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The density, spin, and isospin correlation functions in nuclear matter with a neutron–proton condensate are cal-
culated to study the possible signatures of the BEC–BCS crossover in the low-density region. It is shown that
the criterion of the crossover (Phys. Rev. Lett. 95, 090402 (2005)), consisting in the change of the sign of the
density correlation function at low momentum transfer, fails to describe correctly the density-driven BEC–BCS
transition at finite isospin asymmetry or finite temperature. The presence (BCS regime) or absence (BEC
regime) of the singularity in the momentum distribution of the quasiparticle density of states can be used as an
unambiguous signature of the BEC–BCS transition. © 2005 Pleiades Publishing, Inc.
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INTRODUCTION

Neutron–proton pairing correlations play an impor-
tant role in a number of contexts, including the study of
medium-mass N ≈ Z nuclei produced at the radioactive
nuclear beam facilities [1] and the process of deuteron
formation in medium-energy heavy-ion collisions [2].
In the astrophysical context, neutron–proton (np) pair-
ing correlations are relevant for the astrophysical r pro-
cess [3], which is responsible for the synthesis of
nuclear species more massive than iron, and can play a
major role in neutron star models, which permit pion or
kaon condensation [4]. For not too low densities, np
pairing correlations crucially depend on the overlap
between neutron and proton Fermi surfaces, and even a
small isospin asymmetry effectively destroys a conden-
sate with np Cooper pairs due to the Pauli blocking
effect [5–7]. However, under decreasing density, when
neutrons and protons start to bind in deuterons and the
spatial separation between deuterons, and between deu-
terons and extra neutrons, is large, the Pauli blocking
loses its efficiency in destroying a np condensate. In
such a situation, despite the fact that the isospin asym-
metry may be very large, a np condensate survives and
exists in the form of a Bose–Einstein condensate of
deuterons.

The transition from BCS superconductivity to
Bose–Einstein condensation (BEC) occurs in a Fermi
system if either density is decreased or the attractive
interaction between fermions is increased sufficiently.
This transition was first studied in excitonic semicon-
ductors [8] and then in an attractive Fermi gas [9].
Later, it was realized that an analogous phase transition
takes place in symmetric nuclear matter, when np Coo-
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per pairs at higher densities go over to BEC of deuter-
ons at lower densities [2, 5]. During this transition, the
chemical potential changes its sign at certain critical
density (Mott transition), approaching half of the deu-
teron binding energy at ultralow densities. In [5], cross-
over from np superfluidity to a BEC of deuterons was
investigated in the T-matrix approach, where the pole in
the T matrix determines the critical temperature of BEC
of bound states in the case of negative chemical poten-
tial and the critical temperature of the appearance of np
Cooper pairs in the case of positive chemical potential.
The influence of isospin asymmetry on the BEC–BCS
crossover in nuclear matter was studied in [10] within
the BCS formalism. It has been shown that a Bose–Ein-
stein condensate is weakly affected by an additional gas
of free neutrons even at very large asymmetries. The
same conclusion was also confirmed in [11] on the
basis of the variational approach for the thermody-
namic potential.

The recent upsurge of interest to the BEC–BCS
crossover was caused by the discovery of BCS pairing
in ultracold trapped quantum atom gases [12, 13]. In
this study, we examine the possible signatures of the
BEC–BCS crossover in low-density nuclear matter. It
may have interesting consequences, for example, in the
far tails of the density profiles of exotic nuclei, where a
deuteron condensate can exist in spite of the fact that
the density there can be quite asymmetric. In addition,
similar physical effects can play an important role in
the expanding nuclear matter formed in heavy-ion col-
lisions or in nuclear matter in the crust of a neutron star.
The main emphasis is placed on the behavior of the
density, spin, and isospin correlation functions across
the BEC–BCS transition region. The study is motivated
by the results of [14], where the authors state that the
 © 2005 Pleiades Publishing, Inc.
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density correlation function of a two-component ultra-
cold fermionic gas of atoms changes sign at low
momentum transfer, and this represents an unambigu-
ous signature of the BEC–BCS crossover. This state-
ment is checked for nuclear matter taking into account
additional factors: finite isospin asymmetry or finite
temperature. In both cases, this criterion fails to provide
a correct description of the density-driven BEC–BCS
crossover and cannot serve as the universal feature of
transition between two states of the system.

BASIC EQUATIONS

Superfluid states of nuclear matter are described by
the normal f and anomalous g distribution functions of
nucleons

(1)

where κ ≡ (k, σ, τ), k is momentum, σ(τ) is the projec-
tion of spin (isospin) on the third axis, and ρ is the den-
sity matrix of the system. We shall study np pairing cor-
relations in the pairing channel with total spin S and
isospin T of a pair S = 1, T = 0 and the projections Sz =
Tz = 0. In this case, the distribution functions for isos-
pin-asymmetric nuclear matter have the structure

(2)

where σi and τk are the Pauli matrices in spin and isos-
pin spaces, respectively. Using the minimum principle
of the thermodynamic potential and the procedure of
block diagonalization [7], one can obtain expressions
for the distribution functions:

(3)

(4)

(5)

Here,

(6)

∆ being the energy gap in the quasiparticle excitation
spectrum, m being the effective nucleon mass, and µ
and δµ being half of a sum and half of a difference of
neutron and proton chemical potentials, respectively.

Equations governing np pairing correlations in the
S = 1, T = 0 pairing channel can be obtained on the basis
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of the Green’s function formalism and have the form
[7, 11]

(7)

(8)

(9)

where f(E) is the Fermi distribution function. Equa-
tion (7) is the equation for the energy gap ∆, and
Eqs. (8) and (9) are equations for the total density ρ =
ρp + ρn and neutron excess δρ = ρn – ρp ≡ αρ (α being
the asymmetry parameter). Note that, since we consider
a unitary superfluid state (∆∆+ ∝  I), Eqs. (7)–(9) for-
mally coincide with the equations for a two-component
isospin-asymmetric superfluid with singlet spin pairing
between unlike fermions. Introducing the anomalous
density

and using Eq. (8), one can represent Eq. (7) for the
energy gap in the form

(10)

In the limit of vanishing density, nk  0, Eq. (10) goes
over to the Schrödinger equation for the deuteron
bound state [2, 10]. The corresponding energy eigen-
value is equal to 2µ. The change in the sign of the mean
chemical potential µ of neutrons and protons under
decreasing density of nuclear matter signals the transi-
tion from the regime of large overlapping np Cooper
pairs to the regime of nonoverlapping bound states
(deuterons).

Let us consider the two-body density correlation
function

(11)

Its general structure in the spatially uniform and isotro-
pic case reads [15]

(12)

The function D(r) is called the density correlation func-
tion, as well. We will be interested in the behavior of the
function D(r). The trace in Eq. (10) can be calculated by
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using definitions (1) and the Wick rules. Taking into
account Eqs. (2) and going to the Fourier representation

one can get

(13)

where

Here, j0 is the spherical Bessel function of the first kind

and zeroth order. The functions , , and  repre-
sent the normal and anomalous contributions to the
density correlation function. Analogously, we can con-
sider the two-body spin correlation function

(14)

and the two-body isospin correlation function
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Their general structure for isospin-asymmetric nuclear
matter without spin polarization is

(16)

(17)

Then, calculating traces in Eqs. (14) and (15), for the
Fourier transforms of the spin and isospin correlation
functions, one can get

(18)

(19)

Note that, if we put ν = µ = 3 in Eqs. (18) and (19), we
get the longitudinal spin Sl and isospin Tl correlation
functions, while setting µ, ν = 1, 2 gives the transverse
spin and isospin correlation functions

(20)

The following relationships between the correlation
functions are true:

(21)

At zero temperature and zero momentum transfer, the
correlation functions satisfy the sum rule

(22)

where the right-hand side is independent of density and
isospin asymmetry. In addition, the transverse isospin
correlation function satisfies the relationship
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MATTER WITH A np CONDENSATE

Further, for numerical calculations, we shall use the
effective zero range force, which was developed in [16]
to reproduce the pairing gap in S = 1, T = 0 pairing
channel with a Paris NN potential:

, (24)V r1 r2,( ) v 0 1 η
ρ

r1 r2+
2

--------------- 
 
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 
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 

γ

–

 
 
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Fig. 1. Energy gap as a function of density at zero tempera-
ture and different asymmetries.

Fig. 2. Density and transverse spin correlation functions as
functions of momentum at zero temperature and different
densities for symmetric nuclear matter.
where ρ0 = 0.16 fm–3 is the nuclear saturation density,
v 0 = –530 MeV fm3, η = 0, m = mG, mG being the effec-
tive mass corresponding to the Gogny force D1S. Also,
in the gap equation (7), Eq. (24) must be supplemented
with a cutoff parameter, εc = 60 MeV.

To find the correlation functions, one should first
solve the gap equation (7) self-consistently with
Eqs. (8) and (9). The correlation functions can then be
determined directly from Eqs. (13), (18), and (19). The
results of numerical determination of the energy gap as
a function of density for different asymmetries at zero
temperature are shown in Fig. 1. As one can see, with
increasing asymmetry, the magnitude of the energy gap
is decreased and the density interval where a np con-
densate exists shrinks to lower density. In reality, solu-
tions exist for any α < 1 (the phase curves for larger val-
ues of α are not shown in Fig. 1) and correspond to the
formation of a BEC of deuterons at very low densities
of nuclear matter.

Now we consider the correlation functions D(q) and
St(q) for symmetric nuclear matter at zero temperature,
depicted in Fig. 2 (at α = 0, Tt(q) = St(q)). The density
correlation function changes sign at low momentum
transfer when the system smoothly evolves from the
BEC regime to the BCS regime. These two regimes are
distinguished by negative and positive values of the
chemical potential µ, respectively. In view of Eq. (21),
the longitudinal spin correlation function Sl(q) changes
sign through the BEC–BCS crossover as well. The
transverse spin correlation function and, according to
Eq. (21), the longitudinal and transverse isospin corre-
lation functions change fluently between BEC and BCS
limits. The behavior of the density correlation function
in the isospin-symmetric case at zero temperature qual-
itatively agrees with the behavior of the density corre-
lation function in an ultracold fermionic atom gas with
singlet pairing of fermions [14]. In [14], the change in
the sign of the density correlation function at low
momentum transfer was considered as a signature of
the BEC–BCS crossover. We would like to extend their
calculations taking into account the finite isospin asym-
metry and finite temperature.

Figure 3 shows the dependence of the density corre-
lation function D(q = 0) at zero momentum transfer as
a function of density for a set of various isospin asym-
metry parameters and zero temperature. It is seen that,
with increasing asymmetry parameter, the density cor-
relation function decreases. For strong enough asym-
metry, the function D(q = 0) is always negative. In
accordance with the above criterion, the density region
where the function D(q = 0) has positive or negative
values would correspond to the BEC or BCS regime,
respectively. Hence, as follows from Fig. 3, for strong
isospin asymmetry, we would have only the BCS state
for all densities, where a np condensate exists. Obvi-
ously, this conclusion contradicts the behavior of the
mean chemical potential µ, being negative at very low
densities for any α < 1, and, hence, giving evidence to
JETP LETTERS      Vol. 82      No. 9      2005
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the formation of BEC of bound states [11]. Thus, at
strong enough isospin asymmetry, the criterion of the
crossover based on the change of the sign of the density
correlation function fails to predict the transition to the
BEC of deuterons in low-density nuclear matter.

Now we consider symmetric nuclear matter at finite
temperature. Figure 4 shows the dependence of the den-
sity correlation function D(q = 0) at zero momentum
transfer as a function of density for a set of various tem-
peratures. It is seen that, for not too high temperatures,
the density response function is nonmonotonic and
twice changes sign in the region of low densities.
Hence, in accordance with the above criterion, we
would have the density interval ρ1 < ρ < ρ2 with the
BEC state, surrounded by the density regions with the
BCS state. However, this conclusion contradicts the
behavior of the mean chemical potential µ for these
temperatures, being a monotonic function of density
and indicating the formation of a BEC state at low den-
sities (µ < 0) and a BCS state at larger densities (µ > 0).
Thus, at finite temperature, the criterion of the cross-
over formulated in [14] fails to provide the correct
description of the transition between two regimes.

In summary, we have calculated the density, spin,
and isospin correlation functions in superfluid nuclear
matter with np pairing correlations, intending to find
the possible signatures of the BEC–BCS crossover. It is
shown that the transverse spin and longitudinal and
transverse isospin correlation functions satisfy the sum
rule at zero momentum transfer and zero temperature
and change smoothly between BEC and BCS regimes.
In [14], it was learned that the density correlation func-
tion in a two-component ultracold fermionic atom gas
with singlet pairing of fermions changes sign at low
momentum transfer across the BEC–BCS transition,
driven by a change in the scattering length of the inter-
action at zero temperature. We have shown that, for spin
triplet pairing, the longitudinal spin correlation func-

Fig. 3. Density correlation function D(q = 0) as a function
of density at zero temperature for different isospin asymme-
try parameters.
JETP LETTERS      Vol. 82      No. 9      2005
tion plays an analogous role to the density correlation
function and changes sign at low momentum transfer
across the crossover in symmetric nuclear matter at
zero temperature. However, while giving a satisfactory
description of the density-driven BEC–BCS crossover
in dilute nuclear matter at zero temperature for the isos-
pin-symmetric case, this criterion fails to provide the
correct description of the crossover at finite isospin
asymmetry (nonequal densities of fermions of different
species) or finite temperature. Hence, the criterion in
[14] cannot be considered as the universal indication of
the BEC–BCS transition. During the Mott transition,
when the chemical potential changes sign, there is a
qualitative change in the quasiparticle energy spectrum:
the minimum shifts from a finite (BCS state) to zero-
momentum value (BEC state) (see Eq. (6) and [17]). As
such, the presence (BCS) or absence (BEC) of the sin-
gularity in the momentum distribution of the quasipar-
ticle density of states represents the universal signature
of the BEC–BCS transition. This transition may be rel-
evant and could give valuable information on np pairing
correlations in low-density nuclear systems, such as
tails of nuclear density distributions in exotic nuclei
produced at radioactive nuclear beam facilities,
expanding nuclear matter in heavy-ion collisions, and
low-density nuclear matter in outer regions of neutron
stars.
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We address the question of the Lorentz nature of the effective long-range interquark interaction generated by
the QCD string with quarks at the ends. Studying the Dyson–Schwinger equation for a heavy–light quark–anti-
quark system, we demonstrate explicitly how a Lorentz scalar interaction appears in the Dirac-like equation for
the light quark as a consequence of chiral symmetry breaking. We argue that the effective interquark interaction
in the Hamiltonian of the QCD string with quarks at the ends stems from this effective scalar interaction.
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PACS numbers: 12.38.Aw, 12.39.–x
1. INTRODUCTION

Description of the spectrum of mass and other prop-
erties of hadrons is one of the main tasks of QCD as the
theory of strong interactions, and a variety of nonper-
turbative theoretical approaches have been developed
for this purpose. In this paper, we touch upon two of
them, which we believe to be complementary to one
another. On one hand, the quantum mechanical
approach of the QCD string with quarks at the ends can
be derived starting from the fundamental QCD
Lagrangian. On the other hand, a field-theory-inspired
approach based on the Dyson–Schwinger equation for
quarkonia can be developed. The two mentioned
approaches allow one to make reliable predictions for
the properties of hadrons, although both of them meet
certain problems and should be applied together, side
by side. For example, the approach based on the
Dyson–Schwinger equation for quarkonia is well
adjusted for the case of heavy–light systems, whereas,
in the light–light case, its application is not straightfor-
ward. Meanwhile, the QCD string approach can be
readily applied to both heavy–light and light–light
quarkonia, as well as to other hadrons, including those
with excited gluonic degrees of freedom. Unfortu-
nately, since the effects of spontaneous breaking of
chiral symmetry (SBCS) are not inherent to the string
model, there is no hope of reproducing the properties of
the lightest states in the mesonic spectrum—the pions
and the kaons—in this approach. This is the problem
for which the method of the Dyson–Schwinger equa-
tion comes to the rescue. Indeed, this method appears
appropriate for studies of chiral symmetry breaking
(CSB) and for all phenomena related to it. In this paper,
we make one more step on the way to merging the two
aforementioned methods and study the problem of the
Lorentz nature of confinement generated by the QCD
string. Considering a heavy–light quarkonium, we

¶ The text was submitted by the authors in English.
0021-3640/05/8209- $26.00 0557
employ the Dyson–Schwinger approach to derive an
effective Dirac-like bound state equation for the spec-
trum of the system. We argue that it is SBCS, caused by
confinement, which gives rise to the scalar part of the
interquark interaction in this equation and demonstrate
how the confinement-induced scalar interaction
reduces, under certain conditions, to a local potential
dynamics described by the quantum mechanical Sal-
peter equation for quarkonium. Finally, we extend this
conclusion of the scalar nature of the effective inter-
quark interaction to the case of a rotating QCD string
with quarks at the ends.

2. QCD STRING AND THE SPINLESS 
SALPETER EQUATION

In this section, we remind the reader of the main
steps used to derive the Hamiltonian of the QCD string
with quarks at the ends in the vacuum correlator
method (VCM) [1]. We start from the gauge-invariant

in- and out-states of the quarkonium, (x, y | A) =

(x)Pexp(ig )Ψq(y) [2]. Now, writing the

Green’s function of the (flavor-nonsinglet) quark–anti-
quark meson,

(1)

and performing averaging over the gluonic field by
means of the minimal area law for the isolated Wilson
loop, we can extract the standard Nambu–Goto effec-
tive action for the string connecting the quarks,

(2)

Ψqq
in out,( )

Ψq zµAµd
y

x∫

Gqq Ψqq
out( ) x y A,( )Ψqq

in( )† x y A,( )〈 〉 qqA,=

Smin t β ẇw'( )2 ẇ2w'2– ,d

0

1

∫d

0

T

∫=

wµ t β,( ) βx1µ t( ) 1 β–( )x2µ t( ),+=
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where we used the straight-line string ansatz for the
minimal surface [2]. Finally, considering the quark–
antiquark system at rest in the laboratory reference
frame, we synchronize the quark times and put them
equal to the laboratory time, x10 = x20 = t. The resulting
center-of-mass Hamiltonian reads [2]

(3)

where, in order to get rid of the square roots in the rel-
ativistic quark kinetic terms and in the string term (2),
we used the auxiliary field method and introduced the
einbeins µ1, 2 and ν(β). The interested reader can find
the details of the einbein field formalism in the original
paper [3] and examples of its application to the QCD
string with quarks at the ends in [2, 4]. Notice that
extremum conditions for all three einbeins are under-
stood in order to arrive at the Hamiltonian in the final
form, expressed via physical degrees of freedom only.
The spinless Hamiltonian (3) is to be supplied by the
nonperturbative spin–orbit interaction [5], as well as by
the Coulomb potential and spin-dependent terms gener-
ated by the latter. The resulting model appears rather
successful in studies of quarkonia: for example, the
spectrum of heavy–light D, Ds, B, and Bs mesons can be
reproduced with good accuracy this way [6]. The last,
angular-momentum-dependent term in the Hamiltonian
(3) contains a strong contribution of the proper dynam-
ics of the string, described by the integral term in the
denominator. The effect of this dynamics on the prop-
erties of the system is comprehensively studied in the
literature and is known to bring the Regge trajectories
slope to the experimental value [2, 7], to lower the
masses of orbitally excited states [6], and so on. In the
meantime, this contribution does not affect the Lorentz
nature of the interquark interaction generated by the
string. Therefore, for the sake of simplicity, we restrict
ourselves to the case of L = 0 in the Hamiltonian (3),
and we then take extrema in all einbeins explicitly. The
resulting Hamiltonian,

(4)

H
pr

2 mi
2

+
2µi

------------------
µi

2
----+

i 1=

2

∑ β σ2r2

2ν
---------- ν

2
---+d

0

1

∫+=

+
L2

2r2 µ1 1 ζ–( )2 µ2ζ
2 βν β ζ–( )2d

0

1

∫+ +

----------------------------------------------------------------------------------------------,

ζ

µ1 βνβd

0

1

∫+

µ1 µ2 βνd

0

1

∫+ +

------------------------------------,=

H pr
2 m1

2+ pr
2 m2

2+ σr,+ +=
gives rise to the well-known Salpeter equation for the
spectrum. For the heavy–light system with m1 ≡ M  ∞
and m2 ≡ m, it reads

(5)

where E describes the excess of the bound state energy
over the heavy-quark mass. Equation (5) is usually
referred to as the Salpeter equation with the Lorentz
vector interaction [8], as opposed to the would-be
Lorentz scalar confinement, as in the equation

(6)

Therefore, according to general expectations, the Klein
paradox might have operated for such a system, and one
might have expected problems with the collapse of the
mesonic wave functions and uncontrolled production
of light-quark pairs by such an interaction if confine-
ment had been present in the effective Dirac equation
for the light quark in the form of a Lorentz time vector.
The aim of the present paper is to argue that this con-
clusion is misleading in the sense that the form (5) of
the Salpeter equation does not imply that the confining
potential σr appears as a Lorentz vector interaction in
the one-particle Dirac equation for the light quark. On
the contrary, we demonstrate that an effective scalar
interquark interaction appears in this equation as a
result of CSB; nevertheless, the resulting Salpeter equa-
tion has the form of Eq. (5) rather than of Eq. (6). As far
as Eq. (6) is concerned, it was demonstrated in [8] that
its spectrum contradicts the phenomenology of heavy–
light mesons. Note also that we are not aware of any
consistent way to derive such an equation in QCD.

3. HEAVY–LIGHT QUARKONIUM
IN THE DYSON–SCHWINGER APPROACH
We start in this section with the necessary details of

the Dyson–Schwinger approach to heavy–light quarko-
nium suggested in [9]. Since the trajectory of the infi-
nitely heavy particle is a straight line, it is convenient to
fix the so-called modified Fock–Schwinger gauge [10]
for the background gluonic field (we work in Euclidean
space),

(7)

and thus to reduce the role of the static antiquark to pro-
viding the overall gauge invariance of the  Green’s
function, which, in the gauge (7), coincides with the
Green’s function of the light quark. Then, the Dyson–
Schwinger equation can be derived for the latter [9],

(8)

where only the structure γ4 × γ4 is kept for the sake of
simplicity, whereas the interaction with the full struc-
ture γµ × γν can be studied, as well (see [9, 11]). The

pr
2 m2+ σr+[ ]ψ r( ) Eψ r( ),=

pr
2 m σr+( )2+[ ]ψ r( ) Eψ r( ).=

xA x4 x,( ) 0, A4 x4 0,( ) 0,= =

qq

i∂̂x im––( )S x y,( )

+ d4zγ4S x z,( )γ4_ x z,( )S z y,( )∫ δ 4( ) x y–( ),=
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quark kernel _(x, y) is related to the profile function
D(τ, λ),

(9)

which, in turn, parametrizes the bilocal correlator of the
gluonic-field tensors, 〈F(x)F(y)〉 ∝  D(x – y) [1]. The
profile D decreases in all directions of the Euclidean
spacetime with the correlation length Tg, for which lat-
tice simulations give as small a value as Tg . 0.2–0.3 fm
[12]; therefore, the limit Tg  0, known as the string
limit of QCD, is adequate. In this limit, the profile func-
tion D(τ, λ) can be approximated by the delta-func-
tional form, D(τ, λ) = 2σδ(τ)δ(λ), which is consistent
with the definition of the string tension [1],

(10)

Then, with the help of Eq. (9), the kernel is found in the
following form:

(11)

where, in the last, approximate equality, the require-
ment of strict collinearity of the vectors x and y is
relaxed, which is admissible at large distances, |x|, |y| @
|x – y|.

The ultimate form of Eq. (11) allows one to estab-
lish a link to potential quark models for QCD [13], as
well as to generalize the shape of the confining inter-
quark interaction from linear confinement σr to a
generic form V(r). Now, we can rewrite the Dyson–
Schwinger Eq. (8) in Minkowski space in the form

(12)

_ x y,( ) _ x4 y4 x y, ,–( )=

=  xy( ) α βD x4 y4– αx βy–,( ),d

0

1

∫d

0

1

∫

σ 2 τ λ D τ λ,( ).d

0

∞

∫d

0

∞

∫=

K x y,( )

≡ 1
2
--- _ x4 y4– x y, ,( )e

iω x4 y4–( )
x4 y4–( )d

∞–

∞

∫

=  
1
2
--- xy( ) α β τD τ α x βy–,( )d

∞–

∞

∫d

0

1

∫d

0

1

∫

≈ 1
2
---σ x y x y––+( ),

αp βm+( )Ψ x( )

+ d3zΛ x z,( )K x z,( )Ψ z( )∫ EΨ x( ),=
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where the quantity Λ(x, z), introduced in [9], is defined
as

(13)

It is clear that the Lorentz nature of confinement in
Eq. (12) depends entirely on the matrix structure of
Λ(x, z). To proceed, we stick to the formalism of the
chiral angle ϕp, the standard approach used in potential
quark models [13]. In this formalism, the positive- and
negative-energy solutions to the bound-state Eq. (12)
can be parametrized in the form [14]

(14)

The wavefunction ψ(p) obeys a Schrödinger-like
eigenvalue equation which follows from Eq. (12) after
the exact Foldy–Wouthuysen transformation generated

by the Foldy operator  (see Eq. (18) below). The
chiral angle ϕp is the solution to the mass-gap equation,

(15)

quoted here without derivation for the linearly rising
potential. The interested reader can find the details of
this formalism in [13]. Notice that the chiral angle also
plays the role of the Foldy angle; this is a general fea-
ture of such models. For the purpose of the present
research, it is sufficient to bear in mind that the chiral
angle is a continuous smooth function which starts
from π/2 at the origin, with the slope inversely propor-
tional to the scale of the CSB generated by this solution.
In the large-momentum limit, ϕp approaches zero. It is
an easy task now to compute the function Λ [14],

(16)

and to rewrite Eq. (12) in the form

(17)

Λ x z,( ) 2i
ωd

2π
-------S ω x z, ,( )β∫≡

=  Ψn x( ) n( )Ψn
† z( ).sgn

n ∞–=

∞

∑

Ψn 0> p( ) = T p
ψ p( )

0 
 
 

, Ψn 0< p( ) = T p
0

ψ p( ) 
 
 

,

T p
1
2
--- γp̂( ) π

2
--- ϕ p– 

 – .exp=

T p
†

p ϕ psin m ϕ pcos–

=  
σ
p2
----- kd

2π
------ 4 p2k2

p2 k2–( )2
----------------------- ϕk ϕ p–[ ]sin

0

∞

∫

× 2 pk

p k+( )2
------------------- p k–

p k+
------------ln+ 

  ϕk ϕ psincos ,

Λ p q,( ) 2π( )3δ 3( ) p q–( )U p,=

U p T p
2β β ϕpsin α p̂( ) ϕ p,cos+= =

EpU pΨ p( ) 1
2
--- d3k

2π( )3
-------------V p k–( )∫+

× U p Uk+( )Ψ k( ) EΨ p( ),=
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where Ep stands for the quark dispersive law and, for
the linearly rising potential, V(p) = –8πσ/p4. Alterna-
tively, this equation can be arrived at as the one-particle
limit of the Bethe–Salpeter equation for the quark–anti-
quark meson in the framework of the potential quark
models [13]. The Foldy–Wouthuysen transformation of
Eq. (17), performed with the help of the Foldy operator

, leads one to the Schrödinger-like equation [14],

(18)

where

σ are Pauli matrices, and  and  are the unity vectors
for p and k, respectively.

