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We develop the light-cone color dipole description of highly asymmetric diffractive interactions of left-handed
and right-handed electroweak bosons. We identify the origin and estimate the strength of the left–right asym-
metry effect in terms of the light-cone wave functions. We report an evaluation of the small-x neutrino–nucleon
deep inelastic scattering structure functions xF3 and 2xF1 and present a comparison with experimental data.
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PACS numbers: 12.15.Ji, 12.38.–t
At small Bjorken x, the driving term of the inclu-
sive/diffractive excitation of charmed and (anti)strange
quarks in the charged current (CC) neutrino deep
inelastic scattering (DIS) is the W+-gluon/pomeron
fusion,

(1)

and

(2)

Different aspects of the CC inclusive and diffractive
DIS have been discussed in [1, 2].

In the color dipole approach [3, 4] (for the review,
see [5]), the small-x DIS is treated in terms of the inter-
action of the  color dipole of size r with the target
proton which is described by the beam- and flavor-inde-
pendent color dipole cross section σ(x, r). Once the
light-cone wave function (LCWF) of a color dipole
state is specified, the evaluation of observable quanti-
ties becomes a routine quantum mechanical procedure.
In this communication, we extend the color dipole anal-
ysis to the CC DIS, with particular emphasis on the
left–right asymmetry of diffractive interactions of elec-
troweak bosons of different helicity. We derive the rel-
evant LCWF and evaluate the structure functions xF3,
∆xF3, and 2xF1. We focus on the vacuum-exchange-
dominated leading log(1/x) region of x & 0.01.

At small x, the contribution of excitation of open
charm/strangeness to the absorption cross section for
scalar, (λ = 0), left-handed, (λ = –1), and right-handed,

¶ The text was submitted by the authors in English.
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(λ = +1), W boson of virtuality Q2 is given by the color
dipole factorization formula [6, 7]

(3)

In Eq. (3), (z, r) is the LCWF of the | 〉 state
with the c quark carrying fraction z of the W+ light-cone
momentum and  with momentum fraction 1–z. The
c- and -quark helicities are λ1 = ±1/2 and λ2 = ±1/2,
respectively. The W+  -transition vertex is speci-
fied as follows:

where Ucs is an element of the CKM matrix and the
weak charge g is related to the Fermi coupling constant
GF,

(4)

The polarization states of the W boson carrying the lab-
oratory frame four-momentum

(5)

are described by the four-vectors eλ,

(6)

with unit vectors ex and ey in the qx and qy directions,
respectively. We find it convenient to use the basis of

σλ x Q2,( ) zd2r Ψλ
λ1 λ2,

z r,( )
2
σ x r,( ).
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cs
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helicity spinors of [8]. Then, the vector (V) and axial-
vector (A) components of the LCWF

(7)

are as follows:

(8)

(9)

If λ = ±1,

(10)

(11)

where

(12)

and Kν(x) is the modified Bessel function. We do not
consider Cabibbo suppressed transitions and

The quark and antiquark masses are m and µ, respec-
tively. The azimuthal angle r is denoted by φ. To switch
W+  W– one should replace m  µ in the equa-
tions above.

The diagonal elements of density matrix

(13)

entering into Eq. (3) are as follows:

Ψλ
λ1 λ2,

z r,( ) Vλ
λ1 λ2,

z r,( ) Aλ
λ1 λ2,

z r,( ),–=

V0
λ1 λ2,

z r,( )
αW Nc

2πQ
------------------ δλ1 λ2–, 2Q2z 1 z–( )[{=

+ m µ–( ) 1 z–( )m zµ–[ ] ] K0 εr( )

– iδλ1 λ2, 2λ1( )e
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(14)

and for 
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 = 

 

λ

 

' = 

 

±

 

1

(15)

(16)

At 
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  0 the terms ~
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/
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 in (14) remind us
that 

 

W

 

 interacts with the current, which is not con-
served, while the 

 

S

 

-wave terms in Eqs. (15) and (16)
proportional to 

 

m

 

2

 

 and 

 

µ

 

2

 

 remind us that this current is
the parity-violating (

 

V

 

 – 

 

A

 

) current.

The density of quark–antiquark  states in the
transversely polarized 

 

W

 

+

 

 -boson is

(17)

One can see that our 

 

ρ

 

00

 

 and 

 

ρ

 

TT

 

 coincide with the prob-
ability densities 

 

|Ψ

 

L

 

|

 

2

 

 and 

 

|Ψ

 

T

 

|

 

2

 

 of [1] (see also [9],
where the 

 

z

 

 dependence of transverse and longitudinal
CC cross sections is discussed).

The momentum partition asymmetry of both 

 

ρ

 

–1–1

 

and 

 

ρ

 

+1+1

 

 is striking: the left-handed quark in the decay
of the left-handed 

 

W

 

+

 

 gets the lion’s share of the 

 

W

 

+

 

light-cone momentum. The nature of this phenomenon
is very close to the nature of well-known spin–spin cor-
relations in neutron 

 

β

 

 decay. An observable which is
strongly affected by this left–right asymmetry is the
structure function of the neutrino–nucleon DIS called

 F
 3  . Its definition in terms of  σ

 R   and  σ
 L   of Eq. (3) is as

follows:

(18)

To estimate the consequences of the left–right asym-
metry for 

 

F3 at high Q2 such that

(19)
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one should take into account that the dipole cross-sec-
tion σ(x, r) in Eq. (3) is related to the unintegrated

gluon structure function ^(x, κ2) = ∂G(x, κ2)/∂ ,
as [10]

(20)

and to the Double Leading-Log the Approximation
(DLLA), i.e., for small dipoles, 

(21)

where µG = 1/Rc is the inverse correlation radius of per-
turbative gluons and A . 10 comes from the properties
of the Bessel function J0(y). Because of the scaling vio-
lation, G(x, Q2) rises with Q2 but the product αS(r2)G(x,
A/r2) is approximately flat in r2. At large Q2, the leading
contribution to σλ(x, Q2) comes from the P-wave term,
ε2K1(εr)2, in Eqs. (15) and (16). The asymptotic behav-

ior of the Bessel function, K1(x) . exp(–x)/ ,
makes the r-integration rapidly convergent at εr > 1.
Integrating over r in Eq. (3) yields

(22)

and similarly

(23)

The left–right asymmetry certainly also affects the
slowly varying product αSG, which for the purpose of
crude estimate is taken at some rescaled virtuality ~Q2,
which is approximately/logarithmically the same for σL

and σR. Hence,

(24)

Notice that, in spite of the apparent asymmetry of the
z distribution, both σL and σR get equal scaling contri-
butions from the integration domains near the peaks z =
1 and z = 0, respectively. Therefore, xF3 is free of end-
point contributions.

At Q2  0 and µ2/m2 ! 1, the cross-sections σL

and σR are as follows:

(25)
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We evaluate xF3(x, Q2) making use of Eqs. (3) and
(20) with the differential gluon density function ^(xg,
κ2) determined in [11]. As reported in [11], the
approach developed works very well in the perturbative
region of high Q2 and small x & 0.01. In addition, a
realistic extrapolation of ^(xg, κ2) into the soft region
also allows calculations at lowest Q2 [11]. In our calcu-
lations for Q2 & M2 = 2(m2 + µ2), the gluon density
^(xg, κ2) enters (20) at the gluon momentum fraction
xg = x(1 + M2/Q2). For large virtualities, Q2 * M2, we
put xg = 2x. Direct evaluation of the proton DIS struc-
ture function F2p(x, Q2) shows that this prescription cor-
responding to the collinear DLLA ensures a good
description of experimental data on light and heavy fla-
vor electro-production in a wide range of photon virtu-
alities down to Q2 ~ 1 GeV2. The constituent quark
masses are as follows: mu = md = 0.2 GeV, ms =
0.35 GeV and mc = 1.3 GeV.

The xF3 data reported by the CCFR Collaboration
are presented in Fig. 1. Shown is the Q2 dependence of
xF3 for several of the smallest values of x [12]. It should
be emphasized that we focus on the vacuum exchange
contribution to xF3 corresponding to the excitation of
the  state in process (1). Therefore, the structure
function xF3 differs from zero only due to the strong
left–right asymmetry of the light-cone | 〉 Fock state.
Shown by the solid line in Fig. 1 is the pomeron
exchange contribution to xF3. The latter can be inter-
preted in terms of parton densities as the sea-quark
component of xF3.

Looking at Fig. 1, one should bear in mind that the
smallest available values of x are in fact only moder-
ately small and there is also quite a significant valence
contribution to xF3. The valence term, xV, is the same
for both the νN and  structure functions of an isos-

calar nucleon. The sea-quark term in the  denoted

by xS(x, Q2) has the opposite sign for ; the substi-
tution m  µ in Eqs. (15) and (16) entails σL  σR.
Therefore,

(26)

and

(27)

One can combine the νN and  structure functions to
isolate the pomeron exchange term:

(28)

The extraction of ∆xF3 from CCFR νµFe and  dif-
ferential cross section in a model-independent way has
been reported in [13]. Figure 2 shows the extracted val-

cs
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Fig. 1. Data points are CCFR measurements of xF3(x, Q2) [12]. Curves show the vacuum exchange contribution to xF3(x, Q2).
  
ues of ∆xF3 as a function of Q2 for the two smallest val-
ues of x. Also shown are the results of our calculations.

After evaluating the difference of the left and right
cross sections, let us turn to their sum and, as a consis-
tency check, evaluate the structure function

(29)

where

(30)

The CCFR Collaboration measurements [14] of the
structure function 2xF1 as a function of Q2 for three val-
ues of x are shown in Fig. 3. Theory and experiment
here are in qualitatively the same relations as in Fig. 1.
In the small-x region, x < 0.01, dominated by the
pomeron exchange, our estimates are in agreement with

2xF1 x Q2,( ) Q2

4π2αW

----------------σT x Q2,( ),=

σT
1
2
--- σL x Q2,( ) σR x Q2,( )+[ ] .=

Fig. 2. ∆xF3 data as a function of Q2 [13]. The results of
color dipole description are shown by solid lines.
the data. For larger x, nonvacuum contributions enter
the game and a certain divergence shows up. This diver-
gence will increase if we take into account nuclear
effects. Indeed, the CCFR/NuTeV structure functions

 and  are extracted from the νFe and

data. The nuclear thickness factor, T(b) =

, where b is the impact parameter and

n(r) is the nuclear matter density,  = A, makes

the nuclear cross section

(31)

with the nuclear shadowing term

(32)

xF3
νN xF3

νN

νFe

zn z2 b2+( )d∫
d3rn r( )∫

σλ
A A σλ〈 〉 δσ λ

A,–=

δσλ
A

 . 
π
4
--- σλ

2〈 〉 b2T b( )2d∫

Fig. 3. CCFR measurements of 2xF1(x, Q2) [14] compared
with our estimates. The lines are the vacuum exchange con-
tributions to 2xF1(x, Q2).
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very sensitive to the left–right asymmetry of the
ν-nucleon cross-sections. In Eqs. (31) and (32), 〈σλ〉  =
〈Ψλ|σ(x, r)|Ψλ〉  and 〈 〉  = 〈Ψλ|σ(x, r)2|Ψλ〉 . Hence, the
nuclear shadowing correction is

(33)

which should be added to xF3 extracted from the νFe

data to get the “genuine” xF3. Since 〈 〉  ∝  1/µ2 and

〈 〉  ∝  1/m2, this correction is large and positive-val-
ued and increases xF3 of the impulse approximation.

Summarizing, we developed the light-cone color
dipole description of the left–right asymmetry effect in
charged current DIS at small Bjorken x. We compared
our results with experimental data and found a consid-
erable vacuum exchange contribution to the structure

functions . This contribution is found to dominate

the structure function ∆xF3 =  –  of an isoscalar
nucleon extracted from nuclear data. The theory is in
reasonable agreement with the data, but it is shown that
nuclear effects make this comparison a somewhat more
complicated procedure. The color dipole analysis of
nuclear effects in the CC DIS will be published else-
where.

V.R.Z. thanks the Dipartimento di Fisica dell’Uni-
versità della Calabria and the Istituto Nazionale di
Fisica Nucleare–gruppo collegato di Cosenza for their
warm hospitality while a part of this work was carried
out. The work was supported in part by the Ministero
Italiano dell’Istruzione, dell’Università e della Ricerca.

σλ
2

δxF3 . 
Q2

4π2αW

----------------
π σL

2 σR
2–〈 〉

8A
--------------------------- b2T b( )2,d∫

σL
2

σR
2

xF3
νN

xF3
ν xF3

ν

JETP LETTERS      Vol. 82      No. 7      2005
REFERENCES

1. V. Barone, M. Genovese, N. N. Nikolaev, et al., Phys.
Lett. B 292, 181 (1992).

2. V. Barone, U. D’Alesio, and M. Genovese, Phys. Lett. B
357, 435 (1995); M. Bertini, M. Genovese, N. N. Niko-
laev, and B. G. Zakharov, Phys. Lett. B 442, 398 (1998);
V. Barone, M. Genovese, N. N. Nikolaev, et al., Phys.
Lett. B 317, 433 (1993); Phys. Lett. B 328, 143 (1994).

3. N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607
(1991); Z. Phys. C 53, 331 (1992); Z. Phys. C 64, 631
(1994).

4. A. H. Mueller, Nucl. Phys. B 415, 373 (1994);
A. H. Mueller and B. Patel, Nucl. Phys. B 425, 471
(1994).

5. A. Hebecker, Phys. Rep. 331, 1 (2000).
6. A. B. Zamolodchikov, B. Z. Kopeliovich, and L. I. Lapi-

dus, JETP Lett. 33, 595 (1981).
7. G. Bertsch, S. J. Brodsky, A. S. Goldhaber, and

J. R. Gunion, Phys. Rev. Lett. 47, 297 (1981).
8. G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157

(1980); S. Brodsky, H.-Ch. Pauli, and S. Pinsky, Phys.
Rep. 301, 299 (1998).

9. V. Barone, M. Genovese, N. N. Nikolaev, et al., Phys.
Lett. B 328, 143 (1994).

10. N. N. Nikolaev and B. G. Zakharov, Phys. Lett. B 332,
184 (1994).

11. I. P. Ivanov and N. N. Nikolaev, Phys. At. Nucl. 64, 753
(2001).

12. W. G. Seligman, C. G. Arroyo, L. de Barbaro, et al.,
Phys. Rev. Lett. 79, 1213 (1997).

13. U. K. Yang, T. Adama, A. Alton, et al., Phys. Rev. Lett.
86, 2742 (2001).

14. U. K. Yang, T. Adama, A. Alton, et al., Phys. Rev. Lett.
87, 251 802 (2001).



  

JETP Letters, Vol. 82, No. 7, 2005, pp. 390–393. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 82, No. 7, 2005, pp. 440–444.
Original Russian Text Copyright © 2005 by Varlachev, Dudkin, Padalko.

                                                                 
Does the Coherent Bremsstrahlung
of Fission Fragments Exist?
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The spectrum of γ rays from the neutron-induced fission of 235U nuclei has been studied in a range of 10–
90 MeV. The experiment has been carried out in the horizontal experimental channel of a nuclear reactor. The
energy spectrum was measured using a single-crystal NaI(T1) spectrometer. The data on the energy dependence
of the yield of γ rays have been obtained in a range of 12–38 MeV. The upper limit on the probability of the
emission of γ rays has been determined for a range of 38–90 MeV. It has been shown that the experimental data
are inconsistent with available models attributing the yield of γ rays in this energy range to the coherent
bremsstrahlung of fission fragments in the Coulomb field. © 2005 Pleiades Publishing, Inc.

PACS numbers: 24.75.+i, 25.85.Ec
One of the fundamental problems of nuclear fission
physics concerns the characteristics of the energy spec-
trum of γ rays accompanying the fission process for
energies above > 10 MeV. Experimental data on the
energy spectrum of γ rays in a range of 10–20 MeV
were obtained only with the source of spontaneously
fissioning nuclei 252Cf and 238U [1–7]. The spectra are
characterized by an exponential dependence with an
inverse slope of E0 = 1.4–2.2 MeV. The shapes of the
spectra quite closely coincide with each other, but they
differ in intensity by several times. The yield of γ rays
in this energy range is associated with the presence of
the highly excited states of daughter nuclei arising in
the fission process and, in particular, with the direct
excitation of the giant dipole resonance.

For energies above 20 MeV, both experimental data
and theoretical calculations are contradictory. In three
experiments, the yield of γ rays with such a high energy
was not detected, and only an upper bound was deter-
mined [4, 8, 9]. In three other experiments, the energy
spectrum was measured [3, 5, 7]. The yield of γ rays
with energies 20–120 MeV is theoretically attributed to
the coherent bremsstrahlung of fission fragments in the
Coulomb field and depends on the fundamental charac-
teristics of nuclear fission such as the fission neck
length [7], acceleration mechanism (instantaneous,
pure Coulomb [3]), quantum-mechanical corrections
for the effect of the tunneling of fragments through the
potential barrier [4]. The calculations in different mod-
els differ by several orders of magnitude.

At the same time, in nuclear fusion reactions
actively studied in recent time, the yield of γ rays due to
the coherent bremsstrahlung of nuclei is proved exper-
imentally and justified theoretically [10–14].
0021-3640/05/8207- $26.00 ©0390
The inconsistency of experimental and theoretical
situations in nuclear fission requires further investiga-
tions. For this reason, the aim of this work is to analyze
the spectrum of γ rays arising in the neutron-induced
fission of 235U nuclei for energies above 10 MeV.

The experiment was carried out in the horizontal
experimental channel of the nuclear reactor at the
Research Institute of Nuclear Physics, Tomsk, Russia.
The energy spectrum was measured by a single-crystal
NaI(T1) spectrometer with the crystal 20 cm in diame-
ter and 20 cm in length (7.7 radiation length). To protect
the detector from the neutron flux and to reduce the
γ-ray flux density to an acceptable level, a distilled-
water filter 300 cm in length was placed between the
spectrometer and reactor core. Two lead collimators 1
and 2, which were placed after the filter, specified the
solid angle of the detector. The distance between the
input of lead collimator 1 and the output of collimator
2 is equal to 150 cm. The diameter of both apertures is
equal to 2 cm and their lengths are equal to 15 cm. As a
result, for the reactor power W = 6 MW, a γ-ray flux
with an intensity of I = 5 × 104 photons/s is incident
onto the detector.

To protect the detector from the cosmic-ray back-
ground, we used the passive protection (lead and heavy
concrete) and active protection—scintillation detectors
that surrounded the NaI spectrometer and operates in
the anticoincidence mode. For the efficiency of detect-
ing γ rays by the NaI(T1) spectrometer to be energy-
independent (due to the escape of electrons and γ rays
from the crystal and their inhibition by anticoincidence
counters), the spectrometer was first surrounded from
the lateral sides by the lead protection 5 cm in thickness
and then by anticoincidence counters.
 2005 Pleiades Publishing, Inc.
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The signal from the anode of a FEU-49B photomul-
tiplier that is in optical contact with the NaI(T1) crystal
was fed to the charge-to-digital converter with a charge-
integration window of 300 ns. The energy calibration of
the spectrometer was performed as follows. The lower
part of the energy scale was calibrated by means of the
γ lines of the 60Co source. To calibrate the middle part
of the energy scale of the spectrometer, we used the
γ-radiation lines arising in the radiative capture of neu-
trons on Al and Fe (Eγ = 7.72 and 7.64 MeV, respec-
tively) contained in the plug of the horizontal channel
and fuel elements [15]. For calibration in an energy
range of 30–100 MeV, the monoenergetic secondary
electron beam of the SIRIUS synchrotron is used.

The resolution was equal to δ = 11 and 7.7% at the
60Co (Eγ = 1.33 MeV) line and the 7.72-MeV and
7.64-MeV lines (unseparated lines), respectively. With
a further increase in energy, the resolution depends on
energy only slightly, remaining at a level of .8%. For
energies >10 MeV, the efficiency of the detection of
γ radiation by the NaI spectrometer is equal to ~85%
(calculated value [16]).

Figure 1 shows the apparatus energy spectrum of
γ rays that are emitted from the reactor core and passed
through 300 cm of water. The lines of captured γ radia-
tion are identified using the data taken from [17]. The
numbers in the figure indicate the γ lines associated
with various processes: (1, 2) the lines of the 60Co
source (Eγ = 1.17, 1.33 MeV, respectively); (3) the
unseparated lines of capture radiation on Cr (stainless
steel component, Eγ = 1.78, 1.89 MeV); (4) capture
radiation on water hydrogen (Eγ = 2.2 MeV); (5) the
sum peak from the 60Co source (Eγ = 2.5 MeV); (6) the
unseparated lines of capture radiation on Be (core
reflector, Eγ = 6.8 MeV) and Ti (stainless steel compo-
nent, Eγ = 6.76 MeV); (7) the unseparated lines of cap-
ture radiation on Al (fuel element matrix, extractant,
Eγ = 7.72 MeV) and Fe (plug of the experimental chan-
nel, Eγ = 7.64 MeV); (8) the unseparated lines of cap-
ture radiation on Cr and Ni (stainless steel components,
Eγ = 8.8, 8.9 MeV, respectively); (9) capture radiation
on Cr (Eγ = 9.7 MeV); and (10) Eγ = 11.3 MeV. The ori-
gin of the last line was not at first understood. For this
reason, additional experiments were carried out, which
enabled us to verify that the appearance of this line
could not be attributed to the misoperation of the appa-
ratus or the loading of the spectrometer. As a result, the
most probable source of this line is found to be the radi-
ative capture of thermal neutrons by 59Ni nuclei, which
were accumulated in more than 20 years of exploitation
of the reactor due to the 58Ni(n, γ)59Ni reaction (Eγ =
11.38 MeV) on 58Ni contained in stainless steel [18].
Further, this line was used as a very convenient refer-
ence line for controlling the energy scale. In addition in
Fig. 1, (11) is the energy range 10–20 MeV that is likely
associated with the presence of highly excited states of
daughter nuclei and, in particular, with the direct exci-
JETP LETTERS      Vol. 82      No. 7      2005
tation of the giant dipole resonance and (12) is the
energy range 20–30 MeV, where the mechanism of the
coherent bremsstrahlung of fission fragments in the
Coulomb field can be manifested. The 16–20-MeV
spectral section can be approximated by an exponential
with the inverse slope parameter E0 = 1.25 MeV. If the
contribution of the experimental distribution is sub-
tracted in this spectral section, the peak with the maxi-
mum at Eγ = 22.5 MeV is clearly seen.

In order to exclude the effect of the superposition of
pulses, further measurements of the spectrum of γ rays
were carried out with a Tektronix-TDS 2014 digital
storage oscilloscope connected in parallel with the
charge-to-digital converter in two separate runs with
different apparatus thresholds 12 and 26 MeV. The
spectral section for Eγ > 26 MeV was scanned in the
12-h measurement run (the channel was open for 6 h
and was close for 6 h by a 20-cm lead filter). The corre-
spondence between the amplitudes of the signals from
the charge-to-digital converter and TDS was estab-
lished by means of the 11.38-MeV line.

In order to correctly take into account dead time, the
measuring system included a light emitting diode [illu-
minating NaI(T1) crystal] and a generator of cali-
brated-frequency pulses triggering the light emitting
diode (generator frequency was taken from 1 to 0.01 Hz
in dependence on the energy range where measure-
ments were performed). The peak from the light emit-
ting diode was detected with an energy of 60 MeV and
the pulse shape was chosen such that it clearly differed
from pulses generated by cosmic-ray muons.

The massive (off-line) processing of the oscillo-
grams was performed with a criterion formed due to the
individual analysis of each oscillogram in a test sample.
The criterion, which is the ratio of the pulse area to its
amplitude, is a quite sensitive indicator of the superpo-
sition of pulses and is independent of the pulse ampli-
tude. Each oscillogram was preliminarily smoothed by

Fig. 1. Apparatus energy spectrum of γ rays emitted from
the reactor core and passed through the water filter. For
notation, see the text.
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a Gaussian filter in order to discriminate apparatus
noise. The superposition effect is on average equal to
20% in an energy range of 12–20 MeV and reaches
40% in a range of 20–40 MeV.

Figure 2 shows the energy dependence of the prob-
ability P of the emission of γ rays per fission event per
1 MeV in an energy range of 12–40 MeV. The probabil-
ity P was estimated as

(1)P
4πNγ

IfΩkγε
-----------------.=

Fig. 2. Energy dependence of the probability of the emis-
sion of γ rays per fission event per 1 MeV in an energy range
of 12–40 MeV: (r) our result and (s) experimental data
taken from [5].

Fig. 3. Energy dependence of the probability of the emis-
sion of γ rays per fission event per 1 MeV in an energy range
of 20–100 MeV: (1) the experimental bound obtained in [9],
(2) the exponential approximation of the theoretical calcu-
lation performed in [4] (inverse slope parameter E0 =
10 MeV), (3) our experimental bound, (4) the exponential
approximation of our experimental data for the probability
of the emission of γ rays in an energy range of 20–38 MeV
(inverse slope parameter E0 = 1.6 MeV).
Here, Ω = 1.26 × 10–5 sr is the calculated solid angle of
the detector; If = 4.9 × 1015 events/s is the calculated
intensity of fissions in the core region scanned by the
spectrometer; kγ = (1.1–4.4) × 10–3 is the calculated
coefficient taking into account the absorption of γ rays
in the water filter and the materials of the reactor core;
ε = 0.85 is the efficiency of detecting γ rays by the
NaI(T1) spectrometer, which is assumed to be energy-
independent; and Nγ is the yield of γ radiation at the cor-
responding energy that is detected by the NaI(T1) spec-
trometer and is averaged over the energy resolution of
the spectrometer δ = 8% (photons/(MeV s). The real
time of statistics accumulation in two energy ranges is
t1 = 5 × 103 s and t2 = 1.86 × 104 s.

It is seen that the spectral irregularity at Eγ =
22.5 MeV (Fig. 1) is not observed. We have to state that
this artifact is a result of the accidental superposition of
pulses from the 7.6-MeV γ rays and γ rays from
region 11 (average energy is equal to 14.5 MeV).

Experimental results obtained in [5] with a 252Cf
source are also shown in Fig. 2. The authors of that
work attributed the yield of γ rays with energies above
20 MeV to the possible contribution from the coherent
bremsstrahlung of fission fragments. Our results and
results from [5] are in certain agreement in the region
of the excitation of the giant dipole resonance
(~15 MeV), whereas they are significantly inconsistent
for Eγ > 20 MeV.

After the subtraction of the cosmic-ray background,
eight events remain in the spectrum in a range of 38–
125 MeV. The cosmic-ray background in this energy
range is Nb = 900 events in t2 = 1.86 × 104 s. Using a
Poisson statistical analysis of these data, one can obtain
an upper bound P(Eγ > 38 MeV) ≤ 1.2 × 10–10 photon
per fission event at a CL of 90%.

The most stringent theoretical bound on the proba-
bility of the emission of γ rays due to the mechanism of
the coherent bremsstrahlung of fission fragments of
252Cf was obtained in [4]. The authors of that work
attempted to include the effect of the potential barrier
on the probability of the emission of bremsstrahlung
γ rays by fission fragments. As a result, the probability
of the emission of γ rays that was calculated using this
model is almost two orders of magnitude less than that
calculated in the classical model of Coulomb accele-
ration.

Our results, the experimental data obtained in [9] for
252Cf, and theoretical calculations from [4] are shown in
Fig. 3 for γ-ray energies 20–100 MeV. It is remarkable
that the experimental spectrum that we obtained for γ
rays in an energy range of 20–38 MeV and the theoret-
ical spectrum in an energy range of 30–100 MeV have
different inverse slope parameters (1.6 and 10 MeV,
respectively) of the exponential energy dependences.
Therefore, the spectra are determined by different
physical processes. For example, in an energy range of
10–20 MeV, the emission of γ rays in nuclear fusion
JETP LETTERS      Vol. 82      No. 7      2005
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reactions, as well as in nuclear fission reactions, is
attributed to the excitation of the giant dipole resonance
[19] and spectra are characterized by the exponential
energy dependence with the inverse slope parameters
E0 = 1.5–2.0 MeV. For energies above 30 MeV, spectra
are also characterized by the exponential dependence,
but E0 = 10 MeV and the spectra are not attributed to
coherent nucleon–nucleon bremsstrahlung.

A question arises: Does the coherent bremsstrahl-
ung of fission fragments in the Coulomb field exist? It
seems to exist, because bremsstrahlung was experimen-
tally observed [20, 21] and theoretically justified [22–
24] even for the α decay of the 210, 214Po, 226Ra, and
244Cm nuclei. If it exists, what is the energy spectrum of
γ rays from this process? If it does not exist, what is the
mechanism of its suppression?
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A multicomponent scalar field may preserve the symmetry of the Lagrangian when the stability of the pertur-
bation theory vacuum is lost. This leads to the appearance of a degenerate vacuum, whose excitation spectrum
slightly differs from the spectrum observed in the case of spontaneous symmetry breaking. The possibility of
the appearance of such a condensate in a QCD vacuum is discussed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 11.15.Ex
1. FORMULATION OF THE PROBLEM

Since the papers by Goldstone [1] and Higgs [2], the
opinion that spontaneous symmetry breaking occurs
when a trivial perturbation-theory vacuum loses its sta-
bility and that this effect is responsible for the appear-
ance of the mass of gauge bosons has prevailed in the
literature devoted to nonperturbative effects in quantum
field theory. A more careful approach to symmetry
breaking shows that symmetry is broken only in the
presence of interactions facilitating this process. The
masses of gauge bosons arise due to the formation of
condensate. The condensate may break symmetry or
may remain completely symmetric. In classical (not
quantum) field theory, symmetry breaking necessarily
occurs. The extension of this effect to quantum theory
is not universally substantiated. However, the interac-
tion of matter fields with gauge fields may itself facili-
tate symmetry breaking; consequently, in a situation
when the Higgs mechanism is possible, symmetry
breaking still occurs, but not quite in the same way as
in the classical theory. Running ahead, we can state that
if the word “spontaneous” is omitted from the conven-
tional description of spontaneous symmetry breaking,
we can preserve all formulas and results. However, this
does not mean that the difference between the classical
and quantum-mechanical approaches to symmetry
breaking described below is insignificant. In our opin-
ion, nontrivial verifiable effects may arise in complex
problems of the field theory.

The difference between the classical and quantum-
mechanical approaches can be illustrated using a sim-
ple example from atomic physics, in which no stability
loss takes place in the system. Let us consider the
motion of a spinless particle in the central field of
attractive forces. The lowest bound state is character-
ized by zero angular momentum. In the classical
approach, motion is possible only in the radial direction
(rotational symmetry breaking). In quantum mechan-
ics, an S state possessing rotational symmetry is
0021-3640/05/8207- $26.00 0394
formed, whose wave function is independent of angular
variables (symmetry is preserved).

An analogous difference must also be manifested in
other cases of the degeneracy of the Lagrangian in cer-
tain (including generalized) coordinates. In the classi-
cal theory, a coordinate and its time derivative can be
fixed simultaneously. In the quantum theory, this is for-
bidden by canonical commutation relations. This might
permit symmetry conservation.

