so does the curvature of the center line.

)
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Fig. 2. Detail of the ladder transducer: (1) boundaries of the
transducer electrode apertures, (2) line passing through
electrode centers, and (3) electrodes.

Inthiscase, @, = @,. Then, formulas (3) and (4) yield
AX; = AZWi/ L (5)
with X; , ;= X + AX; and X; = 0.
Next, wefind the Z coordinates of the el ectrode cen-

ters taking into account metallizations in the ladder
IDT, asfor IDTsof linear layout:

Z, = B{[1+By(I -1)]"*~- 1, (6)

where B, = +Vf(T../2, B, = +Af./[(f\)?T], and T,, and
Af, are the total delay due to dispersion and the band-
width of the IDT, respectively. The“—" signreferstothe
positive slope of the dispersion characteristic with fy =
fo + Af,/2, the“ +" sign, to the negative slope of the dis-
persion characteristic with fy = f, — Af../2; i runsfrom 1
to N.

Notethat T,, > T, Af,, > Af, and Af /T, = Af/T.

MODIFIED COM METHOD

The usual COM theory (see, e.g., [3]), based on aset
of inhomogeneous differential equations, greatly com-
plicates the design of SAW devices. In the framework
of this theory, it is difficult to consider such factors as
thevariable period of the structure, apodization, and the
nonuniform distribution of the surface charge over the
electrodes. It issufficiently easy toinclude al these fac-
tors by using the modified COM method, which deals
with an elementary component of the structure (an el ec-
trode of the interdigital transducer or of the reflecting
structure). This method can also be readily extended to
a more complex model of the structure. Here, the
parameters of the SAW structure as awhole (interdigi-
tal transducer, reflecting structure, or their arbitrary
combination) are found by multiplying the correspond-
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ing P matrices for individual electrodes (asis donein
the conventional theory of quadripolesin terms of scat-
tering matrices).

Let an SAW structure consist of variously spaced
aternating-polarity electrodes. We assume that adja-
cent electrodes may overlap and that a source with the
signal amplitude U, is placed on the left. Consider the
Kth electrode of the IDT (Fig. 3a). Let R(Z, w) and §(Z,
w) be coupled uniform plane waves propagating
through the electrode structure of the transducer in the
positive and negative Z directions, respectively. The
expressions for our uniform plane waves are

R(Z, w) = R(w)exp(-jkZ), (7)

S(Z, w) = S(w)exp(+jkZ), €S)
where R(w) and S(w) are the complex amplitudes of the
corresponding waves and K is the wave number.

Let awave R¢(Z, w) beincident on the Kth electrode
fromtheleft; thewave S . 1(Z, w), fromtheright. Then,
with allowance for reflection, transmission, and trans-
formation with acoefficient &, the complex amplitudes
of the transmitted waves can be written as

Sc(w) = 1Nk expl—j(Ker —Ko) P] Re(w)

N2 (L=[rel?) " expl—i (Kar — Ko) Pl S 2(@0)  (9)
+ & (W)Nok eXP[—j (Kest —Ko) P/ 2] Uo,

DMITRIEV

R 1(0) = Na(1=rd*) " expl=j (et = Ko) P
x Ry (@) + I'¢Nyx €XP[—j (Kt —Ko) P S+ 1(w) (10)
+ & ()N eXP[—] (Kes — Ko) Px/2] Uy,

where ry is the complex coefficient of reflection from
the Kth electrode, Ky is the effective wave number of
the SAW, Kq = 210pk, Pk = Zc +1 — Zk, &k 1S the SAW
transformation coefficient at the Kth electrode, N =
W /WG, Nk = Wh /W, Wy isthe maximal aperture, and
W, is the overlap of electrodes. W, = W, when idle
electrodes are used; otherwise, Wo, = Wi

The phase factors at the terms standing for wave
reflection (transformation) define the phase shift the
SAW acquireswhen traveling from the center of reflec-
tion (transformation) to the corresponding boundary
(Z for Sc(w) and Z . 1 for R¢(w)). The center of reflec-
tion (transformation) is assumed to be at the center of
the electrode. The effective wave number is found as
K = 2TVAE = W[V + L(Vi — Vo)/pk] —ja, where V, is
the SAW velocity on the free surface, V,, is the SAW
velocity under the metalized surface, and a are the
total losses of the SAW per unit length.

The current in the IDT varies because of the trans-
formation of forward and backward waves and a volt-
age drop across the el ectrode capacitance:

Al (W) = T(w) =T (W) = +28 (W)
x exp[—] (Kgt —Ko) Px/2] Re(w) + 2& ()
x exp[—j (Kgt —Ko) P/2] Sc(w) + jo(C,/2)U,,.

Consider the terms standing for SAW transforma-
tion asthe wave passes through the transducer electrode
(Fig. 3b) inview of thefact that the excitation isdistrib-
uted. Let the efficiencies of direct and inverse SAW
transformations on the electrodes be equal; i.e, the
transformation obeys the reciprocity principle. The sur-
face current distribution on the electrodes, J(2), is
assumed to be given. Assume also that a small region
AZ, of the electrode transforms the SAW in the same
manner asthe electrode asawhole. Then, we add up the
contributions to the SAW transformation over the elec-
trode width relative to its center Z. and passto the limit
(AZ¢ — Q) to obtain

L/2
€k = Gy J' J(Z2)exp[-j(w/Vi—Kg)Z]dZ,  (12)

L2

(11)

where G, is the radiation acoustic admittance at the
synchronism frequency (see, e.g., [3]).

The distribution J(Z) of the surface current over the
electrodes is calculated by a self-consistent technique,
i.e.,, with allowance for edge effects, the finiteness of
the length of the transducer, and the backward reaction
of the piezoelectric material (see the next section).
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Formulas (9)—(11) can be written in matrix form;

Sc(w) P(1,1) P(1,2) P(1,3) || Rc(w)
Re+1(w)| = | P(2,1) P(2,2) P(2,3) ||S+1(w) {(13)
Al (w) PG 1) PB2) PGB3 | U,

The P matrix of aninterdigital transducer asawhole
can be calculated by multiplying the P matrices for
each of the electrodes. Applying Egs. (9)—(11) with
arbitrary coefficients to two SAW structures connected
in series, we easily find the components of the complete
P matrix:

P(1,1) = PY(L 1)

(14)
+PP(1,2)P?(1,1)PY (2, 1)/P?,
P(1,2) = P(1,2)P?(1,2)/P?,  (15)
P(1,3) = PY(1,3) + PY(1,2)[P?(1, 3) (16)
+PP(1,1)PY(2,3)1/P?,
P9(2,1) = P2, 1)PP2,1)/P?,  (17)
P9(2,2) = P2 2) 18
+P?(2,1)PY(2,2)P? (1, 2)/P",
P9(2,3) = PP(2,3)+ P2, 1)[PY(2 3)
2 (€ ©) (19)
+P?(1,3)PM(2,2)1/P?,
P(3,1) = PY(3,1) + PP(2,1)[PY(3, 1)
(2) (1) (0) (20)
+P?(1,1)PM(3,2)1/P?,
(c) — p®2 (2) (1)
POE2) = PG 2 +PULDIPYED) o),

+PY(2,2)P?(3,1)1/P?,
P(3,3) = PY(3,3)+P?(3,3)
+{PY(3,2)[P?(1,3) + PP(1, )PP (2,3)] (22)

+ P93, 1)[PY(2 3) + PP (2,2)P? (3, 1)} 1P,

where P@ = 1 — PA(1, 1)PD(2, 2). The superscripts
“c,” 1, and 2 refer to the complete P matrix, P matrix of
the SAW structure on the left, and P matrix of the SAW
structure on the right, respectively. By an SAW struc-
ture, we mean both an individual electrode and a group
of electrodes for which the P matrix has been calcu-
lated.

The expressions presented above can be used for
calculating the input admittance of aninterdigital trans-
ducer incorporated into afilter or aresonator with arbi-
trarily varying electrode spacings and electrode aper-
tures and with the actual distribution of the surface cur-
rent (charge) over the electrodes. Note that the input

TECHNICAL PHYSICS  Vol. 47

No. 9 2002

1161

admittance of the transducer is specified by the element
P©(3, 3) of the P matrix for the whole SAW structure.

SURFACE CURRENT DISTRIBUTION
OVER THE ELECTRODES

L et the complex amplitudes Rq(w) and S(w) (fisthe
electrode number) of surface acoustic waves under
each of the electrodes be known. We will derive an
equation for J(Z) using the electrodynamic boundary
condition for the tangential component of an ac electric
field on the surface of a perfectly conducting infinitely
thin metal sheet (IDT):

E'(Y=0,2)+ENY=0,2) =0, (23)

where E'(Y = 0, 2) is the tangential component of the
electric field produced by a system of strip currents on
the electrode surfaces, and EA(Y = 0, Z) isthe tangential
component of the electric field due to the surface acous-
tic waves R(Z, w) and §(Z, w) that propagate under the
electrodes on the piezoel ectric surface.

Boundary condition (23) yields

ﬂJdZ'J(Z')/(Z' —Z) — Ry (Ker) eXp[—j (Kest —Ko)Z]
¥ (24)
+ S;(Ket) €XP[j (Kett —Ko)Z] = O,

where the integration path & consists of intervals [,
b], & and b are the coordinates of the electrode edges
ontheZ axis, N = [T, (Kg —Ko)] ™, € iSthe permittivity
of the piezoelectric, and Ri(Kg) and S(Kg) are the
complex amplitudes of the forward and backward sur-
face acoustic wavestraveling in the £Z directions under
electrode no. f.

Assume that the complex amplitudes of the poten-
tials remain constant within a particular electrode but
may vary from electrode to electrode in accordance
with Egs. (9)<(11).

Equation (24) is a singular integral equation that
describes the surface current distribution over the IDT
electrodes with alowancefor the reaction of the excited
wave. To solve this equation, we will take advantage of
the method applied earlier [4, 5] to theintegral equation
for current distribution in spin-wave transducers. First,
we apply theinversion procedure to the Cauchy integral
[6] to remove the singularity:

-1/2

I(2) = !H (Z—a'f)(b'f—z)] {Qm-1(2)

A
f=Lh

+J'dz'J(z')[F+(z', k) exp(—jkZz) (25)
K4

+F(Z, k) exp(jkz)]} = 0,
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where a; =2a/(b, —a,), by =2b/(b,—a,), z=2Z/(b, -
&), K= (Kt — Ko)(by —a@y), and Qy_4(2) = G, 2"~ 1 +
Cy_,2""?+ ...C,isan agebraic polynomial of degree
no higher than m— 1 whose coefficients are found from

the condition imposed on the magnitude and direction
of the currentsin the electrodes:

by
I = [d2)(2).
ag

The quantities F*(z, k) are defined as

MK

|_| (z,—a})

A
f=Lh

F*(z,k) = Idzl
£

(26)
1/2 D
x (b~ 2,) /(zl—z@?(k)exp[ijkzﬂ,
|

where Af (K) = () R(K) and A7 (k) = () S (K).
Oneachinterval of integration a; < Z < b, we change
the variablesto z; = 2z— (b + &)/(b, — a,), coming to
J2 =[1-(z)17V2,(7), and then Z; =sin(t;). In this
way, we demonstrate that the kernels F*(z, k) in (26) are
Fredholm kernels. Then, (25) is an inhomogeneous

Fredholm integral equation of the second kind and its
solution has the form [7]

" 112
J(2) = !ﬂ (Z—a'f)(b'f—z)] o

f=Lg
X[Qu-1(2) + C'F'(z k) + CF(z )],

where the coefficients C* are calculated from the sys-
tem of equations according to the Cramer rule:

C"—C'Fi(+k) + CFi(+k) = fy(+k),

(28)
C —C'Fi(-k) + CFi(=k) = f,(-k),
where
MA -1/2
fi(xk) = J’dz r| (z—ay)(bi—2)
K f=Lp
(29)
g
X Qm-1(2)exp[tjk7] 51
0

DMITRIEV

Mlﬁ -1/2
Fi(xk) = Idz I_l (z-a}) (b} -2)
£ f=Lp
(30)

O]

x F*(k, 2)exp[£ k7] [}
U
O

Expressions (27)—(30) describe the surface current
distribution over the electrodes with allowance for their
mutual coupling and reaction of the surface acoustic
wave.

If the variation of the complex amplitudes Ri(Kg;)
and S(kg) of the acoustic waves with propagation
length can be neglected (as for materials with weak
piezoelectric properties), J(Z) can be determined
directly from (27) in view of Egs. (28)—30). For mate-
rials with pronounced piezoelectric properties, the
complex amplitudes Ri(k) and S(k) vary significantly
asthewaves propagate through an IDT, and J(Z) should
be sought by the method of successiveiterations. At the
initial stage of analysis, the response of the piezoelec-
tric to the surface current distribution should be
neglected. In this case, the zeroth-order approximation
J°(2) to J(Z) is given by (27) with C* = 0. Further, hav-
ing calculated Ry(k) and S(K) from (9)—<11) and (14)—
(22) for J(2) = J%(2), we find C* and obtain the first-
order approximation to J(Z) from (27) with allowance
for the response of the piezoelectric to the current dis-
tributioninthe IDT electrodes. By repeating this proce-
dure, any higher order approximation to J(Z) can be
calculated.

ANALY SIS OF SAW DEVICES
WITH DISPERSIVE IDTs BY THE COM METHOD

Consider an SAW device with a dispersive IDT
where the center line of the electrodes has a gradually
varying dope relative to the propagation direction

(Fig. 1). To caculate the admittance matrix Y of the
input (output) IDT, we will use the modified COM
method (the related equations were derived above) and
partition the original SAW structure into channels. The
components of the input admittance will then be found
by summing over the channels:

Nk

Y(ly, my) = Z Y (ly, my), (31)

where N is the number of channels, Y,(ly, my) are the
components of the input admittance matrix for the Kth
channel,ly=21or2,andm,=1or 2.

We assume that the number of channels is suffi-
ciently large; therefore, the analytical frequency
TECHNICAL PHYSICS  Vol. 47
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responses do not change with increasing Nx. When cal-
culating the contribution Y(ly, my) of the Kth channel
to the total admittance of the SAW device, wewill con-
sider the kth channel as an independent SAW device
(Fig. 4) and use the components of the P matrices for

theinput, P (I, mp), and output, P (I, mp), IDTsin
the Kth channel. Then, for the input admittance of the
Kth channel, we have

Yo(1,1) = P(3, 3)

B A A (32)
+ P (1, 1P (3, 2)PP (2, 3)/ Yo,
Ye(1,2) = PL(3,2)P(L, 3) P/ Yo, (33)
Ye(2,1) = PL(2,3)PP(3, 1) D/ Yo, (34)
Y(2,2) = P&(3,3
«(2,2) = P(3,3) -

+ PP (2, 2)PP (1, 3)PP(3, 1)/ Yo,

where Yo = (@2 — P (2, 2P (1, 1), ®¢ =

exp(j2nzl® v —az¢®), 8P = 28—z isthe
distance between the first electrode of IDT-B and the

last electrode of IDT-A (Fig. 1), and A isthe wavelength
on the free surface.

The components PY (I, mp) and P (I, me) will
be calculated with the modified COM method. To syn-
chronize the channels, it is necessary to take into
account the initial phase of the first electrode for each
of thechannelsin IDT-A (IDT-B). To thisend, weintro-
duce phase factors into P-matrix components (13) for
the first electrodes of the channels:

PP 1) = PLDIFPZE}” (36)
PA(L,2) = P(1, 2FM{Z) (37)
PA(1,3) = P(1, 3)FM{Z} (38)

P2, 1) = P¥W(1,2), (39)
PP(3,1) = P, )FMZY} (40)

where F1¥{ i1 } = exp(j2nZi Ay —a Z ), Zch =
z{" — 7" is the distance between the first electrode
(with the number Ly) in the Kth channel of IDT-A and
the first electrode of the whole IDT-A, and A, is the
wavelength under the metallized surface (contact line).
The remaining P-matrix components for the first elec-
trode remain unchanged.

With regard for the phase factors, the P-matrix com-

ponents for the last electrodes in each of the IDT-A
channels take the form

P(1,2) = P(L,2)F{Z¢% (41)
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Fig. 4. Kth channel of the device.
P2, 1) = PW(1,2), (42)
PP(2,2) = P(2, 2)[FP1 2% 17, (43)
PM(2,3) = P2, 3)FP{Zy (44)
P (3,2) = P(3,2)F{ 2% | (45)

where FS¥(Z) = exp(j2nz, Ay, — azy%) and
z&, = 2\ - z4) isthe distance between the last elec-
trode (with the number N) of thewhole DT and thelast
electrode of the Kth channel (with the number My). The

remaining P-matrix components for the last electrode
remain unchanged.

Similar expressions can aso be written for IDT-B
(components P (I, m)) by setting FY) (Z%) = 1,
because the phase shift of the wave outside IDT-B is
insignificant.

Now, the P-matrix components P{’ (I, my) and

P® (I, mp) for the Kth channel can be calculated by
multiplying the respective components for the elec-
trodes in the channdl:
Mic
P (e me) = 7] Pkl m),
(46)
Mg
P (e, mp) = [ Pinl, m),

_. B
n=Lg

where Ly and My are the numbers of the first and last
electrodes in each channel (Fig. 4) and the product sign
means the successive calculation of the products
according to formulas (14)—22).

THE DESIGN OF A FILTER WITH DISPERSIVE
LADDER IDTs

With the synthesis method proposed above and the
analysis based on the modified COM method, we
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Fig. 5. Geometry of the filter with fy = 105 MHz and Af =
10 MHz.
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Fig. 6. (8) Experimental frequency responses of the filter
and (b) those calculated by the modified COM method.

designed and fabricated a dispersive-DT-based filter
with f, = 105 MHz, Af = 10 MHz, and K, = 1.45. To
increase the input and output impedances, the input and
output transducers were composed of two identical
IDTs each (Fig. 5). The entire filter circuit occupied a
18 x 4.8-mm board. Based on the theoretical analysis,
the dispersion delay per IDT (T,,) necessary to provide
the required bandwidth ratio of the AFR was chosen to
be 1.9 usat Af,, = 15 MHz. To match the input and out-
put of the filter with 50-Q transmission lines, the elec-
trode aperture at the center frequency, W( f), was cho-
sen to be 11\, and a 100-nH matching inductance was

DMITRIEV

employed. The small value of the aperture did not cause
diffraction-related distortions in the filter's AFR and
PFR, because the piezoelectric material was Y, Z-cut
LiNbO;. To provide the dispersion delay desired, each
of the IDTs consisted of 403 split electrodes. To elimi-
nate Fresnel ripple on the filter's frequency responses,
apodization was applied to thefirst 75 and last 75 elec-
trodes of the IDT. Our calculations showed that K,
equal to 0.3 provides aflat AFR.