With Eq. (17) in hand, we are in a position to com-
ment on the Lorentz nature of confinement. CSB
means an existence of the quark Green’s function hav-
ing the effective mass operator with the matrix γ0 to an
even power or, in the language of the chiral angle, the
existence of a nontrivial solution to the mass-gap
equation (15). This is trivially achieved for heavy
quarks when the chiral symmetry is broken explicitly,
since the quark mass term provides the required behav-
ior of the quark Green’s function and, in the meantime,
saturates the chiral angle. For light (massless) quarks,
such solutions for the quark Green’s function and for
the chiral angle are to appear self-consistently in order
to provide SBCS. In either case, the chiral angle is dif-
ferent from zero for 0 ≤ p & Λχ, with the CSB scale Λχ
given by the quark mass for heavy quarks, and by the

nonperturbative scale  for light quarks. The full
structure of the matrix Λ and its influence on highly
excited states in the spectrum is studied in detail in [14].
For the purpose of the present qualitative research, it is
sufficient to stick either to very heavy quarks or to
extremely strong confinement (the so-called pointlike

limit of   ∞, which can also be called the heavy-
string limit). In this case, the chiral angle is ϕp = π/2 for
all p, so that Up ≈ β and, therefore,

(19)

Thus, using Eqs. (11), (12), and (19) altogether, we
arrive at the effective Dirac equation for the light quark
with a purely scalar confinement,

(20)

This coincides with the findings of [9], where a summa-
tion of quasiclassical eigenvalues of Eq. (20) with
V(r) = σr was performed explicitly, and relation (19)
was derived for light quarks. Notice that, for massless

T p
†

Epψ p( ) d3k

2π( )3
-------------V p k–( )∫+

× CpCk σp̂( ) σk̂( )SpSk+[ ]ψ k( ) Eψ p( ),=

Cp
1
2
--- π

2
--- ϕ p– 

  and Spcos
1
2
--- π

2
--- ϕ p– 

  ;sin= =

p̂ k̂

σ

σ

Λ x z,( ) βδ 3( ) x z–( ).≈

αp β m V r( )+( )+[ ]Ψ x( ) EΨ x( ).=
quarks, and had SBCS not happened, the chiral angle
would have been identically zero, and the term propor-
tional to the matrix β in Up, as follows from Eq. (16),
would have vanished. We see therefore that the effec-
tive scalar interquark interaction arises due to CSB,
both explicit and spontaneous. In the same limit of ϕp =
π/2, one has Cp = 1 and Sp = 0, so that the interaction
part of Eq. (18) reduces to the potential V(r) in coordi-
nate space. As for the kinetic term in Eq. (18), for heavy
quarks, it can be well approximated by the free-quark

energy, . For light quarks, such a substitution
is more arguable, though it is known to work rather well
for heavy–light as well as for excited light–light
mesons, when the nontrivial low-momentum behavior
of the dressed-quark dispersive law Ep does not play a
considerable role. (Notice that this approximation fails
completely for the lowest light–light quark–antiquark
state—for the chiral pion. The latter cannot be
described by the Salpeter Hamiltonian, and one must
consider the full Dyson–Schwinger equation; see [13,
15] for two complementary approaches to the problem
of the pion.) Thus, starting from Eq. (18), we arrive at
the Salpeter equation,

(21)

which, for L = 0 and V(r) = σr, coincides with Eq. (5).
It is clear from Eq. (18) that the interaction term is

always added to the entire kinetic energy of the quark,
so that the resulting Salpeter equation in the form of
Eq. (5), rather than in the form of Eq. (6), should not
come as a surprise. Moreover, for massless quarks and

no CSB, ϕp = 0 everywhere, so that Cp = Sp = 1/  and
the interaction in Eq. (18) acquires a rather complex
structure which does not reduce to a plain potential and
supports parity doublers. Indeed, in the resulting equa-
tion, eigenstates with opposite parity, given by ψ(p)
and (σ )ψ(p), come in pairs degenerate in mass [14],
a feature inherent to vectorial interaction. In any case,
the interaction given by matrix (16) does not contain a
Lorentz time-vector part, which could have been dan-
gerous from the point of view of the Klein paradox.

4. CONCLUSIONS

In this paper, using the Dyson–Schwinger approach
to heavy–light quarkonia, we derive the effective one-
particle equation for the light quark in the field of the
static antiquark (Eq. (12)). In the heavy–quark limit of

m  ∞ or in the heavy-string limit of   ∞, the
chiral angle is ϕp = π/2, and this equation reduces to the
Dirac equation with purely scalar confinement. In the
meantime, if the exact Foldy–Wouthuysen transforma-
tion is performed over the bound-state Eq. (12), the
Schrödinger-like Eq. (18) arises with the interaction
having a rather complex structure. In the same limiting
case of ϕp = π/2, this interaction can be considerably

p2 m2+

p2 m2+ V r( )+[ ]ψ x( ) Eψ x( ),=

2

p̂

σ
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simplified, reducing to a local potential. The spinless
Salpeter Eq. (5) is derived this way, with the interaction
term added to the entire quark kinetic energy. We notice
also that, without CSB, explicit or spontaneous, the
chiral angle would vanish identically, giving rise to a
nonpotential dynamics (as follows from Eq. (18) with
ϕp = 0) which has nothing to do with the dynamics
described by the Salpeter Eq. (5) and the like. Since the
approach of the QCD string with quarks at the ends is
the generalization of the simple potential Salpeter
equation to the case of the interquark interaction incor-
porating the proper dynamics of the string, we conclude
that the effective interquark interaction generated by
the QCD string has a scalar nature; that is, it appears
entirely due to CSB. The detailed analysis of the
Lorentz nature of confinement in quarkonia with the
actual form of the chiral angle—the solution to the
mass-gap equation—lies beyond the scope of the
present paper, but we emphasize that, in order to have
an accurate and self-consistent approach, one must con-
sider and solve the full Dyson–Schwinger Eq. (8). Note
that, although the fundamental color interaction in
QCD mediated by gluons is manifestly vectorial, this
does not automatically give rise to the Salpeter Eq. (5).
Indeed, the effective interquark interaction, which
appears after integrating out gluonic degrees of free-
dom and which can be described naturally, for example,
with the help of the Dirac-like Eq. (12), appears dynam-
ically, and, thus, no a priori conclusion can be made
concerning its Lorentz nature. We argue, therefore, that
one should be careful using the notions of “vector” and
“scalar” confinement, always giving an explicit refer-
ence to the corresponding Dirac-like equation or
Hamiltonian.
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Radiation emitted by positrons moving in a periodically deformed crystal has been experimentally observed for
the first time. Radiation spectra have been measured in a wide energy range. Experimental evidence has been
obtained for an undulator peak in a radiation spectrum, which is qualitatively consistent with calculations. Crys-
talline undulators ensure an equivalent magnetic field of 1000 T and a period in the submillimeter range and
can therefore be used to generate x-ray and gamma radiation that is a hundred times harder than radiation in
usual undulators. © 2005 Pleiades Publishing, Inc.

PACS numbers: 07.85.–m, 41.60.–m, 61.85.+p
At present, intense x-ray beams are used for investi-
gations in biology, medicine, materials science, and
other fields of science and engineering. The traditional
method for generating such beams (with energies of
several keV or higher) is the use of special magnets
(undulators) at accelerators [1].

The energy of photons generated in an undulator is
proportional to the square of the Lorentz factor γ and is
inversely proportional to the undulator period L, i.e.,
"ω = 2π"γ2c/L. In the ordinary electromagnetic undu-
lator, the period reaches several centimeters. Thus, pho-
tons with an energy of about 1 keV are obtained with an
accelerator beam of an energy of about 1 GeV.

For a number of investigations, it is important to
increase the beam energy. The concept of the produc-
tion of undulators based on crystals, where a strong
periodic electric field naturally exists, has been actively
discussed for the past 25 years [2–9]. The practical pos-
sibility of producing such a device was first demon-
strated in our work [10].

The proposed undulator is a crystalline Si wafer
0.5 mm in thickness with the (111) surface and special
scratches deposited with a period of 0.1–1 mm on the
sides of the wafer. These scratches give rise to periodic
wafer deformations (with an amplitude of 100 Å or
higher) close to the sine form. The first experimental
samples of the crystalline undulator have already been
produced and the presence of the sinuous bend was
determined by x-ray analysis [11]. The decisive tests
0021-3640/05/8209- $26.00 0562
that were carried out on a proton beam proved the
“transparency” of crystalline undulators for the trans-
mission of high-energy particles in the channeling
mode [12]. In the experiment carried out in the fall of
2004 at the U-70 IHEP accelerator, photon emission by
positrons from a crystalline undulator was observed.

Figure 1 shows the experiment layout. A positron
beam with a central pulse of 10 GeV/c is directed to a
crystalline undulator. The beams of gamma-rays and
positrons (which partially lose energy due to interaction
in the undulator) are separated by means of a horizontal
magnet. Gamma-ray photons from the undulator are
detected by the electromagnetic calorimeter G1. As this
calorimeter, two calorimeters based on yttrium alumi-
nate YAlO3 and BGO crystals are used in the experi-
ment (not simultaneously). The yttrium calorimeter

Fig. 1. Experiment layout for observing radiation from the
crystalline undulator: e+ is the positron beam, Si is the
undulator and goniometer, C is the horizontal magnet (cor-
rector), VT is the vacuum tube, γ is gamma radiation at the
undulator exit, S1–S3 are the scintillator counters, and G1
and G1 are the gamma detectors.
© 2005 Pleiades Publishing, Inc.
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was adapted for detecting photons in a range of 0.06–
2 MeV, whereas the BGO detector could detect
gamma-ray photons with energies of several MeV or
higher.

The electromagnetic calorimeter G2, “Shashlyk”
[13], detected positrons. The trigger was a coincidence
between counters S1S3. In addition, the amplitude of
ionization losses was recorded in the counter S2. The
positron beam was obtained at an energy of 10 GeV. At
an average discharge of (3–4) × 1011 protons on the alu-
minum target, near 105 positrons were present in a
beam line. The energy spectrum of the positron beam
was measured by the calorimeter “Shashlyk” with a
resolution of several percent.

A specificity of the problem is the unordinary geom-
etry of the source. It has a small transverse size of
0.3 mm and a large longitudinal size of several millime-
ters along the beam, because about ten undulator peri-
ods with a step of 0.5 mm and an amplitude of several
tens of angstroms are required. Previous experiments
concerning emission accompanying channeling in
crystals were carried out with short targets with a length
of less than 1 mm.

For this reason, the first problem is the identification
of the source, because only a small fraction (~1/500) of
beam particles passes through the crystal. We easily
found the source of radiation using a thin scintillator
500 µm in width as a trigger and remotely displacing
the crystal across the beam. The orientation curve plot-
ted in Fig. 2 proves that the source of radiation is the
oriented crystal.

The second feature associated with the large length
of the crystal gives rise to multiple photon production,
distorting the measured spectra. For this reason, mea-
surements of the emitted energy are more informative.
These measurements in comparison with the calcula-
tions in Fig. 3 certainly point to the presence of chan-
neling in the deformed crystal. Only channeling can be
responsible for such a narrow angular scan of fractions
of a milliradian.

Figure 4 shows the emitted-photon spectra in the
oriented and disoriented crystals, as well as the back-
ground spectra measured by the BGO detector without
a crystal. An increase in the spectral density is observed
in a range of hundreds of MeV, corresponding to chan-
neling.

The signal on the yttrium detector, adapted for
detecting undulator radiation, is strongly distorted. Fig-
ure 5 shows the emitted-energy spectra measured in the
oriented and disoriented crystals. According to calcula-
tions [14], these distortions are attributed to the pres-
ence of coherent radiation accompanying channeling
that provides a multiplicity factor of 3, which is much
larger than 1, at a positron energy of 10 GeV reached in
beam line 22. Correspondingly, most undulator events
(0.5 photons per positron) are accompanied by several
photons with higher energies and are detected with dis-
tortions.
JETP LETTERS      Vol. 82      No. 9      2005
Fig. 2. Number of detected photons vs. the crystal orienta-
tion. Ten counts correspond to an angle of 1 µrad.

Fig. 3. Orientation curve of emitted energy as measured by
the BGO detector.

Fig. 4. Emitted-energy spectrum in the (open circles) ori-
ented and (closed circles) disoriented crystals, as well as
(squares) the background measured by the BGO detector
without a crystal.
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However, applying a special selection rule for
events with low energy losses of a primary positron by
means of the high-precision spectrometer Shashlyk
(about 30% of the overall statistics), we obtain spectra
that are experimental indications to the existence of an
undulator peak near an energy of 1 MeV. These data are
shown in Fig. 6 in comparison with the calculations
corroborating the existence of the radiation peak at this
energy. This comparison is possible only at the qualita-
tive level, because the apparatus function of the detec-
tor (limited detection efficiency of gamma rays and
Compton tail) is ignored.

The setup layout used here will be updated in future
accelerator runs. In particular, the use of a narrow calo-
rimeter is planned for limiting the angular distribution
of gamma radiation. In order to reconstruct an undis-
torted gamma spectrum, we are going to apply the

Fig. 5. Emitted-energy spectra in the (open circles) oriented
and (closed circles) disoriented crystals as measured by the
yttrium detector. Two columns in the right are signals above
2 MeV (oriented/disoriented cases) on a 1 : 50 scale.

Fig. 6. (Left panel) Measured and (right panel) calculated
ratios of the emitted-energy spectra in the oriented and dis-
oriented crystals as measured by the yttrium detector.
Compton scatterer method [15]. In addition, the crys-
tals are planned to be optimized according to the rec-
ommendations given in [14].

Radiation from positrons in a periodically deformed
crystal has been experimentally observed. Under heavy
background conditions due to the multiple production
of photons, experimental evidence has been obtained
for the existence of the undulator radiation peak, which
is consistent with calculations. In order to continue
these measurements under pure conditions, the optimi-
zation of the setup, beam line, and crystals is planned.
These investigations are expected to be continued in
other accelerator centers under other conditions [11,
16].

We are grateful to A.M. Zaœtsev and N.E. Tyurin for
attention and support of the work. This work was sup-
ported by the Russian Foundation for Basic Research
(project nos. 05-02-17622 and 05-02-08085ofi-e).
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Suppression of High-Frequency Turbulent Oscillations
of the Fluid Surface by Additional Low-Frequency Pumping
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The dynamics of establishing steady-state turbulent cascade has been studied in a system of capillary waves on
the surface of liquid hydrogen after additional pumping whose frequency is lower than the frequency of the
main pumping is switched off/on. It has been found that, when the additional low-frequency pumping is
switched on, the amplitude of waves in the high-frequency part of the turbulent spectrum decreases, which gives
rise to the narrowing of the inertial frequency range. The experimental data qualitatively agree with the numer-
ical calculations performed in the kinetic-equation approximation including the viscous damping of waves.
© 2005 Pleiades Publishing, Inc.

PACS numbers: 47.27.–i, 47.35.+i
INTRODUCTION

At present, turbulence on the surface of a fluid is
studied in numerous experimental and theoretical
investigations. Interest in this phenomenon is in partic-
ular stimulated by numerous applications, one of which
is the prediction of weather using measurements of the
spectrum of wind waves on the ocean surface. Investi-
gation of the turbulence of capillary waves is of consid-
erable interest, because dynamics at this wavelength
scale is of fundamental importance in the transfer and
dissipation of energy on the fluid surface.

As was shown in recent investigations [1–6], the
charged surface of liquid hydrogen is an excellent
model object for studying the dynamics of nonlinear
waves on the fluid surface. Relatively low viscosity, low
density, large nonlinearity coefficient of capillary
waves on the surface of liquid hydrogen, and the possi-
bility of exciting waves on the charged fluid surface by
an alternating electric field enable us to observe the for-
mation of a Kolmogorov cascade of capillary turbu-
lence on the surface of hydrogen in a wide frequency
range (102–104 Hz) [1, 2]. More recently, a change in
the turbulent spectrum upon a change in the spectral
characteristics of the exciting force [3], a change in the
main mechanism of energy transfer in the system of
capillary waves from the nonlinear transformation of
waves to viscous damping at high frequencies [4], and
quasiadiabatic decay of capillary turbulence when the
external pumping is stepwise switched off [5, 6] were
observed.

In the theory of weak wave turbulence [7, 8], the sta-
tistical distribution of occupation numbers nω for capil-
lary waves can be described by the kinetic equation
0021-3640/05/8209- $26.00 ©0565
(1)

where st(n) is the collision integral, γω is the viscous-
damping coefficient for capillary waves, and Fdrive(t)
corresponds to the external pumping. The frequency ω
and wave vector k of a capillary wave are related by the
dispersion relation ω2 = (σ/ρ)k3, where σ is the surface
tension coefficient and ρ is the density of the fluid. The
stationary solution of kinetic equation (1) in the inertial
range describes the isotropic spectrum of capillary tur-
bulence:

(2)

where C is the numerical factor and Q > 0, which cor-
responds to the energy transfer from low- to high-fre-
quency waves. The frequency distribution of the devia-
tion 〈|ηω|2〉  of the fluid surface from the equilibrium
state found from distribution (2) has the form

(3)

Solution (3) is realized in the inertial frequency range
in the case of broadband pumping by low-frequency
noise [8, 3]. Numerical solution [9] of Eq. (1), as well
as our previous measurements [1], showed that the case
of spectrally narrow pumping exhibits a turbulent spec-
trum consisting of equidistant peaks whose amplitudes
decrease as 〈|ηω|2〉  ~ ω–21/6, i.e., with an exponent differ-
ing from the Kolmogorov index.

At high frequencies, where the effect of the viscos-
ity of the fluid is significant, the wave transfer of energy
through the cascade changes to the viscous damping of

∂nω

∂t
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ρ
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waves, which limits the inertial range from the high-
frequency side. As the pumping amplitude increases,
the position of the high-frequency edge of the inertial
range is shifted toward higher frequencies; i.e., the iner-
tial range expands [4].

In this paper, we report the investigation of the evo-
lution of the spectrum of capillary turbulence on the
surface of liquid hydrogen when additional low-fre-
quency pumping is switched off/on. It was found that,
when additional low-frequency pumping is switched
on, turbulence in the high-frequency range is sup-
pressed and the inertial frequency range decreases.
When additional low-frequency pumping is switched
off, the amplitudes of high-frequency turbulent oscilla-
tions increase and the inertial range expands. The
results of the numerical investigation of the effect of
additional low-frequency pumping on the stationary
spectrum of capillary turbulence are also reported. In
calculations, kinetic equation (1) for capillary waves
with allowance for viscous damping of waves is used.
The results of the numerical calculations qualitatively
agree with the experimental data.

EXPERIMENT

The apparatus design and measurement procedure
are similar to those used in our previous investigations
[1–6] and were described in detail in [10]. An optical
cell was placed in a vacuum cavity of a helium cryostat.
Gaseous hydrogen was condensed between the plates
of a horizontal cylindrical capacitor placed inside the
cell. The collection of hydrogen was stopped when the

Fig. 1. Stationary spectrum of the oscillations of the fluid
surface upon pumping (a) simultaneously at two resonance
frequencies ω1/2π = 61 Hz and ω2/2π = 274 Hz and (b) at
the main resonance frequency ω2/2π = 274 Hz.
fluid level between the capacitor plates reached the
guard ring.

A radioactive target was attached to the lower plate
of the capacitor. Positive electric voltage applied to the
lower plate extracts positive ions from the ionized fluid
layer adjacent to the target surface and draws them to
the surface of liquid hydrogen, so that a quasi-two-
dimensional charged layer is formed under the surface.
To prevent the drift of charges to the container walls, a
voltage equal to the voltage at the lower plate was
applied to the guard ring. The field of the charged layer
completely compensates the electric field inside the
fluid. The thickness of the layer of liquid hydrogen is
equal to 6 mm and the distance of the fluid surface from
the upper plate of the capacitor is equal to 3.2 mm. The
measurements were carried out at a constant fluid tem-
perature of T = 15.5 K.

Oscillations of the surface of liquid hydrogen were
excited by an alternating electric voltage applied
between the guard ring and upper capacitor plate in
addition to the constant voltage. Surface oscillations
were detected by a change in the power of a laser beam
reflected from the surface. The reflected beam was
focused by a lens onto a photodetector. The ac voltage
component on the photodetector was amplified and
written to computer memory using a 16-bit analog-to-
digital converter.

The spectrum of the oscillations of the fluid surface
was determined from the Fourier spectrum of the
reflected laser-beam power [10]. These measurements
were carried out in the “wide-beam” regime (the light-
spot diameter is much larger than the wavelength on the
fluid surface), for which the Fourier harmonic Pω of the
reflected power is proportional to the Fourier harmonic
ηω of the surface deviation and, correspondingly,

(4)

To study the evolution of the spectrum of the surface
oscillations when additional low-frequency pumping is
switched on/off, we used the short-time Fourier trans-
form procedure [11]. This procedure is applicable
because our previous observations [5, 6] show that the
characteristic decay time of the turbulent oscillations of
the fluid surface is on the order of the viscous damping
time of capillary waves, whose frequency is equal to the
pumping frequency, and is much longer than the period
of the surface oscillations. This relation allows the
choice of a time window smaller than the signal decay
time but much larger than the period of the exciting
force. By shifting the window position in time, one can
study the evolution of the turbulent cascade on the sur-
face of liquid hydrogen when the additional low-fre-
quency pumping is switched off/on.

OBSERVATION RESULTS AND DISCUSSION

Two types of measurements were conducted in these
experiments. In measurements of the first type, waves

ηω
2〈 〉 const Pω

2.=
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on the fluid surface were excited by pumping simulta-
neously at two different resonance frequencies of the
cell. After the formation of the steady turbulent distri-
bution, pumping at one of the frequencies (additional
frequency) was stepwise switched off, whereas the
intensity of pumping at the other (main) frequency
remained unchanged. In measurements of the second
type, waves on the fluid surface were first excited at one
of the resonance frequencies of the cell and then addi-
tional pumping at another resonance frequency was
switched on. Thus, in both cases, a transient process
was studied in the turbulent system of capillary waves
after the additional pumping was switched off or on.

Figure 1 shows the stationary spectra of the steady
oscillations of the surface of liquid hydrogen before
and after the additional pumping is switched off (a) for
simultaneous pumping at two resonance frequencies of
the cell: main ω2/2π = 274 Hz and additional ω1/2π =
61 Hz and (b) after the pumping at the additional fre-
quency ω1 is switched off. It is worth noting that the

wave energy  ∝  | |2 at the frequency ω1 is an

order of magnitude lower than the wave energy  at
the frequency ω2. For this reason, the oscillation spec-
trum in Fig. 1a can be treated as the capillary-turbu-
lence spectrum that is generated by the main harmonic
pumping at the frequency ω2/2π = 274 Hz and is per-
turbed by the additional pumping at the frequency
ω1/2π = 61 Hz. Correspondingly, near the relatively
high peaks at frequencies that are multiples of ω2, rela-
tively low peaks at combination frequencies are located
on both sides of the harmonics of the main frequency at
a distance of the frequency ω1 from it. The distribution
in Fig. 1b is the stationary spectrum of capillary turbu-
lence generated by the harmonic force at the frequency
ω2: the amplitude of peaks at frequencies that are mul-
tiples of the frequency ω2 decreases in a power law as
the frequency increases. It is seen that the amplitudes of
the high-frequency peaks generated by pumping at one
frequency (Fig. 1b) are noticeably larger than those
generated by pumping at two frequencies (Fig. 1a).

Figure 2 shows the time dependence of the ampli-
tude squared for waves on the surface of liquid hydro-
gen at the (circles) main and (squares) additional fre-

quencies [we recall that  ∝  |ηω|2 according to
Eq. (4)]. Pumping at the additional frequency ω1 is
switched off at time t = 0, whereas the pumping ampli-
tude at the main frequency ω2 remains unchanged. As
is seen in the figure, the amplitude of the wave with the
frequency ω1 decreases almost exponentially with time
and, in agreement with [6], the characteristic decay
time nearly coincides with the viscous damping time

 of the capillary wave with the frequency ω1.

