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Abstract—The heterogeneous combustion of two immobile interacting particles with arbitrarily shaped sur-
faces is theoretically described under conditions of rapid chemical reaction, where the concentration of oxidizer
molecules on the surface of the particles can be considered to be zero. The problem is solved for an arbitrary
temperature dependence of molecular transport coefficients when molecular transport in the vicinity of the par-
ticles takes place by diffusion. Analytical formulas found allow for the direct characterization of the combustion
of individual spheroidal particles and interacting spherical particles in several particular cases. At the same vol-
umes, heavily elongated and oblate particles are shown to burn significantly faster. The approach of the particles
significantly influences the time of burning the finer particle if its size is far less than that of the coarser one. ©
2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Heterogeneous combustion occurs when molecules
of a gaseous medium enter into a chemical reaction
with molecules of a solid particle. The process can take
place, e.g., in the furnaces of thermal power plants
[1, 2] or in zones where aerodisperse systems are clari-
fied by laser radiation [3–6]. Aerosol particles may
have an arbitrary shape of their surface and be arbi-
trarily spaced. Therefore, problems related to the effect
of the particle surface shape and approach on the rate
and time of combustion are of great importance.
Golovin et al. [7] have recently found the rate of the
high-temperature combustion of an individual spheroi-
dal carbon particle for the case of temperature-indepen-
dent transport coefficients. However, there is a need to
elaborate a combustion theory for arbitrarily shaped par-
ticles when there is a significant temperature drop near
them, where the molecular transport coefficients depend
on temperature. It is also of interest to study the effect of
the interaction between a pair of particles with arbitrary
surface shapes on their heterogeneous combustion.

First, we consider the free combustion of two parti-
cles such that heat generation inside the particles is
absent and the effect of radiative heat exchange on the
combustion can be neglected. The combustion of the
two arbitrarily shaped interacting particles occurs in an
N-component gas mixture. The chemical reaction fol-
lows the scheme

where the coefficients νt are equal to the stoichiometric
coefficients of the reaction in magnitude (ν1 > 0, ν(p) > 0,

ν1A1 ν p( )A p( )+ ν j A j,
j 2=

N 1–

∑=
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νj < 0, j = 2, …, N – 1), and the superscript p denotes
the stoichiometric coefficient of the particle material.

When the atoms of a carbon particle are oxidized by
oxygen molecules to carbon monoxide (O2 + 2C =
2CO), the symbols A1, A2, and A(p) denote O2, CO, and
C molecules, respectively. The relative oxidizer con-

centration on the particle surface is C1|S =  = 0.
Temperature drops in the vicinity of the particle can be
significant. The sizes of the particles and the distance
between them are assumed to be sufficiently small;
hence, the effect of gravitational convection on heat-
and-mass transfer cannot be neglected. The combustion
of the particle proceeds in the quasi-steady-state mode.
In the vicinity of the particles,

where Cj = nj/n, n = , and nj are the concentra-
tions of the gaseous component molecules.

Under these conditions, the basic mechanism of
molecular transfer is molecular diffusion. It should be

noted that, at  = 0, the approach of the particles and
the shape of their surfaces affect the rate of combustion
most strongly.

With the above assumptions, the distributions of Cj,

gas temperature Te, and particle temperature  in the
particle–gaseous environment system are described by
the set of equations

(1)

C1
s( )

C j ! 1,
j 1=

N 1–

∑

n jj 1=
N∑

C1
s( )

Ti
f( )

∇ q j⋅ 0, ∇ qT
e( )⋅ 0, ∇ qT

f( )⋅ 0,= = =
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with the boundary conditions 

(2)

(3)

Here, qj, , and  are the densities of the molecu-
lar and thermal flows, respectively:

(4)

χe and  are the gas and particle thermal conductiv-
ities, respectively; the index ⊥ denotes the projections
of the vectors onto the normals to the particle surfaces;
LP is the thermal effect of the chemical reaction; mP is
the mass of particle molecules; and the superscript f =
1, 2 denotes the number of the particle.

The coefficients DjN of binary diffusion and the ther-
mal conductivity χe depend on Te. The third of bound-
ary conditions (2) and the first of boundary conditi-
ons (3) take into account the stoichiometric relation
between the molecular flow densities and the continuity
of the thermal flow, respectively.

The solution to boundary-value problem (1)–(3) is

(5)

where xk are the coordinates of points in the space;

(6)

The values of Ti0 are found by solving the algebraic
equation

(7)

Thus, at  = 0, the quasi-steady-state combustion
of the particles proceeds at the same temperature irre-
spective of their shapes, sizes, and spacing.

The values of U(xk) are determined by solving the
boundary problem

(8)

where ∆ is the Laplacian operator. 
Having determined Ti0, we can calculate the flow

densities qj and qT and the total molecular, , and

C1 S f
 = 0, Te S f

 = Ti
f( )

S f
, q⊥ j S f

 = ν j/ν1( )q⊥ 1 S f
,

LPmP ν p( )/ν1( )q⊥ 1
e( ) q⊥ T

e( )+[ ] S f
q⊥ T

f( )
S f

,=

C j ∞ C j∞, Te ∞ Te∞.= =

qT
e( ) qT

f( )

q j D jNn∇ C j, qT
e( )– χe∇ Te,–= =

qT
f( ) χ i

f( )∇ Ti
f( );–=

χ i
f( )

C j C j∞ C1∞ ν jψ j Te( )/ν1ψ1 Ti0( )[ ]–{ } ,=

ψT Te( ) = ψT Ti0( )U xk( ), Ti
1( ) = Ti

2( ) = Ti0 = const,

ψ j Te( ) χe/nD jN( ) Te, jd

Te∞

Te

∫ 1 … N 1;–, ,= =

ψT Te( ) χe Te.d

Te∞

Te

∫=

ψ1 Ti0( ) LPmP ν p( )/ν1( )C1∞.=

C1
s( )

∆U 0, U S f
1, U ∞ 0,= = =

Q j
f( )
thermal, , flows removed from the surfaces of the
particles by the formulas

(9)

(10)

where dsf is the differential vector element of the sur-
face and F1(Ti0) = ΨT(Ti0)/Ψ1(Ti0).

Knowing the temperature Ti0 and having solved
boundary problem (8), we can determine the rate of
change of the particle mass (with a known surface
shape) by the formula

(11)

where  = ρP ; ρP and  are the density and
volume of the particle, respectively; and t is time.

When calculating changes in the particle shape and
volume, we should take into account the expression for
the normal projections of the flow densities for particle

molecules removed from the surface:  =

−(ν(p)/ν1) .

Boundary-value problem (8) can be solved numeri-
cally in the general case and analytically in some par-
ticular cases (for example, in the case of individual
spherical, spheroidal, and ellipsoidal particles or
two interacting particles). For a spherical particle of
radius R,

(12)

where r is the radial coordinate and nr is the unit vector.

For elongated and oblate individual spheroidal par-
ticles,

QT
f( )

q j

ν j

ν1
-----q1, q1 C1∞F1 Ti0( )qU,–= =

qT ΨT Ti0( )qU, qU ∇ U ,–= =

Q j
f( ) ν j

ν1
-----Q1

f( ), Q1
f( ) C1∞F1 Ti0( )QU

f( ),–= =

QT
f( ) ΨT Ti0( )QU

f( ), QU
f( ) ∇ Uds,

S f

∫°–= =

dMP
f( )

dt
-------------- mP

ν p( )

ν1
--------Q1

f( ),=

MP
f( ) VP

f( ) VP
f( )

qP
f( )

q⊥ 1 S f

U R/r, ∇ U R/r2–( )nr, QU
1( ) 4πR,= = =

U ξ( ) ξ 1+cosh
ξ 1–cosh

------------------------/
ξ0 1+cosh
ξ0 1–cosh

--------------------------,lnln=

∇ ξU

= 
2nξ

c ξ ξsinh
2 ηsin

2
+( )

1/2
ξ0 1+cosh( )/ ξ0 1–cosh( )( )lnsinh

---------------------------------------------------------------------------------------------------------------------------,–
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(13)

Here, a is the length of the semiaxis coinciding with the
axis of symmetry of the spheroid; b is the length of the
other semiaxis; ξ, η, and ϕ are the spheroidal coordi-

nates [8]; c = ; and a = c  and b =

c  (a > b) or a = c  and b = c  (a < b). 

In the case of two spherical particles of radii R1
and R2,

(14)

where ξ, η, and ϕ are the bispherical coordinates [8], h
is the center distance of the particles,  = (h2 +

 – )/2hRf  (ξ1 > 0, ξ2 < 0), and Pn = (cosη) are

the Legendre polynomials.
Estimations made with the formulas derived showed

that heavily elongated and oblate particles burn signifi-
cantly faster at the same volumes. This is clearly exhib-
ited by the curve (Fig. 1) representing the dependence

a b;>

U ξ( ) ξsinh( )arccot
ξ0sinh( )arccot

------------------------------------,=

∇ ξU  = 
2nξ

c ξ cosh2ξ ηsin
2

–( )
1/2

ξ0sinh( )arccotcosh
----------------------------------------------------------------------------------------------------,–

a b;<

QU0

1( ) 4πcI ξ0( );=

I ξ0( ) 2
ξ0 1+cosh( )/ ξ0 1–cosh( )( )ln

-----------------------------------------------------------------, a b;>=

I ξ0( ) 1
ξ0sinh( )arccot

------------------------------------, a b.<=

a2 b2– ξ0cosh

ξ0sinh ξ0sinh ξ0cosh

U ξ η,( ) U1 ξ η,( ) U2 ξ η,( ),+=

Uk 1 2,= ξ η,( ) 2 ξcosh ηcos–( )=

× dn
1– 1–( )k ξ

22 k– ξ–( ) n
1
2
---+ 

 sinh 
 

n 0=

∞

∑

×  – n
1
2
---+ 

  ξk 
 exp Pn ηcos( ),

QU
f( ) 4πR f Θ f , Θ f Θ f 1, Θ f 2, ,–= =

Θ f 1, Ψ f ξ f ,sinh=

Θ f 2, ψ3 ξ f , dnsinh sinh n 1/2+( ) ξ1 ξ2+( ),= =

Ψ f
1
d
--- ξ

22 f– ξ f–( ) n
1
2
---+ 

  ,exp
h 0=

∞

∑=

Ψ3
1
dn

----- n
1
2
---+ 

  ξ1 ξ2+( )– ,exp
h 0=

∞

∑=

ξ fcosh

R f
2 R

22 f–
2
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of the coefficient β = /  for individual spheroi-
dal particles on the ratio a/R, where a is the length of
the semiaxis of the spheroidal particle and R is the
radius of a spherical particle of the same volume. For

calculations, the values of  and  were found by
Eqs. (13) and (12), respectively. As the particles
approach each other, their rate of combustion decreases
(Fig. 2). This is because the flux of oxidizer molecules
toward the particle surface decreases when the particles
draw near one another. Figure 2 plots the ratio

/  against the parameter S = (h – R1 – R2)/R1

(  =  at h = ∞). Curve 1 illustrates the decay of

 for particles with R1 = R2; curve 2, with R2 = 4R1.

Let us consider the effect of internal sources and
radiative heat exchange on the rate of combustion of
interacting particles by the example of two spherical
particles with a thermal conductivity χi that is much
greater than the thermal conductivity χe of the gaseous
environment. Under these conditions, the particles burn

at fixed surface temperatures  and  independent
of the angles η and ϕ. We describe the combustion of
the particles in the quasi-steady-state approximation
assuming the concentrations of components involved in
the chemical reaction to be small. In this case, just as in
the case of free combustion, the distributions of the
temperature Te and of the relative concentrations Cj in
the vicinity of the particles are described by the bound-
ary problem

(15)

QU
1( ) QU0

1( )

QU
1( ) QU0

1( )

Q1
1( ) Q1∞

1( )

Q1∞
1( ) Q1

1( )

Q1
1( )

Ti
1( ) Ti

2( )

∇ q j⋅ 0, ∇ qT
e( )⋅ 0,= =

1.0
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Fig. 1. Dependence of the coefficient β on a/R for spheroi-
dal particles.
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(16)

In the case of small drops in Te (when the Te depen-
dence of χe can be neglected), the solution to set (15)
and (16) is

At the same time,

The dependences of  and Rf on the time t can be
estimated by solving the set of differential equations,
including the equations of conservation of heat and
mass

(17)

where ∆f is the heat evolving in the particle volume per

unit time,  is the heat removed from the surface of
the particles by radiative heat exchange, and γP is the
specific heat of the particles.

At large drops of Te, the set of equations (15) and
(16) allows for an analytic solution for a small particle
spacing, i.e., for (h – R1 – R2) ! Rf. Under these condi-

tions, the temperatures  can be taken to be the same

C1 S f
0, Te S f

T i
f( ), q⊥ j S f

ν j/ν1( )q⊥ 1 S f
,= = =

C j ∞ C j∞, Te ∞ Te∞.= =

C j C j∞ ν jD1N/ν1D1N( )C1∞U ξ η,( ),–=

Te = Te∞ Ti
1( ) Te∞–( )U1 ξ η,( ) Ti

2( ) Te∞–( )U2 ξ η,( ).+ +

Q j
f( ) ν j/ν1( )nD1NC1∞QU

f( )
,–=

QT
1( ) 4πR1χe Ti

1( ) Te∞–( )Θ1 1, Ti
2( ) Te∞–( )Θ1 2,–[ ] ,=

QT
2( ) 4πR2χe Ti

2( ) Te∞–( )Θ2 1, Ti
1( ) Te∞–( )Θ2 2,–[ ] .=

Ti
f( )

γPMP
f( )dTi

f( )

dt
------------ ∆ f QT

f( ) LPmP ν p( )/ν1( )Q1
f( )– QR

f( ),––=

dMP
f( )

dt
-------------- ν p( )/ν1( )mPQ1

f( ),=

QR
f( )

Ti
f( )

0.2

50 2510 15 20

0.4

0.6

0.8

S

Q(1)
1 /Q(1)

1∞

1

2

Fig. 2. Dependence of the flow ratio /  on the vari-

able S.

Q1
1( )

Q1∞
1( )
(  = Ti0), and we can find the distributions of Te and
Cj by Eq. (5). The temperature Ti0 can be found by inte-
grating the set of equations 

(18)

For steady-state combustion, we can determine the

temperatures Ti0 and  assuming that the derivatives

d /dt and dTi0/dt in Eqs. (17) and (18), respectively,
are zero.

Estimations performed using Eqs. (18) showed that
the approach of two particles with sharply different
radii can significantly cut the burning time for the finer
particle. This is well demonstrated from the curves in
Fig. 3, representing the time dependence of the relative
radius R1/R1b of carbon particles with the density ρ =
2 g/cm2. We estimated the burnout time of the particles
suspended in air in the radiation field of intensity I = 4 ×
107 W/m2 for unit absorption factors. The curves are
plotted at the initial radii of the particles R1b = 15 µm,
R2b = 50 µm and at h = R1b + R2b (curve 1), h = 2R2b

(curve 2), and h = ∞ (curve 3).
Thus, in the quasi-steady-state approximation, we

solved the problems of the free and complicated (by
internal heat generation) combustion of noninteracting
and two interacting arbitrarily shaped immobile parti-
cles in the case of a rapid chemical reaction on their sur-
faces. Under the conditions considered, free combus-
tion proceeds at a constant temperature irrespective of
the particle shape and spacing. The surface shape may

Ti
f( )

∆ f

f 1=

2

∑ γPMP
f( )dTi0

dt
---------- QT

f( )+
f 1=

2

∑=

---+ LPmP ν p( )/ν1( )Q1
f( ) QL

f( )+ ,

dMP
f( )

dt
-------------- ν p( )/ν1( )mPQ1

f( ).=

Ti
f( )

Ti
f( )

0.2

10 2 3

0.4

0.6

0.8

3 2 1

t  × 102, s

R1/R1b

Fig. 3. Time dependence of the dimensionless radius of the
finer particle.
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influence the rate of combustion in the case of heavily
elongated and oblate particles. When the particles
approach each other, the rate of combustion of the finer
particle can decrease significantly if its radius is far less
than that of the coarser one.

REFERENCES

1. Foundations of Practical Theory of Combustion, Ed. by
V. V. Pomerantsev (Énergiya, Leningrad, 1973).

2. L. A. Vulis, Thermal Conditions of Combustion (Gos-
énergoizdat, Moscow, 1958).

3. E. R. Shchukin, Z. L. Shulimanova, and Yu. I. Yalamov,
Fiz. Goreniya Vzryva, No. 4, 42 (1982).
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
4. V. I. Bukatyœ, I. A. Sutorikhin, and A. M. Shaœduk, in
Proceedings of II All-Union Conference on Propagation
of Laser Radiation in Disperse Media, Obninsk, 1982,
Part II, pp. 141–144.

5. V. I. Bukatyœ, O. A. Kosykh, and M. Yu. Sverdlov, Fiz.
Goreniya Vzryva, No. 4, 51 (1985).

6. D. A. Frank-Kamenetskiœ, Diffuison and Heat Transfer
in Chemical Kinetics (Nauka, Moscow, 1967).

7. A. M. Golovin, Yu. G. Degtev, V. V. Kuryatnikov, and
V. R. Pesochin, Fiz. Goreniya Vzryva 30 (1), 20 (1994).

8. A. N. Tikhonov and A. A. Samarskii, Equations of Math-
ematical Physics (Nauka, Moscow, 1977; Pergamon,
Oxford, 1964).

Translated by K. Shakhlevich



  

Technical Physics, Vol. 47, No. 11, 2002, pp. 1350–1358. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 11, 2002, pp. 5–13.
Original Russian Text Copyright © 2002 by Kostylev, Kovshikov.

               

THEORETICAL AND MATHEMATICAL
PHYSICS
Excitation, Generation, and Propagation
of Soliton-Like Spin-Wave Pulses in Ferromagnetic Films: 

Numerical Calculation and Experiment

M. P. Kostylev and N. G. Kovshikov

St. Petersburg State Electrotechnical University (LETI), 
ul. Prof. Popova 5, St. Petersburg, 197376 Russia

e-mail: eivt@eltech.ru

Received September 18, 2001; in final form, April 26, 2002

Abstract—The excitation, collision, and detection of soliton-like spin-wave pulses in ferromagnetic films are
numerically simulated. The theoretical dependence of the pulse peak power at the output of the delay line on
the peak power at the input of the input transducer is constructed for the first time. The experiment is compared
with measurements. The shape of the nonlinear magnetization pulse excited and propagating in the film is the-
oretically studied as a function of the carrier frequency position relative to the backward volume spin-wave
(BVSW) spectrum. The head-on collision of soliton-like BVSW pulses in ferromagnetic films is simulated for
the first time. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Envelope solitons, which appear in theory as solu-
tions to the nonlinear Schrödinger equation, have been
the subject of many monographs (see, e.g., [1–4]). In
essence, these solitons are nonlinear wave packets
retaining their shape during propagation, i.e., not sub-
jected to dispersion spreading. As applied to physical
systems, these solitons have been studied for light prop-
agating in a fiber (see, e.g., [5]). Nonlinear excitations
have also been investigated in magnetic systems (mag-
netic solitons) [6–9].

Below, we will consider only one specific type of
magnetic solitons, namely, spin-wave (SW) envelope
solitons in ferromagnetic films (FFs). Theoretically, the
possibility of SW envelope solitons existing in FFs was
first estimated in [10, 11]. In these works, as well as in
[12], it was shown that an equation of motion for the
envelope of a packet of magnetostatic (spin) waves in
FFs, which has the form of the nonlinear Schrödinger
equation (NSE), can be derived from the equation of
motion of the magnetic moment and a set of magneto-
statics equations or directly from the spin-wave spec-
trum with a nonlinear correction to the frequency.

Experimentally, SW envelope solitons were first
observed in [13]. These were solitons of high-disper-
sion dipole–exchange SWs propagating in perpendicu-
larly magnetized FFs with pinned surface spins. These
solitons featured a specific envelope shape and the
decreased decay of the pulse peak amplitude, which is
associated with nonlinear compression (the so-called
1063-7842/02/4711- $22.00 © 1350
“self-induced transparency” curve [13]).1 These soli-
tons were observed in narrow frequency ranges of
strong dispersion that correspond to the dipole gap of
the SW spectrum. Solitons of weakly dispersive dipole
spin waves propagating in perpendicularly magnetized
films with unpinned surface spins were first examined
in [14, 15]. In [14], the nonlinear compression of SW
pulses attendant to the soliton formation was observed;
however, the shape of the pulses remained unknown. In
[15], the shape of the envelope and its evolution during
the soliton formation and propagation were observed.
The authors of [16] succeeded in observing the forma-
tion of envelope solitons of highly dispersive quasi-sur-
face dipole–exchange SWs in a tangentially magne-
tized ferromagnetic film with pinned spins. Here,
unlike the case of a perpendicularly magnetized film,
the solitons of quasi-surface SWs were observed at the
low-frequency edges of the dipole gaps of the spec-
trum. Spin-wave solitons of BVSWs also propagating
in tangentially magnetized FFs were first studied
in [17].

Theoretically, the formation of SW envelope soli-
tons in YIG films is conventionally explained in terms
of the NSE model, which describes the motion of the
packet envelope, which has the meaning of the magne-
tization precession amplitude. To date, the NSE model
has also been applied to numerically evaluating the evo-

1 In the journal JETP Lett. 38, 413 (1983), Fig. 3 has an error: the
abscissa should be the input power.
2002 MAIK “Nauka/Interperiodica”
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lution of a nonlinear SW pulse in FFs and the formation
of the SW envelope bright soliton [9, 18–21].

Note, however, that the dispersion relation for the
NSE in the linear approximation represents a quadratic
spectrum:

(1)

Unlike the actual SW spectrum in FFs, this spec-
trum does not have the cutoff frequency and is symmet-
ric about the point k = 0. We are aware of only one the-
oretical work [22] where this feature of the SW spec-
trum in FFs was taken into account by introducing an
additional nonlocal term into the NSE. The result was
an analytical solution in the form of a precessing soli-
ton. Such a solution, however, is not general and does
not cover the various situations that may arise when the
carrier frequency of the nonlinear pulse approaches the
SW cutoff frequency.

Moreover, the homogeneous nonlinear Schrödinger
equation ignores the excitation of “nonlinear” variable
magnetization pulses by microstrip transducers during
the formation of an envelope soliton. Therefore, some
physically reasonable boundary or initial conditions are
usually used in numerical calculations (see, e.g., [23]).

It is well known that the NSE soliton envelope
retains its shape upon pulse collision. For solitons of
the forward volume spin wave (FVSW) envelope in
FFs, this was first demonstrated in [24, 25]; for solitons
of the BVSW envelope, in [26]. Theoretically, the head-
on collision of SW envelope solitons in FFs has not yet
been studied. Neither has the effect of variably magne-
tized counterpropagating pulses excited by microstrip
transducers on the head-on collision of the solitons.

The aim of this work is to numerically simulate the
formation of soliton-like spin-wave pulses in FFs with
regard for their actual spectrum, decay, and excitation
by microstrip transducers. Analytical results will be
compared with measurements. In addition, based on the
same model taking into account the actual spectrum, as
well as SW decay and excitation, the collision of soli-
ton-like spin-wave pulses in FFs will be numerically
evaluated.

It should be noted that we will often use the term
“soliton-like pulse,” rather than “spin-wave envelope
soliton,” to stress that our numerical simulation does
not rely on the NSE-based model. In place of it, we take
advantage of a set of nonlinear differential equations
derived from first principles. This set describes the
excitation and motion of the spatial Fourier compo-
nents of the variable magnetization vector in the nonlin-
ear pulse. The associated theory was developed in [27]
to study the parametric amplification of SW envelope
solitons in FFs by means of parallel magnetic pumping.
We used the phenomenological approach. Starting

ω k( ) ω k0( ) Vg k k0–( ) D
2
---- k k0–( )2.+ +=
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equations were the Landau–Lifshitz equation of motion
of magnetic moment and a set of magnetostatics equa-
tions.

The set of differential equations obtained in [27] is
also applicable to our case if the parametric action on
the medium is absent; i.e., it can be applied for describ-
ing the excitation and evolution of nonlinear magneti-
zation pulses. Below, we will analyze numerical solu-
tions to a set of coupled nonlinear differential equations
derived by modifying the set in [27] to our case.

1. NUMERICAL MODEL

Consider a model of SW delay line (Fig. 1) on FF 3
of thickness L. Two parallel SW microstrip transducers
(SWMTs) 1 and 2 spaced l apart are placed on the film
surface. Their width in the z direction is w. The trans-
ducers serve to excite and detect SWs. The film is mag-
netized to saturation by a permanent magnetic field of
strength H. To be specific, we consider the formation
and collision of BVSW envelope solitons. This means
that the permanent magnetic field H is applied in the
film plane along the z direction and plane spin waves
excited by SWMTs propagate in the direction opposite
to and along H (note that the associated theory can
readily be generalized to other FF magnetization con-
figurations).

In transducers 1 and 2, microwave currents j1, 2(z,
t) = J1, 2(z, t)cos(ω0 t + Φ1, 2) pass. The envelopes of
their linear densities are J1, 2(t, z); their initial phases,
Φ1, 2; and carrier frequency, ω0. Let the currents be uni-
form along the strips. The microwave magnetic fields of
the currents excite BVSWs propagating in the form of
packets in both directions from the transducers along
the permanent magnetic field. If one of the current is
absent (namely J2 = 0), SWMT 2 is used as a detector
of the BVSW pulse excited by SWMT 1.

It was already mentioned that the generation, evolu-
tion, and collision of BVSW nonlinear packets will be
treated with the results of [27]. The set of equations
obtained in [27] and describing the motion of the Fou-

w

1

3

l

w

2

L

I2I1

H

z

Fig. 1. Structure being simulated. (1, 2) Microstrip trans-
ducers and (3) ferromagnetic film.
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rier components of the variable magnetization is sim-
plified in our case to the form

(2)

(3)

Here,

(4)

is a matrix element of dipole–dipole interaction,

(5)

is the overlap integral for the Fourier component of the
current magnetic field and the “membrane function” for
the BVSW lowest mode, J1k(t) and J2k(t) are the spatial
Fourier components of the current pulse envelopes of

the exciting transducers,  is the coefficient of
nonlinear four-wave interaction between SWs in an FF,
ωH = |g|µ0H, and ωM = |g|µ0M0.

It should be noted that if the right-hand sides of (2)
and (3) are zero (that is, external sources of excitation
are absent) and the dispersion relation for BVSWs in
FFs ω(k)2 = ωH(ωH + ωM – ωMPk) [28] is approximated
by quadratic spectrum (1), this set is totally equivalent
to the NSE with loss. Also, this set can be reduced to the
NSE with loss by diagonalizing the linear part of the
equations and subsequently applying inverse Fourier
transformation.

∂mk
1/∂t i ωH ωM/2 1 Pk–( )+[ ] mk

1+

+ i k1 k2 k3 Tk1k2k3k
p1 p2 p3, ,

mk1

p1mk2

p2mk3

p3

p1 p2 p3, , 1 2,=

∑d

∞–

∞

∫d

∞–

∞

∫d

∞–

∞

∫

× δ p1 p2 p3 4–+ +( )δ k1 k2 k3 k–+ +( )

=  g µ0 J1k t( ) ω0t φ1+( )cos[

+ J2k t( ) ω0t φ2+( ) ] k
k
-----Yk,cos

∂mk
2/∂t i ωH ωM/2 1 Pk–( )+[ ] mk

2–

– i k1 k2 k3 Tk1k2k3k
p1 p2 p3, ,

mk1

p1mk2

p2mk3

p3

p1 p2 p3, , 1 2,=

∑d

∞–

∞

∫d

∞–

∞

∫d

∞–

∞

∫

× δ p1 p2 p3 5–+ +( )δ k1 k2 k3 k–+ +( )

=  g– µ0 J1k t( ) ω0t φ1+( )cos[

+ J2k t( ) ω0t φ2+( ) ] k
k
-----Yk.cos

Pk 1 1 k L–( )/ k L( )exp–[ ]–=

Yk 1/ 2π( )3/2 1 k L–( )exp–[ ] /2L=

Tk1k2k3k
p1 p2 p3, ,
2. NUMERICAL SIMULATION OF EXCITATION 
AND EVOLUTION OF NONLINEAR BVSW 

PULSES AND COMPARISON
WITH EXPERIMENT

By numerically solving the set of Eqs. (2) and (3),
we simulated the excitation of nonlinear SW packets by
the input microstrip transducer, their propagation in the
FF, and the detection of the pulsed signal with the out-
put microstrip transducer.

Initially, the linear parts of the equations were diag-
onalized to simplify calculations and make the model
more “physical” analytically. The statement of the
problem in terms of new variables (scalar Fourier
amplitudes of the SW packet [3, 9]) halves the number
of equations and allows one to get rid of fast-oscillating
factors, namely, the carrier frequencies of the input
microwave current and the variable magnetization
pulse excited by this current in the film.

In addition, the model was discretized by replacing
integration over the longitudinal wave number k in
Eqs. (2) and (3) by summation over a discrete set of
wave numbers. In this case, the set of two integro-dif-
ferential equations transforms into an infinite set of
first-order differential equations. Since such a proce-
dure is equivalent to replacing the real space by the
cyclic one, the discrete step ∆k of the wave number was
taken such that the spacing between the transducers
plus the spatial length of the magnetization pulse
excited was much less than the cyclic space length
2π/∆k. With this condition for ∆k satisfied, the require-
ment that the magnetization pulse spectrum width be
much larger than the step of the wave number is ful-
filled simultaneously. The number of wave number dis-
crete values taken into account in the calculation was
selected such that the range of k used in the calculation
was much wider than the SW excitation bandwidth δk =
2π/W of the microstrip transducer. At the same time,
this range should be wider than the k spectrum of the
variable magnetization pulse at any stage of its evolu-
tion due to the action of a nonlinear medium.

The set of first-order differential equations thus
obtained was numerically solved with the fourth-order
Runge–Kutta method. Eventually, we obtained the
spectra of the spatial scalar Fourier amplitudes of the
SW packet at various time instants.

The inverse transition to the variables of Eqs. (2)
and (3), i.e., to the Fourier amplitudes of the variable
magnetization, and subsequent inverse Fourier trans-
formation made it possible to find the spatial profiles of
the nonlinear SW packet at various time instants. Then,
from the calculated spectrum of the Fourier amplitudes
for the variable magnetization, we evaluated the space–
time profile of the microwave field induced by the SW
packet in the output transducer. This profile was then
converted to the microwave power profile at the output
of the output transducer.
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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The envelopes of microwave pulses of the currents
in SWMTs 1 and 2 were set in the form of a trapezoid.
Such a form takes into account the nonrectangularity of
the current pulse at the output of the microwave modu-
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
lator, which applied a signal to the input of the SWMT
in our experiment. The inclined sides of the trapezoid
simulated the leading and trailing edges of an actual
input pulse. We also set the half-height width of the
–10
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Fig. 2.  vs.  dependence (on the left) and output pulse waveforms (on the right) for a 25-ns-wide input pulse. Continuous
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the calculations are L = 5.1 µm, saturation magnetization 1750 Oe, magnetic loss parameter of the film 2∆H = 0.6 Oe, H = 1407 Oe,
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trapezoidal current pulses τ, as well as their amplitudes
I1 and I2, initial phases φ1 and φ2, and rise times.

First, using the above numerical model, we studied
the formation of an isolated soliton-like SW pulse (the
microwave current I2 was assumed to equal zero). On

the left of Fig. 2, the calculated peak power  of the
soliton-like pulse envelope at the output of detecting
transducer 2 is shown as a function of the microwave

power  at the input of exciting transducer 1. Dia-
grams (a–d) on the right show the associated wave-
forms of the pulses coming from the delay line. The cal-
culation was made for output microwave pulses of
duration 25 ns. Other parameters are given in the cap-
tion to Fig. 2.

The analytical results were compared with measure-
ments made for this configuration. Triangles on the left
and dashed lines in the diagrams on the right are exper-
imental data.

It should be noted that our theory is consistent with
the well-known linear theory of spin-wave delay line
[28] in the continuous weak signal limit. In the experi-
ments, we could determine conversion losses in the
input antenna in the linear mode by comparing the
power of the signal incident on the input of the structure
with that of the microwave signal reflected from it. In
this way, the conversion loss per antenna was estimated
at –9.4 dB, which is 2.6 dB greater than the calculated
value. The difference was found to be associated with
the reactance of the antenna grounding circuits, which
was initially ignored in the calculation. The inclusion of
this reactance eliminates the difference completely.
Therefore, the conversion losses evaluated by (2) and
(3) were increased by 2.6 dB (i.e., were equal to the
experimental value in the linear mode). In this case, as
follows from Fig. 2, the analytical and experimental

curves  = f( ) coincide in a wide power range
that covers both the linear and nonlinear modes. Coin-
cidence is also observed for the output pulse envelope
profiles taken at the same powers. The discrepancy is
seen only in the upper part of the curve: the output pulse
amplitudes diverge and the instants of output pulse
arrival at the detector differ slightly, while the pulse
waveforms coincide fairly accurately.

Such a discrepancy can be explained as follows. Our
theoretical model includes only one weak nonlinearity
of SWs in a ferromagnetic film, namely, four-wave self-
action. However, comparing the theory and the experi-
ment, one can suppose that the peak and the descending
portion in the experimental curve are associated with
some other nonlinear processes taking place at high
input powers. These may be four-wave scattering into
short spin waves or into BVSW higher thickness
modes. The contribution from these processes shows up
as an extra nonlinear decay of the pulse, changing the

run of the upper part of the curve  = f( ).

Pout
p
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p

Pout
p Pin

p

Pout
p Pin

p

The best criterion indicating that an SW pulse is
soliton-like is the constancy of the envelope phase
within the pulse. As follows from the phase calculation,
the point b in Fig. 2 is the closest to the one-soliton
mode.

Along with experimental verification, we compared
our results with numerical calculations within the NSE
model. Earlier, the NSE was used to simulate SW enve-
lope solitons, e.g., in [17]. In [17], as in other works, the
time profile of the SW dimensionless scalar amplitude
was calculated at a point z0 of the space with the bound-
ary condition in the form of a rectangular pulse origi-
nating at the point z = 0 (hereafter, this profile will be
referred to as initial, although we are dealing with a
boundary condition). Therefore, to correctly contrast
the two models, we equated the right-hand sides of (2)
and (3), responsible for the SW excitation by external
current, to zero and used the same time-dependent
boundary conditions as in [17] in the next series of cal-
culations. With such an approach, the only difference
between the models is that the dispersion relation is
more complicated than (1).

The calculation showed that if the carrier frequency
of the initial pulse of the variable magnetization scalar
amplitude is away from the upper cutoff frequency of
the BVSW spectrum, the output profiles are nearly
coincident provided that the pulse is sufficiently long
(lasts more than 10 ns as in [17]. Under this condition,
the frequency spectrum of the initial pulse has a width
that is much narrower than the range of exchangeless
BVSWs). This is an expected result since the BVSW
spectrum in this case is close to quadratic spectrum (1).
With the carrier frequency shifted toward the cutoff fre-
quency, the output pulses had various widths, which
indicates the inadequacy of the NSE-based model in
this situation.

In the second series of comparative calculations, we
used a set of equations with the nonzero right-hand
sides. The rectangular pulse of the input current and the
initial pulse of the variable magnetization scalar ampli-
tude [17] had the same durations. It turned out that the
shape of the magnetization pulse becomes distorted
even in the course of excitation (this is especially true
for the pulses of width less than 30 ns with a FF thick-
ness and transducer width as in [17]). This is because
the microstrip transducer has a finite bandwidth of
excited SW wave vectors. This initial distortion affects
the shape of the pulse during its subsequent evolution,
which makes the discrepancy with the results of the
NSE-based model much greater as the carrier fre-
quency approaches the SW cutoff frequency. Note that
our results can be compared with those of the NSE-
based model only qualitatively, because we had to com-
pare the calculated profiles of the variable magnetiza-
tion at the same amplitude of the initial pulse of the
variable magnetization. However, in our model, the
shape of the initial pulse is not specified but is derived
analytically from the shape and amplitude of the input
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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Fig. 3. Calculated diagrams of the variable magnetization pulse envelope for different positions of the carrier frequency ∆ω relative
to the upper boundary of the BVSW spectrum (upper row), the amplitude spectra of the pulse spatial frequencies (middle row), and
the dispersion curve for the BVSW lowest mode in the FF (lower row). Circles in the lower row depict the carrier frequency position.
The dashed curve in panel (a) (upper row) illustrates experimental data from [17]. To bring the experimental and analytical curves
into coincidence, the experimental output power of the pulse is increased by 2.8 dB (this value was obtained by comparing the mea-
sured and calculated losses inserted by the prototype in the continuous low-signal regime). The parameters used in the calculation
are L = 7.1 µm, saturation magnetization 1750 Oe, magnetic loss parameter of the film 2∆H = 0.85 Oe, constant magnetic field
strength H = 1407 Oe, transducer widths w = 50 µm, l = 4 mm, τ = 13 ns, pulse rise and fall times (measured at the pulse base) 1 ns,
and input microwave pulse amplitude 0.25 W (the amplitude of the microwave current of transducer 1 (I1 = 0.05 A). The carrier
frequency equals (a) 5800 MHz (∆ω/2π = 100 MHz), (b) 5850 MHz (∆ω/2π = 50 MHz), and (c) 5875 MHz (∆ω/2π = 25 MHz).
current pulse. Therefore, the initial pulse in our model
has a shape that is more complex than a rectangle.
Because of this, it is necessary to define its amplitude
so that it depends on the pulse shape only slightly and
allows for the numerical comparison of the two models.
Such an analysis is beyond the scope of this work.

Figure 3 (the upper row) shows the calculated pro-
files of the envelope of soliton-like SW pulses vs. the
pulse carrier frequency position relatively to the BVSW
spectrum upper limit for relatively short (half-height
width of 14 ns) input microwave pulses. Panel (a) (soli-
ton-like pulse) corresponds to experimental parameters
from [17]. Panels (b) and (c) show how the pulse would
change if its carrier frequency were closer to the begin-
ning of the BVSW spectrum.
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
For comparison, the middle row shows the spectra
of the spatial Fourier amplitudes of the pulse envelopes;
the lower row, dispersion curves for the BVSW lowest
mode (filled circles indicate the carrier frequency).

From Fig. 3, it follows that if the carrier wave num-
ber is small, the shape of the output pulse is distorted
and its duration increases. These distortions appear
because of the filtering out of some spatial (and, hence,
time) frequencies of the pulse upon its excitation and
propagation in a nonlinear medium.

3. NUMERICAL SIMULATION OF HEAD-ON 
COLLISION BETWEEN SOLITON-LIKE BVSW 

PULSES

In this section, we study the effect of SW excitation
by the SW microstrip transducers on the head-on colli-
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Fig. 4. Numerical simulation of the collision of soliton-like
SW pulses in the ferromagnetic film. (a) Profiles of the
envelope of variable magnetization pulses immediately
before collision, (b) instant of the complete overlap of the
pulses in the case of their in-phase excitation (∆ϕ = 0),
(c) instant of the complete overlap of the pulses in the case
∆ϕ = 90°, (d) instant of the complete overlap of the pulses
in the case of their antiphase excitation (∆ϕ = 180°), and
(e) pulse profiles after collision. Circles in panel (e) outline
the pulse profile in the absence of a counterpropagating
pulse. The spacing between the transducers is 8 mm. The
other parameters are the same as in Fig. 3a.
sion of soliton-like SW pulses in FFs. Emphasis will be
on the effect of the initial phase of exciting pulses of the
microwave current from the transducers on the collision
scenario.

The calculation was performed with the same model
(expressions (2) and (3)) and the same numerical
method (see Sect. 2). To simulate the excitation of two
counterpropagating pulses of variable magnetization,
the right-hand sides of (2) and (3) were set as the Fou-
rier transforms of the microwave currents in microstrip
transducers 1 and 2 (Fig. 1).

Figure 4 shows the result of the numerical simula-
tion. The parameters used in the calculation and the
pulse shape at the point of collision in the absence of
the counterpropagating pulse correspond to panel (a) in
Fig. 3. The pulse shapes are shown (a) before collision,
(b–d) at the instant of collision, and (e) immediately
after collision. In Fig. 4e, filled circles depict the shape
of the pulse excited by left transducer 1 for the case
when the pulse did not collide with the counterpropa-
gating one (i.e., for I2 = 0) (the time instants are the
same). It is seen that the shapes of the pulses that under-
went and did not undergo collision coincide within a
graphical accuracy throughout the length of the pulses
except for the “tail,” where the pulses moving apart still
continue interfering.

It is known that BVSW pulses generated by
SWMTs in opposite directions have an initial phase dif-
ference ∆φ = π (as also follows from equations of
motion (2) and (3)). This is because the BVSWs are
excited with the transducer microwave current compo-
nent normal to the FF plane. In the bulk of the film, this
component has different signs on the opposite sides of
the plane passing through the longitudinal symmetry
axis of the transducer normally to the film. Such an
antisymmetric distribution of the exciting component
of the magnetic field results in the excitation of variable
magnetization pulses opposite in phase. For compari-
son: in a perpendicularly magnetized FF, forward vol-
ume spin waves (FVSWs) are excited by the compo-
nent of the transducer microwave magnetic field that is
parallel to the film plane. This component does not
change sign in the film. Accordingly, two FVSWs prop-
agating in opposite directions from the transducer have
zero phase shift.

Thus, two transducers fed by in-phase currents emit
counterpropagating BVSW pulses with a phase differ-
ence ∆φ = π. When the pulses collide, the “nonlinear
interference” pattern is symmetric about the interfer-
ence minimum (Fig. 4b) at any time instant. If the input
currents are in antiphase, SWs are excited in phase and
the interference pattern is symmetric about the interfer-
ence maximum (Fig. 4c).

Comparing the peak amplitude of the interference
pattern (Fig. 4c) with that of the single soliton-like SW
pulse at the same time instant, we see that the former
differs little from the latter doubled; in other words,
ordinary linear interference takes place. To elucidate
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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why the nonlinear properties of FFs have no effect on
the interference pattern, we will perform an estimation
in terms of the theory for the envelopes of SW counter-
propagating nonlinear pulses [29]. The accuracy of the
equations for the envelopes derived in [29] is quite suf-
ficient for these estimates.

Consider the characteristic time of nonlinear pulse
compression, the so-called “nonlinear” time Tn, which
is introduced in describing SW envelope solitons with
the use of the NSE (see, e.g., [17]), and compare it with
the time of spatial pulse overlapping. For the interac-
tion of counterpropagating pulses, Tn is found from a
set of equations for the envelopes of nonlinearly cou-
pled counterpropagating pulses [29]. It is given by

(6)

where S is the nonlinear coupling coefficient for coun-
terpropagating pulses and a is the pulse envelope
amplitude that has a meaning of the magnetization pre-
cession angle (we consider that the counterpropagating
pulses have the same amplitude).

Note that the propagation of nonlinear pulses in FFs
with the subsequent formation of soliton-like pulses
takes place under conditions of magnetic dissipation in
a medium. As a result, the pulse power continuously
decreases. Therefore, the value of Tn should be calcu-
lated from the value of a at the instant the pulses meet
in the space. Performing such a calculation with the
parameters in Fig. 4, we find that Tn ≈ 500 ns. Since the
time of the spatial overlapping of counterpropagating
pulses is on the order of several nanoseconds, the inter-
ference pattern cannot be nonlinearly distorted for such
a short time compared with Tn.

CONCLUSION

We for the first time simulated the excitation, colli-
sion, and detection of soliton-like BVSW pulses in FFs
by numerically solving a set of nonlinear differential
equations of motion for the spatial Fourier amplitudes
of variable magnetization pulses. The analytical results
are in good agreement with our experimental data and
those taken from the literature.

We for the first time calculated the pulse peak power
at the output of the prototype delay line as a function of
the peak power at the input of the input transducer.

For the first time, the shape of a nonlinear magneti-
zation pulse generated and propagating in the film was
simulated in view of the position of the carrier fre-
quency relative to the BVSW spectrum and spin-wave
generation by microstrip transducers.

For the first time, the simulation of the head-on col-
lision of soliton-like BVSW pulses showed that, with
single-soliton power levels of colliding pulses, the non-
linearity of the spin system has no time to contribute
significantly to the interference pattern because of the

Tn π/ 2 S a 2( ),=
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
small time of pulse overlapping. As a result, we are
dealing with usual linear interference.
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Abstract—Based on the previously introduced integral criterion and a new approach to estimating the time
characteristics of diffusion, the relaxation time of impurity concentration in a medium with a slightly nonuni-
form diffusion coefficient is determined. The diffusion coefficient profile that cuts the relaxation time is found.
© 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The mathematical theory of diffusion has been
developed in great detail (see, e.g., [1–3]). Yet, a num-
ber of problems of both theoretical and applied interest
have remained unresolved. One is finding the impurity
concentration relaxation time in a medium with a
space-dependent diffusion coefficient [4]. The urgency
of this problem stems from the wide application of dif-
fusion technologies, especially in the fabrication of
semiconductors.

In this work, we consider a 1D bounded medium
with a slightly nonuniform diffusion coefficient, which
adequately reflects the situation in various semiconduc-
tors that have different diffusion coefficients in the
active (working) regions [5–7]. With the integral crite-
rion introduced previously [8–12] and a new approach
to estimating the time characteristics of diffusion pro-
cesses, we determine the impurity concentration relax-
ation time in the medium. Based on an expression for
the relaxation time, we optimize the spatial dependence
of the diffusion coefficient to accelerate impurity
“smearing.”

STATEMENT OF THE PROBLEM 
AND SOLUTION METHOD

We consider a 1D medium with reflecting bound-
aries x = 0 and x = L and the slightly nonuniform diffu-
sion coefficient D = D(x). At the time instant t = 0, an
impurity of unit mass

with a given distribution of the initial concentration
C(x, 0) = f(x) is inserted in the medium. With time, the
impurity distribution tends toward the stationary value
C(x, ∞) = 1/L. Let us define the effective relaxation time

C x t,( ) xd

0

L

∫ 1=
1063-7842/02/4711- $22.00 © 21359
of the impurity concentration at a given point of the
medium (point of observation) and the diffusion coeffi-
cient profile that reduces this time.

As is known, the space–time distribution of the
impurity concentration C(x, t) satisfies the diffusion
equation

(1)

where G(x, t) is the impurity flux. This equation is com-
plemented by the initial, C(x, 0) = f(x), and boundary,
G(0, t) = G(L, t) = 0, conditions.

The space dependence of the diffusion coefficient
can be represented as the sum of its mean,

and a small correction taking into account the differ-
ence between the law of diffusion coefficient variation
and the mean value of the diffusion coefficient; that is,

In view of such a representation, the diffusion equa-
tion takes the form

(2)

The introduction of the small parameter ε makes it
possible to seek a solution to Eq. (2) in the form of the
power series in ε [12].

A solution to diffusion equation (2) (the transient
process to settling the equilibrium value of the concen-
tration) has a complicated time dependence. To find the
concentration relaxation time, it is necessary to use
some criterion that allows one to determine the desired

∂C x t,( )
∂t

--------------------
∂
∂x
------ D x( )∂C x t,( )

∂x
-------------------- ∂G x t,( )

∂x
--------------------,–= =

D0
1
L
--- D x( ) x,d

0

L

∫=

D x( ) D0 1 εg x( )+( ), 0 ε ! 1, g x( ) 1.≤<=

∂C x t,( )
∂t

-------------------- D0
∂
∂x
------ 1 εg x( )+( )∂C x t,( )

∂x
-------------------- .=
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time from a given transient. The relaxation time can be
found with an “equiareal rectangle” as in [8–12]:

(3)

Such an approach to finding the relaxation time is
applicable to transients that are monotonic in time.
From the practical viewpoint, of most interest is the sit-
uation where the initial distribution is set at one of the
boundaries of the medium and the relaxation time is
looked for at a point near the other boundary. In this
case, transients are always monotonic in time.

We will seek a solution to Eq. (2) in the form of the
expansion

(4)

Substituting (4) into (2) and equating the coeffi-
cients by the same powers of ε on both sides of the dif-
fusion equation, we arrive at a set of equations for the
functions Ck(x, t):

(5)

Similarly, substituting (4) into the initial and bound-
ary conditions, we arrive at a set of conditions for the
functions Ck(x, t):

(6)

(7)

The linear relationship (3) between the relaxation
time and the concentration C(x, t) allows us to calculate
the relaxation time in the form of the sum

(8)

where

(9)

is the zeroth-order approximation for relaxation time (3).

Θ x( ) C x 0,( ) C x ∞,( )–[ ] 1–=

× C x t,( ) C x ∞,( )–[ ] t.d

0

∞

∫

C x t,( ) εkCk x t,( ).
k 0=

∞

∑=

∂C0 x t,( )
∂t

---------------------- D0

∂2C0 x t,( )
∂x2

------------------------,=

∂Ck x t,( )
∂t

---------------------- D0

∂2Ck x t,( )
∂x2

------------------------=

+ D0
∂
∂x
------ g x( )

∂Ck 1– x t,( )
∂x

--------------------------- , k 1.≥

∂Ck 0 t,( )
∂x

----------------------
∂Ck L t,( )

∂x
---------------------- 0, k 0,≥= =

C0 x 0,( ) f x( ), Ck x 0,( ) 0, k 1.≥= =

Θ x( ) Θ0 x( ) 1 εkτk x( )
k 1=

∞

∑+
 
 
 

,=

Θ0 x( ) Lf x( ) 1–[ ] 1– LC0 x t,( ) 1–[ ] td

0

∞

∫=
The functions τk(x) entering into (8) and defined by
the expression

(10)

will hereafter be called relative corrections to the relax-
ation time in a homogeneous medium (to the zeroth-
order approximation). In view of the first equation in
set (5) and relationship (3), the zeroth-order approxi-
mation of the relaxation time can be represented as

(11)

where

The first-order correction to the relaxation time can
be obtained by substituting solutions to the first and
second equations in set (5) into relationship (10):

(12)

Since the parameter ε is small and the absolute value
of the function g(x), which introduces the diffusion
coefficient variation, is limited, we can reject terms
nonlinear in ε in (4) and (8) and consider only the linear
approximation.

CALCULATION OF THE CORRECTIONS 
TO THE RELAXATION TIME

Let at the initial time instant the impurity be totally
concentrated at a point near the left-hand boundary of
the medium: f(x) = δ(x). Note that, because of initial
conditions (7), the delta function δ(x) should be consid-
ered as one-sided [13]. Of most interest is the correc-
tion τ1(x) at the point x = L, which is easy to calculate
from (12). Placing the origin at the point x = L/2, one
readily obtains

(13)

From (13), it follows that only the even (relative to
the middle of the medium) component of the space

τk x( ) Ck x t,( ) t/ C x t,( ) C x ∞,( )–[ ] t ford

0

∞

∫d

0

∞

∫=

k 1,≥

Θ0 x( ) 6D0d x( ) 1 Lf x( )–( )[ ] 1– ,=

d x( ) 6LxF0 x( ) 3F2 L( )–[=

+ 6L F1 L( ) F1 x( )–( ) 2L2– 3x2 ] 1–
,–

Fi x( ) yi f y( ) y.d

0

x
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τ1 x( )
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6 g v( ) v LF0 v( )–[ ] vd

x

L

∫ g v( )v v L 1– F0 v( )–( ) vd

0

L

∫–

3F2 L( ) 6L F1 L( ) F1 x( )–[ ] 2L2 3x2 6LxF0 x( )–+ +–
----------------------------------------------------------------------------------------------------------------------.

τ1 L( ) 6L 3– g z L/2+( ) z2 L2/4–( ) z.d
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dependence of the diffusion coefficient makes a contri-
bution to the correction τ1(L).

By way of example, consider a medium with a pla-
nar layered spatial structure [5, 6]. For such a medium,
the space dependence of the diffusion coefficient can be
conveniently represented with Walsh functions
Wal(k, x), where k is the Walsh function order [14].
Only even-order Walsh functions contribute to the cor-
rection τ1(L).

It can be shown that spectral methods of represent-
ing the disturbance profiles of the diffusion coefficient
allow for the calculation of the correction τ1(x) for any
profile g(x). In this case, the computing procedure can
be greatly simplified. Let us represent the spatial
dependence of the diffusion coefficient as the series
over some orthogonal basis of functions {gm(x)}:

(14)

where βm are the coefficients of expansion of the func-
tion g(x) over the orthogonal basis.

In this case, since (12) is linear in g(x), the correc-
tion τ1(x) is the superposition of the corrections η1m(x)
depending on the functions gm(x); that is,

(15)

Each of the corrections τ1m(x) is calculated from
(12) subject to g(x) = gm(x). For example, in the case of
the trigonometric basis {cos2πmx/L, sin2πmx/L}, one
readily finds from (13) the corrections τ1m(L) for indi-
vidual spatial harmonics:

(16)

where τ1cosm(L) and τ1sinm(L) are corrections corre-
sponding to the functions g(x) = cos2πmx/L and g(x) =
sin2πmx/L.

Figure 1 shows the dependence of the correction
τ1(L) on the number m of a cosinusoidal spatial har-
monic. As the frequency of the diffusion coefficient dis-
turbance profile rises (see the table and Fig. 1), the
effect of nonuniformity on the relaxation time dimin-
ishes because of its averaging. The rapid convergence
of spectral expansions allows one to reject fine features
of the diffusion coefficient disturbance profile during
its optimization and approximate the function g(x) by
the first one or two spectral components.

