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The g, h, and k Dalitz plot parameters, which are coefficients in a series expansion of the squared module of the
matrix element |M(u, v )|2 ∝  1 + gu + hu2 + kv2 (u, v  are invariant variables), have been measured for K± 
π±π0π0 decays using 35 GeV/c hadron beams at the IHEP (Protvino) accelerator. Dependences of parameters
and fit quality on the π0π0 mass cut were investigated for the first time. It is shown that the expansion mentioned
above does not fit the experimental data near the π+π– mass threshold and that addition of the cubic terms only
slightly improves the fit quality. This result indicates the important role of nonanalytical terms in the matrix
element that are connected with pion rescattering. A comparison of our data with previous measurements is pre-
sented. © 2005 Pleiades Publishing, Inc.
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1. INTRODUCTION

Experimental investigations of kaon decays play a
very important role in particle physics. The results of
these experiments permit predictions of the Standard
Model to be checked and new physics beyond its frame-
work to be sought. In particular, studies of K  3π
decays allow one to verify calculations based on the
chiral perturbation theory.

Usually, the squared module of the matrix element
for K±  π±π0π0 decays is presented in the following
form:

|M(u, v)|2 ∝  1 + gu + hu2 + kv 2, (1)

where u = (s3 – s0)/ , v  = (s2 – s1)/ , si = (PK – Pi)2,

s0 = ; pK and pi are 4-momenta of the kaon and

the ith pion, respectively; and the index 3 is used for the
charged pion.

The Dalitz plot parameters g, h, and k for K± 
π±π0π0 decays measured in the three most precise
experiments with K– [1, 2] and K+ [3] beams differ by 2
to 5 standard deviations [4]. For example, the differ-
ence of the Dalitz plot slopes g obtained in [2] and [3]
is equal to 0.109 ± 0.021. As shown by our data [5], this
result cannot be explained by CP violation and is most
probably due to underestimation of systematic uncer-
tainties. In this paper, we present new results on the

¶ The text was submitted by the authors in English.
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Dalitz plot parameters based on the analysis of 493k
events of K±  π±π0π0 decays collected at the TNF-
IHEP facility [5, 6].

2. EXPERIMENTAL SETUP

Studies of charged kaon decays have been per-
formed using 35GeV/c positive and negative hadron
beams at the IHEP accelerator. The beam intensity was
monitored by four scintillation counters. Its typical
value was 4 × 106 per 1.7-second spill. Three threshold
and two differential Cherenkov counters were used to
select kaons with a background of less than 1%. The
products of kaon decays originating in the 58.5-m-long
vacuum pipe were detected by wide-aperture scintilla-
tion hodoscopes and the total-absorption electromag-
netic calorimeter GEPARD consisting of 1968 lead-
scintillator cells. The π0 mass resolution was
12.3 MeV/c2. The calorimeter was divided into 16 trig-
ger elements. An anticoincidence beam counter was
placed downstream of the vacuum pipe. The Level-1
trigger T1 was formed according to the following logic
formula:

where Si, Di, Ci, and AC are logical signals from the
beam, differential, threshold, and anticoincidence
counters, respectively. The Level-2 trigger required
more than 0.8 GeV energy deposition in at least three

T1 = S1 S2 S3 S4 D1 D2+( )⋅⋅⋅⋅

· C1 C2 C3 AC,⋅ ⋅ ⋅
© 2005 Pleiades Publishing, Inc.
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trigger elements of the GEPARD. Details of the setup
and measurement procedure can be found in [5].

3. K±  π±π0π0 EVENT SELECTION

The following criteria were used to select K± 
π±π0π0 events [5]:

—one to three secondary tracks are reconstructed;
—the probability of the decay vertex fit is more than

5%;
—the decay vertex is inside the fiducial length of the

decay pipe;
—the number of clusters with energy above 1 GeV

in the calorimeter and the number of tracks in the hodo-
scopes correspond to the K±  π±π0π0 decay;

—charged pion energy exceeds 8 GeV;
—the χ2 probability P(χ2) of the 6C kinematic fit is

more than 0.1 (all possible photon combinations are
considered and the best is selected);

—event passes software Level-2 trigger.
The experimental setup was simulated using the

Monte Carlo (MC) method with the GEANT 3.21 code.
The setup geometry was described in detail and the data
obtained in the experiment were taken into account.
Among these data, there were the calibration coeffi-
cients for each channel of the calorimeter, the depen-
dence of the hodoscope efficiency on the particle coor-
dinates, and the correlation between the spatial and
angular coordinates of the kaon and its momentum.

The final data sample includes 493 K completely
reconstructed K±  π±π0π0 events. The MC statistics
is about four times higher. The background level esti-
mated from the MC simulations is less than 0.25% and

Fig. 1. Ratio of experimental to Monte Carlo events vs. π0π0

invariant mass M0.
is mainly due to K±  π±π0 decays. It is shown in our
paper [5] that the event distributions in the Dalitz plots
for K+ and K– decays are identical. Taking this into
account, we used combined statistics for K±  π±π0π0

decays to estimate the Dalitz plot parameters.

4. RESULTS

Due to the finite setup resolution on the u and v  vari-
ables [5], the “measured” u', v ' values can differ from
the true u, v  for both experimental and MC events. To
take this into account, the Dalitz plot parameters were
estimated by minimizing the following functional
form:

where ni is the number of events in the ith experimental

Dalitz plot bin, mi ≡ mi(g, h, k) =  (wij = 1 + guj +

h  + k ) is a sum of the weighted MC events in the

ith Dalitz plot bin, C = /  is a normalization

factor, and  = ni + C2  takes into account the
limited MC statistics. The following values of the g, h,
k parameters and elements of the correlation matrix
were obtained:

(2)

The errors quoted are statistical only; χ2/ndf is
506/430 = 1.18 and P(χ2) = 0.0066. It turned out that
the low significance of the fit is primarily due to the dif-
ference between the experimental data and the MC sim-
ulations based on equation (1) in the threshold region of
the π0π0 invariant mass M0 (Fig. 1). This discrepancy
cannot be avoided by the addition of higher order terms
lu3 and/or muv 2 in the |M(u, v)|2 expansion (see table)
and might be due to nonanalytical terms in the matrix
element connected to π+π–  π0π0 rescattering [7].
This effect was recently considered in detail by
Cabibbo [8] and Cabibbo and Isidori [9] and was
observed in experiment [10]. It plays an important role
in the region of M0 ~ 2 , and its contribution can be

suppressed by introducing a complementary criterion
of M0 > MT. It appears that the fit with MT ≥ 290 MeV/c2

results in stable values of the Dalitz plot parameters
independent of the M0 cut and a satisfactory fit signifi-
cance. Introduction of higher order terms in Eq. (1)
does not change the g, h, and k parameters or the χ2
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g 0.6259 0.0043±=

h 0.0551 0.0044±=

k 0.0082 0.0011±=
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Fit results with higher order terms in (1)

g 0.6259 ± 0.0043 0.6151 ± 0.0051 0.6284 ± 0.0048 0.6129 ± 0.0063

h 0.0551 ± 0.0044 0.0782 ± 0.0073 0.0556 ± 0.0044 0.0795 ± 0.0077

k 0.0082 ± 0.0011 0.0080 ± 0.0011 0.0070 ± 0.0015 0.0087 ± 0.0016

l – 0.0273 ± 0.0069 – 0.0292 ± 0.0076

m – – –0.0027 ± 0.0024 0.0016 ± 0.0027

χ2 506.1 490.2 504.8 489.8

χ2/ndf 1.18 1.14 1.17 1.14

P(χ2) 6.6 × 10–3 2.4 × 10–2 7.4 × 10–3 2.4 × 10–2
value in this case. The fit with MT = 290 MeV/c2 gave
the following results:

(3)

and χ2/ndf = 1.04, P(χ2) = 0.3.
Comparison of the data in (2) and (3) shows that the

Dalitz plot slope g changes by two standard deviations
and correlations between g, h, and h, k are much weaker
if the MT cut is applied. Figure 2 confirms the good

g 0.6339 0.0046±=

h 0.0593 0.0088±=

k 0.0083 0.0013±=

1.00 0.52 0.43

1.00 0.16

1.00 
 
 
 
 

Fig. 2. Event distributions projected on the (a) |v ' | and (b) u'
axes (histogram is the simulation and circles are experimen-
tal data).

|v ' |
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agreement between experimental and MC data with
MT = 290 MeV/c2.

To estimate the systematic uncertainties of the Dal-
itz plot parameters, we checked the stability of the
results against variation of the cuts in the event selec-
tion criteria. The parameters appeared to be most sensi-
tive to a change in the minimum gamma energies (∆g =
–0.0057, ∆h = –0.0047, ∆k = –0.0006) and in the mini-
mum charged pion momentum (∆g = 0.0048, ∆h =
0.0051 and ∆k = 0.0011). The change in the bin size by
factors of 2 and 0.5 and exclusion of the bins at the Dal-
itz plot boundary from the fit gives ∆g = 0.0012, ∆h =
0.0045, and ∆k = 0.0004. Uncertainties in the kaon
momentum, beam profile, and angular spread, as well
as the GEPARD calibration coefficients, have no influ-
ence on the parameters. The background contribution to
systematic errors turned out to be negligible. Finally,
our estimations of the systematic uncertainties are the
following: δg = 0.0093, δh = 0.0086, δk = 0.0014.

Figure 3 shows our results (2) together with previ-
ous data [1–4, 11–15] obtained without M0 cut. The
error bars include both systematic and statistical uncer-
tainties. Our g and h values are in good agreement with
those of Ajinenko et al. [2]. We observe a deviation of

Fig. 3. Dalitz plot parameters g, h, and k for the (solid cir-
cles) K+  π+π0π0, (open circles) K–  π–π0π0, and
(triangles) K±  π±π0π0 decays. Vertical solid and dotted
lines show the average values and their errors as calculated
by the Particle Data Group (PDG) [4].

average
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the k value from 0 by 4.5 standard deviations, while
Ajinenko et al. reported k = 0.001 ± 0.002.

5. CONCLUSIONS

The new data on the Dalitz plot parameters for
K±  π±π0π0 decays based on the analysis of ~0.5 M
events collected at the TNF-IHEP facility are pre-
sented. We investigated the dependence of the Dalitz
plot parameters and the fit quality of Eq. (1) to the
experimental data on the π0π0 invariant mass cut MT. It
is shown that, without the cut, the fit quality is rather
poor, while a M0 ≥ 290 MeV/c2 cut results in a satisfac-
tory fit significance. This cut changes the slope g by two
standard deviations and weakens the correlations
between the g, h and h, k parameters. We consider these
results to be evidence of the important contribution of
π+π–  π0π0 rescattering to the matrix element of the
K±  π±π0π0 decay in the threshold region of the π0π0

invariant mass. Thus, pion rescattering should be taken
into account when high-statistics data on K± 
π±π0π0 decays are analyzed. The obtained values of the
g and h parameters agree (within the errors quoted)
with those published in [2], while our k value differs
from zero by ~4.5 standard deviations, in contrast with
the result of [2] that is compatible with zero.
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A.M. Zaitsev for support of the experiment and to
V.N. Mikhailin, Yu.V. Mikhailov, V.A. Sen’ko, and
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was supported in part by the Council of the President of
the Russian Federation for Support of Young Scientists
and Leading Scientific Schools (project no. NSh-
1305.2003.2 for Denisov’s scientific school) and by the
Russian Foundation for Basic Research (project
nos. 05-02-16557 and 05-02-17614).
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Correlation functions of the composite field  in the scaling Lee–Yang model are studied. Using the analytic
expression for form factors of this operator recently proposed by Delfino and Niccoli hep-th/0407142 [1], we
show numerically that the constraints on the  expectation values obtained by Zamolodchikov hep-
th/0401146 [2] and the additional requirement of asymptotic behavior lead to a perfect agreement with the ultra-
violet asymptotic predicted by conformal perturbation theory. © 2005 Pleiades Publishing, Inc.

PACS numbers: 11.25.Hf

TT

TT
In the present work, we use two different
approaches to massive integrable quantum field theo-
ries. In the first approach, the massive theory is consid-
ered as a perturbation of a certain conformal field the-
ory (being a fixed point of the renormalization group
flow) by a relevant operator [3]. The structure of the
space of local operators does not change along the
renormalization group flow; therefore, the space of
local operators of the massive theory is assumed to be
isomorphic to the corresponding conformal field theory
space. This space consists of primary operators and
descendants [4]. The correlation functions are calcu-
lated using operator product expansions

(1)

where g is the perturbing coupling constant. The struc-

ture functions of the operator algebra (x, g) are
assumed to be analytic in g, provided that the renormal-
ized fields Ai are chosen to have definite dimensions.
This hypothesis provides a way to expand the structure
functions in a perturbation series in the coupling con-

stant. In the zeroth order, the (x, g) coincide with the
structure functions of conformal field theory. This pro-
cedure, called Conformal Perturbation Theory, was
invented in [5]. The vacuum expectation values 〈Ai〉
depend on g nonanalytically and cannot be calculated

 ¶ The text was submitted by the authors in English.
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using perturbation theory. It follows from dimensional
analysis that

where Qi is independent of g, ∆i is the dimension of the
field Ai, and ∆ is the dimension of the perturbation. The
vacuum expectation values of primary fields and the
first nontrivial descendants were obtained in [6–8].
Taking into account that ∆ < 1 and the dimensions ∆i are
increasing, expression (1) represents the series in
increasing powers of x, and we can restrict ourselves to
a small number of terms for x ! 1.

In the second (form-factor) approach, matrix ele-
ments of local operators in the basis of asymptotic
states are determined from the Smirnov axioms [9],
given the S-matrix and mass spectrum. Correlation
functions can then be represented as a spectral decom-
position.

We consider the scaling Lee–Yang model

(2)

i.e., the M (2/5) minimal model of conformal field the-
ory perturbed by the field ϕ = φ1, 3, which is the only
nontrivial primary field in it. The model M (2/5) has the
central charge c = –22/5. The space of fields in this
model consists of two primary fields: the identity oper-
ator I = φ1, 1 = φ1, 4 and the field ϕ = φ1, 2 = φ1, 3 with the

right and left dimensions ∆ =  = –1/5 and their

Ai〈 〉 Qig

∆i

1 ∆–
------------

,=

S SM 2/5( ) g ϕd2x,∫+=

∆
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descendants. It is convenient to consider the trace of the
stress tensor Θ,

(3)

The vacuum expectation value of 〈Θ〉  was obtained in
[10] as

(4)

where m is the particle mass. In what follows, we also
use the relation

(5)

between the coupling g and the scale m of the theory
found in [10, 11].

The form factors of the operator 〈Θ〉  were found in
[5]. The form factors of the operator  = L–2 I in
this model were recently obtained in [1]. We use this
expression to numerically calculate the correlation
functions G(m|x |) = m–6〈 (x)Θ(0)〉  and H(m|x |) =

m−8〈 (x) (0)〉  up to three-particle terms in spectral
expansions, and we compare them with the leading
terms in conformal perturbation theory (1).