2. SIMPLEST MODEL

Let us consider an n-component real scalar field φj

with the Lagrangian density

(1)

in the conventional Minkowski space. Such a theory is
usually referred to as the linear sigma-model or the
Ginzburg–Landau model (if the square of the mass is
negative). The corresponding Hamiltonian (energy
density) function is given by

(2)

Here, πj = ∂L/  is the momentum conjugate to field
φj and ∇ v are derivatives with respect to spatial coordi-
nates. We can now carry out canonical quantization,
introducing the commutation relations

(3)

(4)

L
1
2
--- ∂µφj∂µφj( ) 1

2
---µ2φjφj–

1
4
---λ φjφj( )2–=

H πj φj,( ) 1
2
---πjπj

1
2
--- ∇φ j∇φ j( )+=

+
1
2
---µ2φjφj

λ
4
---+ φjφj( )2.

∂φ̇j

φi x t,( ) φj x' t,( ),[ ] πi x t,( ) πj x' t,( ),[ ] 0,= =

πi x t,( ) φj x' t,( ),[ ] –iδijδ
3 x x'–( ),=
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and the wave function (functional) Ψ(φj, xµ). It is con-
venient to immediately perform the Fourier expansion
in the coordinates of the functions φj(xµ):

(5)

(6)

where index µ runs only over spatial values 1, 2, 3.
We will be interested in the situation associated with

the loss of stability in this theory (in other words, for
µ2 < 0). To simplify the formulas, we first consider the
case of two fields

(7)

where v  is a real-valued constant with the dimension of
mass. Using the substitution

, (8)

we pass to polar coordinates in the field space. In these
coordinates, the energy minimum is reached for |ϕ| = v.
Angle ϑ  may assume any value, i.e., 0 < ϑ  < 2π. Obvi-
ously, the wave function R(ϕ) that is independent of the
angle ϑ  and assumes values substantially differing from
zero only in the vicinity of the energy minimum is a
suitable vacuum solution for a coordinate-independent
scalar. The spontaneous breaking of the O(2) symmetry
occurs in the classical theory: angle ϑ  assumes any def-
inite value and its time derivative is zero (∂ϑ /∂t = 0). In
the quantum theory, this is incompatible with commu-
tation relation (4), in which the right-hand side can
hardly be treated as zero. The correct quantum solution
preserves the symmetry of the Lagrangian. Indeed, it
follows from relation (4) that

(9)

i.e., angle ϑ  cannot be determined simultaneously with
its time derivative. The advantage of the solution Ψ =
R(ϕ) over the formulas corresponding to spontaneous
symmetry breaking is not quite obvious, because we are
dealing with a system with indefinitely large volume
and infinitely large number of degrees of freedom.
However, one should take into account that it is an exact
solution of the variational problem of determining the
wave functional and spontaneous symmetry breaking
does not correspond to any solution of the quantum-
mechanical problem. Wavefunction Ψ = R(ϕ) is nor-
mally not used, because it corresponds to infinitely
large correlation radius. This is not admissible for many
applications; to eliminate such a solution, the cluster
decomposition 〈0|ϕ(x)ϕ(y)|0〉   〈0|ϕ(x)|0〉〈 0|ϕ(y)|0〉
for |x – y|  ∞ is employed. However, cluster decom-

φ x t,( ) d3k

2π( )3
-------------eikxφ k t,( ),∫=

HΨ 1
2
--- ∂2

∂φj∂φj

---------------- 1
2
--- kµkµφjφj( )+

=

+
1
2
---µ2φjφj

λ
4
--- φjφj( )2+ 

 Ψ,

L
1
2
--- ∂µφ1∂µφ1 ∂µφ2∂µφ2+( ) λ

4
--- φ1

2 φ2
2 v 2–+( )2

,–=

ϕ ϕ 1 iϕ2+ ϕ eiθ= =

ϕ ϑ̇ x( ) ϑ x'( ),[ ] iδ x x'–( );–∝
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position, which is natural in the physics of continuous
media, is inapplicable to our model. It is much simpler
to use the interaction with the gauge electromagnetic
field, which is present in such problems.

3. INTERACTION WITH AN ABELIAN 
GAUGE FIELD

Let us consider the Lagrangian of a charged scalar
field interacting with a gauge vector field:

(10)

The introduction of a nonzero charge e ≠ 0 immediately
leads to the sensitivity of the condensate to the choice
of the azimuth angle ϑ  (the condensate may be positive,
negative, or neutral). The energy minimum is inherent
in a neutral condensate. To analyze this situation, it is
sufficient to define the annihilation operators for posi-
tive particles,

, (11)

and for negative particles,

(12)

as well as the corresponding current density vector,

The neutral condensate is formed if only one of the
two components φ1 and ϕ2 (ϑ  = 0 or ϑ  = π/2) remains
in the operator of the condensate field as a result of
interaction with the vector gauge field Aλ; such a sym-
metry breaking should not be referred to as spontane-
ous. However, this is a matter of terminology. After the
introduction of interaction, the conditions for the fulfill-
ment of the Goldstone theorem are violated and the
quanta of azimuthal motion in the group space (varia-
tion of ϑ) must at least acquire a mass.

The real situation is slightly more complicated. The
structure of Lagrangian (10) does not require charge
quantization. The commutation relations for scalar and
vector fields do not impose such a requirement either;
consequently, a certain arbitrariness appears in the ana-
lytical form of the interaction (in particular, complex
notation of the charged field is not used in the original
paper by Higgs [2] and the commutation of fields φ1, φ2
is employed instead of imaginary unity). In any version
of the analytical representation, charge conjugation
corresponds to the involution operator. The main phys-

L
1
4
--- Fµν( )2 Dµφ 2 V φ( ),–+–=

Fµν DµAν Dν Aµ, Dµ– ∂µ ieAµ,–= =

V φ( ) µ2φ*φ–
λ
2
--- φ*φ( )2, µ2 0.>+=

φ+
φ1 iφ2–

2
------------------=

φ–

φ1 iφ2+

2
------------------,=

jλ
e
2
--- φ+i∂λφ i∂λφ( )+φ+[ ] .=
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ical result of analysis of the Higgs model is that a non-
zero mass of the gauge field may appear. This result is
independent of the above-mentioned features of the
model and is preserved under forced charge quantiza-
tion. Any new effects for models that are based on the
Abelian symmetry group or are reducible to the U(1)
symmetry should not apparently be expected. However,
new effects can be revealed by analyzing less studied
non-Abelian symmetry groups.

4. COLOR GROUP

The model of quarks and gluons was developed long
ago in hadron physics on the basis of the SU(3)col sym-
metry of the color group. No indication of symmetry
breaking has been found. At the same time, according
to some indications, the gluon field vacuum differs
from trivial perturbation-theory vacuum in the presence
of the vacuum condensate. Passage from the classical to
quantum-mechanical interpretation of the concept of
state makes it possible to replace the requirement that
vacuum must be a singlet in color by a less stringent
requirement that vacuum must possess the properties of
the center of the color group (it must commute with any
group generator). Moreover, the adjoint representation
acquires a color-symmetric state (additional center).
This state is a good candidate for the QCD vacuum.

Pagels and Tomboulis [3] noted that the asymptotic
freedom of the quantized Yang–Mills equation leads to
an indefinite increase in the effective coupling constant
in the infrared region and ultimately to the appearance
of the vacuum condensate. This concept was subse-
quently developed in [4–11]. On the basis of these stud-
ies, the following scenario of the formation of vacuum
state can be formulated.

Quantum corrections are introduced into the initial
Lagrangian

. (13)

The resulting effective Lagrangian has a maximum
(energy minimum) for a certain value of F2. This deter-
mines the value of the condensate.

The field strength in the Yang–Mills theory,

, (14)

includes terms with derivatives, which can be conven-
tionally called geometrical terms (Fgeom), and a term
with a structural constant, which will be referred to as
the algebraic term (Falgebr). Accordingly, the square of
the field strength will contain geometric, algebraic, and

mixed terms: 〈F2〉  = 〈 〉  + 〈 〉  + 2〈FgeomFalgebr〉 .
We assume that algebraic terms dominate in the vac-

uum condensate. This means that the vacuum field in
spacetime varies not very rapidly and the interactions of
noncommuting components of the potential, which are
typical of non-Abelian theory, make the main contribu-
tion to the condensate.

L F2/4g2–=

Fµν
a ∂µAν

a ∂ν Aµ
a– cabcAµ

b Aν
c+=

Fgeom
2 Falgebr

2

The symmetry of vacuum requires that the state
must remain unchanged upon a displacement in space-
time, rotations, and global group transformations. In
the quantum-mechanical approach, this is achieved
when the vacuum vector in the Hilbert space (wave-
function) is independent of coordinates, rotations, and
group transformations; only the dependence on F2 and
probably on other invariants of the symmetry group is
admissible. The SU(3) group space is compact so that
the wavefunction can be integrated over a seven-dimen-
sional sphere in the eight-dimensional group space. In
this case, only the angular variables of the group space
vary (as in the nonlinear sigma model). We assume that
the time component of the potential is small or zero,
which corresponds to the Hamiltonian gauge. Three
wavefunctions of the spatial components of the poten-
tial form a common wavefunction of the condensate.
Such a condensate has the following properties:

(15)

These properties coincide with the expected phenome-
nological properties of the gluon condensate, which
may serve as an argument in favor of the model consid-
ered here.

It is important for applications to find out whether
the above procedure defines the state of vacuum unam-
biguously or several degenerate states exist. Appar-
ently, degeneracy is present. This follows from analysis
of supersymmetric theories [12]; in addition, structural
constants have different magnitudes, which may lead to
degeneracy in the case of complete symmetry in the
fundamental representation.

5. CONCLUSIONS

In systems with infinitely large volume, the vacuum
of a multicomponent scalar field may preserve the sym-
metry of the Lagrangian even when the loss of stability
leads to the formation of condensate. As a rule, symme-
try breaking occurs only under the action of asymmet-
ric forces. Spontaneous symmetry breaking is absent in
quantum theory. The presence of quantum effect facili-
tating the conservation of symmetry does not rule out
quantum anomalies leading to the breaking of approxi-
mate (e.g., chiral) symmetry. In QCD, the condensate
symmetric in the color group and corresponding to an
additional discrete group center leads to the degeneracy
of the vacuum (two or more phases) and probably to the
appearance of additional hadron states.

The problems considered here were discussed with
M.B. Voloshin, S.S. Gershtein, V.K. Grigor’ev,
O.V. Kancheli, L.V. Laperashvili, L.B. Okun’, and
H.B. Nielsen on different occasions. I am grateful to
them for valuable remarks.

Aµ
a〈 〉 0, Fµν

a〈 〉 0,= =

F2〈 〉 Fµν
2 Fµν

a〈 〉 0.>=
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We propose and study, theoretically and experimentally, a new scheme of excitation of a coherent population
trapping resonance for the D1 line of alkali atoms with nuclear spin I = 3/2 by bichromatic linearly polarized
light (lin||lin field) under the conditions of spectral resolution of the excited state. The unique properties of this
scheme result in a high contrast of dark resonance for the D1 line of 87Rb. © 2005 Pleiades Publishing, Inc.

PACS numbers: 32.70.Jz, 32.80.Bx, 33.70.Jg, 42.50.Gy
Great attention is drawn to the study of the coherent
interaction of atoms with electromagnetic fields. Under
specific experimental conditions, coherent atom–field
interaction results in what is called the coherent popu-
lation trapping effect (CPT) [1]. Narrow-width CPT
resonances (“dark resonances”) induced by this effect
are used in atomic clocks [2–4], precise magnetometers
[5, 6], laser cooling, spectroscopy, optical signal pro-
cessing, etc. Most applications require CPT resonance
with optimized parameters such as large amplitude,
small spectral width, and small background simulta-
neously. In addition, minimized light shifts are needed
in metrology.

Most theoretical and experimental studies of CPT
phenomena are made for alkali atoms. CPT resonance
is usually observed with a bichromatic field consisting
of two resonant laser fields with the frequency differ-
ence changing in the vicinity of the hyperfine splitting
of the ground state. At exact two-photon resonance,
atoms are optically pumped into a coherent nonabsorb-
ing superposition of the ground states, which is called a
dark state. A variety of different excitation schemes of
CPT resonances were proposed. They differ by the
choice of the isotope, excitation line (D1 or D2), and
the field characteristics (detuning, amplitude, and
polarization of the field components). Different tech-
niques for increasing the coherent atom–field interac-
tion time also play an important role on the build up of
ground state coherence. These techniques include the
use of a mixture of an alkali vapor with different buffer
gases and/or the use of wall-coated cells.

Experiments [7, 8] were carried out with a cell con-
taining a mixture of Cs and a buffer gas and revealed a
resonance with a linewidth as small as 50 Hz in the case

¶The text was submitted by the authors in English.
0021-3640/05/8207- $26.00 ©0398
of D2 line excitation. However, the contrast of the CPT
resonance in these experiments was only a small frac-
tion of a percent. In [9] it was shown that using the D1
line instead of D2 line for excitation significantly
increases the contrast of the dark resonance. This fact
was later confirmed by other authors [10]. In these
experiments, resonances were produced by circularly
polarized light fields (σ–σ) which induced two-photon
transitions between magnetic sublevels with the same
quantum number m (m–m resonances). In atomic
clocks, the 0–0 transition is used, because it is first-
order insensitive to the magnetic field. The D1 line pro-
vides better resonance than the D2 line, since at exact
two-photon resonance in the D1 line a dark superposi-
tion state exists even when hyperfine components of the
excited state are not spectrally resolved due to buffer
gas collisional broadening (on the contrary, the D2 line
in such a case destroys the dark state via cycling transi-
tions, and the dark state is absent). When the atom–field
interaction operator is applied to this state, it yields
zero:

(1)

This |dark〉  state is a coherent superposition of wave
functions of the Zeeman sublevels of the ground state.
Atoms in this state neither absorb nor emit light.

However, the D1 line has its own limitations. In the
case of σ–σ laser fields, a state insensitive to two-pho-
ton detuning |trap〉  exists (in the extreme Zeeman sub-
level). A fraction of atoms accumulates in this |trap〉
state due to optical pumping and does not contribute to
the ground state coherence. This fact significantly lim-
its the contrast of the resonance. Thus, to optimize the
parameters of the dark resonance, one has to find exci-
tation schemes that on the one hand have a |dark〉  state
and on the other hand do not have a |trap〉  state.

d̂E( ) dark| 〉– 0.=
 2005 Pleiades Publishing, Inc.
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Recently, this problem was solved for m–m reso-
nances on the D1 line. Different approaches for opti-
mizing the parameters of the dark resonance were pro-
posed in [11–13] for the case of 0–0 resonance. A gen-
eral case of arbitrary m–m resonance is investigated in
[14].

In this paper, we propose an alternative method of
forming high-contrast dark resonances by a bichro-
matic light field with arbitrary polarizations (in the gen-
eral case, elliptical). This method works only in the spe-
cial case when the total angular moments of the ground
states are Fg = 1, 2 and the coupling occurs through an
excited state with a total angular momentum of Fe = 1.
Additionally, a key requirement here is a good spectral
resolution of the excited hyperfine levels. Such a situa-
tion is realized for the D1 line of 87Rb, because hyper-
fine splitting of the excited state in this case is 812 MHz
and is considerably larger than the Doppler width of the
line (~400 MHz). A CPT resonance involves in this
case two pairs of Zeeman sublevels whose magnetic
quantum numbers differ by two: (–1)–(+1) and (+1)–
(−1). At exact two-photon resonance, the dark superpo-
sition states exist, while the extra trapping state |trap〉  is
absent. The same situation occurs with field-sensitive
resonances (+1)–(+1) and (–1)–(–1), which also have
high contrast in this case. Special attention is drawn to
the case of the lin||lin configuration of optical fields, in
which the frequency components have the same linear
polarizations. It should be noted that, due to the nuclear
contribution of the g factor of different ground-state
hyperfine components, the resonances (–1)–(+1) and
(+1)–(–1) have a weak linear sensitivity to a magnetic
field. However, for the lin||lin light field configuration,
owing to the symmetry, this effect manifests itself
mostly in a small broadening of the resonance line
shape. It is important that the center of the resonance
has zero linear sensitivity to a magnetic field. Qualita-
tive theoretical analysis is proved by experiments
which demonstrate a very high contrast of the dark res-
onance in the case of a lin||lin field. The influence of
nuclear spin, which leads to the broadening and spliting
of the resonance, is studied.

QUALITATIVE THEORETICAL ANALYSIS

Let us consider the resonant interaction of atoms
with a bichromatic field consisting of two copropagat-
ing (along the z axis) running waves

(2)

The two components of this field have arbitrary ampli-
tudes and polarizations (elliptical in the general case).
The polarization can be represented as a linear combi-
nation of two orthogonal circular components (e±1 =

 ± iey)/ ) in the following way:

(3)

E z t,( ) E1 z( )e
iω1t–

E2 z( )e
iω2t–

c.c.+ +=

ex(+− 2

E j E 1–
j( )e 1– E+1

j( )e+1 j 1 2,=( ).+=
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A small static longitudinal magnetic field B is applied
along the z axis of the coordinate system. When the fre-
quency difference (ω1 – ω2) of the bichromatic field
components is equal to the hyperfine splitting of the
ground state ∆hfs, this field induces a two-photon dark
resonance of a Λ type on two hyperfine levels of the
ground state.

Let us take into account only the alkali atoms with a
nuclear spin number I = 3/2 (7Li, 23Na, 39, 41K and 87Rb).
The total angular momenta of the hyperfine compo-
nents of the ground state for these atoms are Fg = 1, 2.
We consider the case when both frequency components
of the bichromatic field are resonant with the common
excited state with a total angular momentum Fe = 1. The
excitation scheme for this case is shown in Fig. 1a.

Figure 1a shows that a two-photon resonance of a Λ
type is formed in two pairs of ground-state hyperfine
sublevels with |Fg = 1, m = –1〉 , |Fg = 2, m = +1〉  and
|Fg = 1, m = +1〉 , |Fg = 2, m = –1〉 . Further in the paper,
we will call them (–1)–(+1) and (+1)–(–1) resonances.
Both of these Λ schemes are excited through a common
excited state |Fe = 1, m = 0〉 . It is known that, for alkali
atoms, the g factors of different hyperfine levels of the
ground state have an equal absolute value and opposite
signs (in our case, g = ±1/2). If the contribution of the
nuclear spin to the Zeeman splitting is neglected, then
two-photon resonance frequencies (both (–1) –(+1) and
(+1)–(–1)) are equal to the frequency of the 0–0 reso-
nance formed on |Fg = 1, m = 0〉  and |Fg = 2, m = 0〉
states. This fact means that at least two superposition
dark states exist in the case of exact two-photon reso-
nance for fields with arbitrary polarizations. These
states are determined by the abovementioned Λ
schemes:

(4)

Here,  are the corresponding matrix elements of
the dipole moment operator (Fig. 1a); N± are the nor-
malization constants. In this general case, the |trap〉
state is absent. This fact allows a high-contrast reso-
nance to form. It is worth mentioning that the resonance
shift due to the second-order magnetic field depen-
dence in the case of this scheme of excitation is
1.33 times smaller than for the true 0–0 resonance in
the case of the traditional excitation scheme.

States given by (4) do not appear in any other
scheme of excitation of the dark resonance. For exam-
ple, Fig. 1b illustrates the situation when excitation
occurs through an excited state with Fe = 2. Here,
ground state levels |Fg = 1, m = ±1〉  and |Fg = 2, m = ±1〉
are coupled with the excited states |Fe = 2, m = ±2〉 .
These transitions destroy the dark states. For atoms
with other quantum numbers of total angular momen-

dark ±( )| 〉

=  N± Fg = 1 m = 1+−,| 〉
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tum Fg (i.e., for those that have I ≠ 3/2), dark states (4)
are not induced for any given Fe.

Thus, alkali atoms with a nuclear spin of I = 3/2 are
of great interest due to the new possibilities for forming
high-contrast magneto-insensitive dark resonances
with arbitrarily polarized light fields. However, the key
requirement of good spectral resolution of the excited
state Fe = 1 determines the choice of atom and transi-
tion. Most promising is the D1 line of 87Rb, because the
hyperfine splitting of the excited state is equal to
812 MHz. This fact allows its use in cells at room tem-

Fig. 1. Schemes of the light-induced transitions in a bichro-
matic field with arbitrary (elliptical in general) polarizations
for different variants of excitation: (a) the unique case of
Fg = 1, 2 at excitation via Fe = 1, when simple Λ systems
are realized for Zeeman sublevels with different magnetic
quantum numbers m = ±1 (solid arrows); (b) the case of
Fg = 1, 2 at excitation via Fe = 2, when simple Λ systems
are absent; (c) the general case of Fg = F, F + 1 at excitation
via Fe = F, when the outermost magneto-sensitive reso-
nances are formed through simple Λ systems (solid arrows)
for arbitrary (elliptical in general) polarizations.
perature. For all other alkali atoms (7Li, 23Na, 39, 41K)
with similar structure, and also for the D2 line of 87Rb,
good spectral resolution of the excited state can be
reached only in the case of laser-cooled atoms or in a
collimated atomic beam.

We focus our attention on the case of lin ||lin polar-
izations of the light fields, where both resonant fields
have equal linear polarizations. For this excitation
scheme, the |trap〉  state does not exist. Also, it is exper-
imentally easy to create such a linear polarized field
using one laser source. In addition, this situation is pref-
erable if the influence of nuclear spin on the splitting of
levels is taken in account. Nuclear spin leads to a small
difference in the absolute values of g factors for differ-
ent hyperfine components of the ground state. As a
result of this mismatch of g factors, the frequencies of
the (–1)–(+1) and (+1)–(–1) two-photon Λ resonances
are also different (for 87Rb, this difference is
2.8 kHz/G), but their position is symmetrical relatively
to the hyperfine splitting frequency ∆hfs. Thus, in case
of the lin ||lin excitation scheme in the presence of a
small magnetic field, this fact leads only to the broad-
ening of the resonance and not to its shift (in the linear
approximation), because both Λ systems are identical
for the lin ||lin field. Also, it is worth mentioning that the
true 0–0 resonance in the case of lin ||lin excitation is
absent due to the destructive interference of two-photon
transitions induced by different components of the cir-
cularly polarized light.

Let us mention another interesting peculiarity of the
excitation scheme through the Fe = 1 excited state. As
can be seen in Fig. 1a, two field sensitive resonances
(−1)–(–1) and (+1)–(+1), formed on levels with the
same m quantum number, are also excited in Λ-type
schemes. For these Λ schemes, dark states exist at exact
two-photon resonance. This means that these reso-
nances can also have large contrasts. This situation
takes place for the D1 line not only in the case of
nuclear spin I = 3/2 but in the more general case of Fg =
F, F + 1 as well, when resonant interaction of the two-
frequency field (2) occurs through the level with Fe = F.
As can be seen from Fig. 1c, interaction between |Fg =
F, m = –F〉  and |Fg = F + 1, m = –F〉 , and also between
|Fg = F, m = F〉  and |Fg = F + 1, m = F〉 , occurs by the
Λ-type scheme of excitation with arbitrary polariza-
tions. Thus, resonances sensitive to the magnetic field
(–F)–(–F) and (F)–(F) can also have large contrast. For
example, for 133Cs atoms (I = 7/2), they will be (–3)–
(−3) and (+3)–(+3) resonances under excitation
through the level with Fe = 3.

The given qualitative description is confirmed by
numerical calculations and experiment.

EXPERIMENT

Figure 2 shows the schematic of the experimental
setup. This includes a laser system providing bichro-
JETP LETTERS      Vol. 82      No. 7      2005
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Fig. 2. Experimental setup. Cell contains 87Rb and 4 Torr of Ne buffer gas.
matic radiation, a heated cell with alkali metal vapor,
and a signal detection scheme. The experiment was car-
ried out with a Pyrex cylindrical cell (40 mm long and
25 mm in diameter) containing isotopically enriched
87Rb and 4 Torr Ne buffer gas. The cell was placed
inside a solenoid that provided a longitudinal magnetic
field of 150 mG to lift the degeneracy of the Zeeman
sublevels and to separate magneto-insensitive “clock”
resonance, which has no first-order magnetic field
dependence, from the field-dependent resonances. The
solenoid was placed within three concentric µ-metal
shields in order to reduce the influence of external mag-
netic fields. The cell was heated by bifilar wire wrapped
around the inner layer of the magnetic shielding. For
the experiments reported here, the cell temperature was
50°C.

In order to obtain a bichromatic light field, we mod-
ulated the injection current of a diode laser. This was
done in the following way: a slave diode laser, operat-
ing in the vicinity of 795 nm, was injection-locked by
the radiation of a single mode extended cavity diode
laser (ECDL), and at the same time its current was fre-
quency-modulated at 3.417 GHz. This technique pro-
duced phase-correlated narrow-line-width optical fields
and allowed easy tuning of these fields to the desired
transitions. Also, it allowed the resonant field’s inten-
sity ratio to be varied by changing the current of the
injection-locked diode laser. For the experiments
reported here, approximately 25% of the total laser
power was transferred to each first-order sideband, with
the remainder residing in the carrier and high-order
sidebands. The laser’s injection current was frequency-
swept.

In the case of the lin ||lin excitation scheme, CPT
resonance was formed by two linearly polarized first-
order sidebands tuned to the Fg = 1  Fe = 1 and
Fg = 2  Fe = 1 transitions. In the case of the σ–σ
excitation scheme, these fields were circularly polar-
ized and tuned to the Fg = 1  Fe = 2 and Fg = 2 
   Vol. 82      No. 7      2005
Fe = 2 transitions. The laser beam passed a quarter-
wave plate situated so as to leave the polarization of
light unchanged (linear) or to make it circular, depend-
ing on the excitation scheme being studied. The optical
power transmitted through the gas cell was then
detected by a silicon photodiode.

We performed a comparative study of two different
excitation schemes of CPT resonance. CPT resonance
observed by use of different excitation schemes under
the same experimental conditions are shown in Fig. 3.
Lines are vertically shifted for ease of visual percep-
tion. It is clearly seen from this figure that the amplitude
of the clock resonance in case of the lin ||lin scheme of
excitation through Fe = 1 is much larger than in the case
of σ–σ excitation through Fe = 2 and lin ||lin excitation
through Fe = 2. The amplitude, the amplitude-to-width

Fig. 3. OPT resonances (in transmission) for different exci-
tation schemes; pressure of the buffer gas Ne at 4 Torr; cell
temperature T = 50°; diameter of the laser beam D = 5 mm;
the total power in sidebands, 2.5 mW.
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Fig. 4. Amplitude, amplitude-to-width and contrast of the
CPT resonance in case of lin||lin (Fe = 1, black squares) and
σ–σ (Fe = 2, circulars) excitation schemes.

Fig. 5. CPT resonances for lin||lin excitation (Fe = 1) at dif-
ferent values of applied longitudinal magnetic field.
ratio, and the contrast of the resonance for different
excitation schemes are shown in Fig. 4.

Figure 5 shows the behavior of the clock CPT reso-
nance in the case of lin ||lin excitation scheme through
Fe = 1 at different values of applied longitudinal mag-
netic field. For small magnetic fields, this leads to
broadening of the resonance and does not change the
position of its maximum (in the linear approximation).
At large magnetic fields, the resonance is eventually
split into two components because of the difference in
absolute values of the g factors for the two hyperfine
levels. The center of the resonance line shape is shifted
due to the quadratic Zeeman effect. It should be noted
that the double structure has been observed previously
[15, 16]. However, the observed resonance amplitudes
were very small, because other excitation schemes
were used: the D2 line of Cs in [15] and the D1 line of
87Rb at higher buffer gas pressure in [16]. Recently it
was proposed to use the gap between two peaks to lock
the frequency in an atomic clock [17].

Thus, in the present paper, we have proposed and
experimentally realized a new scheme of excitation of
the D1 line of alkali atoms with nuclear spin I = 3/2
with a bichromatic lin ||lin field. This allows us to sig-
nificantly increase the contrast of the magneto-insensi-
tive dark resonance in comparison with the standard
excitation of the 0–0 resonance with the bichromatic
circular polarized field. Under usual conditions, such a
possibility exists only for 87Rb, when the exited-state
hyperfine levels are spectrally resolved. In addition, in
this case the magneto-sensitive m–m resonances with
maximal |m| have the highest contrast. The obtained
results indicate that the D1 line of 87Rb under excitation
through the level with Fe = 1 is a special object of study
for an atomic clock and magnetometer based on CPT.
These results were first presented in part at ICONO’05
[18].
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Nonperturbative theory is developed for the multiple ionization of fast heavy structure ions colliding with neu-
tral complex atoms. The cross sections for multiple loss of electrons by structure uranium ions U10+ (loss of up
to 82 electrons) and U28+ (loss of up to 64 electrons) colliding with argon atoms are calculated. The results are
compared with available experimental data. © 2005 Pleiades Publishing, Inc.