IMPURITY DIFFUSION ACCELERATION 
BY SELECTING THE OPTIMAL SPATIAL 

STRUCTURE OF THE MEDIUM

The above analysis shows that only even (relative to
the middle of the medium) profiles of g(x) contribute to

D x( ) D0 1 ε βmgm x( )
m 1=

∞

∑+ ,=

τ1 x( ) βmτ1m x( ).
m 0=

∞

∑=

τ1 mcos L( ) 3/ πm( )2, τ1 msin 0,= =
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the correction τ1(L). If the law of diffusion coefficient
variation is approximated by asymmetric (relative to
the middle of the medium) sinusoidal functions or odd-
order Walsh functions, the diffusion process is
described by the mean of the function D(x). The differ-
ence between the relaxation time in an inhomogeneous
medium and its zeroth-order approximation is maxi-
mum in a three-layer medium (see the table and Fig. 1).
The relaxation time depends essentially on the alterna-
tion of the layers, which is reflected by the dependence

0.05

10 2 3 4 5 6
m

0.10

0.15

0.20

0.25

0.30

0.35

0.40
τ1

Fig. 1. First-order correction to the relaxation time that cor-
responds to the nonuniform diffusion coefficient D(x) =
D0[1 + µcos(2πmx/L)] vs. the frequency m of its spatial
dependence.
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Fig. 2. Three-layer and harmonic structures accelerating the
diffusion process.
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of the correction τ1(L) on the sign of g(x) in (13). Figure
2 shows the diffusion coefficient profiles in the case
when the diffusion proceeds faster than in the homoge-
neous medium. The change of sign in this profile
retards the process. Correction (13) for the three-layer
medium shown in Fig. 2 equals τ1(L) = –3/8. The cor-
rection corresponding to the harmonic profile of the dif-
fusion coefficient shown in Fig. 2 has a greater value:
τ1cosm(m = 1) ≈ –3/π2. Physically, the obtained depen-
dence of the relaxation time on the phase ϕ of the har-
monic perturbation profile of the diffusion coefficient
and on the shift α of the Walsh function is related to the
space–time distribution of the impurity flux. At the ini-
tial time instant, the flux is the greatest near the point
x = 0. Since the flux is very intense, the impurity travels
the interval 0 ≤ x ≈ L/4, “overlooking” the differences
between the current diffusion coefficient and its mean
value. Subsequently, for a time T ! Θ0, the maximal
value of the flux shifts toward the middle of the
medium, decreasing in absolute value and the diffusion

222
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Fig. 3. Space–time distribution of the impurity flux G(x, t)

for the initial distribution f(x) = exp  with a

small parameter W (W = 0.04).

2
πW
-------- x
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Corrections to the relaxation time for several even-order
Walsh functions

Function First-order correction
to the relaxation time, τ1

Wal(2, L) 3/8

Wal(4, L) 3/32

Wal(6, L) 3/128

x/L

t

is the most intense at the center of the medium. Hence,
to cut the concentration relaxation time, it is necessary
to raise the diffusion coefficient in the interval L/4 ≤ x ≤
3L/4. At the boundary x = L, the reflection of the impu-
rity from the boundary becomes significant. For this
reason, the resultant flux (the superposition of the for-
ward and reflected fluxes) in the interval 3L/4 ≤ x ≤ L is
low and this interval is gradually filled with the impu-
rity. This fill affects the relaxation time insignificantly.
Figure 3 exemplifies the space–time impurity flux dis-
tribution obtained by numerical simulation.

The applicability domain of the linear (with respect
to ε) approximation used to calculate the relaxation
time can be found by numerically simulating the diffu-
sion process. For the impurity initial distribution and
the diffusion coefficient profiles considered in this
work, the calculation of the relaxation time in the linear
(in ε) approximation was shown to be valid up to
ε ≈ 0.1.

CONCLUSION

Based on a new approach to finding the time charac-
teristics of diffusion processes, we studied the depen-
dence of the impurity concentration relaxation time in
a weakly inhomogeneous medium on the space varia-
tion of the diffusion coefficient. The relaxation time
was estimated with linear (in the diffusion coefficient)
approximation. Such an estimation yields simple and
clear relationships for the relaxation time and facilitates
greatly the optimization of the diffusion coefficient spa-
tial profile derived from the spectral representation of
the diffusion coefficient. The optimization of the diffu-
sion coefficient spatial structure allowed us to find the
diffusion coefficient profile that accelerates impurity
diffusion compared with the case of a homogeneous
medium with the diffusion coefficient D0.
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Abstract—The Enskog kinetic equation is modified for dense soft-sphere gases and gas mixtures when the
diameter of the particles depends on their relative velocity. Analytical expressions for the transport coefficient
of a monoatomic dense gas are derived, and the viscosity coefficient is calculated based on smoothed experi-
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INTRODUCTION

The Boltzmann kinetic equation is valid only for
low- and normal-density gases. It was derived under a
number of assumptions, specifically, that the distribu-
tion function (DF) is time-independent on the time
scale on the order of the collision time and space-inde-
pendent on the scale on the order of molecule size. In
addition, multiple collisions were ignored. These
assumptions are valid for point particles and become
incorrect if the particle size is comparable to the parti-
cle free path. In medium- and high-density gases, for
which the density parameter ε = nσ3 (where n is the
concentration of the particles and σ is their characteris-
tic size) is no longer negligibly small and may even be
comparable to unity, the assumptions involved in the
derivation of the Boltzmann equation become invalid.
Enskog was the first to modify the Boltzmann equation
for dense gases [1]. He took into account the nonlocal-
ity of the DF in the collision integral within distances
on the order of the molecule size, the constraint of gas
particles, and the screening effect and, hence, is valid
for the model of hard elastic spheres. Other models
(kinetic equations) for medium- and high-density gases
currently available [2–5] are, as rule, very complicated
and cannot be generalized for gas mixtures. Therefore,
the Enskog theory can be applied with advantage in cal-
culations that do not require too high an accuracy.
A significant drawback of the Enskog kinetic equation
is the improper temperature dependence of the trans-
port coefficient; therefore, when using this equation in
practice, researchers have to relate the Enskog theory to
experimental data for the gas compressibility with
some uncertainty. The basic reason for the improper
temperature dependence in the Enskog theory is the
roughness of the hard-sphere model, which ignores one
of the fundamental properties of gases, namely, their
compressibility. At low density of a gas, the Boltzmann
equation allows for the accurate calculation of the
transport coefficients even within the hard-sphere
1063-7842/02/4711- $22.00 © 1364
model, since the purely kinetic mechanism of momen-
tum and energy transfer prevails in this case. Colli-
sional momentum and energy transfer is significant in
medium-density gases and dominates in dense gases;
therefore, the form of the interaction potential in the
near-zone field plays a decisive role in this case. This
disadvantage of the hard-sphere model is eliminated in
the “macroscopic” soft-sphere model [6–8], which
includes the temperature dependence of the hard-
sphere diameter. This dependence is derived from the
temperature dependences of the transport coefficients
at normal densities or by any other way. In equilibrium
statistical mechanics, the following approximation is
used [9]:

(1)

where s usually equals 10–12 and T0 and σ0 are con-
stants (characteristic temperature and size of the parti-
cles).

This approximation is valid for a gas where particles
interact as repulsive centers with a potential

(2)

In this case, T0 = ε/kB, where kB is the Boltzmann
coefficient and ε is a force constant. Such an expedient
provides satisfactory agreement between theoretical
and experimental data. At the same time, it shows that
the interaction potential parameters are self-consistent
with the kinetic equation and do not agree with the the-
ory “from outside.” The generalization of the soft-
sphere theory for a gas mixture is difficult because of a
great number of parameters to be found as a function of
temperature. In the absence of a unified reliable method
for finding these dependences, such models are of
minor value.

The aim of this work is to justify and generalize the
macroscopic soft-sphere model involved in the Enskog
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theory for the microscopic level and construct a simple
kinetic model of dense soft-sphere gases that allows for
the extension to gas mixtures.

KINETIC EQUATION

The idea of the macroscopic soft-sphere model is
that the diameter of colliding particles depends on the
interaction parameters unlike hard spheres. In the sim-
plest case, one can use the power dependence of the rel-
ative diameter on the relative impact velocity g:

(3)

Comparing (3) with a formula for the distance of
closest approach between particles with potential (2),

we can identify the quantity  as 4ε/m and the quantity
1/µ as the exponent s in initial potential (2). The scat-
tering differential cross section in this case can be writ-
ten as

(4)

where k is the unit vector directed from the center of
one particle to that of the other at the collision instant.

Generalizing the result obtained for gas mixtures,
we find for the differential cross section of scattering
particles of sort i by those of sort j

(5)

where gji = vj – vi is the relative velocity and mij =
mimj/(mi + mj) is the reduced mass.

The Enskog equation for a mixture of medium-den-
sity soft-sphere gases formally has the same form as for
hard spheres [10] with the exception that the differen-
tial cross section is expressed by formula (5):

(6)

Here, fi is the DF for particles of sort i, rj = ri – σijk, and
 = ri + σijk. The primed DF depends only on “past-

impact” velocity; hence,

(7)

where µji = mi/(mi + mj).
The function χij in Eq. (6) is the locally equilibrium

pair correlation function [7], well-known in statistical
mechanics. Equation (6) differs from the conventional
modified Enskog equation for gas mixtures [6, 7] in that
the center-to-center distance σij between particles at the
collision instant depends on the particle relative veloc-
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ity according to (3). Equation (5) is nonlocal. To derive
a local equation (for a single point r = ri), it is necessary
to expand all the functions in Eq. (6) into the Taylor
series, as in [1], and leave pair derivatives with respect
to coordinates. Then, the collision integral on the right
of (6) can be represented as the sum of local integrals:

(8)

Here,

(9)

(10)

(11)

These integrals differ from those in [1] by the form
of the differential cross section and also by the fact that
the function χij is under the integral, since it depends on
the particle size. Instead of χij, one usually takes the
pair correlation function. For a gas mixture, it can be
calculated, e.g., by the Mansuri–Karnahan–Sterling–
Leland formula [11]. For a single-component gas, one
can use the expansion of the pair correlation function in
the form [1]

(12)

where

and n is the density of the particles.

SOLUTION OF THE KINETIC EQUATION 
FOR A SINGLE-COMPONENT GAS 

BY THE CHAPMEN–ENSKOG METHOD

We will solve Eq. (6) for a single-component gas in
the near-equilibrium state. Our goal is to derive trans-
port equations, obtain expressions for the flux vectors,
and calculate the transport coefficients. Multiplying
Eq. (6) by the additive coefficients 1, mv, and (1/2)mv 2

in view of (8)–(11) and integrating over velocities, we
come to conventional equations for mass, momentum,
and energy transfer [1], where the viscous stress tensor
and the heat flux vector have the form

(13)

Here,
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(16)

(17)

(18)

C = v – u is the intrinsic velocity of the particles; u is
the hydrodynamic velocity; and the subscripts K and Φ
refer to contributions due to the molecule flux (kinetic
energy) and collisions [1], respectively. Ordinary and
double broken brackets mean averaging over one DF
and two DFs and cross section, respectively:

(19)

Relationships (15)–(18) differ from those given in
[1] in that χ and σ are functions of the relative velocity
and stand under the integral.

Expanding the DF in the small parameter which is
the Knudsen number, that is, assuming that f = f (0)(1 +
Knϕ), we find that f (0) is the locally Maxwellian DF
and, for the first-order correction to ϕ,

(20)

Here,

(21)

(22)

(23)

(24)

p is pressure, I is unit tensor, wi = Ci/VT, VT =

, and expression

(25)

is valid for any two vectors a and b.
Note that the vector M and the tensor W entering

into relationships (21) and (22) do not admit, unlike [1],
direct integration over v2. However, such a procedure is
not required to calculate the transport coefficients.

PΦ2
1
2
---mn2 g k⋅( )kk k ∇ f / f 1( )ln⋅[ ]χσ〈 〉〈 〉 ,=

qΦ1
1
4
---mn2 g k⋅( )2 2 g k⋅( ) C k⋅( )+[ ] kχσ〈 〉〈 〉 ,=

qΦ2
1
4
---mn2 g k⋅( )2 2 g k⋅( ) C k⋅( )+[ ] k〈〈=

× k ∇ f / f 1( )ln⋅[ ]χσ〈 〉〈 〉 .

φ〈 〉 1
n
--- fφ v,d∫=

φ〈 〉〈 〉 1

n2
----- f f 1φ σd vd v1.d∫∫∫=

n
2
I0 ϕ( )–  = D f 0( ) I1 f 0( )( ) A ∇ T B : ∇ u.+ln⋅≡–

A f 0( ) ω2 3
2
---–

1
nkB
-------- ∂p

∂T
------– 

  C M– ,=

B f 0( ) m
T
---- CC{ } 2

3
---ω2 p

nkBT
------------– 

  I W–+ ,=

M f 1
0( ) ω1

2 ω1'( )2
3– T

∂ χln
∂T

------------+ + 
  kχσ σd v1,d∫=

W f 1
0( ) m

kBT
--------- C1 C1'+( ) kχσ σd v1,d∫=

2kBT( )/m

ab{ } 1
2
--- ab ba+( ) 1

3
--- a b⋅( )I–=
A solution to Eq. (23) can be represented in the form

(26)

where the vectors a and b are looked for, as usual, as the
expansion in Sonine polynomials.

In the first-order approximation, the expansion in
Sonine polynomials for these vectors takes the form

(27)

The coefficients a1 and b0 are found by integrating
Eq. (23) with appropriate weights [1]. Eventually, we
have

(28)

where integral brackets are defined as

(29)

When directly calculating the means in relation-
ships (28), one should pass to variables (relative veloc-
ity and center-of-mass velocity), as is usually done in
calculating integral brackets. The direct calculation by
formulas (28) yields

(30)

(31)

Here,

(32)

(33)

and τ = (kBT)/ε is the reduced dimensionless tempera-
ture.

ϕ 1
n
--- a ∇ Tln b : ∇ u+⋅[ ] ,–=

a a1
5
2
--- ω2– 

  C, b b0 ww{ } .= =

b0
B : ww{ }〈 〉

ww{ } ww{ },[ ]
----------------------------------------,=

a1

A 5
2
--- ω2– 

  C⋅

5
2
--- ω2– 

  C 5
2
--- ω2– 

  C,
-----------------------------------------------------------,=

F G,[ ] 1

n2
----- f 0( ) f 1

0( ) F ' F1' F– F1–+[ ]∫=

× G ' G1' G– G1–+[ ]χ dσdvdv1.

b0
5 2

8 πVTσ0
2R0

------------------------------– 1
2
5
---n*R1+ 

  ,=

a1
15 2

32 πVTσ0
2R0

---------------------------------– 1
3
5
---n*R4+ 

  .=

n*
2π
3

------nσ0
3, R0

π
24
-------r2

5( ), R1
5
6
---r3

2( ) 1
5
---r3

4( ),–= = =

R4
25
36
------r3

2( ) 8
15
------r3

4( )–
1
9
---r3

6( ),+=

rk
q( ) 8τ kµ–

π
------------ γ2–( )exp

0̇

∞

∫=

× χ n*τ 3µ– γ 6µ–( )γ2 q 2kµ–+ dγ,
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FLUX VECTORS AND TRANSPORT 
COEFFICIENTS

Substituting the DF obtained into expressions (16)–
(21) for flux vectors and performing necessary calcula-
tions, we find

(34)

where the hydrostatic pressure p is given by the equa-
tion of state

(35)

From relationship (35), it follows that the second
virial coefficient for the equation of state is given by

(36)

which coincides with the expression for the second vir-
ial coefficient for repulsion center potential (2).

According to (16), the shear viscosity coefficient η
and the thermal conductivity λ include both usual
(kinetic) contributions and those due to collisional
momentum and energy transfer; that is, η = ηK + ηΦ1 +
ηΦ2 and λ = λK + λΦ1 + λΦ2, where

(37)

(38)

where

(39)

(40)

Eventually, for the shear viscosity coefficient, vol-
ume viscosity coefficient, and thermal conductivity, we
have

(41)

(42)

(43)

P pI 2η ∇ u{ } κ ∇ u⋅( ), q–– λ∇ T ,–= =

p n
1
3
---n*

2 r3
2( )+ 

  kBT .=

B
8 π

9
----------σ0

3Γ 5 6µ–
2

--------------- 
  τ 3µ– ,=

ηK
1
2
---b0T , ηΦ1

1
5
---b0kBTn*R2,= =

ηΦ2
48

25π
---------η0n*

2 R3,=

λK
5
4
---– a1VT

2 , λΦ1
3
4
---– a1VT

2 n*R5,= =

λΦ2
32

25π
---------λ0n*

2 R3,=

R2
2
15
------r3

4( ), R3 r4
3( ), R5

11
45
------r3

4( ) 5
18
------r3

2( ),–= = =

η0

5 mkBT

16 πσ0
2

---------------------, λ0

75kB kBT

64 πmσ0
2

-------------------------.= =

η
η0
-----

1
2
5
---n*R1+ 

  1
2
5
---n*R2+ 

 

R0
--------------------------------------------------------------

48
25π
---------n*

2 R3,+=

κ
η0
-----

16
5π
------n*

2 R3,=

λ
λ0
-----

1
3
5
---n*R4+ 

  1
3
5
---n*R5+ 

 

R0
--------------------------------------------------------------

32

25 π
-------------n*

2 R3.+=
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It should be noted that the coefficients Ri are
selected so that Ri = 1 at χ = 1 for hard spheres (µ = 0).
Therefore, expressions (41)–(43) for the transport coef-
ficients within the hard-sphere model coincide with
those derived by Enskog. These coefficients specify the
temperature dependence of corrections to the transport
coefficients in the case of a dense gas, while the coeffi-
cient R0 introduces a difference between the tempera-
ture dependences of the viscosity and thermal conduc-
tivity for hard- and soft-sphere normal-density gases.
The expression for R0 coincides with the temperature
dependence of Ω(2, 2)*, the Chapman–Cowling reduced
integral for the repulsion center potential; that is, R0 ~
Ω(2, 2)* ~ τ–kµ at n∗   0.

The analytical reduced viscosity coefficient vs.
reduced temperature τ is plotted in the figure at differ-
ent gas densities. In the calculations, we took µ = 1/12.
For comparison, smoothed experimental data for inert
gases and nitrogen [12] are also shown. At τ > 2, the
discrepancy is 4–7%. Thus, our model describes ade-
quately the transport properties of a monoatomic dense
gas at sufficiently high temperatures.

CONCLUSIONS

(1) A model of the Enskog kinetic equation for soft-
sphere dense gases and gas mixtures is represented.

(2) Analytical expressions for the transport coeffi-
cients of a monoatomic soft-sphere dense gas are
derived.

(3) The calculated viscosity coefficient in the
reduced temperature range 2 < τ < 8 for the reduced
density n∗  = 0.2, 0.5, and 0.8 is compared with experi-
mental data. The discrepancy does not exceed 7%.

1.2
42 6 8

1.4

1.6

1.8
η(n*, τ)/η(0, τ)

τ

3

2

1

Reduced viscosity coefficient vs. reduced temperature for
n∗  = 0.2 (1), 0.5 (2), and 0.8 (3). Continuous curves, calcu-
lation; dashed curves, smoothed experimental data.



1368 KUROCHKIN
ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project no. 01-03-32729).

REFERENCES

1. J. H. Ferziger and H. G. Kaper, Mathematical Theory of
Transport in Gases (North-Holland, Amsterdam, 1972;
Mir, Moscow, 1976).

2. A. A. Vasserman and I. P. Khasilov, Teplofiz. Vys. Temp.
27, 35 (1989).

3. V. I. Kurochkin and S. V. Tsaplin, Teplofiz. Vys. Temp.
31, 903 (1993).

4. D. G. Friend and J. C. Rainwater, Chem. Phys. Lett. 107,
590 (1984).
5. V. A. Rabinovich and S. B. Kiselev, in Thermophysical
Properties of Substances and Materials (Izd. Standartov,
Moscow, 1978), Vol. 12, p. 124.

6. V. I. Kurochkin, Teplofiz. Vys. Temp. 33, 161 (1995).
7. J. M. J. Coremans and J. M. J. Beenakeer, Physica

(Amsterdam) 26, 653 (1960).
8. A. B. Medvedev, Teplofiz. Vys. Temp. 33, 227 (1995).
9. H. C. Andersen, J. D. Weeks, and D. Chandler, Phys.

Rev. A 4, 1597 (1971).
10. H. Beijeren and M. H. Ernst, Physica (Amsterdam) 68,

437 (1973).
11. J. M. Kincaid, M. Lopez de Haro, and E. G. D. Cohen,

J. Chem. Phys. 79, 4509 (1983).
12. N. J. Trappeiers, A. Botzen, C. A. Ten Seldam, et al.,

Physica (Amsterdam) 31, 1681 (1965).

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 47      No. 11      2002



  

Technical Physics, Vol. 47, No. 11, 2002, pp. 1369–1372. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 11, 2002, pp. 24–27.
Original Russian Text Copyright © 2002 by Stebnovskii.

                                     

GASES
AND LIQUIDS
Dynamo-Optical Effect in Homogeneous Newtonian Fluids
S. V. Stebnovskii

Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, 
pr. Akademika Lavrent’eva 15, Novosibirsk, 630090 Russia

e-mail: root@hydro.nsc.ru
Received March 15, 2002

Abstract—It is experimentally found that homogeneous polar fluids (water, glycerol, ethanol, etc.) become
optically anisotropic under shear. As a result, the permittivity, which is a macroscopic characteristic of a fluid,
becomes anisotropic as well. Results obtained indicate that quiescent polar fluids have signs of an ordered struc-
ture, which readily disappears under weak shear stresses and then relaxes to the initial state for several hours
(depending on the fluid temperature). © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The performance of this study has been dictated by
the following reason. In our earlier works [1–3] devoted
to the stability of the structure of disperse liquids in
force fields of arbitrary intensity, the nonequilibrium
character of disperse systems (emulsions and suspen-
sions) was revealed in the case when there are no gradi-
ent temperature and concentration fields and the system
is not exposed to external force fields (including the
gravitational field). It was shown that if the initial spac-
ing between dispersed elements is on the order of their
sizes, the particles approach and touch each other irre-
spective of the system’s dimensions (the particle sizes
are 0.1–1.0 cm and the typical approach velocity is
~10−4 cm/s). The law of particle interaction was found
to be the same as in the classical problem of the elastic-
ity theory concerning two interacting spherical cavities
in a stressed elastic space. Therefore, one can assume
that the approach of dispersed elements is caused by the
weak structural strength (elasticity of shear) of the liq-
uid matrix under weak and slow deformation. This
argument was supported by experimental results [4]. In
[4], it was found that at low rates of shear, water
behaves as a medium with a shear modulus of the order
of 10–6 Pa. (In those experiments, a cylindrical water
volume was slowly rotated around its symmetry axis in
a cylindrical vessel. The liquid volume rotated by iner-
tia for a time and then executed weak elastic torsional
damped vibrations, indicating that water has a strength
of shear.)

Since we consider a fundamental property of fluids,
namely, the presence of a nonzero though very weak
structural strength in the quasi-stationary state, it seems
to be reasonable to study the structural ordering of flu-
ids by an experimental technique other than that used in
[4]. This problem is solved in this paper.
1063-7842/02/4711- $22.00 © 21369
VALIDATION OF INVESTIGATION METHOD

It is well known [5, 6] that the permittivity of a con-
densed medium is a macroscopic characteristic of its
molecular structure. Therefore, if a medium is structur-
ally ordered, the variation of its structure under
mechanical load must show up through the variation (at
least, local) of the permittivity ε. Since the refractive
index in a transparent medium is related to the permit-
tivity as n = ε1/2, elastic strains will influence the optical
properties of structured transparent media through the
tensor εik. That is, an optically isotropic medium
becomes anisotropic due to the deformation. The pho-
toelasticity method, which is widely used in studies of
the elastic stress distribution in a strained transparent
solid, is based on this effect. In addition, optical anisot-
ropy arises in moving non-Newtonian fluids, namely,
suspensions and colloidal solutions with nonspherical
particles, if a velocity gradient is present [7]. In this
case, the orientation of nonspherical disperse elements
changes in the region of the velocity gradient owing to
the shear deformation of the medium. This causes the
structure of the medium and, hence, ε to change. The
refractive index also changes, and the optical isotropy
breaks. This phenomenon is referred to as the dynamo-
optical effect or the Maxwell effect.

The question arises of whether the dynamo-optical
effect takes place in homogeneous Newtonian fluids.
The answer to this question will provide valuable infor-
mation about the structure of fluids. Indeed, if a fluid
has an ordered structure, its permittivity [8] ε = 1 +
4πNp (where N is the number of molecules or molecu-
lar clusters per unit volume and p is the polarizability,
which describes the structure of molecules or their
aggregates) must change under macroscopic shear.
Hence, the value of n will also change in the deforma-
tion zone.
002 MAIK “Nauka/Interperiodica”
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EXPERIMENT AND RESULTS

(1) In this paper, the dynamo-optical effect in homo-
geneous Newtonian fluids that have various polarizabil-
ity of molecules is experimentally studied. Figure 1
shows the experimental setup. Here, 1 is a 6 × 8 ×
3.5-cm transparent thermostatic vessel filled with
fluid 2 to be studied, and 3 is a vibrator (rod) with fixed
plates 4, which are set in vibration by solenoid 5. The
optical inhomogeneity of the fluid is detected by
Schlieren–Aufnahmegerat-80 instrument 6 and CCD-
TR780E digital video camera 7.

The experiments were conducted for the following
liquids: L1, transformer oil (permittivity ε = 2.3 and
shear viscosity µ = 0.16 Pa s at T = 17°C); L2, glycerol
(ε = 42.4, µ = 1.48 Pa s, T = 18°C); L3, ÉD-20 epoxy
resin (ε = 3.7, µ = 28 Pa s, T = 17°C); L4, distilled water
(ε = 81, µ = 10–3 Pa s, T = 17°C); L5, ethanol (ε = 25.7,
µ = 1.3 × 10–3 Pa s, T = 17°C); and L6, Freon 10 (ε =
2.23, µ = 0.97 × 10–3 Pa s, T = 16°C).

When vibrator 5 is turned on, a three dimensional
flow with a velocity gradient forms near the edges of
plates 4 in liquid medium 2 (the frequency ω of the
vibrator and the amplitude δ of plate vibrations are var-
ied). If regions with optical anisotropy (waviness)
appear in the gradient flow, they are detected by video
recorder 7 with the aid of schlieren instrument 6, which
operates by the Toepler scheme.

Figure 2 shows the video records of the process that
were obtained under the following conditions: ω =
60.5 Hz, δ = 0.1–0.2 cm, T = 17°C, and the vibrator

operating time  = 5 s. In Fig. 2, panels (a–d) refer to
L1, L2, L3, and L4, respectively. The first frame in each
of the records shows the quiescent state before the
vibrator is turned on; the second one corresponds to the
instant the vibrator is turned on to excite the three-
dimensional flow with the velocity gradient (zero time,
t = 0); the third frame was taken 3 s after the vibrator

∆t

,

Fig. 1. Experimental set for studying the dynamo-optical
effect in a fluid.

1

2
3

4
5

6

7

8 9 10

I0 I

6

had been turned on; and the fourth one shows the state

when the vibrator was turned off (t = ).

From the video records, one can draw the following
conclusions. In medium L1, the flow with the gradient
velocity field does not break optical anisotropy visually
(i.e., does not cause the dynamo-optical effect): internal
waviness (the inhomogeneity of the refractive index n
and, hence, ε) is not observed (Fig. 2a). In medium L2
(Fig. 2b), regions with a high optical anisotropy appear
in the gradient flow; the waviness heals up in 15–16 h

at T = 17°C and  = 5 s. In medium L3, (Fig. 2c), wav-
iness is not observed during the formation of the gradi-
ent flow. In medium L4 (Fig. 2d), optically inhomoge-
neous regions appear. However, as a result of the low
viscosity of the liquid, they are swept away by the flow
toward the free surface of the liquid (a flow of such a
type is caused by the influence of the rigid bottom of
vessel 1). The healing of optical inhomogeneities in liq-
uid L4 occurs 3–4 s after their formation. The dynamo-
optical effect is also observed in medium L5 and does
not take place in medium L6. All the experiments were
performed with a fixed sensitivity of the schlieren
instrument to optical inhomogeneities in the liquids.

From these results, it follows that the regions with
an observable optical inhomogeneity form in the high-
permittivity liquids and their formation does not
depend on viscosity. Indeed, in high-viscosity liquid
L1, ε = 3.2 and waviness is absent; in high-viscosity liq-
uid L2, ε = 42.4 and waviness is observed; in high-vis-
cosity liquid L3, ε = 3.7 and waviness is absent; in low-
viscosity liquid L4, ε = 81 and waviness is observed; in
low-viscosity L5, ε = 25.7 and waviness is observed;
and in low-viscosity L6, ε = 2.3 and waviness is absent.
(It is worth noting that in the low-ε media, optical
homogeneity seems to be slightly broken in the gradi-
ent flow region; however, this effect is negligible and is
beyond the sensitivity of the schlieren instrument.)
Since ε is a macroscopic characteristic of the molecular
structure of a medium, one can suppose that in regions
where the optical inhomogeneity appears under the
influence of a shear flow, so does the inhomogeneity of
the permittivity, since ε = n2, and the structure of the
medium changes. Thus, quiescent liquids L2, L4, and
L5 have an ordered structure, which breaks in the gra-
dient flow field.

From our experiments, it follows that when the
operating time of the vibrator in the water increases to
∆t = 15–20 s, the waviness formation in the gradient
flow stops. If the vibrator operates for 15–20 s, is turned
off, and then is turned on again in ∆t*, repeatedly
applying a shear stress, the dynamo-optical effect does
not take place if ∆t* < 15–25 min. Weak waviness starts
forming with increasing ∆t*, and only at ∆t* > 2–3 h
(depending on the liquid temperature) is the dynamo-
optical effect fully restored: regions with the same
degree of optical anisotropy (waviness) as at the initial
excitation appear in the gradient flow. Therefore, one

∆t

,

∆t

,
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can assume that water offers thixotropic properties.
This means that it has an ordered structure at rest,
which breaks under weak shear stresses and then is
recovered after a time (∆t** = 2–3 h).

The time of dynamo-optical effect recovery ∆t** in
glycerol is several days (∆t** depends essentially on
temperature; therefore, a thermostat keeping the liquid
temperature constant for several days is required).

As was noted, the time taken to heal up the waviness
in glycerol (at T = 15–17°C) is on the order of 15–16 h,
whereas for water and ethanol, the time is 4–5 s. Thus,
while the waviness intensity depends on the permittiv-
ity of a fluid, the recovery time of its structure depends
on the viscosity.

(2) In our experiments, we also considered the time
variation of the total luminous flux I(t) passed through
the water sample under vibration. The basic idea in this
case was as follows. In the first approximation, the
attenuation of a monochromatic luminous flux in an
optically transparent homogeneous liquid obeys the
Bouguer–Lambert–Beer law I = I0exp(–βλl), where
βλ = αλ + ζλ is the coefficient of luminous flux attenua-
tion from I0 to I by a liquid layer of depth l; αλ, coeffi-
cient of light absorption by the liquid; ζλ, coefficient of
light scattering; and λ, wavelength of the monochro-
matic radiation (monochromatic light with λ = 540 nm
was used in the experiments). Since αλ is very low for
transparent liquids, one can assume that βλ . ζλ. It is
well known [8] that the mechanism of molecular light
scattering by a pure (without impurities) liquid is col-

(a)

(b)

(c)

(d)

Fig. 2. Video records of the fluid behavior under shear for
(a) transformer oil, (b) glycerol, (c) epoxy resin, and
(d) water.
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
lective fluctuations of the refractive index n or, in view
of the fact that n = ε1/2, collective fluctuations of ε. This
agrees with the Einstein formula

According to this formula, the intensity of luminous
flux scattering at an angle Θ to its direction is propor-

tional to ( )2. Here, ∆ε is the fluctuation of the per-
mittivity in a volume V* of sizes much smaller than λ
that contains many molecules and x is the distance from
the scattering volume to the point of observation. Thus,
the more homogeneous the structure, the lower the light
scattering coefficient in a liquid medium. For example,
if molecules in the structure volume were distributed
perfectly uniformly and, hence, ε were the same
throughout the volume (its fluctuation is absent, ∆ε 
0), the scattering coefficient would tend to zero. In

I I0
π2

2λ4x2
--------------V*V ∆ε( )2

1 Θcos
2

+( ).=

∆ε

3
1

2

0.1 I 0

~~

1
2

3
4

0.02 I0

(a)

(b)

(c)

I0 I(t)

Fig. 3. Intensity variation of the luminous flux at the exit
from the water sample under shear. (a) Scheme for detecting
the luminous flux I(t) = I0 + ∆I(t), (b) oscillogram of the
luminous flux ∆I(t) at the initial stage of the process at a
sweep time ts = 1 min, and (c) oscillogram of ∆I(t) at ts =
6.6 min.
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other words, the light scattering coefficient of a homo-
geneous liquid must be lower and the light attenuation
must be weaker than in a liquid consisting of polar mol-
ecule aggregates or other ordered mesostructures.

In order to measure the luminous flux I(t) passed
through the water, photodiode 8 was placed at the exit
from schlieren instrument 6 instead of video recorder 7
(Fig. 1). The signal of the photodiode (or the intensity
of the luminous flux I(t)) was amplified by amplifier 9
and detected by S9-16 oscillograph 10, operating in the
low-frequency regime. Oscillograms in Fig. 3 show the
variations of the luminous flux intensity I(t) = I0 + ∆I(t)
at the exit from the water sample, whose ordered struc-
ture breaks under vibration (at T = 17°C). Here, I0 is the
initial luminous flux at the exit from the water sample
without vibration and ∆I(t) is the variation of the lumi-
nous flux intensity according to the variation of light
scattering in the stressed sample. In both oscillograms,
the zero level corresponds to the constant luminous flux
intensity I0. The dip between points 1 and 2 corre-
sponds to the formation of waviness in the water sam-
ple (due to gradient flows induced by the vibrator), i.e.,
to more intense light scattering. The portions 2–3 in
Fig. 3b and 2–4 in Fig. 3c correspond to an increased
transparency of the sample after the breakdown of the
ordered mesostructures and, hence, to a decreased light
scattering coefficient in the more homogeneous liquid.
The value of ∆I(t) decreases slowly, approaching zero
within ∆t** . 2.5 h. It follows that the structural prop-
erties of the water are fully recovered within the time
∆t**, which must depend on the temperature T, fre-
quency ω, and plate vibration amplitude δ, i.e., on the
intensity of the gradient flow induced in the liquid and
specifying the breakdown of its structure (finding these
dependencies is the subject of a separate study). It was
found that the dynamo-optical effect in water is
observed at temperatures below 18.5–18.6°C. At T ≥
19°C, the effect is negligibly small; i.e., the water struc-
ture is disordered.

CONCLUSION

A series of experiments conducted with the aid of a
special technique that differs essentially from that used
in [4] made it possible to observe the dynamo-optical
effect in homogeneous polar fluids. When at rest, these
fluids have a highly ordered structure, which is in
agreement with [1–4]. Using water as an example
because of its significance in biochemical and biophys-
ical processes, it was shown that after intense break-
down, the liquid structure is recovered within several
hours (the relaxation time depends on the liquid tem-
perature).
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Abstract—The instability of capillary gravitational waves that is developed at the charged flat interface
between media is studied for the case when the upper medium moves parallel to the interface with a velocity
that has constant and time-dependent components. It is shown that the Mathieu–Hill equation, describing the
temporal evolution of the capillary wave amplitudes in such a system, has unstable solutions at those values of
physical parameters (electric field strength and wind velocity) meeting the conditions for Saint Elmo fire initi-
ation in the atmosphere. © 2002 MAIK “Nauka/Interperiodica”.
(1) Saint Elmo fire is among the inadequately
explored phenomena of atmospheric electricity. The
statistical processing of observations regarding this
phenomenon under natural conditions [1, 2] suggests
that its conventional interpretation as a powerful corona
discharge is to some extent incorrect. Almost 80% of
the associated works relate Saint Elmo fire with electro-
static instability in the storm electric field of a charged
film or water drops covering objects near which the
phenomenon is observed. The same has been indicated
by various experiments [3–6]. In [1, 7] (see also [2]), a
model of Saint Elmo fire was proposed where it is
related to the ejection of highly dispersed heavily
charged droplets from the liquid surface exposed to an
external electric field. The high electric fields of the
self-charges of the droplets cause corona discharges in
their vicinities and, hence, glow. The characteristic lin-
ear size of Saint Elmo fire tongues depends on the dis-
tance passed by a droplet until the corona discharge in
its vicinity is quenched.

Nevertheless, theoretical estimates show that the
water surface subjected to an electric field must become
unstable at near-ground electric field strengths one
order of magnitude higher than that observed under nat-
ural conditions [8]. According to observations [1, 2],
the intensity of Saint Elmo fire grows appreciably with
increasing wind velocity. This suggests that Kelvin–
Helmholtz instability is favorable for loosening the crit-
ical conditions for the development of the charged liq-
uid surface instability [9]. However, the reduction of
the critical strength of the external electric field
obtained in [9] proved to be insufficient. The situation
was not improved when a finite thickness of the upper
medium was taken into account [10]. The latter factor
introduces the linear interaction between the waves and
an additional vibrational instability of the interface. It
remains to study the effect of the time dependence of
1063-7842/02/4711- $22.00 © 21373
the wind velocity, which is typical of stormy weather—
a prerequisite for Saint Elmo fire to occur. Such a depen-
dence, according to [11, 12], may promote the paramet-
ric instability of a charged liquid surface at external
electric fields meeting actual stormy conditions.

(2) We shall solve the stability problem for a tangen-
tial discontinuity between two immiscible ideal incom-
pressible liquids with different densities ρ1 and ρ2.
Either liquid occupies the semi-infinite space in the
gravity field, and the upper liquid moves parallel to the
interface with a time-dependent velocity U = U(t). We
assume that the upper liquid (parameters referring to it
are marked by subscript 1) is dielectric with a permitiv-
ity ε1 = ε and the lower liquid (associated parameters
are marked by subscript 2) is perfectly conducting. The
upper liquid is exposed to a uniform electrostatic field
E0 directed parallel to the free-fall acceleration g. The
electric field E0 induces a charge at the unperturbed flat
interface, which is described by the equation z = 0 in the
Cartesian coordinate system with unit vectors nz || g and
nx || U. The charge has a constant density σ = E0/4π. The
thermal motion of molecules induces capillary wave
motion of very small amplitude ξ0 in both media (ξ0 ~
(kT/α)1/2, where k is the Boltzmann constant, T is abso-
lute temperature, and α is the surface tension coeffi-
cient at the interface). The capillary motion causes a
perturbation ξ(x, t) of the interface; therefore, the equa-
tion for the interface takes the form z = ξ(x, t).

Let the velocity field potentials of the upper and
lower liquids be ψ1(r, t) and ψ2(r, t) and the potential
of the total electric field, φ(r, t). Then, the problem of
the temporal evolution of the capillary wave amplitudes
is mathematically stated as [13, 14]

(1)

(2)

∆φ 0; φ E0z ϕ r t,( );+≡=

z ∞: ϕ 0;–
002 MAIK “Nauka/Interperiodica”
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(3)

(4)

(5)

(6)

(7)

(8)

Here, k is the wave number; ϕ(r, t) is the potential of the
electric field generated by the interface perturbation
ξ(x , t) (both parameters are of the same order of small-
ness); PE is the electric field pressure on the interface,
which is determined by solving electrostatic problem
(1)–(3) and has the form PE = 4πσ2kξ [13]; Pα =
α∂2ξ/∂x2 is the Laplace pressure under the liquid sur-
face perturbed by the wave motion; and ∆ is Laplacian.

Our aim is to derive a differential equation describ-
ing the temporal variation of the amplitudes of thermal
capillary modes (under the action of the electric field
pressure and the tangential discontinuity of the velocity
field at the interface). We take into account that, in
accordance with (5) and (6), the velocity field potentials
in both media, being the solutions to Eq. (4), must van-
ish at a point infinitely distant from the interface. This
means [12, 13] that ψ1(r, t) ~ exp(kz) and ψ2(r, t) ~
exp(–kz). This leads us to the relationships

(9)

Note that a perturbation of the interface induced by
the capillary wave motion must be periodic:

(10)

Substituting (9) and (10) into boundary conditions
(6), we find

(11)

(12)

where i is the imaginary unity.

Now, we substitute (11) and (12) into (8) to obtain
the desired differential equation, describing the time
variation of the capillary wave amplitudes in the linear

z ξ x; t( ): ϕ const;= =

∆ψi 0; i 1, 2;= =

z        ∞ ψ1– xU t( )        const– 0;=

z        ∞ ψ2        const 0;=

z ξ x; t( ): 
∂ψ1

∂z
---------= U

∂ξ
∂x
------ ∂ξ

∂t
------;

∂ψ2

∂z
--------- ∂ξ

∂t
------;≈+≈

ρ1

∂ψ1

∂t
--------- ρ1gξ 1

2
---ρ1 ∇ψ 1( )2 U2 t( )–[ ]+ +

=  ρ2

∂ψ2

∂t
--------- ρ2gξ PE Pα .–+ +

∂ψ1

∂z
--------- kψ1;

∂ψ2

∂z
--------- kψ2.–= =

ξ ikx( ).exp∼

ψ1 r t,( ) 1
k
--- U t( )∂ξ

∂x
------ ∂ξ

∂t
------+ 

  1
k
--- ikU t( )ξ ∂ξ

∂t
------+ 

  ;= =

ψ2 r t,( ) 1
k
---∂ξ

∂t
------,–=
approximation with respect to ξ:

(13)

At U(t) = U0 = const, Eq. (13) becomes an ordinary
differential equation with constant coefficients that
describes the time evolution of the capillary wave
amplitudes under conditions of Kelvin–Helmholtz and
Tonks–Frenkel instabilities and has the solution

(14)

The conditions for Kelvin–Helmholtz and Tonks–
Frenkel instabilities require that the function ω2(k) pass
through zero toward negative values. In this case, the
exponent in (14) has ±i before ω2(k) and (14) is subdi-
vided into two periodic solutions: exponentially
damped and exponentially growing. The latter corre-
sponds to Kelvin–Helmholtz instability at σ = 0. When
U0 = 0, (14) yields two aperiodic solutions, one of
which exponentially grows and describes the behavior
of the liquid surface under Tonks–Frenkel instability. In
the general case U0 ≠ 0 and σ ≠ 0, (14) describes the
interface behavior under conditions of combined insta-
bility, when both the electric field pressure and the
aerodynamic pressure above the perturbed interface are
significant.

(3) Next, let the time dependence of the upper
medium velocity U = U(t) have the form of a truncated
Fourier series:

(15)

Substituting (15) into (13) yields a differential equa-
tion with variable coefficients for the temporal evolu-
tion of the capillary wave amplitudes in the system
under consideration. To find its solutions, we change
the desired variable as follows:

∂2ξ
∂t2
-------- 2ikU t( )

ρ1

ρ1 ρ2+( )
---------------------∂ξ

∂t
------ ikρ∂U t( )

∂t
--------------ξ+ +

+
k

ρ1 ρ2+( )
--------------------- g ρ1 ρ2–( ) kρ1U2 t( )–[

– 4πσ2k αk2 ]ξ+ 0.=

ξ ξ 0Re ikU0t
ρ1

ρ1 ρ2+( )
--------------------- itω2 k( )+exp

 
 
 

;=

ω2 k( ) k
ρ1 ρ2+( )

--------------------- g ρ2 ρ1–( ) αk2-+≡

– k
ρ1ρ2

ρ1 ρ2+( )
---------------------U0

2 4πσ2k– .

U t( ) U0 U* j jω0t( );cos
j 1=

m

∑+=

U0 || U* j( ) j 1 2 3 … m, , , ,=( ).

ξ ζ iΦ t( )( );exp=
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Ultimately, (8) is reduced to the form

(16)

(4) For preliminary qualitative analysis, we assume
that m = 1 and rewrite (16) in dimensionless variables
such that the frequency ω0 of the variable component of
the upper medium velocity, the density ρ2 of the lower
medium, and the capillary constant a of the lower liquid
are equal to unity (α = ω0 = ρ2 = 1). Then, we obtain

(17)

The parameter δ characterizes the frequency of cap-
illary oscillations. All the physical parameters are
denoted by the same symbols as before.

With these designations, the domain of coexistence
of Kelvin–Helmholtz and Tonks–Frenkel instabilities
(without parametric oscillations) is given by the condi-
tion δ < 2ε.

(4a) In the particular case U0 = 0, Eq. (17) trans-
forms into the conventional Mathieu equation. The
boundaries of several first instability domains for solu-
tions to this equation are shown in Fig. 1. These bound-
aries were calculated with the method of extended
parameters [15] by expanding into a series in the
dimensionless parameter ε, which can be assumed to be
small in asymptotic calculations (although in the gen-
eral case, ε may take arbitrarily large values [16]). It is
seen that the apices of the instability zones are the inte-

Φ kρ U0t
1

jω0
--------U* j jω0t( )sin

j 1=

m

∑+ ;–=

ξ ζ ikρ U0t
1

jω0
--------U* j jω0t( )sin

j 1=

m

∑+
 
 
 

.exp=

∂2ζ
∂t2
-------- ζ ω2 k( ) 2U0χ U* j jω0t( )cos

j 1=

m

∑–+

+ χ U* j
2 jω0t( )cos

2

j 1=

m

∑ 0;=

χ k2 ρ1ρ2

ρ1 ρ2+( )2
------------------------.≡

∂2ζ
∂t2
-------- ζ δ 2ελ t 2ε 2tcos+cos–[ ]+ 0;=

ω*
2 kα

1 ρ1+( )
------------------- 1 ρ1–( ) k2 k

ρ1

1 ρ1+( )
-------------------We– kω–+ ;≡

δ ω*
2 2ε;+≡

ε 1
4
---U*

2 χ; λ U0/U*; χ k2 ρ1

1 ρ1+( )2
---------------------;≡≡=

We U0
2/α , ω 4πσ2/α .≡≡
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ger values of the parameter δ1/2 on the abscissa axis;
that is, δ1/2 = n, where n = 0, 1, 2, ….

States that are unstable against parametric buildup
on the plane (δ; ε) occupy the domain on the left of
curve 1, as well as the domains between curves 2 and 3
and 4 and 5. The states with the parameters δ and ε
between curves 1 and 2, as well as 3 and 4, are stable.
As follows from direct calculation with Eq. (17) at λ = 0
(that is, U0 = 0), the states corresponding to δ and ε in
the domain between curve 1, which, in the fourth-order
approximation with respect to ε, is given by

and the dashed line δ = 2ε, are also stable. On the left
of the dashed line, Tonks–Frenkel instability is also
expected. Thus, this instability is suppressed by para-
metric surface oscillations, since Kelvin–Helmholtz
instability is impossible at U0 = 0.

The boundaries of the next two instability domains
for the Mathieu equation (at n = 1 and n = 2) are defined
by the second-order approximation with respect to ε
[15, 17]:

(18)

Here, δ1/2 has the meaning of the capillary wave fre-
quency. If the lower liquid is assumed to be not ideal but
low-viscous with the kinematic viscosity coefficient ν
and the damping decrement of capillary waves in this
liquid given by the well-known expression γ ≡ 2νk2 [14]
(the condition of low viscosity has the form γ ! 1), the

n 0: δ –
1
2
---ε2 7

128
---------ε4 …,–+= =

n 1 :=

1
1
2
--- 2ε

δ
----- 

  7
32
------ 2ε

δ
----- 

 
2

 ! δ ! 1
1
2
--- 2ε

δ
----- 

  7
32
------ 2ε

δ
----- 

 
2

;+–+–

n 2 :=

4
2
3
--- 2ε

δ
----- 

 
2 2ε

δ
----- 

 
2

 ! δ ! 4
2
3
--- 2ε

δ
----- 

 
2 2ε

δ
----- 

 
2

.+ +–+

–1 0 1 4 δ

ε

0.4

1.0

1
2

3 4 5

Fig. 1. Boundaries of instability domains in the plane of the
parameters δ and ε for the Mathieu equation (Eq. (17) at λ = 0).
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inclusion of viscosity in (17) is reduced to adding a
term γ(∂ζ/∂t) proportional to the first time derivative
[17]. This gives rise to a threshold in the variable veloc-
ity component amplitude U∗  or, in the notation used in
(17), in ε, starting from which parametric instability
may develop. The height of such a threshold grows with
increasing instability domain number n. For domains
with n = 1 and n = 2, the critical values of ε (in the same
dimensionless variables) are defined by the relation-
ships [17]

(19)

Let us estimate the possibility of simultaneously ful-
filling conditions (18) and (19) for the water–air system
with ρ1/ρ2 ≈ 10–3, ν = 10–2 cm2/s, and α = 72 dyn/cm.

For the widest zone in terms of ε (at n = 1), accord-

ing to (18), the condition δ ≈  must be fulfilled. In
the dimensional form, this condition is written as

(20)

Similarly, from (19) in view of (20), it follows in the
dimensional form for n = 1

or, taking into account (20) once again,

Considering this relation as an algebraic equation in
ε, one can easily find its single positive root:

(21)

Let us analyze condition (21) keeping in mind that,
for the water–air system, the damping decrement for
the wave number k = a–1 (where a is the capillary con-
stant for water) is defined by the relationship γ ≈ 0.2 s–1.
As for the frequency ω∗  of capillary oscillations of the
liquid, its magnitude at We ≈ 0, according to (17),
depends on the surface density σ of the charge induced
by the external electric field (that is, on the parameter
ω). When ω is close to its critical value in terms of the

onset of Tonks–Frenkel instability,  is close to zero.
This is because, according to the aforesaid, the critical

conditions for Tonks–Frenkel instability are  ≤ 0. In

this case, γ2 and  in (21) are of the same order of

magnitude. Assume for definiteness that  = 3γ2;
then, from (21), we find ε = 3γ2. Going from ε to the
velocity U∗ , according to (17), we can rewrite the
above condition as U∗  ≈ 7 cm/s. Thus, the parametric
instability of a charged liquid surface can be caused, in
view of (20), by the wind component varying with the
frequency ω0, which is found from the relationship

n 1 : ε/δ 2γ;>=

n 2 : ε/δ 2γ( )1/2.>=

ω0
2

ω*
2 2ε ω0

2.≈+

ε 2 ω*
2 2ε+( )γ/ω0 2γω0≅>

ε2 4γ2 ω*
2 2ε+( ).>

ε γ γ γ2 ω*
2+( )1/2

+[ ] .>

ω*
2

ω*
2

ω*
2

ω*
2

 = 3γ2 + 6γ2 or ω0 = 3γ ≈ 0.6 s–1. This value is close
to the wind pulsation frequency under developed con-
vection [18]. The pulsation amplitude may be relatively
small in this case: U∗  ≈ 10 cm/s.

Such an evaluation is valid for low frequencies of
capillary waves, i.e., only at very high external electro-
static fields approaching the limiting value for Tonks–
Frenkel instability initiation (several tens of kilovolts
per centimeter). So, high fields are not observed near
the earth surface in stormy weather. Even inside thun-
derous clouds such fields are very seldom encountered
[8]. In other words, Saint Elmo fire could hardly arise
in this way.

Consider another limiting situation when the elec-
tric field strength near the earth surface is weak. Let, for
definiteness, it be one order of magnitude lower than
that necessary for the initiation of Tonks–Frenkel insta-
bility. Then, the frequency ω∗  of gravitational capillary
waves on the liquid surface will depend on the electric
field strength only slightly and will be governed by the
free-fall acceleration and the surface tension coeffi-
cient. At k = a–1, the capillary wave frequency is on the
order of hundreds of Hertz (ω∗  ≈ 70 s–1). This means

that the inequality  @ γ2 is fulfilled a fortiori. Then,
it is easy to see that ε ≈ γω∗  from (21). In the dimen-
sional variables, this condition yields the critical (in
terms of stability loss) value of the variable velocity
component amplitude for the upper medium, U∗  ≈
1 m/s, at the pulsation frequency ω0 ≈ 70 s–1. Such a
wind component may be associated with small-scale
atmosphere turbulization caused, for instance, by rain.

It should be pointed out that the instability under
discussion may be realized in different ways, depend-
ing on specific values of the parameters δ and ε. It is
seen in Fig. 2, where the results of direct calculation
with the use of (17) at different points of the plane (δ,
ε) are presented.

(4b) Now let the constant velocity component U0 be
other than zero [that is, λ ≠ 0 in (17)]. Assuming that the
dimensionless parameter ε is small and using the
method of extended parameters (for details, see [15]),
one can find the boundaries of several first instability
domains for solutions to complete equation (17). The
boundaries for the first three instability domains are
given by

ω0
2

ω*
2

Ce0 = –
1
2
--- 2λ2– 

  ε2 3λ2ε3– 7
128
--------- 20λ2

9
-----------– 7λ2

2
--------+ 

  ε4;+

Ce1 1 ε– –
1
8
--- 5λ2

3
--------+ 

  ε2 1
64
------ 121λ2

36
--------------+ 

  ε3+ +=

+ –
1

1536
------------ 6233λ2

2880
----------------- 763λ4

216
--------------–+ 

  ε4;
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(22)

Here, the function Cen defines the right-hand boundary
of the instability domain with a number n and the func-
tion Sen, the left-hand one. Constraints on the applica-
bility of relationships (22) are imposed by the condition
λε ! 1 according to the theory of approximation.