Figure 3 shows the time dependence of the ampli-
tude squared for peaks at frequencies that are multiples
of the main pumping frequency ω2 when the additional

Eω1
ω1

4/3 ηω1

Eω2

Pω
2

γω1

1–
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pumping is switched off at the time t = 0. The triangles,
closed squares, open squares, and circles correspond to
the 13th (3.57 kHz), 16th (4.49 kHz), 19th (5.19 kHz),
and 29th (7.96 kHz) harmonics of the frequency ω2,
respectively. The positions of the corresponding har-
monics are shown by arrows in Fig. 1. As seen in Fig. 3,
after the additional pumping is switched off, the ampli-
tudes of the high-frequency harmonics increase by sev-
eral times in time comparable with the damping time
for the wave at the frequency ω1 (Fig. 2).

Figure 4 shows the fragment of the spectrogram of
the surface oscillations for frequencies 3–10 kHz in the
time interval from –0.8 to 4 s. The ordinate axis shows
the logarithm of the frequency and the abscissa axis
presents the time in seconds. The gray color density is
proportional to the amplitude squared for waves with
corresponding frequencies. After the additional pump-
ing is switched off (t > 0), the spectrogram exhibits the

Fig. 2. Time dependence of the amplitude squared for waves
on the surface of liquid hydrogen at the (circles) main and
(squares) additional frequencies when the additional pump-
ing is switched off at the time t = 0.

Fig. 3. Time dependence of the amplitude squared for peaks
at frequencies that are multiples of the main pumping fre-
quency ω2 when the additional pumping at the frequency ω1
is switched off at the time t = 0. The triangles, closed
squares, open squares, and circles correspond to the 13th
(3.57 kHz), 16th (4.49 kHz), 19th (5.19 kHz), and 29th
(7.96 kHz) harmonics of the frequency ω2, respectively.
The positions of the corresponding harmonics are shown by
arrows in Fig. 1.
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regular density maxima (black horizontal straight lines)
at frequencies that are multiples of the main pumping
frequency ω2, which corresponds to an increase in the
amplitude of the high-frequency surface oscillations
with time.
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Fig. 4. Spectrogram of the oscillations of the surface of liq-
uid hydrogen upon simultaneous pumping at frequencies
ω1/2π = 61 Hz and ω2/2π = 274 Hz. Darker regions corre-
spond to larger wave amplitudes. The gray color density is
proportional to the amplitude squared for waves with corre-
sponding frequencies.

Fig. 5. Numerically calculated stationary spectra of capil-
lary turbulence generated by pumping at (solid line) two
frequencies ω1/2π = 10 Hz and ω2/2π = 50 Hz simulta-
neously and (dashed line) frequency ω2. The inset shows the
time dependence of the relative height of the (1) 10-, (2) 50-,
and (3) 250-Hz (fifth harmonic of the main pumping) peaks
when the additional pumping is switched off at the time t =
0. The corresponding peaks are marked by the arrows in the
main part of the figure.
In addition, analysis of the evolution of the spectrum
of the fluid-surface oscillations shows that, when the
additional pumping is switched on at the time t = 0, the
amplitudes of the high-frequency oscillations decrease
at t > 0. Thus, the observed evolution of the turbulent
spectrum is completely reversible.

Further analysis (see Fig. 5) shows that the experi-
mental data agree with the numerical calculations per-
formed with kinetic equation (1), where the effect of
viscous losses on the damping of capillary waves on the
surface of liquid hydrogen is taken into account. The
solid line in Fig. 5 is the dimensionless stationary spec-
trum of surface oscillations (occupation number nω as a
function of the wave frequency ω/2π) generated by
pumping at the two frequencies ω1/2π = 10 Hz and
ω2/2π = 50 Hz simultaneously. The dashed line is the
stationary spectrum of surface oscillations formed after
pumping at a frequency of 10 Hz is switched off,
whereas the intensity of pumping at a frequency of
50 Hz remains unchanged. It is seen that the amplitude
of the fluid-surface oscillations at frequencies ω/2π >
100 Hz increases after the additional pumping is
switched off. The inset shows the time dependence of
the relative height of the (1) 10-, (2) 50-, and (3) 250-Hz
(fifth harmonic of the main pumping) peaks after
pumping at a frequency of 10 Hz is switched off at the
time t = 0. The corresponding peaks are marked by the
arrows in the main part of the figure. The amplitudes
nω(t) of the peaks in the inset are normalized to their ini-
tial values nω(0). The time in the inset is given in dimen-
sionless units. It is seen that, after the low-frequency
pumping is switched off, the amplitudes of the high-fre-
quency turbulent oscillations increase by several times.

The increase in the amplitudes of the high-fre-
quency turbulent oscillations after the additional low-
frequency pumping is switched off can be qualitatively
attributed to a decrease in the density of states (number
of harmonics excited in the unit frequency range)
involved in the nonlinear energy transfer form low- to
high-frequency oscillations in the inertial frequency
range. Indeed, simultaneous pumping at two frequen-
cies excites oscillations at frequencies that are multi-
ples of the pumping frequencies and at combination
frequencies. When the additional pumping is switched
off, the amplitudes of the oscillations at this frequency,
as well as at multiple harmonics and combination fre-
quencies, decrease rapidly. This damping gives rise to
the redistribution of oscillation energy over frequen-
cies, which is manifested in the evolution of the turbu-
lent spectrum and in a noticeable increase in the ampli-
tudes of waves with frequencies that are multiples of
the main pumping frequency ω2.

CONCLUSIONS

The relaxation of the turbulent oscillations on the
surface of liquid hydrogen has been studied for the case
where the additional low-frequency perturbation is
JETP LETTERS      Vol. 82      No. 9      2005
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switched on/off. It has been found for the case of spec-
trally narrow pumping that, after the additional pump-
ing is switched off, the wave amplitudes in the high-fre-
quency part of the turbulent spectrum increase and
thereby the inertial frequency range expands. The
observed evolution of the spectrum is reversible: after
the additional perturbation is switched on, the wave
amplitudes in the high-frequency part of the turbulent
spectrum decrease and the inertial range narrows. Thus,
it has been shown that high-frequency turbulent oscilla-
tions on the fluid surface are suppressed in the presence
of additional low-frequency pumping.
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ments. This work was supported in part by the Russian
Foundation for Basic Research (project no. 05-02-
17849) and by the Presidium of the Russian Academy
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work of M.Yu.B. was supported by the Foundation for
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of an Ideal Conducting Fluid
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The linearized dynamics of an ideal fluid is shown to have an infinite set of invariants different from the usual
Casimir invariants. The procedure of their construction is described. The inclusion of one or several such invari-
ants makes it possible to obtain a sufficient condition for the stability of flows of the fluid in the framework of
usual or magnetic hydrodynamics. The condition appears to be softer (closer to a necessary condition) than the
previously known conditions. © 2005 Pleiades Publishing, Inc.

PACS numbers: 46.15.Cc, 52.30.Cv
Deviation of a conservative physical system from
the equilibrium position can effectively increase in
time, which points to the instability of such an equilib-
rium position. When the deviation amplitude is small
enough, the dynamics of the system is approximately
described by linearized equations, which makes spec-
tral methods attractive for analyzing stability. Correct
analysis of the spectral stability in continuum media is
methodically difficult, because it is necessary to deter-
mine not only eigenvalues but also eigenvectors that
must satisfy certain boundary conditions. As a result,
instead of a discrete spectrum usual for finite-dimen-
sional systems, a spectrum in hydrodynamics is often
continuous or absent altogether. At the same time, to
reveal whether an equilibrium state is stable or unsta-
ble, variational methods, e.g., Lyapunov theory, can be
used. An analog of the Lyapunov theorem for a linear-
ized system is sometimes called the formal stability
condition. According to this condition, the equilibrium
state is called formally stable if the linearized dynamics
of the system has an invariant U whose first variation is
equal to zero at the equilibrium point and the second
variation has definite sign. The formal stability assures
spectral stability. In contrast to the classical Lagrange
result for finite-dimensional systems, the general state-
ment for nonlinear stability is absent and additional
analysis is necessary. Moreover, only sign semidefinite-
ness (δ2U ≥ 0) rather than sign definiteness (δ2U > 0) is
characteristic of hydrodynamics, which assures the
absence of exponentially increasing perturbations but
does not provide, conclusion about the possibility of
perturbations growing slower. Nevertheless, even such
a problem has not yet been solved with sufficient com-
pleteness. We hope that the approach proposed in this
work will promote advance in its solution.

At the same time, there are also continual examples
where the formal stability condition is exhaustive.
Among them is the static equilibrium of an ideal con-
0021-3640/05/8209- $26.00 ©0570
ducting fluid (plasma) in a magnetic field [1]. We are
inspired by this circumstance and consider the linear-
ized equation of magnetic hydrodynamics (MHD) that
has the following form in terms of the liquid-element
displacement x(t, r) (see, e.g., [2]):

(1)

Here, the dot stands for the partial time derivative and

(2)

is the linearized force operator composed of the per-
turbed physical quantities

We use the notation δV for that part of the total per-

turbation of the velocity (with the subtraction of )
which is associated only with the spatial inhomogene-
ity of the initial flow and its perturbation. The steady-
state fluid density ρ, velocity V, pressure p, magnetic
field B, and the potential Φ(r) of the external force field
satisfy the equations

(3)

Here, γ is the adiabatic index. Equations (1)–(3)
describe a quite general hydrodynamic system. The
transition from MHD to usual hydrodynamics is per-

ρẋ̇ 2ρ V —⋅( )ẋ F x( )–+ 0.=

F x( ) δρ V —⋅( )V ρ δV —⋅( )V––=

– ρ V —⋅( )δV —δp–

+ — δB×( ) B× — B×( )+ δB×( ) 1
4π
------ δρ—Φ,–

δρ — ρx( ), δV⋅– V —⋅( )x x —⋅( )V,–= =

δp x —p γp— x, δB⋅–⋅– — x B×( ).×= =

ẋ

ρ V —⋅( )V —p+ — B×( ) B
1

4π
------ ρ—Φ,–×=

— ρV( )⋅ 0,=

V —p γp— V⋅+⋅ 0,=

— V B×( )× 0.=
 2005 Pleiades Publishing, Inc.
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formed in Eq. (2) by setting B  0. In this case,
Eqs. (3) are transformed to the equations of usual
hydrostatics. The incompressible fluid limit requires
the additional conditions — · V = 0 and — · x = 0.

It can be verified that the force operator in Eq. (1) is
self-adjoint; i.e.,

(4)

whereas the term with  in Eq. (1) is obviously anti-
symmetric; i.e.,

(5)

Integration in Eqs. (4) and (5) is performed over the
entire space and perturbations at infinity are absent.

One can verify that dynamics (1) is conservative by

multiplying Eq. (1) by  and integrating over the entire

space. As a result, we obtain  = 0 for

(6)

Treating E(t) as the Lyapunov functional near the

steady state (equilibrium) x = 0,  = 0 and minimizing

over , which contributes only to nonnegative kinetic
energy, we arrive at the formal stability condition in the
form

(7)

For the static MHD equilibrium (with V = 0), condi-
tion (7) obtained in [1] is not only sufficient, which is
ensured by the Lyapunov theorem, but also necessary
for stability. In other words, if there is x– such that
W[x−] < 0, then a solution of Eq. (1) can be constructed

near the equilibrium position  = 0, x = 0 that increases
in time no slower than exponentially [1]. For the case
V ≠ 0, condition (7) obtained in [2] is obviously also
sufficient for stability by construction. However, this
condition can be practically satisfied only for the flow
of the fluid directed strictly along the magnetic field,
i.e., V || B [2], or in cases reduced to this case by a spe-
cial transformation [3]. Indeed, by representing W in
the form

(8)

h F x( )d3r⋅∫ x F h( )d3r,⋅∫=

ẋ

h ρ V —⋅( )xd3r⋅∫ x ρ V —⋅( )h⋅ d3r.∫–=

ẋ
Ė

E t( ) ρẋ
2

2
----- x F x( )⋅

2
-------------------– 

  d3r.∫=

ẋ

ẋ

E W≥ 1
2
--- x F x( )d3r 0.≥⋅∫–=

ẋ

W d3r
1

4π
------ — x B×[ ]×[ ] 2 1

ρ
--- — x ρV×[ ]×[ ] 2–





∫=

+
1

4π
------ x — x B×[ ]××[ ] — B×⋅

– x — x ρV×[ ]××[ ] — V V2 — ρx( )⋅( )2+×⋅
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it is easy to see that the first two terms in Eq. (8) have
the same structure but opposite signs. If the steady flow
of the fluid occurs at an angle to the magnetic field
direction, the sum of these terms can be easily made
negative by choosing a test perturbation that is nearly
uniform along the magnetic field lines B but noticeably
varies along the streamlines. This quite obvious cir-
cumstance was considered in detail in [4]. Since these
terms include the highest order derivatives of x, W(x)
does not satisfy even the Lagrange condition necessary
for positive definiteness. All these statements also evi-
dently refer to flows of a usual fluid (in the absence of
the magnetic field), where the stabilizing perturbation
of magnetic energy is absent.

The stability condition improved as compared to

Eq. (7) can be obtained by taking into account that 
and x in Eq. (6) are not completely independent. In par-
ticular, if initial dynamics (1) has other invariants that
are not reduced to energy, E can be minimized only on

a class of perturbations of  and x that do not change
these invariants. Similar ideas were already proposed
by Lyapunov and, in application to hydrodynamics,
were formalized by Arnold [5, 6], who showed that the
conservation of the vorticity integral in an ideal fluid
gives rise to the foliation of the phase space of the sys-
tem into symplectic sheets and a similar property is
inherent in other invariants. The latter statement is very
important, because, first, vorticity is not a universal
invariant in hydrodynamics and, second, its conserva-
tion, as was immediately noted in [6], is insufficient for
deriving a satisfactory condition of the stability of
three-dimensional flows.

Among other possible invariants of the hydrody-
namic equations, it is natural to first consider the
momentum and angular momentum or their compo-
nents, which are conserved under certain geometric or
topological symmetries of the system. It is just such
symmetry that makes steady flows possible. The corre-
sponding invariant for linearized Eq. (1) can be
expressed in terms of so-called neutral displacements
xN:

(9)

Indeed, taking the scalar product of Eq. (1) and xN and
integrating over the entire space with the use of defini-

tion (9), we obtain  = 0, where

+ x —V2

2
------ 2V V —⋅( )x–⋅ 

  — ρx( )⋅

+ x —p— x γp — x⋅( )2+⋅⋅




,

ẋ

ẋ

F xN( ) 0, ∂txN 0.= =

İ

I ρẋ xN⋅ 2ρxN V —⋅( )x+( )d3r.∫=
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In a particular geometry, the general form of the neutral
displacement can even be derived analytically. For
example, for the topology of toroidal nested magnetic
surfaces ψ = const: B · ∇ψ  = 0, which is typical for the
laboratory physics of plasma, the neutral displacement
has the form

(10)

where u = B/ρ, v = D/ρ, and D is the divergence-free,
frozen-in-plasma vector that is tangential (similar to B)
to the same magnetic surfaces but differs from B:

This invariant has a nonlinear analog, the known partic-
ular case of which is the conserved cross vorticity [at
λv = 0 in Eq. (10)].

The inclusion of this invariant really enables one to
improve the energy principle given by Eq. (7). The cor-
responding sufficient stability condition for the system
of nested magnetic surfaces was obtained by Ilgisonis
and Pastukhov [7] and Hameiri [4]. However, the prob-
lem mentioned above of the sign definiteness of the
energy functional is not solved for an arbitrary steady
flow even under this (improved) condition. For this rea-
son, an additional invariant should be involved in anal-
ysis.

Recently, we announced [8, 9] the concept of using
a new set of invariants inherent in linearized system (1)
to analyze stability. Taking the nth derivative of Eq. (1)
with respect to time, we express the (n + 2)th derivative
of x with respect to time in terms of lower derivatives:

(11)

Multiplying Eq. (11) by x(n + 1) and integrating over the
entire space with regard for Eq. (5), we conclude, as for
the case of energy, that the quantity

(12)

is an exact invariant of Eq. (1) (E1 = E). Using recur-
rence relation (11), one can evidently express all higher

time derivatives in Eq. (12) in terms of  and x. In par-
ticular,

(13)

Integrals of form (12) are generally independent for a
continuous medium. For our aims, it is important that,
as is seen even in Eq. (13) for E2, the first positively def-
inite term also includes (in contrast to E) the higher spa-
tial derivatives of perturbation and, therefore, can com-
pete with a similar term in the second sign-definite
term.

The presence of additional invariants given by
Eq. (12) allows the minimization of energy (6), which

xN λu ψ( )u λv ψ( )v,+=

B D× ρ—ψ.=

x n 2+( ) 2 V —⋅( )x n 1+( )–
1
ρ
---F x n( )( ).+=

En 1+
1
2
--- ρ x n 1+( )( )2 x n( ) F x n( )( )⋅–{ } d3r∫=

ẋ

E2
1
2
--- 1

ρ
--- F x( ) 2ρV —ẋ⋅–( )

2
ẋ F ẋ( )⋅–

 
 
 

d3r.∫=
is still treated as the Lyapunov functional but only on

the class of perturbations of  and x under which one
or several invariants En > 1 are equal to zero. To this end,
one may compose a new functional of the form

(14)

where λi is the Lagrange multiplier. As is known,
unconditional extremals of U cover the desired class of
conditional extremals of E. For illustration, we consider
the case λi > 2 = 0; i.e., we take into account only one
additional invariant (13) of family (12). In this case,

(15)

First, we note that the quantities E and E2 are equivalent
and the Lagrange multiplier in Eq. (15) might be
assigned to E, as well as to E2. It is easy to verify that
the consideration of only E2 as the Lyapunov functional
also enables one to obtain the condition of the positive
definiteness of potential energy (7), although it can pro-
vide a more adequate stability condition, as will be seen
in the example below. Since the kinetic energy in E is
nonnegative, we seek the minimum of quantity (15)

over  (in this case, the condition δ2U/δ  > 0 must be
obviously satisfied, which should be verified after the
choice of the set of λ). The Euler equation for the min-

imizing perturbation of  yields

(16)

Let us reveal the formal succession with known con-
ditions. Formally setting λu, v, 2 = 0 in Eq. (15) and min-

imizing over , we arrive at Frieman–Rotenberg con-
dition (7). Retaining in (16) λu, v at λ2  0, we arrive
at the Il’gisonis–Pastukhov–Hameiri condition [7, 4]

where xN ensures the condition

ẋ

U E λ i 1+ Ei 1+ I ,–
i 1=

∑+=

U
ρẋ

2

2
--------

x F x( )⋅
2

-------------------–




∫=

+
λ2

2ρ
------ F x( ) 2ρ V —⋅( )ẋ–( )

2 λ2

2
-----ẋ F ẋ( )⋅–

--+ 2ρx V —⋅( )⋅ ρẋ–( ) λuu λv v+( )




d3r.

ẋ ẋ
2

ẋ

ẋ λuu λv v λ2
F ẋ( )

ρ
------------+ +=

+ 2λ2V — 2 V —⋅( )ẋ F x( )
ρ

------------– 
  .⋅

xN

ẋ

ẋ xN , U UIPH d3r
ρxN

2

2
--------- x F x( )⋅

2
-------------------– 

  ,∫=

ρxN
2 2ρx V —⋅( )xN⋅–( )d3r∫ 0.=
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As was mentioned above, although the condition
UIPH ≥ 0 is softer than Frieman–Rotenberg condition (7)

(UIPH ≥ UFR = – d3r/2), it is still unsatisfactory

for an arbitrary flow with V unparallel to B. However,
the invariants En ≥ 2 are disregarded in this limit. Let us
try to improve this condition assuming that λ2 is small
but nonzero. In the first order in λ2, Eq. (16) makes it
possible to determine the minimizing x function in the
explicit form

(17)

where

In this case, the desired stability condition is written for
arbitrary x in the form

(18)

For definiteness, considering a system with nested mag-
netic surfaces, for which xN is specified by Eq. (10), we
determine the Lagrange multipliers in Eq. (18) by sub-
stituting Eq. (17) into the conditions

As a result, we obtain

Here,

where the angular brackets mean the averaging over the
magnetic surface.

Another combination of the invariants En can obvi-
ously be used to analyze stability. For illustration, let us
consider the axisymmetric equilibrium of a cold (p = 0),
constant-density plasma rotating about the attractive
center in the absence of the magnetic field. In the cylin-
drical coordinate system (r, ϕ, z)V = rΩeϕ, where Ω is
the angular velocity of the equilibrium rotation, which
is related to the potential gradient as Ω2 = ∂Φ/r∂r. The
symmetry of the problem allows the solution to be

x F x( )⋅∫

ẋ xN 2λ2 V —⋅( ) ẋ̇0,–≈

ẋ̇0 F x( )/ρ 2 V —⋅( )xN .–=

U Umin≥

=  
ρ
2
--- xN 2λ2 V —⋅( ) ẋ̇0–( )

2 1
2
---x F x( )⋅–

 
 
 

d3r 0.≥∫

E2, I ẋ x,( ) 0.≈

λ2
1
8
---

ρẋ̇0
2
d3r∫

ρ V —⋅( ) ẋ̇0( )
2
d3r∫

---------------------------------------------,=

λu

Av Du A0Dv–

AuAv A0
2–

---------------------------------, λv

AuDv A0Du–

AuAv A0
2–

--------------------------------.= =

Aw u v,= 4λ2ρ V —⋅( )w( )2 ρw2–〈 〉 ,=

A0 4λ2ρ V —⋅( )u( ) V —⋅( )V( )⋅ ρu V⋅–〈 〉 ,=

Dw u v,= 2 λ2F x( ) ρx–( ) V —⋅( )w⋅〈 〉 ,=
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sought in the form of a Fourier series in the symmetry
direction:

where

Equation (1) is represented in the simple form

(19)

where

(20)

The stability of the solution of Eq. (19) is easily verified
by the spectral method. For xm ~ exp(iωt), we arrive at
the dispersion relation

from which it follows that a necessary and sufficient
condition for spectral stability has the form

(21)

The quantity κ is sometimes called epicyclic frequency.
Let us apply our variational approach to this system.

In this case, the multipliers λ may be functions of r and
z, because E and E2 are invariants even when the inte-
grals in Eqs. (6) and (13) are calculated along the flow
tube at fixed r and z values. The above procedure for
minimizing the composite functional U can be com-
pletely realized for Eq. (19) and provides condition
(21). However, tedious algebra is required even in this
case. The problem can be significantly simplified by the
substitution

which is equivalent to the transition to the reference
frame rotating at a given radius about the z axis with the
frequency Ω . The equation for the new function x
retains form (19), but the corresponding matrices have
the much simpler form

(22)

x xm,
m

∑=

xm ξ r t r z, ,( )er ξϕ t r z, ,( )eϕ ξ z t r z, ,( )ez+ +[ ] eimϕ .=

ẋ̇ 2Ω Âẋ B̂x–+ 0,=

Â
im 1– 0

1 im 0

0 0 im 
 
 
 
 

,=

B̂
Ω2m2 r Ω2( )r'– 2imΩ2 0

2imΩ2– Ω2m2 0

0 0 Ω2m2 
 
 
 
 

.=

ω mΩ+( )4 ω mΩ+( )2 4Ω2 r Ω2( )r'––[ ] 0,=

κ2 4Ω2 r Ω2( )r' 0.≥+≡

x x t r z, ,( )e imΩt– ,

Â
0 1– 0

1 0 0

0 0 0 
 
 
 
 

, B̂
r Ω2( )r'– 0 0

0 0 0

0 0 0 
 
 
 
 

.
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The quantity E2, calculated as

is reduced in the case of Eq. (22) to

It is seen that, considering E2 as the Lyapunov functions
[λ2  ∞ in Eq. (14)] and taking into account the pos-
itivity of the last term, we arrive at desired condition
(21). Thus, this example demonstrates the fruitfulness
of the use of invariant (12) when constructing the
Lyapunov functional.

This work was supported by the Human Capital
Foundation (project no. 41).

E2
1
2
--- 2Ω Âẋ B̂x–( )

2 1
2
---ẋB̂ẋ,–=

E2
1
2
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2 1
2
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Features of Andreev reflection at the normal metal–superconductor interface in the presence of repulsive-inter-
action-induced pairing with a large total momentum K have been analyzed. When the direction of the motion
of a hole arising upon the formation of a pair with K ≠ 0 by an incident electron corresponds to transmission,
the intensity of Andreev reflection decreases compared to the case K = 0. Another cause of the decrease in the
intensity is that, owing to the repulsive interaction, the superconducting order parameter has a zero line, and the
quasiparticle energy minimum, which determines the turning point, does not coincide with the Fermi contour
on which the quasiparticle charge changes its sign (charge asymmetry). © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.20.–z, 74.25.–q
The determination of the symmetry of the order
parameter of high-temperature superconducting
(HTSC) cuprates is of great significance for under-
standing high-temperature superconductivity. Mea-
surement of Andreev reflection spectra is one of the
main methods that enable one to detect the supercon-
ducting gap and determine its symmetry type. In ordi-
nary superconductors, owing to Andreev reflection, the
conductivity of the normal metal–superconductor (NS)
junction for voltages lower than the gap width is twice
as high as the value for a superconductor in the normal
state. It is found that the increase in the conductivity in
HTSC cuprates may be less than twofold [1]. This
experimental observation is as yet unexplained. In this
work, we analyze Andreev reflection at the NS interface
in the model of superconducting pairing with a large
total momentum and the repulsive interaction (K-pair-
ing) [2]. As will be shown below, the nonzero total
momentum of a pair gives rise to a significant decrease
in the differential conductivity for voltages at which
Andreev reflection is manifested.

