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It has been shown that the differential cross section for low-energy triplet pp scattering that is caused by the
sum of the nuclear and magnetic interactionsin the Coulomb field of the protonsisarapidly oscillating function
and has second-order polesin the forward and backward directions. In order to extrapolate such a cross section
to the energy region below 10 MeV, asimple low-energy approximation has been proposed. New phenomena—
proton—proton analogues of the Mott and Schwinger effects—are discussed. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

This work continues the preceding study [1] of the
role of the magnetic interaction in low-energy triplet pp
scattering. Let us recall the commonly accepted pp
model [2] used in thiswork.

The proton scattering is described by the standard
Schrédinger equation with the total interaction Ve =
V¢ + V2 where V2 decreasesfor r — oo faster than the
Coulomb potential V<(r) = my(e/h)%/r = 1/rR, wherem,
is the proton mass, e is the elementary charge, r is the
interproton distance, and R is the Bohr radius of the pp
system.

Three cases are theoretically possible. In the first
case, a = sand V2 = Vsisthe short-range nuclear inter-
action. In the second case, a = mand V2 = V™ is the
magnetic interaction. In the third, most realistic, case,
a= msand V& =V™m = VM + Vs s the superposition of
the magnetic and nuclear interactions. The magnetic
interaction is the sum V™ = V™ + Vs of the tensor
interaction between the magnetic moments of the pro-
tons

V= b 22
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and the spin—orbit interaction of the magnetic moment
of one proton with the el ectromagnetic field of the other
proton
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Here, |, is the magnetic moment of the proton in p,
magneton units; s, and s, are the proton spin operators;

ands=s; + 5, |,andj =1 + s are the operators of the
spin, orbital angular momentum, and total angular
momentum of the pp system, respectively. In calcula-
tions, the soft-core Reid potential [3] isused as Vs,

Let us introduce the following notation: k is the
momentum, E = (k)%m, isthe energy, and 8 and ¢ are
the scattering angles of the protons; g=kRand n = 1/2q

are the dimensionless parameters; &/, €", and
do®¥6; q) = do%¥dBsin® are the phases, mixing
parameters, and differential cross section, respectively,

for scattering caused by the interaction V2 in the field
Ve. The phase &'} is equal to the difference between

thetotal phase 8,5 of scattering caused by the superpo-
sition V¢ + Va and the Coulomb phase &, . The phases

d;'{ and cross sections do® 2 for the casesa=s, m, and

ms are called Coulomb—nuclear, Coulomb—-magnetic,
and Coulomb—magnetic—nuclear.

The main aim of thiswork istofill agap in the the-
ory of low-energy pp scattering, namely, to derive a
simple formula that is appropriate for extrapolation of
the Coulomb—magnetic—nuclear cross section do® ™ to
the low-energy region (E < 10 MeV) and explicitly
reproduces all low-energy and angular features of such
across section. To discussthesefeatures, it is necessary
to recall the Mott [4] and Schwinger [5] effects.

The Mott effect [6] is manifested asfast oscillations
inthe differential cross section for the low-energy Cou-
lomb scattering of two identical particles that have the
form cos{2nIn[ cot(8/2) ]}, where 8 is the scattering
angle and n isthe Sommerfeld parameter.
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The Schwinger effect [7] is arapid increase in the
differential cross section do,, for the neutron scattering
by a spinless nucleus at small scattering angles (do, =
const[ cot(6/2) 1%, & — 0). Thisincreaseis caused by
the spin—orbit interaction of the magnetic moment of
the neutron with the electromagnetic field of the
nucleus.

2. ANALYSIS OF THE CROSS SECTIONS

We begin to derive low-energy approximate formu-
las (@ — 0) for the cross section do® 23, a=s, m, and
ms. According to Table 11 in [8],

ca _ c,al2 c,al2
do®? = m{(1/2)|M&]" + M3 .

+MEA + M2 + [MET,
where the amplitudes My~ (¢, ©; q) are represented as

series containing associated Legendre polynomials P}
withl =1, 3, ... and the partial amplitudes

oy = exp(2id))[ cos2e] *exp(2id;}) — 1], @

c,a

of * = isin2e] “exp{i[&; 7y + &, I} -

In particular,

ca _
M =

1/2 1/2
+[::—ﬂ affl—[l—ﬂ af;algz’ﬂ(cose).

Each series M[." can be represented in the form

Mor = Mif(j £2) + Mii(j >2), )
where the sum M;.% (j < 2) isthe contribution from the
pp Stateswith j < 2 and the series M;f (j > 2) isthe con-

tribution from all other terms. As is known [1], all
parameters 3 and €7 ° for a=s, m, and msare much
less than unity for E < 10 MeV. For this reason, we set
o = 2iexp(2ig;)dy; and af® = 0 for al partial
amplitudes given by Egs. (4).

Let us analyze the Coulomb—nuclear scattering (a =
s). For g — 0, all Coulomb—nuclear phases decrease

rapidly

8 ;(q) 0g” “*exp(—mn). (6)
Therefore, the main contribution to the amplitudes
Mr.+ comes from the pp states with j < 2 and the stan-

dard approximation M7 = My~ (j < 2) isvalid. In this

PUPY SHEV

approximation, the Coulomb—nuclear cross section
given by Eq. (3) isequal to thesum do; * witha=s:

ca_ ca c,a\2
do%®= n(R/q)ZE[Z(al,o +2559)
+9(8% 2+ 8%2)*](cosh)? @)
9 C, a Cc,a c,a c,a H [l
#[5601- 805"+ 20873810 (sn0)’ 5

All phases &;";" in this sum can be approximated as[1]
8; 5= 811 =-q°Ci(n)AL{[1+h°(N)a’Ci(n) AL T1.(8)
where h(n) and Cf (n) are the known Coulomb func-

tions and A7} are the Coulomb—nuclear scattering
lengths for the soft-core Reid interaction.

Let us anayze Coulomb—magnetic scattering (a =
m) for the case V™= V™s, when all phases 8"} havethe
low-energy asymptotic form [1, 9]

&'(a) = [i(j+1)=1(1+1) —s(s+ 1)]1,(q),

__b2l+1-n[m-2Imy(l +1+in)] )
7,(9) —_qllq A0+ D)2 + 1) ,

s=1, and W isthe W function. The Born approximation

for the phases &/'" = 5" generates the Born approxi-

mation for the amplitudes M,,; = Mra . Since only the
following two amplitudes among the five amplitudes

Me." are nonzero,
Mi' = —[Mai 1* = J/2bexp(-i9)

x[9(8; q) +g(t- 6, q)], (10)

where

CHOEIY exp[2i3f(a)]t,(a) Py (cos8),
1=12,..
the cross section given by Eq. (3) for a = mis approxi-
mated as
do®™=do®™ = 2 M5 (12)
Theleading term of the low-energy asymptotic formula
for the auxiliary series g is determined by the method
described indetail in[10Q]. First, we verify that thisterm
is generated by the part of the series g with large values
| > n. Then, the Coulomb phases and polynomials in
this part are replaced by the leading terms of their
asymptotic formulas for | — oo, the resulting seriesis
approximated by the integral with respect to |, and the
asymptotic form of the integral is determined by the
JETP LETTERS  Vol. 82
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stationary phase method. The stationary phase point is
I, ~ ncot(8/2). Therefore, the asymptotic behavior of
the series g is determined by itstermswith large ordinal
numbers | ~ |, Substituting the found asymptotic
behavior for g in Eqg. (10), we obtain the following

asymptotic forms for the amplitudes M1 and Mo :
M = —[Ma"1* 027 exp(-i9)] by
x expliw(n)][a®) +a(m—0)],
where w(n) = 2n(Inn — 1) by definition and
_ t(0) _2cot(8/2) +0—Tt
a(@)=s——————, t(0)=
©) [sin(8/2)]*" ©) 1+ cos®

According to Egs. (11)—«13), the cross section do®™
has the low-energy asymptotic behavior

do® "= do" " Oy *(t(B)|° + [t(1— 6)%) (1)
+ 211{by*cos{ 2n In[ tan(8/2)]} t(B)t(TT— B).

This asymptotic expression oscillates rapidly dueto the
Mott factor cos{2nIn[tan(6/2)]} and increases
unboundedly due to the functions t(0) and t(1t— 6) as
|cot(6/2) P and |tan(6/2) P for 8 —= 0and & — T,
respectively. Since the asymptotic behavior of the
series g is determined by its terms with | ~ |5 ~
ncot(6/2), the main contribution to the nonzero

(12)

.(13)

amplitudes M3," and Mg, aswell asto the cross sec-

tion do®™ and its approximation dg“", comes from
the pp states with large total angular momentaj ~ I,.

Let us analyze Coulomb magnetic—uclear scatter-
ing (a=ms). Aswas shownin[1], to correctly describe

the phases &/ for low energies, in addition to the
nuclear interaction VS, both magnetic interactions V™
and V™s and only the V™s interaction should be taken
into account if j < 2 and otherwise, respectively. For this

reason, for j < 2, we use the exact phases 3" corre-
sponding to the sum Vs + V™ + V/Ms gnd, for j > 2, we
set 5™ =37 =& ,whered|| areapproximations
(9) for the phases &";" corresponding to theinteraction
Vmis. Therefore, Me ™(j > 2) = M“ ™ (j > 2) and decom-
positions (5) are approximated by the sums

Mo = Mai(j<2) + Mar'(j>2).  (15)
As was shown above, Min (j > 2) = 0if |n| = ||, and
the main contribution to nonzero series M3o" and Mg "
comes from the pp states with largej values. Therefore,
the parts M3 (j > 2) and Mgy (j > 2) of these series
have the same low-energy asymptotic behaviors given
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by Eq. (12). In view of these properties of the ampli-
tudes Mrn ", representation (15) correspondsto thefol-
lowing approximation of cross section (3):

do“™=dc“™=dc"" +do,, +dos™,  (16)

where doj ™ and d6™™ arethe cross sectionsgiven by
Egs. (7) and (14), and the interference cross section

dojy =T (RIQ)[2(8) 2°~ 87 5)

C, ms C, ms (17)
+ /387 1° =87 5) Vin
depends on the scattering angle 8 as the function
Yine = SiN{2nIn[sin(6/2)]} t(6) cos(6/2) (18)

+sin{ 2nIn[ cos(8/2)]} t(ri— B)sin(6/2).

In the limit g — 0, the contributions to cross section
(16) are

d6°™ = O(b2) 20, day, = O[by(b, + b)q] 19
dog™ = O[ (b, + b)°q].

The contribution do“™ is oscillating and singular at
8 = 0 and 1, the contribution do;,; is oscillating and reg-

ular, and the contribution do; ™ is regular and is not

oscillating. Consequently, the cross section do®™s has
featuresfor low energies: it depends slightly on energy,
increases unboundedly in the forward (6 = 0) and back-
ward (6 = m) directions, and is a rapidly oscillating
function of the angle 6.

The weak energy dependence and unbounded
increase of the cross section do® ™ in theforward direc-
tion (0 = 0) as [ cot(6/2)]? are the same features as
those for the Schwinger cross section do, =

const[ cot(6,/2) ]2 and are attributed to interactions of

the same nature, namely, the interaction of the magnetic
moment of one particle with the electromagnetic field
of the other particle. For this reason, the effect that is
expected in thetriplet pp scattering and is manifested as
these features of the cross section do® ™ is a Coulomb
magnetic pp analogue of the Schwinger effect.

Fast oscillations of the cross section do®™ as a
function of the angle for low energies are the same fea-
tures asthose for the cross section of the Coulomb scat-
tering of two arbitrary identical particlesand are caused
by the identity and Coulomb interaction of protons.
Thus, the second effect that is expected in triplet pp
scattering and is manifested as such oscillations of the
cross section do®™s is a Coulomb magnetic pp ana-
logue of the Mott effect. The amplitudes of the oscilla
tions are small, because the oscillating contribution to
sum (14) ismuch smaller than itsfirst and second terms
for al anglesand, according to Eq. (19), the other oscil-
lating term do;,; in the cross section do® ™ decreases
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Fig. 1. Cross sections (solid lineswith symbols) do® ™ and

(dashed lines with symbols) do® S for E = (triangles) 50,
(circles) 100, and (diamonds) 200 keV and (the line without

symbols) the cross section do® ™S for E = 10 keV.

with energy. Calculation of the cross sections confirms
these conclusions.

Let us obtain another approximate formula for the
cross section do® ™. Formulas (7) and (16)—(18) pro-

vide approximate parameterizations do® s = do; ° and
do® ™= dg®™ of the cross sections do® s and do® ™in
terms of the phases &; and & with j < 2. Let us
replace the phases &' and &' in these formulas by,
respectively, the approximations &/ and the approxi-
mations & ™ = &} + 5", where 3 and 5[ are

given by Egs. (8) and (9), which are obtained in [1]. As
aresult, we arrive at the explicit approximate parame-

terizations d6°° and d6“™ of the cross sections do® s

and do®™s in terms of the Coulomb—nuclear scattering

lengths A, whose values are the only data on the

nuclear interaction that are necessary for calculating
the approximation d6“™. In this sense, the approxi-

mation do®Ms= dg“™ isindependent of the choice of
the nuclear interaction.

3. CALCULATION OF THE CROSS SECTIONS
The cross section do® 2 is calculated for low ener-
gies (E < 10 MeV) and two cases a = s and ms in the

same scheme. Thephases &)’ witha=sand msandj <
2 are calculated using the equations for the phase func-
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Fig. 2. Function x(do, 8)for various energies E and the thin
straight line correspondsto x = 0.

tions [1]. For j > 2, weset 37 =0and &, = 5
i.e., the contribution from the nuclear interaction Vs to

the phases &;";™ for j > 2isignored and the contribution

3" form the magnetic interaction V™ = VmMs + Vmt s
approximated by the sum of the leading terms of their
asymptotic formulas (9) that are uniformin| forq —
0. Aswas mentioned in [1], where the pp phases were
analyzed, all these approximations are quite appropri-
ate for E < 10 MeV. The phases thus obtained are used
to calculate the finite parts (I < |, < 20n cot(6/2) ) of

all series M;.". Such a choice of |, provides calcula-
tion of the cross sections da® 2 with a = sand ms(shown

in Fig. 1) and function X = log[do®™/da®®] (shown

in Fig. 2) with an accuracy to four decima places.

Comparison of the calculated cross section do® ™ with
~ C, ms

its approximations da“™ and d6“™ shows that the
relative accuracy of these approximations for E <
10 MeV and 0 < 0 < Ttisequal to 103 and 1072, respec-
tively.

Figure 1 illustrates a pp analogue of the Schwinger
effect that is manifested as an increase in the cross sec-
tion do® ™ inthelimit of small scattering angles (6 —»
0). For E = 10 keV, the cross section do®™s in the plot
scale cannot be distinguished from the cross section

da™™ given by Eq. (14). Noticeable oscillationsin the
Cross sections do® ™ are manifestations of a pp ana-
logue of the Mott effect. As is seen, the cross sections
do® s and do® ™s differ radically from each other.
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AsisseeninFig. 2, the contribution of the magnetic
interaction should be included in the calculation of the
differentia cross section do® ™s, because this contribu-
tion for E < 200 keV significantly exceeds the contribu-
tion from the nuclear interaction and the excess
increases as the energy or angle 6 decreases.

4. CONCLUSIONS

The conclusions are summarized as follows. For
energies below 10 MeV, the interaction of the magnetic
moment of a proton with the electromagnetic field of
the other proton makes a significant contribution to the
differential cross section do®™s for triplet pp scattering
that is caused by the sum of the nuclear and magnetic
interactionsin the Coulomb field of the protons. Owing
to the magnetic interaction, the cross section do® ™ for
these energies depends only dightly on the energy for
scattering angles 8 < 30° and 8 > 150°, has second-
order poles in the forward and backward directions (a
Coulomb magnetic pp analogue of the Schwinger
effect), and isarapidly oscillating function of the scat-
tering angle due to the identity of the protons (a Cou-
lomb magnetic pp analogue of the Mott effect). All fea
tures of the energy and angular dependences of the
cross section do®™s for E < 10 MeV are reproduced
with arelative accuracy of ~1072 by derived extrapola-
tion formula (16). A less accurate parameterization

d6®™ of the cross section do® ™ in terms of the Cou-

JETP LETTERS Vol. 8 No.5 2005
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lomb nuclear scattering lengths A"} with j < 2 follows
from this formula.

| am grateful to V.B. Belyaev and S.I. Vinitskii for
valuable remarks. Thiswork was supported by the Rus-

sian Foundation for Basic Research (project no. 04-02-
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We propose adesign for the construction of alaboratory system based on present-day technology which repro-
duces and thereby simulates the quantum dynamics of the O(3) nonlinear sigmamodel. Apart fromitsrelevance
in condensed-matter theory, this strongly interacting quantum field theory serves as an important toy model for
guantum chromodynamics (QCD) sinceit reproduces many crucial properties of QCD. The proposed designis
therefore afeasibility and proof-of-principle study for more general analogue quantum simulators. © 2005 Ple-

iades Publishing, Inc.
PACS numbers; 03.67.—a, 11.10.Kk, 68.65.—k

INTRODUCTION

In many areas of physics, progress has been
thwarted by our lack of understanding of strongly inter-
acting guantum systemswith many degrees of freedom,
such as quantum field theories. Beyond perturbation
theory with respect to some parameter or semiclassical
models/methods, there are not many analytical tools
available for the treatment of these systems. Numerical
methods are hampered by the exponentially increasing
amount of resources required for the simulation of
guantum systems with many degrees of freedom in
general. However, this obstacle applies to classica
computers only—quantum computers will be able to
simulate other quantum systems with polynomial effort
[1]. But aslong as universal quantum computers of suf-
ficient size (e.g., number of QuBits) are not available,
one has to search for aternatives. One possibility is to
design a special quantum system in the laboratory,
which reproduces the Hamiltonian of aparticular quan-
tum field theory of interest [2]. This designed quantum
system can then be regarded as a special quantum com-
puter (instead of a universal one), which just performs
the desired quantum simulation. In this Letter, we pro-
pose such a quantum simulator for the example of the
O(3) nonlinear sigmamodel and demonstratethat it can
(in principle) be constructed using present-day technol -
ogy, cf. [2, 3].

Themodel. The 1 + 1 dimensional c model [4-10]
is described by the O(N) and Poincaré invariant action

h v h
¥ = 5c0,0 (B0 = Z;[(atﬁ)z—cz(axﬁ)z], (1)

with the internal vector ¢ = (0, 0y, ..., Gy) O RN
reflecting the O(N)-symmetry. So far, this theory

TThe text was submitted by the authorsin English.

describes N independent free fields, but the constraint

6’ = o’+05+...+05 = NIg, 2
introduces an interaction corresponding to the coupling
g> 0. For vanishing couplingg | 0, the curvature of the
constraint sphere (62 = N/g?) vanishes and we repro-
duce (locally) an effectively free theory. For finite cou-
pling g > 0, we abtain a nontrivially interacting theory
aslongasN = 3, i.e, inthe non-Abelian case. Theclas-
sical ground state o = const is O(N)-degenerate, but
guantum interaction lifts that degeneracy and gives the
classical Goldstone modes a mass gap; see, e.g., [7, §].

Properties. Apart from its relevance in condensed-
matter theory (partly due to its relation to spin systems
such as antiferromagnets; see, e.g., [11]), it can be
shown that the 1 + 1 dimensional O(N) o model repro-
duces many crucial properties of quantum chromody-
namics (QCD) and hence serves as an important toy
model; see, e.g., [7]. The c model isrenormalizable (in
1 + 1 dimensions; cf. [10]) and its running coupling
o(p?) generates asymptotic freedom g?(p? > A?) O
VIn(p?A?), cf. [5]. In analogy to QCD, the classical
scaleinvariancex’ — QX" isbroken dynamically, cor-
responding to the dimensional transmutation g — A.
Furthermore, the 0 model generates nonvanishing vac-

uum condensates such as [ [# Oin the operator prod-

uct expansion and reproduces the trace anomaly [T, [
0 (see, e.g., [7]). It also serves as a toy model for the
study of the low-energy theorems and sum rules (see,
e.g., [7]). Finaly, for N =3, thec model exhibitsinstan-
tons (mapping of S, onto R?, cf. [6, 7]) and 6 vacua.

The analogue. In order to reproduce the quantum
dynamics of the 1 + 1 dimensional O(N) ¢ model
according to Egs. (1) and (2), let us consider a large
number of perfectly insulating thin hollow spheres
(radius p) lined up at equal distances Ax with single

0021-3640/05/8205-0248%$26.00 © 2005 Pleiades Publishing, Inc.
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electrons being captured by the polarizability (inducing
a finite extraction energy) on each of the hollow
spheres. These insulating spheres are surrounded by an
arrangement of superconducting spheres (radiusa) and
wires (radius 0) as depicted in figure, which generate
controlled interactions of the confined electrons via
their image charges. The involved length scales includ-
ing the typical wavelength of the excitations A, the dis-
tance of elements (lattice spacing) Ax, the distance
between the insulating and the conducting spheres vy,
the radii of the insulating and conducting spheres (p
and o) and wires d (cf. figure) are supposed to obey the
following hierarchy

A>Ax>y >pUa> 0. 3

The total Lagrangian for the system of electrons
reads

P = Z[gr’f—V(rHl,ri)}, (4)

with m being the mass of the electrons and V(r; . 4, 1)
their interaction potential, where only nearest neigh-
bors are taken into account in view of the assumptions
(3). Inthislimit, theinteraction potential induced by the
images of the electron charges e simplifiesto

2
efa®  (riii—ry)

V(rienr) = 4tre,y*40 +AX/IN(AX/D)’

©®)

where the first addend in the denominator on the right-
hand side is due to the capacitance of the conducting
spheres 4mg0 and the second one due to the capaci-
tance of thelong wires 2mg,AX/In(Ax/d). Comparing the
resulting Lagrangian in Egs. (4) and (5) with the onein
Eq. (1), we can read off the effective propagation speed

cso | € 2a°Ax° 1y ©)
o 7%\ ameymc24a +AX/IN(AXIB)’

Sincethefirst term under the root represents the classi-
cal electron radius (of order 107*° m), the effective
propagation speed c; is much smaller than the speed of
light in vacuum ¢, > ¢ for realistic parameters (see
below), i.e., we obtain alarge slow-down. Furthermore,
we may identify the effective coupling for N =3

oy = J3Y J4n%ﬁ 4a + Ax/ In(Ax/6) @)

me 2a?

where the first term under the root is the classical elec-
tron radius over the square of the fine structure con-
stant. The value of the effective coupling can be tuned
by varying the ratio y/p > 1 and may well be of order
one (see parameters below). Strictly speaking, the
above equation determines the value of the running
coupling g«(p?) at alength scale corresponding to the
lattice spacing Ax (lattice renormalization scheme). In
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Image charge e, Image charge
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Sketch of the proposed analogue quantum simulator. The
solid lines and spheres denote (super) conductors and the
hollow spheres are insulators containing single electrons.
Shown are just three elements of a long chain (top) and a
close-up view (bottom) with the involved length scales.

complete analogy to Aqcp, the coupling gﬁff(p2 > /\f,) O

Ul n(p2//\(2,) determines the induced scale of dynamical

symmetry breakdown A, of the 0 model (dimensional
transmutation). This important quantity sets al other
length scales such as the mass gap (see, e.g., [8]) and
must satisfy the condition (3) for consistency, i.e.,
N Ax < 1. Finaly, identifying (again for N = 3)

iAX) = Jér
OetP’

the continuum limit (z AX — y[ dx for A >Ax) of

Eq. (4) generatesthe Lagrangian (1) of the O(3) nonlin-
ear sigma model with the constraint (2) being imple-

mented by r? = p2.

Disturbances. Of course, for arealistic proposal, it
is essentia to estimate the impact of the contributions,
which have been omitted so far. The additional kinetic
terms due to inductances L of the wires are negligible

o(x =

(8)

LI2 < mr” provided that
o [Cat ) [AX]
430 Infzg <1 (9)

holds, i.e, for a sufficiently large slow-down (as one
would expect). For the same reason, theinfluence of the
zero-point fluctuations of the electromagnetic field
(inductance of free space) is negligible.

In contrast to sequential quantum algorithms, where
errors may accumulate over many operations, the quan-
tum simulation under consideration is basically a
ground state problem and hence more similar to adia-
batic quantum computing [12]. In this case, decoher-
ence can be neglected as long as the interaction ener-
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gies of the disturbances are much smaller than the
energy gap between the ground state and the first
excited state [12]. For the nonlinear ¢ model, this gap
is determined by the induced scale A, (in analogy to
QCD). Therefore, the energies of al perturbations (e.g.,
impurities in the material) must be much smaller than
the gap of order fick/\;. In particular, in order to see
guantum behavior (where the Heisenberg uncertainty
relation becomes important), the temperature must be
small enough:

kg T < icg/\s. (20
Another issue concerns the spins of the electrons,
which have been omitted so far. Fortunately, we may fix
the electron spins by a small external magnetic field
(see the next paragraph) and the various spin—spin and
especially spin—orbit coupling terms are negligible (in
comparison to ficg/\;) for the parameters provided
below.

Phase diagram. Before investigating the impact of
an external magnetic field, let us turn to the phase dia-
gram of the nonlinear o model in terms of the tempera-
ture T and the chemical potentia p. For low tempera-
tures kg T << fic/\; and small chemical potentials p <
hcg/\g, We basically get the usual vacuum state. Note
that the introduction of a chemical potential necessi-
tates the definition of a particle number (whichisanon-
trivial issuein interacting theories). In the o model, this
can be achieved by means of the Noether current corre-
sponding to the global O(3) invariancej, = ¢ % d,0 and
the associated global charge along someinternal axisn
withn?=1

1 .

= —n [[dxo x o. 11
Q Ceif E.[ °re (1)
For the laboratory system, the Noether charge Q isjust
thetotal (orbital) angular momentum in unitsof 7. Note

that still many charges Q > 1 are required to generate
one magnetic flux quantum (due to ¢, > Cy)-

In terms of the chemical potential defined with
respect to this (dimensionless) Noether charge, the

grand-canonical Hamiltonian H: reads

Flgc = |:|0+ “’NN = H0+ U'QQ (12)
Tranglating this expression back to our laboratory sys-
tem in Eq. (4), we observe that the chemical potential
exactly corresponds to an external magnetic field B
inducing the additional term r - A =7 - (r x B)/3 =
B-(r xr)/3

efi

Heit = %B- (13)

(The second-order term eA2/miis three orders of mag-
nitude smaller for the parameters given below and can
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be neglected.) When the effective chemical potential
Mt €xceeds the energy gap of order fic/\,, the struc-
ture of the ground state changes, and the above Noether
current j,, acquires a nonvanishing expectation value
(quantum phase transition, see, e.qg., [8]). At the critical
field By, = O(mc/\,/€) wherethis quantum phase tran-
sition occurs, the energy of the electron spinsis of the
same order asthe gap s - B = O(Aic4/\,) and thusmuch
bigger than the temperature. Hence one can fix the el ec-
tron spins with much smaller external magnetic fields
B < B;; without disturbing the vacuum state too much.
On the other hand, it is also possible to explore the full
phase diagram (e.g., cross the quantum phase transi-
tion, monitored by a SQUID) by increasing the external
magnetic field, which is completely equivalent to
changing the chemical potential (and hence the number
of particles). For the set of parameters discussed below,
the critical field B, is on the order of milli-Tesla

Experimental parameters. The aforementioned
constraints, in particular Egs. (3) and (10), provide the
frame of awindow of opportunity for the experimental
realization of the proposed quantum simulator, whichis
(fortunately) open to present-day technology. Let us
first explore the limit set by the ultra-low temperatures.
For solid bodies of reasonable size, one can reach tem-
peratures on the order of 10 UK by electron gas cooling
via spin relaxation. If we choose our parameters
according to & = 100 nm, p =400 nm, a =500 nm, y =
2.5 um, and Ax = 12.5 um, we obtain g« = O(1), c =

10* m/s, /\(‘,l = 125 um, and ficg/\, corresponds to
600 pK, which satisfies al of the above assumptions
reasonably well. Alternatively, we may start from the
present state of nano-technology, which facilitates the
production of nano-wireswith aradius of order nanom-
eter. If we explore thislimit and choosed =1 nm, p =
12 nm, a =5 nm, y = 25 nm, and Ax = 125 nm, we
obtain asimilar valuefor gy and cy = 10° m/s, but now
hcg/\s corresponds to a temperature of order Kelvin.
Therange between puK and fractions of aKelvin aswell
as between nanometres and micrometers provides atwo
or three orders of magnitude wide window of opportu-
nity and the optimum experimental parameters are
probably somewhere in the middle.

The thin (super) conducting wires can be switched
on and off by local variations of the temperature (below
and abovethecritical value). If theinteraction V(r; .4, 1;)
is switched off, the energy spectrum of the electronsis
determined by the usual spherical harmonics

(R

E = 2m o : (14
The energy gap between the s state (I = 0) and p state
(1=1), i.e, without interaction V(r; , 1, r;), iSone order
of magnitude larger than with interaction Ac/\,. Con-
sistently, the interaction potential V(r; . 4, r;) between
the electrons on different spheres is of the same order
JETP LETTERS  Vol. 82
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of magnitude as the gap between the s state (I = 0) and
p state (I = 1) on asingle sphereleading to strong entan-
glement of the ground state. If we want to switch on the
interaction V(r, , 1, ;) adiabatically (e.g., via changing
the temperature of the wires) satisfying the condition

for the adiabatic theorem |Wo|dH (t)/dt|y, [1(AEy)? < 1
in order to stay in the ground state |y,[) the typical adi-
abatic switching time should be longer than afew pico-
seconds. Finaly, for the parameters discussed above,
the various spin—spin and spin—orbit coupling energies
are at least two orders of magnitude smaller than
hCxi/\g-

SUMMARY

As we have demonstrated above, it is (in principle)
possible to construct a quantum simulator for the O(3)
nonlinear  model with present-day technology. Such a
restricted quantum computer would allow the compari-
son, for a controllable scenario, between perturbative
and nonperturbative analytical methods (renormaliza-
tion flow [5, 10, 11], instantons [6], operator product
expansion and vacuum condensates, low-energy theo-
rems and sum rules [7], the S-matrix [8], etc.), as well
asnumerical results[9] on the one hand with real quan-
tum simulations on the other hand. In contrast to most
numerical simulations, for example, the proposed
quantum simulator worksin real (laboratory) time; i.e.,
it isnot necessary to perform aWick rotation to Euclid-
ean time. This advantage facilitates the study of the
evolution of excitations, for example collisions
(S-matrix).