The first three nonzero vacuum expectation values
in expansion (1) are 〈ϕ〉 , 〈I 〉  = 1, and 〈L–2 I〉  = .
We recall the operator product expansions of the stress
tensor in a conformal field theory [4]:

(6)

(7)

This gives

Here, we skip the details of the first-order calculations
for the structure functions. All necessary formulas can
be found in [5, 12]. Using (3) and (4), we finally obtain
the expression for 〈 (x)Θ(0)〉:

(8)

Θ x( ) πg 1 ∆–( )ϕ x( ).=

Θ〈 〉 πm2

4 3
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---
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2z4
-------

2

z2
----T 0( ) 1

z
---∂T 0( ) ….+ + +=

CTT ϕ,
I x( ) 0, CTT ϕ,

ϕ x( ) ∆2 x 4– ,= =

CTT TT,
I x( ) c

2
--- 

 
2

x 8– , CTT TT,
ϕ x( ) 0.= =

TT

CUV m x( ) π
100 3
---------------- m x( ) 4––=

+ g1 2 µ xln g2+( ) m x( )
8
5
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where

In the same way for 〈 (x) (0)〉 , we have

(9)

In the first-order calculations, we faced the resonance
problem [5], leading to the undefined coefficient µ in
the subleading terms in (8) and (9).

The mass spectrum of the scaling Lee–Yang model
consists of one particle A. Correlation functions can be
expressed through the form factors of local operators as
spectral sums. For example, the two-point Euclidean
correlation function of the operators 21 and 22 has the
form

(10)

The expressions for the first four form factors of the
operator Θ have the forms [5]:

(11)
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(13)

(14)

where

(15)

(16)

The following expression for the form factors of the
operator  was obtained in [1] using the restriction
on the growth at infinity, the asymptotic factorization
properties, and the relation for the expectation value of

 obtained in [2]:

(17)

where

(18)

For n < 3,  is the solution equal to zero, and, at
n = 3,
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The constants a, b, d, and e are
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The constant c is not determined, which corresponds to

an ambiguity    + # ϕ in the definition of

the operator  outside the critical point, because the

dimensions of operators  and ϕ satisfy the reso-
nance condition [5]. The coefficient a is determined
only from the restriction on the growth at infinity and
the asymptotic factorization condition, and the coeffi-
cients d and e, from the growth restriction and
Zamolodchikov relation for the stress-tensor expecta-
tion value. The coefficient b is determined from each of
these sets of conditions independently.

Formulas (11)–(14), (17), and (19) lead to the spec-
tral expansion of the correlation functions G(m|x |) and
H(m|x |) up to three-particle terms:

(23)

(24)

where

(25)

(26)

(27)

(28)

(29)

TT TT ∂∂
TT

TT ∂∂

GIR m x( ) π
4 3
---------- 

  3

=

+ G1 m x( ) G2 m x( ) G3 m x( ) …,+ + +

HIR m x( ) π
4 3
---------- 

  4

=

+ H1 m x( ) H2 m x( ) H3 m x( ) …,+ + +

G1 x( ) π
32 3v 2 0( )
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G2 x( ) 1
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+ 2c 1 θcosh+( ) d )g θ( )K0 2x
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Table 1.  Numerical data for the correlation function 〈T (x)Θ(0)〉

m|x | GIR up to 2 particles GIR up to 3 particles GUV leading term GUV first order

0.00001 –1.85653286e + 18 –1.81300206e + 18 –1.81380007e + 18 –1.81380007e + 18

0.00010 –1.85653275e + 14 –1.81300214e + 14 –1.81380007e + 14 –1.81380007e + 14

0.00100 –1.85652408e + 10 –1.81300401e + 10 –1.81380007e + 10 –1.81379845e + 10

0.00200 –1.16031262e + 09 –1.13312746e + 09 –1.13362505e + 09 –1.13362023e + 09

0.00400 –7.25161988e + 07 –7.08199961e + 07 –7.08515654e + 07 –7.08501625e + 07

0.00600 –1.43231670e + 07 –1.39888795e + 07 –1.39953709e + 07 –1.39946955e + 07

0.00800 –4.53151109e + 06 –4.42603060e + 06 –4.42822284e + 06 –4.42782279e + 06

0.01000 –1.85589100e + 06 –1.81282105e + 06 –1.81380007e + 06 –1.81353444e + 06

0.02000 –1.15890841e + 05 –1.13251558e + 05 –1.13362505e + 05 –1.13289636e + 05

0.03000 –2.28615882e + 04 –2.23527759e + 04 –2.23925935e + 04 –2.23590156e + 04

0.04000 –7.22104580e + 03 –7.06438900e + 03 –7.08515654e + 03 –7.06596919e + 03

0.05000 –2.95154366e + 03 –2.88923575e + 03 –2.90208012e + 03 –2.88972936e + 03

0.06000 –1.41992160e + 03 –1.39078944e + 03 –1.39953709e + 03 –1.39095957e + 03

0.07000 –7.64321784e + 02 –7.49094702e + 02 –7.55435266e + 02 –7.49155160e + 02

0.08000 –4.46655159e + 02 –4.38020065e + 02 –4.42822284e + 02 –4.38041748e + 02

0.10000 –1.81664934e + 02 –1.78361775e + 02 –1.81380007e + 02 –1.78368395e + 02

0.15000 –3.50788352e + 01 –3.45331307e + 01 –3.58281496e + 01 –3.45550348e + 01

0.20000 –1.07663389e + 01 –1.06227468e + 01 –1.13362505e + 01 –1.06572736e + 01

T

Table 2.  Numerical data for the correlation function 〈T (x)T (0)〉

m|x | HIR up to 2 particles HIR up to 3 particles HUV leading term HUV first order

0.00001 4.84902564e + 40 4.83998645e + 40 4.84000118e + 40 4.84000118e + 40

0.00010 4.84902561e + 32 4.83998641e + 32 4.84000118e + 32 4.84000114e + 32

0.00100 4.84901983e + 24 4.83998034e + 24 4.83999827e + 24 4.83.999495e + 24

0.00200 1.89414518e + 22 1.89061384e + 22 1.89062440e + 22 1.89061959e + 22

0.00400 7.39895858e + 19 7.38516043e + 19 7.38525142e + 19 7.38518211e + 19

0.00600 2.88693111e + 18 2.88154509e + 18 2.88161097e + 18 2.88155315e + 18

0.00800 2.89015215e + 17 2.88475727e + 17 2.88486384e + 17 2.88476475e + 17

0.01000 4.84879446e + 16 4.83973781e + 16 4.84000106e + 16 4.83974909e + 16

0.02000 1.89382175e + 14 1.89026924e + 14 1.89062538e + 14 1.89026936e + 14

0.03000 7.38795913e + 12 7.37402153e + 12 7.37692595e + 12 7.37399344e + 12

0.04000 7.39439146e + 11 7.38034934e + 11 7.38525556e + 11 7.38027952e + 11

0.05000 1.24017793e + 11 1.23780576e + 11 1.23903991e + 11 1.23778474e + 11

0.06000 2.88317563e + 10 2.87761876e + 10 2.88161166e + 10 2.87754224e + 10

0.07000 8.39672143e + 09 8.38041127e + 09 8.39577991e + 09 8.38008907e + 09

0.08000 2.88379417e + 09 2.87814821e + 09 2.88486545e + 09 2.87799616e + 09

0.09000 1.12334075e + 09 1.12112407e + 09 1.12435943e + 09 1.12104556e + 09

0.10000 4.83278636e + 08 4.82317554e + 08 4.83999982e + 08 4.82273987e + 08

0.15000 1.87883587e + 07 1.87496455e + 07 1.88849209e + 07 1.87448871e + 07

0.20000 1.87207209e + 06 1.86810743e + 06 1.89062486e + 06 1.86704234e + 06

T T
JETP LETTERS      Vol. 82      No. 11      2005



CORRELATION FUNCTIONS OF DESCENDANTS 683
(30)

(31)

As mentioned above, the ambiguity in the definition
of the operator  does not affect the leading UV
order. Nevertheless, it is interesting to establish the
exact correspondence between the coefficients µ and c.
It happens that the precision of the form-factor calcula-
tions is insufficient for this purpose.

In the figure, we show the results of fitting IR data
obtained for c = 0 with the UV expansions. In view of
the rapid increase of the correlation functions consid-
ered, we use a logarithmic scale and also the ratios of
the corresponding contributions for better visibility.
The ratios of the three-particle contributions G3/GIR and
H3/HIR (triangles) are given in the figure to visibly dem-
onstrate the degree of agreement between the IR and
UV data and also to estimate in which interval we
expect the IR data to be valid. As a result of such esti-
mation, we fitted on the interval [0.01, 0.2]. Further, we
show the degree of agreement of the IR data with the
(open circles) zeroth-order and (filled circles) first-
order UV expansions. The errors in determining the fit-
ting parameters show that we must take the higher order
form-factor contributions into account.

A comparison of the numerical values of UV expan-
sions (8) and (9) with form-factor expansions (23) and
(24) up to three-particle contributions for 10–5 < m|x | <
0.2 is shown in Tables 1 and 2. In the IR expansion, we
use c = 0. The results of the first-order UV calculations
are given for the best-fit value of 2log(µ/m) = –0.51. It
can be seen that the UV and IR expansions coincide
with sufficiently good accuracy.

In conclusion, we emphasize that this comparison
confirms the construction for the form factors of opera-
tor  proposed in [1]. Indeed, we note that the two-
particle terms G2 and H2 are highly sensitive to the

H3 x( ) 3

π3v 6 0( )
-------------------- π

32 3
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
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∫
0

∞

∫–=

× aA4 θ χ,( ) cA2 θ χ,( ) d+ +( ) bC θ χ,( )+ 


2

× g θ( )g χ( )g θ χ–( )K0 A θ χ,( )x( )dθdχ ,

g θ( ) f θ( ) f θ–( ),=

A θ χ,( ) 3 2 θcosh χcosh θ χ–( )cosh+ +( )+ ,=
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2
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value of the parameter a, and the three-particle terms G3

and H3, to the value of the parameter b (because the cor-
responding terms in the integrands in (26), (27), (29),
and (30) have the greatest increase at infinity), and are
weakly sensitive to the values of the other parameters.
Therefore, the fact that the sums of the first three terms
of the form-factor expansions (i.e., zero-, one-, and
two-particle) coincide with the UV expansion with an
accuracy up to three digits confirms the value of the
parameter a and the assumption of asymptotic behavior
for descendent operators in the scaling Lee–Yang
model [1]. Including three-particle terms improves the
convergence to up to five digits, which confirms the
value of the parameter b and all conjectures used to
determine it [1, 2].
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Results of fitting the IR data for c = 0 by the UV expansions
with the fitting parameter µ.
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Dispersive quantum nondemolition measurement of the number of photons is analyzed in the micromaser
scheme. It has been shown that the stationary Fock state of the field in a cavity that is considered as the result
of quantum nondemolition measurement is realized only in a particular case for strictly determined parameters
of the system, and small variation in one of the parameters of the system results in a qualitative change in the
field state. In the general case, the field state is characterized by large fluctuations of the number of photons and
the mean number of photons, which are very sensitive to the parameters of the system. It has been shown that
the detection of the Ramsey interference pattern is possible only when the sequence of atoms passing through
the cavity is highly monokinetic. © 2005 Pleiades Publishing, Inc.

PACS numbers: 03.65.Ta, 42.50.Dv
We analyze the experimental scheme for dispersive
quantum nondemolition measurement of the number of
photons with a micromaser that has been known since
the beginning of the 1990s. As far as we know, such a
scheme has not yet been realized. In my opinion, the
theory of this scheme for quantum nondemolition mea-
surement is complicated, insufficiently studied, and
requires further refinement and development. A real
experiment, as well as the correct interpretation of its
results, cannot be carried out without its developed the-
ory.

In the quantum nondemolition measurement
scheme proposed in [1], information on the number of
photons is extracted using the Ramsey method by ana-
lyzing the periodic structure of the dependence of the
probability of detecting an atom leaving the cavity in
the lower or upper energy state. This dependence exhib-
its a characteristic structure of fringes, the interval
between which depends on the number of photons in
the cavity. The probability amplitudes for atomic states
after the passage through the cavity are assumed to only
acquire a phase shift that is linear in time and propor-
tional to the number of photons.

The dispersion character of the interaction of atoms
with the field in this scheme is ensured due to a large
detuning of the atomic transition frequency from the
field mode frequency. It is assumed that the detuning
∆ = ωc – ωA of the cavity frequency ωc from the atomic
transition frequency ωA satisfies the relations [1–4]

(1)∆2
 @ 4g2n Ω2n,,
0021-3640/05/8211- $26.00 0685
where g is the atom–field coupling constant for a given
position of the atom in the cavity or the position-aver-
aged quantity, Ω is the Rabi vacuum frequency, and n is
the number of photons in the field.

Calculations performed in this work make it possi-
ble to analyze the dependence of the dynamics of the
micromaser quantum nondemolition measurement on
the effects associated with the motion of centers of
mass of atoms interacting with the spatially inhomoge-
neous cavity field upon random change in the states of
the atoms leaving the cavity. Doppler–Rabi oscillations
arising under such conditions in a Fabry–Perot cavity
and an open cavity with spherical mirrors were studied
in [5–7].

A Rydberg atom [1, 3] preliminary excited to the
state |↑〉  passes the region of the resonant microwave
field R1 (see Fig. 1) and, as a result, transits to the super-
position of the states |↑〉  and |↓〉 . Then, the atom enters
the high-Q cavity C (Q ~ 108). In the basis of Fock field
states |n〉 , the wave function of the system consisting of
the atom and cavity field at the input of the cavity has
the form

(2)

The Hamiltonian of the system inside the cavity can be
represented as the sum

(3)

Ψ t0( )| 〉 bn t0( ) iα↓ ↓| 〉 α↑ ↑| 〉+( ) n| 〉 .
n 0=

∞

∑=

H t( ) H0 V t( ),+=
© 2005 Pleiades Publishing, Inc.
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where

(4)

Here, σz = (|↑〉〈↑|  – |↓〉〈↓| )/2; σ+ = |↑〉〈↓| ; σ– = |↓〉〈↑| ;
∆ = ωc – ωA, where ωA is the frequency of the transition
|↑〉   |↓〉 , which is characterized by the coupling
constant g0(t); and χ(t) is the nonlinearity parameter
associated with the interaction of the field with the
other atomic level |i 〉  (see [4]). The frequency of the
transition |i 〉   |↑〉  and the detuning are ωA1 and δ =
ωc – ωA1, respectively. The nonlinearity parameter is
expressed as

(5)

where g1(t) is the coupling constant for the |i 〉   |↑〉
transition.

The spatial structure of the field inside the open cav-
ity with spherical mirrors [6, 7] determines the spatial
(time) dependence of the coupling constants for atomic
transitions. In this case, these constants have the form

g0/1(t) = g0/1exp(–(v t – L/2)2/ ), where v  is the veloc-
ity of the atom, w0 is the waist of the Gaussian field, and
L is the atomic path length in the cavity.

After the passage of the atom through the cavity, the
system transits to the entangled state

(6)

H0 "ωc a+a σz+( ),=

V t( ) "∆σz– "g0 t( ) a+σ– σ+a+( )+=

+ "χ t( )a+aσ+σ–.