The board was fabricated by photolithography and
electron sputtering of Al in a vacuum. Experimental
frequency responses of the filter are shown in Fig. 6a;
those calculated by the modified COM method at Ny =
400, in Fig. 6b. The AFRs were taken with an R4-37
meter of complex transmission coefficients; the PFRs,
with a G4-176 precision signal generator and an FK2-
12 phase meter. The phase response @( f) isrepresented
in terms of the deviation from the linear law: A® =
O(f) — 2mTy( fy — ), where T, = 2.3179 psis the filter
delay at the frequency f,. The out-of-band attenuation
in the high-frequency rangeis slightly smaller than the
theoretical value because of the spurious excitation of
bulk waves. To suppress them, the back surface of the
substrate was made corrugated. Without the corruga-
tion, the out-of-band attenuation in the high-frequency
range was 10 dB lower than in Fig. 6a. Apparently,
refined corrugation would enhance the out-of-band
attenuation.

THE DESIGNS OF DISPERSIVE DELAY LINES
WITH LADDER-TYPE IDTs

With the synthesis method proposed above and the
analysis based on the modified COM method, we
designed pulse-forming (with an unweighted IDT aper-
ture) and pulse-compressing (with a weighted IDT
aperture) dispersive delay lines (DDLs) with f, =
700 MHz, Af =200 MHz, and T = 0.6 ps. The analysis
showed that, in the frequency range of interest, the flat-
top AFR of the pulse-forming DDL is achieved at K =
0, Af,, = 260 MHz, and T,, = 0.34 ps for each of the
IDTs. The electrode aperture at the center frequency,
W(f,), was chosen to be 25\,. As the piezoelectric
material, we used Y, Z-cut LiNbO;. The dispersion
delay required was provided with 549 solid electrodes
in each of the IDTs. To eliminate Fresnd ripplesin the
frequency responses of the pulse-forming DDL, the
first 64 and the last 46 IDT electrodes were apodized.
The Taylor function with a—45-dB sidelobe level was
used as aweighting function for the compressing DDL.
The delay line boards measured 13 x 3.5 mm.

The delay lines were fabricated by lift-off lithogra-
phy, electron-beam sputtering of Al in a vacuum, and
ion—chemical etching of the piezoelectric surface. The
minimal wavelength of the wave excited by the IDT
was =4 um, and the electrodes were =1 um wide.
Therefore, the resolution of optical lithography was
insufficient for split electrodes to be used. To mitigate
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Fig. 7. (a) Experimental frequency responses of the pulse-
expansion dispersive delay line and (b) those calculated by
the modified COM method.
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Fig. 8. (1) Experimental frequency responses of the pulse-
compression dispersive delay line and (2) those calculated
by the modified COM method.

the effect of spurious reflections on the frequency
response of the DDLSs, the thickness of the aluminum
electrodes was as small as 0.075 um. Also, the elec-
trodes were placed in grooves etched in the LiNbO;
substrate. Figure 7a shows experimental frequency
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responses of the pulse-forming DDL; those calculated
by the modified COM method are plotted in Fig. 7b.
The phase response ®(f) in Fig. 7 isshown asthe devi-
ation from the given quadratic law: A® = ®(f) —
TG fy — )% — 21Ty (f, — f), where G, = 323 MHZz/us is
the slope of the dispersion curve and T, = 0.9045 usis
thefilter delay at the frequency f,.

The measured and calculated frequency responses
of the pulse-compressing DDL are displayed in Fig. 8.
In our calculations, the structure was divided into
=400 channels, so that a further increase in the number
did not change the results to within the graphical accu-
racy in Figs. 7 and 8. The calculations were performed
on a 1-GHz Pentium-111 PC. The calculated insertion
losses were 18.2 dB; the measured value, 22 dB. The
difference is apparently associated with the neglect of
ohmic losses in the electrodes, which were only
0.075 pum thick.

CONCLUSION

The method developed in this paper can be used for
designing SAW devices such asfilters, dispersive delay
lines, and resonators, on both “strong” piezoelectrics
(lithium niobate and lithium tantalate) and “weak”
piezoelectrics (quartz). In addition to the devices
described, the method is applicable to designing SAW
filters of any other type, including transversal filters,
longitudinal-wave resonance filters, transverse-wave
resonance filters, and SAW-resonator-based |adder-
typefilters.

REFERENCES

1. B. R. Potter and C. S. Hartmann, |[EEE Trans. Sonics
Ultrason. SU-26, 411 (1979).

2. V.F. Dmitriev and|. S. Mitrofanov, in Proceedings of the
International Symposium on Acoustoelectronics, Fre-
guency Control and Sgnal Generation, Poland, 1998,
p. 463.

3. S. V. Birykov, G. Martin, V. G. Polevoi, et al., IEEE
Trans. Ultrason. Ferroelectr. Freq. Control UFFC-42,
612 (1995).

4. V. F. Dmitriev and B. A. Kalinikos, Radiotekh. Elektron.
(Moscow) 33, 2248 (1988).

5. V. F. Dmitriev and B. A. Kalinikos, Zh. Tekh. Fiz. 59 (1),
197 (1989) [Sov. Phys. Tech. Phys. 34, 118 (1989)].

6. N. I. Muskhelishvili, Singular Integral Equations
(Nauka, Moscow, 1968; Wolters-Noordhoff, Groningen,
1972).

7. S. G. Mikhlin, Integral Equations (OGIZ, Moscow,
1947).

Trangdlated by A. Khzmalyan



Technical Physics, Vol. 47, No. 9, 2002, pp. 1166-1171. Translated from Zhurnal Tekhnicheskor Fiziki, Vol. 72, No. 9, 2002, pp. 102-107.

Original Russian Text Copyright © 2002 by Arzhannikov, Kuznetsov, Sinitsky.

ELECTRON AND ION BEAMS,
ACCELERATORS

Spectral Propertiesof I nterference Microwave Filters Based
on Crossed Polarizing Gratings

A. V. Arzhannikov, S. A. Kuznetsov, and S. L. Sinitsky

Budker Institute of Nuclear Physics, Sberian Division, Russian Academy of Sciences,
pr. Akademika Lavrent’ eva 11, Novosibirsk, 630090 Russia
e-mail: sakuzn@inp.nsk.su
Received January 23, 2002

Abstract—An analytic treatment and computer calculations of the spectral properties of novel interference
microwave filters are carried out. A filter is represented by a set of plane-parallel polarizing gratings made of
linear conductors whose orientation in neighboring gratings is chosen in a special way. The analysisis based
on the assumption that the polarization properties of the gratings are perfect. © 2002 MAIK “ Nauka/l nterperi-

odica” .

INTRODUCTION

Polarizing gratings made of linear conductors are
widely used in microwave devices operating in the mm-
and sub-mm-ranges. In particular, such gratings are
employed as mirrors in microwave Fabry—Perot inter-
ferometers (FPIs) [1-5].

In conventional microwave FPIs, the orientation of
the conductors in mirrors—gratings is identical, which
makes it possible to apply the theory of optical FPI.
Specifically, the relative transmission bandwidth ANA
for a given interference order mis uniquely defined by
the energy reflection coefficients R, and R, of FPI mir-
rors[6]:

AN _ 1-R
AN mn/R

whereR= ,/R|R;.

Expression (1) shows that, for a given m, one can
vary the relative bandwidth AA/A by using only mirrors
with different reflectances. If amicrowave FPl works as
a filter with a variable transmission band, the replace-
ment of mirrors—gratings causes significant difficulties.
First, the necessity for system readjustment arises. Sec-
ond, one must have alarge number of gratingswith dif-
ferent reflection coefficients.

To get rid of the above disadvantages, it is expedient
to use a multibeam interferometer (interference filter)
in which the conductors of neighboring plane-parallel
polarizing gratings make an angle with each other. The
advantage of interferencefilterswith crossed gratingsis
the possibility of smoothly varying the spectral proper-
ties by merely varying the crossing angles without
replacing the gratings.

In this work, we analyze the spectral properties of
interference microwave filters with ideal polarizing

(1)

gratings. The calculations are performed by the meth-
ods developed in [7].

STATEMENT OF THE PROBLEM

Consider the general case of an interference filter
consisting of N arbitrarily crossed plane-parallel grat-
ings made of linear conductors (Fig. 1). Let us number
the gratings from left (first) to right (Nth). The XOY
plane of the Cartesian coordinates XYZ coincides with
the plane of thefirst grating, and the OZ axisis directed
tothe Nth grating. Let d,, be the spacing between the nth
and (n + 1)th gratings and a,, O [0, 1 be the counter-
clockwise-counted angle between the OX axis and the
direction of the nth grating conductors. Since the prop-
erties of the filter depend on the relative crossing
angles, we assume that the orientation angle a, of the
first grating is constant and equals Tv2.

We will also assume that the gratings are perfect
polarizers. This means that the amplitude transmission
and reflection coefficientsfor E- and H-polarized waves
meet the equalities

=0 p=-1 t"=1 p'=0 (@

Physically, equalities (2) imply that the period of the
conductorsin the grating is negligibly small in compar-
ison with the wavelength of incident radiation and that
the conductivity of the conductor material is indefi-
nitely high [8].

Let a plane monochromatic wave be incident from
theleft (Z < 0) on thefilter orthogonally to thefirst grat-
ing. The amplitude of the electric field of thewaveisE,
and the absolute value of the wave vector is k. Hereaf-
ter, we assumethat theincident waveisH-polarized rel-
ative to thefirst grating (Fig. 1). In this coordinate sys-
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1 n

1167

n+1 N

n+1

Fig. 1. Basic diagram of an interference microwave filter consisting of N arbitrarily crossed gratings.

tem, the Jones vector of the waveis

£ - b0

0~ |:|0D'

Such a polarization of incident radiation complies
with conditions (2). Note that the polarization consid-
ered is basically different from a conventional micro-
wave FPI employing an E-polarized wave.l We are
looking for the energy transmission coefficient of the
filter. To neglect diffraction effects, we assume that the
apertures of the gratings and the transverse size of the
incident beam are much greater than the wavelength A.

SPECTRAL PROPERTIES OF A FILTER
WITH TWO CROSSED GRATINGS

The calculation of the transmission matrix T,  of a

two-grating filter by the method of recurrence formulas
[7] inview of equalities (2) yields

o O cne - o0

S (1—e2'y)e'ysin0(D sna : OD
2 = Py 2 e 4,
(1-e"'sna) U . .g
—cosa : 0

wherey=kd, d=d,;, and a = a,.

Recall that an arrow pointing rightward indicates
that the z component of the wave vector of the incident
waveis aigned with the OZ axis.

For an H-polarized wave, the energy transmission
coefficient of the filter is found from the expression

L1An E-polarized wave would be completely reflected from the first
grating of the filter, so that other gratings would make no effect
on its transmittance.
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-’I\_ZH = |T2711 F + |T2721 F The I'eSU“I |S
4sin’y

T, = 3

2 2 20
cos acot'a +4sny

Figure 2 plotsthe quantity T~ versusthe parameter
y/mtfor various orientation angles a of the conductorsin
the second grating.

The positions of maxima and minimain the curves
T2 (y) are found from the conditions
min:y = nm, where n = 0, 1,2, ...;
max:y = nr+ 12,
The corresponding wavelengths are

min _ 2d max _ 2d
A = n’' Am T n+12

Ts 512 ry3

l.O_F V ( w

0.8 -

0.6t
V6

0.4

0.2
W12

0 OI.S 1.0 1|.5 2.0 2|.5 3.0

ym

Fig. 2. Spectral transmission curves of a two-grating filter
for various orientation anglesa of the second grating. Num-
bers by the curves indicate the values of the angle €, which
isequa toa if0sa <t2or (m—-a)if W2<a <t
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In minima, the filter transmission equals zero
regardless of the value of a. In maxima, the transmis-

sion coefficient is Tomex = 4sin2a/(1 + sin?0)2. The

function T zmax (01) decreases monotonically from unity
to zero with a varying from 172 to O (or from 172 to ).

Note wide interference maxima in the transmission
curves at any value of a. Thus, we cannot design a nar-
row-band transmitting interference filter consisting of
two ideal polarizing gratings. Nevertheless, an advan-
tage of this structure is that it makes it possible to sep-
arate out narrow reflection bands of a desired width at
o closeto 02 (i.e, a a, a,). In this case, the trans-
mission coefficient of the filter is close to unity nearly
throughout the spectral range of dispersion.

From (3), one can easily demonstrate that the rela-
tive width AN of the reflection band depends qua-

T, =

(1—e"")(1-€e"?)e" " gn(a +B)sna

ARZHANNIKOV et al.

dratically on the grating misalignment & when the mis-
alignment issmal (|0]|= |12 -qa| < 1):

2

AA po.

)\nm'” ntt
Here, the parameter p defines the reflection coefficient
level used for calculating the bandwidth. Specifically,

p = 1 for the half-maximum level and p = 3 for alevel
of 0.1.

SPECTRAL PROPERTIES OF A FILTER
WITH THREE CROSSED GRATINGS

If conditions (2) are satisfied, the transmission
matrix T, of athree-grating filter is given by

wherey; = kd,, ¥, = kd,, a = a,, and 3 = 12 — a3,

The calculation of the energy transmission coeffi-
cient of the filter by the expression T5~ = [T53|° +
| Ts2/? yields
Fo o= 165in2(0( + B)sinza sinzylsinzy2 @

X2+ 4sin’y,siny,[sin’(a +B) + sinfa]”

where
X = sin(ys +Y,)[cos’(a +P) + cos’al]
+sin(y; =Vl cosz(cx +B) - cosza] .

Consider two possible cases: 3 =0and 3 £ 0.

() B = 0 (equa orientation of the outer gratings).
Condition 3 = 0 makes it possible to reduce expression
(4 to

- 4sin’y,sin’

Ty = gl W ()

cot asin™(y, +V,) +4sin"y,;sin’y,

Figure 3 showstypical T3 versus (y; + Y,)/Ticurves
for various orientation angles a of conductors in the
middle grating. It is seen that both the transmission and
reflection bandwidths vary smoothly with the angle a.
Narrow-band transmission is observed when the mid-
dle grating is amost orthogonal to the outer ones (o <
1lor (t—a) < 1). Narrow-band reflection occursin the
opposite case, when the angles of orientation of the

C (1—e2sin’(a +B))(1—e"sin’a) —

E cos3 OE

- Oeeeenn, O
2i(y,+y,) | 2 2 '
1 2 . D

e cos (a +[3)cos GD—SlnB . 0

three gratings are nearly equa (|72 —a| < 1). Thus, a
three-grating filter retains the advantage of a two-grat-
ing one. Note also that the minimum and maximum val-

uesof Ts remain equal to zero and unity, respectively,
for any value of a, which isthe consequence of the ide-
ality of gratings as polarizers.

It follows from expression (5) that the positions of
minima and maximain the transmission curve meet the
conditions

min:y; = i, where n; = 0,1,2,...; j=12
max :y,;+y,=mrm, where m=1,2,3,...; m#n,.
Then, the associated wavelengths are
)\Tn - 2_dj1 J — 1,2; )\max — 2(d1+d2).
i n. m

J

From expression (5), one can derive formulasfor the
relative bandwidth in the practically important narrow-
band operating modes:

A\ p¥’
)\nmi'” n;

(6)

for narrow-band reflection (|8| < 1, where d = W2 — a);

DA APPnE”
A mTt

: (7)
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where

DcoszAm, misodd
m =0,

Lsin"A,, miseven,
rm(d; - dy)
2 (dy+dy)’

for narrow-band transmission (€ < 1, wheree=a or e =
T—0).

The parameter pinformulas(6) and (7) equals 1 and
3 for reflection (transmission) coefficient levels of 0.5
and 0.1, respectively.

At agiven order of interference m, therelative band-

width AAMAT™ can be varied by varying not only the
crossing angle of the gratings but also the spacing
between them owing to the presence of the phase
parameter @, in formula (7). Therefore, the ratio

AN A canvanish evenat € # 0. It is seen that the con-
dition @,, = 0 is satisfied when minima with different
subscriptsj coincide. The resonance values of the spac-
ing (for which @,, = 0) are related to the wavelength of
amaximum as

A, =

m_il A m_?l
4 "M 4
Here, | is a positive integer of the same parity as m. It
varies from 1 to mor from O to mif mis odd or even,

respectively.

In practice, the free-dispersion spectral range of an
interference filter should be maximized. For this rea-
son, it is expedient to take the same distances d; and d,
S0 as to eliminate even maxima.

(ii) B # 0. Inthe case of an arbitrary misalignment [3
of conductorsin the outer gratings, the spectral curve of
a three-grating filter transmittance is intermediate
between the above two variants 3 =0and 3 = W2 — a
(the latter corresponds to a two-grating filter). Hence,
the analysis of the case 3 # 0 does not provide funda-
mentally new solutions. The only exception is that nar-
row-band reflection can take place at any value of a if
the orientations of the second and third gratings are
close (|72 — (o + B)| < 1). For this reason, we restrict
our consideration to some remarks regarding the opti-
mum value of .

As follows from formula (4), if 3 # 0, the filter has
the maximum transmission at wavelengths meeting the
condition x = 0. The maximum transmission coefficient
isgiven by

d, = d, =

max
AT

4sin’(a +B)sin‘a
[sin’(a +B) + sin“a]”
Expression (8) shows that in the case of narrow-

band transmission (¢ — 0) and anhonzero value of the
angle 3, the maximum transmission coefficient falls to

Tamax =

(8)
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Fig. 3. Spectral transmission curves of athree-grating filter
for various orientation angles a of the middle grating for
3 =0 and di/d, = 0.7. Numbers at the curves indicate the
values of the angle €, whichisequal toa if 0< a < 1W2 or
(m-a)ifm2<sas<sm

2610 @S Ty, . o 4€%/sin?B. This sets afundamental

limitation on the ultimate transmission bandwidth
achievable by varying a. Hence, the case 3 = O, for

which, as was demonstrated above, Tame = 1 at any
value of a, isoptimal.