The shapes of the instability domains calculated
from relationships (22) at various values of the param-
eter λ are given in Fig. 3. The presence of two cosines
in (17) deforms the boundaries of domains where the
solutions are unstable up to their intersection. The
deformation of the domains depends on the parameter
λ. Direct calculations with the use of Eq. (17) show that
its solutions become stable when they correspond to δ
and ε located above the point where the boundaries of
one instability domain intersect. The domains of the
parameters δ and ε corresponding to unstable solutions
become closed (certainly except for the zeroth domain
bounded on one side). In other words, the effect of para-
metric instability becomes stable because of the inter-
action between the coefficients of Eq. (17), which peri-
odically vary with time. Figure 3 shows that, as the
parameter λ (the constant velocity component U0 of the
upper medium) increases, the domains of instability
parametric stabilization shrink. Thus, the presence of
the constant and variable components of the upper
medium velocity destabilizes the interface, extending
the domain of the parameters δ and ε where the inter-
face is unstable.

It is worth noting that, as U0 increases, not only the
left- and right-hand boundaries of the parametric stabil-
ity domains but also the boundaries of adjacent
domains intersect, causing an extension of the domain
of the parameters δ and ε where the interface is unstable
(Figs. 3b, 3c). This is especially true for the boundary
of the zeroth domain, which deflects to the right and
intersects both the first and second domains. Unstable
solutions take place for δ and ε lying on the left of and
above the boundary of the zeroth zone in Figs. 3b and

Se1 1 ε –
1
8
--- λ2

3
-----– 

  ε2 –
1
64
------ 7λ2

36
--------– 

  ε3+ + +=

+ –
1

1536
------------ 217λ2

2880
-------------- 5λ4

216
---------+– 

  ε4;

Ce2 4 5
12
------ 2λ2

15
--------+ 

  ε2 31
90
------λ2ε3–+=

+ –
763

13 824
---------------- 58λ2

1575
------------ 433λ4

13 500
----------------+ + 

  ε4;

Se2 4 –
1
12
------ 2λ2

15
--------+ 

  ε2 19
90
------λ2ε3+ +=

+ 5
13 824
---------------- 142λ2

1575
-------------- 317λ4

13 500
----------------–+ 

  ε4.
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3c (naturally, within the applicability of the calcula-
tions, that is, at ελ < 1).

In addition, the deflection of the zeroth domain
boundary to the right sets the upper limit on ε for the
domains of existence of parametric stabilization at δ >
0, since the calculations carried out are valid only at
ελ < 1 (for clarity, the boundary curves in the figures
are plotted in a wider range of ε). For example, it is seen
that, at λ ≥ 7, the condition ελ < 1 practically eliminates
the stabilization domain.

(5) Now, assume that m = 2 in (16) to see how the
boundaries of the instability domains for a solution will
change. Let, for simplicity, U∗ 1 = U∗ 2 = U∗ . Then,
Eq. (16) in terms of the dimensionless variables can be
rewritten in the form

(23)
∂2ζ
∂t2
-------- ζ δ 2ελ t 2tcos+cos( )–[+

+ 0.5ε 2t 4tcos+cos( ) ] 0,=

300

(a)

(b)

(c)
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–50
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50 100 300

Fig. 2. Possible temporal variation of unstable solutions to
Eq. (17) at λ = 1: (a) δ = –0.5 and ε = 0.1, (b) δ = –0.03 and
ε = 0.1, and (c) δ = 1 and ε = 0.2.

t

t

ζ
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where the parameter δ and the boundary of the domain
where Tonks–Frenkel and Kelvin–Helmholtz instabili-
ties take place simultaneously change slightly: δ ≡

 + ε.

Figure 4 displays the instability domain boundaries
calculated with (19) at various λ. Comparing with
Fig. 2 shows that, if the number of harmonics taken into
account in (15) grows, the deformation of the bound-
aries of the parametric instability domains increases
and the locus of points (in the plane δ, ε) where the
instability is observed expands. This is also confirmed
in Fig. 5, where the instability domain boundaries cal-
culated for the first four harmonics (m = 4) in (15) are

ω*
2

1 2 3 45
ε

–1 0 1 4

(a)

(c)

(b)

0.6

0.2

1

–1

2

3

4

5

0 1 4

0.2

1

δ–1

2

3

5
4

0 1 4

0.06

0.4

0.02

1.0

Fig. 3. The same as in Fig. 1 for Eq. (17) at λ = 1 (a), 7 (b),
and 20 (c).

ε

ε
δ

δ

shown. In Figs. 3–5, the deformation of the boundaries
of the parametric instability domains increases with the
number of harmonics in relationship (15). The dimen-
sions of the parametric instability domains grow with
increasing ratio of the constant velocity component of
the upper medium to the variable one.

(6) The above consideration has been concerned
with the initiation of Saint Elmo fire. Nevertheless, our
reasoning is applicable to another inadequately
explored natural phenomenon, namely, the emergence
of waves on the surface of a basin under the influence
of wind. Conventionally, the phenomenon of wave
buildup by a wind is associated with the development of
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δ

1

0.2
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1.0

1

2

3

4
5

0.3

4 5321

–1 0 1 4

1

4

5

3

2 0.10

0.2

0.06

1 2 3 4

Fig. 4. The same as in Fig. 1 for Eq. (19) at λ1 = λ2 = 1 (a),
7 (b), and 20 (c).
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Kelvin–Helmholtz and Miles instabilities [19, 20].
Both instabilities are related to the uniform motion of
the upper medium parallel to the interface in a two-
layer system of immiscible liquids in the gravity field.
The influence of the wind variable component and the
possibility of the parametric buildup of waves are not
taken into account, although, according to our calcula-
tions, such an influence may be appreciable.

CONCLUSION

The Mathieu–Hill equation, describing the temporal
evolution of capillary waves at the charged interface
between two media when the upper one moves relative
to the denser lower medium with a time-dependent
velocity, has unstable solutions due to Tonks–Frenkel
and Kelvin–Helmholtz instabilities, as well as due to
parametric instability typical of the Mathieu–Hill equa-
tion. The motion of the upper medium parallel to the
interface with a time-dependent velocity leads to the
destabilization of the liquid surface and reduces the
critical strength of an external electrostatic field down
to values observed near the Earth’s surface during thun-
derstorms, when Saint Elmo fire is initiated.
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Fig. 5. The same as in Fig. 1 for Eq. (16) at λ1 = λ2 =
7 (a) and 20 (b).
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Abstract—Expressions for the force and velocity of the thermophoretic motion of a spherical drop in a viscous
liquid are derived for arbitrary temperature differences between the surface of the drop and regions away from
it. The temperature dependence of the viscosity is taken into account in the form of an exponential–power
series. © 2002 MAIK “Nauka/Interperiodica”.
STATEMENT OF THE PROBLEM

The thermophoretic motion of a drop arises when an
immobile liquid is subjected to an external temperature
gradient. Under the action of the thermocapillary and
viscous forces, the drop acquires a constant velocity,
the so-called rate of thermophoresis. In general, this
motion is related to shear forces appearing on the sur-
face of the drop because of the temperature variation of
the surface tension coefficient σ (the Marangoni effect
[1, 2]) and the thermal creep of the environment over

the surface. In [3], the thermal creep coefficient 
was estimated for a number of liquids. For example, for
mercury drops moving in water and glycerol, it was

found to be  = 0.13 and 2.5 × 10–5, respectively.
Hereafter, the indices e and i refer to a viscous liquid
and drop, and respectively; the subscript ∞, to liquid
parameters away from the drop; and the subscript s, to
physical quantities taken at the mean temperature of the
surface of the drop Ts. Note that the thermal creep coef-
ficient has been so far evaluated with a reasonable accu-
racy only for gases [4]. This is because a rigorous
mathematical theory of inhomogeneous liquids is
absent.

Consider a heated drop of a viscous incompressible
liquid steadily moving in another viscous incompress-
ible liquid occupying the entire space. The liquids are
immiscible with each other. By a heated drop, we mean
a drop whose mean surface temperature far exceeds the
ambient temperature. The drop may be heated, for
example, by a chemical reaction proceeding in its bulk,
radioactive decay of the drop material, absorption of
electromagnetic radiation, etc. The heated surface of
the drop has a significant effect on the thermal physical
properties of the environment and thereby affects
greatly the velocity and pressure fields in its vicinity. At
infinity, the liquid is at rest and is subjected to a given
temperature gradient. It is assumed that the densities,
thermal conductivities, and specific heats inside and

K tc
e

K tc
e

1063-7842/02/4711- $22.00 © 21380
outside the liquids are constant; the viscosity coeffi-
cient of the drop exceeds that of the environmental liq-
uid; and the surface tension coefficient is an arbitrary
function of temperature. Also, the drop is assumed to
move slowly (small Peclet and Reynolds numbers) and
retain its spherical shape (the distortion of sphericity
will be discussed later).

Unlike the case studied previously [1–8], we here
consider the thermophoretic motion of a spherical drop
for an arbitrary temperature difference between the sur-
face of the drop and areas away from it. In the equation
of hydrodynamics, the temperature dependence of the
viscosity has the form of an exponential–power series;
in the equation of heat conduction, only convective
terms are taken into account.

For the hydrodynamic problem [9, 10] and for the
thermal problem [11], it was shown that the inertial and
convective terms away from the sphere become compa-
rable to those responsible for molecular transfer by one
order of magnitude. Therefore, the standard method of
expansion in a small parameter introduces a noticeable
error in this case, because it cannot satisfy rigorously
boundary conditions at infinity and find an exact unified
solution equally valid in the entire flow domain.

It was demonstrated [12] that the heating of the sur-
face of the drop and taking into account the motion of
the liquid significantly affect the drag force of the
medium. In this work, we study the effect of the motion
of the medium on the force and rate of thermophoresis
for a heated drop with an arbitrary temperature differ-
ence in its vicinity in the presence of a given external
temperature gradient.

Of all transport parameters of a liquid, only the vis-
cosity coefficient strongly depends on temperature
[13]. To include this dependence, we take advantage of
the formula

(1)µe µ∞ 1 Fn

Te

T∞
------ 1– 

  n

n 1=

∞

∑+ A
Te

T∞
------ 1– 

 –
 
 
 

,exp=
002 MAIK “Nauka/Interperiodica”
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which describes the variation of the viscosity over a
wide temperature range with any desired accuracy. (At
Fn = 0, this formula is reduced to the well-known Rey-
nolds relationship [13].)

It is known that the viscosity of a liquid decreases
with increasing temperature by the exponential law
[13]. Analysis of the available semiempirical formulas
showed that expression (1) describes the viscosity vari-
ation over a wide temperature range most adequately
with any desired accuracy. With the coefficients Fn not
taken into consideration, the error can be as high as
40%. For illustration, Tables 1 and 2 list the values of
Fn for glycerol and water. The relative error does not
exceed 3%. The coefficients Fn were calculated with the
Maple V software suite.

Let us place the origin of a fixed coordinate system
at the instantaneous center of a spherical drop of radius
R. We assume that the drop moves with a constant
velocity U in the negative OZ direction. The velocity
and pressure distributions must be symmetric about the
line passing through the center of the drop parallel to
the velocity vector U. In terms of our assumptions, the
equations and boundary conditions for the velocity and
temperature in the spherical coordinate system are writ-
ten as [14, 15]

(2)

(3)

(4)

(5)

(6)

(7)

(8)

Here, qi(r, Θ) is the density of heat sources nonuni-
formly distributed in the drop. Specifically, if the drop
is heated by absorbing electromagnetic radiation, the
nonuniformity depends on the optical constants of the

∇ Pe µe∆Ue 2 ∇µ e∇( )Ue ∇µ ecurlUe[ ] ,+ +=

divUe 0,=

µi∆Ui ∇ Pi, divUi 0,= =

ρece Ue∇( )Te λ e∆Te,=

ρici Ui∇( )Ti λ i∆Ti qi,+=

r R, Te Ti, λ e

∂Te

∂r
-------- λ i

∂Ti

∂r
--------,= = =

Ur
e Ur

i U Θ,cos–= =

UΘ
e UΘ

i– K tc
e νe

RTe

---------
∂Te

∂Θ
-------- K tc

i ν i

RTi

---------
∂Ti

∂Θ
--------–= ν µ/ρ=( ),

µe r
∂
∂r
-----

UΘ
e

r
------- 

  1
r
---

∂Ur
e

∂Θ
---------+

1
r
--- ∂σ

∂Ti

--------
∂Ti

∂Θ
--------–

=  µi r
∂
∂r
-----

UΘ
i

r
------- 

  1
r
---

∂Ur
i

∂Θ
---------+ ,

r ∞, Ue 0, Pe P∞,

Te T∞ ∇ T r Θ,cos+

r 0, Ui ∞, Pi ∞, Ti ∞.≠≠≠
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drop (mi = ni + iai, where mi, ni, and ai are the complex
refractive index, refractive index, and the absorption
coefficient of the drop, respectively) and its diffraction
parameter xd = 2πR/λ (λ is the wavelength). The expres-
sion for the radiation energy density converted to heat
in the drop can be represented in the form [16]

where I is the incident radiation intensity and Bk (k = e,
i) is a coordinate-dependent function calculated by the
Mie theory.

The results of numerical calculation for the Bk distri-
bution in the case of water drops are given in [16]. They
show that the nonuniformity of the absorbed energy
distribution in a water drop increases with its radius.
The nonuniformity is the greatest in the direction of
radiation propagation.

qi

4πRniai

ne

-------------------IBi,=

Table 1

Glycerol: A = 17.29, F1 = –1.228, F2 = 7.022, T∞ = 303 K

T, °C µcal, Pa s µexp, Pa s

30 0.600000 0.600 0

40 0.327979 0.330 0.61

50 0.182001 0.180 1.11

60 0.102619 0.102 0.60

70 0.058797 0.059 0.34

80 0.034212 0.035 2.25

90 0.020189 0.021 3.86

Note: µcal, dynamic viscosity calculated by formula (1); µexp,
experimental value.

µcal µexp–

µexp
---------------------------100%

Table 2

Water: A = 5.779, F1 = –2.318, F2 = 9.118, T∞ = 273 K

T, °C µcal, Pa s µexp, Pa s

0 0.0017525 0.0017525 0

10 0.0013151 0.0012992 1.22

20 0.0010089 0.0010015 0.74

30 0.0007943 0.0007971 0.35

40 0.0006433 0.0006513 1.22

50 0.0005359 0.0005441 1.51

60 0.0004581 0.0004630 1.06

70 0.0004002 0.0004005 0.07

80 0.0003556 0.0003509 1.35

90 0.0003199 0.0003113 2.76

µcal µexp–

µexp
---------------------------100%
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Boundary conditions (6) on the surface of the drop
(r = R) include the impermeability condition for the
normal components of velocity, equality of the temper-
atures, heat flux continuity, equality of the shear veloc-
ities at the inner and outer surfaces of the drop, and con-
tinuity of the shear components of the stress tensor.

Away from the drop (r  ∞), boundary conditions
(7) are valid, while the finiteness of the physical quan-
tities characterizing the drop at r  0 is included
in (8).

The decisive parameters of the problem are the
material constants ρe, µ∞, λe, and ce, as well as R, |∇ T |,
T∞, and U, which remain constant during the motion of
the spherical drop. With these parameters, one can
compose a three-dimensional combination including
ε = R|∇ T |/T∞ ! 1 (this parameter characterizes a tem-
perature difference within the drop), as well as the
Peclet and Reynolds numbers.

We will make Eqs. (2)–(5) and boundary conditions
(6)–(8) dimensionless by introducing the dimension-
less velocity, temperature, and pressure: Vk = Uk/U,
tk = Tk/T∞, and pk = Pk/P∞ (P∞ = (µ∞U)/R). Here, the
radius of the drop R, temperature T∞, pressure P∞, and
velocity U are used as units of measure of distance, tem-
perature, pressure, and velocity, respectively (U ~ |µ∞|∇
T||/(ρeT∞)).

At ε ! 1, a solution to the equations of hydrodynam-
ics should be sought in the form

(9)

The form of boundary conditions (6)–(8) indicates
that an expression for the velocity components Vr and
VΘ is sought as the expansion in Legendre and Gegen-
bauer polynomials. The force acting on the drop is
found by integrating the stress tensor over its surface.
Taking into account the properties of Legendre and
Gegenbauer polynomials, we can assume that this force
depends largely on the first terms of the expansions;
therefore,

(10)

where G(y) and g(y) are arbitrary functions depending
on the dimensionless radial coordinate y = r/R.

When studying the motion of nonuniformly heated
drops under an external temperature gradient in a vis-
cous medium, one should take into account the temper-
ature dependences of both the dynamic viscosity coef-
ficient and the surface tension coefficient. This is
because the density qi of heat sources in the drop is non-
uniform. In this work, the surface tension coefficient is
taken to be an arbitrary function of temperature. More-
over, for the first time, an attempt is made to take into
consideration the effect of the motion of the medium on
the force and velocity of the thermocapillary drift of a
heated drop in a viscous liquid. Therefore, the final for-

V V 0( ) εV 1( ) …,+ +=

p p 0( ) εp 1( ) …, t+ + t 0( ) εt 1( ) ….+ += =

Vr G y( ) Θ, VΘcos g y( ) Θ,sin–= =
mulas are of general character and are valid for any
temperature difference between the surface of the drop
and regions away from it.

TEMPERATURE FIELDS INSIDE AND OUTSIDE 
A HEATED DROP

When finding the force acting on a nonuniformly
heated drop and its velocity, we will consider only first-
order corrections. To find them, it is necessary to know
temperature fields inside and outside the drop, i.e., to
solve Eqs. (4) and (5) with appropriate boundary condi-
tions. The dimensionless equations of heat conduction
have the form

(11)

(12)

(13)

Here, Pr∞ = µ∞ce/λe is the Prandtl number, β = χe/χi,
χ is the thermal diffusivity, and Q = –qiR2/(λiT∞). Sub-
stituting (9) into Eqs. (11) and (12), we arrive at the fol-
lowing set of equations:

zeroth-order approximation (ε = 0),

(14)

(15)

first-order approximation (~ε),

(16)

(17)

εPr∞ Ve∇( )te ∆te,=

εPr∞β Vi∇( )ti Q+ ∆ti,=

y 1, ti te, λ e

∂te

∂y
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∂ti
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y 0, ti ∞.<
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y 1, te
0( ) ti
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∂y
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y 0, ti
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e∂te
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VΘ
e
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∂te
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∂Θ
----------+ 

  ∆te
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Pr∞β Vr
e∂te

0( )

∂y
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VΘ
e

y
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∂te
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----------+ 

  Q1+ ∆ti
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y 1, ti
1( ) te
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When deriving the equation for the temperature dis-
tribution inside the drop, we assumed that

where

Let us find the zeroth-order approximations. The
general solutions to (14) and (15) have the form

(18)

(19)

where

In (19), integration is over the entire volume of the
drop. The constants of integration γ, Γn, and B0 are
determined by substituting (18) and (19) into the
related boundary condition. After the substitution, we
find that

Γn = 0 at n ≥ 1, ts = Ts/T∞, and Ts is the mean temperature
on the surface of the drop given by

(20)

In (20), integration is also over the entire volume of
the drop.

For λe < λi, we can neglect the Θ dependence of the
dynamic viscosity coefficient in the drop–liquid
medium system and assume that the viscosity depends

only on the temperature (y); i.e., µe(te) = µe( ).
With this in mind, expression (1) takes the form

(21)

Formula (21) will subsequently be used for finding
the velocity and pressure fields in the vicinity of the
heated drop.

qi r Θ,( )
n 0=
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λ iT∞
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Now, let us find the first-order approximations. Sub-
stituting (18) and (19) into (16) and (17), we come to

(22)

(23)

where ω = Pr∞γ.

From (22) and (23), it follows that one must first
solve the hydrodynamic problem, i.e., determine the
velocity fields inside and outside the drop, in order to

find  and .

DETERMINATION OF THE DRAG FORCE

Substituting (22) into the equations of hydrodynam-
ics, taking into account (10), and separating the vari-
ables, we come to an equation similar to that obtained
in [17]. Eventually, we have the following expressions
for the components of the mass velocity and pressure
that satisfy boundary conditions (7) and (8):

(24)

(25)

where
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sn = AFn – 1 – nFn – Fk, F0 = 1, and Fn = 0 at

n < 0. In (26), , , and  are the first-, second-,
and third-order derivatives of the associated functions
with respect to y (k = 1, 2).

The coefficients  and  are found from the
recurrent relations

(27)

(28)

Upon calculating the coefficients  and  by
formulas (27) and (28), it should be taken into account
that

Substituting (24) into (22), we have for 

(29)

Here, G(y) = A1G1 + A2G2. A solution for  is sought
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Substituting (30) into (29), we check that the vari-

ables are separable; then, for , we have

(31)

The general solution to Eq. (31) that satisfies the
boundary conditions for y  ∞ has the form

(32)

where

A solution for  is sought in the form
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Substituting (33) into (23), we come to the equation
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where

is the dipole moment of the heat source density.
The constants of integration Γ and B are found from

the boundary conditions on the surface (the equality of
the temperatures and fluxes). Specifically,

where δ = 1 + 2(λe/λi) and  and  are the first deriv-
atives of the functions τ1 and τ2 with respect to y.

Thus, we determined the temperature fields inside
and outside the drop in the first approximation in ε.
Now, the constants of integration A1, A2, A3, and A4
entering into expressions (24) and (25) can be found
from the boundary conditions for the velocity compo-
nents on the surface of the drop.

Below, we give the coefficient A2 in explicit form,
since the total force acting on the drop is expressed
through it:
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The force acting on the drop is found by integrating
the stress tensor over its surface [18]:

(36)

where 

Substituting expressions (24) into (36) yields after
integration

(37)

In view of the explicit form of A2, the total force act-
ing on a heated drop subjected to an external tempera-
ture gradient is the additive sum of the viscous force Fµ
of the medium, thermophoretic force Fth, force Fq pro-
portional to the dipole moment of the density of heat
sources nonuniformly distributed in the bulk of the
drop, and force Fm due to the motion of the medium
(i.e., the force including convective terms in the heat
conduction equation):

(38)

where Fµ = –6πRµ∞Ufµnz, Fth = –6πRµ∞fthnz, Fq =
−6πRµ∞fqJnz, and Fm = –6πRµ∞fmnz.

The coefficients fµ, tth, fq, and fm can be estimated
from the expressions
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In the expressions for the coefficients fµ, fth, fq, and
fm, the index s refers to the quantities taken at the mean
surface temperature Ts of the drop, which is determined

from (20), and the parameters N1–N4, τ1, τ2, , , G1,

and G2 are taken at y = 1 (N4 = 2  + , N3 = – ,

N2 = [G2(2  + ) – G1(2  + )], and N1 =

G1  – G2 ).

Equating the total force to zero, we obtain an
expression for the directed velocity of the drop in a
given external temperature gradient:

(39)

where Uth = hth, Uq = hqJ, and Um = hm (hth = fth/fµ, hq =
fq/fµ, and hm = fm/fµ).

If the drop is heated only slightly, that is, its mean
surface temperature is close to the ambient temperature
at infinity (γ  0), the temperature dependence of the
viscosity coefficient can be neglected; then, G1 = 1,

 = –3,  = 12, G2 = 1,  = –1,  = 2, N1 = 2,

N2 = 6, N3 = 3, N4 = 6, τ1 = –1/4,  = 3/4, τ2 = 1/2, and

 = –1/2, and formulas (38) and (39) pass to expres-
sions that are well-known from the literature [1–6].

If the distribution of heat sources over the volume of
the heated drop is known, formulas (38) and (39) allow
one to take into account (1) the effect of the motion of
the medium on the drag force acting on the drop and (2)
the effect of drop surface heating on the thermocapil-
lary force and velocity for arbitrary temperature differ-
ences between the surface and regions away from the
drop. These formulas also account for the exponential
temperature dependence of the viscosity under an
external temperature gradient. We emphasize once
again that they are of general character.

These formulas imply that the magnitude and the
direction of the force F(1) and velocity U(1) are also
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affected by the direction of the dipole moment of the

heat source density zdV. If, for example, the drop

heats up, absorbing electromagnetic energy, the dipole
moment can be both negative (a major part of the ther-
mal energy is released in that side of the drop facing the
radiation) and positive (a major part of the thermal
energy is released in the opposite side), depending on
the optical properties of the drop. Note that the surface
tension decreases with temperature for most liquids,

i.e., ∂σ/∂ti < 0, and that the value of zdV may be

both positive and negative. Accordingly, the magnitude
and the direction of the force F(1) and velocity U(1) vary.

In addition, these formulas suggest that the forced
F(1) and the velocity U(1) also depend significantly on
the thermal conductivity of the drop. At λi approaching
infinity, F(1) and U(1) tend to zero with the dipole
moment of the heat source density fixed.

For µi  ∞, the above formulas can be used for
estimating the force and the velocity of a hard nonuni-
formly heated particle in a viscous liquid where a con-
stant temperature gradient is maintained.

The figure illustrates the effect of heating the sur-
face of the drop on its drift velocity. The curves relate
the function ϕ = hth/  to the mean surface

temperature Ts of the drop. Estimates were obtained for
mercury drops suspended in water at T∞ = 273 K and
R = 15 µm (∂σ/∂T = –2 × 10–4 N/mK, Pr∞ = 12.99). The
value of the function ϕ* was estimated by formula (39)
for a small temperature difference (γ  0), but the
molecular transfer coefficients were taken at the mean
surface temperature Ts.

To estimate the contribution of the motion of the
medium to the thermocapillary drift of the drop, it is
necessary to clarify the nature of the heat sources.
Knowing their nature, one can find an expression for
the dipole moment of the heat source density. To ana-
lyze the situation qualitatively, let us consider the sim-
plest case. We assume that the drop heats up, absorbing
electromagnetic radiation as a black body. Under these
conditions, absorption takes place in a thin layer of
thickness δR ! R adjacent to the heated part of the
drop. In this case, the heat source density within a layer
of thickness δR is given by

(40)

where I is the incident radiation intensity. It is related to
the mean relative surface temperature of the drop as
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In view of (40), the integrals entering into the
expression for the force acting on the heated drop and
the drift velocity are calculated directly:

Accordingly, formulas (38) and (39) can be repre-
sented in a more compact form:

(41)

where

When deriving formulas (41), we took into consid-
eration that the thermal creep coefficient is very small
[3]; therefore, it was omitted in numerical calculations.
If the motion of the environment is not taken into
account (ω = 0),

(42)

where 

Formula (42) lacks the terms responsible for the
motion of the medium (convective terms in the heat
conduction equation), unlike (41). The convective term
depends on the mean surface temperature and the
Prandtl number (it is proportional to the Prandtl number
times the relative temperature difference between the
surface of the drop and regions away from it). There-
fore, if the temperature difference is large and the
Prandtl number is high (which is a possibility in liq-

qi r Θ,( )z Vd

V

∫ 2
3
---πR3I , qi r Θ,( ) Vd

V

∫– πR2I .= =

F –6πRµ∞Uϕµnz ε6πRµ∞ f phnz,–=

Uph εhphnz,–=

ϕµ
2

3∆h

--------- N3

µe
s

3µi
s

--------N4+ Aγ–{ } , hphexp f ph/ϕµ,= =

f ph
4

3µi
s

--------
G1

∆hδ
---------

λ e
s

λ i
s

-----=

× 1
R

6λ e
sT∞

---------------I
Pr∞

2
--------

2τ1 τ1
I+

G1
------------------- 1+ 

 –
∂σ
∂ti

------ Aγ–{ } ,exp

∆h N1

µe
s

3µi
s

--------N2
R2

6µ∞
---------

ρe

µi
s

-----
Pr∞

δλi
s

-------- I
∂σ
∂ti

------ G1Φ2 G2Φ1–[ ] .+ +=

F –6πRµ∞Uϕµ*nz ε6πRµ∞ f ph* nz,–=

Uph* εhph* nz,–=

ϕµ*
2

3∆h*
---------- N3

µe
s

3µi
s

--------N4+ Aγ–{ } , hph*exp f ph* /ϕµ*,= =

f ph*
4

3µi
s

--------
G1

∆h*δ
----------

λ e
s

λ i
s

----- 1
R

6λ e
sT∞

---------------I–
∂σ
∂ti

------ Aγ–{ } ,exp=

∆h* N1

µe
s

3µi
s

--------N2.+=
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
uids), convective terms in the heat conduction equation
may considerably change the qualitative picture of the
thermocapillary drift of the drop. In gases, consider-
ation of the motion of the environment cannot affect the
drift of the drop significantly, because the Prandtl num-
ber in gases is about unity. If the temperature difference
is small (γ  0), the motion of the surrounding
medium should be taken into account when the drop
drifts in viscous liquids with a high Prandtl number.

Formulas for the motion of a hard spherical particle
can be obtained in a similar way.

To illustrate the contribution of the motion of the
medium to the force and velocity of the thermocapillary
drift of the heated drop, Tables 3 and 4 summarize the
values of the functions fph = fph/  and hph =

hph/ , respectively. The estimates were made

for mercury drops suspended in water at T∞ = 273 K.

The values of  and  were estimated from formu-
las (41) for a small temperature difference (γ  0),
but the molecular transport coefficients were taken at
the mean surface temperature Ts of the drop.

f ph Ts 273 K=

hph Ts 273 K=

f ph
av hph

av

Table 3

Ts, °C fph

0 1.00000000 1.00000000

10 0.75679462 1.13172965

20 0.55865389 1.25217591

30 0.40612812 1.35890535

40 0.29192483 1.44815402

50 0.20865530 1.52363269

60 0.14791875 1.58086862

70 0.10410262 1.62387314

80 0.07247662 1.65233041

90 0.04977532 1.66842426

f ph
av

Table 4

Ts, °C hph

0 1.00000000 1.00000000

10 1.04610555 1.1018381

20 1.06591031 1.1918477

30 1.06609551 1.2690664

40 1.04899473 1.3307655

50 1.01989975 1.3807801

60 0.97702898 1.4155379

70 0.92304912 1.4387383

80 0.85740504 1.4502438

90 0.78130662 1.4518747

hph
av
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DISTORTION OF THE SURFACE SHAPE

The shape of the drop is unknown and should be
found from the solution; therefore, boundary condi-
tions (5)–(7) are set for a boundary of unknown shape.
Since we restrict our analysis to first-order corrections,
then

(43)

where σ0 is the zeroth-order term in the expansion of
the function σ(x) in Legendre polynomials Pn(x) (x =
cosΘ).

The shape of the drop is sought in the form [14]

(44)

Let us expand the quantities σ(Θ) and ξ(Θ) in Leg-
endre polynomials:

(45)

From the constancy condition for the volume of the
drop, it follows that ξ0 = 0. Bearing in mind that the ori-
gin of the coordinate system is placed at the center of
mass of the heated particle, we have

(46)

hence,

(47)

When solving the problem, we did not consider the
boundary condition for the normal components of the
stress tensor. Up to terms proportional to ε, the bound-
ary condition for the normal stresses on the surface
takes the form [17]

(48)

Here,

R1 and R2 are the principal radii of curvature of the
drop; and H is the mean curvature of the surface, which
in the axisymmetric case is given by [17]

(49)
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  .–=
In view of (45) and (47), we obtain expression (49)
in the form

(50)

Thus, as follows from (48) with regard for (50), a
nonuniformly heated drop, when moving, retains its
spherical shape within the approximation adopted in
this work.
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Abstract—It is shown experimentally that the plasma of a hollow-cathode reflex discharge is characterized by
a nonequilibrium electron velocity distribution. The parameters of the electron distribution, which is approxi-
mated by a superposition of two Maxwellian distributions with different temperatures, are estimated. The pen-
etration of the discharge plasma into the hollow cathode at various cathode potentials and a gas pressure of
~10−2 Pa is studied. It is shown that the plasma parameters in the hollow electrode depend not only on the
parameters of the reflex-discharge plasma, but also on the magnitude and configuration of the magnetic and
electric fields in the plasma expansion region. It is shown that the plasma penetration can be accompanied by
quasineutrality violation and the formation of space-charge double layers. Experiments confirm that the ion cur-
rent from the nonequilibrium plasma exceeds the Bohm current. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the methods for producing large plasma
emitting surfaces in ion and electron sources is the
expansion of a dense plasma penetrating from a dis-
charge chamber through a small-size outlet into a spe-
cial hollow electrode, whose transverse dimensions
correspond to the required dimensions of the emitting
surface [1, 2]. It is believed that such a plasma pos-
sesses some characteristic features, and Gabovich [1]
even introduced a special term “penetrating plasma.”
When the potential of the positive electrode is negative
with respect to the potential of the discharge plasma,
the penetrating-plasma model assumes that the plasma
is quasineutral throughout the expansion region. The
space charge of ions, whose density decreases with dis-
tance away from the outlet of the discharge chamber as
the ion flow expands and accelerates, is neutralized by
the space charge of electrons, whose density falls
according to the Boltzmann law [1]. The potential dis-
tribution in the penetrating plasma is determined from
the quasineutrality condition. A characteristic feature
of this distribution is that the potential decreases
sharply with distance away from the outlet.

By analyzing experimental results of [1, 3, 4], as
well as my own experimental results, we can conclude
that, in many cases, the quasineutrality of the penetrat-
ing plasma is violated. For example, this occurs when
the reflex-discharge plasma penetrates into the low-
pressure region through a hole made in one of the cath-
odes. The reason why the plasma quasineutrality is vio-
lated is that the penetrating plasma undergoes the per-
turbing action of the electric field produced in the
1063-7842/02/4711- $22.00 © 21389
expansion region by neighboring bodies, in particular,
by the electrode with a hole through which the plasma
penetrates into the expansion region.

To study this effect, we consider the penetration of
the reflex-discharge plasma into a low-pressure region
at various potentials of the hollow electrode enclosing
this region.

1. EXPERIMENTAL TECHNIQUE

Experiments were carried out in the test model of a
large-size emitter of charged particles (Fig. 1). The
plasma is produced by a reflex-discharge with a cold
hollow cathode in a discharge unit formed by hollow
cathode 1; cylindrical anode 2 with an inner diameter of
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Fig. 1. (a) Schematic of the experimental device and (b) the
axial profile of the magnetic induction B.
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10 mm; and reflex cathode 3, which has a hole 3.5–
4.0 mm in diameter. A magnetic field of ~80 mT in the
discharge chamber is produced by permanent annular
magnet 4. The divergent field of this magnet (Fig. 1b)
forms a magnetic nozzle. The plasma penetrates into
the hollow cathode along the diverging magnetic field
lines of this nozzle through the hole in the reflex cath-
ode. Below, the hollow cathode will be referred to as an
emitting-plasma former. The former is a hollow cylin-
der 5 that has an inner diameter of 110 mm and is
attached to ring 6. When employing this emitter in ion
or electron sources, the grid emission electrode is
placed on the bottom of cylinder 5. When the accelerat-
ing voltage is applied, the emitting surface of the
plasma is formed near this electrode. In order to bound
the plasma region in the absence of an accelerating
voltage, which makes the interpretation of experimen-
tal data more difficult, the grid electrode is replaced
with solid electrode 7, which is placed at a distance of
20 mm from cylinder 5 and is at the same potential. The
former height counted from reflex cathode 3 to end
electrode 7 is 130 mm.

The residual gas pressure in the discharge chamber
is ~9.3 × 10–3 Pa. The working gas (air or helium) is
admitted into the hollow cathode and is pumped out
through an annular slot between cylinder 5 and elec-
trode 7. At an air flow rate of Q = 2–3 m3 mPa/s, the
pressure in the discharge chamber is 0.6–0.7 Pa and the
pressure in the former is 1.3 × 10–2 Pa. At a helium flow
rate of Q = 5–7 m3 mPa/s, the partial helium pressure is
0.6–0.7 Pa in the discharge chamber and 2.4 × 10–2 Pa
in the former. The discharge chamber is supplied with
power from a controlled current stabilizer. The former
potential U2 is maintained with an accuracy of <±1% by
an individual voltage source connected between the
cathodes of the discharge chamber and the former. The
discharge (cathode) current Id varied within the range
0.1–0.8 A.

The electron energy spectrum and the reflex-dis-
charge plasma potential in the hole of the reflex cathode
were measured with a multigrid probe analyzer. The
probe analyzer was located 1 mm from the reflex cath-
ode (the former was removed in this case). To reduce
perturbations introduced in the plasma by the probe, it
is desirable to reduce the hole diameter in the reflex
cathode. On the other hand, as the hole diameter
decreases, the measurements of the electron energy
spectrum become more complicated, because the thick-
ness of the ion sheath near the hole wall is as low as
0.5 mm under our experimental conditions and the
dimensions of the plasma under study become rather
small. For this reason, the measurements of the plasma
parameters in the reflex discharge were conducted for a
hole diameter of 2.6 mm. The first electrode of the
probe analyzer was a 1-mm-thick copper disk; its axial
hole 1.5 mm in diameter was covered with a molybde-
num grid with 0.15-mm spacing.

To exclude heat effects, the measurements of the
plasma parameters in the hole of reflex cathode were
conducted in repetitive discharges with a pulse duration
of 8 ms and a repetition rate of 10 Hz. When measuring
the energy spectrum, the first electrode of the probe
analyzer was at a potential that was 10–15 V higher
than the plasma potential measured preliminarily with
a probe analyzer by the method described in [5].
A certain excess of the potential of the first probe elec-
trode over the measured plasma potential is required for
all of the electrons arriving from the plasma can be ana-
lyzed. Otherwise, because of measurement errors and
variations in the plasma potential, a fraction of the slow
electrons can be cut off and excluded from analysis.
The electron distribution over longitudinal velocities
was determined by numerically differentiating the cur-
rent at the probe collector with respect to the retarding
potential. The plasma potential was taken as the value
of the retarding potential at which the derivative of the
collector current with respect to the retarding potential
was maximum.

The measurements of the plasma parameters in the
former were conducted in a discharge operating in the
continuous mode. The potential distribution was mea-
sured by “floating” thermoprobe 8 (Fig. 1), which could
be displaced in the axial and radial directions. The pre-
liminary measurements showed that the potential near
the former wall can differ by 20–40 V from the former
voltage U2. This voltage drop occurs across a film pro-
duced on the former surface due to vapor condensation,
in particular, the vapor of the vacuum oil (the working
chamber was evacuated with the help of an oil-vapor
pump). For U2 < Up0 (where Up0 is the plasma potential
in the hole of the reflex cathode), the film surface is
charged by an ion flux to a potential higher than U2
(Fig. 2b, curve 1). For U2 > Up0, the film surface is
charged by electrons and its potential falls below U2
(Fig. 2b, curve 5). In a preliminarily cleaned former
operating at a temperature of ~250°C, a potential drop
of this kind is absent. Taking into account that such
films, which can also be present in devices used in prac-
tice, do not change the character of the spatial potential
distribution, further measurements were performed
without specially heating the former.

To determine the distribution of the electron current
density over the surface of end electrode 7, the latter
was replaced with a grid electrode with 2 × 2-mm
meshes and a transmittance of ~70%. A voltage of 1 kV,
which accelerated the electrons and cut off the ions,
was applied between the grid and a plane accelerating
electrode (which is not shown in Fig. 1), located 10 mm
from the grid. The current density distribution was
measured in the plane of the accelerating electrode with
the help of a movable Faraday cup and was recorded by
an S8-1 storage oscillograph. To measure the ion cur-
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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rent distribution, the polarity of the accelerating voltage
was reversed. The experimental technique is described
in more detail in [6].

2. PARAMETERS OF THE REFLEX-DISCHARGE 
PLASMA

A typical electron distribution function over longi-
tudinal (with respect to the magnetic field) velocities v z

in a hollow-cathode reflex discharge is plotted in Fig. 3
on the linear (Fig. 3a) and logarithmic (Fig. 3b) scales.
The retarding potential U is plotted on the abscissa
(here and below, the potential is counted from the cath-
ode of the discharge chamber). The linear segment of
curve 2 in the range 352–270 V indicates that, for this
group of electrons (which are referred to as thermal
electrons), the distribution is close to Maxwellian.
Some deviation from linearity at low energies may be
explained by the fact that a fraction of electrons inter-
cepted by the grids of the probe analyzer increases as
the electron energy decreases [7]. For air, the tempera-
ture of thermal electrons Tet increases from 7 to 13 eV
as the discharge current increases from 0.2 to 0.6 A; for
helium, this temperature increases from 14 to 20 eV as
the discharge current increases from 0.5 to 0.8 A. In this
current range, the plasma potential Up0 in the hole of the
reflex cathode is 305–352 V for air and 305–335 V for
helium, which is lower than the anode potential by 25–
50 V.

Besides the thermal electrons, there is a group of
high-energy electrons, whose maximum energy can
exceed the energy corresponding to the cathode poten-
tial drop. Electrons with abnormally high energies were
observed also in a reflex discharge with a thermal cath-
ode [3, 8]. The measured distribution function of high-
energy electrons is rather complicated, and, in further
considerations, it is roughly approximated by a Max-
wellian with a temperature of high-energy (hot) elec-
trons Teh that is much greater than Tet. A similar approx-
imation was used, e.g., in [9]. A comparison of the mea-
sured distribution function with the distribution
function calculated in the given approximation shows
that the best fit (Fig. 3) is obtained when the value of Teh
(in eV) is determined from the relationship Teh =
0.5eUp0.

The fraction of hot electrons α = neh/(net + neh) =
neh/ni (where ni, net, and neh are the densities of ions and
thermal and hot electrons, respectively) was estimated
for two characteristic values of the current at the probe-
analyzer collector: (i) when the retarding potential was
equal to the plasma potential (i.e., when the field decel-
erating electrons was absent in the analyzer) and
(ii) when the retarding potential was equal to a potential
starting from which the logarithmic dependence f(v z)
on U (Fig. 3, curve 2) became nonlinear. It was
assumed that, in the former case, the current at the
probe-analyzer collector was determined by both
groups of electrons and, in the latter case, this current
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
was only determined by hot electrons. In the above
range of discharge currents, the value of α for air varies
from 0.4 × 10–2 to 1.6 × 10–2 and is equal to 1.6 × 10–2

for helium.

Let us comment on the results obtained taking into
account the adopted procedure of measuring α. A num-
ber of experimental observations, in particular, the
higher brightness of the penetrating plasma in the axial
region (Fig. 4), allow us to assume that the radial den-
sity profile of high-energy electrons in the reflex dis-
charge is peaked at the axis more strongly than the den-
sity profile of thermal electrons. This means that the
value of α at the axis exceeds the values determined
from the experimental data, because the latter were
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Fig. 2. (a) Axial and (b) radial (z = 8 cm) potential profiles
in the former at U2 = (1) 0, (2) 200, (3) 340, (4) 420, and
(5) 600 V for the same discharge conditions as in Fig. 4.
Curves 6 and 7 show calculations by Eq. (1) for β = 0.12
(Tet = 20 eV and Teh = 167 eV) and α = (6) 0.01 and (7) 0.1.
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averaged over a circle 1.5 mm in diameter (i.e., over the
hole in the first electrode of the probe analyzer). In
addition, the value of α depends on the way electrons
leave the discharge. If a fraction of electrons leave the
discharge through the axial hole in the reflex cathode,
then, as is shown in [10], their density at the axis is
smaller as compared to the case where all electrons
escape from the discharge onto the anode. The higher
the efficiency of electron extraction through the hole,
the more pronounced the decrease in the electron den-
sity. Taking into account the above difference in the
radial density profiles of high-energy and thermal elec-
trons, it may be argued that the extraction efficiency of
high-energy electrons is higher than that of thermal
electrons. It follows from here that, if the former is at
the cathode potential (i.e., almost all of the thermal and
high-energy electrons return to the discharge), all of the
expected values of α must be much higher than the
measured α values, which correspond to the case of
efficient extraction of electrons from the discharge at
U2 > Up0.

3. PENETRATION OF THE PLASMA
INTO THE FORMER

Assuming that the quasineutrality holds when the
plasma with the above parameters penetrates into the
former, the potential distribution in the penetrating
plasma can be calculated by using the model of a
quasineutral plasma flowing out through a magnetic
nozzle [11]. The model assumes that the plasma elec-
tron component consists of thermal and hot electrons

r, cm
–5.5 0 +5.5

Fig. 4. Penetrating plasma at Q = 5 m3 mPa/s and Id = 0.8 A.
The working gas is helium.
with the temperatures Tet and Teh, respectively. In this
case, the quasineutrality equation for the penetrating
plasma can be written in the form

(1)

where W = e(Up0 – Up)/kTet; β = Tet/Teh; Up0 and S0 are
the plasma potential and the area of the nozzle in the
hole of the reflex cathode, respectively; Up and S are the
corresponding parameters of the penetrating plasma in
some arbitrary cross section of the nozzle; and k is the
Boltzmann constant.

The values of the area S of the nozzle cross section,
which are required for calculations, were determined
from the luminosity of the penetrating plasma (see
Fig. 4; the photograph is made in the absence of cylin-
der 5 and electrode 7).

In Fig. 2a, the axial profiles of the potential mea-
sured at various former potentials U2 (curves 1–5) are
compared with the theoretical profiles (curves 6, 7) cal-
culated by using Eq. (1) for the experimentally deter-
mined values of S0, S, Up0, Tet, Teh, and α. It should be
noted that the measured profiles depend on the former
potential, which is not taken into account in the
quasineutrality model [11]. Calculations show that, at
distances longer than ~0.5–0.2 cm from the hole in the
reflex cathode, the potential of the quasineutral plasma
should become lower than the potential of the former
even if the latter is at the cathode potential; this differ-
ence increases sharply with distance from the hole,
which is not observed in the experiment. When compar-
ing the calculated and measured profiles for U2 = 0
(curve 1), we can see that, near the hole, the measured
potential is higher than the calculated one. This means
that, for U2 = 0, the penetrating plasma is not quasineu-
tral and the ion space charge dominates over the elec-
tron charge near the reflex cathode. We can arrive at the
same conclusion if we doubly differentiate experimen-
tal curve 1 (as was done in [11]). In this case, we find
that, as the distance from the hole in the reflex cathode
increases, the sign of the predominant space charge
changes from positive to negative; i.e., a space-charge
double layer is formed near the reflex cathode.

To find out why the quasineutrality of the penetrat-
ing plasma is violated and to explain the potential dis-
tributions observed in the experiment, we consider the
“vacuum” potential distribution, i.e., the potential dis-
tribution in the former in the absence of a penetrating
plasma.

The vacuum potential distribution in the region of
interest is affected not only by the geometry and poten-
tials of the electrodes surrounding this region, but also
by the plasma potential Up0 in the hole of the reflex
cathode. The potential Up0 depends on the physical con-
ditions in the reflex discharge where the plasma is gen-
erated and, in the first approximation, is independent of
the conditions in the former into which it penetrates.

1 2W+( ) 1/2– S0/S

– 1 α–( ) W–( )exp α βW–( )exp– 0,=
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The axial profile of the vacuum potential was calculated
in the model in which the plasma in the hole of the
reflex cathode was replaced with an equipotential
spherical electrode of radius r1 at potential Up0. The
z-coordinate origin lies on the surface of the spherical
electrode, in the plane coinciding with the outer surface
of the reflex cathode (i.e., with the surface facing the
former). The vacuum electric field can be represented
as a superposition of two fields—the field between the
spherical electrode and the reflex cathode and the field
between the reflex cathode and the former. The axial
potential profile of the first field was assumed to corre-
spond to the profile of the potential of a charged sphere,
providing that the potential falls to zero (to the cathode
potential) at the distance z = r2, where r2 is the former
radius. The axial potential profile of the second field
was determined in the same way as the axial vacuum
potential profile in a Penning cell [1]. We note that, in
contrast to [1], the potential reached the U2 value (i.e.,
the former potential) at the above distance from the
reflex cathode and then remained constant. Under these
assumptions, the axial profile of the vacuum potential
Uv can be represented as

(2)

First, we consider the case where the former is at the
cathode potential (U2 = 0). Calculations of the vacuum
potential distribution in the former by formula (2) show
(Fig. 5) that, characteristically, there are high potential
gradients near the hole in the reflex cathode. This field
perturbs the plasma penetrating from the discharge; as
a result, a space-charge double layer forms in the axial
region near the reflex cathode. The reason why the dou-
ble layer (rather than a positive space-charge layer)
forms in this region is that the discharge plasma con-
tains high-energy electrons. The possibility of such a
situation occurring was predicted theoretically in [12].

One should note another factor that was not taken
into consideration in [12] but also contributes to the
change of the sign of the dominant charge in the axial
region of the layer from positive to negative as the dis-
tance from the hole in the reflex cathode increases.
Under the experimental conditions, the divergence of
the ion flow penetrating from the discharge into the
former is significantly greater than the divergence of
the flow of high-energy electrons (compare curves 1
and 2 in Fig. 6). This is a consequence of the motion of
the charged particles of the penetrating plasma through
the magnetic nozzle (the Larmor radius of ions is much
greater than the electron Larmor radius). For this rea-
son, when the former is at the cathode potential, the
current at its lateral surface is carried predominantly by
the ions (Fig. 7), whereas the electron and ion currents
at the end electrode are comparable to each other and
the electron-current density is higher than the ion-cur-
rent density in the center of the electrode (Fig. 6). Such
a distribution of the charged particles of the penetrating
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plasma is consistent with the radial potential profile in
the former (Fig. 2b, curve 1).

As the former potential increases, the axial potential
gradient near the hole decreases and, at the same time,
the electric field favoring the motion of ions onto the
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Fig. 5. Results of calculations of the “vacuum” potential
distribution at Up0 = 335 V, r1 = 1.7 mm, and r2 = 55 mm
for U2 = (1) 0, (2) 200, (3) 340, (4) 420, and (5) 600 V.
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outer surface of the reflex cathode increases. As a
result, the fraction of ions arriving at the former
decreases and the fraction of ions arriving at the reflex
cathode increases, which is evidenced by a decrease in
the ion current onto the lateral surface of the former as
its potential increases (Fig. 7, curve 1) and by traces of
the intense ion cleaning and etching of the outer surface
of the reflex cathode at U2 > 0. As U2 increases and the
number of ions arriving at the outer surface of the reflex
cathode also increases, the effect of the reflex cathode
on the potential distribution in the former becomes
weaker because of the ion screening of the reflex cath-
ode. For this reason, the minimum of the potential,
which is characteristic of the vacuum field (Fig. 5,
curves 2–5), decreases to several volts in the self-con-
sistent electric field of the penetrating plasma even at
small discharge currents of 0.1–0.2 A, and it disappears
completely when the current increases to 0.8 A (Fig. 2a,
curves 2–5). At U2 ~ Up0, the axial potential of the pen-
etrating plasma changes only slightly and is close to
Up0. A similar potential distribution of the plasma pen-
etrating from the reflex discharge into a hollow glass
cylinder was observed in [4] for two cases: when the
reflex cathode was shielded with a special electrode
that was at the anode potential, and when the gas pres-
sure in the expansion region was increased to ~1 Pa.
Seemingly, in the latter case, the reflex cathode was
screened by an ion layer produced via the ionization of
the gas by the charged particles of the penetrating
plasma.

At U2 > Up0, the plasma arriving from the discharge
falls into the electric field accelerating electrons toward
the end electrode; as a result, the electron current at the
former electrodes (particularly, at the end electrode; see
Fig. 7) increases. The measured distributions of the spa-
tial potential in the former (Fig. 2a; curves 4, 5) indicate
that the field accelerating the electrons is located in the
space-charge double layer that is formed at a certain
distance from the reflex cathode. The reason why the
layer is formed exactly in this spatial region becomes
evident if we take into account the vacuum potential
distributions (Fig. 5; curves 4, 5) and the fact that the
reflex cathode is screened by the incoming ions of the
penetrating plasma. The potential drop across the layer
depends on the former potential, and the distance from
the layer to the reflex cathode depends on the shape,
dimensions, and potential of the former. In [6], the layer
was produced in the immediate vicinity of the reflex
cathode, e.g., when a disk with an axial hole was
attached to the upper face of the former.

The space-charge double layer separates the pene-
trating plasma and the plasma produced in the former
by the flow of electrons accelerated in the layer. The
beam plasma is characterized by the increase in the
potential toward the former axis (Fig. 2b, curve 5). The
mechanism for the production of this plasma is consid-
ered in [13].

4. EXPERIMENTAL VERIFICATION 
OF THE RESULTS OF [12]

The experimental results obtained allow us to verify
some conclusions of [12], where a model of the inter-
mediate region between the nonequilibrium plasma and
the negative electrode was considered. The electron
energy spectra (Fig. 3) indicate that the reflex-discharge
plasma is nonequilibrium and the former at U2 < Up0 is
at a negative potential with respect to this plasma.

As was mentioned above, the results obtained con-
firm the possibility of the existence of a space-charge
double layer that forms near the reflex cathode in the
axial region of the former. Another conclusion of [12]
is that the ion current onto the negative electrode from
the nonequilibrium plasma should exceed the Bohm
current (i.e., the ion current from a plasma with an equi-
librium electron velocity distribution) if the electron
velocity distribution in a nonequilibrium plasma is
enriched by high-energy electrons as compared to an
equilibrium (Maxwellian) distribution, all other factors
being the same.

To verify this conclusion, we consider the ratio of
the ion current Ii to the electron current Ie extracted
from the reflex-discharge plasma through the hole in
the reflex cathode at a constant discharge current and at
the former potentials U2 = 0 and U2 > Up0 (Fig. 7). If the
electron velocity distribution in this plasma were equi-
librium at any values of the former potential, then this
ratio would be equal to

(3)

where me and mi are the electron and ion masses,
respectively, and µ is a factor accounting for a decrease
in the plasma density at the discharge axis due to the
escape of electrons [10].