     

χ t( ) g1
2 t( )/δ, δ  @ 2g1 t( ) n,=

     

w0
2

Ψ t( )| 〉 U t t0,( ) Ψ t0( )| 〉=

=  F↓ n t( ) ↓| 〉 F↑ n t( ) ↑| 〉+( ) n| 〉 ) , t
n 0=

∞

∑ t0 τ1,+=

Fig. 1. Layout of dispersive quantum nondemolition mea-
surement with a micromaser. Excited Rydberg atoms suc-
cessively pass through the classical microwave field R1 res-
onant to the atomic transition, cavity C, and microwave field
R2. After the passage of the R1–C–R2 path, atoms are sub-
jected to selective measurements of their electronic states
by means of ionization in a static electric field.
 

where 
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1

 

 is the time of flight of the atom through the
cavity and 
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) is the system evolution operator.
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 during which the time dependence
of the Hamiltonian can be disregarded. In this case, the
unitary evolution operator in each interval 
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form 
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), where Hamiltonian (4) is
used in the interaction representation.

Using the dressed state method when diagonalizing
the Hamiltonian (see [5–7]) in the interaction represen-
tation, we obtain the state vector of the system after the
passage of the atom through the cavity (
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M
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0

 

 + 
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M

 

) in the form

(7)

where

(8a)

(8b)

(9a)

(9b)

for 

 

m

 

 = 

 

n

 

, 

 

n

 

 – 1, 

 

n

 

 = 0, 1, 2, …. Expressions for 

 

µ

 

↓

 

m

 

 and

 

µ

 

↑

 

m

 

, 

 

m = n, n + 1 are obtained from Eqs. (9) by chang-
ing σ  µ, A  B, and n  n – 1, n > 0 on the

right-hand sides. In Eqs. (9), θn(t) = arctan(2g0(t)/(∆ –

χ(t)n)). In addition, the amplitude of the ground state of
the system has the form

(10)

The coefficients A and B appearing in Eqs. (9) are rep-
resented as

(11a)

(11b)

for n = 0, 1, 2, …, and

(12a)

(12b)

for n = 1, 2, …, where

Ψ tM( )| 〉 F↑ n tM( ) ↑ n,| 〉
n 0=

∞

∑ F↓ n tM( ) ↓ n,| 〉 ) ,+=

F↓ n tM( ) bn 1– t0( )σ↓ n 1– tM( ) bn t0( )µ↓ n tM( ),+=

F↑ n tM( ) bn t0( )σ↑ n tM( ) bn 1+ t0( )µ↑ n 1+ tM( ),+=

σ↓ m tM( ) A+ m, tM( ) θm tM( )cos A– m, θm tM( ),sin–≡

σ↑ m tM( ) A+ m, tM( ) θm tM( )sin A– m, θm tM( )cos+≡

1
2
---

F↓ 0 tM( ) iα↓ b0 t0( ) i
∆
2
---tM– 

  .exp=

A+ n, t1( ) α↑ θn 1 0, ,( ) iΩn
+( ) ∆t( )∆t–{ } ,expsin=

A– n, t1( ) α↑ θn 1 0, ,( ) iΩn
–( ) ∆t( )∆t–{ }expcos=

B+ n 1–, t1( )

=  iα↓ θn 1 1 0, ,–( ) iΩn 1–
+( ) ∆t( )∆t–{ } ,expcos

B– n 1–, t1( )

=  i– α↓ θn 1 1 0, ,–( ) iΩn 1–
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2 t( ) χ t( )n ∆–
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The amplitudes A and B for arbitrary time tj , j = 1, 2, …,
M are calculated using the recurrence relations

(13a)

(13b)

Expressions for  are obtained from Eqs. (13) by
changing A  B, and n  n – 1, n > 0 on both sides
of the equalities. To solve the recurrence relations for
times t2, …, tM, we use the initial conditions for time t1
in the form of Eqs. (11) and (12).

After the passage through the second microwave
region, the state vector of the system acquires the form

(14)

where

(15a)

(15b)

The coefficients β in Eq. (15) [as well as α in Eq. (2)]
are determined by the Rabi frequency Ω(R) of the atom
in the classical resonance field and atom–field interac-
tion time τ2 as

For the sequence of monokinetic atoms, we set β↑ =
β↓ = α↑ = α↓ = 2–1/2. In the presence of the spread of
velocities near the average value v 0, these parameters
acquire the values β↑ = α↑ = cos(πv 0/4v) and β↓ = α↓ =
sin(πv 0/4v), where v  is the velocity of a given atom.

The probabilities of detecting atoms leaving the sec-
ond microwave region R2 in the upper and lower states

are given by P↑ =  and P↓ = ,
respectively. According to von Neumann’s postulate,
the detection of the atom in the upper (↑ ) or lower (↓ )
state projects the system state onto the state

(16a)

or

(16b)

The appearance of reduced states (16) means that the
detection (measurement) of the atom in a certain state
results in the disentanglement of the atom–field system.
We considered the case where the detection of the states

A+ n, t j( ) iΩn
+( ) j∆t( )∆t–{ }exp=

× A+ n, t j 1–( ) θn j j 1–, ,cos A– n, t j 1–( ) θn j j 1–, ,sin+[ ] ,

A– n, t j( ) iΩn
–( ) j∆t( )∆t–{ }exp=

× A– + n, t j 1–( ) θn j j 1–, ,sin A– n, t j 1–( ) θn j j 1–, ,cos+[ ] .

Â± n 1–,

Ψ| 〉 c↑ n ↑ n,| 〉 c↓ n ↓ n,| 〉+[ ] ,
n 0=

∞

∑=

c↑ n iβ↑ F↓ n β↓ F↑ n,+=

c↓ n β↓ F↓ n iβ↑ F↑ n.+=

β↓ Ω R( )τ2/2( ), β↑sin Ω R( )τ2/2( ).cos≡ ≡

c↑ n
2

n 0=
∞∑ c↓ n

2

n 0=
∞∑

Ψ red ↑,( )| 〉 c↑ n ↑ n| 〉/ P↑

n 0=

∞

∑=

Ψ red ↓,( )| 〉 c↓ n ↓ n| 〉/ P↓ .
n 0=

∞

∑=
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of the atoms leaving the cavity is random. This process
was simulated as follows. Let the realization ξN of the
uniformly distributed random variable ξ ∈  [0, 1] corre-
spond to the Nth atom passing the path (R1) – (C) – (R2).
Then, the atom is detected in the excited state if ξN < P↑.
The inverse condition ξN ≥ P↑ means the detection of
the atom in the lower energy state, because P↑ + P↓ = 1.
The distribution of the number of photons in the cavity
due to measurement acquires the form

(17)

and is equal to |c↑n|2/P↑ and |c↓n|2/P↓ for α = ↑  and α = ↓ ,
respectively. The field state characterized by the ampli-

tude bn(t0) = c↑n/  or bn(t0) = c↓n/  realized for a
certain measurement outcome is the initial condition
for the evolution of the system upon the passage of the
next atom.

Using Eqs. (7)–(17), we numerically calculate the
distribution of photons in the cavity, fluctuations in the
number of photons, and the populations of the excited
states of the atoms leaving the cavity. The initial state
of the field in the cavity (before the appearance of
atoms in it) is taken in the form of the pure coherent

state with the coefficients bn(t0) = αn  of the
expansion in the Fock basis. The systematic calcula-
tions show that the effect associated with the spatial
dependence of the coupling constants of the moving
atom with the field is fundamentally important for the
formation of the field and the results of the quantum
nondemolition measurement.

Figure 2 shows the dynamics of the distribution of
the average number of photons and the field Fano factor
F = 〈(∆n)2〉/〈n〉  that are calculated with allowance for
the spatial dependence of the field with the parameters
of the system taken from [2, 3]. Comparison between
Figs. 2a and 2b shows that a small change (≈2%) in the
velocity of the atoms leads to a qualitative change in the
dynamics of the variation in the field state in the cavity.
For v  = 295 m/s (Fig. 2a) under stationary conditions
(N  ∞), the field state is close to the Fock state |1〉
with F ! 1, whereas for v  = 295 + 6.5 m/s (Fig. 2b), the
stationary field approaches the vacuum field with 〈n〉  !
1 and F = 1 (quasi-dissipation or “cancellation” of the
field). Comparison between Figs. 2b and 2c shows that
quantum nondemolition measurement is very sensitive
to changes in the velocities of atoms. Indeed, a change
in v  by 0.1 m/s leads to qualitatively different dynamics
of the field: only slight squeezing of the field (F ≈ 1)
upon a slight change in the initial average number of
photons is present.

The calculations demonstrate that the state of the
field depends qualitatively on the average number of
photons 〈n0〉  of the initial coherent field. Figure 2d
shows the field dynamics for the same system parame-
ters as for Fig. 2a but with another 〈n0〉  value. Compar-
ison between these figures shows that, in contrast to a

P red α,( ) n( ) n α, Ψ red α,( )〈 | 〉 2
=

P↑ P↓

e α 2/2– / n!
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Fig. 2. (Squares) Average number of photons 〈n〉  in the cavity and (points) the Fano factor vs. the number N of atoms passing through
the cavity in random measurement of atomic states. The initial field state in the cavity is coherent with 〈n0〉  = (a–c) 1 and (d) 4. The
velocity of the centers of mass of the atoms is v  = (a, d) 295, (b) 295 + 6.5, and (c) 295 + 6.4 m/s; the distance is L = 9 cm; the
atomic-transition frequency is ωA = 3.21 × 1011 s–1; the atom–field coupling constant is g0 = 1.57 × 105 s–1; the detuning of the

atomic-transition frequency from the resonance frequency is ∆ = –105g0; the nonlinearity constant is χ0 ≡ χ(t = L/2v) = 2.465 ×
104 s–1; and the cavity waist is w0 = 0.596 cm.
The Fock state for 〈n0〉  = 1 (Fig. 2a), a state close to the
initial state even for N ~ 105, is present for 〈n0〉  = 4
(Fig. 2d).

The system is very sensitive to changes in the veloc-
ity v  (sensitive ~10–5 cm/s), detuning ∆ (~102 s–1), the
atomic free path L (~10–7 cm), and the coupling con-
stant value g0 (~10–4 s–1). This sensitivity can be
reduced only by decreasing the detuning of ∆ under
conditions (1). For the system under consideration,
such a decrease in sensitivity to the indicated parame-
ters cannot exceed ~103.

Calculations performed for the same parameters of
the system, but disregarding the dependence of the
atom–field coupling constants on the position of the
atom in the cavity, give qualitatively different dynamics
of the field in each case. In particular, for the case
shown in Fig. 2a, disregard for the motion of the center
of mass results in the state of the electromagnetic vac-
uum in the cavity (quasi-dissipation).

The above numerical simulation of quantum non-
demolition measurement was performed in the approx-
imation of a strongly collimated monokinetic flow of
atoms passing through the cavity. The use of the mono-
kinetic sequence of atoms is desired in experiments in
the Ramsey scheme, because the visibility of the inter-
ference pattern is improved under these conditions. The
numerical simulation of quantum nondemolition mea-
surement with allowance for a random (with a Gaussian
distribution) spread of atomic velocities shows that,
already at a spread of 1%, the probabilities P↑ and P↓ of
detecting atoms in the upper and lower states, respec-
tively, become random variables in a range of [0, 1]
with the average values equal to 0.5. This behavior
implies that the Ramsey interference pattern is absent
and quantum nondemolition measurement is impossi-
JETP LETTERS      Vol. 82      No. 11      2005
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ble. A clear interference pattern is achieved only when
the atomic velocity spread is less than 10–4%.

In conclusion, we note that the inclusion of the spa-
tial structure of the field interacting with moving atoms
is necessary when analyzing schemes [8–11], which are
similar to the scheme considered above and are used for
the engineering of quantum states of light.

This work was supported in part by the Council of
the President of the Russian Federation for the Support
of Young Scientists and Leading Scientific Schools
(project no. NSh-1512.2003.2 for Oraevsky’s scientific
school).
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Several decades since the work E. P. Velikhov, Zh. Éksp. Teor. Fiz. 36, 1398 (1959) [Sov. Phys. JETP 9, 995
(1959)] [1] concerning magnetorotational instability was published, great astrophysical interest has been man-
ifested in the mechanism of generating a magnetic field in a rotating well-conducting medium in view of diffi-
culties in the development of the theory of anomalous matter transfer in accretion discs both upon the formation
of stars and planets from gaseous conglomerations and upon the formation of a galactic core with a black hole
at the center {S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991) [2] and G. Ruediger and R. Holler-
bach, The Magnetic Universe (Wiley–VCH, Weinheim, 2004) [3]}. Attempts to experimentally observe the
magnetorotational instability were successful only for spherical geometry in experiments initially devoted to
the verification of geomagnetic dynamo theory {D. R. Sisan et al., Phys. Rev. Lett. 93, 114502 (2004) [4]}. In
experiments with liquid sodium in the complete absence of temperature gradients and, therefore, convection,
which is very important for the conventional theory of the geomagnetic dynamo, the generation of the magnetic
field was obtained due to the development of the magnetorotational instability, which is usually ignored when
developing the theory of the origin of the Earth’s magnetic field. The results obtained in this work enable one
to develop a theory of geomagnetic dynamo that is primarily based on the magnetorotational instability, which
provides a new insight into not only the origin of the Earth’s magnetic field but its evolution in time. © 2005
Pleiades Publishing, Inc.

PACS numbers: 47.27.–i, 91.25.–r
As early as in the 1940s, physicists determined three
main conditions necessary for the generation of the
Earth’s magnetic field. The first condition is the pres-
ence of a large volume of a well-conducting fluid, the
second condition is the existence of an energy source
maintaining the radial motion of this fluid (convection),
and the third condition is the rotation of the Earth. The
rotation of the Earth produces the Coriolis force that
deviates the fluid lifting in the liquid core of the Earth
such as this force twists ocean flows and tropical
storms. As a result, magnetic field lines frozen into the
fluid lifting due to convection are extended, which gen-
erally results in an increase in the magnetic field, i.e., in
the generation of magnetic dynamo. Since it is difficult
to experimentally verify the geomagnetic dynamo con-
cept under laboratory conditions, extensive numerical
simulations, including the above three conditions, were
started on supercomputers in the beginning of the
1990s [5]. The relative success of the calculations was
evident, because the possibility of several inversions of
the Earth’s magnetic field was demonstrated. However,
these simulations did not reproduce the well-known
features of the structure of the Earth’s magnetic field
such as the existence of the spots of the magnetic field
intensities that correspond to two magnetic tubes con-
necting the north and south hemispheres of the Earth
through its core. Moreover, it appeared impossible to
reproduce a relatively fine structure of perturbations of
0021-3640/05/8211- $26.00 ©0690
the magnetic field [5]. These disadvantages appeared
because, first, for numerical schemes to be stable,
hyperdiffusion, i.e., the wavenumber dependence of the
transport coefficients, was introduced and, second, the
differential rotation effect was completely ignored.
This means that the angular velocity of the liquid-core
rotation was independent of the coordinate. This inde-
pendence is generally a feature of the traditional con-
cept of the geomagnetic dynamo. It is interesting that,
in recent experiments with liquid sodium in the spheri-
cal geometry corresponding to the Earth’s geometry,
the generation of the fine structure of the magnetic field
similar to two magnetic tubes (the E1 mode [4]) was
detected. In addition to this mode, other modes that pro-
vide explanation of finer features of the structure of the
Earth’s magnetic field were generated. In systems
where liquid metal sodium is used, the temperature is
maintained constant and, therefore, thermal convection
is completely absent as a cause of generating the mag-
netic field. For this reason, the appearance of the indi-
cated modes of the magnetic field was interpreted as the
development of the magnetorotational instability [4].

