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Appeal to Authors and Readers
V. F. Gantmakher, Editor-in-Chief of the journal Pis’ma v ZhÉTF
The year 2005 marks forty years since the foun-
dation of the journal Pis’ma v ZhÉTF. It appeared in
1965 and soon after gained a high degree of prestige in
the physics community, becoming one of the leading
physics journals in the Soviet Union. Its English trans-
lation was begun immediately with the foundation of its
identical English-language edition JETP Letters.

In order to retain its role in the current, rapidly
changing world, the journal was reorganized in the
1990s: it became open and international and began to
present the achievements of not only Russian physicists
but also of scientists from all over the world. Since
1991, articles in English have been accepted and pub-
lished in the journal, and manuscripts have been
received via e-mail since 1994. This means that foreign
scientists, as well as Russian scientists working abroad
or in remote regions of Russia, can send their manu-
scripts to Pis’ma v ZhÉTF in either English or Russian
as easily as Moscow-based authors submit their printed
manuscripts.

As a result, we now receive a large number of arti-
cles from abroad. The numbers presented below illus-
trate the source countries of our articles.

DATA ON THE PAST TEN YEARS (1995–2004)1

The total number of published articles is 3114
Works were presented by authors from scientific

organizations of various countries. The amounts of
such presentations from various countries are2 

Russia 3626
Former USSR republics 231
Other countries 1077

The distribution of the presentations from Russian
regions and various countries is as follows.

Russia

Moscow 1423
Moscow region 982
St. Petersburg and Leningrad region 328

1 The statistical data were prepared by T.G. Tratas (Institute of
Solid State Physics, Russian Academy of Sciences). They are
presented more completely on the journal’s website
http://www.jetpletters.ac.ru.

2 The numbers of presentations are larger than the respective num-
bers of works, because the authors of one article can be from dif-
ferent organizations and different states.
0021-3640/05/8206- $26.00 0317
Novosibirsk 288
Krasnoyarsk 113
Nizhni Novgorod 109
Yekaterinburg 103
Kazan 78
Tomsk 36
Voronezh 15
Saratov 15
Other cities 136

Former USSR republics
Ukraine 172
Armenia 23
Belarus 19
Others 17

Other countries
Germany 264
France 151
United States 141
United Kingdom 81
Japan 67
Italy 55
Finland 54
Switzerland 34
Sweden 28
The Netherlands 28
Poland 26
Israel 25
Belgium 16
Spain 11
Czech Republic 10
Others (24 countries) 86

The main achievement of the current editorial board
is the rapid publication of the articles. To this end and
in order to ensure distinct and judicious selection of
articles, we follow the tradition of our predecessors,
who always ensured that the editorial board was com-
prised only of actively working scientists possessing
their own opinions in their areas of research and who
could themselves evaluate the essence and significance
of the works without intermediaries. In inviting new
members to the editorial board, we examine the cre-
ative potential of a person, his ability to understand and
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evaluate a work, his personal nature, and his dedication
to his responsibilities. Received manuscripts are imme-
diately distributed according to the specialization of the
members of the editorial board, who assign referees,
meet with them or contact them by phone and e-mail,
and formulate a preliminary decision. No less than
twice a month does the editorial board meet for com-
mon discussion of all the works and to make final deci-
sions.

Owing to the procedure developed for refereeing
articles, the time interval from the submission of a
manuscript to the journal to its publication has been
reduced to 40 days (Russian edition). The preparation
of the English-language edition takes an additional 40–
45 days (this is currently performed by the International
Academic Publishing Company Nauka/Interperiodica).
Simultaneously with the transfer of an issue to press,
we place it on our website, http://jetpletters.ac.ru,
where it appears with free access 10–12 days before
official publication of the issue. As a result, the real
publication time is even shorter.

Confidence in the kindness and respectability of our
editors strengthens the position of the editorial board in
conflict situations. When conversing with authors who
do not agree with our decisions, we always emphasize:
{We may have made a mistake in rejecting your article.
If you think that your results are worthy of publication,
send your manuscript again. However, please do not
write us long letters with explanations. These explana-
tions are needed not for us but for your future readers.
We urge you to rewrite the article before sending it to
us again, because our first decision means that some-
thing was wrong: perhaps your argumentation was
weak, the proofs were unclear, or the explanations were
doubtful, etc.}. This suggestion works, and manuscripts
submitted repeatedly are often accepted—often, but not
always. The percentage of rejected articles is quite
high. The numbers of articles submitted and accepted in
recent years are as follows.

Several years ago, a new rubric Scientific Summa-
ries appeared in the journal. Small reviews ordered by
the editorial board and written by the heads of com-
pleted projects supported by the Russian Foundation
for Basic Research are published under this rubric.
Selection of such projects is also the prerogative of the
members of the editorial board.

Thus, the members of the editorial board of Pis’ma
v ZhÉTF play a more important role than in other jour-
nals in the choice of which articles are published in the
journal; they also represent a source of indirect influ-
ence on the development of various scientific areas. For
this reason, in the anniversary year of 2005, the edito-
rial board has decided to give its editors the opportunity
to express themselves under the rubric Scientific Sum-
maries. This issue consists entirely of reviews of urgent
subjects written by former and current editors of
Pis’ma v ZhÉTF and thereby represents an original
manifesto of the editorial board. We hope for a favor-
able reaction from our readers. From our authors, we
await new articles presenting brilliant results.

Translated by R. Tyapaev

Year 1995 1997 1999 2001 2004

Submitted 705 604 614 561 550

Accepted 365 305 308 292 308
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Vacuum Energy: Quantum Hydrodynamics 
vs. Quantum Gravity¶

G. E. Volovik*
Low Temperature Laboratory, Helsinki University of Technology, FIN-02015 HUT, Finland

Landau Institute for Theoretical Physics, Moscow, 119334 Russia
e-mail: volovik@boojum.hut.fi

Received June 6, 2005

We compare quantum hydrodynamics and quantum gravity. They share many common features. In particular,
both have quadratic divergences, and both lead to the problem of the vacuum energy, which, in quantum gravity,
transforms to the cosmological constant problem. We show that, in quantum liquids, the vacuum energy density
is not determined by the quantum zero-point energy of the phonon modes. The energy density of the vacuum is
much smaller and is determined by the classical macroscopic parameters of the liquid, including the radius of
the liquid droplet. In the same manner, the cosmological constant is not determined by the zero-point energy of
quantum fields. It is much smaller and is determined by the classical macroscopic parameters of the Universe
dynamics: the Hubble radius, the Newton constant, and the energy density of matter. The same may hold for
the Higgs mass problem: the quadratically divergent quantum correction to the Higgs potential mass term is
also cancelled by the microscopic (trans-Planckian) degrees of freedom due to the thermodynamic stability of
the whole quantum vacuum. © 2005 Pleiades Publishing, Inc.

PACS numbers: 03.70.+k, 04.90.+e, 67.90.+z, 98.80.Es
1. INTRODUCTION

The problem of quantum hydrodynamics is at least
65 years old (see quantization of the macroscopic
dynamics of liquid in the first Landau paper on superflu-
idity of 4He [1]). It is almost as old as the problem of
quantum gravity [2]. Quantum hydrodynamics and
quantum gravity share many common features (e.g., both
have quadratic divergences), and they probably will have
a common destiny. The main message from quantum
hydrodynamics to quantum gravity is that, most proba-
bly, quantum gravity cannot be constructed, because
quantum hydrodynamics cannot be constructed.

Of course, one can quantize sound waves in hydro-
dynamics to obtain quanta of sound waves—phonons.
Similarly, one can quantize gravitational waves in gen-
eral relativity to obtain gravitons. However, one should
not use low-energy quantization for calculation of the
radiative corrections that contain Feynman diagrams
with integration over high momenta. In particular, the
effective field theory is not appropriate for the calcula-
tion of the vacuum energy in terms of the zero-point
energy of quantum fields. The latter leads to the cosmo-
logical constant problem in gravity [3, 4] and to the
similar paradox for the vacuum energy in quantum
hydrodynamics: in both cases, the vacuum energy esti-

¶ The text was submitted by the author in English.
*A member of the editorial board of the journal JETP Letters since

1991.
0021-3640/05/8206- $26.00 0319
mated using the effective theory is many orders of mag-
nitude too big. We know how this paradox is solved in
quantum liquids, and we may expect that the same gen-
eral arguments based on the thermodynamic stability of
the ground state of a quantum liquid are applicable to a
quantum vacuum.

There is another big discrepancy between the theory
and experiment, which is called the hierarchy problem
in the Standard Model [5]. It is believed that the mass
of the Higgs boson is on the order of or somewhat larger

than the mass of the gauge boson:  ~ . For exam-
ple, in analogy with the effect of Cooper pairing in
superconductivity, the Higgs mass can be equal to 2mt,
where mt is the mass for the top quark [6, 7]. However,
the radiative correction to the Higgs mass is quadrati-
cally diverging, and it is determined by the ultraviolet
cutoff. If one chooses the natural GUT or Planck scale
as the cutoff energy, one obtains that the Higgs boson

mass must be extremely large:  ~ ±1026  and

 ~ ±1034  correspondingly (the sign of the radia-
tive correction is determined by the relevant fermionic
and bosonic content of the theory and the cut-off
scheme). We argue that this discrepancy is related to the
problem of the vacuum energy, and, thus, the same ther-
modynamic arguments that have been used for the cos-
mological constant problem can be applicable to the
hierarchy problem.

mH
2 MZ

2

mH
2 MZ

2

mH
2 MZ

2
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2. CLASSICAL HYDRODYNAMICS
OF QUANTUM LIQUID

Let us consider the hydrodynamics of an isotropic
superfluid liquid at T = 0 (such as the bosonic superfluid
4He and the fermionic superfluid 3He–B [8]). Though
the superfluid liquid is essentially quantum, its macro-
scopic low-frequency dynamics is classical and is rep-
resented by classical hydrodynamics. It is background
independent; i.e., it does not depend on the details of
the underlying microscopic physics, and it is the same
for fermionic and bosonic liquids. The equations of the
nonrelativistic superfluid hydrodynamics (in the
absence of quantized vortices) are the Hamilton equa-
tions for canonically conjugated fields:

(1)

Here, ρ is the mass density, φ is the velocity potential
(in the absence of quantized vortices the superfluid
velocity is potential: v = ∇φ ), and the Hamiltonian is
the energy functional of the liquid expressed in terms of
ρ and φ:

(2)

where (ρ) = e(ρ) – µρ, e(ρ) is the energy density of
the liquid expressed in terms of the liquid density, and
µ is the chemical potential—the Lagrange multiplier

that takes into account the mass conservation  =

const. At the fixed chemical potential µ, this functional
has a minimum at v = 0 and ρ = ρ0(µ), where the equi-
librium density ρ0 is determined by the equation
d /dρ = 0 (or de/dρ = µ). This is the ground state of the
liquid with the relevant energy density (ρ0) and the
relevant total energy

(3)

Note again that this consideration is completely classi-
cal and operates with the quantities ρ0 and (ρ0), which
are the classical output of the quantum system: the
superfluid 4He and superfluid 3He–B are systems of
strongly correlated, strongly interacting, and highly
entangled helium atoms governed by the laws of quan-
tum mechanics. The reason for the classicality is the
macroscopic character of the collective motion.

3. QUANTIZED HYDRODYNAMICS

What happens if we try to construct the quantum
hydrodynamics, i.e., to quantize the hydrodynamic
motion of the liquid determined by Eqs. (1). If we only
use hydrodynamic variables, we are unable to recon-
struct the whole microscopic Hamiltonian for the inter-
acting atoms. This is because, from the big realm of the
complicated quantum motion of the 4He atoms, we have

∂tρ
δH
δφ
-------, ∂tφ

δH
δρ
-------.–= =

H d3r
1
2
---ρ ∇φ( )2

ẽ ρ( )+ ,∫=

ẽ

d3rρ∫

ẽ

ẽ

E0 V ẽ ρ0( ).=

ẽ

chosen only the hydrodynamic modes whose wave-
lengths are much bigger than the interatomic spacing a,
which plays the role of the Planck length: ka ! 1. That is
why, what we can do at best is to quantize the sound
modes. However, even in this case, there is a danger of
double counting, because, starting from the quantum sys-
tem, we have obtained the classical behavior of the soft
variables ρ and φ, and now we are trying to quantize them
again. In particular, the energy E0 in Eq. (3) is the whole
energy of the quantum liquid, and it already includes
(from the very beginning) the energy of those degrees of
freedom that are described in terms of phonons. Let us see
how this double counting typically occurs.

The conventional quantization procedure for sound
waves in the background of the state with ρ = ρ0 and
φ = 0 is the introduction of the commutation relations
for the canonically conjugated variables:

(4)

where

(5)

(6)

Introducing these perturbations to Eq. (2), one obtains
the quantum Hamiltonian as the sum of the ground state
energy and the Hamiltonians for the quantum oscilla-
tors:

(7)

where ωk = ck, and the speed of sound c is given by

c2 = ρ0d2e/d .

There is nothing bad about this quantization if we
are constrained by the condition ka ! 1. However, if we
start to apply this consideration to the diverging quanti-
ties such as the vacuum energy, we are in trouble.

4. VACUUM ENERGY IN QUANTUM 
HYDRODYNAMICS

The vacuum energy—the ground state of the Hamil-
tonian (7)—contains the zero-point energies of quan-
tum oscillators:

(8)

However, the vacuum expectation value of  must be
equal to E0 by definition. This is because E0 is not the

φ̂k ρ̂k',[ ] i"δkk' ,=

ρ̂ r( ) ρ0
1

V
-------- ρ̂keik r⋅ c.c.+( ),

k

∑+=

φ̂ r( ) 1

V
-------- φ̂keik r⋅ c.c.+( ).

k

∑=

Ĥ E0
1
2
--- ρ0k2 φ̂k

2 c2

ρ0
----- ρ̂k

2+ 
 

k

∑+=

=  E0
1
2
--- "ωk akak

† ak
†ak+( ),

k

∑+

ρ2
ρ0

vac Ĥ vac〈 〉 E0
1
2
--- "ωk.

k

∑+=

Ĥ
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“bare” energy, but it is the total relevant energy of the liq-
uid, which includes all the quantum degrees of freedom
of the liquid. Thus, the naive application of the zero-
point energy leads to the paradoxical conclusion that

(9)

This contradicts our intuition that the zero-point fluctu-
ations give for the vacuum energy the estimate  ~

"c , where kuv ~ 1/a is the ultraviolet cutoff. How-
ever, Eq. (9) simply means that the zero-point energy of
the phonons has already been included into the original
E0, together with all the other modes; i.e., by writing
Eq. (9) we simply prevent the double counting of the
vacuum energy. Thus, the correct form of the Hamilto-
nian for the phonons must be

(10)

One may ask what the role of the quantum fluctua-
tions of the hydrodynamic field is. Do they provide the
main or a substantial part of E0? To see this, let us con-
sider the vacuum energy of a superfluid liquid in the
case when an external pressure P is applied to the liq-
uid. According to the Gibbs–Duhem relation, which is
valid for the equilibrium states, one has

(11)

At T = 0, one obtains that the vacuum energy is regu-
lated by external pressure

(12)

For the positive external pressure P > 0, one obtains the
negative energy density of the vacuum,  < 0, which
certainly cannot be obtained by summation of the pos-
itive zero-point energies of the phonons. Thus, the con-
tribution of the zero-point energies of phonons to E0
gives us no idea regarding the total value of E0, since it
may even give the wrong sign of the vacuum energy.

Furthermore, for the superfluid helium liquid iso-
lated from the environment, the pressure P = 0 and,
thus, the vacuum energy density and the vacuum energy
are zero: (ρ0) = 0, E0 = 0. For the finite system—the
helium droplet—the vacuum energy density becomes
nonzero due to the capillary pressure:

(13)

It is expressed through the classical parameters of the
liquid droplet: its radius R and surface tension σ. When
we compare this physical result with the naive estima-
tion that only takes into account the contribution of the

phonon zero-point energy  ~ "c , one finds that
their ratio is determined by the ratio of the quantum
microscopic scale to the classical macroscopic scales:

1
2
--- "ωk

k

∑ 0.=

ẽzp

kuv
4

Ĥ E0 "ωkak
†ak.

k

∑+=

P TS µρ0 e ρ0( ).–+=

ẽ P.–=

ẽ

ẽ

ẽ P–
2σ
R

------.–= =

ẽzp kuv
4
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/  ~ a/R. For the macroscopic bodies, the dis-
crepancy is big.

5. APPLICATION TO QUANTUM VACUUM

This demonstrates that the vacuum energy is deter-
mined by the macroscopic thermodynamic laws and is
not related to the diverging contribution of the zero-
point motion of phonons. The result E0 = 0 for the self-
sustained homogeneous systems shows that, in this sys-

tem, the large positive contribution  ~ "c  of
phonons is completely compensated for without any
fine tuning by the other quantum degrees of freedom,
i.e., by the microscopic (atomic ≡ trans-Planckian)
degrees of freedom that cannot be described in terms of
the effective (hydrodynamic) field [9].

This compensation, which occurs in the homoge-
neous vacuum, does not prohibit the Casimir effect in
the systems with boundaries. If the energy difference
between two vacua comes solely from the long-wave-
length physics, it is within the responsibility of the
phonon (photon) modes and can be calculated using
their zero-point energies.

One can immediately apply this lesson to quantum
gravity: the vacuum energy density evac (or cosmologi-
cal constant) is not renormalized by the zero-point
energies of the quantum fluctuations of the low-energy
modes. It is meaningless to represent the vacuum
energy as the sum over the zero-point oscillations

 and to estimate the vacuum energy density

as  ~ "c . The vacuum energy (and thus the cos-
mological constant) is the final classical output of the
whole quantum vacuum with all its degrees of freedom:
sub-Planckian and trans-Planckian. It is regulated by
macroscopic physics, and it obeys the macroscopic
thermodynamic laws. The thermodynamic Gibbs–
Duhem relation (the analog of Eq. (12)) must be satis-
fied for the equilibrium vacuum, and it does follow
from the cosmological term in Einstein action:

(14)

For the vacuum isolated from the “environment” (free
vacuum), the pressure is zero and thus the vacuum
energy density is zero too: evac = –Pvac = 0 [9, 10]. This
means that the natural value of the cosmological con-
stant in the equilibrium homogeneous time-indepen-
dent free vacuum is Λ = 0 rather than the contribution

Λ ~ "c  of the zero point energies of the effective
quantum fields, which is completely compensated for.

In the case of the developing Universe polluted by
matter, the vacuum energy is disturbed and the compen-
sation is not complete. However, again, the natural
value of Λ is determined not by the quantum zero-point
energy but (as in quantum liquid in Eq. (13)) by the

ẽtrue ẽzp

ẽzp kuv
4

1
2
--- "ωkk∑

ezp kuv
4

Λ evac Pvac.–= =

kuv
4
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classical macroscopic parameters of the Universe
dynamics: the Hubble radius R of the Universe, the
Newton constant G, and the energy density of matter
ρmat. This implies that, depending on the details of the
process, one has Λ ~ ρmat or Λ ~ 1/GR2 (or Λ is given by
some combination of these factors). Both estimates are
comparable to the measured value of Λ and are much
smaller than the naive estimation of the zero-point
energy of quantum fields: Λtrue/Λzp ~ a2/R2 ~ 10–120. As
in quantum hydrodynamics, this contains the ratio of
the quantum microscopic scale a = 1/kuv = "c/EPlanck to
the classical macroscopic scale R.

6. HIGGS MASS PROBLEM

As distinct from quantum gravity, the Standard
Model of electroweak and strong interactions is the
low-energy effective theory, which can exist in the
quantum form. The condensed matter experience dem-
onstrates that this effective theory can be emergent. In
condensed matter systems with point nodes in the
energy spectrum of fermions, the effective gauge fields
and chiral fermions gradually emerge in the low-energy
corner. The point nodes are protected by topology in
momentum space and, thus, are generic [9]; that is why
the effective theory of the Standard-Model type is
generic. Though this effective theory is the final output
of the underlying quantum system, it can be quantized
again, in spite of the ultraviolet divergences. The rea-
sons for this is that above the symmetry breaking elec-

troweak scale, i.e., at k2 @ , the divergences are log-

arithmic of the type ln(k2/ ). Since the logarithm is
concentrated mostly in the sub-Planckian region kuv @

k2 @ , it is within the jurisdiction of the low-energy
effective theory.

At k2 ~  ~ 10–34 , the symmetry breaking
occurs and the nonzero vacuum expectation value of
the Higgs field develops. One may expect that, at these
extremely low energies as compared to the Planck or
GUT scale, the effective theory must work well. Instead
the ultraviolet problem arises. In particular, if one tries
to calculate the quantum radiative corrections to the
mass of the Higgs boson, the quadratic divergence
occurs, which is outside the jurisdiction of the Standard
Model. What can one say about this problem using the
condensed matter experience?

To describe the electroweak transition, the action for
the gauge fields and quarks and leptons is supple-
mented by the action for the Higgs field,

(15)

and the terms describing the interaction of the Higgs
field with fermions and gauge fields. Here, the Higgs

MZ
2

MZ
2

MZ
2

MZ
2 EPlanck

2

SHiggs d4x
1
4
---λ φ2 φ0

2–( )2
c2∇φ( )2 ∂tφ( )2–+ 

  ,∫=
field φ is a weak doublet. The Hamilton function for the
Higgs field is:

(16)

The Higgs field is massive with the mass

(17)

From the condensed matter point of view, the mass 
and the vacuum energy E0 are the final classical output
of the whole underlying quantum vacuum. We know
that the energy of the whole vacuum must be zero
according to the thermodynamic stability of the free
vacuum: E0 = H(φ = φ0) = 0. If one does not take into
account the possible infrared anomalies, Eq. (16) with
E0 = 0 is the general form satisfying the stability condi-
tion at T = 0 in the absence of the external environment.
In the effective theory, the information from the under-
lying physics is thus lost, and the type of the effective
theory only depends on the symmetry and topology of
the system.

Two parameters of the effective theory—λ and the
equilibrium value φ0 of the Higgs field—can be consid-
ered as phenomenological. Though these parameters
are determined by microscopic (Planck) physics, their
values may essentially differ from the microscopic
scales. Examples are provided by superconductivity of
metals and superfluidity of Fermi liquids, whose energy
scale is exponentially small compared to the corre-
sponding microscopic energy scale EF (the Fermi

energy): λ  ~ exp(–1/g). Since the effective cou-
pling g is typically small, g ! 1, this leads to the mac-
roscopic energy and length scales for the effective Gin-
zburg–Landau theory of superconductivity. In Rhod-
ium metal, which has the lowest transition temperature

observed in metals, Tc ~ 0.3 mK [11], one has λ  ~

10−14 . In the fermionic superfluid liquid 3He, the
coupling g is small due to the many-body effects and one

has λ  ~ 10–6 ; the superfluidity of the 3He atoms in
a dilute 3He–4He mixture has not yet been found, which

suggests that, in this system, λ  < 10–8 .

Let us see what happens if we take into account the
zero-point energy of quantum fields, including the
zero-point energy of the Higgs field φ. In condensed
mater, this means that we quantize the system again;
however, now, instead of the whole system of atoms, we
are only dealing with the collective bosonic and fermi-
onic fields that enter the effective theory.

Introducing the quantum operators for the Higgs field

(18)

HHiggs E0=

+ d3x
1
4
---λ φ2 φ0

2–( )2
c2∇φ( )2 ∂tφ( )2+ + 
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one obtains the Hamiltonian for the Higgs bosons:

(19)

The vacuum energy now contains the zero-point energy
of the φ field, and, for completeness, one must also add
the zero-point energy of other bosonic fields of the
Standard Model—the gauge fields—and the negative
energy of the Dirac vacuum of fermions (quarks and
leptons):

(20)

However, from the condensed matter experience, it fol-
lows that we must forget about the zero-point energy of
the effective fields. They have already been included
into the vacuum energy E0, together with the energies
of microscopic degrees of freedom. Moreover, the total
vacuum energy must be zero in equilibrium, which
means that the trans-Planckian physics fully compen-
sates for the zero-point energy contribution of the sub-
Planckian modes without any fine tuning.

Let us suppose that we are not aware of this thermo-
dynamic principle of perfect compensation. Then, we
must seriously consider the zero-point energy of
bosonic and fermionic quantum fields (massless and
massive) and estimate its contribution to the radiative
correction to the Higgs mass. Due to the interaction of
the Higgs field with the gauge bosons and fermions, all
the fermions and also the W- and Z-bosons become
massive:

(21)

and the masses of the fermions and bosons depend on
the Higgs field

(22)

(for the Higgs field itself, the corresponding λH = λ in
Eq. (17), while the photon remains massless, λA = 0).

This dependence leads to the  term in the zero-point
energy, which must be identified with the additional
mass term for the Higgs field coming from the quantum
effects:

(23)

The sum in Eq. (23) diverges quadratically. Neglecting
the fermion masses except for that of the heaviest fer-
mion—the top quark with the mass mt—one obtains for
the radiative correction to the Higgs mass:

(24)
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With MW ~ MZ ~ mt ~ mH ~ 102–103 GeV, λ ~ 1 and kuv ~

1016–1019 GeV, the quantum correction δ( ) is many

orders of magnitude bigger than  itself; this is the
hierarchy problem in the Standard Model (see review
paper [5]). From the condensed-matter point of view,
the origin of this huge discrepancy is the same as in the
cosmological constant problem: it is the diverging zero-
point energy of quantum fields. The general form of the
zero point energy in Eq. (20) is

(25)

where |a4|, |a2|, and |a0| are of order unity. The main con-
tribution of zero-point energy to the vacuum energy and
cosmological constant diverges quartically, while its
contribution to the Higgs mass diverges quadratically.
The term with a4 gives too large a value for the vacuum
energy, which in systems with gravity transforms to the

large cosmological constant Λ ~  leading to the
main cosmological constant problem [3, 4]. The term
with a2 leads to the hierarchy problem in the Standard

Model, since it gives δ( ) = (1/2)d2Ezp/d  ~ ,
where we used Eq. (17). Both problems come from the
same estimation of the vacuum energy as the zero point
energy.

The exact calculation and also the thermodynamic
analysis demonstrate that, in equilibrium, the total vac-
uum energy is zero, Evac = 0, if the system is isolated
from the environment. The zero-point energy of quan-
tum fields, which is only a part of the whole energy of
the quantum vacuum, is thus fully compensated for by
the microscopic degrees of freedom. This suggests the
solution to the cosmological constant problem, and it
also makes doubtful the use of the zero-point energy for
the estimation of the mass of the Higgs boson, since the
quadratically diverging term in the vacuum energy is
also absorbed by microscopic physics to nullify the
energy density of the equilibrium vacuum. The same
thermodynamic principle that leads to the full compen-

sation of the  term leads to the full compensation of

the  term. Thus, the condensed matter suggests that
the thermodynamic principle of the stability of the free
vacuum provides the solution of both the cosmological
constant problem and the hierarchy problem.

On the other hand, the logarithmically diverging
term in Eq. (25) is within the responsibility of the effec-
tive theory, and it may play an important role when the
deviations from the equilibrium are considered.

7. DISCUSSION

There are some lessons from condensed matter, and
from quantum hydrodynamics in particular, for the rel-
ativistic quantum fields and gravity. Because of the
power-law divergences, the quantum hydrodynamics
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cannot be constructed. One can quantize the acoustic
field to obtain its quanta—phonons—and use this only
at the tree level. All the other diagrams are not within
the responsibility of the low-energy effective theory.
Similarly, the quantum gravity can be used only at the
tree level. The classical energy functional (2) in hydro-
dynamics, as well as the classical Einstein action for
gravity, and Eq. (16) for the Higgs field represent the
final classical output of the whole quantum vacuum.
They cannot be renormalized by the zero-point energy
of the effective quantum fields, which represent only a
part of all the degrees of freedom of the quantum vac-
uum. The quadratically and quartically divergent terms
are not within the jurisdiction of the effective low-
energy theory alone. They must be considered using the
microscopic theory of the vacuum state, which is
known in condensed matter but is not known in particle
physics.