Furthermore, the proposed setup alows direct
access to the quantum state and hence an investigation
of the strong entanglement (e.g., in the ground state or
near the quantum phase transition). This could be done
via state-selective radio/micro-wave spectroscopy of
transitions from the levels in Eq. (14) to some higher
lying empty and isolated internal level (of the semi-
conductor) with a sharp energy, for example (fluores-
cence measurement). Generating the radio/micro-
waves via a circuit (waveguide) facilitates the position
control of the measurement (vicinity of the inductance
loop). Furthermore, one may also switch off the wires
(e.g., by locally increasing the temperature) before the
measurement.

It is also possible to create particles (and their anti-
particles), which can be used to study the S-matrix, for
example, via the illumination with (left and right) cir-
cular polarized radio/micro-wave radiation; cf. Eq. (11)
and the subsequent remarks. Another interesting point
isthe robustness or fragility of nonperturbative proper-
ties (such as the instanton density) with respect to a
small coupling to external degrees of freedom.

Apart from above points of interest, the construction
of such a restricted quantum computer, which is espe-
cially dedicated to the simulation of the O(3) nonlinear
o model, would be an interesting feasibility study for
2005
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more general quantum simulators for a comparably
well understood (yet nontrivial) system. Finaly, expe-
rience shows that the availability of a new tool (such as
the proposed quantum simulator) yielding new tests
and results usually leads us to a new level of under-
standing in physics with possibly unexpected out-
comes.

Outlook. After having handled and understood the
1 + 1 dimensional situation, the extension to 2 + 1
dimensions should not be very problematic. The2 + 1
dimensional O(3) nonlinear o model loses some of the
properties discussed above, but also acquires novel fea-
tures, such as skyrmions which are described by the
topologica current j° = e*Po - (9,6 x 0,0). The inclu-
sion of an explicit O(3)-symmetry-breaking termn - &
shouldbeeasy in1+ 1 and 2 + 1 dimensions. Note that
we did not incorporate a topological (Chern-Simons
type) 6-term ¥4 = Be*o - (9,0 % 0,6) inour 1 + 1

dimensional scenario (in analogy to the 6 term G, G""

in QCD), whose implementation is less straightfor-
ward. Further interesting topics are the behavior of
strongly interacting quantum field theories (such as
QCD and the 0 model) during the cosmic expansion
and the (long-range) entanglement of the nonperturba-
tive vacuum state (which might be used as a tool for
diagnosis and aresource).
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A new solution of two-wave Maxwell-Bloch equations has been obtained analytically and numericaly. It
describesthe propagation of an oscillating nonlinear optical solitary wave, or optical zoomeron, in aone-dimen-
sional periodic resonant Bragg structure. It has been shown that the appearance of large oscillationsin the vel oc-
ity and total amplitude of Bloch modes of the pulse is caused by beating of internal modes of the perturbed

Bragg soliton. © 2005 Pleiades Publishing, Inc.

PACS numbers: 42.25.Fx, 42.50.Md, 42.65.Tg, 42.70.Qs

Investigations of the dynamics of nonlinear wave
processes involving solitary nonlinear waves, or soli-
tons, are continuously attracting great interest in vari-
ous areas of natural sciences and engineering [1]. First
of al, thisinterest is associated with the rich variety of
nonlinear dynamic systems in nature whose evolution
isto a high extent determined by the unique properties
of solitons, namely, the conservation of the shape and
velocity during propagation and after interaction.
Strictly speaking, such properties are characteristic
only of solutions of completely integrable nonlinear
dynamic equations such as the sine-Gordon equation,
Maxwell-Bloch equations, and nonlinear Schrodinger
equation, which appear as a result of the use of certain
approximations when solving a number of physical
problems. Using the inverse-scattering method, one can
mathematically construct an infinite number of com-
pletely integrable equations including those that, being
taken with variousinitial conditions, can have both tra-
ditional soliton solutions and qualitatively new solu-
tions called zoomerons[2]. A zoomeron is stable when
propagating and interacting, asis typical for a soliton,
but it exhibits new dynamics such that itsamplitude and
velocity oscillate considerably during motion, and a
change not only in the magnitude but also in the sign of
the velocity of the pulseis possible. For this reason, the
appearance of zoomeronlike equationsin actual physi-
cal problemswould providerich possibilitiesfor study-
ing new dynamic lawsfor nonlinear systems and would
allow the generalization of various results concerning
soliton dynamics to the case of oscillating pulses.
Unfortunately, aphysical phenomenon that isdescribed
by the completely integrable zoomeron equation has
not yet found. At the same time, it is known [3] that a
change in the magnitude of the velocity of solitonlike
solutions in equations close to being completely inte-
grable is possible, for example, in the trapping of the

soliton by a perturbation, when oscillations with zero
average velocity arise near the perturbation, as well as
in the inelastic collision of pulses that is accompanied
by the single excitation and absorption of the internal
mode of the soliton [4]. Long-lived oscillations of the
soliton amplitude are also possible when the internal
modeis excited at nonzero frequency [5], but the veloc-
ity of the soliton isconserved or changesinsignificantly
in this case. The Bragg solitons of incompletely inte-
grable Maxwell-Bloch equations [6] and nonlinear
Schrédinger equations for coupled modes [7] are char-
acterized by dynamic multistability, when, under cer-
tain initial conditions, oscillations arise in the velocity
of the pulse with a characteristic change of the sign of
the velocity, but only for zero average value. Numerical
simulation of the dynamics of Bragg solitonsin areso-
nantly absorbed lattice in the case of small detuning
from the exact Bragg condition reveals strong oscilla-
tions of the amplitudes of Bloch waves and velocity of
the Bragg soliton propagating with nonzero average
velocity [8]. However, the physical cause of the appear-
ance of such pulse dynamicsis not yet understood.

In this work, the problem concerning the excitation
of theinternal modein the standing Bragg soliton of the
self-induced transparency with perturbed envelops of
direct and inverse Bloch waves is solved. It is shown
that two internal modes close in shape can be simulta-
neously excited at low and zero frequencies. Asaresult
of beatings of these modes, a periodic energy exchange
arises between the internal-mode fields and the reso-
nant subsystem of two-level atomsin the Bragg soliton,
which results in the appearance of oscillations in the
inversion of excited atoms in the Bragg soliton. The
solution is generalized to the case of a slowly moving
soliton. Such asoliton isalready perturbed due not only
to the profile deformation but also to inversion oscilla-
tions accompanying the internal-mode beatings, which

0021-3640/05/8205-0253%$26.00 © 2005 Pleiades Publishing, Inc.
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resultsin strong oscillations of the amplitude, polariza-
tion, inversion, and velocity of the pulse. Such dynam-
ics of a solitary wave is characteristic of a zoomeron.
The parameters of the solutions obtained by direct
numerical integration of the two-wave Maxwell-Bloch
equations agree well with the proposed analytical solu-
tion for the optical zoomeronlike pulse. The time
dependence of the zoomeron velocity is obtained using
the energy integral.

The problem concerning the coherent interaction of
laser radiation with a one-dimensional resonant Bragg
structure of periodically located thin layers containing
two-level oscillators is described by two-wave Max-
well-Bloch equations [9] for the slow complex ampli-
tudes of the electric field E* of the direct and inverse
Bloch waves, average atomic dipole moment P normal -
ized to the transition dipole moment, and inversion n:

Q,+Q, = 2P, 01+Q, = 0, (L1)

P =nQ, n = —%(P*Q+ PQ*). (12

Here, Q=Q*+Q~ Q =Q*—Q~; Q* = (2tWh)ES; 1. is
the cooperative time; W is the matrix element of the
transition density matrix; x = x/ct; and t = t'/t; are
dimensionless variables, where X' and t' are the space
coordinate and time, respectively, and c is the speed of
light; and the subscripts x and t stand for the respective
partial derivatives. Equations (1) are written under the
exact Bragg condition and for the identical frequencies
of radiation and resonance transition of oscillators.

We first obtain an expression for the internal mode
of the perturbed Bragg soliton with zero propagation
velocity and then generalize the solutions to the case of
a slowly moving soliton.

Equations (1) have the following integrals of motion
corresponding to the conservation of the total energy W
and topological charge Q of the localized Q(X = +o0; t) =
0 solution:

W = QQ* +%£~)§~2* + (1 +n)dx,

1
4

A W

. 2
Q= J'f)dx.

We seek the solution in the form of the linear superpo-
sition of the deformed standing soliton solution of

Eags. (2), Q,, Q, and small perturbation dQ, 5Q satis
fying the second of Egs. (1.1):

Q(x 1) = Q(X)+8Q, Q(xt) = Q«X) +3Q. (3)

MANTSYZOV

Here,
0Q = ief (DO (x),

8Q = e[ f (1), (%) + 01, (N)];

soliton components have the form Q(x) =0and Q. )=

(4/B) sech(Bx) , where 3 = /2—a and a isthe param-
eter of the soliton profile deformation such that a = 0
corresponds to the exact soliton solution; € is a small
real parameter; and f(t) and ¢(t) are real functions. The

choice of perturbation dQ, 8Q in the form of imagi-
nary additions (a phase shift of 1/2 with respect to the
soliton solution is generally necessary) ensures the

elimination of cross terms [~ dx (3QQ% + 5QQ% +

c.c.) = 0in the energy integral givenin Egs. (2). Thus,
we exclude the interaction of the field components of
the soliton with the internal mode but retain the possi-
bility of the interaction of the internal mode with reso-
nant oscillators. This interaction is described by Bloch
equations (1.2), which have the following solutions for
fields (3) and (4):

P(x,t) = —2sechfxtanhf3x
+i(—1+ 2sech”Bx)sin[e( T + bo,)], ®)

(4)

n(x,t) = (-1+ Zsech2[3x) cos[e(fd +bd,)],

where b isthe integration constant determined from the
initial conditions. Substituting Egs. (3)—5) into initial
equations (1.1) and linearizing under the conditions €,
w, 0 < 1, we arrive at the expressions

¢1(x) = posechPx, (6)

if b=1-0a/2. Here, @y istheinitial phase and the func-
tion amplitudes f, and ¢, satisfy the conditions &f,
£do < 1. In what follows, f, = 1. The corresponding
equation for the function ¢ (x) has the form

f(t) = fycos(wt + @),

W —a

B 0 | -1+

Using perturbation theory, it is easy to show that the
eigenvalue problem specified by Eq. (7) has the finite
localized solution

+(2+0()sech2[3x}¢ = 0. (7)

o(x) = secth—%(1+ IncoshfBx)sechfBx, (8)

w’ = —a/3. 9)

Substituting Egs. (6) and (8) into Eq. (4) and omit-
ting the ew? terms, we obtain the following expressions
for the found internal modes:

0Q = —iewsinutsechfx,

-~ (20
0Q = igf(coswt + ¢ ) sechPxtanhBx.
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Fig. 1. Space-time dynamics of the difference field 3Q of theinternal modes of the Bragg soliton in the presence of beatings of
two modes with nonzero and zero frequencies. The inset shows the square of internal-mode oscill ation frequency w vs. the soliton-
profile perturbation parameter a (dashed line) as calculated by Eq. (9) and (solid line) as obtained by numerically integrating

Egs. (1) withinitial conditions (3), (5), and (10).

The low frequency of oscillations (9) is determined by
the parameter of the soliton profile deformation a < 0.

The differencefield 0Q givenin Egs. (10) isthe super-
position of two modes with nonzero and zero frequen-
cies. The forms of these modes ~sechf3xtanhx are
determined by functions ¢,, (6) and ¢, (8) and coincide
with each other in the first approximation in the small
parameter. This leads to effective beatings of these
modes with the oscillating-mode frequency w if g =
1. Note that the presence of the zero-frequency internal
mode for unperturbed soliton solutions [case w = 0in
Eqg. (10)] isacharacteristic feature of anumber of non-
linear dynamic equations, including the sine-Gordon
equation [3]. Figure 1 shows the results of the numeri-
cal integration of Egs. (1) with the initial conditionsin
the form of the analytical solutions given by Egs. (3),
(5), and (10) for the standing soliton with the interna
mode. The absence of 10sses on the emission of contin-
uous spectrum waves indicates that the solutions found
for the internal mode are stable. The oscillation fre-
quency (seetheinsetin Fig. 1) and theform of theinter-
nal mode agree well with analytical results (9) and (10).

JETP LETTERS  Vol. 82
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In addition, this figure shows that, owing to beatings,
the energy of the internal-mode fields varies from zero
to a certain maximum value. In this case, the energy of
the system of excited two-level atoms changes by the
corresponding value due to a change in the conversion
n(x, t) given by Eq. (5). In the case considered abovefor
the Bragg soliton with zero velocity, the beatings of the
internal modes do not change the soliton velocity. How-
ever, for the moving Bragg soliton, a change in the
maximum inversion of atomsin beatings of the internal
modes is an additional perturbation of the soliton and
can lead to a considerable change in the pulse propaga-
tion velocity.

L et us generalize the solutions obtained for the per-
turbed standing soliton given by Egs. (3), (5), and (10)
to the Bragg soliton propagating with low velocity v <
w. We assume that the form of the envelop of the per-
turbed moving soliton coincides with the form of the
exact solution [9], and the form of internal modes
dlightly differsfrom the above expressions (10). Let the
pulse center coordinate &(t) and its velocity v(t) = &(t)
depend on time due to the perturbation of the solitonin
the presence of beatings of the internal modes. Thus,
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Fig. 2. Dynamics of the (a) inversion n(x, t), (b) difference 50 (x, t) (arb. units), and (c) total 3Q(x, t) (arb. units) internal-mode
fields of the zoomeron-like pulse. The vertical dashed straight line corresponds to the timet = 1 at which the amplitudes of internal-
mode fields are equal to zero and the velocity of the pulse is maximal.
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thetria solution is chosen in the form
0= AVl BE=EW®)

[3A/1—v2 J1-v?

+igwsin( ) sechBE=EM)

J1-v?
4 oenBX=E(1)

B1-V? J1-v?

—i——s—@——(coswt+¢o)sech
1-v?

B EWM) o B E()
A/l—vz A/l—vz

n= E_ 1+ ZSEChZB(X_E(t))D

A/l—v2 .

x5 - %ez(coswt + ) 2sech’BX =8O

A/l—vz .
_ B(x=&(1),  nB(X=E(t))
P = —2sech tanh
1-v? A/l—v2
viel 1+ 250 BE=EM)
0 m 0
HBOX=E(1)
A/l—v2

Substituting Egs. (11) into the energy integral givenin
Egs. (2), we arrive at the following expression for the

pulse velocity:
%@(1— coswt)*>.

As follows from Egs. (11) and (12), the velocity and
field amplitudes in the pulse, as well as the dipole
moment and the inversion of atoms in the perturbed
Bragg soliton, oscillate with the frequency of the inter-
nal mode of soliton (9), thus exhibiting the zoomeron-
like dynamics of the pulse propagation.

In order to verify that the proposed trial solution
given by Eqg. (11) is sufficiently close to the exact solu-
tion, as well as to demonstrate the stability of such a
zoomeronlike solution, we perform the direct numeri-
cal integration of Egs. (1) taking analytical solution
(11) as the initial conditions. Asis seen in Fig. 2, the
space-time dynamics of the inversion and internal-
mode fields obtained in this integration correspond to
analytical expressions (11). Similar results are also

valid for thefields Q;and Qs of the soliton components
of the solution and for the function of the dipole

Q =

(11)

x (coswt + ) sec

v(t) = (12)
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Fig. 3. (Solid line) Trajectory of the Bloch vector R(x = Xg;
t) ={ReP; ImP; n} on aunit sphere at a certain point of the
medium x = X, when the zoomeronlike pulse propagates.
The dashed lines correspond to the projections of the shown
trajectory on the coordinate planes. Each loop of the trajec-
tory corresponds to one oscillation of the pulse.

moment P. Topological charge (2) of the oscillating
pulse obtained in numerical simulation satisfiestheine-
quality Q < 2m, which corresponds to the analytical
result with the substitution of solution (11) into Eq. (2):
Q=2m+am, wherea < 0. At theinitial stage of theevo-
lution of the solution, weak emission occurs (Fig. 2b),
but the energy losses in this process are very small
(about 0.05% of the pulse energy), which indicates that
the trial zoomeronlike solution is close to the exact
solution. The found zoomeronlike solution is quasis-
table, conserves stahility for about one hundred oscilla-
tion periods, and elastically interacts with the soliton
moving with velocity v = 0.1. The collision of two
zoomeronlike pulses can be both elastic and inelastic,
depending on the velocity and signs of the amplitudes
of interacting pulses. Comparison of the plotsin Fig. 2
provides a clear explanation of the cause of the appear-
ance of oscillationsin the zoomeronlike pulse. Att =T,
when the pulse velocity is maximal (see Fig. 2a), the
amplitudes of the internal-mode fields are equal to zero
(see Figs. 2b and 2c¢). Further, the energy of internal
modes increases due to the emission of the energy of
excited medium atoms (the maximum inversion at the
pulse center becomes less than unity in this case, see
Fig. 3), the pulse stops and then the energy of theinter-
nal modesis absorbed by resonant atoms and the pulse
is accelerated, again reaching the maximum velocity.
Therefore, one can conclude that oscillations in the
zoomeronlike pulse occur due to the beatings of the
internal modes and to the energy exchange between the
internal modes and resonant atoms, as follows from
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analytical solutions (11) and (12). Moreover, the
numerical simulation results confirm form (12) of the
time dependence of the velocity of the zoomeronlike
pulse and the linear frequency dependence of the max-
imum velocity. Thus, the solution given by Egs. (11)
and (12) for the zoomeronlike pulse accurately repro-
duces the dynamics of the oscillating pulse that is
obtained in the direct numerical integration of two-
wave Maxwell-Bloch equations (1).

In conclusion, we note that the two-wave Maxwel |-
Bloch equations, asfollows from anumber of the prop-
erties of their solutions, are incompletely integrable. It
is difficult to expect that these equations have an exact
zoomeron solution, which is an oscillating soliton of
integrable nonlinear equations. For this reason, the
approximate zoomeronlike solution described in this
work isof interest aslikely thefirst example of oscillat-
ing quasistable nonlinear solitary waves with nonzero
average propagation velocity and a large amplitude of
vel ocity oscillations, which appear in an actual physical
problem, namely, in the problem concerning the propa
gation of laser pulsesin aresonant Bragg structure.
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It is proposed to use a pulsed transverse inductive discharge for exciting gas lasers operating on electron tran-
sitions in atoms and molecules. An electron transition laser on fluorine (FI) atoms pumped by a transverse
inductive discharge is developed. Lasing at three wavelengths (703.75, 712.79, and 731.1 nm) is obtained by
exciting He—, (NF3) gas mixturesin a pressure range from 20 to 350 Torr. The results of experimental inves-
tigation of the spectral, temporal, and energy characteristics of theinductive FI laser are presented. © 2005 Ple-

iades Publishing, Inc.
PACS numbers; 32.70.Fw, 42.55.Lt, 52.80.Yr

The rf induction excitation of continuous-wave las-
ing was reported in [1-3]. Continuous-wave lasing on
transitions in atomic argon ions in the green spectral
range under excitation by a longitudinal inductive rf
discharge was obtained in [1, 2]. Lasing on vibrational
transitions in CO, molecules in a wavelength range of
10.6 um in an expanding nitrogen flow heated by an
inductive discharge after the addition of cold CO, to it
was reported in [3]. The possibility of developing a
laser excited by a pulsed inductive discharge was dis-
cussed in [4].

In this work, a method for exciting laser active
mediaby apulsed transverseinductive dischargeis pro-
posed and experimentaly implemented in order to
obtain lasing on electron transitions in atoms and mol-
eculesin gases. It isimportant that the pulse repetition
rate must be several hertz or higher; i.e., all processes
of discharge formation, creation of population inver-
sion, amplification, absorption, and quenching must
occur during each pulse irrespective of the past history
of the preceding pulse.

Itiswell known that a pulsed transverse electric dis-
charge as a method for pumping gas lasers has a num-
ber of advantages over a pulsed longitudinal or contin-
uous discharge. Here, we assume that the transverse
discharge is an electric discharge in which the current
flows in a direction perpendicular to the optical axis.
Such adischarge ensures lasing on avery large number
of transitionsin atoms, molecules, and their ions due to
realization of various (including new) mechanisms of
producing population inversion in awide range of pres-
sures including atmospheric pressure. This lasing is
achieved because a much higher level of pulsed pump-
ing power is ensured in the transverse discharge and,
therefore, lasing occurs at varioustransitions, including

those for which no gain can be obtained for other types
of discharge. As a result, lasers with a high radiation
energy and a high efficiency (1-10%) can be devel-
oped. In contrast to conventional pulsed longitudinal
and transverse discharges, apul sed transverseinductive
dischargeisformed due to the magnetic field induction
produced by the pumping system without any elec-
trodes in the active medium. The appropriate choice of
the tube material ensures the purity of the active
medium considerable endurance of lasers. The forma-
tion of such a discharge is not accompanied by the
appearance of cathode spots on the surface of the elec-
trodes, which are responsible for the instability and
contraction of the discharge, deterioration of the homo-
geneity of the discharge, contamination of the gas mix-
ture, quenching of lasing, and limitation of the pulse
repetition rate. The application of the pulsed inductive
discharge for excitation is a promising method for
pumping not only gas lasers, but also metal vapor
lasers. In addition, this method can be used to produce
a plasma for obtaining radiation (including induced
radiation) in any spectral range, especially that extend-
ing from 10 to 150 nm, which isof considerableinterest
for microelectronics and photolithography.

To demonstrate the possibility of developing an
inductive laser, we chose transitions in neutral fluorine
atoms excited by a pulsed transverse inductive dis-
charge in a He:F, (NF;) mixture, because inversion in
these transitions is reached at comparatively low exci-
tation levels in a wide pressure range. In this case, a
high gain is achieved, which ensures the superlumines-
cence regime in a low-Q resonator, and lasing takes
place in the red spectral region and the transition from
spontaneous emission to the lasing mode is easily
detected.

0021-3640/05/8205-0259%$26.00 © 2005 Pleiades Publishing, Inc.
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+U,=20-27kV

Fig. 1. Electric circuit of the system of excitation of alaser
by a pulsed transverse inductive discharge: SG is an RU-65
standard spark gap, C; = 50 nF, C, = 100 nF, DT isthe dis-
charge tube, and L isthe inductor.

There are many works on lasing on various transi-
tions in fluorine atoms in a spectral range of 623—
780 nm [5-16]. Lasing was observed on 17 lines. How-
ever, owing to different excitation conditions, the spec-
tra obtained in different works differ in the number of
lines with various wavelengths. Population inversion
on atomic fluorine transitions was created using two
methods of excitation, viz., alongitudinal electric dis-
charge [5-9] in low-pressure (0.5-50 Torr) helium mix-
tures with fluorine-containing molecules and a trans-
verse discharge [10, 12, 13, 15] ensuring lasing in the
same mixtures in awide pressure range up to 3 atm. At
low pressures, HF, SF;, CF,, C,F;, NF;, and F, mole-
cules were used as fluorine donors, while only NF; and
F, molecules were used for high pressures due to the
homogeneity of the discharge achieved using the pre-
liminary UV ionization of the discharge gap.

In most available experiments, lasing on transitions
in fluorine atoms took place in the superluminescence
regime. The duration of laser pulses in various experi-
ments varied from a few microseconds (in a longitudi-
nal discharge) to tens of nanoseconds (in a transverse
discharge). The gas mixture forming the active medium
of the laser usually consisted of helium and admixtures
of fluorine-containing moleculesin aratio of 30 : 1 to
1000: 1. Helium was required for creating inversion on
trangitionsin fluorine atoms viaexcited states of helium
atoms. The use of other inert gases (such as Ne or Ar)
as the buffer gas did not lead to lasing. The above fea-
tures of the operation of the Fl laser indicate that itisa
suitable device for obtaining lasing in a pulsed trans-
verse inductive discharge.

To produce a pulsed transverse inductive discharge,
we used the excitation system of an excimer laser,
which was assembled as an L—C inverter circuit and
was previously described in [17]. In this system, the
peaking capacitor was removed and inductor L in the
form of a 40-60-cm-long solenoid was connected
(Fig. 1). The solenoid consisted of individual solenoids
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prepared in the form of parallel-connected sections
wound on a glass tube into which gas mixtures were
admitted. Each section contained 3 to 20 turns of a
stranded insulated cable with a cross section from 1.5
to 4 mm?. In experiments, inductor parameters such as
the total inductance and resistance were varied to
ensure the required values of the magnetic induction
and electric field strength in the tube and, hence, the
parameters of the inductive discharge. The experiments
were carried out with glasstubeswith an inner diameter
of 1to 4 cm and an active region length of 40-60 cm.
At the ends of the tube, adjusting units with plane-par-
ale quartz or CaF, plates W, and W, were fixed. The
plates were arranged perpendicularly to the tube axis
and were used as sealing windows and optical cavity
elements. On one side of the tube, adense plane Al mir-
ror or dielectric mirror M was placed.

We studied the intensity and duration of radiation
emitted by the inductive discharge, as well as its spec-
tral and energy characteristics under various excitation
conditions. In our measurements, we used FEK-22 and
FEK-15 coaxial photocells with a high time resolution,
Tektronix TDS-220 and C1-104 oscilloscopes, an
Ocean Optics HR 2000 spectrometer, and an Ophir
Optronics pyroelectric laser radiation energy meter.
The accuracy of measurements was 5%.

As the active medium for the laser, we chose
HeF,(NF;) gas mixtures of various compositions
under various pressures. Gas mixtures circulated in the
tube with a low velocity. The charging voltage U,
across the reservoir capacitors C; and C, was varied
from 20 to 27 kV. The best results were obtained in a
tube with an inner diameter of 1.9 cm under the maxi-
mal voltage U = 27 kV; the total inductance of inductor
L was equal to 60 nH in this case.

Under low pressures of the He:F, gas mixture in the
pressure range from 1 to 4 Torr, the inductive discharge
filled the tube almost uniformly over the cross section,
but no lasing was achieved. An increase in pressure
from 4 to 20 Torr led to aredistribution of the discharge
from the center to the tube walls, and aring-shaped dis-
charge was observed.

Under pressures of the He:F, gas mixture from 20 to
350 Torr, lasing on transitions in fluorine atoms was
obtained in the wavelength range 703731 nm. Radia-
tion was shaped in the form of a ring with an outer
diameter of 1.9 cm and an inner diameter of about
1.7 cm. Thus, the active volume for a 40-cm-long sole-
noid was 22 cm?.

Figure 2 shows the dependence of laser radiation
intensity on the ratio of the mixture components. The
optimal composition for our pumping conditions was
HelF, (100 : 1). When F, was replaced by NF;, lasing
was also obtained, but with a lower intensity. For this
reason, subsequent experiments were made on the
HeF, (100 : 1) mixtures.

Figure 3 shows the dependence of laser radiation
intensity on the total pressure in the He:F, (100 : 1)
JETP LETTERS  Vol. 82
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Fig. 2. Radiation intensity of the Fl laser vs. the F, concen-
tration in He under optimal pressure for U, = 27 kV.

mixture. It can be seen that in the low-pressure range up
to 60 Torr, the laser radiation intensity increases rap-
idly, reaches its peak value upon a further increase in
pressure, and then decreases slowly. Such adependence
can be explained, on the one hand, by an increasein the
gain in the medium with increasing pressure and, on the
other hand, by the change in the electron parameters of
the inductive discharge in the tube.

Analysis of the spectral composition of radiation
shows that lasing occurs at three lines (703.7469,
712.7890, and 731.1019 nm), which correspond to the

transitions 3p°PY, —= 3Py, 3p°PS, —= 3Py,
and 3p°S;,, —» 32P,, [18].

It was found experimentally that the number of
spectral lines in the radiation of the Fl laser and the
ratio of their intensities depend strongly on the total
pressure in the gas mixture. Figure 4 shows the laser
radiation spectrum in the pressure range from 28 to
328 Torr.

Figure 5 shows the oscillograms of voltage and
spontaneous radiation under a pressure of 15 Torr, as
well as oscillograms of laser radiation under a pressure
of 250 Torr. The time dependence of the voltage across
the inductor shows that it is of an oscillatory type,
which indicates that the parameters of the excitation
system were not properly matched to the parameters of
the active medium in these preliminary experiments.
Spontaneous radiation, as well as voltage, was of an
oscillatory type, but with a period equal to half the
period of voltage oscillations; in other words, radiation
was emitted over the positive and negative half-periods
of voltage oscillations. In contrast to spontaneous radi-
ation, alaser radiation pul se appeared only at the begin-
ning of the excitation pulse at the front of thefirst half-
period and had a different shape with a much smaller
duration. This is an indication of the transition to the
amplification and lasing mode. Other evidence of the
No. 5
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Fig. 3. Radiation intensity of the FI laser vs. the total pres-
surein the He:F, (100 : 1) mixture for U, = 27 kV.

appearance of thismodeisthe spectral composition and
directivity of radiation. When the lasing mode was
achieved, an increase in pressure from 40 to 300 Torr
shortened the duration T of laser pulses (Fig. 6). Conse-
guently, the pulse duration is a function of not only the
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Fig. 4. Spectral composition of the radiation of the FI laser
for various total pressuresin the He:F, (100 : 1) mixture at

Uc= 27 kV.
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Fig. 5. Time dependence of (a) the voltage across the induc-
tor L, (b) the spontaneous radiation of the inductive dis-
charge in the He:F, (100:1) mixture under a pressure of
15 Torr, and (c) laser radiation intensity under a pressure of
250 Torr in the gas mixture.
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Fig. 6. Half-amplitude pul se duration of the Fl laser vs. the
total pressure of gas mixtures for two compositions, P =
250 Torr, and U, = 27 kV.

total pressure but also of the ratio of the mixture com-
ponents. Such behavior is typical of transverse dis-
charge lasers characterized by short current pulses in
gas mixtures[10, 12, 13, 15]. The minimum laser pulse
duration in the He:F, (100 : 1) mixture under a pressure
of 260 Torr and higher was 20 = 2 ns. The maximum
laser radiation energy was 0.12 mJ, which corre-
sponded to a pulse power of 6 kW.