As was shown in [3, 4], singlet superconducting
pairing with a large total momentum in the presence of
the repulsive interaction is possible even at an arbi-
trarily small coupling constant under the mirror nesting
condition. This condition is satisfied for a particular
type of the electron (hole) dispersion relation, when the
sections of the Fermi contour (analog of the Fermi sur-
face in a quasi-two-dimensional system) coincide with
an energy contour of the relative motion of a pair with
0021-3640/05/8209- $26.00 0575
a given total momentum K. The mirror nesting condi-
tion can be written as

(1)

where ε(K/2 ± k) is the dispersion relation for the par-
ticles forming the pair and k is the relative momentum
of the pair.

Let us list several examples of the satisfaction of the
mirror nesting condition [4]. Condition (1) is satisfied
if the Fermi contour consists of four pockets centered at
the points belonging to symmetric directions. Such hole
pockets are observed in underdoped cuprates due to the
presence of a dielectric gap in the electron spectrum
[5]. Although hole cuprates are basic objects of experi-
mental investigations, we analyze the problem of
Andreev reflection in terms of incident electrons and
reflected holes. Thus, we suppose that excitations out-
side and inside the Fermi contour are quasielectrons
and quasiholes, respectively.

Certain kinematic constraints are imposed on
momentum-space regions available for pairing.
According to these constraints, both particles forming a
pair must be either inside or outside the Fermi contour.
It is evident that there are four equivalent kinematically
allowed regions ΞK each determined by the total pair
momentum K that has the same length for all regions.

The symmetry of the order parameter is determined
by the interaction mixing the states of pairs belonging
to equivalent regions ΞK. The order parameter can have
either the same or opposite signs before and after the

ε K/2 k–( ) ε K/2 k+( ),=
© 2005 Pleiades Publishing, Inc.
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rotation by π/2 about the center of the 2D Brillouin
zone (s- and d-type symmetries, respectively). When
the equivalent regions ΞK do not overlap, each allow-
able region can be treated separately.

For the singlet superconducting pairing of repulsive
particles with a large total momentum, the order param-
eter ∆K(k) inside the region ΞK changes sign when
transversing the zero line that intersects the Fermi con-
tour [4]:

(2)

where ∆0K determines the energy scale of the supercon-
ducting gap and k0 is the radius of the zero line. Owing
to the dependence of superconducting gap (2) on the
relative momentum, the minimum of the energy

(3)

of quasiparticle excitations does not coincide with the
Fermi contour. Here, ξKk is the kinetic energy of a pair
measured from the chemical potential (Fig. 1).

Let us determine the total current through the inter-
face between the normal metal N and superconductor S
with the same dispersion relation for electrons in both
regions. Let particles in the normal region move in the
ballistic regime. In addition, we assume that particles
incident at the NS interface from the region N are dis-
tributed according to the equilibrium Fermi–Dirac dis-
tribution function f0(E – eV) with the energy shift due to
the applied voltage [6]. The energy of particles is mea-
sured from the chemical potential of the superconduc-
tor.

In the absence of a barrier at the interface, a particle
incident from the normal region can either undergo
Andreev reflection with probability A or penetrate deep
into the superconducting region with probability B.
Therefore,

∆K k( ) ∆0K 1 k2/k0
2–( ),=

EKk ξKk
2 ∆Kk

2+=

A B+ 1.=

Fig. 1. One of the pockets of the Fermi contour FC. The
dashed line is the line of the zeros of the order parameter
and the dotted line is the line of the minima of the energy of
quasiparticle excitations. The polar angle ϕ is introduced.

–k

k
ϕ

Thus, the current through the NS interface from the
normal side of the junction can be represented in the
form

(4)

Here, the summation is performed over vectors K with
zero or positive projections onto the normal to the inter-
face. The resistance is given by the expression

where N(0) is the density of states at the Fermi contour,
Ω is the junction area, and vKkF =  is the

Fermi velocity. The effective transmission coefficient is
expressed as [7]

(5)

where the polar angle ϕ is measured from the normal to
the interface (the CuO2 plane is perpendicular to the
interface). The component IK of the total current corre-
sponds to the fact that each particle in the region ΞK has
mean momentum K/2:

(6)

where vK is the velocity of the center of mass of the
region ΞK and n is the normal to the interface.

Let us consider the case where the interface is ori-
ented so that the normal to the surface corresponds to
the direction of total vector K', which is one of total
vectors K (Fig. 2). In contrast to the case of zero total
momentum of the pair, when pairing occurs with non-
zero total momentum, the direction of the motion of a
hole undergoing Andreev reflection is not exactly oppo-
site to the direction of the incidence of an electron at the
interface. In this case, the angle of Andreev reflection is
determined by the total momentum of the pair. When a
particle is incident at the interface with momentum ,

it forms a pair with a particle with momentum  in the
region ΞK '. As a result, the direction of the motion of an
arising quasihole corresponds to transmission (  · n >
0). We call this geometric Andreev transmission. Thus,
the probability of Andreev reflection for the region ΞK '
is equal to zero over the entire energy range:

(7)

Current transferred by a K pair formed in geometric
Andreev transmission is partially compensated by the
current of a simultaneously arising quasihole. There-
fore, in contrast to the case K = 0, the right pocket
(Fig. 2) does not contribute to the total probability of
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Andreev reflection. An electron incident at the interface
with momentum k+ (Fig. 2, upper pocket) forms a pair
with an electron with momentum k–. In this case, the
direction of the motion of the arising quasihole corre-
sponds to reflection (k– · n < 0).

For the indicated orientation of the interface, the
expression for the total current can be simplified. As
follows from Eqs. (4)–(7),

(8)

Here,  is the contribution of the right pocket to the
total current through the interface.

In order to determine the probability of Andreev
reflection for the upper and lower pockets, we consider
the Bogoliubov equations

(9)

where  is the kinetic energy operator and µ is the
chemical potential. The solution of system (9) for par-
ticles outside and inside the Fermi contour is repre-
sented in the form

where

At the interface between the normal metal and super-
conductor, the following boundary conditions must be
satisfied:

(10)

The function ΨN is obtained from the function ΨS by
substituting ∆Kk ≡ 0. Thus, similar to [6],

(11)

(12)

INS = INN
K' 2

eRN
--------- TK E( ) f 0 E eV–( ) f 0 E( )–[ ] E.d

∞–

∞

∫+

INN
K'

ε̂ µ– ∆ r( )
∆* r( ) ε̂ µ–( )– 

 
 

ΨS r( ) EΨS r( ),=

ε̂

ΨS
+ uKke

i k K/2+( ) r⋅

v Kke
i k K/2–( ) r⋅

 
 
 
 

,=

ΨS
– v Kke

i k K/2+( ) r⋅

uKke
i k K/2–( ) r⋅

 
 
 
 

,=

uKk
2 1

2
--- 1

ξKk

EKk

--------+ 
  , v Kk

2 1
2
--- 1

ξKk

EKk

--------– 
  .= =

ΨS ΨN, n ∇Ψ S⋅ n ∇Ψ N.⋅= =

Ψinc
1

0 
 
 

e
ik+ r⋅

,=

Ψref a 0

1 
 
 

e
i– k– r⋅

=

JETP LETTERS      Vol. 82      No. 9      2005
for the incident and reflected particles, respectively.
Here, k+ = K/2 + k and k– = K/2 – k are the momenta
of the incident and reflected particles, respectively, and
a2 is equal to the Andreev reflection probability A.

The superconducting gap amplitude ∆0K is equal to
zero deep in the normal region and is maximal deep in
the superconductor. The transition from one value to
the other occurs at a finite distance equal to the coher-
ence length. Figure 3 shows the process of the transi-
tion of the electron from the normal region to the super-

Fig. 2. Formation of a pair with a large total momentum.
The direction of the total vector K' corresponds to the nor-
mal to the interface. A particle incident at the interface with
momentum k+ undergoes Andreev reflection with momen-

tum k–, whereas a particle with momentum  is transmit-

ted to the superconductor as a quasihole with momentum

 (geometric Andreev transmission).

k+'

k–'

Fig. 3. Process of the transition of the incident electron from
the normal region to the superconductor: E1 is the Andreev
reflection, E2 is the Andreev transmission due to charge
asymmetry, and E3 is the usual transmission.

–k

K

k

K'/2

km km kmkmkF kF kFkF
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conducting region at a certain polar angle ϕ = ϕ0. For
the chosen direction, the momentum km corresponding
to the minimum of the energy of quasiparticle excita-
tion (3) is lower than kF.

A particle incident at the interface with energy E =
E1 [E1 < Emin(ϕ0, x  ∞)], moving deeply into the
superconductor, first reaches a point where its momen-
tum is equal to kF (Fig. 3a). Here, the quasiparticle
charge changes its sign. Then, the particle reaches the
energy minimum point EKk (Fig. 3b). At this point, the
relative velocity ∇ kEKk is inverted, Andreev reflection
occurs, and a hole is reflected to the N region.

A particle with energy E = E2 (Emin(ϕ0, x  ∞) <
E2 < EF(ϕ0, x  ∞)), moving into the S region, inter-
sects the Fermi contour, passing to the hole branch of
the spectrum (Fig. 3b). However, it does not reach the
point determining the turn of the group velocity. Thus,
the arising quasihole moves deeply into the supercon-
ductor. The Andreev transmission process, i.e., the
transmission of an incident electron to the supercon-
ductor as a quasihole, is possible in the case K = 0 only
in the presence of the interface barrier [6]. Since this

Fig. 4. Andreev-reflection probability A vs. the quasiparticle
energy E at fixed polar angles: (a) ϕ0 (km < kF), in the energy
range Emin(ϕ0, x  ∞) < E < EF(ϕ0, x  ∞), Andreev
reflection is suppressed by Andreev transmission due to
charge asymmetry and (b) ϕ1 (km > kF), the energy range
corresponding to Andreev transmission due to charge asym-
metry is absent.

EF

EF
process occurs due to the barrier at the NS interface, we
call it barrier Andreev transmission, in contrast to the
above-discussed Andreev transmission due to the non-
coincidence of the quasiparticle energy minimum with
the Fermi contour (Andreev transmission due to charge
asymmetry).

At energy E = E3 [E3 > EF(ϕ0, x  ∞)], an incident
particle reaches neither the point kF nor the point km.
Correspondingly, usual transmission of the quasiparti-
cle into the superconductor occurs (Fig. 3c).

Thus, for the transmitted particle,

in the energy range Emin(ϕ, x  ∞) < E < EF(ϕ, x 
∞) and

for energies E > EF(ϕ, x  ∞). The coefficient b
squared is equal to the probability B of the transmission
of particles to the superconducting region.

Using boundary conditions (10), we obtain

(13)

Figure 4a shows the plot of the function A(E, ϕ) for
ϕ = ϕ0 (km < kF). For energies E < Emin(ϕ0, x  ∞), the
probability of Andreev reflection is equal to unity. In
the energy range Emin(ϕ0, x  ∞) < E < EF(ϕ0, x 
∞), Andreev reflection decreases, because Andreev
transmission due to charge asymmetry appears. On the
Fermi contour, the probability A is equal to unity. For
high energies E > EF(ϕ0, x  ∞), Andreev reflection
is suppressed by the usual transmission of particles to
the superconductor.

In the other case, km > kF (ϕ = ϕ1), the Andreev trans-
mission region due to charge asymmetry is absent
(Fig. 4b), because the electron moving deeply into the
superconductor reaches the point determining the
inversion of the relative velocity earlier than the point
where the quasiparticle charge changes sign.

The ratio g ≡ GNS/GNN of the conductivities of the
NS junction, when the superconductor is in the super-
conducting and normal states, decreases due to the indi-
cated processes of geometric Andreev transmission and
charge-asymmetry-induced Andreev transmission. At
V = 0, a decrease in g compared to the case K = 0 is
caused only by geometric Andreev transmission. As
follows from Eq. (8), at T = 0,

Ψtrans bΨS
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Ψtrans bΨS
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where  is the contribution of the upper pocket and
equivalent lower pocket to the total conductivity GNN of
the junction,

Here,  is the contribution of the upper pocket to

the total conductivity GNS. By definition, /GNN <
1 and, correspondingly, GNS/GNN < 2. At V > 0, Andreev
transmission due to charge asymmetry begins to con-
tribute. The decrease in g with increasing applied stress
is faster than that for the case K = 0.

Thus, Andreev reflection in the presence of pairing
with large total momentum K has a number of features.
Namely, the intensity of Andreev reflection is lower
than that in the case K = 0 when the direction of the
motion of a hole arising upon the formation of a pair
with K ≠ 0 by an incident electron corresponds to trans-
mission (geometric Andreev transmission). Another
cause of the decrease in the intensity is Andreev trans-
mission due to charge asymmetry. This type of trans-
mission appears because, owing to the repulsive inter-
action, the superconducting order parameter has a zero
line, and the quasiparticle energy minimum, which

g 0( ) 1 2GNN
K /GNN,+=

2GNN
K

GNN
K /GNS

K TK( ) 1– .=

GNS
K

2GNN
K
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determines the turning point, does not coincide with the
Fermi contour on which the quasiparticle charge
changes its sign.

This work was supported in part by the Russian
Foundation for Basic Research.
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A model for explaining incommensurate spin modulation observed in La2 – xSrxCuO4 is proposed without
assuming stripe formation. In this model, all features of the observed spin textures in the entire doping range
are associated only with the geometrical relations for the square lattice and with the competition between var-
ious forms of ordering of Sr ions. © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.20.Mn, 75.10.–b, 75.25.+z
The concept of stripes, which implies the existence
of the incommensurate modulation of the spin antifer-
romagnetic (AFM) structure in the form of antiphase
domains of AFM-ordered spins separated by narrow
extended stripes of doped holes, has been used in a
large number of recent publications devoted to analysis
of p-doped cuprate high-temperature superconductors
(HTSCs) [1–13]. In experiments on magnetic neutron
scattering, such a modulation, which is characterized
by wavevector Q, must be observed in the form of two
incommensurate peaks shifted relative to the AFM
wavevector QAF(1/2; 1/2, 0) by ε = 1/T in the direction
of the modulation vector. Here, T is the magnetic struc-
ture period in units of the lattice constant. Accordingly,
the period of charge modulation should be equal to T/2
and the corresponding incommensurate charge density
modulation should be equal to 2ε.

The results of neutron diffraction studies of the mag-
netic texture of La2 – xSrxCuO4 and La1.6 – x – yNd0.4SrxCuO4
[1, 14–18] can be summarized in the form of the phase
diagram (Fig. 1a). As is seen in Fig. 1a, incommensu-
rate elastic-scattering peaks associated with static mod-
ulation (shaded in the figure) are observed for Sr con-
centrations x < 0.07 and 0.11 < x < 0.12. In the concen-
tration ranges 0.07 < x < 0.11 and x > 0.13,
incommensurate peaks observed in inelastic neutron
scattering indicate the existence of the dynamic modu-
lation of the spin texture. For x < 0.07, “diagonal”
stripes exist with a single modulation vector directed
along the orthorhombic b axis, while modulation for
“parallel” stripes (x > 0.055) always exists in two direc-
tions parallel to the tetragonal axes. In the intermediate
range (0.055 < x < 0.07), both types of modulation are
observed. To compare the spin structures in the cases of
diagonal and parallel stripes, both types of structures
are considered in tetragonal coordinates. In this case,
the spin modulation incommensurability parameter δ is

equal to ε and δ = ε/  for parallel and diagonal
stripes, respectively, and a surprisingly simple relation

2
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(δ ≈ x) is observed between the incommensurability
parameter and concentration in experiments for x <
0.12.

The appearance of the stripe structure due to compe-
tition between the electronic phase separation and long-
range Coulomb repulsion was analyzed theoretically in
[2–9]. An alternative mechanism of the formation of the

Fig. 1. (a) Experimental magnetic phase diagram of
La2 − xSrxCuO4 [1, 14–18]. Angles α = 45° and 90° corre-
spond to diagonal and vertical stripes, respectively. Shaded
regions correspond to the ranges of observation of static
stripes. (b) Calculated stripe phase diagram of
La2 − xSrxCuO4. Dashed lines bound the regions of perco-
lation via the chains of negative U centers with lcom = 3a

and a  (dynamic stripes); thick solid lines bound the

regions of existence of microdomains with lcom = 
(0.075 < x < 0.125) and diagonal rows of doped holes (x <
0.075). The thick dashed line corresponds to the region in

which microdomains with lcom =  can exist due to fluc-
tuations of the Sr concentration in small regions. The figures
at the corners of the rectangles are the values of lcom for a
given type of microdomain.
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dielectric stripe phase in a weakly doped HTSC mate-
rial due to nesting of the Fermi surface was proposed in
[10–13]. However, both theories face considerable dif-
ficulties when describing spin textures observed in
La2 − xSrxCuO4 for various doping levels x. The main dif-
ficulties are as follows:

(i) the experimentally observed relation δ ≈ x for x ≤
0.12 and δ ≈ const for x ≥ 0.12; since, according to Hall
measurements, the value of x in La2 – xSrxCuO4 is not
equal to the concentration of hole carriers (which, at the
same time, is strongly temperature dependent), the rela-
tion δ ≈ x indicates the connection of the spin texture
parameters with the concentration of Sr ions rather than
with the concentration of charge carriers;

(ii) transition from diagonal to parallel stripes for
x ≈ 0.06;

(iii) transition to dynamic stripes for x > 0.07 and
repeated appearance of static correlations in a narrow
concentration range for x ≈ 0.12 (so-called pinning of
stripes);

(iv) one-dimensional nature of diagonal stripes and
two-dimensional nature of parallel stripes;

(v) tilt (~3°) of parallel stripes for x ≈ 0.12;
(vi) 2c periodicity of stripe modulation in the direc-

tion of the c axis (c is the distance between CuO2 planes
in La2 – xSrxCuO4).

To overcome the difficulties in analysis of the results
of neutron diffraction experiments, Gooding et al. [19,
20] proposed a physical model of spin glass that was
based on the assumption of a random distribution of
localized doped holes. According to [20], doped holes
in the spin glass phase are localized in the CuO2 plane.
Such a hole localized in a certain region produces a
long-range spin-distortion field around it. The arising
distortions of the AFM background can be described as
the generation of the topological excitation of a skyr-
mion [21, 22] with a topological charge of Q = ±1 cor-
responding to rotation (twisting) of the AFM order
parameter in the vicinity of the localized hole. Thus,
doping breaks the long-range AFM order and leads to
the formation of disoriented AFM-ordered micro-
domains whose boundaries (domain walls) are deter-
mined by localized doped holes, while the directions of
AFM ordering in adjacent microdomains are turned rel-
ative to each other through a certain angle (so-called
spin twisting). Here, we are going to give an alternative
explanation for the observed charge and spin modula-
tion in La2 – xSrxCuO4 using some concepts of the model
developed in [19, 20] in combination with our concepts
on the mechanism of the formation of negative U cen-
ters (NUC) and ordering of Sr ions.

Our analysis will be based on our earlier assumption
[23] that doped holes are rigidly localized in the nearest
neighborhood of a doped ion at low temperatures. More
precisely, holes are localized in the CuO2 plane at four
oxygen ions belonging to the oxygen octahedron adja-
cent to the dopant ion (Fig. 2a). This conclusion follows
JETP LETTERS      Vol. 82      No. 9      2005
from analysis of the fine structure of the edge of the
x-ray absorption spectrum (XAFS) [24] and from the
measurements of the NMR spectra [25].

In accordance with [23], doping of La2 – xSrxCuO4

results in the formation of NUCs at the pairs of adjacent
Cu cations in the CuO2 plane. These NUCs are formed
at a pair of adjacent Cu ions if a doped hole is localized
at a distance a from each of these ions. In other words,
a NUC is formed at the inner pair of Cu ions belonging
to a Cu4On cluster if a doped hole is localized in each of
the oxygen squares surrounding outer Cu ions. This
requirement is satisfied when the distance between
outer Cu ions (or, which is the same, between the pro-
jections of dopants or doped holes) is equal to 3a or

a , where a is the lattice constant in the CuO2 plane
(Figs. 2b and 2d). In the intermediate case, when the
distance between outer Cu ions is a  (Fig. 2c), the
above condition cannot be satisfied and no NUC is
formed.

According to [23], two-particle hybridization of
oxygen px, y states with paired states of NUCs deter-
mines the anomalous behavior of HTSC materials.
Electron pairing in such systems, which is responsible
for superconductivity, occurs due to strong renormal-
ization of the electron–electron interaction when scat-
tering processes with intermediate virtual states of
NUCs are taken into account [26–32]. Negative U cen-
ters act as pair acceptors leading to the generation of
extra holes [23], which are also localized in the vicinity
of the same NUCs. Conduction (superconductivity) is
observed in such a system when localization regions of
generated hole carriers form a percolation cluster either
through quantum tunneling between such clusters or

5

8

Fig. 2. Formation of negative U centers in La2 – xSrxCuO4.
(a) Unit cell of La2 – xSrxCuO4. Negative U centers
(shaded ellipse) are formed at a pair of neighboring Cu ions
if a doped hole is localized at a distance a from each of these
ions. This is equivalent to the condition that the distance
between doped holes is (b) 3a or (d) a . In the intermedi-
ate case, when the distance between external Cu ions is
(c) a , the above condition cannot be satisfied and no
NUCs are formed.
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when such isolated clusters are embedded in a metal
matrix.

In the doping scheme considered here, the system
formed by an Sr ion and a hole localized in an oxygen
square is an electric dipole interacting with other similar
dipoles via the long-range Coulomb potential. In such
systems, orientation interaction occurs between dipoles;
as a result, the dipoles are aligned so that opposite poles
face one another. The crystal structure of the compound
implies that substitution of Sr for La in LSCO occurs so
that the emerging dipoles form chains (similar to crank-
shafts) extended along the c axis (Fig. 3).

We assume that the chains are two-dimensional and
are parallel to each other. The calculation of the energy
of electrostatic interaction between dipole chains
shows that the two nearest chains attract each other if

the distance between doped holes is lcom ≥ ,1

whereas next to nearest chains repulse each other. This
type of interaction leads to ordering of dipole chains; as
a result, doped holes (or projections of Sr ions) in the
CuO2 plane occupy positions at the sites of the square
lattice with a certain parameter lcom, which is commen-
surate with the lattice constant a of the CuO2 plane.
Calculations show that the energy of interaction
between dipole chains has a minimum corresponding to

lcom = . In addition, the energies of configurations

with lcom = 2, , , and 3 are close to each other

1 This condition corresponds to the experimentally determined sol-
ubility limit xlim ≈ 0.25 for the Sr impurity in La2CuO4.

2

8

5 8

Fig. 3. Ordering of Sr ions in La2 – xSrxCuO4. Negatively
charged Sr ions together with doped holes “assigned” to
them form dipoles attracting each other with opposite ends,
forming “crankshaft” chains.
within an accuracy of ~10–2 e2/εa per dipole (ε is the
dielectric constant); consequently, such configurations
may coexist in the form of microscopic domains in
which doped holes occupy positions in lattices with dif-
ferent lcom values.

Domains corresponding to a given lcom value can
exist only in a certain range of concentration x. This
range is bounded from above by the value xcom = 1/lcom,
above which the existence of physically significant
domains with the given lcom value does not correspond
to the condition of constant average concentration. For
x < xcom, dipole chains are broken and vacancies appear
in the square lattices of projections. Microdomains with
a given lcom value are conserved up to a certain value of
x = xl, which corresponds to the 2D percolation thresh-
old xl = 0.593/lcom for a random distribution. Accord-
ingly, domains with a given lcom value can exist for con-
centrations satisfying the condition

(1)

The size of such ordered microscopic domains depends
on x and increases as x approaches xcom. The patterns of
ordering of Sr along the c axis in a given microdomain
is repeated in each second plane.

We assume that, for small x values (for a mean dis-
tance l > 3a between projections of Sr ions), dipole
chains in the planes parallel to the c and a axes are
arranged so that the distance between doped holes

along the a axis is a ; i.e., it corresponds to the min-
imum of the interaction energy. Thus, the above analy-
sis shows that a La2 – xSrxCuO4 crystal for a given x value
should be treated as a system of mutually penetrating
domains, in which doped holes occupy (partly or com-
pletely) the positions in square lattices with various lcom
values. The regions of existence of microdomains with

lcom =  and 3 and lcom =  are shown in Fig. 1b by
dashed and bold rectangles, respectively.

Let us now consider spin textures that can be formed
upon such an ordering of localized doped holes. We
will first try to determine the form of the spin texture
(differing from the classical stripe pattern) for certain
strictly ordered distributions of doped holes with x =
xcom, which leads to the experimentally observed spin
modulation pattern. This can be done because there are
no reasons to doubt the validity of the stripe model for
an ordered distribution. Moreover, it follows from
experiment [18] that the correlation length in the con-
centration range 0.06 < x < 0.12 (the region of parallel
stripes) increases from 25 Å for x ≈ 0.06 to 200 Å for
x ≈ 0.12. It is natural to attribute the increase in the
length of the correlation region to the ordering of indi-
vidual AFM-ordered domains and to assume that the
latter is, in turn, connected with the ordering of doped
holes and, accordingly, dopant ions. We will consider
below the transformation of the assumed structure upon
a decrease in the value of x < xcom and a departure from

0.593/lcom
2 x 1/lcom

2 .≤<

8

5 8
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the strictly ordered hole distribution and will show that
the main experimentally determined relations existing
for a perfect lattice of holes for x = xcom are conserved
in a certain range of concentrations x < xcom.

Thus, we consider the case of complete ordering for
xcom = 1/8. We assume that (i) each hole circulates over
the oxygen square surrounding a copper ion and (ii) the
nearest four copper atoms are polarized as a result of
the interaction between the hole current and their spins
and the emerging distortions of the AFM background
can be described as the generation of a skyrmion with a
topological charge of ±1 (Fig. 4).