PACS numbers: 34.10.+x, 34.90.+q
Partially stripped high-energy multicharged ions are
used in many experiments at heavy ion accelerators
(see, e.g., [1–3] and references therein). Such ions con-
sist of a nucleus and bound electrons. Strictly speaking,
the collisions of such structure ions with atoms should
be considered as the collision of two complex systems
that is accompanied by the simultaneous excitation of
electron shells of both colliding systems. In what fol-
lows, the moving structure ion and atom at rest are
called projectile and target, respectively. Interest in
multiple ionization, i.e., the stripping of the projectile
in the collisions of heavy ions with neutral atoms, of
increasing recently. In particular, in [1, 2], the cross sec-
tions for multiple ionization (loss of up to 15 electrons)
of fast uranium ions colliding with multielectron neu-
tral atoms were measured and the necessity of calcula-
tion of such processes by nonperturbative methods was
pointed out. In [2], the cross sections for the multiple
ionization of the projectile were calculated by nonper-
turbative methods. Quantum-mechanical nonperturba-
tive consideration of the multiple ionization of the pro-
jectile has not yet been performed. The primary reason
is the large number of electrons involved in the inelastic
collision. For example, the total number of electrons is
about 100 for the collision of the U10+ ion with the
argon atom. Therefore, it is necessary to numerically
calculate a great number of multiple integrals, which
seems extremely difficult even with current computa-
tional capabilities. In this situation, it is reasonable to
develop a theory where the problem is treated as signif-
icantly multiparticle. In this work, we develop the non-
perturbative theory of multiple ionization accompany-
ing collisions of fast heavy structure ions with neutral
complex atoms, perform calculations, and compare the
results with experiment.
0021-3640/05/8207- $26.00 0404
It is convenient to consider that the projectile is at
rest at the coordinate origin and the target rectilinearly
moves with constant velocity v; i.e., the coordinates of
the nucleus of the target atom are R = b + vt, where b
is the impact parameter and t is the time. In order to
simplify formulas, we suppose that each of projectile
and target has one electron (generalization to multielec-
tron colliding systems will be made below). Let rp be
the coordinates of the electron of the structure projec-
tile ion with respect to the projectile nucleus and ra be
the coordinates of the electron of the target atom with
respect to the target nucleus. The potential of the inter-
action between the projectile and target has the form
(hereinafter, the atomic units are used)

(1)

where Zp and Za are the charges of the nuclei of the pro-
jectile and target, respectively, and the internuclear
interaction is disregarded, because it does not induce
electron transitions. The electronic states of the isolated
target and isolated projectile are described by the com-
plete sets of wave functions ϕn(ra) and ψk(ra), respec-
tively. Correspondingly, the initial and final states of the
colliding systems have the form Φ00 = ψ0(rp)ϕ0(ra) and
Φkn = ψk(rp)ϕn(ra), respectively. In what follows, simi-
lar to [4, 5], we assume that the relative collision veloc-
ity v  is high and thereby perturbation (1) acts suddenly.
The corresponding conditions are as follows. The time
of the collision between the projectile and target is τc ~
a/v, where a ~ 1 is the characteristic size of the collid-
ing systems, and the characteristic time τs of the revo-
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lution of electrons in an orbit should be taken ~1 for the
electrons of both the projectile and target, because the
aim of our consideration is collisions of multielectron
systems, where most electrons are on upper shells with
large quantum numbers. Thus, for the applicability of
the sudden-perturbation approximation, τc ! τs, it is
sufficient to satisfy the inequality v  @ 1 in the case of
interest. In the sudden-perturbation approximation, the
amplitude of the collision-induced transition of the tar-
get-atom electron from the state ϕ0(ra) to the state
ϕn(ra) and the projectile electron from the state ψ0(rp)
to the state ψk(rp) is given by the expression [6, 7]

(2)

The corresponding probability is equal to  =

| |2. We are interested in the transitions accompa-
nied by simultaneous change in the target state and pro-
jectile state and the probability of certain transitions in
the projectile for an arbitrary (unfixed) final state of the
target. For this reason, we sum over all finite states
(complete set) of the target and, taking into account the
completeness condition for the set of the functions
ϕn(ra), obtain

(3)

Here, the part Ua(ra, rp, t) of the potential V(ra, rp, t) cor-
responds to the second and third terms in Eq. (1) and is
equal to the potential describing the action of the target
on the electron of the bombarding ion. Thus, we obtain
the probability W0 → k(b) of the transition of the projec-
tile electron from the state ψ0 to the state ψk as a func-
tion of the impact parameter b as summed over all final
states of the target atom. The corresponding excitation
cross section is obtained by integrating the probability
W0 → k(b) over the entire plane of the impact para-
meter b.

Let us consider inelastic processes in collisions of a
multielectron structure ion having Np electrons with a
complex multielectron atom having Na electrons. The
potential Ua({ra}, {rp}, t) describing the action of the
atom (target) on the electrons of the bombarding ion is
a function not only of the relative coordinates R =
(v t, b) of the nuclei of the projectile and target but also
of the positions (ra} of all electrons of the target and the
positions (rp} of all electrons of the projectile. The cor-
responding natural generalization of Eq. (3) to the case
of the transition of the projectile electrons from the
ground state |Ψ0({rp})〉  to an arbitrary excited state

A0 k→
0 n→ Φkn〈 | i V ra rp t, ,( ) td

∞–

+∞

∫–
 
 
 

Φ00| 〉 .exp=

w0 k→
0 n→
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0 n→

W0 k→ b( ) w0 k→
0 n→

n

∑ d3ra ϕ0 ra( ) 2∫= =

× d3rpψk* rp( ) i Ua ra rp t, ,( ) td
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+∞

∫–
 
 
 

ψ0 rp( )exp∫
2
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|Ψn({rp})〉  for an arbitrary final state of the target atom
has the form

(4)

The direct use of this formula is difficult when the pro-
jectile and target are fundamentally multielectron; i.e.,
Na @ 1 and Np @ 1. However, this circumstance allows
the following simplification. During the collision time,
the position of electrons in the target does not change
with respect to the nucleus of the target. When the num-
bers of electrons in the target and projectile are large, it
is natural to assume that the potential describing the
action of the atom (target) on the electrons of the bom-
barding ion (projectile) is the average of the potential
Ua({ra}, {rp}, t) over the initial ground state of the elec-
trons of the target. We suppose that the states of elec-
trons in the target are described [8] by the single-elec-
tron orbitals in the mean self-consistent field in the
Dirac–Hartree–Fock–Slater model. In this case, the
screening function for neutral atoms with atomic num-
bers Za = 1–92 can be written in a simple analytical
form [8]. Correspondingly, the potential describing the
action of the target on the electrons of the projectile can
be represented in the form

(5)

where Ai and αi are the constants tabulated in [8] for all
elements. Thus, the potential Ua in Eq. (4) is indepen-
dent of the coordinates {ra} of the electrons in the target
and, since 〈ϕ 0({ra})|ϕ0({ra})〉  = 1, probability (4) of the
transition of the electrons of the projectile from the
ground state |Ψ0({rp})〉  to an arbitrary excited state
|Ψn({rp})〉  for an arbitrary final state of the target atom
is given by the simple expression

(6)

Here,

(7)

is the eikonal phase, where sp is the projection of rp onto
the plane of the impact parameter b. In other words (cf.
[9]), expression (6) is the probability of exciting the
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structure projectile ion that is at rest at the coordinate
origin by the neutral target atom with velocity v and is
described as an extended object with the spatially inho-
mogeneous charge density. Following the procedure
presented in [9], the desired probability for exciting
atoms by extended relativistic charges can be obtained
in the eikonal approximation applied to the problem
under consideration. Thus, Eq. (6) is also applicable for
collisions between the relativistic projectile and target
when the electrons of the projectile are nonrelativistic
in the projectile reference frame before and after the
collision (the same requirement concerns the electrons
of the target in its reference frame). The further analysis
follows the scheme that was developed in [10] for
describing the collisions between multicharged heavy
ions with complex atoms and was successfully applied
in [11, 12] to calculate the cross section for the multiple
(up to 18) ionization of Ar and Ne atoms by high-
energy multicharged uranium ions. The electrons of the
projectile are treated as distinguishable and nonrelativ-
istic in the projectile reference frame before and after
the collision. Each electron is described by a single-
electron hydrogenlike wave function. In this case, the
initial and final wave functions have the form Ψ0(r1, …,

) =  and Ψf (r1, …, ) =

, respectively. Therefore, in view of the
unitarity of probability (6), the total probability of the
(Np – N)-multiple ionization of the nonrelativistic
Np-electron structure ion from which Np – N electrons
appear in continuum and other N electrons, in any states
of the discrete spectrum, is given by the expression (cf.
[11, 12])

(8)

Here,  = 1 for N = 0 and the general-

ized single-electron inelastic form factor is represented
as

(9)

where ki is the momentum of the ith electron in contin-
uum. Similar to [11, 12], we introduce projectile-shell-
averaged generalized single-electron inelastic form fac-
tor p(b), which has the meaning of the average proba-
bility of single-electron ionization. Then, changing
each single-electron form factor by p(b), we obtain the
probability of the complete ionization of the projectile

in the form  = , where b ≡  and 

rNp
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2
,

W
Np+

p b( )[ ]
Np bZNp

* ZNp
*

is the effective charge of the nucleus of the projectile
that corresponds to the complete ionization of the pro-
jectile, and the following general expression for the
probability of the ionization of Np – N electrons:

(10)

Here, the term with  corresponds to
(Np – N + m)-multiple ionization and b ≡  in

it, where  is the effective charge for (Np – N +
m)-multiple ionization. In order to obtain the cross sec-
tion for (Np – N)-electron ionization, it is necessary to
integrate probability (10) over the entire plane of the
impact parameter

(11)

In order to calculate the integral, it is necessary to know
the function p(b). It seems very difficult to calculate this
function when the number of electrons on the ion shells
is large (e.g., when considering the multiple ionization
of the U10+ projectile colliding with the neutral argon or
xenon atom). However, for ionization of high multiplic-
ity Np @ 1, where Np – N @ 1, which will be considered
below, the problem can be simplified using the proce-
dure proposed in [10–12]. The integral with respect to
the impact parameter in Eq. (11) with probability (10)
can be calculated asymptotically by the Laplace
method under the assumption that p(b) has a maximum
located inside or at the left boundary b = 0 of the inte-
gration interval. Indeed, it is reasonable to consider that
the probability of ionization in collision with the neu-
tral atom is maximal when the impact parameter is
close or equal to zero. For this reason, we accept the
standard assumptions [13] concerning the properties of
the function p(b) for the applicability of the Laplace
method. First, we write [p(b)]N = exp[Nln(p(b)] =
exp[Nf(b)]. Then, for N @ 1, according to [13],

(12)

where Γ(x) is the gamma function and G, µ, λ, and F are
the numbers determined by the behavior of the func-
tions f(b) and g(b) near the maximum point b0: f(b) –
f(b0) ~ F(b – b0)µ, g(b) ~ G(b – b0)λ – 1. According to
Eq. (11), the function g(b) appears when integrating
over the entire plane of the impact parameter and, if
b0 ≠ 0, g(b) = b, which corresponds to G = b0 and λ = 1.
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When b0 = 0, the integration in Eq. (11) should be per-
formed with respect to db2 and g(b) = G = 1/2 and λ =
1. As a result, the cross section for the complete Np-
multiple ionization of the projectile is expressed as

(13)

For the (Np – 1)-multiple ionization, the probability is
equal to the difference between two terms. Separately
integrating each term by the Laplace method, we obtain
the cross section for (Np – 1)-multiple ionization in the
form

(14)

σ
Np+

2π G

ZNp
*( )2

--------------- 1
µ
---Γ λ

µ
--- 

  1
FNp
----------

λ /µ
p b0( )[ ]

Np.=
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×
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2
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λ /µ 1

p b0( )
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Fig. 1. (Circles) Calculated cross section (divided by
10−18 cm2) for the multiple loss of electrons by the U28+ ion
with an energy of 6.5 MeV/u that collides with the Ar atom
vs. the number of removed electrons (a) in the entire possi-
ble range of the number of removed electrons from a mini-
mum value of 1 to a maximum value of 64 and (b) in the nar-
row range of the number of removed electrons from 1 to 15
for which measurements (shown by the triangles) were car-
ried out [2].
JETP LETTERS      Vol. 82      No. 7      2005
For the general case of (Np – N)-multiple ionization, we
similarly obtain

(15)

where  is the effective charge at (Np – N + m)-
multiple ionization.

In principle, final Eqs. (13)–(15) make it possible to
calculate the cross section for ionization of any multi-
plicity (under the condition that Np @ 1 and Np – N @ 1)
or to reconstruct all cross sections from two known
cross sections. It is worth noting that the choice of two

σ
Np N–( )+ Np!σ

Np+

Np N–( )!N!
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× 1–( )m ZNp
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2
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N

∑

×
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Np N– m+( )
-------------------------------- 

 
λ /µ

p b0( ){ } N– m+ ,

ZNp N– m+*

Fig. 2. (Circles) Calculated cross section (divided by
10−16 cm2) for the multiple loss of electrons by the U10+ ion
with an energy of 1.4 MeV/u that collides with the Ar atom
vs. the number of removed electrons (a) in the entire possi-
ble range of the number of removed electrons from a mini-
mum value of 1 to a maximum value of 82 and (b) in the nar-
row range of the number of removed electrons from 1 to 13
for which measurements (shown by the triangles) were car-
ried out [1].
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cross sections considered experimentally known can be
arbitrary and is determined by the conditions Np – N @
1 of the applicability of Eqs. (13)–(15). The result of
this calculation for the multiple ionization of uranium
ions colliding with argon atoms is shown in Figs. 1 and
2 together with experimental data [1, 2]. In calcula-
tions, the effective charge is taken to be equal to the ion-
ization multiplicity, i.e.,  = Q + N, where Q is the
initial charge (the structure ion charge before collision)
of the projectile. The λ/µ ratio is a varying parameter.
For U28+ + Ar collisions, we take λ/µ = 1.1 and the cross
sections σ12+ and σ15+ are treated as known. For U10+ +
Ar collisions, we take λ/µ = 1.5 and the cross sections
σ10+ and σ12+ are treated as known.

Panels (a) of both figures show cross sections vs. the
number of removed electrons in a wide range (entire
interval) from a minimum value, i.e., the removal of
one electron, to a maximum possible number of
removed electrons (e.g., the maximum possible number
of removed electrons is equal to 82 for U10+). For con-
venient comparison between calculation and experi-
ment, panels (b) of both figures show cross sections for
which experimental data are available, because the
wide range of variation of quantities presented in pan-
els (a) cannot provide the correct representation of the
corresponding relatively narrow region. As is seen in
the figures, the calculation results are in satisfactory
agreement with experiments [1, 2] even for low-multi-
ple ionization that is formally beyond the applicability
domain (Np – N @ 1) of Eqs. (13)–(15). Strictly speak-
ing, Eq. (6) should be used for the case of low-multiple
ionization.
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The structural changes induced by a 9-GPa pressure in Eu2(MoO4)3 single crystals at room temperature have
been studied using x-ray diffraction. It is established that a structural phase transition from the initial tetragonal
phase to the new high-pressure tetragonal phase occurs rather than solid-phase amorphization that was observed
previously in polycrystalline samples. The samples in the observed transition remain single-crystalline despite
a significant difference (∆V ~ 18%) between the specific volumes of the initial and final phases. It is shown that
the transition from the initial state to the high-pressure phase occurs via the formation of broad transition zones
featuring a continuous and smooth change of the crystal lattice parameters. © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.50.+r, 74.80.Fp
Eu2(MoO4)3 crystals belong to an isostructural
series of rare earth molybdates with the general formula
R2(MoO4)3, where R = Pr, Nd, Sm, Eu, Gd, Tb, and Dy
[1]. At atmospheric pressure, these compounds occur in
the form of two thermodynamically stable crystal mod-
ifications, namely, the high-temperature β phase
(P421m) and the low-temperature α phase (C2/c) [1].
The α ⇒  β phase transition in Eu2(MoO4)3 takes place
on heating to 1078 K and is accompanied by a signifi-
cant (~25%) change in the specific volume [1, 2]. This
large difference retards the kinetics of the reverse β ⇒
α polymorphic transformation, so that the β phase is
retained in a metastable state on cooling down to 453 K.
At this temperature, europium molybdate exhibits a
phase transition of the first order (close to the second
order) with a small volume change to another metasta-
ble (β') phase with Pba2 symmetry [1, 3].

Brixner [2] suggested that a sufficiently high pres-
sure would induce a transition of the β' phase of rare
earth molybdates to the more compact α phase. How-
ever, it was found that Gd2(MoO4)3 exhibited pressure-
induced amorphization, rather than the anticipated β' ⇒
α phase transition. Subsequently, the phenomenon of
amorphization under the action of high pressure was
confirmed for Gd2(MoO4)3 [4] and observed for the first
time in Tb2(MoO4)3, Sm2(MoO4)3, TbGd(MoO4)3, and
Eu2(MoO4)3 [5–7]. The pressure corresponding to the
onset of amorphization at room temperature was
approximately the same (~7 GPa) for all compounds
[5], and the final amorphous state was retained up to
11.5 GPa (the maximum pressure achieved in these
investigations). Based on the available data and an anal-
ysis of the specific volume changes, it was suggested
[4, 5] that the pressure-induced amorphization
0021-3640/05/8207- $26.00 0409
observed in Sm2(MoO4)3, Tb2(MoO4)3, Gd2(MoO4)3,
and Eu2(MoO4)3 was probably stimulated by the chem-
ical decomposition of these compounds into R2O3 and
MoO3 oxides. It was also pointed out that (i) there was
a difference in the x-ray diffraction patterns observed
for the amorphous samples obtained under hydrostatic
and quasihydrostatic conditions and (ii) the samples
amorphized at a pressure in the interval from 7.0 to
11.5 GPa remained amorphous upon pressure release.
An important factor in all the aforementioned investiga-
tions was that the experiments were performed on poly-
crystalline (powdered) samples.

This paper presents the results of an x-ray diffrac-
tion study of structural changes taking place in the ini-
tially single-crystalline Eu2(MoO4)3 samples under the
action of a hydrostatic pressure of about 9 GPa. This
pressure level was selected so as to correspond approx-
imately to the middle of the interval of pressures in
which irreversible amorphization was observed in all
the polycrystalline R2(MoO4)3 samples studied previ-
ously.

The initial Eu2(MoO4)3 single crystals had the form
of Czochralski melt-grown ingots with a diameter of
15 mm and a length of 25 mm. The ingot was cut into
separate single crystal samples with dimensions 3.0 ×
4.0 × 1.0 mm and the large face parallel to the (100) or
(001) crystallographic planes (a- and c-cuts, respec-
tively). The x-ray diffraction measurements were per-
formed on a Siemens D-500 diffractometer using
CuKα1 radiation. It was established that the surfaces of
samples as-cut from the ingot exhibited reflections
characteristic of the β' phase, whereas the x-ray diffrac-
tion pattern observed upon the optical polishing of
these samples corresponded to the β phase.
© 2005 Pleiades Publishing, Inc.



 

410

        

SHMYT’KO 

 

et al

 

.

                                              
The investigation was carried out at room tempera-
ture in a high-pressure chamber of the toroid type. In
order to reveal the similarity and difference in behavior
of the polycrystalline and single-crystalline
Eu2(MoO4)3 samples under pressure, we performed the
following series of experiments.

(i) A fine disperse powder obtained by grinding of a
single crystal was subjected for 2 h to a 9-GPa quasi–

Fig. 1. X-ray diffraction patterns of polycrystalline
Eu2(MoO4)3 samples (a) in the initial state and (b, c) upon
9-GPa compression under quasihydrostatic and hydrostatic
conditions, respectively, at room temperature.

Fig. 2. X-ray diffraction patterns of Eu2(MoO4)3 singe crys-
tals: (a–c) c-cut samples in the initial state and upon 9-GPa
hydrostatic compression for 1 and 7 days, respectively;
(d, e) a-cut samples in the initial state and upon 9-GPa
hydrostatic compression for 7 days, respectively.
hydrostatic compression (in the absence of any pressure
transmitting medium).

(ii) The same powdered sample was subjected for
2 h to a 9-GPa pressure under hydrostatic conditions.

(iii) A c-cut single crystal was subjected to a 9-GPa
hydrostatic pressure for 1 or 7 days.

(iv) An a-cut single crystal was subjected to a 9-GPa
hydrostatic pressure for 7 days.

The pressure transmitting medium for hydrostatic
loading was an ethanol–methanol mixture, which
occurs in a liquid state in the range of pressures used in
our experiments.

Figure 1a shows the typical x-ray diffractogram of
the initial polycrystalline Eu2(MoO4)3 sample. The
positions and intensities of the diffraction lines corre-
spond to the β phase of Eu2(MoO4)3, which implies that
the grinding (crushing and trituration) of single crystals
leads to the phase transition from β' to β phase.

Figure 1b presents the x-ray diffraction profile of a
polycrystalline sample compressed to 9-GPa under
quasihydrostatic condition for 2 h and then unloaded to
atmospheric pressure. The broad reflections are indica-
tive of an amorphouslike state of the sample, which
confirms the previous results concerning the amor-
phization of polycrystalline R2(MoO4)3 samples at
pressures in the 7–11.5 GPa range [2, 4, 5].

Figure 1c shows the typical x-ray diffraction pattern
of a polycrystalline sample exposed to a 9-GPa pres-
sure under hydrostatic conditions for 2 h and then
unloaded to atmospheric pressure. As can be seen, the
diffractogram displays rather narrow lines on the back-
ground of broad halo reflections. These peaks show evi-
dence either for incomplete amorphization or for a par-
tial reverse process (recrystallization). Attempts to
assign indices of the α or β phases to the observed nar-
row reflections were unsuccessful.

Figure 2 presents the x-ray diffractograms of a- and
c-cut single crystals measured in a broad range of dif-
fraction angles. Here, Fig. 2a corresponds to the initial
state of the c-cut sample; Figs. 2b and 2c refer to the
c-cut sample upon 9-GPa hydrostatic compression for 1
and 7 days, respectively; Fig. 2d shows the diffracto-
gram of the a-cut single crystal in the initial state; and
Fig. 2e characterizes this crystal upon a 7-day hydro-
static compression at 9 GPa. In addition to the main
(200) reflection characteristic of the a-cut observed in
Fig. 2e, this diffractogram contains several weak reflec-
tions. The positions of these signals relative to the main
reflections observed in the initial state are presented on
a greater scale in Fig. 3. The diffractograms of c-cut
samples exhibited no other weak reflections besides
those depicted in Fig. 2.

It should be emphasized that all the single-crystal-
line samples remained transparent upon unloading.

The main conclusion following from an analysis of
the x-ray diffractograms in Fig. 2 is that the initial sin-
gle crystals subjected to hydrostatic compression at
JETP LETTERS      Vol. 82      No. 7      2005
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9 GPa exhibited the transition to a new, previously
unknown high-pressure phase, rather than a solid-phase
amorphization such as that observed in polycrystalline
samples. In addition, the positions of diffraction lines in
Fig. 2 suggest that Eu2(MoO4)3 single crystals exhibit,
during the exposure to a 9-GPa hydrostatic pressure, a
phase transition from the tetragonal β phase (metasta-
ble at atmospheric pressure) to a new high-pressure tet-
ragonal phase with the lattice cell parameters a ≈
7.025 Å and c ≈ 9.702 Å. This conclusion follows from
the fact that the diffractograms of a- and c-cut single
crystals upon a 7-day compression at 9 GPa exhibit the
lines corresponding to only one lattice parameter (c in
Fig. 2c and a in Fig. 2e) in several orders of reflection.
The unit cell volume of the new high-pressure tetrago-
nal phase is V ≈ 478.82 Å3, which is 18.6% smaller than
the value for the initial tetragonal phase at the same
pressure (a ≈ 7.364 Å, c ≈ 10.641 , V ≈ 577.05 Å3).
After a 1-day exposure at 9 GPa (Fig. 2b), the sample
was two-phase and comprised a mixture of the initial
β phase and the new high-pressure tetragonal phase.

The natural question as to whether the observed
transition is isomorphic, that is, whether the space
groups of the initial tetragonal phase and the new high-
pressure tetragonal phase are coinciding, cannot be
given a clear answer based on the above structural data.
However, we must pay attention to the difference in the
relative intensities of the (300) and (400) reflections in
the initial state and in the new high-pressure phase.
Indeed, the (300) reflection is absent (because it is for-
bidden) in the x-ray diffraction pattern of the initial
phase (Fig. 3a), whereas both the (300) and (400)
reflections of significant intensity are present in the dif-
fractogram of the high-pressure phase (Fig. 3b). At the
same time, Figs. 3b and 2e show that these (300) and
(400) reflections for the high-pressure phase possess a
much lower intensity relative to that of the (200) reflec-
tion as compared to the case of the initial phase
(Fig. 2d). These differences in relative intensities can
be both due to a difference in the space symmetry
groups and due to strong local structure violations in
the high-pressure phase. As is known, local straining of
a crystal lattice may lead, on the one hand, to violation
of the laws of reflection quenching (and, hence, to the
appearance of forbidden reflection) and, on the other
hand, to a drop in intensity of the high-order reflections
(because an irregular structure hinders multiple reflec-
tions necessary for the formation of such diffraction
signals).

Let us consider the observed two-phase state in
more detail. The presence of such a state featuring two
different single-crystalline phases in the same sample
poses a question concerning their matching. An answer
is provided by an analysis of the 2D patterns obtained
for cross sections in the reciprocal space of base reflec-
tions of the (00l) type for a sample in the two-phase
state. Figure 4 shows an example of such a 2D map for
(002)atmospheric pressure and (002)high pressure reflections. As

Å
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can be seen, the reflections of the initial phase and the
high-pressure phase are connected by a junction region
featuring several isolines of the diffraction intensity,
which are common for both phases. The presence of
this junction region connecting the two reflections
indicates that the transition from one phase to another
proceeds via the formation of transition zones featur-
ing a continuous and smooth change of the crystal
lattice parameters from d(002)atmospheric pressure to
d(002)high pressure. We believe that this transition is possi-

Fig. 3. Region of weak reflections in the x-ray diffracto-
grams of the a-cut Eu2(MoO4)3 singe crystals (a) in the ini-
tial state and (b) upon 9-GPa hydrostatic compression for
7 days.

Fig. 4. 2D cross section of the reciprocal lattice of a
Eu2(MoO4)3 singe crystal in the region of
(002)atmospheric pressure and (002)high pressure reflections.
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ble only if the local order in both phases is retained.
This conclusion implies that the transition from the ini-
tial state to the high-pressure phase has a subgroup
character or is even isomorphic. Additional evidence in
favor of this interpretation is the retained transparency
of samples in the two-phase state (otherwise, a change
in the local order would lead to the formation of ran-
dom phase boundaries and, hence, to the loss of trans-
parency).

In conclusion, the main results of this investigation
can be formulated as follows:

(i) The results of x-ray diffraction measurements
showed that the sequence of phase states formed in
Eu2(MoO4)3 single crystals as a result of a high-pres-
sure treatment is substantially different from that
observed in polycrystalline samples. In particular, the
exposure to a pressure in the region of 9 GPa leads to
the formation of a new tetragonal phase with a specific
volume 18.6% lower than that of the initial β phase,
rather than to the well-known amorphization of the ini-
tial polycrystalline powder.

(ii) The structural phase transition from the initial
tetragonal phase to the new high-pressure tetragonal
phase in single-crystalline samples proceeds via the
formation of broad transition zones featuring a contin-
uous and smooth change of the crystal lattice para-
meters.
This study was supported in part by the Russian
Foundation for Basic Research (project no. 04-02-
17143 and the special project “Investigations into
Structure–Property Relationships” no. 05-02-08302)
and the Russian Academy of Sciences (the program
“Physics and Mechanics of Strongly Compressed Sub-
stances and Problems of the Internal Structure of the
Earth and Planets”).
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Formation and Composition of the Clathrate Phase 
in the H2O–H2 System at Pressures to 1.8 kbar
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The transition of the hexagonal ice phase Ih to the clathrate phase sII has been found in the H2O–H2 system at
a pressure of about 1 kbar under conditions of an excess of gaseous hydrogen. The pressures of the Ih  sII
and sII  Ih transitions have been determined over a temperature range from –36 to –18°C, and the pressure
dependence of the synthesis temperature of the clathrate phase from a liquid at pressures from 1.0 to 1.8 kbar
has been constructed. The solubility of hydrogen in the Ih and sII phases and in liquid water has been measured.
The concentration of hydrogen in the clathrate phase sII is about 1.2 wt % (10 mol %) near the boundary of the
sII  Ih transition, and it increases to 2 wt % (16 mol %) at a pressure of 1.8 kbar. © 2005 Pleiades Publish-
ing, Inc.

PACS numbers: 05.70.Fh
Dyadin et al. [1] studied the H2O–H2 system by dif-
ferential thermal analysis and found a region with
anomalous behaviors of the melting temperature and
the kinetics of melting of ice in an atmosphere of
hydrogen at pressures from 1 to 3.6 kbar. They hypoth-
esized that the clathrate phase of hydrogen hydrate was
formed in this pressure range. Indeed, the clathrate
phase sII of hydrogen hydrate was synthesized more
recently [2, 3] from a liquid at a pressure of about
2 kbar and at –24°C. Lokshin et al. [3] studied the com-
position of this phase by neutron-diffraction analysis
and found that H2/H2O = (32 + X)/136, where X varied
from 0 to 16 depending on pressure and temperature.

The value of X = 16 corresponds to the dissolution
of 3.8 wt % hydrogen in ice. Because of such a high
concentration of hydrogen in ice at the pressure P ≈
2 kbar, which is reachable within ice planet satellites, a
study of the H2O–H2 system at P ≤ 2 kbar is of consid-
erable interest in both high-pressure physics and chem-
istry and planetology [2].

The aim of this work was to study experimentally
the transition of the hexagonal phase Ih of low-pressure
ice to the clathrate phase sII and vice versa and to study
the transition from the liquid phase to the clathrate
phase. The measurements were performed under condi-
tions of an excess of molecular hydrogen. The transi-
tions were determined from changes in the solubility of
hydrogen in H2O at pressures from 0.2 to 1.8 kbar.

The experimental setup has been described else-
where [4]. High-purity hydrogen (99.9999%) was pre-
pared by the thermal decomposition of the hydride of
the Ti–Fe–V alloy. The amount of hydrogen absorbed
by a sample was determined volumetrically by measur-
0021-3640/05/8207- $26.00 0413
ing pressure and temperature in calibrated volumes of
the measuring system. A modified van der Waals equa-
tion for strongly compressed hydrogen was used as the
equation of state for the gaseous phase; this equation
took into account the temperature and pressure depen-
dence of coefficients [5]. Published data [6] on the pres-
sure and temperature dependence of the molar volumes
of liquid water and ice Ih were used. The molar volume
of the clathrate phase sII was evaluated based on the
published value [2] of the lattice parameter a ≈ 17.05 Å
of this cubic phase at P = 2.2 kbar and T = –39°C.

The sample of H2O had a volume of about 1 cm3 and
consisted of individual segments with characteristic
sizes of about 5 mm. The steady-state pressure reached
after changing temperature or total hydrogen amount in
an autoclave was measured in the experiments. The
drift of pressure lasted about 5 min, about 1 h, or 3–
5 min in the absence of phase transitions, in the Ih 
sII and sII  Ih transitions, or in the synthesis of the
sII phase from a liquid, respectively. With consider-
ation for errors in the determination of various phase
volumes in the H2O–H2 system, the concentration of
hydrogen in condensed phases was determined to
within ±0.05 wt %.

Figure 1 shows a typical solubility isotherm of
hydrogen in water ice. The concentration of hydrogen
in the Ih phase at T = –22°C increased from 0.1 wt % at
P = 0.5 kbar to 0.3 wt % at P = 1 kbar. A transition to
the clathrate phase sII occurred at a higher pressure,
and the amount of dissolved hydrogen increased to
1.2 wt %. As the pressure was increased to 1.8 kbar, the
solubility of hydrogen in the clathrate phase monotoni-
cally increased to approximately 2 wt %.
© 2005 Pleiades Publishing, Inc.
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A smooth decrease in the concentration of hydrogen
in the clathrate phase was observed in the course of
decreasing pressure at all of the test temperatures. For
example, as can be seen in Fig. 1, at T = –22°C, the
composition decreased from 2 wt % at P = 1.8 kbar to
1.2 wt % at P ≈ 0.8 kbar; thereafter, a transition to the
ice phase Ih occurred.

Figure 2 shows the isobar of hydrogen solubility in
liquid water and the sII phase at P ≈ 1.3 kbar. The
amount of hydrogen dissolved in the liquid increased
from 0.2 wt % at +16°C to 0.4 wt % at –18°C. After the
transition to the clathrate phase, the solubility of hydro-
gen increased to 1.9–2.0 wt %.

The phase transition points in the H2O–H2 system
determined in this work were plotted in the T–P dia-
gram, which is shown in Fig. 3. The pressure of the
transition of ice Ih to the clathrate phase sII is about
1 kbar, and it only slightly depends on temperature. The
pressure of the reverse transition of the sII phase to ice
Ih decreased with temperature from 0.9 kbar at –18°C
to 0.5 kbar at –36°C. The synthesis of the clathrate
phase from the liquid occurred at a temperature 5–7°C
lower than the melting temperature of ice Ih at the same
pressure in the absence of hydrogen.