Calculations of the relative transmission bandwidth
favor the view that the same orientation of the outer
gratings is the optimal condition. If € and |B| < 1, the
relative bandwidth takes the form (cf. (7))

BN [ 2pQu[e’+ (e +B)T

max
AM mrt

(9)

From (9), at agiven €, the bandwidth is minimum at

B = 0. Figure 4 shows curves Tama (€) and plots of
spectral resolution for various values of f3.

SPECTRAL PROPERTIES
OF COMPLEX FILTERS

Anincrease in the number of gratingsin an interfer-
ence filter complicates the interference pattern in the
structure and gives rise to new features in its transmis-
sion (reflection) spectrum. For this reason, an interfer-
ence filter containing more than three gratings will be
called complex.

In addition to the possibility of controlling the shape
of a transmission (reflection) curve, complex filters
offer such an important advantage as much steeper
transmission (reflection) band edges in comparison to
two- and three-grating filters. Let us demonstrate this
with afive-grating filter.
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Fig. 4. (8) Maximum energy transmission coefficient and
(b) spectral resolution of a three-grating filter versus the
angle €. Numbers by the curves indicate the values of the
angle B (in degrees). m=1, d4/d, = 1.

We represent afive-grating filter asacombination of
two optimally configured three-grating filters and start
withthecasewhend, =d,=d;=d,=d, 0, = a3 =0z =
172, and a, and a, are free parameters. It can be shown
that the transmission spectrum of such afilter has prin-
cipal maxima corresponding to the condition y = mrt
(y=4md/A, m=1, 3, 5,...) and extra ones lying sym-
metrically on either side of the principal peaks. The
positions and amplitudes of the extra maxima depend
on the orientation angles of the second and fourth grat-
ings. Inthemost interesting case o, = a, =, theampli-

(1-€eY)sinasin’(a +B)

ARZHANNIKOV et al.

tude of the extra maxima equals unity and their steep-
ness is maximum (Fig. 5). For a ranging between 174
and 3174, the transmission coefficient of the filter in
valleys between the principal and extra maxima (here-

after denoted as Tsmin ) isno lessthan 0.86. This makes
it possible to use afive-grating filter as a band-pass fil -
ter with atransmission bandwidth approximately equal
to the spectral interval AI' between the extra maxima.

A comparison of the transmission curves for three-
and five-grating filters shows that the latter has an
apparent advantage when operating in the wide-band
mode (€ = 1), since the three-grating filter has transmis-
sion bands with smooth edges (Fig. 5). In the narrow-
band mode (¢ — 0), thefive-grating filter is still supe-
rior in terms of the steepness of the edges. However, in

this case, the value of Tsmin decreases to zero and the
complex filter selects three closely spaced bands
instead of one. This unwanted effect can be eliminated
by changing the operating conditions for the five-grat-
ing filter.

The analysis shows that one can satisfy the require-

ment Tsmn 01 and vary the value of Al by changing
the orientation angle o of the third grating. The value

of angle o must provide reasonable values of Tsmin and
steepness of the band edges. Consider the following
configuration of afive-grating filter: d; =d,=d;=d, =
d o =05=120,=0d,=0,and a; =12 — . The
energy transmission coefficient in this caseis given by
|2

(10)

wherey = 4rd/A.

I
\)

2.0
y/m
Fig. 5. Spectral transmission curves of five-grating (solid

lines) and three-grating (dashed lines) filtersfor various val -
ues of the angle € (numbers by the curves).

[1+¢€Ycosa][1+€Y(1+eY)cosa + €Y cos2(a + [3)]|

0.6

04r

0.2

—T4

| |
0 0.5 1.0 1.5 2.0
ym

Fig. 6. Variation of the spectral transmission curves of a
five-grating filter with the orientation of thethird grating for
o = 176. Numbers by the curves indicate the values of 3.
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Figure 6 shows the spectral curves of thefilter trans-
mission for several values of the angle 3.

In the wide-band mode (|@|= 1, wherep=a + 3 or
@ =T11— (0 + B)), the spectral interval Al between the
extra maxima makes a major contribution to the band-
width. According to expression (10), the value of Al
expressed in unitsof yis

JD

2| cosa|J’

Al = 2%‘[—2arccos

where D = 2sin?(a + B) —sin“a[sin®(a + B) + sinfa].

The value of AI' is maxima when the second
(fourth) and third gratings are equally oriented (a + 3 =
1/2). If the third and second (fourth) gratings are
crossed, thevalue of Al decreases and the principal and
extra maxima merge together at D = 0. The narrow-
band mode arises when |@| < 1 (the crossing angle
between the second (fourth) and third gratings is close
to 172). In this mode, D < 0 and the relative transmis-
sion bandwidth has the form

B\ 4pnep
Am —mmntsinot) |

CONCLUSION

We theoretically studied the spectral properties of
interference filters consisting of several crossed polar-
izing gratings. The analysis made it possible to obtain
the dependences of the transmission (reflection) band
shape and width on the crossing angles between the
gratings, which opens up possibilitiesfor filter applica-
tions.

It was demonstrated that a simple two-grating filter
can operate as narrow-band only in the reflection node.
Initsturn, a three-grating filter can be narrow-band in
both the reflection and transmission modes. More com-
plex filters, retaining the advantages of three-grating fil-
ters, provide an additiona possibility to vary both the
shape and the steepness of the transmission (reflection)
spectral curves. In thiswork, this property was demon-
strated with afive-grating filter.
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The analysis was carried out under the assumption
that the gratings operate as perfect polarizers and that
the angular divergence of radiation is absent. In this
approximation, the ultimate spectral resolution
(MO, attained at the optimum mutual orientation of
the gratingsislimited only by diffraction effects due to
a finite transverse size of the gratings. In addition, the
value of (AM/AN). is bounded above when the gratings
are misaligned with respect to the optimum orientation.
For example, a misalignment of 1° between the outer
gratings of a three-grating filter gives (AAA) o 0 10°
for a maximum transmission coefficient of about 70%
(Fig. 4).

In the next work, the effect of imperfect polarizing
gratings and of the angular divergence of incident radi-
ation on the spectral characteristics of the filterswill be
considered.
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Abstract—Using afield electron microscope and afield electron dispersion energy analyzer, carbon nanocrys-
tals contained in polyacrylonitrile (PAN) fibers are studied. Transition of the emitting nanocrystals into the sec-
ond stabl e state has been discovered, corresponding to an emission current and field electron energy distribution
of magnitudeslower by nearly an order of magnitude, with an additional low-energy peak. Heating the samples
at 750°C restoresthe initia characteristics of the field electron energy distribution and current—voltage charac-
teristics of the nanocrystals. The forbidden bandwidth of the nanocrystals has been determined. © 2002 MAIK

“ Nauka/lInterperiodica” .

INTRODUCTION

The emergencein the 1970s of technologiesfor pro-
duction of thin carbon fibers stimulated an extensive
research effort aimed at creating a carbon field emis-
sion cathode featuring a high melting point, low
adsorption of residual gasesin vacuum, high conductiv-
ity, and mechanical strength. However, the attendant
problems still have not been overcome: (1) forming a
tip with asmooth surface and regular image; (2) energy
analysis of the field emission electrons have revealed
two kinds of energy distributions: normal distribution,
explainable in terms of the model of free electrons and
abroad distribution with two maxima. Energy analyses
of the field electron emission were complicated by the
heterogeneity of the graphitized carbon electrodes,
where both crystalline and amorphous phases of carbon
were present. The form of energy distribution could not
be related to the phase composition of the emitter spot
probed nor could the energy band structure of this
region be accounted for. It isknown that nanocrystal s of
graphitized carbon materials have a bandwidth that
decreases from 0.5-0.3 to <0.01 eV as the thermal
treatment temperature is raised from 600 to 2300°C,
and the nanocrystal size increasesfrom ~1.5to ~15 nm

[1].

In this work, the object of study was PAN carbon
fibers (carbon fiber prepared from a synthetic polyacry-
lonitrile fiber) annealed at a temperature of 900°C. The
base planes of the nanocrystals it contains are oriented
along the fiber axis; the size of nanocrystals was 1.5—
8 nm; and the forbidden band width was in the range
0.15-0.03eV [1, 2].

EXPERIMENTAL

The studied fiber of length ~1 mm was fixed with an
aquadag to a narrow strip of tantalum foil welded to a
tungsten arc and, after drying, was heated in vacuum at
a temperature of 750°C measured with an optical
pyrometer. The field cathode obtained was introduced
via a locking unit into a USU-4 superhigh-vacuum
chamber equipped with a Muller e ectron-microscope
projector and an electrostatic energy dispersion ana
lyzer whose secondary-electron multiplier was oper-
ated in the pulse-count regime.

After locking, “forming” was carried out under
rough vacuum conditions by raising the total emission
current to ~150 pA, whereby nanocrystals could beiso-
lated on the fiber emitting surface due to the sputtering
of the amorphous carbon by ions of theresidual gas[3].
The picture observed on the microscope monitor gave
evidence of intense electron emission from the entire
carbon fiber end face. A separate bright spot was pro-
jected onto the energy analyzer probing orifice. Under
a superhigh vacuum, the sample emission surface was
additionally cleaned by heating the tungsten arc to
750°C (the surface of carbon materialsis almost com-
pletely cleaned by heating to a temperature of =650°C
[4]). Measurements of the energy distribution of field
emission electrons (EDFEE) were performed using a
technique described in [5], and the Fermi level position
was determined using a reference tungsten emitter.
Current—voltage characteristics (IVC) of the probe cur-
rent were plotted as values of the electron current pass-
ing the energy analyzer and corresponding values of the
anode voltages U,
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EXPERIMENTAL RESULTS

After heating the emitter in a superhigh vacuum, the
probe current became stable enough for EDFEE mea-
surements. Figure 1a shows how EDFEE varied with
anode voltage: the energy distribution shifted in incre-
ments proportional to steps of U,. This shift of EDFEE
to the region of low energies was accompanied by con-
siderable widening of its high-energy edge. After scan-
ning the EDFEE at U, = 3980 V, the brightness of the
emission spot dropped drastically and repeated scan-
ning of the EDFEE revealed an additional low-energy
peak lower in energy than the main one by ~0.45 eV.

In the course of the study, one more stage was added
to the sample preparation procedure after forming in a
rough vacuum: under a superhigh vacuum, the field
emission cathode was repeatedly stripped of its surface
layer by applying current pulses of ~130 pA until auni-
form stable bright spot was obtained in the central area
of the emission image. This spot was then placed oppo-
site the energy analyzer probing orifice.

After heating in a superhigh vacuum, the EDFEE of
this second type of sample had one peak and shifted to
thelow-energy region withincreasing U,. Asin thefirst
case, considerable broadening of the high-energy edge
was observed, and at U, = 3980V the emission current
and emission-spot brightness dropped sharply, and an
additional, low-energy peak appeared in the field elec-
tron energy distribution at ~0.45 eV below the main
peak. With decreasing U, the relative magnitude of the
low-energy peak inthe EDFEE dropped, and the energy
distribution uniformly shifted to the high-energy
region.

Heating the sample at 750°C restored the starting
EDFEEs and 1VCs of the probe current, but after U,
wasraised to 3800V (to 3700V after thethird heating),
the probe current again dropped, and in the EDFEE an
additional low-energy peak appeared at an energy
lower than the main peak by ~0.45 eV. The measure-
ments yielded pairs 1-2, 34, and 5-6 of the current—
voltage characteristics of the probe current seen in
Fig. 1b, corresponding to EDFEE distributions with
one (1) and two (1) peaks (Fig. 1a).

The (I —= 1I) transition took place as a particular
value of the anode current, different in each sample,
was reached. Simultaneously, an additional energy
peak at 0.45 eV below the main one emerged in the
EDFEE, and the IV C of the probe current shifted into a
lower position. Heating the samples at 750°C returned
the EDFEEs and IVCsto their initia states and caused
the (Il — 1) trangition.

To check the correspondence between the incre-
ments in the shift of the energy distribution of field
emission electrons and the steps of the anode voltage
U,, separate measurements of the EDFEE were carried
out after prolonged heating of the sample with a read-
justed secondary electron multiplier in the energy ana-
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Fig. 1. Increase in U, shifted EDFEE to lower energies; at
U, =3980 an EDFEE | — IEDFEE || transition occurred
(a); and cr-voltage characteristic IVC | and IVC Il of a
nanocrystal corresponding to EDFEE | and IEDFEE Il (b).
a—U,, V: 3620 (1); 3680 (2); 3740 (3); 3800 (4); 3860 (5);
3920 (6); 3980 (7, 8).

lyzer. The results of these measurements are shown in
Fig. 2.

RESULTS AND DISCUSSION

The results obtained point to an interrelationship
between the energy distributions of the field emission
electrons from graphitized carbon cathodes with one
and two pesks.

EDFEE | was observed in samples heated at T =
750°C in the absence of electric field. EDFEE Il
emerged at a current corresponding to some threshold
va ue of the anode voltage. The EDFEE | — EDFEE ||
transition was accompanied by a drop in the probe cur-
rent by nearly one order of magnitude. The anode cur-
rent drop and the EDFEE | — EDFEE I transition
were preceded by a shift of the energy distribution to
the low-energy region by steps proportional to incre-
ments of anode voltage U,. Thiskind of EDFEE shiftin
the case of semiconductor emitters is evidence of the
Zener effect [6].

For appreciable electron tunneling from the valence
band into the conduction band in a semiconductor with
aforbidden bandwidth of AE; = 1 eV, therequired field
strength is~3 x 107 V/m. In our experiment, the voltage
drop across the emitting carbon nanocrystal measured
asashift of thetop of EDFEE (Fig. 3a) at low U,, where
the shift is not yet linear, reached ~150 mV, producing
in PAN fiber nanocrystalsof 1.5-8.0nmin sizean elec-
tric field of 10’-10® VV/m, which is quite sufficient for
electron tunneling from the valence band into the con-
duction band.

It is know that in semiconductor emitters, the volt-
age drop across an emitter corresponding to the linear
region of the IVC in Fowler—Nordheim coordinates
(low anode voltage) is approximately equal to the for-
bidden bandwidth. Estimates of the voltage drop in the
samples studied by the nonlinear portions of shift plots
(Fig. 3a), corresponding to linear portions of IVC
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Fig. 2. Theincremental shift of the top and low-energy edge
of EDFEE from a carbon nanocrystal is proportional to the
anode voltage step. U, V: 2800 (1); 2900 (2); 3000 (3);
3100 (4); 3200 (5); 3300 (6); 3400 (7); 3500 (8); 3600 (9).

U,V 10000/U,, 1/V
3200 3600 4000 3.0 32 34 3.6 38
T T T T T T T

e —12.5+
—02r I -13.0f 2
—03} —13.5¢ 1

2 -
—0.4} -14.0

—14.5F

-0.5- -
E,eV log/ [A]

Fig. 3. Shift of the top of EDFEE | of samples 1 and 2 rela-
tive to the Fermi level (a) and 1VCs of the probe current of
samples 1 and 2 corresponding to EDFEE | (b).

(Fig. 3b), give values of 70 and 150 meV for the lower
limits of the forbidden bandwidth of the emitting
nanocrystals in the samples studied.

In the studies of energy distributions of field emis-
sion electrons emitted from semiconductors, the main
problem in obtaining an EDFEE with two peaks corre-
sponding to the bottom of the conduction band and the
top of the valence band was interference from the sur-
face states of electrons localized within the forbidden
band [7]. The contribution to the EDFEE from these
surface states was so high that it concealed the true
energy distributions of electronsin a semiconductor, so
that the energy distributions of field emission electrons

LOBANOV, YUMAGUZIN

with two peaks corresponding to the bottom of the con-
duction band and the top of the valence band could not
be reliably determined.

Figure 4a shows the way in which the shape of the
top of EDFEE in the samples studied changed at the
lowest anode voltages. Similar changes of the top of
EDFEE with anode voltage were al so observed in other
samplesdisplaying at large anode voltages alinear shift
of the energy distribution to the low-energy region of
EDFEE with a broad top (Fig. 4a) preceding the Zener
tunneling of electrons. We relate these changes to the
potential barrier height value at which the top of
EDFEE isformed by electrons tunneling both from the
bottom of the conduction band and the top of the
valence band, aswell as, regrettably, by arather intense
flow of electrons emitted from the surface states local-
ized within the forbidden band, for which reason the
forbidden band cannot be resolved in the EDFEE. An
estimate of the upper limit of the forbidden band of
emitting nanocrystals in the samples studied from the
width of medium EDFEEs gives values of 100 and
150 meV, respectively.

Thus, the forbidden bandwidth of the emitting
nanocrystals in type-1 samples was found to be AE, =
70-100 meV, and in type-2 samples, AE; = 150 meV, in
fair agreement with the range of AE, values of graphi-
tized carbon nanocrystals annealed at 900°C.

It should be noted that throughout this study the lin-
ear shift of EDFEE into the low-energy range with U,
the presence of the Zener effect, was considered as an
indication that the probed spot at the emitting surface
belonged to a nanocrystal and not to the amorphous
component of the emitter.

Common features of EDFEE | behavior should aso
be noted: apart from the observed shift of the energy
distribution to the low-energy region in steps propor-
tiona to the increment in U,, at the lowest U, values,
the low-energy edge of EDFEE narrowed, and the
energy distribution became more symmetrical. With
increasing U,, the linear shift of the top of EDFEE was
accompanied by a linear shift of its low-energy edge;
the shift of the high-energy edge to lower energies at
large U, values ceased, and its broadening towards the
high-energy region began (Fig. 2). Thissort of broaden-
ing of the EDFEE high-energy edge usually occurred as
aresult of the heating of the tungsten arc by an electric
current; therefore, in this case broadening of the
EDFEE high-energy edge was accounted for as the
heating of the electrons and lattice by the penetrating
electricfield. In addition, at the highest U, the broaden-
ing rate of the high-energy edge increased consider-
ably. The broadening process of EDFEE | terminated
with a drastic drop in the probe current and the emer-
gence of an additional low-energy peak, i.e., with the
EDFEE | — EDFEE Il transition (Fig. 14). The good
coincidence of the superposed high-energy edges of
EDFEE | and EDFEE Il measured at an anode voltage
of 3980 V, corresponding to the | — |l transition
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Fig. 4. (a) Change of form of the top of EDFEE | at lowest
U, values, and (b) coincidence of the high-energy edges of
EDFEE | and EDFEE Il measured at U, for the | — 11
transition.

(Fig. 4b), showed that the broadening of the high-
energy edge of EDFEE | held out after the transition of
the carbon nanocrystals into the second stable state.

Taking into account the above, the following inter-
pretation of the observed change of the energy distribu-
tion of field electrons emitted from a carbon nanocrys-
tal is proposed.