However, the condensed matter suggests that the
whole quantum vacuum, which contains the zero-point
motion of the effective quantum fields as well as the
trans-Planckian degrees of freedom, obeys the thermo-
dynamic laws. The latter state that the energy of the
equilibrium free vacuum must be zero. This means that
the huge energy of the zero-point motion of the effec-
tive fields is cancelled without any fine tuning by the
trans-Planckian degrees of freedom. The exact cancel-

lation of the quartic terms  in the vacuum energy
provides a possible solution of the cosmological con-
stant problem. Thus, when the whole vacuum is consid-
ered, the natural value of the cosmological constant Λ
is zero in the free equilibrium vacuum. In the perturbed
vacuum, Λ is determined not by the quantum zero-point
energy but by the classical macroscopic parameters of
the Universe dynamics: the Hubble radius R of the Uni-
verse, the Newton constant G, and the energy density of
the matter ρmat.

Similar exact cancellation of the quadratic terms

, which are responsible for the radiative corrections
to the Higgs mass, provides the possible solution of the
hierarchy problem in the Standard Model. The super-
conductivity in metals and superfluidity in Fermi liq-
uids demonstrate that the analog of the Higgs mass in
these systems is typically much smaller than the rele-
vant ultraviolet energy scale.

The main condensed-matter argument against the
quantum gravity is that, in condensed matter, the effec-
tive metric field is the low energy phenomenon, which
naturally emerges together with gauge fields and chiral
fermions in the low-energy corner [9]. At high energy,
the metric modes can no longer be separated from all
the other microscopic degrees of freedom of the quan-
tum vacuum, and, thus, pure quantum gravity cannot
exist. Nevertheless, there were attempts to construct the
quantum gravity in terms of only the metric field; see,
e.g., [12], where the ultraviolet fixed point for quantum
gravity has been derived. This makes sense under the

kuv
4

kuv
2

following conditions: the ultraviolet fixed point must
occur much below the real microscopic energy scale,
i.e., in the region where the metric field is still well
determined; in the infrared limit, the cosmological con-
stant must be zero to match the thermodynamic require-
ment. One may look for a similar ultraviolet fixed point
in quantum hydrodynamics; i.e., one can try to con-
struct such a liquid in which the fixed point occurs at
the intermediate length scale much bigger than the
interatomic distance, where the macroscopic hydrody-
namic description is still valid.

The possibility of such an intermediate energy cut-
off scale in the Standard Model has been discussed in
[13]. It was suggested that the intermediate scale is
close to the Planck scale and that the Newton constant
is determined by this scale. In this scenario, the real
microscopic (“atomic”) energy scale, where, say, the
Lorentz invariance is violated, is much bigger. This sce-
nario has many advantages. In particular, the merging
of the running coupling constants of the weak, strong,
and electromagnetic fields occurs naturally and does
not require the unification of these gauge fields at high
energy.
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and by the European Science Foundation COSLAB
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A large thickness of the heavy nuclei brings a new hard scale into the pQCD description of hard processes in a
nuclear environment. This new scale breaks the conventional linear k⊥  factorization which must be replaced by
a new concept of the nonlinear nuclear k⊥  factorization. Here, we review the recent progress in the theory of
nonlinear k⊥  factorization. Our focus is on the role of diffractive interactions, the variation of the pattern of k⊥
factorization for single-jet processes from deep inelastic scattering to hadron–nucleus collisions and universal-
ity classes for dijet production off nuclei. © 2005 Pleiades Publishing, Inc.

PACS numbers: 11.80.La, 12.38.Bx, 13.85.–t, 13.97.–a
1. INTRODUCTION

Linear k⊥  factorization is a fundamental ingredient
of the pQCD description of high-energy hard processes
off free nucleons. A large thickness of a target nucleus
introduces a new scale—the so-called saturation scale

, which breaks the linear k⊥  factorization theorems
for hard scattering in a nuclear environment. In this
paper, we review the recent work by the ITEP–Jülich–
Landau Collaboration, in which a new concept of non-
linear k⊥  factorization has been introduced [1]. We
illustrate this new concept using several examples of
single-jet to dijet production in deep inelastic scattering
(DIS) off heavy nuclei and proton (deuteron)–nucleus
collisions studied at the Relativistic Heavy Ion Collider
(RHIC). The nonlinear k⊥  factorization emerges as a
generic feature of the pQCD approach to hard pro-
cesses in a nuclear environment [2–5]. The concrete
realizations depend strongly on the relevant pQCD sub-
processes, and we define the universality classes of
nonlinear k⊥  factorization for production of hard dijets.
Our approach is based on the equivalence between the
parton fusion description of the shadowing introduced
in 1975 [6] and the unitarization on the color dipole–
nucleus interaction [7]. The major technical problem in
the unitarization program is the non-Abelian evolution
of color dipoles in a nuclear environment, and we
present a closed-form solution based on the multiple-
scattering theory [1, 8, 9].

¶ The text was submitted by the authors in English.
*A member of the editorial board of the journal JETP Letters
from 1991 to 1993.

**A member of the editorial board of the journal JETP Letters
since 1994.
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2. THE k⊥  FACTORIZATION 
FOR DIS OFF FREE NUCLEONS

Our starting point is the color dipole factorization
for DIS at small x:

(1)

Here, z and (1 – z) is the energy partition between q &
, and r is the size of the color dipole. There is an exact

equivalence between the color dipole and the k⊥  factor-
ization [7, 10, 11]:

(2)

(3)

where σ0(x) = σ(x, r)|r → ∞. The x dependence of σ(x, r)
is governed by the color dipole BFKL equation [12].
The unintegrated gluon density f(x, k) furnishes a uni-
versal description of F2p(x, Q2) and of the final states.
For instance, the linear k⊥  factorization for a forward
dijet cross section reads [13]

(4)

σT x Q2,( ) γ*〈 |σ x r,( ) γ*| 〉=

=  z d2rΨγ** z r,( )σ x r,( )Ψγ* z r,( ).∫d

0

1

∫

q

σ x r,( ) αS r( ) d2k4π 1 ikr( )exp–[ ]
Ncκ

4
-----------------------------------------------------

∂GN

∂ κ2log
-----------------,∫=

f x k,( ) 4π
Ncσ0 x( )
-------------------- 1

κ4
-----

∂GN x k,( )
∂ κ2log

-------------------------,=

2π( )2dσN

dzd2p+d2D
--------------------------

αS p2( )
2

---------------- f x D,( )=

× Ψ z p+,( ) Ψ z p+ D–,( )– 2,
© 2005 Pleiades Publishing, Inc.
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Fig. 1. The typical unitarity cuts and dijet final states in DIS: (a, b) free-nucleon target, (c) coherent diffractive DIS off a nucleus,
(d) truly inelastic DIS with multiple color excitation of the nucleus.
where Ψ(z, p) is the  wave function of the photon
and D = p+ + p– is the jet–jet decorrelation momentum.

From the unitarity point of view, Eq. (4) describes
the unitarity cuts of diagrams (Figs. 1a, 1b) for the for-
ward Compton scattering amplitude. The point that the
acoplanarity momentum D comes from the transverse
momentum of the exchanged gluon is obvious.

3. COLLECTIVE UNINTEGRATED 
NUCLEAR GLUE

DIS off a nucleus at x & xA can be described in terms
of the color dipole–nucleus cross section [7]:

(5)

where T(b) = nA(rz, b) is the optical thickness of a

nucleus at the impact parameter b and nA(rz, b) is the
nuclear matter density. This dipole cross section sums
the compact form of the Glauber–Gribov multiple-scat-
tering diagrams and is a basis for the quantitative
description of nuclear shadowing in DIS [14]. On the
other hand, nuclear shadowing can be understood in
terms of the fusion of parton fields of nucleons, which
spatially overlap in ultrarelativistic nuclei [6], and one
needs to quantify the idea of a fusion of partons.

Taking Eq. (4) for guidance, we would like to define
the collective unintegrated nuclear glue in terms of the
final-state observables. This requires an understanding
of the unitarity properties of the dipole–nucleus cross
section (5). In Fig. 1, we show the two typical unitarity
cuts for a nuclear target: the diagram of Fig. 1c corre-
sponds to the so-called coherent diffractive final state in
which the target nucleus remains in the ground state. It
is remarkable that, although the deposition of a dozen
MeV energy will break any heavy nucleus, at x & xA,
such a coherent diffraction makes up ≈50% of the total
cross section of DIS off a heavy nucleus [15]. To the
lowest order in pQCD, the coherent diffractive final
state consists of a back-to-back dijet with vanishing
transverse momentum transfer to the target nucleus,

qq

σA r( ) 2 d2b 1
1
2
---σ r( )T b( )–exp–

 
 
 

,∫=

rzd∫
and the large transverse momentum of the dijets comes
entirely from gluons exchanged with the target nucle-
ons [16]. Consequently, one can take the partial wave of
the diffraction amplitude, i.e., the nuclear profile func-
tion, for the definition of the collective nuclear glue per
unit area in the impact parameter space, φ(b, x, k)
[1, 6]:

(6)

A useful expansion is

(7)

where νA(x, b) = σ0(x)T(b), wj is the probability to

find j overlapping nucleons at the impact parameter b in
a Lorentz-contracted nucleus, and f (j)(x, k) is a collec-
tive glue of j overlapping nucleons:

(8)

The plateau at small momenta of gluons,

(9)

is a signal of the saturation effect.
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The above-defined collective nuclear glue φ(b, x, k)
gives precisely the same description of the amplitude of
the diffraction off a nucleus as f(k) does for the free-
nucleon target [16–18]. However, the diffraction cross
section that makes up ≈50% of the DIS off nucleus is a
quadratic, nonlinear functional of the collective nuclear
glue. Specifically, the diffractive single-jet cross sec-
tion reads

(10)

4. THE NON-ABELIAN INTRANUCLEAR 
EVOLUTION OF COLOR DIPOLES 

AND TRULY INELASTIC DIS

One must then study the factorization properties of
truly inelastic DIS of nuclei, which leaves several target
nucleons in the color-excited state (see Fig. 1d). The
salient feature of such processes is a non-Abelian intra-
nuclear evolution of color dipoles [1, 8, 9]. We start
directly with the dijet spectrum. The ab initio calcula-
tion of the nuclear distortion of the two-parton density
matrix, the Fourier transform of which gives the spec-
trum of dijets, can be reduced upon the closure over the
nuclear excitations to the problem of intranuclear prop-
agation of the color-singlet 4-parton states as illustrated
in Fig. 2:

(11)

where we subtracted the diffractive contribution. To the
standard dilute-gas nucleus approximation, the
Glauber–Gribov theory gives

(12)

where σ4( , , b+, b–) is the coupled-channel opera-
tor in the space of singlet–singlet |11〉  or octet–octet

dσD

d2bd2pdz
------------------------

1

2π( )2
-------------=

× d2kφ b x k, ,( ) Ψ z p,( ) Ψ z p, k–( )–[ ]∫
2
.

2π( )4dσin

dzd2p+d2p–

---------------------------- d2b+' d2b–' d2b+d2b–∫=

× ip+ b+ b+'–( )– ip– b– b–'–( )–[ ]exp

× Ψ* z b+', b–'–( )Ψ z b+ b––,( )

× S4A b+' b–' b+ b–, , ,( ){

– S4A
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|88〉  4-body dipoles. The derivation of this operator is a
major technical task (for more details, see [1]).

The integration over the transverse momenta of the
antiquark jet gives the following single-jet spectrum in
truly inelastic DIS [1]:

(13)

It is also the nonlinear functional of the collective
nuclear glue. However, in the total inclusive single-jet
spectrum, the diffractive and truly inelastic nonlinear
terms exactly cancel each other, and the single-particle
spectrum takes the linear k⊥ -factorizable form given by
the integral form of Eq. (4) [19].

It is a highly nontrivial finding: the whole multitude
of diffractive and truly inelastic unitarity cuts for DIS
off nuclei sums up to the same unitarity cuts as shown
in Figs. 1a and 1b, in which the unintegrated glue is
replaced by the collective nuclear glue as defined in [1,
16]. All distortions of the transverse momentum distri-
bution of the struck quark can exactly be reabsorbed
into the collective nuclear glue, which by itself is a
highly nonlinear functional of the free nucleon glue.
This is not a universal feature of hard scattering off
nuclei, though such a linear k⊥  factorization for a sin-
gle-jet spectrum in DIS is a special consequence of the
incident photon being the color-singlet parton. Even in
DIS, the property of linear k⊥  factorization shall break
for dijets.

5. THE FATE OF k⊥  FACTORIZATION
FOR DIJETS IN NUCLEAR DIS

The couple-channel non-Abelian evolution problem
for the dijet spectrum in nuclear DIS is readily solvable
to the large-Nc approximation. Here, the incident color-
singlet dipole first propagates the slice [0, β] from the
front face of a nucleus, then, at some depth 0 < β < 1,
excites into the color-octet state, and the further non-
Abelian evolution in the remaining slice [β, 1] consists

2π( )2 dσin

d2bd2pdz
------------------------

=  d2kφ b x k, ,( ) Ψ p( ) Ψ p k–( )– 2∫
– d2kφ b x k, ,( ) Ψ p( ) Ψ p k–( )–[ ]∫

2
.

Fig. 2. Unitarity diagram for the dijet spectrum in terms of
the 4-parton scattering amplitude.
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of color rotations within the space of octet dipoles
(Fig. 3).

The resulting nuclear dijet spectrum is a manifestly
nonlinear functional of the collective nuclear glue and
here emerges as a new concept of the nonlinear k⊥  fac-
torization:

(14)

where Φ(β, b, x, k) is the collective nuclear glue for the
slice [0, β] of a nucleus defined by

(15)

and

(16)

2π( )2dσA γ* QQ( )
d2bdzd2p–d2D

--------------------------------------------------------

=  
1
2
---T b( ) β d2k1d2k∫d

0

1

∫
× f x k,( )Φ 1 β– b x D, , , k1– k–( )Φ 1 β– b x k1, , ,( )

× Ψ β; z p– k1–,( ) Ψ β; z p– k1– k–,( )– 2

+ δ 2( ) D( ) Ψ 1; zg p–,( ) Ψ zg p–,( )– 2,

1
2
---βσ x r,( )T b( )–exp

=  d2kΦ β b x k, , ,( ) ikr( )exp∫

Ψ β; z p,( ) d2kΦ β b x k, , ,( )Ψ z p, k+( )∫=

Fig. 3. The color excitation of the dipole in the large-Nc
approximation.
is the wave function of the incident dipole distorted by
the coherent initial-state interaction (ISI) in the slice
[0, β] of a nucleus. The diffractive component,
∝δ (2)(D), gives exactly back-to-back dijets (for finite-
size nuclei, the D dependence is controlled by a slightly

modified nuclear form factor with the width D2 & ;
see [16]). The first component in (14) describes truly
inelastic DIS. Here, the slice [β, 1], in which the dipole
is in the color-octet state, gives the final-state interac-
tions (FSI). The nuclear dijet spectrum is of fifth order
in gluon field densities: a quartic functional of the col-
lective nuclear glue for the two slices of a nucleus and
a linear one of the free-nucleon glue f(x, k). The role of
different glues is noteworthy: the latter one describes
the hard singlet-to-octet transition; the former ones, the
coherent ISI and incoherent FSIs. The distinct physics
of ISI and FSI can require invoking the collective glue
for slices of the nucleus; the k⊥  factorization for the
truly inelastic DIS cannot be described by the classical
gluon field of the whole nucleus. The nonlinear k⊥ -fac-
torization result (14) must be contrasted with the free-
nucleon spectrum (4); it entails a nuclear enhancement
of the decorrelation of dijets from truly inelastic DIS

(the semihard dijets, |p±|2 & (b, x), are completely
decorrelated).

6. THE MASTER FORMULA
FOR NUCLEAR DIJETS

The above discussion of leading quark–antiquark

dijets in DIS, γ*  , can readily be extended to
quark–antiquark and quark–gluon dijets in subpro-

cesses g*g  , q*g  qg. Here, we discuss the
case when the beam and final-state partons interact
coherently over the whole nucleus, which at RHIC
amounts to dijets in the largest rapidity bins of the pro-

ton fragmentation region, x = (Q2 + )/2mEa & xA =

1/RAmp ≈ 0.1A–1/3, where RA is the radius of the target
nucleus of mass number A, Ea is energy of the beam
parton a in the target rest frame, and mp is the proton
mass [6, 14]. To the lowest order in pQCD, all the above
processes are of the form ag  bc and, in the labora-
tory frame, can be viewed as an excitation of the pertur-
bative |bc〉  Fock state of the physical projectile |a〉  by
one-gluon exchange with the target nucleon. Our focus
on excitation of the lowest Fock states at x & xA is jus-
tified by the kinematical constraints in pA collisions at
RHIC; understanding the very rich pattern of nonlinear
k⊥  factorization found in this regime is a must for the
further studies of the small-x evolution of jet phe-
nomena.
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The derivation of the master formula for the dijet
spectrum, based on the technique developed in [1, 8, 9],
is found in [3]:

(17)

It generalizes the DIS equation (11). If ba = b is the pro-
jectile’s impact parameter, then bb = b + zcr, bc = b –
zbr, where zb, c stand for the fraction of the light-cone
momentum of the projectile a carried by partons b and
c; Ψ(z, r) stands for the light-cone wave function of the
|bc〉  Fock state of the projectile; and its connection to
the parton-splitting functions is found in [3]. All S(n)

describe a scattering of color-singlet systems of n par-
tons, as indicated in Fig. 4. This is the crucial point: in
the course of our derivation of the dijet spectra and sin-
gle-jet spectra, we only deal with infrared-safe observ-
ables. S(2) and S(3) are readily calculated in terms of the
2-parton and 3-parton dipole cross sections [7, 9, 11];
general rules for the multiple scattering theory calcula-
tion of the coupled-channel S(4) are found in [1, 5].

7. THE FATE OF k⊥  FACTORIZATION 
FOR SINGLE-JET SPECTRA IN pA COLLISIONS

A short digression from dijets to single jets—the
integration over the transverse momentum of the unob-
served parton in the master formula (17)—is straight-
forward. The unobserved parton and its antiparton will
enter at the same impact parameter, and multiparton
color singlet states simplify to the two-parton ones. The
non-Abelian evolution simplifies to the Abelian one for
color-singlet dipoles made out of partons in the relevant
color representations. Still, the non-Abelian features of
QCD manifest themselves in the breaking of linear k⊥
factorization.

As we mentioned above, a remarkable recovery of
linear k⊥  factorization (9) for the single-jet spectrum in
DIS is rather an exception due to the abelianization in
the case of a colorless projectile—the photon. The radi-
ation of gluons from quarks, q*  qg, illustrates
nicely the salient features of breaking of linear k⊥  fac-
torization for the single-jet spectrum [3]. It is directly
relevant to jet production in the proton hemisphere of
pA collisions at RHIC [20, 21].

dσ a* bc( )
dzbd2pbd2pc

-------------------------------------
1

2π( )4
------------- d2bbd2bcd

2bb' d2bc'∫=

× ipb bb bb'–( )– ipc bc bc'–( )–[ ]exp

× Ψ zb bb bc–,( )Ψ* zb bb', bc'–( )

× Sbccb
4( ) bb' bc' bb bc, , ,( ) Saa

2( ) b' b,( )+{
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3( ) b bb' bc', ,( ) Sabc
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Here, we again show the large Nc results. The spec-
trum of gluons for the free-nucleon target reads

(18)

where Ψ(zg, pg) is the wave function of the qg Fock
state of the photon; its explicit form in terms of the par-
ton splitting functions is found in [3]. The same spec-
trum for the nuclear target is of the two-component
form

(19)

The first component is an exact counterpart of the free-
nucleon spectrum: it is linear k⊥  factorizable but is sup-
pressed by the nuclear absorption factor S[b, σ0(x)] =

exp . For central interactions of the

main experimental interest, the gluon spectrum is
entirely dominated by the second component, which is
a nonlinear functional of the collective nuclear glue.
This illustrates clearly a breaking of linear k⊥  factoriza-
tion for single jets; a full compendium of nonlinear k⊥ -
factorization results for single jets from all possible
pQCD subprocesses is found in [3].

2π( )2dσA q* gq( )
dzgd2pg

------------------------------------------------------
1
2
--- d2kf x k,( )∫=

× Ψ zg pg,( ) Ψ zg pg k+,( )– 2{

+ Ψ zg pg k+,( ) Ψ zg pg zgk+,( )– 2 } ,

2π( )2dσA q* gq( )
dzgd2pgd2b

------------------------------------------------------

=  S b
CA

CF

------σ0 x( ), d2kφ b x k, ,( )∫
× Ψ zg pg,( ) Ψ zg pg k+,( )– 2{

+ Ψ zg pg k+,( ) Ψ zg pg zgk+,( )– 2 }

+ d2k1d2k2φ b xA k1, ,( )φ b x k2, ,( )∫
× Ψ zg pg, zgk1+( ) Ψ zg pg k1 k2+ +,( )– 2.

1
2
---σ0 x( )T b( )–

Fig. 4. The S-matrix structure of the two-body density
matrix for the excitation a  bc.
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For soft gluons, zg ! 1, and the result (19) simplifies
to

(20)

It takes the linear k⊥ -factorization form in terms of
φgg(b, xA, k) = (φ ⊗  φ)(b, xA, k), which has the meaning
of the collective nuclear glue defined in terms of the
intranuclear propagation of the gluon–gluon color
dipole. This illustrates nicely the important point that
the collective nuclear glue is a density matrix in the
color space rather than a single scalar function [1].

One more point is noteworthy: there is a conspicu-
ous difference between the zg dependence of the free-
nucleon and nuclear spectra. This amounts to the pg

dependence of the Landau–Pomeranchuk–Migdal
effect; the same applies to the spectrum of leading
quarks and nuclear quenching of forward jets in pA col-
lisions [3].

8. THE FATE OF k⊥  FACTORIZATION 
FOR NUCLEAR DIJETS FROM pA COLLISIONS

A comparison of the k⊥ -factorization properties of
single-jet spectra in various pQCD processes suggests
a very rich pattern of nonlinear k⊥  factorization. Here,
we report closed-form analytic results for nuclear dijet
spectra from q*  gq and q*   subprocesses.
We show the leading-order terms of the 1/Nc expansion;
the higher-order terms can be derived following the
technique of [1]. The large-Nc properties of the excita-
tion q*   are similar to those of the excitation

γ*   in DIS, while those of g*   are quite
different. The free-nucleon quark–gluon dijet cross sec-
tion,

(21)

is simply the differential form of the single-jet spec-
trum (Eq. (82) in [3]).

The extension to nuclear targets is straightforward.
The set of color singlet 4-parton states  that

enter the master formula (17) includes , , and

 states. The amplitude of the excitation of the

 and  states from the initial state  is sup-
pressed ∝ 1/Nc, which is compensated for in the dijet

cross section by the number of color states in  and

2π( )2dσA q* gq( )
dzgd2pgd2b

------------------------------------------------------

=  d2kφgg b xA k, ,( ) Ψ zg pg,( ) Ψ zg pg k+,( )– 2.∫

QQ

qg

qq QQ

2 2π( )2dσN q* gq( )
dzgd2pgd2D

---------------------------------------------------------- f x D,( )=

× Ψ zg pg,( ) Ψ zg pg D–,( )– 2[

+ Ψ zg pg D–,( ) Ψ zg pg zgD–,( )– 2 ] ,

qgq 'g '

33| 〉 66| 〉
1515| 〉
66| 〉 1515| 〉 33| 〉

66| 〉
. At large Nc, one of the  ± states

decouples from the initial state  [5]. The nuclear
dijet spectrum takes the form

(22)

The contribution from the coherent diffractive excita-
tion of color-triplet qg dipoles, ∝δ (2)(D), is suppressed
by the nuclear attenuation because of the initial parton
q* being a colored one. The second term in (22) can be
associated with excitation of the color-triplet qg states.
It looks like satisfying linear k⊥  factorization in terms of
φ(b, x, D), but it does not: one of the wave functions,
Ψ(1; zg, pg), is coherently distorted over the whole
thickness of the nucleus (see Eq. (15)). Finally, the first
component of the nuclear spectrum (22) describes exci-
tation of the color sextet and 15-plet qg states. Notice
the emergence of the ratio of Casimir operators CA/CF

in one of the collective nuclear densities, which is still
another demonstration that the collective nuclear glue
is a density matrix in the color space [1]. The free-
nucleon Eq. (21) is recovered to the impulse approxi-
mation.

Excitation of open charm is driven by gluon–gluon
collisions. The free-nucleon dijet cross section from
g*   is simply the differential form of the sin-
gle-jet spectrum derived in [3]:

(23)

Here, one starts with the color-octet  dipole; the
intranuclear interactions are color rotations in the space
of the octet states, and the transitions to the color-sin-
glet  dipoles are 1/Nc suppressed [1]. The same
suppression holds for coherent diffraction. The non-
Abelian evolution of the  state becomes the

1515| 〉 66| 〉 1515| 〉
33| 〉

2π( )2dσA q* qg( )
d2bdzd2pgd2D

------------------------------------------------------
1
2
---T b( )=

× β d2k1d2k2d2kf x k,( )∫d

0

1

∫
× Φ β b x k2, , ,( )Φ 1 β– b x D, , , k1– k–( )

× Φ
CA

CF

------ 1 β–( ) b x k1 k2–, , , 
 

× Ψ β; zg pg k1–,( ) Ψ β; zg pg k1– k–,( )– 2

+ φ b x D, ,( ) Ψ 1; zg pg D–,( ) Ψ zg pg zgD–,( )– 2

+ δ 2( ) D( )S b σ0 x( ),[ ] Ψ 1; zg pg,( ) Ψ ) zg pg,( )– 2.

QQ

2 2π( )2dσN g* QQ( )
dzd2p–d2D

------------------------------------------------------------ f x D,( )=

× Ψ z p–,( ) Ψ z p– zD–,( )– 2[

+ Ψ z p– D–,( ) Ψ z p–, zD–( )– 2 ] .

QQ

QQ

QQQ 'Q '
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single-channel problem, and the resulting nuclear dijet
cross section equals

(24)

Interestingly, the nuclear dijet spectrum (24) is pre-
cisely the differential version of the single-quark spec-
trum (Eq. (31) in [3]) if, in the nonlinear term, one
makes the identification D = k1 + k2. It satisfies the qua-
dratic nonlinear k⊥  factorization in terms of the collec-
tive glue defined for the whole nucleus, which must be
contrasted with the fifth-order nonlinearity for the lead-
ing quark–antiquark dijets in the DIS and the sixth-
order nonlinearity for qg dijets from q*  qg. Kine-
matically, it looks like the subprocess g*g1Ag2A 

 with two uncorrelated collective nuclear gluons
gA, but it cannot readily be associated with specific Fey-
nman diagrams in terms of gA.

Now, we demonstrate that how the diverse nonlinear
k⊥ -factorization results for different pQCD processes
fall into universality classes.