Estimates show that, when the electron extraction
efficiency is Ie/Id ~ 0.5, the factor µ is equal to 0.8. It is
seen from Fig. 7 that, under our experimental condi-
tions, this efficiency is attained at U2 > 450 V.

The measured values of Ii/Ie were compared with the
calculated ones. The use of helium as the working gas
ensured that ions were of the same sign and mass.
When deriving expression (3), all the ions were
assumed to be singly charged. The assumption for
helium under our experimental conditions seems to be
quite reasonable, because the fraction of doubly
charged helium ions is very small even in high-current
reflex discharges [14].

Ii/Ie 1.5 me/mi( )1/2/µ,=
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The comparison shows that the measured value of
Ii/Ie (Fig. 7) is no less than two times higher than the
value calculated by expression (3). Actually, this ratio
is even larger, because, when determining the current Ii

at U2 = 0, the net current of ions and high-energy elec-
trons arriving at the former was measured.

The excess of the measured value of Ii/Ie over the
calculated one may be explained as follows. In the case
of electron extraction (U2 > Up0), the value of α, which
characterizes the extent to which the electron velocity
distribution is nonequilibrium, is small (~10–2). Conse-
quently, the distribution can be considered to be equi-
librium and the calculated and experimental values of Ie

should coincide. In the case of ion extraction (U2 = 0),
the value of α is significantly larger (see Section 2);
hence, the departure of the electron velocity distribu-
tion from equilibrium cannot be ignored. In this case,
the measured ion current Ii should exceed the calculated
Bohm current; this is observed experimentally as an
excess of the measured value of Ii/Ie over the calculated
value. Hence, the second conclusion of [12] is also con-
firmed experimentally. Estimates show that, for the ion
current from a nonequilibrium plasma to be twice the
Bohm current at the measured value β = 0.12, the value
of α should be ~0.6. This value is quite reasonable and
consistent with our notion of how α depends on the
former potential in the reflex discharge.

CONCLUSION
The present study has shown the incorrectness of

reasoning that “the penetrating plasma automatically
fits the quasineutrality condition” [4] and that the elec-
tric field of the penetrating plasma “is related exclu-
sively to the properties of the plasma leaving the
source, rather than to the electrode potential” [3]. The
behavior of the penetrating plasma and its parameters
depend not only on the initial plasma parameters, but
also on the physical conditions in the expansion region,
namely, the gas pressure and the magnitudes and con-
figurations of the magnetic and electric fields produced
by the components of the discharge chamber and the
former, as well as by electrodes that may be inserted
into the former. The possibility of affecting the expan-
sion of the penetrating plasma by varying these condi-
tions allows us to predict the parameters of large-sized
plasma emitters and to control them in the course of the
emitter operation.

Based on the physical principles of the processes
occurring in the former under different conditions, we
can distinguish among the following operating modes
of the large-sized emitter: the ion-beam mode (U2 <
Up0), the penetrating-plasma mode (U2 ~ Up0), and elec-
tron-beam mode (U2 > Up0). Estimates and experiments
[10] show that the penetrating-plasma mode is best
suited to ion emission. In an ion emitter [15] operating
in this mode, the lateral surface of the former was at the
anode potential, whereas the end emission electrode
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
was at the cathode potential. Such a potential distribu-
tion between the former electrodes makes it possible to
minimize ion losses at the lateral surface of the former
and to enable ion emission from the penetrating plasma
through the end electrode. In the ion-beam and elec-
tron-beam modes, the efficiency of ion emission is
lower than in the penetrating-plasma mode. In the
former case, it is lower because of the substantial loss
of the ions that are produced in the reflex discharge and
reach the lateral surface of the former, and, in the latter
case, it is lower because of the low efficiency of the
production of ions in the former at a gas pressure of p ~
10–2 Pa (note that it is these ions that can provide the
emission current at U2 > Up0).

The electron-beam mode is best suited to electron
emission. The ion-beam and penetrating-plasma modes
are less favorable because of both the electron deceler-
ation in the former and the substantial loss of electrons
on its lateral surface. In the electron-beam mode, the
electrons leaving the reflex discharge are accelerated by
the electric field in the double layer and form a diver-
gent electron flow directed toward the emission elec-
trode. Estimates show [13] that a fraction of these elec-
trons in the total emission current exceeds 90%. By
varying the former potential and, thereby, by changing
the form of the double layer and, consequently, the flow
divergence, it is possible to control the current distribu-
tion over the emitter surface [6].

It is possible that a fourth operating mode of large-
sized emitter exists, namely, the volume discharge in
the former. This mode can be realized either by increas-
ing the pressure in the former to p ≥ 5 × 10–2 Pa [6] or
by creating in the former the electric and magnetic
fields that ensure the existence of a volume reflex dis-
charge [10, 16]. In both cases, the emitting plasma is
generated in the volume discharge, whereas the pene-
trating plasma ensures the discharge ignition.
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Abstract—The motion of bodies in a periodic potential relief with weak attenuation is considered. When sub-
jected to various periodic external effects, the bodies may spontaneously move with a velocity uniquely defined
by the frequency of a periodic action and the space period of the potential. Principles of inducing directed
motion with a strictly controllable velocity that are described in this paper can be used for (1) handling individ-
ual molecules or molecular clusters on crystal surfaces, (2) creating nanomachines—objects that are free to
spontaneously move both in the absence of an external force and in the presence of a force opposite to the direc-
tion of motion (and thus capable of transporting other objects), (3) designing actuators providing a strictly con-
trollable velocity of motion, and (4) designing controllable tribological systems by appropriately profiling tri-
bosurfaces and applying ultrasonic actions. Under periodic external perturbations, the dependence of the mean
velocity of a system on the mean applied force (which macroscopically appears as the “friction law” for the
system) is shown to contain plateaus of constant velocity not only when the velocity of motion is zero but also
when a set of discrete equidistant velocities is present. The problem of creating totally controllable nanoma-
chines can be posed as the problem of controlling the width and position of these plateaus. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The modern tendency toward miniaturizing
mechanical systems and the rapid advancement of nan-
otechnologies raise the question of theoretical limits of
miniaturization. The fundamental problem in develop-
ing micromechanical systems of any level is the conver-
sion of various kinds of energies to the energy of sys-
tem directed motion. What are the minimal dimensions
of mechanisms allowing for such a conversion? What
are the physical concepts underlying the operation of
these mechanisms? In answering these questions, we
proceed from the fact that atomic-sized objects on a
solid surface experience the action of the periodic
potential of the crystalline “substrate.” We will show
that this periodic background, which is natural for the
atomic world, in combination with at least two indepen-
dent external periodic actions can be used for generating
motion in a desired direction with a controllable velocity.
The minimal dimensions of the system depend only on
the possibility of implementing these two periodic
actions. Theoretically, the smallest nanomachine may
consist of a single body provided that periodical actions
have an effect on it in both the tangential (relative to the
solid substrate surface) and normal directions.1

1 For an electrically charged object, such an action can be pro-
vided, for example, by means of electromagnetic radiation that
has both the tangential and normal (relative to the substrate sur-
face) components of the electric field.
1063-7842/02/4711- $22.00 © 21397
Most approaches to generating the directed motion
of molecular objects consider the interaction of a mov-
ing object with an inhomogeneous, usually periodically
structured, substrate [1–4]. The substrate can be asym-
metric or symmetric. In the former case, the direction of
motion obeys (is fixed by) the ratchet-and-pawl princi-
ple (see, e.g., [2, 3]). In the latter, the direction of
motion is not initially fixed and is controlled dynami-
cally. An example of a dynamically controllable
machine was given in [5]. In this work, we show that
the nanomachine suggested in [5] is a specific case of a
wider class of systems that have different designs but
identical principles of control. It should be noted that
approaches to inducing directed motion by periodical
(undirected on average) effects have been long known
and are widely used in vibroconveying, vibrosepara-
tion, vibroimmersion, and consolidation of free-flow-
ing materials. Mathematical methods for solving prob-
lems of motion under vibration and the applications of
this effect can be found elsewhere [6]. It should be
noted that motion under vibration at the microlevel has
a number of specific features (for example, constant-
velocity plateaus mentioned above) that are directly
related to the presence of the periodic atomic potential
and not found in macrosystems.

The object of investigation in this work will be a
body or an ensemble of bodies subjected to a spatially
periodic potential. To be specific, one may consider a
002 MAIK “Nauka/Interperiodica”
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molecule or a molecular cluster adsorbed on a crystal
surface. The physical nature of the objects and periodic
potential, as well as its period, are of minor significance
for the theory elaborated; all the effects described
above can take place in systems of any scale. It is
assumed that the body (bodies) are subjected to exter-
nal forces that have both constant and variable compo-
nents. The major issue to be tackled is how the mean
velocity of a body moving in a periodic potential
depends on the mean force acting on it. We show that,
in the presence of periodic external forces, this depen-
dence may be unusual; that is, the object may move in
a certain direction even in the absence of a macroscopic
force or in the presence of a force opposite to the direc-
tion of motion. Thus, when subjected to periodic (undi-
rected) actions, the body can be set in motion and trans-
port a “load.” Such unusual properties of the systems
considered allow us to call them nanomachines.

A physical system can be referred to as a machine
only if it is controllable, i.e., can be set in motion in a
desired direction with a controllable velocity and
stopped. Is such controllability of an object achievable
with the aid of periodical actions? We answer in the
affirmative.

Consider the 1D motion of a body in a periodic
potential with weak attenuation. In this case, the equa-
tion of motion has the form

(1)

where x is the position (coordinate) of the body, m is its
mass, F is the force acting on the body, η is the attenu-
ation coefficient, N is the periodic force amplitude, and
a is the wavelength of the periodic potential.

This model was suggested in 1929 by Tomlinson,
who called it a dry friction model [7]. While simple, it
reflects adequately many aspects of dry friction and has
been extensively used (with various modifications) in
recent publications concerning the physics of dry fric-
tion (see, e.g., [8–11]). We therefore will treat the sys-
tems under study as tribological and the dependence of
the mean velocity of the body on the mean applied
force as a friction law. Accordingly, the theory of nano-
machinery can be viewed as a division of molecular tri-
bology.

It is worth noting that Eq. (1), when rewritten as

(2)

is similar to the equation describing the dynamics of a
single Josephson contact [12]. In (2), " is the Planck
constant; ϕ is the phase difference between contacting
superconductors; C and R are the capacitance and
ohmic resistance of the contact, respectively; e is the
unit charge; and j0 is the maximal current through the
contact.

The mathematical identity of the two problems
means that tribological systems with models obeying

mẋ̇ F η ẋ N 2πx/a( ),sin––=

"C
2e
------- 

  ϕ̇̇ j  
"

2eR
---------- 

  ϕ̇– j0 ϕ ,sin–=
Eq. (1) must exhibit the same effects as in Josephson
contacts. One of them is the modification of the I–V
characteristic of the Josephson contact exposed to an
external periodic perturbation. This modification shows
up as a plateau within which the voltage is strictly con-
stant (this effect underlies the present-day quantum
voltage standard). An analogue of this effect in terms of
tribology is a plateau where the mean velocity of a body
remains constant within a certain interval of acting
forces.2 These plateaus play a crucial role in the subse-
quent analysis of nanomachines.

The physical mechanism responsible for constant-
velocity plateau formation is as follows. If a body
moves with a macroscopically constant velocity in a
space-periodic potential, its instantaneous velocity and
the force acting on it are generally periodic functions of
time with a frequency depending on the mean velocity.
In this case, the time-averaged force and velocity are
obviously independent of the “initial phase” of these
periodic functions, and this phase can be arbitrary. The
situation changes qualitatively if an additional external
periodic action with a frequency equal to the above-
mentioned “natural” oscillation frequency of the veloc-
ity and force is imposed on the periodic velocity (force)
oscillations. Since the system is nonlinear, the superpo-
sition of the external periodic perturbation will cause
the product of terms with the same frequency to appear
in the equation of system dynamics. Being time-aver-
aged, these terms do not disappear, and their mean
depends on the initial oscillation frequency. The depen-
dence on the initial phase means that the mean force
can be varied by tuning the phase with the mean veloc-
ity remaining unchanged. This effect of phase tuning is
embodied in the Josephson effect [12].

1. MOTION OF A BODY IN A PERIODIC 
POTENTIAL UNDER A STATIONARY EXTERNAL 

ACTION

The Tomlinson model reflects many basic features
of dry friction. In fact, the application of a small force
to a body causes only its insignificant displacement
from the minimum of the potential energy, after which
the motion ceases. The resultant counter force is mac-
roscopically treated as the static friction force. Obvi-
ously, equilibrium in a periodic potential in the pres-
ence of a constant tangential force is impossible if this
force exceeds some critical value that is macroscopi-
cally perceived as the maximal static friction force.
When this critical force is exceeded, the body starts
sliding macroscopically.3 In model (1), the critical
force is equal to N. To maintain a macroscopically uni-

2 The presence of this plateau means that the variation of the force
within a certain range does not affect the macroscopic velocity of
the body.

3 By the “macroscopic” behavior of a body, we mean here the
behavior of a body on a space scale much larger than the period
of the potential. The scale defined in terms of the period of the
potential is considered as microscopic in the context of this paper.
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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form motion in the presence of dissipation, one must
apply a force that is the weaker, the lower the dissipa-
tion. If the dissipation is small, an already moving body
may continue moving under the action of a force
smaller than critical. Macroscopically, this means that,
in general, the sliding friction force may be less than the
static friction force, which is also a specific feature of
dry friction.

In our model, any macroscopic motion of a body,
including uniform motion, is microscopically the
superposition of uniform motion and periodic oscilla-
tions, as follows from Fig. 1a. It shows the results of the
numerical integration of Eq. (1) at some specific param-
eters of the model. The tangential force F first slowly
rose from zero and then decreased again. The instanta-
neous velocity of the body is plotted against the instan-
taneous force. First, the body was at rest. After the crit-
ical value has been exceeded, the motion starts with a
finite macroscopic velocity, which grows in proportion
with the applied force. At some critical value of the
velocity, the macroscopic motion is however suddenly
interrupted: the body executes several oscillations and
comes to rest.

At the macroscopic level, microscopic oscillations
are not perceived. From the macroscopic point of view,
the above state of motion is the quasi-stationary process
of friction. An outside observer perceives the depen-
dence of the mean velocity vs. applied force (Fig. 1b)
as a macroscopic law of friction.

A law of friction is found by setting a constant act-
ing force and calculating the mean velocity of motion.
The inverse statement of the problem is however possi-
ble: one assigns a constant velocity of motion to a body
placed in a periodic potential and calculates a force nec-
essary to maintain this motion. Once the force, which
obviously represents the superposition of the constant
and oscillating components in this case, has been time-
averaged, we obtain a certain dependence of the mean
sliding velocity on the mean force, i.e., again come to a
law of friction. In general, this law of friction does not
necessarily coincide with that derived for a constant
force. Many calculations, however, indicate that both
“laws of friction” are intimately related to each other,
since both approaches can be used to the same advan-
tage in many cases. Below, we will briefly discuss a
correlation between the laws of friction at a constant
force and a constant velocity. This correlation will be
repeatedly referred to in subsequent analysis.

Consider a body moving in a periodic potential with
a constant velocity and calculate the force acting on it.
This force has two components: the dissipative force,
which is proportional to the velocity, and the conserva-
tive force, induced by the periodic potential:

(3)

For motion with a constant velocity v, the coordi-
nate of the body varies in proportion to time: x = x0 +
v t. Thus, the force necessary to sustain uniform motion

F ηv N x.sin+=
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
is given by

(4)

Let us determine the time-averaged value of this
force. Two cases are possible.

(1) If the velocity is identically zero, v  ; 0, the mean
value of the first term in (4) equals zero and that of the
second term, Nsinx0. Thus, the mean force is

(5)

Depending on the initial coordinate, it can take any
value in the range –N < 〈F 〉  < +N. In terms of the fric-
tion law, this corresponds to a plateau of constant,
namely zero, velocity. This plateau describes nothing
but the static friction force.

(2) If the velocity is other than zero, the mean value
of the force due to the periodic potential is identically
zero. Conversely, the dissipative force makes a nonzero
contribution and grows with the velocity linearly:

(6)

The friction law consists of two branches and is rep-
resented in Fig. 2.

Comparing the friction law at preset velocity with
that at preset force, we see that they coincide to a great
extent. The only essential difference is that a part of the
linear branch near the middle of the plateau is absent in
the case of preset force. In this range, the motion at pre-
set force is unstable. Note that the critical velocity at
which macroscopic motion ceases does not depend on
the attenuation if the attenuation is weak [13] and is
given by

(7)

By order of magnitude, this critical velocity equals
that gained by the body when it is free to roll down from
the potential maximum to the potential minimum.

The form of the friction law at preset force suggests
that macroscopic motion corresponding to the linear
branch can be adequately approximated as free motion

F ηv 0 N x0 v+ t( ).sin+=

F〈 〉 N x0.sin=

F〈 〉 η v 0.=

v min
8

π3
----- Na

m
-------.=

V

F

(a) (b)

F

Fig. 1. (a) Instantaneous velocity V vs. instantaneous
force F. The force slowly grows from zero to the maximal
value exceeding the static friction force and then again goes
to zero. (b) Macroscopic representation of this process:
macroscopic friction law.
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(with the periodic potential ignored) virtually up to the
point where macroscopic motion loses stability.

Here, it is important that the basic properties of the
friction law can be discovered by considering motion at
preset velocity. Mathematically, such an approach is
much simpler than the analysis of motion at preset
force.

Thus, the macroscopic law of stationary friction is
the averaged representation of the microscopically non-
stationary process. Clearly, the friction law derived
above is applicable only if external forces vary insignif-
icantly during one macroscopic period of motion. If
this condition is violated, the macroscopic law of fric-
tion becomes invalid and one should take a fresh look
at the system dynamics at the microscopic level. In the
next section, we will investigate the motion of a body in
a periodic potential, assuming that an acting force (or a
given velocity) also has a periodically oscillating com-
ponent (along with a constant one).

2. MOTION IN A PERIODIC POTENTIAL 
UNDER THE ACTION OF PERIODIC FORCES

Consider the general case when both the tangential
force F and the amplitude N of the force due to the peri-
odic potential are periodic functions of time. Again two
complementary approaches are possible: we preset
either a periodic force and calculate the mean velocity
of motion or a periodically varying velocity and deter-
mine the mean force sustaining the motion. Again, the
basic properties of the friction laws are the same in both
statements. We will begin with the determination of the
force at a given periodically varying velocity, since this
problem is mathematically much simpler.

Let a periodic perturbation with an amplitude v 1 be
imposed on motion with constant velocity v 0:

(8)

The coordinate of the body as a function of time is
given by

(9)

v v 0 v 1 ωt.cos+=

x x0 v 0t
v 1

ω
------ ωt,sin+ +=

Force F

V
el

oc
ity

 V

Fig. 2. Friction law (mean velocity vs. mean force) at a
given constant velocity.
and the force acting on it has the form

(10)

Hereafter, we omit the “inertial force” , because
its mean is identically zero.

To highlight the basic properties of the friction law
being derived in this way, we will proceed from the case
when the dissipative force is absent and find the mean
value of the conservative part of force (10), which is

designated as :

(11)

The concept of computing is the easiest to grasp
when the velocity oscillation amplitude is much less
than the mean sliding velocity: v 1 ! v 0 (the case of an
arbitrary oscillation amplitude will be discussed
below). If the oscillation amplitude is small, function
(11) can be expanded in the small parameter v 1/v 0:

(12)

What is the mean value of this force? Let us con-
sider three cases.

(1) If the mean velocity of motion equals zero, v 0 =
0, the mean force is

(13)

It can take any value from the interval –|N | < 〈F 〉  <
|N | and apparently corresponds to the static friction
force.

(2) If the mean velocity is other than zero, v 0 ≠ 0,
and the condition v 0 ≠ aω/2π is fulfilled, the mean force
is identically zero:

(14)

(3) Finally, if the velocity is v 0 = aω/2π, the mean
value of the first term in (12) equals zero and the second
term gives a nonzero value of the mean force:

(15)

The force depends on the initial coordinate and can
take any value from the interval

with the mean velocity remaining unchanged.

F η v 0 v 1 ωtcos+( )=

+ N
2π
a

------ x0 v 0t
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ω
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F̃
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2π
a
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ω
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2π
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Thus, schematically, the friction law appears as
shown in Fig. 3a. Apparently, the dissipative force
omitted here will uniformly deform the plot in propor-
tion to the velocity (Fig. 3b). A distinctive feature of the
friction law in the presence of an external periodic per-
turbation is the presence of a constant-velocity plateau
not only for the zero velocity but also for finite veloci-
ties.

It is obvious that the plateau crosses the vertical axis
(see Fig. 3b) if its half-width exceeds ηv 0. In this case,
directed motion may occur at the zero mean velocity or
even in the presence of a force opposite to the direction
of motion. In other words, a body may produce a pro-
pulsive force and, for example, transport any load. This
property is at the root of the design of nanomachines.

3. NANOMACHINES

By nanomachines, we mean tribosystems for which
a friction law has constant-velocity plateaus whose
widths and positions are controlled by external effects
so that the system can be put in motion in any desired
direction.

The system with such a friction law considered
above (Fig. 3b) does not yet fall into this category, since
its state of rest is stable. Although the body can move
with a velocity corresponding to the first plateau in the
absence of the mean force, initial impetus must be
given to put it into motion.

For a controllable machine, the possibility of com-
pletely removing the zeroth-order plateau should be
provided. Under such conditions, the state of rest would
become unstable and the machine would be put in
motion spontaneously. However, the direction of
motion in our symmetric system would depend on ini-
tial fluctuations and would not be uniquely determinate.

For a completely controllable machine, there must
be provided the possibility of independently varying
the widths of the plateaus corresponding to counter
motions so that the motion be stable in a desired direc-
tion. Below, we will show that such controllability can
be realized by imposing periodic forces acting in mutu-
ally orthogonal directions.

First, we will show that the zeroth-order plateau
(and hence the static friction force) can be eliminated
by varying the amplitude of an external periodic effect.
To do this, we consider again the effect described by
Eq. (8) for the case when the perturbation is not small.
Mean force (11) can be calculated analytically with the
following expansions [12]:

(16)

ψ ωtsin( )cos

=  J0 ψ( ) 2 1–( )k J2k ψ( ) 2kωt( ),cos
k 1=

∞

∑+
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where Jn(ψ) is the nth-order Jacobian function and

(18)

This mean force is identically zero at any velocity
except for those satisfying the condition

(19)

where V0 is the velocity corresponding to the first pla-
teau and n is an integer.

For velocities defined by Eq. (19), the mean force is
given by

(20)

For each of discrete velocities (19), the force
depends on the initial coordinate and thus can take any
value in the interval specifying the width of the related
plateau:

(21)

The dependences of the plateau width on the ampli-
tude of velocity periodic oscillations are presented in
Fig. 4. As the oscillation period grows, the width of the
zeroth-order plateau is seen to decrease and vanish at a
certain amplitude. This means that the static friction
force disappears and any force as small as desired may
remove the system from rest, although the width of the
first-order plateau is still close to the maximum.

The numerical simulation shows that setting an
oscillating force (instead of an oscillating velocity)
changes the properties of the friction law insignifi-
cantly. Consider a body subjected to a constant propul-

ψ ωcos t( )sin

=  2 1–( )k J2k 1+ ψ( ) 2k 1+( )ωt( ),cos
k 0=

∞

∑

ψ
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-------------.=
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------x0.sin=

NJn v 1/V0( )– F〈 〉 NJn v 1/V0( ) .≤ ≤
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(a) (b)

Fig. 3. Friction law (mean velocity vs. mean force) in the
presence of velocity periodic oscillations: (a) without and
(b) with attenuation. The characteristic property of the fric-
tion law in the presence of a periodic external perturbation
is a constant-velocity plateau.
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sive force F0 on which a periodically oscillating force is
imposed. The equation of motion has the form

(22)

A typical dependence of the mean velocity of
motion on the mean applied force is illustrated in
Fig. 5a, which shows the result of numerical simulation
of Eq. (22) for m = 1, F1 = 1.8, ω = 1, η = 0.4, and
2π/a = 1. In this case, too, one can eliminate the zeroth-
order plateau by varying the force oscillation ampli-
tude. Figure 5b demonstrates the same as in Fig. 5a but
for F1 = 2.3. The amplitude of the oscillating compo-
nent of the force was selected so as to remove the
zeroth-order plateau. Here, the static friction force in
the system is absent; however, the body can equiproba-
bly move in the positive or negative direction.

It is easy to check that constant-velocity plateaus
also appear if the amplitude of the periodic potential
varies periodically. In actual systems, the amplitude of
the periodic potential can be changed, e.g., by changing
normal pressure. Therefore, a change in the oscillation
amplitude will hereafter be referred to as “the effect of
normal force” for the sake of clarity. The actual mech-
anism behind the change in the potential amplitude is of
minor significance. Consider a body moving with a
constant velocity v  = v 0 in a potential field with the
time-oscillating amplitude

(23)

In this case, the force acting on the body (with the
dissipative force neglected) is given by

(24)

mẋ̇ F0 F1 ωt η ẋ– N 2πx/a( ).sin–sin+=

N N0 N1 ωt.cos+=

F N0 N1 ωtcos+( ) 2π
a

------ x0 v 0t+( ).sin=
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Fig. 4. Width of the zeroth-, first, second-, and third-order
plateaus vs. velocity oscillation amplitude. As the oscilla-
tion amplitude grows, the zeroth-order plateau shrinks and
disappears at v1/V0 = 2.4.
In calculating the time-averaged force, three cases
should be considered.

(1) If the mean velocity of motion equals zero, v0 = 0,
the mean force is

(25)

It can take any value from the interval –|N0 | < 〈F 〉  <
|N0 |.

(2) If the mean velocity is other than zero, v 0 ≠ 0,
and the condition v 0 ≠ aω/2π is fulfilled, the mean force
is identically zero:

(26)

(3) Finally, if the velocity is v 0 = aω/2π, the mean
value of the first term in (24) equals zero and the second
term gives a nonzero value of the mean force:

(27)

The force depends on the initial coordinate and can
take any value from the interval

Below, it will be shown that one can provide the
asymmetry of the friction law and thus the complete
controllability of the system by simultaneously apply-
ing oscillating perturbations in the tangential and nor-
mal directions. We will again start with the simple situ-
ation, i.e., specify an oscillating velocity and calculate
the time-averaged force. In this case, the force acting on
the body is given by

(28)

Its mean value can be calculated with identities (16)
and (17). Analytical expressions can be derived for a
plateau of any order. In particular, the half-width of the
zeroth-order plateau is expressed as

(29)

It is easy to show that the zeroth-order plateau,
together with the static friction force, disappears if

(30)

The half-widths of the first- and minus-first-order
plateaus (Fig. 6a) are given by

(31)

(32)

where the upper sign corresponds to ϕ0 = 0 and the
lower, to ϕ0 = π.
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TECHNICAL PHYSICS      Vol. 47      No. 11      2002



NANOMACHINERY: A GENERAL APPROACH 1403
With dissipation taken into account, the first- and
minus-first-order plateaus shift in opposite directions
by the same distance and the friction law takes the form
schematically shown in Fig. 6b. An optimal machine
has an attenuation at which the left edge of the first-
order plateau lies exactly over the right edge of the
minus-first-order plateau (or vice versa) (Fig. 6b). In
this case, the body will move in the positive direction
both in the absence of the mean external force and
under the action of any oppositely directed force not
exceeding

This force is the maximal propulsive force this sys-
tem can exert and, when measured in units of N0, takes
the form

(33)

It depends only on the dimensionless amplitude
N1/N0 of normal oscillations. The maximal possible
propulsive force (0.52N0) is achieved at an oscillation
amplitude N1/N0 ≈ 2.4 and remains unchanged when the
oscillation amplitude grows further. However, the nor-
mal oscillation amplitude exceeding the mean normal
force is in most cases unrealistic; therefore, the maxi-
mal propulsive force in this system can actually reach
0.22N0.

The attenuation coefficient of an optimal machine is
given by

(34)

The development of ways of controlling attenuation
is an important problem in creating and optimizing con-
trollable nanomachines.4

Finally, let us calculate the maximal efficiency of
our machine. The efficiency is defined as the ratio of the
useful power F0v 0 to the total power dissipated in the
system. The mean power of friction forces with param-
eters given by (30) is

(35)

4 The fundamental possibility of controlling dissipating forces fol-
lows from the following example. Imagine that a nanomachine is
implemented on the surface of a semiconductor with an inversion
layer. Applying a constant bias to the layer, one can vary (control)
its conductivity and thus the dissipative forces acting on adatoms.
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For the efficiency, we get

(36)

As the oscillation amplitude grows, the efficiency
increases, reaches a maximum of 1/2 at N1/N0 ≈ 2.4, and
then drops. For a maximal realistic amplitude of normal
oscillation (on the order of N0), the efficiency is about 0.3.
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Fig. 5. Friction law in the presence of a periodically oscil-
lating force derived by the numerical solution of Eq. (22)
for m = 1, ω = 1, η = 0.4, and 2π/a = 1 and F = 1.8 (a) and
2.3 (b). (a) Plateaus of various orders partially overlap, giv-
ing rise to hysteresis when the force slowly rises and
declines (the variation of the system state is displaced by
lines with an arrow). (b) Oscillation amplitude is selected
such that the zeroth-order plateau is absent. At the same
time, the widths of other plateaus changed so that bistability
is observed only near the first- and minus-first-order pla-
teaus.
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The basic properties of the friction law are also
retained if a periodic force is specified and the mean
velocity is calculated. Figure 7 illustrates the results of
numerical solution of the equation

(37)
mẋ̇ F0 F1 ωt η ẋ–sin+=

– N0 N1 ωt ϕ0+( ))sin+ 2πx/a( ),sin(

(a) (b)

∆F1

〈F〉

〈v 〉 〈v 〉
∆F1

∆F2
∆F2

–F0

ηv0
〈F〉

Fig. 6. Schematic representation of a constant-velocity pla-
teau when the velocity and potential amplitude oscillate
simultaneously (a) without attenuation and (b) with optimal
attenuation. In the general case, the widths of the first- and
minus-first-order plateaus (which correspond to opposing
motions) differ.
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Fig. 7. Friction law for the simultaneous periodical oscilla-
tion of the force and potential amplitude derived by the
numerical solution of Eq. (37) at m = 1, F1 = 2.3, ω = 1, N0 =
1, N1 = 0.6, η = 0.6, ϕ0 = 2.5, and 2π/a = 1. The parameters
are selected such that the zeroth-order plateau is absent.

l1
l2

Fig. 8. Three-body nanomachine. The bodies are linked
together by active components whose equilibrium length
can be controlled by external perturbations.
which describes the motion under the action of tangen-
tial and normal oscillating forces. The oscillation
amplitude and the phase shift were selected so as to
remove the zeroth-order plateau. Here, the first- and
minus-first-order plateaus are asymmetric; as a result,
in the absence of the mean applied force (or at weak
negative forces), the body can execute a stable macro-
scopic motion only in the positive direction. By varying
the phase shift with all other parameters being the
same, one can “reverse the roles” of these two plateaus
so that the spontaneous motion will take place only in
the negative direction.

4. MANY-BODY NANOMACHINES

When applying the above ideas to designing nano-
machines, one should bear in mind that the above-men-
tioned techniques of periodic actions on the system are
not the only approach to provide a friction law with a
controllable constant-velocity plateau. In essence, the
oscillation of any parameter influencing the interaction
with the periodic potential causes a constant-velocity
plateau in the mean velocity vs. mean force dependence
and can basically be used for creating systems develop-
ing a propulsive force. Let us illustrate the aforesaid by
an example of the nanomachine described in [5].

Consider a system of three bodies in a periodic
potential (Fig. 8). The bodies interact with each other
via springs whose equilibrium length can be varied by
any external perturbations.5 The equations of motion
for the bodies involved in the system have the form

(38)

(39)

In this case, too, the mean velocity vs. mean force
dependence shows well-defined constant-velocity pla-
teaus. Figure 9 demonstrates the result of the numerical
experiment where the mean force acting on the system
slowly grew starting from zero. Here, only the time
dependence for the coordinate of the middle body is
presented. If the force is relatively weak, the group of
the bodies remains at rest and, accordingly, the system
is on the zeroth-order plateau. As soon as the propulsive
force exceeds some threshold value, the system starts
executing a macroscopic motion. However, it moves
with a constant force-independent macroscopic veloc-
ity corresponding to the first-order plateau. At a still
greater force, the system jumps to the second-order pla-
teau and moves with a new (discrete) velocity for a
time, and so on.

5 In the case of microsystems, this can be achieved, for example,
by using materials exhibiting the electro- or magnetostriction
effect; for molecular objects, chromophore-containing molecules,
which change their equilibrium length when exposed to a radia-
tion of particular wavelength, can serve as active springs.

mẋ̇1 η ẋ1 N0 x1sin+ + k x2 x1– l1–( ),=

mẋ̇2 η ẋ2 N0 x2sin+ +  = k x3 x2– l2–( ) k x2 x1– l1–( ),–

mẋ̇3 η ẋ3 N0 x3sin+ + k x3 x2– l2–( ),=

l1 l0 δl ωt( ), l2sin+ l0 δl ωt ϕ0+( ).sin+= =
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Figure 10 illustrates the time dependence for the
coordinates of each of the three bodies. With a fairly
good accuracy, the motion of each of the bodies can be
represented as the superposition of uniform and peri-
odic harmonic motions, the center of gravity of the sys-
tem as a whole oscillating much more weakly than each
of the bodies individually. Therefore, to treat the situa-
tion qualitatively, it appears to be reasonable to proceed
from a model where the bodies move in such a way that
their center of gravity executes a uniform translational
motion. Such an assumption can be substantiated by the
fact that, as we will see later, the optimal operation of
the machine takes place at comparatively large ampli-
tudes of molecule oscillations. Therefore, in the first
approximation, the periodic potential can be viewed as
a perturbation imposed on the motion of the system of
the bodies. In this approximation, the motion of the
bodies is described by the following equations:

(40)

These equations can be recast as

(41)

For the mean value of the sum of forces acting on
the bodies (on the zeroth-order plateau n = 0 and v 0 =
0), we have

(42)

where k0 = 2π/a.
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For the operation of the machine to be stable, it is
necessary that the width of the zeroth-order plateau
vanish. With the condition

(43)

satisfied, the first term in (42) vanishes identically (at
any ∆l and ϕ0) and the vanishing condition for the width
of the zeroth-order plateau is reduced to vanishing the
second term in (42):

(44)

hence,

(45)

k0l0cos 0, l0 a 1/4 n/2+( ),= =
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Fig. 9. Time dependence of the middle body coordinate for
the three body-machine obtained by the numerical solution
of Eqs. (38) and (39) for m = 1, ω = 1, F0 = 0, ϕ0 = π, l0 =
3π, δl = π, and η = 0.4. The force slowly grew from zero to
the maximal value. (1) Zeroth-order (n = 0), (2) first-order
(n = 1), (3) second-order (n = 2), and (4) third-order (n = 3)
plateaus.
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We thus see that the machine of the given design
functions in a stable mode only if

(46)

where a is the period of the potential.
The width of the zeroth-order plateau may also van-

ish if condition (43) is violated. In this case, however,
the phase shift ϕ0 and the change in the length of the
links (springs) ∆l turn out to be strictly fixed. Indeed,
both Jacobian functions in (42) must vanish, which
implies the simultaneous fulfillment of the conditions

(47)

(48)

This is possible only if

(49)

and

(50)

The equilibrium length of the links remains arbi-
trary and can be selected so as to provide the maximum
propulsive force.
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Fig. 11. (a) Time dependence of the link equilibrium lengths
in the model stated by (38) and (39) and (b) the motion of
the nanomachine (middle body coordinate vs. time) for two
values of the phase shift between link length oscillations.
The change in the phase shift reverses the direction of
motion. The numerical parameters of the system are the
same as in Fig. 9.
It should be noted that both the analytical calcula-
tion and a variety of numerical experiments indicate
that a three-body machine retains the symmetry at any
phase shift between the link length oscillations if a per-
turbation imposed on the system is strictly harmonic.
Because of this, we cannot provide the stable motion of
the machine in a desired direction. The symmetry
breaks if one uses, for example, a pulsed, rather than
harmonic, perturbation (see Fig. 11a). In this case, the
direction of motion can be controlled by varying the
phase shift (Fig. 11b).

The nanomachines considered in Sections 3 and 4
share the common property, namely, the presence of at
least two independent periodic actions (perturbations).
Clearly, this is the general requirement following from
symmetry considerations. In fact, the imposition of a
single periodic perturbation, while causing a constant-
velocity plateau, does not break the system symmetry
with respect to the motion in the positive and negative
directions. The presence of the second perturbation
with a fixed phase shift relative to the first one breaks
this symmetry and makes motion in a particular direc-
tion possible.

5. PROSPECTS AND APPLICATIONS

An obvious domain of applicability of the concepts
put forward above is handling the motion of molecules
or a molecular ensemble on crystal surfaces or the
motion of nanoobjects on profiled solid surfaces. A
challenge to be tackled upon implementing nanoma-
chines is the development of microactuators allowing
for the generation of periodic perturbations of desired
frequency and amplitude.

In the case of integrated circuits, these may be com-
ponents offering electro- and magnetostrictive proper-
ties. For example, if one of the links in a three-body
machine (see Section 4) is made of electrostrictive and
the other of magnetostrictive materials, one can control
either of the links independently by simultaneously
applying electric and magnetic fields. This will suffice
to put the machine in motion in a desired direction.

For molecular clusters, chromophore-containing
molecules, which change their geometry when exposed
to a radiation of specific wavelength, can serve as active
components. The use of two different chromophores
makes it possible to independently control the length of
either of the links.

Another important application of the effect of con-
stant-velocity plateau is the high-precision control of
the rate of actuator response in various mechanotronic
systems [14]. As follows from (19), “quantized” veloc-
ity values depend only on the external effect frequency
and the potential relief wavelength. Therefore, these
values can be set with a high accuracy and are easy to
control by varying the frequency.

An experimental demonstration of this effect could
be the contact between two artificially patterned plates
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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that have a periodic (relative to translations or rota-
tions) microrelief. A periodic perturbation in this case
can be generated by an ultrasonic technique.

The concepts discussed in this paper are also of sci-
entific value, allowing a better understanding of the
physics of tribological phenomena. Apparently, the
conventional treatment of dry friction forces with the
static and sliding friction coefficients is adequate to
describe only quasi-stationary processes. A friction law
derived from quasi-static measurements fails when
applied to situations where high-frequency effects are
dealt with (for example, to traveling-wave engines
[15]). Measuring the force of friction between bodies
subjected to the superposition of constant and oscillat-
ing forces as a function of the amplitude and frequency
of the periodic perturbation would be much more infor-
mative. Such measurements would allow researchers to
gain direct information on characteristic time–space
scales “responsible” for friction in the system under
consideration and could serve as a peculiar kind of the
“spectroscopy” of tribosystems.

Obviously, further investigation into artificial (pro-
filed) tribosystems with active components will lay the
foundation for creating controllable tribosystems.

CONCLUSION
In this work, we put forth the general principles of

inducing the directed motion of objects in a periodic
potential field on which periodic external actions are
imposed. These principles are scale-invariant, that is,
can be implemented at any scale level. We showed that
periodically oscillating applied forces or parameters of
interaction between the body and the periodic external
action can cause the spontaneous directed motion of
objects with a velocity uniquely defined by the fre-
quency of the periodic action and the space period of
the potential field.

By way of example, we considered a body subjected
to periodic forces in the tangential and normal direc-
tions, as well as a group of bodies linked by two active
components whose length periodically oscillates. The
basic principles of generating directed motion and the
methods of mathematical analysis used are applicable
to any systems where some parameters specifying the
system dynamics oscillate in time. Identical properties
are offered, for example, by a system of two bodies that
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
have one active link with an oscillating length when an
extra periodic (tangential or normal) force is applied.
The number of possible designs of nanomachines can
readily be increased. Their implementation is by no
means limited by the designs considered above: it must
fit currently available techniques of periodically vary-
ing the parameters of nanosystems.
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Abstract—A method for characterizing a current total step in the I–V characteristic of a Josephson junction
array is considered. In this method, an appropriately selected approximating curve is statistically fitted to the
experimentally found curve. A self-calibration algorithm for an array of junctions incorporated into program-
mable voltage standards is suggested. © 2002 MAIK “Nauka/Interperiodica”.
† INTRODUCTION

In recent years, interest has arisen in programmable
voltage standards based on Josephson junction arrays
[1]. With such standards, it becomes possible to pro-
duce a set of quantized reference voltages from 0 to
10 V and simplify the calibration of precision ADCs
and digital voltmeters. Accordingly, the calibration
scheme for these devices radically changes, and the cer-
tification speed and accuracy are greatly improved. To
produce a set of precision reference voltages, an array
of a large number m of series-connected nonhysteresis
Josephson junctions is used. One of the working algo-
rithms for programmable voltage standards uses the
quantized reference voltage across a junction array at
the first step with index n = ±1. The total voltage is then
VJ = (m1 – m2)f/KJ [2]. Here, m1 is the number of junc-
tions at the step n = 1, m2 is that at the step n = –1, f is
the frequency of an applied harmonic signal, and KJ =
483.5979 GHz/V is the Josephson constant. It should be
emphasized that this algorithm allows for the applica-
tion of Josephson junctions on high-temperature super-
conductors with a great (≈100%) spread in Josephson
critical currents δI = Ic, max/Ic, min, where Ic, max and Ic, min

are, respectively, the maximal and minimal critical cur-
rents of the junctions incorporated into the array [3, 4].
At f ≥ KJIc, maxRN (RN is the normal resistance of the
junctions), the microwave signal power can be selected
such that the amplitude of the first total current step ∆I1

is on the order of Ic, min. Actually, ∆I1 decreases because
of a spread in RN and the nonuniform distribution of the
microwave current along the array. A recent investiga-
tion of a Josephson programmable standard based on
niobium nonhysteresis junctions has shown that, after
each cooling of the junctions, a new distribution of the
microwave power along the array arises and the system
must be tuned to the optimal frequency of irradiation

† Deceased.
1063-7842/02/4711- $22.00 © 21408
[5]. At low Ic, min and/or elevated temperatures (≈78 K),
thermal noise may additionally decrease ∆I1 and
accordingly increase the inaccuracy of the voltage stan-
dard [4, 6]. Because of this, the control of the slope and
other parameters of the current total step is of great
importance.

In this work, we suggest a possible way of charac-
terizing current total steps appearing in the I–V charac-
teristic of a Josephson junction array and discuss a self-
calibration algorithm for the array. The feasibility of the
method is demonstrated with the critical current of a
bicrystal Josephson junction made of a high-tempera-
ture semiconductor.

PRECISE METHOD FOR MEASURING
THE CURRENT STEP PARAMETERS

In the conventional technique for finding the current
step parameters (specifically, its slope), the voltage VJ

of the step is successively measured at several points
(i ≈ 10) the number of which depends on the constant
bias current passing through the array. To improve the
measurement accuracy, the voltage to be measured first
is shifted to the zero level by inserting a known voltage
of opposite polarity and second is measured N times at
each ith point [7]. The compensation of VJ allows one to
perform measurements with a minimal standard devia-
tion σ depending on the intrinsic noise of a nanovolt-
meter. In the best digital nanovoltmeters, σ ≈ 10 nV; in
analog devices, σ ≤ 1 nV. As the number of independent
measurements grows, the standard deviation of the
mean value decreases as σm = σ/(N – 1)–1/2. For the time
of single-point measurement τ = 100–1000 s, the value
of σm can be reduced to ≤0.1 nV [8]. However, small-
σm measurements at all i points take a considerable
amount time (about 10τ), during which the stability of
the thermoelectric voltage in the measuring circuit is
hard to maintain. In this case, the drift of the thermal
emf will make a major contribution to the total standard
002 MAIK “Nauka/Interperiodica”
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deviation of the measurements. There are a number of
methods taking into account the thermal emf drift [7].
However, their use is associated with a further increase
in the number of measurements and, hence, elongates
the measuring cycle.

The essence of our method is as follows. First, for a
time ≈τ, the I–V characteristic Vk = f(Ik) is recorded in
the range of a step of the current (or critical current)
being studied, where the subscript k runs from 1 to N.
Then, the data array obtained is approximated by the
mathematical expression V = f(I, p1, p2, p3, …), where
V is the voltage across the junction; I is the bias current;
and p1, p2, p3, … are parameters of the theoretical
model. The mean values of the parameters and their
standard deviations are found by the least squares
method. Thus, the problem is reduced to finding an
approximating curve that adequately fits experimental
data.

As a curve approximating the I–V characteristic of a
Josephson junction near a step of the current (or Ic), we
take the expression

(1)

Expression (1) involves six parameters. The param-
eter V0 specifies the position of the current step on the
voltage axis and tends toward VJ in the optimum case.
The factor r reflects the presence of parasitics in the
measuring circuit. The study of this factor can shed
light on the value and nature of the parasitics and help
in eliminating them or reducing to a reasonable level.
Approximating curve (1) has an inflection where the
current and the differential resistance equal, respec-
tively, i0 and rd. The parameter i0 defines the position of
the current step midpoint on the current axis. The
parameters i1 and i2 have the dimension of current and
specify the bend (smooth or sharp) of the I–V curve at
the edges of the steps.

When selecting the form of formula (1), we took
into consideration that junctions with the nonhysteresis
I–V curve may exhibit one-particle tunneling of mag-
netic quanta at the edges of Ic, causing the exponential
current dependence of the voltage, and that ranges
where this takes place are much smaller than the critical
current. From the theory of the Josephson effect [9], it
is known that the current–voltage characteristic near
the step has a similar form. However, in analyzing data
for current total steps, one should bear in mind that the
parameters i1 and i2 involved in the exponential depen-
dence depend largely on the spread in RN of the junc-
tions that are series-connected to form an array and on
the nonuniformity of the microwave field along the
array, rather than on the conduction mechanism. For-
mula (1) is a good fit to the characteristic only in the
vicinity of the voltage V0; at higher voltages, the I–V
curve describes resistive regions, where expression (1)
is invalid.

V V0 r I i0–( )
rd

i1 i2+
------------- i1

2e
I i0–( )/i1 i2

2e
I i0–( )/i2–
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RESULTS AND DISCUSSION

The statistical fit of the approximating curve to
experimental data implies the minimization of the total
standard deviation

(2)

where p is the number of desired parameters [10].
Let us consider sum (2) as a function of the number

N of points and the range of fit. By way of example, we
will look for the parameters of curve (1), which
describes the I–V characteristic of a Josephson junction
in the vicinity of the critical current.

We studied the I–V characteristic of a bicrystal
Josephson junction based on a high-temperature super-
conductor [3, 6]. The characteristic was recorded
according to the scheme shown in Fig. 1 with the pro-
gram developed in [11]. As a voltage amplifier, a nano-
voltmeter with an intrinsic noise of 1–2 nV and a gain
of 5 × 104 was used. Such nanovoltmeters are incorpo-
rated into industrial Josephson voltage standards [12].
Figure 2 shows the record of the critical current and its
approximation by function (1). The table summarizes
the fitting parameters and their standard deviations cor-
responding to a confidence interval of 2.8χ. The proba-
bility of falling outside this interval is no more than 1%.

The parameter χ vs. number of points N. It is known
that the minimizing procedure is aimed at finding the
absolute, rather than relative, minimum of sum (2). To
find the absolute minimum, one usually changes the

χ

Vk V Ik( )–( )2

k 1=

N

∑
N p–

-----------------------------------------,=

Computer

16 bit I/O board

DAC ADC

Current
amplifier

Voltage amplifier
noise 1–2 nV

Current I

Array of Josephson junctions

Voltage V

Fig. 1. Precision measurement of the current–voltage char-
acteristic of Josephson junctions.
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–20
–2

Voltage, nV

Current, mA
–1 0 1 2

–10

0

10

20

Fig. 2. I–V characteristic of a bicrystal Josephson junction near the critical current: s, data points; solid line, fitting curve.
initial conditions of the process and monitors the value
of χ and the parameters of the fitting curve. When the
final result becomes independent of the initial condi-
tions, it can be argued that the absolute minimum is
found [10]. To check this statement, we studied the
dependence of the approximation parameters and their
standard deviations on the number of points used for
the approximation. The number of points was varied
from N = 473 to N = 3786. Figures 3 and 4 show the val-
ues of the parameters and their standard deviations nor-
malized to the related means. As follows from Fig. 3,
the approximation parameters depend on N only
slightly. From Fig. 4, χ is seen to be independent of the

0.96

Normalized fitting parameters

Number of points, N
1000 2000 3000 4000

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0

Fig. 3. (j), (e), (d), and (n) are the normalized fitting
parameters V0, i0, i1, and i2 vs. number of points N taking
part in the approximation. Solid lines connect correspond-
ing symbols.
number of points, whereas the normalized standard
deviations of the parameters in expression (1) decrease
as N–1/2. These observations suggest that the absolute
minimum of sum (2) is reached and the parameter
means found provide the best fit to the experimental
curve. Moreover, it can be argued that N-related sys-
tematic errors, if present, play an insignificant role.

The effect of the approximation voltage range on χ.
Figure 5 shows the dependence of χ on the approxima-
tion voltage range. At voltages above 20–30 nV, the
total standard deviation χ grows rapidly. Figure 6 dem-
onstrates the differences Vk – V(Ik) between the I–V
curve recorded and the fitting curves with voltages of
±9, ±20, and ±160 nV, along with the experimental
dependence Vk(Ik). It is seen that at low voltages the
approximation gives Ic higher than the values mea-
sured; at high voltages, the differences are due to the
limited applicability domain of formula (1). Note also
that the standard deviations of all the approximation
parameters, except , grow near zero. From these

dependences, one can conclude that the optimal range
of approximation is from ±20 to ±30 nV in our case.

The contribution of the standard deviations of the
parameters to the standard deviation of the voltage.
The standard deviation of the voltage depends on the
bias current as

(3)

σV0

σV
1 I( ) ∂V I( )

∂pi

-------------- 
  2

σpi
2

i 1=

6

∑ .=
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The contributions of the standard deviations of the

parameters to (I) are different. Figure 7 shows the
logarithm of the contribution of the parameter standard

deviations to (I) vs. bias current for a voltage range
from –20 to 20 nV. From the curves in Fig. 7, it follows
that, at currents equal to or higher than Ic, the major

contribution to the total error is from (I) and (I) ≈

(I). Thus, in this current range, (I) ≈ (2 (I))1.2

and grows rapidly when the current exceeds Ic. The
standard deviation , as well as all other standard
deviations, decreases with increasing N. In our example
(Fig. 2), it became 50 to 100 times lower than the intrin-
sic noise of the nanovoltmeter, not exceeding  =
20 pV. The low mean value of the differential resistance
rd (see table) indicates the absence of the slope of criti-
cal current and demonstrates the potentialities of the
method as applied to measuring low parasitic resis-
tances.

SELF-CALIBRATION OF JUNCTION ARRAYS 
FOR A PROGRAMMABLE VOLTAGE STANDARD

The method suggested allows for the natural self-
calibration of an array of 2m junctions that is incorpo-
rated into a programmable voltage standard [2]. The
array is subdivided into (m + 1) sections (bits). The
number of junctions in the first m bits corresponds to
the binary code (1, 2, 4, 8…). The last, (m + 1), bit has
only one junction. During measurements, the total step
must be made coincident with the zero voltage level to
retain the desired accuracy. Therefore, the calibration
of the entire array is carried out in several stages. First,

σV
1

σV
1

σV0

1 σr
1

σV0

1 σr
1 σV0

σV0

σV0

0.2

0.01

Relative standard deviations

Number of points, N–1/2
0.02 0.03 0.04 0.05

0.6

1.0

1.4

1.8

2.2

Fig. 4. Normalized standard deviations (h) , (r) ,

(s) σrd, (m) , (,)  and (×) normalized total standard

deviation χ vs. number of points N participating in the
approximation. The solid line represents the linear fit to the
parameter standard deviations vs. N dependence.

σV0
σi0

σi1
σi2
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
the voltage of the step +1 of one junction is compared
with that of the step –1 of the second junction. Then,
these two junctions are connected in series and their

0.5

–200

Standard deviations, nV

Voltage, nV

1.0

1.5

2.0

–150 –100 –50 0 50 100 150 200

Fig. 5. Total standard deviation χ vs. fitting voltage range
(d). The solid line connects data points.

–100
–2.2

Voltage Vk and difference (Vk – V(Ik)), nV

Current, mA
–2.0 –1.8 –1.6

–50

0

50

100

150

Fig. 6. Difference between the experimental I–V character-
istic (j) and fitting curves for voltages in the range from
(h) –9 to +9, (n) –20 to +20, and (s) –160 to +160 nV. For
convenience, the differences calculated for the ranges ±9
and ±160 nV are shifted by 50 and 100 nV relative to the
zero level.

Fitting parameters and their standard deviations

Parameters Units of
measure

Parameter
values

Standard
deviations

V0 nV 0.13 0.02

r Ω 2.9 × 10–7 2 × 10–8

i0 mA 0.08 0.05

rd Ω 7.6 × 10–21 8.5 × 10–21

i1 mA 0.04 0.002

i2 mA 0.05 0.002

χ nV 0.41
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total voltage is compared with that of a section of two
junctions that have opposite polarity, etc. Having estab-
lished (with a high accuracy) the absence of the slope
on the first steps of individual contacts, one can estab-
lish the absence of parasitic slopes on total steps in all
the bits of the array. This algorithm allows one to auto-
mate the self-calibration of arrays of series-connected
junctions.