RAZHEV et al.

In our experiments, we measured the gain in the
active medium using the cavity loss method. The max-
imum gain was about 0.025 cm™.

Thus, asaresult of the experiments described above,
the first laser excited by a pulsed transverse inductive
discharge was created. Using transitions in the fluorine
atom as an example, we demonstrated that population
inversion can be created on electron transitions in
atoms and moleculesin an inductive electric discharge.
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The generation of ultrashort superradiant pulsesin the stimulated scattering of an intense microwave (38 GHz)
pump wave by a counterpropagating high-current relativistic electron bunch has been observed. Scattered radi-
ation is a single ~200-ps pulse with a peak power of about 1 MW. Owing to the Doppler shift of the radiation
frequency, frequencies up to 150 GHz are present in the spectrum of the scattered pulse. © 2005 Pleiades Pub-

lishing, Inc.

PACS numbers: 41.60.Cr, 52.59.Rz, 84.40.—x, 84.70.+p

1. Considerable attention is currently focused on
theoretical and experimental investigations of the
effects of superradiance of high-current relativistic
electron bunches [1-7], which may be used to create
fundamentally new sources of ultrashort superintense
electromagnetic pulses. Superradiance is the coherent
emission of a single electromagnetic pulse by an elec-
tron bunch with a length extended in the scale of the
wavelength. Correspondingly, this process includes the
development of self-bunching of particles, where in-
phase emission from different parts of the bunch is
ensured by the trandation of the wave with respect to
electrons due to the difference of the group velocity of
the wave from the translational vel ocity of the particles.
The superradiance of classical electron ensembles can
be associated with various mechanisms of stimulated
emission: cyclotron, Cherenkov, and undulator. To
date, the generation of superradiant pulses through
these mechanisms has been experimentally observed
[5-7] in the centimeter and millimeter wavelength
ranges.

The generation of ultrashort pulses in higher fre-
guency ranges can be performed through a new super-
radiance mechanism that is realized in the process of
the stimulated scattering of an intense electromagnetic
pump wave by a moving electron bunch [2, 8]. When
the pump wave with frequency w, propagates oppo-
sitely to the electron beam, owing to the Doppler effect,
the scattered-radiation frequency w is expected to be

much higher than the pump frequency [9]:

_ 1 + V||/Vph.i

@ = TV Ve @D
where V) is the trandlational velocity of the electrons
and V,; and Vs are the phase velocity of the pump
and scattered waves, respectively. In particular, when
intense optical laser radiation is scattered by high-cur-
rent beams with particle energies 1-2 MeV, the genera-
tion of superradiant pulsesis possible in the UV range.
The use of high-power relativistic electron microwave
generators of the centimeter and millimeter ranges can
provide the generation of submillimeter superradiant
pulses.

The aim of this work is to carry out evaluation
experiments for observation of the effect under discus-
sion. The radiation of a high-power relativistic back
wave oscillator of the 8-mm band was scattered by a
high-current electron bunch with the moderately rela
tivistic particle energy (y ~ 1.4-1.6). The generation of
subnanosecond superradiant pulses was detected in the
short-wavelength part of the millimeter range. In order
to compare with the experiment, a simple theoretical
model is presented, where the waveguide character of
the propagation of electromagnetic radiation, aswell as
the effect of the focusing magnetic field, is taken into
account.

2. Let us consider the scattering of the electromag-
netic pump wave by a counterpropagating electron

0021-3640/05/8205-0263%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Superradiant pulse formed due to the scattering of
the pump wave by the relativistic electron bunch. The sim-
ulation parameters correspond to the experimental condi-
tions.

bunch with duration At, that moves through a smooth
cylindrical waveguide with radius R along the uniform
driving magnetic field H, = Hyz,. In the approximation
of the fixed pump-wave amplitude, the generation of
short single pulses of scattered radiation (superradiant
pulses) can be described by the system of equations
including the time-dependent equation for the scat-
tered-field amplitude and averaged equations of motion
of electronsin the field of the combined wave

21
aas das . 1_ -io
W-‘_E = |f(T)aiT[J-e dGO,
0 2
9’0 i
— = ulm asa;ge .
o - HImlaag %

Here, T = w/c; T = wc(t —ZV)(WVy — UV) ™ & s =
eA J/2myyc? are the normalized amplitudes of the (i)
pump wave and (s) scattered radiation; V,, is the group
velocity of the scattered wave; 8 = wt —k.zisthe phase
of electrons with respect to the combination wave; w, =
W, —w; k. = hg+ hy; hy and hg are the longitudinal wave-
numbers of the pump wave and scattered wave, respec-
tively; 1 = yo By is the bunching parameter; | =
(€3y/mc3)(1/2y,hk R2NY; J, is the electron current; and
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N, is the scattered-wave normalization constant. The
parameter

g = Jn-1(KoiRp) In - 1(KosR) Q/(Q — wy) (©)

describes an increase in the amplitude of the oscilla-
tions of eectronsin the pump field in the presence of
the driving magnetic field near the cyclotron resonance,
wy = eHy/myey, is the gyrofrequency, Q = w + hV,is
the frequency of the oscillations of electrons in the
pump field, J,(X) is the Bessel function, n; ¢ is the azi-
muth index of the mode determining the transverse
structure of the respective waves, R, is the electron
injection radius, and ky; ¢ are the transverse wavenum-
bers. The function f(t) specifies the profile of the
electron bunch with normalized duration 1, =

Aty Cc(UVy — V)™

Equations (2) describe the joint action of the pump
field and scattered wave on the electrons, which leads
to the appearance of self-bunching of electrons. As a
result, the amplitude of the scattered wave increases
(exhaustion of the pump wave is negligible under the
condition ws > w [9]). The slippage of the scattered
wave with respect to the electrons, which is character-
istic of superradiance, leads to the synchronization of
emission from different parts of the extended bunch and
the formation of scattered radiation in the form of a
short pulse (see Fig. 1). It was assumed in numerical
simulation that the small initial modulation of the elec-
tron density is the seed of radiation. The parameters of
the pump wave and electron bunch are taken close to
the experimental conditions. The pump wave with a
power of 100 MW and a frequency of 38 GHz had the
transverse structure of the TE;; mode. Scattering
occurred to the same mode in awaveguide with aradius
of 0.4 cm and alength of 20 cm by the electron bunch
with acurrent of 1 kA and a particle energy of 200 keV
that wasfocused by amagnetic field of 24 kOe. Thecal-
culated frequency of the scattered wave was equal to
about 150 GHz. The bunch duration of 200 ps used in
estimates corresponds to the plateau duration with a
constant energy near the pulse peak of the accelerating
voltage. As is seen in Fig. 1, a short electromagnetic
pulse with a duration of about 50 ps is formed as a
result of interaction. The peak power is approximately
equal to 25 MW.

3. For experimental realization of the above mecha-
nism of superradiance, a setup was created on the basis
of two high-current RADAN-303 accelerators [10],
which were synchronized with a subnanosecond accu-
racy and formed nanosecond and subnanosecond el ec-
tron beams. The electron bunch from the first accelera-
tor was used to generate a low-frequency pulse of the
microwave pump wave, which then underwent scatter-
ing with an increase of the frequency by a counterprop-
agating subnanosecond beam formed in the second
accelerator. Figure 2 shows the layout of the experi-
mental setup.
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Fig. 2. Layout of the experiment on the observation of
superradiance in the process of the scattering of the relativ-
istic back wave oscillator by the counterpropagating high-
current relativistic bunch: (1) the generator of a 4-ns elec-
tron beam, (2) the generator of a beam with duration less
than 1 ns, (3) the generator of synchronizing voltage pulses,
(4) pulsed solenoids, (5) the electrodynamic system of the
relativistic inverse-wave 38-GHz lamp, (6) the scattering
region, (7) the parabolic reflector, and (8) the superradiant
pulse.

As a pump generator in the experiment, we used a
relativistic back wave oscillator with a radiation fre-
guency of 38 GHz [11]. Figure 3a shows the oscillo-
gram of the pump pulse with a duration of about 4 ns
and a power of 100 MW. The transfer of the TE,;; pump
wave to the scattering section and radiation extraction
to the external space were performed by means of a
quasi-optical parabolic mirror and a system of horn
antennas. The mirror had high reflecting properties for
the low-frequency pump wave: the mirror transmission
coefficient at afrequency of 38 GHz was equal to about
95%. At the same time, the partial transparency of the
mirror for microwave radiation with frequency above
60 GHz was ensured by means of an orthogonal lattice
consisting of holes 3 mm in diameter with a step of
4 mm. Figure 3b showsthe oscillogram of asignal from
the hot-carrier microwave detector placed behind the
quasi-optical mirror in the absence of the scattering
beam. The pul se detected in this case was caused by the
parasitic microwave radiation of the pump wave gener-
ator at the working-frequency harmonics.

In the scattering section, which is a section of the
smooth waveguide with a length of about 40 cm, the
pump wave propagating opposite to the subnanosecond
(~600 psat half maximum) high-current (250-300 keV,
1-1.5kA) electron beam, which wasformed by the sec-
ond accelerator. In the absence of the pump wave, the
noise radiation of the scattering beam was low and was
not detected by the microwave detector placed behind
the quasi-optical mirror. In the presence of the pump
wave, a short high peak appears in the detected signal
(see Fig. 3c), which can be treated as a superradiant
pulse. With the inclusion of the voltage—power nonlin-
earity of the microwave detector used in the measure-
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Fig. 3. (8) Typical pulse signa of the microwave detector
recording the power envelop of the pump wave, (b) the
microwave detector signal in the absence of the scattering
electron bunch that is associated with the presence of mul-
tiple harmonics in the pump wave spectrum, and (c) the
superradiant pulse recorded by the microwave detector in
the presence of the scattering electron bunch.

ments, the FWHM of the superradiant pulse does not
exceed 200 ps. Superradiant pulses were observed in a
wide range of the rearrangement of the strength of the
driving magnetic field. The highest power of superradi-
ant pulseswas obtained in the range 20-25 kOe, where,
according to Eq. (3), the magnetic field noticeably
affected the oscillation velocity of the particles.

In order to anayze the frequency content of the
emitted pulse, calibrated waveguide low-frequency fil-
ters were placed to the detector channel. The relative
amplitude of the detector responses governed by the
signal s passed through the microwavefiltersfor various
cutoff frequencies of the filtersis shown in Fig. 4. The
steps of the dashed line characterize the relative content
of various spectral componentsin the microwave pulse.
Thus, the main fraction of the radiation power islocated
intherange 3.5-4.2 mm. However, there are both lower
and higher frequency components, including that with
a wavelength of about 2 mm, close to the calculated
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Fig. 4. Amplitude of the microwave detector signa vs. the
cutoff wavelength of the low-frequency waveguide filtersas
a characteristic of the spectral content measured for scat-
tered radiation.

value. It isworth noting that, owing to adecreasein the
sensitivity of the detector with wavelength, the real
decrease in the power for the short wavelength region
should be much weaker than that seen in Fig. 4. The
considerable broadening of the radiation spectrum
compared to the initia theoreticad model can be
explained by the excitation of several waveguide modes
corresponding to lower phase velocities and, corre-
spondingly, lower frequencies of the scattered waves.
Moreover, significant spread inevitably arises in the
energy and velocity of electrons in an actua high-cur-
rent bunch. These factors also lead to an increase in the
duration of the superradiant pulse compared to the sim-
ulation results.

The spectrum-integrated power in the radiation peak
is estimated as 1 MW. This value is determined from
the power level recorded by the microwave detector
with the inclusion of the aperture of the receiving
antenna of the detector, the distance from the radiator,
and the characteristic width of the directiona radiation
pattern. However, this estimate is approximate. On the
one hand, the sensitivity of the hot-carrier detector,
which was calibrated at a frequency of 38 GHz,
decreases when detecting radiation of lower frequen-
cies (to 150 GHZz). On the other hand, the design and
location of the parabolic quasioptical mirror were
responsible for the complex interference pattern of
radiation at the output of the setup, which makesit dif-
ficult to sum the detector records over the directivity
pattern.

REUTOVA et al.

Thus, in the described experiments, the generation
of short superradiant pulses was observed in the pro-
cess of the stimulated scattering of the intense 38-GHz
microwave pump wave by the counterpropagating
high-current relativistic electron bunch. Scattered radi-
ation is a single 200-ps pulse with a spectrum-inte-
grated power up to 1 MW. Owing to the Doppler shift
of the radiation frequency, frequencies up to 150 GHz
are present in the spectrum of the scattered pulse. The
above effect can be interpreted as the superradiance of
the el ectron bunch, because radiation isgenerated in the
absence of the external high-frequency signal and
external resonators; i.e., it cannot be a result of the tra-
ditional mechanisms of amplification and autogenera-
tion. In addition, owing to the development of a group
of particles in the extended bunch, the power of the
scattered signal is much higher than the power of noise
spontaneous radiation in the pump field that is caused
by bunch density fluctuations and the duration of the
pulse is much shorter than the duration of this noise.

Thiswork was supported by the Russian Foundation
for Basic Research (project no. 05-02-17553-a).
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The transfer of visible and near-IR radiation in layers of polydisperse TiO, (rutile) particles has been studied
by measuring diffusion transmission and coherent backscattering in order to determine the optical parameters
of the samples under investigation. An approach based on the coherent potential approximation is applied. It
has been shown that, in the short-wavelength region of the visible range, anomalous diffusion of light occurs
due to the effect of interference at mesoscopic scales on the transport characteristics of the scattering medium.
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PACS numbers: 42.25.Dd, 42.70.Qs

At present, the effect of the localization of light in
randomly inhomogeneous mediais being actively ana-
lyzed both theoretically and experimentally. Interest in
this phenomenon was initiated by the possibilities of
creating new materials with unique optical properties
(in particular, disperse laser media; see, eg., [1-3]).
Thetransition from thelocalized states of thelight field
in a scattering medium to the localization regime is
determined by the loffe-Regel criterion kI* < 1 [4],
where k is the wavenumber of light in the medium and
I* is the transport length determined by the scale at
which the wave vector of propagating radiation is ran-
domized [5]. For most multiple scattering media, ki* >
1 and radiation transfer is described using radiation-
transport theory [5, 6]. In particular, analysis of the
dependence of the transmittance T of the medium layer
on the layer thickness L in the absence of absorptionin
the diffusion approximation of radiation-transport the-
ory yields the known relation T, ..« O I*/L [5, 7, §],
which agreeswell with experimental data. Accordingto
the current concept, interference at a characteristic
scale & that exceeds |* and increases as kI* decreases
affects radiation transfer for ki* — 1. The contribu-
tion of interference to radiation transfer is responsible
for the dependence of the transport characteristics of
the medium (transport length and radiation diffusion
coefficient) on the sizes of the scattering system and,
correspondingly, in specific differences from the classi-
cal laws of radiation diffusion. In particular, the devia-
tion of the dependence T(L) from the diffusion law T O
L, aswell as broadening and characteristic changesin
the shape of the coherent backscattering peak, is
expected to be observed in this case [9, 10]. At the
localization threshold, kI* =1, — c0, and I* —= 0
and scaling localization theory [11] predictstheinverse
sguare dependence T O L. Below the threshold, T O

exp(—L/n), wheren isthe scale depending on ki* andis
called the localization length. Thus, the transition from
the radiation transfer regime in thelayer T O L to the
T O L2 regime is a characteristic criterion of the
achievement of the threshold kI* = 1. For this reason,
analysis of experimental dependences T(L) is often
used to identify the threshold regime of radiation trans-
fer in scattering media[12, 13].

In contrast to mesoscopic media with a regular
structure (photon crystals), the conditions for the tran-
sition to localized states of the light field in randomly
inhomogeneous media are restricted by a number of
fundamental factors (effect of the self-absorption of the
medium, nonmonotonic dependence of 1* on the vol-
ume fraction p of scattering centers, frequency-size
constraints associated with the width of low-order Mie
resonances, dispersion dependence of the scattering
center material). There are only a few experimental
works devoted to investigations of radiation transfer in
disordered media near the localization threshold [12,
14-16]. In thiswork, we study the propagation of light
(A = 400-800 nm) in close-packed layers of polydis-
perse particles of titanium dioxide (rutile). The results
show the features of the diffusion of radiation in the
short-wavelength region of the visible range (A <
500 nm), which can beinterpreted in terms of the effect
of interference on radiation transfer in scattering media.
Thesefeatures are attributed to the high refractive index
of rutile in the visible range (n = 2.4). For such a scat-
tering system, the localization parameter close to the
critical value kI* = 1 can be obtained at a certain rela-

tion between A, and the parameters a and o, =

A/(a—a)2 (a is the characteristic size of a randomly
chosen scattering center).

0021-3640/05/8205-0267$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Histogram of the effective radius of TiO,-based pig-
ment particles.

We analyze samples of the layers of polydisperse
particles of titanium dioxide (rutil€) obtained asaresult
of the participation of colloid suspensions of TiPure
R900 (DuPoaint Corp.) pigment in deionized water. Par-
ticipation was performed on glass substrates with the
subsequent slow evaporation of the liquid phase. The
resulting layers with the volume fraction of scatterers
p = 0.35 + 0.03 had a thickness of 15 to 350 um. The
thickness was measured by a scanning laser profilome-
ter with an error of 1.5 um. We selected sampleswith a
layer thickness inhomogeneity of no more than 5% on
an area of no less than 2 cm?, which had no cracks,
chips, etc. in the region under investigation. The sizes
of the initial-material particles were analyzed using a
scanning electron microscope (Hitachi with a magnifi-
cation of 35 000). Figure 1 shows the histogram of the
effective radius a of scatterers (with alowance for

asphericity, itisdetermined asa = 3/3V/4m, whereVis
the particle volume calculated from the electron-
microscopy data).

The spectra of the diffusion transmission T(Ay) of
the samples were obtained using a Cary-2145 spectro-
photometer. Angular measurements of the coherent
backscattering peaks were carried out for linearly
polarized light with Ay = 633 nm (a He-Ne laser), Ay =
532 nm (the second harmonic of an YAG:Nd laser, A, =
1064 nm), and A, = 473 nm (the second harmonic of an
YAG:Nd laser, Ay = 946 nm). The coherent backscatter-
ing peaks were measured using a goniophotometer
based on a G-5 goniometer with a system for detecting
backscattered radiation (a polarizer for the separation
of the co-polarized component of scattered light and an
objective with f = 80 mm). The face of a multimode
light guide with a core diameter of 50 umwas placedin
the focal plane of the objective for the collection of
radiation backscattered at the angle 6 and transmitted it

ZIMNYAKOV et al.
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Fig. 2. Coherent backscattering peaksfor the samples under
investigation for (0J0) 633, (0) 532, and (»A) 473 nm. The
inset shows the diffusion-transmission spectra for the sam-
pleswith L = (1) 17 and (2) 340 pm.

to a photoreceiver (an HC-7468 Hamamatsu module).
Figure 2 shows the coherent backscattering peaks for
the samples under investigation. The inset shows the
diffusion-transmission spectra for two samples with
significantly different thicknesses.

The experimental data were analyzed using effec-
tive-medium theory—the coherent potential approxi-
mation [17-19]. In the framework of this approach, the
characteristics of a real scattering medium (effective
refractive index ny;, scattering length |, transport length
I*, wavenumber k, and the effective phase speed of
light) are determined from the complex refractiveindex
Ngs Of the homogeneous effective medium. The com-

plex refractive index Ny is determined from the mini-
mization condition ((X[J of the total cross section for a
scattering center embedded into the effective medium.
As the scattering center, we consider a sphere with
radius a and the refractive index that is equal to either
the refractive index ng, of the scatterer material or the
refractive index ny, of the medium containing scatter-
ers. Intheframework of the classical coherent-potential
approximation, minimization ((X[) is reduced to the
minimization of [F(0, Ny )CE [pf,(0, Ny ) + (1 —p)f,(O,
Ner )Lwheref; (0, Ng ) istheamplitude of the forward
scattering of scattering centers with the refractive indi-
ces ng. and ny,, respectively, which is calculated using
Mietheory for aspherical particle [20]. This procedure
is reduced to the solution of the iterative equation

~ ~ K ~i
Ji+1=q+ a 00 (O, Negt )] (1)

where ¢ = ZHﬁLﬁ I\ is the complex wavenumber of

light in the effective medium at theith iteration step and
K isthe parameter chosen from the condition of the best
JETP LETTERS  Vol. 82

No. 5 2005



ANOMALOUS DIFFUSION OF LIGHT

convergence of the iteration procedure. For polydis-

perse scattering systems, [F(0, Ny )Ois calculated by
averaging over al possible a values. We used the mod-
ification of the coherent-potential approximation
(coated CPA [17, 21]), where a sphere in a shell with
therefractiveindex n,, isconsidered as a scattering cen-
ter in the effective medium. The radius of the inner
spherewith therefractiveindex ng.isequal totheradius
of the scatterer, and the outer radius of the shell is cal-
culated as @' = aZp(Z — 1) + 1]¥3, where z= 1.65. A
homogeneous sphere with the radius a" = z(a® — pa'®)¥?
is considered as a scattering center of the second type
with the refractive index ny,. This procedure makes it
possible to take into account the effects of the correla
tion in the positions of scatterers for high packing den-
sities more exactly than in the usual coherent-potential
approximation.

In this approach, N is also calculated by solving
iterative equation (1). After the completion of theitera-
tion procedure, the parameters of the scattering system
are determined as| = A/4TtIM(Ng; ) and Nes = Re(Ngy ).
For anisotropic scattering, radiation transfer is gov-
erned by the transport length I* > |. The I* value for a
given ng; value is determined using the iteration proce-
dure minimizing [0 ¢ [0 ,m[] Where O, and O
are the cross sections for the extinction and asymmetry
of the scattering center in the effective medium that are
calculated using Mie theory for the sphere in the shell
[20, 21].

We applied an original approach to determinel* and
Ng: for various Ay values in the case of the absence of
apriori data on the optical characteristics of scatterers
[ne(Ao) spectral. Although information on the optical
characteristics of chemically pure oxides is available
[22, 23], the use of these datafor calculating I* and Ny
is doubtful because of the presence of impurities (e.g.,
SiO,) in the TiPure R900 under consideration. For the
known size distribution of scatterers (Fig. 1), the para-
metric dependence I* (Ng) = dcpa(Nsi(Ng)) With N, asa
parameter can be obtained using the coherent-potential
approximation. The (ng, 1*) values corresponding to
this dependence certainly minimize [{0, Ny )0 and
[0 o[- [0 5,m[fOr given ng and A, values. At the same
time, in the diffusion approximation, the T value and
width Q5 of the coherent backscattering peak that are
measured in the experiment for A, can be represented
by the expressions 8, 24]

{1+ 2, (ner)} I*

T ) = izt * gy 7 P
A
Qos = 3= (Ner), )

where z ,(ng)l* are the extrapolation-length values
that are determined by the boundary conditions for the
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Fig. 3. Method for determining |*, ng, and ng. from exper-
imental values of T and Qg with the coherent-potential
approximation for Ag = 633 nm and I*(ng) =

(D) dcra(Net(ng)), (2) Walnesr), and (3) fr(ngs). The inset
shows ng Vs. Ag according to (O) [22], (m) ny [23], (O) Ne
[23], and (lines) data obtained using the coherent-potential
approximation.

equation of the diffusion of light at the boundaries of
the layer and depend on the reflectivities Ry , of the
boundaries. The function =(n;) describes the effect of
the reflectivity of boundary 1 for the case L > |* on the
coherent backscattering peak width, is equal to 1 for
R; = 0, and decreases monotonically as R; increases.
Using the results obtained in [25], we arrive at the
expressions z , = 2{1 + R(ng;, Ny 2)}/3{1 — R(ngs,
Ny 2)} and =(Nesr) = {1 —R(Nesr, N)}{ 1 —0.2R(Ngsr, Ny},
where n; and n, is the refractive indices of the media
surrounding the scattering layer. For the case under
consideration, n, = 1 (free space) and n, = 1.5 (glass
substrate). The function R(ng, Ny ,) is calculated by
integrating the Fresnd reflection coefficients for unpo-
larized light over al possible angles of incidence of
light on the boundary. For measured T and Q5 values,
the parametric dependences I* = fng) and I* =
Po(ng;) can be constructed using Egs. (2) and (3). The
conditions cea{ Nerr(Ns)} = fr(Nesr) N depnf Nerr(Ns)} =
Wo(ng) unambiguously determine the parameters ng;,
I*, and ng. of the scattering medium. Figure 3illustrates
the application of thisapproachtothe T and Q5 values
for Ay =633 nm. The confidenceinterval s correspond to
measurement errorsfor T, Qg s, L, and p. The table pre-
sents the estimates obtained by this procedure for I*,
N, Nge, aNd KI* for various Ay values. Theinsetin Fig. 3
shows the values obtained for ng. in comparison with
the spectral dependences taken from [22, 23] for the
refractive indices n, and n, for chemically pure rutile.
The insignificant divergence between ng. and n, can be
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The I*, ngs, N, and kI* values for the samples under investigation as obtained from the experimental data
Ag, NM [*, um Neft Ng ki* Data source
800 2.15+0.30 1.45+0.05 2.45+ 0.05 244+ 25 Measurements of T
633 0.86 + 0.06 149+ 0.06 2.45 + 0.06 1272+ 0.34 Measurements of T
0.82+0.05 1.52 + 0.06 249+ 0.04 12.37+0.30 Measurements of coherent
backscattering
532 0.27+0.04 1.67+£0.05 274+0.11 5.30+0.65 Measurements of T
0.26 £ 0.04 1.69 + 0.07 278+ 0.08 510+ 045 Measurements of coherent
backscattering
473 | 0.075<1*<0.13 1.88<ng<20 3.00<n, <315 20<kl* <32 | Measurements of coherent
backscattering

attributed to the effect of impurities in the pigment
under investigation.

Cadlculations of ng and I* were performed for the
scattering medium without absorption (Im(ng) = 0),
which isjustified for the samples under investigation in
the range A, = 473-800 nm. In this range for the sam-
ples under investigation, the minimum absorption
length [5, 7, 8] L= /3I*/u, =45 pm (u, isthe absorp-
tion coefficient of the medium) for A =473 nmismuch
larger than 1*. The ng and I* values were determined
for various L valuesfromthe T valuesfor A, = 800, 633,
and 532 nm. For A, =473 nm, only Q5 values are ana-
lyzed, because absorption that is ignored in the model
under consideration significantly affects the diffusion
transmission of sampleswith L = L. For smaller L val-
ues, systematic deviations of the experimental depen-
dence T(L) from dependence (2) are observed. In coher-
ent backscattering experiment for A, = 473 nm, a peak
that is anomal ously wide compared to that predicted by
diffusion theory (3) is also observed. Owing to this
behavior, the dependences I*(Wo(ny) and 1*(ng) =
Ocpa(Ngi(Ng)) do not intersect each other. In this case,
the difference between the parameters obtained in the
coherent-potential  approximation and  diffusion
approximation (4) in the region of the minimum differ-
ence between the dependences does not exceed 25—
30% for I* and 5-7% for ng;. In addition, a small devi-
ation (smoothing) of the shape of the observed coherent
backscattering peak from the diffusion contour for non-
absorbing mediais observed in the small-angle region.
This effect cannot be attributed to the effect of the self-
absorption of TiO, that increases in the short-wave-
length region of the visible range, because the enhance-
ment factor obtained for coherent backscattering at Ay =
473 nm is approximately equal to the values for Ay =
532 and 633 nm (Fig. 2), and the effect of absorption on
the coherent backscattering peak is manifested in the
smoothing of the peak with a simultaneous decrease in
the amplification factor [26]. Moreover, for A, =
473 nm, therelation L, > I* isvalid and, therefore, the
effect of absorption on the shape and width of the

coherent backscattering peak is negligibly small [26].
As was shown in theoretical work [10], effects similar
to those observed in our experiment (smoothing and
broadening of the peak) are expected near the localiza-
tion threshold.

The sharp decreasein kI* with A, (seetable), aswell
as anomalies observed in the coherent backscattering
experiment for A, = 473 nm, impliesthat interference at
scales exceeding I* contributes to radiation transfer in
this case. According to the scaling theory of the renor-
malization of the scattering-medium parameters near
the localization threshold [11], the transport length is
represented as

e 2,1 XO
TETETLYD @)

where € isthe interference scale in the medium and the
parameter x represents the effect of the sample geome-
try on radiation transfer. For a cubic sample with side
L, x =1, whereasfor alayer with thicknessL, x <1 due
to the contribution of the scattered-field components
propagating in the layer in the transverse direction [8].
The parameter € is determined as I*?/(1* — I ), where

I¥ =k isthecritical transport length. For I* — %
in the nonabsorbing medium (L, = « and L > [*¥),
I* — 0. This effect is manifested at the macroscopic
level asachangein the dependence of T on L. Far from

the localization threshold, 1* =I* and T O L%, whereas

T O L2 at the threshold. For & > |*, the renormalization
effect on the “ macroscopic” dependence T =f(L) can be
studied by analyzing the logarithmic derivative B =
d(InT)/d(InL). Substituting Eg. (4) into Eqg. (2) and
after some algebra, we arrive at the expression

1

0 |*2 0
B=-l+—(1+nL)(Zo+Z)]
o L 0
B (5)

0 [*2 0
—c(1+nL)[1+—2(1+nL)(zm+zoz}m ,
Ol L ]
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where n = (/¢ + 1/L,)/x. For alayer with L > I* and
L, — o, weobtain 3 — —2for — 0 (I* — I7),
whereas 3 = —1 for large n values (classical radiation

diffusion). The behavior of the parameter AB/ANS for
the T(Ay) spectrais analyzed as a function of the layer

thickness: for a given A, value, B is determined from
the T(Ay) spectra for the samples with close L; and L,

values (L, L, > |L; — L)) as B = In(T/T,)/In(L,/L,).