In the tested range of temperatures to –36°C, the
maximum concentration of hydrogen in ice Ih was
about 0.3 wt %; this concentration was reached at the
pressure P ≈ 1 kbar near the boundary of a transition to
the clathrate phase sII (closed circles in Fig. 3). The
concentration of hydrogen in the sII phase changed
from approximately 1.2 wt % near the boundary of a
transition to ice Ih (to the right of open circles in Fig. 3)
to 2 wt % at a pressure of 1.8 kbar.

The solubility of hydrogen in the Ih and sII phases
over the given temperature and pressure ranges was not
studied previously. Lokshin et al. [3] evaluated the
hydrogen content of the sII phase at temperatures lower
than –73°C based on the most likely interpretation of

Fig. 1. Solubility of hydrogen in ice at –22°C. Closed and
open triangles refer to increasing and decreasing pressure,
respectively.

–22°C
the neutron-diffraction patterns of D2O–D2 polycrystals
measured at the two pressures 1 bar and 2 kbar over a
temperature range from –233 to –73°C. According to
this evaluation, the concentration of hydrogen in the sII
phase of the H2O–H2 system can vary within a range
from 2.5 wt % (H2/H2O = 32/136) to 3.8 wt %
(H2/H2O = 48/136).

The minimum value of 1.2 wt % obtained in this
work for the concentration of hydrogen in the sII phase
is lower than a value of 2.5 wt % by a factor of about 2;
according to Lokshin et al. [3], the latter value is
required for the stability of the clathrate structure sII.
The linear extrapolation of the solubility isotherms of

Fig. 2. Solubility of hydrogen in H2O in the course of
decreasing temperature at a pressure of 1.3 kbar.

Fig. 3. T–P diagram of the H2O–H2 system. Closed and
open circles refer to Ih  sII and sII  Ih phase tran-
sition points, respectively. Closed triangles indicate the con-
ditions of the synthesis of the sII phase from a liquid with
decreasing temperature (this work) and the dashed horizon-
tal segment refers to published data [2]. The dashed curve
shows the melting line of the clathrate phase sII determined
by Dyadin et al. [1] and the solid line shows the melting
temperature of ice Ih in the absence of hydrogen [7].

Ih
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hydrogen in the sII phase (e.g., see Fig. 1) to a maxi-
mum pressure of 3.6 kbar (according to Dyadin et al.
[1], this is the maximum pressure at which this phase
can exist) gave a value of about 4 wt %. This value is
close to an estimated value of 3.8 wt % found by Lok-
shin et al. [3] for the maximally possible hydrogen con-
centration in the sII phase.

This work was supported by the Russian Academy
of Sciences (the program “The Physics and Mechanics
of Strongly Compressed Matter”), the Russian Founda-
tion for Basic Research (project no. 05-02-17733), and
the Foundation for Support of Russian Science.
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Atomic Structure of the Cu(410)-O Surface:
STM Visualization of Oxygen and Copper Atoms

A. N. Chaœka and S. I. Bozhko
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The structure of the Cu(410)-O surface is studied by a scanning tunneling microscope (STM) with atomic res-
olution. Tunneling is accomplished for various states of the tungsten STM probe, which allows oxygen and cop-
per atoms to be visualized separately. © 2005 Pleiades Publishing, Inc.

PACS numbers: 68.35.Rh, 68.37.Ef, 68.43.Fg, 73.40.Gk
Knowledge of oxidation processes is important for
understanding corrosion processes and for developing
technologies using oxide layers as interfaces. Interest in
ordered oxygen structures on the copper surface is also
due to the development of studies of high-temperature
superconductivity. Ordered structures arising upon
oxygen adsorption on the Cu(100) surface and on vici-
nal copper surfaces were studied using various tech-
niques [1–10], including scanning tunneling micros-
copy (STM) [1–7]. One of the most comprehensively
studied oxygen structures of vicinal copper surfaces is
(410)-O. However, a certain atomic structure model
cannot be definitively chosen for this surface based on
the experimental results obtained. The goal of this work
was to study the atomic structure of the Cu(410)-O sur-
face by the STM technique. The surface was prepared
by Cu(511) surface faceting.

A Cu(511) sample was cut by an electric spark
machine from a single crystal copper ingot that was
preannealed at a temperature of 1050°C (slightly lower
than the melting apex) in an oxygen atmosphere (p =
5 × 10–4 Torr) for 30 h. Upon annealing, oxygen pene-
trated into the crystal bulk and bound electrically active
impurities, which led to an increase in the electron
mean free path [11]. The sample was a disk 8 mm in
diameter and 3 mm in thickness whose surface plane
coincided with the (511) plane. The surface orientation
was determined using x-ray diffraction methods with
an accuracy of 1°. Before investigations, the sample
was previously polished mechanically and electro-
chemically to remove the broken surface layer. The
cleaning of the Cu(511) surface from impurities (car-
bon and sulfur) was performed by means of several
sequential cycles of ion (Ar+) bombardment (p = 5 ×
10–5 Torr, E = 550 eV) and heating in ultrahigh vacuum
(UHV) at temperatures of 400–450°C for 20–30 min.
The base vacuum in the STM chamber was no worse
than 1 × 10–10 Torr. At these temperatures, the diffusion
of oxygen atoms from the sample bulk to the surface is
insignificant. The elemental composition was con-
0021-3640/05/8207- $26.00 0416
trolled by Auger electron spectroscopy (AES). The
UHV annealing of the sample at temperatures of 550–
600°C led to the diffusion of oxygen toward the sample
surface, where its equilibrium concentration was
attained in 15–20 min. According to the AES data, the
further heating of the surface left the oxygen concentra-
tion on the surface unchanged. The ratio of the intensi-
ties of the oxygen and copper lines in the Auger spectra
after the heating of the sample was IO(512)/ICu(920) =
0.16 ± 0.03, which corresponded to a surface coverage
of 0.5 monolayer of oxygen [12]. Surface faceting
occurred under these conditions (Fig. 1), and well-
ordered structures formed on each face of the facets.
The occurrence of an ordered crystal structure on the
faceted surface was controlled by low-energy electron
diffraction. It was very difficult to interpret the diffrac-
tion pattern, because it represented a superposition of
diffraction patterns from three facet surfaces; however,
the atomic ordering of the faces can be judged from the
occurrence of sharp reflections. The characteristic sizes
of the facets were determined by the annealing temper-
ature and time and varied from several hundreds to sev-
eral thousands of angstroms. One of the facet faces
(designated in Fig. 1) coincided with the (410) plane.

The atomic structure of the (410) face of a facet was
studied by STM at room temperature under UHV con-
ditions. A tungsten tip was used as a probe. The tip apex
was obtained by electrochemically overetching a poly-
crystalline wire 0.3 mm in diameter. The quality of the
obtained tips (the apex length to apex diameter ratio)
was controlled by a transmission electron microscope.
To remove oxides from the tip and to obtain a thinner
apex, the tip was subjected to high-temperature heating
in the preparation chamber (20–30 s at t = 800°C, p =
1 × 10–9 Torr) and ion (Ar+) bombardment in the STM
chamber (E = 600 eV, p = 5 × 10–5 Torr). At the ion etch-
ing, the defocused argon ion beam was directed along
the apex axis. At this coaxial arrangement of the tip and
the incident beam (the beam deflection did not exceed
10°–12°), the apex was sharpened. Before the measure-
© 2005 Pleiades Publishing, Inc.
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ments at the copper surface, the STM tips and scanner
were previously tested and calibrated on a highly ori-
ented pyrolytic graphite HOPG(0001) surface.

In order to avoid uncontrolled temperature drift, the
atomic structure of the faceted Cu(511)-O surface was
studied by the STM technique several hours after the
annealing of the sample. The time from the heating to
the measurements was varied from 2 to 70 h. Under
these conditions, the temperature drift did not exceed
4 Å/min. Note that, at such long time intervals between
sample preparation and measurements, well-ordered
structures were retained at the surface, which pointed to
their stability in UHV.

Three typical structures (Figs. 2a, 3a, 4a) were
observed in the images of the (410)-O surface obtained
with atomic resolution (constant tunneling current
mode). These structures corresponded to different
states of the probe apex. All three structures were
obtained in the same surface area at different times. A
regular structure of steps directed along [001] and sep-
arated by terraces of width 7.2 ± 0.2 Å is seen in all the
images. This distance between the steps corresponds to
terraces with four atomic rows. The distance between
the neighboring atoms along a step is 3.6 ± 0.2 Å. The
measured distances are in good agreement with the
sizes of the unreconstructed Cu(410) surface with (100)
terraces containing four atomic rows in the [001] direc-
tion. Nevertheless, each of the STM images presented
in Figs. 2a, 3a, and 4a bears different information on the
structure of the terraces on the vicinal surface. An
image of three atomic rows (trimers) is seen in Fig. 2a
(Fig. 2b demonstrates the corresponding quasi-3D

(410)

Fig. 1. The 776 × 792-nm STM image of the faceted
Cu(511)-O surface. The image was obtained in the constant
tunneling current mode at Utun = –700 mV, Itun = 0.15 nA.
Indices designate one of the (410) planes.
JETP LETTERS      Vol. 82      No. 7      2005
image after Fourier filtering of noise). The surface
images in Fig. 4a and in the upper part of Fig. 3a consist
of dimers the distance between which also corresponds
to the period of the unreconstructed Cu(410) surface.
The distance between the rows within the dimer struc-
ture was 3.1 ± 0.2 Å (Fig. 3a) and 3.3 ± 0.2 Å (Fig. 4a).
The 3D images in Figs. 3b and 4b emphasize the differ-
ence between the presented dimer structures. In one of
them (Fig. 4b), the atomic corrugations in rows are
comparable, while those in the other one (Fig. 3b) differ

(a)

(b)

Fig. 2. (a) 30 × 28 Å STM image of the Cu(410)-O surface
in which three rows of copper atoms are visualized within a
terrace (Utun = –10 mV, Itun = 0.2 nA) and (b) the corre-
sponding 3D image after Fourier filtering of noise.
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substantially, because of which one of the rows
becomes more pronounced.

The atomic structure of the reconstructed Cu(410)-O
surface was the subject of a number of investigations
[3–5, 7, 9]. In accordance with the x-ray diffraction [9]
and STM [3, 7] data, various models were proposed for
the Cu(410)-O structure with a missing row of copper
atoms in the middle of the terrace and near a step and
also the overlayer model without a missing row. How-
ever, the accurate surface structure has remained con-
troversial so far. In all the models, it was suggested that

(a)

(b)

Fig. 3. (a) 30 × 28-Å STM image demonstrating two rows
of copper atoms within a terrace (Utun = –5 mV, Itun =
0.1 nA) and (b) the 30 × 21 Å 3D image of the upper part of
the frame after Fourier filtering.
oxygen atoms are arranged between copper atoms in
the first and third terrace rows in such a way that chains
of oxygen and copper atoms form in the [001] direc-
tion. STM images of the Cu(410)-O surface similar to
those presented in Figs. 2–4 were obtained by the
authors of [3, 7] and were interpreted in favor of the
model with one missing row under the suggestion that
oxygen atoms are invisible in STM images. According
to this suggestion, the most geometrically perfect tips
demonstrate (like the image in Fig. 2a) an arrangement
of copper atoms inside a terrace with three filled and

(a)

(b)

Fig. 4. (a) 30 × 28-Å image demonstrating the arrangement
of oxygen atoms on the Cu(410)-O surface (Utun = –2 mV,
Itun = 0.12 nA) and (b) the corresponding 3D image after
Fourier filtering.
JETP LETTERS      Vol. 82      No. 7      2005
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one missing row. However, x-ray diffraction data and
density-functional calculations published subsequently
[9] indicated that the overlayer model of the Cu(410)-O
surface is more preferable than the missing-row
models.

We managed to obtain images corresponding to
three different states of the probe apex during the scan-
ning of one frame (Fig. 5). The tunneling voltage and
current and the frame recording rate were not varied
during scanning; therefore, the change in the terrace
structure (from two rows to one, then to three, and back
to two) can be associated only with a change in the state
of the tip during scanning. Unfortunately, we did not
manage to select scanning parameters at which the
image of atoms would be of equal quality for different
probe states within one frame. Nevertheless, it is seen
in the presented figure that the positions of two rows of
the structure in area 1 of Fig. 5 coincide (with an accu-
racy of small lateral displacements) with the first and
third rows of atoms in area 3 and that the position of one
row in area 2 coincides with minima in areas 1 and 3
when the corresponding areas of the STM images are
matched. A similar behavior is also seen in Fig. 3a,
which demonstrates terraces with one pronounced row
after switching of the probe state. Because the surface
area structure (Fig. 5) is independent of the probe state
and does not change substantially over time (which is
evidenced by the images reproduced in Figs. 2–4), we
prove the suggestion of the possibility of discrimination
of atoms of one or another sort in relation with a change
in the probe apex state that was made on the basis of
studies of the O/Cu(100) [13], S/Cu(110) and
O/Cu(110) [14]. In this case, it might be expected that
the STM images of the Cu(410)-O surface obtained at
different states of the tip reflect the arrangement of cop-
per and oxygen atoms on the surface. Assuming that the
probe in different states visualizes different surface
atoms, we imposed images in Figs. 2–4 on the corre-
sponding areas in Fig. 5 and obtained the surface model
presented in Fig. 6. Comparing the obtained model with
the models proposed earlier [3, 9] and with the structure
of the perfect Cu(410) surface, one can draw the con-
clusion that Fig. 2a presents an image of the first three
rows of copper atoms, Fig. 3a presents the fourth row of
copper atoms, and Fig. 4a shows oxygen atoms that are
arranged with small lateral displacements with respect
to the positions of bulk crystal lattice sites in the first
and third rows. Because the Cu–O bond lengths in
oxides and on reconstructed copper surfaces equal 1.8–
1.95 Å [10, 15], it can be suggested that oxygen atoms
in rows are arranged between copper atoms, forming
Cu–O–Cu–O chains in the first and third rows of ter-
races.

Thus, the presented results count in favor of the
overlayer model. The positions of various atoms in the
surface plane were determined by the results of super-
position (see table). For comparison, the coordinates of
atoms in the overlayer model obtained on the basis of
x-ray diffraction data [9] are given in the right-hand
JETP LETTERS      Vol. 82      No. 7      2005
column. In spite of a discrepancy in the absolute values
of displacements calculated by the STM image in
Fig. 5, a reasonable agreement with the results obtained
in [9] is evident. The correct position of atoms along the
normal to the surface plane cannot be obtained from the
results of superposition because, as a result of a change
in the probe state, (1) a vertical displacement of the
image of the surface area as a whole is probable
because of the change in tunneling conditions and (2)
atoms occupying nonequivalent positions are revealed
in STM images differently, which is evidenced by our

3

2

1

Fig. 5. The 61 × 61-Å STM image (Utun = –2 mV, Itun =
0.12 nA) demonstrating a change of contrast associated
with a change in the tip state. Two rows of atoms are seen in
the lower part (1) of the frame, one pronounced row is seen
in area 2, and three rows of atoms are seen in area 3 within
terraces.

Z
Y

X4
3

2
1

Fig. 6. Overlayer model of the Cu(410)-O surface structure.
Light and black circles designate copper and oxygen atoms,
respectively.
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data and the results of investigations at different states
of the tip [16]. Substantial relative vertical displace-
ments of oxygen and copper atoms take place on the
reconstructed Cu(410)-O surface. For example, oxygen
atoms located in the third row are seen in the images
higher than those located in the first row, whereas the
second row of copper atoms is approximately 0.2 Å
higher than the first row. The relative lateral displace-
ments of atoms within individual image areas in Fig. 5
can be determined rather accurately (0.2 Å). The accu-
racy of the determination of the relative displacements
of atoms visualized in different areas of Fig. 5 is signif-
icantly lower by virtue of the imperfection of the super-
position process.

Different probe states and, as a consequence, visual-
ization of atoms of one or another sort in STM images
are evidently associated with the occurrence of oxygen
atoms adsorbed on the tip apex. Under ultrahigh vac-
uum conditions, the occurrence of an oxygen atom on
the tip apex is hardly probable. In this case, oxygen
atoms arrive at the sample surface through diffusion
from the bulk and can jump to the tip apex. Oxygen
exchange leads to switching of image modes during
scanning. Presumably, the probe state at a certain
instant of time in our experiments was determined by
the amount of oxygen atoms adsorbed on the tip apex.
In this case, the state of the electronic system changed
and tunneling was performed through the same atom at
the apex, which allowed the surface model to be cor-
rectly recovered.

Thus, we studied the structure of the Cu(410)-O sur-
face. The modes of obtaining STM images correspond-
ing to various probe states were used. A procedure for
recovering the atomic structure of the surface was pro-
posed. It was shown that the atomic structure of the

Positions of copper and oxygen atoms on the terraces of the
Cu(410)–O structure as obtained from the STM data (Fig. 5)
in comparison with the diffraction data [9]. The displace-
ments of the atoms with respect to the unreconstructed (410)
surface are presented [9]

Row no. Atom ∆x (Å)
XRD [9]

∆x (Å) ∆z (Å)

1 Cu –0.2 –0.1 0.15

1 O 0.4 0.06 0.04

2 Cu 0 0.17 0.27

3 Cu 0.4 0.14 0.07

3 O 0.6 0.20 0.59

4 Cu 0.5 0.02 –0.08
Cu(410)-O surface corresponds to the overlayer model;
i.e., a model without a missing row of copper atoms in
the [001] direction.
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We show that the superconducting transition temperature Tc(H) of a very thin highly disordered film with strong
spin–orbital scattering can be increased by a parallel magnetic field H. This effect is due to the polarization of
magnetic impurity spins, which reduces the full exchange scattering rate of electrons; the largest effect is pre-
dicted for spin-1/2 impurities. Moreover, for some range of magnetic impurity concentrations, the phenomenon
of superconductivity induced by magnetic field is predicted: the superconducting transition temperature Tc(H)
is found to be nonzero in the range of magnetic fields 0 < H* ≤ H ≤ Hc. © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.25.Ha, 74.78.–w, 74.78.Na
The problem of superconducting alloys with mag-
netic impurities was addressed long ago by Abrikosov
and Gor’kov (AG) [1]. They have shown that supercon-
ductivity (SC) is suppressed due to exchange scattering
(ES) of electrons on magnetic impurities, with the tran-
sition temperature T determined from the equation
(hereafter, we employ units in which " = 1)

(1)

Here, ε = 2πT(m + 1/2) is the fermionic Matsubara fre-
quency (m is integer), Tc0 is the transition temperature
of a clean sample, and νS = 2πNFnSJ2S(S + 1) is the ES
rate of electrons on magnetic impurities (NF is the nor-
mal metal density of states per single spin state, nS is the
concentration of magnetic impurities, J is the exchange
coupling constant, and S is the impurity spin length).
The solution of (1) yields the function T = TAG(νS).
There exists a critical point at which the transition tem-
perature is suppressed down to zero, the critical scatter-
ing rate being  = π/(2eC)Tc0 = 0.882Tc0, where C =
0.577 is the Euler constant. The critical concentration,
corresponding to , is further denoted by . We
emphasize that νS is the full ES rate; i.e., the sum of the

spin-flip scattering rate 2πNFnSJ2(〈 〉  + 〈 〉 ) = 2/3νS

and the rate of scattering without spin flip

2πNFnSJ2〈 〉  = 1/3νS.

The results of AG were derived for unpolarized
magnetic impurity spins. In this Letter we investigate
how the polarization of impurity spins affects the ES
mechanism of SC suppression. We show that polariza-

¶ The text was submitted by the authors in English.
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tion of magnetic impurity spins by an external magnetic
field reduces the full ES rate Γ(ε). It reaches its minimal
value ν∞ = νSS/(S + 1) < νS at an infinite field, when the
impurity spins are completely polarized and spin-flip
processes have frozen out. This reduction is due to
quantum fluctuations of impurity spins; thus, it is stron-
gest for S = 1/2 and vanishes in the limit S @ 1.

If ES were the only mechanism of SC suppression in
nonzero magnetic field h = µBH, the transition temper-
ature (h) would always be higher than Tc(h = 0) =

TAG(νS), determined by result of (1). (h) is a growing
function, approaching the value T∞ = TAG(ν∞) at very
high fields h  ∞. The transition temperature
increase (h) – Tc(0) comparable to T∞ – Tc(0) is

attained in the field range h * (h). However, apart
from ES, there are other mechanisms of SC suppression
by magnetic field, namely, the paramagnetic effect (PE)
and the orbital effect (OE). Thus, to observe an increase
Tc(h) > Tc(0) in the actual transition temperature, PE
and OE should be small compared to ES in the field
range h ~ Tc(h). Strong reduction of PE is achieved in
the presence of high spin–orbital scattering rate νso @
Tc0 [2–4]. OE is suppressed for a thin-film (thickness d

shorter than the magnetic length lH = ) with par-
allel orientation of external magnetic field [5].

In this Letter, we show that the increase in the tran-
sition temperature can be observed if two quite strin-
gent conditions on the smallness of PE and OE are met.
First, the spin–orbit scattering rate νso must be suffi-
ciently high:

(2)

Tc°
Tc°

Tc°
Tc°

c/eH

νso/νS @ ζ2.
© 2005 Pleiades Publishing, Inc.
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Here, ζ = nS|J|S/νS = (2πNF|J|(S + 1))–1 @ 1 is the
inverse Born parameter for the exchange scattering.
Second, the elastic scattering rate ν and thickness of the
film d must satisfy the condition

(3)

where pF is the Fermi momentum.

We distinguish between two different regimes
depending on the value of ES rate νS. If νS < , i.e., if
there exists a finite transition temperature Tc(0) =
TAG(νS) at zero field, then, provided that the conditions
(2) and (3) on PE and OE are met, the increase Tc(h) >
Tc(0) in the transition temperature in some range of h is
expected (see solid line in Fig. 1). The growth of Tc(h)
at h & Tc(h) is due to the reduction of the full ES rate.
At higher fields, PE and OE inevitably prevail, leading
to complete suppression of SC at some critical field hc.
The most favorable regime for the observation of Tc(h)
increase is when SC is significantly suppressed at zero
field, i.e., when νS is close to (but smaller than) . In

this case, a large ratio (  – Tc(0))/Tc(0) is expected
(see Fig. 1).

1 & pFd( )2
 ! ν/Tc0,

νS*

νS*

Tc
max

Fig. 1. Enhancement of superconductivity by magnetic
field. Tc(h) is the transition temperature as a function of
magnetic field with PE and OE taken into account (solid
line). The area under Tc(h) curve corresponds to the super-

conducting state. (h) is the transition temperature with

PE and OE disregarded (dashed line), T∞ = (∞) (dotted

line). The parameters used are νS = 0.85Tc0 < , S = 1/2,

J < 0 (ferromagnetic exchange), ζ = 5, νso = 103Tc0, ν =

104Tc0, pFd = 30, Tc(0) = 0.135Tc0, T∞ = 0.768Tc0.

Tc°
Tc°

νS*

Tc(h)°
The most exotic situation occurs when νS >  >
ν∞ = νSS/(S + 1). Then, at h = 0, superconductivity is
totally suppressed. Disregarding PE and OE, one
obtains a finite transition temperature T∞ = TAG(ν∞) at
very high fields (indicated by the dotted line in Fig. 2).
If the conditions (2) and (3) are satisfied, superconduc-
tivity does not exist below some critical field h*, but it
appears at higher fields h ≥ h*. A nonzero transition
temperature Tc(h) (the solid line in Fig. 2) exists in a
range of fields starting from h* and terminating at some
higher critical field hc, when PE and OE dominate over
ES. Such behavior is possible in the range of concentra-
tions  < nS < , where  is smaller than (S +
1)/S and is determined by the parameters involved in PE
and OE. The better the conditions (2) and (3) are satis-
fied, the closer is  to (S + 1)/S. The most favor-
able situation for the experimental observation of mag-
netic-field-induced superconductivity is realized when
nS is only slightly larger than . In this case, h* is suf-
ficiently small and the curve Tc(h) produces quite a
steep growth at the fields h just above h* (see Fig. 2).
Two specific examples of Tc(h) behavior are presented
in Figs. 1 and 2 for S = 1/2, for the following set of
parameters: J < 0 (ferromagnetic exchange), ζ = 5,

νS*

nS* nS** nS** nS*

nS** nS

nS*

Fig. 2. Magnetic-field-induced superconductivity. Tc(h) is
the transition temperature as a function of magnetic field
with PE and OE taken into account (solid line). The area
under the Tc(h) curve corresponds to the superconducting

state. (h) is the transition temperature with PE and OE

disregarded (dashed line); T∞ = (∞) (dotted line). The

parameters used are νS = 1.0Tc0 > , S = 1/2, J < 0 (ferro-

magnetic exchange), ζ = 5, νso = 103Tc0, ν = 104Tc0, pFd =
30, h* = 0.17Tc0, T∞ = 0.725Tc0.

Tc°
Tc°
νS*

Tc(h)°
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νso = 103Tc0, ν = 104Tc0, pFd = 30. The similar set of
parameters corresponds, for example, to the 3-nm-thick
PtSi film studied in [6, 7].

Below, we briefly outline the method used to derive
the announced results; details of our calculations will
be presented in a separate publication.

The starting point of our problem is the following
Hamiltonian:

Here,

is the BCS Hamiltonian which includes the orbital and
paramagnetic effects of external magnetic field on con-
duction electrons;

describes the interaction with magnetic impurities; and

*S = –  is the Hamiltonian of impurity spins in
external magnetic field (ωS = gSh = 2h is their Zeeman
splitting). Finally,

describes the scattering of electrons on nonmagnetic
impurities, which includes both potential and spin–
orbit parts. Here vαβ(r, r') is the Born amplitude in
coordinate representation; since we work in momentum
space, we only need its Fourier transform vαβ(p, p') =

u0δαβ + iv so/ ([p, p'], σαβ). Magnetic and nonmag-
netic impurities are uniformely distributed over the
sample volume with concentrations nS and n, respec-
tively.

We solve the problem using the standard diagram-
matic technique for BCS theory and disordered metals
[1, 8] and employing the following approximations:

(i) pFl @ 1, where l = vF/ν is the mean free path for
potential scattering;

(ii) the Born approximation for impurity scattering;

(iii) a “dirty limit,” i.e., ν @ νso @ Tc.

* *BCS *S *eS *eU.+ + +=
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The equation for the transition temperature T can be
obtained in the form

(4)

where C0(ε) = 1/2(  –  +  – ) is the sin-
glet Cooperon component. In the approximation pFl @
1 the Cooperon is given by an infinite sum of ladder-
type diagrams, each “ladder step” containing an impu-
rity line and the product of two disorder-averaged nor-
mal state Green’s functions. The expression for the
components of such a Green’s function with electron
spin directed along (↑ ) the external field h and in the
opposite direction (↓ ) reads

Here, ν = 2πNF(  + ) is the potential scattering

rate, νso = 2πNFn 2/3 is the spin–orbit scattering

rate,  = 2πNFnSuSJ〈Sz〉  is the interference contribu-
tion between potential and exchange scattering on mag-
netic impurities (however, this term is irrelevant and
falls out of the final result), and h' = h – nSJ〈Sz〉  is the
effective magnetic field acting on electron spins com-
prised of the external field h and exchange field of
polarized impurities –nSJ〈Sz〉 . Hereafter, 〈…〉  stands for
thermodynamic averaging over the states of an isolated
impurity spin subjected to external magnetic field h:

〈 〉  = 1/Z , Z = . Thus,

Further, Γ(ε) = νz + Γsf(ε) is the full ES rate due to
exchange interaction of electrons with polarized mag-
netic impurities. It is given by the sum of the rate of

scattering without spin flip νz = νS〈 〉 /S(S + 1) and the
spin-flip scattering rate

(5)

where

(6)

Here, ω = 2πTn is the bosonic Matsubara frequency

(n is integer) and  =  + .

We now discuss the properties of the full exchange
scattering rate Γ(ε) = νz + Γsf(ε) and then use the knowl-
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edge of this function while determining Tc(h). For |ε| @
ωS at any ratio ωS/T, we have Γsf(ε) ≈ νS〈 〉 /S(S + 1)
and Γ(ε) ≈ νS. At zero field Γsf(ε) = 2/3νS, νz = 1/3νS,
and Γ(ε) = νS for any ε. The full ES rate Γ(ε) ≈ νS for
electrons with energies |ε| @ ωS is not modified by the
magnetic field, although Γsf(ε) and νz do depend on h.

Consider the limit of strong polarization ωS @ T. In
this case, one can replace in (6) the sum over ω by the
integral and obtain

(7)

For electron energies |ε| ! ωS less than the Zeeman

splitting Γsf(ε) ≈ νS  ! νS reflecting the fact

that spin-flip processes freeze out for strongly polarized
spins. Hence, the full ES rate Γ(ε) ≈ νz = νSS/(S + 1) <
νS in a wide range of energies |ε| & ωS. At very strong
field Γsf(ε)  0 and Γ(ε) = ν∞ = νSS/(S + 1) for all ε.
Expressing Γ(ε) in the form Γ(ε) = νS – δΓ(ε), we see
that the full ES rate in nonzero field is always less than
νS, with δΓ(ε, ωS) for a fixed ε being a growing function
of ωS with limiting values δΓ(ε, 0) = 0, δΓ(ε, ∞) =
νS/(S + 1).

The Cooperon can be shown to obey the following
equation for C0(ε):

(8)

Here,

is the dephasing rate corresponding to OE of the mag-
netic field (D = 1/3νFl is the diffusion constant) and the

operator  acts as

At zero field h = 0, it is straightforward to check that

 – Γsf(ε) = 0 and Γ(ε) = νS. Therefore, the solution to
(8) is C0(ε) = 1/(|ε| + νS) and one recovers result (1) for
the transition temperature.

Enhancement of Tc by parallel field. We start our
analysis from the case νS < , when a nonzero transi-
tion temperature Tc(0) = TAG(νS) exists at zero field.
First we study the equation

(9)
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leaving in (8) the terms related to ES only and neglect-

ing PE and OE. In the limit h  ∞ we get   0,
Γsf(ε)  0, Γ(ε)  ν∞, and C0(ε) = 1/(|ε| + ν∞).
Thus, in the strong-field limit and in the absence of PE
and OE, the transition temperature would be T∞ =
TAG(ν∞) (indicated by the dotted line in Fig. 1), which is
higher than the zero-field value TAG(νS) since ν∞ < νS.
For an arbitrary field, solving Eqs. (4) and (9) together
numerically, one obtains the transition temperature
curve (h) with PE and OE disregarded (the dashed
line in Fig. 1). Formally, the enhancement of transition
temperature compared to the zero-field result of AG
TAG(νS) is due to the term –δΓ(ε) in (9), whose effect is
always stronger than the (opposite-sign) effect from the

term operator 1/2(  – Γsf(ε)) in the same equation.
We are now in position to derive conditions (2) and

(3) for the strengths of paramagnetic and orbital effects
compatible with observation of an increase of the actual
transition temperature Tc(h). Indeed, the terms in (8)
related to PE and OE must be sufficiently smaller than
the terms responsible for ES in the relevant fields h ~
Tc0: [h'(h ~ Tc0)]2/νso ! νS and γorb(h ~ Tc0) ! νS. Since
we are interested in νS ~ Tc0 the latter condition imme-
diately leads to (3). Due to the Born approximation
(ζ @ 1) for h ~ Tc0 and T & Tc0, the exchange field
nSJ〈Sz〉  dominates over h in the effective field h' and is
on the order of its maximal value nSJS. Therefore, esti-
mating h' ~ nSJS, we obtain (2). Thus, provided condi-
tions (2) and (3) are satisfied, one observes an increase
in the transition temperature Tc(h) (solid line in Fig. 1).