9. NONLINEAR k⊥  FACTORIZATION 
FOR DIJETS: THE UNIVERSALITY CLASSES

9.1. Excitation of higher-color representations
from partons in the lower representations. Excita-
tion of color-octet states in DIS, as well as sextet and
15-plet states in qA interactions, belongs to this univer-
sality class. The two reactions have much similarity. In
both cases, the nonlinear k⊥ -factorization formulas con-
tain the free-nucleon gluon density f(x, k), which
describes the transition from the qg color dipole from
the lower (triplet for qg and singlet for DIS) to higher
(sextet and 15-plet for qg and octet in DIS) color
dipoles. In both cases, the number of states in higher

representations is larger by a factor of  than in the

lower representation. In  excitation in DIS, the cor-
responding contribution to the dijet spectrum is the
fifth-order functional of gluon densities. In the qg case,
it is the sixth-order functional of gluon densities. Of
these, two powers of the collective nuclear glue enter
implicitly via the coherent ISI distortions of the wave

2π( )2dσA g* QQ( )
dzd2p–d2bd2D

---------------------------------------------------------

=  d2kΦ 1; b x k, ,( )Φ 1; b x D k–, ,( )∫
× Ψ z p– k–,( ) Ψ z p– zD–,( )– 2

=  S b σ0 x( ),[ ]φ b x D, ,( )

× Ψ z p–,( ) Ψ z p–, zD–( )– 2{

+ Ψ z p– D–,( ) Ψ z p–, zD–( )– 2 }

+ d2kφ b x k, ,( )φ b x D, , k–( )∫
× Ψ z p– k–,( ) Ψ z p– zD–,( )– 2.

QQ

Nc
2

qq
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function Ψ(β; z, p) in the slice of the nuclear matter
before excitation of color dipoles in the higher repre-
sentation.

The principal difference between DIS and qA inter-
actions is in the nuclear thickness dependence of the
distortion factors. Namely, the factor

in DIS (Eq. (14)) is the symmetric function of the col-
lective nuclear gluon momenta k1 and k2 = D – k1 – k,
which flow from the nucleus to the quark and antiquark
(or vice versa), respectively. It describes equal and
uncorrelated distortion of the outgoing quark and anti-
quark waves by pure FSI. The independence of the two
distortion factors is a feature of the large-Nc approxima-
tion.

For qg dijets in qA collisions, the overall distortion
factor in (22) is of the form

The FSI distortions in the slice (1 – β) of the nucleus are
given by the two last factors, of which Φ(1 – β; b, k1)
is broadening due to final-state rescatterings of the

quark, while the second FSI factor Φ (1 – β); b, k2

describes the FSI distortion of the outgoing gluon
wave. To the large-Nc approximation, the rescatterings
of the quark and gluon are uncorrelated.

The coherent ISI distortion of the wave functions in
the slice [0, β] of the nucleus in DIS and qA collisions
is identical. However, in qA collisions, this coherent
distortion is accompanied by incoherent ISI distortions
of the incident quark wave described by Φ(β; b, k3). In
DIS, the incoherent ISI distortions are absent, because
the photon is a color-singlet particle. We can anticipate
that gluon–nucleus collisions with excitation of gluon–
gluon dijets in higher color representations will belong
to this universality class.

9.2. Excitation of final-state dipoles in exactly the
same color state as the incident parton: coherent
diffraction. To this universality class belong the
exactly back-to-back dijets. Another experimental sig-
nature of the coherent diffraction is a retention of the
target nucleus in the ground state and a large rapidity
gap between the hadronic debris of the diffractive dijet
and the recoil nucleus. It is most important for DIS,
where coherent diffraction dissociation of the photon
into  dijets makes for heavy nuclei (≈50% of the
total DIS rate [15]). The origin of the coherent diffrac-
tion is a coherent nuclear distortion of the wave func-
tion of the  Fock state over the whole thickness of
the nucleus.

In the coherent diffractive excitation of qg dipoles in
qA collisions, the qg dipole must propagate in exactly
the same color state as the incident quark. Here, the

Φ 1 β–( ) b k2, ,( )Φ 1 β–( ) b k1, ,( )

Φ β; b k3,( )Φ
CA

CF

------ 1 β–( ); b k2, 
  Φ 1 β; b– k1,( ).

CA

CF

------





qq

qq
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nuclear suppression factor S[b, σ0(x)] has the meaning
of

(25)

and the factor S  in the diffractive ampli-

tude corresponds to the intranuclear attenuation of the
quark wave with the total cross section

(26)

Coherent diffractive excitation of color-octet gluon–
gluon dijets in gluon–nucleus collisions is expected to
exhibit similar properties.

Coherent diffractive excitation of  dipoles in gA
collisions is allowed, but it is suppressed at large Nc by

the condition that the  dipole must propagate in
exactly the same color state as the incident gluon.

9.3. Incoherent excitation of final-state dipoles in
the same lower color representation as the incident
parton. An example of this universality class is an
inelastic excitation of color-triplet qg states in qA colli-
sions followed by a color excitation of the target. Here,
both the incident parton and dijet belong to the funda-
mental, i.e., lower, representation of SU(Nc). The intra-
nuclear evolution of such a dipole is confined to rota-
tions within the color-triplet state. This contribution is
not suppressed at large Nc. The dijet cross section for
this universality class looks like satisfying the linear k⊥
factorization in terms of φ(b, x, D). But this is not the
case: one of the wave functions, Ψ(1; z, pg), is coher-
ently distorted over the whole thickness of the nucleus,
so that this contribution is a cubic functional of the col-
lective nuclear glue.

We can anticipate that gluon–nucleus collisions
with excitation of color-octet gluon–gluon dijets will
belong to this universality class, although one has to
account for the existence of the two F-coupled and
D-coupled octet states.

Although superficially it looks like a subclass of this
universality class, the coherent diffraction is a distinct
class for the property of the exact back-to-back dijets
and the rapidity gap between the dijet and the recoil
nucleus in the ground state.

9.4. Excitation of final-state dipoles in the same
higher color representation as the incident parton.
In the realm of QCD with gluons in the adjoint repre-
sentation and quarks in the fundamental representation,
this universality class consists of the quark–antiquark
dijets in gluon–nucleus collisions. Only in this case
does the initial parton (gluon) belong to the higher
(octet) color multiplet of the final  state. At large

Nc, the intranuclear evolution of  will consist of

S b σ0 x( ),[ ] S b
1
2
---σ0 x( ), 

 
2

=

b
1
2
---σ0 x( ),

σqN
1
2
---σ0 x( ).=

QQ

QQ

QQ

QQ
color rotations within the space of color-octet states.
The deexcitation from the color-octet to color-singlet

 dipoles is suppressed at large Nc. Consequently,

the non-Abelian evolution of the  state
becomes the single-channel problem. The coherent dif-
fraction excitation, in which the initial and final color
states must be identical, is likewise suppressed. The
emerging pattern of quadratic nonlinearity can be
related to the large Nc gluon behaving as a color-uncor-
related quark and antiquark.

The above classification exhausts reactions caused
by incident photons, quarks, and gluons. However,
technically, all the universality classes have a much
broader basis. Indeed, instead of an incident gluon, one
can think of the projectile, which is a compact lump of
many partons in the highest possible color representa-
tion. For instance, in the presence of extra gluons, com-
pact diquarks in the proton can be viewed as sextet par-
tons.

10. SUMMARY AND OUTLOOK

Despite the manifest breaking of the linear k⊥  factor-
ization, the collective nuclear glue remains a useful
concept and is an important ingredient of nonlinear k⊥
factorization, which is a generic feature of the pQCD
description of single-jet and dijet production in a
nuclear environment. The pattern of nuclear k⊥  factor-
ization changes dramatically depending on the color
properties of the specific pQCD subprocess. A unique
case is a leading quark jet in DIS off nuclei: here, the
collective nuclear glue (by itself, a highly nonlinear
functional of the free-nucleon glue) furnishes a linear
k⊥ -factorization description of a nuclear single-jet cross
section that is an exact counterpart of the conventional
linear k⊥  factorization for a free-nucleon target. The
pQCD bremsstrahlung of gluon jets, which carry a very
small fraction of energy of the incident quark or gluon,
possesses the same property in terms of the collective
nuclear glue defined in terms of octet–octet color
dipoles. However, in the generic case of single jets in
the hadron-induced reactions, the linear k⊥  factorization
is badly broken.

We presented the closed-form analytic results for
nuclear dijets and identified four major universality
classes for the dijet cross sections. The variation of the
degree of nonlinearity from one universality class to
another is clearly related to the color properties of the
pQCD excitation processes. However, the four univer-
sality classes found differ by more than the degree of
the nonlinearity. The coherent diffractive mechanism
and the excitation of quark–gluon dijets in the same
color representation as the incident quark are explicitly
calculable in terms of the collective nuclear glue of
Eq. (5), which is defined for the whole nucleus. This is
not the case for the excitation of leading quark–anti-
quark dijets in DIS and quark–gluon dijets in higher

QQ

QQQ 'Q '
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color multiplets. Here, the hard excitation is described
by the unintegrated gluon density in the free nucleon.
The coherent initial-state interaction, before the excita-
tion of higher color multiplets at the depth β of the
nucleus, must be described in terms of the unintegrated
collective glue (15) defined for the slice [0, β] of the
nucleus. Coherent distortions of the qg wave function
are complemented by incoherent broadening of the
incident quark transverse momentum distribution in the
same slice of the nucleus. Likewise, the final-state
interactions after the excitation of higher multiplets
must be described in terms of the unintegrated collec-
tive glue defined for the slice [β, 1] of the nucleus. This
reinforces the point [1] that hard processes in a nuclear
environment cannot be described in terms of a nuclear
gluon density defined for the whole nucleus, as it was
advocated, for instance, within the color glass conden-
sate approach [22]. Furthermore, besides the collective
nuclear glue defined for color-singlet quark–antiquark
dipoles, there emerges a new nuclear gluon density that
depends on the Casimir operators of higher quark–
gluon color representations; i.e., the gluon field of the
nucleus must be described by a density matrix in the
space of the color representations.

The representation for the dijet cross section similar
to our master formula (17) has been discussed recently
by several authors [23–25], but these works stopped
short of the solution of the coupled-channel intranu-
clear evolution for the 4-parton state.

The nuclear coherency condition, x & xA ≈ 0.1A–1/3,
restricts the applicability domain of the reviewed for-
malism to the forward part of the proton hemisphere of
pA collisions at RHIC. These predictions could be
tested after the detectors at RHIC II are upgraded to
cover the proton fragmentation region [26]. This
restriction is only technical; however, it can be lifted,
and we would like to conclude with the statement that
our formalism can readily be extended to the midrapid-
ity dijets studied so far at the RHIC [20]. Specifically,
in close similarity to the incoherent diffraction produc-
tion of heavy quarkonia [27], one must distinguish
coherency in the excitation of the dijet from the inci-
dent parton and the coherency in the intranuclear prop-
agation of produced partons. Only the former will be
broken for the midrapidity jets; hopefully, it will be
tractable within the technique of light-cone evolution
developed in application to the LPM effect [28]; this
issue is currently being studied. Finally, one can extend
the reported technique to a derivation of nonlinear k⊥
factorization for correlation of properties of forward
jets with excitation of the target nucleus; this analysis is
in progress.

This work was partly supported by Deutsche Fors-
chungsgemeinschaft (German Research Foundation),
grant no. 436 RUS 17/101/04.
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This text is an attempt to write an introduction and outline of main results of topological quantum mechanics
for readers with a physical background. Instead of presenting rigorous mathematical formulations, we concen-
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1. INTRODUCTION

1.1. Topological theories in modern physics.
Topological theories are almost 25 years old. They
appeared as the main tool in the study of spontaneous
supersymmetry breaking (Witten’s index; see [1]).
Another example of topological theories appeared in
the nonperturbative treatment of quantum field theory
in the language of vacuum condensates. It was
observed [5] that, in the supersymmetric theories, the
correlator of the chiral observables (whose condensates
determine the nonperturbative behavior of the theory)
does not depend on the distance between the observ-
ables and has a simple scaling behavior with respect to
the dilatation of the metric (later, this was interpreted
by Witten as the metric independence of the correlators
in the so-called twisted theories [4]).

However, it was only the beginning. Topological the-
ories served as world sheet theories in the so-called topo-
logical strings. These constructions appeared in the alter-
native description of the noncritical strings (for c ≤ 1)
and matrix models [2], but, later on, they were found as
tractable subsectors inside superstrings [13]. Moreover,
they turned out to be rather interesting theories them-
selves and finally turned out to be in the core of the
most recent attempt [6] to get a deeper understanding of
the quantization of the very heart of the string theory—
its majesty the superstring theory!

It appears to be an insolent conjecture, but we can-
not ignore that there are breathtaking indications [7]
that topological theories can shed light on the main
mystery of the last decade—the fundamental degrees of
freedom of the M-theory, that is, the nonperturbative
theory underlying the string theory.

¶ The text was submitted by the authors in English.
*A member of the editorial board of the journal JETP Letters since

1994.
0021-3640/05/8206- $26.00 0335
It looks even more intriguing in the light of the
recent advances regarding topological strings and the
indication of the existence of the topological M-theory
[8, 9], which plays the same role for topological strings
as the M-theory plays for superstrings.

It would be considered a great surprise at any time
(but not in the recent 30 years) that topological theories
in different dimensions can also be considered as a
clever way to pack together and relate to each other
interesting numbers appearing in different areas of
modern mathematics. From this point of view, mathe-
matics appears as an experimental device testing the
validity of the field theoretical reasoning in topological
field theories. We should mention that mathematicians
cannot cope effectively with the group of conjectures
coming from physics that they have to prove in their
conventional fashion.

1.2. Topological quantum mechanics as the sim-
plest model. It is well known that any phenomena in
theoretical physics should be studied as a function of
parameters of the problem with special attention being
paid to the critical values of these parameters. It is also
well known that dimension is one of the most important
parameters, and, by studying phenomena in the mini-
mal dimension, we can obtain a quantitative under-
standing of effects that, in higher dimensions, may be
described only qualitatively. Here, the most famous
example is the two-dimensional field theory. Its physi-
cal significance is not only in the description of line
objects such as polymers or the behavior of surfaces but
also in the creation of the tractable world of nonpertur-
bative quantum field theories; it is clear that the dimen-
sional transmutation in the two-dimensional sigma
model is a baby version of the much harder problem of
confinement.

The known world of topological theories contains
theories of four dimensions (the Donaldson theory or
© 2005 Pleiades Publishing, Inc.
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the topological Yang–Mills theory), three dimensions
(the Chern–Simons theory), and two dimensions (the
topological sigma models), but most of the phenomena
already appear in one dimension of space–time, i.e., in
topological quantum mechanics. In this paper, we will
concentrate on the dependence on what physicists call
the gravitational background of the field theory; in sim-
ple terms, this is just the distances between points of
insertions of operators (in higher dimensions, this
includes the full geometry of the worldsheet, such as
the complex structure on the two-dimensional surface).

Before we proceed with the explanation of topolog-
ical quantum mechanics, we would like to clarify sev-
eral points that traditionally cause confusion in the
study of topological theories.

The first cause of confusion is the demand that the
worldsheet of the one-dimensional field theory (quan-
tum mechanics) has to be a smooth one-dimensional
manifold such as an interval, a circle, or a straight line.
Somehow, even classically, we do not study mechanics
on graphs (by the way, it is an interesting problem to
compute the shape of a net carrying a melon). However,
all these problems are rather familiar to particle physi-
cists, since they arise in the study of… Feynman dia-
grams. In particular, one may assign different
Lagrangians to different links of the graph. In a
mechanical analogy, this corresponds to the problem of
the melon in the net with links of different tension, and
such a problem looks rather artificial and useless. How-
ever, it is what particle physicists study when particles
have different masses and charges.1 

The second cause of confusion is the widely spread
point of view that correlators in topological theories
should be metric-independent. In reality, these are the
simplest correlators, and they appeared in the earliest
examples. Mathematically speaking, such correlators
are constant functions on the space of gravitational
backgrounds. However, as it was later realized, general
correlators should be considered not as functions but
rather as the differential form on the space of gravita-
tional backgrounds. It is not hard to guess that the con-
dition of a function being constant is replaced by the
condition of a differential form being annihilated by the

action of d = ti  (here, ti stands for coordinates on the

space of gravitational backgrounds). Mathematicians
call such differential forms closed.

The use of forms on graphs in one-dimensional the-
ory has been well known for many years. The parame-
ters ti are known as Schwinger parameters, or proper
times, in the one-dimensional theory on Feynman
graphs. In order to get the contribution of such a graph
in the target space amplitude or the correlator, we
should integrate differential forms over the space of

1 We cannot ignore the following troubling remark: from this point
of view, the proper analogue of the graph is not a smooth world-
sheet of a string but rather a piecewise smooth shape of a foam!

∂
∂ti
------
Schwinger parameters. It is amazing that, in the case of
amplitudes in topological quantum mechanics, we may
promote top degree forms to forms of lower degree (and
even to functions) and study all these objects simulta-
neously. Furthermore, the prize—the tree level ampli-
tudes—satisfy quadratic relations known in mathemat-
ics as homotopical algebra relations. In addition, rela-
tions including graphs with loops were not studied by
mathematics—in this case, physicist may predict new
mathematical objects and call them quantum homotopi-
cal algebra structures, since the loops come from quan-
tum corrections.

In most examples in quantum field theory, the rela-
tions among Feynman diagrams are just reflections of
some symmetries of the action, and these relations
become the Ward identities. It turns out that the same
happens in quantum homological algebra. There is an
action, called the Batalin–Vilkovisky (BV) action, such
that its exponent solves the famous master equation
[10]. This may be considered as the set of symmetries
of the action and leads to equations on amplitudes that
may also be found as relations on contributions of par-
ticular graphs.

2. SIMPLEST PROPERTIES OF TOPOLOGICAL 
QUANTUM MECHANICS

Quantum mechanics, being the simplest quantum
field theory, can be described purely in terms of linear
algebra: the space of states V is a vector space with a
hermitian scalar product, and the Hamiltonian H is just
a hermitian linear operator.2 

The symmetries of the system correspond to opera-
tors that commute with H. We will assume that the the-
ory contains odd or fermionic symmetry. This means
that the theory contains an operator of fermionic parity
that physicists traditionally denote as (–1)F that squares
to 1 and commutes with the following Hamiltonian:

(1)

States that are eigenfunctions of (–1)F with eigenvalues
+1 (–1) are called bosonic (fermionic) states, respec-
tively, and the operator is called odd or fermionic if it
changes the fermionic parity (turns bosonic states into
fermionic and vice versa). In particular, 1 means that
the Hamiltonian itself is an even operator.

Symmetry is called fermionic if its operator is odd.
Such symmetry is traditionally denoted by Q, and we
have

(2)

From this algebra, it is clear that Q2 is also an even
symmetry, but we demand that it just equals zero:

Q2 = 0. (3)

2 For the sake of simplicity, we will ignore the subtleties that can
appear if the vector space turns out to be infinite-dimensional.

1–( )FH H 1–( )F; 1–( )F( )2
1.= =

QH HQ, 1–( )FQ Q 1–( )F.–= =
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In mathematics, this property means that Q is a differ-
ential.

In what follows, we introduce the notion of a super-
commutator [,]±:

(4)

Note that, from equation (3), it follows that any opera-
tor of the form [Q, A]± supercommutes with Q. Such
operators are called exact in mathematics.

Now, we are ready to give the definition of topolog-
ical quantum mechanics: topological quantum mechan-
ics is a quantum mechanics with an odd symmetry that
squares to zero such that its Hamiltonian is exact:

(5)

The operator G is called a superpartner of the Hamilto-
nian. This operator is not uniquely defined; one can
show that one can always take it to be odd with3 G2 = 0.

The simplest example of topological quantum
mechanics is the supersymmetric oscillator. Let a (a+)
be bosonic and ψ (ψ+) be fermionic annihilation (cre-
ation) operators. The Hamiltonian of the supersymmet-
ric oscillator and the operators Q and G are equal to

(6)

It is quite remarkable that such a simple property (5)
could cause such interesting consequences.

The first consequence is that

(7)

is T-independent. Therefore, I(T) = I, and I is called
Witten’s index of the system.

The easiest way to see this is to consider the spec-
trum of the system. It consists of doublets at nonzero
values of the Hamiltonian with opposite fermionic par-
ity, (a+)k|0〉  and (a+)k – 1ψ+|0〉  (here, |0〉  is the vacuum).
The contribution of these doublets drops out of the
expression for the index. Only vacuum contributes, and
its contribution is equal to 1.

Since T could be considered as the volume of the
one-dimensional worldsheet, we may say that I is inde-
pendent of the metric and, therefore, depends only on
the topology of the worldsheet; this explains the name
of the theory.

Despite the simplicity of the reasoning above, it
does not provide a conceptual explanation of the metric
independence of I. The real reason for the metric inde-
pendence is that the derivative of I(T) with respect to
the change of the metric (rescaling of T in the simplest

3 Another name for topological quantum mechanics is N = 1 super-
symmetric quantum mechanics. The latter is mostly known as a

quantum mechanics with two symmetries Qa with  =  = 0.

However, after substituting Q = Q1 + iQ2 and G = Q1 – iQ2, we
come back to (5).

A B,[ ] ± AB 1–( )parity A parity B⋅ BA.+=

H Q G,[ ] pm QG GQ.+= =

Q1
2

Q2
2

H
ω
2
---- a+a ψ+ψ+( ); Q ψ+a; G

ω
2
----a+ψ.= = =

I T( ) Tr 1–( )F TH–( )exp=
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example) is the correlator of H, and its exactness guar-
antees that this correlator equals zero:

(8)

If we move the Q in the second term, all the way around
under the trace we will get the first term but with the
opposite sign.

Being inspired by such success with the index, we
may try to study the correlators of other operators. The
one-point correlator of Φ (on the Euclidean periodic
worldsheet, circle S1 of the length T) would look as fol-
lows:

(9)

The attempt to prove its T independence (just like we
did for an index) fails,

(10)

and differs from zero for general Φ. However, Φ, which
is a zero supercommutator with Q saves the game, and
its correlator is again T-independent. Such Φ are called
Q-closed and are also called zero-topological observ-
ables.

Reasoning in this way, one can easily show that the
correlator of zero-topological observables on the circle

(11)

is independent of the distances (in time) between the
observables. Really, taking a derivative with respect to
T1 replaces Φ1(T1) with [H, Φ1(T1)]±, and we get zero as
above. Naively, one may conclude that (11) is Ti-inde-
pendent, but this is not so. The correlator jumps when
we are trying to interchange observables; therefore, it
depends only on their cyclic order. This is a one-dimen-
sional version of the famous link invariants that were
interpreted by Witten as correlators of the Wilson line
observables [3].

These properties of correlators on a circle can be
generalized to transition amplitudes, i.e., correlators on
an interval. The novelty here is boundary conditions
that take the form of initial and final states:

(12)

Such an amplitude depends only on the order of the
events happening at the times T1, …, Tk if the initial and
final states are annihilated by Q:

(13)

Now, let us suppose that H has a nonnegative spec-
trum and that all vacua are annihilated not only by H but

d
dT
------ I T( ) Tr 1–( )F TH–( )Hexp–=

=  Tr 1–( )F TH–( ) QG GQ+( )exp– 0.=

Φ〈 〉 S1; T Tr 1–( )F TH–( )Φ.exp=

d
dT
------ Φ〈 〉 S1; T Tr 1–( )F TH–( ) Q Φ,[ ] ±Gexp=

Φ1 T1( )…Φk Tk( )〈 〉 S1; T Tr 1–( )FΦ1=

× T1 T2–( )H–( )Φ2…Φk T T1–( )H–( )expexp

a〈 |Φ1 T1( )…Φk Tk( ) b| 〉
=  a〈 |Φ1 T1 T2–( )H–( )Φ2…Φk b| 〉 .exp

b〈 |Q Q a| 〉 0.= =
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also by Q (as in the example of the supersymmetric
oscillator); then, one can show that k-point correlators
(12) can be rewritten in terms of one-point correlators.
Note that these conditions are automatically satisfied if
there is a hermitian metric on the space of states such
that G = Q+ (that is how it happens in supersymmetric
quantum mechanics, where the operators Qa are sup-
posed to be real) and if the Hamiltonian has a discrete
spectrum.

Really, consider the two-point correlator and tend
T1 – T2 to infinity. In this limit,

(14)

where |c〉  denote the basis in the space of vacua. There-
fore,

(15)

Moreover, even one-point functions are not indepen-
dent. Consider an algebra of zero observables:

(16)

In the limit (T1 – T2)  0, we get

(17)

This means that the one-point vacuum transition ampli-
tudes form a representation of the algebra with the

structure constants .

Life becomes even more interesting when we
include one-observables in the game. We will do it in
the next section.

3. DEFORMATION THEORY 
AND ONE-OBSERVABLES

Not only the generic physical system but also a
system of a very special type generally depends on
some parameters.4 Therefore, consider topological
quantum mechanics that depends on parameters that we
call ti. In particular, consider the equation Q(t)2 = 0, and
let us see what happens to the first order in t. We get

(18)

4 Only perfect bodies look rigid, but even they have parameters
such as an overall scale.

T1 T2–( )H–( ) Πexp c| 〉 c〈 |
c

∑=

a〈 |Φ1 T1( )Φ2 T2( ) b| 〉
=  a〈 |Φ1 T1 T2–( )H–( )Φ2 b| 〉 Πexp

=  a〈 |Φ1 c| 〉 c〈 |Φ2 b| 〉 .
c

∑

ΦiΦ j Cij
k Φk.=

a〈 |Φi c| 〉 c〈 |Φ j b| 〉
c

∑ Cij
k a〈 |Φk b| 〉 .=

Cij
k

Q
∂Q
∂ti

-------,
±

0.=
This equation means that ∂Q/∂ti can be considered as a
zero-observable Φi, which we have just studied (note
that the parity of ti and Φi are opposite5).

Let us assume, for simplicity, that, when we change
the parameter ti the superpartner G does not change.
Therefore, we are going to study the variation in t of the
correlators of the zero-observables. In what follows, we
will use the remarkable integral representation for the
variation of the evolution operator:

(19)

Let us consider, for simplicity, variation of a one-
point function on the circle:

(20)

where we have introduced the one-observable  that
is a one-differential on the worldsheet and that, in
Heisenberg representation, takes the form

(21)

Originally, the notion of one-observables (and
higher observables in multidimensional theories) was
introduced by Witten based on the following consider-
ations. He tried to construct a nonlocal observable ω
that would be integrated under the correlator and that
would preserve the symmetry Q [4]. His idea was that
if there is such an observable Φ that solves what he
called the topological descend equation

(22)

then, under a correlator,

(23)

5 One may be surprised to see a system with an odd parameter t and
even claim that such a system is unphysical. However, the role of
this parameter may be played either by some fermionic back-
ground field or by a differential form. Here, we use that odd
parameters anticommute with any odd objects with odd fields, as
well as with odd parameters.

∂e TH–

∂ti

------------- T1e
T T1–( )H– ∂H

∂ti

-------e
T1H–

d

0

T

∫–=

=  T1e
T T1–( )H–

G Φi,[ ] ±e
T1H–

.d

0

T

∫–

∂ Φ j〈 〉 S1; T

∂ti

-----------------------

=  T1Tr 1–( )Fe
T T1–( )H–

G Φi,[ ] ±e
T1H–

Φ jd

0

T

∫

=  Φi
1( ) T1( )Φ j 0( )〈 〉 S1; T

0

T

∫

Φi
1( )

Φi
1( ) T1( ) G Φi,[ ] ± T1( )dT1.=

Q ω T1( ),[ ] dT1
∂

∂T1
---------Φ T1( ),=

Q ω T1( ),[ ]∫ T1
∂

∂T1
---------Φ T1( )d∫ 0,= =
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since the right-hand side is the integral of the total
derivative. However, this reasoning is only the first
approximation to the correct construction. Really, the
expression above is not zero in general since the inte-
grand has well-known jumps due to supercommutators
of Φ with other operators involved. Taking these super-
commutators into account leads to the modified state-
ment

(24)

which is nothing but the Ward identities for the correla-
tors 〈Φ1…Φk〉 t in the theory with the modified symme-
try Q + tΦ in the first order in t (just as we discussed
above). In order to completely demystify this issue, we
note that, for Q-closed Φ, the one-observable ω that
solves the descent equation (22) is just given up to the
sign by formula (21).