The normalized spectral lope AB/AANB is determined
for the narrow spectral interval AA = 20 nm near A =

475 m. Figure 4 shows |AB/AAB | asafunctionof L =
(L, + Ly)/2. This dependence illustrates the transitions
between various regimes of radiation transfer in the
layer with finite absorption and for & > I*. According to
Eq. (5), the interference effect on radiation transfer is
noticeablefor small L values and becomesinsignificant
as the layer thickness increases. For classical radiation
diffusion (T O L), dp/BdA = 0. For L > L, absorption
governs radiation transfer in the layer, T O exp(—L/L,),
and dp/BdA = dL /L, d\ (is independent of L). The
regions corresponding to various regimes of radiation
transfer are separated in Fig. 4 asfollows. Region 3 cor-
responds to the diffusion of light that is governed by

absorption for L > L, (L, for the samples under inves-
tigation and for Ay = 475 nm is estimated as 45 um.
Region 2 corresponds to the transition to the T O L™

regime of the classical diffusion of radiation for L< L..
In our opinion, region 1 corresponds to the transition to

scale-dependent diffusion for L ~nL.

Using the results for Ay = 473-500 nm, the n value
for Ag = 475 nm is estimated as 0.8 + 0.4 um, which
givesavalue of 1.2 + 0.6 um for the interference scale
in the scattering medium and corresponds to a fairly
large renormalization factor (x§ is at least six times as
large as I*). It is useful to compare the result with the
data of the pulse modulation measurements of the light
diffusion coefficient in layers of anatase particles with
a = 0.3 umand p = 0.5-0.7 [27]. The maximum renor-
malization factor =2.8 is obtained for A, = 514 nm. As
compared to the experimental results reported in [27],
much higher efficiency of light scattering in the short-
wavelength region (near low-order Mie resonances) is
expected in our case due to a higher ng. value for rutile
as compared to anatase and alower p value (the p value
corresponding to the maximum | and I* valuesfor close
packed medialiesin the range 0.25-0.4 [21]).

Until recently, the main direction of achieving the
localization threshold in randomly inhomogeneous
media was the use of powder semiconductors (Si, Ge,
GaAs, etc.) in the IR range far from the absorption
bands of materials (see, e.g., [8, 12, 13, 28, 29]). In this
case, low k values can be reached at a high efficiency of
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Fig. 4. Normalized spectral slope |A[§/(A)\f§ | vs. L. The
solid line is the B-spline approximation of the data. For
regions 1-3, see the text.

scattering due to high ng, values. The results obtained
above show that ki* values close to the threshold value
are reached in the short-wavelength region of the visi-
ble range (where k values are sufficiently high) near the
absorption edge of the material of scattering particles
(the maximum absorption for rutile correspondsto Ay =
282 nm [22]). A sharp decreasein klI* with A, is caused
by an increase in ng, near the region of the anomalous

dispersion of rutile (the maximum value ny;o, =5.35is

reached for Ay = 322 nm [22]). An increase in the scat-
tering efficiency in the region of asharp increasein ng,
can be provided by choosing the parameters of the size
distribution of the particles (a and d,). It is worth not-
ing that the effect of the scale-dependent diffusion of
light, which is manifested for the samples under inves-
tigation in the short-wavelength region, is expected to
significantly affect the formation of the transmission
edge of scattering media based on TiO, particles.

Thiswork was supported by the Russian Foundation
for Basic Research (project no. 04-02-16533). We are
grateful to V.I. Kochubei for assistancein spectral mea-
surements.
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We present an exact diagrammiatic approach for the problem of dimer—dimer scattering in 3D for dimersbeing
aresonance bound state of two fermionsin a spin-singlet state, with corresponding scattering length ag. Apply-
ing this approach to the calculation of the dimmer—dimer scattering length ag, we recover exactly the aready
known result ag = 0.6 ar. We use the developed approach to obtain new resultsin 2D for fermions and bosons.
Namely, we cal culate bound state energies for three bbb and four bbbb resonantly interacting bosonsin 2D. For
the case of resonance interaction between fermions and bosons, we exactly calculate bound state energies of
the following complexes: two bosons plus one fermion bbf, two bosons plus two fermions bf, bf,, and three
bosons plus one fermion bbbf. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.72.Cc, 61.80.Az, 61.82.Ms

1. INTRODUCTION

The physics of ultracold Fermi gases has been the
subject of intensive investigations in recent years. In
particular, the possibility of experimental observation
of the crossover from the BCSto BEC limit due to Fes-
hbach resonance is being actively discussed. In the
vicinity of the resonance, the scattering length is very
large, being positive on one side of the resonance and
negative on the other side. In the limit of the positive
scattering length for two fermions, the formation of
weakly bound dimers consisting of two different fermi-
ons becomes energetically favorable. Far from the res-
onance on the positive side, aweakly interacting gas of
these composite bosons exists. In this paper, we present
a diagrammatic approach to an exact solution for dim-
mer—dimer elastic scattering, assuming that the (posi-
tive) scattering length greatly exceeds the characteristic
radius r, of interaction between atoms (the so-called
resonance approximation). As was first shown by Sko-
rniakov and Ter-Martirosian [1], in the case of the
three-body fermionic problem, the scattering length of
afermion on aweakly bound dimer is determined by a
single parameter, the two-body scattering length ag, and
is equal to 1.18a; in the zero-range approximation for
the interatomic potential. The same situation holds in
the case of the fermionic four-body problem, wherethe
dimmer—dimer scattering amplitude isfully determined
by the value of a..

Inthefirst study of the crossover problem by Hauss-
mann [2], the scattering length of composite bosons ag

T The text was submitted by the authorsin English.

was found in the lowest order (Born approximation)
and isequal to 2a.. Later, Pieri and Strinati [3], using a
diagrammatic approach, greatly improved this result
and found that in the ladder approximation the scatter-
ing length of composite bosons is approximately equal
to 0.75a.. However, the ladder approximation, strictly
speaking, is not valid, because it misses an infinite
number of diagrams, which give a contribution of the
same order of magnitude as those taken into account.
Recently, Petrov, Salomon, and Shlyapnikov [4] have
found the exact value of the scattering length of com-
posite bosons ag = 0.6a.. They solved the Schrédinger
equation using the well-known method of pseudopo-
tentials. Below we show an exact solution of the scat-
tering problem of two weakly bound dimers using the
diagrammatic approach in the resonance approxima-
tion.

We use the developed approach to obtain new
results for two different systems in the 2D case.
Namely, we consider first a system of resonantly inter-
acting bosons. We cal cul ate exactly the three boson bbb
and four boson bbbb bound state energies in this case.
We also apply our approach to the 2D system of bosons
resonantly interacting with fermions. Here we calculate
exactly the bound state energies for the following com-
plexes. two bosons plus one fermion bbf, two bosons
plustwo fermions bf, bf,, and three bosons plus onefer-
mion bbbf.

This paper is a natural continuation of our previous
results, where we predicted the possibility of two-fer-
mion ff [5, 6] and two-boson bb [7] pairing, as well as
composite fermion creation fb [8] in resonantly inter-

0021-3640/05/8205-0273%$26.00 © 2005 Pleiades Publishing, Inc.
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Fig. 1. Graphic representation of the equation for the full
dimmer—fermion scattering vertex Ta.

acting (a > r,) 2D Fermi—Bose gases and Fermi—Bose
mixtures.

2. THREE-PARTICLE SCATTERING

Asapreliminary exercise, wewill rederivetheresult
of Skorniakov and Ter-Martirosian for dimer—fermion
scattering length using the diagrammatic method [9].

Following Skorniakov and Ter-Martirosian in the
presence of the weakly bound resonance level -|E,|ina
two-particle cross section, we can limit ourselvesto the
zero-range interaction potential between fermions. A
two-fermion vertex can be approximated by a simple
one-pole structure, which reflects the presence of the
s-wave resonance level in aspin-singlet state:

T20B;y5(P) = TZ(P)(aa,yaB,é_aa,ﬁaB,v)
= To(P)x(a, B)X(y, 3), (€

4rt J|Eg| + NP?14m—E
m’?> E—PY4m+|Eg

whereP ={E, P}, Eisthetotal energy and P isthe total
momentum of incoming particles, m is the fermionic

mass, |Eg| = /maZ . Indices a, B and y, & denote spin
states of incoming and outgoing particles. The function
X(a, B) stands for the spin singlet state, x(a, B) =
o, 193, 1 — Ya, 1B, 1
The simplest process that contributes to dimer—fer-
mion interaction is the exchange of a fermion. We will
denoteit asA;. Its analytical expressionis

Dso p(P1 P2; P) = =0, sG(P —p;—py), (2

where G(p) = 1/(w — p#2m + i0) is a bare fermion
Green'sfunction. The minus sign on theright hand side
of Eg. (2) comes from the permutation of two fermions.
In order to obtain afull dimer—fermion scattering vertex
Ts, we need to build a ladder from A; blocks. One can
easly verify that the spin projection is conserved in
every order of T; and thus Ty, g = &, sT3. An equation
for T; will have the diagrammatic representation shown
inFig. 1, and in analytical form it iswritten as

T3(Ps, P2; P) = =G(P—p;—py)

To(P) =

3
—izG(P—pl—q)G(q)Tz(P—q)Ts(q, P.; P), )
q

BRODSKY et al.

where z ¢ = Id3qu /(2m)*. We can integrate out the
frequency Q in Eqg. (3) by closing the integration con-
tour in the lower half-plane, since both T,(P — ) and
T5(q, p,; P) are anadytical functions in this region.
Moreover, if we areinterested in the low-energy swave
dimmer—fermion scattering length a;, we can safely put
P ={E, P} ={—E,, 0} and p, =0. Thefull vertex T;is
connected with a; by the following relation:

08Tt (0,0; JE) = %T[a3. 4

O

Introducing a new function a,(k) according to the for-
mula

LSO, ((kr2m k0 -JE) = Tag(k)  (5)

e

and substituting it in Eq. (3), we obtain the Skorniakov—
Ter-Martirosian equation for the scattering amplitude:

3/4a,(k) 1
frEq + J3K/4+mlE K +mEy ©
az(q) d3q

—4711 .
[ q°(kK*+g* + kq + m/Ey) (2m)°

Solving this equation, one obtains the well-known
result for dimer—fermion scattering length a; = a5(0) =
1.18a..

3. DIMER-DIMER SCATTERING

Now we can proceed to the problem of dimer—dimer
scattering. This problem was previously solved by
Petrov et al. [4] by studying the Shrodinger equation
for a4-fermion wave function.

Inspired by the work of Petrov et al. [4] we arelook-
ing for a special vertex, which describes an interaction
of two fermions constituting afirst dimer with a second
dimer as a single object. An obvious candidate for this
vertex would be the sum of all diagrams with two fer-
mionic and one dimer incoming line. It would be natu-
ral to suppose that these diagrams should have the same
set of outgoing lines—two fermionic and one dimmer.
However, in this case there will be awhole set of dis-
connected diagrams contributing to our sum that
describes the interaction of a dimer with only one fer-
mion. As was pointed out by Weinberg [10], one can
construct a good integral equation of the Lippmann—
Schwinger type only for aconnected class of diagrams.
Thus far, we have been forced to give attention to the
vertex ®qs(qy, d2; P, P) corresponding to the sum of all
diagrams with one incoming dimer line, two incoming
fermionic lines, and two outgoing dimer lines (see
Fig. 2). This vertex ®,4(q;, Gp; Py, P) israther straight-
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P+ﬂ i—&-pz P+p, k, i—&-pz
: , [ = Ptp —ka @ :
P-p, P-p, P-p, P—p,

Fig. 2. Vertex ® represents the full dimer—dimer scattering
matrix T, with one dimer line being cut.

forwardly related to the standard dimer—dimer scatter-
ing vertex T(py, P2 P):

Tu(puPiP) = 5 5 X@RGP Pk
k;a,B

X G(K)Pap(P + py—k, k; p, P).

Note that, by definition, in any order of interaction ®
contains only connected diagrams.

The spin part of the vertex @,  hasthe simple form
Pq, (G, Gos P, ) =X(1, B)P(qy, p; P, py). A diiagram-
matic representation of the equation on @ is given in
Fig. 3. One can assign some a physical meaning to the
processes described by these diagrams. The diagram of
Fig. 3a represents the simplest exchange process in
dimmer—dimer interaction. The diagram of Fig. 3b
accounts for the more complicated nature of a “bare’
(irreducible by two dimer lines) dimmer—dimer interac-
tion. Finally, the diagram in Fig. 3c allows for multiple
dimer—dimer scattering via a bare interaction. The last
term in Fig. 3 means that we should add another three
diagrams analogous to Figs. 3a, 3b, and 3c, but with
two incoming fermions (g, and g,) exchanged. The ana-
lytical equation for the vertex @ can be written as

®(dy, Ozs P2 P) = —G(P -0, + p,)G(P—0,—p,)
—iZG(k)G(ZP—Ch—CIz—k)Tz(ZP—Ch—k)
K

x 00y, ki Py P)+ 3 5 6(Q-)5(2P-Q-a) ()

xT,(2P-Q)Tx(Q)G(K)G(Q-K)®(k, Q—-k; p, P)

275

Since we are looking for s-wave scattering length,
we can put p, = 0 and P = {0, Eg|}. At this point we
have a single closed equation on the vertex @ in the
momentum representation, which, we believe, isanalo-
gous to the equation of Petrov et al. in the coordinate
representation. To make this analogy more prominent,
we have to exclude frequencies from the equation.
However, this exclusion is rather cumbersome and we
leave it for a more extended publication.

The dimer—dimer scattering length is proportional

to the full symmetrized vertex T,(p;, p,; P):
811 2 _ _ 2m(2ag)
an—aﬁ T4(0,0; -2[Ey], 0) = ——=-.
If one skips the second term in Eqg. (8), i.e., omits the
diagramin Fig. 3b, one arrives at the ladder approxima-
tion of Fieri and Strinati. The exact equation (8) corre-
sponds to the summation of all diagrams. We have cal-
culated the scattering length in the ladder approxima-
tion and the scattering length derived from the exact
equation and obtained 0.78a- and 0.6a, respectively.
Thus, our results in the ladder approximation are in
agreement with the results of Pieri et al. [3] and in the
general form with the results of Petrov et al. [4]. Note
also that our approach allows one to find the dimmer—
dimer scattering length in the 2D case (this problem

was previously solved by Petrov et al. [11]).

Finally, we would like to mention that our results
allow oneto find the fermionic Green’'s function, chem-
ical potential, and sound velocity as afunction of ag in
the case of the dilute superfluid bose gas of dimers at
low temperatures. The problem of dilute superfluid
bose gas of di-fermionic molecules was solved by
Popov [12] and later deeply investigated by Keldysh
and Kozlov [13]. Those authors managed to reduce the
gas problem to a dimer—dimer scattering problem in
vacuum but were unable to express the dimmer—dimer
scattering amplitude in asingle two-fermion parameter.
A direct combination of our results with those ones of
Popov, Keldysh, and Kozlov alows one to get al the
thermodynamic values of a dilute superfluid resonance
gas of composite bosons. However, a more interesting
subject for the application of our results is the high-
temperature expansion for the thermodynamic poten-
tial and sound velocity in the temperature region T ~

(9)

+(Qy~— ). T« ~ |Eg|, where composite bosons start to appear.
4, Prp g Ptpy g L+ p, a 0 P+p,
> —| I 93 D\ Q0 — 9> I
2_ @ e - @ T @ B + (g, © )
2P-q1-9; P-p P=p, P-py 2P-q—q, 2P-Q P-p,
(a) (b) (©)

Fig. 3. Graphic representation of the equation on function ® describing dimer—dimer scattering.
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4. NEW RESULTS IN THE 2D CASE

As was first shown by Danilov [14] (see aso the
paper of Minlos and Fadeev [15]) in the 3D case, the
problem of three resonantly interacting bosons cannot
be solved in the resonance approximation. This state-
ment stems from the fact that in the case of identical
bosons the homogeneous part of Skorniakov—Ter-Mar-
tirosian eguation (6) has a nonzero solution at any neg-
ative energies. The physical meaning of this mathemat-
ical artifact was elucidated by Efimov, who showed that
atwo-particle interaction leads to the appearance of an
attractive 1/r? interaction in athree-body system. Since,
in the attractive 1/r2 potential in 3D, a particle falls to
the center, short-range physics is important and one
cannot replace the exact pair interaction by its reso-
nance approximation.

In contrast, in the case of the 2D problem, the phe-
nomenon of the particle falling to the center is absent,
and one can utilize the resonance approximation [16].
Therefore, it is possible to describe three- and four-par-
ticle processes in terms of the two-particle binding
energy |Eg| = 1/ma? only (below, for simplicity we will
assume that all particles under consideration have the
same mass m). We will omit the problem of composite
particles\ scattering and will mainly concentrate on the
problem of the binding energies of the complexes of
three and four particles.

Asin the 3D case, the cornerstone in the diagram-
matic techniqueisthe two-particle resonance scattering
vertex T,. For two resonantly interacting particles with
total mass 2m, it can be written in 2D as

il a
Mn({ P*/4m—E} /|Eg|)’

T,(P) = - (10)

whereweintroducethefactor a ={1, 2} inorder totake
into account whether or not two particles are indistin-
guishable. It isa = 2 for the case of resonance interac-
tion between identical bosonsand a = 1 for the case of
resonance interaction between fermion and boson or
for the case of two distinguishable bosons.

4.1. Three Particlesin 2D

We start with a system of three resonantly interact-
ing identical bosons—bbb—in 2D. The equation for
the dimmer—boson scattering vertex T;,  which
describes interaction of three bosons, has the same dia-
grammatic form as shown in the Fig. 1; however the
rules of its analytical notation are changed. It can be
written as

Ta(Py, Po; P) = G(P—p;—py) +izG(P— p;—Q)
q (12)
xG(Q)T(P-q)Ts(a, p; P),

BRODSKY et al.

where = I d*qdQ/(2m3, P = {0, E}, and one

should put a = 2 for the two-particle vertex T, in
Eqg. (10). The opposite signsin Eq. (3) for fermions and
Eqg. (11) for bosons are due to the permutational prop-
ertiesof the particlesinvolved: an exchange of fermions
resultsin aminus sign, while an anal ogous exchange of
bosons brings no extra minus. Finally we note that the
three-particle s-wave (s-wave channel of boson—dimer
scattering) binding energies E; correspond to the poles
in T5(0, 0; -|E5|) and, consequently, at energies E = E;
the homogeneous part of Eq. (11) has anontrivial solu-
tion. Solving Eq. (11), we find that a complex of three
identical bosons has two s-wave bound states E; =
16.52E; and E; = 1.267Eg in accordance with the pre-
vious results of Bruch and Tjon [16, 17].

L et us now consider acomplex—fbb—consisting of
one fermion and two bosons. As noted above, we con-
sider bosons and fermions with equal masses m, = m, =
m. We assume that a fermion-boson interaction Uy,
characterized by the radius of interaction ry, yields a
resonance two-body bound state with an energy E =
—|Eg|. At the same time, a boson—boson interaction Uy,
characterized by the interaction radius r,, does not
yield a resonance. Hence, if we are interested in low-
energy physics, the only relevant interaction is Uy, and
we can ignore the boson—boson interaction Uy, the lat-
ter would give small corrections on the order of

|Eglmr, < 1 at low energies. In order to determine

three-particle bound states, one has to find polesin the
dimmer—boson scattering vertex T, Since we neglect
boson-boson interaction Uy, the vertex T, is described
by the same diagrammatic eguation of Fig. 1 asin the
problems of three bosons. The analytical form of this
equation also coincides with Eq. (11), with the minor
correction that the resonance scattering vertex T, now
corresponds to the interaction between a boson and a
fermion and, therefore, we should put a = 1in Eq. (10)
for T,. Solving the equation for T, we find that the fbb
complex has only one swave bound state with the
energy E; = 2.39E;.

Note that a complex—bff—consisting of a boson
and two spinlessidentical fermions (or acomplex bf,f,
of aboson and spin + and spin | fermions) with theres-
onance interaction Uy, does not have any three-particle
bound states.

4.2. Four Particlesin 2D

After solving the above three-particle problems, we
may proceed to complexes consisting of four particles.
First wewill consider four identical resonantly interact-
ing bosons bbbb [18]. Any two bosons would form a
stable dimer with a binding energy E = —|Eg|. We are
going to find a four-particle binding energy as the
energy of an s-wave bound state of two dimers. Gener-
2005

JETP LETTERS Vol. 82 No. 5



BOUND STATES OF THREE AND FOUR RESONANTLY INTERACTING PARTICLES

aly speaking, bound states could emerge in channels
with larger orbital momenta; however, this question
will be the subject of further investigations. To find the
binding energy, we should examinethe analytical struc-
ture of the dimer—dimer scattering vertex T, and find its
poles. The set of equationsfor T, hasthe same diagram-
matic structure as those shown in Figs. 2 and 3. The
analytical expression of thefirst equation can bewritten
as

TPy P P) = 03 6P PRG0N
k

x (D(P + pl_kv k! p21 P)v
and the equation for the vertex @ is
®(y, Ao P2 P) = G(P—0y + p)G(P -0, —p,)

+i z G(k)G(2P -0, -0, —K)T,(2P-q, —k)
K

X @(qy, K; p, P)

13
-Lyo@-aeer-o-q)
Q. k

xT,(2P-Q)Tx(Q)G(K)G(Q-K)®(k, Q—-k; p,, P)

+ (g~ ),

where T, should be taken from Eq. (10) and one should
put a = 2 for the case of identical resonantly interacting
bosons. Solving the above equations for the poles of T,
as a function of the variable P = {0, E}, we found 2
bound states for the bbbb complex (see table). Cer-
tainly, for the validity of our approximation we should

have |E,| < 1/mr;. For the case of four bosons bbbb,
this means that 194|E,| < 1/mr3 and, hence, alr, >

194 . This case can still be realized in the Feshbach
resonance scheme.

The case of a four-particle complex bf, bf, consist-
ing of resonantly interacting bosons and fermions is
described by the same equations (12, 13) but with the
parameter a = 1. In this case, we found two bound
states; they are also listed in the table.

In order to obtain bound states of the fbbb complex,
one has to find energies P = {0, E} corresponding to
nontrivial solutions of the following homogeneous
eguation:

®(dy, 02 P2, P) = izG(k)G(ZP—%—%—k) (14)
K

XT(2P -0, —K)P(qy, K; po, P) + (1 ~— 0y).

This equation corresponds to the diagrams of Fig. 3b.
We found a bound state of the fbbb complex with
energy E, = 4.10E;.
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Sysem | e | bounet e | ENOY (nEe)? | o
bbb Upp 2 1.267,1652 | 2
fbb Urp 1 2.39 1
fbbb Uty 1 4.10 1
bf, bf, Upp 2 2.84,1064 | 1
bbbb Upp 2 24,194 2

L Interaction that yields resonance scattering. All other interactions
are negligible.

2 m= n’}o = |’nf

3 The indistinguishability parameter in Eq. (10).

Finally, we summarize the results concerning bind-
ing energies of three and four resonantly interacting
particles in 2D in the table. Note that all our calcula
tions correspond to the case of particles with equal
masses Iy = M, = m, though they can be easily general-
ized to the case of different masses.

5. CONCLUSIONS

For the problem of resonantly interacting fermions
in 3D, we developed an exact diagrammatic approach
that alows the dimmer—dimer scattering length to be
found. We apply the devel oped approach to obtain new
resultsin the 2D case. Namely, we exactly calculate the
binding energies of the following complexes: three
bosons bbb, two bosons plus one fermion bbf, three
bosons plus one fermion bbbf, two bosons plus two fer-
mions bf, bf,, and four bosons bbbb.

Our investigations enrich the phase diagram of
ultracold Fermi—Bose gases with resonance interaction.
They serve as an important step for future calculations
of the thermodynainic properties and the spectrum of
collective excitations in different temperature and den-
sity regimes. Note that, in purely bosonic modelsin 2D
or in the Fermi—Bose mixturesin the case of prevailing
density of bosons ng > n, creation of larger complexes
consisting of 5, 6, or more particlesis aso possible. In
fact, here we are dealing with the macroscopic phase
separation (with the creation of large droplets). The
radius of thisdroplet Ry for N bosonsin 2D is estimated
in[18] on the basis of avariational approach. Note that
even for N = 5 the exact calculation of the bound state
energies requires huge computational capability, which
iswhy it was not performed by us.
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We present the results of our low-temperature scanning tunneling microscopy (STM) investigation of the clean
Ge(111) surface. Our experiments enable, for the first time, STM observation of one-dimensional surface
screening around surface defects. We identify the dominating role of surface states in the low-temperature
STM imaging aswell astheimportant influence of nonequilibrium kinetics on the measured tunneling spectra.

© 2005 Pleiades Publishing, Inc.
PACS numbers; 68.35.Dv, 68.37.Ef, 73.20.At

The (111) surface of Ge is among the most widely
studied elementary semiconductor surfaces. Some fea
tures of this surface are presently well established, e.g.,
the (2 x 1) surface reconstruction corresponding to a
tbonded chain model with buckling [1-3]. On the
other hand, some properties still remain to be clarified.
There is no clear understanding of the (2 x 1) recon-
structed surface electronic properties, which should
somehow reveal a one-dimensional (1D) character. In
thiswork we present the results of our low-temperature
scanning tunneling microscopy (STM) investigation of
clean Ge(111)—2 x 1) surfaces [4]. The samples under
investigation were cut from heavily doped (resistivity
1 mQ cm) Ge single crystals with n-type bulk conduc-
tivity. The doping element was phosphorus, which is a
shallow impurity with an ionization energy of 13 meV,
while the doping concentration was rather high, around
8 x 10'8 cm. The samples were 1.5 x 1.5 x 3.0 mm?
slabs with the long axis aligned along the [111] direc-
tion. Samples are cleaved in situ after the low-tempera-
ture STM instrument is cooled down to liquid-helium
temperature. The details of the cleaving procedure and
the experimental STM setup are described elsewhere
[4]. After cleavage, the high-quality Ge(111) surface
with pronounced optical reflectivity (mirror) is exposed
to the STM tip for imaging and spectroscopy.

According to the commonly accepted point of view,
the Ge(111) surface with (2 x 1) reconstruction is ter-
minated by t-bonded chains with Ge atoms running

along the [011] direction [2], and only every second
atomic chain is imaged as a protrusion by STM. The

TThe text was submitted by the authorsin English.

surface unit cell contains two atoms, both having one
dangling bond, and these bonds are responsible for 1t
bonding along zigzag rows. One atom (up atom) is
shifted out of the surface, while the other atom (down
atom) is shifted towards the surface. Consequently, the
bonding surface states band 11,5 derived from the up-
atom orbital is filled, while the antibonding surface
state band T derived from the down-atom orbital is
empty. At sufficiently high doping concentration, the
anti-bonding surface states band 1&g is partially popu-
lated, and at the surface the Fermi level lies above the
bottom of the 1 band. The band structure for a
heavily doped n-type Ge(111)—(2 x 1) surface, whichis
consistent with first-principles calculations [5], photoe-
mission measurements [6], and our local tunneling
spectroscopy data (see below), is illustrated in Fig. 1.

Here we would like to mention some numbers charac-
teristic of the Ge(111)—(2 x 1) surface. The widths of

antibonding Ti¢z and bonding 5 surface state bands

which can be derived from both theoretical [5] and
experimental [6] data are approximately equal to 1.2
and 0.8 eV, respectively. The value of the band gap on
the Egg surface measured by means of scanning tunnel-
ing spectroscopy at low temperature[7] isabout 0.5 €V.
The bulk band gap [8] equals 0.74 eV at liquid-helium
temperature (4.2 K).

Typical STM images of the Ge(111)—(2 x 1) surface
arepresented in Fig. 2 for different values of the tunnel-
ing bias voltage applied to the sample (tip is grounded),
which impliesthat filled (empty) state images are taken
at negative (positive) bias. The first two images in

0021-3640/05/8205-0279%$26.00 © 2005 Pleiades Publishing, Inc.



280

Ptlr tip

Ge(111)—~(2 x 1) sample

nfp width~12eV
Ty width ~0.8 eV

Fig. 1. Band structure of the metal tip—Ge(111)—(2 x 1)
tunneling junction. Ti,g and T denote the bonding and

antibonding surface states band, respectively. The partially
filled surface-state antibonding (conduction) band is
responsible for Fermi level pinning in the vicinity of the
valence band maximum. The surface (Egg) and bulk (Eg)

band gaps are indicated. The figureis not to scale.

Fig. 2 were acquired with a bias voltage corresponding
to the band gap region. All images reveal an ordered,
chainlike surface structure. For the Ge(111) surface,
such a chainlike structure has been attributed to a (2 x
1) surface reconstruction with T-bonded chains[2]. The
imagesin Fig. 2 revea the presence of surface defects,
including the presence of ad-atoms on the surface.