Superconductivity induced by magnetic field.
Now we turn to the case νS >  > ν∞ or, expressed in

terms of magnetic impurity concentrations,  < nS <

(S + 1)/S. First we study Eqs. (4) and (9) neglecting

PE and OE. Since νS > , the SC is totally suppressed
at h = 0, but at infinite field one obtains a finite transi-
tion temperature T∞ = TAG(ν∞) (indicated by dotted line
in Fig. 2), because ν∞ < . This leads to the existence

of a critical field , below which SC does not exist at
any temperature but appears in greater fields h ≥ .
The field  is determined from the equation

(10)

where C0(ε, h) is the solution to (9) in the zero-temper-
ature limit and depends on only one parameter, νS. The
transition temperature (h) in the absence of PE and
OE (dashed line in Fig. 2) is a growing function of h,
starting from the zero value ( ) = 0 at  and

tending to T∞ as h  ∞. The critical field  as a
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function of nS has the following limiting values:
  0 as nS   + 0,   ∞ as nS 

(S + 1)/S – 0; and  ~ Tc0 when nS is close neither

to  nor to (S + 1)/S.

For magnetic impurity concentrations nS not very
close to (S + 1)/S, the field  & Tc0. Then, provided
conditions (2) and (3) are met, the described behavior
of the transition temperature in fields h ~  survives
under the action of orbital and paramagnetic effects. PE
and OE slightly change , making the actual critical
field h* greater than . The actual transition tempera-
ture curve Tc(h) (solid line in Fig. 2) is close to (h) at
fields h ~ h* and deviates significantly only at higher
fields, when PE and OE dominate over ES. We found
the critical field  = gSh* analytically (with logarith-

mic accuracy in / ) for the case when nS is slightly

greater than critical , i.e., δνS = νS –  ! :

(11)

If  @ Tc0, i.e., if nS is close to (S + 1)/S,
accounting for PE and OE, even with conditions (2) and
(3) fulfilled, SC is destroyed in such a high field. Thus,
for such nS, SC is totally suppressed at any field. This
yields that the regime of “magnetic-field-induced SC”
actually exists in a narrower (than in the absence of PE
and OE) range of concentrations  < nS < , where

 is smaller than (S + 1)/S and is determined by
the values of parameters involved in PE and OE.
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In conclusion, we have predicted the mechanism of
superconductivity enhancement in thin films by exter-
nal parallel magnetic field. The effect is due to the
polarization of magnetic impurity spins, which reduces
the full rate of electron exchange scattering. In some
range of magnetic impurity concentrations, the phe-
nomenon of magnetic-field-induced superconductivity
is predicted. The predicted effect is expected to be
observable in very thin disordered superconductive
films containing heavy metals leading to high spin–
orbital scattering rate. We expect that a similar effect
may exist in superconductive-ferromagnet thin-film
bilayers with spontaneous magnetization parallel to the
surface.
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It has been found that the time-domain reflection signal arising after the excitation of a bismuth single crystal
at helium temperature by an ultrashort laser pulse exhibits Fano interference in the presence of the interaction
between the lattice and charge degrees of freedom. This property is manifested in the characteristic spectral
lineshape of the Fourier-transformed signal, whose asymmetry parameter is a periodic function of the delay
time τ between the pumping and probing pulses. The most interesting property is the change of the sign of the
asymmetry parameter when τ varies, which indicates that time reversal symmetry is broken. Various possible
causes of the effect, observed for the first time, are discussed. © 2005 Pleiades Publishing, Inc.

PACS numbers: 42.25.Kb, 63.20.–e, 78.47.+p
Fano interference is one of the paradigms of modern
physics that allows investigation of the internal struc-
ture of quantum objects. In his fundamental work [1],
which is one of the most frequently cited papers in
physics, Fano considered the multiparticle problem of
the coupling of continuum states with a discrete level
and showed that interference distorting the initial spec-
tral characteristics of both the discrete level and contin-
uum is possible in this case. This interference is
observed in all kinds of spectroscopy, where various
excitations are analyzed [2], and is manifested in the
characteristic asymmetric profile of the spectral line
that arises when the discrete and continuum spectra
overlap and indicates that they are coupled with each
other. The Fano formalism enables one to completely
describe this interaction in terms of a limited number
(only three) of quantities [1]. Since the Fano model is
well known, we only briefly outline it. We consider a
system consisting of overlapping continuum and the
discrete level; see Fig. 1. In this case, the transition
probability, which is proportional to the cross section
for absorption or scattering, from the initial state to the
final one exhibits a characteristic dependence, which
can be written for the discrete level ε in the form

(1)

Here, ε is the dimensionless energy of the transition of
the discrete level in units of the damping factor Γ and
q is proportional to the ratio of the amplitudes Td and Tc
of transitions between the discrete states and contin-
uum states, respectively. The quantity q is called the
Fano asymmetry parameter, because it determines the
resulting spectral lineshape I(ε) in dependence of the
coupling constant V. If the excitation of continuum is

I ε( ) ε q+( )2/ 1 ε2+( ).=
0021-3640/05/8207- $26.00 ©0426
absent (Td = 0, |q|  ∞), the spectral line has a sym-
metric (Lorentzian) shape with the half-width deter-
mined by the discrete level lifetime Γ–1. If the excitation
of the discrete level is absent (Tc = q = 0), a symmetric
dip (antiresonance) is observed in the spectrum. When
both amplitudes are nonzero, an asymmetric spectral
line with antiresonance at ε = –q arises due to the con-
structive and destructive interferences for energies
above and below the discrete-state energy, respectively.
It is evident that the position of the antiresonance can be
changed only by changing the sign of the asymmetry
parameter q. In the fundamental work by Fano, q was a

Fig. 1. (a) Energy scheme schematically represented Fano
interference. (b) The energy dependence of the normalized
intensity for several positive values of the asymmetry
parameter q. The curves for negative q values are obtained
by inverting the abscissa axis.
 2005 Pleiades Publishing, Inc.
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real number, because the amplitudes Td and Tc deter-
mining q were considered as real owing to the use of
standing waves instead of traveling waves [2]. How-
ever, experiments with a quantum dot placed in one of
the arms of an Aharonov–Bohm interferometer [3]
showed that this assumption is valid only for systems
with time reversal symmetry. When this symmetry is
broken, the amplitudes Td and Tc are complex and
thereby the sign (and absolute value) of q can be con-
trolled by external interaction [3, 4]. Until recently,
Fano interference was studied only under stationary
conditions (frequency domain) [2]. However, increas-
ing interest in investigation of the response of con-
densed matter to the action of an ultrashort laser pulse
provided studies in the time region. In particular, access
to ultrafast lattice dynamics, which is ensured by the
observation of coherent phonons that are manifested as
reflection oscillations [5], shows that Fano interference
exists and can be analyzed in the time region [6]. This
quantum interference is manifested in the asymmetry
of the phonon spectral line obtained by the Fourier
transform of a time-oscillating signal and points to the
coherent interaction between the lattice and charge
degrees of freedom in time-domain experiments. More-
over, the use of 10-fs pulses provided recent observa-
tion [7] of the production of phonons and evolution of
electron–phonon interaction responsible for Fano inter-
ference in real time. In this work, we focus on the
dynamics of the interaction between charge carriers and
phonons that determines the relaxation of a bismuth
crystal at helium temperature that is excited by an
ultrashort laser pulse under the conditions of the col-
lapse and revival of coherent phonons [8].

The optical response of the Bi single crystal was
analyzed for a plane perpendicular to the (0001) trigo-
nal axis. All measurements of coherent phonons were
carried out with ultrashort high-energy light pulses at
T = 7 K. To this end, the radiation of a Ti: sapphire laser
(λ = 800 nm) was transformed by a regenerative solid-
state amplifier at whose output pulses had duration ∆t ≤
140 fs and followed with repetition frequency v  =
100 kHz. The pumping and probing laser beams were
focused on the crystal surface by a lens with focal
length f = 10 cm and the 20 : 1 ratio of their intensities
was maintained. In this case, the polarizations of the
pumping and probing pulses were orthogonal to each
other and were parallel to the binary and bisecting axes
of the crystal, respectively. The pumping channel was
modulated by an optical interrupter with a frequency of
2 kHz and the resonant reflection as a function of the
delay time τ between pumping and probing, which was
created by the delay line, was recorded by the synchro-
nous detection of signals recorded by a p–i–n silicon
photodiode.

Figure 2a shows the time-domain optical response
of the bismuth single crystal at helium temperature that
is observed when coherent phonons are excited in the
collapse–revival mode [8]. The general shape of the
JETP LETTERS      Vol. 82      No. 7      2005
response shows that the pumped crystal relaxes to the
equilibrium state for times on the order of ten picosec-
onds and fast oscillations are imposed on this relax-
ation, which demonstrate the collapse–revival effect in
times τ ≈ 7–8 ps; see the inset in Fig. 2b. The decompo-
sition of the signal into oscillating (lattice) and mono-
tonically decreasing (electron) components (see
Fig. 2b) with the subsequent Fourier analysis of the
former component shows that oscillations in the col-
lapse–revival mode are generated by totally symmetric
(A1g) and doubly degenerate (Eg) coherent phonons and
their difference combination (A1g – Eg). The spectrum
shown in Fig. 3 exhibits two features the first of which
is the two-component structure of the totally symmetric
phonon with the long-lived component indicating the
presence of quantum (Fröhlich) condensation [9]. The
second feature of the spectrum is the strongly asymmet-
ric lineshape of the twice degenerate (Eg) coherent
phonon, which is similar to the dispersion curve rather
than to the Lorentzian profile. To reveal the causes of
such a surprising spectral lineshape, we analyzed the
dependence of the spectrum on the size and position of
the time window used in the Fourier transform. Since

Fig. 2. (a) Time-domain normalized differential reflection
∆R/R0 of the bismuth single crystal for the experimental

parameters T = 7 K and F = 9 mJ/cm2. (b) The decomposi-
tion of the signal shown in panel (a) into oscillating and
nonoscillating components. The inset shows the part of the
signal exhibiting the collapse and revival of oscillations.
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the basic contribution to the Fourier transform comes
from large-amplitude oscillations near the lower limit
of the time window, a change in this limit provides a
dependence similar to the time dependence of the spec-
trum. The performed analysis shows that the spectral
lineshape depends significantly on the lower limit of
the time window for all three components A1g, Eg, and
A1g – Eg observed in the spectrum. In this work, we
focus only on the Eg phonon, leaving detailed descrip-
tion of the totally symmetric and difference modes for
future investigations. Figure 4 shows the dependence of
the lineshape of the Eg phonon on the lower limit of the
time window. According to this figure, the shift of the
time window significantly changes the lineshape of the
Eg phonon from the pure Lorentzian peak to the sym-
metric spectral dip, between which asymmetric profiles
appear with dips on low-frequency and high-frequency
wings of the line. Such a change in the lineshape of the
Eg phonon is periodic in time and is repeated with a
period approximately equal to the period of the differ-
ence phonon mode (A1g – Eg). When the time window
is shifted beyond the limits of the collapse time, the
phonon line remains asymmetric with a steeper high-
frequency wing, but the oscillating character of asym-
metry disappears. Approximation of the line by Eq. (1)
indicates that the asymmetry parameter is positive for
the spectra presented in Figs. 4a and 4c, whereas it is
negative for the spectra shown in Figs. 4b and 4d. We
note that, without any mathematical fitting, this conclu-

Fig. 3. Fourier spectrum of the oscillating component of the
reflected signal.
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sion follows directly from the antiresonance position
determined by the condition q = –ε. The alternating and
oscillating behavior of the Fano parameter definitely
indicates that q is a complex number due to the time
dependence of the zero and pole of the scattering ampli-
tudes.

Controlled change in the spectral lineshape that
includes the effect of the transfer of the antiresonance
dip is well known and widely used in the active polar-
ization nonlinear spectroscopy [10]. Although the
physics of the effect, which is reduced to the interfer-
ence of the electron continuum and discrete (phonon)
level, is similar in the frequency and time domains,
there are significant differences. In active spectroscopy,
change in the spectral position of the antiresonance is
achieved by varying the orientation of the polarization
analyzer in the detection channel and, correspondingly,
by choosing the coupling components of the tensors
responsible for the discrete level and continuum. In this
case, the sign of the asymmetry parameter is deter-
mined by the relation between the signs of the tensor
components. In other words, the sign of q is determined

Fig. 4. Spectrum of the Eg phonon in the Bi single crystal
when varying the initial position of the time window used
for the Fourier transform. The initial position of the window
varies within 1 ps for the total window width on the order of
25 ps.
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by the symmetry properties as in [3, 4]. In our experi-
ments, the detection conditions remain unchanged and
the change of the sign of the Fano parameter is deter-
mined only by the dynamics of the system under inves-
tigation, which is the first observation of this kind.

First of all, we consider how the change of the sign
of the asymmetry parameter is formally possible. The
pumping–probing method is a time-domain analogue
of the coherent anti-Stokes/Stokes stimulated Raman
scattering, which is one kind of active nonlinear spec-
troscopy. In this case, the generation of coherent exci-
tations is determined by the square of the nonlinear sus-
ceptibility of the crystal that is induced by an intense
pumping pulse. In contrast to spontaneous Raman scat-
tering, where the Stokes and anti-Stokes channels are
independent of each other, which follows from time
reversal symmetry and is responsible for the detailed
balance principle, in our experiment, these channels
correlate with each other and anti-Stokes scattering
occurs even at absolute zero temperature, breaking the
detailed-balance principle. Moreover, spontaneous
scattering occurs through one intermediate (virtual)
level, whereas stimulated scattering involves two inter-
mediate levels [10]. Therefore, stimulated scattering
may exhibit resonance between a phonon and the elec-
tron continuum, which is determined by the difference
of the intermediate levels (wave mixing responsible for
the process is possible even in the absence of the mixed
phonon resonance [10]). Thus, ultrashort light pulses
excite both lattice and electron states. For this reason,
the pumping of the crystal is of the mixed character and
the nonstationary coherent effect arises because the
crystal holds a certain phase between the electron and
lattice excitations for certain time. This behavior can be
schematically illustrated by the simplified diagram
shown in Fig. 5. According to this diagram, the sign of
the Fano parameter can be changed by either changing
the properties of the electron continuum or modifying
the properties of the lattice mode. In other words, the
change χ(Ω)  χ(–Ω) ≡ –χ(Ω) for the discrete level
or continuum may ensure the desired the change of the
sign of the asymmetry parameter.

In experiments [3], the change of the sign of the
asymmetry parameter is treated as the complexity of q
and is attributed to the breaking of time reversal sym-
metry. In this case, following the formalism developed
for Raman scattering [11], we may represent Eq. (1) in
the form

(2)

Here, the second term describes the discrete-excitation
part that does not undergo interference (imaginary part
of susceptibility) and the last, interference, term is
determined by the real parts of the susceptibility of the

I ε( ) ε q+ 2

1 ε2+
----------------

ε Req+( )2 Imq( )2+[ ]
1 ε2+

------------------------------------------------------= =

=  1 Req( )2 Imq( )2+[ ]
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1 ε2+
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continuum and discrete level. Formula (2) describes the
asymmetric and symmetric profiles for Req @ Imq and
Req ! Imq, respectively, and transfers the position of
the antiresonance when the sign of the real part
changes.

The connection of the change of the sign of the Fano
parameter with the breaking of time reversal symmetry
physically means that experimental conditions include
external or internal axisymmetric fields (e.g., magnetic
fields). In this case, the symmetry of the system is
reduced from the type-II Shubnikov group to the type-I
Shubnikov group, which is mathematically equivalent
to the absence of the complex conjugation (spin rever-
sal). It would be assumed that certain internal fields that
are responsible for broken symmetry also arise in the
case of Fröhlich condensate [9], but it is more natural to
search for an interpretation of the experiment that
would avoid such fundamental conclusions, and we try
to show that this is possible.

The breaking of time-reversal symmetry can be
microscopically caused by the presence of dissipation
in the system and change in the type of carriers or pro-
cess responsible for the detected signal. With sufficient
confidence in our experiments, we can exclude dissipa-
tion as a cause of the alternating behavior of the Fano
parameter, which is attributed to the periodic (oscillat-
ing) character of the observed phenomenon. Two other
causes, replacement of an electron by a hole (the latter
is an electron moving back in time) and change in the
scattering channel (i.e., change of the phenomenon to
“anti-phenomenon”), should be analyzed in more
detail. Indeed, it is known from investigations of
Raman scattering in semiconductors that a change in
the type of carriers gives rise to the change in the sign
of the asymmetry parameter of the phonon line [11].

Fig. 5. (a) Schematic representation of the interference
between the mixing active discrete state, which is described
by the real and imaginary parts of susceptibility χd, and the
continuum presented by the real part of susceptibility χc and
the results of the changes (b) χd(Ω)  χd(–Ω) and
(c) χc(Ω)  χc(–Ω).
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The band structure of bismuth is characterized by the
presence of electron and hole pockets at the boundary
of the Brillouin zone [12]. For this reason, it can be
assumed that, with a significant increase in the inter-
atomic spacing that is caused by the large phonon
amplitude, the lattice interacts primarily with one type
of current carriers, whereas interaction in the presence
of interatomic approaching occurs with another type of
carriers. It is impossible to exclude the possibility of the
dielectric transition induced by the large displacements
of atoms involved in the formation of coherent
phonons. In this case, the bottom of the conduction
band in a semimetal moves upward and can leave the
region of band overlapping. As a result, electrons sink
to the valence band and the conduction band remains
empty. We note that the replacement of an electron by a
hole is equivalent to a change in the real part of the sus-
ceptibility of the continuum shown in Fig. 5b.

The second possible cause of the alternating (com-
plex) behavior of the Fano parameter is a change in the
scattering channel in dependence on the delay time. To
explain this fact, we emphasize that the probing light
pulse in our experiments interacts with the coherent
medium prepared by the pumping pulse. Such a para-
metric interaction between waves of different origins
constitutes phase-dependent Raman scattering [13],
where the Stokes and anti-Stokes components of the
probing pulse are enhanced (or damped) in dependence
on the phase relations between excitations of matter
and the electromagnetic field. Indeed, using the pump-
ing–probing method supplemented by the spectral anal-
ysis of the probing pulse, it was found [13] that the
spectrum of the probing pulse (as well as its integral
intensity) is a function of the time delay; i.e., the Stokes
and anti-Stokes components of the probing pulse are
alternately enhanced and damped. The periodic varia-
tion in the absolute value and sign of the asymmetry
parameter may be attributed to this alternation of the
Stokes and anti-Stokes scattering channels (we remind
that the Stokes process for spontaneous scattering is the
time-reversed anti-Stokes process). Change in the scat-
tering channel for the mixing active phonon level that
occurs under the transformation Reχ(Ω)  Reχ(–Ω) ≡
–Reχ(Ω) is caused by the change of the sign of the sus-
ceptibility argument (we note that the imaginary part of
the susceptibility is an even function of frequency and
remains unchanged).

The mechanism of the appearance of the complex
asymmetry parameter is as follows. Through nonsta-
tionary stimulated Raman scattering, the pumping
pulse excites phonons and electrons in the frequency
range limited by the spectral width of the laser pulse.
The energies of optical phonons in bismuth overlap
with electrons due to interband transitions [12], which
can be responsible for the appearance of the electron
continuum, and the large excitation density allows the
interaction between A1g and Eg phonons through the
electron continuum. In this case, the interaction of each
phonon with the continuum gives rise to change in the
phase properties of this continuum and, as a result, the
asymmetry parameter of the Eg phonon becomes a
function of the difference between the phases of the
phonon level and continuum. Oscillations in q are evi-
dently sensitive to the interaction of both phonons with
the continuum and occur with the frequency of the dif-
ference phonon mode.

Thus, using the pumping–probing method with high-
energy femtosecond pulses in bismuth crystals at helium
temperature, we observe Fano interference with the
alternating (complex) asymmetry parameter q. The com-
plex character of the Fano parameter indicates that time-
reversal symmetry is broken in the nonlinear collapse–
revival mode for coherent phonons and is attributed to
either change in the type of carriers with which the lattice
interacts or the alternation of the dominant scattering
channel (from Stokes to anti-Stokes) for various delay
times. At the current stage of investigations, it is difficult
to favor any mechanism, although we think that change
in the scattering channels is a more realistic cause.

This work was supported by the Russian Foundation
for Basic Research (project no. 04-02-97204) and the
Japan Society for the Promotion of Science (JSPS,
grant no. 05-02-19910-YaF joint with the Russian
Foundation for Basic Research).
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The role of quantum interference in the formation of the resonance scattering spectra of Mössbauer photons is
studied. A resonant rf field mixing the spin levels of the excited state of a nucleus is considered to be the mech-
anism ensuring the conditions for quantum interference. A considerable intensity redistribution of the elastic
and Raman scattering channels is shown to occur as a result of quantum interference. © 2005 Pleiades Publish-
ing, Inc.

PACS numbers: 61.18.Fs
In recent years, attempts have been made to realize
quantum interference effects for gamma radiation
amplitudes by using Mössbauer transitions [1]. These
are the effects that have been observed previously in the
optical region [2]: the electromagnetically induced
transparency of a medium, the slow-down of the group
velocity of light, the inversionless amplification and
generation of radiation, and so on. Although as early as
in the 1960s it was hoped that the Mössbauer effect
might be used to solve some problems of gamma optics
(in particular, the problem of gamma laser creation) [3],
the notion of the quantum interference of Mössbauer
photons was introduced much more recently [4], and it
remains most important up to now. In this work, we
studied the consequences of quantum interference in
spectra of resonant Mössbauer scattering when the spin
of the excited nuclear state is governed by coherent
dynamics caused by a resonant rf field. As we will show
below, due to the quantum interference, the Raman
scattering prevails in this case.

Consider first a three-level model (Fig. 1a). Level 1
represents the ground state of a nucleus and levels 2 and
3 are the spin sublevels of its excited state. The rf driv-
ing field with a frequency ω0 is tuned to exact resonance
with the transition 2–3 (ω0 = ω32 = ε3 – ε2). The radia-
tion of the Mössbauer source is tuned (possibly, with
some detuning) to the transition 1–2. The Hamiltonian
of this system has the form

(1)

Here, the term  represents the nuclear and hyperfine

interactions;  and  are responsible for the free rf

and gamma fields, respectively; and  and 
describe the interactions of the nucleus with the rf field
and Mössbauer radiation, respectively.
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The terms of Hamiltonian (1) are expressed as

(2)

(3)

(4)

Here, , , and εj are the Fermi operators of the cre-
ation and annihilation and the energy of the jth state of

H0, respectively (Fig. 1a);  and  are the Bose oper-
ators of creation and annihilation of an rf photon,

respectively;  and  are the corresponding operators
for a γ-ray photon with the wave vector k; Ω0 and Ak are
the coupling constants of rf and γ-ray photons with the
nucleus, respectively; c0 is the speed of light; and " = 1
is assumed.

We will consider preliminarily a pair of spin levels
coupled by a strong rf field,

(5)

The eigenstates (t) (q = 1, 2) of this Hamiltonian are
known as dressed states [5]. For the exact resonance

(ω0 = ε3 – ε2), the explicit expressions for (t) in terms

of the basis states  and  are given by
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+ ĉk

εiâi
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(7)

where |j, n〉  ≡ |j 〉|n〉 , |n〉  is the n photon state of the rf
field, and ϕ is defined by the expression Ω0 =
|Ω0|exp(iϕ).

States (6) and (7) can also be classified as quasi-
energy states [6] (steady states [7]); i.e., their time
dependence is defined as follows:

(8)

where T = 2π/ω0 is the period of the rf field,  =

 + ε2 is the quasienergy, and |Ω0|  is the
Rabi frequency. In the second-quantization representa-
tion, the classical rf field is described by the coherent
state [8]

where

is large. In this case, the Poisson distribution P(n)
describing the population of the Fock states |n〉  has a
sharp maximum at n ≈ . Therefore, the effect of the

e2
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∞
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∞
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n

Fig. 1. (a) A three-level model scheme of the scattering of
Mössbauer quanta and (b) an equivalent scheme of scatter-
ing by dressed states.

rf
classical rf field on the spin states can be described with
good accuracy by functions (6) and (7) at n ≈ .

The resonance scattering of γ-ray photons will be
described using the scattering amplitude in the dressed-
state representation in the second order of the perturba-

tion theory with respect to the interaction (k). The
use of dressed states allows one to take into account
exactly the effect of the rf field,

(9)

Here, Γ is the natural width of the Mössbauer level;
|i(0)〉  = |i(t = 0)〉  = |1〉|n〉|k1〉  and |f (t)〉  =
exp(−iEft)|1〉|n'〉|k2〉  are the initial and final states of the
system, whose total energies are Ei = ε1 + nω0 + Ek1 and
Ef = ε1 + n'ω0 + Ek2, respectively; and k1 and k2 are the
wave vectors of the incident and scattered photons.

The probability of the scattering of Mössbauer radi-
ation is calculated by the formula [9]

(10)

Here, the energy conservation law is taken into
account and averaging over the energies Ek1 of the inci-
dent photons is performed with regard to the function
describing the source line shape (commonly, the
Lorentz function) fL(Ek1 – Ek0), where Ek0 is the energy
corresponding to the maximum of this function. In
what follows, the half-width of fL(Ek1 – Ek0) is assumed
to be equal to Γ/2.

Figure 1b shows the scheme of the scattering of
γ-ray photons in the dressed-state representation at
Ek0 = ε2. We will consider transitions (9) with n' = n and
n' = n – 1, corresponding to the elastic scattering (S1)
and to the Raman scattering (S2). The amplitudes of
these two transitions have the form

(11)

(12)

Substituting amplitudes (11) and (12) into Eq. (10)
and integrating over the energy of the incident photons,
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n 0( ) Ĥ k1( ) 1 n k1, ,〈 〉 e

iEk2t inω0t Γ t /2–+
,

A1nk1 1 n 1–( )k2,

∼ t 1 n 1 k2 Ĥ k2( ) eq
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we obtain the spectral profiles of the elastic and Raman
scattering for Ek0 = ε2,

(13)

(14)

where p = –i(Ek2 – ε2) + Γ/2, Ωr = |Ω0|  is the Rabi
frequency of the rf field. In the case of the rf resonance
(ω0 = ε3 – ε2), the proportionality coefficient in Eqs.
(13) and (14) is the same.

It is easy to verify that, at small Ωr, Eqs. (13) and
(14) exhibit constructive and destructive interference,
respectively. In particular, at Ωr tending to zero, S2 also
approaches zero. However, as Ωr increases (more
exactly, at Ωr > Γ/2), the character of the interference
effects in Eqs. (13) and (14) reverses under the same
conditions (Ek0 = ε2). Now, at sufficiently large Ωr , the
intensity of the Raman line may become greater than
the intensity of the elastic scattering line. In Fig. 2, the
expected spectrum S1(k2) + S2(k2) is shown, which was
calculated for Ωr = 1.5 under the assumption that the
matrix elements of the transitions 1–2 and 1–3 are equal
to each other. The intensity ratio of the lines S2 and S1
is defined as I2/I1, where I2 and I1 are the areas under the
curves S2 and S1, respectively. In Fig. 3, the ratio I2/I1 is
shown as a function of Ωr . The fact that I2/I1 exceeds
unity means that the nucleus absorbing a primary γ-ray
photon in the transition 1–2 relaxes preferably from
level 3, i.e., via the Raman rather than elastic channel.
Such a preference in the way of nuclear relaxation we
call the “valve” effect (intuitively, it seems that the ratio
I2/I1 should asymptotically approach unity with
increasing Ωr). This effect is explained by the fact that,
at sufficiently large values of Ωr , the intensity of the
elastic scattering decreases due to the destructive inter-
ference of the amplitudes, whereas the Raman scatter-
ing intensity increases due to their constructive interfer-
ence. Both interferences are maximal precisely at Ek0 =
ε2, at which the interfering amplitudes in Eqs. (13) and
(14) are comparable in value. If the condition Ek0 = ε2 is
violated (detuned), the magnitude of the valve effect
decreases; as a result, the dependence of the ratio I2/I1
on the energy of the Mössbauer radiation Ek0 is resonant
(Fig. 4).

As is seen in Fig. 3, the magnitude of the valve effect
varies monotonically with Ωr/Γ. However, as the ratio
Ωr/Γ increases, the total intensity of scattering (I1 + I2)
decreases rather rapidly (Fig. 5), which should be taken
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Fig. 2.

Fig. 3. Dependence of the ratio I2/I1 on the Rabi frequency
Ωr at Ek0 = ε2.

Fig. 4. Dependence of the ratio I2/I1 on the photon energy
Ek0 of the Mössbauer source for Ωr = (a) 0.5, (b) 1, and
(c) 3.
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into account primarily in the experimental realization
of this effect. Therefore, the optimal condition for the
observation of the effect is reduced to the relation Ωr ~
Γ. This is the condition for a single photon to excite two
in-phase dressed states, whose interference underlies
the effect under discussion.

The abstract three-level system considered above is
well suited for the understanding of the essence of the

Fig. 5. Dependence of the total intensity of the scattered
radiation I1 + I2 on the Rabi frequency Ωr of the rf field at
Ek0 = ε2.

Fig. 6. Expected resonance scattering spectrum for the Fe57

isotope under the rf resonance conditions of the excited
state of the nucleus. The Rabi frequency Ωr = 1.5 (see the
text), and E0 is the energy of the Mössbauer level. The
pumping line is tuned to the sixth component of the Zeeman

multiplet; Sel is the line of the elastic scattering; and ( ,

), ( , ), and S3 are the Raman lines of the first, sec-

ond, and third orders, respectively.

S1
1

S1
2

S2
1

S2
2

valve effect. However, the number of levels in real iso-
topes is greater than three. In addition, it is necessary to
take into account that the hyperfine components of
Mössbauer transitions have different intensities and
angular dependences of radiation. However, the valve
effect will still be observed if the sublevels of the
excited state of a nucleus are coupled with a driving
field. As before, at a sufficiently large Ωr/Γ value, the
intensity of the elastic scattering decreases due to
destructive interference. The intensity of a Raman line
increases and decreases if the line is formed by an odd
and even number of rf photons, respectively. However,
the ratio of the line intensities should be compared now
not with unity as a limiting value, but with the ratio of
the squares of the corresponding transition matrix ele-
ments calculated for a particular scattering angle. The
results of our calculations of the expected effect for the
Fe57 isotope are presented in Fig. 6.