Figure 5a shows a possible ordering of the spin pro-
jections of Cu ions onto the CuO2 plane for the com-
pletely ordered arrangement of localized holes for x =

xcom = 1/8 when they form a  ×  square lattice. In
this case, the CuO2 plane splits into individual quadran-

8 8

Fig. 4. Rotation of (bold arrows) the spins of copper ions in
the vicinity of a doped hole (localized in the CuO2 plane at
four oxygen ions around a Cu ion), which correspond to
topological charges Q = (a) 1 and (b) –1 of a skyrmion.
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gular AFM-ordered microdomains, whose angles are
determined by localized doped holes. The projections
of the directions of spins at Cu ions located at the lattice
sites onto the CuO2 plane are shown by arrows. The
matched ordering emerging in this case is characterized
by the AFM ordering of microdomains themselves, as
well as by the ordered alternation of skyrmions with
charges Q = ±1. It follows from Fig. 5a that such an
ordering leads to an imitation of the magnetic stripe
texture [1]. The period of magnetic modulation in this
case is equal to the total size of two antiphase domains
in the direction of the modulation vector and contains
two sites over the length of a period in a stripe of width

lcom/ ,

(2)

in accordance with the experiment. This pattern is con-
sistent with the results obtained in [33], where the exist-
ence of AFM-ordered microdomains with a size of 15–
30 Å was detected in La1.88Sr0.12CuO4 by the µsR relax-
ation method; the directions of magnetization in such
domains are correlated over a length of 600 Å. It should
be noted that, according to Fig. 5a, charged stripes in
the form predicted by the theory do not exist in the
present case. However, in the case considered here, we
obtain commensurate modulation, which give no satel-
lite peaks in the diffraction patterns. Satellite reflec-
tions might appear only in the case of incommensurate
modulation. In addition, charge modulation is also
observed in the experiment [1] in the form of the
incommensurate splitting of lattice peaks (2 ± 2ε, 0, 0)
and (0, 2 ± 2ε, 0).

To explain this result, let us pass from the com-
pletely ordered lattice of doped holes for x = 1/8 to their

2

T 2 2lcom 8; δ 1/8 x,= = = =
Fig. 5. Projections of the spins of Cu ions under ordering of doped holes in a  ×  lattice for (a) x = 1/8, microdomains forming
horizontal stripes are shaded; thick lines mark the directions of parallel stripes, and (b) x < 1/8, the plane is split into domains sep-
arated by diagonal dislocations, which are nuclei of diagonal stripes. The displacement of vertical stripes by one cell at each dislo-
cation leads to the effective “tilt” of vertical stripes through the angle θY.

8 8
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distribution for x < 1/8. We will first consider the exper-
imental data obtained in the region of existence of static
parallel stripes for x ≈ 0.12 [18, 34]. This will allow us
to carry out a detailed comparison of the experimental
result with our model.

Modulation of the spin texture with an incommen-
surability parameter δ = 0.118 was observed on a
La1.88Sr0.12CuO4 sample in [34]. This corresponds to the
average period T ≈ 8.5 of the texture (in units of a), i.e.,
to alternation of two periods T1 = 8 and T2 = 9. Figure 5b
shows the proposed pattern of the ordered distribution
of doped holes (and, hence, dopant projections) for the
average concentration x = 0.118, which is obtained by
“cutting” the completely ordered distribution for x =
0.125 along the orthorhombic a axis and by displacing
one of its parts relative to the other by the vector q =
(1, 1). Such a displacement conserves the coherence of
ordering in domains located on both sides of the dislo-
cation and “shifts” the system of parallel stripes by one
cell upon passing through the cut.2 Such a structure
(Fig. 5b) produces typical reflections in the diffraction
patters, which correspond to the incommensurate mod-
ulation of both spin (with incommensurability parame-
ter δ) and charge (with incommensurability parameter
2δ). The condition of conservation of average concen-
tration yields

(3)

Here, Td is the mean period of dislocations in units of a
and xl is the local concentration of holes in a domain. To
preserve the mean concentration xm = 0.118 for a local
concentration xl = 0.125, the diagonal dislocations
being introduced must have an average period of Td =

2  In fact, we assume that chains of dipoles (and, hence, vacancies)
tend to be aligned along the orthorhombic a axis; we believe that
this is associated with the requirement of deformation stress min-
imization.

Tdxl Td 1+( )xm.=

Fig. 6. Fragment of a magnetic stripe texture. Closed circles
correspond to the projections of Sr ions onto the CuO2
plane. Arrows show the directions of spin projections at Cu

sites. Two filled sites (shaded rectangle of area Tlcom/ )

are located in a stripe of width lcom/  over the magnetic
structure period T.

2

2

T1 + T2 = 17. Such quasiperiodic dislocations leading to
the incommensurate modulation of both the crystal
structure and the spin texture ensure the observation of
incommensurate reflections in diffraction experiments.

A feature of the emerging ordering pattern is that
parallel stripes are displaced by a lattice constant (see
Fig. 5b). In other words, these stripes seem to be
inclined at an angle of θY = 1/17 ≈ 3.3° to the tetragonal
b axis. Such tilted parallel stripes with a slope of 3°
were observed in La1.88Sr0.12CuO4 [34].

Let us now consider the case of arbitrary values x <
1/8. The distribution pattern in this case can be obtained
from the completely ordered distribution for x = 1/8 by
successive introduction of such dislocations. The tex-
ture imitating parallel stripes can exist as long as micro-

domains with lcom =  exist, i.e., in the concentration
range 0.075 < x < 0.125, in the case of a uniform distri-
bution of Sr ions (bold triangle in Fig. 1b). However,

microdomains with lcom =  can be conserved to
lower x values (thick dashed lines in Fig. 1b) due to
fluctuations of the Sr concentration in small volume
elements. The parallel stripe structure is observed in
experiments down to x = 0.06 (see Fig. 1a).

Let us suppose that the lattice contains such corre-
lated residual fragments of the parallel stripe texture,
which are genetically related to microdomains with

lcom =  (Fig. 6). In this case, characteristic reflec-
tions determined by the mean period of the residual tex-
ture are observed in the neutron diffraction pattern. In
turn, the mean period T of this texture, which is defined
as the distance between the centers of single-phase
magnetic microdomains, includes two occupied sites as
in the case of complete ordering; i.e., a rectangle of area

Tlcom/  = 2T (shaded in the figure) must contain two
sites. This condition gives

(4)

Thus, the relation δ = x is accidental to a certain extent
and is due to the fact that, in the case of parallel stripes,
holes lie on straight lines separated by a distance of 2a
from each other.

As seen in Fig. 5b, introduced dislocations are in
fact the nuclei of diagonal stripes extended along the
orthorhombic a axis. The dislocations are manifested in
the form of a quasiperiodic structure for x < 0.075,

when the traces of the  ×  texture disappear and
only the diagonal rows of impurity dipoles separated by

a distance lcom =  remain, the distance between the

rows being l ≥ 2 . Consequently, diagonal stripes are
always directed along the orthorhombic a axis and the
modulation vector is accordingly directed along the
other orthorhombic b axis.

If all doped holes are ordered to diagonal charge
stripes, the period T of the diagonal spin modulation (in

8

8

8

2

2Tx 2, δ 1/T x.= = =

8 8

8

8
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tetragonal axes) must be equal to 1/ x (or δ = x).
Since some doped holes remain in the space between
charge stripes, the period of the observed spin texture is

larger than 1/ x and, accordingly, δ is smaller than

x. The experimentally obtained value of δ [16] var-
ies from δ ≈ 0.7x to δ ≈ 1.4x in the concentration range
0.01 < x < 0.05.

The last question considered here concerns static
and dynamic stripes. Figure 1b shows the concentration
regions in which parallel and diagonal stripe textures
can exit. Dashed lines in the same figure bound the
regions of the existence of percolation chains with

lcom =  and 3. Such chains of doped holes in the
CuO2 plane adjoin a cluster of AFM microdomains. In
accordance with the above arguments, NUCs playing
the role of pair acceptors are formed on pairs of adja-
cent Cu ions in the regions corresponding to the exist-

ence of percolation clusters with lcom =  and 3. In
these regions, conduction occurs along the correspond-
ing NUC chains located on percolation clusters. The
appearance of conduction disturbs static spin correla-
tions in the surrounding regions due to the motion of
charges breaking the magnetic order along their trajec-
tory. In this case, spin correlations can be observed only
in the inelastic neutron scattering as dynamic incom-
mensurate magnetic fluctuations. It is remarkable (see
Fig. 1b) that, in addition to the region x < 0.07, there is
a narrow range of concentrations 0.11 < x < 0.125 in
which percolation in NUCs is absent. Static incommen-
surate correlations are again observed in this range. It

should also be noted that microdomains with lcom = ,
which coexist with percolation NUC clusters with
lcom = , can also be formed for the mean value of x >
0.125 due to fluctuations of the Sr concentration in
small volume elements. This behavior makes it possible
to observe a parallel texture with δ = 0.125, but again in
the form of dynamic spin modulation.

Thus, we have proved that the proposed model of
La2 – xSrxCuO4, which implies the formation of diatomic
NUCs in the CuO2 plane and is based on the assump-
tions concerning the ordering of Sr and localization of
doped holes, can provide a detailed explanation of the
experimentally observed spin textures in the entire dop-
ing range. In the framework of the model considered
here, all features of the stripe phase diagram of
La2 − xSrxCuO4 are associated only with the geometrical
relations existing for the square lattice and with the com-
petition between different types of ordering of Sr ions.
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The effect of molecule reorientation in a homeotropically aligned layer of a nematic liquid crystal under the
action of a transversely homogeneous ultrasonic wave is studied, and its description in terms of the new theo-
retical model based on the nonequilibrium thermodynamics and nonlinear hydrodynamics of liquid crystals is
experimentally verified. It is shown that the effect is of a threshold character, the critical particle velocity is
inversely proportional to the layer thickness, and the stationary distortion of macrostructure is uniform along
the layer. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.30.–v
The structural transformations that occur in liquid
crystals in deformation fields produced by ultrasonic
waves have been much studied in the last 25 years [1].
One of the mechanisms of such transformations in
homeotropically aligned nematic liquid crystals
(NLCs), which had been the subject of wide specula-
tion [2–4], consists in the reorientation of molecules
under the effect of viscous moments in inhomogeneous
acoustic flows. These flows are caused by the convec-
tive stresses in the viscous boundary layers, by the non-
uniform compression of the NLC layer near its bound-
aries or near the boundaries of the ultrasonic beam, by
the difference in the acoustic characteristics of the NLC
and the plates enclosing the layer, and by the nonuni-
form intensity distribution across the ultrasonic wave.
The physical models that postulate the flow mechanism
of structural NLC distortions of nonthreshold character
were developed and tested in the framework of linear
hydrodynamics [5] in all known physical situations (an
oblique incidence of an ultrasonic wave or a bounded
ultrasonic beam on the NLC layer, the presence of a
noticeable sound pressure gradient along the layer or
the along edges of the NLC cell, etc. [1–4]).

The present paper reports the observation of a spe-
cific type of acoustically initiated orientational transi-
tion in a homeotropic NLC layer: the transition is of a
threshold character and only manifests itself when a
transversely homogeneous ultrasonic wave is normally
incident on the mesophase layer. The measured critical
amplitudes of particle velocities corresponding to the
threshold of this effect are used to test the model that
was developed on the basis of the theory proposed in [6,
7]. In the situation under consideration, the flow mech-
anism based on the Leslie–Ericksen classical linear
hydrodynamic equations fails [4]. The attempt to
describe the given orientational transition in terms of
0021-3640/05/8209- $26.00 ©0586
the conventional approach as a threshold effect that
occurs in a system with periodically varying properties
of the medium has also failed [7]: for the critical com-
pression strain in an ultrasonic wave, the calculation
predicted values that were one and a half or two orders
of magnitude greater than the values conventionally
used in experiments. Hence, the explanation of this
phenomenon goes beyond the limits of classical hydro-
dynamics and requires another approach.

From this point of view, it is of interest to analyze
the structural transitions in ultrasonic fields on the basis
of the statistical methods and the nonclassical nonlinear
hydrodynamics of NLCs. In terms of this approach,
with the use of the molecular model [6], it was shown
that a transversely homogeneous ultrasonic wave gives
rise to stationary flows and moments in the NLC, which
are quadratic in the strain of the medium and tend to
rotate the NLC molecules so as to make them orthogo-
nal to the direction of wave propagation. The combined
action of these factors leads to a distortion of the
homeotropic structure of the NLC layer in the trans-
versely homogeneous ultrasonic wave when the inten-
sity of ultrasound exceeds the critical value [7].

Figure 1a shows a simplified schematic diagram of
the setup used for measuring the levels of ultrasound
that were critical for the observation of the optical
effect. Plates 1 and 2 form a flat cell filled with NLC (an
eutectic mixture of 4-methoxybenzylidene-4'-butyl-
aniline and 4-ethoxybenzylidene-4'-butylaniline). At the
NLC layer edges parallel to the x axis, spacers 3 deter-
mining the layer thickness d are placed; the edges paral-
lel to the y axis are open (Fig. 1b). The orientation of
NLC molecules in the cell is homeotropic (this means
that the unit vector n determining the direction of the
predominant orientation of molecules, i.e., the director
of the NLC, is parallel to the z axis). To test the homo-
 2005 Pleiades Publishing, Inc.
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geneity of the initial homeotropic macrostructure of
NLC layer 4 in the cell and to monitor the changes in its
ordering under the action of ultrasonic waves, the cono-
scopic method was used [1]. The optical system was
designed so that a beam of linearly polarized light of
intensity I0 passed through a convex lens and converged
at NLC layer 4. Mirror coating 5 of plate 2 allowed the
observation in reflected light, which made it possible to
obtain high-quality conoscopic patterns even for thick
samples (50–100 µm). Thin salol layer 6 provided for
the coupling of the cell with the acoustic line 7. The
design of the cell allowed the variation of the NLC
layer thickness in the course of measurement by mov-
ing plate 1 so that the gap between plates 1 and 2 could
be varied within 10–120 µm. Such microdisplacements
did not affect the boundary conditions in the cell or the
energy of adhesion of NLC molecules to the cell walls.
This made it possible to avoid the fluctuations in the
threshold levels of ultrasound because of the aforemen-
tioned factors. The source of longitudinal ultrasonic
waves was transducer 8 (Straubel-cut quartz with a
quasi-uniform distribution of vibration amplitudes over
the surface of the radiating plate) positioned at the
lower end of the acoustic line, as shown in Fig. 1a. The
acoustic contact between the transducer and the cell
occurred through the thin salol layer. The level of ultra-
sound was controlled by the voltage applied to the
transducer. The voltage was measured by a voltmeter
and recalculated to the particle velocity at the boundary
z = 0 according to the known method of calculation for
a multilayer system (transducer–coupling layer–work-
ing medium) with allowance for its resonance proper-
ties. The frequency of vibrations was varied from 0.3 to
15 MHz, while the transducer operated at the funda-
mental frequency or its harmonics. The temperature of
the NLC in the cell was maintained at a constant level
(within 0.5°C) by a thermal stabilization system con-
nected with the cell and could be varied from 22 to
45°C.

The experimental procedure was as follows: the cell
was filled with NLC, the layer thickness was set by
moving plate 1, and the orientation state of the macro-
structure of the NLC layer was tested. In the absence of
ultrasound, the conoscopic pattern observed with
crossed polarizers represented a system of concentric
light and dark rings (isochromes), i.e., had a rotation
symmetry about the normal to the layer. Then, voltage
was applied to the transducer and increased up to the
critical ultrasound level that was necessary for over-
coming the elastic forces in the NLC and for the reori-
entation of the director, which resulted in the establish-
ment of its new stationary distribution. This orienta-
tional transition observed under compression, ε ≥ εc,
visually manifested itself in a reduction of symmetry of
the conoscopic pattern and in a distortion of the rings.

Two series of experiments were carried out to mea-
sure the critical levels of ultrasound: (a) at a constant
frequency of vibrations, the layer thickness was varied
JETP LETTERS      Vol. 82      No. 9      2005
from 10 to 100 µm (the temperature of the NLC in the
cell was 26°C); (b) for the NLC layer of a fixed thick-
ness, the frequency of vibration was varied from 0.3 to
15 MHz (the temperature of the NLC was 25°C).

Figure 2a shows a typical dependence of the critical
amplitude of the particle velocity V0c on the layer thick-
ness d at a constant ultrasonic frequency of 2.7 MHz.
One can see that this dependence is approximated by
the function V0c ~ 1/d. Figure 2b displays the influence
of the ultrasonic frequency on the critical particle
velocity at a constant layer thickness of 40 µm. From
these data, it follows that, at a constant layer thickness,
the relation between the critical amplitude of the parti-
cle velocity and the ultrasonic frequency depends on
the choice of the ultrasonic frequency range. Within
0.3–1.2 MHz, the critical amplitude decreases with
increasing frequency according to the law V0c ~ 1/ω,
whereas, in the frequency range from 2.7 to 15 MHz,
the effect is frequency independent and the critical par-
ticle velocity has a constant value. Here, ω = 2πf, where
f is the frequency of vibrations.

Let us discuss the above experimental data on the
behavior of the critical levels of ultrasound with vary-
ing thickness of the NLC layer and varying frequency
of vibrations in terms of the theoretical model proposed
in [7]. The geometry of the problem is as follows: the
NLC layer lies in the (xy) plane, the z axis is perpendic-
ular to the layer, the coordinate z = 0 corresponds to the
lower acoustically transparent boundary of the layer,
and the coordinate z = d corresponds to the upper
acoustically rigid boundary (Fig. 1). An ultrasonic

Fig. 1. The (a) side and (b) top views of the layout of the
experimental setup: (1, 2) plates, (3) spacers, (4) nematic-
liquid-crystal layer, (5) mirror coating, (6) adhesion layer
(salol), (7) rod serving as the acoustic line, (8) source of lon-
gitudinal ultrasonic waves, (9) the open edge of the nem-
atic-liquid-crystal layer in the cell, and (10) the region
observed in the nematic-liquid-crystal layer.
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wave, homogeneous in its cross section, with a particle
velocity amplitude V0 is incident on the layer from
below in the direction of the z axis. The problem is con-
sidered for the frequency range where the sound wave-
length is greater than the layer thickness. In the layer, a
periodic compression takes place with the amplitude
ε = 2V0/c, where c is the velocity of ultrasound propa-
gation in the NLC. The theory is developed in the
framework of the statistical hydrodynamics of liquid
crystals on the basis of the microscopic NLC model [6].
The latter describes the rotation of an individual mole-
cule caused by the external action and producing
microstresses and micromoments in the medium. By
averaging these microstresses and micromoments over
the nonequilibrium angular distribution of molecule
orientation and over the period of the ultrasonic wave,
it is possible to separate the stationary nonlinear

stresses  and moments that arise in the NLC under
the effect of ultrasonic waves and may lead to a reori-
entation of the NLC molecules. It is essential that the
time averaging of microstresses is performed with
allowance for the relaxation character of the relation
between the sound pressure P and the strain εkk in the
ultrasonic wave: P = –[Eεkk + µ(ω)Ukk]. Here, E is the
bulk elastic modulus, µ(ω) is the bulk viscosity coeffi-

σij
2( )

Fig. 2. Critical amplitude of the particle velocity vs. the
(a) inverse thickness of the nematic-liquid-crystal layer at a
frequency of 2.7 MHz at 26°C and (b) frequency for the
nematic-liquid-crystal layer with a thickness of 40 µm at
25°C.
cient determining the sound absorption in the NLC, and
Ukk is the strain rate of the medium. According to [7],
the stationary distortion of the homeotropic NLC layer
structure is assumed to satisfy the following conditions:
(i) the flow of the liquid and the rotation of molecules
occur in the (xz) plane and are homogeneous along the
layer; (ii) the angle θ of the director deviation from the
z axis is small (θ ! 1). It is important that the equation

for the flow velocity  in the (xz) plane takes into

account not only the nonlinear stationary stress  but

also the shear stress σxz = η2  arising in the station-
ary flows caused by the effect of the nonlinear stresses.
These nonlinear and shear stresses tend to overcome the
effect of the Frank elastic moments [5], which stabilize
the initial homeotropic orientation of molecules in the
NLC layer, and tend to rotate them in the (xz) plane
toward the position orthogonal to the direction of ultra-
sonic wave propagation. The critical amplitude of the
compression strain in the wave at the threshold of the
effect is determined from the condition of the existence
of a nonzero solution given in the form θ = θ0sin(πz/d)
to the equation of the director rotation [5]. According to
[7], under rigid orientational boundary conditions, this
amplitude is given by the formula

(1)

The analysis of this formula shows that the relation
between the critical particle velocity and the layer
thickness is described as V0c ~ 1/d, which agrees well
with the experimental data presented in Fig. 2a. The
frequency dependence of the effect is given by the func-
tion F(ωτ). At high frequencies, where ωτ @ 1, this
function is F(ωτ)  1, and the critical particle veloc-
ity is frequency independent. In the low-frequency
range, where ωτ ! 1, the aforementioned function has
the form F(ωτ) ≈ (ωτ)2, and the critical particle velocity
is V0c ~ 1/ω. These theoretical predictions agree well
with the experimental data presented in Fig. 2b. The
frequency ω* that separates the frequency regions with
different types of V0c(ω) dependences can be deter-
mined from the condition ωτ = 1. Taking Tc – T = 1°C
and τ = 10–7 s [8], we obtain ω* = 107 s–1, which yields
f * = 1.59 MHz. One can see that, as the ultrasonic fre-
quency increases and passes from the region f < f * to
the region f > f *, a qualitative change occurs in the
character of the frequency dependence of the critical
particle velocity in compliance with the experimental
observations. For the numerical comparison of the theo-
retical and experimental values of the critical particle
velocity, we use the parameters of NLCs that were given
in [1, 5, 8]. For MBBA, we have K33 = 7 × 10–7 dyn,
Cp = 2 J/m3 deg, ∂Tc/∂P = 3 × 10–8 deg cm2/dyn, γ1 =
0.78 P, E = 2 × 1010 dyn/cm2, α = 10–4 deg–1, and c =
1.5 × 103 m/s. According to [7], at Tc – T = 10°C, we

V x
2( )

σxz
2( )

V x zz,
2( )

εc π/d( ) K33/ω°γ1ξ( )1/2=

× E ∂Tc/∂P αTV /Cp–[ ] /T{ } 1/2– F ωτ( ) 1/2– .
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have ω° ≈ 6 × 107 while the coefficients ξ1 and ξ2 are
equal to 1.15 and 1.2, respectively. The closeness of
these coefficients suggests that the stationary nonlinear
flows and the moments play approximately identical
roles in the mechanism of the director reorientation
under the effect of a transversely homogeneous ultra-
sonic wave. Using the aforementioned values, from
Eq. (1) we obtain the following critical parameters for
the layer with a thickness of 100 µm at a frequency of
2.7 MHz: e0c = 2 × 10–5 and V0c = 1.5 cm/s, which
agrees well with the experimental data in the frequency
region f > f * where the effect is frequency-independent
(Fig. 2).

Thus, the experimental results presented in this
paper agree both qualitatively and quantitatively with
the theoretical calculations performed in terms of the
model proposed in [7]. This proves the validity of the
model and, hence, justifies the use of the approach
based on the nonequilibrium thermodynamics and sta-
tistical hydrodynamics in analyzing the threshold ori-
entational transitions in NLCs in ultrasonic fields.

I am grateful to Prof. E. Guyon for useful discus-
sions. This work was supported in part by the Russian
JETP LETTERS      Vol. 82      No. 9      2005
Foundation for Basic Research, project no. 04-02-
17454.
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Observation of Electric Polarization in Gd1 – xSrxMnO3 
(x = 0.5, 0.6, 0.7) Single Crystals
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In Gd1 – xSrxMnO3 (x = 0.5, 0.6, 0.7) single crystals, a change in electric polarization (∆P ~ 100 µK/m2) is found
to accompany the suppression of the charge-ordered spin-glass state and the transition to the ferromagnetic con-
ducting phase (Hcr ~ 100 kOe at 4.5 K). The transition is also characterized by jumps in magnetization and mag-
netostriction. The sign of the induced polarization depends on the polarity of the electric field in which the sam-
ple was preliminarily cooled. This dependence testifies to the presence of spontaneous electric polarization in
the system. The effect is maximal at x = 0.5 and decreases by more than an order of magnitude as x increases
to 0.7. The phenomenon observed in the experiment may be associated with the new noncentrosymmetric struc-
tures with an electric dipole moment that were recently predicted for manganites (x ~ 0.5) [Nature Materials 3,
853 (2004)]. These structures exhibit charge-orbital ordering such that eg electrons are not localized by one of
the manganese ions but distributed between neighboring ions, thus forming an ordered dimer structure. © 2005
Pleiades Publishing, Inc.

PACS numbers: 75.80.+q
INTRODUCTION

Rare-earth (R) manganites, RMnO3, with an orthor-
hombically distorted perovskite structure (space group
Pbnm) are well known as the parent materials for com-
pounds whose doping with Sr2+ and Ca2+ ions leads to
the effect of colossal magnetoresistance and other inter-
esting phenomena related to strong interactions of spin,
orbital, charge, and lattice degrees of freedom (see, e.g.,
[1]). In recent years, new properties of RMnO3 (R = Gd,
Tb, Dy) manganites were revealed, namely, the proper-
ties associated with spontaneous electric polarization in
the region of the existence of modulated spin structures
[2–4], which are formed due to the frustration of
exchange interactions with decreasing ionic radius of
the R ion. As for the doped manganites, the presence of
states with electric polarization in them remains open to
question, although prerequisites for such a presence are
known: for example, the dielectric anomaly observed in
Pr0.67Ca0.33MnO3 [5] or the new type of charge ordering
with eg electron localization in the middle of the Mn–
O–Mn bond (Zener polaron) in Pr0.6Ca0.4MnO3 [6]. The
latter possibility was discussed and substantiated in
theoretical publications [7–9]. Recently, it was theo-
retically shown [10] that, in doped manganites of the
R1 – xCaxMnO3 type at x ~ 0.5, not only can the Zener
polarons and the CE-type classical antiferromagnetic
structure with charge and orbital ordering of
0021-3640/05/8209- $26.00 0590
Mn3+/Mn4+ ions be present, but also more complex
structures are possible, with eg electrons asymmetri-
cally distributed between neighboring Mn ions and
forming an ordered dimer structure possessing an elec-
tric dipole moment. In the latter case of charge order-
ing, the center of symmetry of the system is absent and
a spontaneous electric polarization may appear.