4. PROBLEMS IN DEFORMATION THEORY

4.1. Obstructions. Interpretation of correlators of
one-observables as deformations of the theory is good
as the first approximation; however, it has some prob-
lems.

The first problem is that deformed Q(t) = Q + tiΦi

generically does not square to zero at the second order
in t. Really, for Q-closed Φi, we have

(25)

This would mean that Q(t) is not a symmetry of the
deformed Hamiltonian H(t) = Q(t)G + GQ(t). We may
try to cure the problem by adding terms quadratic in t:

(26)

Therefore, the modified Qmod(2) squares to

(27)

We would like to find such Φij that it would take the
right-hand side of (27) to zero. However, it cannot
always be done. The obstruction to doing this is hidden
in the fact that, while [Φi, Φj]± always (anti)commutes
with Q (i.e., it is closed), it is not (generically) an
(anti)commutator; i.e., it is not exact. The space of
closed operators' moduli (exact ones) is called the space
of cohomology of operators, and the condition is that
the (anti)commutator of the deforming operators has to
vanish as an element of this space.

This situation is not so novel in quantum field the-
ory. Let us recall the gauge theory in lower dimensions
obtained from the gauge theory in higher dimensions
by dimensionally reducing (or compacting on a circle)
k dimensions. At the point with unbroken non-Abelian
symmetry, we get k massless scalar fields φi in the
adjoint representation. We know that massless fields are
often the sign of a valley in the potential, and we may

Q ω T1( ),[ ]Φ 1…Φk〈 〉
=  Φ Φ1,[ ] ±…Φk〈 〉 … Φ1… Φ Φk,[ ] ±〈 〉+

Q2 t( ) tit j Φi Φ j,[ ] ±.=

Qmod 2( ) t( ) Q tiΦi tit jΦij.+ +=

Qmod 2( )
2 t( ) tit j Q Φij,[ ] ± Φi Φ j,[ ] ±+( ).=
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try to look here for such a valley. However, as we know,
the (classical) potential is quartic:

(28)

and a naive valley is lifted to higher order in the defor-
mation φ. Here, the analogue of Q(t) is the BRST oper-
ator in the φ background, and the vanishing of the
potential means that the obstruction is zero.6 

After improving Q(t) at the second order, we may
meet a problem in the third order in the deformation
parameter. Namely, in the third order in t, we would
need to solve

(29)

and, once again, the obstruction to solving this equation
would be the image of the right-hand side of (29) in
cohomologies.

Problems of this kind are well known in mathemat-
ics; they are called Torelli-like problems. In the old
days, people studied situations when an obstruction
vanishes (the valleys of the potential, in physical lan-
guage); now, they are studying the obstructions them-
selves (the shape of the potential, in physical language).

4.2. Connection. We have seen that one-observ-
ables are related to deformations of the theory. Naively,
one may think that the correlator of one one-observable
and some number of zero-observables should be
expressed as the first derivative of the correlator with
respect to the parameters of the background. However,
life is not so simple. Topological zero-observables are
different for different backgrounds (since they have to
(anti)commute with Q + tiΦi, and the latter depends on
t). In order to take the derivative, we need to identify
them somehow for different t. This problem is well
known in gauge theory, where one has to take deriva-
tives of the charged field and one has to pick up some
identification of its phase at different points. In this
case, we say that we need a connection.

When we look at a correlator of one-observables
itself, we find the same problems. Recall that, in per-
forming a deformation of Q, we had to solve the equa-
tions [Q, ] = something. Note that we can always
modify the solution by replacing

(30)

One can check that this corresponds to the local change
of coordinates

(31)

Therefore, in order to study the correlators of just one
observable in the case when the deformation is not
obstructed, we have to pick up a special coordinate on
the base of the deformation that is equivalent to taking

6 However, we do not know how to make this analogy complete,
since we do not know what should correspond to the correcting
term ij in the gauge theories.

V Tr φi φj,[ ]( )2=

tit jtk Q Φijk,[ ] ± tit jtk ΦiΦ jk[ ] ±–=

Φi1…im

Φi1…im
Φi1…im

Vi1…im

i Φi.+

ti ti Vi1…im

i t
i1…t

im.+
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a flat torsion-free connection on the tangent space to the
base of the deformation.

However, if we pick (anti)commuting Φi there is an
obvious solution to all the deformation equations; the
base of the deformation gets equipped with the distin-
guished coordinate system, and there is also a distin-
guished connection on the bundle of zero-observables.

5. COUPLING TO ONE-DIMENSIONAL 
TOPOLOGICAL GRAVITY AND QUADRATIC 

RELATIONS AMONG CORRELATORS

We have already observed the appearance of gravity
in the topological theory in the form of the distance Ti –
Ti + 1 between the observables. However, as we will see
in this section, in order to put together correlators of
different observables and to see quadratic relations
among them, we need to study topological gravity.

We will promote the bosonic distance T to a super-
distance that is a pair (T, Ψ). In other terms, we will
consider Ψi as dTi, and the correlators (previously con-
sidered as functions of Ti) will become functions of Ti

and dTi; namely, they will become differential forms.
The operator Q acting on the matter field will be pro-
moted to the total operator

(32)

The evolution operator is promoted to the superrevolu-
tion operator

(33)

This presentation shows that the evolution operator
depends on the supermetric in the Q-exact manner, i.e.,
through the Q-exact term. In particular, it means that U
is Qtot closed (i.e., that Qtot is really an odd symmetry of
the theory coupled to gravity):

(34)

Therefore, the topological correlators that we have
already studied are promoted to supertopological corr-
elators. They are differential forms of indefinite degree.
The zero degree part of the supertopological correlator
is just a topological correlator. The condition of T-inde-
pendence of the topological correlator is promoted to
d-closeness of the corresponding differential form. In
order to save space, we will explicitly write down the
supertopological correlator for three points on a line:

(35)

and

(36)

Q tot( ) Q Qgravity+ Q Ψi
∂

∂Ti

--------+ Q d .+= = =

U T dT,( ) Qtot TG,{ }–( )exp=

=  TH– dTG–( ).exp

Q d+ U T dT,( ),{ } 0.=

a〈 |Φ1 T1 dT1,( )Φ2 T2 dT2,( )Φ3 T3 dT3,( ) b| 〉
=  a〈 |Φ1U T1 T2– d T1 T2–( ),( )

× Φ2U T2 T3– d T2 T3–( ),( )Φ3 b| 〉

d a〈 |Φ1 T1 dT1,( )Φ2 T2 dT2,( )Φ3 T3 dT3,( ) b| 〉  = 0.
It is clear that the supertopological correlator is
independent of the overall shifts in Ti, so it is a function
on the coset M3 (mathematicians call such coset moduli

spaces), which is nothing else than , and it is param-
eterized by two positive coordinates T1 – T2 and T2 – T3.
Moreover, it is clear that, on M3, the supertopological
correlator is also closed.

This allows us to write down relations on the inte-
grals of supertopological correlators by integrating
them along the boundary that we will denote as follows:

(37)

Since supertopological correlators are closed, their
integral along the boundary gives zero. So, it is the only
thing that is needed to restrict the supertopological cor-
relator to the boundary. There are two types of bound-
aries when the coordinate (say, T1 – T2) goes to zero
(ultraviolet) or to +∞ (infrared). On the ultraviolet
boundary, the operator is just replaced by a product of
operators. On the infrared boundary, the evolution
operator is replaced by a projector to vacuum states. So,
we get

(38)

It is clear how to extend this to the case of an arbitrary
number of points on the line.

After we get this remarkable quadratic equation
(and its m-point generalizations, which are known in
mathematics as structures of the A∞-module of the alge-
bra with structure constants of f on the space of vacua),
we may deduce some consequences. First of all, we
may introduce the generating parameters ti and study

(39)

From the quadratic equations of (38), we will see that it
satisfies

(40)

where

(41)

is what physicists used to call the BRST operator for
the Lie algebra with the structure constant c, and
mathematicians call the Chevalley differential. Equa-
tions (40) are known in mathematics as a structure of
the L∞ module (for a Lie algebra with the structure con-
stants c) on the space of vacua (in the physical litera-
ture, this equation was first obtained in [12]).

R+
2

Ai1 … im; b, ,
a

=  a〈 |Φi1
T1 T1d,( )…Φim

Tm Tmd,( ) b| 〉 .
R+

m 1–( )

∫

A1 2; c,
a A3; b

c A1; c
a A2 3 b, ,

c+ f 12
i Ai 3; b,

a f 23
i A3 i; b,

a .+=

Cb
a t( ) Ai1 … im; b, ,

a ti1
…tim

.=

D C+( )2 0=

D cij
k tit j ∂

∂tk
-------; cij
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Note that, due to symmetrization (due to permuta-

tion of t), one can interpret  as a generating function
for the correlator of many one-observables in the pres-
ence of only one zero-observable:

(42)

Therefore, we can conclude that the proper treat-
ment of the correlator of higher observables as a corre-
lator in a system coupled to gravity allows us to obtain
interesting equations on them.

6. TOPOLOGICAL THEORY ON GRAPHS 
AND FEYNMAN DIAGRAMS IN BV THEORY

In the previous section, we developed the topologi-
cal gravity approach to topological correlators. We may
interpret a line with points on it as the simplest tree with
two-valent vertices, one leaf and one root.

We will start our generalization with rooted trees
with polyvalent vertices; these vertices have k inputs
and one output and may be considered as operators
from V⊗ k to V. The simplest example is the three-valent
vertex that generates the bilinear operation. Surely, we
will connect the vertices by the propagators U
described above, so, in order to preserve the Qtot sym-
metry, we have to assume that Q commutes with the
vertex (considered as an operation); for the three-valent
vertex, this is nothing but the Leibnitz rule.

As in the previous section, given a tree with K edges,
we may construct from the vertices and propagators U

a differential form on , and this form would be
closed. Integrating this form along the boundary, we
will get two types of contributions. The infrared contri-
butions would correspond to decoupling of a tree into
two, and the ultraviolet, to shrinking of an edge and
multiplication of the K-valent and L-valent vertices into
a (K + L – 1)-valent vertex. Similarly, one can write
down a quadratic relation and equate the contribution of
the infrared and ultraviolet boundaries. This equation is
known in mathematics as an equation of A∞-morphism,
and we are not going to present it here due to lack of
space. We already presented an outline, so an interested
reader can reconstruct either this equation or some of its
particular examples.

However, why should we restrict our attention only
to rooted trees? We may wish to consider any graph.
However, graphs can be oriented or not oriented.7 

For the oriented graph, we need to introduce vertices
with several inputs and outputs (in mathematics, they
are called PROPs). Then, we construct the differential
form as above, integrate it along the boundary, and

7 Just like trees. There are rooted trees with orientation on their
edges from their leaves to their roots and abstract trees; the latter
are not oriented.

Cb
a

Ci1 … im; b, ,
a a〈 |Φm

0( ) Φi1

1( )… Φim 1–

1( ) b| 〉 .
R

∫
R

∫=

R+
K
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observe that we now have a new infrared component
corresponding to lowering of the number of the loops in
the graph by one.

For nonoriented graphs, we may introduce the bilin-
ear pairing on the space V that is preserved by Q, G,
such that it makes the K-valent vertices into K-valent
cyclically symmetric tensors.

Therefore, just by considering graphs with real
numbers on edges, we can construct many operations
that generalize in a highly nontrivial way ∞-structures
that were introduced by mathematicians.

Note that merely this would be a great success.
However, physics can go further and interpret the
graphs introduced above as Feynman graphs in the the-
ory of Batalin–Vilkovisky integrals [15].

We will start with the case of rooted oriented trees.
In this case, we may consider V ⊕  V* [1] as a space of
fields in the theory. Here is just a Hilbert space of our
quantum mechanics, V* is the dual space, and [1] is a
fancy way to say that we are inverting statistics (dual to
the bosonic field, which is fermionic, and vice versa).
Let ZA be coordinates in V and PA be coordinates in V*
[1]. We will introduce an action

(43)

where

(44)

and  and  are matrix elements of the operators
Q and Φi.

Then, we decompose spaces V and V* [1] into infra-
red and ultraviolet parts. The infrared parts would con-
sist of vacua, and the ultraviolet parts would be the rest.

We will integrate expS/" along the submanifold of
ultraviolet variables:

The resulting induced action is Sind(PIR, ZIR, "), which
is a sum over the graphs, with h being a genus counting
parameter.

Due to the well-known theorem of the BV integral
[16]

,

this is the physical meaning of the quantum generaliza-
tions of the infinity structures.

7. CONCLUDING REMARKS

It is clear that what we have covered here is just an
introduction to the rapidly developing subject of topo-
logical theories. In particular, just by replacing inter-
vals by cylinders, one can get many new structures such
as commutativity equations and their relations to

SBV P Z,( ) PAW A Z( )=

W A Z( ) QB
AZB tiΦi B,

A FBC
A ZBZC …,+ + +=

QB
A Φi B,

A

GB
AZB 0; PBGA

B 0.= =

∂
∂PIR A,

----------- ∂
∂

ZIR
A

-------- Sind PIR ZIR ", ,( )/"( )exp 0=
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WDVV equations [14]. The string-motivated generali-
zation of graphs with numbers on their edges to the
moduli space of the Riemann surface leads to the Zwie-
bach invariants introduced in [17].

However, this subject still contains a lot of open
questions. We will mention some of them.

The Donaldson theory is still waiting for the proper
treatment, including a four-dimensional version of
topological gravity.

The relation between Virasoro constraints in topo-
logical strings and BV master equations is not clear at
all.

It is even not clear that topological theories have no
divergences.

Furthermore, the most intriguing question is
whether the four-dimensional gravity theory in the
Palatini formulation (which is also a topological the-
ory) is divergent.
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We consider properties of zero and near-zero fermionic modes in lattice gluodynamics. The modes are known
to be sensitive to the topology of the underlying gluonic fields in the quantum vacuum state of the gluodynam-
ics. We find evidence that these modes are fine-tuned; that is, they exhibit sensitivity to both physical (one can
say, hadronic) scale and to the ultraviolet cutoff. Namely, the density of the states is in physical units, while
the localization volume of the modes tends to zero in physical units with the lattice spacing tending to zero.
We briefly discuss the possible theoretical implications and also include some general, review-type remarks.
© 2005 Pleiades Publishing, Inc.
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1. TWO SCALES OF QCD

In this letter, we will consider properties of vacuum
fluctuations within lattice formulation of Yang–Mills
theories. For simplicity, we concentrate on the case of
pure gluodynamics with no dynamical fermions. What
is specific for the lattice formulation (see, e.g., [1]) is
that it is a field theory in Euclidean space–time. The
equation reads

(1)

where (x) is the non-Abelian field strength tensor,
a is the color index, and g is the coupling. We will actu-
ally consider the SU(2) case, a = 1, 2, 3. Using action

(1), one generates vacuum field configurations, ,

where  is the gauge potential and it performs further
measurements on these fields.

As any renormalizable theory, quantum gluodynam-
ics exhibits two scales, infrared and ultraviolet. More-
over, the ultraviolet cutoff is introduced explicitly,
through a finite lattice spacing a. The infrared scale,
ΛQCD, on the other hand, emerges dynamically:

(2)

where b0 is a constant, g(a) is the bare coupling con-
stant normalized at the lattice spacing, and ΛQCD char-
acterizes the scale where the running coupling is of
order unit. As a  0, the bare coupling squared, g2(a),

¶ The text was submitted by the authors in English.

S
1

4g2
-------- d4xGµν

a x( )Gµν
a x( ),∫=

Gµν
a

Aµ
a{ }

Aµ
a

ΛQCD
2 1

a2
----- b0/g2 a( )–( ),exp≈
0021-3640/05/8206- $26.00 0343
tends to zero as an inverse log of (a · ΛQCD). If one
changes the lattice spacing a and modifies g(a) accord-
ing to the rules of the renorm group, the scale ΛQCD
does not depend on a.

Lattice simulations allow us to directly study the
vacuum fluctuations and both the scales; ΛQCD and 1/a
get manifested in the vacuum fluctuations. In particular,
the zero-point fluctuations are sensitive to the ultravio-
let cutoff. One can measure them, for example, by
studying the gluon condensate or the vacuum expecta-
tion value of the gluonic field strength tensor squared:

(3)

where ak are coefficients of the perturbative series. The
matrix element (3) is divergent as the fourth power of
the ultraviolet cutoff. This is the well-known diver-
gence of the density of the vacuum energy in field the-
ory, which arises due to the zero-point fluctuations.
High gluonic frequencies dominate the matrix element
(3) because of the phase space associated with these
fluctuations. One can say that the zero-point fluctua-
tions represent an example of entropy-dominated fluc-
tuations.

The situation looks absolutely different if one con-
siders the topological charge. The density of the topo-
logical charge is given by

(4)

where eµνρσ is the totally antisymmetric tensor. One can
readily show that Q(x) is a full derivative. As a result,

0〈 | g2

32π2
----------- Gµν

a( )2
0| 〉 const

a4
------------ 1 Σkakg

2k a( )+{ } ,≈

Q x( ) g2

32π2
-----------eµνρσGµν

a x( )Gρσ
a x( ),=
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all the perturbative fluctuations do not contribute to the
topological charge. On the other hand, the probability
of finding a nonperturbative fluctuation of size ρ is sup-
pressed for small ρ as exp(–const/g2(ρ)), where g(ρ) is
the running constant. This factor grows fast with grow-

ing ρ and is somehow smoothened out at ρ ~ ,
where the running of the coupling cannot be calculated
reliably. As a result, topologically nontrivial fluctua-

tions have a typical size of order  and are abso-
lutely negligible on the scale of a. In particular, instan-
tons are topologically nontrivial, and all the factors
mentioned above are known explicitly. Instantons rep-
resent fluctuations whose probability is determined pri-
marily by action and not entropy (for a review of instan-
tons in the context of the lattice measurements, see,
e.g., [2]).

A common viewpoint is that confinement is due to
vacuum fluctuations on the scale ΛQCD, i.e., that con-
finement is determined by soft, semiclassical fields.
The expectations can be confronted with lattice mea-
surements on the fully quantum, vacuum state of gluo-
dynamics. Most recently, there has been emerging evi-
dence [3] that the confining fields are actually of a third
type exhibiting both infrared and ultraviolet scales.
Both the action and entropy are very large, but they bal-
ance each other almost exactly. One can call them fine-
tuned fluctuations (for a review, see [4]).

2. FINE TUNING

Imagine that a relativistic system has the size r0.
Then, the typical momenta should be of the order p ~
1/r0. Respectively, one expects that the typical masses

are of the order m2 ~ 1/ . If, on the other hand, the

observed masses are much smaller than , one calls
such a case fine tuning.

The notion of fine tuning has been discussed most
thoroughly in connection with Higgs physics. The
problem here is that to fulfill its role as a part of a renor-
malizable theory of weak interactions, the Higgs parti-
cle should have a mass of the order of 100 GeV, as inter-
mediate bosons of weak interactions. On the other
hand, if Higgses are pointlike particles down to the
scale r0, then radiative corrections to the Higgs mass are
of the order

(5)

where α is the electromagnetic coupling. If r0 is, say, of
the order of the inverse Planck mass, fine tuning of the
radiative correction and of the bare mass is required.

To resolve the puzzle of fine tuning, if it is observed
experimentally, one usually invokes hidden symmetry.
In the Higgs case, for example, one of the favorite can-
didates for such a symmetry now is supersymmetry.

ΛQCD
1–

ΛQCD
1–

r0
2

r0
2–

∆mH
2 αr0

2– ,∼
In the case of Yang–Mills theories, one usually does
not expect to confront the problem of fine tuning. How-
ever, recently, it was found that the field configurations,
which are responsible for the confinement, appear fine-
tuned. In particular, there is ample evidence that so-
called central vortices (for a review, see, e.g., [5]) are
responsible for the confinement. The central vortices
represent closed two-dimensional surfaces whose total
area scales in physical units are the following:

(6)

where Vtot is the total volume of the lattice. On the other
hand, the non-Abelian action associated with the sur-
faces is ultraviolet divergent [3]:

(7)

Combining observations (6) and (7), one concludes that
the suppression of the fluctuations due to the action of
(7) is nearly compensated for by the enhancement due
to the entropy. That is, the fluctuations are fine-tuned.

The observations above are purely empirical. Theo-
retically, it is natural to again speculate that there is a
hidden symmetry that ensures the observed fine tuning.
Moreover, the only symmetry that can come into con-
sideration is the conjectured duality between the Yang–
Mills theories and string theories [6]. However, such a
connection is purely speculative at the moment [4]. We
mention this possibility just to emphasize that further
studies of the fine tuning in Yang–Mills theories are of
great interest. In this paper, we address the probable
manifestation of the fine tuning in fermionic zero
modes.

3. WITTEN–VENEZIANO 
AND BANKS–CASHER RELATIONS

We will study the properties of low-lying modes of
the Dirac operator,

(8)

where γµ are the Dirac matrices and the covariant deriv-

ative Dµ is constructed on the gauge potential  gen-
erated as a vacuum field configuration. The Dirac equa-
tion is solved numerically. Moreover, one generates
many configurations and studies the properties of the
modes with low values of λn. Note that both λn and the
volume occupied by the nth wave function ψn are
gauge-invariant quantities.

There exists rich literature on the low-lying Dirac
eigenmodes (LDEs). Most commonly, one uses the
instanton model of the vacuum (for a review and further
references, see, e.g., [2]). The instantons are localized
solutions with nontrivial topological charge, and there
are exact zero fermionic modes associated with them:

(9)

Atot 24V tot fm
2– ,≈

Stot 0.55
Atot

a2
--------.≈

Dµγµψn λnψn,=

Aµ
a

n+ n–– N f Qtop,=
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where n± are the number of zero modes with positive or
negative chirality, Nf is the number of quark flavors, and
the topological charge for an instanton is Qtop = 1.

In the physical vacuum, the instanton solutions are
distorted. Indeed, there are neighboring instantons (or
anti-instantons), and the instanton fields are modified
because of that. The corresponding fermionic zero
modes are becoming near-zero modes.

There are some generic features that are predicted to
survive the modifications. First, consider the exact zero
modes for a given lattice volume Vtot. The exact zero
modes are related to the total topological charge Qtop.

On average, Qtop = 0. The value of  fluctuates, how-
ever. The instanton-like picture presumes that there are
lumps of topological charge close to Qtop = ±1 occupy-

ing subvolumes of order . There are no fluctua-
tions of the topological charge on the scale of the lattice
spacing a. Indeed, instantons are topological excita-
tions with the smallest action possible, and the proba-
bility of finding instantons of the size of order a is pro-
portional to a high power of a. Quantitatively, the
strength of the topological fluctuations is related to the
η' mass [7]:

(10)

where the numerical value is borrowed from [15].
There are also near-zero fermionic modes whose

total number is proportional to the total volume and
which are associated, in the zero approximation, with
the original lumps of the topological charge (see
above). Since the modes are nearly degenerate, the
interaction between instantons results in the delocaliza-
tion of these zero modes (for details, see, e.g., [2]).
Quantitatively, this generic feature of the instantonic
vacuum is manifested through the Banks–Casher rela-
tion [8]:

(11)

where ρ(λn  0) is the density of the (delocalized)
zero modes in the limit of the infinite volume Vtot. For
finite lattice volumes, these modes are near-zero.

Thus, Eqs. (10) and (11) predict that the number of

exact zero modes is proportional to , while the
number of near-zero modes is proportional to the total
volume, Vtot. Moreover, the instantonic picture fixes the
scaling laws according to which the corresponding
coefficients of the proportionality are in physical units
and not dependent on the lattice spacing a.

4. MEASUREMENTS

We are using the overlap Dirac operator [9]. The
advantage of the overlap operator is that it preserves the
chiral symmetry and allows us to study the properties of

Qtop
2

ΛQCD
4–

χ t

Qtop
2〈 〉

V tot
---------------

mη'
2 f π

2N f

------------- 213 MeV( )4,≈ ≈≡

ψψ〈 〉 πρ λn 0( ),–=

V tot
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the Dirac modes from the first principles [10]. There
were actually many studies of the Witten–Veneziano
and Banks–Casher relations on the lattice. However,
they mostly used such versions of the lattice fermions
such that the topological charge has intrinsic ultraviolet
noise. To avoid this, one has to modify and smoothen
the original gauge fields that fluctuate on the lattice
spacing a (for a review, see, e.g., [11]). As a result, no
dependence on a could actually be measured. The use
of the overlap fermions allows us to study the configu-
ration of the original gauge fields (see, in particular,
[12]). Study of the dependence on the lattice spacing a
of various observables is one of the main objectives of
the present paper.

More explicitly, the massless overlap Dirac operator
is given by [9]:

(12)

where A is the Wilson Dirac operator with a negative
mass term. Antiperiodic (periodic) boundary conditions
in time (space) directions were employed. It turns out
that the optimal value of the parameter ρ is 1.4. Further-
more, we have used the minimax polynomial approxi-
mation [13] to compute the sign function sgn(A) =

A/  ≡ γ5sgn(H), where H = γ5A is the hermitian
Wilson Dirac operator. In order to improve the accuracy
and performance, about one hundred of the lowest
eigenmodes of H were projected out. Note that the
eigenvalues of (12) lie on the circle of radius ρ centered
at (ρ, 0) in the complex plane. In order to relate them to
the continuous eigenvalues of the Dirac operator, the
circle was stereographically projected onto the imagi-
nary axis [14].

The calculations were performed on two subsets
(table) of statistically independent SU(2) quenched
configurations generated with standard Wilson action.
For the subset A, the gauge coupling was chosen in
such a way that the physical volume remains the same,
and the corresponding lattice spacings were determined
by interpolating the data of [15]. The subset B was used
to determine the IPR volume dependence at the fixed
spacing a = 0.1394(8) fm.

5. RESULTS FOR TOPOLOGICAL 
SUSCEPTIBILITY

First, let us address the issue of the scaling of the

topological susceptibility χt = /Vtot, where the
topological charge is defined by the index of the overlap
Dirac operator Qtop = n+ – n–, and n± is the number of
exact zero modes with positive (negative) chirality. The
topological susceptibility calculated on the subset A
scales up to the a2 corrections (Fig. 1) and equals χ0 =
(225(3) MeV)4, which is in good agreement with the
conventional value (213(3) MeV)4 [15].

D
ρ
a
--- 1 A

AA†
--------------+ 

  , A DW
ρ
a
---,–= =

AA†

Qtot
2〈 〉
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The observed scaling of the topological susceptibil-
ity confirms that the discretization errors and the finite
volume effects are small. Note that the Wilson gauge
action is plagued by lattice dislocations, and one might
have speculated that spurious fermionic zero modes are
generated. However, Fig. 1 confirms that the disloca-
tions are inessential for an overlap Dirac operator,
which is insensitive to the ultraviolet noise.

Moreover, we have measured the density of the
near-zero modes (see Fig. 2). The value of the conden-

Simulation parameters

β a, fm Ls Lt Vphys, fm4 Nconf

Subset A

2.3493 0.1397(15) 10 10 3.8(2) 300

2.3772 0.1284(15) 10 14 3.8(2) 91

2.3877 0.1242(15) 10 16 3.8(2) 198

2.4071 0.1164(15) 12 12 3.8(2) 179

2.4180 0.1120(15) 12 14 3.8(2) 149

2.4273 0.1083(15) 12 16 3.8(2) 198

2.4500 0.0996(22) 14 14 3.8(3) 200

2.5000 0.0854(4) 16 18 3.92(7) 196

Subset B

2.3500 0.1394(8) 10 10 3.8(1) 100

2.3500 0.1394(8) 10 14 5.3(1) 100

2.3500 0.1394(8) 12 12 7.8(2) 100

2.3500 0.1394(8) 12 18 11.7(2) 100

2.3500 0.1394(8) 14 14 14.5(3) 94

2.3500 0.1394(8) 14 16 16.5(4) 42

Fig. 1. Scaling of topological susceptibility with lattice

spacing; the solid curve is the best fit χ1/4 =  + ca2. The

square corresponds to the conventional value
(213(3) MeV)4 [15].