CONCLUSION

We suggest a method for processing a body of
experimental data for the I–V characteristics of Joseph-
son junctions that can estimate the accuracy of mea-
surements. For this purpose, it is necessary to select an
analytical expression for the I–V characteristic that
involves a small number of parameters. The choice can
be based on both a theoretical model and intuitive con-
cepts.

–20
–2

Standard deviations of the fitting parameters,

Current, mA
–1 0 1 2

–15

–10

–5

0

5

Fig. 7. Logarithmic contribution of the parameter standard
deviations vs. bias current for voltages in the range ±20 nV.

(s) , (h) , (e) , (.) ,

(m) , and (d) .

σV0

1
log σr

1
log σi0

1
log σrd

1
log

σi1

1
log σi2

1
log

logarithmic scale

The desired mean values of the parameters and their

standard deviations are found by the least squares
method. This method combines the advantage of reduc-
ing the problem to finding a function depending on a
small number of parameters and the advantages of a
large number of measurements. A small value of χ
found by fitting is the best corroboration of the potenti-
alities of the method. Another verification of the
method is the study of the dependence of the parame-
ters on the number of points and the dependence of the
results on the limitation of the approximation interval.
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Abstract—It is found that the spectral characteristics of relativistic electrons moving in the field of a terawatt
laser and through static transverse fields differ significantly. It is shown that, as applied to studying the nonlinear
generation of higher harmonics and quantum recoil and spin effects upon hard photon emission, the Baœer–Kat-
kov method has advantages over other methods. Numerical data for the efficiency of hard photon generation in
the field of terawatt lasers and in oriented crystals are reported. © 2002 MAIK “Nauka/Interperiodica”.
One of the topical problems in contemporary exper-
imental and applied physics is producing sources of
high-intensity gamma radiation [1, 2]. A promising
source of intense gamma radiation is charged particle
channeling in oriented crystals (OCs) (Kumakhov radi-
ation [3]). The efficiency of this radiation increases
with electron energy [4]. Recently, however, interest
has been generated in the production of high-energy
photons through the interaction of relativistic electrons
with intense (~1012 W) laser fields. In this work, the
electron energies E that we are interested in lie in the
range of tens to hundreds of GeV, and the photon ener-
gies are comparable to E, "ω ~ E.

The interaction of relativistic electrons with a plane
electromagnetic wave was studied in the mid-1960s [5].
For the lasers available at that time, the wave intensity
was of minor importance for the nonlinear generation
of higher harmonics. The quantum recoil and spin
effects were taken into account with the Klein–Nishina
formula for Compton scattering [6, 7]. In practice,
polarized gamma radiation with a monochromatism of
several percent can be generated by scattering laser
photons by a relativistic electron beam [6, 8].

Recently developed powerful terawatt lasers [9–11],
for which the Lorentz-invariant field parameter

(1)

may exceed unity, have opened up basically new oppor-
tunities for producing hard gamma quanta via the inter-
action of relativistic electrons with the laser field. In
(1), %0 is the amplitude of the electric field of a laser
wave with a frequency ω0, e and m are the charge and

ν0
2 e2%0

2

2m2ω0
2c2

---------------------=
1063-7842/02/4711- $22.00 © 21413
mass of an electron, and c is the speed of light. Laser
beams with ν0 > 1 will be referred to as superintense.

In this work, we compare the efficiency of generat-
ing hard gamma quanta upon electron emission in the
field of a laser wave with that upon channeling. The
emission of relativistic electrons in the field of a tera-
watt laser is considered based on the Baœer–Katkov
quasi-classical method [12]. The advantage of this
method over recent approaches developed by other
authors (see, e.g., [13]) is that it allows for the inclusion
of the quantum recoil effects upon hard photon emis-
sion, the effect of the spin on the emission, and nonlin-
ear effects in simple terms [14].

The appearance of higher harmonics in the electron
emission spectra arising in the field of an intense plane
wave (IPW) means that an electron absorbs several
photons of the laser field and subsequently emits one
photon whose energy is shifted, due to the Doppler
effect, toward the “harder” range: ω ~ ω0γ2, where γ is
the Lorentz factor. Theoretically, the cross sections of
the associated processes were calculated using the
Volkov solution to the Dirac equation [15, 16]. Experi-
mentally, the emission of higher harmonics by elec-
trons in the IPW field was studied in [9, 17]. In the
former work, the first four harmonics were observed
when electrons of energy 46.6 GeV interacted with a
circularly polarized laser beam with a field parameter
ν0 = 0.6.

Salamin and Faisal [13] theoretically investigated
the generation of higher harmonics based on formulas
of classical electrodynamics. They derived relatively
simple analytical formulas for the case of a circularly
polarized plane wave. Salamin and Faisal’s classical
calculations are consistent with earlier quantum elec-
trodynamic results [15, 16] in the limit "ω ! E.
002 MAIK “Nauka/Interperiodica”
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When comparing the motion of electrons in the
plane wave field and in external static transverse fields
(ESTFs) (for example, in undulators or upon channel-
ing), one can notice that the invariant called the nondi-
polity parameter, β⊥ γ, coincides with the field parame-
ter given by (1) (β⊥  is the velocity component trans-
verse relative to the electron mean velocity) [18]. In
what follows we will consider an electron moving
toward a linearly polarized plane wave. In this case, the

equality  =  is true, where the bar means aver-
aging over the period of the transverse motion of the
electron. This equality indicates that the emission in the
IPW field differs greatly from that in ESTFs. In the
former case, the nondipolity parameter does not depend
on the electron energy; that is, at ν0 ! 1, the dipole
approximation is applicable even if the energy of pho-
tons emitted becomes comparable to the electron
energy. Since, the transverse motion in the field of a
plane wave is essentially harmonic, only a single har-
monic with a sharp dipole peak at the center is emitted.
In transverse static fields, where the emission is the
result of virtual photon scattering by the electron, such
a situation does not take place, since the nondipolity
parameter β⊥ γ grows with energy (for example, β⊥ γ ~
γ1/2 upon channeling). When the angle of electron
deflection by the external field exceeds the characteris-
tic angle of radiation (i.e., when β⊥ γ @ 1), the emission
of higher harmonics becomes appreciable and the spec-
trum is described by formulas of synchrotron type [19].

For electron energies currently available with
present-day accelerators (E ≈ 300 GeV), the contribu-
tion of the spin to the emission upon channeling is
insignificant [3] though tangible [4]. The reason is that
the emission spectrum contains largely soft photons
and the number of electrons with an energy "ω ~ E is
relatively small. When the electron moves in the IPW
field, the energy of photons emitted grows with E faster
than upon channeling. Then, if field parameter (1) is not
too much greater than unity, the contribution of the spin
to the hard region of the spectrum will play a decisive
role, as will be shown subsequently. The detailed com-
parison of the emission upon channeling and that when
the electron moves in the plane wave field for the case
of the dipole emission spectrum lying in the X-ray
range has been recently made in [18] with the general-
ized method of virtual photons [20].

Along with field parameter (1), we are interested in
two more Lorentz invariants:

(2)

β⊥
2 γ2 ν0

2

a
2"k0

µρµ

m2c2
------------------

2"Ω0γ
2

E
-------------------,≈=

χ
e" Fµν pν

m3c4
------------------------

e%"c

m2c2
-------------- 1 β+( )γ,≈=
where % = %0cosω0(z + z/c) is the electric field strength

in the laser wave,  is the four-wave vector of the inci-
dent laser wave, pµ is the four-dimensional momentum
of the electron, and Fµν is the electromagnetic field ten-
sor.

The quantity Ω0 = ω0(1 + β) has the meaning of the
transverse oscillation frequency for an electron in the
plane wave field. The approximate equalities in (2) are
valid for γ @ 1. In this case, the value of a is time-inde-

pendent up to  and the time dependence of the
invariant χ enters through the dependence % = %(t).
The right-hand side of formulas (2), as well as the sub-
sequent consideration, applies to the case when the
electron mean velocity is in opposition to the laser
beam direction. The parameter χ has been well studied
in terms of the theory of electromagnetic processes in
constant external fields [5, 12, 16].

In the ultrarelativistic case γ @ 1, the classical the-
ory gives the following results for an electron in the
field of a plane-polarized laser field [21]:

(3)

where u = "ω/E,  = ak/u –  – 1, and z = ct.

For a given harmonic number k, the frequency varies

in the range 0 < u < ak/(1 + ). The quantities jzk and
jxk are expressed through the Bessel functions Jn(x), as
was done in similar problems [3, §3.3; 5, Appendix A;
22]):

(4)

where A = (2a)–1 u and B = 2 a–1ν0uηkcosϕ.

The parameter N0 in (3) is the number of photons
emitted per unit length in a weak laser field (ν0 ! 1):

(5)

where α = 1/137.
Expression (3) was obtained without considering

quantum recoil and spin effects upon emitting a hard
photon (see below).

For the emission due to electron planar channeling

in a parabolic potential U = 4Umx2/ , where Um is the

k0
µ

β⊥
4

N0
1– d3N
dudzdϕ
-------------------

=  
3

πa
------ jxk

2 ηk
2

2ν0
2
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2 2

ηk
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potential well depth on a crystallographic plane and dp
is the interplanar spacing, the classical approach (γ @ 1)
gives similar results. In view of quantum recoil upon
emission (which is reflected by the substitution u 
u' ≡ u(1 – u) in classical expressions), the associated
formula has the form

(6)

where u = "ω/E,  = 4νk/b – 2ν2 – 1, b = u'xm/λc, ν =
Θ0γ, Θ0 = xmω0/2c, the quantities ω0 and xm have the
meaning of the frequency and amplitude of positron
transverse oscillations in the channel xm =
dp(E⊥ /Um)1/2/2, E⊥  is the electron transverse energy, and
λc = "/m0c is the Compton wavelength.

For a given harmonic number k, the frequency lies in
the range

Here, uk = 4kνλc/xm and jxk and jyk are given by formulas
(4), where A = bν/4 and B = bηkcosϕ.

The distributions calculated by (3)–(6) are very
close to the spectral distributions of undulator radiation
[22].

The Baœer–Katkov quasi-classical theory [1, §5; 12]
gives the following result for the spectrum of photons
moving toward a linearly polarized plane wave:

(7)

(8)

where u = "ω/E, u' = u/(1 – u),  = ak/u' –  – 1, and
z = ct.

For a given harmonic number k, the frequency lies in

the range 0 < u' < ak/(1 + ) and jxk and jyk are given

by formulas (4), where A = (2a)–1 u' and B =

2 a−1ν0u'ηkcosϕ.
Formulas (7) and (8) are the exact solution within

the applicability domain of the Baœer–Katkov quasi-
classical approach, i.e., for γ @ 1. According to (7), the
form of the spectrum depends, in general, on the two
invariants given by (2), which is consistent with Ritus’s
result [5, Chap. 2, formulas (38) and (39)]. The term
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 in the brackets in (7) reflects the result of classical
electrodynamics (see (3) and (4)) where the substitu-
tion u  u/(1 – u) has been made; the other term,
including the product uu', is spin-related.

General formula (7) is greatly simplified in two lim-
iting cases: ν0 ! 1 (weak external field) and ν0 > 1
(strong external field).

The former case corresponds to the dipole approxi-
mation. Here, (7) passes to

(9)

where 0 < u' < a and the spin-related term is uu'/2.
Thus, in weak fields, the emission spectrum depends

only on the invariant a. Quantum dipole formulas like
(9) are well known in the theory of interaction between
a plane wave and moving electrons [23, §101]. Unlike
the electron motion in ESTFs, formula (9) is valid at
electron energies as high as desired with the proviso
that ν0 ! 1. Specifically, upon positron planar channel-
ing, the emission spectrum, as was shown above, is
described by formulas similar to (7)–(9) (the classical
component in emission (6)) [18]. However, the situa-
tion where the spin term would play a significant role in
dipole formula (9) is unrealistic in ESTFs, because the
condition for emission dipolity is inevitably violated at
high energies, when the spin effect becomes essential
(for positrons, this energy E > 50–100 GeV). In this
sense, the spectrum of hard polarized photons with an
energy "ω ~ E generated by lasers that have ν0 ~ 1 is
more advantageous than that obtained in OCs, since the
former is more monochromatic and the multiphoton
background in its soft range is absent.

The aforesaid is illustrated in Figs. 1–3, showing the
spectra of emitted photons for electron energies of hun-
dreds of GeV (in this case, a = 3 corresponds to the
energy 150 GeV) in the field of a 1-µm laser. Figure 1
demonstrates the near-dipole situation. At the same
parameters of an electron beam in OCs, the monochro-
matism of the emission is much lower [24–26] because
of a high concentration of low-energy photons. At a
fixed electron energy, the contribution of higher har-
monics increases with laser beam intensity (cf. Figs. 2
and 3). Conversely, at a fixed laser beam intensity, the
emission becomes more dipole with increasing electron
energy. Such a situation is the reverse of that in ESTFs,
where the contribution of higher harmonics grows with
electron energy. Figures 4 and 5 show the spectra of
positrons with energies of 10 and 100 GeV calculated
with regard for all the above effects. In the spectrum in
Fig. 5, the number of higher harmonics is so large that
some of them are indistinguishable and the synchrotron
approximation describes the spectrum quite adequately.
The positron spectrum in Fig. 4 is close to undulator
radiation spectra in shape [22].

Figures 1–3 demonstrate that lasers with ν0 ≤ 1 are
the most appropriate for generating individual hard

gclass
k( )
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photons. In this case, the monochromatism is the high-
est and the number of photons emitted is fairly large. At
lower or higher values of ν0, both advantages of the
emission in the IPW field disappear. For example, at
ν0 ! 1, the total probability of the emission defined by

1.0
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0.2 0.4 0.6 0.8 1.0
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0.2 0.4 0.6 0.8 1.0

Photon energy U

Photon energy spectrum

Photon energy U

Photon energy spectrum

1

2

Fig. 1. Emission energy spectra of electrons moving toward
a linearly polarized plane wave in a weak laser field for a =
6 and ν0 = 0.5. Dashed lines 1 and 2, spectrum in the dipole
approximation and the spin contribution in the same
approximation, respectively; continuous curves, exact cal-
culation. On the ordinate axis functions (7) (continuous
curves) and (9) (dashed lines) multiplied by u are plotted.

Fig. 2. The same as in Fig. 1 for a = 3 and ν0 = 1.
formula (5) is relatively small. At ν0 > 1, the role of
nonlinear effects in Compton scattering increases
and  the spectrum becomes less monochromatic. More-
over, in superintense laser fields, the emission multi-
plicity [9] and the effect of electron expulsion from the
laser beam because of the nonuniform spatial distribu-
tion of the intensity over its cross section become
important [27].

The shape (7) of the emission spectrum is simplified
when ν0 > 1, i.e., when harmonics with k @ 1 play a
decisive role. In this case, the spectrum also depends on
one parameter (now on χ) and has the form

(10)

where the integrand is the well-known quantum syn-
chrotron formula

(11)

with ξ = 2u'/(3χ). Here, the parameter χ is expressed

through the invariants a and ν0: χ = aν0sinα0/ .

Integration over α0 in (10) means averaging (11)
over the period of electron transverse motion. Formulas
(10) and (11) are applicable if

(12)

d2N
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d2N syn( ) α0( )
u zdd

-----------------------------
α0d

2π
--------,

0

2π

∫=

N0
1– d2N syn( )

dudz
------------------

=  
3

πaν0
2

------------ 2 uu'+( )K2/3 ξ( ) K1/3 η( ) ηd

ξ

∞

∫– ,

2

ν0
2ua 1– 1 u–( ) 1– 1.>
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Fig. 3. The same as in Fig. 1 for a = 3 and ν0 = 2.
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The synchrotron approximation, based on formula
(11), is successfully used for calculating the emission
spectra of electrons with energies above 100 GeV in
OCs [19, 24, 25]; the higher the electron energy, the
higher the accuracy of the synchrotron approximation
(Fig. 5). For IPWs, conversely, at a fixed ν0, the condi-
tion for synchrotron approximation applicability is
violated as the electron energy grows, as follows
from (12).

Figure 6 plots the total number of photons emitted
per unit length (in units of N0, see (5)) against the
parameter a for various ν0. The calculation by formulas
(7)–(11) for a laser beam with a wavelength of 1 µm
shows that the exact solution differs from the dipole
approximation twofold even at ν0 = 2 (Figs. 3, 6).

In recent CERN experiments with 35–243 GeV
electron beams [29], the effect of the spin on the emis-
sion in OCs has been shown for the first time. It has
turned out that the spin contribution in the hard range of
the spectrum is 20–25% at electron energies of several
hundreds of GeV. For IPWs, the spin contribution will
be shown to be much higher at the same energies. The
emission spectra of electrons with various energies in
the field of a laser wave with ν0 = 2 are shown in Fig. 7.
From these spectra, it follows that an increase in the
energy raises the dipolity of the emission. Simulta-
neously, the contribution of the spin term to the emis-
sion grows and becomes dominant at "ω/E ~ 1. Even at
ν0 = 2 and a = 6, the spin term in the hard range of the
spectrum prevails (Fig. 7, curve 2). Note for compari-
son that in OCs, the effect of the spin term is much

0.02 0.04 0.06

0.0020

0.0015

0.0005

0

0.0010

Photon energy U

Photon energy spectrum

Fig. 4. Energy spectra of positron emission upon planar

channeling in Si〈110〉 . θ0 = θL /2, where ε = 0.9Um and
θL is the Lindhard angle. The positron initial energy is E0 =
10 GeV. Dashed line, spectrum in the synchrotron approxi-
mation; continuous curve, exact calculation.

ε
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smaller at the same electron energies, as follows from
theoretical calculations [4, 24, 25]. In addition, it is
seen that the synchrotron approximation describes ade-
quately the hard range of the spectrum if condition (12)
is met. At a given ν0, a rise in the electron energy dete-
riorates the accuracy of the synchrotron approximation.

When comparing the OC and IPW efficiencies, one
should properly determine the effective length of emis-
sion. Our calculations for OCs rely on realistic models,

Photon energy U
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Fig. 5. The same as in Fig. 4 for E0 = 100 GeV.
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Fig. 6. Total number of emitted photons per unit length in
units of N0 (see (5)) vs. parameter a (see (2)). The dashed
curve represents the dipole approximation: ν0 ! 1. Contin-
uous curves correspond to ν0 = 0.5 (1), 1 (2), and 2 (3). On
the ordinate axis, the ratio N/N0 is plotted.
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which include secondary factors such as multiple scat-
tering of electrons by individual atoms of a crystal,
radiative damping of the transverse energy, etc. (for
details, see [24, 25]). For terawatt lasers, the length of
interaction with electrons of energies above several tens
of GeV may reach several millimeters. In the experi-
ment with a 46.6-GeV beam on the SLAC accelerator
[9] (the laser wavelength ≈1 µm), the interaction length
was found to be several hundreds of wavelengths (see
also [18]). The associated emission yield was ≈1.8 pho-
tons per electron falling into the region of interaction

Photon energy spectrum

Photon energy U
0.2 0.6 0.8 1.0

0.20

0.16

0.12

0.08

0.04

0
0.4

1

2

1a

2a

Fig. 7. The same as in Fig. 1. Continuous curves correspond
to a = 1 (1) and 6 (2). The dashed curves 1a and 2a are the
synchrotron approximations for the same values of a.
(s) Spin contribution for a = 1 and (d) for a = 6.

The number of individual hard photons with an energy \ω
lying in different intervals

0.5 < u < 0.8 0.8 < u < 0.9 u > 0.9

C 〈 110 〉 0.085 2.0 × 10–3 2.4 × 10–4

150 GeV (0.082) (1.6 × 10–3) (2.8 × 10–5)

Si 〈 110 〉 0.069 1.8 × 10–3 5.2 × 10–4

150 GeV (0.062) (7.0 × 10–4) (2.0 × 10–5)

1000 GeV 0.22 2.2 × 10–2 4.9 × 10–3

(0.215) (2.1 × 10–2) (4.4 × 10–3)

Amorphous target 0.10 0.021 0.014

z = Lrad/2

Note: Here, u = \ω/E. The initial electron beam divergence
angle is 0.2ΘL, where ΘL is the Lindhard critical angle.
The thicknesses and orientation of the crystals are as follows:
C 〈 110 〉 , 2000 µm; Si 〈 110 〉 , 1400 µm. The results for the
amorphous target correspond to the thickness z = Lrad/2.
with the laser. According to our analysis, only 10–3 of
beam electrons took part in the interaction.

Of practical interest is the number of hard emitted
photons per electron that have an energy in the range
0.8um < u < um, where um ~ a/(1 + a) is the maximal
energy of a photon emitted (our estimates are restricted
by the dipole approximation). According to (10), the
number of such photons is N1 ~ 0.1N0 for a > 3, where
N0 is given by formula (5). For a 1-TW 1-µm laser
interacting with 150-GeV electrons, we find that N1 ≈
0.6 × 10–5 photons within a length L = 0.5 mm at a
cross-sectional area of the laser beam Σ = 1 mm2 (here,

um = 0.75 E and  ≈ 3.7 × 10–5). This number increases
significantly when the cross-sectional area of the beam
shrinks. For example, when Σ = 10–2–10–3 mm2, the
number of emitted photons per electron in the same
spectral range becomes comparable to that obtainable
at the same electron energy in OCs. This fact is of no
surprise, since the field energy density in the focal spot
of terawatt lasers may be comparable to the electro-
static energy density in the field of the crystal continu-
ous potential [18]. It should be noted, however, that the
photon yield in OCs at the energies considered far
exceeds that obtainable with terawatt lasers. One reason
is that a high degree of synchronization of laser field–
electron interaction, which is necessary to increase the
effective interaction time, is hardly feasible in the case
of IPWs. In OCs, all electrons are involved in the inter-
action.

The table lists the average numbers of hard photons
emitted by an electron in OCs in a given frequency
range. Similar data are represented in [25], where the
spectrum of individual photons most of which had low
energies u ≡ "ω/E < 0.5 was looked for. Therefore,
approximations made in [25] overestimate the nonco-
herent contribution to the hard range of the spectrum.
The reason is that in [25] the coherent and incoherent
contributions were simulated independently, which is
actually a rather coarse approximation if one is inter-
ested in the hard range of the spectrum. The contribu-
tion from the coherent emission to the field of the
atomic chain continuous potential is given in parenthe-
ses. For the soft range of the spectrum, u < 0.5, the num-
ber of photons emitted obtained in this work and in [25]
exactly coincide; therefore, only data for hard photons
are tabulated.

It follows from the table that, at an electron energy
of 150 GeV, the coherent contribution plays a decisive
part for photons with energies u < 0.8. As the electron
energy grows to 1000 GeV, the coherent contribution
prevails almost throughout the spectrum. Yet, even at
energies of ~1 TeV, an amorphous thick target is more
effective than OCs for generating photons with u > 0.9.

One more advantage of powerful lasers over OCs is
that they allow for the generation of circularly polarized
photons. In turn, OCs are preferred in the case when a
large total number of photons are to be generated irre-

ν0
2
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spective of the spectrum monochromatism (i.e., in
order to produce intense positron beams [30]).
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Abstract—The design and characteristics of a setup for producing metal oxide nanopowders with an output of
up to 20 g/h are discussed. The grain mean size in the powders is 15 nm, and the radiation power consumption
is 30–40 (W h)/g. Y2O3-stabilized ZrO2 (YSZ) and Al2O3 + YSZ nanopowders are prepared by target evapora-
tion with a pulse–periodic CO2 laser, followed by vapor condensation in an air stream. The mean power, peak
power, and efficiency of the pulse–periodic CO2 laser, excited by a combined discharge, are, respectively, 1 kW,
10 kW, and ≈10%. Data for the powder specific surface, grain shape, and grain size distribution, as well as
results of X-ray phase and structure analysis, are reported. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recent technologies of synthesizing bulk nanostruc-
tured materials with improved mechanical and novel
electromagnetic and optical properties [1, 2] have gen-
erated interest in producing powders with nanometer-
sized grains (nanoparticles). Nanoparticles can be pro-
duced by a variety of methods (for their detailed analy-
sis, see, e.g., [2, 3]). Laser radiation has not found wide
recognition for this purpose because of the low output
and high energy consumption of related techniques. At
the same time, laser-assisted material evaporation and
subsequent vapor condensation has been known for a
long time [4]. This approach to material production
provides high-purity and fine-grain deposits, is cheap,
and can be applied to various targets. However, its com-
petitiveness with other approaches has been proved
only recently.

For example, the output ∆m of a CO2 laser in this
process has been shown [3, 5, 6] to depend consider-
ably on the radiation power P and intensity I, as well as
on the target velocity Vt relative to the laser beam. For
example, for P = 3270 W, I = 4.2 × 105 W/cm2, and Vt =
28 cm/s, ∆m, the energy consumption ∆W, and the grain
size dBET were found to be 130 g/h, 25 (W h)/g, and
60 nm, respectively, for ZrO2 powders.

To raise the intensity (to 107 W/cm2), the laser was
switched to the pulsed mode with a mechanical chopper
or a Fabry–Perot interferometer [2, 3]. In this case, the
grain mean size was reduced to dBET ≈ 15 nm; however,
at the same radiation mean power P = 600 W, ∆m and
∆W were 11 g/h and 54.5 (W h)/g, respectively, for the
pulse duration tp = 25 µs and ∆m = 3.8 g/h and ∆W =
158 (W h)/g for tp = 100 µs. These values are much
1063-7842/02/4711- $22.00 © 21420
lower than those obtained in the cw mode with P =
600 W: ∆m = 23.8 g/h and ∆W = 25 (W h)/g.

Yet, we believe that the pulsed mode must provide
not only finer grains (because of an increased intensity
and more efficient vapor removal from the hot zone) but
also at least no higher energy consumption than in the
cw mode. Our opinion relies on the fact that the proba-
bility of an elementary event of evaporation grows
exponentially with the melt temperature and, hence,
with the radiation peak power density [4]. Such a situ-
ation takes place up to optical breakdown. In [3], the
pulsed mode was obtained by switching the Q factor of
the laser cavity. Q switching imparts the specific shape
to a laser pulse, because of which the advantages of the
pulse–periodic mode of preparing nanodispersed pow-
ders cannot be revealed in full measure. Moreover, Q
switching decreases appreciably the laser efficiency.

In this work, nanograin powders are produced with
a CO2 laser excited by a pulse–periodic combined dis-
charge [7].

EXPERIMENTAL

In our experiments, the lasing medium was excited
by a pulse–periodic combined discharge. In this case, a
plasma in the discharge gap is initiated by a short-term
self-sustained discharge and a major fraction (97–98%)
of the energy is delivered during a long-term non-self-
sustained discharge under a reduced field strength that
is optimal to excite the laser upper level [4]. The exci-
tation scheme makes it possible to separate the high-
and low-voltage feed circuits without using discharge-
current-limiting elements, which therefore successively
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Waveforms of current pulses for (a) self-sustained discharge, (b) non-self-sustained discharge, and (c) laser radiation.
excites the self-sustained and non-self-sustained dis-
charges.

The waveforms of discharge and radiation current
pulses illustrating the operation of the laser and the pos-
sibility of varying the lasing duration are shown in
Fig. 1. A self-sustained discharge (duration ≈100 ns;
Fig. 1a) in the two-electrode gap was initiated by a
Blumlein generator. Once the self-sustained discharge
had been switched off, the non-self-sustained discharge
(duration 100 µs) was maintained in the gap (Fig. 1b).
ECHNICAL PHYSICS      Vol. 47      No. 11      2002
The voltage across the gap was optimal for the energy
to be transferred to the laser upper level. After the cur-
rent of the non-self-sustained discharge had declined to
a certain level, a high-voltage pulse was applied to the
gap again and the process was repeated.

The lasing medium could be pumped by both single
shots and a pulse packet. The packet frequency could be
varied from 50 to 1000 Hz; the number of pulses in a
packet, from 1 to 4; and the pulse-to-pulse time in a
packet, from 50 to 200 µs according to the number of
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Fig. 2. Waveforms of radiation pulses for (a) one, (b) two, and (c) three self-sustained discharge pulses in a packet.
pumping pulses. Typical waveforms of pulses in a
packet are shown in Figs. 1 and 2. If the number of
pulses per packet is no more than three, the lasing dura-
tion remains virtually unchanged (only the shape of
laser pulses was changed). The peak power Pmax could
reach 10 kW, even if the mean power did not exceed
1 kW (Fig. 2b).

The radiation power was maximum at a frequency
of 750–900 Hz for H2- and CO-free mixtures and 400–
600 Hz for mixtures containing H2 or CO. We found
that a mixture of composition CO2 : N2 : He = 1 : 4 : 8
provides efficiency as high as 22% at a pressure of
80 torr. However, during the operation, the efficiency
dropped noticeably because of CO2 dissociation and
electronegative species appearing in the mixture.
Therefore, the search for long-term operating conditions
was carried out with CO-containing mixtures, where the
initial composition can be maintained by means of the

Air

Laser
radiation

1

2
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4

5
6

7
8

Air

Fig. 3. Experimental setup for nanopowder production.
reducing reaction CO + O  CO2 to compensate for
the dissociation. In a CO2 : CO : N2 : He = 1.5 : 1 : 10 :
20 mixture at a pressure of 60 torr, a radiation mean
power of 600–800 W was obtained (at an efficiency of
10%), which did not decrease during the operation.

An experimental setup for producing nanopowders
is depicted in Fig. 3. Laser radiation was focused on tar-
get 2 with lens 8, which serves simultaneously as the
entrance window of chamber 3. Drive 1 rotates and
moves target 2 in the horizontal plane so that the laser
beam scans its surface with a constant rate, providing
uniform sputtering of the target surface. During the
experiment, the target was displaced in the axial direc-
tion so that its surface remained in the plane of the focal
spot. The focal length of a KCl lens was 10 cm; the
focal spot diameter, 0.45 mm.

The targets used were YSZ, ZrO2 + Y2O3, and
YSZ + Al2O3 powders with a grain size of several tens of
micrometers and a desired oxide ratio that were pressed
into pellets. The beam scan rate was 20 cm/s. Between
pulses, the target was displaced by D ≈ 0.045cm. Fan 4
pumped a working gas (air or an N2 : O2 = 79 : 21 mix-
ture) into sealed evaporation chamber 3 and transported
the powder to cyclone 5 and electrostatic precipitator 6,
where the powder was trapped. Before being dis-
charged into the atmosphere, the air was purified by
mechanical filter 7. Near the target surface, the gas
velocity was ≈15 m/s.

We prepared 2.8YSZ, 4.1YSZ, 8.6YSZ, and
9.85YSZ powders (figures mean the mole percentage
of Y2O3), as well as powders of A41.1 + 1.45YSZ58.9
and A88.8 + 1.1YSZ11.2 mixtures (A = Al2O3, and fig-
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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Fig. 4. Typical micrograph of the powder sediment.
ures at the end mean the weight percentage of the com-
ponent). Both the raw materials and powders prepared
were analyzed by X-ray techniques. The elemental
composition was determined by spectral methods with
a Jobin Yvon 48 instrument. Phase and structure analy-
ses were performed with a DRON-4 X-ray diffractome-
ter. The specific surface was found by the BET method
using an argon–helium mixture with a GKh-1 chro-
matograph. The grain shape and grain size distribution
were studied with JEM-200 transmission and JSM-
T220A scanning electron microscopes. The fractional
composition of the powders was investigated by sedi-
mentation analysis. The content of moisture and vola-
tiles was determined thermogravimetrically with a
Q1500 instrument.

In preliminary experiments on choosing optimal
conditions for preparing nanopowders, we varied the
number of pulses per packet from 1 to 4 (Figs. 1, 2).
The energy and the peak power of a pulse were varied
by varying the pumping pulse energy. Under these con-
ditions, the peak power density of the radiation varied
from 1 to 5.2 MW/cm2. The maximum output in nan-
opowder production, 20 g/h, was observed for 4-h con-
tinuous operation with a two-pulse packet (Fig. 2b) and
a maximal power density of 5.2 MW/cm2. This finding
is to some extent unexpected, since, according to [8],
optical breakdown is inevitable for such long pulses
with power densities exceeding 2 × 106 W/cm2.

RESULTS AND DISCUSSION

For all the compositions studied, the output was 15–
20 g/h and the energy consumption, 40–30 (W h)/g.
These values are very close to those obtained in [3].
SICS      Vol. 47      No. 11      2002
Bearing in mind that the energy required for ZrO2 evap-
oration is about 2.7 (W h)/g, we conclude that our
results and those obtained in [3] indicate the low effi-
ciency of using the radiation energy. Therefore, it is
necessary to find reasons for such high losses and ways
to reduce them.

The analyses of the powders showed that they are
weakly agglomerated and have two fractions with
greatly differing sizes. The first fraction (Fig. 4) con-
sists of spherical grains with sizes from 0.2 to 2.0 µm
and accounts for 3–7 wt %. Presumably, it forms by
splashing the liquid phase, since the composition of
these grains either is close to that of the raw material or
is enriched by the component with a higher point of
evaporation (Y2O3), while the other fraction, nanofrac-
tion, always has a deficiency of this component com-
pared with the raw material (Table 1). The coarser frac-
tion sometimes contains shapeless grains of size to
10 µm (possibly, target fragments).

From the grain size distribution (Fig. 5b) in the frac-
tion remaining in the suspension (Fig. 5a), it follows
that 98% of grains have sizes <40 nm and only 0.25%
of grains have a size from 65 to 100 nm. The latter
grains are nearly spherical and slightly faceted.

Upon sedimentation, the grain specific surface usu-
ally decreases by 10%, which indicates that the pow-
ders are slightly agglomerated. However, after the sed-
imentation, the powders have a bulk weight that is one
order of magnitude higher, becoming more producible
for subsequent applications.

The study of the phase composition and structure of
the YSZ powders (Table 1) showed that they are single-
phase and their averaged lattice parameter is well
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Table 1

No. Raw material for target preparation Powder after sedimentation

1 Powder mixture: ZrO2, S = 20 m2/g;
3.1Y2O3, S = 4.5 m2/g

2.8YSZ: S = 68 m2/g; T: a = 5.106 and c = 5.1638 Å,
grain size D = 19 nm, weight of volatiles m(V) = 2.7 wt %.
Sediment 3.4YSZ: T: a = 5.1084 and c = 5.1674; D =  26 nm.
6% of M phase. Melted surface layer of target 5.2YSZ

2 Powder mixture: ZrO2, S = 20 m2/g, T = 45
and M = 55 wt %; 4.5Y2O3, S = 4.5 m2/g

4.15YSZ: S = 64.4 m2/g, T: a = 5.115 and c = 5.161 Å,
D = 17 nm, m(V) = 2.6 wt %.
Sediment 4.35YSZ; C – a = 5.13 Å, D = 25 nm.
7% of M phase.

3 Powder mixture: ZrO2, S = 51 m2/g,  T = 60
and M = 40 wt %; 9.1Y2O3, S = 4.5 m2/g

8.6YSZ: S = 86 m2/g; C – a = 5.1405 Å
D = 17 nm, m(V) = 2.4 wt %.
Sediment 8.9YSZ:  C – a = 5.144 Å, D = 25 nm.
7% of M phase

4 Powder 10.15YSZ, S = 6.1 m2/g,
C – a = 5.1448E

9.85YSZ: S = 79 m2/g, C – a = 5.1459 Å,
D = 18 nm, m(V) = 2.8 wt %.
Sediment 10.4YSZ: C – a = 5.15 Å, D = 41 nm

Note: In raw material mixtures, the mole percentage of Y2O3 powder is indicated. M, T, and C stand for monoclinic, tetragonal, and cubic
lattice, respectively.

Table 2

Target composition Target material Powder after sedimentation

Powder mixture
A40 + 1.65YSZ60

Al2O3: S = 74 m2/g; γ ≈ 20 wt %;
δ ≈ 80 wt % 1.65YSZ: S = 7.76 m2/g.
M = 58 and T = 42 wt %.
 Grain size D = 70 nm.

A41.1 + 1.45YSZ58.9, S = 80.6 m2/g, m(V) = 4.9 wt %.
Composition and structure:
1.45YSZ: T—31 wt %: a = 5.095 and c = 5.156E, D = 11 nm.
K—28 wt %: a = 4.924 Å, D = 6 nm.
γ = Al2O3—20 wt %, D = 10 nm.
Amorphous Al2O3—21 wt %.

Powder mixture
A85 + 1.65YSZ15

" A88.8 + 1.15YSZ11.2, S = 86 m2/g, m(V) = 4.8 wt %.
Preliminary composition and structure:
cubic and tetragonal 1.15YSZ and γ-Al2O3, amorphous Al2O3; 
diffraction pattern interpretation is being continued
described by a straight line (Fig. 6) whose initial por-
tion coincides with data for pure ZrO2 [9] obtained by
the plasma–chemical method and containing 90% of
the tetragonal phase. Our data for ZrO2 nanopowders
obtained by electrical explosion and containing 55 to
65 wt % of the tetragonal phase [10] fall in the range
shown in Fig. 6.

The study of the elemental composition of the pow-
der mixtures (Table 2) suggests that a decrease in the
high-temperature component content in these samples,
prepared by coevaporation, is much more significant
than in the YSZ powders. This decrease becomes more
pronounced as the content of the low-temperature com-
ponent (Al2O3, point of evaporation Te = 3800 K, melt-
ing point Tm = 2320 K) grows. For example, in mixture
1, the YSZ content decreased by ≈2% and the Y2O3 con-
tent in YSZ, by 12%. In mixture 2, the corresponding
values are 25 and 30%, respectively. In other words, the
initial equality of the component volumes (mixture 1)
and weights (mixture 2) in the targets is violated in the
powders. The phase composition of the powders also
turned out to be unusual. For example, in mixture 1,
about 40 wt % of 1.45YSZ is in the cubic phase. More-
over, the lattice parameter of both the cubic and the tet-
ragonal phases is much smaller than could be expected
from the concentration dependence (Fig. 6). The mon-
oclinic phase is completely absent.

It can be proposed that in the liquid state some
amount of Al2O3 dissolves in YSZ, forming the solid
solution. Assuming that the YSZ lattice parameter var-
ies linearly from the value 5.123 Å for pure 1.45YSZ
according to the zirconium-to-aluminum atomic radius
ratio (≈1.2), one can estimate the amount of Al2O3 dis-
solved in the YSZ lattice. These estimates show that the
tetragonal phase occupies ≈0.7 wt % and the cubic
phase, ≈19.4 wt % Al2O3. From the diffraction patterns,
it also follows that Al2O3 is partially in the amorphous
state. If it is assumed that 1.45YSZ is entirely crystal-
line, the amount of the amorphous Al2O3 in the power
considered is ≈21 wt %.

The diffraction pattern for the A88.8 + 1.15YSZ11.1
powder was still harder to interpret, because the line
asymmetry and the background level were very high. It
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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Fig. 5. (a) Typical micrograph of the powder fraction from
the suspension and (b) grain size distribution.

5.110

20 4 6 8 10
4.927

5.120

5.130

5.140

a, Å

Y2O3, mol %

Fig. 6. YSZ lattice parameter vs. Y2O3 content: (n) our data
for the YSZ powder, (d) published data for ZrO2 with
90 wt % of the tetragonal phase, (+) tetragonal phase of the
A40 + 1.45YSZ mixture, and (h) cubic phase of the A40 +
1.45YSZ mixture.
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is only clear that an increase in the Al2O3 content does
not increase the fraction of the cubic modification rela-
tive to the tetragonal one in the powder after laser syn-
thesis. However, upon sedimentation, a significant frac-
tion of the powder in the tetragonal phase precipitates.
The high asymmetry of the diffraction lines, especially
for the tetragonal phase, leads to an error in determin-
ing the weight composition of the phases and grain size.
This, and also the fact that the YSZ tetragonal phase,
which has a grain size of 6 nm, almost completely pre-
cipitated, lead us to suggest that YSZ tetragonal grains
are covered by aluminum oxide and seem to have a
greater size. That is why they precipitate upon sedimen-
tation.

Thus, the above data lead us to conclude that the
powders prepared in this work are of interest for further
investigating their structure, which depends on the
Al2O3/YSZ ratio in the starting mixture.

CONCLUSIONS

(1) A pulsed CO2 laser makes it possible to decrease
fourfold the grain size in air under normal conditions.
The power consumption is no higher than the lowest
power consumption observed for cw lasers [1].

(2) The efficiency of using the radiation for prepar-
ing nanopowders is less than 10%. This parameter can
be improved. The output can also be increased even at
the same mean power by shrinking the radiation pulses
and increasing the pulse repetition rate.

(3) A method and a setup for preparing pure nanop-
owders of complex composition with a narrow grain
size distribution were developed. Targets can be made
of coarser grain powders of both available chemical
compounds and mechanical mixtures of the compo-
nents. To obtain a desired composition, it is necessary
to take into account that in the powder, the content of a
component with a higher point of evaporation is lower
than in the raw material.

(4) A powder prepared by evaporating targets made
of YSZ + Al2O3 mixtures contains YSZ crystallites with
a lattice parameter that is much smaller (by ≈4%) than
in pure YSZ of the same composition. This decrease in
the lattice parameter is likely to be due to the formation
of the Al2O3–YSZ solid solution.
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Abstract—Modified equations for coupled modes are used to develop a theory of longitudinal resonant mode
filters. Theoretical and experimental results are compared. The design of a hybrid SAW-resonator filter where
both longitudinal resonant modes and resonant modes of a ladder structure are used is proposed. This design
provides enhanced out-of-band suppression. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Due to the rapid advance in mobile communications
in recent years, great interest has arisen in filters on
SAW resonators. The main advantage of these filters is
small insertion losses (1–4 dB) at a reasonable out-of-
band suppression (25–60 dB). These properties make
these filters promising for communications systems, in
particular, for cellular phones. Most cellular phones,
irrespective of the standard they use (including GSM,
PCS, PCN, etc.), incorporate frequency-selective ele-
ments implemented as SAW resonant filters. The basic
types of SAW resonant filters are SAW-resonator ladder
filters [1], NCRF filters (based on transverse resonant
modes) [2], and DMSF filters (based on longitudinal
resonant modes) [3]. Each of them has advantages and
disadvantages of its own. The main disadvantage of a
ladder filter is its relatively low out-of-band suppres-
sion when the frequency is offset from the center fre-
quency by several bandwidths. Filters on transverse
resonant modes can only be made on materials with a
low electromechanical coupling coefficient and there-
fore have a narrow relative bandwidth (no more than
0.15%). Also, NCRF filters require matching elements.
The transfer function of filters on longitudinal resonant
modes exhibits a shoulder (at a level of –10…–15 dB in
filters with a two-pole input admittance) on its high-fre-
quency slope. Therefore, these filters must include two
or three sections connected in series, and the number of
poles in their input admittance increases to four or six,
respectively.

A technique for decreasing the shoulder level in the
DMSF filter transfer function by connecting a capaci-
tive element between the input and output of the filter
has been proposed and experimentally verified in [4].
An approximate theoretical analysis of such a filter and
a comparison between the theoretical and experimental
results were reported in [5]. However, this technique
not only decreases the shoulder level but also degrades
the overall out-of-band suppression.
1063-7842/02/4711- $22.00 © 21427
In this paper, the modified equations for coupled
modes [1] are used to construct a theory of filters oper-
ating with longitudinal resonant modes. Theoretical
results are compared with experimental data. A topo-
logical method is proposed to remove the shoulder in
the DMSF filter transfer function by using an SAW-res-
onator ladder filter on the same substrate instead of the
second section of the filter.

MODIFIED COM METHOD

The conventional COM theory (see, e.g., [6]), which
derives and solves inhomogeneous differential equa-
tions, involves too complex a procedure for SAW
device analysis. In the framework of this theory, it is
difficult to include such factors as the variable period of
the structure, apodization, and nonuniform charge dis-
tribution over the electrodes. All these factors are easy
to take into account with the modified COM method,
which deals with an elementary unit of the structure (an
electrode of the interdigital transducer (IDT) or of the
reflecting structure). This method also allows for the
use of more complex models of the structure. The
parameters of the SAW structure component (the IDT,
reflecting structure, or their arbitrary combination) are
calculated by multiplying the P matrices of individual
electrodes (as is usually done in the well-known theory
of two-port networks with scattering matrices).

Consider an SAW structure in the form of arbitrarily
spaced alternating-polarity electrodes overlapping each
other. Assume that the source of a signal with an
amplitude U0 is on the left. Consider the Kth electrode
of the IDT (Fig. 1a). Let R(Z, ω) and S(Z, ω) be two
coupled plane waves with a wave number κ propagat-
ing through the IDT in the positive and negative Z
directions, respectively. We write these homogeneous
plane waves as

(1)R Z ω,( ) R ω( ) jκZ–( ),exp=
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Kth electrode of an IDT.
(2)

where R(ω) and S(ω) are the complex amplitudes of the
waves.

Let a wave incident on the Kth electrode from the
left be RK(R, ω) and that from the right, SK + 1(Z, ω).
Then, with allowance for reflection, transmission, and
transformation with a coefficient ξK, the complex
amplitudes of the transmitted waves are given by

(3)

(4)

where rK is the complex coefficient of reflection from
the Kth electrode, κE is the SAW effective wave num-
ber, κ0 = 2π/pK, pK = ZK + 1 – ZK, ξK is the SAW transfor-
mation coefficient at the Kth electrode, η1K = W1K/W0,
η2K = W2K/W0, W0 is the maximal aperture, W1K is the
overlap of adjacent electrodes, and W2K = W0 if dead
electrodes are used and W2K = W1K otherwise.

The phase factors by the terms responsible for wave
reflection (transformation) define the phase advance
within the interval between the reflection (transforma-
tion) center and the respective boundary: ZK for SK(ω)
and ZK + 1 for RK(ω). The SAW reflection (transforma-
tion) center is assumed to be at the electrode center. We
calculate the effective wave number as κE = 2π/λE =
ω/[V0 + LK(VM – V0)/pK] – jα, where V0 is the SAW
velocity on the free surface, VM is the SAW velocity
under the metallized surface, and α is the SAW total
loss in the electrode structure per unit length.

The variation of the current in the IDT conductor is
due to the transformation of the forward and backward

R Z ω,( ) S ω( ) + jκZ( ),exp=

SK ω( ) rKη1K j κE κ0–( )pK–[ ] RK ω( )exp=

+ η1K 1 rK
2–( )1/2

j κE κ0–( )pK ]SK 1+ ω( )–(exp

+ ξK ω( )η2K j κE κ0–( )pK/2–[ ] U0,exp

RK 1+ ω( ) = η1K 1 rK
2–( )1/2

j κE κ0–( )pK–[ ] RK ω( )exp

+ rKη1K j κE κ0–( )pK ]SK 1+ ω( )–[exp

+ ξK ω( )η2K j κE κ0–( )pK/2–[ ] U0,exp
waves and the voltage drop across the electrode capac-
itance:

(5)

Consider the terms associated with SAW transfor-
mation on the IDT electrode (Fig. 1b) with regard for
the fact that the excitation is distributed. We assume
that the efficiencies of the direct and inverse transfor-
mations are equal, i.e., that the transformation is recip-
rocal. Let the current distribution J(Z) over the IDT
electrode surface be given. Assume that the mecha-
nisms of SAW transformation by a small element ∆ZK

of the electrode and by the electrode as a whole are the
same. Then, adding all the contributions to SAW trans-
formation over the electrode width relative to its center
ZC and passing to the limit ∆ZK  0, we obtain

(6)

where Ga is the radiation acoustic admittance at the
synchronism frequency (see, e.g., [6]).

The self-consistent analysis of the current distribu-
tion J(Z) over the electrode surface, i.e., the analysis
with allowance for edge effects, finite IDT length, and
back response of the piezoelectric material, is given in
our earlier paper [7]. Relationships (3)–(5) can be writ-
ten in matrix form:

(7)

Now, the P matrix of the IDT as a whole can be
found as the product of P matrices for each of the elec-
trodes.

∆IK ω( ) IK ω( ) IK 1+ ω( )–=

= 2ξK ω( ) j κE κ0–( )pK/2–[ ] RK ω( )exp

+ 2ξK ω( ) j κE κ0–( )pK/2–[ ] SK ω( )exp

+ jω C2/2( )U0.

ξK Ga J Z( ) j ω/VM κ0–( )Z–[ ]exp Z ,d

LK /2–

LK /2

∫=

SK ω( )
RK 1+ ω( )
∆IK ω( )

 = 
P 1 1,( ) P 1 2,( ) P 1 3,( )
P 2 2,( ) P 2 2,( ) P 2 3,( )
P 3 1,( ) P 3 2,( ) P 3 3,( )

RK ω( )
SK 1+ ω( )

U0

.
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Applying the system of equations (3)–(5) with arbi-
trary coefficients to two series-connected SAW struc-
tures, we can easily obtain the components of the
resultant P matrix:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

where P0 = 1 – P(2)(1, 1)P(1)(2, 2) and the superscripts r,
1, and 2 refer to the resultant P matrix, the P matrix of
the left-hand SAW structure, and the P matrix of the
right-hand SAW structure, respectively. Here, a single
electrode or group of electrodes with a known P matrix
can be viewed as an SAW structure.

The procedure for calculating the components of the
SAW structure’s P matrix as the product of the corre-
sponding components in accordance with relationships
(8)–(16) can symbolically be written as

(17)

where N is the number of the last electrode in the SAW
structure and the function {Pn(l', m')} implies the
consecutive calculation of the products of the matrix
components according to (8)–(16).

The above relationships allow one to calculate the
input admittance of the IDT (as a part of a filter or res-
onator) with arbitrarily varying electrode spacings and
widths with regard for the actual current (charge) distri-

P r( ) 1 1,( ) P 1( ) 1 1,( )=

+ P 1( ) 1 2,( )P 2( ) 1 1,( )P 1( ) 2 1,( )/P0;

P r( ) 1 2,( ) P 1( ) 1 2,( )P 2( ) 1 2,( )/P0;=

P r( ) 1 3,( ) P 1( ) 1 3,( ) P 1( ) 1 2,( ) P 2( ) 1 3,( )[+=

+ P 2( ) 1 1,( )P 1( ) 2 3,( ) ] /P0;

P r( ) 2 1,( ) P 1( ) 2 1,( )P 2( ) 2 1,( )/P0;=

P r( ) 2 2,( )

=  P 2( ) 2 2,( ) P 2( ) 2 1,( )P 1( ) 2 2,( )P 2( ) 1 2,( )/P0;+

P r( ) 2 3,( ) P 2( ) 2 3,( ) P 2( ) 2 1,( )/P 1( ) 2 3,( )+=

+ P 2( ) 1 3,( )P 1( ) 2 2,( ) ] /P0;

P r( ) 3 1,( ) P 1( ) 3 1,( ) P 1( ) 2 1,( ) P 1( ) 3 1,( )[+=

+ P 2( ) 1 1,( )P 1( ) 3 2,( ) ] /P0;

P r( ) 3 2,( ) P 1( ) 3 2,( ) P 2( ) 1 2,( ) P 1( ) 3 2,( )[+=

+ P 1( ) 2 2,( )P 2( ) 3 1,( ) ] /P0;

P r( ) 3 3,( ) P 1( ) 3 3,( ) P 2( ) 3 3,( )+=

+ P 1( ) 3 2,( ) P 2( ) 1 3,( ) P 2( ) 1 1,( )P 1( ) 2 3,( )+[ ]{

+ P 2( ) 3 1,( ) P 1( ) 2 3,( ) P 1( ) 2 2,( )P2 1 3,( )+[ ] } /P0,

P l m,( ) F Pn l' m',( ){ } ,
n 1=

N

∏+ --

F--
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bution over the electrode surface. Note that the IDT
input admittance is defined by the element P(3, 3) of the
resultant P matrix.

ANALYSIS OF FILTERS BASED 
ON LONGITUDINAL RESONANT MODES 

BY THE MODIFIED COM METHOD

The configuration of a DMSF filter [3] is illustrated
in Fig. 2. The filter has one input transducer ITD-A and
two output transducers IDT-B and IDT-C connected in
parallel. Note that the filter can also use one output
transducer instead of two. To provide the optimal exci-
tation of the resonance modes in the resonator, the IDT-
B and IDT-C transducers are completed with reflecting
arrays RA-B and RA-C at their edges.

We will analyze the DMSF filter by the modified
COM method. The acoustoelectric equivalent circuit of
the DMSF filter is constructed by representing each of
the IDTs as a device with two electrical and four acous-
tic inputs (outputs), as shown in Fig. 3. The potentials
UA, UB, and UC are applied to the transducers IDT-A,
IDT-B, and IDT-C, through which the currents IA, IB,
and IC, respectively, flow. Acoustic waves with com-
plex amplitudes RA1, RB1, and RC1 are incident on the
transducers IDT-A, IDT-B, and IDT-C from the left.
The complex amplitudes of the respective reflected
acoustic waves are SA1, SB1, and SC1. The complex
amplitudes of waves incident from the right are SB2,
SA2, and SC2; the complex amplitudes of the respective
reflected waves are RB2, RA2, and RC2.

Writing equations like Eqs. (3)–(5) for the Kth elec-
trode of the IDT-A and calculating the products of the
matrix components according to (8)–(16), we find the
components of the matrix PA for the IDT-A transducer:

(18)

The elements of the matrices PB and PC for the
transducers IDT-B and IDT-C, respectively, will be cal-
culated with regard for the reflecting arrays RA-B and
RA-C located on the left and right. Let us denote the

SA1 ω( )

RA2 ω( )

IA ω( )

 = 
PA 1 1,( ) PA 1 2,( ) PA 1 3,( )

PA 2 2,( ) PA 2 2,( ) PA 2 3,( )

PA 3 1,( ) PA 3 2,( ) PA 3 3,( )

RA1 ω( )

SA2 ω( )

UA

.