In this paper, we report on the search for the electric
polarization in Gd1 – xSrxMnO3 (x = 0.5, 0.6, 0.7) single
crystals and on the observation of this polarization in
the given system. Previous studies of the magnetic,
magnetoelastic, and conducting properties of polycrys-
talline Gd0.5Sr0.5MnO3 samples revealed the presence
of a charge ordering in this material at temperatures
below T ~ 90 K, which coexists with the spin cluster
glass state at T ≤ 42 K [11, 12]. The absence of long-
range magnetic order was confirmed by neutron dif-
fraction studies [11]. For the same composition in the
low-temperature region, the effect of colossal magne-
toresistance due to the charge ordering suppression and
the field-induced metal–insulator transition was
observed in magnetic fields up to 150 kOe [11].

EXPERIMENTAL RESULTS AND DISCUSSION

The Gd1 – xSrxMnO3 (x = 0.5, 0.6, 0.7) single crystals
were grown by the floating zone method with optical
heating. Comprehensive studies of magnetic, conduct-
© 2005 Pleiades Publishing, Inc.
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ing, magnetoelectric, and magnetoelastic properties of
these compositions were carried out in constant (up to
12 kOe) and pulsed (up to 250 kOe) magnetic fields in
the temperature range 4.2–300 K.

Magnetic measurements confirmed the absence of
spontaneous magnetization in all of the compositions
under study. The temperature dependence of resistivity
(Fig. 1) exhibited a thermal activation behavior without
any peculiar anomalies in the presence of charge order-
ing at TCO ~ 90 K in accordance with the data reported
for polycrystals with x = 0.5 [11]. However, the resis-
tivity value in our experiments was about an order of
magnitude smaller than in the aforementioned poly-
crystals, presumably because of the contribution of
intergrain boundaries in the latter.

Figure 2 shows the magnetization curves for a
Gd0.5Sr0.5MnO3 single crystal. One can see that, in the
low-temperature region at Hcr ~ 100 kOe, the magneti-
zation increases stepwise. This is related to the suppres-
sion of charge ordering and the first-order transition to
ferromagnetic state, which, according to [11], is con-
ducting. The phase transition exhibits a hysteresis,
which is maximal at low temperatures and decreases
rapidly with increasing T. The transition is also accom-
panied by anomalies of longitudinal magnetostriction
(Fig. 3). These anomalies are observed at the same
value of the threshold field at which the magnetization
increases sharply (Fig. 2) and the resistivity decreases
(according to the data of [11]) by several orders of mag-
nitude. All these features testify to a strong spin–
charge–lattice correlation in the system under study.

The fundamental result of our study is the observa-
tion of a drastic change in electric polarization ∆P(H)
near the threshold field (Fig. 4). The sign of the polar-
ization was found to depend on the polarity of the elec-
tric field E = ±120 kV/m in which the sample was pre-
liminarily cooled. This fact testifies to the presence of a
spontaneous electric polarization in the system. The
sharp decrease in polarization that occurs after its step
increase at Hcr is caused by the fact that, at the transition
of the crystal from dielectric to conducting state, the
induced charge leaks through the sample from the met-
allized plates applied to it and causes a drop in the
induced polarization ∆P(H) in the region of H ≥ Hcr.

In Gd0.4Sr0.6MnO3, for which no data on magnetic
and electric properties could be found in the literature,
we also observed a strong increase in electric polariza-
tion ∆P(H) in a magnetic field of ~75 kOe and a subse-
quent decrease with growing magnetic field (Fig. 5a).
In this case, the ∆P(H) curve is smoother and broader
while the maximum value of ∆P(H) is smaller than that
for the composition with x = 0.5. For the
Gd0.3Sr0.7MnO3 composition with a higher Sr content,
we also observed a bell-shaped ∆P(H) curve (Fig. 5b),
but the value of the field-induced electric polarization
was noticeably smaller and reached its maximum in a
field of ~25 kOe. For both the aforementioned compo-
sitions, we observed a change of sign of electric polar-
JETP LETTERS      Vol. 82      No. 9      2005
ization with the change of sign of the electric field in
which the crystals were cooled. Hence, spontaneous
electric polarization should also occur in these crystals.
However, the polarization decreases rapidly with
increasing x.

The electric polarization observed in Gd1 – xSrxMnO3
may be related to the presence of the new type of charge
and orbital ordering predicted in [10]. Unlike the clas-

Fig. 1. Temperature dependence of resistivity for
Gd1 − xSrxMnO3 (x = 0.5, 0.6, 0.7) single crystals.

Fig. 2. Magnetization curves for Gd0.5Sr0.5MnO3 at various
temperatures.
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Fig. 3. Field dependences of magnetostriction measured
along the growth axis of the Gd0.5Sr0.5MnO3 single crystal.
For clarity, the curves are shifted along the ordinate axis.
Fig. 4. Field dependences of polarization along the growth
axis for the Gd0.5Sr0.5MnO3 single crystal at T = 4.5 K. The
measurements were performed after preliminary cooling in
an electric field E = ±E0.
Fig. 5. Field dependences of polarization for the (a) Gd0.4Sr0.6MnO3 and (b) Gd0.3Sr0.7MnO3 single crystals at T = 4.5 K. The mea-
surements were performed after preliminary cooling in an electric field E = ±E0.
JETP LETTERS      Vol. 82      No. 9      2005
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sical CE-type structure with alternating Mn3+/Mn4+

ions and eg electrons localized by one of the manganese
ions, the new type of ordering has eg electrons asym-
metrically distributed between neighboring ions. This
structure consists of ordered manganese ion dimers and
possesses a nonzero electric dipole moment. Although,
in this model, the ground state of the spin system is the
antiferromagnetic ordering, which does not correspond
to the spin-glass cluster ground state of the
Gd1 − xSrxMnO3 (x ~ 0.5) system under study, we may
expect that the basic features of the new type of charge-
orbital ordering associated with nonzero polarization
will be retained for Gd1 – xSrxMnO3.

Thus, the studies described above revealed the pres-
ence of a spontaneous electric polarization in the
Gd1 − xSrxMnO3 system. The polarization manifests
itself at the magnetic field-induced transition from the
charge-ordered spin-glass state to the ferromagnetic
conducting phase and may be caused by the presence of
the new type of charge and orbital ordering predicted in
[10].

We are grateful to D.I. Khomskiœ for useful discus-
sions. This work was supported by the Russian Founda-
tion for Basic Research, project nos. 03-02-16445 and
04-02-81046-Bel2004.
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Results of neutron diffraction studies of R0.5Sr0.5MnO3 manganites (R = Sm, Nd0.772Tb0.228, and Nd0.544Tb0.456)
performed to reveal the microscopic origins of the giant oxygen isotope effect recently discovered in
Sm0.5Sr0.5MnO3 are presented. It is shown that two crystalline phases differing in the type of Jahn–Teller dis-
tortions of oxygen octahedra and in the type of magnetic ordering coexist at low temperatures in all the studied
compositions. A scenario for the observed phase transitions is suggested based on the diffraction data. It is
found that the percolation transition from the metallic to insulating state in compositions with Sm upon substi-
tution of 18O for 16O is associated with a sharp (from 65 to 13%) decrease in the volume of the ferromagnetic
metallic phase. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.12.Ld, 75.30.–m
1. INTRODUCTION

The giant oxygen isotope effect in complex manga-
nese oxides (manganites)—a change from the metallic
to insulating state upon substitution of 18O for 16O—
still remains one of the most intriguing phenomena in
the physics of these compounds. The effect was first
discovered in (La0.5Nd0.5)0.67Ca0.33MnO3 and
(La0.25Pr0.75)0.7Ca0.3MnO3, that is, in compositions with
the doping level x ≈ 0.3, and more recently in
Sm1 − xSrxMnO3 at x ≈ 0.5 as well (see [1] and refer-
ences therein). Neutron diffraction studies of composi-
tions with x ≈ 0.3 clearly demonstrated [2] that an inco-
herent mixture of interpenetrating clusters with charac-
teristic sizes of ~1000 Å of the ferromagnetic–metallic
(FM–M) and antiferromagnetic (CE type)–insulating
(AFMCE–I) phases arises in these compounds upon
decreasing the temperature. This creates conditions for
the metal–insulator transition of a percolation nature.
This type of the inhomogeneous state is new for solid-
state physics, and it is necessary to look for mecha-
nisms that ensure equilibrium of different phases and
differ from the theory of ferrons [3], in which micro-
scopic (~15–20 Å) sizes of inhomogeneities are con-
trolled by the Coulomb energy, or from the model of
elastic interactions of Jahn–Teller centers [4], which
lead to coherently ordered inhomogeneous structures.

After the discovery of the giant isotope effect in the
compositions Sm1 – xSrxMnO3 (from here on, SSM)
with x = 0.45 and 0.50 [1], studies of their phase dia-
0021-3640/05/8209- $26.00 0594
gram [5] and preliminary neutron diffraction experi-
ments [6, 7] were performed to show that, at x = 0.5 in
a sample enriched with the 16O isotope, the FM and
type-A AFM (AFMA) phases coexist below 80 K. In
addition, it was found in these works that the replace-
ment of Sm by a mixture (Nd1 – yTby) with the same
ionic radius 〈rA〉  = (1 – y)rNd + yrTb = rSm, where rSm, rNd,
and rTb are ionic radii of samarium, neodymium, and
terbium, respectively, does not change the type of the
magnetic state. Therefore, (Nd1 – yTby)1 – xSrxMnO3

samples can be used for neutron structural analysis
instead of SSM samples, for which the required accu-
racy cannot be achieved because of too strong absorp-
tion of neutrons by samarium.

This work presents the results of neutron experi-
ments on the determination of the atomic and magnetic
structure of (Nd1 – yTby)0.5Sr0.5MnO3 (from here on,
NTSM) manganites with y = 0.228 (sample S1, 〈rA〉  =
1.229 Å) and 0.456 (sample S2, 〈rA〉  = 1.221 Å). The
former is an analogue of the composition
(Nd0.5Sm0.5)0.5Sr0.5MnO3, and the latter is an analogue
of the composition Sm0.5Sr0.5MnO3 with the same 〈rA〉
and close macroscopic properties. It is shown that two
symmetry-equivalent crystalline phases differing in
macroscopic properties and in the type of magnetic
ordering coexist in both compositions at low tempera-
tures. Based on the results obtained, the diffraction data
for SSM were revised, which allowed the structural ori-
© 2005 Pleiades Publishing, Inc.
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gins of the giant isotope effect in these compounds to be
formulated.

2. SAMPLES AND EXPERIMENT

Samples S1 and S2 (about 4 g) for neutron diffrac-
tion experiments were prepared by the so-called paper
synthesis technique [1]. The ratio of Nd to Tb in NTSM
was selected on the basis of data on ionic radii from
Shannon’s tables [8] for the ninefold coordination of
the A cation accepted for manganites. The procedure of
preparation of SSM compositions with 152Sm, 16O, and
18O isotopes was described in [1, 5], and their mass was
about 100 mg. Data obtained in the course of certifica-
tion of samples, in particular, temperature dependences
of the resistivity, magnetization, and magnetic suscep-
tibility, were reported in [5, 9].

The crystal and magnetic structures of the samples
were determined on HRFD (pulsed reactor IBR-2,
Dubna, Russia), HRPT, and DMC (both with the SINQ
source, PSI, Switzerland) neutron powder diffractome-
ters. The first two are high-resolution diffractometers
with ∆d/d ≈ 0.001, which allowed diffraction spectra
from coexisting phases to be reliably distinguished and
effects associated with peak broadening to be analyzed.
The magnetic structure characteristics of the samples
were determined on the DMC. The spectra were mea-
sured in a wide range of temperatures (10–300 K)
mainly in the heating run. Moreover, the diffraction
spectra from sample S1 were measured on the SLS
source of synchrotron radiation (PSI, Switzerland) at
several temperatures above and below the phase sepa-
ration temperature.

3. STRUCTURAL SEPARATION IN NTSM

The atomic structures of NTSM and SSM at room
temperature are well described in the rhombic space
group Pnma with the relationship among the unit cell

parameters standard for this group: a ≈ c ≈ ac ≈
5.4 Å, b ≈ 2ac ≈ 7.8 Å, where ac ≈ 3.9 Å is the cell
parameter of the cubic perovskite (phase P1 from here
on). At low temperatures, peaks from one more rhom-
bic phase (phase P2) appear in the diffraction spectra
(Fig. 1). One of the features of this phase is a markedly
smaller unit cell parameter b than that in the initial
phase. The process of the appearance (upon cooling) or
disappearance (upon heating) of phase P2 covers a con-
siderable temperature range. For sample S1, it com-
prises almost 100 K. Upon heating above 150 K, the
distinct diffraction peaks of phase P2 disappear, trans-
forming to a wide intensity distribution with a flat top
existing up to ≈250 K. The structural characteristics of
phase P1 are rather reliably determined in the entire
temperature range; for phase P2, it can be done only at
T ≤ 170 K. The temperature dependences of unit cell
parameters, interatomic Mn–O distances, and Mn–O–
Mn valence angles for both phases in sample S1 were

2
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obtained upon treatment of spectra with HRFD and are
shown in Fig. 2. In phase P1, the Mn–O distances in the
MnO6 octahedron only slightly differ from each other;
even in the phase transition region, the parameter σJT,
which characterizes the deviation of the MnO6 octahe-
dron from the regular shape (see, for example, [10]),
does not exceed ≈0.01 Å at room temperature (for com-
parison, in LaMnO3, σJT ≈ 0.1 Å), and it decreases
down to 0.007 Å at low temperature. In contrast, the
octahedra in phase P2 are strongly distorted (σJT ≈
0.03 Å), and the Mn–O1 bond directed along the axis b
is the shortest one.

The volume occupied by the second phase weakly
varies with temperature from 10 to 150 K and com-
prises about 40% of the sample volume. The diffraction
peaks of phase P2 are appreciably broadened (by a fac-
tor of ≈1.7 wider than peaks P1) in the range from 10 to
150 K and sharply spread out above 150 K. The peak
broadening can be due to an increased dispersion of the
cell parameters of phase P2 caused by the occurrence of
strains at phase boundaries (∆a/a ≈ 0.0035) or by the
finite sizes of coherently scattered domains (L ≈ 700 Å
at T ≤ 150 K and L ≈ 100 Å at 190 K ≤ T ≤ 250 K). Com-
bining these two reasons is also possible, as well as

Fig. 1. Section of the diffraction spectrum of sample S1 at
(above) room temperature and (below) T = 10 K. Miller
indices and calculated peak positions are marked for P1
(only this phase exists at room temperature) and P2 phases.

(Å)

10 K
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strong fluctuations of the unit cell parameters of phase
P2 over the sample volume.

The behavior of the sample with y = 0.456 is mainly
the same. The facts that the second phase arises in this
sample at a lower temperature (below 150 K) and that

Fig. 2. Temperature dependences of (a) unit cell parameters

(b' = b/ ), (b) Mn–O interatomic distances, and (c) Mn–
O–Mn valence angles for (e) P1 and (+) P2 phases in sam-
ple S1. The vertical dashed straight line designates the
occurrence temperature of long-range FM and AFMA
orders. Signs of structural separation appear at 250 K, but
the reliable determination of structural parameters of phase
P2 can be performed only below 170 K. The experimental
values shown in the figure were obtained on HRFD; the data
from HRPT agree well with those values. Error bars of
experimental points are less than the size of symbols for lat-
tice parameters, about 0.002 Å for bond lengths, and about
0.1° for valence angles. Lines are drawn to facilitate percep-
tion.

2

(Å
)

Mn–O1–Mn

Mn–O2–Mn

Mn–O2

Mn–O1

Mn–O1

Mn–O2
it occupies no more than 25% of the sample volume are
essential distinctions.

4. MAGNETIC STRUCTURE OF NTSM

The data on magnetic susceptibility [5, 9] point to a
transition to the FM state at temperatures TC ≈ 200 K
and TC ≈ 100 K for samples S1 and S2, respectively. It
follows from the neutron diffraction spectra measured
in this work that, below these temperatures, FM order-
ing of magnetic moments of Mn appears in phase P1
and, in addition, the AFMA structure arises in phase P2.
Thus, below the indicated temperatures, structural sep-
aration is supplemented with magnetic separation, and
the FM and AFMA structures arise simultaneously. A
characteristic decrease in FM intensities is observed
below 50 K, which points to the ordering of magnetic
moments (Nd/Tb) in the same direction as Mn
moments. The temperature dependences of the mag-
netic contributions indicated above are shown in Fig. 3
for sample S1. It is evident that the FM and AFMA
structures arise synchronously and their temperature
behavior is similar; that is, the volumes occupied by the
corresponding phases in the sample remain approxi-
mately constant over the entire range, starting with TC
and to helium temperature. At T = 10 K, the magnetic
moments in both phases are close to their limiting value
3.5 µB for the structure with the ratio Mn3+/Mn4+ = 1/1,
from which it follows that long-range magnetic order
arises over virtually the entire sample volume. In both
phases, magnetic moments are directed in parallel with
the unit cell axis c.

Fig. 3. Temperature dependences of the magnetic moments
of Mn in the (+) FM and (e) AFMA phases, and (d) the
magnetic moment (Nd/Tb) in the FM phase for sample S1
with y = 0.228. The values of moments are normalized to
the phase concentration in the sample volume. Most exper-
imental points were obtained on the DMC diffractometer.
Points at 19, 150, and 190 K were additionally measured on
HRPT.
JETP LETTERS      Vol. 82      No. 9      2005
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5. PHASE SEPARATION IN Sm0.5Sr0.5MnO3

Preliminary neutron data on the FM and AFM
phases in 152Sm0.5Sr0.5MnO3 with 16O and 18O oxygen
isotopes [5] were obtained on a diffractometer with a
medium resolution and from a small amount of the
sample, which prevented the detection of two different
crystalline phases in the sample. The treatment of the
diffraction spectra from SSM in a two-phase version
(by analogy with NTSM at y = 0.456, being an ana-
logue of SSM) showed that two crystalline phases with
approximately the same characteristics as in NTSM/S2
but with different relative concentrations coexist in
both SSM samples with 16O and 18O isotopes. In the
composition with 16O having a metallic conductivity,
phase P1 with almost regular oxygen octahedra occu-
pies about 65% of the sample volume. The ordered
moment in this phase assumes the limiting value
(MFM = 3.5 ± 0.2 µB). The remaining part of the volume
is occupied by the AFMA phase with MAFM = 3.1 ±
0.3 µB. In the composition with 18O, which is an insula-
tor, the volume of phase P1 is only 13%, and long-
range FM order is absent in this phase. As in NTSM/S2,
in phase P2 in SSM below Tc ≈ 100 K, the AFMA struc-
ture arises with the ordered moment at low tempera-
tures MAFM = 2.00 ± 0.07 µB.

6. DISCUSSION OF THE RESULTS

Structural and magnetic phase separation was
already observed in manganites with compositions
R1 − xAxMnO3, where R is a rare-earth element, A = Ca,
Sr, etc. at x ≈ 0.5 (see, for example, [11–13]). It was
found that, as a rule, along with the FM phase with
almost regular MnO6 octahedra, the insulating AFMCE

phase arose with charge ordering (CO) of Mn3+ and
Mn4+ ions and with diagonal ordering of 3x2 – r2 and
3z2 – r2 orbitals of Mn3+ ions in the (a, c) plane. The
AFMA structure observed in this work in NTSM and
SSM occurs in manganites in undoped compositions of
the LaMn3+O3 type, in which the 3x2 – r2 and 3z2 – r2

orbitals are ordered in the (a, c) plane in staggered
rows. However, as shown in [14], the AFMA structure
can also arise in the compositions R1 – xAxMnO3 at x =
0.5, for example, for R = Pr and A = Sr, if charge order-
ing is combined with the filling of Mn3+ (x2 – y2) orbit-
als with an eg electron. In both cases, the MnO6 octahe-
dron in the AFMA structure is compressed along the
b axis. It is this situation that is observed in phase P2 of
our samples at low temperature.

As was noted in [1], the specific behavior of the
inverse magnetic susceptibility 1/χ'(T) of NTSM and
SSM compositions at temperatures below 250 K sug-
gest the occurrence of an inhomogeneous magnetic
state in these systems even in the paramagnetic phase.
It is suggested that this inhomogeneity is associated
with strong AFM correlations accompanied by the
JETP LETTERS      Vol. 82      No. 9      2005
occurrence of CO (TCO ≈ 240 K). However, it should be
noted that, in spite of the theoretical prerequisites for
the formation of CO [15], no clear microscopic evi-
dence of its existence in the composition with x ≈ 0.5 in
the presence of the AFMA-type structure has been
found so far (see, for example, [16]). No additional
peaks that can be related to the occurrence of the CO
state are observed in the synchrotron radiation diffrac-
tion spectra measured in this work in sample S1. Thus,
the question of the occurrence of CO in phase P2 of the
NTSM and SSM compositions and the question of the
specific type of orbital ordering requires further inves-
tigations. It should be noted that large fluctuations (σ2 =

〈 〉  – 〈rA〉2) of the radius of the A cation (typical, in
particular, for all R0.5Sr0.5MnO3) can lead to the sup-
pression of the transition to the CO state [17]. In con-
trast, it was reported that TCO is virtually independent of
these fluctuations at small σ2 and/or large 〈rA〉  [18].

The facts listed above fit the scenario proposed in
[12], which suggests that phase separation of the sam-
ple into regions remaining paramagnetic and regions
with strong AFM correlations and tendency for CO
occurs with decreasing temperature even before the
occurrence of long-range magnetic order. With a fur-
ther decrease in temperature, the FM and AFM struc-
tures arise in these two types of regions, respectively.
Only in this variant can the variations of magnetic peak
intensities with decreasing temperature proceed syn-
chronously without redistribution of phase volumes.
The starting structure imperfection of the samples asso-
ciated with local distortions of oxygen octahedra
around Mn atoms occurring in different charge states
and with fluctuations of the radius of the A cation can
be a possible reason for phase separation. These fluctu-
ations in R1 – xCaxMnO3 are significantly larger than in
R1 – xSrxMnO3, because the difference between the radii
of the ions R and Sr is larger than the difference
between the radii of the ions R and Ca. These fluctua-
tions primarily affect the local atomic displacements of
oxygen atoms [19]. In the works based on numerical
Monte Carlo simulations [20], it was shown that the
scatter in the Mn–O–Mn valence angles leads to fluctu-
ations of the hopping integral of the Mn eg electron.
With decreasing temperature, this can induce the occur-
rence of mesoscopic-size clusters of the metallic and
insulating phases. From our diffraction data, it follows
that, at the initial stage of cluster formation, structural
changes become notable first; this occurs for both sam-
ples at approximately 50 K above Tc, and long-range
order appear only when the sizes of the clusters become
sufficiently large. The temperatures of the occurrence
of structural separation in samples S1 and S2 (FM and
AFMA ordering) similarly decreased when y was
increased from 0.228 to 0.456. This also suggests the
same scenario of phase transitions in these compounds.
The cause for the shift in Tc is evidently a change in
〈rA〉 . Actually, according to the phase diagram of com-

rA
2
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positions with x = 0.5 [21], a decrease of 0.01 Å in 〈rA〉
at 〈rA〉  ≈ 1.23 Å leads to a decrease of ≈100 K in TFM.

New data on the coexistence of P1 and P2 phases in
SSM samples with 16O and 18O isotopes allow the
change from the metallic to insulating state upon sub-
stitution of 18O for 16O to be unambiguously interpreted
as a percolation transition due to a sharp (from 65 to
13%) decrease in the volume of the metallic phase P1.
In this regard, the isotopic M–I transitions in SSM and
(La0.25Pr0.75)0.7Ca0.3MnO3 (LPCM) are similar: in both
cases, these transitions can be related to the action of
the polaron mechanism of the narrowing of the conduc-
tion band upon an increase in the oxygen mass [22]. A
certain difference in the dependence of the occurrence
temperatures TC and TN of long-range ferro- and anti-
ferromagnetic orders on 〈rA〉  in SSM and NTSM is pos-
sibly also associated with substantially different values
of 〈rA〉  fluctuations: σ2 ≈ 0.0003 Å2 in LPCM, whereas
σ2 ≈ 0.0080 Å2 in NTSM, that is, almost 27 times larger.

7. CONCLUSIONS

In conclusion, let us formulate the main results.
Neutron diffraction experiments performed on high-
resolution diffractometers showed that, with decreasing
temperature, R0.5Sr0.5MnO3 compositions (R = Sm,
Nd0.772Tb0.228, and Nd0.544Tb0.456) exhibit separation at
the mesoscopic size scale into a phase with metallic
conductivity, almost regular MnO6 octahedra, and an
FM structure and an insulating phase with strongly dis-
torted MnO6 octahedra and an AFMA structure. The
phase volumes remain approximately constant over the
entire region of their coexistence. From the distribution
of Mn–O distances by length, it follows that the AFMA
phase is orbital- and, possibly, charge-ordered, though
we cannot find obvious indications of charge ordering.
The success in the detailed structural analysis of the
coexisting phases was favored by the unusually large
difference in the parameters of their unit cells. The
replacement of 16O by 18O in SSM samples leads to a
decrease in the fraction of the sample volume occupied
by the FM–M phase from ≈65% to ≈13% and, as a con-
sequence, to a percolation transition from the metallic
to insulating state, that is, to the giant isotope effect.