According to the accepted concepts of the magne-
torotational instability, which has been already widely
studied for astrophysical applications [3], the magne-
torotational instability arises due to differential rota-
tion, when the radius dependence of the azimuthal
 2005 Pleiades Publishing, Inc.
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velocity of the rotation of the fluid satisfies the condi-
tions

(1)

It is assumed that the differential rotation, which is
responsible for another, unconventional mechanism of
generating the magnetic field, in calculations per-
formed in [5], was inappropriately included.

Let us represent the basic concepts of the generation
and evolution of the Earth’s magnetic field with allow-
ance for the magnetorotational instability. The liquid
and solid cores of the Earth are almost ideal conductors
(the magnetic Reynolds number is about 10 000). It is
well known that the conducting fluid between two cyl-
inders rotating with different velocities is unstable both
in the axial magnetic field Bz and without the magnetic
field, B = 0, under certain conditions. Figure 1 shows
the stability regions for the system for an inviscid, ide-
ally conducting fluid [1]:

Rayleigh criterion (2)

Velikhov criterion (3)

The effect of the viscosity and finite conductivity on
the flow stability conditions is negligible when the
characteristic times are much smaller than the diffusion
times:

(4)

(5)

Here, L is the characteristic size of the system, ρ is the
density of the fluid, ν is its viscosity, and η is the mag-
netic diffusion coefficient. Such conditions are usually
satisfied in astrophysics and can be reached in engi-
neering devices with liquid metals (Na, Ga). If the gap
between the rotating cylinders is narrow (R2 – R1 ! R),
the following condition is sufficient for the suppression
of the instability:

(6)

where Ω1 and Ω2 are the angular velocities of the inner
and outer cylinders, respectively; Ω0 = Ω(R0), and R0 =
(R2 – R1)/2.

Thus, the key conclusion of the magnetorotational
instability theory is that the generation of the magnetic
field is possible in the presence of the differential rota-
tion; i.e., when the rotation of the fluid differs from the
rotation of a rigid body. When processes in the liquid
core of the Earth are considered, convection in the grav-
itational field must conserve the angular momentum,
i.e., maintain the differential rotation. Energy maintain-
ing convection is ensured due both to a temperature gra-
dient in the liquid core (see Fig. 2) and to the heat
release in chemical reactions. A higher temperature in

dΩ r( )
dr

--------------- 0 local condition( ) or<

Ω R2( ) Ω R1( ) for R2 R1.><

B 0=( ): Ω1R1
2 Ω2R2

2;=

Bz 0≠( ): Ω1 Ω2.=

BzL/η ρ  @ 1,

BzL/ν ρ @ 1.

Bz
2 ρΩ0 Ω1 Ω2–( ) R2

2 R1
2–( ),≥
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the solid core of the Earth is a consequence of the heat
capture occurring when the Earth was formed. An addi-
tional source of the temperature difference is the
release of the latent melting heat when iron is crystal-
lized on the solid core of the Earth [6]. Moreover,
lighter components such as sulfides and oxides of iron
emitted from the surface of the solid core of the Earth
promote an increase in convection.

Any theory of the origin of the magnetic dynamo of
the Earth is developed under the assumption that the
magnetic field was negligibly small at a certain time
and the entire Earth rotated as a whole with a constant
angular velocity (dΩ/dR = 0). When the initial sub-
stance was melted, convection arising in the geomag-
netic field results in the differential rotation dΩ/dR < 0,
because the higher angular momentum corresponding
to the periphery is transferred toward the center,
whereas the lower angular momentum is transferred
toward the periphery. As a result, as follows from
numerical calculations and is corroborated by the first
experiments, magnetorotational instability must be
excited [3, 4]. This instability likely gives rise to the
appearance of a structure with m = 2 at the boundary
between the mantle and liquid outer core (see Fig. 2), as
is shown by numerous measurements during the past

Fig. 1. Regions of (1) unconditional instability, (2, 3) stabil-
ity without the field Bz, and (3) stability in the field Bz.

Fig. 2. Earth’s structure (scheme).

)



 

692

        

VELIKHOV

             
(a)

(b)

(c)

(d)

(e)

0 300 400 600 800 1000

+

–
–

+
+ +

–
–

– ––

–

++
+ +

+ +

–
–

Fig. 3. Schematic representation of the evolution of the magnetic field in (a) 1590, (b) 1690, (c) 1790, (d) 1890, and (e) 1990 accord-
ing to the results recalculated to the boundary of the liquid core of the Earth. For more details, see [7].
five centuries (see Fig. 3). As follows from Fig. 3, the
intensity and distribution of magnetic fields vary quite
rapidly in time.

It is surprising that, as follows from paleomagnetic
measurements, the magnetic structure exists for bil-
lions of years, while Joule dissipation and turbulent dif-
fusion would destroy this structure in 10000 yr. In addi-

Fig. 4. Scheme of the extension of the central region of the
magnetic tube and the formation of closed rings.
tion to this problem, there are two problems. First,
according to the modern measurements, the fraction of
the differential rotation in the core does not exceed 0.5°
per year [8] (see also previous work [9]). Second,
according to the paleomagnetic measurements for the
last 120 × 106 years, the magnetic structure exists for
about 100000 yr and then disappears for about
10000 yr.

The smallness of the differential rotation at present
can be explained as follows. Magnetic force tubes aris-
ing due to magnetorotational instability pass through
regions with different radii. Since convection tends to
recover differential rotation, higher angular velocities
near the solid core of the Earth azimuthally extend the
force-tube parts located nearer to the center (Fig. 4).
Thus, the differential rotation is damped.

The maintenance of the magnetic structure can be
attributed to the same mechanism. Since the volume of
a force tube is conserved when this tube is extended
JETP LETTERS      Vol. 82      No. 11      2005
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The Earth

Fig. 5. Magnetic field lines on the solar surface.
(the substance of the liquid outer core is incompress-
ible), its cross section decreases, the magnetic flux is
conserved, the field increases proportionally to the
length, and the magnetic energy increases correspond-
ingly. The dissipation of the magnetic energy occurs
rapidly likely due to the reconnection of the fields in the
neighboring tubes passing towards each other. After
reconnection, the process continues. The kinetic energy
of the rotation is transferred to the magnetic energy
and, then, through reconnection, to turbulent pulsa-
tions.

This process is apparently observed on the surface
of the outer core. In particular, circular tubes formed
due to reconnection can emerge to the surface due to
convection near the equatorial section plane (Fig. 3). A
similar pattern also exists on the solar surface (Fig. 5).

The described motions in the liquid core are mani-
fested on the ground in large-scale variations of the
magnetic field. The evolution of these variations is
studied using paleomagnetic recording that detects the
external magnetic field in the remanent magnetization
of ferromagnetic materials when they were crystallized.
For the last several millions of years, the geomagnetic
field (dipole in the first approximation) irregularly
changed its polarity to the opposite polarity two or three
times per million years. Fluctuations of the magnetic
field (excursions) with the conservation of the sign of
the dipole occur much more frequently with character-
istic times of about 103–104 yr [10, 11].

Thus, the disruptions of the magnetic field occur in
an absolutely different time scale. It is possible that the
balance between the maintenance of the field and its
dissipation is gradually broken and transitions occur
between two turbulent states—a magnetic state main-
Vol. 82      No. 11      2005
taining the solid-state rotation and a convective state
maintaining the differential rotation.

Recently, Shalimov [12] attempted to explain the
violation of the equilibrium by the nonlinear interaction
between the modes of the geomagnetic field. He found
that, being written in the rotating coordinate system, the
MHD equations with allowance for viscosity and large
but finite conductivity can be reduced to a well-known
system of equations for the Lorentz strange attractor.
The first and second harmonics were used to describe
the azimuth-dependent part of the magnetic field.
Although the problem was simplified and solved for a
plane layer, the second harmonic can be associated with
the m = 2 mode observed in the form of two tubes (see
above). Under certain conditions, the nonlinear interac-
tion between modes results in stochastization, which is
manifested as aperiodic azimuthal variations in the
amplitude of the first harmonic. The characteristic time
of the amplitude variation (about 104 yr) coincides with
the characteristic time of the “digression” of the geo-
magnetic field.

It can be assumed that nonlinear processes finally
result in the failure of the mechanism of the field main-
tenance for a time sufficient for its dissipation. As a
result, the Earth behaves as though it returns to the ini-
tial state, where the magnetic field was absent, and the
magnetic dynamo mechanism is again activated some
time later; however, the magnetic field can have the
opposite sign in this case.

Magnetic peristaltic. Let us try to describe the tran-
sitions from the rigid-body rotation (magnetic state) to
the differential rotation (convection) by the system of
two differential equations that relate the frequency vari-
ation rate for the differential rotation to the magnetic
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Fig. 6. (Left panel) Phase trajectory on the (x, y) parameter plane that is swept in time and (right panel) y(t) in the same time interval.
The time interval is normalized to the total calculation time.
energy and to an increase in the magnetic energy due to
the development of magnetorotational instability. For a
particular set of parameters, the equations have the
form

(7)

(8)

Here, the variable x(t) corresponds to the energy of the
magnetic field, which increases in time due to the first
term on the right-hand side of Eq. (7), which generally
describes the growth rate of the magnetorotational
instability. The same term presents the proportionality
of the energy x(t) to the quantity y(t) that characterizes
the difference of the angular velocity of the solid core
of the Earth from the angular velocity of the liquid
outer core. The quantity y(t) corresponds to the differ-
ential rotation necessary for the maintenance of the
magnetorotational instability. Indeed, when y(t) > 0, the
angular velocity near the solid core is higher than that
at the periphery of the liquid core and the magnetic
energy increases. In Eq. (7), the quantity a is a certain
constant and constants b and c characterize the mag-
netic-energy dissipation that is associated both with the
diffusion of the magnetic field and with the nonlinear
saturation of instability. Equation (8) describes the time
dependence of y(t). The first term corresponds to the
convection maintaining the differential rotation,
whereas the second term proportional to the magnetic
energy tends to destroy the differential rotation,
because the magnetorotational instability in the nonlin-
ear regime must result in the rotation with a constant
angular velocity.

Figure 6 shows the three-dimensional time sweep of
the magnetic-energy dependence of the relative detun-
ing of the solid core rotation frequency y(t) in arbitrary
units for the constants a = 0.8, b = 0.01, c = 0.08, d = 1,
e = 2, and f = 6. The evolution of the system has the

x ' t( ) a y t( ) bx t( )– c–( )x t( ),=

y ' t( ) f d ex t( )–( )y t( ).=
form of weakly damping oscillations around the limit-
ing point. The quantity y(t) characterizing the differen-
tial rotation is periodically near zero (rigid-body rota-
tion). In this case, the energy of the magnetic field drops
rapidly due to the diffusion of the magnetic field. We
note that the phase-trajectory sections parallel to the x
axis are close to each other, and thereby the system can
transit from one trajectory to another e.g., due, to the
nonlinear instabilities discussed in [12]. Thus, the sys-
tem can walk through the trajectories, which results, in
particular, in the irregularity of the period, because the
period of the motion in a trajectory farther from the lim-
iting point is longer than the period for a trajectory
closer to the limiting point. Moreover, if y ≈ 0, as is seen
from Eqs. (7) and (8), the phase curve can pass near the
instable stationary point (x = 0, y = 0). Near this point,
the energy of the magnetic field is low and fluctuations
can lead to the reversal of the sign of the magnetic field,
and, then, the phase portrait shown in Fig. 6 repeats
with another direction of the magnetic field.

The development of the failures of the magnetic
field can likely be described in such a way. We empha-
size that the developed rough description must evi-
dently be refined by 3D calculations on supercomput-
ers, which must now take into account the formation of
differential rotation as a source of magnetorotational
instability. This will allow the description of the fine
structure of the Earth’s magnetic field but will avoid the
assumption of hyperdiffusion and overestimation of the
magnetic Prandtl number by several orders of magni-
tude.
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X-ray Detected Magnetic Resonance at the Fe K-Edge in YIG: 
Forced Precession of Magnetically Polarized Orbital 
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X-ray detected magnetic resonance (XDMR) has been measured for the first time on exciting the Fe K-edge in
a high-quality yttrium iron garnet film epitaxially grown on a gadolinium gallium garnet substrate. This chal-
lenging experiment required resonant pumping of yttrium iron garnet at high microwave power, i.e., in the
foldover regime. X-ray magnetic circular dichroism (XMCD) was used to probe the change in the longitudinal
component of the magnetization MZ induced by the precession of magnetic moments located at the iron sites.
Since XMCD at the Fe K-edge refers mostly to the equilibrium contribution of magnetically polarized 4p
orbital components, XDMR at the Fe K-edge should reflect the precessional dynamics of the latter orbital
moments. From the measured precession angle, we show that there is no dynamical quenching of the polarized
orbital components at the iron sites in yttrium iron garnet. © 2005 Pleiades Publishing, Inc.

PACS numbers: 75.25.+z, 76.50.+g, 78.20.Ls, 78.47.+p
X-ray magnetic circular dichroism (XMCD) [1, 2]
has become a well-established tool for studying orbital
magnetism in thin films and metallic multilayers. The
element/edge selectivity of XMCD proved itself to be
very helpful in studying induced magnetism [3],
whereas sum rules at spin–orbit split edges made it pos-
sible to resolve the contributions of spin and orbital
moments [4–6]. We show below that XMCD can also
be used to probe the resonant precession of the magne-
tization caused by a strong microwave pump signal.
X-ray detected magnetic resonance (XDMR) is then a
peculiar transposition into the x-ray regime of optically
detected magnetic resonance (ODMR) [7–9].

Very recently, precessional motions of elemental
spin moments were measured by Bailey et al. [10], who
recorded time-resolved x-ray differential circular
reflectivity spectra at the L-edges of Fe and Ni in per-
malloy. This could be an alternative approach to the
same physics even though time-domain measurements
are still restricted to low-frequency resonances. At the
ESRF [11], efforts were focused on detecting XDMR in
the frequency domain: beamline ID12, which is
equipped with helical undulators producing intense
beams of circularly polarized x-rays, now has the capa-
bility to record XDMR spectra under high microwave
pumping power at frequencies ranging from 1 to

¶ The text was submitted by the authors in English.
0021-3640/05/8211- $26.00 0696
18 GHz. The XDMR experiment reported below was
performed in the microwave X-Band, slightly below
10 GHz. The energy range (1.8–18 keV) covered by
beamline ID12 allows the ESRF users to access to the
x-ray absorption K-edges of all 3d transition metals, the
L-edges of all rare-earths, and all 4d and 5d transition
elements.

Whereas the Landau–Lifshitz–Gilbert (LLG) equa-
tion is classically used to describe the precession of the
effective magnetization in conventional ferromagnetic
resonance (FMR) [12], we proposed elsewhere [13] to
use it to describe the precession of local magnetic
moments. A distinction was made between two config-
urations: in the longitudinal geometry illustrated with
Fig. 1, the wavevector kX(||) of the incident, circularly
polarized x-rays is parallel to the static bias field H0,
whereas in a transverse geometry the wavevector kX(⊥ )
would be perpendicular to H0. It was first recognized by
Bloembergen and Damon [14] that the longitudinal
geometry was much less sensitive to magnon–magnon
scattering processes and provided a higher saturation
limit with respect to the incident microwave power.
Experimentally, the longitudinal geometry benefits
from the major simplification that there is no need for
fast x-ray detectors, because the XDMR signal is
expected to be proportional to the microwave power,
which can be conveniently amplitude-modulated at low
frequency. In a transverse geometry, the precession of
© 2005 Pleiades Publishing, Inc.
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the magnetic moments induces a XMCD signal oscil-
lating at the microwave resonance frequency, and the
detection of such a fast modulation of the x-ray absorp-
tion cross-section requires more sophisticated electron-
ics still under testing. In both configurations, the
XMCD/XDMR signals are systematically recorded in
the x-ray fluorescence excitation mode.