RA-B
IDT-B IDT-A IDT-C

RA-C

Input 1

Output 1 Output 2

Fig. 2. Layout of the filter on longitudinal resonant modes.
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Fig. 3. Equivalent acoustoelectric circuit of the DMSF filter transducers.
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Fig. 4. Equivalent acoustoelectric circuit of a DMSF filter.
IDT-B transducer with the reflecting array RA-B as
IDT-RB and the IDT-C transducer with the reflecting
array RA-C as IDT-RC. The principle of finding the
resultant P matrices for the IDT-RB and IDT-RC trans-
ducers is illustrated in Fig. 3. When calculating the
products of the matrix components according to formu-
las (8)–(16), we take into account that, for the reflecting
arrays, ξK = 0, U = 0, and C2 = 0. Hence, the matrix ele-
ments P(1, 3), P(2, 3), P(3, 1), P(3, 2), and P(3, 3) equal
zero.

It should also be noted that the P matrix of the gap
between the IDT and the reflecting array or between
two IDTs can be found from formulas (3)–(5) with ξK =
0, U0 = 0, C2 = 0, rK = 0, and WK = 0. In this case, only
the elements P(1, 2) and P(2, 1) of the P matrix will be
nonzero. From Fig. 3, it is clear that RRB1 =
RRB2exp(−jκd), SRB2 = SRB1exp( jκd), RRC1 =
RRC2exp(−jκd), and SRC2 = SRC1exp( jκd), where d is
the spacing between the reflecting array and the IDT.
Then, the components of the PBR matrix, which
describes the IDT-B transducer with the reflecting array
RA-B, can be written as

(19)

SB1 ω( )

RB2 ω( )

IB ω( )

 = 
PBR 1 1,( ) PBR 1 2,( ) PBR 1 3,( )

PBR 2 2,( ) PBR 2 2,( ) PBR 2 3,( )

PBR 3 1,( ) PBR 3 2,( ) PBR 3 3,( )

RB1 ω( )

SB2 ω( )

UB

.

The components of the PCR matrix, which describes
the IDT-C transducer with the reflecting array RA-C,
can be calculated in a similar manner:

(20)

With the above transformations taken into account,
the equivalent circuit of an DMSF filter can finally be
represented as shown in Fig. 4.

Equations (18)–(20), which correspond to the
equivalent acoustoelectrical circuit of Fig. 4, describe
the complex amplitudes of the incident and reflected
waves, as well as the complex amplitudes of the cur-
rents that flow through the transducers. Note that RB1 =
0, SC2 = 0, RA1 = RB2exp(–jκd1), SB2 = SA1exp( jκd1),
RC1 = RA2exp(–jκd1), and SA2 = SC1exp( jκd1), where d1
is the spacing between the IDT-A and IDT-BR and d2 is
that between the IDT-A and IDT-CR.

Solving Eqs. (18)–(20) for unknown currents, one
obtains

(21)

SC2 ω( )

RC1 ω( )

IC ω( )

 =  
PCR 1 1,( ) PCR 1 2,( ) PCR 1 3,( )

PCR 2 2,( ) PCR 2 2,( ) PCR 2 3,( )

PCR 3 1,( ) PCR 3 2,( ) PCR 3 3,( )

RC2 ω( )

SC1 ω( )

UC

.

IA UAYA UBYAB UCYAC+ +=

IB UAYBA UBYB UCYBC+ +=

IC UAYCA UBYCB UCYC+ += 
 
 
 
 

,
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where YA, YAB, YAC, YBA, YB, YBC, YCA, YCB, and YC have
the meaning of admittances and can be found from
Eqs. (18)–(20).

The equivalent electric circuit of the filter that corre-
sponds to the system of equations (21) is shown in
Fig. 5. Using the equivalent circuit and the admittances
that enter into system (21), one can calculate the filter’s
S parameters.

The filter of configuration shown in Fig. 2 and the
equivalent circuit in Fig. 5 provide a low out-of-band
suppression (about –30 dB at a shoulder level of
−10…–15 dB); therefore, in applications, one should
use no less than two such sections connected in series.

IMPLEMENTATION OF THE DMSF FILTER

In order to experimentally verify the theory pro-
posed above, we designed and fabricated a filter with a
center frequency of 95.5 MHz and a bandwidth of
3.5 MHz. The equivalent electrical circuit of the filter
with two sections connected in series is shown in Fig. 6.
Note that the filter’s input admittance has four poles.

In accordance with the bandwidth specified, 36°
LiTaO3 was chosen as the substrate material [1]. The
basic design parameters of the filter were as follows:
the IDT aperture was 45λ0; the half-periods of the
transducers IDT-A, IDT-B, and IDT-C were 10.3 µm;
and the transducers IDT-A, IDT-B, and IDT-C and the
reflecting arrays RA-B and RA-C consisted of 39, 27,
27, 130, and 90 electrodes, respectively. The electrodes
of the transducers and the reflecting arrays represented
four-layer structures. First, a 0.01-µm-thick vanadium
sublayer was applied directly on the piezoelectric sub-
strate by vacuum magnetron deposition. Then, a
1.15-µm-thick aluminum layer, 0.01-µm-thick vana-
dium sublayer, and a 0.5-µm-thick copper layer were
consecutively deposited. When calculating the filter
frequency responses, we used the function rK(h) and the
electromechanical coupling coefficient squared k2(h) (it
is needed when calculating Ga), which were taken from
[8]. The loss α in the structure was assumed to be equal
to 0.005 dB/λ.

The transfer function (S21) of the filter built into a
50-Ω transmission line that was calculated by the above
method is plotted in Fig. 7a; that measured by a K4-37
instrument, in Fig. 7b. The theoretical minimal losses
within the passband are 0.8 dB, and the measured value
is 2.5 dB. The difference in the theoretical and mea-
sured minimal losses is apparently because our calcula-
tions neglected the ohmic loss in the electrodes. The
irregular run of the experimental function near the
shoulder is due to the inaccurate (within 1.5–2.0 µm)
positioning of the photomask features.
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
A HYBRID DMSF–LADDER FILTER

A disadvantage of the DMSF filter is the shoulder at
a level of about –30 dB on the high-frequency slope of
its transfer function. A method has been proposed [4, 5]
to mitigate this disadvantage by connecting a capacitive
element between the input and output. The introduction
of capacitive feedback, however, not only enhances the
out-of-band suppression in the shoulder region but also
degrades the overall out-of-band suppression outside
the shoulder. Below, we propose a topological method
for removing the shoulder by replacing the second sec-
tion of the DMSF filter by an SAW-resonator-based
ladder filter. The total number of poles in the input
admittance remains equal to four. Figure 8a illustrates
the layout of a hybrid DMSF–ladder filter, and Fig. 8b
shows its equivalent electric circuit. As it has the same
number of poles in its input admittance as the filters
proposed earlier [3–5], the hybrid filter exhibits a
higher out-of-band suppression, in particular, in the

Output 1

YBC

YAC

Output 2

Input 1

YAB

YB YA YC

Fig. 5. Equivalent electric circuit of a DMSF filter.

YBCU

YABU YACU

YBU YAU YCU

YBD YAD YCD

YABD YACD

Input

Output

YBCD

Fig. 6. Equivalent electric circuit of a two-section DMSF
filter used in GSM devices.
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Fig. 7. (a) Calculated and (b) measured transfer functions of the DMSF filter.
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Fig. 8. Layout and equivalent electric circuit of the hybrid DMSF–ladder filter with enhanced out-of-band suppression.
shoulder region. The geometry of the resonators of the
ladder filter was chosen by the ladder filter synthesis
method proposed in [1]. To obtain the optimal fre-
quency response of the hybrid filter, the passband of the
ladder filter must coincide with that of one DMSF sec-
tion and the input (output) impedance of the ladder fil-
ter must be matched to the input (output) impedance of
the DMSF filter.

As a piezoelectric material, 36° LiTaO3 was chosen.
The basic geometrical parameters of the DMSF stage
were as follows: the aperture was 65λ0; the half-periods
of the IDT-A, IDT-B, and IDT-C transducers were
1.0 µm; and the transducers IDT-A, IDT-B, and IDT-C
and reflecting arrays RA-B and RA-C consisted of 39,
27, 27, 125, and 85 electrodes, respectively. The elec-
trodes were made of a 0.34-µm-thick aluminum film.
The geometrical parameters of resonators of the ladder
section of the hybrid filter were as follows: the trans-
ducer of the resonator from the parallel arm (RP) had a
period 0.975 times that of the IDT-A, consisted of 151
electrodes, and had an aperture of 41λ0. The transducer
of the resonator from the series arm (RS) had a period
1.018 times that of the IDT-A, consisted of 157 elec-
trodes, and had an aperture of 21λ0. The reflecting
arrays of the RP and RS resonators had 120 electrodes.
The ratio between the reflecting array period and the
transducer half-period was 1.015 for the RP resonator
and 0.985 for the RS resonator. The losses α in the
structure were assumed to be 0.02 dB/λ. Note that the
whole structure was integrated on a single substrate.

Figure 9 plots the transfer functions of a 947-MHz
filter (curve 1) commonly used in GSM devices, which
consists of two sections like those in Fig. 2 connected
in series. Curve 2 shows a similar filter in which one of
the sections is removed and the input and output of the
remaining section are completed with T-section SAW-
resonator-based ladder filters. Both curves were calcu-
lated by the above method. As we see from Fig. 9, the
shoulder suppression is improved by 20 dB. The out-of-
band suppression in the neighborhood of the passband
on its low-frequency side is also improved.
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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Similar results can be obtained with Π-section lad-
der filters instead of T-section ones or with a combina-
tion of the two.

CONCLUSION

Owing to the combination of the properties of ladder
filters and filters on longitudinal resonant modes, a
hybrid SAW-resonator-based filter proposed in this
paper features good out-of-band suppression (higher
than 50 dB) throughout the frequency range: both near
the passband and at a significant offset from the center
frequency.

947797 1097
Frequency, MHz

–60

–50

–40

–30

–20

–10
S21, dB

1
2

Fig. 9. Transfer function of (1) a usual DMSF filter
employed in GSM devices and (2) the hybrid DMSF--lad-
der filter illustrated in Fig. 8
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The filter on longitudinal resonant modes incorpo-
rated into the hybrid filter may consist of both two and
three IDTs.

The ladder part of the hybrid filter can employ sec-
tions of various types. For optimal design parameters,
the difference in the passband insertion loss ripple and
in the voltage standing-wave ratio is insignificant.
However, according to our analysis, the optimum lad-
der section at the input and output of the DMSF filter is
a T section.
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Abstract—A theory is developed for the one-dimensional nonlinear multimode simulation of a Cerenkov
maser of special configuration (antenna–amplifier [1, 2]) where a tubular relativistic electron beam propagates
along a circular waveguide with a dielectric rod. The operating mode is the fundamental azimuthally asymmet-
ric HE11 mode. Harmonics at the input signal frequency can be amplified because they fall into the amplification
bands for higher modes. At certain parameters, the output power at the second or third harmonic may consi-
derably exceed that of the amplified signal at the fundamental frequency. The powers of output harmonics can
be efficiently controlled by varying the point of electron beam extraction from the interaction region, as well as
by varying the input frequency or by switching the polarization of the input signal from linear to circular. ©
2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Consider a relativistic electron beam propagating
along a surface-wave antenna. Then, an antenna feed
signal will be amplified because of Cerenkov interac-
tion. Such a hybrid of a surface-wave antenna and a
traveling-wave tube (TWT) is referred to as an
antenna–amplifier [1, 2]. In the case of a cylindrical
antenna–amplifier (Fig. 1), a tubular beam “flows
around” a dielectric rod antenna. The beam propagation
is provided by an external coaxial conductor, onto
which the beam is dumped with a guiding magnetic
field. The rf drive signal enters into the interaction
region through a feed waveguide, which, at the same
time, serves as the hollow cathode holder of the linear
induction accelerator (LIA) module. The outside of the
LIA cathode holder is at the ground potential; there-
fore, it can be directly connected to the waveguide out-
put of an rf drive source. The operating mode in this
system is the fundamental azimuthally asymmetric
HE11 mode, which is unusual for TWTs. In [1, 2], the
basic idea and attractive properties of the antenna–
amplifier design have been discussed and a linear the-
ory for the general case (without azimuthal symmetry)
has been developed. In this paper, an additional impor-
tant feature, namely, the multiplication of the input sig-
nal frequency, resulting from nonlinear analysis in the
multimode regime is reported.

Even from the earlier numerical solution of the dis-
persion relation for various eigenmodes of the system
[1, 2], one could see that frequencies that are multiples
of frequencies from the amplification band of the fun-
1063-7842/02/4711- $22.00 © 1434
damental HE11 mode may fall in the amplification
bands of higher modes. This implies that the following
mechanism of beam–electromagnetic field interaction
is possible. The input signal at the fundamental mode
induces a high-frequency (HF) current in the beam at a
frequency ω. The nonlinear interaction generates the
nth harmonic of the HF current, which excites a higher
mode of frequency nω. In consequence, the amplified
signal involves both the fundamental frequency and its
harmonics.

The effect of harmonic generation in wide-band
TWTs, where the amplification band exceeds an
octave, is well known [3, 4]. Recently, this effect has
been discussed as applied to plasma-filled TWTs and
relativistic BWOs [5]. In these cases, harmonic radia-
tion is considered as stray and its power is several
orders of magnitude lower than that at the fundamental
frequency. This, however, may not be the case for an

e
_

Fig. 1. Antenna–amplifier in the linear induction accelerator
module.
2002 MAIK “Nauka/Interperiodica”
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antenna–amplifier because of its specific operating
mode, namely, the asymmetric HE11 mode.

Indeed, the rate of growth of the field amplitude
along any slow-wave system excited by a monochro-
matic current of density j is proportional to the integral

dS over the system cross section [3], where 

is the field eigenfunction for an α mode. Hence, if the
HF current is induced by the field of a symmetric TM
mode, as occurs in conventional TWTs, none of azi-
muthally asymmetric modes is excited, because the
field eigenfunctions and the symmetric current are
orthogonal to each other. However, if the input signal is
represented by an asymmetric wave (the HE11 mode for
an antenna–amplifier), any azimuthal harmonic of the
HF current may appear in the beam in the large-signal
regime as a result of the nonlinearity. Therefore, in the
case of an antenna–amplifier, the spectrum of modes
that may interact with the beam is not restricted to a
family of modes with the same azimuthal index. In this
case, the beam coupling with higher modes at harmonic
frequencies may be essential because of the specific
difference in the radial distributions of the transverse
components of the HF field for the fundamental and
higher modes. The power transferred by the HE11 mode
is distributed over the whole cross section of the dielec-
tric rod, whereas in the case of higher modes, the power
is concentrated largely near the rod surface. Thus, the
longitudinal electric field near the beam for a higher
mode may be higher than that for a lowest one of the
same power. Calculations of the spatial instability
increment [1, 2] show that at certain parameters the
HE11 mode does not dominate over higher modes,
although the frequencies corresponding to instability
for other modes are substantially higher. In the large-
signal regime, this may result in the fact that the har-
monic power turns out to be of the same order of mag-
nitude or even higher than that at the fundamental fre-
quency.

Thus, in contrast to conventional wide-band TWTs,
the effect of multiplication of the input signal frequency
in an antenna–amplifier may be used to generate an out-
put signal with a spectrum of tunable-power harmonics.
In this paper, some aspects of such a control are studied.
Below, we present an approach allowing for the simu-
lation of the aforementioned processes and report the
results of calculation for the harmonic growth rates at
various system parameters.

BASIC EQUATIONS

We will use a set of equations that is similar to that
used in the nonlinear theory of TWTs [3] but involves
an arbitrary number of modes each of which is synchro-
nous to electrons at a certain frequency that is a multi-
ple of the fundamental frequency. This implies that to
each particle there must correspond an equation
describing the variation of its phase with respect to each

jEα
0*

S∫ Eα
0
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mode α involved in the interaction: Θα = nαωt –
k0α(nαω)z, where nα is the harmonic number and k0α is
the longitudinal wavenumber. If the beam is infinitely
thin, this equation can be written as

(1)

Here, u is the particle velocity; t0, the time instant the
particle enters into the interaction region; and ϕ, its azi-
muthal position. The ϕ dependence of the particle
motion and HF fields is another important feature of our
simulation. The excitation equation for a mode with an
azimuthal number lα can be represented in the form

(2)

where Eα is the complex amplitude of the longitudinal
electric field of the mode for a beam radius rb, the ratio
between the squared z component of the field Φα and
the power Pα characterizes mode–beam coupling, I is
the beam current, and Θ0α = nαωt0 is the particle initial
phase with respect to the mode. Eventually, a one-
dimensional motion equation disregarding the asyn-
chronous HF field of the space charge is written as

(3)

where e, m, and c are the charge and rest mass of an
electron and the velocity of light, respectively.

It is convenient to introduce dimensionless variables

(4)

as well as mismatch parameters and analogues to the
Pierce parameter for each mode:

(5)

Here, u0 is the electron initial velocity, γ is the corre-

sponding relativistic factor, and  is the Pierce param-
eter for the fundamental mode HE11.
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Assuming that ν0 ! 1, from (1)–(5) we finally find
the set of equations

(6)

The degeneracy of azimuthally asymmetric modes
is correctly taken into account by including modes with
both positive and negative azimuthal numbers in set (6).
In this case, various polarizations (linear, circular, or
elliptic) of the input signal field can be simulated by
imposing appropriate initial conditions.

The actual values of the mismatch and Pierce
parameters (5) for each mode involved in (6) are deter-
mined by numerically solving the dispersion relations
for the waveguide with a dielectric rod and by integrat-
ing the distribution of the Poynting vector over the sys-
tem cross section (see, e.g., [6]). In all the calculations
considered in the following section, an ensemble of
particles (48 × 48) is uniformly distributed over the
intervals (0, 2π) of azimuthal angles and initial phases
with respect to the HE11 mode (for the modes excited at
the harmonic frequencies, the initial phases are distrib-
uted between 0 and 2πnα. The initial velocities of all the
particles are set to be the same (ν = 0). The power Pα

dẼα
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Re Ẽαe
i– Θα lαϕ–( )

{ } .
α
∑=

0.20

0.15

0.10

0.05

0 15 30 45 60 75

1
2

3

2'
3'

z, cm

P/Pb

Fig. 2. Microwave power signal at the fundamental and
multiple frequencies: (1) fundamental frequency, HE11
mode; (2) second harmonic, TM01 mode; (2') second har-
monic, HE21 mode; (3) third harmonic, HE12 mode; and
(3') third harmonic, HE31 mode. The parameters are as fol-
lows: waveguide radius 2 cm, rod radius 1 cm, ε = 2.25,
beam–rod gap 2 mm, beam current 1.7 kA, and γ = 1.8. The
input power is ≈13 kW, and the frequency (≈9.4 GHz) cor-
responds to the zero mismatch of the HE11 mode (linear
polarization).
transferred by an α mode through a given cross section is

(7)

where Pb is the initial kinetic power of the beam.
In the case of asymmetric modes, the power is given

by the sum of the contributions from modes with posi-
tive and negative azimuthal numbers.

RESULTS AND DISCUSSION

As follows from the calculation of the dispersion for
various modes of a waveguide with a dielectric rod and
from the numerical solution of the dispersion relation
for a system with a beam [1, 2], the inclusion of four
modes at multiple frequencies in addition to the HE11
mode at the fundamental frequency is of significance
for multimode simulation. The second harmonic of the
HF current may excite the TM01 and HE21 modes; the
third one, the HE12 and HE31 modes. Therefore, the
simulation was performed with these five modes
involved in the interaction.

The effect of harmonic generation is obvious at such
system parameters when the HE11 mode does not dom-
inate over higher modes in terms of the instability
increment calculated in the framework of the linear the-
ory [1, 2]. Figure 2 shows the dependences of the pow-
ers of the five modes included on the longitudinal coor-
dinate. The geometric parameters, beam energy, and
input frequency correspond to the case when the beam
is in exact synchronism with the fundamental mode.
The structure of the input signal field is time-invariable
(linear polarization). Figure 2 also shows that the TM01
mode at the second harmonic and the HE12 mode at the
third harmonic compete with the fundamental HE11
mode.

Reasons for such a competition can be illustrated by
considering the particle ensemble in the phase space.
Figure 3 depicts the phase portrait of the ensemble with
the three high-power modes taken into account. The
longitudinal coordinate is chosen so as to provide max-
imum bunching. It is of importance that the harmonic
fields here are rather low; therefore, the beam dynamics
up to this coordinate is virtually defined only by the sig-
nal at the fundamental frequency. As is clearly seen, the
beam is bunched basically near two phases of the wave
with the input frequency (Fig. 3a), unlike conventional
TWTs. Indeed, the azimuthal structure of the input sig-
nal field was fixed in this experiment. This implies that
the whole ensemble can be divided into two equivalent
parts; i.e., each particle has its “twin” at the opposite
azimuth, which moves in the same HF field but is of
opposite sign. Therefore, bunches at the opposite azi-
muths form around the phases rotated by π with respect
to each other. At the same time, both bunches are in
phase with respect to the synchronous wave at the sec-
ond harmonic. Hence, Fig. 3b shows bunching largely

Pα

Pb
------

γ γ 1+( )
4

--------------------
C1

4

Cα
3

------ Ẽα
2
,=
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around one phase. In the case of the symmetric TM01
mode, it turns out that this phase slows-down all the
particles, whereas in the case of the asymmetric HE21
mode, which has almost the same phase velocity and an
even higher coupling with the beam, this phase slows-
down only that half of the ensemble covering the corre-
sponding azimuths. That is why the TM01 mode in this
case builds up faster than the HE21 one at the second
harmonic. For the third harmonic, the situation is more
complicated; however, similar arguments can be put
forward to explain the faster growth of the HE12 mode
compared with that of the HE31 mode. In addition, the
synchronism detuning for the HE31 mode is rather large
at such parameters.

Return now to Fig. 2. This figure can be viewed as
showing the dependences of the powers of the interact-
ing modes on the length of the interaction region. For a
beam propagating outside the rod, the point of beam
extraction from the interaction space can easily be con-
trolled by varying the length of the guiding magnetic
field. As follows from Fig. 2, the shift of the extraction
point within 20 cm considerably changes the output
spectrum. Indeed, at one length of the interaction
region, the fundamental frequency dominates. At
another length, the powers of the fundamental, second,
and third harmonics are approximately equal. At the
third frequency, the second harmonic dominates,
whereas the power at the fundamental frequency is the
lowest. Thus, not only frequency multiplication but also
the control of the powers of various harmonics at the
output of an antenna–amplifier are provided.

It is worth noting that the output spectrum can be
changed by varying the input frequency without chang-
ing the beam transport length. In the linear theory, the
amplification band for the HE11 mode is wider than
those for higher modes. Therefore, multiple frequen-
cies may not fall in the amplification bands of higher
modes if the mismatch from the fundamental frequency
is large. Figure 4 shows the results of calculation in this
case for a positive detuning. The maximum efficiency
and the associated longitudinal coordinate increase
compared with those in Fig. 2 (which is the well-known
behavior), whereas the harmonic powers decrease con-
siderably. The frequency dependences of the powers for
all the modes at a fixed interaction length are demon-
strated in Fig. 5. Here, the possibility of controlling the
harmonic contributions to the output signal by varying
the input frequency is clearly seen. The fundamental
frequency dominates over the harmonics both at posi-
tive and negative (however, with a substantially smaller
efficiency) detunings. Note that the input signal fre-
quency is easy to vary.

There is one more way to reduce the power levels at
multiple frequencies without varying either the interac-
tion length or the input frequency. It is possible because
the growth of the field at harmonics depends on
whether the input field structure is fixed or rotates azi-
muthally. In the case of a rotating structure (the circular
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
polarization of the input wave), the modes with azi-
muthal numbers that do not coincide with the harmonic
number do not grow at all. The result of simulation for
associated initial conditions is shown in Fig. 6. Indeed,
if the input signal is circularly polarized, all particles,
irrespective of their azimuthal position, are “equiva-
lent” on average. Therefore, they are bunched over the
same length but at different phases for different azi-
muths. In other words, a beam transforms into a helix
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Fig. 3. Configuration of the particle ensemble in the phase
space at z ≈ 36 cm. The parameters are the same as in Fig. 2.
The phases are shown with respect to the (a) HE11 mode
(fundamental frequency), (b) TM01 mode (second har-
monic), and (c) HE12 mode (third harmonic).
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Fig. 4. The same as in Fig. 2 for the input signal frequency
11.94 GHz.

Fig. 5. Microwave power in the cross section at z = 55 cm
as a function of the input frequency. The parameters and
notation are the same as in Fig. 2.

Fig. 6. The same as in Fig. 2 for the circularly polarized
input signal.
in the field of the input wave as a result of bunching.
Therefore, a wave that has the same phase angular
velocity as the fundamental frequency can grow at the
harmonic frequency. Such is the HE21 mode at the sec-
ond harmonic and the HE31 mode at the third one. Com-
paring Figs. 6 and 2, one sees that the input spectrum
can change if the initial polarization changes from lin-
ear to circular.

Note also that, along with the possibility of control-
ling the harmonic amplitudes in the output spectrum of
an antenna–amplifier, there is the possibilily of control-
ling the phases of harmonics. Calculations show that, if
the phase of an input wave changes by ∆Θ, the phase of
any mode involved in the interaction in a given cross
section of the interaction region changes by nα∆Θ
depending on the harmonic number.

To conclude, we note that intense harmonic genera-
tion is not an inherent property of an antenna–amplifier.
If the parameters of the beam and waveguide with a rod
are such that the HE11 mode dominates in the instability
spectrum of the system, the powers at multiple frequen-
cies are very low. This can be exemplified by the set of
parameters used in [1, 2], where the dominance of the
fundamental mode over higher ones in terms of the lin-
ear increment was demonstrated (waveguide radius
2 cm, rod radius 6 mm, ε = 5, beam–rod gap 4 mm,
beam current 1 kA, and γ = 1.4). At these parameters in
the amplification frequency range 9.5–9.9 GHz, the
power of the second harmonic is lower than that of the
fundamental one by at least 20 dB. In this case, the effi-
ciency of an antenna–amplifier is 30%.

CONCLUSION

One-dimensional nonlinear simulation of an
antenna–amplifier (a Cerenkov maser with a rod slow-
wave structure and the azimuthally asymmetric operat-
ing mode), which was performed in view of the possi-
bility of exciting higher modes, showed that the effect
of input signal frequency multiplication due to the gen-
eration of the second and third harmonics is feasible.
The possibilities of controlling the spectral distribution
of the output signal were studied. They open up new
ways for electronically tuning microwave devices.
Such devices, which allow for the variation of the har-
monic amplitudes in the radiation spectrum, could have
many applications. It would be of importance to con-
firm this effect by three-dimensional simulation.
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Abstract—By the method of helium thermal desorption from submicrocrystalline palladium presaturated in
the gaseous phase, the diffusion coefficient Deff and solubility coefficient Ceff of helium are measured in the
range P = 0–3 MPa and T = 293–508 K. The pressure dependence of Ceff flattens at high pressures. At low sat-
uration pressures, the temperature dependences of the diffusion and solubility coefficients may be divided into
(1) high-temperature (400–508 K) and (2) low-temperature (293–400 K) ranges described by the exponentials

D1, 2 = D0exp(– /kT) and C1, 2 = C0exp(– /kT). The energies of diffusion activation are  = 0.0036 ±

0.0015 eV and  = 0.33 ± 0.03 eV, and the solution energies are  = –0.025 ± 0.008 eV and  = 0.086 ±
0.008 eV in the low- and high-temperature ranges, respectively. Mechanisms behind the diffusion and solution
of helium are discussed. © 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The interaction of helium with metals usually
attracts interest in the context of reactor material
embrittlement (see, e.g., [1]). Most of the works are
devoted to the interaction of helium with native and
radiation-induced defects in metals, and they study
helium release from linearly heated samples presatu-
rated by helium via neutron or α particle irradiation or
tritium saturation. As a rule, associated techniques
imply the saturation of the samples by helium under
nonequilibrium conditions (the concentration of helium
is higher than the equilibrium value) and the perfor-
mance of measurements also under nonequilibrium
conditions (defect annealing). In the majority of cases,
this prevents the determination of the transport coeffi-
cients of helium in a metal for a particular diffusion or
solution mechanism.

Of interest are methods for measuring the diffusion
and solubility coefficients of helium in polycrystalline
metals. In this work, such measurements are carried out
at low temperatures on samples of submicrocrystalline
palladium, which is a basic component of membranes
used for the separation of hydrogen isotopes from each
other and from helium. Moreover, studying the proper-
ties of metals with a submicrocrystalline structure is of
independent interest.

EXPERIMENTAL SETUP AND TECHNIQUE

Samples used were made of 99.99%-pure submicro-
crystalline palladium produced under high plastic
1063-7842/02/4711- $22.00 © 21440
deformations up to the true logarithmic degree e = 7 by
torsion under a quasi-hydrostatic pressure with a
Bridgeman anvil [2].

The microstructure was examined with a JEM
2000EX transmission electron microscope (TEM).
According to the TEM data, the intense plastic defor-
mation of the samples resulted in a highly dispersed
imperfect structure with an average grain size of
150 nm. The density of lattice dislocations was ≈3 ×
1010 cm–2. The samples were plates with a thickness h =
(6.1 ± 0.3) × 10–3 cm, total geometrical surface area
2S = 2.5 ± 0.1 cm2, and weight m = 90.9 ± 0.1 mg.

The solubility and diffusion of helium in palladium
were studied in the experiment on helium thermal des-
orption [3] from samples presaturated in the helium
atmosphere at given saturation temperature T and pres-
sure P (Fig. 1). The experimental procedure was as fol-
lows. The sample was placed into saturation chamber 9,
which was evacuated to a high vacuum (<10–6 Pa) by
diffusion pump 13 with nitrogen trap 14. Then, the
chamber was filled with helium to a given pressure P
(which is indicated by manometer 8 to an accuracy of
0.05 MPa) and heated by oven 5 to a given temperature
T (which is kept constant with an accuracy of 0.1 K).
Our setup allowed for the saturation of the samples at
high pressures. By cooling volume 10 by liquid nitro-
gen and subsequently heating it to room temperature or
above, the pressure in the saturation chamber can be
raised to 40 MPa at a pressure in helium vessel 11 of
~10 MPa.
002 MAIK “Nauka/Interperiodica”
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The helium-saturated samples were quenched by
rapid cooling to room temperature and placed into mea-
suring chamber 4. The saturation time was determined
experimentally. With the sample inside, the measuring
chamber was evacuated to a high vacuum (<10–6 Pa)
and heated to the same temperature T; then, the desorp-
tion of helium from the sample was measured. Accord-
ing to our calculations, the loss of helium from the sam-
ple during quenching, chamber-to-chamber transporta-
tion, and heating to the working temperature was
negligibly small.

The kinetics of helium evolution from the sample
was studied with an MI-1201B mass spectrometer
operating in the quasi-static (with respect to helium)
regime of evacuation. Ions were detected by a second-
ary-emission multiplier [4] at a pressure in the measur-
ing chamber that was no higher than 10–6 Pa. When
studying the desorption of helium, the gas from the
measuring chamber was delivered into mass spectrom-
eter 6 portion by portion at regular intervals, with each
portion pumped off after the measurements. We
checked the residual helium pressure in the degassing
cell both before and after the desorption experiment.

The measuring system was calibrated by doubly
expanding a certain amount of the gas contained in
gauged volume V1 (3). The pressure in this volume was
determined by optical manometer 1 scaled from 0 to
1 torr [4].

The desorption curves were processed by solving
the second Fick equation for an infinite plate of thick-
ness h in the case of degassing into a vacuum (zero
boundary conditions) with the effective diffusion coef-
ficient Deff and the effective solubility Ceff. With these
assumptions, the total desorption flux of helium versus
the degassing time t should fit the dependence

(1)

To eliminate the effect of annealing under high-tem-
perature experimental conditions, we repeated the mea-
surements at low temperatures. The diffusion and solu-
bility coefficients were determined during heating and
cooling the samples.

Typical data obtained for the highest and lowest sat-
uration pressures and temperatures are plotted in Fig. 2.
Throughout the range of pressures and temperatures,
the time dependences of the flux logarithm are straight
lines within the accuracy of the analysis. Such a behav-
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ior corresponds to solution (1) at large times of desorp-
tion t > h2/(π2Deff) and suggests that we are dealing with
a single helium transport mechanism with the effective
parameters Ceff and Deff. Thus, the diffusion coefficient
can be determined from the slope of the dependences
ln(J) = f(t). The accuracy of Deff determination is 7%.

The solubility of helium in the palladium was found
for the completely degassed samples. The result is
accurate to within 10%.

RESULTS AND DISCUSSION

The solubility of helium in palladium was measured
as a function of the saturation pressure at seven differ-
ent temperatures. Three of these isotherms are shown in
Fig. 3. At all the temperatures, the dependence Ceff =
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Fig. 1. Experimental setup: (1) optical manometer,
(2) gauged volume V2, (3) gauged volume V1, (4) measur-
ing chamber, (5) ovens for heating the chambers, (6) MI-
1201B mass spectrometer, (7) ion-getter pump, (8) spring
gauge, (9) saturation chamber, (10) high-pressure chamber
with Dewar vessel, (11) gas cylinder, (12) magnetoioniza-
tion pressure transducer, (13) nitrogen trap, (14) diffusion
pump, (15) forevacuum container, (16) PMT-4M thermo-
couple converter, and (17) fore pump.
Parameters of helium transport (diffusion and solution) along the grain boundaries of submicrocrystalline Pd

No. ∆T, K Deff0, cm2 s–1 ED, eV Ceff0, cm–3/(105 Pa) ES, eV

1 293–400  × 10–9 0.0036 ± 0.0015  × 1015 –0.025 ± 0.008

2 400–508  × 10–5 0.33 ± 0.03  × 1016 0.086 ± 0.008

0.98–0.09
+1.1( ) 0.7–0.2

+0.31( )

1.1–0.5
+0.9( ) 1.5–0.3

+0.41( )



1442 ZHIGANOV et al.
22

2
21

23

24

25

26

27

4 6 8 100

1010

1011

1012

J, s–1lnJ

t, 103 s

1
2
3
4

Fig. 2. Typical time dependences of the helium desorption
flux at (1) T = 508 K, P = 25 MPa; (2) T = 508 K, P = 2 MPa;
(3) T = 293 K, P = 25 MPa; and (4) T = 293 K, P = 2 MPa.
The solid line is the approximation.

1

0

2

3

10 20 30

Ceff, 1016 cm–3

P, bar

1
2
3

Fig. 3. Solubility of helium vs. saturation pressure for the
saturation temperature T = (1) 387, (2) 433, and (3) 508 K.
The solid line is the approximation.
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Fig. 4. Temperature dependences of the diffusion coeffi-
cient Deff (P = 0.1–0.25 MPa) and solubility coefficient Ceff
(P = 0.1 MPa) at a low site occupation. The solid line is the
approximation.
f(P) has a plateau in accordance with the expression [4]

(2)

where C* is the concentration of sites being saturated
and Γ is a quantity that is only slightly dependent on
pressure.

Throughout the temperature range studied, C* =
(2.0 ± 0.2) × 1016 cm–3. The higher the temperature, the
shorter the plateau and the lower the pressure at which
the abrupt rise in the solubility starts.

At low saturation pressures, P = 103–105 Pa (a low
occupation of the sites), the temperature dependences
of the diffusion and solubility coefficients (Fig. 4) have
a clear-cut kink between low-temperature (293–400 K)
and high-temperature (400–508 K) sections, which are
characterized by the exponential dependences

(3)

The values of the preexponentials Deff0 and Ceff0, as
well as the activation energies of diffusion and solution

 and , are listed in the table.

Two typical curves Deff = f(P) shown in Fig. 5 for the
temperatures T = 403 K and T = 433 K can be divided
into three characteristic parts: the range of small pres-
sures, where the diffusion coefficient is independent of
the saturation pressure (i.e., of the occupation of the
sites) within the experimental accuracy; the transition
region of medium pressures, where Deff grows with
pressure; and the plateau, where Deff is again constant
and pressure independent.

According to our results, which are in line with data
provided by the electron–positron annihilation [5] and
magnetic susceptibility [6] methods, the palladium
samples studied feature a considerably higher concen-
tration of vacancies and vacancy clusters (6–12 vacan-
cies [5]) as compared to that in a usual Pd polycrystal.
A nearly twofold increase in the grain size was
observed after the annealing of the samples at 473 K
[6]. At this annealing temperature, the concentration of
the clusters becomes comparable to the detectability of
the technique [5], while the concentration of vacancies
remains constant up to ≈823 K [6].

The values of Deff and Ceff were found to be indepen-
dent of the annealing temperature up to 508 K and, con-
sequently, of the grain size. The position of the plateau
on the dependence Ceff = f(P) (i.e., the concentration of
the sites being saturated) is also the same for any tem-
perature from the range considered. Therefore, the
helium transport detected in the experiment takes place
mainly along the grain boundaries. As is evident from
curve 3 in Fig. 3, the concentration of sites that are sat-
urated by helium C* is temperature independent. We
assume that, in submicrocrystalline palladium, these

Ceff P( ) C*ΓP
1 ΓP+
----------------,=

Deff1 2, Deff0 E1 2,
D /kT–( ),exp=

Ceff1 2, Ceff0 E1 2,
S /kT–( ).exp=

E1 2,
S E1 2,

D
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are deformation-induced grain-boundary vacancies and
vacancy clusters that are stable against low-temperature
annealing.

Defects that fill up at low temperatures have a low
solution energy. For the samples under study, such
defects may be unannealed vacancy clusters at grain
boundaries. The energy of helium solution in the defect

is  = −0.025 ± 0.008 eV, which is comparable to the
energy of helium adsorption on a solid surface [7]. In
this temperature range, the activation energy of helium

grain-boundary diffusion is  = 0.0036 ± 0.0015 eV.
As the temperature rises, the mechanism of helium

solution with the energy  = 0.086 ± 0.008 eV in less
complex defects, including vacancies, becomes preva-
lent. These defects have a higher solution energy and,
at the same time, a higher concentration. Diffusion also
proceeds over these defects with the activation energy

 = 0.33 ± 0.03 eV.

E1
S

E1
D

E2
S

E2
D

1

0 1 2 3

2

3

Deff, 10–9 cm2 s–1

1
2

P, MPa

Fig. 5. Diffusion coefficient vs. saturation pressure at T =
(1) 403 and (2) 433 K. Solid line is approximation.
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The growth of Deff with saturation pressure may be
explained by the increase in the number of higher
mobility He–divacancy and He–He complexes, as well
as by the smoothing of the potential relief for diffusing
helium as it fills up the sites.

The refinement of mechanisms behind helium diffu-
sion and solution in polycrystals and the effect of
vacancies and vacancy clusters on helium transport in
polycrystals call for further investigation.
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Abstract—The energy spectra of electrons reflected from multilayer targets are studied theoretically and exper-
imentally. A self-consistent theory of electron reflection from multilayer surfaces is constructed. Simple ana-
lytical models of electron reflection that illustrate the feasibility of the depth profiling of multilayer targets are
presented. The energy spectra of electrons normally incident on Nb/Si and Nb/Al/Nb/Si targets and reflected
from them at an angle of 45° to the normal are taken. A method for the depth profiling of such structures is
elaborated. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Electron spectroscopy is one of the most efficient
and commonly used method for solid surface analysis
[1]. In this work, we use a method that analyzes double-
differential spectra of electrons reflected into a given
solid angle. Instruments for studying such spectra usu-
ally contain an electron probe and an energy analyzer.
However, unlike AES and characteristic loss spectros-
copy, where similar devices are used, our method does
not require a high accuracy. Information on the target is
derived from depths on the order of the electron trans-
port length ltr, which is roughly proportional to the
beam energy squared. Varying the probing beam energy
from 4 to 32 keV, one can penetrate, for example, a cop-
per target to depths from 25 to 800 nm.

Currently available experimental data for energy
spectra of electrons with an energy E0 in the range 1 <
E0 < 100 keV reflected from homogeneous targets are
very scarce and differ quantitatively and even qualita-
tively. The discrepancy is explained by differences in
target purity and energy analyzer resolutions, as well as
by an uncertainty in the point-spread function of
recording devices. Energy spectra recorded in the
1950s–1990s were smooth curves with a single peak
[2–7]. In further studies [8], electron energy spectra had
a complex shape of a dome with a peak. Figure 1 com-
pares the spectra obtained by different authors.

The absence of an elastic peak in the energy spectra
recorded in [2–4] is due to the fact that those spectra
were obtained in a poor vacuum (hence, from the con-
taminated surface) and the recording devices had a poor
resolution. The elastic peak was also not observed in
spectra taken in [5–7], because the insufficient surface
1063-7842/02/4711- $22.00 © 21444
purity greatly affected the high-energy part of the spec-
trum. Note the absence of published data for the spectra
of electrons reflected from multilayer targets.

The aim of this work is to demonstrate the spectra of
electrons reflected from multilayer targets and to con-
struct a computing procedure for restoring the depth
distribution of the target composition.

EXPERIMENTAL ENERGY SPECTRA 
OF ELECTRONS REFLECTED 

FROM HOMOGENEOUS AND MULTILAYER 
TARGETS

The stainless-steel vacuum chamber of the experi-
mental setup withstood heating up to 300°C. The pre-
evacuation of the chamber was carried out with a turbo-
molecular pump. Oil-free evacuation during measure-
ments was accomplished by means of two magnetic-
discharge pumps (with the turbomolecular pump cut
off), and the residual pressure during the experiment
was no higher than 10–6 Pa. The residual gas composi-
tion in the vacuum chamber was monitored with a mass
spectrometer. Carboniferous contaminants were not
detected in the course of the experiment. The target sur-
face was precleaned by rinsing in a solution of formic
acid and hydrogen peroxide. At the final stage of sur-
face preparation, the surface was decontaminated by
ion milling with the use of a defocused argon ion beam
of energy 5 keV and current density 1.5 mA/m2. The
target was heated by a defocused electron beam of cur-
rent 300 µA and accelerating voltage 20 kV. Under
these conditions, the target temperature reached 500°C.
The design of the setup allowed for the simultaneous
action of the probing electron and decontaminating ion
002 MAIK “Nauka/Interperiodica”
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beams. The purity of the target surface was monitored
by observing the peak of elastically reflected electrons.
The electron-assisted growth of carboniferous films on
the target surface after the ion milling and a change in
the near-surface composition of the target due to argon
ion penetration was not revealed.

The probing electron beam of energy E0 between 3
and 30 keV was generated by an electron gun. The
working electron beam current was kept at a level of
125 µA (the target temperature did not exceed 500°C
for these energies of the beam). The beam was directed
to the target at a right angle. The target was grounded
through a calibrated resistor. The experiment geometry
was such that the energy analyzer received electrons
reflected from the target surface at an angle ϑ  = 135°
(that is, at 45° to the normal to the target).

The energies of reflected electrons were analyzed
with a 180° spherical electrostatic energy analyzer with
the energy resolution ∆E/E0 = 0.8%. The voltage
applied to the analyzer plates was programmably varied
from 0 to 4 kV. The electrons passing through the ana-
lyzer fell into a Faraday cup. Their current (from 10–12

to 10–10 A) was measured by an electrometric amplifier
with an absolute resolution of 10–13 A.

Nb/Si and Nb/Al/Nb/Si targets were made on a
KÉF-4.5 (phosphorus-doped, resistivity 4.5 Ω cm)
Si(100) substrate using an L560 installation (Leybold).
The substrate was rinsed first in bichromate at 90°C for
1 h and then in running deionized water. In the installa-
tion, the substrates were decontaminated in an rf argon
glow at a pressure of 5 × 102 Pa for 150 s. Then, the
chamber was evacuated to 2.4 × 10–2 Pa with the subse-
quent evaporation of Nb and Al.

The thicknesses of the Nb and Al layers were mea-
sured with a Taylor–Hobsen profilometer using the
two-beam interferometry method. Multiple measure-
ments showed an error within 10%. The rates of Nb and
Al evaporation were found to be 2.34 and 0.16 nm/s,
respectively.

Figures 2–4 show the experimental results. The
spectra were obtained after subtracting the background
signal and with regard for the point-spread function of
the analyzer. The spectra of electrons reflected from
homogeneous targets are depicted in Fig. 2. Figure 3
shows the energy spectra of electrons reflected from the
Nb/Si target; Fig. 4, reflected electron spectra from two
niobium films with an aluminum layer in between
(Nb/Al/Nb/Si target) that is located at different depths.
The depth of the aluminum layer was specified by vary-
ing the thickness of the upper film. The effect of the sil-
icon substrate on the spectra for the given electron
probe energies is virtually absent.
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
Below, we elaborate a model to treat the spectra and
to restore the elemental profile across the target depth.

THEORETICAL ANALYSIS OF ENERGY 
SPECTRA OF ELECTRONS REFLECTED

FROM HOMOGENEOUS AND MULTILAYER 
TARGETS

Consider a homogeneous solid layer of thickness x.
Figure 5 represents a scheme of electron scattering. Let
us increase the thickness of the layer by adding a thin
film of thickness dx to its lower boundary. The reflec-
tion function changes in this case by the value

according to the process depicted by thick lines. Math-

dR x ∆ Ω0 Ω, , ,( )
=  R x dx+ ∆ Ω0 Ω, , ,( ) R x ∆ Ω0 Ω, , ,( )–

0.6

0.5

0.4

0.3

0.2

0.1

0
0.6 0.7 0.8 0.9 1.0

2

1

3

1 – ∆/E0
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Fig. 1. Experimental data of different authors for the spectra
of electrons reflected from a semi-infinite target: initial
energy 30 keV, right angle of incidence, angle of observa-
tion 45° to the normal (the same angles are in Figs. 2–4).
Squares, data from [8]; circles, [4]; triangles, [2]. The target
material is (1) Pt, (2) Ag, and (3) Cu.



 

1446

        

AFANAS’EV 

 

et al

 

.

                                                                                 
ematically, the process is described as

(1)

Here, T(x, ∆, Ω0, Ω) is the transmission function;
∆ = E0 – E is the energy loss; E0, E, Ω0 = {ϑ0, ϕ0}, and
Ω = {ϑ , ϕ} are the electron energies and motion
directions at the entrance to and the exit from the layer,
respectively; dΩ = sinϑdϑdϕ; 0 < ϑ  < π/2; 0 < ϕ < 2π;
0 < ∆' < E0; n is the atomic concentration in the target;
and ωel(Ω', Ω'') is the differential elastic scattering
cross section. Equating dR(x, ∆, Ω0, Ω) to expres-
sion (1), we arrive at the differential equation for

ndx T x ∆' Ω0 Ω', , ,( )ωel Ω' Ω'',( )∫∫∫
× T x ∆ ∆'– Ω'' Ω, , ,( )d∆'dΩ'dΩ''.

1.0

0
0.7

(a)

1 – ∆/E0

0.8 0.9 1.0 0.7 0.8 0.9 1.0

0

1.0
0

1.0
(b)

(c) (d)

(e) (f)

R(∆, Ω0, Ω), arb. units

Fig. 2. Spectra of electrons reflected from a homogeneous
semi-infinite target. The energy of normal incidence is (a) 4,
(b) 6, (c) 8, (d) 10, (e) 16, and (f) 32 keV. Shown are spectra
of electrons reflected from the Au target (continuous thick
line), Ag target (continuous thin line), Cu target (dashed
line), and V target (dash-and-dot line).
R(x, ∆, Ω0, Ω)

(2)

with the boundary condition R(x, ∆, Ω0, Ω) = 0 at x = 0.
Equation (2) in a set with a similar equation for T(x, ∆,
Ω0, Ω), which in its turn depends on R(x, ∆, Ω0, Ω), is
exact.

In general form, this set is impossible to solve;
therefore, our goal is to select an approximation that
will analytically describe electron backscattering most
adequately. The additivity of the elastic and inelastic
collision integrals in the transport equation allows us to

dR x ∆ Ω0 Ω, , ,( )
dx

--------------------------------------- n T x ∆' Ω0 Ω', , ,( )ωel Ω' Ω'',( )∫∫∫=

× T x ∆ ∆'– Ω'' Ω, , ,( )d∆'dΩ'dΩ''

0
0.6 0.8 1.0 0.6 0.8 1.0

1—Si

1.0

1.0
0

1.0

(a)

0

(b)

(c) (d)

(e) (f)

R12(d2, ∆, Ω0, Ω), arb. units

1 – ∆/E0

Fig. 3. Spectra of electrons reflected from the Nb/Si two-
layer target. The initial energy is (a) 4, (b) 6, (c) 8, (d) 10,
(e) 24, and (f) 32 keV. Shown are the spectra of electrons
reflected from the targets with the Nb layers evaporated for
different time intervals: 20 s (continuous thick line), 40 s
(continuous thin line), and 60 s (dash-and-dot line).

dAl 2—Nb
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represent the transmission function in multiplicative
form:

(3)

where Tin(x, ∆) is the inelastic transmission function
and Tel(x, Ω0, Ω) is the elastic transmission function.

Let us restrict ourselves to the one-velocity approx-
imation. Solving linear differential equation (2) and
substituting the transmission function in the form of (3)
into the solution, we come to an expression that can be
written as

(4)

Here, d is the thickness of the layer, µ0 = cosϑ0, µ =
cosϑ ,

(5)

is the free path distribution of electrons reflected, and
u = x(1/µ0 + 1/µ) is the electron free path in the low-
angle approximation. The function A(u, Ω0, Ω) is the
solution to the elastic part of the problem. It is respon-
sible for reflected electrons that traveled the path u in
the target. The representation of the solutions in the
form of (4) and (5) became possible because of the low-
angle approximation. This approximation deals with
the projected range of a particle, rather than with its
actual travel, and hence fails to adequately describe
particles whose free path exceeds the transport length.

Next, consider the approximation of single deflec-
tion in the elastic channel and the approximation of
continuous slowing-down in the inelastic channel. Such
an approach is only applicable to the description of the
energy spectra when the electron energy exceeds sev-
eral megaelectronvolts. However, it illustrates most
vividly the essence of our electron spectroscopy
method for depth profiling and so merits consideration.

In the single-deflection approximation, a change in
the particle direction is ignored up to an event of
“strong” collision, when the descending motion of a
particle in the target becomes ascending:

(6)

where δ(x) is the Dirac function.

Under these conditions, the range distribution takes
the form

(7)

In the single-deflection approximation, the reflec-

T x ∆ Ω0 Ω, , ,( ) T in x ∆,( )Tel x Ω0 Ω, ,( ),=

R d ∆ Ω0 Ω, , ,( ) A x 1/µ0 1/µ+( ) Ω0 Ω, ,( )
0

d

∫=

× T in x 1/µ0 1/µ+( ) ∆,( )dx.

A u Ω0 Ω, ,( ) n Tel x/µ0 Ω0 Ω', ,( )ωel Ω' Ω'',( )∫∫=

× Tel x/µ Ω'' Ω, ,( )dΩ'dΩ''

Tel x Ω' Ω'', ,( ) δ Ω' Ω''–( ),=

A u Ω0 Ω, ,( ) mωel Ω0 Ω,( ).=
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tion function, according to (4)–(7), can be written as

(8)

R d ∆ Ω0 Ω, , ,( ) nωel Ω0 Ω,( ) T in
x
µ0
----- ∆', 

 

0

∆

∫
0

d

∫=

× T in
x
µ
--- ∆ ∆'–, 

  d∆'dx.

1.0

0
0.6

R123(d2, d3, ∆, Ω0, Ω), arb. units

1 – ∆/E0

0.8 1.0 0.6 0.8 1.0

1.0
0

(a) (b)

(d)(c)

1—Si

Fig. 4. Spectra of electrons reflected from the Nb/Al/Nb/Si
multilayer target. The initial energy is (a) 4, (b) 8, (c) 10,
and (d) 16 keV. The upper Nb layer was evaporated for 10 s
(continuous thick line), 20 s (continuous thin line), and 30 s
(dash-and-dot line). The intermediate Al layer was evapo-
rated for 210 s.

E0, Ω0

ϑ0

ϕ0

E0, –∆, Ω

ϑϕ

x
dx

T(x, ∆', Ω0, Ω') T(x, ∆ – ∆', Ω'', Ω)

ωel,(Ω', Ω'')

X

Fig. 5. Model illustrating reflection from the layer.

dNb 3—Nb

dAl 2—Al
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Integrating (8) with respect to ∆' and then with
respect to x and representing the function Tin(x, ∆)
within the continuous slowing-down approximation as
Tin(x, ∆) = δ(∆ – x), we arrive at

(9)

where Θ(x) is the Heaviside function and  is the mean
energy loss per unit length.

The self-consistent calculation of the spectrum of
electrons reflected from a thin solid layer (d ! ltr) will
be based on the Gaudsmith–Saundersen equation,
which describes the electron motion in the elastic chan-
nel. In a form convenient for numerical calculations, it
is given by

(10)

where ωl is the coefficient of the expansion of ωel(Ω0,
Ω) in Legendre polynomials Pl(γ), σel is the total elastic
cross section, and γ is the angle between Ω0 and Ω .