(1) At low anode voltages, the probe current is com-
prised mainly of electrons tunneling from the valence
band and the surface electron states within the forbid-
den band of the nanocrystal. An increase in voltage and
the penetration of the electric field into the near-surface
region of the nanocrystal cause band bending and Zener
tunneling of the electrons from the valence band into
the conduction band, increasing in the probe current the
fraction of electrons tunneling from the conduction
band and making the low-energy edge narrower and the
EDFEE symmetry higher.

(2) A voltage drop across the emitting nanocrystal
causes its heating by Joule heat and thermal-field
reconstruction, producing at its emitting surface two
groups of surface electron states near the Fermi level,
one of which, located in the forbidden band and the
conduction band, impedes electron emission and
reduces the height of the main EDFEE pesk, and the
other, localized in the valence band, produces an addi-
tiona low-energy peak 0.45 eV below the main peak.
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After thermal-field reconstruction of the emitting car-
bon nanocrystal, the fraction of electrons tunneling
from the conduction band in the emission current from
the nanocrystal decreased.

CONCLUSION

In the study of a carbon nanocrystal using an energy
dispersion analyzer of field emission electrons, corre-
sponding EDFEEsand IV Cs of nanocrystalswere com-
pared. In a carbon nanocrystal with basal planes ori-
ented in the direction of emission, two stable states of
the field electron emission were observed whose emis-
sion currents differed by amost an order of magnitude;
corresponding EDFEEs with one or two maxima were
also observed. The transition of the nanocrystal from
the first stable state into the second, accompanied by a
decrease in the emission current and appearance in the
EDFEE of an additional low-energy peak ~0.45 eV
below the main peak, was reproduced in detail in sev-
eral samples. Heating at 750°C restored the initia
EDFEEs and IV Cs of nanocrystals.

The transition of the emitting nanocrystal from the
first stable state into the second was preceded by the
Zener effect, which is evidence of a narrow forbidden
band; its width was estimated for two samples: 70—
100 meV for the one and ~150 meV for the other.
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Abstract—The impurity composition on and near the cylindrica surface of a CVD polycrystalline tungsten
film covering Nb + 1% Zr alloy is determined with SIMS and AES methods. The aloy is used as the collector
material in thermionic thermal-to-electrical energy converters of space-borne nuclear power plants. A compar-
ison with the impurity composition of a reference plane-parallel relatively perfect W(110) single crystal is
made. At al stages of milling the surface by He* and Ar* ion beams, the coating is contaminated greater than
the reference. Even after the first heating in vacuo to 1625 K, all the impurities, except carbon, oxygen, and
niobium, are removed. The three impurities named are not removed by heating up to 2075 K. Niobium is shown
to diffuse toward the surface through aW coating of thickness up to 30 um. At temperatures above 1925 K, the
material is heavily sputtered. After 50 oxidation cycles, the carbon content in the coating is greatly reduced.
However, the subsequent 25 cyclesfail in further decreasing the carbon content. The fact that oxygen cannot be
removed from the surface by heating to 19252075 K suggests the presence of high-temperature surface
Nb,W,0 suboxide. It is recommended that the purity of the W coating raised in order to improve its adhesion
to the O—Csfilm. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

The elemental composition and the chemical state
of the surface of the electrodes in thermionic thermal-
to-electrical energy converters (TECs) have a pro-
nounced effect on their performance. Oxygen isknown
as the only nonmetallic impurity on the surface of the
electrodes (especialy, collector) in TECswith acesium
filler [1]. In general, the most harmful surface impuri-
ties in emission electronics are carbon and sulfur [2].
For exampl e, the presence of MoC or Mo,C carbideson
the Mo(110) surface increases the work function at
least by 0.9 eV, while the presence of CO raises this
parameter by 1.63 eV [2]. If sulfur is present only on
the surface and the material can be heated to 1650—
1850 K, thiselement can be removed merely by heating
in vacuo. Carbon, however, cannot be removed in this
way from transition metals (Cr, Mo, W, Re, etc.), which
do not dissolve oxygen inthelattice. Thisisbecausethe
sublimation temperature of carbides, which form when
carbon combines with the substrate material, exceeds
the melting point of these metals. Therefore, to remove
carbon from near-surface layers, additional procedures
such as oxidation, heating in hydrogen, or milling by
inert gasions (usually Ar*) are applied. However, even
they cannot provide complete cleaning of the surface
from C if it is dissolved in the bulk of the material.
Upon heating, volume carbon diffuses toward the sur-
face and segregates on it in concentrations much higher
than volume concentrations. To avoid such a situation,
the el ectrodes must be made of extra-pure materialsand

pumping facilities operating with hydrocarbons must
be excluded.

At present, aTEC collector is usually made of Nb +
1% Zr dloy covered by a 30- to 40-um-thick polycrys-
talline W film. Therefore, the determination of impuri-
ties near and on the electrode surface, as well as the
development of decontamination methods, would allow
researchers to refine the electrode fabrication technol-
ogy and thereby to improve the TEC efficiency.

EXPERIMENTAL METHODS

Three specimens measuring 10 x 10 mm were cut
by a diamond tool from the (visually) most perfect part
of the cylindrical collector in compliance with vacuum
hygiene requirements. Two of them and the reference
(aplane-paralel W(110) single crystal) were placed in
an MS 7201 M secondary ion mass spectrometer. The
reference identical to that used in [3] was made accord-
ing to the requirementsfor specimensto beinvestigated
by LEED. That is, the single-crystalline material has a
small concentration of defectsand impuritiesinthevol-
ume and the misorientation between the working sur-
face, and the face selected was no more than 30'. In
addition, layers damaged by mechanical grinding and
polishing were removed by electropolishing. Theimpu-
rity content in the reference at depths of 15-20 um
found previously by the SIMS method in an IMS-3F
CAMECA instrument was the following (in ppm): H,
20; C, 50; O, 20; Na, 300; Al, 0.7; Si, 3.7; K, 100; Ca,
0.6; Ti, 0.2; Ni, 1.5; Cu, 0.8; Mo, 0.01; and Ta, 3. Before
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being placed into the instrument, the specimens were
rinsed in methylene chloride to remove fats and in boil-
ing distilled water to remove salts. The specimensin the
MS 7201 M instruments were not heated. The mass
spectrometer was first adjusted to another material,
usually molybdenum (six specimens can be placed in
the instrument). Then the specimen to be studied was
placed under the He* ion gun and the mass spectrum
was recorded at once. In thisway, the surface milling by
the ion beam was minimized when initial contamina-
tions were detected.

Under He* and Ar* ion bombardment, the impurity
distribution over the specimen surface was also deter-
mined. For this purpose, we moved the probing ion
beam over the surface by varying the specimen poten-
tial and the potential of the focusing electrode of the
gun without changing the specimen position in the
holder. The maximal displacement of the ion spot on
the specimen was half the beam diameter (=2 mm).
Simultaneously, the instrument was adjusted to the
peak intensity of an impurity selected. In the spectrum
thus obtained, the intensities of this and other impuri-
ties were compared. Of special interest was the relative
intensity of W.

During recording of the spectra, the residual gas
pressure was no more than 5 x 10 Pa and that of the
working gas, 12 x 102 Pa. Pumping facilities were free
of hydrocarbons. The ion current beam was 5-20 pPA;
theion spot area on the specimen, =0.1 cm?; the He* or
Ar*ion energy, 4 keV; and the angle of incidence of the
beam on the specimen, 50°. As working gases, extra-
pure-grade Ar and He were employed. The total expo-
sure time of the specimens including the spectrum
recording time was usually about 20 min. In the case of
Ar* ions, however, this time might be as long as 4 h.
The spectrawere recorded first with He* and then with
Ar*ions. TheAr*-to-He" sputtering yield ratio is60[4].

The W specimen not exposed to the beams in the
spectrometer was placed in a genera-purpose elec-
tronic spectrometer (GPES) of original design. This
makes it possible to determine the chemical composi-
tion of surface by AES. In this device, the specimens
can be heated to any desired temperature by either ther-
mal radiation or electron bombardment of its back
(nonworking) surface. Under the operating conditions,
the pressure was ~10-8 Pa. The primary electron energy
E, in the GPES was varied between 1200 and 1400 €V,
the modulation voltage, between 2.5 and 3.0 V. The cur-
rent beam on the specimen varied from 40 to 80 pA
depending on its purity. The electron beam diameter on
the specimen was =3 mm; the angle of beam incidence,
20°. The GPES was equipped with an originaly
designed four-grid analyzer of the energy of retarding
field electrons [5]. After the specimen had been heated
in the interval of 300-2075 K, Auger spectra were
recorded in the form of the first derivative of the sec-
ondary electron energy distribution.
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Under conditions of carbon removal by oxidation,
the partial oxygen pressure P, was 5 x 107 Pa; the oxi-
dationtime, 2 min at T = 1100 K. The subsequent oxi-
dation to remove metal oxides lasted 1 min at 1900 K
(the value of P, remained the same). The source of
spectral-grade atomic oxygen was described in [6].
When the GPES was degassed by heating to 625 K, the
specimen remained cool. This allowed us to determine
theinitial impurity composition and to trace its temper-
ature variation.

SUBSURFACE IMPURITIES

The SIMS spectra show that impurities responsible
for the most intense peaks (Na, Al, K, Ca, and Cr) are
nonuniformly distributed over the surface (Fig. 1).
Other impurities, such as H,0, C, Si, Ge, and Fe, are
distributed more or less uniformly. In addition, the
peaksfrom S, Cl, Ni, Sc, Cu, Zn, Ag, and Pd somewhat
exceed the background level. Peaks of many metal
oxides are also present. Among them, those from WO
and WO, are the highest. The peak from WOH is also
seen. Itismost likely to be associated with water disso-
ciation under the action of theion beam. A faint peak of
WC carbideis also present. The presence of the intense
WO peaks against the weak O peak means, first, that W
on the surface is severely oxidized and, second, that O
ispoorly dissolved in CVD tungsten. For the Cand WC
peaks, the situation is reverse. Taand Re areimpurities
attendant to tungsten in the nature.

Initially, the He* beam gave rise to rather intense
H,O and F peaks. The former is explained by the spe-
cific decontamination conditions prior to placing the
specimens into the instrument and also by the fact that
they were not heated; the latter, primarily by the CVvD
conditions. Later, when the Ar* beam was used, the F
peak rapidly disappeared, and the H,O peak substan-
tialy decreased. Hence, these impurities concentrate
largely near the surface. Cr and Fe impurities, con-
versely, concentrate deep in the coating, since their
associated intense peaks appear only during Ar* ion
bombardment.

The presence of Nb and Zr in some areas on the sur-
face, which are the substrate e ements, indicates that
either theW coating is discontinuous (although itsrated
thickness is 30 pm) or Nb and Zr diffuse through it.
Note that the presence of Nb on the surface was
detected for small exposure times on both specimensin
the very beginning of the study; therefore, thisfact can-
not be attributed to the ion milling of the surface. For
the third specimen, which was nondestructively studied
with the GPES, the presence of both elements was
detected even in the first spectrum, which corresponds
to the initial condition of the surface. Its temperature
was no more than 625 K when the GPES was degassed.

The exposure of the specimens to the Ar* beam for
severa hours changed the impurity composition and
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Fig. 1. Mass spectra taken from the W coating on the Nb + 1% Zr substrate. (1-6) Refer to areas heavily contaminated by fluorine,
water and potassium, sodium, aluminum, calcium, and chromium, respectively, (7) the cleanest area, and (8) W(110) reference sur-

face.

distribution insignificantly, except for H,O and F, as The mass spectra taken from the W coating were
was mentioned above. Thisimplies that the W coating compared with those from the single-crystal W(110)

is contaminated to agreat depth. Among contaminants, reference under the same conditions. Figure 1 clearly
there is carbon, which is extremely undesirable. demonstrates that the W(110) surface (curve 8) ismuch
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less contaminated than the working surface of the TEC
collector (curve 7).

SURFACE IMPURITIES

Auger spectra taken immediately after the instru-
ment has been evacuated exhibit faint peaks of Sand W,
amore intense peak of O, and a high peak of C (Fig. 2,
curve 1). Then, the surface was decontaminated by
heating the specimen from 325 to 2075 K with a step of
50 K. The Auger spectra were recorded both from the
cooling-down specimen and at 295 K.

Starting from T =425 K, faint Nb peaks appear at 92
and 120 eV, whilethe S peak at 152 eV and the W peaks
at 168 and 178 €V begin to grow. After heating to
825K, Capeaks at 294 and 318 eV appear and at T =
925 K, apotassium peak at 253 eV. At T = 1025 K, the
K peak reaches the maximum intensity, while the C
peak at 272 eV totally disappears and the S peak dimin-
ishes sharply (Fig. 2, curve 2). At T = 1175 K, the K
peak disappears. At T = 1225 K, the S peak somewhat
declines but additional Nb peaks at 105 and 141 eV
arise. At T = 1275 K, the S peak disappears (Fig. 2,
curve 3). At T = 1325 K, the S peak appears again
together with one more Nb peak at 197 eV; however,
themajor O peak at 512 eV startslowering. At 1375 K,
the Ca peaks are absent, the S peak grows, and the C
peak arises again. At 1425 K, the S peak reaches the
maximal intensity, exceeding even the intensity of the
W peaks, and the Nb peak at 105 eV increases (Fig. 2,
curve 4). The heights of the C and O peaks remain
unchanged. At 1525 K, the S peak starts to decrease,
while the intensities of all the Nb peaks grow. At T =
1625 K, the S peak is absent (Fig. 2, curve 5). At
1725 K, WC and W,C carbide peaks at 261 and 272 eV
emerge. They continueto grow at 1775 K; however, the
Nb and O peaks at this temperature decrease. In the
interval of 1875-2075 K, faint Nb and O peaks and
intense peaks from tungsten and its carbides are
observed (Fig. 2, curve 6).

Thus, the heating of the W coating triggers the fol-
lowing processes. First, athick film of amorphous C or
hydrocarbons is removed from the surface. Even after
heating to 425 K, it becomes clear that the W coating is
discontinuous. Subsequently, first Ca and then K dif-
fuse from the interior toward the surface and migrate
over it, “screening” deep-seating carbon and sulfur
impurities. The C and S impurities are obviously
present in the W coating, since Nb is not screened,
instead, its peaks grow. Carbon is completely screened
by those impurities after heating to 1025 K; sulfur, after
heating to 1272 K. It is hard to perceive that Caand K
screen C and Sindividually; hence, one can argue that
Sinthesurfacelayer isin greater amount than C. At the
same time, of the two impurities diffusing toward the
surface, Caisin greater amount than K, asis also dem-
onstrated by the SIMS data. After heating to 1175 K,
potassium is absent on the surface but S is screened as
yet incompletely. The screening becomes complete at
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Fig. 2. Auger spectrataken from the W coating on the Nb +
1% Zr substrate. (1) As-prepared surface at T = 295 K,
(2) heavy contamination by potassium (T = 1025 K),
(3) screening of sulfur by potassium and calcium (T =
1275K), (4) maxima sulfur desorption (T = 1425 K),
(5) surface decontaminated from sulfur (T = 1625 K),
(6) surface heated in vacuo at T = 2075 K, (7) single oxida-
tionat T = 1125 K, and (8) surface after 50 oxidations and
heating at T = 1675 K.

1275 K. It is not improbable that S occupies defects in
the Nb + 1% Zr substrate, since at 1325 K, whenthe S
peak appears again in the Auger spectrum, the addi-
tional Nb peak arises and the O peak diminishes. That
is, Sdiffuses toward the surface and niobium beginsto
dissolve oxygen. The desorption of oxygen from W,
and especially from Nb, is out of the question at such
temperatures[7-9]. When Cadesorbs at 1375 K, C and
S contaminants become exposed again. Above 1425 K,
the S segregation is maximal and sulfur sublimates,
completely disappearing at 1625 K. After the S subli-
mation, the W and Nb carbides start to form, because
the carbide peaks at 261 and 272 eV grow, while those
of Nb decline. Unfortunately, the amount of oxygen
dissolved in the niobium islands turns out to be insuffi-
cient to remove carbon from the surface (the O peak
lowers). Thus, heating in vacuo up to 2075 K fails to
remove carbon, the most unwanted impurity for emis-
sion electronics, from the surface of the W coating
under study. Thisis because oxygen leavesW at 1875—
1975 K [7] and still does not emerge on the surface
from Nb—O compounds [8, 9]. Moreover, Nb is present
on the W surface in small amounts.

CARBON REMOVAL FROM THE SURFACE

Among the conventional methodsfor decontaminat-
ing the transition metal surface (oxidation, heating in
hydrogen, and milling by inert gas ions), oxidation is
the most efficient. Initially, oxidation and heating in
hydrogen were carried out at relatively high tempera-
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tures: 19002000 K for heating in H, and 2100-2300 K
for oxidation in O,. At these temperatures, metal
hydrides and oxides dissociate; that is, the sticking
coefficient for these gases equals zero [10]. At the same
time, the gas atom lifetime on the surface is other than
zero because of an increased gas pressure in the flow
and resulting C—H or C-O compounds, i.e., CH, or CO,
are pumped off by the vacuum system. Such a decon-
tamination procedure requires high temperatures, as
was already noted, and takes much time (several hours).
If the specimen is heated by el ectron bombardment, the
service life of the heater (electron gun) shortens sub-
stantialy. Next, since thermal heating lasts long, some
parts of the equipment may oxidize. Finally, a number
of metals, such asV, W, Ta, Ti, etc., may be heavily
sputtered at such temperatures. This adversely affects
the insulation of optoelectron and ion—optic systems,
electron energy analyzers, monochromators, and other
devices integrated into the instrument chamber. Reli-
able screens around the specimen are frequently impos-
sible to mount, because they are incompatible with an
investigation technique.

Therefore, amore appropriate method, cyclic oxida-
tion of carbon or metal carbides, was later suggested
[11]. Both the oxygen pressure and the temperature
here are maintained at alower level: P = (1-5) x 10° Pa
and T = 1100 K. At this temperature, the carbides and
metals effectively oxidize, and CO is readily desorbed
but oxygen is not desorbed. Therefore, 2 to 3 min after
carbide oxidation, the temperature is raised for =1 min
to remove metal oxides (to T = 1900 K for Mo and W).
Then, the temperature isreduced to 1100 K again with-
out reducing Py, and the procedure is repeated. During
a cycle, at least one impurity monolayer is removed
from the surface. If W and Mo single crystals are per-
fect, 10 to 15 cycleswill suffice to remove carbon from
the surface and the decontamination time does not
exceed 1 h. After the oxygen pressure has been
decreased to the residual pressure, the purity of the sur-
faceis checked by AES.