The key information which we want to extract from
a XDMR experiment is the precession angle of the local
magnetic moments in the uniform mode regime. This
led us to solve the polar LLG equations of motion in the
true precession frame in which M(θ1, φ1) deviates from
its equilibrium position θ1 = 0 when a microwave field
h1 perpendicular to H0 is switched on. As illustrated
with Fig. 1, the sample, i.e., an yttrium iron garnet
(YIG) film, was slightly tilted, with the consequence
that the direction of the equilibrium magnetization
Meq( , ) did not coincide with the direction of H0:

Euler angles (α0 = , β0 = , γ0 = 0) describe the
rotation transforming the laboratory frame into the pre-
cession frame of Fig. 1. Let us restrict our analysis to
steady state solutions of the LLG equations satisfying
the conditions dθ1/dt = 0 and φ1 = ωt + . Therefore,

the precession angle  should not depend on the azi-
muth angle φ1, which is time-dependent. For a micro-
wave field h1cp circularly polarized in the (X ', Y ') plane,
one obtains [13]

(1)

in which γ denotes the gyromagnetic ratio. We also
introduced the simplifying notations

(2)

(3)

in which  is the sum over all relevant terms of the
spherical-harmonics expansion of FAD(θ1, φ1) which
regroups the magnetic anisotropy free energy (FA) plus
the demagnetizing free energy (FD). Small harmonic
distortions of the precession trajectories should be
expected due to the neglected terms ∆ . Such
distortions are a source for inhomogeneous FMR line
broadening and justify the addition of a frequency-
independent damping term to  that should increase
with the tilt angle (βN). It should remain negligible
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whenever  = 0 and  ≡ . Using standard nota-
tions for a uniaxial film,

whereas    = –µ0αω.Under such conditions,
equation (1) becomes

(4)

This is precisely the result derived by Gnatzig et al. for
ODMR [9]. In practice, cos  or cos  can be
extracted numerically either from (1) or (4): the spec-
tral dependence of the precession angles is thus charac-
terized by non-Lorentzian foldover lineshapes [9], as
predicted by Weiss [15] in cases of large shape or crys-
talline magnetic anisotropies.

In the XDMR experiment described below, XMCD
is used to probe the small changes in the magnetization
caused by the precession of local magnetic moments
around the effective field:

(5)

In the longitudinal geometry of Fig. 1, the differential
x-ray absorption cross section ∆σ should exhibit a
nonoscillating component given by

(6)

Combined measurements of XDMR and XMCD
cross sections in the same geometry should thus allow
us to determine the precession angle  of the mag-
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x-rays

eq

eq



698 GOULON et al.
Fig. 2. XDMR settings: (a) resonant pumping near the critical foldover jump; (b) XMCD probe.

Fe K-edge
netic moments at the specific site of the x-ray absorbing
element.

Our sample was a thin film of YIG (8.9 µm thick)
grown by liquid phase epitaxy along the (111) direction
of a gadolinium gallium garnet substrate (film no. 520).
As a preamble to any XDMR experiment, conventional
(transverse) FMR spectra had to be recorded. The
ESRF microwave bridge is equipped with a wideband,
low-noise generator (Anritsu MG-3692), and its master
piece is a fully integrated phase discriminator (Anaren
20758). The microwave power (≤32 dBm) delivered by
a solid-state low noise amplifier (Miteq AMF-4B) was
high enough to efficiently pump our high-quality YIG
film. For XDMR, the microwave power was square-
modulated using a fast switch (SPST: Miteq 124796:
80 dB isolation; rise/decay times ≤2 ns). The sample
(2 × 2 mm2) was glued on a low-loss sapphire rod
(∅ 4 mm) terminated by a flat surface slightly tilted
from the rod axis. This sample holder was inserted in a
rectangular TE102 X-band cavity (Fcav ≈ 9450 MHz;
QL ≤ 4300) which was itself located in a high-vacuum,
nonmagnetic stainless steel chamber connected to the
beamline. What makes this cavity nonstandard with
respect to commercial electron paramagnetic resonance
cavities is (i) the need to drill a hole (∅ 3 mm) to let the
x-ray beam propagate inside the cavity along the axis of
the external modulation coils and (ii) the presence at the
bottom of the cavity of an x-ray detector collecting the
x-ray fluorescence photons in as large a solid angle as
possible. This detector is a PNN+ Si photodiode opti-
mized by Canberra-Eurisys to keep a low capacitance
(≤11 pF) while offering a large active area. It had to be
carefully shielded and protected by an ultrathin Be win-
dow in order to prevent any direct detection of micro-
waves. Much attention was also given to avoiding leaks
of radiated microwaves outside the cavity: this led us to
add another thin Be window to mask the coupling hole
of the incoming x-rays. The detector readout electron-
ics combined a home-made, magnetically shielded,
ultralow-noise preamplifier with a multichannel Vector
Spectrum Analyzer (Agilent VSA 89600-S) exploiting
23-bits digitizers. The dynamic range of our detector
was checked to exceed 126 dBc.

All FMR spectra recorded with the magnetic field
H0 perpendicular to the film plane exhibited a rich pat-
tern of narrow lines (∆Hpp ≤ 0.5 Oe) due to magneto-
static modes. However, even at very low incident
microwave power, the resonance of the uniform mode
vanished due to a very high radiation damping effect.
To recover a strong signal, we used two tricks: (i) the
cavity was overcoupled (QL ≈ 800) and (ii) the micro-
wave frequency was offset by up to 50 MHz with
respect to the cavity resonance frequency. As expected,
the linewidth of the uniform mode was found to
increase quite significantly as a function of the tilt angle
βN between the normal of the sample and the direction
of H0. For a sample normally magnetized, the linewidth
JETP LETTERS      Vol. 82      No. 11      2005
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Fig. 3. XDMR signal as low-frequency sideband of FRX.
∆Hfwhm(βN = 0°) = ∆Hpp was only 1.13 Oe. ∆H
increased to 1.21 Oe for βN = 6°; 2.16 Oe for βN = 16°;
and finally 3.64 Oe for βN = 30°. Even though other
extrinsic contributions cannot be excluded, much of
this inhomogeneous broadening may be due to highly
distorted precession trajectories. We also carefully
measured the linear dependence of the linewidth as a
function of the microwave frequency over the restricted
range (8.2–10.5 GHz) in order to determine the intrin-
sic linewidth from the slope: 0.04 Oe/GHz. This figure
is nearly identical to the value derived by Charbois [16]
for another YIG film prepared under fairly similar con-
ditions. It may be converted into a Gilbert damping fac-
tor of about 6.0 × 10–5, which confirms the high quality
of the YIG film prepared in Brest.

The XDMR experiment was carried out with a film
inclined at βN = 30° in order to prevent the x-ray fluo-
rescence from being reabsorbed. The microwave fre-
quency (9445.0 MHz) was offset by only 5 MHz with
respect to the resonance of the overcoupled cavity. The
incident microwave power was increased up to 30 dBm
and was large enough to saturate the transverse FMR
spectrum but not the ∆MZ spectrum [16]: the angular
foldover regime was unambiguously reached. Never-
theless, Gnatzig et al. [9] and Charbois [16] empha-
sized that the maximum precession angle θmax is never
reached with amplitude-modulated microwaves: what

3

JETP LETTERS      Vol. 82      No. 11      2005
is detected experimentally is at best a foldover critical
jump which occurs at θcritical < θmax. As illustrated with
Fig. 2a, the resonance field was scanned down to the
onset of the critical foldover jump observed at H0 =
3980.6 Oe. As explained in Fig. 2b, the energy of the
incident x-rays was tuned to 7113.74 eV, which corre-
sponds to the maximum of the XMCD signal in the pre-
peak of the x-ray Absorption Near Edge (XANES)
spectrum. Since the ESRF storage ring was run in the
2 × 1/3 filling mode, the incident x-rays were modu-
lated at the macrobunch repetition frequency (FRX =
710.084 kHz) and the microwave modulation at Fm =
35.5042 kHz was triggered using the RF master clock.
Spectra collection was performed in the synchronous
time-averaged mode of the VSA using a triggering sig-
nal at Fm.

The XDMR signal reproduced in Fig. 3 is one of the
modulation sidebands expected at 710.084 ±
35.5042 kHz. The signal at FRX was used only for mon-
itoring the x-ray fluorescence intensity and data renor-
malization. Let us stress that the noise floor in Fig. 3 is
well above the intrinsic detector noise: it reflects mostly
the statistical (white) noise of the x-ray source. The
magnitude of the XDMR signal peaks about 20 dBV
above the noise floor. Figure 4 displays the real and
imaginary parts of the spectrum: the XDMR signal, just
as XMCD, gets nicely inverted when the undulator
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Fig. 4. Inverted XDMR on switching the x-ray helicity from left (phase (+)) to right (phase (–)).
phase is inverted, i.e., when the helicity of the incident
x-ray beam is changed from left to right. There is a
minor change in intensity which strictly reproduces the
change in the fluorescence intensity monitored by the
peak at FRX. After proper renormalization with respect

Fig. 5. Simulated angular foldover for the precession of the
effective spins in YIG.
to the edge jump, we obtained a small differential cross-
section: ∆σXDMR ≈ 1.34 × 10–5 which, according to (6),
would yield a critical angle of  ≈ 3.5° for the pro-
cessing moments at the Fe sites.

The differential form of the XMCD sum rules
derived by Ebert et al. [6] for electric dipole 1s  4p
(E1) transitions shows that the effective operators
describing XMCD at a K-edge is purely of an orbital
nature. According to Carra et al. [17], this should still
hold true for the weak contribution of electric quadru-
pole 1s  3d (E2) transitions in the pre-edge. The
effective operator accounting for XMCD at the Fe

K-edge could then be written as [〈Lz〉4p + e〈Lz〉3d],

the two terms reflecting the respective contributions of
E1 and E2 transitions. Fe K-edge XDMR thus produces
clear evidence of the forced precession of orbital polar-
ization components.

It was desirable to determine the precession angle of
the effective moments responsible for FMR as well: in
YIG, those are essentially the spin moments of the fer-
rimagnetically coupled iron sublattices with geff =
1.997. The main difficulty in exploiting (1) or (4) is to
determine h1cp. Following standard textbooks, e.g.,
[18], h1cp in a TE102 cavity should be given by

where L is the cavity length, 2a is the cutoff wave-
length, and |Γ|2 is the magnitude of the reflection coef-
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ficient measured with a vector network analyzer. In
order to account for the frequency offset, we used an
effective QL yielding h1cp ≈ 371 mOe for Pinc = 1 W.
This result had to be corrected for the strong radiation
damping effect in YIG. From an independent determi-
nation of the line broadening (∆HRD = 0.68 Oe), and
following the same correction procedure as discussed
by Charbois [16], we finally obtained h1cp ≈ 335 mOe.
Figure 5 reproduces the angular foldover lineshape
simulated according to (1) if one adds to the Gilbert
damping term another term accounting for the inhomo-
geneous linewidth (∆Hinh = 2.6 Oe). Note that the criti-
cal precession angle θcrit = 6.8° is approximately one
half of θmax. Let us emphasize that the precession angle

 deduced from XDMR for the orbital polarization

components is only one half of the critical precession
angle θcrit of the effective spin moment. Since the elec-
tron gyromagnetic ratios for orbital and spin moments
are precisely in a 1 : 2 ratio, our XDMR result proves
that, in YIG, there is no dynamical quenching of the
magnetic orbital polarization components: spin–orbit
coupling dominates orbit–lattice interactions in Kittel’s
picture of FMR.

We greatly appreciate the support of Y. Petroff
(ESRF) and M.P. Klein (LBL, CA, United States) in the
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The effect of high pressures up to 70 GPa on single- and polycrystalline samples of yttrium iron garnet
Y3

57Fe5O12 is studied by Mössbauer absorption spectroscopy (for the 57Fe nucleus) in a diamond-anvil cell. It
is found that the hyperfine magnetic field Hhf at 57Fe nuclei vanishes abruptly at a pressure of 48 ± 2 GPa, which
indicates the transition of the crystal from the ferrimagnetic state to nonmagnetic one. The magnetic transition
is irreversible. When the pressure decreases, the magnetic state is not recovered and the garnet remains non-
magnetic until zero pressure. The behavior of the quadrupole splitting and isomer shift shows that, simulta-
neously with the magnetic transition, irreversible electron and possibly spin transitions occur with changes in
the local crystalline structure. The mechanisms of the magnetic collapse are discussed. © 2005 Pleiades Pub-
lishing, Inc.

PACS numbers: 61.50.K, 75.30.Et, 75.50.–y
1. INTRODUCTION

Yttrium ferrite Y3Fe5O12 with the garnet crystalline
structure is a well-known material with interesting
magnetic and resonance properties that determine its
wide application in radio- and microelectronics [1, 2].
A typical mineral with the garnet structure is
Ca3Al2(SiO3)4. Garnets belong to the hexaoctahedral

class of the isometric system, space group –Ia3d
[3]. Oxygen ions form a bcc lattice. The closest packing
of oxygen is violated and metal ions occupy three types

of crystallographic sites: octahedral a sites (  point

symmetry), tetrahedral d sites (  point symmetry), and
dodecahedral c sites (222 point symmetry). A unit cell
contains eight Y3Fe5O12 molecules. Large Y3+ ions
occupy dodecahedral coordination (sublattice {c}) and
Fe3+ iron ions are located at octa- and tetrahedral sites,
forming [a] and (d) magnetic sublattices, respectively.
The formula of iron garnet, including the distribution of
cations over the sublattices, has the form
{Y3}[Fe2](Fe3)O12.

Each iron ion at an a site has six nearest iron ions
at d sites (zad = 6), whereas an iron ion at a d site has
four nearest a iron ions (zda = 4). A strong indirect
exchange interaction (through oxygen) exists between
the Fe3+ ions in the a and d sublattices, which leads to
the antiparallel alignment of the magnetic moments of
Fe3+ ions at a and d sites with a Néel temperature of
about 555 K. The a–a and d–d exchange interactions
inside the a and d sublattices are one or two orders of

Oh
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3
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magnitude weaker than the intersublattice a–d inter-
action [4–6].

Under normal conditions, Y3Fe5O12 is an insulator
(with a resistivity of about 1010 Ω cm) with an optic
bandgap of about 3.2 eV [7]. The positive and negative
magnetoelectric effects were recently found in this gar-
net, and thereby this material may also be classified as
a multiferroic.

In this work, the magnetic and electronic properties
of Y3Fe5O12 single- and polycrystals at high pressures
up to 70 GPa are studied by Mössbauer absorption
spectroscopy (for the 57Fe nucleus) in cells with dia-
mond anvils.

2. EXPERIMENTAL PROCEDURE

Bulk Y3
57Fe5O12 single crystals, where iron was

enriched in the Fe-57 isotope to 96%, were grown from
solution in melt. In addition, quite “thick” single-crys-
tal films (with a thickness of 7 µm) of Y3

57Fe5O12 garnet
on a Gd3Ga5O12 substrate were prepared. For high-pres-
sure investigations, a Y3

57Fe5O12 single-crystal plate
50 × 50 × 7 µm in size was removed from the substrate
and placed into a high-pressure diamond-anvil cell. The
(111) basal plane of the single crystal was oriented per-
pendicularly to the gamma-ray beam. Polycrystalline
samples were obtained by grinding the single crystal in
an agate mortar.