χ0
1/4
sate  determined using the Banks–Casher rela-
tion turns out to be close to the value obtained earlier
with the Wilson fermions (see, for instance, [16]).

6. SHRINKING OF THE VOLUME OCCUPIED
BY FERMIONIC MODES

A natural measure of the localization of the eigen-
modes is provided by the inverse participation ratio
(IPR) Iλ, which is defined as follows (for a review and
applications, see, for example, [17]). Let ρλ(x) be the
normalized bilinear

where ψλ(x) is the eigenmode of the overlap Dirac
operator in the given gauge field background with the
virtuality λ, Dψλ = λψλ. Then, for any finite volume V,
the IPR Iλ is defined by

(13)

and characterizes the inverse fraction of sites contribut-
ing to the support of ρλ(x). Note that, for delocalized
modes, ρλ(x) = 1/V and, hence, Iλ = 1, while an
extremely localized mode, ρλ(x) = , is character-
ized by Iλ = V. Moreover, for eigenmodes localized on
the fraction f of sites (so that, supρλ = Vf = fV), we have
Iλ = V/Vf = 1/f. If we allow for a mixture of both local-
ized and extended modes, the average value of the IPR
is given by

(14)

ψψ〈 〉

ρλ x( ) ψλ
† x( )ψλ x( ), ρλ x( )

x

∑ 1,= =

Iλ V ρλ
2 x( ),

x

∑=

δx x0,

Iλ〈 〉 c0 c1V /V f .= =

Fig. 2. The spectral density of eigenmodes of the overlap
Dirac operator and its interpolation to λn  0 at β = 2.5

on an 18 × 163 lattice. The value of the condensate 
(Eq. (11)) is perfectly consistent with the results of [16].

ψψ〈 〉
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Usually [17], one considers localization only in
terms of the total volume. Very recently, there appeared
data such that the localization volume can depend on
the lattice spacing as well. Namely, such an effect was
observed first in [18] for fermionic modes (in a partic-
ular version of lattice fermions, so-called Asqtad fermi-
ons). Most recently, the localization properties of scalar
probe particles were investigated [19], and, again, a
strong dependence on a was observed. The observed
dependence on the lattice spacing seems specific for the
dynamics of the Yang–Mills theories.

The localization properties of the LDEs in our mea-
surements are illustrated in Fig. 3, where we plot the
inverse participation ratios for the modes 0 ≤ λ ≤
450 MeV at various spacings and fixed physical vol-
ume (subset A, table). One can see that there is a critical
value, λcr ≈ 200 MeV, above which all the states are, in
fact, delocalized and their IPRs are lattice spacing-
independent. However, for small eigenvalues below λcr,
the value of the IPRs grow and one cannot exclude the
presence of localized states. The mixture of localized
and extended modes could be quantitatively character-
ized by the volume dependence of the IPR at fixed lat-
tice spacing (see Eq. (14)). We have computed the aver-
age value Il = /Nl of the IPRs for the modes 0 <
λ ≤ Λ = 50 MeV, where Nl is the total number of modes
in this interval, and the analogous quantity I0 for the
exact zero modes. Fitting the data to Eq. (14), we found
for the exact zero modes c0 = 3.7(5), c1 = 0.38(5) with
χ/NDF = 3, and for the low-lying modes c0 = 1.9(2),
c1 = 2.26(3) with χ/NDF = 2.

Moreover, one can see from Fig. 3 that the LDE’s
localization degree depends nontrivially on the lattice
resolution. To quantitatively investigate this depen-
dence, we have plotted I0 and Il against the lattice spac-
ing in Fig. 5. It turns out that our results are highly

Iλ〈 〉λ∑

Fig. 3. IPRs for LDEs at various lattice spacings and fixed
physical volume. The “mobility edge” λcr ≈ 200 MeV is
clearly seen.
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robust with respect to the actual value of Λ as long as
Λ & 50 MeV, so that we can take Λ = 50 MeV to
improve the statistics. It follows from Fig. 5 that the
inverse participation ratios for both zero and low-lying
eigenmodes seem to be divergent in the limit a  0.
Note that the average values of the IPRs are higher than
those of [18].

Furthermore, it is straightforward to estimate the
dimensionality d of the objects that localize the low-
lying eigenmodes. Indeed, at a fixed physical volume,
we have

and, therefore, the lattice spacing dependence is given
by

(15)

Iλ V /V f Va4/ V f a
4( ) ad 4– Vphys/V f

phys= = =

Iλ〈 〉 b0 b1ad 4– .+=

Fig. 4. Volume dependence of I0 and Il at fixed lattice
spacing.

Fig. 5. Scaling of I0 and Il with a  0. The lines corre-
spond to the fitting curves (15) for d = 0, 1, 2, 3.
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We fitted our data to Eq. (15) for d = 0, 1, 2, 3; the fitting
curves are shown in Fig. 5. As a matter of fact, the IPR
data for low-lying modes strongly suggest that the
dimensionality of the underlying objects is zero, d = 0;
the relevant χ2/n.d.f. is 2.3, which should be compared
with its values of 3.4 (d = 1) and 4.9 (d = 2). As far as
the exact zero modes are concerned, our data favor one-
dimensional (d = 1) localization regions; χ2/n.d.f., in
this case, is 0.38, while it is 0.95 for d = 0 and 0.85 for
d = 2. The error bars are not small enough, however, to
rule out reliably that the exact zero modes in the limit
a  0 are also localized on pointlike objects.

7. EFFECT OF THE REMOVAL
OF THE VORTICES

Thus, our results indicate fine tuning of the fermi-
onic modes. Namely, their volume shrinks without
affecting the eigenvalues. We have already mentioned
(see Eqs. (6), (7)) that fine tuning was observed first for
the central vortices. A natural question arises, whether
the fine tuning of the fermionic modes is related to the
existence of the fine-tuned vortices. A standard way to
probe such a relation is the so-called removal of the
vortices [20, 21]. Namely, one multiplies the original
link matrices Uµ(x) by their Z2 projected values:

(16)

One can show that the modification (16) affects (up to
a gauge transformation) only a 3D fraction of the total
4D volume of the lattice [22]. In other words, this frac-
tion is proportional to (a · ΛQCD) and vanishes in the
limit of a  0. On the other hand, the vortices are
removed.

The impact of the change (16) on the properties of
the LDEs is illustrated in Figs. 6 and 7. Namely, all the
low-lying modes, with the exception of approximately

Uµ x( ) Uµ x( ) Z2( )µ x( ).

Fig. 6. The spectral density of overlap Dirac operator eigen-
modes for vortex-removed configurations. The lattices used
are 18 × 163 at β = 2.5.
4% of the exact zero modes, disappear.1 For the modes
remaining in the spectrum, the value of the IPR is of
unit order. In other words, removal of the vortices
destroys the topology-related Dirac modes.

As is mentioned above, the change (16) affects the
3D subvolume of the whole lattice. Further information
on the manifold crucial for the chirality breaking can be
provided by observations of the shrinking of the local-
ization volume as a function of the lattice spacing. If,
indeed, the volume shrinks to points, d = 0, as favored
by the data above, then it is only a small subspace of the
3D volume that is related to the chiral symmetry. Purely
geometrically, such points could well be the points of
self-intersection of the vortices. Theoretically, a possi-
ble connection between the self-intersections of the
vortices and the zero modes was considered within a
particular model in [23]. In principle, this conjecture
based on the relation between the self-intersections of
the vortices and the localization of the (near) zero
modes could be investigated through direct obser-
vation. At the moment, however, such data are not
available.

8. CONCLUSIONS

To summarize, we have studied the properties of
low-lying Dirac modes in the vacuum state of SU(2)
gluodynamics using overlap fermions. We worked with
the original gauge fields, which fluctuate on the scale of
the lattice spacing, without any smoothening. The Wit-
ten–Veneziano and Banks–Casher relations predict
scaling laws for densities for exact and near zero
modes, respectively. Namely, these densities should
depend only on the physical scale, ΛQCD. From the
point of view of the lattice measurements, these are

1 Note that a similar effect was observed in [21], where a chirally
improved lattice Dirac operator was studied.

Fig. 7. IPR for LDEs for vortex-removed configurations
obtained at β = 2.5 on 18 × 163 lattices.
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strong constraints. The results of the measurements do
agree with the theoretical expectations.

A novel feature uncovered by the lattice simulations
is that the low-lying modes are localized on the vol-
umes that shrink as a power of the lattice spacing a. For
exact zero modes, the power is close to three, Vλ = 0 ~ a3,
while, for near-zero modes, it is rather four, Vλ → 0 ~ a4

(for the error bars, see Fig. 5).

Moreover, the removal of the central vortices from
the original configurations eliminates all the topologi-
cal fermionic modes. This observation favors specula-
tions that the lumps of the topological charge are asso-
ciated with self-intersections of the vortices.

Note that, even if this picture is correct, this does not
automatically imply that the instantonic picture is
wrong. There could be two dual pictures of the same
effect that are valid for measurements with various res-
olutions. In terms of soft fields, instanton-like fluctua-
tions could dominate. In terms of fields measured with
fine resolution of order a, the fine-tuned surfaces could
be responsible for the lumps of the topological charge.
It goes without saying that the hypothesis on the crucial
role of the surfaces is to be scrutinized much further in
the lattice measurements. If existence of the dual pic-
tures is confirmed by measurements, one could specu-
late that this empirical duality reflects duality on the
fundamental level. The vortices themselves could be
identified with dual strings [4], while their self-inter-
sections could be basic element in the mechanism of the
chiral symmetry breaking in the dual picture.

One cannot rule out that the lattice-spacing depen-
dence we found will change on finer lattices. In princi-
ple, it could happen that the ~a–4 dependence of the IPR
shown in Fig. 5 will eventually flatten in the limit a 
0, so that the localization of the LDEs will identify
some four-dimensional objects of finite physical extent.
Note, however, that the characteristic size of these
objects is definitely less than 0.1 fm and likely to be
much smaller than that. Although this scenario is not
excluded a priori and requires further investigations, it
seems artificial to our mind.
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Spontaneous parametric down-conversion (SPDC) in media with no inversion center and the use of this phe-
nomenon in the spectroscopy of natural oscillation states of a crystal lattice (i.e., optical phonons) are retrospec-
tively described. We think that the SPDC spectroscopy method is estimated inappropriately and hope to again
attract the attention of readers to one of the most interesting quantum phenomena of nonlinear optics that has
no classical analog. The capabilities of SPDC spectroscopy will certainly be used in both fundamental science
and technology of new materials. © 2005 Pleiades Publishing, Inc.

PACS numbers: 42.65.Lm, 42.70.Mp, 77.84.–s
* The first report on the theoretical possibility of
spontaneous parametric down-conversion (at that time,
the term parametric fluorescence was used) was made
by D.N. Klyshko in 1966 at the All-Union Conference
on Nonlinear Properties of Media in Chernogolovka.
The first publication appeared in JETP Letters in 1967
[1]. In the same year, this phenomenon was experimen-
tally observed simultaneously by three research groups
[2–4]. The history of the discovery of this scattering is
dramatic; unfortunately, it is impossible to describe this
history in detail in this paper. In 1983, Klyshko and two
of his disciples were awarded a USSR State Prize for
the discovery and investigation of the phenomenon of
spontaneous parametric down-conversion and its appli-
cation in spectroscopy and metrology. Almost since the
time of its discovery, SPDC began to be efficiently
used, first, in spectroscopy and, then, in quantum
metrology and quantum optics. At present, most works
on quantum optics and quantum informatics that are
associated with investigation and application of quan-
tum features of the electromagnetic field are based on
SPDC. The properties of the process allow the genera-
tion of specific field states that provide the basis of a
number of protocols of quantum calculations and pro-
tection of quantum information [5].

The use of SPDC in quantum optics is widely
known. However, the prospects of its application for
crystal spectroscopy, especially in the region of low-
frequency optical phonons and polaritons in the wave-
length range from tens of microns to millimeters, are
much less known. In the frequency range of optical
phonons, SPDC spectra smoothly join the spectra of
Raman scattering on phonon polaritons [6, 7].
Although these processes are similar at first glance,

* A member of the editorial board of the journal JETP Letters since
1998.
0021-3640/05/8206- $26.00 0350
they are fundamentally different. Spontaneous para-
metric down-conversion can be treated as the scattering
of light by zero-point electromagnetic vacuum fluctua-
tions in a medium due to its quadratic optical suscepti-
bility. At the same time, the spontaneous Raman scat-
tering on phonon polaritons is scattering due to the
imaginary part of cubic optical susceptibility. As a rule,
the components of the Raman scattering tensor
decrease rapidly to zero when the polariton frequency
is detuned from the optical-phonon frequency and,
therefore, the basic contribution to the intensity of light
scattered on polaritons comes from SPDC. In cento-
symmetric media, the parametric contribution is absent
and the spontaneous scattering of light is pure Raman.
In this case, Raman scattering can occur only directly
on phonons or on very narrow adjacent sections of the
polariton branches.

As was shown by Klyshko [8, 9], SPDC can be
described only in the framework of consistent quantum
theory. For an observer, SPDC is an optical parametric
process of the spontaneous decay of monochromatic-
radiation (pumping) photons incident on the medium
with frequency ω0 into a pair of signal (frequency ω1)
and idler (frequency ω2) photons:

"ω0  "ω1 + "ω2. (1)

The sum of the frequencies of the produced photons is
equal to the pumping frequency. For nonstationary or
quasimonochromatic pumping, this condition is evi-
dently valid with an accuracy of the spectral width of
the pumping. The frequencies of the produced photons
lie in broad ranges from zero to the pumping frequency.
The signal-photon frequency ω1 and idler-photon fre-
quency ω2 are traditionally associated with the ranges
ω0 > ω1 ≥ ω0/2 and 0 < ω2 ≤ ω0/2. The maximum decay
efficiency is achieved when the momentum conserva-
© 2005 Pleiades Publishing, Inc.
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tion law is valid, which has the form of the condition of
spatial (phase) synchronism in this process

(2)

Here, k0, k1, and k2 are the wave vectors of the pump-
ing, signal, and idler waves, respectively, and ∆k is the
phase detuning.

When the frequencies of both photons lie in the
transparency range of the scattering medium, a bipho-
ton field, which is the flux of correlated photon pairs, is
generated at the output of the medium. A pair of pho-
tons, i.e., a biphoton, is an indivisible quantum object
that constitutes the so-called entangled state. This state
is described by a united wave function and has a num-
ber of statistical properties. The photons in the pair are
strictly coupled with each other by the place and time
of their production, frequency, and scattering direction.
The biphoton flux intensity is directly related to the
radiance of zero-point electromagnetic vacuum fluctu-
ations. When ω1 = ω2 = ω0/2 and k1 = k2 = k0/2, a situ-
ation unique for experimental quantum optics is real-
ized: the signal and idler photons become undistin-
guishable.

If the frequency of the idler photon lies in the range
of strong phonon absorption, only a signal photon of
each pair remains at the output of the scattering object.
In this case, the conditions for the scattering of light on
polaritons are realized. The intensity of the signal pho-
ton flux can be determined in this case not only by zero-
point electromagnetic vacuum fluctuations but also by
thermal fluctuations of the field at the idler frequency,
which occur in the absorbing medium at sufficiently
high temperature. Owing to the strong correlation
between the frequencies and directions of photons pro-
duced in SPDC, the spatial and frequency distributions
of the intensity of the signal radiation that are detected
in the visible range contain information on the optical
and dynamic parameters of the eigenstates of the scat-
tering medium in the infrared, far infrared, and tera-
hertz ranges, which are poorly accessible for direct
observation. It is the process of heterodyning of low-
frequency fluctuation fields of the long-wavelength
range into the visible range. In this case, the pumping
radiation serves as the heterodyne radiation. The two-
dimensional spectrum of SPDC, which is the distribu-
tion of the signal-radiation intensity in the (frequency,
scattering angle) plane, can be detected by means of a
spectrographic system with crossed frequency and
angular dispersion. The Fourier image of the signal-
radiation flux is plotted in the input plane of the spec-
trograph [10].

In the phenomenological consideration, the radi-
ance of the signal radiation is determined by the macro-
scopic parameters of the medium and the pumping
intensity. In particular, if the thermal fluctuations are
negligibly small, the signal radiance (measured in pho-

∆k k1 k2 k0–+≡ 0.=
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tons per signal-wave mode at the output of the scatter-
ing crystal) is given by the expression [9]

(3)

Here, N2 is the number of free-field photons in the idler
wave mode at the input of the crystal, 1 in the parenthe-
ses is the effective radiance of zero-point electromag-
netic vacuum fluctuations measured in photons per the
idler radiation mode, and F is the parametric transfor-
mation coefficient. In a transparent crystal, this coeffi-
cient is given by the formula

where χ(ω1 = ω0 – ω2) is the convolution of the qua-
dratic susceptibility tensor of the crystal with the polar-
ization orts of the pumping, signal, and idler waves; E0
is the pumping-wave amplitude; and l∆ is the coherent
interaction length (coherent length). The radiance of
the signal radiation of SPDC that is observed only due
to zero-point electromagnetic vacuum fluctuations (i.e.,
at N2 = 0) can be sufficiently high. In particular, the
effective radiance temperature reaches approximately
1500 K for a pumping radiation intensity of 1 W, a
LiNbO3 single crystal 1-cm long, a pumping wave-
length of 0.51 µm, and a signal wavelength of 0.6 µm.
It is worth noting that the radiance of a usual 100-W fil-
ament bulb does not exceed this value. For N2 ≠ 0, for-
mula (3) also describes an induced process—the linear
(in intensity and radiance) parametric transformation of
the input idler radiation. As was experimentally shown
in [11], absorption at the idler wave does not affect the
integral signal intensity but changes the frequency and
angular (in the k space) lineshape. This evidence fin-
ished the discussion on the basic properties of SPDC
and Raman scattering on polaritons (see, e.g., [12]) and
led to the development of SPDC spectroscopy. More
recently, it was proved experimentally that the effective
radiance of zero-point electromagnetic vacuum fluctu-
ations in parametric processes is equal to unity even if
the nonlinear medium absorbs and partially reflects
radiation incident from the outside [13].

SPDC spectroscopy is of interest because a number
of linear and nonlinear optical parameters of the
medium, as well as the dynamic parameters of a crystal
lattice, can be determined from the frequency–angular
spectra. In particular, the reflective index and absorp-
tion coefficient can be measured over the entire scatter-
ing range. To solve this problem, it is necessary to know
only the refractive index in the visible range at the
pumping and signal frequencies. The behavior of the
tuning curve (the frequency dependence of the scatter-
ing angle signal for zero wave detuning) enables one to
determine the contribution of particular phonons to the
optical parameters of crystals, as well as the frequen-
cies, damping constants, and even oscillator strengths
of these phonons. The measurement of the scattering
intensity allows the determination of the quadratic sus-
ceptibility and the imaginary part of the cubic suscepti-

N1 F k1( ) N2 1+( ).=

F 4π2c 2– ω1ω2 χ ω1 ω0 ω2–=( ) 2 E0
2l∆

2 ,=
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bility of the medium. The frequency and angular widths
of the tuning curve are unambiguously related to the
absorption coefficient at the idler wave frequency
(under the assumption of small absorption at the signal
and pumping frequencies). We note that SPDC spectra
exhibit oscillations that are active only in infrared
absorption and oscillations that are active only in
Raman scattering, as well as oscillations for which
alternative prohibition is removed. Owing to such an
indifference of scattering to the activity type of the
oscillations, SPDC spectra are very sensitive to the
presence of even very weak (in their contribution to the
crystal susceptibility) oscillation states of the lattice. In
particular, higher order oscillations were detected that
have no Raman scattering activity (the nonlinearity of
the third order in the field is close to zero) and have an
extremely small oscillation strength (characterizing the
dipole moment and oscillation activity in infrared
absorption) on the order of 10–8 [14].

In addition to the practically important information
on the dispersion of the optical parameters of crystals in
the infrared range, the change in the dispersion curves
in the presence of doping and the variation in the com-
position and the structure of crystal defects (see, e.g.,
[15–17]), SPDC spectroscopy, during its existence, has
provided a number of nontrivial and often unique
results interesting for fundamental science. We remind
some of them.

Ferroelectric phase transition in the potassium
dihydrophosphate crystal (KDP, chemical formula
KH2PO4). The SPDC spectra enabled one to find that,
near the point of the ferroelectric phase transition in
KDP (Tc ~ 123 K), a change occurs in the oscillator
strengths of not only the soft mode whose oscillator
strength increases sharply and determines the change in
the specific heats at zero frequency but also in a number
of other phonons [18]. This statement primarily con-
cerns PO4-group oscillations in the frequency range
900–950 cm–1 whose oscillator strength decreases
abruptly when approaching the Curie temperature in
the ferroelectric phase. This fact is evidently of funda-
mental importance for the development of the theory of
phase transitions. It was found that the domain structure
formed in the ferroelectric phase leads to a significant
change in the oscillation spectrum, namely, to the
appearance of new oscillations of the first and higher
orders and to the violation of the polarization selection
rules [19]. These effects have not yet been explained in
the framework of the available theories of the ferroelec-
tric phase transitions and formation of domain struc-
tures.

Concentration phase transition in the KH2xD2(1 – x)PO4

solid solution. When the proton concentration x
decreases and the proton is replaced by the deuteron, a
change is observed in the ordinary reflective index. The
dependence is linear in the proton concentration range
x = 1–0.25. However, as the deuteron concentration
increases further, a kink characteristic of phase transi-
tions appears in the dependence. The x scale is divided
into two ranges with qualitatively different behaviors of
the reflective index with varying deuteron concentra-
tion. It is worth noting that the position of this kink
coincides with the x value at which inversion occurs in
the valence oscillations of OH and OD bonds (their fre-
quencies lie in the frequency range 1500–1800 cm–1

and their spectral widths reach 200 cm–1) [20].
Anharmonicity of the oscillation states of the crystal

lattice. The capabilities of SPDC spectroscopy are most
brightly manifested in application to investigation of
the anharmonicity of phonons; interaction of first-order
oscillations with higher order oscillations, i.e., the
Fermi resonance; and interference of susceptibilities of
various orders, in particular, the Fano antiresonance.
The coincidence of the frequencies of the first and sec-
ond or higher orders is a rather rare phenomenon in
Raman scattering spectra, whereas such a coincidence
is a usual phenomenon in SPDC spectra due to the
broad frequency band of phonon polaritons. The pres-
ence of higher order oscillations such as biphonons,
sum and difference combination oscillations, and bands
of uncoupled multiparticle states lead to a change in the
optical parameters of crystals in the polariton region
and thereby to a noticeable change in the behavior of
the tuning curve of the SPDC spectrum.

A sufficiently complete theoretical description of
these phenomena was given in a number of works by
Agranovich and Lalov (see, e.g., [21]) and Strizhevskii
et al. [22]. The Fermi resonance and Fano antireso-
nance are experimentally manifested in the spectra of
almost all crystals in which scattering has been already
observed (see, e.g., [14–16, 23, 24]). These effects are
most brightly manifested in the spectra of crystals
whose structure includes the hydrogen bond such as
lithium formate, hydroiodic acid, potassium pentabo-
rate, KDP, etc. The figure shows an example of the
characteristic SPDC spectrum.

Investigation of effects of the electron–phonon
interaction. As is shown, owing to the electron–phonon
interaction, the localization of free electrons, and the
formation of polaron states that lead to a change in the
crystal absorption spectrum in the transparency range,
various photoinduced effects, formation of holographic
structures, etc., can occur in dielectric crystals. Addi-
tional changes in the phonon subsystem level are theo-
retically studied insufficiently and, as far as we known,
have not yet been observed experimentally. In a recent
investigation of SPDC spectra in chemically reduced
crystals of doped lithium niobate Mg:LiNbO3, it was
found that the formation of polarons led to a change in
the dispersion of the dielectric constant of the crystals
near the phonon absorption edge [25]. The changes
increase both with the polaron concentration and when
approaching the phonon resonance region. The nature
of these phenomena is not yet understood.

The above discussion concerns SPDC in spatially
homogeneous samples in the form of a plane layer. The
JETP LETTERS      Vol. 82      No. 6      2005
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Frequency–angular spectrum of spontaneous parametric down-conversion in the hydroiodic acid crystal. The horizontal axis shows
the idler wavenumber ν in inverse centimeters and the vertical axis shows the scattering angle in degrees.
situation is much more complicated if a sample has
either a regular or a stochastic spatial structure. Reflec-
tion from the internal boundaries between individual
regions significantly complicates the spectrum. Various
situations are possible: (i) only the linear parameters—
the reflective index and absorption coefficient—
undergo a significant jump at the internal boundaries,
(ii) only the quadratic susceptibility or higher order sus-
ceptibilities undergo changes such as changes of the
sign of even-order nonlinear susceptibilities in multido-
main ferroelectrics, and (iii) both effects are manifested
together. In order to adequately describe the form of the
SPDC spectrum in the presence of spatial inhomogene-
ity, it is possible to use the generalized nonlinear Kirch-
hoff’s law (GKL) formulated by Klyshko for the uni-
fied description of spontaneous and induced parametric
processes in absorbing media [9, 26].

If the field at either the signal (ω1) or idler (ω2) fre-
quency is present at the input of the medium along with
the pumping, the processes of the induced conversion
of the pumping photons accompanied by the formation
of similar biphoton pairs occur along with the sponta-
neous process. If the external fields are sufficiently
weak and the parametric transformation coefficient is
much less than unity, the GKL describes the total field
at the output of the three-wave parametric converter and
is, in essence, the solution of the kinetic equations for
the second moments of the field that take into account
(in the consistent quantum consideration) both the ther-
mal and quantum noises of the medium. According to
the GKL, the mean number of photons in the output
radiation modes of the signal range N1' ≡  in the
parametric down-conversion is given by the expression

(4)

Here,  are the matrix elements of the scattering

matrix  = ; the subscripts 1' and 2' run

over all the modes of the output signal and idler radia-

a1'
+ a1'〈 〉

N1' Û1'1 N1 10 I+ +( )Û1'1
+

=

– Û1'2 Ñ2 10–( )Û1'2
+

10– I .–

Ûi' j

Û Û1'1 Û1'2

Û2'1 Û2'2 
 
 
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tions, respectively; the subscripts 1 and 2 run over all
the modes of the input signal and idler radiations,
respectively; I is the identity matrix;  and ai are the
operators of the production and annihilation of photons
in the corresponding field modes, respectively; the
matrices (N1)ij ≡  and (N2)ij ≡  describe
the second moments of the input field; and the temper-
ature factor 10 ≡ 1/(exp("ω/kT) – 1) describing the
contribution of the thermal fluctuations of the medium
is much less than unity (i.e., than the contribution from
zero-point electromagnetic vacuum fluctuations) even
at the lowest idler frequencies and can be ignored.

The mean number of photons in the output radiation
modes of the idler range, N2' ≡ , is determined
by the expression

(5)

The difference between Eqs. (4) and (5) for the signal
and idler photons is attributed to the assumption that
absorption occurs only at the idler radiation frequen-
cies. In this case, the correlation moment K' ≡ 〈a1'a2'〉*
determining the statistical properties of the output
biphoton field is given by the formula

(6)

The formulation of the GKL in the form given by
Eqs. (4)–(6) is called polariton Kirchhoff’s law [9].