We now turn to some remarkabl e features appearing
in the Ge(111)—«2 x 1) surface STM images shown in
Fig. 2. First, theimages taken with abias voltage corre-
sponding to the band gap reveal the presence of screen-
ing of localized surface charges. The streaks observed
in the STM images reflect the perturbation of the local
density of states by the scattering on surface imperfec-
tions of electrons with 1D confinement aong the
Tebonded chain rows. STM images of al surface
defects (impurities, ad-atoms, atomic size elements of
domain boundaries) have a pronounced 1D shape. The
areas around the defects appear as stripes with length
up to 60 A along the direction of the Tbonded chain

rows ([011] direction), while their width is approxi-
mately equal to the period of the surface reconstruction

inthe[211] direction (about 7 A). For an asymmetric
defect such as asingle atomic size element of adomain
boundary, the stripe, which reflects the screening in the
STM image, isasymmetric along the chain rows. While
the screening cloud is localized mainly next to the
defect, it smoothly decays in one direction with
increasing distance from the domain boundary, but in
the opposite direction it abruptly ends at the domain
boundary. For symmetric defects such as individual
surface impurity atoms or ad-atoms, the screening
cloud has a symmetric shape along the chain row. We
would like to stress that the contrast of the empty states
STM images (positive sample bias voltages) is higher

ARSEYEYV et al.

Fig. 2. STM images of the Ge(111)—2 x 1) surface for dif-
ferent sample bias voltages. The set point for the tunneling
current is 20 pA. Theimage sizeis 14 nm x 14 nm.

than for the filled states STM images (negative sample
bias voltages). This can be accounted for by the differ-
ent screening for empty and filled states, respectively
(see below). It is aso important to note that the low-
temperature STM images of the Ge(111)—2 x 1) sur-
face become completely dominated by the density of
surface electronic states for the range of bias voltages
corresponding to the surface band gap.

We also experimentally probed the local density of
electronic states. The results of scanning tunneling
spectroscopy (STS) measurements are presented in
Fig. 3. The normalized tunneling conductivity spectra
were obtained by averaging the experimental data col-
lected above a square surface area containing four
T-bonded zigzag rows. The details of the datatreatment
procedure are described elsewhere [9]. The overal
energy resolution for the present experiments is esti-
mated to be 20 meV due to our numerical method of
differentiation and subsequent averaging. Thisvalueis
sufficiently small for reliable tunneling spectroscopy
on semiconductors.

Let us now discuss the important features of the
spectroscopic measurements on the Ge(111)—(2 x 1)
atomically flat surface at low temperature. The pres-
ence of a band gap can be observed in the spectrum
with bottom and top located at —0.07 V and +0.5 V,
respectively. The Fermi level (0V ontheV-axis) isposi-
tioned in the spectrum dightly above the valence band
maximum, although our samples are heavily doped and
have n-type bulk conductivity. This can be accounted
for by Fermi level pinning at the surface in the case of
the Ge(111)—«2 x 1) surface (see Fig. 1). Itisinteresting
to note that, for the Ge(111)—(2 x 1) surface, the posi-
tion of the Fermi level in the tunneling spectraremains
the same, independent of the type of doping of the bulk
semiconductor, i.e., p-type or n-type bulk conductivity
No. 5
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[10]. According to photoemission data, the position is
independent of the bulk doping concentration, as well
[6]. The main source of the difference in tunneling
spectra for the p-type and n-type Ge(111)—2 x 1) sur-
face is the difference in surface band bending. While
for a n-type sample surface, band bending amost
exceeds the bulk band gap value (Fig. 1), bands remain
nearly flat near a p-type sample surface.

Thetunneling current inside the bang gap is not neg-
ligible (see inset in Fig. 3). With our choice of the set
point for the tunneling current (I, = 20 pA), a compara
ble value of the tunneling current was detected through-
out the band gap, except for a narrow region (|V| <
0.1V) around the Fermi level. Thisimpliesthat the sur-
face states are able to carry a current up to ~10° elec-
trons per second. Hence, the tunneling rate through sur-
face states is comparable to the relaxation rate of non-
equilibrium electrons due to the eiectron—phonon
interaction at low temperature (10® s [11]). A local
nonequilibrium charge can then be accumulated on the
surface states, causing local band bending. This bend-
ing alters the ratio of the tunneling rates from surface
states to the bulk semiconductor and to the metallic tip,
respectively, and consequently alters the measured tun-
neling spectrum.

As can be seenin Fig. 3, the tunneling conductivity
curve reaches an absolute minimum about 0.2 V above
the Fermi level. Two other local minima followed by
peaks are located on both sides of the surface band gap.
A relatively weak peak is centered at —0.15V near the
valence band maximum. A strong peak with two shoul-
ders on the high energy side can be found at 0.6 V, just
bel ow the conduction band minimum. The dips appear-
ing at the band gap edges are characteristic for our
experiments and are highly reproducible.

In order to understand the obtained experimental
results, we rely on a model of resonant tunneling
through surface state bands. The details of this model
can be found in [12]. When the bias voltage is in the
voltage range corresponding to the band gap, the cou-
pling between surface and bulk statesis very weak. As
indicated in Fig. 1, a 250-A-wide depletion layer sepa-
rates the surface and bulk states. This depletion layer is
formed because of charging of the surface states, which
results in strong band bending near the surface. For
heavy doping the Ge(111)—<2 x 1) surface band bend-
ing amost exceeds the band gap value (see Fig. 1).
Consequently, correct modeling of tunneling processes
through surface states requires that the STM junction
be treated as a double barrier structure, and tunneling
through the depletion layer needs to be taken into
account.

Using the nonequilibrium Keldysh Green’s function
formalism, the local tunneling current can be deter-
mined [12]:

[(V,r) = J’dsv(s,r)[n?(s)_ng(g)]\%,
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Fig. 3. (dI/dV)/(1/V) normalized tunneling conductivity
measured above two different defect free areas of the
Ge(111)—(2 x 1) surface as a function of the applied bias
voltage. The inset shows the logarithm of the current—volt-
age characteristic (V). The current set point for the mea-
surementsis |, = 20 pA, while the voltage for the approach

isV;=0.3V.

wherey, and y, are the tunneling rates from the surface
states band to the metallic tip and to the bulk semicon-
ductor, respectively. n’ and np are the equilibrium fill-
ing numbers of the metallic tip and the semiconductor,
respectively, and v(g, r) isthe local density of surface
states. It isimportant to note that v(g, r) is not the den-
sity of defect-free surface states but includes contribu-
tions from surface defects of al kinds (impurity atoms,
lattice vacancies, etc.).

We now turnin moredetail to specific features of the
tunneling current in the vicinity of a defect or individ-
ual impurity atom for small positive sample bias volt-

ages. Because the empty surface state 1.z band is par-

tialy filled, the impurity potential is screened by sur-
face electrons:

Wo(q)
€(q,0)’

where g(q, 0) is the dielectric function of the semicon-
ductor surface states band. The density of empty sur-
face statesis changed by this screened potential. (g, 0)
hasalogarithmic singularity at g = 2k When the Fermi

level fallsinside the empty surface states band 1% , the

screening effects become more pronounced within the
range of positive sample bias when compared to the
cases of low doped n-type and p-type surfaces for
which the 1&g band is completely empty. Conse-
guently, the empty-state STM images of highly doped
n-type samplesreveal details caused by local screening,
in contrast to STM images of p-type samples, where
empty-state STM images are less informative than
filled-state images.

Wimp(q) =
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Because of the spatial localization of surface states
in the T-bonded chains, screening occurs in the direc-
tion of T-bonded atomic rows, and consequently itisa
guasi-1D process. The additional contribution to the
local surface density of states due to screening of the
impurity potential can be expressed as

WVS
OV = T,

sin(2k(g) [ +3),

where v, is the unperturbed density of surface states, o
is the phase shift determined by the exact shape of the
potential, and k() is the quasi-1D wave vector corre-
sponding to the energy value €. The additional term for
the tunneling current at small positive bias voltage can
then be written as

e’ WVS

I(V,r) = %V Vi(€r)Yp(€E) cOS(2Ker +0)

1-Wvgyi(€f) + Yo(Er) ker '
where eisthe electron charge and 7 is Plank’s constant.
In the effective mass approximation, the Fermi level
position is determined by the expression

_ ke

T 2my

Er

As can be inferred from the experimental observations
presented in Fig. 2, thetypical spatial extent of the area
with enhanced tunneling current near a defect is about
50 A. We suppose that it is reasonable to use the bulk
value of electron effective mass. my; = 0.063m with m
the free electron mass. In this case the degree of occu-
pation for the empty surface states band can be esti-

mated from the value of the Fermi wavelength k;l ~
100 A, and we then find that the Fermi level &¢ is

approximately 4 meV above the bottom of the T,

band, which is close to the value of 0.5% band filling
obtained in [13].

We argue that specific features of the surface elec-
tronic structure do not dramatically affect the general
shape of the tunneling spectrum. For instance, our
experimental tunneling conductivity spectrum for the
Ge(111)H2 x 1) surfaceisvery similar to the tunneling
spectrum for the Ge(111)—c(2 x 8) surface[14]; i.e., the
exact type of surface reconstruction does not dominate
the tunneling spectrum. When the applied bias voltage
approaches the conduction band from below, the tun-
neling rate from surface states to semiconductor bulk
states increases (Fig. 1) due to a decrease of the deple-
tion layer width. At a certain voltage this tunneling rate
becomes comparabl e to the tunneling rate from surface
states to the metallic tip. The weakest link of the STM
junction, which is caused by tunneling from surface
states to the bulk semiconductor, will then disappear.
One may expect in this specific range of bias voltages
the appearance of a peak in the tunneling conductivity
versus bias voltage dependence [ 15]. Because the onset
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of the peak is located inside the surface band gap, the
value of the surface band gap measured by tunneling
spectroscopy is smaller thanitsreal value.

The difference between tunneling spectroscopy on
Ge(111)«2 x 1) and Ge(111)—c(2 x 8) surfacesis due
to the difference in the physics of depletion-layer for-
mation. In the case of n-type Ge(111)—2 x 1), strong
band bending is present at the surface due to charging
of the surface states. On the other hand, tip-induced
band bending is responsible for the creation of the
depletion layer at the Ge(111)—c(2 x 8) surface [14].

The bulk band gap value for the Ge(111)—2 x 1)
surface is 0.74 eV [8]. Due to the gap narrowing
described above, the surface band gap value derived
from our experimental tunneling conductivity spectrais
about 0.6 eV (seeFig. 1). Thisvalue correspondsto the
reduced bulk band gap value and not to the separation
between the surface-state related bands. We would like
to point out once more that, in spite of the dominating
role of surface states in low-temperature STM imaging
of the (111) surface of elemental semiconductors, the
STS spectra always reflect the electronic structure of
bulk states.

Theintense peak appearing in the tunneling conduc-
tivity spectra near the conduction band edge is a char-
acteristic feature of spectroscopy on the (111) surface
of Ge and Si that is not strongly affected by the exact
type of reconstruction (2 x 1, 2 x 8) [14, 16].

In conclusion, the Ge(111)—2 x 1) surface obtained
by in situ sampl e cleavage wasinvestigated by means of
low-temperature STM and STS. The dominating influ-
ence of surface states on the STM image formation was
revealed. It was shown that perturbations of the local
density of states around surface defects are confined
along the t+-bonded chain rows, directly reflecting the
quasi-1D spatial distribution of the surface states. The
surface band structure for the heavily doped n-type
Ge(111)2 x 1) surface was clarified, and the degree of

occupation of the empty surface state band ¢ was

estimated from the typical spatial extent of the area
with enhanced tunneling current. It was demonstrated
that the tunneling spectrum is determined not only by
the local density of states but also by the nonequilib-
rium Kinetics of the tunneling processes.
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Shock-Wave Compression of Hydrogen to Pressures of 65 GPa
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The results of experiments on determining the shock-wave compression of initially solid hydrogen (protium)
in the pressure range from 17 to 66 GPa are reported. The data have been obtained by using spherical explosive
charges. Pressure in samples is created by the impact of a steel striker accelerated to maximum velocities of
23 km/s. Gaseous protium is converted to the solid state using a special cryogenic cooling system. © 2005 Ple-

iades Publishing, Inc.
PACS numbers: 51.35.+a, 52.35.T¢c

The behavior of initially solid hydrogen (protium)
under high pressures and temperaturesis of interest due
to a number of circumstances. First of al, it is associ-
ated with the study of the structure of starsand the giant
planets of the Solar System, as well as with problems
involving controlled nuclear fusion and obtaining
metallic hydrogen and many applied problems. How-
ever, investigations of shock-wave compression of pro-
tium in Russia have not yet been carried out for some
reason. Experiments on shock-wave compression of
liquid (in the initial state) protium to pressures of
15 GPa were performed in the United States [1-3]. In
these experiments, explosive-based measuring systems
and two-stage light-gas guns were used.

Being a substance with the simplest single-electron
structure, hydrogen allows ab initio analysis of high-
density and high-temperature plasma states without
employing semiempirical approaches. Unfortunately,
theoretical results obtained by different researchers dif-
fer considerably, primarily due to the difficulty of the
correct inclusion of the strong interaction between par-
ticles under such conditions. For this reason, obtaining
reliable experimental data on hydrogen compression in
the unexplored range of states must not only serve an
impetus for performing a deeper theoretical analysis of
this problem, but also provide atest material for verify-
ing theoretical premises.

Let us also recall the results of recent experiments
on the compressibility of liquid deuterium [4, 5], in
which anomalously high densities of this material were
obtained. Numerous doubts as to the authenticity of
these data called for a series of new experiments [6-9],
which ultimately refuted the results obtained in [4, 5].
This work is a continuation of these experiments.
Finally, we mention the opportunity of studying disso-
ciation of molecules and ionization of atoms in the
high-temperature states realized under the action of

megabar-amplitude shock waves on the samples using
hydrogen isotopes as exampl es.

Themain aim of thiswork isto reach pressures sub-
stantially exceeding those achieved so far [1-3]. The
fact that our measurements were made with solid pro-
tium (in the initial state), in contrast to the American
experiments, which were carried out with aliquid sub-
stance, isimmaterial, because these phases are close in
properties. Moreover, the results allow mutual recalcu-
lations. It is worth noting that we do not know of pub-
lications on shock-wave compression of solid protium.

These experiments began in 2002 at the Russian
Federal Nuclear Center VNIIEF (Sarov) and were car-
ried out simultaneously with anal ogous experiments on
liquid and solid deuterium [7, 9]. Intense shock waves
were produced by a hemispherical explosive charge
detonated simultaneously on the entire outer spherical
surface [10]. The explosion products of a converging
detonation wave accelerate a sted striker separated by
asmall air gap from the inner cavity of the explosive
towards the center of the system. The velocity of the
striker at the impact radius varies from 9 to 23 km/s
depending on the chosen measuring instrument and the
range of measurements (the range in which the samples
are arranged). Three runs of measurements were con-
ducted, differing in the geometry of measuring instru-
ments (radii of explosives and strikers, their thickness,
and the radii of location of the sasmples and the hemi-
spherical aluminum screens shielding them). Thethick-
ness AR of protium samples was the same (4 mm) and
the thickness of the screenswas 4-5 mm. Each run con-
sisted of four independent experiments with three inde-
pendent measurements of the wave velocity in each
experiment.

In these experiments, we determined the time At of
the propagation of shock waves through the sample
thickness AR. The time was monitored using electric-

0021-3640/05/8205-0284%$26.00 © 2005 Pleiades Publishing, Inc.
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contact sensors; time intervals were recorded on TDS
and HP54645 oscilloscopes with an accuracy of 2 ns.
As aresult of measurements, we determined the aver-
aged velocity D = AR/AT of ashock wavein agiven run
of measurements.

To determine the mass vel ocities, we used the refl ec-
tion method [11]. In this method, known statesin the Al
screen (which were determined in a preliminary run of
measurements) and the experimentally obtained aver-
age wave velocity D, are used to find the shock-wave
compression pressure P and the mass velocity U of the
substance behind the shock wave front from the point
of intersection of the wave ray p,D,, and the expansion
isentrope of Al from the states on its shock adiabat (in
this case, the adiabat of “cold” Al at T ~ 10 K). This
isentrope was calculated from the equation of state for
aluminum that was considered in [12, 13] and fitted to
the results obtained in [14]. The advantage of this equa-
tion in describing the available experimental data on
aluminum (and pertaining to the pressure interval of
interest) over other available equations of states was
demonstrated preliminarily. The energy and density of
shock compression were determined from the relations
following from conservation laws.

The initia state of the sample was monitored from
the data of semiconductor thermometers mounted in
the region of location of the samples, where the con-
densation of hydrogen occurred. This region was
cooled by helium vapor or directly by liquid helium
supplied via a specia system of pipes. The system
ensured the supply of a measured (and controlled)
amount of helium to the cell being cooled, which con-
tained initially gaseous protium [7, 9]. When the lique-
faction temperature of protium (24 K) was reached, it
condensed, which was indicated by the abrupt decrease
in the volume of the gasholder containing the initial
gas. After holding protium in the liquid state for 5
10 min, the temperature of the sample being cooled was
further reduced to convert it to the solid state (at atem-
perature below 19 K). After 5-10 min, the experimental
cell was detonated.

The converging shock wave on the screen and in the
sample under investigation is not steady. For this rea
son, small (<1%) corrections to the wave vel ocity must
be introduced to determine the parameters of compres-
sion. Thefinal results are given in the table.

The initiad density of solid protium is py =
0.088 g/lcm®. The error in the wave velocity corre-
spondsto the standard deviation of the arithmetic mean,
while the error in the mass velocity corresponds to the
maximum error in the U value obtained from the inter-
section of expansion isentrope for aluminum with two
rim rays of the wave in protium, which correspond to
the errors in the D value. The corresponding errors in
pressure, density, and compression are determined in
terms of the errorsin the kinematic parameters.

Figure 1 shows our results in the D vs. U coordi-
nates. Naturally, these results differ from those obtained
JETP LETTERS  Vol. 82
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Table
St:gf('; e/i\@ve Massvelocity| Pressure Dens ty3
D ke U, kmi/s P, GPa p. glcm
31.30£0.30 | 23.82+0.30 | 65.6+1.0 | 0.368 + 0.030
2220+ 0.50 | 16.43+£0.30 | 321+ 0.9 | 0.339+ 0.030
16.67+0.30 | 11.59+0.20 | 17.0+0.3 | 0.289 + 0.020

in [1-3] for initialy liquid protium. For their appropri-
ate comparison, we recal cul ate the results obtained here
totheinitial density of liquid (0.071 g/cm?3). To thisend,
we assume that the D(p,) dependence in protium and
deuterium in each of the three devices used hereislin-
ear. According to analysis of the data on the compres-
sion of metallic elements, such an assumption is rea-
sonable under strictly controlled experimental condi-
tions (which are in fact satisfied). The corresponding
position of the recalculated pointsisshown in Fig. 1. It
is seen that the results of our measurements and Amer-
ican experiments are in satisfactory agreement. Thus,
the upper limit of investigated pressuresfor protium has
been increased sixfold.

The following circumstance is worth noting. The
slopes of the adiabats of both solid and liquid hydrogen
phases in the velacity range D > 20 km/s (P = 30 GPa)
are close and amount to s = dD/dU = 1.26. Therefore,
the limiting compression is pi/po = /(s — 1) = 4.85,
which corresponds to a reasonable value of the adia-
batic exponent for an ideal monatomic gas. This is
probably an indication that dissociation processes
occurring under the shock-wave compression of
diatomic protium are completed under these pressures.

32k Ha(p,=0.071 g/em’, liquid):
A Dy(U)=1.37 + 1.26*
sl 3B H(U) = 1.37 + 1.26*Y
% — this work, calculation
24 Hy (p,=0.088 glem’, solid):
é 20 ve— thiswork _-~" Dissociation }
< 16 g
Q L
12+
sl Dy(U) =249 + 1.22%U
4
[ L 1 L 1 L 1 1 1 L 1 L 1
0 4 8 12 16 20 24

U (km/s)

Fig. 1. Resultsfor protium in the D vs. U coordinates.



286 TRUNIN et al.

- Ha (p,=0.071 g/em’, liquid):
70F m—2]
- 0—[3] ey
60F % — this work, calculation /
B Hy (pp =0.088 g/cm3, solid): *
E‘ 50— this work :
S 4or
o L
301
201
101

1 ) | I | I | I | I | !
0.05 0.10 0.15 020 0.25 030 035 040 045
p (g/em’)

Fig. 2. Results for protium in the P vs. p coordinates.

Figure 2 shows the results in P vs. p coordinates.
The steep region of the adiabat for protium is closein
compression to the limiting states and, as the data
obtained in [6-9], do not lead to an anomalously large
density of shock-wave compression detected in experi-
ments with liquid deuterium [4, 5].
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The structure of the {-Ta,C5_, nonstoichiometric trigonal (rhombohedral) carbide, which isformed in the tan-
talum—carbon system, has been analyzed by neutron diffraction, x-ray diffraction, and metallography. The
ordered distributions of carbon atoms and structure vacancies have been experimentally determined and the dis-
tribution function of carbon atoms over the nonmetallic-sublattice sites, where ordering occurs, has been cal-
culated. The parameters of the unit cell of the {-Ta,Cs_ (TaCqg7) trigona (space group R3m) carbide are
found to be ai; = 0.3123 nm and ¢, = 3.0053 nm. It has been shown that the metallic close packed sublattice of
the {-Ta,C;_, carbide is formed by alternating blocks, where metal atoms are located both in the fcc and hep
sublattices of the TaC, cubic and Ta,C hexagonal carbides, respectively. © 2005 Pleiades Publishing, Inc.

PACS numbers; 61.12.Gz, 61.50.Ks, 61.66.Fn, 61.72.Dd, 64.70.Kb, 81.30.—t

A feature of MC, (MC,00; _, 0.65-0.70< y < 0.88—
agonal, and {-M,Cs _ (M4Cs ;01 + %, OF MCz_yuala + xyas
0.20 < x < 0.56) trigonal (rhombohedral) carbides
formed in M—C binary systems (M =V, Nb, or Ta) con-
sisting of a Group V transition metal and carbon is a
strong nonstoichiometry of the nonmetallic sublattice.
The content of structure vacancies O in the carbon sub-
lattice of the indicated carbides may reach several tens
of at %. For this reason, they are classified among the
group of strongly nonstoichiometric compounds|[1, 2].
A high concentration of vacancies in strongly nonsto-
ichiometric carbides with base cubic, hexagonal, and
trigonal lattices is a background for atomic—vacancy
ordering in these compounds. Ordering in the MC,
cubic and M,C,, hexagonal carbides was studied in
detail both experimentaly and theoretically [1-3],
whereas only assumptions are available for ordering in
trigonal carbides, known as (-M,C; _, phases. In order
to fill this gap, the structure of the {-Ta,C;_, trigonal
(rhombohedral) carbide is analyzed by the neutron dif-
fraction method.

The (-Ta,C;_, phaseisinfamousin publications. Its
synthesis is difficult, and information on it is scarce.
The { phase in the Ta—C system has been found in two-
and three-phase samples with compositions between
TaC, 5, hexagonal and TaC, ;5 cubic carbides [4]. The
samples were obtained by solid-state sintering of Ta
and C powders at 2070-2370 K. The maximum amount
of the { phase was contained in TaCysg g4 Carbides.
The heating of the TaCg 4, carbide at 2070 K for 26 h
resulted in an increase in the relative content of the
phase, although the sample remained three-phase.

Heating at a higher temperature resulted in a decrease
in the amount of this phase and was accompanied by
the spreading of the reflections of the { phase in an x-
ray diffraction pattern. X-ray analysis of the { phases of
vanadium, niobium, and tantalum [5] shows that they

have trigonal symmetry (space group R3m) and their
composition including the structure can be represented
as M,C;_,. According to electron-diffraction data [6],
the {-Ta,C; _, phase bel ongs to the Sn,P; structure type

(space group R3m) and is close in composition to
TaC, ;- This composition is realized due to the high
concentration of carbon vacancies with respect to the
stoichiometric composition Ta,Cs: X in {-Ta,C;_, may
reach 0.5. Using electron microscopy analysis of
TaCy 70-0.80 Carbides, Rowcliffe and Thomas|[7] hypoth-
esized that the formation of the { phase from the TaC,
nonstoichiometric cubic carbide is aresult of the elim-
ination of every fourth (111)g, carbon plane and the
corresponding shift of (111)g, metallic atomic planes.
The elimination of the (111), carbon plane occurs due
to the sink of structure vacancies and the shift of a
neighboring (111)g, metallic planeisensured dueto the
sink of dislocations. According to [8-10], the { phase of
tantalum carbide is thermodynamically stable only for
T > 1400 K and disappears when heated at 1200-
1300 K. The authors of [8, 11] state that the milling of
a bulk sample containing the { phase aso leads to its
disappearance. However, the conclusion made in [8—
10] that the range of thermodynamic stability of
(-TayCs5_, is limited contradicts the data reported in
[12, 13], according to which this phase is stable when
annealing in vacuum or in argon atmosphere in the

0021-3640/05/8205-0287$26.00 © 2005 Pleiades Publishing, Inc.
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wide temperature range 300-3170 K. The available
data on the intensities of the diffraction reflections of
the { phase are strongly different. For this reason, its
structure has not yet been determined exactly.
Markhasev et al. [8] believe that the {-Ta,C;_, carbide
isan ordered phase of the TaC, nonstoichiometric cubic
(with the B1 structure) tantalum carbide. However, the
(-Ta,C;_, trigonal carbide and the TaC, disordered
cubic carbide have metallic sublattices with different
symmetries, whereas the symmetry of the metallic sub-
lattice of the ordered phase in disorder—order transi-
tions in nonstoichiometric compounds is necessarily
the same asin the disordered base phase.

A high concentration (from 25 to 33-35 at %) of
structure vacancies in the carbon sublattice of the -
Ta,C;_,0;, ., phase is a background for atomic—
vacancy ordering. However, there is no experimental
evidence of the disordered (dtatistical) or ordered distri-
bution of carbon atoms and vacancies. The ¢-M,C;_,
carbide phases (M =V, Nb, or Ta) have the trigona

structure (space group R3m), where 12 metal atoms
doubly occupy the 6(c) sites, whereas the sites of the
nonmetallic sublattice are the 3(a), 3(b), and 6(c) sites
with the coordinates (0 0 0), (0 0 1/2), and (0 0 ~5/12),
respectively (hereinafter, the coordinates of atoms and
the unit-cell parameters are given in the hexagonal
axes). One quarter of al sites of the nonmetallic sublat-
ticein the {-Ta,C;_,0; . , phase are vacant even at X =
0. It is known that carbon atoms occupy al the 6(c)
sites. For this reason, the remaining carbon atoms and
structure vacancies occupy the 3(a) and 3(b) sites sta-
tistically or regularly. In the statistical distribution, car-
bon atoms occupy the 3(a) and 3(b) sites of the nonme-
tallic sublattice with the same probability (1 — x)/2.
Ordered distribution is possible in two variants. In the
first variant, carbon atoms occupy the 3(a) siteswith the
probability (1 — x) and the 3(b) sites are vacant. In the
second variant, carbon atoms are located at the 3(b)
siteswith the probability (1 —X) and vacanciesare at the
sites 3(a). Since new crystallographic positions do not
appear in such ordering, the lattice conserves its sym-
metry. Therefore, it is expected that reflection intensi-
ties are only redistributed in the diffraction spectrum
and additional reflectionsdo not arise. The amplitude of
the x-ray scattering by carbon atomsismuch lower than
that by tantalum atoms. For thisreason, in x-ray diffrac-
tion experiment with the {-Ta,C;_, phase, the relative
change in the reflection intensities due to the redistribu-
tion of carbon atomsisvery small. If asample contains
impurity carbide phases and istextured (both properties
are characteristic of samples with the { phase), it is
really impossible to reveal the disordered or ordered
distribution of carbon atoms and structure vacancies by
the x-ray diffraction method. The distribution of carbon
atoms and vacancies 0 in {-Ta,C; _, can be experimen-
tally determined using neutron diffraction, but this
method has not yet been applied to analyze {-Ta,C; _,.
In this work, the distribution of carbon atoms and
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vacancies O in the {-Ta,C; _, lattice is experimentally
determined using the structure neutron diffraction
method together with accurate x-ray diffraction and
metallography.

We synthesized samples of the TaC gg 75 tantalum
carbide by sintering powder mixturesin 0.0013-Pavac-
uum in three temperature regimes: (i) sintering TaCy 75
and Tafor 6 h at 2270 K with intermediate milling of
the products after 3 h, (ii) sintering TaC, ;s and Cfor 6 h
at 2200-2400 K with intermediate milling after 3 h, (iii)
sintering TaC, 5 and C for 20 h at 2200-2400 K with
intermediate milling after 10 h. The composition of the
samples was determined by the chemical method and
the composition of the surface of sintered samples was
additionally controlled by x-ray fluorescence spectros-
copy (energy dispersive x-ray spectroscopy). The
TaCyeg5 SAMple synthesized in the first regime con-
tained a large amount of {-Ta,C;_,. The { phase was
absent in the samples freshly synthesized in the second
and third regimes and they were additionally annealed.
The samples synthesized in the second regime were
annealed at 1470 K for 100 h and then annealing was
performed with adecreasein temperatureto 570 K with
arate of 0.25 K/min. The samples synthesized in the
third regime were annealed at 1570 K for 35 h, then the
annealing temperature was decreased to 1170 K for
120 h, and a further decrease in temperature to 570 K
was performed at a rate of 0.25 K/min. The x-ray pat-
terns of annealed TaC,,, and TaC,,, bulk samples
include intense reflections of the {-Ta,C;_, phase. The
authors of [8, 11] reported that the { phase disappeared
after the milling of bulk samples, but we did not find this
effect in this work: the reflections of the { phase did not
disappear in the x-ray patterns of powders obtained by
milling the TaCy ggs, TaCy 70, and TaC, 7, bulk samples.