We performed single oxidation following the above
technique to estimate the C oxidation efficiency for the
polycrystal and then heated the specimen to see
whether C is contained inside the specimen. After oxi-
dation at 1125 K, the carbon peak in the Auger spec-
trum disappears, and Nb and W are screened by oxygen
(completely and partially, respectively; Fig. 2, curve 7).
The O peaks grow. However, after heating to 1475 K,
the carbide peaks appear again, their intensity being the
same as before the oxidation. This means that C dif-
fusestoward the surface and segregateson it at thistem-
perature, while oxygen is not as yet desorbed from W
[7]. Fifteen subsequent oxidation—irradiation cycles
change the situation observed after the first cycleinsig-
nificantly. Therefore, we performed 35 extra oxidation—
irradiation cycles. Eventualy, after heating to 1525 K,
the intensity of the carbide peaks sharply decreased
(Fig. 2, curve 8). In addition, the Nb peaks grow and,
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after heating to 16251675 K, some of them become
comparable to the W major peaks. This means that the
area occupied by Nb in the coating increased apprecia-
bly after such processing. Since the Nb intensity in its
Auger spectrum is always three times greater than the
Nb intensity in the W spectrum [12], one can suppose
that the area occupied by Nb in the W coating may
reach 30% after carbon is removed. The fact that heat-
ing may increase the surface fraction of a lighter or
lower melting aloy component and that this fraction
may rise still further after the surface has been exposed
to oxygen iswell known [13]. In our case, we can state
with assurance that the W—Nb interface has the proper-
ties of W—Nb alloy.

As the temperature is increased further (T > 1675 K),
the Nb peaks begin to decrease. It islikely that a part of
oxygen leaves Nb for the surface and screens Nb if the
metal lies in the W surface recesses. Indeed, after the
specimens have been exposed to a vacuum (=108 Pa)
for =0.5 h or more (within this time, O and especially
CO cannot evolve from the residua gases, since P ~
1071° Pa and the O-to-CO sticking coefficient ratio is
=10), the Nb peak intensity grows again. Hence, oxy-
gen again dissolvesin Nb [8, 9].

With the temperature increased to 2075 K, the C
peak intensity differs from that achieved after the
decontamination procedure only slightly. Nevertheless,
to remove C as completely as possible, we performed
25 additional oxidation—rradiation cycles. They did not
cause any changesin the Auger spectrum recorded after
50 preceding cycles. One can conclude, therefore, that
the remaining carbon occupies largely deep volume
defects (e.g., grain boundaries) and cannot be effec-
tively removed from the W coating within a reasonable
decontamination time.

It should also be noted that the W coating is heavily
sputtered (which is observed even visually on a shutter
placed near the specimen) at temperatures above
1925 K. Such a great amount of the deposit has not
been detected even after the completion of the program
involving the oxidation of carbon, pure surface, and O—
Cs binary films on Mo(110), Nb(110), Mo—Nb(110),
and W(110) single crystals and lasting several years.
Within this program, a variety of Nb(110)-O,
Nb(110)-O-Cs, Mo-Nb(110)-O, and Mo—NDb(110)—
O—Csfilmswere deposited on the atomically clean sur-
face, which was produced by multiply increasing the
temperature up to 2500 K. Therefore, severe sputtering
of the W coating at T > 1925 K may be related to its
polycrystallinity (i.e., imperfection) and possibly to the
presence of Nb in acertain part of the coating (discon-
tinuity).

CONCLUSION

Thus, amost al unwanted impurities can be
removed from a CVD tungsten coating on aNb + 1% Zr
substrate used as the TEC collector materia by singly
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heating in vacuo to T = 1625 K. The remaining impuri-
tiesare Nb, O, and tungsten carbides, the last being the
most harmful. The carbides are not removed by heating
upto T =2075K. Moreover, at T > 1925 K, the coating
is heavily sputtered. However, after 50 oxidation—irra-
diation cycles, the amount of carbon in the subsurface
layers is substantially reduced, athough it is not com-
pletely removed for a reasonable time. This is because
the specimen is strongly contaminated by carbon and
also because the W coating is polycrystalline. A great
concentration of intrinsic defects favors carbon diffu-
sion toward the surface with subsegquent segregation.
Therefore, it seems to be natural to make the TEC col-
lector from single-crystalline tungsten in an oxygen-
containing atmosphere [14]. To improve the properties
of aW coating on Nb + 1% Zr aloy, one has to care-
fully fulfill the vacuum hygiene requirements at all
stages of TEC collector manufacturing. It isimperative
here to use hydrocarbon-free pumping facilities.
Finally, since at least partial contamination of the col-
lector cannot be avoided, the electrodes rinsed by the
technique mentioned above and assembled must be
decontaminated immediately before operation. It is
best to decontaminate both el ectrodes simultaneously:
first by mere heating and then by the technique
described above to remove carbon. The decontamina-
tion quality can tentatively be simulated with a special
bench provided that all the stepsin the electrode fabri-
cation process are exactly reproduced.

Asfor the other two hard-to-remove impurities, Nb
and O, the latter facilitates Cs adsorption [1]. The pres-
ence of oxygen on the W surface after heating to tem-
peratures exceeding the temperature of oxygen desorp-
tion from tungsten [7] indicates that oxygen is highly
likely to occupy surface recesses, entering into the
composition of Nb,W,O intermetallic suboxide, a
chemical analog of Nb,O suboxide [15]. It is known
that Nb,O suboxide is the optimal Nb oxidation state
for Csin the Nb(110)-O-Cs system [16, 17] and that
Nb,M0,0 is such a state in the (Mo + 2.5%Nb)(110)—
O-Cs system [18, 19]. Yet, the presence of Nb,W,0
suboxide and its effect on Cs adsorption call for further
investigation.
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Abstract—Analytical expressions for the electron escape function and X-ray-induced photoemission yield
from layer-on-substrate composites are derived by approximately solving the kinetic equation for medium-
energy (several keV) electrons. Relationships obtained by Monte Carlo calculation qualitatively agree with the
analytical dependences and make it possible to numerically find parameters entering into them. © 2002 MAIK

“ Nauka/Interperiodica” .

INTRODUCTION

Modern microelectronic technologies, dealing with
ultrasmall objects (size-comparable to atomic clusters),
necessitate the development of diagnostics techniques
allowing for high-resolution determination of object
parameters. Today, there are a variety of approaches
serving the purpose. In many of them, such as EXAFS
and SEXAFS [1], XPS, AES [2], and XIEES [2], a
desired signal is produced by electrons. The adequate
processing of data obtained with these methods
requires correct description of electron transport in the
material. However, a quantitative theory of electron
emissionisasyet in the development stage and electron
escape from a material is usually treated in terms of
approximate phenomenological formulas.

The probability of an electron escaping a sample
depends on the total el ectron flow through its boundary.
The electron flow can be evaluated with akinetic equa-
tion—a linear integro-differentia equation that is diffi-
cult to solve analytically. Because of this, the differen-
tial electron flow density isfound by two ways. Thefirst
(analytical) approach takes into account electron trans-
port features that enable one to simplify the kinetic
equation and find an approximate analytical solution. In
the other case, the kinetic equation is solved numeri-
caly.

The former approach was used in [4, 5], where ana-
Iytical expressions for the escape function of low- and
medium-energy electronswere found for homogeneous
semi-infinite samples.

Results obtained in [4] were verified with numerical
simulation. In [6], the escape function was calculated
by the Monte Carlo method for a number of homoge-

neous materials. The applicability domain for the ana-
Iytical approximations of the escape function was
determined by comparing the results obtained in [4]
with the calculations. The numerical resultswere found
to bein good agreement with the estimates based on the
differential cross sections for elastic and inelastic elec-
tron—material interactions.

The numerical approach makesit possible to derive
the escape function not only for homogeneous samples
but also for those of a more complex composition. Cal-
culations carried out for a thin (severa tens of nanom-
eters) layer on a semi-infinite substrate showed that the
presence of the layer may affect significantly the depth
dependence of the escape function. With the layer
present, this dependence is no longer described by the
analytical expressions obtained in [4].

The aim of this work is to extend the analytical
approach put forward in [2, 5] for layer-on-substrate
composites. Our analytical expressions for the escape
function and total yield are compared with Monte Carlo
calculations.

KINETIC EQUATION AND ESCAPE FUNCTION
FOR HOMOGENEOUS SAMPLES

The analytical approach to solving the kinetic equa-
tion [4, 5] takes into account the fact that angular and
energy relaxations of medium-energy (severa keV)
electrons have different scales. In the case of a flat-
boundary semi-infinite sample, the kinetic equation has
the form

oP

COS@E = Rco|¢+4—1T[6(z—zo)6(E—Eo). Q)

1063-7842/02/4709-1182$22.00 © 2002 MAIK “Nauka/ Interperiodica’



CALCULATION OF THE ELECTRON ESCAPE FUNCTION

Here, ®(z, O, E) isthedifferential flow density of elec-
trons with an energy E moving at a depth z at an angle
Otothezaxis, and R, ® isthecollisionintegral, which
describes electron—material interaction. The second
term on the right means the presence of a source of
electrons with an energy E, a a depth z,. Equation (1)
should be supplemented by the boundary conditions

®(0,0,E)| 050 = 0, ®(z06,E)|,..,— 0,

which mean the absence of an electron flow from the
outside and the absence of electrons at large depths.
The probability that an electron with an energy E,
escapes the sample from a depth z, (escape function)
depends on the total electron flow through the surface
z=0:

9(Eq, o) = J'J’J’cosG)qJ(O, 0O, E)sn©dOdpdE. (2)

000

The characteristic lengths of electron transport in a
material are the mean free paths for elastic,

-1
O
IL(E) = (Nag)™ = [N2 '[Msm@d@]
0
and inelastic,
Qrmax
o O dlir
1n(E) = (I (E))” -1 Jin g x

collisions, where

doy(E, ©)
do

is the elastic scattering differential cross section, N is

the density of scatterers, dl;l /dhwistheinverse differ-

ential mean free path (the probability that an electron
with an energy E loses an energy %w within a unit
length), and Q. IS the maximum possible energy loss.

Sincethe energy lossand achangeintheanglein an
elementary electron—-medium interaction event are
small, the relaxation process asawholeis characterized
by the transport mean free path and the total range of an
electron in the medium rather than by the free paths
l4(E) and |;,(E). As scales for the transport path and
electron range, one can take the quantities A(E) and
S(E) defined as
do(E, © 0’
AE) = 252 foﬁi——)ezsin@daa ,
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S(E) = E/B(E),
where B(E) is the mean energy loss per unit length:

E

B(E) = J’ﬁw(dl;}/dﬁw)dm.
0

The angular redistribution upon electron—material
interaction is specified largely by elastic scattering;
hence, the collision integral R.,;® can be represented as
the sum of the elastic (Ry®) and inelastic (R,P) com-
ponents:

R,® = NJ’MCD(Z, Q' E)dQ’
_NO(z @, E)J‘Mdg',
RO = Id'ﬁ* (Edzrhz;’ ) bz @, E+ fiw)

—®(z, Q, E)I(E).

Here, Q and Q' are the directions of electron motion
before and after scattering. It was shown [7] that for
medium-energy electrons propagating in heavy targets
(with the atomic number Z > 50), the relationship

AM(E) < S(E) ©)

is valid. This means that the processes of angular and
energy relaxations can be separated and the motion of
electronsin amaterial (on alarge scale) isthe diffusion
of isotropically distributed electrons that is accompa
nied by energy loss. As was demonstrated in [5], ine-
quality (3) allows one to separate out the smallness

parameter € = /A (Ey)/S(E,) from kinetic equation (1)

(with ./A(Ep)S(E,) and E, as the length and energy
scales) and take advantage of methods from the pertur-
bation theory. In this case, the kinetic equation is sim-
plified to an equation for the isotropic component,
which depends only on depth and energy. The resulting
equation can be simplified further if

lin(E) < S(E).
In this case, one can employ the continuous slow-
ing-down approximation, in which the inelastic part of

thecollision integral is approximated by the differential
operator

R,® = 3(B(E)®)/IE.
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As aresult, the kinetic equation for the differential
flow density is reduced to the diffusion equation. In
dimensionless variables, this equation for a homoge-
neous sampleis given by [5]

1aU0

0
30,57 eV = 8(z-2)3(E-1). (4)
Here, Uy(z, E) is the isotropic part of the distribution,
which depends only on depth and energy, Y(E) =
SEy)B(E), and the energy E is measured in units of E,.
The differential flow density ®(z, ©, E) is related to
Uyg(z, E) as

D(z,0,E) = Uy(z, E)
A (E,) cos® dU(z E) » )
ey ozt OE)

where v,(E) isthefirst eigenvalue of the dimensionless
elastic part of the collision integral.

Aswas hoted in [5], the eigenfunctions of the oper-
ator Ry® are spherical harmonics'Y; (Q); hence,

ARgY10 = V1Yo
The solution to Eq. (4) has the form

1
Uo(z E) = VB ade e yz (E )( p(~(z-2,)°/(4T(E)))
—exp(—(z+ 2,)*/(41(E)))),
where

_ dE
"B = [3EviEr

Substituting this solution into (5) and (2) yields an
analytical expression for the escape function. It should
be noted that the diffusion approximation is valid only
away from the surface (at depths comparable to or
greater than the isotropization length). Therefore, for
the problem to be solved correctly, it is necessary to
consider the boundary layer approximation. The
boundary condition for the diffusion approximation is
found by sewing together both solutions. This leads to
the appearance of some energy-dependent factor C in
the expression for the escape function, namely,

a(z0) = €[ 1-ef{H]. ©)

In practice, factor C can be found by numerical cal-
culation.

The escape length L entering into (6) turns out to be
related to the lengths of angular and energy relaxations

BAKALEINIKOV et al.

as

L(Eo) = 2JA(E)S(Eq)T*, (7)

where T = 1(0) is adimensionless coefficient.

ESCAPE FUNCTION
FOR LAY ER-ON-SUBSTRATE COMPOSITES

For layer-on-substrate composites, the electron
kineticsischaracterized by two lengths describing elec-
tron-ayer and electron—substrate interactions. Let the
characteristic transport mean free paths of electronsin
the layer and in the substrate (isotropization length,
energy relaxation length, and the first eigenvalue of the
elastic part of the collision integral) be denoted as

AD(E), SYE), vi” (E) and AA(E), SA(E), vi? (E),
respectively.
In going to dimensionless variables in Eg. (1), the

quantity JA™(E)SP(E,) for the layer istaken asthe

length scale. Consider the case when an electron source
isinthelayer at adepth z, < a, where a isthe thickness
of the layer. In terms of the notation introduced above,
the differential equation for theisotropic part of thedis-
tribution takes the form

1 U, a,
- E)U,) = 0(z—27))0(E-1),
3 O(E) o7 Se(Y (E)Uo) = 8(z-2)8(E-1)
forO<z<a,
(1)(E0)3V(2)(E) 07  SP(g,)0E" °

fora<z<oo.
Designating B, = y*PU,, we find

1 9°B, 0By _
= 3(z—2z))0(E-1),
vOEYDE) 02 OE (2=2)0(E~1)
forO<z<a,
AP (Ep)S?(E,) 1 9°By

AP(Ep)SP(Eo)3v P (E)YVY(E) 07 ©

V2 (E)gD
aEE%/“’(E)

=0,

fora<z< o,

This equation can be simplified further if it is taken
into account that VA(E)/y\D(E) is close to unity and
weakly depends on the energy. In fact, if the mean
energy lossis given by the Bethe formula, thisratio has
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the form
[l HNIN [l
0 > N?zPInE) OO0 > NPYzPInE) O
v?E) _ O _ o0 _ O
Rl — /g — :
Y O ZNi(z)Zi(z)In(l.166E0/Ii(2)D O ZNi(l)Zi(l)In(l.166EO/Ii(l)D
O 4 O o 4 0
Here, N and N® are the densities of type-i scatter- Changing variables
ers in the layer and the substrate, respectively; z J- —E _
1 1
and Zi(z) are the atomic numbers of the scatterers; 3vy (E)y (E)
one easily obtains
and I and 1® are the mean ionization potentials. In ) Y
the first parentheses, summation is over al substrate 6_820_% = 8(z-2,)8(E-1), z<a,
components; in the second, over al components of the 0z ot ©
layer. GZBO ) @ o
It is seen that YO(E)YD(E) = 1 + O(UIn(Ey1)), 07 ot '
where | is the effective ionization potential of the \ynhere

target. In the zero approximation, this ratio can be set
equal to unity. Then, for the case a < z < =, EQ. (8)
becomes

_A9(E)SP(E) v (E)YV(E)
 AY(E)SP(ENVP(E)YP(E)

Now consider the ratio v? (E)/v{" (E). With the

Rutherford screened cross section used to describe
elastic collisions, thisratio hasthe form

> NP ZPn(E)

A\(EYSP(EY) 1 9°By 9B, _
A(E))SP(Ep)3v(E)YP(E) 07 OE
0 SN NG
viE) 8 4
(1)
v(E) E ZN(z)(Z(Z)) In(@?(Ey))
O 4 0

where a® (E;) = (0.565(Z2" )¥32./m /i ./2E, )2 (k= 1,
2) and mand e are the mass and charge of an electron.

In the first parentheses, summation is over all sub-
strate components; in the second, over all components

of the layer. Taking into account that a (E;) < 1 for

any i and k, one can conclude that v{? (E)/v " (E) =

1+ O(VIna), where a is the maximal value of (x(k)

Therefore, we will assume hereafter that
v E) v (E) = 1. For D, we have
_ it
D = (10)
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where L® and L@ are the escape lengths in the layer
and in the substrate, respectively, which are defined by
relationship (7).

Tofind asolution to (9), thisequation should be sup-
plemented by boundary conditions. The absence of
electron sourcesat z=0and z— o iswritten as

=0, U, ., =0

U0|z=0

Since electrons can only lose the energy and sources
of electrons with an energy higher than E, are absent,

U0|E21+0 = 0.

Passing from U, to the function B, and using the age
of the particle T instead of the dimensionless energy E,



1186
we get

Bo(0,T) = 0, By(zT1)|,.. =0,

B,(z 0) = 0. (1)

The problem defined by (9) and (11) can be solved
with the Laplace transformation. The transform F(z, p)
satisfies the equation

- Fa(z P)_pr(z p) = 8(z-2), z<a,
i (12
DQ—Eézz—z’—P—)—pF(z, p) =0, z>a.