The GKL method allows the determination of the
second correlation moments of the fields at the output
of the nonlinear medium in terms of the second corre-
lation moments specified at the input. Using this
method, the general relations describing the depen-
dence of the SPDC lineshape on the spatial distribution
of the quadratic susceptibility in the nonlinear medium
were obtained [27]. In these calculations, only a linear
relation between the Heisenberg operators of the input
and output fields is postulated. For a layered medium
with the spatial modulation of the quadratic susceptibil-

ai
+

a1i

+ a1 j
〈 〉 a2i

+ a2 j
〈 〉

a2'
+ a2'〈 〉

N2' Û2'1 Ñ1 10 I+ +( )Û2'1
+

=

– Û2'2 N2 10–( )Û2'2
+

10.+

K ' Û2'1 Ñ1 10 I+ +( )Û
˜

1'1 Û2'2 N2 10–( )Û
˜

1'2.+=
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ity χ ≡ χ(ω1 = ω0 – ω2) along a single direction (Z), the
two-dimensional scattering matrix Uij, which describes
the parametric conversion of the input signal and idler
waves into the respective output waves in the approxi-
mation of linear amplification and given pumping, is
calculated. Expressions obtained by means of the GKL
allow the description of the frequency–angular distribu-
tion of the signal radiation of SPDC in a medium with
arbitrary χ(z) dependence. The coordinate dependence
χ(z) is represented by the Fourier spectrum of spatial
harmonics

(7)

with the amplitudes

(8)

For a medium with regular periodic dependence χ(z),
d is the period of the one-dimensional nonlinear super-
lattice, and q ≡ 2π/d is the absolute value of the inverse-
superlattice vector directed along the Z axis. If a sample
with length l is characterized by irregular stochastic
dependence χ(z), it can be considered as one period of
the infinitely long regular lattice. In this case, d = l and
the number of periods n ≡ l/d of the nonlinear lattice is
formally equal to one. With allowance for the absorp-
tion of the medium at the idler-wave frequencies, the
general expression for the SPDC signal intensity per
unit angular and spectral intervals has the form

(9)

Here, ∆m ≡ ∆ – 2πmn is the detuning of quasi-phase
matching for the mth order of nonlinear diffraction,
where the detuning ∆0 ≡ ∆ ≡ (∆k)zl in the zeroth order
coincides with the detuning of phase synchronism in
the spatially homogeneous medium and is calculated,
according to Eq. (2), in terms of the Z-axis projections
of the signal, idler, and pumping wave vectors; C0 ≡
(" ω2/c5n0n1n2)P0l2/cosϑ2 is the common factor pro-
portional to the incident pumping power P0; and y2 ≡
α2l/2cosϑ2, where α2 is the Bouguer absorption coeffi-

χ z( ) χm imqz( )exp
m ∞–=

∞

∑=

χm
1
d
--- χ z( ) imqz–( )exp z.d

d/2–

d/2
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Pω1Ω1
C0 χm

2g ∆m y2,( )
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∞

∑=
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m' m≠

∞

∑
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∞

∑
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e
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------------------------------------------------------------------------------------------

+
e

i∆– y2–
1–

y2 i∆– i2πmn–( ) y2 i∆– i2πm'n–( )
-----------------------------------------------------------------------------------------

.

ω1
4

cient at the idler-wave frequency and ϑ2 is the angle
between the normal to the nonlinear-layer plane and the
wave vector of the idler wave. The frequency–angular
shape of the scattering line is described by two contri-
butions.

The first contribution is the additive sum of the con-
tributions from the individual harmonics of quadratic
susceptibility. Each term has the same distribution of
the signal power with respect to the maximum as scat-
tering in the homogeneous medium that is described by
the function

In this case, the position of new maximum lines—tun-
ing curves for each term—is shifted with respect to the
maxima of scattering in the homogeneous medium
according to the quasi-phase matching condition
∆(ω1, θ1) = mql ≡ 2πmn, when the inverse-lattice vector
is additionally introduced under the wave synchronism
condition. Each term is proportional to the amplitude
modulus squared of the corresponding harmonic.

The second contribution to Eq. (9) contains the
products of noncoinciding harmonics χm and is the
result of their interference.

Analysis of the frequency–angular distribution of
the signal intensity can be used as the basis for the mea-
surement of the character of the periodic spatial varia-
tion in the quadratic nonlinearity in crystalline struc-
tures [28]. In principle, any three-wave parametric pro-
cesses including induced up-conversion processes and
generation of the second harmonic are appropriate for
this aim [29]. However, when induced processes are
used, the problem of taking into account nonuniform
filling of the converter modes by the input radiation
always arises. If SPDC is used, the absolutely regular
filling of the input modes of the idler channel is ensured
(in the linear-amplification regime). The SPDC method
makes it possible to analyze inhomogeneous-structure
islands, which are located in the crystal bulk, and to
characterize the entire sample volume as a whole. This
property constitutes its main advantage over the meth-
ods of chemical etching, atomic force or electron force
microscopy, scanning electron microscopy, x-ray anal-
ysis, etc., that are applied to analyze only the surface of
samples. It is possible to obtain nonlinear optical tomo-
graphic images of samples and to determine the spec-
tral ranges most appropriate for use in real devices. An
example of constructing the map of the distribution of
the quality of a nonlinear optical superlattice along the
input surface of a periodically poled sample based on
the Y:LiNbO3 crystal was given in [30].

Thus, SPDC spectroscopy is a simple, sensitive
method for characterizing the most important micro-
and macroscopic parameters of nonlinear media. In

g ∆ y2,( ) 2

∆2 y2
2+( )2

------------------------ ∆2 y2
2–( ) 1 e

y2–
∆cos–( )[≡

– 2y2∆e
y2–

∆ y2 ∆2 y2
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the near future, interest in SPDC spectroscopy will evi-
dently increase in view of the active development of the
long-wavelength spectral range, particularly the tera-
hertz range [31]. Unique possibilities of generating and
detecting terahertz radiation in periodically poled non-
linear optical crystals were demonstrated in [32]. SPDC
spectroscopy is very promising in this range of the
lower polariton branch. Schemes for measuring disper-
sion characteristics and spatial structure, as well as for
searching for and analyzing new highly efficient non-
linear structures, will be created using SPDC.

This work was supported by the Russian Foundation
for Basic Research (project no. 05-02-16391) and the
Council of the President of the Russian Federation for
State Support of Young Scientists and Leading Scien-
tific Schools (project no. NSh-166.2003.02 for Penin’s
scientific school).

REFERENCES
1. D. N. Klyshko, Pis’ma Zh. Éksp. Teor. Fiz. 6, 490 (1967)

[JETP Lett. 6, 23 (1967)].
2. S. A. Akhmanov, V. V. Fadeev, R. V. Khokhlov, and

O. N. Chunaev, Pis’ma Zh. Éksp. Teor. Fiz. 6, 575
(1967) [JETP Lett. 6, 85 (1967)].

3. S. E. Harris, M. K. Oshman, and R. L. Byer, Phys. Rev.
Lett. 18, 732 (1967).

4. D. Magde and H. Mahr, Phys. Rev. Lett. 18, 905 (1967).
5. The Physics of Quantum Information, Ed. by D. Bouw-

meester, A. Ekert, and A. Zeilinger (Springer, Berlin,
2000; Postmarket, Moscow, 2002).

6. C. H. Henry and J. J. Hopfield, Phys. Rev. Lett. 15, 964
(1965).

7. S. P. S. Porto, B. Tell, and T. C. Damen, Phys. Rev. Lett.
16, 450 (1966).

8. D. N. Klyshko, Zh. Éksp. Teor. Fiz. 55, 1006 (1968)
[Sov. Phys. JETP 28, 522 (1968)].

9. D. N. Klyshko, Photons and Nonlinear Optics (Nauka,
Moscow, 1980) [in Russian].

10. M. V. Chekhova, G. Kh. Kitaeva, S. P. Kulik, and
A. N. Penin, Proc. SPIE 1863, 192 (1993).

11. D. N. Klyshko, B. F. Polkovnikov, and A. N. Penin,
Pis’ma Zh. Éksp. Teor. Fiz. 11, 11 (1970) [JETP Lett. 11,
5 (1970)].

12. T. G. Giallorenzi and C. L. Tang, Phys. Rev. 184, 353
(1969); C. H. Henry and C. G. B. Garrett, Phys. Rev.
171, 1058 (1968).

13. O. H. Abroskina, G. Kh. Kitaeva, and A. N. Penin, Dokl.
Akad. Nauk SSSR 280, 584 (1985) [Sov. Phys. Dokl. 30,
67 (1985)].
JETP LETTERS      Vol. 82      No. 6      2005
14. V. M. Ivanov, T. V. Laptinskaya, and A. N. Penin, Dokl.
Akad. Nauk SSSR 260, 321 (1981) [Sov. Phys. Dokl. 26,
859 (1981)].

15. O. A. Aktsipetrov, G. Kh. Kitaeva, and A. N. Penin, Fiz.
Tverd. Tela (Leningrad) 19, 127 (1977) [Sov. Phys. Solid
State 19, 72 (1977)].

16. O. A. Aktsipetrov, G. Kh. Kitaeva, and A. N. Penin, Fiz.
Tverd. Tela (Leningrad) 20, 402 (1978) [Sov. Phys. Solid
State 20, 232 (1978)].

17. G. Kh. Kitaeva, K. A. Kuznetsov, A. N. Penin, and
A. V. Shepelev, Phys. Rev. B 65, 054304 (2002).

18. O. A. Aktsipetrov, G. Kh. Kitaeva, and A. N. Penin, Fiz.
Tverd. Tela (Leningrad) 19, 1001 (1977) [Sov. Phys.
Solid State 19, 582 (1977)].

19. G. Kh. Kitaeva, S. P. Kulik, and A. N. Penin, Fiz. Tverd.
Tela (St. Petersburg) 34, 3440 (1992) [Sov. Phys. Solid
State 34, 1841 (1992)].

20. I. V. Mityusheva, E. D. Mishina, and A. N. Penin, Fiz.
Tverd. Tela (St. Petersburg) 22, 2476 (1980) [Sov. Phys.
Solid State 22, 1443 (1980)].

21. V. M. Agranovich and I. I. Lalov, Zh. Éksp. Teor. Fiz. 61,
656 (1971) [Sov. Phys. JETP 34, 350 (1971)].

22. V. L. Strizhevskiœ, Zh. Éksp. Teor. Fiz. 62, 1446 (1972)
[Sov. Phys. JETP 35, 760 (1972)]; V. L. Strizhevskiœ,
H. Ponath, and Yu. N. Yashkir, Opt. Spektrosk. 31, 388
(1971).

23. L. I. Kuznetsova, L. A. Kulevskiœ, K. A. Prokhorov, and
Yu. N. Polivanov, Kvantovaya Élektron. (Moscow) 2,
2095 (1975).

24. Yu. N. Polivanov, Usp. Fiz. Nauk 126, 185 (1978) [Sov.
Phys. Usp. 21, 805 (1978)].

25. G. Kh. Kitaeva, K. A. Kuznetsov, V. F. Morozova, et al.,
Appl. Phys. B 78, 759 (2004).

26. D. N. Klyshko, Izv. Akad. Nauk SSSR, Ser. Fiz. 46, 1478
(1982).

27. G. Kh. Kitaeva and A. N. Penin, Zh. Éksp. Teor. Fiz. 125,
307 (2004) [JETP 98, 272 (2004)].

28. G. Kh. Kitaeva and A. N. Penin, Kvantovaya Élektron.
(Moscow) 34, 597 (2004).

29. G. Kh. Kitaeva, V. V. Tishkova, and A. N. Penin, J.
Raman Spectrosc. 36, 116 (2005).

30. G. Kh. Kitaeva, V. V. Tishkova, I. I. Naumova, et al.,
Appl. Phys. B (2005) (in press).

31. J. Shan, A. Nahata, and T. F. Heinz, J. Nonlinear Opt.
Phys. Mater. 11, 31 (2002).

32. G. H. Ma, G. Kh. Kitaeva, I. I. Naumova, and S. H. Tang,
physics/0503173.

Translated by R. Tyapaev



  

JETP Letters, Vol. 82, No. 6, 2005, pp. 356–365. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 82, No. 6, 2005, pp. 395–406.
Original Russian Text Copyright © 2005 by Pastukhov, Chudin.
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It has been shown that low-frequency vortex convection, which is self-consistently developed in a magnetized
plasma, may lead to nondiffusive transport processes similar to those observed in various systems of the plasma
magnetic confinement. To theoretically analyze such a convection, an approach is proposed on the basis of the
direct computer simulation of the quasi-two-dimensional dynamics of a weakly dissipative plasma with the use
of adiabatically reduced hydrodynamic-type equations. The derived equations ensure the description of both
relatively fast nonlinear convective flows and slower resulting transport processes and allow the simulation of
the plasma evolution at sufficiently long times comparable with the plasma lifetime. The simulation shows that
the development of the convection leads to the formation of nonlinear large-scale stochastic vortex structures,
which exhibit broad power-law frequency and wavenumber spectra, as well as the non-Gaussian statistics of
fluctuations, and corresponds to the notion of structure turbulence. The resulting transport processes are nonlo-
cal and nondiffusive and have a number of characteristic properties similar to those observed in real experi-
ments. The self-consistency of the pressure and density profiles in the plasma, L–H transitions, impurity pinch,
etc., are among these properties. © 2005 Pleiades Publishing, Inc.

PACS numbers: 52.30.–q, 52.35.Ra
* 1. INTRODUCTION

The problem of the anomalous transport of particles
and energy is one of the key problems both in labora-
tory investigations on the magnetic confinement of a
high-temperature plasma and in the study of a magne-
tized plasma in natural objects including the Earth’s
magnetosphere. In most theoretical works, anomalous
transport processes are associated with plasma density
and temperature fluctuations induced by various types
of drift instabilities (see, e.g., reviews [1, 2]). Since the
transverse scales of such fluctuations are small, the
anomalous transport is traditionally discussed in terms
of the diffusion approximation with local transport
coefficients. However, numerous recent experiments
indicate that anomalous transport processes may often
have a different physical nature that cannot be reduced
to the diffusion approximation. In particular, nondiffu-
sive transport processes can be associated with the
development of unsteady large-scale vortex convection
of the plasma.

Concerning nondiffusive transport, it is worth not-
ing that low-frequency fluctuations of the plasma and
the resulting transport flows observed in many mag-
netic systems, which strongly differ in both the topol-
ogy of the magnetic field and plasma parameters,
exhibit quite common properties. In particular, low-fre-
quency fluctuations of the electric field and plasma den-
sity in tokamaks [3, 4], stellarators [5, 6], tandem mir-
rors [7, 8], direct systems with a uniform magnetic field

* A member of the editorial board of the journal JETP Letters since
1988.
0021-3640/05/8206- $26.00 ©0356
[9–11], etc., have spectra characteristic of strong turbu-
lence in which stochastically excited nonlinear struc-
tures (e.g., vortices) dominate. In view of this circum-
stance, such a turbulence is often called structure turbu-
lence [5, 6, 9]. In this case, quite large radial and
poloidal correlation lengths of fluctuations [4, 6] indi-
cate that such nonlinear structures are large-scale and,
correspondingly, the transport processes associated
with them are nonlocal and nondiffusive.

The statistical properties of fluctuations observed in
various magnetic systems are also very similar despite
the difference in certain specific details [5, 6, 9]. For
example, the probability distribution functions for the
increments of fluctuations that are obtained by process-
ing of experimental results from various devices are
non-Gaussian with “heavy tails,” which indicates both
an increased statistical contribution from large fluctua-
tions and the nondiffusive character of the process.

Finally, the development of more perfect diagnos-
tics made it possible to detect the presence of relatively
long-lived macroscopic structures in a number of
experiments. Blobs detected in the peripheral region of
the plasma (in SOL) at the DIII-D tokamak [12] and
then in many other systems are examples of such struc-
tures. Moving along the magnetic field at distances
much larger than their sizes, blobs can carry the main
part of the total fluxes of particles and energy in SOL.
The diagnostics based on the x-ray tomography of a
plasma column enabled one to reveal the generation of
vortex structures whose sizes are comparable with the
small plasma radius in the GAMMA 10 tandem mirror
 2005 Pleiades Publishing, Inc.
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[8]. Thus, nondiffusive transport processes associated
with the development of a certain type of structure tur-
bulence are typical in the physics of magnetic plasma
confinement and require serious experimental and the-
oretical investigations.

The difficulties of experimental investigations of
structure turbulence are obvious. They will be undoubt-
edly overcome as diagnostic methods are developed
and refined. At the same time, in investigations of such
a complex and many-sided phenomenon as nondiffu-
sive plasma transport, it is exclusively important to
develop a theory for the adequate description and sim-
ulation of the most essential properties of structure tur-
bulence itself and the resulting transport processes
induced by it.

Analysis of the results of numerous experiments
(see, e.g., [5–12]) shows that relatively large-scale
structures are present and even dominate in the low-fre-
quency turbulence in various magnetic systems,
because such structures must be strongly extended
along the magnetic field. As a result, turbulence appears
to be two-dimensional (2D) or quasi-two-dimensional
and such a turbulence is characterized by the presence
of both direct and inverse cascades [13] in which the
spectral redistribution of energy occurs in the direction
of both small and large transverse scales. Under weak
dissipation conditions, strong 2D turbulence must lead
to the establishment of quite universal spectra, which
decrease according to the power law in the direction of
small scales and depend slightly on the spatial scale of
feeding instability.

For theoretical analysis of 2D turbulence in the
magnetized plasma, where relatively large-scale low-
frequency structures are expected to dominate, an
approach based on the direct simulation of the nonlin-
ear dynamics of the plasma described by the moment
hydrodynamic-type equations (equations of continuity,
motion, energy transfer, etc.) seems to be very fruitful.
Such equations form a finite set of integral conse-
quences of the initial kinetic equations supplemented
by certain closing conditions. It is expected that,
despite the less detailed description compared to kinet-
ics, this approach will provide a sufficiently complete
self-consistent description of the evolution of the basic
macroscopic parameters of the plasma (density, veloc-
ity, and temperatures of various plasma components).
At the same time, the use of this approach significantly
facilitates the qualitative understanding and numerical
simulation of the dynamic processes under investiga-
tion.

It is essential that, as applied to the simulation of
low-frequency turbulence (in particular, with frequen-
cies on the order of drift ones), this approach allows
further simplification of the dynamic problem. Indeed,
the aforementioned moment equations describe too
wide a variety of collective degrees of freedom. They
usually include fast (i.e., high-frequency) stable collec-
tive degrees of freedom such as, e.g., magnetosonic
JETP LETTERS      Vol. 82      No. 6      2005
waves. In view of strong difference in the characteristic
frequencies, such fast degrees of freedom are not
excited by the low-frequency turbulence under investi-
gation and may be excluded from consideration by a
certain reduction of the initial system of moment equa-
tions.

The reduced magnetohydrodynamic (MHD) equa-
tions were first proposed for describing the dynamics of
the tokamak plasma by Kadomtsev and Pogutse [14]
and then this idea was developed in [15–17] and further
in many works that are primarily associated with
H. Strauss. In all these works, the small parameter
Bp/BT (the ratio of the poloidal and toroidal magnetic
fields) is used to exclude magnetoacoustic waves from
the equations of the nonlinear low-frequency dynamics
of the plasma in tokamaks and stellarators. More
recently, a variational method of the adiabatic separa-
tion of fast and slow motions in continuous Lagrangian
systems was developed in [18, 19]. This method allows
the exclusion of fast stable collective degrees of free-
dom of the dynamic system by using various small
parameters without the violation of kinematic and
dynamic conservation laws inherent in the initial unre-
duced system of equations. The latter circumstance is
exclusively important for the simulation of long-term
dynamic evolution of the weakly dissipative plasma at
times comparable with its lifetime.

Thus, the direct dynamic simulation of low-fre-
quency turbulence and the resulting nondiffusive trans-
port processes in various systems of plasma magnetic
confinement using adiabatically reduced equations
seems to be quite promising for theoretical investiga-
tions in plasma physics. In this work, the efficiency of
this approach is demonstrated by a relatively simple but
nontrivial example. In Section 2, the system of reduced
equations used in the dynamic model under consider-
ation is discussed. The results of the computer simula-
tion of low-frequency turbulent convection and the
resulting transport processes in the magnetized plasma
are presented in Section 3. Section 4 briefly summa-
rizes the basic results.

2. ADIABATICALLY REDUCED MHD MODEL 
OF THE NONLINEAR SELF-CONSISTENT 
DYNAMICS OF A WEAKLY DISSIPATIVE 

NONPARAXIAL PLASMA

In order to demonstrate the efficiency of the
approach under development, we consider a relatively
simple but quite nontrivial and conceptual example of
the axisymmetric magnetic system with a “levitating
dipole,” i.e., with a current-carrying ring placed into the
plasma. This system schematically shown in Fig. 1 has
the same topology of the magnetic surfaces as a spher-
ical tokamak. In particular, the plasma equilibrium in it,
as well as in the tokamak, is described by the Grad–
Shafranov equation. However, owing to the absence of
the toroidal magnetic field and, correspondingly, mag-
netic shear, the physically meaningful and quite non-
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trivial results concerning the nonlinear dynamics of the
plasma in this system can be obtained even in the
framework of the simplest one-fluid MHD model with
the isotropic pressure of the plasma.

The magnetic system under consideration belongs
to a quite wide class of strongly nonparaxial magnetic
systems, where plasma confinement is based on an
alternative approach to the problem of MHD stability
[20]. The magnetic field in such systems decreases in
the direction of the outer magnetic separatrix surface.
As a result, only pressure profiles decreasing quite
slowly and smoothly to the periphery are MHD stable.
These systems exhibit a pronounced tendency to self-
organization in the form of the maintenance of a pres-
sure profile marginally stable against the flute MHD
mode. In the framework of the simplest isotropic MHD
model, the marginally stable pressure profile satisfies

Fig. 1. Configuration of field lines in the trap with a levi-
tated internal ring: (1) inner ring, (2) external-field coil, and
(3) separatrix.

Fig. 2. Pressure profile in the magnetic trap with a levitated
internal ring: ψc is the internal-ring surface, ψm is the max-
imum-pressure surface, and ψs is the outer separatrix sur-
face.

ψc ψm ψs
the condition S ≡ pUγ = const, where p(ψ) is the plasma

pressure, U(ψ) = /B is the specific volume of a mag-

netic flux tube (i.e., the volume of the magnetic flux
tube with unit magnetic flux), ψ is the function of the
poloidal magnetic flux that is a generalized radial coor-
dinate, γ is the adiabatic index, and S is the single-val-
ued function of the plasma entropy in the magnetic flux
tube with volume U. According to the linear theory of
stability, the pressure profile p(ψ) shown in Fig. 2 is
expected to be formed in such a system. In this case, the
plasma is stable against all MHD modes in the inner
region ψc < ψ < ψm, where S'(ψ) > 0 and marginally sta-
ble with respect to the flute modes (S = const) in the
outer region ψm < ψ < ψs. The S = const profile in the
outer region is also stable under all incompressible
Alfvén perturbations if β ≡ 8πp/B2 does not exceed a
certain critical value βcr ~ 1.

In [20, 21], to simulate the low-frequency nonlinear
convection of the plasma, an additionally simplified
model of the magnetic configuration in the form of a
cylindrical quasi-equilibrium plasma column with a
rigid current-carrying rod with radius rc on its axis was
used. The self-consistent evolution of the plasma is
expected to develop according to the following sce-
nario. The heating of the plasma and initial local colli-
sional thermal conductivity distort the initial pressure
profile making it weakly unstable under the flute modes
(S'(ψ) < 0). Instability excites and maintains nonlinear
MHD convection, which in turn tends to recover the
marginally stable pressure profile, leading to the sub-
stantially nonlocal increased transport of particles and
energy. To correctly describe and simulate the long-
term evolution of the plasma and to overcome the diffi-
culties associated with the significant difference
between the ideal and dissipative time scales, the
method of adiabatic separation of fast and slow motions
[18, 19] (ASM method) was used in [20]. By means of
the ASM method under the assumption β < βcr, fast sta-
ble magnetosonic incompressible Alfvén, and longitu-
dinal acoustic modes of plasma oscillations were
excluded from the consideration and the reduced equa-
tions were obtained for describing slower (adiabatic)
flute 2D convection of the plasma, as well as the result-
ing transport processes with allowance for small dissi-
pation caused by collisional thermal conductivity, vis-
cosity, and diffusion.

In [22], the generalized reduced MHD equations
were derived which allow the simulation of the low-fre-
quency flute dynamics of the weakly dissipative plasma
in arbitrary axisymmetric shearless magnetic systems
with closed or open field lines. The possibility of
excluding fast stable modes and the quasi-two-dimen-
sional character of flute plasma motions holds for a
more complex geometry of the magnetic field. Never-
theless, in this work, we discuss only results obtained
with the simplified cylindrical model of the magnetic
field, because the basic results of the numerical simula-

dl∫°
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tion are obtained for this model. For corresponding
generalizations, see [22].

As was shown in [20–22], fast stable MHD modes
can be excluded under the assumption that the dynamic
plasma states under consideration deviate slightly from
the marginally stable state in flute modes. For the
weakly nonideal MHD model, the small parameter e,
which allows the application of the adiabatic separation
of motions, has the form

(1)

where χ is the initial local collisional thermal diffusiv-
ity, a is the size on the order of the small plasma radius,
and cs is the speed of sound. After the exclusion of fast
degrees of freedom, the reduced dynamics of the sys-
tem in the cylindrical geometry of the field is com-
pletely described by the adiabatic velocity field

(2)

where an arbitrary function Φ(t, r, z) serves as the 2D
electric potential. The expected scale of the velocity
v a ~ ecs is estimated from the expected available poten-
tial energy and agrees with the condition of nonlinear
saturation of the convection. According to [22], in the
general geometry, the velocity field is three-dimen-
sional but is as earlier determined by only the 2D poten-
tial Φ(t, ψ, ϕ) in the flux coordinates ψ and ϕ. Since the
z coordinate in the cylindrical geometry simulates the
toroidal angle ϕ of real systems, the effective angle ϕ =
z/R can be introduced in this geometry and all functions
can be supposed to be periodic in this angle.

Reduced equations are written in terms of more
appropriate variables: the specific volume of the mag-
netic flux tube U = 2πr/B, the entropy function S = pUγ,
and the renormalized density λ = ρU (or the number of
particles in the magnetic flux tube with volume U),
which are introduced instead of the magnetic field B,
pressure p, and density ρ, respectively. These variables
allow the explicit inclusion of the invariant properties
of the initial MHD equations. By analogy with the case
of more general field geometry, we introduce the flux
coordinate ψ instead of r and normalize it such that B =
[∇ψ  × ∇ϕ ]. Under the assumption of the closeness to
the marginally stable state, the entropy function is rep-

resented in the form S(t, ψ, ϕ) = S0(t, ψ) + (t, ψ, ϕ),

where  ~ e2S0 describes fluctuations of the entropy
function, and the quasi-equilibrium component S0(t, ψ)
averaged with respect to ϕ is assumed to be such that its
derivative with respect to ψ cannot take negative large-
magnitude values; i.e., ∂ψS0(t, ψ) > –e2S0/ψs. The func-
tion λ(t, ψ, ϕ) allows a similar representation. The
reduced equations include the subsystem of “slow”
equations (∂t ~ e3cs/a), which describe the 1D (radial)
transport of the plasma in the presence of convective
motions and fluctuations in entropy and density, and the
subsystem of “fast” equations (∂t ~ ecs/a), which

e χ/acs( )1/3
 ! 1,∼

va B ∇Φ×[ ] /B2
ecs,∼=

S̃

S̃
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describe the 2D dynamics of the plasma and fluctua-

tions of entropy  and density .
The adiabatic velocity field (2) does not disturb the

magnetic field and, therefore, fast fluctuations of B and,
correspondingly, U are absent. In the simplified cylin-
drical model, the first slow equation determining U(t,
ψ) in terms of the known function S0(t, ψ) corresponds
to the balance of the main radial forces (quasiequilib-
rium)

(3)

According to [22], in the case of the general axisym-
metric shearless magnetic field, the quasiequilibrium
condition corresponds to the Grad–Shafranov equation

(4)

which enables one to determine the function ψ(t, r, z)
and, then, B and U(t, ψ) are reconstructed using this
function. In turn, the function S0(t, ψ) is determined
from the heat transfer equation averaged with respect to
ϕ. After a change to new variables, this equation
assumes the form

(5)

where the time derivative is calculated at a given ψ
value, the bar stands for averaging with respect to ϕ,
and the function QE(t, ψ) describes the energy source.
All the terms in Eq. (5) have an order of e3. The second
term on the left-hand side of Eq. (5) describes the non-
diffusive heat transfer caused by 2D convection. The
equation for the function λ0(t, ψ) is similar to the equa-
tion for S0(t, ψ).