The angle γ is related to the angles Ω0 = {ϑ0, ϕ0} and
Ω = {ϑ , ϕ} by the well-known expression

Below, along with (6), we will also use the formula
for Tel obtained in the diffusion approximation,

(11)

(σtr is the transport cross section). With this formula, we
will derive expressions that have a clear physical mean-
ing and simplify greatly the analysis of the reflected
electron spectra without loss in the calculated data
accuracy (as follows from the close coincidence of the
first ten moments of distributions for (10) and (11)).

Let us represent the elastic cross section that trans-
forms the descending electron flow into the ascending
one in the form

ε

R d ∆ Ω0 Ω, , ,( ) nωel Ω0 Ω,( )=

× xδ ∆ εx
1
µ0
----- 1

µ
---+– 

 d

0

d

∫
nωel Ω0 Ω,( )

ε 1
µ0
----- 1

µ
---+

-----------------------------=

× Θ ∆ εd
1
µ0
----- 1

µ
---+– 

  Θ ∆( )–
 
 
 

,

ε

Tel
G S– x Ω0 Ω, ,( ) = δ γ( ) nσelx–( )exp

2l 1+
2

--------------Pl γ( )
l 1=

∞

∑+

× n ωl σel–( )x( )exp nσelx–( )exp–( ),

γcos ϑ 0 ϑcoscos ϑ 0 ϑ ϕ ϕ 0–( ).cossinsin+=

Tel
D x Ω0 Ω, ,( )

=  
2l 1+

2
--------------Pl γ( ) nσtr

l l 1+( )
2

-----------------x– 
 exp

l 1=

∞

∑

ωel' Ω0 Ω,( ) ωel Ω0 Ω,( ) σelδ Ω0 Ω–( ).–=
According to (10), the function A(u, Ω0, Ω) is given
by

(12)

In the diffusion approximation, the range distribu-
tion in the target A(u, Ω0, Ω) is given by

(13)

where the transport length ltr, the basic parameter in the
problem of electron elastic scattering, appears in
explicit form.

The detailed description of techniques for calculat-
ing the energy spectra Tin(x, ∆) of electrons passing
through a solid layer of thickness x is given in [9]. As
for energy loss fluctuations, they should be considered
in the context of two problems of calculating the energy
spectra of reflected electrons.

(i) Finding the electron spectrum in a narrow energy
domain E0 – ∆1 ≤ E ≤ E0 (∆1 ≈ 100 eV) based on
detailed knowledge of the single inelastic scattering
cross section ωin(∆) [10]. A corresponding experimen-
tal situation takes place when the characteristic electron
energy loss (CEEL) spectra are measured.

(ii) Finding the reflected electron spectrum in a wide
energy domain 0 < E < E0 – ∆1, where a detailed
description of the single inelastic scattering cross sec-
tion is inappropriate.

With exhaustive accuracy, the spectrum is described
using the single inelastic scattering cross section ωin(∆)
determined in the two-threshold approximation [9, 10]:

(14)

where

(15)

σin is the total inelastic cross section, λk is the probabil-
ity of inelastic scattering, Jp is an adjustable parameter

AG S– u Ω0 Ω, ,( ) n nσelu–( )ωel Ω0 Ω,( )exp=

+ n
2l 1+

2
-------------- ωl σel–( )Pl γ( )

l 1=

∞

∑
× n ωl σel–( )u–( )exp nσelu–( )exp–( ).

AD u Ω0 Ω, ,( ) n
2l 1+

2
-------------- ωl σel–( )Pl γ( )

l 1=

∞

∑=

× u
ltr
---- l l 1+( )

2
-----------------– 

  ,exp

ωin ∆( ) λ kωk
i ∆( ),

k

∑=

ωk
i ∆( )

0, ∆ J p<

σin

3 α p+( )J p
3 α p+

∆
4 α p+

----------------------------------, J p ∆≤

σin

1 α i+( )Ji
1 α i+

∆
2 α i+

--------------------------------, Ji ∆,≤










=
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(Jp ≈ εpl, where εpl is the energy of bulk plasmon excita-
tion), Ji are the ionization thresholds, and αp and αi are
adjustable factors.

Then, the function Tin(x, ∆) is given by [9]

(16)

Here, τ = xnσin, λi = σion/σin, σion is the ionization cross
section, λp = 1 – λi,

(17)

In turn, the functions C(s, a) and S(s, a) are related
to the incomplete gamma-function as Γ(a, is) =
exp(iaπ/2)[C(s, a) – iS(s, a)].

Calculations based on formulas (16) and (17) are
hard to perform. However, in our problem, we are inter-
ested in the domain τ > 1; therefore, it is possible to
consider the first three terms in the expansion of (17) in
powers of s:

(18)

In view of (4) and (13), we come to an expression
for the function of electron reflection from a solid layer:

(19)

Inelastic losses will be described in terms of formu-
las (16) and (18).

Figure 6 shows the spectra of electrons reflected
from the layer. Theoretical calculations performed with
formula (19) are seen to be in good agreement with
Kulenkampff and Ruttiger’s experimental data [11].
The total inelastic cross section was determined from
data in [12]. The elastic differential cross section ωel(γ)
was found from tables [13]. By way of example, the
dashed line in Fig. 6 demonstrates the result of calcula-
tion by formula (9) for the thinnest layer (marked by a
circle in Fig. 5). Without pretending to a high accuracy,
formula (9), derived by simplest calculations, still gives
an estimate of the layer thickness.

T in τ ∆,( ) τ–( )exp
π

-------------------- τ λ pcf pJ p –3 α p–,( )[(exp

0

∞

∫=

+λ icf pJi –1 α i–,( )]) p∆ τ λ psf pJp –3 α p–,( )[–(cos

+ λ isf pJi –1 α i–,( ) ] )dp.

cf s a,( ) as a– C s a,( ),–=

sf s a,( ) as a– S s a,( ).–=

cf s a,( ) 1 as a– Γ a( ) aπ/2( )cos– as2/ 4 2a+( ),–=

sf s a,( ) as a– Γ a( ) aπ/2( )sin–=

+ as/ 1 a+( ) as3/ 18 3a+( ).–

R d ∆ Ω0 Ω, , ,( ) n
µµ0

µ µ0+
--------------- 2l 1+

2
-------------- ωl σel–( )

l 1=

∞

∑
0

d
1
µ
--- 1

µ0
-----+ 

 

∫=

× Pl γ( ) u
ltr
---- l l 1+( )

2
-----------------– 

  T in u ∆,( )du.exp
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Now, let us calculate the spectra of electrons
reflected from multilayer targets. Let a wide beam of
particles be incident on a layered plane-parallel target
at an angle Ω0 to the normal. The target consists of a
layer of material 2 (thickness d2) applied on a layer of
material 1 (thickness d1). Let d1  ∞ (semi-infinite
target). Also, let us know the following parameters: R1,
double-differential function of reflection from semi-
infinite target 1 [R1(d1  ∞) ≡ R1]; and R2(d2) and T2,
the double-differential functions of reflection from, and
transmission through, the free layer of material 2. Then,
the reflection function R12(d2) for the layered target is
given by

(20)

Here, we use an abbreviated form of writing where the
symbol ⊗  means integration over angular variables and
convolution over energy losses.

R12 d2( ) R2 d2( ) T2 R1 T2⊗ ⊗+=

+ T2 R1 R2 d2( ) R1 T2 ….+⊗ ⊗ ⊗ ⊗

εAl 1 1
ϑcos

------------+ 
  dAl

Fig. 6. Spectra of electrons reflected from the Al layer: right
angle of incidence, angle of observation 63° to the normal,
initial energy 30 keV. Data points are taken from [11]. The
target thickness is 0.44 mg cm–2 (triangles), 0.31 mg cm–2

(squares), and 0.16 mg cm–2 (circles). Continuous lines
depict the related spectra calculated by (19).
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Imagine that the homogeneous target made of mate-
rial 2 is two-layer. Applying the same approach as for
the inhomogeneous target, we arrive at

(21)

Subtracting Eq. (21) from relationship (20) yields

(22)

In the first approximation, we obtain the reflection
function for the inhomogeneous (layered) target:

(23)

Expression (23) meets the invariance conditions
throughout the range of the thickness d of the inhomo-
geneous coating. We have

(24)

Let us write formula (23) in detail:

(25)

Here, T2(d2, ∆, Ω0, Ω) is the function of particle trans-
mission that is responsible for the energy and angular
distributions of the particles moving in layer 2 of thick-
ness d2, and R1(2)(∆, Ω0, Ω) is the function of particle
reflection from the semi-infinite target made of material
1 or 2.

The model elaborated allows for simple generaliza-
tion for the multilayer case. For example, for a three-
layer target, we have

(26)

where R12(d2) is given by (23) and the layers are
counted from the bottom.

Let us find the reflection function for a three-layer
target under conditions of continuous slowing-down
and single deflection. To do this, we substitute (6), (7),
and the function Tin(x, ∆) derived in the continuous
slowing-down approximation into (26) and take the

R22 d2( ) R2 = R2 d2( ) T2 R2 T2⊗ ⊗+=

+ T2 R2 R2 d2( ) R2 T2 ….+⊗ ⊗ ⊗ ⊗

R12 d2( ) R2– T2 R1 R2–( ) T2⊗ ⊗=

+ T2 (R1 R2 d2( ) R1⊗ ⊗⊗
– R2 R2 d2( ) R2 )⊗ ⊗ T2 ….+⊗

R12 d2( ) R2 T2 R1 R2–( ) T2.⊗ ⊗+=

T2 1 and R12 d2( ) = R1,    if d2 0,

T2 0 and R12 d2( ) = R2,    if d2 ∞.

R12 d2 ∆ Ω0 Ω, , ,( ) R2 ∆ Ω0 Ω, ,( )=

+ T2 d2 ∆ ∆' Ω0 Ω', ,–,( ) R1 ∆' ∆''– Ω' Ω'', ,( )[∫∫∫∫
– R2 ∆' ∆''– Ω' Ω'', ,( ) ]T2 d2 ∆'' Ω'' Ω, , ,( )

× d∆'d∆''dΩ'dΩ''.

R123 d2 d3,( ) R3 T3 R12 d2( ) R3–( ) T3,⊗ ⊗+=
integral to get

(27)

In the first approximation, formula (27) describes
the specific features of the spectra of electrons reflected
from a three-layer target. A spectrum defined by (27) is
represented by the continuous curve (Nb/Al/Nb/Si tar-
get) in Fig. 7. Simple mathematics demonstrates how
the spectrum changes when a layer of light material
appears at a certain depth. In this case, similarly to the
above case of electron reflection from the aluminum
free surface, estimates made under conditions of con-
tinuous slowing-down and single deflection give an
idea of the target geometry.

In this work, we are also interested in the accuracy
of locating a light material (Al in our case) marker bur-
ied in the bulk of a heavy material (Nb). Figure 8 com-
pares experimental (data points) and calculated (for-
mula (26)) spectra of electrons reflected from a homo-
geneous semi-infinite niobium target. The function
Ak(u, Ω0, Ω) for either of the materials was calculated
by (12); the function Tink(x, ∆), from (16) and (18). The
discrepancy between the experimental and analytical
spectra near the peak of the elastically reflected elec-
trons is associated with the simplified form of the func-
tion Tink(x, ∆); namely, formulas (16) and (18) do not
involve the singular term responsible for the electrons
passing through the layer without scattering. The range
of the peak of the elastically reflected electrons, which
is carefully studied in CEEL spectroscopy, is of no
interest in this specific case. The thickness of the alumi-
num marker and its depth (i.e., the thickness of the nio-
bium layer) in different targets that were restored by the
trial-and-error (fitting) procedure were found to be as
follows: dAl = 38 nm, dNb1 = 12 nm, dNb2 = 26 nm, and
dNb3 = 45 nm. The thicknesses of the layers determined
with the Taylor–Hobsen profilometer were dAl = 34 nm,

R123 d1 d2 d3 ∆ Ω0 Ω, , , , ,( )
n1ωel3 Ω0 Ω,( )

ε3
1
µ0
----- 1

µ
---+

----------------------------------=

× Θ ∆ ε3d3
1
µ0
----- 1

µ
---+– 

  Θ ∆( )–

+
n2ωel2 Ω0 Ω,( )

ε2
1
µ0
----- 1

µ
---+

---------------------------------- Θ ∆ ε2d2 ε3d3+( ) 1
µ0
----- 1

µ
---+– 

 

– Θ ∆ ε3d3
1
µ0
----- 1

µ
---+– 

  n1ωel1 Ω0 Ω,( )

ε1
1
µ0
----- 1

µ
---+

----------------------------------+

× Θ ∆ ε1d1 ε2d2 ε3d3+ +( ) 1
µ0
----- 1

µ
---+– 

 

– Θ ∆ ε2d2 ε3d3+( ) 1
µ0
----- 1

µ
---+– 

  .
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dNb1 = 23 nm, dNb2 = 47 nm, and dNb3 = 70 nm. The most
considerable discrepancy is observed for the Nb thick-
ness. This fact, in our opinion, reflects today’s lack of
understanding of electron slowing-down parameters in
solids.

The extraction of exact quantitative data for a sam-
ple under study (specifically, for the element distribu-
tion across its depth) with reflected electron spectros-
copy is unlikely without knowing reliable information
about the single inelastic electron energy loss cross sec-
tion ωin(∆) in a solid. At present, published data even
for the first moments of ωin(∆), total cross section σin

and mean energy loss per unit length , may differ se-
veralfold. The most exhaustive information on the
inelastic cross section ωin(∆) can be found by analyzing
the reflected electron spectra in the low energy loss
range with a resolution of better than 1 eV. Such an
approach is applied in CEEL spectroscopy. Related
spectra have clear-cut peaks and are formed by elec-
trons that have traveled a distance comparable to the

ε

Fig. 7. Experimental spectrum of electrons reflected from
the Nb/Al/Nb/Si multilayer target (circles) vs. spectrum cal-
culated by (27) within the model of single deflection and
continuous slowing-down (continuous line). The dashed
line shows the Nb spectrum.
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mean free path for inelastic scattering lin. Since lin ! ltr,
the electrons responsible for the CEEL spectrum also
experience low-multiplicity scattering in the elastic
channel. Formulas (12) and (13) describe the electron
range distribution in the target at u ! ltr with an
extremely high accuracy that is limited only by the
accuracy with which the elastic scattering cross section
is determined. Because of this, CEEL spectra seem to
be a reliable tool for studying an elementary event of
inelastic scattering. A method for restoring the cross
section ωin(∆) from characteristic electron energy
losses is described in [10].

CONCLUSION

Our experiments on the electron probing of targets
show that the reflected electron spectra are highly infor-
mative. The spectrum analysis technique elaborated in
this work forms a basis for a method of layer-by-layer
analysis that can be used in commercial instruments for
surface analysis, for example, in Auger spectrometers.
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Fig. 8. Experimental spectra of electrons reflected from the
Nb/Al/Nb/Si multilayer target (circles, dNb1; squares, dNb2;
triangles, dNb3) vs. spectra calculated by (26) in terms of the
self-consistent theory (continuous lines).
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The self-consistent consideration of energy loss
fluctuations makes it possible to properly treat experi-
mental data both in the range of low losses and in that
range of losses responsible for the spectrum as a whole
(in other words, for the dome-shaped part of the spec-
trum).

In this work, we demonstrated the possibility of
finding the depth and thickness of the aluminum marker
in the niobium target. The adequate study of such a tar-
get in the conventional statement of the RBS method
(most widely used for layer-by-layer analysis) is
impossible (only the niobium spectrum will be
observed). Electron spectroscopy, unlike the RBS
method, can study light inclusions in a heavy matrix
and heavy layers in a light material with equal effi-
ciency [14].

Errors in determining the layer thickness arise from
a number of factors.

(i) The basic (yet avoidable) error is associated with
the large spread in data for inelastic scattering cross
sections ωin(∆).

(ii) The method presented compares spectra taken
from a pure target and from this target with inclusions.
The difference between these spectra is the most signif-
icant if the atomic numbers of a target material, Z1, and
of an impurity, Z2, greatly diverge. As ∆Z = |Z1 – Z2|
decreases, the error in thickness measurement grows.
For the targets used in this work, the error was no more
than 1 nm.

The relationship between the accuracy of depth pro-
filing and the atomic number Z depends on the layer
depth, initial energy, and energy resolution of the
energy analyzer. This subject is beyond the scope of
this work.

An important advantage of electron spectroscopy is
the ease of varying the electron probe energy. The target
thickness that can be analyzed is comparable to the

electron transport length ltr . Since ltr ~ , the change
in the beam energy from E0 = 10 keV to E0 = 32 keV

E0
2

increases the target thickness from which information
is derived tenfold.

If the size of a multilayer structure does not exceed
lin, one can study it with a submonolayer accuracy using
CEEL spectra. The associated technique will be
described in subsequent articles.
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Abstract—A technique for finding the electric field dependence of the coefficient of ion mobility in gases is
suggested. For ions of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, 1,3,5-trinitrobenzene, 1,3-dinitrobenzene, and
dimethylmethylphosphonate, these dependences are taken in air by applying a variable periodic polarity-asym-
metric specially shaped electric field. The accuracy of the technique suggested is estimated and compared with
that of the conventional drift tube method. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The electric field (E) dependence of the coefficient
of ion mobility (K) in gases in view of the gas molecule
concentration (N) is of both scientific and applied inter-
est. First, experimentally found dependences K(E/N)
may provide information on the molecule–ion interac-
tion potential; help in estimating the ion mean energy as
a function of the parameter E/N; and, with further
advances in the ion motion theory, determine the cross
sections of elastic, inelastic, and reactive collisions
between particles [1, 2]. Second, data on the depen-
dence K(E/N) are necessary for analytical applications
in using ion mobility increment spectrometers [3].

In experiments, the dependence K(E/N) is usually
found with drift tubes, which measure the ion drift
velocity V = KE with the coefficient K determined with
an accuracy of 1–5% [4, 5]. Such an accuracy is
insufficient for studying ions whose mobility varies
with E/N within several percent. These are, as a rule,
heavy ions formed by organic molecules or ionic com-
plexes [6].

The recent method for finding the dependence
K(E/N) [7, 8] uses a variable periodic polarity-asym-
metric electric field, under the action of which the drift
velocity being measured varies in proportion to the
increment of ion mobility coefficient α(E/N). On the
assumption that the field is moderately high and the gas
particle spatial distribution is isotropic, the dependence
K(E/N) can be represented in the form of a series
involving only even powers of the parameter E/N [1]:

(1)

K E/N( ) K0 1 α E/N( )+( )=

=  K0 1 α2n
E
N
---- 

 
2n

n 1=

∞

∑+
 
 
 

,
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where K0 in cm2/(V s) is the coefficient of mobility in a
“weak” field, where the ion energy is close to the
thermal energy of a gas (E/N < 6 Td, where 1 Td =
10−17 V cm2), and α2n are the coefficients preceding the
powers of E/N in the expansion.

In [7, 8], the coefficients α2n were determined for
positive ions of tertiary alkylamines; in [9], for Cl– ions.
In all the works cited, the objects of investigation were
ions for which the dependence α(E/N) is strong and
which accordingly can be studied with conventional
drift tubes.

The goal of this work is to study ions for which the
dependence α(E/N) is weak. Of particular interest is the
dependence α(E/N) in air for negative ions of organic
substances: 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotol-
uene (DNT), 1,3,5-trinitrobenzene (TNB), 1,3-dini-
trobenzene (DNB), as well as for positive ions of dim-
ethylmethylphosphonate (DMMP). Another goal was
to find the coefficients α2n for these ions and to estimate
the accuracy in determining the dependences α(E/N).

METHOD FOR DETERMINING THE α(E/N) 
DEPENDENCE

Under the action of a variable periodic polarity-
asymmetric electric field Ed(t) = Ed f (t) (Ed is the drift
field amplitude and f(t) is shape of the field) satisfying
the condition

(2)

(n ≥ 1 is an integer), ions of particular sort in the gas
execute fast oscillations with a period T, drifting along
the electric field lines with a characteristic mean veloc-
ity V proportional to α(E/N) [10]. This drift can be

f t( ) td

t

t T+

∫ 0= ,
1
T
--- f 2n 1+ t( ) td

t

t T+

∫ f 2n 1+〈 〉 0≠≡
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1454 BURYAKOV
compensated for by a constant electric field Ec; then,
V = 0. Substituting (1) into the equation

(3)

and using the approximation

(4)

we find an expression for the compensating field [11]:

(5)

From (5), it follows that Ec depends on the coeffi-
cients α2n and on the drift field parameters 〈 f 2n〉 ,
〈 f 2n + 1〉 , and Ed. Calculating the values of 〈 f 2n〉  and
〈 f 2n + 1〉  and experimentally finding the dependence of
the compensating voltage on the amplitude of the polar-
ity-asymmetric voltage Uc(Ud), one can obtain the
dependence Ec(Ed) and find the coefficients α2n by solv-
ing the inverse problem for Eq. (5).

EXPERIMENTAL

The setup used in our experiments is depicted in
Fig. 1. Its mechanical part, developed by the Mine
Safety Appliances Company [12], consists of heated
ionization chamber 1 (63Ni β source, ti = 150°C); drift
chamber 2, formed by two coaxial cylindrical elec-
trodes of radii r1 = 1.4 cm and r2 = 1.8 cm and purged
by a carrier gas (purified dry air, water vapor concentra-
tion <50 ppm, flow rate Qg = 30 cm3/s, temperature tg =
21 ± 1°C, N = (2.5 ± 0.1) × 1019 cm–3); extracting elec-
trode 3 (±200 V), which provides ion transport from the
ionization chamber to the drift chamber; compensating
voltage source 4; generator 5 of variable periodic polar-
ity-asymmetric voltage, which is connected to the

V K Ed t( ) Ec–( ) 0= =

Ed Ec–( )n Ed
n nEd

n 1– Ec at Ed  @ Ec ,–≈

Ec

Ed α2n

Ed

N
----- 

 
2n

f 2n 1+〈 〉
n 1=

∞

∑ 
 
 

1 2n 1+( )α2n

Ed

N
----- 

 
2n

f 2n〈 〉
n 1=

∞

∑+
 
 
 
----------------------------------------------------------------------------------.∑≈

1
2 3

4
5

6
7

Qm

Qin

τ Ud

T

Qg

Qout

I

Fig. 1. Experimental setup: Qm, vapor–air mixture flow;
Qin, incoming flow of pure gas; Qg, carrier gas flow; Qout,
outward flow.
coaxial electrodes; electrometric amplifier 6 (noise
amplitude 1 × 10–14 A); and collector 7.

The parameters of the generator (designed in the
Design and Technological Institute of Instrument Engi-
neering for Geophysics and Ecology) are as follows:

(6)

(m ≥ 0 is an integer), the voltage amplitude range Ud =
±(600–2900) V, the voltage period T = 7.1 µs, and the
voltage pulse duration τ = 2.7 µs. The compensating
voltage Uc is measured with an accuracy of no worse
than δUc = ±5%; the polarity-asymmetric voltage
amplitude, with an accuracy of no worse than δUd =
±7%.

Vapor–air mixtures of the nitrocompounds were pre-
pared by passing purified air (flow rate Qm = 1.2 cm3/s)
through a quartz tube (diameter 0.3 cm, length 20 cm)
with its inner wall covered by the reagent-grade com-
pound to be studied. An air–DMMP mixture was
obtained by passing the purified air through a cuvette
with a diffusion tube containing 97% pure DMMP
(Aldrich cat., no. D16910). Then, the mixture was
delivered to the ionization chamber.

STUDIED IONS

The physicochemical properties of the compounds
considered, as well as the types of ion–molecular reac-
tions and ions produced by β ionization under atmo-
spheric pressure, is well known. Specifically, in the
presence of nitrogroups, the methyl group of DNT and
TNT exhibits acidic properties, while negative reacting

ions (H2O)k  (k ≥ 0 is an integer) behave as Brönsted
bases. Therefore, negative ions (M–H)– of these com-
pounds (M is a molecule of the compound, H is a
hydrogen atom) are formed through ion–molecular
reactions of proton detachment [13, 14]. DNB and TNB
molecules have a high electron affinity, as a result of
which these compounds produce largely M– ions via
electron-exchange reactions [15, 16]. Because of a high
proton affinity of DMMP, its positive ions (M + H)+ are
produced in proton-exchange reactions [17].

DEPENDENCE OF THE COMPENSATING 
VOLTAGE Uc ON THE AMPLITUDE 

OF THE POLARITY-ASYMMETRIC VOLTAGE Ud

To obtain the Uc(Ud) curve experimentally, one
should first record ion current (I) vs. compensating
voltage Uc spectra for various Ud. Such a spectrum for
DMMP (M + H)+ ions for different Ud is given in Fig. 2.
Current peaks for these ions are observed when rela-

f t( ) π t mT–( )/τ[ ]sin 2τ /πT–( )/ 1 2τ /πT–( )=

for  mT t mT τ+( );≤ ≤
f t( ) 2τ /πT( )/ 1 2τ /πT–( )–=

for  mT τ+( ) t m 1+( )T≤ ≤

O2
–
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tionship (5) is met. For a given Ud, one fixes Uc at which
the peak is observed. In this example for DMMP
(M + H)+ ions, the absolute value of the compensating
voltage, |Uc |, grows with the drift voltage amplitude.
The positive value of Ud and the negative value of Uc

for the positive ions indicate that α(E/N) has a positive
sign and the coefficient of mobility increases with Ud.
For the negative ions, α(E/N) > 0 when Ud < 0 and Uc > 0.

Table 1 summarizes experimentally found Uc for
ions of the compounds under study for different Ud.

0.8

0.6

0.4

0.2

0 –5 –10 –15 –20
Uc, V

I × 10–12, A

Fig. 2. Spectra of DMMP (M + H)+ ions for a drift voltage
Ud = 1070, 1620, 2140, and 2560 V (from left to right).
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CALCULATION OF COEFFICIENTS α2n 
AND RECOVERY OF DEPENDENCES α(E)

The coefficients 〈 f 2n〉  and 〈 f 2n + 1〉  for the generator
[see (6)] were found by numerical calculation at τ/T =
0.38 (Table 2). The coefficients α2, α4, α6, and α8
(Table 3) were calculated by solving the inverse prob-
lem for Eq. (5) with regard for the experimental data
(Table 1) expressed in units of field strength (with the
equation U = E(r2 – r1) and the coefficients 〈 f 2n〉  and
〈 f 2n + 1〉  (Table 2). The coefficients α2n were calculated
by means of a polynomial approximation with the least

Fig. 3. Increment of the ion mobility coefficient vs. Ed/N:
(1) DMMP, (2) DNB, (3) DNT, (4) TNB, and (5) TNT.

0.06

0.04

0.02

α

0 20 40
(Ed/N), Td

1

2 3

4

5

Table 1.   Experimental values of Uc vs. Ud

Ud, V E/N, Td Uc, V, DNB Uc, V, DNT Uc, V, TNB Uc, V, TNT Ud, V E/N, Td Uc, V, 
DMMP

–530 10.6 0.12 0.1 – – 530 10.6 –0.2

–680 13.6 0.3 0.3 0.14 0.12 680 13.6 –0.5

–830 16.6 0.6 0.6 0.34 0.3 850 17 –1

–1020 20.4 1.2 1.1 0.7 0.64 1070 21.4 –2.1

–1160 23.2 1.8 1.7 1.2 0.9 1350 27 –3.9

–1350 27 2.8 2.7 1.9 1.5 1620 32.4 –6.4

–1570 31.4 4.4 4.2 3 2.4 1900 38 –9.5

–1730 34.6 5.7 5.5 3.9 3.1 2140 42.8 –13

–1900 38 7.3 6.9 5 3.9 2320 46.4 –15.8

–2060 41.2 9 8.5 6.1 4.7 2560 51.2 –19.7

–2200 44 10.8 9.7 7.3 5.5 2840 56.8 –24.5

–2330 46.6 12.3 11.3 8.4 6.2

–2500 50 14.6 13.1 9.6 7.6

–2670 53.4 16.9 15.4 11.4 –
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squares method (polynomial regression). Since the
coefficient α2 defines the initial slope of the depen-
dence of the ion mobility K on the parameter (E/N)2 [1],
it was calculated in the interval 10.6 ≤ E/N ≤ 21.4 Td.
When finding the coefficient α4, we used the value of
α2 found. The coefficient α4 was calculated in the inter-
val E/N ≤ 32.4 Td. The coefficients α6 and α8 were
determined using the previously found coefficients α2

and α4 and the experimental data for the entire range of
E/N. Such a partition made it possible to minimize the
rms deviations σE of data points from theoretical curves
Uc(Ud) recovered using the coefficients α2n. The numer-
ical values of σE are listed in the last column of Table 3.

0.02

0.0060 0.0090.003
Ec/Ed

0.04

0.06

0.08
α

Fig. 4. Calculated values of the coefficient α vs. Ec/Ed (or
Uc/Ud). (d) DMMP, (m) DNB, (s) DNT, (h) TNB, and
(r) TNT and the regression line α = (K – K0)/K0 =
8.354Ec/Ed with an rms deviation σs = 0.00074.
Figure 3 shows dependences α(E/N) calculated by
Eq. (1) with the coefficients from Table 3. In the entire
range of E/N studied, α(E/N) grows in the order
DMMP > DNB > DNT > TNB > TNT.

ERRORS IN DETERMINING 
THE DEPENDENCE α(E)

In Fig. 4, the calculated coefficients α for all the ions
are plotted against experimental values of Ec/Ed (or
Uc/Ud). The solid curves are the regression line. The
total number of measurements is R = 64. It is seen that
the data points fit well a straight line with a slope S =
8.354 = 1/0.1197. According to (5) and Table 2, we can
put S ≈ 1/〈 f 3〉; therefore, for the ions studied and for
E/N = 10–50 Td, Eq. (5) can be represented in the form

(7)

From (7), it follows that the total error σα in deter-
mining the increment of the ion mobility coefficient
depends on the relative errors in measuring the voltages
Uc and Ud, as well as on the rms deviation of data points
from the regression line σs (σs = ±0.00074). To find the
relative error of the linear approximation, it is neces-
sary to divide σs by α; then, the total error σα is calcu-
lated from the expression

(8)

in other words, the error σα involved in α depends on
the absolute value of α. For example, the relative errors
in determining the increments α = 0.005 and 0.01 are,
respectively,

α
SEc

Ed
---------

Uc

f 3〈 〉 Ud

------------------.≈=

σα
σs

α
----- 100%× 

 
2

δUd
2 δUc

2+ + ,=

σα 0.005=
0.074
0.005
------------- 

 
2

72 52+ + 17%,≈=
Table 2. Coefficients 〈 f 2n 〉  and 〈 f 2n + 1 〉  for generator (6)

Generator 〈 f 2 〉 〈 f 3 〉 〈 f 4 〉 〈 f 5 〉 〈 f 6 〉 〈 f 7 〉 〈 f 8 〉 〈 f 9 〉

0.229 0.119 0.130 0.110 0.104 0.096 0.090 0.085
τ
T
--- 0.38=

Table 3. Coefficients α2n for the ions studied

Compound α2 ×10–5, Td–2 α4 ×10–9, Td–4 α6 ×10–12, Td–6 α8 ×10–16, Td–8 σE, V

DNB 2.39 0.47 –1.24 1.36 0.11

DNT 2.17 3.05 –3.51 6.47 0.11

TNB 1.48 1.53 –0.96 0.06 0.07

TNT 1.18 1.61 –1.65 2.79 0.13

DMMP 3.55 –3.11 –0.84 1.83 0.08
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
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As was noted above, the error in measuring the coef-
ficient of mobility K with conventional drift tubes
equals 1% in the best case, which corresponds to the
absolute value σK = 2 ≈ ±0.01 cm2/(V s). For DMMP
(M–H)+ ions, K0 = 1.95 cm2/(V s) [17]. Let, for exam-
ple, the increment α = (K – K0)/K0 = (1.97 –
1.95)/1.95 ≈ 0.01; then, the error in drift-tube measure-
ments of such an increment will be ±50%, i.e., five
times greater than in measurements with a variable
periodic polarity-asymmetric electric field.

CONCLUSION

It is shown that the use of a variable periodic polar-
ity-asymmetric electric field for determining the incre-
ment of ion mobility coefficients that only slightly
depend on the field strength improves the measurement
accuracy several times as compared with conventional
drift tubes.
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Abstract—An experiment for verifying the semiconductor model of detonation is described. Within this
model, the electron thermal conductivity is the decisive parameter in initiating the detonation of 1,3,5-triamino-
2,4,6-trinitrobenzene (TATB), a low-sensitivity explosive. The idea of the experiment is to detect an increase in
the electron concentration in the conduction band and to estimate the electron thermal conductivity from the
electrical conductivity of TATB compressed by shock waves of subthreshold intensity. © 2002 MAIK
“Nauka/Interperiodica”.
It is known [1] that chemical reactions attendant on
the shock-wave initiation of the detonation of con-
densed heterogeneous explosives start at so-called “hot
spots”—microsites of combustion that appear because
of a local temperature increase when the shock wave
passes through pores, cracks, and other inhomogene-
ities. The volume fraction of microsites is small [2], and
the explosive comes into reaction gradually as a com-
bustion wave propagates from them.

According to the recent semiconductor model of ini-
tiating detonation in low-sensitivity TATB, a combus-
tion wave propagates from microsites owing to electron
heat conduction. The basic parameter of the model is
the energy gap εg of a crystalline explosive [3, 4], which
specifies the electron concentration in the conduction
band and, hence, the electron thermal conductivity of
the shock-compressed explosive.

The available information about the energy gap of
crystalline TATB is incomplete and contradictory even
under normal conditions. In [5], εg was estimated at
10 eV by the Hartree–Fock method. The estimation of
the electron density by the method of density functional
gave εg = 2–4 eV [6] and showed that εg tends to
decrease with increasing pressure. The recently
obtained experimental value of the TATB energy gap
was 6.6 eV [7]; however, these measurements were per-
formed on thin films (of thickness less than 1 µm) and
the validity of applying these values to explosive single
crystals with a thickness of tens to hundreds of
micrometers is doubtful.

High-pressure measurements of the TATB energy
gap have not been carried out. For many molecular
crystals, the energy gap decreases with increasing pres-
sure (see, e.g., [8]); it appears that the same takes place
in crystalline explosives [6, 8].
1063-7842/02/4711- $22.00 © 21458
In this work, we describe an experiment aimed at
verifying the hypothesis that is central to the semicon-
ductor model of detonation [3, 4]. According to this
hypothesis, the TATB energy gap is εg = 1.5–2.0 eV at
pressures of 10–20 GPa. If this hypothesis is valid, the
electron concentration in the conduction band must be
high after the passage of a shock wave. The idea of the
experiment is to detect a possible increase in the elec-
tron concentration in the conduction band by measur-
ing the electrical conductivity of TATB compressed by
shock waves of subthreshold intensity. From the electri-
cal conductivity measurements, one can estimate the
electron thermal conductivity of the shock-compressed
explosive with the Wiedemann–Franz law [9], because
the electron thermal conductivity is the basic parameter
responsible for detonation initiation in this model.

In fact, the delay ∆τ of detonation initiation after the
passage of a shock wave depends on the wave propaga-
tion velocity D from hot spots: ∆τ ≈ δ/D, where δ = 10–
100 µm is the characteristic spacing between hot spots,
which is on the order of the size of explosive microcrys-
tals. For typical delays of initiation of 0.1–1.0 µs, the
combustion wave propagation velocity from hot spots
is estimated at D = 10–100 m/s. The wave velocity
depends on the thermal diffusivity χ of the shock-com-
pressed explosive and reaction rate τr of the explosive
in the combustion wave [10]: D ≈ (χ/τr)1/2.

Thus, to find the explosive thermal diffusivity corre-
sponding to the combustion wave velocities expected,
one must know the reaction time of the explosive in the
combustion zone, which propagates from microsites at
high pressures and temperatures (3–5 GPa and 3000 K
for usual explosives, such as hexogen or octogen, and
10–20 GPa and 2500 K for low-sensitivity TATB [1]).
Note that experimental data for explosive reaction
002 MAIK “Nauka/Interperiodica”
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times under such conditions are absent and the extrap-
olation of explosive reaction times measured at lower
pressures and temperatures is unjustified and may
introduce large errors.

In this work, we estimated the explosive reaction
time by the method of classical molecular dynamics.
Such an approach is valid, since the ambient tempera-
ture under these conditions exceeds or is comparable to
typical vibration energy quanta of explosive molecules.
Calculations were performed for nitromethane—the
simplest explosive in the class of nitrocompounds.
Reaction times for other explosives were evaluated by
varying the energy of C–N bond breaking. Molecular
dynamics calculations were carried out with the Tinker
program [11] with potentials taken from [12], and
valence bonds were simulated with the Morse potential.
Two values of the C–N bond breaking energy were
taken: 60 and 40 kcal/mol. The first value is for
nitromethane and low-sensitivity TATB; the second, for
usual explosives like octogen and hexogen [13].
Atomic charges were selected so as to approximate the
potential distribution near a nitromethane molecule as
closely as possible. This distribution was obtained for
an isolated nitromethane molecule by means of quan-
tum calculations using the GAMESS program [14] in
the Hartree–Fock approximation with the N21-3G
basis. In the basic series of calculations, we simulated
the motion of 128 molecules in a cube with periodic
boundary conditions. The doubling of the number of
molecules affects the result insignificantly. The molec-
ular dynamics calculations (NPT ensemble) were per-
formed with a time step of 0.1 fs.

The method was checked by performing calcula-
tions for points on the shock adiabat of nitromethane.
A good fit with the experimental D–u relationship [15]
was obtained.

When estimating the explosive reaction time, we
assumed (see, e.g., [16]) that the limiting stage control-
ling the overall reaction time is C–N bond breaking,
since this bond is the weakest in molecules of explo-
sives based on nitrocompounds. From the molecular
dynamics calculations, we established the time depen-
dence of the number of dissociated molecules (with
broken C–N bonds). The bonds were assumed to be
broken when the spacing between the C and N atoms
reached 3 Å (C–N bond doubled length).

Figure 1 shows the calculated time dependence of
the number of dissociated molecules for the two values
of the dissociation energy. For usual explosives like
hexogen and octogen, the characteristic time of decom-
position in the combustion wave is 1 ps; for low-sensi-
tivity TATB, 10 ps. Figure 2 demonstrates the calcu-
lated reaction time vs. pressure and temperature for the
low-sensitivity explosive.

Based on the reaction time estimated, one can eval-
uate the thermal diffusivity of shock-compressed
TATB: χ ≈ D2τr = 10–9–10–7 m2/s. On the assumption
that the energy in the combustion wave is transferred by
TECHNICAL PHYSICS      Vol. 47      No. 11      2002
means of electron heat conduction, the above interval
of the thermal diffusivity corresponds, according to the
Wiedemann–Franz law [9], to the electrical conductiv-
ity of shock-compressed TATB in the interval 102–
104 (Ω m)–1 at pressures of 10–15 GPa, which are close
to the TATB detonation threshold.

Thus, according to the semiconductor model, the
TATB electrical conductivity is expected to sharply
increase up to a value typical of semiconductors under
conditions of shock wave compression. The experimen-
tal corroboration of this effect is of great importance for
gaining a better insight into fundamental mechanisms
of detonation initiation in low-sensitivity explosives.
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Fig. 1. Time dependence of the number of dissociated mol-
ecules: (a) low-sensitivity explosive (the dissociation
energy 60 kcal/mol), P = 10 GPa, T = 2500 K and (b) stan-
dard explosive (dissociation energy 40 kcal/mol), P =
3 GPa, T = 3000 K.

Fig. 2. Reaction time vs. (a) pressure (T = 2500 K) and
(b) temperature (P = 10 GPa) for the low-sensitivity explo-
sive (dissociation energy 60 kcal/mol).

Calculated atomic charges in a nitromethane molecule

Atom Charge (in terms of unit charge)

C –0.3746

N 0.6898

O –0.3872

H 0.1527
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Abstract—A device for generating intense shock waves at low energies of an electric discharge in a gas is sug-
gested and tested. © 2002 MAIK “Nauka/Interperiodica”.
The generation of intense shock waves by an electric
discharge is a challenge because the energy distribution
of gas molecules over the degrees of freedom is
severely nonuniform. Experimental data show that
more than 95% of discharge energy evolves in the form
of vibratory energy of gas molecules, while a shock
wave is generated by the kinetic energy. Moreover, a
part of the discharge energy is spent on the dissociation
and ionization of gas molecules.

For example, if it is necessary to produce a shock
wave in air under normal conditions with a pressure
drop at the front of 10 MPa, the local pressure induced
by an electric discharge should also be no less than
10 MPa. As follows from the laws of classical thermo-
dynamics, the kinetic temperature of gas molecules in
the discharge zone must be no less than 30 000 K. How-
ever, due to the almost complete dissociation of air
molecules, the necessary pressure can be reached at a
kinetic temperature of about 15 000 K, with the air spe-
cific heat increasing more than fourfold. Even though
the thermodynamic equilibrium distribution of the dis-
charge energy over air molecules took place, the neces-
sary discharge energy would increase several times.
Because of the short time of the shock wave formation
(comparable to the molecule mean free time), the
growth of the local pressure is provided by cutting the
discharge duration. An increase in the discharge energy
and a simultaneous decrease in the discharge duration
leads to an increase in the discharge electron tempera-
ture. This, in its turn, results in a more intense energy
absorption by the molecules. The internal (vibratory
and electron) molecular energy rises, which is accom-
panied by dissociation and ionization. Eventially, the
discharge energy must be raised still further.

In the case of discharge in an open space, only a
small portion of the energy (up to 3%) is spent on shock
wave production. Moreover, as the volume power of the
energy release increases, the efficiency of discharge
energy transformation into a shock wave decreases
after a small rise.
1063-7842/02/4711- $22.00 © 1461
Thus, to produce intense shock waves using an elec-
tric discharge, one should resolve the contradiction
between the need for a considerable energy release for
a short time and the need for the effective transforma-
tion of the discharge energy into the kinetic energy of
gas molecules.

Let us consider a method of generating intense
shock waves at small energies of an electric discharge.
It relies on the formation of a guided shock wave and
uses the dynamic properties of gas flows. This method
was implemented with the device schematically shown
in the figure.

The device operates as follows. Cooled air flows
under pressure from an external source through inner
channel 5 of conductor 3 and fills cavity 4 of insulator
1, passing hole 7. The geometric sizes of outlet 6 and
inlet 5 with hole 7 are chosen in such a way that the
pressure in cavity 4 of insulator 1 is higher than the
ambient pressure. The air pressure drops to the ambient
pressure in and behind channel 6. The maximum veloc-
ity of the gas in channel 6 cannot exceed the critical
velocity of sound C∗ 2. The velocity of disturbance

1 2

3

45

6
7

S
C

Device for generating shock waves by electric discharge in
gas: (1) insulator; (2) conductor; (3) leading-in conductor;
(4) cavity; (5) entrance channel; (6) outlet channel; and
(7) holes.
2002 MAIK “Nauka/Interperiodica”
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propagation in the gas will vary from C0 to C∗ 2 (C0 is
the velocity of sound in a stagnant flow) [1].

Once the capacitive energy storage has been dis-
charged through switch S in cavity 4, a portion of the
discharge energy is directly converted into kinetic
energy. As a result, the pressure in cavity 4 grows and a
compression wave starts propagating along channel 6.
The inlet pressure prevents the gas motion toward chan-
nel 5. Note that the rate of vibratory-to-kinetic energy
conversion is directly proportional to the gas pressure.
Therefore, as the pressure in the cavity grows further
because of the deactivation, compression waves with an
increasing amplitude will propagate along the channel
in the partially heated gas with the resulting formation
of a shock wave. This process is similar to the forma-
tion of a shock wave in detonation tubes [2].

The parameters of our device were analyzed based
on the theory of vibratory deactivation of gas molecules
[3] with regard for conditions for shock wave formation
in detonation tubes and gas properties.

Our design allows one to increase the time of shock
wave formation and, hence, to utilize the discharge
energy more efficiently by extending the discharge
duration in the high-pressure zone.

The table lists the parameters of the device that pro-
vide the formation of a shock wave with intensity and
under conditions corresponding to the above example.

To generate shock waves in detonation tubes, the
laminar gas flow should be provided in the channels. As
follows from experimental data, with disturbances at
the inlet removed, the laminar flow can be sustained at
Reynolds numbers up to Re = 105, where Re =
Umaxd/2v, Umax is the liquid axial velocity, d is the tube
diameter, and v  is the gas kinematic viscosity (in our
case, Umax corresponds to the velocity D of the shock
wave leading edge and d, to the diameter of the outlet

Parameters behind the shock wave front in air under normal
conditions before the front at P0 = 105 Pa and T0 = 293 K

Temperature 
T, K

Velocity
D, m/s

Pressure
P1, 105 Pa Density ρ1/ρ0

3840 2935 100 6.76
channel). The maximum temperature T1 in the insulator
cavity can be determined by equating the maximum
velocity of the heated air flow to the critical velocity of
sound C∗ 2:

Here, M is the gas molar weight and R is the universal
gas constant.

The discharge duration is found from the time of
shock wave formation t:

where l is the outlet channel length and C01 and C02 are
the velocities of sound in the stagnant flow under initial
conditions and in the discharge-heated gas, respec-
tively.

For example, if d = 0.001 m and l = 0.0015 m, we
find that R ≈ 104, T1 = 11100 K, and t = 4 × 10–5 s. For
comparison, the time of shock wave formation in air
under normal initial conditions is no less than 10–8 s.

The device considered can be used as an initiator of
detonation waves of various frequency (with a maxi-
mum frequency of no less than 500 Hz) in earlier devel-
oped supersonic gas-dynamic pulsed lasers or pulsed
ramjets [4]. Moreover, this method allows one to mod-
ify the design of shock and detonation tubes and put
associated devices to scientific and technological use.
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Abstract—Processes in an electrolyte and a plasma layer between the liquid electrode (anode) and the solid
surface of a workpiece are analyzed. A method of controlling the surface-heating power density by periodically
varying the time of turning on an elevated voltage and the voltage value is grounded. This method allows one
to control the rates of heating and cooling the workpiece in the range from 20 to 500°C/s and, correspondingly,
to heat surface layers to a depth of 0.1–10 mm. © 2002 MAIK “Nauka/Interperiodica”.
The electrolytic–plasma method of quenching has
been known for more than 50 years [1]. A workpiece is
immersed into an electrolyte, which is usually an aque-
ous salt solution. A plasma forms when an electric cur-
rent passes through the electrolyte near the cathode,
which is the workpiece [1–5]. The electrical energy is
converted to heat mainly at the cathode (workpiece)
surface. It was found experimentally that the energy is
spent largely on heating the surface and forming the
plasma layer; the loss is only about 15% [6]. Electric
discharges appear in the plasma layer [1–5]. Discharge-
induced pressure variations cause the surface of the liq-
uid anode to vibrate. As a result, the gap between the
surfaces of the liquid electrode and the solid cathode
varies. The electric field strength in the electrolyte is
not high (up to 80–200 V/m) but can reach 104–106 V/m
in the plasma layer (Fig. 1). The voltage in a 300-mm-
thick electrolyte layer was experimentally found to be
lower than 25 V, while in a plasma layer 0.1–3.0 mm
thick, it reaches 300 V.

Depending on the voltage across the anode–cathode
gap, five characteristic modes of heating the surfaces of
the liquid electrode and the solid cathode can be distin-
guished [4].

In the first mode, the voltage is U = 60–120 V. The
electrolyte (liquid electrode) surrounds the surface of
the cold cathode. The temperature of the cathode sur-
face is lower than the boiling temperature of the elec-
trolyte. The electrical energy is spent mainly on heating
the electrolyte. In the second mode (U = 80–160 V), the
temperature of the cathode surface exceeds the boiling
temperature of the electrolyte and a vapor–gas layer
forms at the cathode. In the third mode (U = 120–
200 V), the vapor–gas layer adjacent to the solid sur-
face is locally overheated owing to electric discharges.
The vibration of the electrolyte surface provides a local
increase in the electric field strength to 106 V/m and,
thus, the formation of microdischarges alternating with
cooling the cathode surface by the electrolyte. In the
fourth mode (U = 180–260 V), a stable plasma layer of
1063-7842/02/4711- $22.00 © 21463
a variable cross section forms between the cathode and
the electrolyte within 2–10 s and a stable plasma glow
is observed at the cathode.

A further increase in the voltage to 240–320 V pro-
vides the virtually instantaneous formation of an
intensely glowing plasma layer (in 0.1–0.5 s). The rate
of surface heating can reach 500°C/s.

Earlier [7], we proposed combining various modes
of heating the liquid electrode and a metallic work-
piece. Figure 2 shows the measurement of the surface
temperature at the voltages between the electrodes cor-
responding to the five heating modes. When a voltage
of 320 V is turned on (curve 1), the sample surface is
rapidly heated (fifth mode). The rate of heating the sur-
face reaches 150°C/s. The current density equals 8–
9 A/cm2, and the surface layer begins melting within
10–15 s. The periodic transition from the fifth to the
third heating mode or periodic switching from the high
(320 V) to low (200 V) voltage provides steady-state
heating at a mean rate of up to 50°C/s. The mean cur-
rent density is 6–7 A/cm2. The heating time can be set

106
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d, mm
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Fig. 1. Variation of the electric field strength between the
cathode (C) (workpiece surface) and metallic anode (A) in
the electrolyte (E) and plasma layer (P).
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such that rather thick (up to 10 mm) layers can be
quenched without melting the surface.

At 200 V, the heating process is initially unstable.
The instability time reaches 12 s. The current density
changes jumpwise from 0 to 50 A/cm2. It drops to the
nominal value (J = 5–6 A/cm2) only after the formation
of the vapor–gas layer with a relatively low conductiv-
ity (σ = 0.5–0.7 Ω–1 m–1. Increasing and decreasing the
voltage (i.e., alternating high and low power densities),
one can heat the workpiece with a mean rate of 30–
60°C/s (Fig. 2, curve 2).

The periodic variation of the voltage changes the
mean power density of heating from 1 × 103 to 1 ×
104 W/cm2, which makes it possible to control electro-
lytic–plasma heating and the formation of 0.1- to
1.0-mm thick quenched layers. Cooling rates can be
varied over wide limits by turning on the electric cur-
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Fig. 2. Cathode surface temperature as a function of (1–3)
heating time and (4–7) cooling time at a voltage of (1) 320;
(2) 200, 320, and 30; and (3) 220 V, as well as at a reduced
voltage of (4) 60, (5) 40, (6) 20, and (7) 0 V upon cooling.
rent upon cooling the workpiece surface (Fig. 2, cur-
ves 4–7).

The possibility of controlling the mean power den-
sity allows us to use electrolytic–plasma treatment in
cleaning, melting, and soldering processes [1–4, 8, 9].
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Abstract—An attempt is made at direct experimental verification of the theory of thermomagnetic instability
in composite superconductors under conditions of external magnetic field or transport current variations. The
development of thermomagnetic instability in the form of a magnetic flux jump is experimentally studied in a
bulk low-temperature composite niobium–tin superconductor. The liquid-helium-cooled sample representing a
compressed tape helix (helicoid) is placed in an external magnetic field orthogonal to the turn plane and varying
with a constant rate. For the first time, both the magnetic induction inside the sample and its temperature are
simultaneously detected in experiments. The sample overheat preceding the magnetic flux jump is measured to
be 0.23 + 0.02 K. This value is found to be independent of the rate of the external magnetic field variation and
the value of the jump itself and coincides, within the experimental accuracy, with the temperature parameter of
electric field buildup involved in the general exponential I–V characteristic of the composite superconductor,
which depends on temperature and magnetic induction. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Thermomagnetic instability in the form of a mag-
netic flux jump in composite superconductors is related
to the interaction of thermal and electromagnetic fluc-
tuations (small perturbations) in superconducting ele-
ments incorporated into a normal metal matrix. As a
rule, such a jump quenches superconductivity. Theoret-
ically, the stability of superconductivity depends sub-
stantially on the relationship between the characteristic
times of thermal and electromagnetic processes in a
superconductor. The characteristic times involved are
magnetic,

(1)

thermal,

(2)

and heat-exchange,

(3)

Here, d is the characteristic transverse size of the com-
posite superconductor, ρ⊥  is the transverse resistivity,
λ is the thermal conductivity, C is the specific heat per
unit volume, and h is the coefficient of heat transfer to
a coolant.

Of the most practical interest is the case 

(4)
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τm @ τh @ τλ .
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Relationships (4) is typical of most composite
superconducting structures and meets the conditions of
their cooling in superconducting magnetic systems. It
means that, in the “dynamic approximation” 

(5)

the growth of small temperature and electric field per-
turbations takes place with the magnetic flux remaining
unchanged (“frozen” magnetic flux). This makes it pos-
sible to simplify significantly the elaboration of a crite-
rion for the stability of the superconducting state of a
composite superconductor. Using the empirical expo-
nential I–V characteristic of a superconductor [1, 2]

(6)

(where E is the electric field intensity in the supercon-
ductor; Ec is a constant; Tc is the superconductor critical
temperature; T, B, and j are temperature, transverse
external magnetic field induction, and current density,
respectively; and T0, B0, and j0 are the parameters char-
acterizing a rise in the electric field with temperature,
magnetic field, and current density, respectively), Mints
and Rakhmanov [3] formulated a criterion for the sta-
bility of superconductivity in a composite supercon-
ductor. This criterion can be written as

(7)

τ
τm

τλ
----- ∞,=

E Ec –
Tc T–

T0
--------------- B

B0
----- j

j0
----+ + 

 exp=

jcE Sd

s

∫ hPT0,≤
2002 MAIK “Nauka/Interperiodica”



 

1466

        

KRUGLOV, SHCHERBAKOV

                                                                 
where E is the longitudinal electric field intensity
depending on the rate of variation of external parame-
ters, jc is the critical current density depending on mag-
netic field and temperature, S is the cross-sectional area
of a composite superconductor, and P is the cooling
perimeter of the composite superconductor.