We are grateful to V.G. Simkin for great help in per-
forming neutron experiments on HRFD. This work was
supported by the Russian Foundation for Basic
Research, project nos. 03-02-16954 and 04-02-16991.
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Light scattering by a small protrusion on a metal surface is analyzed within the framework of perturbation the-
ory. Upon normal incidence of a linearly polarized monochromatic wave, slight deviations of the protrusion’s
shape from a circularly symmetric one lead to the formation of optical vortices in the near-field region due to
resonant excitation of circular surface plasmons. This agrees with the results of scanning near-field optical
microscopy experiments revealing distinct spiral patterns in the in-plane near-field intensity distribution for
metallized nanostructured polymer substrates. © 2005 Pleiades Publishing, Inc.

PACS numbers: 74.50.+r, 74.80.Fp
In the past decade, phase singularities of optical
wave fields have attracted considerable interest in both
fundamental and applied aspects. There are numerous
techniques to produce an optical field with a screw dis-
location (optical vortex) [1, 2]. Optical vortices pro-
duced by phase steps—refracting or reflecting surface
structures shaped into one turn of a helicoid—can be
understood in terms of the Berry phase and, in essential
respects, are analogous to the Aharonov–Bohm effect.
Phase singularities can play a significant role in the
interaction of light with solid-state structures being
developed for modern nanophotonic applications.

Introducing scanning near-field optical microscopy
(SNOM) [3] as an experimental method has phase sin-
gularities to be investigated with a subwavelength reso-
lution. Phase singularities of optical fields in waveguide
structures [4] and in the focal region of a lens [5] have
been observed by means of interferometric SNOM.

Recently, distinct spiral patterns in the in-plane
near-field fringes [6] have been detected by SNOM
measurements of the three-dimensional distribution of
the field intensity near nanocylinders irradiated by lin-
early polarized monochromatic light incident normally
to the axes of the nanocylinders. A constant wave laser
beam with a wavelength of 532 nm was additionally
polarized by a Nicole prism with an extinction ratio of
5 × 10–5 at the most. The nanocylinders were manufac-
tured by double replication from a silicon matrix and
placed onto a polymer substrate. Some of the nanocyl-
inders were covered by a gold–palladium layer 20 to
30 nm thick; coverage nonuniformity due to the
shadow effect was prevented by the coating procedure.
According to Fig. 1, unexpected interference patterns
with a spiral symmetry were observed only for metal-

¶ The text was submitted by the authors in English.
0021-3640/05/8209- $26.00 0599
lized samples, whereas, for bare (nonmetallized) ones,
the patterns were circular.

These experimental results can be understood on a
qualitative level by considering a model that admits the
use of a simplified perturbation-theory procedure as
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Fig. 1. (a) Geometric parameters and scanning electronic
microscope image of a polymer nanocylinder; (b) SNOM
image of the near-field intensity distribution near a bare
polymer nanocylinder; and (c) that coated by a 25-nm-thick
gold–palladium layer measured at a height of 20 nm above
the cylinder tops upon normal incidence of linearly polar-
ized light with a wavelength of 532 nm.
© 2005 Pleiades Publishing, Inc.
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compared to those developed in the context of a more
general approach [7, 8]. A linearly polarized plane
wave with frequency ω is incident from vacuum at a
normal to the boundary of a semi-infinite metal occupy-
ing the half-space z < Z(ρ, ϕ), where ρ, ϕ, z are the
cylindrical coordinates and the function Z(ρ, ϕ)
describes a nearly flat surface having a single protru-
sion with height L and radius R:

(1)

where the function f(x) satisfies the conditions

(2)

and the term γg(ϕ) describes deviations of the protru-
sion’s shape from a circularly symmetric one. Taking
these circular-symmetry shape distortions into account
is of primary importance for the model, since another
factor breaking the symmetry between clockwise and
counterclockwise directions—the presence of a circu-
larly polarized component in the incident radiation—is
excluded by the experimental procedure. The surface
defect is assumed to be (i) slightly sloping, (ii) small in
comparison to the wave penetration depth in the metal,
and (iii) having small circular-symmetry distortions,
i.e.,

(3)

with ε being the dielectric constant of the metal. We
suppose that –Reε(ω) @ 1 and simplify the boundary-
value problem of finding the scattered electromagnetic
field outside the metal by the use of the impedance
boundary conditions at z = Z(ρ, ϕ):

(4)

where E and H are the electric and magnetic fields at

frequency ω, respectively, ζ =  is the surface
impedance of the metal, n is the unit vector normal to
the surface and directed inward into the metal, and the
subscript t denotes the value of the tangential vector
component taken at z = Z(ρ, ϕ). In the case of a per-
fectly flat boundary z = 0, the approximate boundary
conditions (4) yield the following relation between the
wavenumber q and frequency Ω of a surface plasmon
wave propagating along the plane z = 0 (the inverse
function determines the dispersion law):

(5)

This result reproduces the exact relation q =

Ω/c  to the second order in ζ inclusive.
It is convenient to represent the total field F at z ≥

Z(ρ, ϕ) as a sum of four terms (here, F stands for either
E or H):

(6)

Z ρ ϕ,( ) Lf ρ/R( ) 1 γg ϕ( )+[ ] ,=

f x 1<( ) 0, f x 1≥( ) 0≡>

L ! R ! 
c

ω ε
--------------, γ ! 1

Et ζ Ht n[ ] ,=

1/ε

q
Ω
c
---- 1 ζ Ω( )2+ , ζ  ! 1.=

1 ζ Ω( )2–

F F0e ikz– Feikz F s( ) ρ ϕ,( )e
κ sz–

F̃ ρ ϕ z, ,( ),+ + +=
where κs = , k = ω/c, qs is the wavevector mod-
ulus of the surface-plasmon wave at frequency ω (i.e.,
qs is the root of the equation Ω(qs) = ω with Ω(q) being
the function inverse to that given by Eq. (5)). The vector
F0 is the field amplitude in the incident wave,  = (ζ –

1)/(1 + ζ)E0,  = –(ζ – 1)/(1 + ζ)H0, F(s) and  are the
functions to be found. The first two terms in Eq. (6) cor-
respond to a superposition of the incident wave and that
reflected from the flat boundary z = 0. The third term in
Eq. (6) stems from resonant excitation of surface plas-
mons. The far-field contribution to the field scattered by

the protrusion is included in the remainder term .

We assume that, at the boundary, the field  is neg-
ligible against the background of the surface-plasmon
term in the following sense:

(7)

It will be shown that the procedure of finding F(s) based
on condition (7) is self-consistent; i.e., it guarantees
their fulfillment. The field F(s)(ρ, ϕ) can be expanded in
a Fourier series:

(8)

Four of the six vector components of En(ρ) and Hn(ρ)
can be explicitly expressed from the Maxwell equations
through the remaining two, Ez, n(ρ) ≡ En(ρ) and
Hz, n(ρ) ≡ Hn(ρ).

At ρ > R, the functions En(ρ) and Hn(ρ) correspond
to the normal field components in a traveling (diverg-
ing) circular surface-plasmon wave with the wavenum-
ber qs. Hence,

(9)

(10)

where (x) is the Hankel function of the first kind
and Cn is a constant. Thus, the problem reduces to find-
ing the functions En(ρ) and Hn(ρ) within the interval
0 ≤ ρ ≤ R. At ρ = R, they should be combined with the
functions given by Eq. (9) to provide continuity of all
field components. The function g(ϕ) in Eq. (1) can be

expanded in a Fourier series: g(ϕ) =  with

g–n = . We approximate the exponential factors in
Eq. (6) at z = Z(ρ, ϕ) by the two lowest order terms in
their Taylor series expansions at z = 0, e±ikZ(ρ, ϕ) ≈
1 ± ikZ(ρ, ϕ), and limit ourselves to the first order in the
small parameter kL. In this way, the boundary condi-
tions (4) are mapped onto the plane z = 0. To within the
chosen accuracy, we find that En ≠ ±1 = Hn ≠ ±1 ≡ 0; mean-

qs
2 k2–

E

H F̃

F̃

F̃

F̃ z Z ρ ϕ,( )=  ! F s( ) , ∂F̃
∂z
------

z Z ρ ϕ,( )=

 ! κ s F s( ) .

F s( ) ρ ϕ,( ) Fn ρ( )einϕ .
n

∑=

En ρ R>( ) CnH n
1( ) qsρ( ),=

Hn ρ R>( ) 0,≡

H n
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gneinϕ
n 0≠∑

gn*
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while, En = ±1 and Hn = ±1 satisfy the following set of
equations (where the prime denotes the first derivative
of a function and ξ ≡ ρ/R):

(11)

(12)

with γ1 =  = γg2, α(ξ) = kLf(ξ), and s(ξ) = k2RL(1 –
ζ)E0ξf(ξ). The main feature of this equation set is
breaking of symmetry between the terms with n = 1 and
those with n = –1. Analysis of the relative magnitude of
the coefficients in Eqs. (11) and (12) shows that |En(ρ <
R)| @ |Hn(ρ < R)|. Taking this into account, we neglect
Hn(ρ < R) to provide continuity of the field components
at ρ = R. At ξ  0, it follows from Eqs. (11) and (12)
that En(ξ) ∝  ξ. At ξ ≈ 1 and f(ξ) = 1 – ξ, Eqs. (11) and
(12) yield the following approximate expressions for
E±1:

(13)

where η ≡ 1 – ξ ! 1 and the constants A±1 and B±1 are
to be found simultaneously with C±1 entering into
Eq. (9). We extrapolate the expressions given by
Eq. (13) to the whole interval 0 ≤ ξ ≤ 1 with the extra
boundary condition E±1(ξ = 0) = 0. The latter, together
with the sewing conditions at ξ = 1, provides equations
for determining the constants A±1, B±1, and C±1. As a
result, we obtain

(14)

(15)

(16)

where

Finally, we should check that the obtained solutions
are consistent with the initial assumptions given by ine-

qualities (7). Since the sum (ρ, ϕ)  + (ρ, ϕ,
z) from Eq. (6) satisfies the three-dimensional Helm-
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holtz equation with the wavevector modulus ω/c, the

function (ρ, ϕ, z), to within the chosen accuracy, has
the integral form

(17)

where

and (r) = (ρ, ϕ) . From Eq. (17), the fol-
lowing estimates can be obtained:

(18)

(19)

which leads to inequalities (7).
Analyzing the spatial behavior of the nonvanishing

time-averaged characteristics of the scattered field, we
conclude that, for the found solution, a first-order vor-
tex occurs in the in-plane distribution of the tangential
component of the time-averaged Poynting vector S =

 taken at the metal boundary z = Z(ρ, ϕ).

The projection of S onto the plane z = 0 describes the
energy flow in the traveling surface-plasmon wave res-
onantly excited by the incident light due to the presence
of the surface defect. This component exponentially
decays as |z| grows, and it is absent in the absence of the
surface plasmon, e.g., for a dielectric substrate with
Reε > 0. For our model, we obtain

(20)

(21)

where the x axis is chosen to be parallel to the electric
field E0 in the incident plane wave. Figure 2 shows the
first-order vortex occurring in the in-plane spatial

dependence of (ρ, ϕ, z = Z(ρ, ϕ)) at γ ≠ 0, i.e., when
the defect shape deviates from circular symmetry.

To summarize, the scattering of linearly polarized
monochromatic light by an individual subwavelength
protrusion in a thin metal film has been studied within

Ẽz
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the framework of perturbation theory. It is shown that,
even at normal incidence, small deviations from circu-
lar symmetry of the protrusion shape can result in opti-
cal vortex formation in the near-field region if resonant
circular surface-plasmon waves are excited. This coin-
cides with the fact that the in-plane near-field intensity

1050 qsr

10

0

–10

arb. units

Fig. 2. Density plot of the tangential Poynting vector com-

ponent  at the metal surface as a function of the dimen-

sionless radius qsρ and polar angle ϕ(γ = 0.5, g2 = i).

Sx
s( )
distribution measured by scanning near-field optical
microscopy has distinct spiral patterns for metallized
nanostructured polymer substrates contrary to the cir-
cular patterns observed for unmetallized substrates
where surface-plasmon waves are lacking.
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The effect of high pressure up to 70 GPa on the optical absorption spectra in yttrium iron garnet Y3Fe5O12 single
crystals was studied in diamond anvil cells. In the pressure range 40–50 GPa, an electronic transition with a
drastic narrowing in the optical gap from ~2.3 eV to nearly zero was observed, implying possible metallization.
The final narrowing of the optical gap to zero is extrapolated at about 55 GPa. It is shown that the phase tran-
sition in yttrium iron garnet observed at 40–55 GPa is possibly a transition of the insulator–metal type. At
decompression, the backtransition to the insulating state is not completely reversible. The final spectrum at
ambient pressure is substantially different from the initial one and corresponds to an optical gap of about 1.8 eV,
while, in the initial state, the gap value is ~2.6 eV. © 2005 Pleiades Publishing, Inc.

PACS numbers: 64.60.–i, 71.30.+h, 78.20.–e, 81.40.Tv
INTRODUCTION

Yttrium iron garnet Y3Fe5O12 (YIG) belongs to a
well-known class of rare-earth iron garnets which are
ferrimagnets with a dominant antiferromagnetic inter-
action [1–3]. It has a cubic structure with space group

–Ia3d, and the unit cell parameter is a0 = 12.3738 Å
[4]. Iron ions Fe3+ occupy two different sites, with octa-
hedral and tetrahedral oxygen environments in the ratio
2 : 3 per formula unit, and thus build two magnetic iron
sublattices with opposite directions of magnetization.
Two Fe3+ ions from the octahedral sublattice partially
compensate magnetization of three Fe3+ ions from tet-
rahedral sublattice giving 5µB of final magnetization
per formula unit [1]. At ambient pressure, the Neel tem-
perature of YIG is about 555 K.

YIG is a charge-transfer insulator with optical gap
of about ~2.6 eV [5]. There are several d–d optical tran-
sitions in the region of transparency [5, 6]. The nature
of the absorption edge is charge-transfer transitions
between electronic shells of Fe3+ ions and ligands O2–

[5]. It was also shown in [6] that the valence of iron ions
can be altered by heat treatment in oxidizing or reduc-
ing atmospheres or by doping with divalent or tetrava-
lent ions, which leads to an increase in optical absorp-
tion and electrical conductivity.

In the present study, external high pressures created
in diamond anvil cells were applied to the Y3Fe5O12 sin-

¶ The text was submitted by the authors in English.
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gle crystal to modify its electronic properties. Measure-
ments of optical absorption were used to investigate the
parameters of the electronic system.

EXPERIMENTAL

A high-quality Y3Fe5O12 single-crystal film with
thickness ~7.5 µm was grown on the Gd3Ga5O12 garnet
substrate with the (111) direction perpendicular to the
substrate and was then cleaved from the substrate. In an
optical microscope, the crystal plate of YIG was trans-
parent and had a deep red-brown color. A YIG plate
with the dimensions ~60 × 40 µm2 was placed in a high-
pressure cell with diamond anvils. The diameter of the
working surface of diamonds in the cell was about
390 µm, and the diameter of the hole in the rhenium
gasket where the sample was placed was about 120 µm.
Silicon-organic liquid PES-5 was used as a pressure
medium. The pressure was determined by the standard
ruby fluorescence technique. Several ruby chips with
dimensions 1–5 µm were placed in the cell at different
distances from the center of the hole in order to evaluate
the pressure distribution.

The optical absorption in the near- and middle-IR
region was measured with the help of a Magna-IR750
Fourier spectrometer made by the Nicolet Company,
with the spectral resolution 32 cm–1. A liquid-nitrogen-
cooled mercury cadmium telluride (MCT) detector was
used. Measurements in the visible and near-UV regions
were made with an optical system equipped with a
© 2005 Pleiades Publishing, Inc.



 

604

        

GAVRILIUK 

 

et al

 

.

                                                                                                    
Fig. 1. Evolution of optical absorption spectra in the
Y3Fe5O12 single crystal with pressure increase and at
decompression. The spectra are recorded at room tempera-
ture.
SpectraPro-500i grating monochromator using a spec-
tral resolution of about 40 cm–1. An Andor charge-cou-
pled device (CCD) detector with the Peltier cooling
system was used. The experimental setup used mirror
optics to focus the light beam on the sample and also to
focus the transmitted radiation onto the entrance slit of
an optical monochromator. The diameter of the light
spot on the sample surface was about 40 µm. To elimi-
nate possible stray signals, confocal pinholes were
used; we measured the reference signal I0 outside the
sample through the pressure medium and then the sig-
nal I transmitted through the sample. The absorption
spectrum was calculated by the standard method from
the formula I = I0exp(–αd), where d is the sample
thickness and α is the optical absorption coefficient.

RESULTS AND DISCUSSION

The room-temperature evolution of optical absorp-
tion spectra in Y3Fe5O12 single crystal with increasing
pressure and under decompression is shown in Fig. 1.
The spectra exhibit rather wide absorption bands, cor-
responding to the d–d optical transitions of the Fe3+ ion
in the ligand crystal field. At ambient pressure before
compression, the shape of the spectrum coincides with
those obtained previously in [5, 6].

The sample remains transparent down to ~940 cm–1

(~0.11 eV). Below this energy, a strong lattice absorp-
tion was observed due to vibrations of the ions in the
unit cell of the crystal [6]. The high-energy absorption
edge is due to electronic transitions. At ambient pres-
sure, below the absorption edge which occurs at
~2.6 eV, several broad absorption peaks are observed
with maxima at ~2.0 and ~1.40 eV [6]. Two broad
bands at ~1.4 and ~2 eV are formed by several d–d tran-
sitions of Fe3+ ion in octahedral and tetrahedral ligand
crystal fields [5, 6]. The band at ~1.4 eV corresponds to
the 6A1g  4T1g transition of Fe3+ ion in octahedral
sites. The second band at ~2 eV corresponds to the
6A1  4T1 transition of Fe3+ ion in tetrahedral sites.
We denote the absorption band at ~1.4 eV as the A band
and that at ~2 eV as the B band.

We found that, during compression, the energies of
d–d transitions and the absorption edge linearly
decrease (Fig. 2), and their pressure slopes are –7.81 ±
0.43, –1.66 ± 0.22, and –8.2 ± 1.3 meV/GPa for the A
and B bands and for the absorption edge, respectively.
The parameters of pressure dependences for the edge
and absorption bands in YIG are presented in the table.
For comparison, the analogous parameters of the
NdFeO3 orthoferrite, where iron ions are located only
in the octahedral sites, are also given in the table from
our recent study [7]. The comparison shows that the
dE/dP values for octahedral sites in YIG and orthofer-
rite are close (in the limit of 30%), while, for tetrahedral
sites of YIG, the dE/dP value is much lower.
JETP LETTERS      Vol. 82      No. 9      2005
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In the pressure range from 40 to 50 GPa, the absorp-
tion edge of YIG exhibits a rapid decrease from ~2.3 to
~0.05 eV, which testifies to an electronic transition with
possible metallization. The final drop of the optical gap
to zero is extrapolated to be at about 55 GPa, indicating
a possible complete transition to a metal state. We eval-
uated the zero value of the optical gap from linear
extrapolation of the absorption spectrum to zero inten-
sity. At pressures higher than 55 GPa, this extrapolation
gave negative values of the optical gap, and, therefore,
we can conclude that, above 55 GPa, the complete met-
allization of YIG is possible.

The Fe3+ ion in the octahedral and tetrahedral sites
does not exhibit any remarkable absorption in the visi-
ble range. Therefore, the strong absorption in oxides is
attributed to the charge transfer dn  dn + 1L, where
n = 5 and L is a hole in the oxygen p band [8, 9]. From
the theoretical point of view, Y3Fe5O12 is a strongly cor-
related electronic system in which, according to the
Mott–Hubbard model, the gap ∆ formed in the excita-
tion spectrum due to the O2–  Fe3+ charge transfer is
smaller than the Coulomb interaction energy U [10].
For example, for octahedral clusters in the orthoferrite
LaFeO3, the parameters of the model determined from
the X-ray and UV photoemission data are ∆ = (2.4 ±
0.7) eV and U = (7.4 ± 0.7) eV [11].

It was demonstrated in [6] that the main contribution
to the intensity of the A band comes from the transition
6A1g  4T1g of Fe3+ ion in octahedral sites, while the
main contribution to the intensity of the B band is due
to the 6A1  4T1 transition of Fe3+ ion in tetrahedral
sites. In Fig. 3, the Tanabe–Sugano diagrams showing
the dependence of energy terms on the crystal field are
shown for Fe3+ ions in octahedral and tetrahedral sites.
Figure 4 shows assignments of the absorption bands
positions in YIG in comparison with those in the rare-
JETP LETTERS      Vol. 82      No. 9      2005
earth orthoferrites (REO) and with calculations from
[6]. Our comparison of the pressure behaviors of d–d
transitions energy in REO and YIG (see table and
Figs. 3, 4) supports the conclusions made in [6] that the
A band is due to the transition in octahedral sites while
the B band is due to the transition in tetrahedral sites.

Fig. 2. Pressure (P) dependence of the optical absorption
edge and energies of d–d transitions 6A1  4T2 and
6A1  4E, 4A for the pressure increase regime. Solid
lines for d–d transitions are linear fits.

B-band

1g 1g
The room-temperature parameters of the optical absorption bands in the NdFeO3 and Y3Fe5O12 single crystals at ambient pres-
sure and their pressure slopes

NdFeO3 [7]

Transition Energy at ambient
pressure, eV

Pressure coefficient dE/dP,
meV/GPa

Edge (charge transfer) 2.42 ± 0.03 –6.94 ± 1.62
6A1g  4E1g, 4A1g (oct) 2.29 ± 0.02 –16.5 ± 0.7
6A1g  4T2g (oct) 1.73 ± 0.02 –9.5 ± 0.7
6A1g  4T1g (oct) 1.23 ± 0.01 –10.69 ± 0.4

Y3Fe5O12

Edge (charge transfer) 2.60 ± 0.03 (this study) –8.23 ± 1.30 (this study)
6A1  4T1 (tet) 2.033 [6]

2.066 ± 0.006 (this study) –1.66 ± 0.22 (this study)
6A1g  4T1g (oct) 1.40 [6]

1.40 ± 0.01 (this study) –7.81 ± 0.43 (this study)
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Fig. 3. The Tanabe–Sugano diagram (from [6]) for tetrahedral (left) and octahedral (right) environments of Fe3+ ion. B and C are
the Racah parameters.
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Using our experimental values for pressure slopes of
the A and B band energies and the Tanabe–Sugano dia-
gram from [6], we can evaluate the pressure slopes of

Fig. 4. Assignments of the absorption bands positions in
Y3Fe5O12 in comparison with rare-earth orthoferrites
RFeO3 (REO) and with calculations from [6]. B and C are
the Racah parameters.
crystal-field parameter for octahedral and tetrahedral
sites using a simple equation:

(1)

Here, 10Dq is the energy splitting of the term (d1)2D in
a crystal field and E is the energies of consequent terms
in the Tanabe–Sugano diagram.

The value of ∂E/∂(Dq) can be calculated from the
Tanabe–Sugano diagram taking the Racah parameters
B and C to be independent of pressure. We found that
these derivatives are equal to –9.2 for octahedral sites
and –10.4 for tetrahedral sites of YIG. Using these val-
ues and our experimental data for ∂E/∂P (table), we
have finally

(2)

A very interesting effect was observed at the pres-
sure decrease. We found that the observed electronic
transition in YIG is irreversible. Figure 5 shows the
pressure dependence of the optical absorption edge
both for a pressure increase and decompression. It is
obvious that there is a huge hysteresis and irreversibil-
ity in the behavior of the optical gap. After decompres-
sion from the high-pressure state to ambient pressure,

d Dq( )
dP

--------------
1

∂E/∂ Dq( )
-------------------------∂E

∂P
------.=

∂ Dq( )oct

∂P
--------------------  . +0.85 meV GPa 1– ,

∂ Dq( )tet

∂P
--------------------  . +0.16 meV GPa 1– .
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the optical gap is equal to ~1.8 eV, while its initial value
is ~2.6 eV. Moreover, the shape of the spectrum is dras-
tically changed from the initial one. After decompres-
sion, no absorption bands of the d–d transitions were
observed. The spectral shape becomes very broad and
has a tail with exponential decay. A very similar behav-
ior was observed for the amorphous YIG synthesized in
[12].

Figure 6 shows the optical spectrum of our YIG after
decompression to ambient pressure in comparison with
the spectra from the amorphous YIG synthesized and

Fig. 5. Pressure dependence of the optical absorption edge
in Y3Fe5O12 for the pressure increase (black squares and
diamonds) and pressure decrease (open diamonds and
squares) regimes. The two sets of symbols correspond to
two sets of independent measurements. The solid line is a
guide for the eye.

Fig. 6. Optical absorption spectrum of Y3Fe5O12 after
decompression to ambient pressure in comparison with that
from the amorphous YIG synthesized and investigated by
Georgy et al. [12]. The absorption intensity (Y coordinate)
of the spectra is given on the logarithmic scale.
JETP LETTERS      Vol. 82      No. 9      2005
investigated by Georgy et al. [12]. The absorption
intensity (Y coordinate) of the spectra is represented on
the logarithmic scale. It is obvious that, after decom-
pression, the shape of the absorption edge is close to the
exponential function I ∝  exp(E/E0) with parameter Γ =
1/E0 ~ 3.3 eV–1. According to the empirical relation for
exponential Urbach-type absorption edges [13], this
shape could correspond to an amorphous state. For dif-
ferent samples of amorphous YIG [12], the parameter
Γ = 1/E0 is close to the same value (~3 eV–1). Thus, we
can suggest that, at the high-pressure transition in our
YIG, the crystal transforms irreversibly into an amor-
phouslike state.