In conclusion, we discuss how the effect considered
in this study is related to the rf effects in Mössbauer
spectroscopy described previously [10, 11]. The first
works in this field were aimed at studying the quasien-
ergy structure of Mössbauer spectra, which was
described first in [10]. The expected structure in
absorption spectra was observed in [12, 13]. Those
experiments are directly related to the quantum inter-
ference effect discussed here. They showed the possi-
bility of the coherent dynamics of nuclear spins of Fe57

in magnetic materials under magnetization reversal.
This is the main condition for the realization of the
quantum interference effect under discussion. In addi-
tion, it was shown in [12, 13] that the Rabi frequency
values necessary for the observation of the valve effect
can be reached in the case of Fe57 isotopes in magneti-
cally ordered systems. Using the experimental spectra
reported in [12], the amplitude of an oscillating hyper-
fine field induced at a nucleus is easily estimated as h1 ≈
88 kOe, which corresponds to the Rabi frequency Ωr ≈
1.5 used in the calculation of the spectrum shown in
Fig. 6.

We note that, for this (rf) mechanism of quantum
interference, the manifestation of quantum interference
effects should not be expected in absorption spectra (at
least in the thin-absorber approximation). Indeed,
according to the optical theorem, the absorption cross
section can be represented as the imaginary part of the
forward scattering amplitude. Then, the spectrum
depends linearly (rather than quadratically) on the scat-
tering amplitude, and the split amplitudes do not inter-
fere. For this reason, the quantum interference effect
could not be observed in [10, 11]. The early theories of
the resonance scattering of Mössbauer radiation under
the conditions of rf dynamics of nuclear spins [9, 14,
15] did not focus on quantum interference.
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The internal dynamics of a small-radius precession magnetic soliton is considered. A variational formulation
of the problem on the soliton–magnon interaction is proposed and used to calculate the frequency of a truly
local mode. It is shown that this mode, as well as the conventional translational mode, remains localized in the
small soliton radius limit. The presence of the local mode is confirmed by the numerical solution of the scatter-
ing problem. © 2005 Pleiades Publishing, Inc.

PACS numbers: 05.45.–a, 75.10.Hk, 75.30.Ds
It is well known that topological solitons play an
important role in the physics of two-dimensional (2D)
magnetism [1]. Solitons have a profound impact on the
thermodynamics and response functions of a magnet.
The interest in 2D topological magnetic solitons had
mainly been initiated by Belavin and Polyakov [2], who
constructed a static solution with finite energy for a
purely isotropic ferromagnet and showed that, in such a
magnet, a thermal excitation of solitons destroys the
long-range order. The inclusion of a magnetic anisot-
ropy, which is always present in actual magnets, vio-
lates the scale invariance of the problem and gives rise

to the characteristic magnetic length l0 = , where
A is the inhomogeneous exchange constant and K is the
anisotropy constant. In an anisotropic ferromagnet,
static non-one-dimensional solitons with finite energy
are unstable with respect to collapse [3]. However, in
easy-axis ferromagnets, the conservation of the total
z projection of magnetization

leads to the presence of stable dynamic solitons with a
precession of the magnetization vector with frequency
Ω about the easy axis of the ferromagnet [4, 5]. In terms
of angular variables for the normalized magnetization
m = S/S = (sinθcosφ; sinθsinφ; cosθ), the structure of
such a precession topological soliton is described by
the formulas [5]

(1)

where r and χ are the polar coordinates in the magnet
plane, ϕ0 is an arbitrary angle, and the integer number q

A/K

N
S

a2
----- d2x 1 θcos–( )∫=

θ0 θ0 r( ), φ0 ϕ0 qχ Ωt,–+= =
0021-3640/05/8207- $26.00 0436
determines the π2 topological charge of the soliton
(below, we assume that q = 1). The structure of a sta-
tionary soliton is determined by the solution to the dif-
ferential problem

(2)

Here, ω0 = γHa is the gap in the spectrum of linear mag-
nons characterized by the dispersion law ω(k) = ω0(1 +

), γ is the gyromagnetic ratio, Ha is the anisotropy
field, and l0 is the magnetic length introduced above. In
the isotropic case (l0  ∞), this equation determines
the static (Ω = 0) Belavin–Polyakov solution /2 =
R/r, where the arbitrary parameter R has the meaning of
the soliton radius. A solution to problem (2) can easily
be constructed by the numerical method. Approxi-
mately, this solution is described by the simple function
[6]

(3)

which actually determines the Belavin–Polyakov solu-
tion with the cutoff radius r0. For an anisotropic ferro-
magnet, the energy of the soliton, its precession fre-
quency Ω, and its characteristic radius are determined
by the number N . S(R/a)2. Since the magnetic length
is l0 @ a, where a is the lattice constant, the macro-
scopic approximation and the semiclassical description
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N @ 1 are also applicable to solitons with small radii
R ! l0, which are discussed in this paper.

The properties of 2D precession solitons are well
understood [1]. However, the laws governing the trans-
lational dynamics of solitons, i.e., the motion of a soli-
ton as a whole, remain poorly investigated. The same
problem exists for other 2D nonlinear states with non-
trivial topology, such as, for example, magnetic vorti-
ces. The use of a combination of direct numerical mod-
eling with analytical methods showed that the dynam-
ics of vortices is non-Newtonian: the coordinate of the
center of a vortex X(t) satisfies an equation that con-
tains higher-than-second derivatives of X with respect
to t [7] and coefficients depending on the size and shape
of the ferromagnet sample in which the vortex moves.
For localized solitons (1), the possibility of describing
their dynamics on the basis of Newtonian equations
with a finite effective mass is open to question. For
example, in [8], it is stated that only the inertialess
dynamics of a localized soliton “frozen into” the exter-
nal spin flux is possible.

At first glance, the problem can easily be solved on
the basis of the adiabatic perturbation theory for soli-
tons [9]. This theory was used to describe the dynamics
of one-dimensional solitons under the effect of arbi-
trary perturbations slowly varying in space and time.
However, the applicability of this approach to 2D topo-
logical solitons is limited by the fact that, because of the
nontrivial topology of magnetization distribution in the
soliton, the dynamics of the soliton as an object pos-
sesses gyroscopic properties with the gyroscopic con-
stant G = 4πq"S/a2 [1]. Therefore, one can expect that
the simplest effective equation of motion written for the
coordinate X of the soliton center and taking into
account the inertial terms has the form

(4)

where m∗  is the effective mass of the soliton and Fext is
the external force acting on the soliton (e.g., from the
boundary). Even for a free soliton (Fext = 0), this equa-
tion involves a “rapid” motion with the frequency ωL =
G/m∗  (an analogue of the Larmor precession of a
charged particle in magnetic field); hence, the condition
of the slowness of the magnetization variation is not
satisfied and the adiabatic perturbation theory [9] is
inapplicable.

In this paper, we analyze the soliton dynamics by
using a different approach: it was used in studying mag-
netic vortices and was based on considering the soli-
ton–magnon scattering [10]. Its main idea is as follows:
one considers the full set of magnon eigenmodes in the
presence of a soliton, selects the eigenmodes that may
be associated with the displacement of the soliton as a
whole, and then compares the frequencies of these
modes with the eigenmodes of Eq. (4). Thus, we verify
the Newtonian equation and calculate the effective soli-

m*
d2X

dt2
--------- Fg Fext, Fg+ G ez

dX
dt
-------× ,= =
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ton mass m∗ , which remains finite for any soliton radius
but increases as the soliton radius R decreases.

To study the interaction of magnons with a soliton,
we use the Landau–Lifshitz equations

(5)

For analyzing the soliton–magnon interaction, we con-
sider small oscillations of magnetization (θ, φ) on the
background of a stationary soliton (θ0, φ0). These oscil-
lations can be described by the complex “wave func-
tion” ψ = θ – θ0 + isinθ0(φ – φ0). Linearized equations
for ψ have the form of the so-called generalized
Schrödinger equation [6, 11]

(6)

The specific feature of this equation is the presence of
the term involving W, which relates the solutions with
positive and negative frequencies. One should also
notice the appearance of the term that has the structure
of the effective magnetic field with a vector potential
A(ρ) = eχqcosθ0/r proportional to the topological
charge q. This term is caused by the gyroscopic proper-
ties of the medium and is related to the topological
properties of the soliton.

The potentials involved in Eq. (6) have the form

To solve Eq. (6), we use the expansion in partial waves
[10, 6, 11]:

(7)

This method allows us to reduce the generalized
Schrödinger equation (6) to the spectral problem

(8)

Here, H± = –  + U + (|A| ± m/r)2 are 2D radial
Schrödinger operators that have no negative eigenval-
ues and the integer m has the meaning of the azimuthal
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quantum number. Note that spectral problem (8) for the
matrix Hamiltonian * fundamentally differs from the
standard set of coupled Schrödinger equations: the
operator * is Hermitian only in the Hilbert space with
indefinite metric [11]:

In this case, for all of the eigenvalues ωm, the operator
H– has a resolvent and, hence, vm = (H– + ωm)–1Wum is
a slave variable of the spectral problem.

In the absence of the soliton, the magnon amplitudes
are um = J|m|(kr) and vm = 0. The interaction with the
soliton leads to the scattering of magnons. Then, away
from the soliton, the magnon modes have the form

(9)

Here, Jn(x) and Yn(x) are the Bessel and Neumann
functions of order n, k is the wave number, σm(k) =
− (k) is the scattering amplitude, and δm(k) is the
scattering phase. In the presence of the soliton, the for-
mation of localized (bound) states is also possible. Dis-
tribution (7) includes all types of perturbations of the
stationary soliton, including two local zero modes,
namely, the rotational mode (m = 0) and the zero trans-
lational mode (m = 1). They appear due to the presence
of two arbitrary parameters in solution (1): the position
of the soliton center and the angle ϕ0. For these modes,
we can write a general formula in terms of u and v :

(10)

Perturbations associated with ϕ0 do not cause any dis-
placement of the soliton, and the symmetry related to
the displacement of the soliton center determines the
presence of the zero translational mode. For us, it is
important that the full set of modes of spectral problem
(8) also includes nonzero modes associated with the
soliton displacement. The coordinate of the soliton can

be written in the form X(t) = (S/Na2) rd2x

[12]. This allows us to determine the perturbations that
lead to a finite velocity of the soliton dX(t)/dt. For the
case of small perturbations, with the use of Eqs. (5), we
obtain

Since (—θ0, —φ0) ∝  (sinχ, cosχ) and the other terms
under the integral depend on r alone, only the modes
with m = ±1 possess the property of interest. Thus, the
dynamics of X(t) can only be associated with the modes
characterized by |m| = 1. In addition, the motion of the
soliton as a particlelike object without the excitation of
magnon modes in the whole volume of the system is
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2ω0
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only possible when the corresponding mode is local-
ized.

The magnon modes localized by the soliton were
studied in [13, 6]. In [6], with the use of the two-param-
eter shooting method, we showed that a soliton with a
relatively large radius possesses a set of local modes
with |m| ≤ mmax(R). As the soliton radius decreases, the
modes sequentially leave the gap region (the discrete
spectrum region), pass to the continuous spectrum, and
transform into quasilocal modes. For example, when
R & 2.8l0, all of the modes with |m| > 2 cease being
localized, and when R & 1.5l0, the system contains only
one local nonzero mode with m = –1, which can be
called the nonzero translational mode. As R decreases,
the frequency of this mode ωm = –1 asymptotically
approaches the boundary of the continuous spectrum
while the exponential decrease in the magnetization
perturbation away from the soliton becomes slower,
r0 @ l0. The wave function becomes delocalized, and
the numerical analysis based on the two-parameter
shooting method becomes difficult and unreliable (in
[6], it was actually possible to consider only solitons
with R * 0.3l0). Therefore, the question of what should
occur with a further decrease in the soliton radius
remains open: whether the soliton will possess a non-
zero translational mode in the case of small-radius soli-
tons for the so-called magnetic skyrmions or this mode
will pass to the magnon continuum by transforming
into a quasilocal mode. As we noted above, this ques-
tion is of fundamental significance in connection with
the problem of applicability of Newtonian equations to
the soliton dynamics.

The problem of the presence of a local mode can be
solved independently by analyzing the scattering data.
As was noted above, the local mode problem based on
the two-parameter shooting method cannot be solved
numerically for the limiting case of small soliton
radius, but the problem of magnon scattering by a soli-
ton can be numerically integrated for solitons as small
as one likes with the use of the one-parameter shooting
method [6]. The scattering data make it possible to
derive a conclusion concerning the presence or absence
of the local mode on the basis of the Levinson theorem,
according to which the number of bound states and the
total phase shift in the scattering data for a partial mode
are related to each other. In the case of analyzing the
soliton–magnon scattering, the problem is complicated
by the fact that the effective potentials have singulari-
ties at zero (of the type of ν2/r2) and at infinity (µ2/r2),
where the numbers ν and µ are not equal to m. Recently
we generalized the Levinson theorem for such singular
potentials [14] and showed that the total shift of the
scattering phase (Eq. (9)) is determined by the expres-
sion

δm 0( ) δm ∞( )– π Nm
b ν µ–

2
------------------+ .=
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In our case, ν = q – m and µ = q + m and the total phase
shift can be represented as

(11)

When the number of local modes changes by one,
the total phase shift undergoes a jump by π, which can
be used to determine the instant of disappearance of the
local mode. The scattering data for the mode with m =
–1 are shown in the figure. To illustrate the operation of
the method, we present the scattering data for the mode
with m = –2 in the same figure. In particular, as was
shown in [6], a soliton with a sufficiently large radius
has a local mode with m = –2. In this case, according to
Eq. (11), the total phase shift is equal to 2π. In the fig-
ure, this situation corresponds to the curve marked with
full triangles. As the soliton radius decreases, the local
mode leaves the discrete spectrum region; hence, the
number of bound states decreases by one and the total
phase shift becomes equal to π (see the curves marked
with empty triangles and empty circles). A numerical
calculation performed for the mode m = –1 shows that,
for any soliton radius, the total phase shift is equal to 2π
(the curves with full circles and empty squares). A com-
parison of this result with Eq. (11) confirms the above
conclusion that the nonzero local mode with m = –1 is
always present for solitons of any radius.

To calculate the frequency of the nonzero transla-
tional mode, it is convenient to reformulate the spectral
problem as a variational problem for the functional
(Lagrangian)

(12)

For a small-radius soliton, all higher modes with |m| >
1 cease being local. Among the remaining three modes
with m = –1, 0, and +1, two are nonzero. One of the
main points in using the variational approach is the ade-
quate choice of the trial function. For this purpose, we
use the closeness of the structure of soliton solution (3)
to the Belavin–Polyakov solution in a wide range of
coordinate values r ! r0, r ≥ R. For the Belavin–Polya-
kov soliton, all three modes with m = –1, 0, +1 have
nonzero frequencies and are determined by Eqs. (10)
[15]. For small-radius solitons, the trial functions for
the mode m = –1 are most naturally chosen in the form

of combinations of the functions  and  given by
Eqs. (10):

(13)

δm 0( ) δm ∞( )– π Nm
b msgn–[ ] .=

+ ω0l0
2 m * m( ) ωm m m( ).–=

u±1
0 v ±1

0

u 1–
ω u1

ω 0= ar2θ0' br θ0,sin–+=

v 1–
ω u1

ω 0= ar2θ0' br θ0.sin+ +=
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Effective Lagrangian (12) with these trial functions
takes the form

where 〈f(r)〉  = rdr. The conditions ∂L/∂a = 0 and

∂L/∂b = 0 lead to the following expression for the
eigenfrequency of the nonzero translational mode:

(14)

where F = 〈sin2θ0〉〈 r2  – sin2θ0〉 .

For the small-radius soliton of interest, the core
structure is close to the structure of the Belavin–Polya-

kov soliton and, for r ! r0, the relation r2  = sin2θ0 is
satisfied. Therefore, the quantity F is determined by the
region lying away from the center, r ≥ r0:

This quantity is always small. Now, estimating the aver-
age values using approximate solution (3), we obtain an

L a b+( )2 θ0sin
2〈 〉 ω

2ω0
--------- 1 θ0cos–〈 〉 2–

 
 
 

=

+
4abω
ω0l0

2
-------------- r2 1 θ0cos–( )〈 〉 2a2 r2θ0'

2 θ0sin
2

–〈 〉 ,+

f r( )
0

∞∫

ωm 1–=

2ω0l0
2F

4 r2 1 θ0cos–( )〈 〉 l0
2F 1 θ0cos–〈 〉 2+

---------------------------------------------------------------------------------------,=

θ0'
2

θ0'
2

F
ω0 Ω–

ω0l0
2

---------------- θ0sin
2〈 〉 r2 θ0sin

2〈 〉 .≈

Phase shift for the modes with m = –1 and –2 and for various
values of the soliton radius.
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expression for the eigenfrequency (14):

(15)

Hence, one can see that, when the soliton radius
decreases, the mode with m = –1 remains local but, as
R  0, its frequency asymptotically approaches the
boundary of the continuum.

Thus, based on the analysis of the scattering prob-
lem for the generalized Schrödinger equation describ-
ing magnons on the background of a soliton, we proved
the existence of a local translational magnon mode with
nonzero frequency and azimuthal number m = –1. We
analytically determined the frequency of this mode,
which asymptotically tends to the spectrum boundary
ω0 as the soliton radius decreases R ! l0. In terms of the
soliton coordinate, this mode corresponds to the Lar-
mor precession of the soliton center with a small ampli-
tude. The inclusion of this mode and the mode with m =
+1, which acquires a nonzero frequency in the presence
of fixed boundary conditions for a circular magnet of
radius L (this leads to the appearance of the restoring
force Fext = –κr, where κ ∝  exp(–L/r0)), unambiguously
fits the Newtonian soliton dynamics described by
Eq. (4). In this case, a slow motion of the soliton occurs
with the mode frequency ωm = 1, which, for small values
of κ, can be represented as κ/G and contains no inertial
mass, as well as Larmor precession with the nonzero
mode frequency ωm = –1 = G/m∗ . The calculation per-
formed for the frequency ωm = –1 allows us to determine
the effective soliton mass

(16)

As the soliton radius decreases, ω  ω0 and the soli-
ton mass infinitely increases. Hence, the soliton loses
its mobility with decreasing radius.

The work of D.D.Sh. was supported in part by the
Ukrainian–German project no. UKR-02-011 and the
Ukrainian–French project “Dnipro” (no. 09855WF).

ωm 1–= ω0 Ω–( ) 1
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EPR Identification of the Triplet Ground State 
and Photoinduced Population Inversion 
for a Si–C Divacancy in Silicon Carbide
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It is shown that intrinsic defects responsible for the semi-insulating properties of SiC represent Si–C divacan-
cies in a neutral state (VSi–VC)0, which have the triplet ground state. The energy level scheme and the mecha-
nism of creating the photoinduced population inversion of the triplet sublevels of the divacancy ground state are
determined. It is concluded that there is a singlet excited state through which spin polarization is accomplished,
and this fact opens the possibility of detecting magnetic resonance on single divacancies. © 2005 Pleiades Pub-
lishing, Inc.

PACS numbers: 61.72.Ji, 61.72.Bb, 76.30.–v
There is a demand for replacing vanadium impuri-
ties responsible for the semi-insulating properties of
silicon carbide (SiC) with intrinsic defects to create
semi-insulating substrates required for manufacturing
device structures. A similar problem was solved when
the semi-insulating properties of GaAs were optimized
by means of replacing chromium impurities by intrinsic
EL2 defects. So-called P6 and P7 defects were detected
in semi-insulating SiC crystals by the electron para-
magnetic resonance (EPR) technique (these defects
were observed in SiC crystals in [1]), and the sugges-
tion was made that these defects are responsible for the
semi-insulating properties of SiC [2]. The EPR spectra
of P6 and P7 centers were observed in [1] only upon
optical illumination; therefore, it was suggested that
these centers belong to a triplet excited state of a Si–C
divacancy (VSi–VC). Recently, based on optically
detected EPR studies, the structure of P6 and P7 cen-
ters has been reinterpreted and a model has been pro-
posed in the form of a CSi–VC pair in which CSi repre-
sents a carbon atom at a silicon position, that is, an anti-
site defect, and the EPR spectra correspond to a triplet
excited state of the defect [3]. In fact, the latter interpre-
tation implies a triplet excited state of a silicon vacancy
that encompasses one of four carbon atoms located in
the nearest environment of the vacancy with a carbon
vacancy remaining nearby. The main point of this inter-
pretation was the statement that the EPR spectrum
belongs to a triplet excited state, because it is difficult
to imagine that this structure could form directly in the
crystal after annealing at 700–1000°C and would not
exist immediately after irradiation with neutrons.
0021-3640/05/8207- $26.00 0441
Before our work, the EPR spectra of P6 and P7 centers
had been observed only upon optical illumination,
which has led to a wrong interpretation of their ground
state and, as a consequence, to an erroneous model of
their structure. A similar mistake was made in the inter-
pretation of the triplet state of the known N–V defect in

diamond [4] and the neutral  vacancy in SiC [5]. It
was considered that EPR spectra belong to the triplet
excited states of the corresponding defects, because
these spectra were observed only upon optical illumina-
tion. In fact, the reason for the observation of EPR spec-
tra was optical alignment in the triplet ground state
through a metastable singlet state and deviation of the
population of triplet levels from the Boltzmann distri-
bution, as a result of which the EPR signal was sharply
enhanced. This problem was solved when the concen-
tration of defects was increased and it became possible
to observe the EPR spectra of the N–V defect in dia-

mond [6] and  in SiC [7] without optical illumina-
tion at low temperatures, which unambiguously pointed
to the existence of the triplet ground state.

The aim of this work is to prove the existence of the
triplet ground state for P6 (P7) centers, to elucidate the
mechanism of creating the population inversion of spin
sublevels in the ground state and, as a result, to argue
that the structure of the center represents a VSi–VC diva-
cancy in the neutral state.

The EPR experiments were performed at low tem-
peratures (1.2–4 K) in total darkness, which excluded
the possibility of thermal or optical population of the
excited state. The EPR spectra were detected in the

VSi
0

VSi
0
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X range (9.3 GHz) on a cw radiospectrometer in the
temperature range 3.5–300 K and also in the W range
(95 GHz) on a pulse electron spin echo (ESE) spec-
trometer at temperatures 1.2–2 K. The results of study-
ing four 6H-SiC samples exposed to various doses of
irradiation with fast neutrons. Samples 1 and 2 were
irradiated with neutrons with a dose of 1020 cm–2, and
samples 3 and 4 were irradiated with neutrons with a
dose of 1018 cm–2. Sample 4 was grown with a changed
isotope composition of 13C (13% 13C at the natural con-
centration of 1.1%, the exact concentration of 13C was
determined by the hyperfine (HF) structure observed in

Fig. 1. EPR spectra of the P6 and P7 centers in a 6H-SiC
crystal measured in samples 1 and 2 for several orientations
in darkness (a) in the X range at 4 K (sample 1) and 15 K
(sample 2) and (b) by the ESE technique in the W range at
1.2 and 1.5 K in sample 1.

(15 K)
the EPR spectrum of a silicon vacancy). After neutron
irradiation, all samples were subjected to annealing at a
temperature of 700°C for 20 min.

Figure 1a presents EPR spectra measured for sam-
ples 1 (4 K) and 2 (15 K) (particular lines for P6 centers
are given, the relative intensities of EPR lines for P7
centers in this sample are considerably lower) in the
X range in darkness for several crystal orientations in
the magnetic field. The EPR spectra are described by
the standard spin Hamiltonian for the electronic spin S
= 1 with parameters coinciding within the experimental
error with the corresponding values reported in [1] for
P6 and P7 centers. The orientations B || c (θ = 0°) and
θ = 70° correspond to the symmetry axes of P6 and P7
centers, respectively, and the EPR spectra of P6 and P7
centers marked with brackets exhibit a maximum
hyperfine structure splitting in these orientations. The
signals for each center consist of three pairs of lines
corresponding to different positions in the lattice of the
6H-SiC polytype. Figure 1b demonstrates ESE signals
measured in sample 1 at a high frequency (95 GHz) and
at very low temperatures (1.2–1.5 K) in total darkness.

The intensities of the low- and high-field fine-struc-
ture components measured in the EPR spectra by ESE
at temperatures of 1.2 and 1.5 K sharply differ from
each other because of a strong difference in the popula-
tions of triplet sublevels at low temperatures and large
Zeeman splittings. The ratio of intensities of these com-
ponents gives direct information on the temperature of
the sample and allows the sign of the fine-structure
splitting D to be determined (D > 0).

Figure 2 presents the EPR spectra of P6 and P7 cen-
ters measured in sample 3 under continuous optical
illumination in the visible range. In this case, the distri-
bution of populations of the triplet sublevels deviates
from the Boltzmann distribution. As a result, emission
rather than absorption was detected for the high-field
transition because of the creation of the population
inversion for the triplet sublevels. In crystals exposed to
high doses of neutron irradiation, the EPR signal of P6
(P7) centers is observed directly without photoexcita-
tion, because the concentration of defects is high and the
spin–lattice relaxation time T1 is shorter. For low con-
centrations of defects, the EPR signal is saturated
because of long T1 [1], which also hinders its observa-
tion.

The detection of the EPR spectra of P6 (P7) centers
at low temperatures in darkness proves that the ground
state of these centers is triplet (S = 1) rather than singlet
as was argued in [1, 3]. One of the arguments presented
in [3] in favor of the presence of CSi in the structure of
P6 centers was an observation of the HF interaction
with one carbon atom of 48 MHz. We do not consider
this result a weighty argument. Firstly, the EPR spectra
in [3] were measured only for one orientation, B || c, and
a small inaccuracy in the orientation would lead to a
change in the ratio of intensities of EPR signals. Thus,
it seems that the observed structure corresponds to
JETP LETTERS      Vol. 82      No. 7      2005
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interaction with three C atoms, which corresponds to
the value of HF interaction with three C atoms for a
neutral silicon vacancy [8]. Secondly, the value
48 MHz seems to be very small for the HF interaction
in CSi (approximately 1% spin density on C under the
suggestion that this is an isotropic HF interaction con-
stant). In 6H-SiC crystals containing 13% 13C (sample 3),
we detected centers with S = 1/2 for which we observed
HF interaction with one C atom with constants A|| =
230 MHz and A⊥  = 87 MHz. This approximately corre-
sponds to the spin-density distribution 44% on the car-
bon 2p orbital and 3.6% on the carbon 2s orbital. Such
values, being the maximum observed HF interaction
with carbon in SiC, are evidently typical for a single C
atom in an antisite defect or for an interstitial C atom.
The results of studying this center will be presented in a
subsequent publication. It should be added that the ener-
gies and structure of the phononless lines, whose rela-
tion to P6 (P7) centers was proved in [3], are close to the
corresponding characteristics for a neutral silicon
vacancy. This also gives evidence in favor of the pres-
ence of a neutral silicon vacancy in the structure of P6
(P7) centers. Thus, the model suggested by the authors
of [3] as a CSi–VC pair, which is currently used in numer-
ous publications (see, for example, [2]) does not comply
with new experimental data and should be reconsidered.

We believe that the P6 (P7) centers represent the
most natural defect in the form of a silicon–carbon
divacancy in the neutral state (VSi–VC)0. The divacancy
axis in the P6 center is oriented along a bond parallel to
crystal axis c, and the divacancy axis in the P7 center is
oriented along a bond that is not aligned with axis c.

To explain photokinetic processes in a (VSi–VC)0

divacancy in silicon carbide based on the available
experimental data, an energy level scheme is proposed
that includes the levels of the 3A ground state, 3E
excited state, and the metastable 1A singlet state (inset
in Fig. 2); that is, the conclusion is drawn that there
exists a singlet excited state through which spin polar-
ization is accomplished. Luminescence and optical
absorption are due to transitions between spin sublevels
of the 3E and 3A states. Here, it may be suggested (as
well as in the N–V defect in diamond [9]) that nonradi-
ative transitions between the 3E and 1A states (so-called
intersystem crossing, ISC) are strictly spin-dependent
and that the rate of the transition between the sublevel
MS = 0 of the 3E state and the 1A state is much lower as
compared with transitions from sublevels with MS = ±1.
On the contrary, the rates of nonradiative transitions
1A  3A are approximately similar for all sublevels.
As a result, the level with MS = 0 in the 3A ground state
is filled predominantly; that is, population inversion is
created and only transitions between the levels with
MS = 0 in the ground and 3E excited states contribute to
photoluminescence and photoabsorption. The existence
of a deep analogy in the properties of the (VSi–VC)0

divacancy in silicon carbide and the N–V defect in dia-
JETP LETTERS      Vol. 82      No. 7      2005
mond, for which magnetic resonance on a single defect
was first detected [9], allows the divacancy in silicon
carbide to be considered a potential defect for the spec-
troscopy of individual quantum objects.

This work was supported by the Russian Foundation
for Basic Research, project nos. 03-02-17645 and 04-
02-17632, and by the Russian Academy of Sciences,
under the program “Spin-Dependent Effects in Solid
State and Spintronics.”
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Fig. 2. EPR spectra of the P6 and P7 centers in a 6H-SiC
crystal measured in sample 3 for several orientations under
optical illumination. The inset presents the energy level
scheme and the optical alignment process for the triplet sub-
levels of the ground state of a neutral (VSi–VC)0 divacancy.
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New data on the specific heat, thermal expansion, and magnetization of the CaMn7O12 phase require a revision
of the current concepts of the sequence of phase transitions in this compound. It is found that a spin-glass phase
transition occurs in CaMn7O12 at TM = 49 K, whereas the transition at TS = 89 K exhibits the features of a first-
order phase transition and thereby is apparently of structural origin. In the range TM < T < TS, the CaMn7O12
compound exhibits negative thermal expansion, which is also indicative of structural changes. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 65.40.–b, 75.47.Lx
Among the materials with colossal magnetoresis-
tance, the Ca(CuxMn3 – x)Mn4O12 solid solution exhib-
ited one of the highest characteristics in weak magnetic
fields over a wide temperature range [1, 2]. This com-
pound belongs to the family of distorted double perovs-
kites with the general formula AC3B4O12, where posi-
tion C is occupied by Jahn–Teller cations (Cu2+, Mn3+),
position A can be occupied by a cation of sufficiently
great radius (Na+, Ca2+, or a trivalent rare-earth metal
cation), and position B is occupied by cations in an
octahedral oxygen environment to form the metal–oxy-
gen structure skeleton [3]. In terms of magnetoresis-
tance, these materials are competitive with common
perovskites La1 – xAxMnO3 (A = Sr [4–6], Ba [7], or Ca
[8, 9]), pyrochlores A2Mn2O7 (A = Tl [10], In, or Y
[11]), and spinels Fe1 – xAxCr2S4 (A = Cu [12]). It is of
importance that high Curie temperatures are reached in
all of these materials. In this case, the magnetic order-
ing occurs under the action of a double-exchange
mechanism with the partial replacement of La3+ in per-
ovskites and Fe2+ in spinels by cations with lower oxi-
dation numbers, i.e., by the electron doping of the
metal–oxygen skeleton and the appearance of mixed-
valence cations in metal–oxygen chains. The variable-
valence cations of transition metals are absent from
pyrochlores and fully substituted double perovskites,
and high Curie temperatures are reached because of
exchange interactions [13].