X-ray diffraction was measured by the Bragg—Bren-
tano method in CuKa, , radiation in the angular range
20 = 5°-120° with the step A(26) = 0.02° and by the
modified Guinier method in CuKa, radiation using an
STADI-P autodiffractometer with transmission geome-
try. Neutron diffraction (A = 0.1532 nm) was measured
inthe angular range 26 = 10°-125° in the step scanning
regime with the step A(26) = 0.1° and asignal accumu-
lation time of 1.0 min in each point.

A feature of experimental x-ray and neutron diffrac-
tion patterns obtained by the Bragg-—Brentano method
from both bulk and powder samples is a high intensity
of the (0 0 12) and (0 0 24) reflections, which is much
higher than their theoretical intensity. The strong
enhancement of these reflections is caused by the
uniaxial texture of the samplesin the (0 0 1) direction,
i.e, adong the c axis of the {-Ta,C;_, phase. Indeed,
analysis of the microstructure of bulk tantalum carbide
samples reveals the pronounced characteristic plate
fragments of the ¢ phase (Fig. 1). The noticeable effect
of the texture of {-Ta,C;_, samples on the intensity of
x-ray reflections was mentioned in [11, 13]. The exist-
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ence of a certain texture is the cause of significant dif-
ferences in the relative intensities of the diffraction
lines of the { phasethat were measuredin [4, 8, 11, 13].
In order to eliminate the effect of texture on the inten-
sity of reflections, special diffraction experiments were
carried out such that x-ray patterns were obtained in
transmission geometry by the modified Guinier
method. The measurements were conducted with
strong accumulation of asignal at each point. Owing to
the high-precision measurementswith low background,
the signal-to-noise ratio was very high and reached 30—
40 even for moderate-intensity reflections and 70-80
for intense reflections (when the same TaC, samples
were investigated by the Bragg—Brentano method, the
signal-to-noise ratio for moderate-intensity lines did
not exceed 20). The use of CuKa, radiation made it
possibleto eliminate doubl e reflections and to addition-
aly increase the measurement accuracy. Anaysis
shows that al tantalum carbide samples with the
( phase aso contain the TaC, carbide and a small
amount of the Ta,C hexagonal carbide. Figure 2 shows
the x-ray patterns of TaCgggs tantalum carbide with a
high content of the { phase. Their analysis shows that
the set of the diffraction reflections of the {-Ta,C;_,
phase that are observed in x-ray and neutron diffraction
patterns of the samples under investigation correspond

to atrigonal unit cell (space group R3m). A hexagonal
unit cell of the ¢ phase (Fig. 3) contains three Ta,C;_,
formula units.

The accurate determination of the unit-cell parame-
ters of the observed phases and the phase composition
of the TaC, g5 sample was performed from the x-ray
pattern that was obtained by the Guinier method and
excluded the effect of texture on theintensity of diffrac-
tion reflections. The parameters of the unit cell of the

(-TayC;_, trigona phase (space group R3m) area, =
0.3123 nm and ¢, = 3.0053 nm in hexagonal axes (a,, =
1.0179 nm and a,, = 17.65° in trigonal axes). The rela
tive contents of the TaC, cubic carbide, Ta,C lowest
hexagonal carbide, and { phase in the TaC gg5 Sample
areequal to ~18, 1, and 80-81 vol %, respectively. The

period of the cubic phase (space group Fm3m) isag; ~
0.4418 nm and corresponds to ~TaC, . carbide. The
periods of the Ta,C hexagona carbide (space group
P65/mmc) area=0.3119 nm and ¢ = 0.4934 nm. Taking
into account the composition of the sample and the con-
tent of the TaC, , cubic and TaC, 5, (Ta,C) hexagonal
carbides, we conclude that the { phase has a composi-
tion of ~TaC g, (TaC,3) or Ta,C;_, with x = 1/3.

Theratio of theintensities of the observed x-ray dif-
fraction reflections of the { phase corresponds to ether
the statistical (disordered) distribution of carbon atoms
over the 3(a) and 3(b) sites of the nonmetallic sublattice
or the ordered distribution of carbon atoms and vacan-
cies over the 3(a) and 3(b) sites, respectively. Another
ordering variant, when carbon atoms are located at the
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Fig. 1. Microstructure of the sintered TaC g5 sample with
plate fragments of the {-Ta,C5_, phase. The sample is
strongly textured. Such amicrostructure is characteristic of
all tantalum carbide samples containing the ¢ phase.
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Fig. 2. X-ray patterns of the TaC gg5 tantalum carbide con-
taining ~80 vol % of the {-Ta,C3 _y phase. The intensities
of the (0 0 12) and (0 O 24) reflections obtained by the
Bragg—Brentano method from (1) the surface of abulk sam-
pleand (2) the powder sample are noticeably higher thanthe
theoretical values due to the axia texturing. Pattern 3 is
obtained from the powder sample by the modified Guinier
method with transmission geometry, which makes it possi-
ble to eliminate the effect of texture on the intensity of dif-
fraction reflections.

3(b) sitesand vacancies, at the 3(a) sites, isinconsistent
with experiment. Indirect information on the distribu-
tion of carbon atoms and vacancies was obtained by
determining the coordinates including the displace-
ments of atoms.
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Fig. 3. Digtribution of atoms in the unit cell of the
(-Tay,C3_ trigonal (space group R3m) phase (cell is
shown in the hexagonal axes and the interplanar spacings
aong the ¢ axis are given in nanometers): (1) the ordered
distribution of carbon atoms over the 3(a) sitesand structure
vacancies O over the 3(b) sites, (2) the disordered distribu-
tion of carbon atoms and vacancies with a probability of
(1 —x)/2 over the 3(a) and 3(b) sites of the nonmetallic sub-
lattice, and (3) and (4) the distribution of Taatomsin thelat-
tices of the Ta,C lowest hexagonal carbide and TaC,, cubic
carbide (with the Bl structure), respectively. For the
(-Tay,C5_ phase, the 3(a), 3(b), and 6(c) sites of the non-
metallic sublattice and their octahedral surrounding by tan-
talum atoms are shown for the disordered phase. Tantalum
atoms are shown by e, tantalum atoms located outside the
unit cell are shown by ©, carbon atoms are shown by O,
structure vacancies are shown by 0, and the 3(a) and 3(b)
sites of the nonmetallic sublattice that are statistically occu-
pied by carbon atoms with a probability of (1 — x)/2 are
shown by C.

In the unit cell of the {-Ta,C;_, phase, 12 Taatoms
doubly occupy the 6(c) sites with the coordinates
(000.1274) and (000.291), the 6(c) sites with the
coordinates (0 0 0.417) are occupied by carbon atoms,
and the 3(a) and 3(b) sites with the coordinates (0 0 0)
and (0 0 1/2), respectively, arelattice sites at which car-
bon atoms may be located disorderedly or regularly
(Fig. 3). Thus, carbon atomsin the {-Ta,C;_, phase are
located at the octahedral interstitial sites of the close-
packed metallic sublattice. Tantalum atoms occupying
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Fig. 4. Neutron diffraction pattern (A = 0.1532 nm) of the
TaCpegs tantalum carbide containing ~80 vol % of
(-TayCs_y (TaCq 7). The inset shows (1) the fragment of
the measured neutron diffraction pattern in comparison with
the theoretical neutron diffraction patterns of the {-TayCs _y
(TaCy 67) phase with the (2) ordered and (3) disordered dis-

tributions of carbon atoms and vacancies over the 3(a) and
3(b) sites of the nonmetallic sublattice.

the 6(c) sites with the coordinates (0 0 0.1274) on the
planes perpendicular to the c axis of the unit cell are
shifted to the carbon-sublattice planes formed by the
3(b) sites and from the carbon-subl attice planes formed
by the 3(a) sites. The existence of such displacements
indirectly indicates different populations of the 3(a)
and 3(b) sites by carbon atoms, i.e., their possible
ordering. Interplanar spacings along the ¢ axis are nec-
essarily identical in the {-Ta,C;_, disordered carbide.

AsisseeninFig. 3, the (-Ta,C;_, phase hasaclose-
packed metallic sublattice. However, the distribution of
metal atomsin it differs from the distributions of metal
atoms in the fcc and hep sublattices of the TaC, cubic
carbide and Ta,C lowest hexagonal carbide, respec-
tively. The metallic sublattice of the {-Ta,C;_, phase
consists of aternating blocks, where metal atoms are
located in the fcc and hep sublattices of the TaC, cubic
and Ta,C hexagonal carbides, respectively, and is tran-
sient between these two subl attices.

Figure 4 shows the neutron diffraction pattern of the
TaC,6g5 Carbide containing ~80 vol % of ¢(-Ta,C;_,.
The neutron diffraction pattern is analyzed using the

model of the trigonal unit cell (space group R3m) with
the parameters determined from the x-ray diffraction
spectrum. Theratio of the neighboring reflections (1 04),
(0012), (10-5), and (1 0 7) ischaracteristic evidence
of the ordering in {-Ta,C;_,. The intensity | of the
(104) reflection is the same for the disordered and
ordered phases. In units of thel; 4 intensity, theinten-
sities are I(OOlZ) = 04, |(10_5) = 06, and |(107) =19 for
the ordered ¢ phase and | (g1 = 0.4, | (195 = 1.6, and
2005
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l107) = 15 for the disordered phase. In the experiment,
theintensity |, o_s) ishigher than theintensity |51, by
a factor of 1.5 (Fig. 4), which is characteristic of the
ordered phase. On thewhole, cal culations show that the
experimental neutron diffraction pattern corresponds to
the ordered - Ta,C; _, (TaC, ¢7) phase with the distribu-
tion of carbon atoms over the 3(a) sites and completely
vacant 3(b) sites.

Taking into account the ordered distribution of car-
bon atoms and vacancies O over the 3(a) and 3(b) sites,
the structure formula of the { phase is represented as
Ta,C,C, _,0; 4 Let the distribution of carbon atoms
and vacancies over the 3(a) and 3(b) sites be character-
ized by the long-range order parameter r). Ideal order-
ing with the long-range order parameter N, = 1 is
achieved for x = 0, when all the 3(a) sites are occupied
by carbon atoms and the 3(b) sitesare vacant. Asx, i.e.,
the vacancy concentration, increases, the maximum
long-range order parameter n,. decreases, because
vacancies appear at the 3(a) sites. The maximum long-
range order parameter depends on the content of the
¢ phase as N (X) = (1 —X). In the disordered ¢ phase,
3(1 — x) carbon atoms are equiprobably located at the
3(a) and 3(b) sites. Therefore, the relative concentra-
tion of carbon atoms involved in ordering is equa to
(1—Xx)/2. Thus, the distribution of carbon atoms over
the 3(a) and 3(b) sites of the nonmetallic sublattice of
the { phaseis described by the function

n(r) = (1-x)/2+(n/2)cosbTz,, (D)

wherer = (X, Y, Z,) isa3(a) or (3(b) site of the nonme-
tallic sublattice (coordinates are given in hexagonal
axes). Distribution function (1) isthe probability of the
location of acarbon atom at sitesr belonging to the 3(a)
and 3(b) sites of the nonmetallic sublattice of the
(-TayC;_, phase. For the maximum long-range order
parameter N, (X) = (1 —X), function (1) isequal to 1 —
x and O at al the 3(a) and 3(b) sites, respectively. In
other words, for the maximum long-range order param-
eter, the probability of the location of a carbon atom at
the 3(a) and 3(b) sitesis equal to 1 — x and O, respec-
tively. In the absence of order, when n = 0, the distribu-
tion function hastheformn(r) = (1 —x)/2 at all the 3(a)
or (3(b) sites of the nonmetallic sublattice.

In principle, for x > 0, the distribution of carbon
atoms and vacancies occupying the 3(a) sites can also
be disordered or ordered. In the case of ordering, the
neutron diffraction pattern necessarily exhibits addi-
tional superstructure reflections in the small-angle
range 20 < 30°. Such additional reflections were not
observed in the experiment. Therefore, the statistical
distribution of carbon atoms and vacancies O over the
3(a) sitesis suggested in the {-Ta,C; _, (TaCy ;) phase
under investigation.

Onthewhole, the above investigation showsthat the
(-Ta,C;_, carbide is an independent nonstoichiometric
compound of the Ta—C system in addition to two other
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nonstoichiometric compounds—the Ta,C,, hexagonal
and TaC, cubic carbides. The {-Ta,C;_, carbide is sta-
blein the compact and disperse statesin awide temper-
ature range from 300 to ~2400 K. Conclusions made in
[8-11, 14] that the ¢-Ta,C;_, phase is metastable are
likely associated with the fact that the { phase was
obtained in those works in the nonequilibrium state
and, therefore, the annealing or milling of the samples
resulted in the transformation of this phase into the
TaC, cubic carbide. The {-Ta,C;_ carbide has trigonal

symmetry (space group R3m) with order in the non-
metallic sublattice: for x = 0 and the maximum long-
range order parameter, carbon atoms occupy all the
3(a) sites, whereas all the 3(b) sites are vacant; for x >
0 and the maximum long-range order parameter, carbon
atoms occupy some 3(a) sites and vacancies occupy all
the 3(b) sites and some 3(a) sites. The close-packed
metallic sublattice of the {-Ta,C;_, phase is transient
between the metallic sublattices of the TaC, cubic and
Ta,C hexagonal carbides.

We are grateful to V.G. Zubkov, |.F. Berger, and
A.P. Tyutyunnik for assistance in experiment. This
work was supported by the Russian Foundation for
Basic Research (project no. 03-03-320314).
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It has been shown that phase contrast in atomic force microscopy (AFM) can be used to obtain adequate infor-
mation on the density and distribution of antiphase domains on the surface of CdHgTe films grown by molec-
ular beam epitaxy on a Si(301) substrate. By comparing the AFM phase images of the film surface with TEM
images of structural defectsin the near-surface region, the relation between microstructure and micromorphol-
ogy of thefilmsisrevealed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 68.37.—d, 68.47.Fg, 68.55.—a

Antiphase domains are structural defects of binary
compounds or two-component ordered solid solutions
whose crystal lattice can be considered as a superposi-
tion of two identical sublattices embedded into each
other. For example, each compound of theA;B5 or A,Bg
types has a sphalerite-type crystal lattice, which can be
considered as a superposition of two face-centered sub-
lattices. In such a structure, the A-type atoms occupy
the nodes of one of the sublattices while the B-type
atoms represent the nodes of the other sublattice. If, in
some region of the crystal, the A and B atoms are inter-
changed, a so-called antiphase domain bounded by
antiphase boundaries is formed. Inside the domain, al
the chemical bonds and atomic positions correspond to
aperfect structure. The structural defect is precisely the
anti phase boundary, at which theinterelement chemical
bond is violated. Such defects may be distributed over
the whole volume of a heteroepitaxia film and, hence,
may strongly deteriorate the el ectrophysical and optical
properties of the material and the instruments made on
its basis. To eliminate these defects from the operating
part of the material, it is necessary to investigate the
basic laws and mechanisms of their formation. Thefirst
step in solving this problem is the development of an
adequate express method for the detection and observa
tion of antiphase boundaries in heteroepitaxial films.

According to experimental studies, antiphase
boundaries can be observed in heteroepitaxy of binary
semiconductor compounds on an elementary semicon-
ductor: GaAs-Ge[1], GaP-Si [2], CdTe-Si [3], etc. In
these studies, the main method used to observe the
antiphase boundaries was transmission electron
microscopy (TEM). The TEM technique provides max-

imum information on structural defects, including
those on the atomic scale. At the same time, this tech-
nique is destructive and cannot be used as an express
method in contrast to, e.g., atomic force microscopy
(AFM). In our previous paper [4] devoted to studying
the nature of V-shaped defects in CdHgTe films on
GaAs(301), it was shown that a simultaneous applica-
tion of TEM and AFM techniques makes it possible to
determine the unigue relationship between the micro-
morphol ogical features of the growth surface of thefilm
in the region of VV-shaped defects and theinternal struc-
ture of these defects. This information was used to
reveal the mechanisms of the nucleation of V-shaped
defects and served as the basis for the interpretation of
the subsequent AFM data without any further use of
TEM analysis.

This work is devoted to determining the relation
between the micromorphology of the surface of
Cd,Hg; _,Te films grown on Si(301) and the internal
structure of these films. The purpose of this study isto
reveal the characteristic features of the growth surface
relief that are caused by the presence of antiphase
domainsin the film volume. To investigate the effect of
antiphase domains on the electrophysical properties of
thefilms, local el ectrophysical measurementswere car-
ried out in the regions of domain accumulations.

The samples were Cd,Hg,_,Te films grown by
molecular beam epitaxy (MBE) on Si substrates with
(301) orientation. The heteroepitaxial structure included
aZnTe buffer layer with athickness of 100 nm, aCdTe
buffer layer with a thickness of 6-8 um, and a
Cdy »oHgo 7sTe film with a thickness of 10 um. The
MBE procedure used for growing heteroepitaxial struc-

0021-3640/05/8205-0292$26.00 © 2005 Pleiades Publishing, Inc.
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tures on Si substrates was described in [5]. The micro-
morphology of the growth surface was studied by AFM
with a Solver P-47H (Nt-MDT) microscope, and the
defectsin the film volume were studied by TEM with a
JEM-4000EX (JEOL) electron microscope. For the
TEM studies, the sampleswere prepared in the form of
both thin foils parallel to the growth surface and trans-
verse sections [6].

To obtain thin foils that are transparent for an elec-
tron beam and lie in the plane paralld to the film sur-
face, we developed an original method. We placed a
Si/ZnTe/CdTe/CdHgTe heterostructure in a hot 30%
KOH solution and waited until the silicon substrate was
completely dissolved. Then, the remaining
ZnTe/CdTe/CdHgTe film was washed and thinned by
etching in a 1.5% solution of bromine in methanol.

The surface morphology was analyzed by AFM in
the topographic and phase contrast modes simulta-
neously. The topographic mode provided the images of
the three-dimensional surfacerelief, and the phase con-
trast allowed usto visualize the boundaries of antiphase
domains and the stacking faults [7]. The phase contrast
inAFM isassociated with the frequency shift of natural
oscillations of the tip (cantilever) touching the surface
in the tapping mode [8]. Although the physical mecha
nism responsible for the phase shift has not yet been
uniquely interpreted, tapping-mode AFM has received
wide acceptance in studying surface inhomogeneities
[9, 10].

According to AFM and TEM data, al of the
CdHgTe films grown on Si(301) contain V-shaped
defects similar to those observed in films of the same
composition that were grown on GaAs(301). From the
comprehensive analysis of these defects [4], it follows
that V-shaped defects are complex objects containing
damaged structure regions, twinning lamellas, and
stacking faults. Figure 1 shows typical (a, ¢) AFM and
(b) TEM images of V-shaped defects on the surface of
aCdHgTefilm grown on aSi(301) substrate. A compar-
ison of these images allows usto determine the relation
between the characteristic features of the relief in the
region of the defect and the structure of the latter. Since
the {111} planes play an important role in the forma-
tion of defectsin A,Bg compounds, in Fig. 1d we sche-
matically represent the pyramid that is formed by the
{111} planes inclined to the (301) growth surface and
the quadrangle that is formed by the traces of the inter-
sections of the {111} planes with the (301) plane. In
both AFM and TEM images, one can clearly see the
characteristic elements of aV-shaped defect: the stack-
ing faults, the twinning lamellas, and the damaged
structure regions [4]. The stacking faults and the twin-
ning lamellas grow from the central region (the dam-
aged structure region) of a V-shaped defect along the
tilted { 111} planes. From the comparison of the defect
images shown in Figs. 1la and 1b with the schematic

diagram, it follows that these are the (111) planes,
which form an angle of 68.58° with the (301) plane, and
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Fig. 1. Typicd (a, ¢) 12 x 12 um AFM images and (b) a
TEM image of a V-shaped defect consisting of stacking
faults (SF), twinning lamellas (TL), and a damaged struc-
tureregion (DS) on the (301) surface of aCdHgTefilm. Sur-
face images of two antiphase domains: (a) A and (c) C.
(d) The pyramid formed by the {111} planes and the quad-
rangle formed as aresult of the intersection of this pyramid
by the (301) surface.

the (111) planes, which form an angle of 43.09° with
the (301) plane. The TEM studies of transverse sections
showed that almost all stacking faults observed in
Cd,Hg; _,Te films lie in the planes intersecting the
(301) surface at an angle of 68.58° and grow from the
buffer layer. The stacking faults that lie in the planes
making an angle of 43.09° with the (301) surface only
occur in the region of aV-shaped defect.

Unlike the case of epitaxy on GaAs(301), for
CdHgTe films grown on Si(301), the AFM data reveal
two types of growth surface relief (Figs. 1a, 1¢). The
two images differ in the positions of V-shaped defects
and stacking faults with respect to the base cut of the
silicon crystal. The base cut coincides with the (100)
plane, which intersects the (301) surface along the

[103] direction along which the scanning was per-
formed. It should be noted that the position of the sam-
ple and the scanning direction were the same for each
of the experiments. Multiple stacking faults that are

denoted as (111) stacking faults in Fig. 1a lie in the
(111) planes, whilethe (111) stacking faultsin Fig. 1c



Fig. 2. 30 x 30 um AFM image of the CdHgTe(301) surface
containing antiphase domains of A and C types.

liein the (111) planes. These kinds of stacking faults

predominate in the films, whereas the (111) and (111)
stacking faults only occur near a V-shaped defect, as
one can see from Figs. 1a and 1c, respectively. In the
tetrahedron formed by the { 111} planesin Fig. 1d, the

(111) and (111) planes are neighboring faces of dif-
ferent polarity. Does this mean that the stacking faults
shown in Figs. laand 1c are of different polarity? The

SABININA et al.

subsequent study of agreat number of films gave aneg-
ative response to this question. It was found that a sin-
gle film surface may simultaneously contain regions
with morphological features characteristic of the films
shown in Figs. 1la and 1c. We will call these regions
domains. Figure 2 shows an AFM image of the surface
of a CdHg, _,Te film with domains. The surface mor-
phology of domains denoted by A and C correspondsto
the surface morphology of the films shown in Figs. 1a
and 1c, respectively. Thisis confirmed by the direction
of the stacking faults and the geometry of V-shaped
defects. Thus, for the ZnTe/CdTe/CdHgTe heterostruc-
ture on the Si surface, two positions (two types of
domains), shown in Figs. 1la and 1c, are possible.
According to AFM data, when the heterostructure is
grown on a GaAs(301) substrate, it can occupy only
one position, which correspondsto Fig. 1c. It should be
noted that, if we rotate the surface image shown in

Fig. 1a about the (103) axis through 180°, we obtain
the surface image shown in Fig. 1c. This symmetry
operation relates the antiphase domains.

The crystallographic relation between domains of A
and C types can be determined with the use of TEM.
For the TEM observation of antiphase domains, it is
convenient to use CdTe/ZnTe/Si films, because they
contain no V-shaped defects, which hinder the prepara-
tion of thin foils along the growth surface.

Figure 3 shows the TEM images of the near-surface
region of a CdTe film with domains, which were
obtained at the (100) pole. Microdiffraction patterns
obtained from domain types A and C completely coin-
cide, which testifies to the absence of rotations of the
crystal lattices in the corresponding regions. From the
TEM image shown in Fig. 3c with high magnification,

Fig. 3. (a, b) TEM images of the near-surface region of a CdTe film containing antiphase domains of A and C types, respectively;
the images are obtained at the (100) pole. (¢) Linear inhomogeneities along the [1100direction at the boundary between two

domains.
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one can seethat, in neighboring domains, mutually per-
pendicular fringes occur along the [110directionswith
a period of about 18 nm. The dotted contrast observed
along the fringes may be caused by the decoration of
the most active growth areas of the CdTe film surface.
The nature of the separated linear inhomogeneities and
the nature of the decorating particles are not discussed
in this paper. The analysis of the surface images
obtained at the (301) and (100) poles suggests that the
direction of the separated lines coincides with the traces
of the intersections of the (110) planes with the film
surface. Since, in the course of MBE growth, the sur-
face of CdTe is usualy terminated by a single sort of
atom, the fact that the separated linesin the domainsare
mutually perpendicular (when observed at the (100)
pole) means that the domains are antiphase. According
to [1], in similar heterosystems, antiphase domains are
formed in the case of the layer-by-layer growth on a
substrate whose surface contains steps equal to an odd
number of atomsin height. A fault in the periodic series
of ordered atomic planes gives rise to an antiphase
boundary. As the film grows, the antiphase boundary
may transform into an interlayer with adamaged struc-
ture, which stimulates the nucleation of V-shaped
defects under nonoptimal conditions of epitaxial
growth. Figure 2 illustrates the initial stage of the V-
shaped defect nucleation: the formation of regions with
damaged structure along the antiphase boundaries.

Thefact that antiphase boundaries actually are dam-
aged structureinterlayerswith an excess Te content was
used by usto reveal the antiphase domains by chemical
etching in a selective etchant. The procedure is as fol-
lows. The sampleisfirst heated in a KOH solution dur-
ing 10-15 min. Then, the sampleiswashed in water and
placed in the 1.5% Br + HBr solution for several sec-
onds. After such a processing, the observation of
antiphase domains becomes possible with an optical
microscope (Fig. 4). From studying a great number of
samples, we found that the film parts containing
antiphase domains with a density corresponding to that
in Fig. 4 are visualized as mat areas on CdHgTe film
surfaces.

The possibility to visualize specific structural
defectsin atomic force and optical microscopes allows
us to abtain the information on the density of these
defects and on their distribution over the epitaxial film
surface. Thismakesit possibleto performlocal electro-
physical measurements in the regions with high defect
density or in the defect-free regions. From local Hall
measurements, we found that, in the film areas where
the density of antiphase domains was 10° cm, the
mobility of charge carriers was an order of magnitude
lower than the mobility observed in the domain-free
parts of the same film. This testifies to the scattering of
charge carriers by the antiphase boundaries. At the
sametime, the measurements of el ectrophysical param-
eters performed for a great number of samples showed
the absence of explicit dependences of the concentra-
tion, mobility, and lifetime of carriers on the domain

JETP LETTERS  Vol. 82

No. 5 2005

Fig. 4. Antiphase boundary image obtained with an optical
microscope after chemical processing.

type (A or Cin Fig. 2) and on the density of stacking
faults within 106108 cm,

Thus, the combined observation of the same defects
by AFM and TEM allowed usto determine the relation
between the micromorphology and microstructure of
Cd,Hg; _,Tefilmson Si substrateswith the (301) orien-
tation. We demonstrated the possibility of using the
phase contrast in AFM for obtaining adequate informa-
tion on the density and the character of distribution of
antiphase domains, stacking faults, and V-shaped
defects on the surface of an epitaxia film. We found
that a ZnTe/CdTe/CdHgTe heteroepitaxial film can lie
on the Si surface in two positions corresponding to two
antiphase domains. The ZnTe/CdTe/CdHgTe hetero-
structure may occupy the position of one of the
antiphase domains or may form a combination of dif-
ferent antiphase domains. The size of antiphase
domains may vary from 1 um to several hundreds of
microns. We presented original methods for preparing
thin foils suitable for TEM studies and methods for
revealing antiphase boundaries by selective etching to
make them observable with an optical microscope. The
possibility to visualize antiphase domains by both opti-
cal and atomic force microscopes allowed usto investi-
gate the effect of antiphase boundaries on the electro-
physical properties of the samples. It was found that the
concentration, mobility, and lifetime of charge carriers
do not depend on the type of antiphase domainsand on
the density of stacking faults within 5 x 10°-10° cm.
The appearance of antiphase domains with adensity of
106 cm reduces the mobility of charge carriers by an
order of magnitude.

We are grateful to D.V. Shcheglov for assistance in
the AFM studies.
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Tunneling through a system with two discrete electron levels coupled by e ectron—phonon interaction is con-
sidered. The interplay between elastic and inelastic tunneling channelsis analyzed not only for weak electron—
phonon coupling but also for strong coupling in the resonant case. It is shown that the intensity and width of
peaksin the tunneling conductivity is strongly influenced by nonequilibrium effects. © 2005 Pleiades Publish-

ing, Inc.
PACS numbers: 73.40.Gk, 73.63.-b

Recently, much attention has been given to both
experimental and theoretical investigations of kinetic
processesin hanostructures, in connection with the pos-
sible fabrication of ultrasmall electronic devices. The
electron—phonon interaction is one of the important
effects which influence the transport properties of vari-
ous nanostructures, including structures with a quan-
tum dot or asingle mol ecule placed in tunneling contact
between the leads. On the other hand, scanning tunnel-
ing microscopy (STM) investigation of single mole-
cules on a surface is a powerful method of diagnostics
of electron structure changes of adsorbed molecules
[1]. One of the important characteristics of these
changesis the modification of the vibrational modes of
an adsorbed molecule. Thus, inelastic tunneling mea-
surements can give information about the type of mol-
ecule bonding to the surface. Electron—phonon interac-
tion is aso very important in STM experiments con-
cerning the problem of a single atomic (molecular)
switch, in which atoms or molecules are transferred
from one state to another by atunneling current [2]. The
development of atheoretical description should clarify
the role of the electron—phonon interaction in kinetic
processesin nanostructures and help to further progress
inthisfield.

In a number of papers, electron—phonon interaction
in tunneling structures is described within the most
simple model for an intermediate system with asingle
electron level coupled with a phonon mode ([3-5]). If
interaction with the leads is omitted, then this model
has an exact solution [6]. But this model cannot be
derived consistently from the many-body theory of
condensed matter (see, e.g., [7]) and thus seems to be
unrealistic.

TThe text was submitted by the authorsin English.

We discuss a different model, which can be argued
to be more physically justified for various systems, with
electron transitions between two levels, accompanied
by emission or absorption of a phonon (vibrational
guantum). This model allows one to describe the inter-
play between two tunneling channels coupled by the
electron—phonon interaction. The influence of such
interplay on the tunneling spectra of semiconductor
structures with 2D electron layers has been revealed in
recent experiments [8]. It was found that tunneling
spectra essentially change their shape when the inter-
subband electron transition energy was closeto the LO
phonon frequency.