The most important effect is the drastic decrease in
the optical gap in the pressure range of 40–50 GPa. The
decrease is not abrupt, which implies the existence of
some transient regime in this range of pressure when
electronic correlations are suppressed and 3d electrons
of Fe3+ ions are delocalized. This effect occurs due to
the transition of the YIG crystal to a new, most probably
metallic state. Thus, in the critical region of pressures,
the YIG crystal transforms from the antiferromagnetic
insulating state to most probably a paramagnetic metal-
lic state. This transition is irreversible and accompanied
by possible crystal amorphization. Simultaneously,
with metallization, the transition of the iron ions from
the high-spin to the low-spin state is possible, analo-
gously to the phenomenon that was recently observed
in several complex iron oxides in a pressure range of
30–50 GPa [7, 14–16]. But this hypothesis needs addi-
tional experimental investigation.

Additional information about the crystal structure
before and after transition, as well as about ion spin
states and magnetic properties, can be obtained from
high-pressure X-ray diffraction, Mössbauer absorption,
nuclear forward scattering (NFS), and high-resolution
X-ray emission spectroscopy (XES) techniques. These
types of experiments are planned for the near future.

This work is supported by the US Department of
Energy (grant no. DE-FG02-02ER45955), the Russian
Foundation for Basic Research (project nos. 04-02-
16945a and 05-02-16142a), and by the Physical Divi-
sion of the Russian Academy of Sciences (project
“Strongly Correlated Electronic Systems”).
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Magnetic properties of the Jahn–Teller crystal TbVO4 are studied in pulse magnetic fields up to 50 T. The
destruction of quadrupole ordering accompanied by an increase in crystal symmetry from orthorhombic to tet-
ragonal has been revealed at Hc = 32 T. An adequate description based on the interaction parameters determined
previously is proposed for magnetic anomalies and critical parameters of the induced phase transition. It is
noted that the Jahn–Teller crystal TbVO4 may be of interest for investigations using synchrotron radiation in a
pulsed magnetic field. © 2005 Pleiades Publishing, Inc.

PACS numbers: 71.70.–d, 75.30.–m, 75.40.Cx
It is known that a magnetic field strongly affects the
phase states and magnetic properties of Jahn–Teller
compounds. Both suppression and enhancement of the
Jahn–Teller (quadrupole) order parameter can be
expected, depending on the magnetic field orientation.
The suppression of quadrupole ordering for a magnetic
field orientation differing from the direction of the
Jahn–Teller distortion occurs as a rule in rather strong
magnetic fields and, therefore, is little investigated.
Experimental studies for the zircon structure were per-
formed on TmVO4, which has the lowest critical tem-
perature Tc = 2.15 K and critical field µ0Hc ≈ 0.6 T [1].
Considerable progress in the technique of pulsed mag-
netic field generation has allowed similar experiments
to be performed with other Jahn–Teller magnets, and
widening the range of properties and effects available
for investigations under these conditions, for example,
combining the technique of pulsed magnetic fields and
synchrotron radiation, makes them more informative.
Detailed studies of the suppression of quadrupole and
magnetic orderings in a pulsed magnetic field for
another zircon DyVO4 [2] showed that a refined com-
pressible model must be used to describe the behavior
of this compound. This work is devoted to an experi-
mental and theoretical investigation of the effect of a
strong magnetic field up to 50 T on the quadrupole
ordering in the classical Jahn–Teller magnet TbVO4, for
which the effective field model in principle works well.

According to the studies of thermodynamic [3] and
spectroscopic [4] characteristics, terbium vanadate
undergoes a structural phase transition at TQ = 33 K,

which gives rise to a distortion of the tetragonal 
zircon crystal structure along the [110] axis to the

orthorhombic  structure. The transition is a cooper-
ative Jahn–Teller effect accompanied by the ordering of

D4h
19

D2h
24
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quadrupole moments of Tb3+ ions due to their specific
electronic structure. At TN = 0.6 K, TbVO4 becomes an
antiferromagnet with the magnetic moments of Tb3+

ions oriented along the [110] axis [5]. The Jahn–Teller
transition in this compound has been studied in detail
by various methods, but studies in strong magnetic
fields are unavailable.

Measurements of the differential magnetic suscepti-
bility dM/dH(H) of the TbVO4 crystal in the tempera-
ture range 1.4–35 K for the H || [001] magnetic field ori-
entation were performed by the induction method using
the facilities of the Laboratoire National des Champs
Magnetiques Pulses (National Laboratory of Pulsed
Magnetic Fields) (Toulouse, France). The field was
generated by a discharge of a capacity bank into a cop-
per coil. The maximum field of 50 T was reached in
20 ms, and the downsweep time was ~100 ms. The
pulse durations in our experiments were such that the
magnetization regimes can be considered as being close
to adiabatic for upsweep and intermediate for down-
sweep. This requires that the magnetocaloric effect
(MCE) be taken into account in the analysis of experi-
mental data. The misorientation of the field with respect
to the [001] axis under the experimental conditions was
equal for all temperatures and did not exceed 1°–1.5°.
Measurements of TbVO4 crystal magnetization curves
in steady magnetic fields up to 8 T along the symmetric
[100], [110], and [001] directions in the temperature
range 1.5–300 K were used to determine the initial
magnetic susceptibility necessary for crystal-field (CF)
analysis.

Experimental temperature dependences of the mag-
netic susceptibility along the tetragonal [001] axis and
the [110] direction of Jahn–Teller distortion (Fig. 1)
reveal distinct anomalies at TQ = 33 K due to a change
in the electronic structure of the Tb3+ ion upon the qua-
© 2005 Pleiades Publishing, Inc.
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Fig. 1. Temperature dependences of the inverse magnetic
susceptibility of a TbVO4 crystal along the [100], [110], and
[001] axes. Lines show dependences calculated (thin lines
at T < TQ and dashed lines) without and (solid lines) with

the inclusion of the quadrupole constant Gδ = 130 mK for
two sets of the crystal-field parameters (solid lines for set 2
from [10] and dashed lines for the set of crystal-field param-
eters for HoVO4).

Fig. 2. Experimental curves of the differential magnetic sus-
ceptibility dM/dH(H) of a TbVO4 crystal for various tem-
peratures for the (closed points) upsweep and (open points)
downsweep of the field. The curves are shifted along the
vertical axis by the indicated value.

Hc
drupole transition. For the field along the [001] and
[100] axes, the domain state of the sample in the qua-
drupole-ordered phase has no effect on the value and
character of the anomalies because the two types of the
domains with the [110] and [1–10] deformation axes
make the same contribution. In contrast, the anomaly
along the [110] axis becomes more pronounced with
increasing field and sample monodomainization (the
inset in Fig. 1). Thus, the magnetic susceptibility is sen-
sitive to a change in the electronic structure of the Tb3+

ion upon the initiation or suppression of quadrupole
ordering, and this transition can be investigated by
magnetic anomalies, in particular, by measuring the
dM/dH(H) curves in pulsed magnetic fields.

Experimental dM/dH(H) curves for the TbVO4 crys-
tal at H || [001] are shown in Fig. 2 for various temper-
atures T < TQ. The jump in dM/dH(H) curves, which is
somewhat smeared evidently because of a small misori-
entation of the field with respect to the [001] axis, is
typical of second-order phase transitions; the value of
the critical field at the starting temperature Tst = 4.2 K
is Hc = 32 T. The critical field and the anomaly value
weakly vary at Tst below ~ 10 K and start to rapidly
decrease and smear above this temperature. The value
of Hc for the increasing field is smaller than for the
decreasing field, which, in our opinion, can be associ-
ated with the heating of the sample due to MCE for a
shorter increasing field pulse.

To calculate the effect of a strong magnetic field on
the phase states and magnetic properties of TbVO4, a
Hamiltonian H was used that contained the CF Hamil-
tonian HCF, the Zeeman term HZ, and the Hamiltonian
of bilinear HB and quadrupole HQT interactions written

in the formalism of equivalent operators 

(1)

(2)

(3)

(4)

In these equations,  are crystal-field parameters; αJ,
βJ, and γJ are Stevens coefficients; gJ and µB are the
Lande factor and the Bohr magneton; and J is the angu-
lar momentum operator of the rare-earth ion. The value
of the quadrupole constant of the δ symmetry Gδ =
130 mK was determined from the temperature of the
spontaneous quadrupole transition TQ, and the totally
symmetric constant Gα = 4.5 mK was determined from
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magnetostriction data for the related TbPO4 compound.
The bilinear interaction parameter θz ≈ –2 K in TbVO4
was estimated from the magnetic ordering temperature
of the neighboring DyVO4 compound. The calculations
are more conveniently performed in the coordinate sys-
tem rotated through an angle of 45° about the z axis,
which corresponds to the transformation of parameters

,   – , –  and 〈Pxy〉   . In this

case, the quadrupole term Gδ〈Pxy〉Pxy can be presented

in the form of the ortorhombic component  in

the CF Hamiltonian in which the parameter  =

−1/4Gδ /αJ depends on temperature and magnetic
field because of the dependence of the quadrupole

moment .

The problem of CF in TbVO4 remains open to the
present date, because there is no sufficient spectro-
scopic data for the Tb3+ ion in the tetragonal phase.
According to the optical absorption spectra [5, 6] and
studies of Raman scattering [7, 8] and electron reso-
nance [9], the lower part of the ground multiplet of the
Tb3+ ion split in the CF has a singlet–doublet–singlet
scheme and the next doublet arranged at ~90 cm–1.
Three sets of CF parameters were obtained in [10] to
describe this spectrum and the magnetization curves in
the region of helium temperatures from [11]. We ana-
lyzed all the sets of CF parameters available for TbVO4
and the neighboring HoVO4 compound [12] for the pur-
pose of their applicability to the description of our
experiment. The CF parameters determined for HoVO4
based on experimental data on magnetic susceptibility,
g-tensor components, and spectroscopic information
are considered to be reliably established. It turned out

that set 2 from [10] (  = –92,  = 45,  = –46,

 = 652,  = −71 cm–1) is best to describe the mag-
netic susceptibility of TbVO4 in the tetragonal phase.
This set is used in the subsequent calculations (see Fig. 1).
With this set, the singlet–doublet and doublet–second
singlet gaps in the tetragonal phase are ~12 cm–1 and
14 cm–1, which is close to experimental data. Sets 1 and
3 from [10] somewhat worse describe the data, and the
set for HoVO4 and the set from [11] rather poorly
describe the data. Note that the susceptibility along the
easy [100] axis virtually coincides for all the sets listed
above and is little sensitive to the electronic structure
and CF parameters. Calculations with set 2 and the
above interaction parameters provide a reasonable
description of anomalies due to the quadrupole transi-

tion in the (T) curves (see Fig. 1).

According to the calculations, the magnetic field
H || [001] at T < TQ destroys the quadrupole ordering
and converts the crystal from the orthorhombic to tet-
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ragonal phase, which corresponds to a sharp jump in
the dM/dH(H) curve in the field µ0Hc ≈ 30 T. Calcula-
tions performed without fitting parameters demonstrate
a reasonable agreement of experimental and calculated
curves shown in Fig. 3 (scales in the figure are selected
in such a way that the experimental and theoretical sus-
ceptibility curves coincide in weak fields). When the
experimental and calculated curves are compared, it is
necessary to take into account the change in the sample
temperature caused by the MCE. According to the cal-
culations, the magnitude and sign of the MCE strongly
depend on the field orientation: for the field strictly
aligned with the [001] axis at Tst = 4.2 K, the crystal
cools down upon magnetization up to the critical field,
whereas a small misorientation by ~2° from the axis
leads to monotonic heating of the sample by ~ 6 K. The
jump width in the dM/dH(H) curves suggests that the
misorientation of the crystal in our experiment was ~1°,
which must lead at Tst = 4.2 K to heating of the sample
due to the MCE in the region of Hc by ~3–5 K. This is
also confirmed by the fact that the anomaly in the
dM/dH(H) curves is no longer observed at Tst above
25 K. The heating of the sample upon magnetization

Fig. 3. Experimental (Tst = 4.2 K; closed points correspond
to the upsweep of the field, open points correspond to the
downsweep of the field) and calculated isothermal curves
(lines T0 = 7 K) of the differential magnetic susceptibility
dM/dH(H) of a TbVO4 crystal for H || [001]. Theoretical
dependences were calculated using the parameter of qua-
drupole interactions Gδ = 130 mK for two sets of the crys-
tal-field parameters and various angles of field misorienta-
tion from the [001] axis (set 2 from [10]): ∆θ = (1) 0 and (1')
1°; curve 2 is obtained for the set of parameters 2a. The inset
shows the field dependence of the ortorhombic distortion
εδ = (a' – b')/a' for two angles of field misorientation from
the [001] axis: ∆θ = (1) 0 and (1') 1°.
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explains the mutual arrangement of the downsweep and
upsweep dM/dH(H) susceptibility curves and allows
the observed hysteresis to be assigned mainly to the
MCE.

Qualitative agreement between the experimental (at
Tst = 4.2 K) and calculated (isothermal at T0 = 7 K with
regard to heating by ~3 K) dM/dH(H) curves in the
region of the critical field in Fig. 3 serves as a verifica-
tion of the CF used. For a field strictly aligned with the
[001] axis, the destruction of quadrupole ordering pro-
ceeds as a second-order phase transition, while misori-
entation generating a field component along the [110]
axis leads to smearing of the phase transition (compare
curves 1 and 1'). Though the anomaly in the calculated
curves is sharper, a better agreement with the experi-
ment can be reached by slightly varying the CF param-
eters within the limits of ±20%. However, in our opin-
ion, it makes sense to refine the CF and electronic struc-
ture of the Tb3+ ion simultaneously with regard for the
contribution of weaker interactions, such as bilinear
and totally symmetric quadrupole interactions. Taking
into account negative bilinear interactions with the con-
stant θz = –2 K leads to a decrease in the critical field by
~0.5 T and a small (within 10%) decrease in the anom-
aly. The effect of the quadrupole constant Gα = 4.5 mK
is opposite in sign and considerably stronger, so that the
critical field decreases by ~4 T.

It is interesting to note that, for parameter set 2 in the
absence of quadrupole ordering in the tetragonal phase,
energy level crossing accompanied by a differential
susceptibility peak would take place for the Tb3+ ions at
Hc1 = 27 T. In the tetragonal phase, this peak is super-
imposed on the anomaly due to the phase transition,
which increases its magnitude at the critical field Hc.
The critical field Hc1 can be increased to ~32 T by small

variations of the CF parameters (∆  = 9 cm–1, ∆  =
9 cm–1, set 2a), and, in this way, the anomaly at Hc can
be decreased and made closer to the experimental one
(curve 2 in Fig. 3).

Thus, studies of the Jahn–Teller TbVO4 magnet in a
strong field up to 50 T revealed that the H || [001] field
destroys quadrupole ordering and increases the crystal
symmetry from ortorhombic to tetragonal. This transi-
tion is accompanied by significant anomalies of the
magnetic properties, namely, a kink in the magnetiza-
tion curve and a jump in the field dependence of the dif-
ferential magnetic susceptibility. These anomalies were
observed experimentally in this work. Our studies
showed that the suppression of quadrupole ordering in
TbVO4, as well as the spontaneous quadrupole transi-
tion, is well described within the molecular field model.
This distinguishes Tb vanadate from another Jahn–
Teller magnet, DyVO4, in the case of which a refined

B4
0 B6

0

compressible model has to be used to describe induced
and spontaneous transitions. This model takes into
account an increase in pair interactions with increasing
order parameter.

The order parameter of this induced transition is the
quadrupole moment Qxy = 〈Pxy〉 . This moment is associ-
ated with a large magnetoelastic distortion εδ =

BδQxy/ , which vanishes at the critical field Hc (inset
in Fig. 3). The ortorhombic distortion in terbium vana-
date reaches record values: εδ = (a' – b')/a' = 2.3 × 10–2

for quadrupole transitions. This makes it possible to
directly observe the structural phase transition induced
by a strong magnetic field. At present, interest in vari-
ous methods of investigations with the use of synchro-
tron radiation is increasing. Considerable progress has
been reached in expanding the capabilities of these
methods, in particular, in combining them with the
technique of pulsed magnetic fields. Information
obtained in this work on the induced phase transition in
TbVO4 allows it to be considered as a suitable model
object of investigations using synchrotron radiation.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 03-02-
16809.
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The first-order phase transition observed in half (~50%) of bound water in rat-tail tendon collagen has been
studied by a calorimetric technique. The latent heat of transition, the transition temperature, and the specific
heat of a high-temperature phase of this subsystem is found to be close to the characteristics of free water. The
properties of the other half (~50%) of bound water in collagen are similar to the properties of zeolite water.
© 2005 Pleiades Publishing, Inc.

PACS numbers: 87.15.By, 87.19.Pp
The fibrillar protein collagen accounts for about a
third of total polypeptides in animal and human bodies
[1]. The collagen contents of tendon, skin, and bone tis-
sue are as high as 94, 75, and about 50%, respectively.
One of the fundamental properties of collagen is that it
contains a large amount of water, which accounts for
about 66% of mass in a native (unaffected) state. It was
found that water plays an important role in the self-
assembling mechanism of collagen molecules and fibril
formation in the cytoplasm of collagenocytes, as well
as in the mechanisms of biochemical activity and func-
tion of collagen in the extracellular space of a living
organism [1]. However, the fundamental nature of the
hydrate structure of collagen remains unknown.

Collagen is characterized by high degrees of molec-
ular ordering and crystallinity. According to x-ray dif-
fraction data obtained using a synchrotron radiation
beam [2, 3], the idealized structure of collagen belongs
to space group P1 (triclinic) with the lattice parameters
a = 39.97, b = 26.95, and c = 677.9 Å; α = 89.24°; β =
94.59°; and γ = 105.58°. Rodlike macromolecules as
triple helixes of three nonidentical chains of ~1040
amino acid residues each are the main structural units
of collagen. The molecular weight of such a macromol-
ecule (so-called tropocollagen) is ~300000, and its
length and diameter are ~2800 and ~14 Å, respectively.
In the crystal structure of collagen, the macromolecules
are stacked parallel to the c axis of the structure; the ab
projection of a unit cell contains five sections of the
macromolecules (Fig. 1, on the left), and H2O mole-
0021-3640/05/8209- $26.00 0613
cules are arranged in a close space between the side
groups of macromolecules.

Another structural type of H2O localization in col-
lagen belongs to a freer space between the C- and
N-terminal groups of macromolecules. It is of impor-
tance that, in the longitudinal direction (c), macromol-
ecules following each other do not contact through their
C- and N-terminal groups, and the gaps are approxi-
mately equal to 350–370 Å. The distribution of such
“vacancies” in the structure of collagen is strictly
ordered both in AB planes, where A = 5a and B = 5b
(Fig. 1, on the right), and along the direction of the c
axis. This manifests itself as a characteristic transverse
banding of collagen with the period c0 = 640–700 Å;
this banding is visible in electron micrographs (Fig. 2
[4–6]). The supramolecular structure that manifests
itself as such a transverse banding of fibers is a charac-
teristic property of all of the known (no less than 19
types [1]) proteins from the collagen group, which are
different in primary-structure peculiarities. The pres-
ence of nanotanks ~30–35 Å in section and 350–370 Å
in length in the collagen structure is a consequence of
the ordered arrangement of vacancies; these nanotanks
are free of collagen macromolecules, but they contain
nanocapillary water.

To determine the fundamental nature of the hydrate
structure of collagen, we studied samples of rat-tail ten-
dons (RTTs). The distribution of water in the samples
was studied by 2H NMR spectroscopy. The 100- to
150-mg samples were taken immediately before a
© 2005 Pleiades Publishing, Inc.
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study and placed in 99% heavy water (for 20 min) to
enrich them in the isotope 2H. The 2H NMR spectra
(Fig. 3) are the superposition of two types of bands: a
doublet characteristic of disordered quasi-liquid-crys-
tal systems [7] and a central line characteristic of the
liquid phase of water; the ratio between the two types is
~1 : 1. The subsystem of water molecules in space

Fig. 1. Arrangement of tropocollagen macromolecules in a
longitudinal projection (along the c axis). On the left: ab is
the projection of a unit cell in dense regions of the collagen
structure; numerals from 1 to 5 indicate the positions of the
sections of structurally nonequivalent macromolecules. On
the right: AB is the projection of a unit cell in loose regions
of the collagen structure; large circles show the arrangement
of cisterns, each of them is formed by the combination of
longitudinal gaps between macromolecules from four
neighboring subcells.

Fig. 2. Schematic diagram of the longitudinal stacking of
tropocollagen macromolecules and the formation of trans-
verse banding. The transverse banding period D of fibers is
actually equal to c0. Numerals from 1 to 5 denote the same
as those in Fig. 1.
between the side groups of macromolecules can be
assigned to the former type, whereas the central line
can be attributed to the water subsystem of cisterns
from gap regions. This conclusion is supported by a
stepwise disappearance of the central line as the tem-
perature was decreased below –10°C; this can be due to
the formation of a nanoice-in-nanotanks phase. This
fact indirectly supports a model according to which
loose regions of the collagen structure consist of a tec-
tohydrate or a structure that includes a continuous
three-dimensional framework of water molecules with
a tetrahedral coordination, which is characteristic of ice
and clathrate hydrates. This model of the arrangement
of water molecules in the wide-pore structure of col-
lagen in gap regions can be directly supported by an
analysis of the latent heat of a phase transition in rat-tail
tendons. This phase transition was detected using not
only 2H NMR-spectroscopic [8] but also scanning cal-
orimetric data.

The study of tendon samples was performed with
the use of a Netzsch DSC 204 automatic calorimeter
(Germany). The measurements were performed over a
range from room temperature (+20°C) to –30°C; the
rate of temperature change was 3 K/min. Figure 4
shows a typical cooling–heating curve. The experimen-
tal curves exhibited supercooling with the freezing tem-
perature Tf = –9.2 ± 0.5°C and the latent heat of crystal-
lization Qf = –73.3 ± 1.9 J/g; for heating curves, the
maximum melting temperature was Tm = +2.3 ± 0.2°C
and the latent heat of melting was Qm = 89.15 ± 2.0 J/g.
These experimental data can be compared with the ref-
erence value for the latent heat of melting of pure ice:
Qm(ice) = 333.5 J/g [9]. In this comparison, it should be
taken into account that the collagen content of tendons
is as high as 94% and the total water content of native
collagen is about ~60%, including ~30% in nanocapil-
laries. Thus, if the structure of the subsystem of water
molecules in the vacancy regions of the collagen struc-
ture at negative temperatures corresponds to the struc-
ture of a tectohydrate (clathratelike or icelike type), the
expected latent heat of a phase transition in this sub-
system is Qm(RTT) = ~(0.3 × 0.94), Qm(ice) = ~94 J/g,
which is consistent with the values measured in three
samples.

The cooling curves exhibited reduced values of Qf;
this is a consequence of a considerable supercooling of
the samples as the temperature was decreased. This
effect allowed us to estimate the specific heat cp of a
high-temperature phase in the subsystem of water mol-
ecules that underwent the phase transition. In terms of
the model under discussion, the average change in the
heat of the phase transition ∆Qtr = 16.55 ± 3.9 J/g is
related to the average supercooling temperature ∆T =
(11.5 ± 0.7)° by the expression ∆Qtr(RTT) = ~(0.3 ×
0.94)∆cp∆T, where ∆cp is the difference between the
heat capacities of water and ice. If the properties of the
water subsystem that underwent phase transition in col-
lagen correspond to the properties of free water and ice,
JETP LETTERS      Vol. 82      No. 9      2005
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∆cp = 2.062 J g–1 K–1 (near 0°C [9]). Therefore, the cal-
culated value is ∆Qtr(RTT) = ~6.69 J/mol; this calcu-
lated value of ∆Qtr, which is lower than the experimen-
tal value, suggests that the interaction of water mole-
cules and functional groups in cisterns makes a
contribution to ∆cp. For example, telopeptides, which

Fig. 3. 2H NMR spectra of a single rat-tail tendon fiber ori-
ented perpendicularly to the magnetic field of the spectrom-
eter at (a) room temperature and (b) –10°C. Recording con-
ditions: Bruker CXP-300 spectrometer, Larmor frequency
ν0 = 46 MHz, and measurement of the spectra after a pulse.
The distance between doublet components is ∆ν = 3/4Cqcc,
where Cqcc is the effective quadrupole coupling constant of
2H nuclei.

Fig. 4. Typical differential scanning calorimetry (DSC)
curve of rat-tail tendon from Wistar rats. The number of lab-
oratory animals in the group was 3, the age was 6 months,
the tendon sample weight was 40 mg, and the rate of tem-
perature change was 3 K/min. The top and bottom curves
correspond to heating and cooling, respectively.
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were reliably detected in the neighborhood of gaps [2],
can serve as these functional groups. An analogous con-
clusion also follows from an increase in the melting
temperature of ice in collagen, as compared with that of
free ice (Fig. 4). Thus, qualitatively, the latent heat of
phase transition is consistent with the model according
to which the properties of nanocapillary water in the
collagen structure are close to the properties of free (or
bulk) water. The increased melting temperature of
bound-water ice in collagen and the increased differ-
ence between heat capacities ∆cp suggest a correlation
between the structures of water and functional groups,
probably of the clathrate type.

In conclusion, note that, according to 2H NMR data,
the degree of disorder and the diffusion mobility of
water molecules in dense regions of the collagen struc-
ture also decreased with temperature. However, the
observed smooth changes in the doublet splitting over a
wide temperature range from –20 to –30°C are more
typical of nanopore systems like zeolites and clay min-
erals. As a rule, phase transitions in systems of this kind
are order–disorder transitions (close to second-order
phase transitions). According to the experimental data
obtained by differential scanning calorimetry, no heat
effects related to ordering in the subsystem of dense
regions occurred in rat-tail tendon collagen. It is
believed that the ordering of water molecules in dense
regions was accompanied by a second-order phase tran-
sition.

This work was supported by the Russian Foundation
for Basic Research (project no. 05-03-32263) and, in
part, by the US Civilian Research and Development
Foundation (grant no. O-008-XI).
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