CaMn7O12 (or CaMn3Mn4O12) is the base com-
pound in the family of distorted double perovskites
AC3B4O12 [14]. This compound exhibits cubic symme-
try at high temperatures and undergoes a transition to a

rhombohedral phase, space group , at TCO = 450 K
as the temperature decreases [15]. The driving force of

R3
0021-3640/05/8207- $26.00 ©0444
this transition is the ordering of charges in the octahe-
dral position B, which contains the mixed-valence
Mn3+ and Mn4+ ions in a ratio of 3 : 1. Only Mn3+ ions
occupy the pseudosquare position C.

Data on the magnetic properties of CaMn7O12 are
contradictory. In publications on the magnetic proper-
ties of CaMn7O12, it was noted that this compound
turned into an antiferromagnetically ordered state at 21
[2], 45 [16], or 85 K [17]. Based on neutron-diffraction
and synchrotron studies, Przenioslo et al. [18–22]
stated that two modulated magnetic α and β phases
coexisted in CaMn7O12 over the range 2–49 K, whereas
a ferrimagnetic α phase and a modulated β phase coex-
isted over the range 49–90 K. However, the parameters
of these phases were not found.

This study was stimulated by contradictory opinions
on the determination of the physical properties of
CaMn7O12, which is the parent compound for an impor-
tant family of Ca(CuxMn3 – x)Mn4O12 materials with
colossal magnetoresistance.

The ceramic samples of CaMn7O12 were prepared
from CaCO3 and Mn2O3 using solid-phase synthesis in
a flow of oxygen at T = 950°C by the annealing of a
homogenized mixture for 72 h. The phase composition
was monitored by x-ray diffraction analysis. The spe-
cific heat of the samples was measured with a Termis
quasiadiabatic relaxation calorimeter over the range 5–
250 K. The magnetization was measured with a Quan-
tum Design SQUID magnetometer over the range 5–
250 K. The thermal expansion was measured by
dilatometry over the range 5–150 K. The g-factor value
for the test compound was determined by electron para-
magnetic resonance spectroscopy at room temperature.

All of the physical quantities studied in this work
exhibited clearly pronounced anomalies at 49 and 89 K.
 2005 Pleiades Publishing, Inc.
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Figure 1 shows the temperature dependence of mag-
netization M in CaMn7O12 measured under zero-field
cooling (ZFC) and field-cooling (FC) conditions. The
behavior characteristic of a spin glass was observed
below TM = 49 K; i.e., the M(T) functions in FC and
ZFC modes exhibited a hysteresis. At T > 49 K, these
functions coincided with each other and exhibited an
anomalous kink at TS = 89 K. At T > 89 K, the magne-
tization behavior obeyed the Curie–Weiss law with the
effective magnetic moment µeff = 15.1µB and the Weiss
temperature θ = –85 K. At the experimental spectro-
scopic splitting factor g = 2.133, the calculated effec-
tive magnetic moment of this compound was 14.9µB.

Figure 2 shows the temperature dependence of spe-
cific heat C in CaMn7O12. At TM and TS, this function
exhibits singularities characteristic of second-order
phase transitions.

Figure 3 shows the temperature dependence of the
thermal expansion ∆L/L in CaMn7O12. The sample vol-
ume increased with temperature; however, a sharp kink
was observed at TM and the sample contracted in the
range from TM to TS. A jump of thermal expansion can
also be seen at TS. The above special features are more
clearly pronounced in Fig. 4, which demonstrates the
temperature dependence of the thermal expansion coef-
ficient α. A singularity at TM is characteristic of a sec-
ond-order phase transition, whereas an anomaly at TS

exhibits features characteristic of both first-order and
second-order phase transitions.

In the neutron-diffraction studies [18, 19], the
appearance of new scattering peaks at two tempera-
tures, TM and TS, was interpreted as the formation of
two different magnetic structures. It was noted that the
spacing of the ferrimagnetic structure formed at TS

coincided with the unit cell spacing and did not depend
on temperature, whereas the spacing of a modulated
magnetic structure formed at TM depended on tempera-
ture. Qualitatively, the half widths of additional peaks
that appeared at TM and TS as functions of temperature
were also different.

The experimental data allowed us to hypothesize
different natures of phase transitions at TM and TS. Thus,
the appearance of a spin-glass state, which is character-
istic of disordered magnetic systems, can be seen only
at T < TM. A weak anomaly in the specific heat and a
jump in the thermal expansion coefficient at TM, which
are characteristic of a second-order phase transition,
suggest that a magnetic ordering occurs in CaMn7O12 at
this temperature.

The absence of spin-glass effects over the range
TM < T < TS, a great anomaly in the C(T) function, and
a jump of the thermal expansion ∆L/L at TS indicate a
structural origin of this phase transition. In the absence
of detailed structural information on the phase transi-
tion in CaMn7O12 at this temperature, the origin of this
phase transition is open to speculation. In the unit cell
JETP LETTERS      Vol. 82      No. 7      2005
Fig. 1. Temperature dependence of the magnetization of
CaMn7O12 under (d) zero-field cooling (ZFC) and (s) field-
cooling (FC) conditions at H = 0.01 T.

Fig. 2. Temperature dependence of the specific heat of
CaMn7O12.

Fig. 3. Temperature dependence of the thermal expansion of
CaMn7O12.
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of this compound, the Jahn–Teller cations Mn3+ occur
at two nonequivalent crystallographic positions. The
d-orbital splitting schemes of manganese in pseu-
dosquare and octahedral positions differ from each
other; however, they do not contain partially occupied
degenerate levels. Because of this, the Jahn–Teller
effect cannot be considered as the driving force of this
transition. However, the admixing of the wave func-
tions of higher energy levels to the main wave functions
of d electrons can serve as the driving force. This can
result in a sort of orbital ordering in CaMn7O12.

Thus, the set of the experimental data on the thermo-
dynamic properties of CaMn7O12 suggests that this
compound undergoes phase transitions of a different
nature at TM = 49 K and TS = 89 K. All of the special fea-
tures of the transition at 49 K are consistent with the
hypothesis on its magnetic origin. To reveal the nature
of the phase transition at 89 K, either data on the elastic
scattering of neutrons should be newly interpreted or
new measurements in a single-crystal sample should be
performed.

This work was supported by the Russian Foundation
for Basic Research, project nos. 03-02-16108 and 04-
03-32183. The thermal expansion measurements per-
formed in Cologne were supported by Deutsche Fors-
chungsgemeinschaft (German Research Foundation),
grant no. SFB 608.

Fig. 4. Temperature dependence of the thermal expansion
coefficient of CaMn7O12.
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The crystal and magnetic structures of La0.75Ca0.25MnO3 manganite are studied under high pressures up to
4.5 GPa in the temperature range 12–300 K by the neutron diffraction method. At normal pressure and temper-
ature TC = 240 K, a ferromagnetic state is formed in La0.75Ca0.25MnO3. At high pressures P ≥ 1.5 GPa and at
temperatures T < TN ≈ 150 K, a new A-type antiferromagnetic state appears. A further increase in pressure leads
to an increase in the volume fraction of the antiferromagnetic phase, which coexists with the initial ferromag-
netic phase. The effect of high pressure causes a considerable increase in TC with the slope dTC/dP ≈ 12 K/GPa.
Calculations performed in the framework of the double exchange model with allowance for the electron–
phonon interaction make it possible to explain this pressure dependence of TC on the basis of experimental data.
© 2005 Pleiades Publishing, Inc.

PACS numbers: 61.12.Ld, 62.50.+p, 75.25.+z
INTRODUCTION

Perovskitelike  manganites (where A
and A' are rare-earth and alkaline-earth elements)
exhibit a wide variety of physical properties depending
on the type of the elements A and A' and on the doping
level x. A strong correlation of magnetic, electronic,
and transport properties of manganites leads to their
high sensitivity to external actions, such as temperature
variation or application of magnetic field or high pres-
sure. A good example is the colossal magnetoresistance
effect observed in manganites [1].

The magnetic properties of manganites are deter-
mined by the balance of two competing interactions:
the double exchange, which is related to the kinetic
energy gain due to the transport of delocalized eg elec-
trons in Mn3+–O2––Mn4+ chains and contributes to the
ferromagnetic ordering of Mn magnetic moments, and
the antiferromagnetic superexchange between the Mn
magnetic moments, which are formed by localized t2g

electrons [1–4]. For concentrations 0.2 < x < 0.5, the
double exchange is usually the dominant type of inter-
action, and this leads to the transition from paramag-
netic insulator state to ferromagnetic metal at the Curie
temperature approximately equal to the insulator–metal
transition temperature: TC = TIM [1].

In manganites with orthorhombic crystal structure, a
strong effect on the transport and magnetic properties is
also produced by the electron–phonon coupling associ-

A1 x– Ax' MnO3
0021-3640/05/8207- $26.00 0447
ated with the static cooperative Jahn–Teller distortion
of oxygen octahedra. It leads to the formation of
polarons and to an additional localization of charge car-
riers. Recently, in the La0.75Ca0.25MnO3 compound, an
anomalous behavior under high pressures was observed
for the temperature TIM [5] and the frequency of the
phonon oscillation mode of oxygen octahedra with the
B2g(1) symmetry [6]. In the pressure range P < 5 GPa,
TIM was found to increase with an average slope
dTIM/dP ≈ 15 K/GPa; under higher pressures, the latter
quantity decreased down to dTIM/dP ≈ 2 K/GPa [5]. In
the pressure range P < 7.5 GPa, an increase in the mode
frequency  was observed with the slope

/dP ≈ 1 meV/GPa, and, as the pressure
increased further, this value remained almost constant
with only a slight dependence on pressure [6]. The
study of the crystal structure of La0.75Ca0.25MnO3
revealed a change in the orthorhombic distortion of the
unit cell and in the Jahn–Teller distortion of oxygen
octahedra at P ~ 6 GPa [7].

The aforementioned facts suggest a possibility for
the existence of a new high-pressure phase of
La0.75Ca0.25MnO3 with properties different from those
of the normal-pressure modification. The changes
observed in the properties of La0.75Ca0.25MnO3 under
high pressures may be related to changes in not only the
crystal structure but also in the magnetic one. However,

ωB2g 1( )

dωB2g 1( )
© 2005 Pleiades Publishing, Inc.
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the effect of high pressures (P > 1 GPa) on the magnetic
structure of La0.75Ca0.25MnO3 has never been studied.
In this paper, we report on the study of the effect of high
external pressure on the atomic and magnetic structures
of La0.75Ca0.25MnO3 manganite at low temperatures by
the neutron diffraction method and investigate the rela-
tion between the observed structural changes and the
changes in the magnetic and transport properties.

EXPERIMENTAL PROCEDURE

A La0.75Ca0.25MnO3 polycrystal sample was
obtained using the standard ceramic technology. The
initial reagents were La2O3 (lanthanum oxide), CaCO3
(calcium carbonate), and MnO2 (manganese oxide).
Lanthanum oxide was preliminarily sintered at 1200°C
for 2 h, calcium carbonate was baked at 500°C for 3 h,
and manganese oxide, at 750°C for 24 h. The latter pro-
cess involved the transition from MnO2 to Mn2O3. A
mixture of the oxides was taken in the necessary sto-
ichiometric proportion and ground in an agate mortar
with ethyl alcohol. The mixture was annealed in four
steps with intermediate grinding with ethyl alcohol
every 20 h: the first stage was annealing at 850°C for
20 h; the second stage, at 950°C for 20 h; the third
stage, at 1100°C for 100 h; and the fourth stage, at
1200°C for 200 h. Then, the sample was quenched in
cooling to room temperature.

The neutron diffraction studies were carried out
with a DN-12 spectrometer [8] of an IBR-2 pulsed

Fig. 1. Diffraction spectra of La0.75Ca0.25MnO3 that are
measured at P = 0 and 4.5 GPa and at T = 295 and 12 K (the
scattering angles are 2θ = 90° and 45.5°; see the inset) and
are processed by the Rietveld method. The plot shows the
experimental points, the calculated profile, and the differ-
ence curve (for P = 4.5 GPa and T = 295 K). The vertical
bars indicate the calculated positions of the structural dif-
fraction peaks. The most intense antiferromagnetic peaks
and the peaks with the ferromagnetic contribution are
marked as AFM and FM, respectively.

(Å)
high-flux reactor (the Frank Laboratory of Neutron
Physics, Dubna) by using high-pressure cells with sap-
phire anvils [9] under external pressures up to 4.5 GPa
in the temperature range from 10 to 300 K. The diffrac-
tion spectra were measured for scattering angles 2θ =
90° and 45.5°. For these scattering angles, the resolu-
tion of the spectrometer at the wavelength λ = 2 Å was
∆d/d = 0.02 and 0.025, respectively. The characteristic
time of a single spectrum measurement was 20 h. The
volume of the sample was V ~ 2.5 mm3. The pressure in
the chamber was measured by the ruby luminescence
line shift with an accuracy of 0.05 GPa. The pressure on
the sample was obtained by averaging over the pressure
values determined at several points of the sample sur-
face. The pressure gradient along the sample surface
did not exceed 15%. To carry out measurements with a
high-pressure cell at low temperatures, we used a spe-
cial-purpose cryostat made on the basis of a closed-
cycle helium fridge. The diffraction data were analyzed
by the Rietveld method with the use of the MRIA [10]
(crystal structure) and FullProf [11] (magnetic struc-
ture) programs.

RESULTS AND DISCUSSION

Parts of diffraction spectra obtained for
La0.75Ca0.25MnO3 under different pressures and at dif-
ferent temperatures are shown in Fig. 1. In the whole
range of pressures 0–4.5 GPa and temperatures 12–
295 K under study, the atomic structure of the com-
pound retains its initial orthorhombic symmetry of the
Pnma space group. The structural parameters of
La0.75Ca0.25MnO3 calculated from the diffraction data
under different pressures are presented in the table.
Their values at normal conditions agree well with the
results of previous studies [12].

At normal pressure and T < TC = 240 K, we observed
the appearance of a magnetic contribution to the inten-
sity of nuclear reflections: (101)/(020) at dhkl ≈ 3.88 Å
and (200)/(002)/(121) at dhkl ≈ 2.75 Å (Fig. 1). This tes-
tifies to the appearance of the ferromagnetic state. The
magnetic moments of Mn lie in the (ac) plane, and their
calculated value of 3.29(5)µB at T = 12 K is close to the
value obtained in [12].

At P = 1.5 GPa, as the temperature decreased to T <
TN ≈ 150 K, new magnetic reflections appeared at dhkl ≈
7.47 Å and 3.44 Å (Fig. 1). The analysis of diffraction
data showed that these reflections correspond to the
appearance of the antiferromagnetic state with the A-type
structure [1] and the propagation vector q = (0 1 0). In
such an antiferromagnetic structure, the magnetic
moments of Mn lie in the (ac) planes; they are oriented
parallel to each other within these planes and change to
the opposite direction in the neighboring planes per-
pendicular to the b axis of the orthorhombic structure.
As the pressure increased, an increase in the intensity of
the antiferromagnetic reflections was observed along
with a decrease in the ferromagnetic contribution to the
JETP LETTERS      Vol. 82      No. 7      2005
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Structure parameters of La0.75Ca0.25MnO3 at various pressures and T = 295 K. The La/Ca and O1 atoms are in the positions
4(c)(x, 1/4, z); Mn atoms, in 4(b)(0, 0, 1/2); and O2, in 8(d)(x, y, z) of the Pnma space group. The effective magnetic moments
of the Mn ions are presented for the ferromagnetic and antiferromagnetic phases at T = 12 K

P (GPa) 0 1.5 4.5

a (Å) 5.481(6) 5.467(7) 5.429(4)

b (Å) 7.747(5) 7.735(9) 7.687(9)

c (Å) 5.494(4) 5.483(4) 5.482(6)

La/Ca: x 0.021(5) 0.023(7) 0.026(6)

z –0.003(5) –0.002(7) –0.002(9)

O1: x 0.492(3) 0.496(5) 0.498(7)

z 0.064(7) 0.059(7) 0.063(8)

O2: x 0.276(8) 0.277(8) 0.269(9)

y 0.033(4) 0.032(5) 0.029(7)

z 0.723(6) 0.722(8) 0.731(9)

MFM (µB) 3.29(5) 3.0(1) 2.6(1)

MAFM (µB) – 1.1(1) 1.7(1)

Rp (%) 7.05 8.91 8.28

Rwp (%) 6.30 7.52 8.24
nuclear reflections. This testifies to an increase in the
volume fraction of the antiferromagnetic phase. The
volume fractions of the ferromagnetic and antiferro-
magnetic phases were calculated from the effective val-
ues of magnetic moments at T = 12 K (see table) and
proved to be 88 and 12%, respectively, at P = 1.5 GPa,
70 and 30%, respectively, at P = 4.5 GPa.

The La0.75Ca0.25MnO3 crystal structure is an orthor-
hombically distorted modification of a perfect cubic

perovskite structure with parameters a ≈ c ≈ ap  and
b ≈ 2ap. Because of the broadening of diffraction peaks
and the presence of a pressure gradient in the sample
volume, the refinement of structural parameters by the
Rietveld method showed a strong correlation between

2

Fig. 2. Pressure dependences of the unit cell parameters of
La0.75Ca0.25MnO3 and their linear interpolation. The inset
shows the pressure dependence of the unit cell volume of
La0.75Ca0.25MnO3.

(Å
)

(Å
3 )
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the unit cell parameters. Therefore, their ratio a : b : c
was calculated for different pressures on the basis of
pressure dependences [7] determined with a higher res-
olution by the X-ray diffraction method and was fixed.
The resulting pressure dependences of the parameters
and volume of the unit cell are almost linear (Fig. 2).
The calculated linear compressibilities ki =
−(1/ai0)(dai/dP)T (where ai = a, b, c) of the unit cell
parameters at T = 295 K are as follows: ka = 0.0017,
kb = 0.0020, and kc = 0.0014 GPa–1, which is close to
the values obtained in [7].

The MnO6 oxygen octahedra contain three pairs of
nonequivalent Mn–O bonds: Mn–O1 directed along the
b axis and Mn–O2a and Mn–O2b lying in the (ac)

Fig. 3. Pressure dependences of the Mn–O bond lengths in
La0.75Ca0.25MnO3 and their linear interpolation.

(Å
)
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plane. As the pressure grows, the Mn–O bonds are
anisotropically compressed (Fig. 3), which leads to a
uniaxial compression of the oxygen octahedra along
the b axis. The coefficient of linear compressibility of
bond lengths ki = –(1/lMn–Oi0)(dlMn–Oi/dP)T (i = 1, 2a, 2b)
at T = 295 K is maximum for the Mn–O1 bond: k1 =
0.0020 GPa–1; the corresponding values for the Mn–
O2a and Mn–O2b bonds are somewhat smaller: k2a =
0.0017 and k2b = 0.0015 GPa–1. An increase in pressure
from 0 to 4.5 GPa is accompanied by an increase in the
valence angles of the MnO6 oxygen octahedra: the Mn–
O1–Mn angle increases from 159.2° to 160.50° and the
Mn–O2–Mn angle, from 160.58° to 161.80°.

To determine the pressure dependence of the Curie
temperature, the temperature dependences of the effec-
tive magnetic moment of the ferromagnetic phase mea-
sured at different pressures were interpolated by the
function describing the temperature dependence of the
magnetic moment of the ferromagnet in the molecular
field approximation [13]:

(1)

where BS is the Brillouin function, S is the Mn ion spin
(S = 3/2), and M0 is the magnetic moment at T = 0. As
the pressure increases, an almost linear increase in TC is
observed with dTC/dP ≈ 12 K/GPa (Fig. 4). This value
is close to that calculated from the data given in [5] for
the same pressure range: dTIM/dP ≈ 15 K/GPa.

In the framework of the double exchange model, the
magnetic and transport properties of manganites are
determined by the charge carrier bandwidth W and, in
the approximation of a strong interatomic exchange
interaction (JH @ W), we have TC ≈ TIM ∝  W [14]. In the
absence of the Jahn–Teller distortions of oxygen octa-

M
M0
------- BS

3S
S 1+
------------ M

M0
-------

TC

T
------ 

  ,=

Fig. 4. Temperature dependences of the effective magnetic
moment of the Mn ferromagnetic phase for P = (open
points) 0 and (closed points) 4.5 GPa and their interpolation
by function (1). The inset shows the pressure dependence of
the Curie temperature and its linear interpolation.

(µ
B
)

hedra, the charge carrier bandwidth is determined by
the transfer integral of eg electrons in the Mn3+–O2––
Mn4+ chains and depends on the mean Mn–O bond
length l and the Mn–O–Mn angle φ as W = W0 ~
cos2φ/l3.5 [15, 16]. The calculated increase in the band-
width that is only related to the variation of structure
parameters in the high-pressure range 0–4.5 GPa is
about 4%. This value corresponds to (dTC/dP)0 ≈
2 K/GPa, which is much smaller than the experimental
value. The presence of static cooperative Jahn–Teller
distortions of oxygen octahedra leads to the formation
of polarons and to an effective bandwidth variation [17]

(2)

Here, EJT is the polaron bond energy, ω is the character-
istic frequency of phonon modes corresponding to the
oscillations of oxygen octahedra, and 0 < γ < 1 is a
parameter characterizing the strength of the electron–
phonon coupling. To estimate the quantity dTC/dP, we
use the temperature dependences of electrical resis-
tance R of La0.75Ca0.25MnO3 under different pressures
[7]. These dependences allow us to calculate the activa-

tion energy Ea ≈ EJT [18] by using the expression R =

R0Texp(Ea/kT) and the pressure dependence of the fre-
quency of the B2g(1) mode of oxygen octahedra oscilla-
tion from [6]. As the pressure increases from 0 to
~5 GPa, EJT decreases from 92 to 69 meV while
"ωB2g(1) increases from 78 to 82 meV. Assuming that
γ = 1, from Eq. (2) we obtain the value (dTC/dP)calc ≈
18 K/GPa, which is close to the experimental value
dTC/dP ≈ 12 K/GPa. To estimate dTC/dP with better
accuracy, additional assumptions concerning the pres-
sure behavior of the parameter γ are necessary.

The appearance of the A-type antiferromagnetic
phase in La0.75Ca0.25MnO3 under high pressures is pos-
sibly caused by the uniaxial anisotropic compression of
the oxygen octahedra along the b axis of the orthorhom-
bic structure. According to recent theoretical [19] and
experimental [20] studies, the magnetic properties of
manganites strongly depend on the magnitude of the
pseudo-tetragonal distortion of oxygen octahedra. For
La0.75Ca0.25MnO3, this distortion can be estimated as t ≈
lMn–O1/l〈Mn–O2〉 = 0.997 at P = 4.5 GPa and T = 295 K. In
the case of the pseudo-tetragonal distortion t < 1, a pre-
dominant filling of the d(x2 – z2)eg orbitals of Mn ions
takes place along with a decrease in the exchange inte-
gral between the closest neighbors in the direction of
uniaxial compression. These factors form favorable
conditions for the formation of the antiferromagnetic
state of A type [19]. The appearance of the A-type anti-
ferromagnetic phase is accompanied by an additional
uniaxial compression of the crystal lattice, which, in
orthorhombic manganites with a Pnma-symmetry
structure, usually manifests itself as a noticeable
decrease in the parameter b of the unit cell and some

W W0 γEJT /"ω–( ).exp∼

1
2
---
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slight increases in the parameters a and c. From the
analysis of the positions of the characteristic magnetic
reflections (010) and (111), we obtain the estimates a ≈
c ≈ 5.48 Å and b ≈ 7.45 Å for the A-type antiferromag-
netic structure at P = 4.5 GPa and T = 12 K. These val-
ues are comparable with the unit cell parameters for
Nd1 − xSrxMnO3 manganites, in which the A-type anti-
ferromagnetic phase was observed at normal pressure
and low temperatures for 0.5 < x < 0.6 [21].

The ferromagnetic metallic phase and the A-type
antiferromagnetic phase of doped manganites at normal
pressure have noticeably different transport properties
and types of distortion of the oxygen octahedra [21,
22]. Therefore, the appearance of the A-type antiferro-
magnetic phase at high pressures may be a possible rea-
son for the anomalous behavior of the pressure depen-
dences of both the insulator–metal transition tempera-
ture TIM [5] and the frequency of the oxygen octahedron
oscillation mode  [6] in La0.75Ca0.25MnO3.

CONCLUSIONS

The results of this study show that the effect of high
external pressure leads to the appearance of the A-type
antiferromagnetic state in La0.75Ca0.25MnO3 manganite
and to a suppression of the initial ferromagnetic state,
whose volume fraction decreases with growing pres-
sure. A possible reason for this phenomenon may be the
uniaxial anisotropic compression of the MnO6 oxygen
octahedra, which leads to a predominant filling of the
d(x2 – z2)eg orbitals of Mn ions. The considerable
increase in the Curie temperature of transition to the
ferromagnetic state, which is observed in the experi-
ment, may be explained in terms of the double
exchange model with allowance for the electron–
phonon coupling. This model yields adequate computa-
tional estimates of TC on the basis of experimental data.

This work was supported by the Russian Foundation
for Basic Research (project no. 03-02-16879) and the
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Substances and the Fundamental Properties of Matter,”
project no. 14 of the Ural Division, Russian Academy
of Sciences, contract no. 11/05).
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Phase Transition in the Generalized 
Ising–Kosterlitz–Thouless Model
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The features of the phase transition are considered in a model that is a combination of the Ising and Kosterlitz–
Thouless models. It is shown that one or two successive phase transitions may occur in such a system, depend-
ing on the relation between parameters. An asymptotic formula is derived for the Ising-type phase transition
temperature. © 2005 Pleiades Publishing, Inc.

PACS numbers: 77.80.Bh
The construction of the theory of renormalization
group transformations by Wilson [1] has considerably
extended the class of systems whose critical behavior
can be described analytically. One such system is the
2D XY model, for which the features of phase transition
were considered by Kosterlitz and Thouless [2, 3] just
two years after the publication [1]. The Kosterlitz–
Thouless model occupies a special place among sys-
tems exhibiting a second-order phase transition, since
the long-range order in such a system exists only at zero
temperature; at other temperatures (even below the
Curie point), the phase correlator decreases with
increasing distance [4]. The phase transition point can
be detected from a sharp change in the correlation func-
tion decay law; however, this is a nontrivial problem
from the experimental point of view (in particular, in
the case of a numerical experiment [5–7]). For this rea-
son, it is especially interesting to analyze the behavior
of a system, in which an ordinary second-order phase
transition may occur simultaneously with a phase tran-
sition following the Kosterlitz–Thouless scenario.

The system considered here emerges in the course
of evolution of the model describing the formation of
domain structures in KDP crystals [8]; however, this
system is interesting in itself as an example of interac-
tion between two phase transitions of different origins.

Let us consider a system whose energy is defined by
the effective Hamiltonian

(1)

Heff
1( ) 1

2
--- a 1 sijsi 1 j+–( )[

ij

∑=

+ 1 sijsi 1 j++( ) 1 ϕ ij ϕ i 1 j+–( )cos–{ } ]

+
1
2
--- a 1 sijsij 1+–( )[

ij

∑
+ 1 sijsij 1++( ) 1 ϕ ij ϕ ij 1+–( )cos–{ } ] ,
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where summation is carried out over all sites of the
square lattice and “spin” sij = ±1 and “phase” |ϕij| ≤ π
are defined at each site ij. In other words, the interaction
between phases ϕij takes place only when spins sij coin-
cide. Energy (1) of the system can be conditionally rep-
resented in the form of a deep two-well potential with a
compass needle located at the bottom of one of the
wells; the needles at adjacent sites interact only if they
are located in identical wells (Fig. 1). Such a model is a
combination of the Ising and the Kosterlitz–Thouless
models [2, 3]; in the special case when sij = const, the
model is transformed into the classical XY model, while
for ϕij = const it is transformed into the Ising model, in
which the phase transition temperature is determined
by the constant a of spin interactions [9]:

(2)

The ground state of the system is a homogeneous
state with constant values of spins and phases, which

TI a/ 2 1+( ).ln=

Fig. 1. Schematic representation of effective potential (1).
© 2005 Pleiades Publishing, Inc.
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takes place at zero temperature. At a high temperature,
the system passes to a completely chaotic state; the
long-range order may be disturbed after one or two
phase transitions depending on the relation of the criti-
cal temperatures in the Ising model (2) and in the XY
model. Indeed, let us consider the decay of a homoge-
neous state upon a slow increase in temperature. As
mentioned above, a peculiar feature of the phase transi-
tion in the 2D XY model is that no regular long-range
order exists at any nonzero temperature and the correla-
tion function decreases in accordance with the polyno-
mial law with a temperature-dependent exponent [2–4]:

(3)

Consequently, the state of system (1), which is homo-
geneous in spins sij, can be treated as a certain “phase”
liquid whose internal energy increases with tempera-
ture. If we disregard the correlation between the spins
and phases and average Hamiltonian (1) over phase
variables, we find that the effective constant of spin
interaction is a function of temperature,

(4)

where F(T) is the mean value of the binding energy in
the Kosterlitz–Thouless model:

(5)

Thus, it turns out that an Ising-type transition occurs
in system (1) at the temperature satisfying the equation

(6)

If this temperature is higher than the Curie point TC >
TKT in the XY model, two phase transitions successively

ϕ ijϕ ij k+〈 〉 k T /4π– .∼

Heff
2( ) 1

2
--- a 1 F T( )–+{ } sij si 1 j+ sijsij 1++ +( ),

ij

∑–=

F T( ) ϕ ij ϕ ij 1+–( )cos〈 〉 .=

TC a 1 F TC( )–+{ } / 2 1+( ).ln=

Fig. 2. Temperature dependences of the tenth component of
the “spin” and “phase” correlation functions given by
Eqs. (7) for parameter a = 2, which make it possible to
determine the phase transition temperatures of the Ising
(TC = 1.49 ± 0.04) and Kosterlitz–Thouless (TKT = 1.19 ±
0.04) types in model (1).
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occur in the system. For TC < TKT, only an Ising-type
transition occurs in the system, since the rupture of cou-
pling between spins immediately triggers an interaction
between phases.

To verify the above scenario, a series of numerical
experiments were performed, which made it possible to
determine the dependence of the phase transition tem-
perature TC on quantity a. Simulation was carried out
on a 400 × 400 mesh by the Monte Carlo method using
the Metropolis algorithm. The temperatures of phase
transitions of the Ising and Kosterlitz–Thouless types
were determined from the behavior of the spin and
phase correlation functions (Fig. 2)

(7)

Analogously, the F(T) dependence was determined
as a result of simulation of evolution of the conven-
tional XY model with the effective Hamiltonian

.(8)

It turns out that this dependence is correctly approxi-
mated by the formula

(9)

This is illustrated in Fig. 3, where T0 ≈ TKT is the
approximate phase transition temperature.