Fig. 1. Superconducting helicoid.
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Fig. 2. Longitudinal cross section of the experimental setup:
(1) sample (superconducting niobium–tin helicoid); (2) ger-
manium thermometer; (3) Hall-effect sensor; (4) supercon-
ducting solenoid generating external field; (5) heater; and
(6) thermal insulation.
The physical meaning of this criterion is apparent.
The superconducting state looses stability when the
overheat due to magnetization reversal losses caused by
the variation of external parameters (magnetic field,
transport current, and temperature) exceeds the value of
the temperature parameter of electric field buildup. This
fact was verified experimentally. Alternative attempts
to verify the criterion [4, 5] were indirect: they involved
the construction of experimental curves ∆Bj(dB/dt)
(jump vs. rate of external magnetic field variation) with
an adjustable heat-transfer coefficient.

As a sample, we employed a superconducting nio-
bium–tin helicoid (a compressed tape helix [6–8])
(Fig. 1). In the presence of an external magnetic field,
the open helicoid (without the transport current)
behaves like a bulk composite superconductor, shield-
ing its internal volume by surface currents closing at the
ends of the helix.

EXPERIMENTAL SETUP

The sample consisted of 20 flat turns of inner diam-
eter 60 mm, outer diameter 86 mm, and height 35 mm
(Fig. 1). Each of the turns contained 14 parallel com-
posite niobium–tin superconductors with a diameter of
0.85 mm joined together in the helical plane by copper
plating. The characteristics of an individual supercon-
ductor were as follows: production method, bronzing;
the fraction of the external copper sheath, 25%; the
number of niobium–tin filaments, 14641; the filament
diameter, 3 µm; and the rated current density in the field
B = 6 T, 1.1 × 109 A/m2.

After two-sided copper plating, the thickness of the
flat turn was 1.75 mm. The sample was placed in the
working volume of a superconducting solenoid gener-
ating a magnetic field of induction up to 4 T. The rate of
field rise reached 0.15 T/s. The cross-sectional view of
the setup is shown in Fig. 2. The turns of the helicoid
were tightly compressed. A heater made of 0.1-mm-
thick stainless steel foil, which is used to break the
shielding superconducting circuit if necessary, and a
heat-insulating layer were glued to the outer cylindrical
surface of the sample. The top and bottom surfaces of
the helicoid were also covered by a heat-insulating
layer. The coolant was in direct contact only with the
inner cylindrical surface of the sample. A Hall-effect
sensor, measuring the magnetic field, and a germanium
thermometer were placed at the central points of the
transverse cross section of the sample. The actual ther-
mal, magnetic, and heat-exchange characteristic times
of the sample were τλ = 1.5 × 10–3 s, τh = 10–2 s, and
τm = 3 s, respectively.

EXPERIMENT

Figure 3 shows the typical evolution of the magnetic
flux jump. In the time interval between t = 0 and t =
30 s, the surface superconducting currents induced on
TECHNICAL PHYSICS      Vol. 47      No. 11      2002



        

DYNAMICS OF A MAGNETIC FLUX JUMP IN A COMPOSITE SUPERCONDUCTOR 1467

                                
the cylindrical surfaces of the sample completely shield
the external magnetic field. The currents close at the
ends of the sample through the copper matrix (the char-
acteristic time of magnetic field diffusion from the ends
of the sample to its center (6 h) significantly exceeds
the time of measurement). The temperature of the sam-
ple is slightly higher than that of the coolant owing to
electrical losses. The magnetic flux jump into the sam-
ple takes place at t ≈ 30 s (the measurements were per-
formed every 0.3 s). The energy stored in the shielding
circuit is sufficient to quench superconductivity and heat
the sample to 23 K. After cooling to the critical tempera-
ture (13.6 K), the sample can again shield the still
increasing magnetic field. The next shielding period
starts from t ≈ 33.5 s and lasts up to the next jump.

Figure 4 shows temperature variations in the sample
on an enlarged scale. The absolute measurement error
is no greater than 0.02 K. The sample overheat relative
to the coolant temperature at the jump instant (t ≈ 30 s)
is ∆T = 0.24 K. Similar measurements were carried out
for four values of the rate of change of the external
magnetic field.

Figure 5 plots jump field versus the rate of change of
the external field. The temperature parameter of field
rise T0 can be found from the I–V characteristic of a sin-
gle superconductor of the helicoid. This characteristic
usually yields the parameter δ2 given by

(8)

This quantity is the relative variance of the normal
distribution that characterizes the nonlinearity of the I–
V characteristic at low electric fields (≤10–4 V/m).

The parameters of field buildup are interrelated [2]:

(9)

δ2 j0

jc
----.=

j0 T0
∂ jc

∂T
------- .=

5
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00

B

T
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Fig. 3. Internal magnetic field at the central point of the
cross section of the sample and the sample temperature ver-
sus time. The external magnetic field starts growing
(dB/dt = 8.36 × 10–2 T/s) at the zero time moment.
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Therefore, knowing δ2, one can determine T0 from

(10)T0 δ2 Tc Tb–( ),=

4.25
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Fig. 4. Sample temperature versus time on an enlarged
scale. The time interval extends from the time instant the
external magnetic field starts growing (dB/dt = 8.36 × 10–2

T/s) to the instant of the magnetic flux jump.
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Fig. 5. Magnetic induction of the jump versus the rate of
external magnetic field variation.
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Fig. 6. Sample overheat at the instant of stability breakdown
versus the rate of magnetic field variation.
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where Tb is the helium bath temperature during the
measurements of jc and j0.

Using the empirical dependence of the critical tem-
perature of the superconductors studied on magnetic
induction,

(11)

we arrive at the expression for T0:

(12)

For our superconductors, δ2 ranges from 2 to 3%
(for convenience, the actual value of δ2 is multiplied by
100%). Substituting the jump fields ∆B from Fig. 5 into
expression (12) (instead of B), we find the spread of T0:

Figure 6 demonstrates the sample overheat ∆T at the
instants of magnetic field jumps versus the rate of exter-
nal magnetic field variation dB/dt. The arrow shows the
range of T0. The independence of ∆T on dB/dt lets us
conclude that ∆T and T0 coincide in experiments.

DISCUSSION
The use of niobium–tin samples allowed us to mea-

sure the overheat of a composite superconductor that
precedes magnetic flux jumps. Note by way of example
that the overheat in niobium–titanium superconductors
is less by one order of magnitude (0.02–0.03 K) owing
to the significantly lower nonlinearity of the I–V char-
acteristic (δ2 = 0.1–0.2%). This substantially compli-
cates the measurements.

The experimental facts that the overheat of a bulk
composite superconductor preceding a magnetic flux

Tc B( ) 15.39 0.615B,–=

T0 B( ) δ2 15.35 0.615B– Tb–( ).=

T0 0.19 0.28 K.–=
jump is independent of the rate of external magnetic
field variation and that the overheat coincides with the
temperature parameter of field buildup validate crite-
rion (7) for the stability of superconductivity under
varying conditions.
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Abstract—An approximate kinetic equation describing a gas of two- or three-level atoms in an external laser
field is found under conditions of optomechanical parametric resonance, which causes atomic oscillations along
the field wave vector. The approximation is applicable to a gas of cylindrical particles whose axes retain their
spatial orientation, making the gas anisotropic. The closed set of equations for macroparameters allows for a
numerical solution. Expressions for direction-dependent transfer coefficients such as diffusion, viscosity, and
thermal conductivity are derived phenomenologically. A two-temperature medium is shown to arise if a
fluid consists of several gases with the optomechanical parametric resonance conditions satisfied for one of
them. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

An anisotropic fluid, or a liquid crystal, is a well-
known and thoroughly studied system [1]. A gas may
also exhibit the anisotropy of, at least, its electrical
properties if it consists of dipole molecules subjected to
an electrostatic field. However, such an anisotropy does
not influence noticeably the transfer characteristics of a
gas. Below, we will discuss an anisotropic gaseous sys-
tem arising under conditions of optomechanical para-
metric resonance (OMPR).

Theoretically, the OMPR effect discovered recently
[2–4] shows up as a correlation between electromag-
netic radiation and the dynamics of a two- or three-level
gas atom. This effect has many intriguing applications
[4–6]. In particular, if an atom is placed in the strong
field of resonant laser radiation consisting of two
modes with close frequencies Ω1 and Ω2 (bichromate)
and the OMPR conditions are satisfied in view of the
Doppler shift, the oscillating force acting on the atom is

(1)

Here, k is the wave vector of the external field; αR, the
Rabi frequency (E is the electric component of the
external field and µ is the dipole moment of the atom);
and (Ω2 – Ω1), the detuning of the bichromate. The
dimensionless parameter H(a, σ, v) is on the order of
unity (for other designations, see Appendix). In this
case, the atom oscillates along the direction of laser
beam propagation. The term “strong field” means that
atomic transitions are fully defined by an external field
and the occupancy oscillates with the Rabi frequency.
In other words, αR @ γ, where γ is the inverse lifetime
of an excited state. Under usual laboratory conditions
(e.g., for a titanium–sapphire laser with a power of
1 W), αR = 108–109 s–1 corresponds to optical atomic

F ηkαRH a σ v, ,( ) Ω2 Ω1–( )t ψ v( )+[ ] .cos=
1063-7842/02/4711- $22.00 © 21469
transitions, whereas one of the OMPR conditions is that
the bichromate detuning (Ω2 – Ω1) almost coincides
with the Rabi frequency αR. Another OMPR condition
yields [4] the expression for the atomic oscillation
amplitude: A = γ/kαR. Under the same laboratory con-
ditions, the oscillation amplitude A is on the order of
10−9 m. Considering the influence of OMPR on a gas
system as a whole, one can expect significant modifica-
tions in its properties.

KINETIC APPROACH

In order to describe the gas behavior under OMPR
conditions in terms of the molecular kinetic theory, one
has to modify the Boltzmann kinetic equation [7] with
regard for the existence of a nongradient oscillating
force given by Eq. (1). This yields

(2)

Here, f is the velocity distribution function; m, the
atomic mass; and J, the collision integral. Let c0 be the
atom velocity providing the resonance between the
radiation and an atomic transition in view of the Dop-
pler shift. Then, only atoms with velocities distributed
in the vicinity of c0 within δc will oscillate along the x
axis. For as many atoms as possible to be involved in
the effect, one should choose c0 as close as possible to
the most likely thermal velocity of gas atoms (which is
103 m/s at room temperature) and appropriately tune
the laser frequency. In [2], it was shown that δc is on the
order of 102 m/s; therefore, one has to provide a temper-
ature of several Kelvins for all the atoms to be set in
oscillation. In this case, however, the force amplitude

∂f
∂t
-----

∂
∂ux

-------- F
m
---- f 

 + J f f,( ).=
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depends on the velocity stronger than at room tempera-
ture (see Fig. 1) and the dependence becomes almost
linear. Solving Eq. (2) in the general case poses great
mathematical difficulties.

Let us take the approximate expression

(3)

for the force F acting on the atoms, where H is a con-
stant (see Fig. 1a) and θ(x) is the Heaviside theta func-
tion.

Then, an approximate solution to Eq. (2) can be
found if the left of (2) is much smaller than the right.
This restriction meets the case when the oscillation fre-
quency of atoms far exceeds the frequency of atom col-
lisions.

Under normal atmospheric pressure, the collision
frequency of gas atoms is 109 s–1. Since this value coin-
cides with the frequency of atomic oscillations induced
by OMPR at laser field intensities mentioned in the
Introduction, the OMPR effect is impossible because of
collisions. However, if either the gas is more rarefied or
the field has a higher intensity, the situation will
change. The oscillation frequency may substantially
exceed the collision frequency, and the time between
collisions will suffice to set the OMPR regime. Consid-
ering time intervals comparable to the transit time, one
can notice that between collisions a rapidly oscillating
atom can be considered as a cylindrical particle of
height h equal to the doubled oscillation amplitude, h =
2A, and of diameter d equal to that of the atom. The cyl-
inder axis is aligned with the wave vector of the field for
any atomic motion. This allows one to consider the gas
as anisotropic.

Let us introduce macroscopic parameters

(4)

F1 H Ω2 Ω1–( )t ψ+( )cos=

× θ ux c0–( ) θ c0 δc ux–+( )–( )

n f u; ud∫ 1
n
--- uf u;d∫= =

ε〈 〉 1
n
--- 1

2
--- u u–( )2 f u; ε〈 〉d∫

3kBT
2

------------.= =

0
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ν
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ν
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H

(v
)

0

Fig. 1. Dimensionless force amplitude as a function of the
atomic velocity at (a) near-room temperatures and (b) low
temperatures.
Then, in view of (2), we find

(5)

where

(6)

If the left of kinetic equation (2) is small, the first-
order approximation for the velocity distribution func-
tion is locally Maxwellian:

(7)

Then, nδ and qδ are given by

(8)

(9)

where Φ is the probability integral.
Thus, the set of equations describing the gas proper-

ties near c0 is closed and can be solved numerically. The
gas properties beyond the velocity interval δc, where no
forces act on the atoms, are described in the ordinary
way. An evident drawback of the theory is the presence
of singularities at c0 and c0 + δc because of the theta
function on the left side. At these velocities, the condi-
tions of the approximation are violated and the approx-
imation becomes inapplicable.

TRANSPORT COEFFICIENTS

The transport coefficients of a dynamically anisotro-
pic gas depend on the direction. The well-known phe-
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nomenological derivation of the transport coefficients
yields the following expressions for the diffusion coef-
ficient D, viscosity coefficient η, and thermal conduc-
tivity λ:

(10)

Here,  is the mean velocity of gas particles; l, the free
path; m, the particle mass; n, the atomic concentration;
and kB, the Boltzmann constant. The free path l is of
interest for further consideration. If particles are solid
spheres, the free path l is given by

(11)

where d is the particle diameter.
Under normal conditions, the mean free path is on

the order of 10–7 m; therefore, it increases in a rarefied
gas. Consider a cylindrical particle of diameter d that is
equal to the atomic diameter and of height h = 2A as an
approximation of an oscillating atom. The free path of
such a particle in the direction of laser beam propaga-
tion will alter insignificantly, since the amplitude A is
less than 1% of l. However, this is untrue for two direc-
tions orthogonal to the beam direction. As follows from
the well-known derivation of (11), for these directions
the cross-sectional area πd 2 in (11) should be replaced
by hd—the quantity characterizing a cylinder. This
means that the free path l in these directions is h/πd
times shorter than in the direction of laser beam propa-
gation. In view of (10), the diffusion coefficient, viscos-
ity coefficient, and thermal conductivity in the direc-
tions orthogonal to the beam are also h/πd times smaller
than those along the beam direction. For the external
field intensity mentioned above, h/πd ≈ (2 × 10–9/2π ×
10–10) ≈ 3. This seems to be sufficient for this effect to
be observed experimentally. In order to simplify the
experiment and observe diffusion instead of self-diffu-
sion, a mixture of atoms may be used such that the
OMPR conditions are satisfied for atoms of one kind.
Their diffusion coefficients are easier to measure than
the self-diffusion coefficient. This will make it possible
to reveal gas anisotropy, since the diffusion coefficients
will differ in various directions.

THERMODYNAMIC PROPERTIES 
OF A DYNAMICALLY ANISOTROPIC GAS

The thermodynamic properties of a dynamically
anisotropic gas will also change. In the case of OMPR,
the term “temperature” acquires a new meaning similar
to that of the kinetic temperature of an interstellar gas
where atoms move in one direction with a high velocity.
In our case, vibratory motion in one certain direction
corresponding to two extra degrees of freedom takes
place instead of rectilinear motion. The energy of the
extra degrees of freedom 〈ε〉 v = (1/2)mA2(Ω2 – Ω1)2 cor-

D
1
3
---ul; η 1

3
---ulmn; λ 1

2
---ulkBn.= = =

u

l
1

2πd2n
-------------------,=
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responds to a temperature increment δT defined by the
laser power, so that 〈ε〉 v = (2/2)kBδT. This implies that
the gas medium, which initially was in equilibrium with
the environment, serves as a heat source. Thus, the
energy of electromagnetic radiation turns into the
mechanical energy of oscillating atoms, i.e., into the
thermal energy of the gas. The heat flux toward a wall
will be specified by particle collisions near the wall.
The temperature difference between the heat source
and the environment depends on the energy of atomic
oscillations, i.e., on the energy injected into the system
by the laser. Such an approach also implies the anisot-
ropy of the gas pressure. Thus, in a dynamically aniso-
tropic gas subjected to OMPR conditions, the propaga-
tion of sound has tensor properties.

If a gas is a mixture mentioned in the previous sec-
tion, it is easy to check that a two-temperature medium
arises, since only one component of the mixture is
under OMPR conditions. In this case, the temperature
difference δT = 〈ε〉 v /kB is small.1

The heat sources are isotropically distributed over
the gas volume, while the thermal conductivity of the
medium is anisotropic. This means that the heat fluxes
through the lateral and front surfaces of a container will
differ. At the same time, the wall temperature T is the
same. The expression for the heat flux q from a heated
body has the form

(12)

where T0 is the environmental temperature and α is the
heat exchange coefficient usually found experimen-
tally.

It is worth noting that gas anisotropy will result in
various values of the heat exchange coefficient on the
lateral (ασ) and front (αφ) walls of the container. The
difference in the time it takes for similar bodies touch-
ing the lateral and front walls to be heated to the same
temperatures could indicate gas anisotropy.

CONCLUSION
Our phenomenological derivation of the expressions

for the transfer coefficients is evidently approximate.
A rigorous mathematical derivation based on ab initio
principles, i.e., on the Boltzmann kinetic equation, is a
more complex mathematical problem currently being
solved. In order to solve it, the Maxwellian atom veloc-
ity distribution function should be modified. The tem-
perature effect should be taken into account upon com-
paring theoretical and experimental results. At room
temperature, only some of the atoms will make a con-
tribution to the anisotropy effect. The effect will be
enhanced at low temperatures such that all the atoms
meet the OMPR conditions. This can be achieved by
using atomic traps. It is clear that both theoretical and

1 The difference δT in the effective temperatures can be increased
twice or thrice by using extra laser beams orthogonal to the initial
one. They also must meet the OMPR conditions.

q α T T0–( ),=
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experimental results must correlate with the simple
estimates presented here. It is the author’s opinion that
these estimates suffice to attract the attention of
researchers to the problem.
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APPENDIX

The designations used are as follows:

H a σ v, ,( ) = 
a σ2 2Γ+( )

G5 J σ–( )K 2
----------------------------------- 1 G σ–

δ
------------- 2σ 1 Γ–( )

δ σ2 2Γ+( )
--------------------------+ +

× 1 Γ 1 σ2+( )2
v 2+ + ,

K v 2 σ2 2Γ+( ) σ2– 2Γ3 1 σ2+( )2
––=

– 2Γ 1 σ2 1 σ2+( ) a2G2 1 σ2+( )
J σ–( )2

-------------------+ +

– Γ2 1 σ2+( ) 4 σ2 1 σ2+( )+[ ] ,

ψ v( ) 1 Γ 1 σ2+( )+

1 Γ 1 σ2+( )2
v 2+ +

----------------------------------------------------arccos π,+=
Here, αR, 1 and αR, 2 are the Rabi frequencies for a
strong bichromate, γ1, 2 is the transverse relaxation con-
stant, u is the velocity of an atom, and v  = O(1) is a
dimensionless parameter characterizing the tuning
accuracy of parametric resonance [2].
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Abstract—Characteristics of a low-pressure volume discharge in SF6 are investigated. The discharge with a
spherical anode–plane cathode electrode system was induced by attachment instability. It is found that applying
a dc voltage (Uch ≤ 1.3 kV) to the anode in the absence of a confining dielectric wall results in the ignition of a
repetitive discharge (f = 0.1–120 kHz). The spatial, frequency, and current–voltage characteristics of the volume
discharge; plasma emission in the spectral range 200–700 nm; and the waveforms of the discharge voltage, cur-
rent, and plasma emission are investigated. It is shown that the plasma under study exists in the form of a
domain (autosoliton) and that the volume discharge is self-induced because, during attachment instability, the
plasma itself acts as a switch enabling repetitive pulsed operation. The results obtained can be applied to study-
ing the physics and technology of electric-discharge chemical HF (DF) lasers based on nonchain reactions and
to developing high-aperture low-pressure repetitive Ar-, Kr-, and Xe-fluoride lamps with low-corrosive working
media (low-pressure mixtures of Ar, Kr, and Xe with SF6). © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Studies of the characteristics of volume discharges
in pure sulfur hexafluoride and its mixtures with some
gases (SF6/H2, SF6/C2H6, etc.), as well as physical pro-
cesses in such discharges, have recently attracted great
interest. This interest stems from the high output
parameters of electric-discharge HF (DF) lasers that are
based on nonchain reactions and in which the main
component of the working medium is sulfur hexafluo-
ride [1–3]. Recent developments in these lasers initi-
ated a series of studies of the characteristics of repeti-
tive volume discharges in mixtures containing sulfur
hexafluoride [4, 5]. Repetitive discharges in the mix-
tures of SF6 with noble gases, gaseous hydrocarbons,
and hydrogen are ignited by using pulsed high-voltage
generators with either capacitive or inductive energy
storage banks. In these generators, spark gaps or hydro-
gen thyratrons are usually used as switches. These
switches are characterized by limited service life and
large dimensions and, sometimes (e.g., spark gaps),
have an autonomous system for the working gas circu-
lation. In view of these disadvantages, a search for new
methods for igniting repetitive volume discharges in
sulfur hexafluoride and its mixtures with other molecu-
lar gases is of great interest now. SF6 can also be used
in the working mixtures of electric-discharge excimer
lamps [6], which, in contrast to excimer lamps based on
molecular fluorine, have a longer gas fill lifetime. The
working mixtures of such lamps are low-corrosive,
which allows operation in the gas circulation regime,
simplifies the technology of manufacturing the corre-
1063-7842/02/4711- $22.00 © 1473
sponding radiation sources, and extends their range of
applicability.

Preliminary studies of volume discharges in chlo-
rine and CFC-12 showed that applying a dc voltage to
the anode resulted in the ignition of a repetitive dis-
charge (f = 0.1–50 kHz) in the interelectrode gap. As
the electron affinity of the electronegative molecule
increased, the amplitude of the discharge current pulse
increased from 0.1–0.5 to 3–5 A at a current pulse dura-
tion of ≤50 ns. Hence, in order to increase the current
amplitude and control the other parameters of a self-
induced discharge, it is of interest to study even more
electronegative SF6-based working mixtures. Previ-
ously, the attachment instability was observed in the
generation zone of a multielectrode corona discharge in
the mixtures of noble gases with fluorine at pressures of
P = 100–300 kPa [7].

In this paper, we study the characteristics of a sulfur-
hexafluoride repetitive volume discharge induced by
attachment instability in a low-density plasma.

EXPERIMENTAL TECHNIQUE

The experimental facility consisted of an electrode
system, a discharge chamber, a dc power supply, and a
system for recording the electrical and optical charac-
teristics of a volume discharge. The electrode system
consisted of a massive 7-cm-diameter hemispherical
duralumin anode and 9-cm-diameter plane cathode
(Fig. 1). The radius of curvature of the anode working
surface was 3 cm. The interelectrode distance was
2.8 cm. A dc positive voltage (Uch ≤ 1.3 kV) was
applied to the anode through a 20-kΩ ballast resistor.
2002 MAIK “Nauka/Interperiodica”
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Fig. 1. Electrode system and the cross-sections of a volume discharge plasma for P(SF6) = (a) 40, (b) 200, and (c) 600 Pa: (A) anode,
(K) cathode, (R) ballast resistance, (1) high-voltage dc power supply, (2) positive column, and (3) negative cathode glow. The capac-
itance of the pulsed capacitor is C0 = 200 pF.
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The pressure of technical-grade sulfur hexafluoride was
varied in the range 400–600 Pa. The average discharge
current was in the range 2–50 mA. The electrode sys-
tem was mounted on a glass textolite flange and was
placed in a 10-l-volume discharge chamber. The cham-
ber with the electrode system was pumped down to a
residual air pressure of 3–5 Pa. The chamber was her-
metically connected via an LiF window to a vacuum
monochromator with a spectral resolution of 0.7 nm.
The monochromator and an FEU-142 photomultiplier
(also with an LiF window) were relatively calibrated in
the spectral range 130–350 nm. We also recorded the
total emission from the plasma with the help of a
FOTON photomultiplier and a broadband S1-99 oscil-
loscope. The FOTON photomultiplier was placed
opposite the entrance slit of the vacuum monochroma-
tor so that the plasma under study was located halfway
between them. The pulsed plasma emission in the spec-
tral range 200–700 nm was recorded with a time reso-
lution of 7–10 ns. The repetition rate of the radiation
pulses was monitored using an S1-99 oscilloscope and
a Ch 3-57 frequency meter. The ac component of the
voltage across the anode–cathode gap was recorded
using a low-inductive capacitive divider, and a low-
inductive current shunt (r = 1–5 Ω) was used to monitor
the current pulses. To investigate how the capacitance
shunting the discharge gap affects the amplitude, dura-
tion, and repetition rate of the discharge pulses, a set of
low-inductive capacitors with the total capacitance C1 =
680 pF were introduced in the circuit in addition to the
self-capacitance of the electrode system, the stray wir-
ing capacitance (  ≤ 20 pF), and the input capacitance
of the voltage divider (C0 = 200 pF).

SPATIAL AND ELECTRICAL 
CHARACTERISTICS

The steady-state distribution of the plasma emission
intensity in the interelectrode gap was monitored by
taking photos of the discharge. Figure 1 shows the pic-
tures of the sulfur hexafluoride plasma emission
obtained by processing the photos with a scanner and

C0'
PC. At a low sulfur hexafluoride pressure (P ≤ 40 Pa),
the discharge occupied most of the cross-sectional area
of the interelectrode gap, except the central region,
where the E/N parameter was maximum (Fig. 1a). The
diameter of the negative cathode glow plasma was 1.5–
2.0 times larger than the maximum diameter of the pos-
itive column plasma. As P(SF6) increased to 200 Pa, the
volume of the positive column decreased about two
times. As the sulfur-hexafluoride pressure increased
further, the volume of the positive column decreased
and its shape changed significantly (Fig. 1c).

The current–voltage characteristics of the volume
discharge are shown in Fig. 2. The steady-state current–
voltage characteristic of the discharge (Fig. 2a) is simi-
lar to that of a dc longitudinal subnormal glow dis-
charge [8, 9]. As the current Ich increases from 2 to
50 mA, the average voltage drop across the gap
decreases from 1.3 to 1.05 kV. For the same experimen-
tal conditions, the dependence between the instant val-
ues of the voltage and current (the dynamic current–
voltage characteristic) is completely different (Fig. 2b).
In the initial stage, when the domain plasma just begins
to form, the discharge current increases to 29 A with
increasing discharge voltage. Then, the current
decreases, which results in a negative slope of the cur-
rent–voltage characteristic. Such a behavior of the
dynamic current–voltage characteristic is typical of a
plasma with developed attachment instability [10].

OPTICAL CHARACTERISTICS

Study of the emission spectra from a sulfur-hexaflu-
oride volume discharge showed that UV emission con-
sists mainly of the impurity molecular bands: the sec-
ond positive system; the third Kaplan system of

N2(A3 –E); and the forth positive system of molecu-

lar nitrogen N2(B3Πg–D3 ), OH(A–X), and CN(B–X).
This is related to the presence of small amounts of air
and water vapor (at a level of 1–2 Pa) in SF6 and the
residual air pressure in the discharge chamber (P1 ≤
5 Pa). Because of the strong attachment of slow elec-
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Fig. 2. Steady-state and dynamic current–voltage characteristics of the volume discharge for P(SF6) = 400 Pa and C0 = 220 pF.
trons to SF6 and SF5 molecules (the S  radicals are
efficiently produced in the dissociation of SF6 mole-
cules in the discharge), the high-lying states of nitrogen
are excited most efficiently, which results in the preva-
lence of the N2(C–B) 337.1- and 357-nm bands
(belonging to the second positive system of N2) in the
plasma emission.

The waveforms of the discharge voltage and current
and the total emission intensity from a discharge in a
sulfur hexafluoride–based mixture are shown in Fig. 3.
It follows from Fig. 3 that the discharge under study is
repetitive. At a dc voltage at the anode of 1.0–1.3 kV,
the pulsed voltage amplitude attains 4 kV. The voltage
pulse has a short (τ ≤ 50–100 ns) leading edge and an
extended (up to 1.3 µs) trailing edge. The current pulse
with a full width of 75–150 ns is formed during the
leading edge of the voltage pulse. The duration of the
emission pulse attains 400–500 ns. The emission inten-
sity reaches its maximum in the near afterglow of the
current pulse; this fact can be related to the recombina-
tion and stepwise mechanisms for the formation of the
emitting plasma particles. The domain propagation
velocity in the anode–cathode gap can be determined
from the duration of the leading edge of the current
pulse and the interelectrode distance [11]. Under condi-
tions corresponding to Fig. 3, this velocity is 4 ×
107 cm/s.

Let us consider the influence of the capacitance
shunting the interelectrode gap on the pulsed character-
istics of the volume discharge. Figure 4 presents the
waveforms of the current and the total plasma emission
intensity for different shunting capacitances at a con-
stant value of P(SF6). The increase in the capacitance
results in a significant increase in the current pulse
amplitude (by a factor of greater than 3), twofold
increase in the pulse duration, and decrease in the
domain propagation velocity in the interelectrode gap
from 6 × 107 to 3 × 107 cm/s. As the shunting capaci-
tance increases, the emission pulse shifts in time from
the leading edge of the current pulse toward its maxi-
mum (Fig. 4). Figures 3 and 4 present the most repre-
sentative waveforms with the maximum pulse ampli-

F5
–
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tudes; in the experiments, we recorded a rather wide set
of U, I, and JF waveforms (up to 10–15 waveforms syn-
chronized in time), whose amplitudes obeyed certain
dispersion relations, as in the case with the other types
of autosolitons [12].

Figure 5 shows the typical dependences of the pulse
repetition rate on the average discharge current for dif-
ferent values of P(SF6) and different shunting capaci-
tances. Generally, the pulse repetition rate increases
with the average discharge current. The pulse ampli-
tude increases linearly with the average discharge cur-
rent. The increase in P(SF6) at the minimum capaci-

tance  results in a significant increase in the pulse
repetition rate and the disappearance of the descending
segment in the f(Ich) curve (Fig. 5, curve 1). The
increase in C0 from 20 to 900 pF does not change the
behavior of the f(Ich) curve; however, the current pulse
repetition rate decreases by more than one order of
magnitude. In this case, the shunting capacitance acts
as a capacitive energy storage bank, whereas the vol-
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Fig. 3. Waveforms of (1) the discharge current, (2) voltage,
and (3) total plasma emission intensity at P(SF6) = 200 Pa
and C0 = 220 pF.
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ume discharge plasma itself serves as a pulsed voltage
switch.

CONCLUSION

It has been shown that the plasma of a self-induced
repetitive volume discharge in sulfur hexafluoride rep-
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Fig. 4. Waveforms of (1) the current of and (2) total plasma
emission intensity from a volume discharge for P(SF6) =
200 Pa and C0 ≤ (a) 20 and (b) 220 pF.
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Fig. 5. Repetition rate of the volume discharge pulses vs.
average discharge current for (1) P(SF6) = 200 Pa and C0 ≤
20 pF, (2) P(SF6) = 600 Pa and C0 ≤ 20 pF, and (3) P(SF6) =
200 Pa and C0 = 900 pF.
resents a domain (a set of autosolitons), whose forma-
tion is related to the onset of attachment instability. This
is indicated by the presence of a segment with a nega-
tive slope in the dynamic current–voltage characteristic
of the volume discharge. The plasma emits in the UV–
VUV spectral range due to vibronic transitions of
impurity molecules (N2, OH, etc.). Shunting the dis-
charge gap with an additional capacitance C0 = 20–
900 pF allows one to control the amplitude and dura-
tion of the discharge-current and emission pulses, as
well as the domain propagation velocity in the inter-
electrode gap, over wide limits. Volume discharges in
sulfur hexafluoride and its mixtures with noble gases
and gaseous hydrocarbons can be used to develop high-
repetition-rate switches, low-pressure excimer lamps,
and active elements for high-repetition-rate HF lasers
and amplifiers.
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Abstract—The possibility of observing the reversed Doppler effect in an electrodynamic system of coupled
transmission lines with different dispersion types is demonstrated. © 2002 MAIK “Nauka/Interperiodica”.
Recently, the creation of artificial media that offer
negative effective permittivity ε and permeability µ
simultaneously has been reported [1]. Such artificial
media are of interest primarily because they allow for
the observation of reversed effects, in particular, the
reversed Doppler effect in the microwave range when
nonlinear “inclusions” are introduced into the medium
in order to create the moving boundary of its parame-
ters.

Below, we propose a nonlinear electrodynamic sys-
tem where the reversed Doppler effect can be realized
relatively simply for positive ε and µ of the filling
medium. It has been shown [3] that a shock electromag-
netic wave (SEMW) that travels in an electrodynamic
system of coupled transmission lines with different
types of dispersions can efficiently excite an rf back-
ward wave. In this case, a video pulse propagating
through the electrodynamic system that is filled with a
nonlinear hysteretic medium remaining in the saturated
state for a long time transforms into a radio pulse with
a carrier frequency meeting the synchronism condition
(i.e., when the wave phase velocity v p(ω) equals the
SEMW velocity v s). For the backward waves,
v g(ω)v p(ω) < 0 (v g(ω) is the group velocity) and the
SEMW-generated radio pulse can be turned around to
pursue the SEMW front, for example, reflecting from
the input of the electrodynamic system. If |v g(ω)| >
v p(ω) = v s, the backward wave (radio pulse) will catch
up with the SEMW front and reflect from the receding
interface between the linear and nonlinear media. The
radio pulse reflected from the receding SEMW front
will have a higher carrier frequency than the incident
radio pulse (reversed Doppler effect).

For this scenario to occur, the electrodynamic sys-
tem must allow for both the SEMW formation and the
existence, in the saturated nonlinearity state, of back-
ward waves with v p(ω) < |v g(w)| in a certain frequency
range. Such an electrodynamic system can be imple-
mented by coupling two transmission lines one of
which is linear and has a anomalous dispersion (back-
1063-7842/02/4711- $22.00 © 21477
ward waves or a wave with a dominating zeroth spatial
harmonic) and the other is nonlinear with a normal dis-
persion (forward wave) in the saturated state. If a ferrite
is used as the nonlinear medium, the optimal normal-
dispersion transmission line is, in our opinion, a coaxial
(or a quasi-coaxial) transmission line in which a steep-
front (several tenths of a nanosecond wide) SEMW can
be formed. As the anomalous dispersion line, the sys-
tem can use a shielded interdigital slow-wave structure
[4, 5] where, with the parameters chosen appropriately,
the fundamental spatial harmonic is backward and
dominates and where the magnitude of the phase veloc-
ity of the fundamental wave can be less than that of the
group velocity over a certain frequency range (Fig. 1).
Such slow-wave structures are used mostly in wideband
backward-wave tubes. The dispersion relation for the
interdigital structure derived by the multiwire line
method is written as

(1)

where

ϕ is the phase shift over the structure period d, l is the
finger length, k = ω/c, and ε is the permittivity.

These transmission lines can be coupled through a
narrow longitudinal slot carved in the shields as shown
in Fig. 1.

It is most convenient to approximate the dispersion
characteristics of the interdigital system by a CL multi-
section circuit with inductive cross links. The normal-
dispersion transmission line is convenient to approxi-
mate by a usual LC multisection circuit. When coupled
through the narrow slot at the shield center, the trans-
mission lines interact via the electric field alone. In the
equivalent circuit of the electrodynamic system
(Fig. 2), this coupling is included by the coupling
capacitance C

*
, which can easily be controlled by the
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parameters of the system. It is thus convenient to simu-
late the wave evolution and propagation in this electro-
dynamic system in terms of the equivalent circuit
shown in Fig. 2 [3]. Figure 3 plots the dispersion char-
acteristics of the coupled transmission lines calculated
using the equivalent circuit of Fig. 2 (its parameters are
given in the figure caption). As follows from Fig. 3, the
dispersion characteristics have two branches. The syn-
chronism between the SEMW and the backward wave
is possible on both the low-frequency and the high-fre-
quency branches (Fig. 3) at the frequencies ωsynch 1 and

x

yz

A
a

A–A

p d

D

l

A
a

1

2

Fig. 1. System of coupled coaxial transmission line and
interdigital slow-wave structure: (1) metal and (2) ferrite.
ωsynch 2, respectively. However, the parameters of the
coupled transmission lines and the SEMW amplitude
are chosen such that the condition v p(ωsynch 1) = v s <
|v g(ωsynch 1)|, under which the SEMW-generated radio
pulse with the carrier frequency ωsynch 1 strikes the
SEMW front after being reflected from the input of the
electrodynamic system, is only satisfied for the low-fre-
quency synchronous wave. Clearly, the frequencies ωsec
of the secondary waves generated at the interface
between the linear and nonlinear media, which moves
with the velocity v = vx, are related to the incident wave
frequency ωin = ωsynch 1 by the well-known Doppler for-
mula [2]

(2)

where vin and vsec are the phase velocities of the inci-
dent and secondary waves, respectively.

Using relationship (2), one can graphically calculate
the frequencies of all the secondary waves. They are
given by points of intersection with the straight line of
slope v s that passes through the point on the dispersion
curve for the synchronous wave reflected from the input
(Fig. 3). In our case, all the secondary waves are for-
ward waves and satisfy the radiation condition, two of
them having frequencies higher than that of the wave

incident on the SEMW front ( ,  > ωsynch 1).

In terms of the equivalent circuit of Fig. 2, wave pro-
cesses in the electrodynamic system are described by
Kirchhoff’s usual difference equations [6]. If the mag-
netization of the ferrite material in the coaxial line is
reversed rapidly and incoherently, the magnetization
variation is described by the equation [6]

(3)

where , Mavn, and H( ) are the current in the fer-
rite, the averaged magnetization vector (parallel to the

ωsec
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Fig. 2. Equivalent circuit of the electrodynamic system in Fig. 1.
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magnetic field), and the magnetic field, respectively, in
the nth cell of the nonlinear transmission line; M is the
saturation magnetization of the ferrite; γ is the absolute
value of the gyromagnetic ratio; and α is the dissipation
factor.

The system of Kirchhoff’s equations [6] and
Eqs. (3) were solved numerically by the Runge–Kutta
fourth-order method. As in [6], we assumed that, at the
initial time moment (t = 0), the currents and voltages in
all the cells are zero, a certain initial magnetization of
the ferrite is specified, and a semi-infinite voltage step
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Fig. 3. Relative frequency ω/ωc (ωc = 2/(L0C0)1/2) versus
relative wave number ϕ = k/d (d is the structure period) for
the normal-dispersion transmission line coupled to the
interdigital slow-wave structure at C01/C0 = 0.1, Ccoupl/C0 =
0.16, L∗ /L0 = 5, and L01/L0 = 22.5.
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is applied to the input of the normal-dispersion trans-
mission line.

Figure 4a plots the typical time behavior of the rela-
tive voltage at nodes of the normal-dispersion (upper
plot) and anomalous-dispersion (lower plot) transmis-
sion lines. The results were obtained numerically with
the input of the anomalous-dispersion line short-cir-
cuited for the high frequency. As follows from this
numerical experiment, the backward wave, striking the
SEMW front, partially “penetrates” the traveling inter-
face between the linear and nonlinear media (the signal
that passed through the SEMW front is seen more dis-
tinctly in the voltage waveform for the anomalous-dis-
persion line). The wave that penetrates the SEMW front
decays rapidly. Figure 4b plots the spectrum of oscilla-
tions in the anomalous-dispersion line. Peaks related to
the lower-frequency and higher-frequency synchronous
waves (ωsynch 1 and ωsynch 2), as well as peaks related to

the secondary waves with the frequencies  and ,
are clearly observed in the spectrum. Note that the cen-
ters of the secondary-wave spectral lines are in good
agreement with those calculated from Eq. (2). The

amplitudes of the secondary waves with  and 
amount, respectively, to 20 and 10% of the backward
wave amplitude incident on the SEMW front. Since in
this electrodynamic system, reflections from the input,
the SEMW, and forward secondary waves travel toward
the output of the system, the output radio pulse will
contain three carrier frequencies. The two higher fre-
quencies appear due to the reversed Doppler effect.
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Our simulations have thus shown that the reversed
Doppler effect can be observed at certain parameters of
an interdigital slow-wave structure coupled to a quasi-
coaxial transmission line. This effect can be used to
directly convert a single-carrier radio pulse into a mul-
ticarrier radio pulse. The spectrum of this pulse can eas-
ily be controlled electronically (by varying the input
video pulse amplitude or the bias magnetization of the
ferrite material that fills the transmission line).
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Abstract—Calculation of the change of work function ∆φ at the surface of TiO2 due to the adsorption of Na,
Ka, and Cs atoms has been carried out in the framework of a model taking into account the repulsion of adatoms
and metallization of the adsorbed layer. The calculation results are in good agreement with experiment. © 2002
MAIK “Nauka/Interperiodica”.
Studies of adsorption at the surface of metal oxides
has begun fairly recently [1]. At present, the best stud-
ied are submonolayers of metal oxides on the surface of
rutile. The M–TiO2 system therefore appears to be an
obvious choice for building a theoretical model of
adsorption on oxides, in which an alkali metal can be
conveniently chosen as the adsorbate metal M, as it is
the simplest adsorbate from the theoretical standpoint
and, at the same time, its deposition onto a nonmetallic
substrate shows all the characteristic features of elec-
tronic structure formation in an adsorption system [2].
In [3], we proposed a model giving a fair description of
decrease ∆φ of work function φ0 at the (110) face of
rutile due to the adsorption of cesium. Taken into
account were both the dipole–dipole repulsion of ada-
toms and the broadening of their quasi-levels at large
coverages Θ = Na/NML (Na is the concentration of ada-
toms on the substrate; NML is the concentration of ada-
toms in the monolayer) due to the tunneling of electrons
between adjacent adatoms. Application of the model
[3] to experimental data on the adsorption of K atoms
on the (100) face [4] and Na atoms on the (110) face [5]
of TiO2 revealed that the model needed modification.
The modified version is presented in this study.

Consider an atom with one electron in its outer s-
shell. Following adsorption, the electron can transfer
from the adatom to a Ti4+ ion. As a consequence, the
filling number n of the s-orbital becomes different from
unity and the adatom acquires a charge of Z = 1 – n. The
dependence of Z on the coverage Θ can be calculated
using the formula [6–10]:

(1)

Here, Ω is the energy of the adatom quasi-level relative
to the Fermi level in the substrate; ξ is the dipole–dipole

Z Θ( ) 2
π
--- Ω ξθ3/2Z Θ( )–

Γ Θ( )
-----------------------------------,arctan=

ξ 2e2λ2NML
3/2 A, Γ Γ 0 1 γΘ+( ).= =
1063-7842/02/4711- $22.00 © 21481
repulsion constant of the adatoms; 2λ is the distance
between charges in a surface dipole; A ~ 10 is a dimen-
sionless coefficient weakly dependent on the adatom
lattice geometry; Γ0 is the halfwidth of the level of an
isolated adatom; and γ is a dimensionless coefficient
taking into account the band broadening [3].

Change of work function ∆φ is determined in the
following way [6, 7]:

(2)

In order to determine the model parameters, we will
use both theoretical estimates and experimental data.
The value of λ will be determined in a self-consistent
manner proceeding, first, from the initial slope of the
experimental curve of work function versus coverage,

∆φ Θ( ) ΦΘZ , Φ– 4πe2NMLλ .= =

–4
0.200 1.000.40 0.60 0.80

–3

–2

0

–1

Θ

∆φ, eV

Na/TiO2(110)

1
2

Fig. 1. Variation of the work function ∆φ in the Na/TiO2
(100) system with coverage Θ: (1) calculation results,
(2) experimental data of [5].
002 MAIK “Nauka/Interperiodica”



 

1482

        

DAVYDOV, NOSKOV

                                                               
i.e., (d∆φ/dΘ)Θ → 0, and, second, from the adatom
charge Z. To determine the latter we assume

(3)

where I is the ionization energy of the adsorbed atom
[11], φ is the work function of the rutile surface,
and ∆ is the Coulomb shift of the adatom quasi-level
due to interaction of its electron with those of the sub-
strate [11].

It is by taking into account the shift ∆ that modifica-
tion of the model is performed. Then, using the experi-
mental value of the decrease in the work function for
monolayer coverage ∆φML, we determine ZML from (2);
in so doing, parameter γ

(4)

Ω φ I– ∆, ∆+ e2/4λ ,= =

γ
Ω ξZML–

Γ0
π
2
---ZML 

 tan

--------------------------------- 1.–=

Model parameters

Parameter Na K Cs

NML, 1014 cm–2 7.0 5.5 6.0

Γ0, eV 1 1 1

Ω, eV 4.16 4.13 3.58

λ, Å 1.0 1.4 1.7

Φ, eV 12.7 15.25 18.0

ξ, eV 5.3 8.3 11.7

Z0 0.85 0.92 0.83

ZML 0.16 0.24 0.18

γ 5.0 4.6 3.9

–4
0.200 1.000.40 0.60 0.80

–3

–2

0

–1

Θ

∆φ, eV

K/TiO2(100)

1
2

Fig. 2. Same as in Fig. 1 for the K/TiO2 (100) system, using
the experimental data of [4].
Thus, the initial slope of the ∆φ(Θ) curve, and then
its final slope ∆φML, is fitted.

The parameter values calculated in this way are
given in the table. In addition to sodium and potassium,
parameters for cesium are also given, calculated using
the experimental data of [12], which differ markedly
from the values given in [13] that we used in [3]. The
calculation results for ∆φ(Θ), shown in Figs. 1–3, and
the experimental data agree remarkably well.

Let us analyze how the model parameters vary
across the Na–K–Cs series and their numerical values.
First of all, good correlation is notable between the val-
ues of parameter λ given in the table and ionic radii ri

in the Na–K–Cs series, which equal, respectively, 0.92,
1.33, and 1.86 Å [10]. Namely, the increase in the
dipole charge separation 2λ in the Na–K–Cs series is
accompanied by a corresponding increase in the energy
parameters Φ(~λ) and ξ(~λ2) in the series. It should be
emphasized that the values of these parameters appear
quite reasonable (see, e.g., [14–16].

Parameter γ characterizes the broadening of the
quasi-levels into the band and therefore should corre-
late with integrals of nearest neighbor transitions in the
monolayer of alkali metal atoms. These integrals can be
equated to matrix elements Vssσ of the Harrison model

of binding orbitals [17], which are proportional to 
(ra being the atomic radius of the alkali metal). For the
Na–K–Cs series, the respective ratios of the Vssσ inte-
grals are 0.40 : 0.18 : 0.14, corresponding to decreasing
γ values transferring from sodium to cesium (see table).

The parameter that is most difficult to evaluate is Γ.
In the simplest case of an atom adsorbed on the metal
surface, Γ has a clear physical meaning: it is the half-

ra
2–

–2.5
0.200 1.000.40 0.60 0.80

–2.0

–1.5

–1.0

Θ

∆φ, eV

Cs/TiO2(110)

1
2

–0.5

0

Fig. 3. Same as in Fig. 1 for the Cs/TiO2 (110) system, using
the experimental data of [12].
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width of an impurity quasi-level whose finite lifetime
hinges on the possibility of an electron tunneling
between adatom orbitals and the states in the conduc-
tion band of the metal. However, even in this simple
case, the scatter in the estimates of Γ is considerable. As
to the model of this study, with its nonmetal substrate
that has a complicated band structure, here, the param-
eter Γ takes into account all the processes determining
the finite lifetime of the electron on the adatom, i.e.,
both tunneling and Auger processes (for discussion on
such transitions see, e.g., [12]). It is evident that, in this
case, estimates of Γ are all the more difficult. Therefore,
in this work, a value of Γ = 1 eV is assumed for all
adsorbates.

Thus, in the framework of the modified model, the
variation of the work function of rutile caused by the
adsorption of alkali metal atoms can be quite ade-
quately described.
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Abstract—13-MeV electron beams are shown to generate low-frequency electromagnetic radiation in the gas-
eous medium of a 100-m-long dielectric electron pipe. © 2002 MAIK “Nauka/Interperiodica”.
We present the results of studying low-frequency
(LF) secondary electromagnetic radiation (SER) gener-
ated by electron beams in a rarefied gaseous medium.

The experimental setup (Figs. 1, 2) comprised an
MT-22S microtron, an electron beam transportation
path with a 100-m-long dielectric electron pipe (glass,
inner diameter 50 mm, intensity loss at the exit 15%,
residual gas pressure 10–3 Pa), antenna feeders, and an
on-line measuring module including an SK4-72 spec-
trum analyzer, a CAMAC system, and an IBM com-
puter [1, 2]. The results were obtained for a pulsed elec-
tron beam (electron energy Ee = 13 MeV, average cur-
rent Ie = 1–10 µA, pulse duration τ = 2.5 µs, and pulse
repetition rate f = 388 Hz) in the final 15-m-long section
of the dielectric electron pipe, where the residual gas
pressure was varied from 1 to 105 Pa. A remote control
device was used to vary the spatial orientation of the
antennas and their position along (L = 0–15 m) and
across (d = 0.4–1.1 m) the beam axis within the final
section.

Our experiment demonstrated that the interaction of
the electron beam with the gaseous medium in the near-
field zone gives rise to low-frequency SER with fre-
quencies f that are multiples of the repetition rate of
beam pulses (Figs. 3, 4). It is shown that (i) the SER
signal U grows linearly with beam current (i.e., with an
increase in the number of ionized gas molecules; Fig. 5)
and decreases linearly with increasing spacing d
between the antenna and the beam axis (i.e., with a
decrease in the SER flux intensity inducing the antenna
signal; Fig. 5); (ii) an increase in the antenna offset L
from the beginning of the section studied or in the
residual pressure P in the electron pipe (i.e., the growth
of the length or density of a plasma interacting with the
electron beam) results in a monotonic rise in the U sig-
nal amplitude (Figs. 3, 6); and (iii) the U signal ampli-
tude depends on the antenna orientation, indicating the
1063-7842/02/4711- $22.00 © 21484
poorly understood horizontal polarization of the SER
electric component (inset in Fig. 2).

Note that the considerable sizes of the frame
antenna and, accordingly, the high level of noise
induced in it and the use of the 100-m-long biconical
vibrator precluded the detection of individual spectral
lines. Another point to be emphasized is that, along
with the electron-beam-induced SER, the experimental
spectrum also included the contribution from the
antenna interaction with stray radiations due to electron
beam scattering.

The results obtained are insufficient to draw any
conclusions concerning the physical nature of the LF
secondary electromagnetic radiation discovered.

Fig. 1. Experimental setup: (1) MT-22S microtron,
(2) quadrupole magnetic lens doublet, (3) rotary magnet,
(4) vacuum partition in dielectric electron pipe, (5) leak,
(6) movable antennas, (7) SK4-72 spectrum analyzer,
(8) analog interface, (9) digital interface, (10) generator,
(11) analog-to-digital convertor, (12) digital-to-analog con-
vertor, (13) CAMAC crate controller, and (14) computer.
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(1) The SER observed cannot be explained by the
excitation of the antenna feeders, since their ampli-
tude–frequency characteristics have no resonance
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Fig. 2. (a) Ferrite and (b) electrical antennas. The insets
show their amplitude–frequency characteristics (k(f) is the
frequency-dependent transmission coefficient) and the
dependence of the SER signal amplitude U on the orienta-
tion angles ϕ and ψ for the electrical antenna. L = 10 m, d =
0.8 m, P = 6 Pa, and I = 3 µA.
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Fig. 4. Spectrograms of (a) background and (b) SER with-
out background (both measured with the electrical antenna).
L = 10 m, d = 0.8 m, P = 6 Pa, and I = 3 µA.
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peaks in the range under study because of the low Q
factor of the oscillatory circuit formed by the antenna
feeders and the input circuit of the spectrum analyzer.
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Fig. 3. SER spectrograms and the amplitudes U vs. pressure
P for the ferrite antenna with L = 10 m, d = 0.8 m, and
I = 3 µA.
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Fig. 5. SER amplitude U vs. beam current I (at d = 0.8 m)
and spacing d (at I = 3 µA) from the electrical antenna to the
beam axis (L = 10 m, P = 6 Pa).
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(2) The amplitudes of the SER harmonic compo-
nents bear no resemblance to the amplitude spectrum of

200
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2 4 6 8 10 12 14 16

400

600

800 1 Pa
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Fig. 6. SER amplitude U vs. spacing L between the electri-
cal antenna and the beginning of the section under study
(d = 0.8 m, I = 3 µA).
a periodic sequence of rf or video signals, in the Fourier
expansion of which the harmonic amplitudes should
noticeably decay.

(3) The SER observed is a radiation with a continu-
ous frequency spectrum in the range from f = 0 to f =
3cγ3/2R, where c is the velocity of light, γ = Ee/mc2, and
R is the radius of curvature of the electron trajectory.

Elucidating the origin of an SER generated by
pulsed beams of charged particles in a gaseous medium
evidently needs careful experiments with more intense
beams of particles.
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