To calculate the escape function, it is necessary to
find a solution to (12) in the interval z < z,. One can
show that this solution has the form

1
F [
@p ==
exp(—/pza) + 2D exp(— /p(=20 + 20))
» (VD +1 (13)
_fJ/D-1n_

x (exp(+/p2) — exp(—/p2)).

Before calculating the original, we note that T in (9)
is bounded above: T < t*. If the Bethe formula and the
Rutherford screened cross section are used, T roughly
equals 1/12. Thus, we can consider only small t (or
large p). Then, Eq. (13) can be expanded in the small

parameter exp(—./p 2a) < 1, which yields

F(z p) = —#{ exp(—/p(-z+25))
]-Dk

+exp(—/p(z+2)) + z DJB e
x [exp(=/p(-2+ 2 + 2ka))
—exp(—/p(z + 2o + 2ka))

—exp(=v/P(-2+ 2+ 2ka))
+ exp(=+/p(z+ 2o+ 2ka))]} .

Passing to the original, we find the solution to (9) in the

BAKALEINIKOV et al.

interval z< z,

pD(Z+Zo)D
T[«/_TD U4t O

n(z+ ZO)D /D — 1
=P Zmﬁ)ﬂm

By(z 1) =

2
0 (=z+2z,+2ka)
x Exp yr: 0

2
0 (z+2z,+ 2ka)
expD——4T 0

(14)

nz-z+ 2ka) 0

&P it 0
0 (z—z,+ 2ka) DDD
B S R T — 003

The first two terms in (14) give the solution for a
homogeneous sample [4]. The effect of the substrate on
the differential flow density in the layer is reflected by
summation over k # 0.

Similar considerations for the case where electron
sources are in the substrate result in

Bo(z 1) =

I(1+I)ﬁz%+1D

%+ (2k+ 1)a—%2g (15)

%Xpm 4TD[

nlk-a 00
—expD—ArTDA/5 +(2k+1)a+%DD

To find the escape function for the layer and the sub-
strate, expressions (14) and (15) should be substituted
into (5) and (2). The escape function for thelayer (accu-
rate to the factor C, as for a homogeneous sample) has
the form

0 _ <70, « WD-1f
a(z E) = le erf g + 205+
(16)
Q’Zka 2ka+zm0
x ferf erf g L mo

The first two termsin (16) that do not appear under
the summation sign give the escape function for a
homogeneous sample. The escape function for the sub-

TECHNICAL PHYSICS  Vol. 47

No. 9 2002



CALCULATION OF THE ELECTRON ESCAPE FUNCTION

strate is given by

O /D -1

A8 = CD «/_kzoq/5+1D
(17)

a (2k+1 N

x%[—erf%f/ﬂ_ ( L )%%

It is easy to check that (16) and (17) become the
escape function for a homogeneous sample in the limit
D— 1

NUMERICAL CALCULATION OF THE ESCAPE
FUNCTION FOR LAY ER-ON-SUBSTRATE
COMPOSITES

Expressions (16) and (17) have been derived under
two assumptions. The first one is the validity of ine-
quality (3), that is, of the diffusion approximation. The
second one is that the ratios Y2(E)VY(E) and

v E) v (E) (hence, the coefficient D) are energy-
mdependent. These assumptions are valid in a certain
range of energies and atomic numbers. The limits of

this range can roughly be estimated from the scattering
differential cross sections and characteristic lengths.

Another way of finding the applicability domain of
analytical expressions for the escape function is to
compare them with results of Monte Carlo numerical
simulation. In anumber of cases, analytical expressions
give proper results even if the assumptions made in the
analysisfail. In this case, the true values of parameters
entering into these expressions should be found by
using numerical calculation.

In [7], we described the Monte Carlo method used
to characterize the physical model of electron—material
interaction, namely, the single scattering model, where
each elementary interaction event depends on the elas-
tic and inelastic scattering differential cross sections. In
the case of elastic scattering, the Mott differential cross
section is employed. Inelastic electron—material inter-
action is described in terms of the doubly differential
inverse free path dZI;1 /d(Aw)d(%q), which isthe proba
bility that an electron with an energy E loses an energy
hw and a momentum 7q within a unit length. The dou-
bly differential inversefree path can be found from data
for the material permittivity [8-10]. The calculation
of this quantity, as well as the draw procedure as
applied to inelastic interaction results that allows for a
substantial saving of computational resources, is
described in [1]. Differentia cross sections for elastic
and inelastic interactions are available from the elec-
tron archive [12].

In this work, we calculated the escape functions for
samples with various layer-to-substrate atomic number
ratios (atomic number “contrast”): an aluminum layer
on a gold substrate, Al/Au; gold on auminum, Au/Al;
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aluminum on copper, Al/Cu; and copper on auminum,
Cu/Al. The thickness of the layer was varied from sev-
eral nanometersto that comparable to the characteristic
depth of electron escape (on the order of several hun-
dreds of nanometers).

The data for the elastic scattering differential cross
sections suggest that the layer thickness of about sev-
eral tens of nanometers is comparable to the character-
istic length of isotropization; that is, electrons moving
inthelayer have no timeto beredistributed over angles.
Therefore, the escape lengthsfor thelayer, L, appearing
in (16) and (17) differ from those for homogeneous
samples of the same composition, L®, and should be
considered as depending on the layer thickness.

Corrected escape lengths for the layer L and the fac-
tors C were determined by minimizing the functional

I(C,L; Ea)

C[E , (9
= 1N [uc(z, E, @) —tiear(2, E, )],
i=1

where Qier(Z . E, @) isdefined by (16) or (17) and z are
points where the escape function gy (z E, a) is found
by the Monte Carlo method.

The values of L thus obtained were substituted into
(16) and (17), where they appear both in explicit form
and through the coefficient D. In calculating D by for-
mula (10), the escape length for the layer L® was
replaced by L. For the substrate, the diffusion approxi-
mation is valid; therefore, formula (10) uses the escape
length for homogeneous samples as the escape length
for the substrate, L®.

Analytical expressions (16) and (17), including the
corrected escape lengths L, are in good agreement with
the Monte Carlo results for energies of 0.5-10 keV and
layer thicknesses of 5-10 nm. For these parameter
ranges, typical values of functional (18) are on the order
of several thousandths.

Figure 1 shows the escape functions found analyti-
cally and numerically for the Al/Au samplesat aninitia
electron energy of 10 keV. The analytical and numerical
curves are seen to be nearly coincident.

It isimportant to estimate the dependence of correc-
tions to the escape length for the layer on electron
energy, layer thickness, and layer-to-substrate atomic
number ratio and compare it with the same dependence
of corrections to the escape length for a homogeneous
sample. It was found that the escape length for a layer
of a low-Z material on a high-Z substrate decreases
compared with that for the homogeneous sample, while
in the case of a high-Z layer on a low-Z substrate, the
escape length increases. This tendency is aggravated
with decreasing layer thickness and growing atomic
number contrast. Figure 2 demonstrates theratios of the
escape lengths L for a 10- and 60-nm-thick Al layer in
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Fig. 1. Depth dependence of the escape function for the
Al/Au composite. Solid curves, numerical calculation;
dashed curves, analysis. a=0.000004 (1), 0.000012 (2), and
0.000020 (3). (4) Bulk Al and (5) bulk Au.
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Fig. 2. Ratios of the escape lengths for the layer to those for
the semi-infinite Al sample in the case of the Al/Cu and
Al/Au composites with a layer thickness of 10 and 60 nm.
(1) Al/Cu, a=600; (2) Al/Cu, a = 100; (3) Al/Au, a = 600;
and (4) Al/Au, a=100.

the Al/Au and Al/Cu structures to the escape length L™
for the homogeneous sample vs. electron initia energy.

CALCULATION OF PHOTOEMISSION
FROM LAY ER-ON-SUBSTRATE COMPOSITES

The results obtained make it possible to find analyt-
ica formulas for calculating electron photoemission
from layer-on-substrate composites. Electron emission
can be described within the three-stage model. Accord-
ing to it, X-ray-induced electron emission proceeds in
three stages: the absorption of an X-ray photon by
material atoms (attenuation of X-ray radiation), the
generation of primary electrons (i.e.,, photoelectrons
and electrons due to the relaxation of photoionized
atoms; atomic photoelectric effect), and the propaga-
tion of the primary electrons in the material with the

BAKALEINIKOV et al.

subsequent generation of a secondary-electron cascade
and the escape of the resulting electrons from the sam-
ple. It isassumed that the three stages proceed indepen-
dently; that is, the probability of an electron appearing
in free space after the incidence of an X-ray photon on
the surface is determined as the product of the related
probabilities.

Thefirst two stages can be smulated in terms of the
radiation transfer equation and energy-level transition
probabilities. The latter have been calculated by many
teams of researchers in various quantum-mechanical
approximations and can be considered known [13]. The
X-ray intensity at adepth zis given by

z

1l U
() = IoexpB—J'u(hv,T)dT/sind)D.
0 s O

Here, |, is the incident intensity, p(hv, 2) is the linear
absorption coefficient, and ¢ is the angle between the
propagation direction of the beam and the surface it
strikes.

Thethird stage (el ectron transport in the materia) is
characterized by the escape function q(E, z). The total
yield of the primary electronsis expressed as

Kp = Il(Z)zZui(Z)Pu(Z)Q(Eu-Z)d2/5in¢- (19)
) L

[

Here, ; isthe linear coefficient of absorption by atoms
of the ith element, and P;; is the probability of generat-
ing an electron with an energy E; when an atom of the
ith element absorbs an X-ray photon. The contributions
of slow and fast electrons generated in the layer and in
the substrate to thetotal yield should be considered sep-
arately, because the escape functions differ in thesefour
cases. Note, however, that when the layer thicknessis
about ten nanometers or more, slow electrons generated
in the substrate make a negligible contribution to the
total yield.

It was shown [4] that the electron escape function
for homogeneous samplesiswell approximated by for-
mula (6) at energies in the kiloelectronvolt range. For
energies of about severa tens of electronvolts, the
escape function obeys the exponential law

q(Ej, 2) = CijeXpE—éE- (20)
ij

At intermediate energies, expressions (20) and (6)
approximate the escape function with roughly the same
accuracy. Since the effect of the substrate on the escape
function is negligible for electron energies of several
tens to several hundreds of electronvolts and a layer
thickness of 10 nm or more, formula (20) can be taken
as the escape function for slow electrons. Substituting
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(20) into (19), one readily comesto

) = 155 LOUD (hv) PP (hv)C,
P L 1Oy (hv) + sing

() M
p(hv)a a
XDL expE-)— Snd _DDL,(-“DD
J (21)
o 1o Lou(hv)PP(hv) gy
3 LOu9(hv) + sing
1) 0
pr(hvia a
xexpEl— Sno ———IL(l)D

Here, the quantities with the superscripts (1) and (s)
refer, respectively, to the layer and the substrate and
summation is over al groups of slow electrons. The
contribution of fast electronsto the total yield is easily
found by substituting (16) and (17) into (19). The con-
tribution from the layer is given by

Kp = II(Z)ZZM.“’P") d"(E;, 2)dz/sing
_ |OZP(I)UI(|)C”Dl exp(—ca)%l. erf%i_%

- exp(xi) Brf - + xif- e ()b
ij

* 0/b; -1 {2k D

enc[(2k

(22)

3 1)6‘35— exp()(IJ + 2kac)
ij

y garfE(Zk: Da, D—erfD?ka

XijD + X|]|:|:|

+ exp()(IJ —2kac) Berf[@k;l)a )(~-D

IJD
B’Zka 0
—erf XIJDDi| O
0
Here, p®, p?, and P’ refer to the layer; ¢ =
nW/sing; and x; = CL;,/2. The contribution of primary

electrons generated in the substrate to the total yield of
photoemission is expressed as

(s)H.

ij (s) 'J1+/\/—

2002

Kp = loexp(-1"a)y P
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k
zD{D lDEﬂ e (2K + 1)
2.0k, 00 0 Lo O

—exp(Dyx; + (2k + 1)ac,/D;;)

2k + 1)a mu
x %-_erfE(L—ik)+«/ﬁiiXiij

(23)

Here, u®, u™*, and P{Q’ refer to the substrate and ¢ =
HO/sing. Summationin (22) and (23) isover all groups
of fast electrons generated in the layer and in the sub-
strate, respectively.

Thetotal contribution of the primary electronsisthe
sum of all partia contributions:

(1 (s) (slow).

Kp = Kp' Ky +Kp

The total emission yield (TEY) was calculated by
formulas (21)—(23) for anumber of homogeneous sam-
ples and layer-on-substrate composites. The curvescal-
culated were compared with those obtained by the

Monte Carlo numerical simulation of photoemission.

The comparison between the analytical and numer-
ical results on the TEY was made for homogeneous
samples of aluminum (the angle of irradiation mea-
sured from the surfacewas ¢ = 5°) and germanium (¢ =
2°). The photon energy was varied near the K edge of
aluminum from 1.5 to 2.0 keV and near the K edge of
germanium from 11 to 12 keV. The parameters used for
the Monte Carlo simulation (linear coefficients of
X-ray absorption, photoionization cross sections for
individual atomic shells, and probabilities of energy-
level transitions) were the same asin analytical expres-
sionsfor the TEY.

The statistical error of the numerical simulation was
about 1%. To attain such an accuracy, we simulated as
many as 10° events of photon incidence for each of the
photon energies. For the aluminum (Fig. 3a), the ana
Iytical dependence and the Monte Carlo simulation
(only the primary electrons were taken into account)
diverge by about 2% at the K edge. At a distance of
0.2 eV or more from the K edge, both curves coincide
within the accuracy of the numerical calculation. For
the germanium (Fig. 3b), the discrepancy is about 3%.
Partially, it isexplained by the fact that the Monte Carlo
simulation includes the contribution of fluorescent pho-
tonsto the TEY. Without fluorescent photons, the devi-
ation between the analytical and numerical results is
about 1%, i.e., exceeds the numerical calculation accu-
racy only slightly. The reason for such a discrepancy is
likely to be the insufficiently high accuracy of the ana-
Iytical approximation. In the case of the auminum, flu-
orescent photons do not influence the results.

The contribution of the secondary electrons to the
TEY merits special consideration. In Monte Carlo sim-
ulation, their contribution may be included as follows:
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Fig. 3. Electron yield calculated analytically (dashed line)
and by the Monte Carlo method (solid line) for (a) Al and
(b) Ge. The dash-and-dot linein (b) showsthe Monte Carlo
simulation without taking into account fluorescent photons.

any energy losses due to inelastic electron—target inter-
action are spent on the generation of the secondary
electrons whose trgjectories are then traced exactly in
the same way as those of the primary electrons. With
the contribution of the secondary electrons thus
included, the TEY increases by several timesasfollows
from the calculations. The energy of the secondary
electrons is small compared with that of the primary
electrons; therefore, the contribution of the former can
be reduced substantially if electrons with an energy
below some threshold (cutoff) value are omitted from
consideration. Physically, this means the presence of an
electrostatic barrier or ablocking potential near the sur-
face. Taking into account the cutoff energy affects the
escape function and the escape length of fast electrons
(with initial energies above 2 keV) insignificantly,
while for slow electrons, the presence of the cutoff
energy is essential. For a cutoff energy of 100 keV, the
discrepancy between the Monte Carlo simulation
including the secondary electrons and the analytical
results including the primary electrons alone is about
15%; for a cutoff energy of 250 keV, the discrepancy
declines to 10%. In this way, one can estimate the con-
tribution of relatively fast secondary electrons to the
TEY.
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Fig. 4. TEY for the Al/Cu samples near the K edges of
(a) Al and (b) Cu. (a) (1) Monte Carlo, a= 0.6 x 10 cm;
(2) andlysis, a= 0.6 x 107 cm; (3) Monte Carlo, a= 0.1 x
107 cm; and (4) analysis, a= 0.1 x 107 cm. (b) (1) Monte
Carlo, a= 0.6 x 107 cm; (2) analysis, a= 0.6 x 107 cm;
(3) Monte Carlo without fluorescent photons, a = 0.6 x
1075 cm; (4) Monte Carlo, a = 0.1 x 107 cm; (5) analysis,
a=0.1x 10" cm; (6) Monte Carlo without fluorescent pho-
tons, a= 0.1 x 107> cm.

Next, the TEY was evaluated for the Al/Cu and
Cu/Al composites with the layer thickness varying
from 10 to 60 nm. The thickness range was taken based
on the datafor the escape lengthsfor the most represen-
tative groups of Auger electrons (constituting the major
portion of the primary electrons) escaping the homoge-
neous Al and Cu samples and the Al/Cu and Cu/Al
composites.

The X-ray photon energy was varied from 1.50 to
1.95keV near the K edge of Al and from 8.8t0 9.7 keV
near that of Cu. The analytical and numerical (Monte
Carlo) dependences of the TEY on the photon energy
are demonstrated in Figs. 4 and 5 for an irradiation
angle ¢ = 30°. For the Al/Cu composites (Fig. 4) at
energies near the K edge of Al, the results are in good
agreement. The discrepancy, which is about 3% for the
10-nm-thick layer and decreases in thicker layers, is
associated with theinaccurate analytical approximation
of the escape function for the substrate at large depths.
2002
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Fig. 5. TEY for the Cu/Al samples near the K edges of
(a) Al and (b) Cu. (3) (1) Monte Carlo, a= 0.1 x 107 cm;
(2) analysis,a=0.1x 10°cm; (3) Monte Carlo without flu-
orescent photons, a = 0.1 x 107 cm; (4) Monte Carlo, a=
0.2 x 10° cm; (5) analysis, a = 0.2 x 10 cm; and
(6) Monte Carlo without fluorescent photons, a = 0.2 x
1075 cm. (b) (1) Monte Carlo, a= 1.6 x 10~° cm; (2) analy-
sis, a= 1.6 x 10~ cm; (3) Monte Carlo without fluorescent
photons, a = 1.6 x 10™° cm; (4) Monte Carlo, a = 0.4 x
1075 cm; (5) analysis, a = 0.4 x 10~ cm; (6) Monte Carlo
without fluorescent photons, a = 0.4 x 10~ cm; (7) Monte
Carlo, a= 0.1 x 107 cm; (8) analysis, a= 0.1 x 107 cm;
and (9) Monte Carlo without fluorescent photons, a = 0.1 x
10° cm.