Figure 4 shows the TC(a) dependences obtained as a
result of the numerical experiment and from the solu-
tion of Eq. (6) taking into account approximation (9).
The theoretical curve based on Eq. (6) correctly
describes the results of numerical experiment for small

Ck
1( ) sijsij k+〈 〉 ,=

Ck
2( ) sijsij k+ 1+( ) ϕ ij ϕ ij k+–( )cos〈 〉 .=

Heff
3( ) 1

2
--- ϕ j ϕ i 1 j+–( )cos ϕ ij ϕ ij 1+–( )cos+{ }

ij

∑–=

F T( ) A BT CT2 D E T T0–( ){ } .tanh+ + +≈

Fig. 3. Temperature dependence of the average binding
energy F(T) given by Eq. (5) in the XY model: points are the
results of numerical experiment and the solid curve is the
approximation by formula (9) (with the parameters are
given in the figure).
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as well as for large values of a. However, the matching
is much worse in the region of the triple point, at which
the TC(a) dependence intersects the additional branch
corresponding to a phase transition of the Kosterlitz–
Thouless type. This is not surprising, since fluctuations
of spin and phase variables in this region are strongly
correlated and the averaging carried out in expression (4)
is incorrect. The position of the triple point on the phase
diagram is approximately determined by the value of a

Fig. 4. Dependence of the phase-transition temperature on
a in the generalized Ising–Kosterlitz–Thouless model. The
closed points represent the results of numerical experiment,
the solid curve describes theoretical dependence (6), and the
dashed curve is the dependence of the phase-transition tem-
perature on the interaction constant a in the Ising model
specified by Eq. (2). The open circles correspond to the
phase-transition temperature in the Kosterlitz–Thouless
model.

TC
for which TC(a) ≈ TKT; however, the refinement of the
position of this point requires precise measurement of
the Curie temperature in the XY model from an analysis
of critical dependences [5–7]. Apparently, the nature of
the phase transition in the vicinity of the triple point is
an individual interesting problem.

I am grateful to A.N. Rubtsov for a number of valu-
able remarks. This study was supported by the Russian
Foundation for Basic Research (project no. 02-02-
16843) and the Council of the President of the Russian
Federation for Support of Young Scientists and Leading
Scientific Schools (project no. NSh-166.2003.2).
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Room-temperature spin-dependent recombination in a series of GaAs1 – xNx solid solutions (x = 2.1, 2.7, 3.4%)
has been observed as manifested by a more than threefold decrease in intensity of the edge photoluminescence
upon switching from circular to linear polarization of the exciting light or upon the application of a transverse
magnetic field (~300 G). The interband absorption of the circularly polarized light is accompanied by the spin
polarization of conduction electrons, which reaches 35% with an increase in the pumping level. The observed
effects are explained in terms of the dynamic polarization of deep paramagnetic centers and the spin-dependent
trapping of conduction electrons on these centers. The electron spin relaxation time, as estimated from the
dependence of the edge photoluminescence depolarization in the transverse magnetic field (the Hanle effect)
on the pumping intensity, is on the order of 1 ns. According to the adopted theory, the electron spin relaxation
time in the presence of spin-dependent recombination is determined by a slow spin relaxation of localized elec-
trons. The sign (positive) of the g factor of localized electrons has been experimentally determined from the
direction of the magnetic-field-induced rotation of their average spin observed in the three GaAsN crystals stud-
ied. © 2005 Pleiades Publishing, Inc.

PACS numbers: 71.20.Nr, 72.25.Fe, 78.55.Cr
In recent years, solid solutions of the Ga(In)AsN
systems have received much attention due to their
unusual properties and good prospects for use in opto-
electronic devices for the near-IR spectral range. The
interaction of the localized states of nitrogen atoms
with the intrinsic electron states in the conduction band
leads to an anomalous decrease in the bandgap width
for compositions with low (several percent) nitrogen
content [1, 2]. Since Ga(In)AsN solid solutions exhibit
a complicated energy band structure, elucidation of the
mechanisms involved in the energy relaxation and the
recombination in these materials is important both from
the standpoint of basic science and for the development
of optoelectronic devices.

This paper reports on the phenomenon of spin-
dependent recombination (SDR) in single crystals of
GaAsN solid solutions at room temperature, which was
manifested by a sharp decrease in intensity of the edge
photoluminescence from the samples upon the switch-
ing from circular to linear polarization of the exciting
light or upon the application of a transverse magnetic
field (~300 G). In addition, the SDR at room tempera-
ture is manifested by a giant (~35%) spin polarization
and by a spin memory (~1 ns) of the conduction elec-
trons, which are observed upon the interband absorp-
tion of circularly polarized light. We have studied nitro-
gen-containing solid solutions of the GaAs1 – xNx sys-
tem obtained in the form of undoped 0.1-µm-thick
films grown by molecular beam epitaxy between GaAs
0021-3640/05/8207- $26.00 0455
layers on semi-insulating (001)-oriented GaAs sub-
strates [3]. The as-grown structures were annealed for
5 min at 700°C in a flow of arsenic in the growth cham-
ber. The investigation was performed on three samples
with different nitrogen contents x = 2.1, 2.7, and 3.4%.

Spin polarization of the conduction electrons, which
was observed upon the interband absorption of circu-
larly polarized light [4], was evaluated by measuring
the degree of the circular polarization of photolumines-
cence, defined as ρ = (I+ – I–)/(I+ + I–), where I+ and I–

are the intensities of the clockwise (σ+) and anticlock-
wise (σ–) polarized photoluminescence components.
The values of ρ and the total photoluminescence inten-
sity I = I+ + I– in a wavelength range up to 1.4 µm were
determined using a high-sensitivity polarization ana-
lyzer [5] comprising a quartz polarization modulator, a
lock-in two-channel photon counter, and a photomulti-
plier with an InGaAsP photocathode. The lumines-
cence was excited by Ti:sapphire laser radiation inci-
dent along the normal to the sample surface. The pho-
toluminescence was measured in the reflection mode
along the structure growth axis. The measurements
were performed at 300 K. Since the main experimental
results were qualitatively the same for all samples, the
data will be presented mostly for the GaAs1 – xNx solid
solution with x = 2.1%.

The typical spectral dependences of the intensity
and the degree of circular polarization for the photolu-
minescence of a GaAs0.979N0.021 sample excited by cir-
© 2005 Pleiades Publishing, Inc.
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cularly (σ+ or σ–) polarized light of sufficiently high
intensity are presented in Fig. 1. An increase in the
nitrogen content (in the samples with x = 2.7 and 3.4%)
was accompanied by a shift of the photoluminescence
band toward longer wavelengths. The observed photo-
luminescence spectrum is a superposition of two
strongly overlapping bands, the relative shift of which
increases with x to reach 50 meV at x = 3.4% [3]. The
low-energy photoluminescence component has a nega-
tive polarization (relative to that of the exciting beam),
whereas the high-energy photoluminescence compo-
nent has a positive polarization. Recently, we explained
[3, 6] the presence of two photoluminescence compo-
nents with the opposite signs of polarization in terms of
the splitting of light- and heavy-hole subbands caused
by the elastic straining of the GaAsN layer. Indeed, a
smaller lattice parameter of GaAsN as compared to that
of GaAs leads to an extension of the GaAsN layer in the
interface plane, which is equivalent to a uniaxial com-
pression of this layer along the growth axis. This uniax-
ial straining is accompanied by the splitting of light-
and heavy-hole subbands, which increases with the
nitrogen content (x). The polarization spectrum pre-
sented in Fig. 1 was measured with the simultaneous
excitation of electrons in both valence subbands. In
order to exclude the excitation of electrons in GaAs lay-
ers (playing the role of barriers with respect to GaAsN),
the energy of exciting light quanta was selected below
the bandgap width of GaAs. Therefore, the negative
polarization of the low-energy photoluminescence
component and the positive polarization of the high-

Fig. 1. Photoluminescence spectra of a GaAs0.979N0.021
film excited by the (1, 3) circularly and (2) linearly polar-
ized light; spectrum 3 was measured in the presence of a
transverse magnetic field (300 G). Open circles show the
degree of circular polarization of the photoluminescence.
All spectra were measured at T = 300 K using the exciting
light with hνexc = 1.305 eV and J = 150 mW. The inset
shows a schematic diagram of the sample structure.
energy photoluminescence component are indicative of
the fact that these bands are due to the recombination of
electrons with light and heavy holes, respectively.

Figure 1 also shows the photoluminescence spec-
trum (curve 2) of a sample excited by linearly (π) polar-
ized light. The comparison of curves 1 and 2 shows that
the switching from circular to linear polarization of the
exciting light leads to a decrease in the photolumines-
cence intensity I (by a factor of about 3 at the photolu-
minescence peak). Approximately the same decrease in
I was observed upon the application of a magnetic field
(Fig. 1, curve 3) with a strength of ~300 G, which was
oriented perpendicularly to the direction of excitation
(i.e., with the field vector occurring in the film plane).
It should be noted that the change in the I value
observed upon the circular polarization switching from
σ+ to σ– was negligibly small as compared to the afore-
mentioned effect.

Figure 2a shows the photoluminescence depolariza-
tion curves ρ(B) for the GaAs0.979N0.021 film measured
in a transverse magnetic field B ⊥  [001] for the heavy-
hole photoluminescence subband excited at various
intensities of the circularly (σ) polarized light. These
dependences can be approximated by Lorentzian pro-
files (solid curves in Fig. 2a) of the type

(1)

where ρ* is a constant component (≈5%), B1/2 is the
FWHM (halfwidth) of the curve, and ρ0 is the maxi-
mum field-induced change in ρ. The values of B1/2 and
ρ0 are strongly dependent on the intensity J of the cir-
cularly polarized exciting light. At the same time, the
results of additional measurements showed that the
width of the ρ(B) curves measured using the same exci-
tation intensity for the positive (c–hh transition) and
negative (c–lh transition) photoluminescence polariza-
tions were the same. This is evidence for the assump-
tion that the polarization of holes is absent because of
their rapid spin relaxation and, hence, the photolumi-
nescence polarization is entirely due to the spin polar-
ization of electrons.

Figure 2b shows the field dependences of the photo-
luminescence intensity I(B), which are also well
described by Lorentzian profiles (solid curves). The
widths of these profiles coincide with those of the ρ(B)
curves obtained for the same excitation intensity.

The experimental results presented in Figs. 1 and 2
can be explained within the framework of the SDR the-
ory formulated by Weisbuch and Lampel [7] in applica-
tion to Ga0.6Al0.4As solid solutions. This theory was
successfully used [8, 9] for the analysis of recombina-
tion processes in GaAs and in GaAs/AlGaAs superlat-
tices. According to this theory, each paramagnetic cen-
ter can trap either one electron with uncompensated
spin ±1/2 or two electrons in a singlet state with zero

ρ B( ) ρ*
ρ0

1 B/B1/2( )2+
-------------------------------,+=
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total spin. In the case of normal excitation with circu-
larly polarized light in the absence of a magnetic field,
the electron spins are polarized in the direction of exci-
tation (z axis). Let n± and N± denote the densities of free
electrons and paramagnetic centers with the electron
spin projection ±1/2 respectively, and let N↑↓  be the
concentration of paramagnetic centers with two elec-
trons. In the SDR model under consideration, the con-
tribution due to the interband recombination mecha-
nism is ignored and the rate of the loss of free carriers
via trapping on paramagnetic centers is described by
the expressions (dn±/dt)rec = –γen±  for electrons and
(dp/dt)rec = –γhpN↑↓  for holes (p is the density of holes,
which are considered unpolarized, irrespective of the
polarization of exciting light). In addition to the recom-
bination constants γe and γh, the system is characterized
by the spin relaxation times of free (τs) and coupled
(τsc) electrons. At room temperature, the latter relax-
ation constants obey the condition τs ! τsc.

For a qualitative explanation of the observed behav-
ior of the photoluminescence intensity and circular
polarization as functions of the exciting light polariza-
tion and the external magnetic field, it is sufficient to
consider the case of weak pumping, whereby the degree
of spin polarization of coupled electrons (Pc) is rela-
tively low [7, 9]:

(2)

Here, P = (n+ – n–)/(n+ + n–) and Pc = (N+ – N–)/(N+ + N–)
are the degrees of spin polarization of the free and cou-
pled electrons, respectively; a and b are positive coeffi-
cients; and Pi is the initial degree of spin polarization of
photoelectrons at the moment of their creation. Since
linearly polarized exciting light does not produce opti-
cal orientation (i.e., polarization) of the electron spins,
the ratio of photoluminescence intensities (Icirc/Ilin) for
the optical pumping with circular and linear polariza-
tion is 1 + aPcP, where Pc and P refer to the circularly
polarized exciting light. It should be noted that the
product PcP is positive and independent of the sign of
the circular polarization of exciting light, which implies
that Icirc > Ilin.

In a transverse magnetic field (B ⊥  z) such that
|ge|µBBτs/" ! 1, while the |gc|µBBτsc/" is arbitrary (ge

and gc are the g-factors of the free and coupled electron,
respectively, and µB is the Bohr magneton), we may
ignore the rotation of the spin of free electrons due to
the Larmor precession. In this case, expressions (2) are
also valid for B ≠ 0, provided that Pc is the degree of
spin polarization of the coupled electrons along the z
axis: Pc(B) = Pc(0)[1 + (ΩcTsc)2]–1. Here, Ωc = gcµBB/",

 =  + , and  = γhN↑↓ (p/N), since the depo-
larization of spins for the coupled electrons takes place
both due to the spin relaxation (characterized by τsc)
and due to the trapping of holes (characterized by τc) on

N+−

I 1 aPcP, ρ+∝ b Pi Pc+( ).=

Tsc
1– τ sc

1– τc
1– τc

1–
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the centers with two coupled electrons. As the magnetic
field strength is increased, the depolarization of cou-
pled electrons tends to grow, the intensity Icirc decreases
to Ilin, and the polarization ρ decreases to bPi ≡ ρ*.

In order to determine the photoluminescence inten-
sity and polarization in the case of strong pumping, it is
necessary to solve a nonlinear system of balance equa-
tions. The results of preliminary calculations showed
that the SDR model [7] is applicable to the explanation
of experimental data obtained in the entire range of
J values.

Now we will demonstrate that the system under con-
sideration possesses, besides a short spin relaxation
time τs, a long characteristic time related to evolution of
the spin of free electrons. To this end, let us consider
equations for the rates of variation of the electron polar-

Fig. 2. (a) The degree of circular polarization and (b) the
intensity of photoluminescence versus transverse magnetic
field for a GaAs0.979N0.021 film excited at T = 300 K by cir-
cularly polarized light (hνexc = 1.311 eV, hνdet = 1.159 eV)
with intensities J = (d) 240, (h) 150, (,) 100, (w) 50, and
(s) 25 mW. Symbols present the experimental data and the
solid curves show the Lorentzian approximations y(B) =

y* + y0(1 + B2/ )–1.B1/2
2

(G)
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ization components, which follow from the balance
equations for n± and N±:

(3)

(4)

where  = γeN/2. The second term in the right-hand
part of Eq. (3), which is related to the SDR, plays the
role of a spin generator. Indeed, the polarization kinet-
ics P(t) upon switching off the stationary optical pump-
ing (G = 0) includes fast and slow components: the
former decaying for a time on the order of τs, and the
latter, changing approximately as P(t) ≈ (τs/τ0)Pc(t).

The fact that the maximum value (35%) of the pho-
toluminescence polarization in Fig. 2a is quite close to
the limit (50%) is indicative of a rather long spin mem-
ory of conduction electrons. At the same time, as was
established above, the spin memory of the nonlinearly
related spin subsystems of the free and localized elec-
trons is determined by the large spin lifetime Tsc of the
localized electrons. The latter value can be readily
determined using the Hanle effect, since B1/2 =
"/gcµBTsc, which implies that Tsc increases with
decreasing B1/2. The minimum halfwidth of the Hanle

curve determined from Fig. 2a is  = 91 ± 5 G. Tak-

ing into account that  < , we obtain an estimate
from below for the product of spin relaxation time and

g-factor: gcτsc > gc  = 1.3 ± 0.2 ns. The value of gc

for GaAsN is unknown (we know of the investigation of
g in nitrogen-containing solid solutions based on GaAs
[10] that was devoted to the measurement of the g fac-
tor of free electrons in GaInAsN). We performed a spe-
cial experiment with oblique light incidence onto the
sample, whereby the photoluminescence was measured
in the reflection mode at an angle relative to the exciting
light beam, in the presence of a magnetic field oriented
perpendicularly to the excitation and detection direc-
tions [11]. From the asymmetry of the Hanle effect
observed under these conditions, it was established that
gc > 0. In the same way, gc was found to be positive in
GaAs1 – xNx films with x = 2.7 and 3.4%. This sign of gc

suggests that its value is close to the g-factor of free
electron in vacuum (gc ≈ 2). From this, we infer that
τsc > 0.6 ns.

In conclusion, GaAsN solid solutions exhibit a
strong room-temperature SDR. The giant lifetimes and
the magnitude of polarization of the spin of conduction

dP
dt
------- P

τ s

----–
Pc

τ0
----- 1 P2–( ) G

n
---- Pi P–( ),+ +=

dPc

dt
---------

Pc

Tsc

-------–
n
N
---- 1

τ0
----P 1 Pc

2–( ),+=

τ0
1–

B1/2
min

τ sc
1– Tsc

1–

Tsc
min
electrons observed under the conditions of optical
pumping make nitrogen-containing GaAs-based com-
pounds promising materials for spintronics. The circu-
lar polarization of photoluminescence and the half-
width of the Hanle curve in the intrinsic semiconductor
under consideration are strongly dependent on the
intensity of exciting light. The obtained experimental
data were interpreted in terms of the SDR model [7].
This model adequately explains the dependence of the
photoluminescence lifetime, the spin lifetime, and the
degree of the electron spin orientation on the pumping
intensity. Despite a very short time of the spin relax-
ation of free electrons, the system of free and localized
charge carriers is also characterized by slow spin relax-
ation with a characteristic time on the order of 1 ns.
Using the Hanle effect, it was established that the g fac-
tor of electrons localized on deep paramagnetic centers
responsible for the SDR is positive.

We are grateful to K.V. Kavokin and N.V. Kryzha-
novskaya for fruitful discussions. This study was sup-
ported in part by the Russian Foundation for Basic
Research and by the Japan Society for the Promotion of
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As demonstrated by E. Knill et al. [Nature 409, 46 (2001)], quantum teleportation and quantum logic gates with
a success probability close to one can be implemented using only linear optical elements, additional photons,
and post-selection. To do this, it is desirable to have special quantum channels in sight before quantum telepor-
tation performance. Here, we propose an experimental arrangement to generate a two-photon KLM state dif-
ferent from the well-known Bell states. This two-photon KLM state can be used to enhance the success proba-
bility of the quantum teleportation of a one-mode quantum qubit from 0.5 up to 2/3. © 2005 Pleiades Publish-
ing, Inc.

PACS numbers: 03.67.Lx
The theory of quantum computation promises to
revolutionize the future of computer technology in fac-
toring large integers [1] and combinational searches
[2]. For quantum communication purposes, entangled
states of light fields are of particular interest. Such
states can also be used, for example, for quantum key
distribution [3] and quantum teleportation [4]. The
entangled states are useful for quantum processing, but
they are hard to produce and the states tend to decohere
fast. A spontaneous noncollinear parametric down-con-
verter with type-II phase matching is considered to pro-
duce true two-photon entanglement (a maximally
entangled Bell state or Einstein–Podolsky–Rosen
(EPR) pair) along certain directions of propagation of
the generated optical beams [5]. One should mention
that such EPR states make it possible to observe, for
example, the process of quantum teleportation with a
probability of success of 50% [6]. The problem is that
nonlinear interactions between individual photons are
required to implement a quantum teleportation protocol
that operates with 100% efficiency [7]. In order words,
inherently nonlinear Bell state measurement must be
performed for achievement of 100% teleportation [8].

Nevertheless, it was recently found that the success
probability of quantum teleportation, as well as con-
trolled sign gates, can be increased to close to one by
increasing the number of ancillary optical modes, pho-
tons, and beam splitters [9]. To do this, special quantum
channels, which we call KLM (E. Knill, R. Laflamme,
G.J. Milburn) channels, must be prepared beforehand.
The optical qubit interacts with the KLM quantum
channel by passing through a network of beam splitters
and phase shifters [9]. Depending on the measurement
result in ancillary modes [10], quantum teleportation
can be performed with a success probability of more

¶ The text was submitted by the author in English.
0021-3640/05/8207- $26.00 0459
than 50% [9]. In the paper, we propose a method to gen-
erate a two-photon KLM state

(1)

where, henceforth, the numbers in the subscripts of the
used states are related to the optical modes of the pho-
tons [11]. For example, the state |1100〉1234 in Eq. (1) is
a tensor product of one-photon number states where the
modes are occupied by two photons, while modes 1 and
2 have zero photons.

To generate two-photon KLM state (1), we are
going to make use of an induced parametric down-con-
verter with type-I phase matching (IPDCI) with one

ΨKLM
1234( )| 〉 1

3
------- 1100| 〉 1001| 〉 0011| 〉+ +{ } 1234,=

Experimental setup to produce a two-photon KLM state
consisting of three coupled SPDCI. PS means phase shifter.
© 2005 Pleiades Publishing, Inc.
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input signal photon to the noncollinear spontaneous
parametric down-converter with type-I phase matching
(SPDCI). For our purposes, we use the experimental
setup shown in the figure. First, let us consider SPDCI
in detail. We are going to describe the SPDCI as well as
IPDCI by the simplified three-mode Hamiltonian [12]

(2)

where  and  are the modes of down-converted

photons, the operator  is the mode of the powerful
beam pumping simultaneously first and second down-
converted crystals through the balanced beam splitter
as shown in the figure, and the coupling coefficient r is
related to the nonlinear second-order susceptibility ten-
sor χ(2). The simplified three-mode Hamiltonian of the
noncollinear SPDCI is applicable in the case of contin-
uous wave pumping when we neglect the multifre-
quency structure of the pump and use narrowband fil-
ters to choose only modes satisfying the phase-match-
ing condition. According to [12], the output function of
the SPDCI with input state |00〉12|α〉p is given by

(3a)

where the partial wave functions  in the pump-
ing mode are given by

(3b)

where the function (β) is responsible for the
output wave amplitude [12], the subscript (00) in the

definition of the functions  means the input
states in the signal and idler modes were in vacuum, and
the superscript in the designation of the output function

 of the SPDCI concerns the numbers of the gen-
erated modes. Here, the magnitude α is the amplitude of
the coherent state input to the SPDCI and the coefficient
β is responsible for the “strength” of the SPDCI [12].
The output nonnormalized wave function of the SPDCI
(3b) can be significantly simplified if we make use of the
αβ ! 1 approximation that takes place in practice and

decompose the output wave amplitudes (β)
(Eq. (3b)) into asymptotic series in small parameter β !
1 to take into account only the first term of the series

(β) ~ 1, (β) ~ β , (β) ~ β2 ,

H1
i"r
2

-------- â1
+â2

+âp âp
+â2â1–( ),=

â1 â2

âp

ΨS
12( )| 〉 αβ( )n n1| 〉1 n| 〉2 ψ 00( )

n( )| 〉 p,
n 0=

∞

∑=

ψ 00( )
n( )| 〉 p

ψ 00( )
n( )| 〉 p

α 2

2
--------– 

  αm f n 1+
2 m n+( )( ) β( )

βn m n+( )!
------------------------------------ m| 〉 p,

m 0=

∞

∑exp=

f n 1+
2 m n+( )( )

ψ 00( )
n( )| 〉 p

ΨS
12( )| 〉

f n 1+
2 m n+( )( )

f 1
2n( ) f 2

2n( ) n f 3
2n( ) n n 1–( )
…, (β) ≈ βm – 1 , and so on
for any m ≤ n + 1 [12]

(3c)

Now let us consider IPDCI with one input signal
photon and no photons in the idler mode, in other
words, if the input conditions to Hamiltonian H1
(Eq. (2)) are chosen, for example, as |10〉12|α〉p. Follow-
ing the same technique as in the case of SPDCI [12], we
can write the wave function of the IPDCI as

(4a)

where

(4b)

with the wave amplitudes (s; β) (k = 1, …, n +
1) satisfying the set of linear differential equations

(4c)

The following input conditions (s = 0) =

exp(−|α|2/2)αn/ ! and (s = 0) = 0 for k = 2, …,
n + 1 are imposed on Eq. (4c). Here, the symbol in the
subscripts of the Eqs. (4a–4e) is introduced to distin-
guish the states (4a–4c) from the states (3a and 3b). The

output wave function of the EPDCI | 〉 (Eq. (4a))
can be rewritten as

(4d)

where the partial wave functions | 〉p in the pump-
ing mode are given by

(4e)

The smallness of the parameter β ! 1 allows one to

decompose the wave amplitudes (β) into
asymptotic series in the small parameter β restrict-
ing the decomposition only to the first term in the

case of β ! 1. Then, we get  ~

f m
2n( ) n n 1–( )… n m– 2+( )

ΨS
12( )| 〉 αβ( )n n| 〉1 n| 〉2 α| 〉 p.

n 0=

∞

∑=

ΨI
12( )| 〉 Ψ 10( )

2n 1+( )| 〉 ,
n 0=

∞

∑=

Ψ 10( )
2n 1+( )| 〉  = f k 10( )

2n 1+( ) s; β( ) k| 〉1 k 1–| 〉2 n k– 1+| 〉 p,
k 1=

n 1+

∑

f k 10( )
2n 1+( )

d f k 10( )
2n 1+( )

ds
-------------------- β k k 1–( ) n k– 2+( ) f k 1 10( )–

2n 1+( )(=

– k k 1+( ) n k– 1+( ) f k 1 10( )+
2n 1+( ) .

f 1 10( )
2n( )

n f k 10( )
2n( )

ΨI
12( )

ΨI
12( )| 〉 αβ( )n n| 〉1 n| 〉2 ψ10

n( )| 〉 p,
n 0=

∞

∑=

ψ 10( )
n( )

ψ 10( )
n( )| 〉 p

α 2

2
--------– 

  αm f n 1 10( )+
2 m n+( ) 1+( ) β( )

βn m n+( )!
------------------------------------------ m| 〉 p.

m 0=

∞

∑exp=

f k 10( )
2 m n+( ) 1+( )

f n 1 10( )+
2 n m+( ) 1+( )
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βn  and the out-
put wave function of the IPDCI with one input signal
photon in the αβ ! 1 approximation is given by

(4f)

Now we are ready to describe in more detail the exper-
imental setup in the figure to produce the two-photon
KLM state. First, SPDCI produces the outcomes given
by Eqs. (3a–3c). We are going to make use of the αβ !
1 approximation valid in the practical case to deal with
only the following nonnormalized wave function

| 〉 = {|00〉  + αβ|11〉}12|α〉p (input to system of two
coupled IPDCI in figure) neglecting the higher order
terms in the parameter αβ ! 1 in the output wave func-
tion of the SPDCI (Eq. (3c)). The next step is related to
the system of two down-converted crystals with identi-
cal responses pumped simultaneously by powerful
pumping modes, as shown in the figure. According to
the figure, the pumping mode in a coherent state with
amplitude α (|α〉p) passes through a balanced beam

splitter, transforming to the state ,
where the subscripts p1 and p2 refer to the first and sec-
ond output modes of the beam splitter, respectively. We
apply a phase shifter to avoid a π/2 phase shift in the
second pumping mode π2. The phase-shifter is an opti-
cal element that acts on a single mode to cause a shift ψ
in the phase of the mode state. The underlying unitary

evolution operator is  = exp( ). Then, we

have the relation  = exp(–iφ) , which

enables one to remove the π/2 phase shift in the second
pumping mode p2 if we chose φ = π/2. One of the modes
generated by the SPDCI (namely, mode 1) is launched
into the first down-converted crystal, while the other
mode (namely, mode 2, which we label as 4 in the fig-
ure) is entered into the second down-converted crystal.
Finally, the input state to the two down-converted crys-
tals becomes |Ψin〉  = {|0000〉  +

αβ|1001〉}1234  after the beam splitter.

As a consequence of such an input to the down-con-
verters, the outcome of the system is divided into two
groups, namely, one part of the state |Ψin〉  originating

from the input state |0000〉1234  gives
rise to the SPDCI process and the other part of the input

state |Ψin〉 , namely, αβ|1001〉1234 , is
responsible for the IPDCI.

We make use of the three-mode simplified Hamilto-
nian H12 for the system of two down-converted crystals

n 1+ n m+( ) n m 1–+( )… m 1+( )

ΨI
12( )| 〉 αβ( )n n 1+ n 1+| 〉1 n| 〉2 α| 〉 p.

n 0=

∞

∑=

Ψ̃in

α / 2| 〉 p1 iα / 2| 〉 p2

P̂p2
φâp2

+ âp2
–

P̂p2
âp2

+ P̂p2

+
âp2

+

α / 2| 〉 p1 α / 2| 〉 p2

α / 2| 〉 p1 α / 2| 〉 p2

α / 2| 〉 p1 α / 2| 〉 p2
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with identical responses pumped simultaneously by
powerful pump modes

(5)

where the subscripts for quantum operators in (5) refer
to the corresponding signal, idler (modes 1–4), and
pump modes (modes p1 and p2); the coupling constant
r' is related to the system of coupled down converters;
and the Hamiltonians H1 and H2 relate to the first and
second down-converters in the figure, respectively. The
Hamiltonian H12 (5) gives rise to the following wave
function:

(6)

with the corresponding wave functions | 〉 and

| 〉 (Eqs. (3a) and (3b), (4d) and (4f)) in the first and

second output ports and the states | 〉 and | 〉 in
the third and fourth output channels, respectively. The
fact that the parameter αβ in the practical case takes a
value of much less than one (αβ ! 1) makes it possible
to rewrite the output wave function taking into account
only vacuum states and terms proportional to the factor
αβ as

(7)

Here, the parameter β' is related to the coupling con-
stant of the system of two SPDCI pumped simulta-
neously through the balanced beam splitter. Finally, we
get superposition of the vacuum state with two-photon

KLM state (1) (Eq. (7)) if we take β' = β. One
should mention that the proposed experiment is based
on the use of coupled IPDCI, which is inherently ran-
dom. Consequently, we can determine whether a pair of
photons has been generated only by postselection pro-
duced by detectors. The same random generation of the
superposition of the vacuum and Bell states occurs in
the majority of current experiments [5, 6], when the
randomness of the generated pair is not essential. The
scheme proposed in the figure can become the basis for
generation of other types of KLM states, for example,
the four-photon KLM state |rt2〉  =

 written in terms of the qubit
encoding [9] by use of the quantum encoding tech-
nique. The state |rt2〉  can be used to teleport a two-mode
qubit with a success probability of 2/3 [9].

H12 H1 H2+=

=  
i"r'

2
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+â2
+âp1

+ âp1

+ â2â1 â3
+â4
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34( )| 〉 αβ ΨI
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