The diameter of the working area of the diamond
anvils was about 300 µm, and the diameter of the hole
in the rhenium gasket, in which samples were placed,
© 2005 Pleiades Publishing, Inc.
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was near 100 µm. The working volume of the cell was
filled with a polyethyl siloxane fluid (PES-5) for the
creation of quasi-hydrostatic pressure. The pressure
was measured using the ruby fluorescence line. To this
end, in addition to a garnet sample, several ruby pieces
with a size of about 1 µm were placed into the cell at
various diameters from the center in order to estimate
the pressure gradient.

Mössbauer resonance absorption spectra from 57Fe
nuclei were measured at room temperature using a stan-
dard spectrometer operating in the constant-accelera-
tion regime, and the data were recorded on a PC. A spe-
cial “pointlike” 57Co(Rh) source with an activity of
10 mCi was at room temperature. In order to acquire a
reliable statistics, the accumulation time for one spec-
trum reached two weeks, which required high stability
of the equipment operation. The spectra were processed
by the software packages developed at the Shubnikov
Institute of Crystallography, Russian Academy of Sci-
ences.

3. PARAMETERS OF MÖSSBAUER SPECTRA
AT AMBIENT PRESSURE

At normal pressure, a Mössbauer spectrum from
57Fe nuclei in Y3Fe5O12 garnet at temperatures below TN
is split by the magnetic hyperfine interaction and con-
sists of two series of lines from iron ions in the a and d
sublattices (Fig. 1). The relative line intensities and
quadrupole shifts depend on the crystal orientation with
respect to the wavevector of the gamma-ray photons.
Additional splitting in the a sublattice (Fig. 1) arises
due to the different quadrupole shifts for Fe3+ ions at a
sites for which the electric-field gradient axis directed
along the [111] axis may acquire two values of angle
(0° and 54°44′) with respect to the easy magnetization
axis [111]. For d sites, where the electric-field gradient
axis is aligned with the [100] directions, this angle has
only one value 70°32′ and the line splitting of “quadru-
pole nature” in the d sublattice is absent (for more
details, see [7, 8]).

The ratio of the intensities of the lines of different
series is approximately equal to the ratio of the occupa-
tion numbers of a and d sites by iron ions and is 2 : 3
according to the cation distribution {Y3}[Fe2](Fe3)O12.
The magnetic hyperfine splittings of resonance lines
are different for the a and d sublattices and the hyper-

fine magnetic field Hhf at iron nuclei is  = 490 kOe

and  = 395 kOe for T = 295 K and  = 558 kOe

and  = 469 kOe for T = 4.2 K [8–10]. This property
enables one to reliably separate the a and d sublattices
and to investigate the behavior of Fe3+ ions indepen-
dently in octa- and tetrahedral sites of the garnet in a
wide temperature range.

The large difference between the magnetic fields Hhf
in the a and d sublattices is primarily associated with

Hhf
a

Hhf
d Hhf

a

Hhf
d
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the different covalences of the Fe–O bond at the a and
d sites of the garnet [11]. The Fe3+–O2– interionic dis-
tances in the Y3Fe5O12 crystal are equal to 2.00 and
1.88 Å at the octa- and tetrahedral sites, respectively
[3]. Therefore, the covalent bond for tetrahedral ions is
stronger than that for octahedral ions. Owing to the
covalent bond, the Fe3+ ion has the mixed 3d54sx config-
uration (containing s electrons) rather than the pure 3d5

configuration [12]. The 4s electrons polarized by the 3d
shell make a positive contribution to the magnetic field
Hhf through the contact interaction with the nucleus,
which reduces the negative contribution from inner
electrons.

Above the Néel point, the Mössbauer spectrum from
the Y3Fe5O12 garnet consists of three lines of different
intensities and is a superposition of two quadrupole
doublets from iron ions in the a and d sublattices (see
Fig. 5a). The quadrupole splittings QS and isomer shifts
IS are different for the a and d sites. This fact allows the
reliable separation of lines corresponding to the a and d
sublattices in the paramagnetic temperature range [10].
We note that the quadrupole splitting QS in the d sub-
lattice that is anomalously large for ionic compounds of
Fe3+ is attributed to a considerable admixture of cova-
lence to the chemical bond of iron with oxygen at the
tetrahedral site.

Thus, owing to the magnetic and crystal-chemical
features of the garnet structure, there is a favorable
opportunity of studying the a and d sublattices indepen-
dently by Mössbauer spectroscopy over the entire tem-
perature range.

4. MÖSSBAUER SPECTRA 
AT HIGH PRESSURE 

Figure 2a shows the Mössbauer absorption spectra
measured in the Y3

57Fe5O12 garnet at room temperature

Fig. 1. Mössbauer absorption spectra from 57Fe nuclei in
the Y3Fe5O12 garnet single crystal as measured at ambient
pressure and room temperature.
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Fig. 2. Evolution of Mössbauer absorption spectra in the Y3
57Fe5O12 garnet when the pressure (a) increases and (b) decreases. The

measurements were carried out at room temperature.

0 GPa
for pressures 0 < P < 70 GPa. As the pressure increases
in the range P < 46 GPa, the spectra remain well
resolved for both the a and d sublattices and the field
Hhf increases slightly. The measurements on single
crystals show that the intensities of the second and fifth

Fig. 3. Pressure dependence of the hyperfine magnetic field
Hhf at 57Fe nuclei in the octa- and tetrahedral sublattices of
the Y3Fe5O12 garnet at room temperature. The arrows cor-
respond to the directions of increasing and decreasing pres-
sure.

H
hf
spectral lines begin to decrease at P > 20 GPa simulta-
neously for both the a and d sublattices (see Fig. 2a).
This behavior indicates that the magnetic moments of
iron ions are reoriented to the direction perpendicular to
the crystalline plate plane. This effect is not studied in
more detail in this work.

At P = 46 GPa, in addition to “sextets” from the a
and d sublattices, a “paramagnetic” doublet begins to
appear in the spectra, indicating that some iron ions
transit to a nonmagnetic state. In the pressure range of
46–48 GPa, the field Hhf vanishes abruptly, which
implies the collapse of the magnetic moment and tran-
sition of the Y3Fe5O12 ferrimagnet to the nonmagnetic
state (Fig. 3). The coexistence of the magnetic and non-
magnetic phases in the transient region is most likely
associated with the pressure gradient. According to our
estimates, this gradient can be equal to 3 GPa in this
pressure range.

For P > 48 GPa in the high-pressure nonmagnetic
phase (HP phase), the spectrum completely consists of
one doublet with strongly broadened lines. The a and d
sublattices become undistinguishable. It is remarkable
that, when the pressure decreases and reaches the criti-
cal point PC, the magnetic hyperfine splitting of the
spectra is not recovered and the garnet remains non-
magnetic down to zero pressure (see Fig. 2b). Thus, the
magnetic transition is irreversible.
JETP LETTERS      Vol. 82      No. 11      2005
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Figure 4 shows the pressure dependence of the qua-
drupole splitting QS and isomer shift IS below (LP
phase) and above (HP phase) the critical pressure PC.
For P > PC, the quadrupole splitting QS increases
sharply in both sublattices and its average value reaches
~1.5 mm/s. Such a large QS value is not inherent in the
high-spin state of Fe3+ ions in oxide materials [13]. This
is indirect evidence that the Fe3+ ions in the garnet upon
magnetic collapse transit from the high-spin (HS) to
low-spin (LS) state, similar to the recent observation in
iron borate FeBO3 [14, 15] and in rare-earth orthofer-
rites [16, 17]. When the pressure in the LP phase
decreases, QS decreases slightly (Fig. 4a) but remains
large, QS ≈ 1.25 mm/s, at zero pressure.

As the pressure in the LP phase increases in the
range 0 < P < 46 GPa, the isomer shift IS decreases by
the approximately same linear law ∆IS/∆P ≈

Fig. 4. Pressure dependence of the (a) quadrupole splitting
and (b) isomer shift (with respect to α-Fe) for 57Fe nuclei in
the octa- and tetrahedral sublattices of the Y3Fe5O12 garnet
at room temperature. The arrows correspond to the direc-
tions of increasing and decreasing pressure.
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0.0033 mm s–1/GPa for both the a and d sublattices
(Fig. 4b). This behavior implies an increase in the elec-
tron density at the 57Fe nuclei and correlates with a
decrease in the atomic volume with increasing pres-
sure. At the critical pressure PC, the isomer shift in the
tetrahedral d sublattice increases stepwise to a value
inherent in the octahedral a sublattice, whereas the iso-
mer shift for the a sites has no jumps (Fig. 4b). As the
pressure in the HP phase increases, the isomer shift
continues to decrease, but the iron ions at the a and d
sites are indistinguishable. The IS value indicates that
the iron ions in the HP phase remain in the trivalent
state. When the pressure decreases gradually in the
unloading regime, the isomer shift increases again, but
no anomaly is observed in the critical region (Fig. 4b).
At P = 0, the average IS value for all the iron ions is
equal to about 0.28 mm/s (with respect to metallic
iron). This value is close to the IS value for the octahe-
dral a sublattice (see Fig. 4b).

Thus, the behavior of the parameters QS and IS
shows that the magnetic transition is accompanied by
irreversible electronic and, possibly, spin transitions
with a change in the local crystalline structure.

Fig. 5. Mössbauer absorption spectra from 57Fe nuclei at
ambient pressure (a) at 575 K (above TN) in the Y3Fe5O12
garnet single crystal, (b) at 300 K in an amorphous
Y3Fe5O12 garnet obtained by plasma spraying, and (c) at
300 K in the Y3Fe5O12 garnet single crystal subjected to
high pressure up to 65 GPa.
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DISCUSSION OF THE RESULTS

Published data indicate that the decomposition of
the Y3Fe5O12 garnet is possible at high pressure and
high temperature. In particular, analyzing x-ray spectra,
Marezio et al. [18] concluded that the Y3Fe5O12 garnet
at a pressure of 40 kbar and a temperature of 850°C can
be decomposed to perovskite-like YFeO3 orthoferrite
and α-Fe2O3 hematite according to the scheme

{Y3}[Fe2](Fe3)O12  3YFeO3 + Fe2O3.

The Fe3+ ions in the crystalline structure of YFeO3 and
Fe2O3 occupy only octahedral sites. Thus, as pressure
and temperature increase, ions Fe3+ tend to transit from
tetrahedral to octahedral sites [18]. However, if such a
decomposition of the garnet occurred in our experi-
ment, Mössbauer spectra would exhibit the appearance
of the YFeO3 and/or Fe2O3 phases. This is not the case,
but the tendency for tetrahedral iron ions to occupy an
octahedral environment at the critical pressure is also
manifested in our case.

At the same time, we found that a similar doublet
spectrum with broadened lines was observed in amor-
phous Y3Fe5O12 garnets obtained by various methods
(see Fig. 5b) [19–22]. To analyze the Mössbauer spec-
tra of amorphous Y3Fe5O12 garnets, Lines et al. [22–24]
proposed a hard-sphere random-packing model, which
is usually applied to describe amorphous glasses. Wide
spectral lines are attributed to the random distribution
of electric-field gradient axes in amorphous garnet and
can be well approximated by the Gaussian distributions
of Lorentzians. In this case, the average values of the
parameters at room temperature are IS ≈ 0.31 mm/s and
QS ≈ 1.12 mm/s, whereas the linewidth is LW ≈
0.65 mm/s [23].

The spectrum from the garnet under investigation,
which was measured under normal conditions (P = 0
and T = 300 K) after the sample had been subjected to
high pressure up to 65 GPa (Fig. 6), was processed on

Fig. 6. (Solid line) Calculation in the model of the Gaussian
distribution of Lorentzians for the spectrum measured from
the Y3Fe5O12 garnet under normal conditions (P = 0 and
T = 300 K) after unloading from a pressure of 65 GPa.
a computer using a similar model (Gaussian distribu-
tion of Lorentzians, Univem-MS package). According
to Fig. 6, such a model well reproduces the experimen-
tal spectrum with the parameters IS = 0.308 mm/s, QS =
1.227 mm/s, and LW = 0.821 mm/s. These parameters
are close to the respective values inherent in amorphous
garnet. Therefore, garnet is assumingly amorphized at
the critical pressure. However, electron-microscopy
investigations show that the crystal plate subjected to
high pressure remains undestroyed but is broken
(cracked) into small blocks (of the square–cubic shape)
with a characteristic size of 1–2 µm. This phenomenon
is similar to the formation of microtwin domains. Such
domains are large enough to provide the diffraction pat-
tern in the x-ray spectrum. However, our preliminary
investigations of the x-ray spectra at high pressure cor-
roborate the garnet amorphization effect. The detailed
results of these investigations will be published in the
near future.

The problem of magnetic collapse in the critical
pressure region is important and interesting. As was
shown in the hard-sphere random-packing model by
Lines [22], the breakdown of the magnetic order in
amorphous garnet occurs due to the random character
of the exchange bonds between the nearest iron ions. In
contrast to the crystalline garnet, where the angle θ of
the Fe–O–Fe exchange bond is equal to 126.6°, in the
amorphous garnet, a spectrum of angles θ from 76° to
180° is possible with the distribution maximum in the
range 76° < θ < 90°. Thus, in addition to antiferromag-
netic exchange interactions, ferromagnetic exchange
interactions arise with an exchange bond angle of about
90°, and the resulting exchange-interaction integral is
close to zero [22]. The inclusion of interactions with
farther neighbors can result at low temperatures in the
magnetic ordering of the spin-glass type. Such a mag-
netic ordering was observed experimentally in the
amorphous garnet at a temperature near 40 K [21].

At the same time, as was recently shown in [14–17],
the cause of the magnetic collapse in certain iron oxides
at high pressure is the transition of Fe3+ ions from the
high-spin (S = 5/2) to low-spin (S = 1/2) state. Synchro-
tron investigations of high-resolution x-ray emission
spectra (XES method) will likely clarify the mecha-
nism of the magnetic collapse in Y3Fe5O12 at high
pressure.

This work was supported by the Russian Foundation
for Basic Research (project nos. 05-02-16142a and
04-02-16945a) and by the Branch of Physical Sciences,
Russian Academy of Sciences (program “Strongly Cor-
related Electron Systems”).
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Experimental data on the magnetization of canted antiferromagnet CoCO3 (TN = 18.1 K) in the paramagnetic
region are described by the isotropic g factor g|| = g⊥  = 6.5 that differs from the anisotropic values g|| = 3.05 and
g⊥  = 4.95 obtained in electron paramagnetic resonance (EPR) measurements at T = 4.2 K on Co2+ ions in mag-
netically diluted crystals. The g-factor values calculated in the Abragam–Pryce and Weiss molecular field
approximations using the magnetization data in the magnetic ordered region correspond to data obtained in
EPR measurements. It is shown that the absence of the anisotropy of the g factor at high temperatures cannot
be explained in the approximations used. Causes of the observed discrepancies are discussed. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 71.70.Ch, 74.25.Ha, 75.30.Gw, 75.50.Ee
The magnetic moment of atoms in a crystalline lat-
tice is determined by the population of the magnetic
levels and the corresponding g-factor values. At high
temperatures, when the distance to the excited level is
much larger than the thermal energy, the g factor of the
ground state can be determined from measurements of
the paramagnetic susceptibility. The g factor at high
temperatures for transition-metal atoms with an orbital
angular momentum of L = 0 can also be determined by
analyzing the electron paramagnetic resonance (EPR)
spectra. For atoms whose orbital angular momentum in
the crystal field of the surrounding ions is unfrozen,
EPR measurements of the g factor are carried out only
in magnetically diluted crystals at low temperatures,
because the spin–lattice relaxation time is small. In this
case, it is impossible to compare the g factor at low and
high temperatures.