At photon energies lower than the K edge of Al, the
TEY depends largely on substrate electrons and
decreases with increasing layer thickness. At energies
above the K edge, the TEY grows with layer thickness.

Near the K edge of Cu, the anaysis gives the TEY
value roughly 10% lower than the numerical simula-
tion. This difference is associated mainly with fluores-
cent photons contributing to the TEY. If the Monte
Carlo simulation ignores fluorescent photons, the TEY
value deviates from the analytical result by 3% for the
60-nm-thick layer and diminishes in thinner layers. As
the aluminum layer thickens, the electron total emis-
sion from the copper drops. At photon energies lower
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than the K edge of copper, the TEY is amost indepen-
dent of the aluminum thickness because of the minor
contribution of electrons from the substrate.

For the Cu/Al samples (Fig. 5), the analytical and
numerical results at photon energies near the K edge of
aluminum differ by about 6%: =3% due to the contribu-
tion of fluorescent photons and =3% due to the inaccu-
rate approximation of the escape function. A jump of
the TEY at the K edge of aluminum is noticeable only
at a copper layer thickness of 10 nm; for thicker layers,
the probability of electrons escaping from the alumi-
num through the copper layer is negligible.

Near the K edge of copper, the results nearly coin-
cide. Theinaccuracy of the approximation of the escape
function becomes essential with thick layers (160 nm),
for which the TEY s for the homogeneous samples and
composites are very close. Fluorescent photons con-
tribute markedly in the case of very thin layers (most
probably because of electrons generated in the sub-
strate) and when the layer is very thick (probably
because of the electron generation in the layer). In both
cases, however, the contribution hardly exceedsthe sta-
tistical error. As the copper layer thickness grows, the
electron emission from the copper is enhanced.

CONCLUSION

The kinetic equation for medium-energy (severa
keV) electronsin composites comprising alayer of one
material applied on a semi-infinite homogeneous sub-
strate of another material was solved analytically in the
diffusion approximation. From the solution obtained,
analytical expressions for the escape function of elec-
trons leaving the layer and the substrate were derived.

To verify these expressions and to refine the numer-
ical values of parameters entering into them, the analyt-
ical resultswere compared with the results of numerical
simulation by the Monte Carlo method. In the numeri-
cal simulation, we used the single scattering model.
Elastic electron—material interaction was described in
terms of the Mott differential cross section; inelastic
interaction, in terms of the doubly differential inverse
mean free path calculated within the dielectric formal-
ism.

It was found that the escape lengths appearing in the
analytical expressions for the escape function differ
from the escape lengths in homogeneous samples and
depend on the layer thickness and substrate composi-
tion. This discrepancy grows with decreasing layer
thickness and increasing atomic number contrast. For
the layer, the escape length can be determined by the
numerical simulation of the escape function with the
Monte Carlo method. When the analytical expressions
for the escape function use the parameter values found
by numerical simulation, they approximate the Monte
Carlo results more closely.

Based on the analytical approximation of the escape
function, we constructed a semianalytical algorithm for
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calculating the TEY for the homogeneous samples and
layer-on-substrate composites. According to this algo-
rithm, the TEY is determined from the anaytica
expressions derived by solving the kinetic equation in
the diffusion approximation. The numerical values of
the parameters appearing in the analytical expressions
(escape lengths and energy-dependent factors C) are
found by the preliminary Monte Carlo simulation of the
escape function. The TEY results calculated with such
a procedure were compared with those obtained by the
Monte Carlo method for samples of different composi-
tion. The effect of various processes on the final result
was estimated. The data obtained with the analytical
and numerical methods are in good agreement.
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Abstract—The effect of detuning from phase matching on the dynamics of a wave packet consisting of two
unidirectional strongly interacting modes in afiber with Kerr nonlinearity is considered. The effective param-
eters of dispersion and nonlinearity are analyzed for a wave packet that can be represented by a single partial

pulse. © 2002 MAIK “ Nauka/Interperiodica” .

(1) The propagation of coupled waves occupies a
prominent place among the problems of nonlinear
optics extensively discussed today. Coupled waves usu-
aly arise in tunnel-coupled or periodical-index optical
fibers [1-3]. The unique dispersion properties of sys-
tems with strong linear wave coupling [4-6] motivates
analysis of short-pulse propagation along such a fiber
with allowance for nonlinear effects [7-9]. In [10], the
propagation of short pulses was studied in a medium
with Kerr nonlinearity under the condition of phase
matching between two pulse-forming modes. In this
paper, we study the effect of detuning from phase
matching on the dynamics of a wave packet propagat-
ing in a periodical-index optica fiber with alowance
for strong linear and nonlinear (cross-modulation)
interactions between the modes.

(2) Let us consider a double-mode fiber periodical
along its length. An optical pulse of duration T, is
applied to its input. Effective coupling between the
pulse-forming unidirectional modes propagating in the
fiber takes place in the phase matching range. Complete
phase matching occurs at the center frequency wy
because of the fiber-index periodicity and pulse excita-
tion. The condition for complete phase matching is the
zero detuning & at the center frequency:

0(wy) = Bi(wp) —Bo(w) —21WA = 0, D

where [3; is the wave number of jth mode (j = 1, 2) and
A is the fiber inhomogeneity period along the axis of
radiation propagation.

An equation for the temporal envel opes of two inter-
acting modes written in the running time coordinates

T =t-2z/u, where u isthe wave packet group velocity, is
given by [10]

0A, E0A, da°A _ .
> + VT 292 —10A;_;exp(i&;02) @

_iR(VS|Ai|2 + VC|A3—J|2)AI

with alowance for the intermode detuning of group
velocities, material dispersion, and nonlinear effects,
such as phase self-modulation and cross-modulation. In
Ea. (2), § = (-1)!, v = (u; — uy)/2u? is the detuning of

the mode inverse group velocities, u; = (0[3,-/60))51 isthe
group velocity of the jth mode, 2u = u; + u,, d =

(0 sz 10uY), isthe material dispersion of thefiber, and R

is the parameter of fiber nonlinearity. The coefficients
of mode coupling ¢ and the parameters of phase self-
modulation, y;, and cross-modulation, y,, are defined by
the corresponding overlap integrals for the waveguide
mode profile functions with regard for the optical inho-
mogeneity profile and the distribution of the modula
tion depth over the fiber [5, 6].

It should be emphasized that Eq. (2) applies to all
systems with linearly coupled unidirectional waves.
For example, the equations describing optical pulse
propagation in tunnel-coupled light guides coincide
with Eq. (2); in this case, however, the detuning param-
eter depends only on the difference between the mode
propagation constants, o = 3, — [3,, and the parameters
g, Y. and y, are given by formulas somewhat differing
from those for a periodical fiber [1].

1063-7842/02/4709-1193%$22.00 © 2002 MAIK “Nauka/ Interperiodica’
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Equations (2) should be solved together with initial
conditions for the mode temporal envelopes A that cor-
relate with fiber excitation conditions. In the general
form, the initial conditions are given by A,(t, 0) =
WA (1, 0), where the parameter ) governsthe excitation
of the fiber. For Y = 1, the excitation is symmetric or
antisymmetric, respectively, whilefor gy =0or 1 =0,
we have single-mode excitation. For our case of strong
mode coupling, the envelope of the corresponding
mode can be represented as a combination of two par-
tial pulses (PPs) [5, 6]:

A; = a,(1,2)expli(q+0/2)Z + ay(T, 2)

*x exp[-i(q-0/2)7,

A, = Xay(1,2)exp[i(q—0/2)7Z] 3

—x "a,(1, ) exp[-i(q + 8/2)7] .

Here, a; are the PP amplitudes slowly varying with the
z coordinate, q = (02 + 3%4)V2, and the parameter

(29 +0)Ap +20A,
(29—0) Ay —20Ay

_ (20+90)An—20A _
(29-0)A;n—20Ay

depends on the initial conditions of fiber excitation.

In the case of complete phase matching, =0, g =
|o}, and x = -1.

Thus, the pulse formed by two interacting modesis
the superposition of partial pulses with the amplitudes
satisfying the equation

0z 2qv Ot 2 op? @)
+ iR(ysf|af|2+ycf|a3—f|2)af =0

inview of (2) and (3). Here, f =1, 2; & = (-1); and the

effective parameters of phase self-modulation and

cross-modulation, as well as the PP effective disper-
sion, are given, respectively, by

_ (ys+yc) —2&; Efa(ys_yc) 285
Vor = Sgtely 4Py e gy

29 (ys+VYe)
_ (ys_yc)
ny - 2 (5)
28, 2,
3+X )Vs—(l—X )yc Efa 284 O
<l + 203y,
O Ys—VYc 2q( X )E

_dy+d, . & g dvi(di—d)
Dy = =5 +;%%L"TD' (6)
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In view of (4), the initia conditions for the PP
amplitudes have the form

1 o o
a(1,0)=a4 = E[Am + EfEﬁAm + aAz D}- (7)

The "degenerate situation,” where the behavior of
the whole wave packet can be described by the dynam-
ics of one of the PPs, is of most interest for deriving
analytical solutions to Eq. (4) and their experimental
realizations. For such a situation, it is possible to find
optimal dispersion parameters of the pulse propagating
in afiber. In the case of phase matching of the modes
(6 = 0), degeneration takes place for symmetric () = 1)
or antisymmetric (¢ = —1) excitations, when a,; = 0,
ay # 0 or a,y =0and a;p # O, respectively. Here, one of
the PP amplitudes a; equals zero at the initia time
instant and remains the same during the pul se propaga
tion.

(3) In the general case o # 0, i.e, in the case of
detuning from phase matching, degeneration for the
asymmetric excitation isalso possible, according to (7),
ifa,=0at y=—2q-9)/20 ora,=0at Y =(2q + d)/20.
In this case, the system of equations (4) degenerates
into the single nonlinear Schrédinger equation [10]

da, iDd%; . 2
'52_755_;?+|Rysf|af| a; =0, (8)

where the running time 1; = t — z/u; is related to the cor-
responding PP and the PP group velocity is u}l =ul-
&:0/2qv.

Equation (8) describesthe pulse dynamicsin acubi-
cally nonlinear medium with an effective dispersion D¢
and an effective nonlinearity Ryg. A distinctive feature
of the wave packet propagation in such a medium (see
Eq. (8)) is sdlf-action, which may both broaden and
compress the wave packet. Another feature of the pro-
cess is the possibility of forming stable wave packets,
Schrédinger solitons, appearing under the combined
action of the nonlinearity of the medium and dispersion
effects [11]. In our case of strong linear coupling
between the modes forming a wave packet, the disper-
sive properties depend on the effective dispersion Dy of
apartia pulse dueto the material dispersion, mode cou-
pling, and detuning from phase matching. If the effec-
tive dispersion is anomalous (D; < 0) and a waveguide
has focusing properties (Ryg > 0), Eq. (8) hasasolution
specifying so-called “bright” solitons of hyperbolic
secant shape. In this case, the solution of Eq. (8) for the
PP amplitudeis

a(1,2) = asosech(t/t5)exp(-ilz), )
TECHNICAL PHYSICS  Vol. 47
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where the phase, duration, and initial amplitude of the
pulse (soliton) are related as

2r = Rysfaf0 = |Df|/T§0|. (20

It follows from Eqg. (10) that the soliton duration
depends strongly on the effective dispersion and non-
linearity values:

12
T = (IDi|/Rysiato) = (IDi|To/RWp)™.  (11)
Here, Wy = (JA1l? + A1, is the density of the energy

delivered to the fiber and R; = Ry; is the parameter of
effective nonlinearity, where

_ YstYe + 62 (ys — yc)|:|
vie=teg 407 + 8 (Vs *+ Yol 12

It isworth noting that in the degenerate case, where
the behavior of the entire wave packet is governed by
one PP, the parameter of effective nonlinearity does not
depend on the excitation type, and the energy density of
a soliton-like pulse passing through the fiber is Wy,; =
IDs /R4, If the energy density W, applied to the fiber
iscloseto W, the soliton regime of pulse propagation
setsin. For W, < W5, the pulse diffuses; for W, > W
it shrinks. In the latter case, the pulse self-compression
E:fg] be approximated by the generalizing relationship

To/ Tmin 04/ ToR{W,/|Dy|,

where T, is the minimum pulse duration.

(13)

The effective parameters of dispersion and nonlin-
earity depend appreciably on the detuning value, mode
coupling, and excitation type, providing conditions for
effectively controlling the compression, which to a
great extent specifies the pulse dynamics in the fiber.
The effective parameters of dispersion and nonlinearity
vs. the normalized detuning from phase matching &/|o|
for partial pulseswithf=1 (a) and f = 2 (b) and for the
fiber parameters v?|o|= 10?6 m/s?, d; = 10726 s/m, and
d, = (-3, -2, -1, 1, 2, 3)10% s/m (curves 1-6) are
given in Fig. 1. The monotonical increase in D, is
accompanied by the monotonical decrease in D, (and
conversely) at d, # d,. For d, = d,, theweak dependence

of D; on the detuning is observed. For & = —2&|a}/ /3,
the d,-dependence of D; disappears: D; = d; + &/vZq;

similarly, for & = 2£f|0VJ§, D; does not depend on d; .
Of greatest importance is the possibility of reaching
extremely small values of the effective dispersion D;
(less than [107%/| s°/m) by varying the detuning, which
isafunction of the phase matching 8. The possibility to
attain small and, at the same time, negative effective
dispersion over a wide range of operating frequencies,
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Fig. 1. Effective dispersion Ds vs. the normalized detuning
o/|o|for partial pulseswithf=1(a) and 2 (b).
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Fig. 2. Normalized parameter of the effective nonlinearity
Re/Rys vs. the normalized detuning &/|al.

wy = 0.8-4.0 x 10% s, isof great value for developing
compact laser-pulse compressors based on the optical
fibers considered.

The dependences of the normalized parameter of the
effective nonlinearity R/Ry; on the detuning &/|o]| for
VdY¥s =0, 0.5, 1, 1.5, and 2 (curves 1-5) are shown in
Fig. 2. The effective nonlinearity is the same for both
PPs and does not depend on the detuning sign. For & =
0, we have the extreme value of nonlinearity R O (y; +
Vo R/2; inthelimit of high values of the detuning, |0] O
o, R Rys Itisremarkable that the effective nonlin-
earity is detuning-independent for y. = y,. The maxi-
mum change in the nonlinearity parameter is R|y, —
A

The essential effect of radiation input conditions on
the radiation dynamics in the fibers makes them prom-
ising for all-optical logic elements. It should be stressed
that coupled waves can be generated not only in period-
ical-index media but aso in tunnel-coupled fibers,
gyrotropic birefringent media, etc. A periodical-index
fiber can be considered as a model object, and associ-
ated results should be viewed as general and applicable
to almost any system supporting copropagating waves
with strong linear coupling.
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Abstract—The photoluminescence and photocurrent spectra of CulnS, single crystals grown by the Bridgman
method are studied at temperatures of 80 and 300 K. The photosensitivity spectrum is observed in the short-
wave photoluminescence band. From the watt—ampere characteristics of photoconductivity, alinear mechanism
of recombination of minority charge carriers is established for an illumination level of up to 100 mW/cm? in
the temperature range of 80-300K. © 2002 MAIK “ Nauka/Interperiodica” .

The CulnS, semiconductor belongs to I-11-VI,
compounds and has the chalcopyrite structure[1]. This
direct-gap semiconductor has a bandgap Ey = 1.55 eV
and ahigh optical absorption coefficient (o > 10° cnr?), as
well as features intense radiative recombination. When
combined, these properties make it a promising material
for optoelectronic devices operating in the near-IR and
visible spectral ranges, for example, for solar cells[2].

In this study, we report the radiative and photoel ec-
tric properties of undoped CulnS, single crystals grown
by the Bridgman method. They had a p-type resistivity
p = 0.1-1.0 Q cm. The conductivity type was deter-
mined by the thermoelectric method. Samples to be
studied were cleaved out of an as-grown ingot, and the
cleavage surface was shiny. Thiscrystal isknown [3] to
cleave over the crystallographic plane (112); therefore,
we assumed this plane to be the cleavage plane in our
case. Graphite contacts were deposited on the as
cleaved surface to perform electrical measurements. As
follows from the |-V characteristics, these contacts are
ohmic at temperatures between 80 and 300 K. The crys-
tals grown had the chalcopyrite structure with parame-
ters coinciding with those presented in [4, 5] to within
an experimental error.

The radiative and photoelectric properties of the
samples were studied with the setup described in [6]. A
He—Nelaser (\o=0.633 um) with a0.1- to 1.0-W/cm?-
power density was used as an excitation source. A nitro-
gen-vapor-cooled FEU-112 photoelectric multiplier
with spectral characteristic similar to that of an S-1
photocathode served as a photodetector.

Figure 1 presents the photoluminescence spectra of
the CulnS, single crystals. The spectra are seen to have
three peaks at E; = 1.52 eV, E, = 1.43 eV, and E; =

111eV a T =300 K and a E; = 152 eV, E, =
148eV,and E; =1.11eV a T=80K. The pesk at E,

can be attributed to optical transitions between shallow
donors (D,) and the valence band. The differencein E;
valuesat 300 and 80 K stemsfrom the temperature vari-
ation of the bandgap E, in CulnS,; crystals. A donor D,
with an ionization energy AEp; = 35 meV is known
[2, 7] to beasulfur vacancy (V). The peak at E, isasso-
ciated with D,—A, optical transitions, where an acceptor
level A, with an ionization energy AE,; = 100 meV is
[2] a copper vacancy (V). At atemperature T = 80 K,
the band peaked at E, is replaced by the band with a

maximum at E;. The new band results from optical
transitions from a donor level D, with an ionization
energy AEp, = 72 meV to the valence band. This level
is also associated with sulfur vacancies, which form [8]
two energy levels in the CulnS, bandgap. Both were
observed in our optical absorption spectra (omitted in
the present discussion). The intense long-wave temper-
ature-independent band with a peak at E; in the photo-
[umi nescence spectrum can be attributed to D,—A, tran-

J E E
E;, E'

1.3 1.4 1.5

E, eV

Fig. 1. Photoluminescence spectra of the CulnS, single
crystalsat (1) 300 and (2) 80 K.
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1.4 1.5

1
1.6 E, eV

Fig. 2. Photocurrent spectra of the CulnS, single crystals at
(1) 300 and (2) 80 K.

sitions, where A, is a deep acceptor level (ionization
energy AE,, = 370 meV) due to either growth-related
oxygen interstitials or copper vacancies (V) [8].