In the present paper, we consider the simplest sys-
tem of this kind, which is described by a Hamiltonian
of the following type:

~

H = Hdot"' Htun"' I:|0- (1)

The part Huo corresponds to the intermediate sub-
system in which we take into account two localized
states and interaction transitions induced by electron—
phonon between these two states:

Heot = £a g,
i :sz 2

+g(agay + aza;)(b+b") + web'b,

whereg; corresponds to discrete levelsin aquantum dot
(or two-€lectron states in amolecule), wy, is the optical
phonon frequency (or molecular vibrational mode), and
g is the electron—phonon coupling constant. Tunneling

0021-3640/05/8205-0297$26.00 © 2005 Pleiades Publishing, Inc.
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transitionsfrom theintermediate system areincluded in

Htun = Tp‘ |(C;a| + hC)

p,i=12 (3)

+ T i(ca +he).
k, iZ]., 2

The free-electron spectrum in the left and right elec-
trodes (k and p) includes the applied bias V-

Ho = Z(Sk_U)C;Ck-i- z(sp—u—eV)c;Cp. (4)
K P

The operators ¢, and ¢, correspond to electronsin the
leads, and a;, to electrons at the localized states of the
intermediate system with energy €.

By means of the Keldysh diagram technique, the
tunneling current through such a structure is deter-
mined as

V) = 3 [dT(Gi-Gh). )

k,i=12

The expression for the tunneling current can be rewrit-
ten in aform containing only Green's functions of the
intermediate subsystem [9, 10]:

=2y vikJ'[ZlmGiR(w)nE(w) ~iG;i(w)] dw, (6)

i=12

where yf = T TiVk (), Vi (w) isthe density of statesin

the left electrode and nE (w) is the equilibrium filling
number in the left electrode.

The main problem is to calculate the Green's func-
tionsfor theintermediate system in the presence of both
the tunneling coupling and electron—phonon interac-

tion. The equations for G are now coupled with the
equations for Gﬁj due to electron—phonon interaction.

The equationsfor G, as usual describe the modifica-

tions of electron spectral functions (density of states),
but in this case they depend on electron filling numbers,
determined by the kinetic processes. For an arbitrary
ratio of the el ectron—phonon coupling constant g to the
tunneling rates y, this is a strongly correlated system
which cannot be solved exactly. The situation is analo-
gous to the widely discussed Hubbard-Anderson
model.

The theory can be developed in two limiting cases:
g < yand g > y. Inthe present work, we shall not dis-
cuss nonequilibrium phonon effects and suppose that
the phonon subsystem remains unperturbed by tunnel-
iNg processes.

ARSEYEV, MASLOVA

In the limit of weak electron—phonon interaction,
g <y, wecan calculate ImG (w) and G;; (w) as pertur-
bation seriesin g. Thefirst termis
Gh(w) = G (W) (w)Gi(w) -
— G(0) I3;(0) Gy (w) + G () T31 () Gy (w),

Gr(w) = GH(w)Z(w)Gr(w). (8)

All the Green’sfunction are cal cul ated for the tunneling
problem without electron—phonon interaction:

1

w-g+i(yP+y) ©
G (w) = —2in(0)IMGf(w),

where the nonequilibrium filling number nj(w) =

(vnp (@) + yink (@)Y + v7), and Z(w) is the sim-

plest self-energy part due to the electron—phonon inter-
action:

h(w) = igj{DR(w‘)Gz(w—w)

Gii(w) =

(10)
+D”(w)GH(w- o) ]dw,

() = —ig2J’D<(w')G§(w—od)dw'. (11)

Thefirst-order contribution to the tunneling current can
be divided into two different parts: | =1, + I,. Thefirst

corresponds to small changes in electron density of
states due to electron—phonon interaction and is

described simply by some correctionsto GiFf:

k

I, = I{lemeﬁm(w)
(Y2 +Y1)

(12)

Ky, p
lemegm(w)}(nﬁ(w) —n2(w))dw.

k

(Y2 +Y3)

The second contribution is more interesting,
because it describes inelastic tunneling processes with
emission or absorption of a phonon:

+

2 YivS-ysyh
2 2
(v2+ VD (Y2 +v3)
x fdwlmeii(w)(ni(w) —np(w))

I, = 4mng

k. p. .0

x [IMGa(w + 6p) (Y1y5np(w + @)

(13)
—Y5yEnR(0 + @) + (Y1y5 —YsyDIN(w))

— MG, (00— o) (Yiyona(e— o)

k., p. .0

—ysyEne(e— o) + (Yiy2 - YayD) N(=03)) ]
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Thesign of thisadditional correction to thetotal current
depends on the ratio between the four tunneling rates

y‘i, i, y'§, y5 . The physical reason why the electron—

phonon interaction can either increase or decrease the
tunneling current is connected with interference effects
between direct and indirect tunneling channels. It
becomes more obviousif we notice that

YiYs — Yy}
(v + YD (Y5 +v5)

Thus, the inelastic processes increase the total current
if the inverse population of our two-level system
appears due to elastic tunneling. Two examples which
demonstrate enhancement and suppression effects in
the tunneling conductivity are shownin Fig. 1.

In the limit of small tunneling coupling to the leads
sothat all y << g, we use aperturbation treatment of tun-
neling processes in small parameter y/g. For the most
interesting case, when phonon frequency is closeto the
resonance with electron transition energy €, — €, = ,
we can retain in the Hamiltonian only the following
interactions as the most important (similar to the rotat-
ing-wave approximation for two-level systems):

(NR(@) =N (w)) = Ny() —Ny(00).

Hapron = g(ara,b +aa,b").

Direct calculation of dot (molecule) Green’s func-
tions GlRl : GZR2 based on the Heisenberg equations for
isolated dot (molecule) leads to the system of equations

(w- 51)651 - gGEbl =1,
(02— &= 0) Gz —9Gon1 = O
(0= &)Gon —g(N +1)Ggyy = 1-n, + N,
where the new functions G5, , Gi., are introduced:
Gony = 16(t—t) Oay(t)b(t), as(t)]0
Gony = 10(t—t)
x [ay(t) (b(t)b"(t) —az(t)ay(t)), ay(t)]0
N and n, are the number of phonons and electrons at the
second level, respectively. At the third step, the mean
value of phonon filling number is decoupled from the
average [a,b(1 + b*b), a; 0— @b, a; [(N + 1). After
this approximation is performed, the retarded Green’s
function is determined:
1
Gy = e
% (w-g)

g°’(N+1-n,) }

(14)
x[1+ 5
((w—g)(w—&—-w) —g" (N +1))
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dardv

drdv

Fl/dv?

g g vV

Fig. 1. Tunneling conductivity spectra for weak election—
phonon coupling. Elastic and inelastic contributions and
total tunneling conductivity are shown in Fig. 1 (a) and (b)
by dashed, dotted, and solid curves, respectively. Values of

the parametersaree; —,= 1, wy = 0.6, 9= 0.4. (a) yiyP >

y;yf ;(b) yliyg < y;yf Phonon-induced structureismore

pronounced in d?l/dV? as shown in (c) by dashed line for
case “a@’ and by dotted line for case “b”; solid line corre-
sponds to elastic part of the current.

The same procedure for the second level gives

1

R_—
R sy

X[1+ g (N+n) |
(00— &) (w— & + wp) —g°(N + 1))

We see that new poles in the Green’s functions have
appeared, which corresponds to splitting of two reso-
nantly close pairs of levels. €; and €, + wy, aswell ase,
and €; — wy,. We can expect the appearance of three res-
onant peaksin the local density of states near €, and €,.
Note that the energies of the two split states depend on
the temperature through the phonon filling number N.
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(@)

g T, Ty, g

Fig. 2. Twofirst-order diagramsfor the self-energy part 2. PN
Dashed line denotes electron Green's function in the leads, s ~1
wavy line denotes phonon Green'’s function. --" | S

Now wetreat as thefirst-order perturbation the self-
energy parts of two kinds, appearing due to the tunnel-
ing coupling with the leads (see Fig. 2).

Tunneling current is determined by the self-energies
as

(b)

dl/dv

=2y V{IGH@)(HZi(@)6(w)

i=12

+ Np(00) G(w) IMZ (W) G (w) ] dw.

The contribution of thefirst diagram is rather smple
1 = [IYAVIGI(@)GL(®) + Y262 (w) G2 (w)]

X (N(w) = Np()) doo.

(©

The contribution described by the second diagram
reduces in the first nonvanishing order in (y/g)? to the
following form:

I, = gzjdwlei‘(w)lzlez*(w—%)Iz(n‘k’(w)—niﬁ(w))

X (Y1y5(no(00— ) — N(wp) — 1)

k. p;..0 V
+ YY1 (N(w— ay) — (N(0) —1)).

- . R . Fig. 3. Tunneling conductivity spectra for strong resonant
It is important that functions G;° are determined electron phonon coupling. Elastic and inelastic contribu-

with the help of Eq. (14): tionsto the tunneling conductivity are shown by dashed and
solid curves respectively. Chosen values of the parameters

[GR ™ = [GRI T +i(y+VyP). aeg, —g,=1,wy=09,g=04. (a) y§ =03, y§ =006;

k k .
This expression alows us to estimate the effective (b) v, =0.06, ¥; =03.@ v, =v; =01 In (c), dastic
width of each of the three resonant peaks near theinitial tunneling current through each electron level is shown sep-
electron levels. It is remarkable that broadening of arately by dotted and dashed curves.
these peaksis different and depends on nonequilibrium
electron numbers; it can thus be tuned by changing the

parameters of the tunneling cgntact: The p;eak cokrre values for the second set of peaks near e, are 'y = (Y5 +
sponding to g, has the effective width I'; = (y; + V) (L=n)I(N+1), I :(y; + VEY(N +ny)/2(N + 1),

yP)n/(N + 1). The two split peaks near it have the _ .
Some tunneling conductivity curves for zero tem-

width I = (3 + yD)(N+1-np)/2(N + 1). Thesame  perature (N = 0) are shown in Fig, 3. In this figure we
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consider the case when both levels €, and €, lie above
the Fermi level at zero applied bias voltage.

Let us point out the most interesting features of the
tunneling conductivity behavior in this case. For the
elastic channel in the tunneling conductivity spectra,
nonequilibrium narrowing of the two split peaksnear €,
is always clearly seen, while the pesk at initial energy
€, isbroadened in the usual way by the tunneling rates.
In the biasrange closeto €,, we can distinguish two dif-
ferent cases dependent on the ratio between the tunnel-
ing rates, because it determines the filling number of

the deeper state €,. For yg < y5, two split peaks near
€, are narrow, and the tunneling conductivity peak at a
bias voltage equal to the initial level €, has the usual
tunneling width (Fig. 3).

For yg > y5 the split peaks are broadened up to the

usual tunneling width and peak at a bias voltage equal
totheinitial level €. For asufficiently strong electron—
phonon coupling, the contribution of the inelastic chan-
nel to the tunneling conductivity can strongly exceed
the elastic channel’s contribution at a certain bias close
to g;. The tunneling conductivity peaks of the inelastic
channel are narrow due to nonequilibrium effects.

At high temperature, when N > 1, the shape of the
tunneling conductivity curves are not so sensitiveto the
ratio between different tunneling rates. One should
observevery narrow peaksat €; and €,, while the broad-
ening of split peaks is always equa to one half of the
usual tunneling width.

CONCLUSIONS

In the weak eectron—phonon coupling limit, we
revealed that interference effects between various chan-
nels can lead either to acertain increasein thetotal cur-
rent or to its suppression. The sign of the resulting
effect depends on the ratios between the tunneling
rates.

For tunneling rates which are too large, observation
of inelastic peaks in the tunneling conductivity spectra
is nearly impossible.

JETP LETTERS Vol. 8 No.5 2005
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For strong electron—phonon coupling, three peaks
can arise in the tunneling conductivity spectra near
each electron level in the resonant situation. Nonequi-
librium narrowing of these peaks at a certain ratio
between thetunneling ratesis discovered. The positions
of satellite peaksin this case are determined not only by
the phonon frequency w, but also by the electron—
phonon coupling constant and the temperature.

An important feature of the system under consider-
ation is that we can change the relative intensity and
width of elastic and inelastic peaks by tuning the tun-
neling coupling of the intermediate system with the
leads.

Thisresearch was supported by the Russian Founda-
tion for Basic Research, project nos. 03-02-16807 and
04-02-19957, the Leading Scientific Schools program,
project no. 1909.2003.2, and the Russian Academy of
Sciences program “Strongly correlated electrons in
metals, semiconductors, and superconductors.” Sup-
port from the Samsung Corporation is aso gratefully
acknowledged.
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Hole spin relaxation in an isolated Ge quantum dot due to interaction with phonons isinvestigated. Spin relax-
ation in this case occurs through the mechanism of the modulation of the spin—orbit interaction by lattice vibra-
tions. According to the calculations performed, the spin relaxation time due to direct single-phonon processes
for the hole ground state equals 1.4 msin themagneticfield H = 1 T at thetemperature T = 4 K. The dependence
of the relaxation time on the magnetic field is described by the power function H. At higher temperatures, a
substantial contribution to spin relaxation is made by two-phonon (Raman) processes. Because of this, the spin
relaxation time decreases to nanoseconds as the temperatureis raised to T = 20 K. Analysis of transition prob-
abilities shows that the third and twelfth excited hole states, which are intermediate in two-step relaxation pro-
cesses, play the main part in Raman processes. © 2005 Pleiades Publishing, Inc.

PACS numbers; 71.70.Ej, 72.25.Rb, 73.21.La

At present, spin phenomena in nanostructures are
considered to be one of thetopical problems of modern
solid state physics. This area of study has received the
separate name “spintronics,” which is associated with
the potential application of the spin degree of freedom
for quantum computations and for the creation of data
storage devices. Ge/Si-based heterostructures are the
most promising for the use of the spin degree of free-
dom, because the spin-atticerelaxation time T, in Si is
1-10 h at helium temperatures [1] and the dephasing
time T, equals several milliseconds [2]. In Ge at the
same temperatures, the times T, and T, are of the same
order and equal several milliseconds [3].

Ge/Si quantum dots are formed in the course of Ge
heteroepitaxy on a Si substrate when, under certain
conditions, a transition occurs from the two-dimen-
sional layer-by-layer mechanism of Ge film growth to
three-dimensional growth. The characteristic size of
islands is 1020 nm, and their height is 1-2 nm; thus,
the behavior of charge carriersin theseislands is deter-
mined by quantum size effects[4]. The existing energy
band discontinuity and deformation effects lead to the
formation of a potential well in Ge for holes. Recent
investigations have shown that the spin relaxation time
increases as the dimensionality of the system decreases
[5, 6]. The matter of fact isthat the mechanisms associ-
ated with quasimomentum scattering become less
effective in low-dimensionality systems upon freezing
degrees of freedom. Thus, for example, the Dyakonov—
Perel mechanism becomes less effective in the case of
two-dimensional systems. As the dimensionality fur-
ther decreases to zero-dimensiona objects, the spin
relaxation time further increases. The possibility that
the spin orientation is retained for along time isimpor-
tant for the creation of devices that use the spin degree

of freedom. Schemes for the implementation of quan-
tum computations using quantum dots [7] and such
devices as spin transistors and spin filters based on
guantum dots [8] have been proposed to date.

This work presents calculated results for the spin
relaxation time of hole states due to interaction with
phonons in an isolated Ge quantum dot in a magnetic
field. In addition to phonons, a spin flip can be induced
by the magnetic field created by nuclear spins [9, 10],
as well as by processes that proceed upon hole tunnel-
ing from one quantum dot to another [11]. However,
there are conditions at which the phonon mechanism of
spin relaxation predominates. Tunneling processes can
contribute to spin relaxation only in sufficiently dense
qguantum dot arrays and only for carriers with energy
close to the Fermi level. Interaction with nuclear spins
(hyperfine interaction) becomes determining only in
the case when the external magnetic field is sufficiently
small as compared with the field of nuclear spins. For
estimation, experimental dataon InP quantum dots[12]
can be used, in which the effect of electron spin dephas-
ing by nuclear spinsis suppressed in the external mag-
neticfield> 0.1 T. For Ge/S dots, thisvalue can be con-
sidered as an upper estimate, because the nuclear
momenta of In and P are considerably larger than the
nuclear momenta of Ge and Si [13]. The role of hyper-
fine interaction in Ge/Si quantum dots will be consid-
ered in more detail in the subsequent publications.

The nature of the spin relaxation through interaction
with phononsisin the fact that | attice vibrations lead to
modulation of spin—orbit interaction. Spin—orbit inter-
action becomes time-dependent, which eventually
leads to spin relaxation. Spin—orbit interaction plays a
significant role in the formation of the valence band
structure and in the spin relaxation of holes in bulk

0021-3640/05/8205-0302$26.00 © 2005 Pleiades Publishing, Inc.



HOLE SPIN RELAXATION IN Ge QUANTUM DOTS

semiconductors. The value of the spin—orbit interaction
in Ge (~0.3 eV) is comparable with the quantization
energy of Ge in the quantum dot. Therefore, it signifi-
cantly affects the electronic structure in the Ge quan-
tum dot. For this reason, we suggest that this mecha-
nism of spin relaxation is the main mechanism at
helium temperatures.

The calculations were performed for a particular
geometry of the quantum dot: a pyramid with a square
base and a height ten times smaller than the base side.
The choice of the geometry was based on the data of
investigations using scanning tunneling microscopy
(STM) and high-resolution transmission electron
microscopy (HRTEM) [14]. The problem was solved
within the framework of the tight-binding method and
was mainly based on our previous investigations of the
€electron spectrum in Ge quantum dots [15-17].

At the first step, we considered spin relaxation due
to single-phonon direct processes (first-order perturba-
tion theory). Following the approach developed by
Roth [18] for the calculation of the spin-attice relax-
ation time, we cal cul ate new wave functions of Zeeman
sublevelsin amagnetic field and then find the transition
matrix element between them due to interaction with
phonons. We consider processes at low temperatures
(T <40K) and, therefore, take into account only acous-
tic phonons. The contribution of optical phononsis sup-
pressed by the Boltzmann exponent exp(—E./KT),
where E, isthe optical phonon energy. The operator of
interaction with acoustic phonons is described by the
equation

€ _ ij
Hm‘m - z Dm’meija
ij

where D, is the deformation potential tensor, defor-

mation potential constants D also determine the change

in the spectrum upon a homogeneous def ormation, and

the subscripts m and m' run over the energy bands. The

Strain tensor g;; is determined as

s R !

€j = Z I [mD E[qi(eq)j +0(&);]
q

+

x (eiqraq _e—iqraq)1
where p is the density of the medium, €, is the phonon

polarization vector, g isthe phonon wavevector, and a;
and a, are phonon creation and annihilation operators.

We used the standard form of the electron—phonon
interaction operator for the valence-band states [19].

We suggest that a carrier remains in the state with
the same spatial configuration and only flips the spin,
emitting a phonon. The transition matrix element
between the spin up |1 0and spin down || Ostates

; 1/2 B
Ma = 'éﬁﬁ(zn&: DE (D" Qo (&), +a(eg)), (1)
q
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where n,, are phonon occupation numbers and w, isthe
phonon energy. In Eq. (1), we set the exponential factor
€9 equal to 1 because we consider only long-wave-
length phonons for which the condition gl < 1 is ful-
filled, where | is the characteristic size of the localiza-
tion region of the hole wave function in the quantum
dot.

The transition probability between the spin up |10
and spin down |l Ostates is determined by the Fermi
golden rule

@ _ 2T 2
r = 27|Mq| d(hsq—AE,), 2
a. &
where AE, isthe Zeeman splitting energy, sisthe speed
of sound, and a linear dispersion law is assumed for

phonons. Substituting Eqg. (1) for the transition matrix
element M, into Eq. (2), we obtain

ro - 2n_h (ng+1)
h 2pwy (2m)°
where the quantity

104 0= {1107 (e, + m(e))’do

is obtained by integration over al the directions of the
unit vector n.

In order to elucidate the functional dependence of
the transition probability on the magnetic field, we sim-
plified Eq. (3) in the limit of low temperatures (KT <
AE)) to the following:

r(l) = i—Englzmq_g =
21 pw, #is

Here, o = AEJAsS.

At the first glance, Eqg. (4) demonstrates the third
order of the power dependence on the magnetic field,
but a quadratic dependence is hidden in the matrix ele-
ment [[Dg[?[] because the variation of the wave func-
tions oY linearly depends on the magnetic field (up to
fieldsH~10T),

EDéqu“a(hsq —AE,)dq, (3)

0Do| TAE;

21 p55h4. (4)

U = Wo+oY(H).

Thus, the dependence of the spin relaxation rate on the
magnetic field is described by a power function ' ~ H°.
Cdlculations by Eq. (2) inthemagneticfieldH=1T at
temperature T = 4 K gave the spin relaxation time for
the ground state T = 1.4 ms. The magnetic fidd is
directed along the quantum dot symmetry axis Z (H ||
Z). The value of the g factor obtained in [15] was used
for the calculation of the Zeeman splitting AE,.

The temperature dependence of the relaxation time
due to single-phonon processes has the form

T(T) = const(2n, +1) 7,
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where n, is the number of phonons in the vibrational
mode with the phonon energy AE,. The value of n, is
proportional to temperature at KT > AE, and vanishes at
T— 0. Thus, T tendsto aconstant at T — 0 (because
only spontaneous transitionsremain) and T ~ T-* at suf-
ficiently high temperatures (which corresponds to the
predominance of induced transitions).

Consider in more detail how the wave functions
change in amagnetic field. The wave functions are cal-
culated in the sameway asin[15-17] by thetight-bind-
ing method, but the operator of interaction with the
magnetic field is added to the Hamiltonian. According
to the calculated results, the wave function of the hole
ground state in a Ge quantum dot in a zero magnetic
field is mainly formed from states of the heavy-hole
band (~84%) and has a small admixture of states of the
light-hole band (~8%) and the split-off subband (~8%).
The angular momentum J serves as the effective spin
for the hole states. The expansion of the wave functions
of the Zeeman sublevelsin the basis set |J, J,Lindicates
that the state |10is mainly formed by states with J, =
+3/2 and J, = -1/2. However, the reverse situation
occurs for the state | L[J for which the states with J, = —
3/2 and J, = +1/2 play the main role. Therefore, the
wave functions of the Zeeman sublevels are conve-
niently represented in the form

[t O= a+3/20F B-1/20)
| O= a|-3/20+ B+1/20

This expansion indicates that the admixture of states of
the light-hole band and the split-off subband with J, =
1/2 has an opposite spin with respect to the main con-
tribution of heavy-hole states. The magnetic field leads
to the following changes in the wave functions: for the
upper Zeeman sublevel, the contribution of the light-
hole states with the opposite spin increases and the con-
tribution of heavy-hole states decreases. For the lower
Zeeman sublevel, the situation isthe reverse: the contri-
bution of the heavy holeincreases. These changesin the
ground-state wave functions in the magnetic field are
due to an admixture of excited hole states in the Ge
guantum dot. The calculated results demonstrate that
not all the excited states make an equivalent contribu-
tion to the change in the ground-state wave function
oY(H). The contributions of the first and third excited
states to dY(H) exceed the contributions of the other
states by an order of magnitude. On the basis of an anal-
ysis of the form of wave functions [15], it was found
that the symmetry of wave functionsis the main factor
determining the contributions of excited states. The
ground state is formed by the s-type component of the
heavy hole and has an admixture of the d-type compo-
nent of the light hole. Under the action of the magnetic
field, the s-type state of the light-hole component of the
third excited state is admixed to the s-type state of the
heavy hole, because the symmetries of these states
coincide. Onthe other hand, the admixture of the p-type
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state of the light-hole component of the first excited
state is explained by the fact that this state is mainly
localized at the center of the quantum dot, aswell asthe
ground state [15].

We analyzed the contributions of various compo-
nents of the strain tensor to the matrix element of inter-
action with phonons. It was found that the €,, and €,
components of the strain tensor make the main contri-
bution to spin relaxation. These components of the
strain tensor are responsible for the mixing of the states
of the heavy-hole band and the light-hole band. This
allowed the conclusion that spin relaxation proceeds
because of the mutual oscillating variation of the con-
tributions of heavy- and light-hole states, which is
induced by the phonon wave. The contribution of the
light hole for excited states is larger than that for the
ground state; therefore, the variation introduced by the
phonon wave is larger. Correspondingly, spin relax-
ation proceeds more intensely. Actually, calculations
for the first excited state give a shorter spin relaxation
time of T =0.37 ms.

At the next step, two-phonon (Raman) processes
were taken into account in the calculation of the spin
relaxation time for the ground state. In this case, the
relaxation process proceeds through an intermediate
excited state. A carrier makes a transition from the
ground state to an excited state and in the reverse direc-
tion, which is accompanied by the absorption of a
phonon with a frequency w, and by the emission of a
phonon with a frequency wy. A spin flip can occur at
any of the two steps. The condition that provides the
conservation of energy iswritten in the form g, —w, =
w, where #iwo = AE,. The probability of Raman pro-
cesses is defined as

@ _ 21 OF[H (03] J00 [He(03)]iT°
e 5 s Al

Ei—Ej Fhw,

0,9, &g &y j

X O(Ef —Ej £ hw, Fhwy);

here, the operator H, describes € ectron—phonon inter-
action, j isthe number of the excited state, and the sum-
mation is over the wave vectors and their polarizations.

When the Raman processes are taken into account,
the temperature dependence becomes more important.
While the spin relaxation time for the ground state of a
hole in a Ge quantum dot equals 0.3 ms (magnetic field
H=1T) at thetemperature T =4 K, it dropsto 0.65 us
at T =10 K. With afurther increase in temperature, the
spin relaxation time continues to decrease and makes
up several nanoseconds at 20 K. The temperature
dependence of the relaxation rate with regard to two-
phonon processes is described by the T7 law (see fig-
ure), while relaxation due to single-phonon processes
weakly depends on temperature. Analysis of transition
probabilities shows that the third and twelfth excited
states play the main part in Raman processes, these
states are intermediate statesin two-step rel axation pro-

JETP LETTERS  Vol. 82

No. 5 2005



HOLE SPIN RELAXATION IN Ge QUANTUM DOTS

One-phonon processes

,_.
<
w

Ty T TN T Ty Ty T Ty TTTH T

_.
b
~

Relaxation time (s)

1 1
5 10 15 20 25 30 35 40
T (K)

[
<
O

O [T T T T T

_

<
L
=

Temperature dependence of the spin relaxation time due to
interaction with phonons for the hole ground state in a Ge
quantum dot (the height h= 1.5 nm, the base size| = 15 nm).
The magnetic fieldisH || Z, where Z is the growth direction
of the Ge quantum dot.

cesses. It should also be noted that direct processes
become determining at temperatures below a certain
critical temperature. This critical temperature for the
fieldH=1T equals3K.

In conclusion, we formulate the range of applicabil-
ity of the obtained results. The first restriction stems
from the condition AE, < E, — E,; that is, the Zeeman
splitting must be smaller than the distance between the
guantization levels. This condition is fulfilled for mag-
netic fields H ~ 10 T. The second restriction follows
from the condition A > |, where | is the characteristic
size of thelocalization region of the hole wave function
and A is the phonon wavelength. This corresponds to
the temperature restriction T < 70 K, because the local-
ization region | = 3 nm according to our calculations
[11]. The latter restriction is also connected with the
requirement that the higher orders of the perturbation
theory are small. We considered the first two orders of
the perturbation theory and obtained the corresponding
relaxation rates T and @, From dimensionality con-
siderations, the following relation can be written for the
relaxation rate in the next order of the perturbation the-
ory r®:

r® oM@ (k1)*

7@ DD o

From the condition that this ratio is small, we find the
temperature restriction T < 60 K.

Thus, the given approach to the calculation of the
spin relaxation rate is valid for temperatures T < 60 K
and magnetic fieldsupto H ~ 10 T. Thelong relaxation
time due to direct processes obtained in this work (T ~
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1 ms) isthe direct consequence of the fact that the char-
acter of the hole ground state in the quantum dot is
close to the state of the heavy hole. The possibility of
relaxation depends on the degree of admixture of the
light-hole states, and, because this degreeissmall, spin
relaxation is suppressed.

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 05-02-16285, and by
INTAS, grant no. 2001-0615.
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Mechanisms are determined for homogeneous current-induced switching in ferromagnetic metallic junctions
of the spin-valve type. The spin flux is perpendicular to the junction surface and is directed from the pinned
layer to the free one. The switching is due to the joint action of two mechanisms: (i) current-induced surface
torque and (ii) current-induced injection of nonequilibrium longitudinal spins into the free-layer bulk. Both
mechanisms lead to the instability and reorientation of magnetization; however, only the injection mechanism
can stabilize the switching. © 2005 Pleiades Publishing, Inc.

PACS numbers; 72.25.-b

Magnetic junctions represent an interesting object
for investigation and subsequent applications, because
current-induced magnetic-moment instability in them
was recently predicted [1, 2] and manifestations of this
instability—resistance jumps [3] and microwave emis-
sion [4]—have been observed experimentally. It has
been found that the torque mechanism proposed in [1,
2] is not the only one essential mechanism leading to
instability. Another mechanism associated with longi-
tudinal-spininjection by current into the bulk of the fer-
romagnetic layer was proposed and studied in [5-8]. In
the recent work [9] (and in the preprint [10]), a theory
has been constructed in which the joint action of both
instability ~mechanisms mentioned above was
described.

However, the question remains open as to what
properties the new magnetic state arising from the
development of this instability should possess. Mean-
while, in the end, this question is most essentia,
because it is the resulting state that is experimentally
observed for the present. However, the possibilities of
applications depend in many respects on the properties
that will be exhibited by this state.

Since the first works [1, 2], it has been considered
that the instability caused by only the torque action
leads to magnetic switching. However, this has not been
proved and is still only a suggestion. Nevertheless, the
fact of switching itself has been confirmed experimen-
tally. Inthiswork, we demonstrate for thefirst time that
thetorque action by itself cannot provide the stability of
switching. To explain this effect, the effect of longitudi-
nal-spin injection by current must be taken into account
in the theory.