The reduced dynamic equation assumes the form

(6)

where  is associated with the vorticity of the convec-
tive flow described by velocity field (2) and is given by
the expression

(7)

S̃ λ̃

U 1– ∂ψ
γS

γ 1–
-----------U γ 1–( )– r2

U
----+ 

  U γ–

γ 1–
-----------∂ψS– 0.=

∆*ψ 4πr2∂ψ S0 t ψ,( )/Uγ( )+ 0,=

∆*ψ r2 ∇ ∇ψ
r2

-------- 
  ,≡

∂t ψŜ0 ∂ψ S̃∂ϕΦ( )–

=  2 πR( )2 γ 1–( )Uγ 1– ∂ψ
r2λ0χ

U2
-------------∂ψ

S0

λ0Uγ 1–
------------------ 

 
 
 
 

+ γ 1–( )UγQE,

∂t ψŵ Φ ŵ,[ ] λ
v a

2

2
------,–

1

Uγ------∂ψU∂ϕ S̃+ +

=  U∇ CA
2– ∇

ηCA
2

U
----------ŵ 

 
 
  ,

Φ f,[ ] ∂ ψΦ∂ϕ f ∂ϕΦ∂ψ f ,–≡

ŵ

ŵ U∇ ∇Φ /CA
2( ),=
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η is the local kinematic viscosity, and CA is the Alfvén
velocity. As was emphasized in [20, 22], the quantity

, which can be called the specific dynamic vorticity
of the magnetic flux tube, has the meaning of the gen-
eralized momentum canonically conjugate to the gener-
alized adiabatic coordinate of the flute convective
motion. We also note that velocity field (2), as well as
Eqs. (6) and (7), describes both pure vortex motion of
the plasma and flows homogeneous in ϕ but inhomoge-
neous in the radius, which are often called shear or
zonal flows. It is well known that such flows can exist
even in the stationary equilibrium states of the plasma.
In our consideration, shear flows constitute an essential
part of the general nonlinear dynamic process and can
self-consistently change under the action of vortex con-
vection.

The equation for entropy fluctuations is obtained
from the general transport equation for the plasma ther-
mal energy by subtracting Eq. (5) from it:

(8)

The left-hand sides of Eqs. (6) and (8) describe the ideal
plasma dynamics including the generation of linear
instability and the nonlinear coupling and saturation of
the modes. According to the expected order of magni-
tude of the quantities, all the terms on the left-hand
sides have the same order of magnitude. The dissipative
terms on the right-hand sides of Eqs. (6) and (8) are
small as e2a2|∇| 2 compared to the terms on the left-hand
sides and describe the dissipation of small-scale fluctu-

ations. The equation for fluctuations  is similar to the

equation for . The generalization of the above equa-
tions to the case of an arbitrary axisymmetric shearless
magnetic field was given in [22].

3. COMPUTER SIMULATION RESULTS

The promising application of adiabatically reduced
equations to the simulation of the low-frequency
dynamics of the magnetized plasma is directly con-
firmed by the numerical calculation results. The self-
consistent convection of the plasma and convective
enhancement of the transport processes are simulated
using these equations as an evolution problem with the
given initial and boundary conditions. The numerical
code provides the realization of various regimes of con-
vection and plasma transfer processes by varying the
conditions of the heating, power takeoff at the separa-
trix, penetration of impurities, maintenance of radially
inhomogeneous (shear) plasma flows, and other con-
trolling parameters. The dimensionless time is intro-
duced taking into account the characteristic size (small
plasma radius) and the expected velocity scale for non-
linear convection (2) and is specified by the relation

ŵ

∂t ψS̃ Φ S̃,[ ] ∂ ψ S̃∂ϕΦ( ) ∂ϕΦ∂ψS0–+ +

=  
γ 1–
2γ

-----------Uγ∇
λ0χcs

U
-------------∇ cs

S̃
S0
----- 

 
 
  .

λ̃
S̃

ecst/a  t, where the small parameter e is given by
Eq. (1).

In the model magnetic configuration under consid-
eration, there is no strong toroidal magnetic field. For
this reason, the results can be used with care to quanti-
tatively compare with tokamak data. Nevertheless, the
characteristic times of a number of simulated processes
are quite close to the times of the processes observed in
real experiments, in particular, at tokamaks. For the
convenient comparison of the calculated times with
experimental data, we note that the unit of dimension-
less time is about 60 µs for a device of the T-10 scale
(i.e., for a device with the same characteristic sizes and
poloidal magnetic field, density, and temperature).

The total dimensionless calculation time ttot usually
exceeds the energy lifetime of the plasma and ranges
from 50 to 500 for various calculation variants. In the
absence of the initial high-power shear flows, the initial
linear and quasilinear stages of MHD instability are
completed at t = 5. Then, convective flows and entropy
fluctuations are transformed to the stage of strongly
nonlinear rearrangement. This stage is very irregular
and leads to the formation of wide frequency and wave-
number spectra. At t ≈ 20, the plasma enters the quasi-
stationary stage at which the S0 profile, as well as the
spectral widths, remains almost unchanged. At the
same time, the convective flows acquire a certain char-
acteristic large-scale vortex structure consisting of
spontaneously appearing and disappearing vortex pairs
each of which exists during several dimensionless time
units and has a quite high level of stochasticity of local
velocities. Such behavior likely indicates that the
dynamic system passes to the strange-attractor regime
[23]. Indeed, in this case, there are all the necessary
conditions for realizing such a regime; namely, we have
an unclosed strongly nonlinear dynamic system with
the number of freedom more than two with weak dissi-
pation and the energy flux from the heating region to
the periphery. At the same time, more detailed analysis
(including statistical analysis) shows that the properties
of the fluctuations in the velocity, temperature, and den-
sity of the plasma in this regime are similar to those
observed in many experiments and are characterized as
structure turbulence [5, 6, 9]. Below, we discuss these
properties in more detail.

In Fig. 3, which characterizes the quasistationary
stage at t = 41.0, the typical two-dimensional structures
of convective flows and entropy fluctuations are shown
in the (x, ϕ) plane, where x = r/rm is the dimensionless
small radius and rm corresponds to a point near which
the heating source QE in Eq. (5) is localized. The region
boundaries x = 0.5 and 2.0 correspond to the surface of
the current-carrying rod and separatrix, respectively.
Figure 3a shows Φ(t, x, ϕ) = const contours or, equiva-
lently, streamlines. The light and dark regions corre-
spond to positive and negative potential values, respec-
tively. In the general structure of flows, one or two long-
lived pairs of coupled large-scale vortices with strictly
JETP LETTERS      Vol. 82      No. 6      2005
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Fig. 3. Typical 2D structures of vortex convection: (a) Φ(t, x, ϕ), (b) (t, x, ϕ), and (c) λ∗ (t, x, ϕ).S̃
determined polarity dominate. Vortices are almost com-
pletely localized in the region 1 < x < 2, where  ≈ 0,
and evolve very complexly and irregularly, changing
their intensity and shape, as well as drifting along ϕ.
The presence of quite fast plasma jets, which are local-
ized in ϕ (ϕ ≈ 2.1 and 4.4 in Fig. 3a) and directed from
the separatrix to the plasma center, is a feature of these
vortex pairs. In their properties, these jets are very sim-
ilar to the objects that are called streamers in many
experiments. Figure 3b shows the entropy fluctuation

contours (t, x, ϕ) = const. Figure 3c illustrates an early
stage of the fast penetration of the “passive impurity”
from the plasma periphery to the central area. The
impurity source was turned on near the separatrix (x =
xs = 2) at t = 40.0. It is seen that the jets give rise to the
rapid (in time ∆t ~ 1) injection of the impurity to the
plasma core. A similar effect of the fast penetration of
the impurity to the central area of a tokamak is
observed for many devices. In particular, anomalously
fast penetration of a tritium impurity was observed at
the ASDEX device [24].

Figure 4 shows the radial profiles of the quasi-sta-
tionary parameters at the developed-turbulence stage
(t = 100). The profile S0(x, t) (the solid line in Fig. 4a)
exhibits a plateau in the intense-convection region 1 <
x < 2, which ensures the expected closeness to the mar-
ginally stable state. The maintenance of such a plateau
(the deviation from S0 = const is less than 3%) is
observed in all the time intervals including transient
regimes. The latter property means a certain self-con-
sistency of the pressure and temperature profiles in the
convective region. A similar self-consistency of the

S0'

S̃
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profiles was observed in many experiments (see, e.g.,
[4]). At a fixed energy source, the stationary level S0 in
the plateau region and the corresponding plasma life-
time depend only on the coefficient ν in the boundary
condition for the heat flux, which characterizes the
energy loss intensity at the periphery [20, 21]. Follow-
ing the traditional interpretation of experimental data
on the anomalous transport, one can introduce the
effective (anomalous) local thermal diffusivity χeff =
−q/ρT ', where q(x, t) and T(x, t) are the heat-flux den-
sity and temperature, respectively, as well as the
“anomalous factor,” which defines as the ratio of the
effective thermal diffusivity to the classical thermal dif-
fusivity: Fa = χeff/χcl. The anomalous factor is shown by
the dotted line in Fig. 4a. In the range 0.5 < x < 0.9, Fa
≈ 1, which indicates that the heat transfer in this range
is classical. The sharp spikes near the x = 1.1 magnetic
surface correspond to the condition of vanishing q(x, t)
and T '(x, t) on different magnetic surfaces, because the
heat-transfer process is nondiffusive. In the region of
intense convection for x > 1.2, the factor Fa first
increases up to its maximum (depending on ν) and then
decreases to unity near the plasma boundary. A similar
effect of the sharp decrease in Fa near the plasma
boundary, which was called the “external transport bar-
rier,” was first observed at the ASDEX device [25] and
then in many other experiments at tokamaks.

Figure 4b illustrates the radial density distribution
of the “passive impurity.” The dotted line is the ϕ-aver-
aged impurity-particle number λ∗ (x, t) in the magnetic
flux tube, which [similar to S0(x, t)] has a plateau in the
intense-convection region. It is essential that the corre-



362 PASTUKHOV, CHUDIN
sponding impurity density profile ρ∗ (x, t) increases in

the direction of the plasma center rather than in the
opposite direction as is predicted by the diffusive-trans-
port model. Such an effect in experiments is usually
called “impurity pinch.” Since the ion flux of the main
plasma component can be organized similarly, the
above mechanism can be considered as a promising
method for maintaining the necessary plasma density in
the central region.

Fig. 4. Radial profiles of the (a) entropy and anomaly factor
and the (b) averaged impurity density.

Fig. 5. Evolution of the anomaly factor at three radii.

Fa

Fa

Fa
Figure 5 shows the time evolution of the anomalous
factor Fa at three radii in the calculation variant, where
the energy absorption coefficient ν at the plasma edge
is halved at time t = 20. This figure shows that the
anomalous factor Fa also decreases noticeably over the
entire convection region in time on the order of three or
four dimensionless time units, whereas the relative tem-
perature gradients in the main plasma bulk remained
unchanged. Such a behavior of the effective transport
coefficients is similar to that in the L–H transitions in
tokamaks. The time of changing the anomalous factor
Fa for the T-10-scale device is estimated as about 200 µs,
which quite well agrees with the characteristic time of
the L–H transitions observed in the experiment [4].

The presence of shear or zonal flows in the plasma
can noticeably affect the development of large-scale
vortex convection. The simulation results show that the
shear flows with sufficiently large vorticity can tempo-
rarily suppress the flute mode and nonlinear broadening
of the spatial perturbation spectrum at the initial evolu-
tion stage, leading to considerable delay in the plasma
transition to the quasi-stationary turbulent state. How-
ever, the further nonlinear evolution of convective flows
is similar to the evolution in the absence of initial zonal
flows and leads to the formation of intense large-scale
stochastic vortex structures (stochastic convective
cells) with the corresponding increase in the resulting
fluxes of particles and heat.

Figure 6 shows the evolution of heat fluxes to the
outer separatrix in three different regimes. Line 1 cor-
responds to the above-discussed regime with relatively
weak shear flows, when the integral dimensionless vor-
ticity W0 flows [which, according to Eq. (6), is an inte-
gral of motion of the system] are equal to zero. Line 2
corresponding to the large vorticity of the shear flows
(W0 = 10) exhibits a considerable delay in the turbu-
lence development and formation of the resulting
anomalous heat flux. In this regime, the transition to
developed turbulence occurs after the rearrangement
and smoothing of the initial profile of the dynamic vor-

Fig. 6. Evolution of heat fluxes to the outer separatrix in the
regimes of (1) weak shear flows, (2) strong shear flows, and
(3) without fluctuations.
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ticity of the shear flows. The delay time depends on
both the integral dynamic vorticity and its initial pro-
file. Line 3 is shown for comparison and corresponds to
the hypothetical regime, where any fluctuations are
absent (i.e., the regime with the purely collisional dif-
fusive heat flux).

Time-averaged spatial spectra of fluctuations (more
strictly, spectra in toroidal wavenumbers n) at the devel-
oped-turbulence stage are shown in Fig. 7. Figure 7a
shows the spectra (in arbitrary units) of fluctuations in
the electric potential for the regimes with strong (W0 =
10) and weak (W0 = 0) shear flows. The shape of the
spectra is independent of the structure of the initial per-
turbations. The spectra differ most strongly for n ≤ 3,
which is associated with a certain difference of the spa-
tial form of the dominating large-scale vortex structures
in the indicated regimes. For n ≥ 4, the spectra in both
regimes exhibit a characteristic power decrease with
approximately identical slops. The increase in the slope
of the spectra for n > 10 (as is expected) is associated
with the dissipative suppression of small-scale fluctua-
tions. As the dissipation decreases, this effect is mani-
fested for large n values. The corresponding spectra of
fluctuations in the entropy function are shown in
Fig. 7b.

Figure 8 shows an example of the characteristic time
realization of fluctuations in the (a) radial velocity and
(b) entropy function at a fixed point in the center of the
convective region. These fluctuations, which evidently
are of stochastic character, correspond to developed
turbulence in the regime with the high vorticity of the
shear flow. In fluctuations of both the radial velocity
and entropy function, high spikes (so-called bursts) are
observed, whose value is much higher than the statisti-
cally average level of the fluctuations. Analysis of the
time evolution of flows enables one to associate the
appearance of bursts in the radial velocity with the drift
of the “streamer” through the observation point.

The frequency spectra of the appearing turbulent
convection, as well as its statistical properties, are very
similar to those observed in many experiments (includ-
ing experiments at tokamaks and stellarators) and, as
was mentioned in the Introduction, are associated with
the development of structure turbulence. For the regime
with the high vorticity of the shear flow, Fig. 9a shows
the frequency spectrum of fluctuations in the potential,
where individual narrow peaks exist along with the
broad stochastically irregular spectral component
(broad band). We emphasize that, in contrast to the tra-
ditional interpretation of the experimental results, these
peaks cannot be attributed to drift instabilities, because
such instabilities are absent in the dynamic model
under consideration. Moreover, owing to the strong
nonlinearity of the vortex convective flows, the time
realizations of the fluctuations contain almost no infor-
mation on the frequency characteristics of the feeding
linear instabilities. At the same time, analysis of the
time evolution of the flows provides another natural
JETP LETTERS      Vol. 82      No. 6      2005
interpretation of the peaks in the potential fluctuation
spectrum. In particular, the main peak in Fig. 9a with
the dimensionless frequency ω = 8.2 corresponds to the
drift of the dominant large-scale vortex structure
through the observation point and the peak next in
height with the dimensionless frequency ω = 1.9 corre-
sponds to the above bursts. This circumstance gives rise
to certain doubts in the correctness of the traditional
interpretation of the experimental results according to
which the narrow peaks in the spectrum are associated
with drift instabilities. In Fig. 9b, where the same spec-
trum is shown in the log–log scale, it is seen that the
basic changes in the dominate large-scale vortex struc-
tures are characterized by the frequency range 1 < ω <
10. At higher frequencies, the spectrum decreases

Fig. 7. Toroidal-wavenumber spectra of fluctuations in
(a) potential and (b) entropy.

Fig. 8. Fluctuations of the (a) radial velocity and (b) entropy
function in the convective-vortex region.
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according to a power law on average, which is charac-
teristic of strong turbulence.

The probability density distribution functions for
the increments of fluctuations in the potential, entropy,
and radial velocity that are calculated with various time
lags in this model are similar to those obtained by pro-
cessing the experimental data. As in most experiments
(see [5, 6, 9]), the probability distribution functions for
a short time lag strongly differ from the Gaussian dis-
tribution, have heavy tails, and are transformed to the
Gaussian distribution for a sufficiently large lag. In
these calculations, such a transition occurs at a lag of
two or three dimensionless time units, which approxi-
mately corresponds to the time of the rotation of the
dominant vortex structure. After the evaluation for the
parameters of the T-10 tokamak, it is equal to 120–
180 µs, which agrees well with the experimental
results.

4. CONCLUSIONS

The above results confirm the efficiency of the
approach based on the self-consistent dynamic simula-
tion of low-frequency turbulence and the resulting
transport processes in the magnetized plasma. By an
example of a relatively simple magnetic configuration,
it has been shown that the substantial nonlinear low-fre-
quency dynamics of the plasma can be quite adequately
simulated by means of adiabatically reduced hydrody-
namic-type equations. Equations obtained by the

Fig. 9. Frequency spectrum of fluctuations in the potential
in the (a) linear and (b) log–log scales.
method of the adiabatic separation of fast and slow
motions that was developed in [18–20, 22] hold the
invariant properties of the initial equations and thereby
can be used to simulate the plasma evolution in suffi-
ciently long time intervals exceeding the plasma life-
time.

For the magnetic configuration under consideration,
as well as for other magnetic systems with closed or
open field lines, very meaningful physical results can
be obtained even in the simplest one-fluid MHD model
with isotropic plasma pressure. In this case, the method
of the adiabatic separation of motions enables one to
exclude three classes of relatively high-frequency sta-
ble oscillations: magnetoacoustic, Alfvén, and longitu-
dinal acoustic modes. The resulting reduced equations
describe slower nonlinear 2D convection, which is self-
consistently developed near the threshold of the ideal
flute MHD instability.

In the above-considered example, convection is gen-
erated and maintained due to the competition between
two processes: plasma heating and local dissipative
processes that distort the initial marginally stable pro-
file of the plasma pressure, making it weakly unstable
and leading to the growth of flute perturbations, which
then recover the marginally stable pressure profile and
initiate the substantially nonlocal anomalous transport
of particles and energy. Strictly speaking, other mecha-
nisms of the generation and maintenance of low-fre-
quency convection in the magnetized plasma are possi-
ble. However, in this case, it might also be expected that
nonlinearity leads to the formation of large-scale vortex
structures. The adiabatically reduced equations allow
the self-consistent description of both relatively fast
nonlinear convective flows and slower transport pro-
cesses in the weakly dissipative plasma. As a result, the
description of both dynamic and transport processes
appears to be completely self-consistent and does not
require the inclusion of any additional assumptions.

Computer simulation shows that the convection at
the developed stage is substantially nonlinear and sto-
chastic and has broad frequency and wavenumber spec-
tra. A finite number of large-scale long-lived vortices
(stochastic convective cells) dominate in its 2D struc-
ture. Convection maintains a certain quasistationary
turbulent-relaxed plasma state, which is characterized
by the existence of the marginally stable plateau in the
radial profiles of the renormalized densities of the
plasma components. The tendency to the maintenance
of such plateaus can be treated as the self-consistency
of profiles in the convection region. The formation of a
similar plateau in the impurity distribution can be
responsible for an effect called impurity pinch.

Convection leads to increased heat transfer whose
magnitude is determined primarily by energy losses at
the plasma periphery rather than by the gradients of the
plasma parameters in the main confinement region.
This effect is similar to L–H transitions in tokamaks.
Similar to experiment, the heat flux is quite rapidly syn-
JETP LETTERS      Vol. 82      No. 6      2005
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chronized with the change in the energy losses at the
plasma periphery.

The numerically simulated frequency spectra of
fluctuations in the electric potential, pressure, and den-
sity of the plasma contain both a broad stochastically
irregular spectral component (broad band) and individ-
ual narrow peaks, which, in contrast to the traditional
interpretation of the experimental spectra, are attributed
to the drift of dominant vortex structures rather than to
drift instabilities. This circumstance could lead to the
revision of the traditional interpretation of the experi-
mental spectra.

The statistical properties of the calculated fluctua-
tions are also very similar to those observed in various
magnetic systems. In particular, the probability distri-
bution functions of increments of fluctuations that are
obtained by processing the calculation results are non-
Gaussian with heavy tails. On the whole, it might be
expected that the dynamic simulation of low-frequency
turbulence and the resulting transport processes will
enable one to better understand the transport processes
in various magnetic systems, as well as make a notice-
able contribution to the development of the general the-
ory of nondiffusive transport processes in magnetized
plasma.
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This letter deals with a simple three-site model for charge transfer phenomena in a one-dimensional donor (D)–
bridge (B)–acceptor (A) system coupled with vibrational dynamics of the B site. It is found that, in a certain
range of parameters, the vibrational coupling leads to an enhancement of the effective donor–acceptor elec-
tronic coupling as a result of the formation of the polaron on the B site. This enhancement of the charge transfer
efficiency is maximum at the resonance, where the effective energy of the fluctuating B site coincides with the
donor (acceptor) energy. © 2005 Pleiades Publishing, Inc.
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Molecular electronics is progressing so rapidly that
it is now possible to perform measurements and assem-
bly at the level of individual or a few molecules [1, 2].
Charge transport is known to occur in a wide range of
linear chain molecules including DNA double strand
molecules. For DNA, it is believed that the charge
transport phenomenon is involved in the protection of
the DNA encoded information against oxidative dam-
age [3]. As the DNA molecule is essentially a dynamic
structure on the time scale of charge transport, one
would expect vibrational dynamics to play an important
role in DNA electronics and, in general, for any prop-
erty of biological molecules, because the biological
functions of life are associated with molecular motion
not a static or dead structure (i.e., the equilibrium posi-
tions of all the atoms).

In this letter, we are interested in a one-dimensional
DNA wire or bridge (B) connecting a donor (D) and an
acceptor (A) site. Usually, the bridge consists of N sites
with one state per site (see the abundant literature
devoted to this issue in [4–23]). The theoretical analysis
of this problem requires solving a system of N + 2 non-
linear coupled equations. Unfortunately, such a prob-
lem cannot be solved analytically for N @ 1, and we
have to recourse to numerical solution. However, many
insights and essential features of the dynamics can
already be gained by studying three simple sites: D–B–
A. Generally speaking, the interaction between the
donor and acceptor involves all states of the bridging

¶ The text was submitted by the authors in English.
*A member of the editorial board of the journal JETP Letters from

1991 to 1997.
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subsystem. This bridge mediated interaction can be
characterized, under certain conditions, by a single
energy-dependent parameter, effective coupling, which
plays the key role in the charge transfer. For small sys-
tems, the phase coherence of the charges is maintained
over the entire system and the quantum effects are cru-
cial in determining the system properties. In contrast,
for long N @ 1 bridges, the fast relaxation processes
result in a strong dephasing between the charges in the
system. Therefore, this leads to a rapid falloff of the off-
diagonal elements of the density matrix such that the
diagonal elements can be described by a set of kinetic
equations [17, 24].

Our concern in this paper is to investigate a Hamil-
tonian model describing the D–A coupling in the pres-
ence of dynamic structural fluctuations. Such local fluc-
tuations, including local vibrations, twisting motions,
radial deformations, and hydrogen-bond stretching or
opening, are known to strongly influence charge trans-
fer in DNA molecules [25–30]. For simplicity, we con-
sider a three-site D–B–A system where the electronic
degree of freedom is coupled to an effective local vibra-
tional degree of freedom.

Let us assume that, initially, the charge is entirely
localized on the donor site with energy e. Then, owing
to the nonzero overlapping integrals of the electronic
wave functions between the two neighboring sites, the
tunneling of the charge takes place from the donor to
the acceptor site with the same energy. Denoting by
{|d〉 , |b〉 , |a〉} the localized states on the donor, bridge,
and acceptor, respectively, the Hamiltonian of the
© 2005 Pleiades Publishing, Inc.
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bridge-mediated charge transfer between the donor and
acceptor acquires the form

(1)

in which the bare electronic part reads as

(2)

where e is the one-site energy of the donor and accep-
tor, eb is the one-site energy of the bridge, m (m .
300 amu) is the mass of the bridge base pair, r is its
radial displacement in the localized vibrational mode
with the frequency ω, the momentum p is conjugated to
r, and k is the electron-localized vibration mode cou-
pling constant. The localized bridge mode can be
treated classically, since the corresponding vibrational
displacement amplitude is larger than the zero-point
quantum fluctuations for the characteristic DNA
parameters [25–28] (see also the following).

The frequency of the typical vibrations in DNA is
ω . 1011–1012 s–1, and the scale of the electronic over-
lap integrals between the base pairs in DNA is v  =

 . 0.2 eV, which leads to an electronic
characteristic frequency of v /" . 3 × 1014 s–1. As a con-
sequence of the small (adiabatic) parameter, vω/" ! 1,
the slow vibrational and fast electronic motions can be
decoupled. Therefore, to solve the problem of the
bridge-mediated charge transfer between the donor and
the acceptor, we employ the adiabatic procedure to
eliminate the slow vibrational motions and derive an
effective Hamiltonian for the fast electronic motions.
To proceed, we take the wave function of the charge in
the form |Ψ(t)〉  = cd(t)|d〉  + cb(t)|b〉  + ca(t)|a〉 , where cn(t)
are the time-dependent amplitudes of the probability of
the charge being at the nth site. From the Hamiltonian
(1), we arrive at the following equations of motion for
the quantum amplitude cn(t),

(3)

and for the classical dynamic mode,

(4)

Next, we seek stationary solutions of the form cn(t) =
cne–iEt/" oscillating with the frequency E/". To work
with dimensionless quantities, we use, from now on,
the dimensionless variables u, σ, and κ defined in the
table. Using cn(t) in the equations of motions, we find

H He
p2

2m
------- mω2r2

2
--------------- kr b| 〉 b〈 | ,+ + +=

He ε d| 〉 d〈 | a| 〉 a〈 |+[ ] ε b b| 〉 b〈 |+=

+ v db d| 〉 b〈 | b| 〉 d〈 |+[ ] v ba b| 〉 a〈 | a| 〉 b〈 |+[ ] ,+

2 v db
2 v ba

2+( )

i"
d
dt
-----
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ca 
 
 
 
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 
 
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d2r

dt2
------- mω2r– k cb

2.–=
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that the stationary bridge displacement is r = –κ , and
the stationary probability distribution is

(5)

where the root u satisfies the characteristic equation

(6)

Solution of this equation provides the ground ug plus
one or three (depending upon the values of κ and σ)
excited energies of the “polaron,” i.e., the state created
by the charge coupling with the DNA structural defor-
mation. These stationary polaron solutions allow us to
eliminate from (1) the structural deformation r and to
obtain the effective Hamiltonian for the charge transfer
as

(7)

where ∆(u) = σ – κ2 (u) is the renormalized effective
energy of the bridge due to electron-vibration coupling

and  is the unit matrix. To calculate the effective
charge coupling between the donor and the acceptor,
we first have to solve the time-dependent problem to
determine the probability of charge transfer defined as
Pd → a(t) = |〈a|Ψ(t)〉|2, where |Ψ(t)〉  is the solution of the
Schrödinger equation

cb
2

cd
2 η2ca

2,=

cb
2 2u2/ 1 2u2+( ),=

ca
2 1/ 1 η2+( ) 1 2u2+( )[ ] ,=

4u4 4 κ2 σ–( )u3 2σu– 1–+ 0.=

Heff
1
v
---- He ε1̂–( ) ∆ u( ) b| 〉 b〈 |= =

+
η

2 1 η2+( )
--------------------------- d| 〉 b〈 | b| 〉 d〈 |+[ ]

+
1

2 1 η2+( )
--------------------------- b| 〉 a〈 | a| 〉 b〈 |+[ ] ,

cb
2

1̂

i"
d Ψ t( )| 〉

dt
------------------ Heff Ψ t( )| 〉 ,=

Definition of dimensionless variables

Definition Variable

Energy scale v  = 

Length scale ξ = 

Coupling asymmetry η = vdb/vba

Dimensionless polaron energy u = (E – ε)/v

Dimensionless energy barrier σ = (εb – ε)/v

Reduced electron-vibration coupling κ = kξ/v

2 v db
2

v ba
2+( )

v /mω2
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with the initial condition |Ψ(0)〉  = |d〉 . It is easy to show
that, when t  ∞ we have Pd → a(t) . kdat, where the
charge transfer rate kda is given by the Fermi golden rule

(8)

with the (dimensionless) effective donor–acceptor cou-
pling [18]

(9)

where Ei(u) are the eigen energies of Heff given by

E1(u) = 0 and 2E2, 3(u) = ∆  . Finally, we end
up with the effective D–A coupling given by

(10)

and the ratio ρ, thus, allowing us to measure the effect
of vibrations on the D–A coupling, which reads

(11)

kda
2π
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2 δ E2 u( ) E1 u( )–( ); σ κ2cb
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2 η2

4 1 η2+( )2
-------------------------=

×
1/ E3 u( ) E1 u( )–( ) E3 u( ) E2 u( )–( )[ ] ; σ κ2cb
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
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∆2 2+
---------------

1/2

.