Photocurrent spectra of the crystals were also taken
at 300 and 80 K (Fig. 2). They take into consideration
the spectral distribution of the radiation source, which
was aKGM halogen lamp with acolor temperature T =
1400 K in the operating range. A single maximum with
steep short-wave and smooth long-wave edges is
observed. The positions of the maximum are E,, =

1.49 eV and E,, = 1.55 €V at 300 and 80 K. The steep-

ness of the short-wave edge displays a weak tempera
ture dependence. Upon cooling the sample, the short-
wave edge of the band shifts toward higher energies at
arate of 2.27 x 1072 eV/K, which agrees with the rate
of temperature variation of the CulnS, bandgap [2].
The smooth long-wave edge of the photocurrent spectra
evidences a low rate of surface recombination of non-
equilibrium charge.

In order to determine the mechanism behind non-
equilibrium carrier recombination, we studied the illu-
mination dependences of the photocurrent I, =1, — 15
(I, isthe current across the sampleilluminated and |5 is
the dark current) at 300 and 80 K. Theillumination was
measured by an IMO-2N optical power meter. The pho-
tocurrent value appeared to be a linear function of the
illumination for intensities of up to 100 mW/cn?? for

IVANOV et al.

both 300 and 80 K. This suggests a linear mechanism
of nonequilibrium carrier recombination in CulnS,
crystals; i.e., the product pt (U is the carrier mobility
and T is the lifetime) is independent of the charge car-
rier concentration [9].

Thus, we found that the photosensitivity spectrum
of CulnS, crystalsliesin the short-wave part of the pho-
toluminescence band. The smooth long-wave photocur-
rent edge indicates the slow surface recombination of
minority charge carriers on the as-cleaved CulnS, sin-
gle-crystal surface. Based on the watt—ampere charac-
teristics of photoconductivity, we established the linear
character of minority carrier recombination in the tem-
perature range from 80to 300 K at anillumination level
of up to 100 mW/cm?.
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Abstract—Antidots of size 0.5 um are prepared by patterning iron-nicke filmswith afocused ion beam. The
magnetization distribution in antidot arrays is examined with Lorentz transmission electron microscopy. It is
shown that one side of the array makes an angle of about 20° with the easy magnetic axis of the film. Magne-
tization reversal in the direction close to the easy magnetic axis starts with domain nucleation at the antidot
edges that are perpendicular to the applied field and adjacent to the unpatterned region of the film, and propa-
gates as the domain walls move. Magnetization reversal in the direction close to the hard magnetic axis starts
with magnetization rotation outside the patterned region at the antidot edges and propagates asthe domain walls
execute a complicated motion. It is demonstrated that some areas between the edges of adjacent antidots can
carry information bits. Results obtained are explained in terms of competition between the demagnetizing
energy, energy of internal anisotropy, and misorientation effect. The feasibility of such structures as high-den-
sity storage elements is discussed. © 2002 MAIK “ Nauka/Interperiodica” .

One of the most important problemsin today’s mag-
netic technologies is to raise the density of magnetic
disks. The goal can be achieved by decreasing thegrain
size of a magnetic material or by reducing the energy
exchange between grains. In both cases, however, great
difficulties associated with the thermal instability of the
grain magnetic moment arise. A possible way of solv-
ing this problem is to lithographically split the mag-
netic material into islands with a nonmagnetic medium
between them so that one island carries one data bit.
Such structures are referred to as magnetic dots [1].
Recent publications describe an alternative configura-
tion, namely, nonmagnetic dots surrounded by a mag-
netic material. By analogy, they have been called mag-
netic antidots. In [2-5], micromagnetic studies of mag-
netic antidot arrays with magnetic-force microscopy
and scanning magnetooptic Kerr microscopy are
reported. In addition, the behavior of periodic antidot
arrays and writing processes in these mediawere simu-
lated [6]. However, results obtained in the works cited
need experimental verification. Later, magnetic antidot
arrays patterned by a focused ion beam (FIB) on con-
tinuous films were investigated with Lorentz transmis-
sion electron microscopy [7]. Inthiswork, we study the
magnetization distribution in submicrometer antidot
arrays prepared by the FIB patterning of NigyFe,, con-
tinuous films by means of Lorentz TEM with a mag-
netic film applied in situ.

Antidots were patterned in 20-nm-thick NigyFe,
polycrystalline films deposited on carbon-covered mica
substrates by magnetron sputtering in argon. The depo-
sition rate was 3.3 nm/min, and the pressurein the vac-

uum chamber was 106 mbar at room temperature and
6 x 10~ mbar during the deposition process. As-depos-
ited films were floated off in water and then placed on
200 x 200-um square-mesh copper grids.

Square arrays were patterned in the films with a
200TEM FIB system (FEI Co., USA). Gaions acceler-
ated by avoltage of 30 kV were used as a milling spe-
cies. The ion beam and the spot size were 0.5 nA and
10 nm, respectively. The antidot size and the size-to-
spacing ratio were 0.5 um and 1 : 2, respectively.

The energy-dispersive X-ray anaysis of patterned
areas was carried out by recording characteristic X-ray
spectra from the samples as a result of electron bom-
bardment in a JEOL 3000F electron microscope with a
field-emission electron gun (FEG).

The Lorentz TEM study of the domain structure of
the antidot arrays was carried out with a JEOL 4000EX
electron microscope modified for magnetic films [8].
A magnetic field of strength H up to £400 Oe can be
applied in situ in the plane of the film parallé to the
edges of antidots. Before the experiments, the film was
gradually magnetized to saturation in both the forward
and reverse directions. Then, the image of the domain
structure appearing in the array in both the state with
remanent magnetization and the biased state was pho-
tographed.

The TEM studies showed that the antidots were not
square in shape because of the nonuniform energy dis-
tribution over the ion beam cross section. As followed
from the energy-dispersive X-ray analysis, the pat-
terned areas were free of the substrate materia ele-
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Fig. 1. Lorentz TEM images of the antidot array that are
obtained upon magnetization reversal in direction 1 closeto
the EMA. The magnetization distribution is schematically
shown in the diagrams below. H = 0 (a), 19 (b), 34 (c), and
57 Oe (d).

ments, and their edges were sharp. The Lorentz TEM
investigation demonstrated that the arrays make an
angle of about 20° with the easy magnetic axis (EMA)
of the NiggFe,, film. The EMA was defined asthe direc-
tion running normally to the magnetization ripple. Fig-
ure la shows the magnetization distribution over the
antidot arraysin the state with remanent magnetization
before the film is magnetized in the direction close to
the EMA. Schematically, the magnetization distribu-
tion is indicated by arrows in the diagram depicted
below. Three regions with various mean directions of
magnetization can be distinguished. In region 1, the
magnetization is oriented horizontally because of the
demagnetizing effect at the edges of the antidots. In
region 2, the misorientation between the EMA and
edges of the antidots leads to the diagonal direction of
magnetization. In region 3, the demagnetizing energy is
roughly equal to the energy of internal anisotropy.
Because of this, the magnetization orientation in these
regions depends on local variations of the anisotropy
variance and film inhomogeneity. Magnetization rever-
sal inthe direction close to the easy magnetic axis starts
with the nucleation of inversely magnetized domains at
the antidot edges that are perpendicular to the applied
field and adjacent to the unpatterned region outside the
array. In afield of about 14 Oe, these domains begin to
penetrate into the array along rows aligned with the
appliedfield (regions 1 and 2). The magnetization mean
direction in these domains coincides with the EMA
because of the misorientation effect. Individual domain
walls are pinned at the edges of the antidots, forming a
long domain wall. Meanwhile, at afield near 16 Oe, the
motion of the domain walls starts to switch regions 3.
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Fig. 2. Lorentz TEM images of the antidot array that are
obtained upon magnetization reversal in direction 2 closeto
the HMA. The magnetization distribution is schematically
shown in the diagrams below. (a—d) The same asin Fig. 1.

Figure 1b shows the magnetization distribution over the
array inafield of 19 Oe. When the applied field exceeds
21 Oe, the magnetizationsinregions 1 and 2 are aligned
with thefield. However, thisfield isinsufficient to over-
come the demagnetizing field in regions 3, as follows
from Fig. 1c. Some of the domains remain pinned
between the corners or edges of adjacent antidots, since
the applied field is still insufficient to overcome the
energy barriers at the antidot edges. As the field rises,
the magnetization vectors rotate toward its direction
(Fig. 1d). When the field diminishes, the magnetic field
returns to the state with remanent magnetization. With
the field reversed, the magnetization switching pro-
ceedsin the reverse direction.

In the direction close to the hard magnetic axis
(HMA), magnetization reversal occurs in a different
way. Figure 2a shows the magnetization distribution in
the antidot array in the state with remanent magnetiza-
tion before the magnetic field is applied in situ.
A noticeable feature here is the existence of regions
where the magnetization is distributed in a similar way
in the absence of the field. In these regions (denoted 1),
the magnetization vectors run horizontally because of
the demagnetizing effect. In regions 2 and 3, the effect
of misorientation between the EMA and the antidot
edges and the demagnetizing effect cause the magneti-
zation vectors to run diagonally and vertically, respec-
tively. Magnetization reversal starts largely with mag-
netization rotation at the antidot edges outside the array
and becomes detectable at an applied field of 65 Oe. At
9 Oe, the magneti zation vector rotation beginsto switch
the magnetizations in regions 2, as indicated by afaint
change in the magnetization ripple orientation with the
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domain wallsremaining immobile. Asthefield strength
rises, inversely magnetized domains formed at the anti-
dot edges normal to the field grow, merge together, and
penetrate into the array, partially changing the magne-
tization distribution in regions 1 (lower left-hand
square in Fig. 2b). Simultaneously, at a field of about
19 Oe, magnetization reversal starts in regions 2. In
these regions, the reversal takes place through a sudden
jump of the domain walls, with the vector of domain
motion making an angle of about 45° with the antidot
edges. Thisprocessis completed near 25 Oe. Therange
of switching fieldsis associated with the magnetic field
nonuniformity. Figure 2c depicts the array subjected to
afield of 34 Oe. In regions 1, the demagnetizing field
facilitates the magnetization orientation aong the
applied field. In regions 3, the magnetization direction
depends on the superposition of the applied field, the
effective field of internal anisotropy, and the demagne-
tizing field. Finally, in regions 2, where the effect of the
demagnetizing field at the antidot edges is less signifi-
cant, the directions of the magnetization vectors are
close to that of the applied field. As for magnetization
switching in the direction close to the EMA, the array
contains domains pinned between the edges and cor-
ners of the antidots. The reason why such domains exist
has been discussed earlier. At higher applied fields, the
magnetization vectors rotate toward the applied field
direction (Fig. 2d). Then, the applied field is reversed,
and the process goesin the opposite direction. It should
be noted that when the array is switched in the direction
close to the HMA, the magnetization distribution in all
regions 1 in the state with remanent magnetization have
the same reproducible (from one hysteresis loop to
another) configuration.

Thus, with Lorentz TEM, we studied the magnetiza-
tion distribution in submicrometer antidot arrays pre-
pared by patterning a continuous NigyFe,, film with an
FIB. It was shown that magnetization reversal in the
direction closeto the EMA starts with the nucleation of
inversely magnetized domain at the antidot edges (out-
sidethearray) that are perpendicular to the applied field
and propagates through the ordinary motion of the
domain walls. Magnetization reversa in the direction
close to the HMA isinitiated largely by magnetization
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rotation and propagates as the domain walls execute a
complicated motion. In the array, there are regions
between the edges of adjacent antidots where the mag-
netization distribution is reproduced from one hystere-
sis loop to another. Although these regions are not
domainsin the strict sense, they can be viewed as mag-
netic memory elements. However, the size of the anti-
dots considered in this article is relatively large; there-
fore, they areinappropriate for elements of super-high-
density memories. It is hoped that an array of smaller
antidots with a size-to-spacing ratio and a magnetic
material chosen optimally will be promising as a
medium for super-high-density memory.
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Abstract—A genera kinetic equation is derived for elementary cathode spots (ECSs) constituting a group
cathode spot (GCS). The equation makes it possible to evaluate the kinetic constants of the spots if certain
experimental data are available. ECS kinetics features are established. An explanation for the possibility of the
stable state of a GCSis proposed. © 2002 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

Investigation into GCSs in a vacuum arc discharge
on scale-coated surfaces[1, 2] aimed at el aborating sur-
face-treatment technology in such discharges [3] has
revealed the following. First, a GCSis stable with char-
acteristic relaxation times of its parametersin the range
100200 pus. Second, a stable GCS has a configuration
where ECSs are located along the GCS region bound-
ary, i.e., along the metal—scale interface. Such a config-
uration has been called one-dimensional. Third, it has
been established that the GCS configuration and,
hence, the microrelief of the surface vary with the sur-
face condition.

Inthisstudy, an effortismadeto find asimple expla-
nation for the GCS stahility, since this problem is of
great practical importance. To this end, we use aquasi-
particle approximation for describing the ECS kinetics
inside a GCS.

THE KINETICS OF ELEMENTARY
CATHODE SPOTS

As state (phase) variables of a GCS, one can choose
the number of ECSs in a GCS and any GCS size, for
example, its perimeter. In describing the kinetics of
ECSson the cathode surface, they can be represented as
guasi-particles in the two-dimensional space having a
finite lifetime and being capable of generating the same
new quasi-particles. Here, we use the same ideas and
definitions regarding ECSsasin [2].

In the genera form, the kinetic equations can be
written as follows:

dN - i
a - 2Kyt

+ Nadv
Vdt’ @)

where N is the number of particles in the volume V of
the interaction space (which is, in general, time-depen-
dent, i.e., variable), and k; isthe difference between the
kinetic coefficients of production and loss of i particles.

If ECSs move over the surface randomly, the inter-
action spaceisrepresented by aplane (two-dimensional
space), which has the dimension of area. When ECSs
move regularly along the GCS boundary, the interac-
tion spaceisaline (one-dimensiona space). Its dimen-
sion is length and the interaction space volume equals
the GCS perimeter (L).

In what follows, we will considering one- and two-
particle processes in a GCS. The rate of change of the
GCS perimeter (L) is given by

‘3—'; - 2T[Vd——K = W(N, L), @

where d is the width of a metal zone arising as a result
of scale removal for a single pass of ECSs aong the
contour line of the GCS, v is the average rate of ECS
motion along the boundary, and K is a parameter gov-
erning the rate of molten scale flow into the GCS.

Itis seen that the system of Egs. (1) and (2) does not
have nontrivial general stationary solutions; i.e., it does
not have a point of equilibrium and is unstable.

Thus, it seems that some essential factor has not
been taken into account in the one-dimensional model
of a GCS. Therefore, the model should be refined.
Analysis of energy consumption and of the microrelief
development in aGCS hasled usto the assumption that
two kinds of ECSs are present in a GCS.

Kind-1 ECSs, which are constantly located at the
metal-scale interface, clean the surface. The other
exists on the clean metal surface and does not partici-
pate in the cleaning process. Probably, ECSs of the sec-
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ond kind are responsible for the microrelief inside a
one-dimensional GCSin the form of agiant protrusion.

Note that the coexistence of the ECSs in these
regions is possible only under specific conditions. We
assume that they may arise when a near-surface plasma
is generated on the clean metal surface by boundary
ECSs. The plasmadensity must be sufficient to raisethe
probability of ECS production in this region and make
it comparable with that at the metal-scale interface.
Kind-2 ECSsform and exist within acleaned metal belt
of width h around the metal—scale interface. A certain
critical density of the near-surface plasma over the
cleaned metal surface (n*) below which ECSs on the
cleaned surface are not produced specifies the width h
of the region where kind-2 ECSs exist.

Thus, the interaction between ECSs of both kinds
leads to anonlinear relationship between N and L, gives
rise to stationary solutions to Egs. (1) and (2), and,
eventually, provides the existence of a stable GCS.

The relation between h and the phase variables is
easy to find:

= ToyN 20 x5 3
n

Here, X istheratio of the number of kind-1 ECSsto the
total number of ECSsinside a GCS.

Next, wewrite the kinetic equation for kind-1 ECSs,

dN | 2N?

X = KXN+ kX T+ XT W(N L), @
and for kind-2,
dN _ .S s 2N2
(1-X)g = k@ =—ON+ke(1=X)"

N ©)
+(L=X)TW(N, L).

Here, the subscripts at the coefficients k stand for the
order of the reactions of ECS production and lossasin
Eqg. (1), and the superscripts | and s denote one-dimen-
sional kinetics (one-dimensional space) and two-
dimensional kinetics (two-dimensional space), respec-
tively. The genera kinetic equation for all the ECSs
inside a GCS has the form

2 2
d_N = aN+I3_N_+y_________N
dt L 2T, 2
E+—§E N
L (6)

+%W(N, L) = E(N, L),
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where
B = X’ka,

£ = Crx=.
n

a = xky+(1-x)kS,

y = (1-x)%Ks,

ESTIMATES OF THE KINETIC CONSTANTS
OF ECSs

The practica value of the equations derived liesin
the fact that, with certain experimental data available,
they enable one to evaluate the kinetic constants of
ECSs, i.e., in asense, to solve the inverse problem.

To solve this problem, we used (in addition to the
fact that a GCS can be stable) the following experimen-
tal data obtained earlier [2]: stationary values of the
number of ECSs and sizes of GCSs; dependence of the
GCS sizes on the number of ECSs in a single GCS;
gualitative datafor the microrelief within astable GCS;
estimate of the time of GCS relaxation to its stationary
state; and quantitative data for the efficiency of surface
cleaning by freely moving GCSs.

The results of our estimates are the following: a =
8.415 x 10°® s, y = 0.033 cm?/s, (1 — X)k] = —8.4 x

10?2 s, and x K; = 9.26 x 1063 s..

To independently check these quantitative data, we
took |-V characteristics of asingle GCS in many mea-
surements. A linear slowly increasing dependence with
the slope

du

a = 0.15+0.02 V/A

was observed. Data from [4] and the kinetic constants
estimated make it possible to calculate this value inde-
pendently. It was found that

dU _ 523 VviA.

dl

In view of the above assumptions, the agreement is
quite reasonable.

CONCLUSIONS

(1) The possibility of the GCS stable state is
explained by the existence of two interacting kinds of
ECSsin aGCS. ECSs of thefirst kind are located at the
metal—scal e interface, which bounds the GCS. ECSs of
the second exist on the cleaned metal surface within a
belt around the interface. The width of the belt depends
on the number of kind-1 ECSs.

(2) Estimates of the kinetic ECS coefficients were
made.
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