In canted antiferromagnet CoCO3 (TN = 18.1 K),
which has the calcite-type crystalline structure (space

group ), the nearest environment of magnetic ions
has the axial symmetry. The orbital angular momentum
of the Co2+ ion (L = 3 and S = 3/2) in the crystal field of
the surrounding ions is unfrozen. Nevertheless, its para-
magnetic susceptibility, which is measured in [1] and is
shown by circles in Fig. 1, is described in a temperature
range of 80–300 K by the Curie–Weiss law with the iso-
tropic g factor g = 6.5. At the same time, the g factor
measured at T = 4.2 K using EPR in isomorphous crys-
tals of CaCO3 [2] and CdCO3 [3] with a Co2+ impurity
is strongly anisotropic: g⊥  = 4.82, g|| = 3.41 and g⊥  =
4.95, g|| = 3.05, respectively. These values are well
reproduced in the Abragam–Pryce approximation [4]

D3d
6
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for various values of the trigonal component of the
crystal field [5]. The absence of the anisotropy of the g
factor at high temperatures was a reason to try to calcu-
late it immediately from the data on the magnetization
at temperatures below the magnetic-transition point.
These calculations were performed in the Weiss molec-
ular field approximation [6] using wave functions near
the ground state of the Co2+ ion.

Fig. 1. Temperature dependence of the inverse susceptibili-

ties (lower data) (T) for H ⊥  C3 and (upper data) (T)

for H || C3. The data shown by s are taken from [1] and the
data shown by m are data obtained from a sample containing
Fe (0.32 at %) and Mn (0.07 at %) impurities. The solid
lines are plotted according to Eqs. (9) and (10).

χ⊥
1– χ||

1–
© 2005 Pleiades Publishing, Inc.
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The magnetic structure of CoCO3 is described by
two magnetic sublattices formed by Co2+ ions occupy-
ing nonequivalent positions in the unit cell. The mag-
netic moments of these ions lie in the basal plane per-
pendicular to the C3 axis of the crystal. Their nearest
environment consists of six oxygen atoms, which are at
the vertices of a hexahedral prism and enter the rigid

complex . The upper and lower bases of this
prism are equilateral triangles turned by 60° with
respect to each other. Prisms surrounding these ions in
nonequivalent positions are turned by 60° with respect
to each other.

The ground state 4F of the free cobalt ion belongs to
the 3d7 configuration and is sevenfold orbitally degen-
erate. The crystal field and spin–orbit interaction split
the orbital (L = 3) and spin (S = 3/2) levels into Zeeman
doublets. In this case, the wave functions obtained for
the Co2+ ion can be represented as the linear combina-
tion of the functions | , Sz〉 , where S = 3/2 and  = 0,
and ±1 is the quantum number of the fictitious operator

α  of the angular momentum. As was shown by
Abragam and Pryce [4], the position of the levels and
the corresponding wave functions can be calculated
using the Hamiltonian

(1)

where ∆ is the splitting of the ground orbital triplet by
the trigonal component of the crystal field and β is the
Bohr magneton. For the free Co2+ ion, the spin–orbit
coupling constant is λ = –180 cm–1 and α = α' = 3/2.
The absence of the equality between the coefficients α
and α' describes the anisotropy of the spin–orbit inter-
action that is caused by the admixture of the excited
states of Co2+ ions. Using EPR data [3], it was shown in
[5] that α = 1.86, p = (α/α')2 = 1.4 in the CdCO3 lattice
and the first excited state is spaced by ≈300 cm–1. The
wave function of the ground state has the form

(2)

By using this expression, the isotropic exchange inter-

action  = –  for the free Co2+ ion can
be expressed in terms of the variables of the effective
spin S' = 1/2. Assuming that the exchange interaction
inside and between sublattices A and B for the free Co2+

ion is isotropic and is equal to J and JAB, respectively,
the expressions for the anisotropic exchange integrals
acquire the form [7]

(3)

CO3
2–

lz' lz'

l̂ '

Ŵ ∆ 1 l̂z'
2

–( ) αλ l̂z' Ŝz– α 'λ l̂x' Ŝx l̂y' Ŝy+( )–=

– β α ' l̂x' 2Ŝx+( )Hx β α ' l̂y' 2Ŝy+( )Hy– β α l̂z' 2Ŝz+( )Hz,–

±| 〉 a 1+− 3/2±,| 〉 b 0 1/2±,| 〉 c 1± 1/2+−,| 〉 .+ +=

Ĥex JikŜiŜki k<∑

Jxy

J
-------

Jxy
AB

JAB
-------- 4 3ac b2+( )2

,= =

Jz

J
----

Jz
AB

JAB
-------- 3a2 b2 c2–+( )2

,= =
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where the z axis is directed along the C3 axis of the crys-
tal. It was additionally assumed that the antisymmetric
part of the exchange interaction arises as a result of the
transformation of the effective spins of ions occupying
nonequivalent sites in the crystal lattice upon the tran-
sition to the common coordinate system [5]. For this
reason, the rotation angle ϕ of the nearest environment
of the magnetic ion is treated as a parameter. Then, the
exchange interaction in the plane is determined by the

quantity cosϕ and the antisymmetric exchange, by

sinϕ. The calculations were performed with the
observed relation between the magnetizations of the

sublattices [1]:  = ,  = – ,  =  = 0

for H ⊥  C3 and  = ,  = – ,  =  for
H || C3.

In the molecular-field approximation, the magnetic
ordering temperature is determined as

(4)

where z = zAB = 6 is the number of the nearest neighbors
of the inherent and neighboring sublattices, respec-
tively.

In the low-temperature limit /kT @ 1, and in the
magnetically ordered region, when the magnetic field
lies in the basal plane along the x axis, the magnetiza-
tion in the linear approximation in the magnetic field is
given by the expression

(5)

where the ferromagnetic moment

(6)

is independent of exchange and depends only on the
mutual orientation of the local environment of the mag-
netic ions. In this case, the magnetic susceptibility can
be written as

(7)

The magnetization along the third order axis is Mz =
χ||Hz, where

(8)

At high temperatures, the magnetization is described by
the usual Curie–Weiss law

(9)
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where

(10)

At the same time, in the paramagnetic region, when the
magnetic field lies in the basal plane, atoms have mag-
netic moments that are perpendicular to the magnetic
field. The magnetic moments of atoms in nonequivalent

θ⊥
1

8k
------ 2zJxy zABJxy

AB ϕcos+( ),=

θ||
1

8k
------ 2zJz zABJz

AB+( ).=

The crystal-field parameters α and ∆; the positions of the
ground Eg and excited Eex levels; the g factor g||; the

exchange integrals JAB and ; and the coefficients a, b, and
c of the wave function of the ground state for various p values
that correspond to the experimental values g⊥  = 4.55 and

 = –16.6 cm–1

p 0.6 1.0 1.4 2

α 1 1.2 1.39 1.6

∆ (cm–1) 0 –230 –367 –530

Eg (cm–1) –540 –634 –716 –816

a –0.65 –0.59 –0.56 –0.53

b 0.61 0.69 0.73 0.78

c –0.44 –0.40 –0.37 –0.33

g|| 3.31 3.21 3.19 3.07

JAB (cm–1) –5.35 –5.12 –5.04 –4.87

 (cm–1) –11.2 –9.89 –9.29 –8.27

Eex (cm–1) –244 –375 –478 –612

Jz
AB

Jxy
AB

Jz
AB

Fig. 2. Magnetic-field dependence of the magnetization
M(H) obtained at T = (from the top to the bottom) 4.2, 12.9,
15.5, 18.1, and 19.2 K for H ⊥  C3 and T = 4.2 K for H || C3.
The data shown by d are taken from [1], the data shown by
d are calculations for ϕ = 12.5°, and the solid lines are cal-
culated by Eqs. (5)–(8) for T = 4.2 K.
positions are directed oppositely to each other and their
magnitude is determined as

(11)

Using the above expressions, which are valid in the
limiting cases of high and low temperatures, one can
quite easily select the parameters for the comparison
between the calculation results and experimental data
on the magnetization of CoCO3 obtained in [1]. The
magnetization for arbitrary temperatures was calcu-
lated using the numerical calculations under the

assumption that  @ |Jxy | ≅  0. This assumption is
justified because, as the distance r between ions
increases, the exchange interaction drops sharply (rAA =
rBB = 4.97 Å and rAB = 3.85 Å for CoCO3). In particular,
J = 300 and 83 cm–1 for the first and second pairs of
neighbors, respectively, as was shown in [8], where the
spectrum of the exchange-coupled Cr2+ pairs in Al2O3
was analyzed using EPR and double electron–nuclear
resonance.

In the limiting case of low temperatures, using the
experimental values TN = 18.1 K, χ⊥  = 5.3 ×
10−2 emu/mol, and M0x = 1360 emu/mol, we obtain

 = –16.6 cm–1 and g⊥  = 4.55 from Eqs. (5)–(7). In
order to obtain the experimental value χ|| = 3.5 ×
10−2 emu/mol, it is necessary to select the parameters ∆,
p, and α of the crystal field in Hamiltonian (1). One of
these parameters is arbitrary and two other parameters

correspond to the experimental values  and g⊥ . For
several values of the parameter p corresponding to the
reasonable deviation from the values obtained from
EPR measurements, the table presents the parameters
necessary for calculating magnetization that are evalu-
ated using Hamiltonian (1). The dependences obtained
for low temperatures at various values of the parameter
p almost do not differ from each other. The calculated
values are compared with experimental data for p = 1
and ϕ = 12.5°.

The large circles in Fig. 2 are magnetizations mea-
sured for (below) H || C3 and T = 4.2 K and (the others)
H ⊥  C3 and T = 4.2–19.2 K. When the magnetic field
lies in the basal plane, the ferromagnetic moment is
determined from the intersection of the linear depen-
dence M(H) approximated to high magnetic fields with
the ordinate axis. The deviation of the magnetization
curves in low magnetic fields from the linear depen-
dence is associated with the presence of the domain
structure in the sample. The dependences Mx(H) and
Mz(H) calculated for various temperatures are shown by
small circles. The solid lines in this figure are plotted
using Eqs. (5)–(8) for T = 4.2 K. As is seen, satisfactory
agreement with the measurement results is observed.

My
A My

B–
Ng⊥

2 β2zABJxy
AB ϕsin

64k2T2
---------------------------------------------Hx.= =

Jxy
AB

Jxy
AB

Jxy
AB
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The temperature dependences of the magnetic sus-
ceptibilities χ⊥  and χ|| for low temperatures and for the
magnetic field H = 13 000 Oe that was used in the
experiment are shown in Fig. 3. Up to a temperature of
30 K, including the magnetic ordering region, the
experimental data given by the circles satisfactorily
agree with calculations shown by the solid lines. The
parameter ϕ = 12.5° appears to be approximately one
fifth of 60°. It is worth noting that the g factor obtained
in ERP measurements at T = 4.2 K in [2, 3] corresponds
to the values presented in the table.

The temperature dependences of the inverse mag-

netic susceptibilities (T) and (T) calculated by
Eqs. (9) and (10) in the high-temperature approxima-
tion are shown by solid lines in Fig. 1. As the tempera-
ture increases, the difference between the experimental
results and calculations increases and becomes signifi-
cant at T = 300 K. The inclusion of excited states with
a smaller g factor [5] leads to a larger difference
between the calculated and measured values.

The parameter p in our calculations is arbitrary. For
this reason, it is necessary to determine the conditions
under which the g factor may be equal to g⊥  ≅  g|| = 6.5.
Investigations show that, for α < 3 and p < 2, the max-
imum possible value is g|| < 3.6 for g⊥  = 6.5. Therefore,
the magnetic susceptibilities observed for high temper-
atures cannot be reproduced in the Abragam–Pryce
approximation. The indicated values are inconsistent
with the low-temperature measurements. With these
values, it is impossible to achieve the coincidence of the
calculated dependences shown in Figs. 2 and 3 with the
experimental data even for an arbitrary exchange inter-
action.

Since the theoretical dependences satisfactorily
reproduce the experimental curves for low tempera-
tures and the g-factor values correspond to the EPR
data obtained for magnetically diluted samples, this dif-
ference seems surprising. For this reason, we tried to
reveal the causes of the observed deviation of the calcu-
lated curves from the experimental data. One of causes
could be the presence of several percent of an Mn2+ or
Fe2+ impurity. As was previously shown in [9], these
impurities significantly affected the antiferromagnetic
resonance spectrum in CoCO3. For this reason, the
measurements of the magnetization for high tempera-
tures of a CoCO3 sample in which the impurity concen-
tration was less than 1% (0.07 at % Mn2+ and 0.32 at %
Fe2+) were repeated with a vibrational magnetometer.
The results of these measurements (shown by triangles
in Fig. 1) almost coincide with the data obtained in [1],
which indicates that this assumption is improbable.

Thus, the calculations performed, the EPR data for
magnetically diluted crystals, and the additional mea-
surements of the magnetic susceptibility with a con-
trolled impurity content show that the g factor is
strongly anisotropic for low temperatures, whereas it

χ⊥
1– χ||

1–
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varies strongly for high temperatures and its anisotropy
becomes negligibly small.

The absence of the anisotropy of the g factor for
high temperatures is important and can be decisive for
determining the cause of the observed discrepancy
between the calculated and measured dependences. In
the Abragam–Pryce approximation, the absence of
anisotropy corresponds to the conditions ∆ = 0 and α =
α'. The calculations show that, for these parameters and
g = 6.5, α = 4.7 is almost three times as large as the
value α = 1.5 for the free Co2+ ion. Although no struc-
ture transition is observed in this substance, the cause
of that may be associated with the behavior of the crys-
talline environment with increasing temperature. The
crystal field theory implies that the electric field created
by ligands such as oxygen anions is constant and inde-
pendent of the temperature. In reality, oxygen anions

forming the rigid  complex are involved in local
oscillations among which the rotation of this complex
as a whole is least activated. The energy of these oscil-
lations in CaCO3 is less than 100 cm–1 [10]. When the
amplitude of these oscillations is large enough, the
anisotropy created by this environment becomes negli-
gibly small. These oscillations possibly affect the angle
ϕ, whose effective value depends on the spin–orbit cou-
pling constant. The effect of the crystal lattice can also
be manifested in anomalously strong changes in the
local environment of the Co2+ ion when the temperature
increases. As was shown in [11], local distortions can
significantly change the g factor of the Co2+ ion and
result in a change in the angle determining the ferro-
magnetic moment value.

I am grateful to V.P. Sirotinkin for the analysis of the
impurity concentration in the samples.