Fig. 1. Stationary charge density in Eq. (5) versus the
energy for the coupling asymmetry η = 0.5. The quoted let-
ters d, b, and a stand for the donor, bridge, and acceptor,
respectively.

d

Expressions (10) and (11) are the main results of this
paper. They provide close formulas for evaluating how
the dynamical disorder affects the effective donor–
acceptor coupling in various situations. As direct appli-
cations of our main findings, we consider the following
illustrative examples.

Charge density versus polaron energy. It results
from Eq. (5) that the charge densities on the donor,
bridge, and acceptor are even functions of the polaron
energy u. For all u, the ratio of the density of the donor
to that of the acceptor is equal to the square of the
asymmetry energy η (see the table). For u = 0, there is
no charge on the bridge site, and the charge density is
distributed between the donor and acceptor sites in pro-
portion to η. In contrast, for the limits of very high (or
low) polaron energy, when |u| gets larger, the charge
density decreases considerably on the donor and accep-
tor sites, while it gets higher on the bridge site, hence,
leading to small charge transfer efficiency. These fea-
tures are illustrated in Fig. 1 for the energy asymmetry
parameter η = 0.5. Likewise, at the resonance um, where
the renormalized effective energy of the bridge is equal
to zero (the donor/acceptor energy),

(12)

and the distribution of the charge density reduces to

(13)

At this resonance point, the charge density on the
bridge site decreases either upon approaching the bare
resonance for σ  0 or by increasing the electron-

vibration coupling parameter κ above .
Effective D–A coupling versus u. The effective D–

A coupling scales as |Hda| ~ 1/∆ for ∆ @ 1. However, at
the resonance ∆ = 0 defined in Eq. (12), the |Hda(u, η,
σ, κ)|2 and, thus, the ratio ρ(u, σ, κ) attain their maxima
given by

(14)

and

(15)

Simple inspection of this equation shows two charac-
teristic features. First, at the resonance, the effective D–
A coupling is enhanced by the coupling to the structural
dynamics, and, second, as is illustrated in Fig. 2, the
enhancement factor ρ of the effective D–A coupling
due to the electron-vibration interactions increases with

∆ um( ) 0 um⇒ σ

2 κ2 σ–( )
---------------------------,±= =

cd
2 um( ) η2ca

2 um( ),=

cb
2 um( ) σ/κ2,=

ca
2 um( ) 1 cb

2 um( )–[ ] / 1 η2+( ).=

σ

Hda um σ κ, ,( ) 2 η2

4 1 η2+( )2
-------------------------,=

ρ um σ κ, ,( ) σ σ2 2++( ) σ2 2+
2

-----------------------------------------------------.=
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the energy barrier σ. To rationalize these observations
in terms of the polaron energy and electron-vibration
coupling, we have depicted in Fig. 2 the ratio ρ(u, σ, κ)
as a function of u for increasing values of σ and κ. Two
different regimes can be distinguished:

Fig. 2. Effective coupling ratio in Eq. (11) as a function of
the energy. Filled circles correspond to ρ(ug, σ, κ) at the
ground-state energy ug. The quoted numbers correspond to
the electron-vibration coupling values, i.e., κ = 0, 0.5, 1, 2, 5.
JETP LETTERS      Vol. 82      No. 6      2005
κ < —below the resonance value, the effective
D–A coupling is a monotonic increasing function of the
polaron energy |u|; and

κ ≥ —the effective D–A coupling increases for
|u| < |um|, attains its maximum at the resonance |u| = |um|,
and decreases for |u| > |um|. As a consequence of |Hda(u,
σ, 0)| ~ 1/σ, both the maximum of ρ at the resonance
and its limit at high |u| increase with σ.

Effective D–A coupling versus k. As we have dis-
cussed above and illustrated in Fig. 2, the electron
vibration may lead to an increase or decrease of the
effective D–A coupling depending on the value of |u|
and the regime of σ. Similarly, Fig. 3 displays the
enhancement factor ρ at the polaron ground state as a
function of the electron-vibration coupling κ. It is clear
that there is a certain threshold value κc(ug) below
which the electron-vibration coupling leads to enhance-
ment of the effective D–A coupling and above which
the effective D–A coupling is drastically reduced,
hence, affecting the charge transfer efficiency.

As above, two different regimes can be distin-
guished:

(1) σ ≤ 1—equation (6) has two distinct roots corre-
sponding to the ground and excited states, respectively.
The maximum enhancement ρ(um, σ, κc) given by
Eq. (15) is attained at the resonance ∆ = 0, where ug =

– /2 (and the excited state –ug) and κc(ug) = ,
obtained from the combination of Eqs. (6) and (12). In
this regime, the ground state coincides with the reso-
nant energy ug = um.

(2) σ > 1—there is an interval κc(ug) ≤ κ ≤ κmax
within which Eq. (6) admits four distinct roots (the low-
est one corresponding to the ground state) and out of

σ

σ

2 2σ

Fig. 3. Effective coupling ratio in Eq. (11) at the ground-
state energy ug as a function of the electron-vibration cou-
pling. The quoted numbers correspond to the energy barrier
values, i.e., σ = 0.5, 1, 2.
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which it has two distinct roots. In this case, the ground
state is no longer resonant, ug ≠ um, but two excited
states coincide with the resonant energies given by um =

± /2. As a result, the maximum enhancement ρ(ug, σ,
κ) < ρ(um, σ, κc) as ∆(ug) ≠ 0. For instance, for σ = 2,
the interval of four distinct roots is 1.9336 ≤ κ ≤ 2.175
with κc = 1.9336 and the maximum enhancement ρ(ug,
σ, κc) = 3.198 is obtained for ug = –1.097. At the reso-
nance ∆ = 0 for σ = 2, we have κ = 2, ug = –1.707,

∆(ug) = – , and ρ(ug, σ, κ) = 1.596.

In summary, we have shown that the electronic cou-
pling with the vibration dynamics of the bridge results
in the formation of a polaron that may, under certain
conditions, lead to an enhancement of the charge trans-
fer efficiency. Figures 2 and 3 show that the enhance-
ment factor ρ is greater than one for a wide range of the
energy barrier σ and the electron-vibration coupling κ.
These findings are very suggestive for the issue of
charge transport assisted by structural dynamics along
the DNA chain. To study the basic mechanism of vibra-
tion enhancement of charge transport, we have focused
in this work on the simple three-site model with a single
harmonic structural dynamic mode (reaction coordi-
nate). Meanwhile, the method employed in this work is
not limited to this model and the extension of the theory
to several sites and anharmonic reaction coordinates
(see, e.g., [27, 28]) and several resonance states can be
handled within the framework developed in [18]. Nev-
ertheless, further theoretical studies need to be conduct
along the lines outlined above in order to gain a better
understanding of the charge transport properties in bio-
logical systems and technological applications of sig-
nificant importance.

The work of E.K. was supported in part by INTAS,
grant no. 01-0105.
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In order to reveal the effects of disorder in the vicinity of the apparent metal–insulator transition in 2D, we stud-
ied electron transport in the same Si device after cooling it down to 4 K at different fixed values of the gate
voltage Vcool. Different Vcool did not significantly modify either the momentum relaxation rate or the strength
of electron–electron interactions. However, temperature dependences of the resistance and the magnetoresis-
tance in parallel magnetic fields in the vicinity of the 2D metal–insulator transition carry a strong imprint of the
quenched disorder determined by Vcool. This demonstrates that the observed transition between the metallic and
insulating regimes, besides the universal effects of electron–electron interaction, depends on the sample-spe-
cific localized states (disorder). We report on evidence for a weak exchange of electrons between the reservoirs
of extended and resonant localized states that occur at low densities. The strong cool-down dependent variations
of ρ(T), we believe, are evidence for a developing spatially inhomogeneous state in the critical regime. © 2005
Pleiades Publishing, Inc.

PACS numbers: 71.27.+a, 71.30.+h, 72.20.Ee, 73.40.Qv
After about a decade of intensive research, the
apparent metal–insulator transition (MIT) in two-
dimensional (2D) systems remains a rapidly evolving
field [1]. One of the central problems is to understand
the individual roles of the two major driving forces: dis-
order and electron–electron (e–e) interactions. A great
body of experimental data demonstrates that, at suffi-
ciently large carrier densities, the low-temperature
behavior of disordered systems is governed by the uni-
versal quantum interaction corrections to the conduc-
tivity [2–4]. These purely interaction effects between
mobile 2D electrons have been intensively studied both
theoretically [2–8] and experimentally [9–13]; the role
of disorder in these studies is solely limited to scatter-
ing of mobile electrons.

In contrast, the interplay of disorder and interac-
tions, particularly, interactions between localized and
mobile electrons, is considered much more rarely [14–
18]. There are clear observations that, near the apparent
2D MIT, the behavior of dilute systems is very rich and
does not necessarily follow the same pattern [18–20].
One might expect that the interplay of disorder and
interactions should become more and more important
as the electron density decreases and approaches the
critical density of the 2D MIT.

¶ The text was submitted by the authors in English.
*A member of the editorial board of the journal JETP Letters since
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Usually, the presence of the localized states them-
selves in 2D transport is masked by mobile electrons. In
order to reveal their contribution in the vicinity of the
2D MIT, we have studied electron transport in the same
Si-MOS structure that was slowly cooled down from
room temperature to T = 4 K at different fixed values of
the gate voltage Vg = Vcool. Changing the cooling condi-
tions primarily affects the thickness of the potential
well [21]. We believe that this allowed us to vary the
fine details of disorder—the structure of the resonant
(localized) states—without affecting the type of disor-
der (short-ranged), the scattering rate, and the strength
of electron–electron interactions in the system of
mobile electrons. We focused on two key features of the
2D MIT: the strong dependences of the resistivity on
temperature and the parallel magnetic field, and studied
them in the density range n = (0.7–3) × 1011 cm–2 for a
system with a snapshot disorder pattern.

We have observed that, at relatively high densities
(resistivity ρ ≤ 0.1h/e2, the dependences ρ(T) and ρ(B||)
in weak parallel magnetic fields B|| are very similar for
different cool downs. This “universal” behavior of
transport at high densities agrees with our observation
[11] of the sample-independent ρ(Tτ, n) for samples
with different mobility (µ ∝  τ). In contrast, at low den-
sities (ρ ~ (0.1 – 1)h/e2), or in moderate and strong par-
allel fields gµBB|| ~ EF @ kBT, the cooling conditions
dramatically affect transport even though the main
parameters of disorder and of the electron interactions
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Mobility versus gate voltage for different cool
downs. The Vcool values for both the main panel and the
inset are shown in the figure. Examples of the SdH oscilla-
tions, shown in the inset for the same Vg = 1.15 V, T = 0.1 K,
B|| = 0.03 T, demonstrate that the quantum time τq is not
very sensitive to the cooling conditions. The carrier densi-
ties vary within the interval (1.07–1.09) × 1011 cm–2.

Fig. 2. Temperature dependences of the resistivity for four
different cool downs. For curves 1 to 10, the density values
are 0.827, 0.882, 0.942, 0.972, 1.00, 1.038, 1.07, 1.18, 1.31,

and 1.53 in unites of 1011 cm–2.  and  mark two crit-

ical dependences for cool downs at Vg = 5 and 25 V, respec-
tively.
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remain unchanged. This observation provides direct
experimental evidence that, near the 2D MIT, electron
transport at finite temperatures in dilute systems
becomes sample-specific and dependent on more subtle
details of disorder.

We have also observed that the frequency of the
weak-field Shubnikov–de Haas (SdH) oscillations var-
ies with temperature and in-plane field; these variations
(of the order of a few %) grow as the density
approaches the 2D MIT critical density. The SdH fre-
quency is directly related with the density of mobile
electrons, whatever strong interactions there are.
Therefore, the observed variations of the mobile charge
at a fixed total charge in the MOS capacitor gives evi-
dence for the redistribution of electrons between the
bands of mobile and localized states. The weak T
dependence of this electron exchange, if it is attributed
to activation processes, indicates the presence of very
low energy barriers (~1 K) between the mobile and
localized electron states. We relate the finite tempera-
ture cool-down effects to the hybridization of the
mobile and spatially separated resonant (localized)
states present at the Fermi energy at low densities.

The resistivity measurements were performed on a
high mobility Si-MOSFET sample [22] at bath temper-
atures of 0.05–1.2 K. The crossed magnetic field sys-
tem allowed us to accurately align the magnetic field
parallel to the plane of the 2D electron system [9]. Five
different cool downs were performed with Vcool = 0, 5,
10, 18, and 25 V. The carrier density, found from the
period of the SdH oscillations, varies linearly with Vg:
n ≈ C × (Vg – Vth), where C (1.10 × 1011/(V cm2) for the
studied sample) is determined by the oxide thickness.
The threshold voltage Vth varied little (within 0.15 V)
for different cool downs and remained fixed as long as
the sample was maintained at low temperatures (up to a
few months). Within the same cool down, both C and
Vth remained constant (within a few %) in the overall
studied range of densities.

Figure 1 shows the mobility µ versus Vg for five dif-
ferent cool downs with Vcool = 0, 5, 10, 18, and 25 V.
The peak mobility for different Vcool varies by less than
~7%; this demonstrates that the momentum relaxation
time τ is not strongly affected by the cooling condi-
tions. Comparing the µ(n) curves with the conventional
transport theory [23, 24], we conclude that the density
of the charged impurities varies by less than 1010 cm–2

for different cool downs. We also observed that the
amplitudes of the SdH oscillations are similar for dif-
ferent cool downs, as shown in the inset to Fig. 1. These
two observations are consistent with each other, since
the quantum lifetime τq is nearly equal to τ for Si-MOS-
FETs.

Figure 2 shows that the ρ(T) dependences are cool
down independent far from the transition (at ρ ! h/e2)
(see, e.g., curves 9, 10). However, in the vicinity of the
transition (ρ ~ h/e2), a dramatically different behavior is
JETP LETTERS      Vol. 82      No. 6      2005
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observed as temperature increases. The irreproducibil-
ity of ρ(T) for different cool downs is clearly seen for
the curves in Fig. 2, which correspond to nearly the
same ρ at the lowest T: these curves, being different at
higher temperatures, converge with decreasing T. We
have verified that the renormalization of the electron
spin susceptibility and effective mass (and, thus, the
two Fermi-liquid coupling constants) do not change for
different cool downs to within 5%. Thus, electron–elec-
tron interaction effects [11] also cannot account for the
changes in ρ(T).

The sample-specific variations vanish at sufficiently
low temperatures: this suggests that the underlying
mechanism is related to the finite-temperature effects in
a system that retains a quenched disorder. These results
also suggest that, in addition to universal effects, a
finite-temperature and sample-specific mechanism,
which strongly affect the resistivity, come into play.

If the behavior shown in Fig. 2 is characterized by
the critical density nc, which corresponds to the transi-
tion, the latter would have been cool down dependent.
The labels in Fig. 2 mark two ρ(T) dependences, which
corresponded to n = nc for two different cool downs;
they were estimated from linear extrapolation to zero of
the activation energy ∆(n) measured in the insulating
regime ρ(T) ∝  exp(∆/T) [20, 25] away from the critical
regime. It is clear that the critical dependences ρ(T, n =
nc) are nonmonotonic (see also [25, 26]). The non-
monotonicity is not caused by electron overheating; we
applied sufficiently low source-drain current in order to
reduce the excess electron temperature δTe to a few mK.

For example, for the curve  (the source drain resis-
tances are 150 kOhm each; the channel resistance is
~30 kOhm/h), the chosen source-drain excitation
10 µV corresponds to the dissipation ~10–15 W, which
might cause electron overheating &1 mK [26].

Since the cool down dependent changes in ρ(T) van-
ish with decreasing temperature, we have attempted to

analyze the variations δρ(T) = ρ( , T) – ρ( , T)
in terms of the exponential exp(–∆/T) dependence as
demonstrated in Fig. 3. The corresponding activation
energy ∆ is very low: it varies within the interval ~(0.7–
1) K. This proves that the low-lying band of localized
states (located close to the bottom of the conduction
band, ≈8 K below the Fermi level) is irrelevant. The
smallness of ∆, therefore, points to the involvement of
the localized states that are located close to the Fermi
level. Similar resonant localized states are known in
narrow band-gap semiconductors and must be spatially
separated from the mobile states.

We now turn to the magnetoresistance (MR) in par-
allel fields; the data are shown in Figs. 4 and 5. This MR
is usually associated with the spin effects [1, 19]. In the
theoretical models of the parallel-field MR based on
electron–electron interactions, the MR is controlled by
the effective g* factor and the momentum relaxation
time τ [6, 11, 4]. An important advantage of our method

nc
25

V1
cool V2

cool
JETP LETTERS      Vol. 82      No. 6      2005
Fig. 3. Difference between resistivity values for two differ-
ent cool downs (shown in Fig. 2) versus inverse tempera-
ture. The numbers label the curves for the densities the same
as in Fig. 2.

Fig. 4. Examples of the dependences ρ( ) at T = 0.3 K for

the carrier density (a) 1.20 × 1011 cm–2 and (b) 1.34 ×
1011 cm–2. The insets blow up the low-field region of the
quadratic behavior. The values of Vcool are indicated for
each curve.
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is that, as we mentioned above, cooling of the same
sample at different Vcool does not affect these parame-
ters. Thus, one might expect to observe a sample-inde-
pendent behavior if the MR is controlled solely by the
universal interaction effects.

Firstly, we consider the range of fields much weaker
than the field of complete spin polarization (g*µBB|| !
EF). The insets to Figs. 4a and 4b show that the MR is

proportional to  at g*µBB||/kBT ≤ 1. We found that the
slope dρ/dB2 is nearly cool down independent (i.e., uni-
versal) only for the densities n > 1.3 × 1011 cm–2 (which
are 30% greater than the critical density nc) or for the
resistivities ρ(0) < 0.16h/e2 (compare the insets to
Figs. 4a and 4b); this is consistent with our earlier
observations [11]. With approaching nc, this universal-
ity vanishes: Fig. 4a shows that even when the zero-
field resistivity is as small as 0.22h/e2, the slope varies
by a factor of 1.3 for different Vcool.

For the intermediate fields, kBT < g*µBB|| < EF, the
ρ(B||) behavior is not universal over the whole density
range n = (1–3) × 1011 cm–2 (Fig. 4). As n decreases and
approaches nc, the cool down dependent variations of
ρ(B||) increase progressively.

The influence of the cool down conditions on the
magnetoresistance becomes even more dramatic in
strong fields: B|| * EF/g*µB. Despite the fact that the
dependences µ(n) ∝  τ(n) for different cooldowns were
very similar (Fig. 1), we observed very large variations
in the high-field MR. Figures 5a and 5b show ρ(B||) for
different cool downs at two values of n. The cool down
conditions cause factor-of-five changes in ρ(B) in high
fields and factor-of-two changes in the values of B|| =
Bsat at which the MR saturates at a given carrier density.
The latter quantity was determined from the intercept

B||
2

Fig. 5. Resistivity vs. B|| field for three cool downs at two
electron densities.

(h
/e

2 )

of the tangents at the fields below and above the MR
saturation [19].

The nonuniversal, sample-dependent behavior of
ρ(B||) agrees with earlier observations made on different
samples [19]. We emphasize that the curves for differ-
ent Vcool (in both Figs. 5a and 5b) nominally correspond
to the same density. The fact that Bsat is a cool down
dependent parameter proves that the MR in strong par-
allel fields is not solely related to spin-polarization of
mobile electrons. The fact that the variations arise in
strong fields gµBB|| ~ EF hints that a deep tail of local-
ized states located near the bottom of the conduction
band (or near the bottom of the upper spin subband)
[14, 15, 27, 28] is responsible for the magnetoresis-
tance variations. We note that, at low temperatures T =
0–1 K ! TF and at zero field, temperature activation of
carriers from the tail of localized states to the Fermi
level (across the energy gap ~EF) is negligibly weak
and could not affect the data shown in Fig. 2. In con-
trast, at higher temperatures T ~ TF, the thermal activa-
tion of carriers from the tail of localized states to the
Fermi level produces noticeable effects, which are
detected in the Hall voltage [29].

It is worth mentioning that the influence of variable
disorder on transport and magnetotransport in Si-MOS-
FETs has been studied earlier. Both temperature depen-
dence ρ(T) and magnetoresistance ρ(B||) were found to
be different in samples with different mobility [20, 19],
in samples cooled down with different values of the
substrate bias voltage [30], and with an intentionally
varied oxide charge [23]. In contrast, in our studies, we
kept constant the scattering time, the quantum time, the
phase breaking time, the interface charge, and the
parameters relevant to electron–electron interaction.
Even under such conditions, strong nonuniversal varia-
tions in ρ(T) and ρ(B||) occur.

In order to elucidate the origin of the observed vari-
ations in disorder, we have analyzed SdH oscillations at
weak perpendicular magnetic fields versus temperature
and in-plane magnetic field. Figure 6 shows typical
ρxx(B⊥ ) curves for six temperatures that were measured
during the same cool down for a fixed gate voltage
value. The ρxx minima occur when the Fermi energy
coincides with the middle of the energy gap. The upper-
left inset clearly shows that the minima of the oscilla-
tions shift with temperature, thereby, providing evi-
dence for the changes in the density of mobile carriers.
The lower-left inset demonstrates that the shift of the
ρxx minima is not caused by variations in the residual
field of the superconducting magnet (maintained at
4 K).

We fitted the total oscillatory picture with the theo-
retical dependence (similar to that in [9]) using the fre-
quency of oscillations nSdH for each of the curves as a
fitting parameter. The resulting temperature depen-
dences of nSdH are shown in Fig. 7. The error bars on the
figure correspond to relative changes of the frequency
JETP LETTERS      Vol. 82      No. 6      2005
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with temperature; the absolute frequencies are deter-
mined with about three times lower precision. At a
higher density n > 5 × 1011 cm–2, the oscillation fre-
quency was independent of temperature within the
0.5% uncertainty. The nSdH(T) changes become notice-
able at a density of ≤4 × 1011 cm–2 (which is four times
larger than the critical density of the 2D MIT); they
increase progressively with in-plane field, as Figs. 7a
and 7b show.

DISCUSSION

The measured density values nSdH refer to the den-
sity of mobile electrons that participate in the Landau
quantization. The weak temperature variations of the
density of mobile electrons do not involve a large
energy scale on the order of EF ~ 8 K. This points to the
presence of resonant localized states at the Fermi level,
which are separated spatially and by a small energy bar-
rier from the mobile states. The density variations are
then caused by exchange of electrons between those
two states via either overbarrier transitions, as schemat-
ically drawn in Fig. 7, or via tunneling.

temperature induced exchange of electrons between
the bands of mobile and localized states, by itself, can
not produce a significant effect on the resistivity.
Indeed, the appearance (disappearance) of ~109 cm–2

charged scatterrers (which corresponds to the 0.5%
variations of density in Fig. 7) may, correspondingly,
cause 0.5% changes in ρ. However, in the critical
regime, the localized states may be expected to occupy
a significant share of the total 2D layer by forming clus-
ters. The periphery of the cluster is expected to consist
of the resonant states that may emit and absorb elec-
trons. As a result, the overall area available for motion
of mobile electrons changes with temperature, similar
to that in the known percolation picture [31]. The reso-
nant states, thus, may control transport through the sad-
dle points separating neighboring areas occupied by
mobile electrons and, thus, indirectly trigger the strong
changes in ρ.

In the B|| field, the resonant state should split and
move relative to the band of mobile states. This model
can potentially explain both the strong variations of
ρ(T) and ρ(B||) in the critical regime and the weak
changes in the mobile carrier density. Formation of the
two-phase state may be caused by either disorder or
electron–electron interactions. Spontaneous formation
of the heterophase state in the vicinity of the phase tran-
sition was established for quasi-1D systems [32]; in 2D
electron systems, the two-phase state is also intrinsic to
some theoretical models [33].

To summarize, by cooling the same high-mobility
Si-MOS sample at different fixed values of the gate
voltage, we tested the universality of temperature and
magnetic-field dependences of the resistivity near the
2D MIT. An important advantage of this approach is
that the different cool down procedures do not alter the
JETP LETTERS      Vol. 82      No. 6      2005
interaction effects between mobile carriers. It has been
found that, in the vicinity of the transition (ρ ~ h/e2), the
specific cool down effects strongly affect ρ(T); these
effects vanish only when ρ decreases below ~0.1h/e2

Fig. 6. Typical Shubnikov–de Haas oscillations at six tem-
peratures (indicated on the main panel) and in in-plane field
B|| = 0.02 T. The nominal density value is n ≈ 2 × 1011 cm–2.
The lower left inset demonstrates the precise control of the
zero magnetic field position, and the upper inset magnifies
one of the oscillations to show its shifting with T.

Fig. 7. Temperature dependences of the frequency of SdH
oscillations at two fixed values of the gate voltage. The dif-
ferent curves within each panel are offset shifted for clarity.
The diagrams on the right schematically show the DOS for
the band of mobile electrons and a resonant state. The arrow
shows an overbarrier transition.
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with increasing electron density; they also vanish as T
decreases. The nonuniversal behavior is especially dra-
matic in strong B|| fields, where it extends to much
higher electron densities (we observed pronounced
nonuniversality of R(B||) over a range of n = (1–3) ×
1011 cm–2).

Our results reveal the existence of the resonant
(shallow) localized states near the Fermi energy. The
observed temperature variation of the frequency of
Shubnikov–de Haas oscillations demonstrates a weak
exchange of electrons between the reservoirs of mobile
and resonant localized states. The large changes of ρ(T)
at elevated temperature signify the development of a
spatial inhomogeneity of the 2D system, which may
result from either interactions between electrons or dis-
order.
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