1. Model and calculations. In the calculation, the
junctionis considered as a planar layered structure per-
pendicular to axis x. Two ferromagnetic metallic layers
are separated at x = 0 by athin nonmagnetic layer that
does not preclude conductivity and does not disturb the

spin polarization of the current. At x < O, ferromagnetic
layer 1 islocated with fully pinned magnetization vec-
tors of the lattice M; and the mobile electrons m,
(“injector”). At 0 < x < L, ferromagnetic layer 2 is
located with free magnetization vectors M and m,
which can vary as functions of the external magnetic
field H and the current density vector j. The electron
flux flows in the direction from the injector to layer 2.
This direction is further considered positive, so that
jle>0 (eistheelectron charge). At x> L, thereisawell
conducting nonmagnetic layer, which is necessary for
the closure of the electric circuit. It is considered that
the external circuit provides the regime of the specified
current, so that the processes under consideration can
change only the voltage drop V across the junction.

According to the main idea of the works[1, 2], an
important part is played by an extremely narrow layer
near the interface 0 < x < A < 1 nm. Inside this layer,
which we will further call the Slonczewski—Berger
(SB) layer, the directional deflection of vector M from
the fixed vector M, by a certain angle X leadsto apre-
cession of vector m around M, that is, to the appearance
of the transversal my and longitudinal m, (relative to
M) components. Component m decays inside the SB
layer because of the statistical scatter of electrons by
velocities. Parameter A determines the thickness of the
SB layer and, in essence, is close to the quantum elec-
tron wavelength at the Fermi surface. Owing to the
decay of component m, thetransversal part of the elec-
tron spin flux vanishes. However, the total transversal
spin flux must be conserved and, therefore, its vanished
part must be transferred from the mobile electrons to
the magnetic lattice. This is the torque appearance
mechanism.

The spin injection mechanism considered in [5-8],
asdistinct from torque, is associated with the longitudi-
nal m rather than transversal component. The longitu-
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dinal-spin flux penetrates deep into layer 2 at the diffu-
sion length | ~ 10-100 nm. It creates a current-depen-
dent effective sd-exchange field Hg,, which also affects
the magnetic lattice.

Further, we will use the theory of the joint action of
the above effects that was developed in [9]. The theory
is based on the solution of the macroscopic Landau—
Lifshitz—Gilbert (LLG) equations for vector M and the
continuity equation for vector m. According to thisthe-
ory, the spin flux in pinned layer 1 arises only because
of the occurrence of an electric current and can be pre-
sented in the form

L= B2QuiM,, M

where parameter 0 < Q, < 1listhedegree of current spin

polarization, Mi = M /M, is the unit vector, and pg is
the Bohr magneton. The flux given by Eq. (1) contains
both the longitudinal J,; and transversal J,; compo-

nents with respect to vector M = M/M taken at the
boundary x — +0. Namely,

Juy = E2Quj (W11 (+0))NI (+0),
e @
Jig = 2Qui[M(+0), [M1, M (+0)]].

Thelongitudinal component J,; continuously passes
into layer 2 and, at X > A, equals

309 = 2Qj - DU (), 3

where parameter Q is similar in its sense to Q, but is
taken for layer 2. Parameter D is the spin diffusion

coefficient in layer 2. The designation m;=m- M is
introduced for the longitudinal magnetization. The
characteristic length over which the quantity mvariesis
the spin diffusion length |, and the characteristic length

for the quantity M isthe inverse wave number of spin
waves in the lattice g*. Asin [9], we assume further
that A istheleast of al the characteristic lengthsin the
problem and, in particular, Ar < |, g\ < 1, which cor-
responds to the real situation. Then, the equation

Jy = J(+0) 4

holds. This equation can be considered as one of the
boundary conditionsin the determination of the magne-
tization m(x). Another boundary condition is the conti-
nuity of the spin flux at the boundary x = L. Flux J;in
layer 3 coincides with that given by Eq. (3) if the sub-
gtitutionsQ — Q3=0, D — D3, andm — m are
made. Then the continuity condition is written as

J(L-0) = J4(L+0). (5)
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Moreover, the difference of the chemical potentials of
the spin subbands must also be continuous at x = L [9].

The continuity equation for the magnetization mand
the above boundary conditions describe the process of
noneguilibrium longitudinal spin injection by current.
The solution of this problem in [9] yielded the expres-
sion

_ ] Hgh
M(X) = Meq+ T SHAA + v coshn

x{ QcoshE +[Q,(M1M (+0)) - Q] (6)
x [cosh(A =€) +vsinh(A =€)]},

where my, is the equilibrium magnetization value at j =
0. The current-induced nonequilibrium term in Eq. (6)
containsthe following designations: nis the concentra-
tion of mobile electrons, A =L/, & =X/, jp=enl/t, Tis
the spin equilibration time, and v ~ 1 is the parameter
characterizing the matching of spin fluxes at the bound-
ary of layers 2 and 3. At typical values of parameters
n~102cm=3,1 ~3x10%cm, 1 ~3x 1013 s, the esti-
mate jp ~ 1.6 x 10%° A/cm? is obtained. The currents of
interest are on the order of the instability thresholds,
that is, j ~ jy, < 3 x 10" A/lem? [3, 4]. Thus, j/jp ~ 2 x
1073 < 1, so that the conditions of weak spin injection
are fulfilled.

Note in addition that, in the derivation of Eg. (6) in
[9], it was taken into account that the precession of the
lattice outside the SB layer occurs at frequencies w of
the microwave range for which wt < 1. Hence, elec-
trons react to the instant magnetization of the lattice,
which explains why the quantity min Eq. (6) depends

instantaneously on the nonequilibrium vector M .

Now, it is necessary to consider the passage of the
transversal spin flux across the layer interface. Inside
layer 2, the LLG equationisvalid, and thisequation can
be presented according to [9] in the form

a—M+yA[M o’ I\/I}+y[M Hl
ot ax°

@)
+y[M, HT —K[M,%—'\ﬂ -0,

where A ~ 102 cm? is the intralattice exchange con-
stant, 0 < K < 1 characterizes dissipation, and y is the
gyromagnetic ratio. The field H' = H + H, + Hy
includes the external field H, the anisotropy field H,,
and the demagnetization field Hy The effective
sd-exchange field in this problem must be presented in
the functional derivative form [11]

53U,
5M (>d<)’ ®)

Hsd(x) = -
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where the sd-exchange energy equals
L

Uy = —O(Im(x',t)M(x‘, t)dx’, 9)
0

and a is the dimensionless sd-exchange constant (for
example, a ~ 2 x 10%). We emphasize that, when substi-
tuting Eq. (9) into Eq. (8) and computing the derivative,
it isessential to take into account the functional depen-
dence m(M), which, in this case, is given explicitly by
Eq. (6). Then, the direct calculation gives

Ha(X) = auBnQﬂEjiDE

(10)

v Oy _
* - ST v oogM 19 -0)

where only the noneguilibrium (~j) part of the effective
fieldisretained. Itsequilibrium part is collinear with M
and therefore makes no contribution to Eqg. (7). The
field Hy describes the bulk spin injection effect and,
therefore, depends on the bulk parameters of layer 2: n,
v, L, and I. However, the  function in the right-hand
side of Eq. (10) shows that this field is applied to the
boundary surface x — +0. Therefore, it can be taken
into account as a certain addition to the continuity con-
dition for the transversal spin flux across this boundary.

Consider the second and the third terms on the | eft-
hand side of Eq. (7). After the substitution of Eq. (10)
and direct transformations (see Appendix | in [9]),
these terms take the form

0°M _ 0w+ Jsa)
valM, S ]y, b = s
where the quantities
_ oy M
Jy(x) = a[M, ax} (12)
and
A 0

= l T 4oy
Jsa(X) YO‘“E}anIjDEll sinhA +vcoshAD  (13)

X [M(+0), M1]8 (x-0)

are treated as lattice magnetization fluxes due to
intralattice exchange and sd exchange, respectively.
Here,a=yMA, B(x—¢g)=1latx>¢,andB(x—¢€) =0 at
x < ¢. Fluxesgiven by Egs. (12) and (13) aretransversa
with respect to vector M. Owing to the smallness of Ag,
the two latter termsin Eq. (7) can be neglected inside
the SB layer. Then, the continuity condition for the
transversal flux at the boundary x = 0 is reduced to the
equation

Jin = Iu(Ap) + Jsa(Ag). (14)

GULYAEYV et al.

This equation can be regarded as one of the boundary
conditions when the LLG equation is solved in the
region Ag <X < L of layer 2. Another condition arises at
the boundary x = L and can be written as

Ju(L=0) =0, (25)
because flux Jg(x) according to Eqg. (13) is constant at

x = L and falls out of the continuity condition given by
Eqg. (15).

2. Stability of theinitial static state. The simplest
initial static stateisaccomplished with collinear vectors

M1, M, H,, and H lying in the junction plane. In this
case, Eq. (7) isfulfilled by a homogeneous magnetiza-
tion distribution over the sample. There are two possi-

bilities: either static vectors M; and M are parallel
(P state) or they are antiparalel (AP state). Consider
then the most important case when the AP state is
accomplished in the absence of current (j = 0), namely,
Mi=-2,M =2,andH =2, where X, ¥, and 2 des-
ignate unit vectors of coordinate axes. Upon switching
on the current, fluctuations can become unstable. The
instability threshold was calculated in [9]; however, in
that case, the singular (containing & function) sd-
exchange field [ 10] was taken into account in the equa-
tion of motion itself (Eq. (7)) rather than in the flux
J(X) and in the boundary condition (Eg. (14). In the
new approach proposed in this work, the singularity is
eliminated from the equations of motion. This signifi-
cantly ssimplifies the solution of Eq. (7) and allows one
to find not only the threshold of instability but also non-
linear solutions arising from the development of this
instability.

Fluctuations AM are introduced by the equation

M =2 + AM . Equation (7) linearized with respect to
fluctuationstake the form (taking into account that H 4 =

—ATIMAMX)

MMy (Q—iK®) o 1w

e a AMeEaM =0,

AN, (Q,—iKw) i (16
aaA';"y— AR+ AR = 0,

X

where Q, = y(H + H, + 41iM), Q, = y(H + H,), and Q, >
Q,. After linearization, the boundary conditions
(Egs. (14) and (15)) are reduced to the equations

AAM

= KAM, — pAMy,
5 (17)
agiﬂ = —KAM,— pAM,
JETP LETTERS Vol. 82 No.5 2005
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at x = 0 and to the equations
OAM, _  0AM,
ox " 0X

at x = L. Solving the linear problem given by Egs. (16)—
(18) leads to the dispersion relation for fluctuations

gtangL = —p =ik, (29
in which the square of the wave number equals

=0

(18)

P = -é[czﬁ Q, - 2ikw £ (0~ Q)+ 4w,

(20)
and the parameters
D= apg QT %L _ v N
eAM sinhA + v coshAlY
. (21)
K = Mg Q1]
eyM’A

describe the spin injection (p) and torque (k) effects.
Dispersion equation (19) allows the instability condi-
tion Imw > 0 to be obtained. Consider sufficiently small
thicknesses of layer 2 obeying theinequality [p £ ik|L < 1.
Thisinequality isfulfilled, for example, a L ~ 2—7 nm.
At such thicknesses, the instability condition takes the
form

2 am] apy_ 8k
K %)X—TD y— ot <0.

RERAA (22)

Because, according to Eqg. (21), parameters p and k
are proportional to current j, we obtain from Eq. (22)
for the instability threshold

o - (74 £)—A(F = )" +4n?
io 2(1-n?) ’

wheref=,/Q,/Q, <1,jp=keML,/Q,Q, /usQ;, and an
important parameter

(23)

_ _ v ulls
N = ok geeteas) @

isintroduced. This parameter characterizes the relative
role of parameters p and k, that is, spin injection and
torque. At > 1, torque dominates and it follows from
Eq. (23) that j, — jg. At n < 1, spin injection domi-
nates. Inthiscase, j4, — Nfjg << |jp; that is, the instabil-
ity threshold becomes significantly lower. A numerical
estimation givesj; ~ 3 x 10’ A/cm?, which corresponds
to experimental data (see [3, 4] and others).

3. Switching effect. As was already mentioned,
junctions of small thickness are considered for which
[p £ iklL < 1 and, in addition, L < |, gL < 1. Then the
state arising from the development of instability must
remain spatially homogeneous. There exist only two
such states: P and AP. Since the AP state was selected
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Stability—instability regions. The boundaries of regions |
and |l are constructed by Egs. (23) and (25), respectively:
(I) Pand AP are stable, (I1) Pis stable and AP is unstable,
and (1) P and AP are unstable.

as the initia state, the development of instability can
give rise only to the P state. Switching will take place
only in the case when the P state turns out to be stable.

The stability of the P state can be investigated in the
same way as in section 2, but the substitution M; —~
—M, should be made in Egs. (2) and (13). In the condi-
tion (22), thiswill lead to the substitution p —» —p and
k — —k. At a positive current (j/e > 0), which is the
only case that we consider, spin injection will always
make a positive contribution to the left-hand side of
Eqg. (22), that is, will suppress instability. However,
instability still could occur because of the action of
torque. The threshold of such instability is obtained
from the condition given by Eq. (22) with the above
substitutions and is given by the equation

o o (T )+ (=) +an?
io 2(n%-1) '

A schematic diagram constructed by Egs. (23) and
(25) is shown in the figure. This diagram shows the
regions of stability and instability in the plane (j, n). It
isseen that the new P stateis stable only at not-too-high
values of parameter nj, when the injection of nonequi-
librium transversal spins by current. Contrary to the
prevailing opinion, the torque mechanism aone does
not provide stable switching. In fact, the torque arises
from the decay of the precession in the SB layer. This
decay always exists regardless of whether vector M is
oriented in this layer parallel or antiparallel with
respect to M ;. At the sametime, the parallel orientation
of the above vectors corresponds to a minimum of the
sd-exchange energy and, therefore, is the most stable
orientation in the effective field H,. It should be noted
that, if the current increases to become considerably
higher than the threshold value j,,, both homogeneous
states, P and AP, can become unstable because of the

(25)
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torque effect. In this case, evidently, a new time-depen-
dent state of the turbulence type can arise.
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It has been shown that the T, (Baxter—Bazhanov—Stroganov) model for N = 2 with arbitrary parametersis a par-
ticular case of the generalized Ising model. The model satisfies the free-fermion condition, which enables one
to solveit by the method of the auxiliary Grassmann field. Explicit expressions have been derived for the par-
tition function on a finite-size lattice and eigenvalues of the transfer matrix. In this approach, in contrast to
the functional relation method, thereis no problem with the multiplicities of the eigenvalues of transfer matrix.
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The 1, modéd is one of afew exactly solvable mod-
els in which pseudospin variables take N values. This
model was found by Baxter [1], who noted that the
inverse matrix to the column—column transfer matrix of
the superintegrable chiral Potts model specifies a new
integrable model and called it the “Inverse SOS’
model. Morerecently, thismodel in the L matrix formu-
lation appeared in work [2] by Bazhanov and Stroganov
asan auxiliary model that enables oneto find a connec-
tion between six-vertex model and chiral Potts model.
The connection between these three models makes it
possible to formulate a system of functional relations
[2, 3] for the transfer matrices of these models. The
solution of this system of functiona relationsis one of
the basic methods of calculating the free energy of the
chiral Potts model. Recently, using the connection of
the 1, model with the chiral Potts model and certain
assumptions concerning analytic properties, the for-
mula for the order parameter in the chiral Potts model
was verified [4]. In what follows, we use the term Bax-
ter—Bazhanov-Stroganov (BBS) mode rather than the
term 1, model.

In thiswork, it has been shown that the BBS model
for N = 2 is a particular case of the generalized Ising
model. The model satisfies the condition of “free fermi-
ons,” which enables oneto solveit by the method of the
auxiliary Grassmann field [5]. Simple calculations pro-
vide explicit expressions for the partition function on a
finite-size lattice and the eigenvalues of the transfer
matrix. A similar expression for eigenvalues was
obtained by the functional relation method in[6]. A dis-
advantage of this method is that it provides a set of
solutions that contains all eigenvalues of the transfer
matrix, but additional analysis is necessary in order to
determine which solutions are really eigenvalues (and
their multiplicities). The method used in thiswork does

not have this disadvantage: it provides a set of eigenval-
ues unambiguously.

The BBS model is considered [7] on a rectangular
lattice at whose sites there are the pseudospin variables
b, (r is the number of a site) taking N values 0, 1, ...,
N —1, where N = 2. It is convenient to specify b, values
by all integers, identifying two values whose difference
isamultiple of N. Not all values are allowable: values
at the rth and sth sites neighboring in the vertical (r is
higher than s) must satisfy the additional condition

b, = b, or by+1 modN. Q)
The modd includes the parameters (complex in gen-

erd) a,t, Xy W, X, Y, and 1. Each plaquette has the
Boltzmann weight

1
Wr(bl’ b2, b3, b4) - q Z wm(b —b)(_wt)b -b*-m
m=0
x F(b"=b*, m)F'(b*~b°, m),
where w = 2N,
F(0,0) =1, F(0,1) = —wtly,
F(1,0) = wly, F(1,1) = —wxuly,

and expressions for F'(I, m) are obtained from the
expressions for F(I, m) by changing x, y, and pto x, v,
and ', respectively. Note that the BBS model is Z-
symmetric; i.e., the addition of the same number to b,
values at all lattice sites does not change the Boltzmann
weights of plaquettes.

For N = 2, we reformulate the model as follows.
Ising spins o,, which take the values 1 and —1 instead of
0 and 1 for b,, respectively, are located at |attice sites.
Condition (1) is automatically satisfied for N = 2. The

0021-3640/05/8205-0311$26.00 © 2005 Pleiades Publishing, Inc.
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Boltzmann weight associated with a plaguette has the
form

1
Wt(crl, 02; 04, 03) - q z (_l)m(b —b)t\b —b-m
= (2

x F(|b* - b, m)F(|b*~ b7, m),
where bk = (1-04/2, for k=1, 2, 3, and 4, and
F(0,0) =1, F(0,1) =tly,
F(1,0) = ply, F(1,1) = xply.

Thefunctions F' are defined similarly.

The transfer matrix of the generalized 1sing model
in the absence of the external field has the form (num-
bering of lattice sitesis shown Fig. 1)

L
T[o, o] = |_| W(O-x1 0-x+1; O-;(! o-;<+1)' (3)

x=1

Itsdimensionisequal to 2- x 24, where L isthe number
of lattice sitesalong the horizontal axis. In Eq. (3), 0, is
the Ising pseudospin. The boundary conditions are peri-
odic (o, . ; =0;). Themost general form of the Z, sym-
metric function of the four spin variables are specified
by eight parameters:

W(O'l, 02; 04, 03)

4
4
= aODL + z a,0'0"+ a40102030% @

i<k

BUGRU et al.

The numbering of the spinsin the expression (4) for the
statistical weight in the elementary plaquette of the lat-
ticeisshownin Fig. 2.

Note that the generalized 1sing model in the absence
of an external field in terms of dipole arrows unambig-
uously corresponds to (at the statistical-weight level)
the eight-vertex model with the external field [8].

The BBS model under consideration given by
Eqg. (2) corresponds to the following set of the parame-
ters of Boltzmann weight (4):

%_4% %L yD’

Aoy = 4%1 %L y'D’
Qodyz = 4%- y'D’
a0a4 4%1 %» yDa
®)
Qpdyy = 4W(1+XU)%‘-+XtuE,

0z = 7u5(1-xnf+ X
. .

8583, = fw(lﬂu)%—%‘%
t

Qg3 = :(_W(J-—XU)%L—_

Using the additional Grassmann-field method [5],
the partition function of the generalized Ising model on
the L x M plane lattice with periodic boundary condi-
tions can be represented as the following sum of four
integrals over the four-component Grassmann field:

Z = T(™) = (22)"3(Q%+ Q"+ Q- Q™). (§
Here,
Q = [dwie™, du] = 1 |‘|dw£, (7)

r=(x y) are the coordinates of the Iattlce sites, where

x=12 ., Landy=1,2, ..., M. Theaction U] has
the form

Sul = SWdw) +gY WY ()
where

D=a+0 )

JETP LETTERS Vol. 82 No.5 2005
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is the lattice analogue of the Dirac operator, antisym-
metric matrices & and [J have the form

E 0 ap —a;p a
3 = E_alZ 0 ay —ay E,
0ajz —a; 0 ay U
g &1 T8 % 5
O-8y4 84 -8y 0 O
0 0
o O -0, 0,04 04 g
-~ 0 O
A= O, 0 O, DXD_YD,
0-00, -0, 0 -0, [
o -0, -0.,0, 0O 0 [

and the operators [, and [, of the one-step shift in the
horizontal and vertical directions, respectively, are
specified as
Oy = Wirnyy By = Wey+ s
Oy = 0, =0, 0Oy=0,=0"

The superscripts p and a of the terms on the right-hand
side of Eq. (6) correspond to the periodic and antiperi-
odic boundary conditions, respectively, that are speci-
fied as

()" =1, (09" = -1,

M M
" =1, @' =1
The constant g in the quartic term in action (8) is

expressed in terms of the parameters of Boltzmann
weights (4) as

(10)

If the parameters of the model are such that g = 0 (free-
fermion condition), the quartic term in action (8) van-
ishes and integrals (7) are expressed in terms of the

Pfaffians of the matrix D . Representation (6) coincides
in form with the classical solution of the two-dimen-
sional Ising model by the Pfaffian method [9] and
reproduces the corresponding result in this particular
case.

It is easy to verify that parameters (5) of the BBS
model satisfy the free-fermion condition g = 0. For this
reason, the partition function of this model, as well as
all eigenvalues of the transfer matrix, is calculated ele-
mentarily.

Let Dy, betheFourier transform (O, — €49, O, —

etiP), of thematrix D given by Eq. (9). Then,
Q = Pi(B) = [IDgd ™
qp

g = ay— a8z T 138 —ayd;.

(11)

where g and p are the quasimomentum components tak-
ing (half-)integer values (in 2L and 21YM units,
2005
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respectively) in the Brillouin zone in the case of
(anti)periodic boundary conditions. [In what follows,
we call this set of valuesthe“(anti)periodic” spectrum.]

The determinant of the 4 x 4 matrix D, hastheform
dgp = [Dgyl = Cy +C,cosq + Ccosp

o (12)
+ C,cosqgcosp + Cssingsinp,
where
1
C, = Z(doo"' Ao+ o + Ay,
_1
C, = Z(d00+d0n_dn0_dnn)’
_1
Cs = z]_(dOO_dOn+drr0_dnrl)’ (13)

1
C, = z]_(dOO_dOH_an+ Arr)s
Cs = —C, at (ag, ag, ) — —(12, A3y Ap4);

_ 2
do = (L+ay—ap—ay+tay+ag+agtay),

_ 2
don = (L+a,—ap—ay—ay —ayu—2a;3—3ay)",

(14)
_ 2
oo = (L+a,+ap+aygtay+ag—ag—2ay),

_ 2
A = (L+as+ap+ag—a—a,;+ag+ay).

Note that the critical surface in the space of the param-
eters a, is determined by the condition that the right-
hand side of any of Eqgs. (14) vanishes.

Using Eq. (5) for the BBS model, we obtain
2
a

C= 22+X2X'22'2+t21+2'2,
1 2a§y2y2(yy Vit (1+ 7))

2

o ' 1
C, = 550Xy —t)u,
ay'y

2
Cy = (VY H XA - (1 + 1)),
236y°y

2
a

ay'y”’

C, = Oxyy' + ),

2

—_ a ' '
Cs = m(XY*' XY)tup'.

The product with respect to one of the components
of the quasimomentum in Eq. (11) is calculated in the
explicit form by representing the determinant given by
Eq. (12) in the factorized form

4d,, = 2uq—ivqe'p— v_q_t?_'p (15)
= pq(l—qu p)(l_v—qe p)’
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where
Pq = uq+Vuc21_VqV—q’
Vg = —2(C3+ Cycosq—iCssing), vq = V/p,.
Then,

U, = 2(C; + C,cosq), 16)

LM 1/2
2[4
qp
1/2

) - [
- M/2 1— ip 1— —ip 17
|:|pq %]( Ve€ ) (1-v_qe )% (17)

= I_lpgﬂlz(livg/l),
q

where the plus and minus signs on the right-hand side
of Eqg. (17) appear for the antiperiodic and periodic
spectrafor p, respectively.

For each pair of terms in Eqg. (6), we introduce the
notation

(28)™3(Q"+ Q%) = Z°,
(18

(22)™3(Q"-Q") = 2,

where the superscripts a and p on the right-hand sides
correspond to the antiperiodic and periodic spectra,
respectively, of the g component of the momentum. As
aresult, we obtain

7" = Aa“@%‘“ M 1-v'y)
03w+ A=y

a L 1
= @) TP 5p0Z+5;
q

M M M|:|
Z° = (\P) %a_l(1+vq)—|_|(l—vq)|a,

q q
P _ L 2 Lg
A= @) [l 3072
q
Expanding the productsin Egs. (19), we arrive at

a aMD
2= ()3 Y (V)"

d1<d

0
(vqlquvq3vq4)M + E, (20

qz

3
<..<

a1

O
P— P \M M, M,
Z° = (\" Dz Vq z (Vg,Vg,Va,) E

q 0;<0,<0d3

BUGRU et al.

The sum of these expressions should coincide with the
expansion of the trace of the Mth power of the transfer
matrix in its eigenvalues; i.e.,

Tr(TY) = Z°+Z° = N+ N+ L+

for al valuesof M, in particular, upto M = 2-. Thissys-
tem of 2- equations for eigenvalues A, has the single

solution (A®P E: 1Vg,) (Up torenumbering). Itiseasy

to see from definitions (16) for v, that [v,| < 1 for L # co.
Therefore, the maximum eigenvalue is A% given in
Egs. (19).

Representation (20) not only provides explicit
expressions for all 2- eigenvalues of the transfer matrix
but also evidently specifies a classification of eigenval-
ues. First, it is seen from Egs. (20) that the eigenvalues
are characterized by a certain number of momenta and
by their specific values, which is a consequence of the
trandational invariance of the system. Second, they are
divided into two families: the first family with an even
number of momenta (“particles’) with the antiperiodic
spectrum A¥qy, ..., Qyy) including vacuum A1) = A2
and the second family with an odd number of particles
and the periodic spectrum for momenta AP(Q,, ...,
Ozn + 1) 1NCluding the “one-particle” state

a*i9q

AP(q) = APvg = APe”
Here,
(21)

In terms of this notation, the resulting expressions for
the eigenvalues of the transfer matrix have the form

Ug/|vy = coshy,, O, = arg(v,).

2n

) . O 0
A (qlv teny q2n) = A expa(z (_qu + leqk)D’
=1

(22)
Lok 1
on Lty
n+1
)\D — )\P _ +i0O 0
(A1, -++s O2n+1) eXpDZ( Yo, T 100,
Dz J (23
Lq
EDZ.

The appearance of the phase ©, in Egs. (22) and (23)
for eigenvalues indicates that the system evolves not
only in“time,” but also in“space.” The phase O, disap-
pears if the coefficient Cs in Eq. (12) vanishes, which
imposes a certain constraint on the parameters of Bolt-
zmann weights (4). As seen from Egs. (22) and (23), at
©, = 0, the spectrum of eigenvalues corresponding to
multiparticle states is strongly degenerate, because y, =

Yq and, therefore, the sums Ya, with different sets of
momenta can be equal to each other. If ©, # 0, degen-

JETP LETTERS Vol. 82 No.5 2005
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eration is removed and this property can be useful for
calculation of eigenvectors and form factors.

Before presenting the formulas for the eigenvalues
of thetransfer matrix in terms of parameters (2) and (5)
of the BBS model, we introduce the notation

Ag = 1-2up'cosq + pp?,
By = MM (Xy +XY)sing,

(24)
Cy = Yoy + 2xXpp'yy cosq + XX °pp,
D, = A,C,—B:.
Then,
o’ 2
Uq = agyZy,Z(Aqt +Cq)’
(25)
2 _ 40t
Ug—VgVq = ) .4Dq
ay'y

From Egs. (16) and (25), it follows that af,pq isaqua
dratic polynomial of t:

2
o
2GPq = W(Aqt2+cq+2t@)

(26)
GZ
= S AT (T +E)
yy
with the roots —t, and —t_;, where
1 ,
to = & (/Da=iB) (27

The sign of the root @ is fixed by the conditions
JD, = /D, qz0T
Do = (MW =1)(yy' + XK pp),
D = (M + 1)(YY —xKpp).
in notation (24) has

Since the function a3v, = a3p4V,

the form

2
a .
ac2>quq = yz—ylz(Aqtz—Cq+2|th)

2

_a
z_EAq(t _tq)(t + t—q)’

(28)

using Egs. (26) and (28), it is easy to verify that

t—t

Vg = —,

t+1,
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Finally, the formulas for the eigenvalues of the transfer
matrix have the form

a t K L
NG, - Gan) = A |‘|t+t‘* SE0Z+3, (29
2n+l
-, L
G A |‘| th S207, (30
where t, valuesare given by Eg. (27), and

ze = & (1+H H'L)l—l(t+t)

L 1— L L
A= OAop) )l_l(t+tq).
yy- L

A similar expression for the eigenvalues was
obtained for the particular caseof X =X,y =y, and u' =
M in [6] using the functional relation method. However,
we again emphasize that, in contrast to this method,
which provides only possible eigenvalues of the trans-
fer matrix (without indicating their multiplicities: 0, 1,
or more), the method described in thiswork, asis seen
from the above formulas, provides a set of the eigenval-
ues unambiguously.

This work was supported by INTAS (grant no. 03-
51-3350), the Ukrainian—French project “Dnipro,” and
the Ukrainian State Foundation for Fundamental
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