CO3
2–

Fig. 3. Temperature dependence of the susceptibility χ(T)
for (upper data) H ⊥  C3 and (lower data) H || C3. The data
shown by s are taken from [1] and the solid lines are the
numerical calculations.
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The results of investigating the phase diagrams of ZnCl2 and AlCl3 halides, as well as the structure of the short-
range order of the corresponding melts under pressures up to 6.5 GPa, by the method of energy-dispersive x-ray
diffraction are reported. When a ZnCl2 crystal is compressed, a phase transition occurs from the γ phase (HgI2
structure type) to the δ phase (distorted CdI2 structure, WTe2 type). The structural studies of the liquid state of
ZnCl2 and AlCl3 indicate that the intermediate-range order decreases rapidly in the tetrahedral network of both
melts as the pressure increases to 1.8 and 2.3 GPa for ZnCl2 and AlCl3, respectively. With further compression,
the transitions in both melts occur with a change in the structure of the short-range order and with an increase
in the coordination number. In this case, the transition in AlCl3 occurs at ≈4 GPa and is a sharp first order tran-
sition, whereas the transition in ZnCl2 occurs more smoothly in a pressure range of 2–4 GPa with a maximum
intensity near 3 GPa. Thus, the AlCl3 and ZnCl2 compounds exemplify the existence of two phenomena—
gradual decay of intermediate-range structural correlations and a sharper liquid–liquid coordination transition.
© 2005 Pleiades Publishing, Inc.

PACS numbers: 61.20.–p, 61.43.–j, 62.50.+p, 64.70.–p
1. The condensed phases of halides can exist as
ionic and molecular substances depending on the rela-
tion of the ion sizes [1–5]. When the sizes of metal ions
are large, di- and trihalides are crystallized in an ionic
lattice with the coordination number Z from 6 to 8 for
metal ions [1–5]. The melts of these crystals are ionic
liquids with a high coordination number [2, 3]. For a
number of halides with smaller cation sizes, the
pseudocovalent effects associated with a considerable
contribution from dipole polarization fields are strong
[1–4]. The crystals and melts of these compounds are
low-coordination (Z ≈ 4) molecular phases.

The ZnCl2 compound belongs to such halides with
strong pseudocovalent effects not only in the solid state
but also in the melt [1, 2]. The ZnCl2 phase that is at
equilibrium at normal pressure has an orthorhombic
structure (Pna21 group, a = 6.44 Å, b = 7.69 Å, c =
6.13 Å) [6]. There also exist the industrially available
γ phase (HgI2 structure type, P42/nm group, a = 3.70 Å,
c = 10.67 Å) and high-temperature tetragonal and mon-
oclinic α and β phases with intrinsic structure types [7].
These three modifications are assumed to be stabilized
by a small water impurity. The tetrahedral environment
of ZnCl2 in a liquid is close to ideal [2, 8], and a three-
dimensional network consisting of tetrahedra con-
nected by corners is formed in the melt similarly to as
in the network covalent melts such as SiO2. The inter-
pretation of a number of structural features of liquid
0021-3640/05/8211- $26.00 0713
ZnCl2, in particular, the existence of a sharp prepeak of
the structure factor at the structural scattering wavevec-
tor Q ~ 1 Å–1 [1, 9–11] is ambiguous [12], although the
existence of this peak unconditionally presents the
existence of intermediate-range correlations between
the arrangement of tetrahedra in the melt and the possi-
ble ordering of interstitial voids [13]. The ZnCl2 melt
has unusually high viscosity ~10 Pa s [2, 14] at normal
pressure, and is easily vitrified upon cooling.

The behavior of the solid phases and ZnCl2 melt
under pressure is poorly studied. The difficulty in
studying the ZnCl2 compound at high pressures and
high temperatures is primarily caused by its high
hygroscopic property. The compression of the γ and α
modifications, as well as vitreous ZnCl2, at room tem-
perature results in their transformation under pressures
of 2.5–3 GPa to the high-pressure crystalline δ phase
[15, 16]. The structure of the δ phase was previously
determined as hexagonal (CdCl2 type, a = 3.50 Å, c =
16.59 Å, coordination number Z = 6) [16], although the
agreement between the experimental data and the cal-
culations for the structure was rather bad. When the
pressure is decreased, the inverse δ–γ transition occurs
at P ≈ 1 GPa [16]. The phase diagram of ZnCl2 has not
yet been studied at high temperatures under pressure.
The structure of the compressed ZnCl2 melt was inves-
tigated for P < 0.3 GPa by the x-ray diffraction method
[17] and for P < 0.4 GPa by the neutron diffraction
© 2005 Pleiades Publishing, Inc.
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method [18]. In both works, it was concluded that the
short-range tetrahedral order was conserved in the melt
under pressure, whereas the intermediate-range order
was insignificantly modified, which is manifested in a
decrease in the intensity and shift of the sharp prepeak
of the structure factor. The structure of the short-range
order of the ZnCl2 melt was studied for P < 0.2 GPa by
the EXAFS method [19], and the viscosity of liquid
ZnCl2 was investigated for P < 0.1 GPa [20].

For certain halides such as AlCl3, pseudocovalent
effects lead to an interesting situation: the crystals of
these compounds are ionic substances (Z ≈ 6), whereas
the corresponding melts are low-coordination (Z ≈ 4)
molecular liquids in which ionic conduction is absent
[1–3, 9]. Owing to the difference between the structures
of the short-range order in the crystal and melt, the
melting temperatures for these substance are low,
Tm[AlCl3] ≈ 200°C; the entropy jump upon melting is
large, ∆Sm[AlCl3] ≈ 77 kJ mol–1 K–1; and the volume
jump upon melting is a record among inorganic com-
pounds, ∆Vm/V0[AlCl3] ≈ 0.88 [2, 3]. The AlCl3 com-
pound in the crystalline state has monoclinic structure
(C2/m space group, a = 5.93 Å, b = 10.24 Å, c = 6.17 Å,
β = 108°). According to early data [21], the structure of
the AlCl3 melt is molecular with Al2Cl6 dimer mole-
cules as the basic structural units. As was shown in
more recent works [22, 23], the AlCl3 melt is more ade-
quately described as disordered fragments of a network
of Al  tetrahedra with a large number of atomic
microvoids. There is a certain similarity between the

Cl4
–

Fig. 1. Pressure–temperature phase diagram of ZnCl2
including (solid lines and experimental points) the melting
curve; (thin dashed lines) the kinetic lines of the phase tran-
sitions between the γ and δ phases, where the horizontal
sections and the diamond correspond to the experimental
transition intervals; (dash–dotted line) the γ–δ equilibrium
line approximation; (open circle) the γ–δ-liquid triple point;
(thick dashed line) the approximate line of the transition
from the δ phase to the δ' phase; (shaded region) the approx-
imate region of the decomposition of the intermediate-range
order in the liquid under pressure; and (vertical arrow) the
position of the transition in the liquid.
structures of the short-range order of the AlCl3 melt and
the ZnCl2 network melt [1, 22, 23]; in particular, the
structure factors of both liquids exhibit an intense pre-
peak for the low scattering wavevectors Q ~ 1 Å–1. At
the same time, the analogy between the AlCl3 and
ZnCl2 melts should be treated warily, because, in con-
trast to the high viscosity of the ZnCl2 melt, the viscos-
ity of liquid AlCl3 is very low (~10–3 Pa s) and is even
lower than the values for ionic melts (~10–2–10–1 Pa s)
[2, 3]. It is assumed that the low viscosity of the AlCl3
melt is associated with a large number of atomic micro-
voids in the tetrahedral network [1, 22, 23]. It is worth
noting that the AlCl3–ZnCl2 solution becomes viscous
and is vitrified upon cooling, beginning with quite low
ZnCl2 concentrations (≈10–20%) [24]. It can be
assumed that the molecular network structure of the
AlCl3 liquid under pressure must significantly change,
and a transition to an ionic melt with a higher coordi-
nation number must occur at sufficiently high pres-
sures. As far as we know, the structure and properties
of the crystalline and liquid states of AlCl3 under pres-
sure have not yet been studied.

The aim of this work is to investigate the tempera-
ture–pressure phase diagrams for ZnCl2 and AlCl3, as
well as to analyze the structure of the ZnCl2 and AlCl3
melts under pressure. The investigations were con-
ducted in much wider ranges of pressure (up to
6.5 GPa) and temperature (up to 1600 K) than those
studied previously.

2. In situ structural investigations of the solid and
liquid phases of ZnCl2 and AlCl3 under pressure were
carried out by energy-dispersive x-ray diffraction with
the MAX-80 setup at the SPring-8 synchrotron
(BL14B1 beam) in Japan. A cubic multiplunger press
was used to generate high pressures up to 6.5 GPa.

Cylindrical pellets (1–1.5 mm in diameter and 0.6–
1.2 mm in height) compressed from a ZnCl2 or AlCl3
powder (MERC, Germany, 99% in purity) were manu-
factured and placed into a high-pressure cell in a dry
argon box. The outer part of the cell is an amorphous-
boron cube and a sample was placed into a container
made of graphite or hexagonal boron nitride. The heat-
ing was performed by a graphite heater through which
an alternating current passed and the temperature T was
measured by a chromel–alumel or platinum/platinum–
rhodium thermocouple. The pressure P is determined
from the equation of state for the reference sample
(NaCl and BN). The loading time of the cell from the
argon atmosphere into a press to the creation of the
maximum backpressure (0.2–0.3 GPa) was less than
1 min, which prevented the ingress of water from the
atmosphere into the high-pressure cell. The x-ray anal-
ysis showed that the fraction of hydroxide in most sam-
ples did not exceed ~1–2 vol %.

3. One of the main results of the work is the con-
struction of the (P, T) phase diagrams of ZnCl2 and
AlCl3, which have not yet been studied (Figs. 1 and 2).
JETP LETTERS      Vol. 82      No. 11      2005



STRUCTURAL STUDIES OF PHASE TRANSITIONS 715
The direct transition of ZnCl2 into the high-pressure
crystalline phase at room temperature occurs in a wide
pressure range from 2.6 to 3.1 GPa and the inverse tran-
sition, from 1.1 to 0.5 GPa (see Fig. 1). The pressure
ranges for the direct and inverse transitions at T ≈
200°C are 2.1–2.4 and 1.7–1.4 GPa, respectively (see
Fig. 1). The coordinates of the triple point between the
low- and high-pressure solid phases were determined as
Ptr ≈ 2.3 ± 0.1 GPa and Ttr ≈ 920 ± 20 K.

The structure of the high-pressure phase was identi-
fied as the CdI2 distorted type [WTe2 (oP12) type,
Pmn21 space group, the lattice constants at 4.68 Pa and
T = 300 K are a = 3.213 Å, b = 5.813 Å, c = 11.868 Å).
Thus, the previous determination of the structure of the
high-pressure phase [16] was invalid. The volume jump
in the γ–δ transition is equal to 15%. When the high-
pressure phase is heated above 300°C, an additional
distortion of the lattice occurs as the transition to the δ'
structure (HgCl2 distorted type, orthorhombic struc-
ture, Pmmm space group; the lattice constants are a =
5.290 Å, b = 10.727 Å, c = 3.921 Å at a pressure of
4.53 GPa and a temperature of 800 K). According to the
structural data, the bulk modulus of the γ phase is B0 ≈
15 ± 2 GPa and  ≈ 7. For the high-pressure phase,

B0 ≈ 20 ± 4 GPa and  ≈ 4. The analysis of the struc-
tural data will be discussed in more detail in future pub-
lications.

The melting curve for ZnCl2 was determined up to
a pressure of 4.4 GPa. As the pressure increases, the
slope of the melting curve decreases noticeably to
80 K/GPa near the triple point. For pressures above the
triple point, the slope also decreases from 200 K/GPa to
120 K/GPa for P ≈ 2.5–3.5 GPa. Such a behavior of
the melting curve points to an increased compressibil-
ity of the melt in the initial pressure range 0–1.5 GPa
and to an additional volume anomaly in the liquid near
3 GPa.

Analysis of the phase diagram for AlCl3 (Fig. 2)
shows that the structure of the AlCl3 crystal at room
temperature does not change up to the maximum pres-
sure ≈6.5 GPa. Upon heating under pressure, insignifi-
cant distortion of the structure is observed. The struc-
tural data for the crystalline phases of AlCl3 will be pre-
sented in a separate publication. The melting curve for
AlCl3 (Fig. 2) exhibits a significant decrease in the
slope as the pressure increases to 3 GPa (approximately
from 600 to 250 K/GPa) and an additional sharp
decrease in the slope (to 50 K/GPa) at P ≈ 4 GPa. Such
a behavior of the melting curve is obviously caused by
the corresponding anomalies in the compressibility of
the melt.

In this work, the structural studies of the AlCl3 and
ZnCl2 melts under pressure are of most interest. The
specificity of the analysis of the structure of disordered
condensed media by the energy dispersive method is
the necessity of the detection of the spectra at various

Bp'

Bp'
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diffraction angles. In this case, at small angles 2θ ~ 3°–4°,
important features of the structure factor, including the
positions and relative intensities of the peaks, are ade-
quately reproduced for small wavevectors Q ~ 1–2 Å–1,
whereas large diffraction angles 2θ ~ 8°–14° are neces-
sary for analyzing the structure factor in the large-
wavevector range Q ~ 3–5 Å–1. For intermediate
wavevectors Q ~ 2–3 Å–1, it is optimal to study the
structure factor at diffraction angles 2θ ~ 5°–6°. Figure 3
shows the spectra of the melts under pressure for vari-
ous diffraction angles.

Analysis of x-ray diffraction data for ZnCl2 melts
shows that the melt under pressure P ~ 0.6 GPa is in
structure close to a liquid at atmospheric pressure, but
the first prepeak is lower and shifted. The structure of
the ZnCl2 melt is significantly modified at higher pres-
sures. Figure 4a shows the intensities of the x-ray scat-
tering for the detection angle 2θ = 4°. For pressures up
to 1.8 GPa, a significant (by several times) decrease in
the intensity of the prepeak and strong shift of its posi-
tion toward higher wavevectors are observed. Such a
strong decrease in the first sharp prepeak was previ-
ously observed for a number of glasses [13] and liquids
[25] and was attributed to the collapse of interstitial
voids and decay of intermediate-range structural corre-
lations. A significant change in the structure of the
ZnCl2 melt does not occur in the range of 1.8–2.4 GPa.
The ZnCl2 melt at these pressures evidently has the
characteristics of a network-free inviscid liquid with
tetrahedral short-range order. We note that quenching
from the melt with a rate of 102 K/s in our experiments
for P > 0.5 GPa did not result in the formation of glass,
which provides the estimate η ≤ 0.1 Pa s for the vis-
cosity of the liquid.

Fig. 2. Pressure–temperature phase diagram of AlCl3
including (extrapolation by the solid line and experimental
points) the melting curve, (shaded region) the conditional
region of the decomposition of the intermediate-range order
in the liquid under pressure, and (vertical arrow) the sharp
transition point in the liquid.
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A significant change in the relative intensities and
the positions of the second and third peaks of the struc-
ture factor with increasing pressure is illustrated in
Fig. 4b for the detection angle 2θ = 10°. A monotonic
continuous variation in the diffraction pattern near the
second and third peaks with increasing pressure to
2.3 GPa changes to sharper variations at P ≈ 2.5–
3.5 GPa. In this case, the relative intensities of the sec-
ond and third peaks decrease and increase, respectively,
and the third peak is shifted toward higher wavevectors.
Compression in the ZnCl2 melt at P ≈ 2.5–3.5 GPa is
assumingly accompanied by the transition from the
characteristic short-range order around Zn2+ ions to the
octahedral order.

A similar behavior is also observed for AlCl3. Fig-
ure 5a shows the x-ray scattering intensities for the
AlCl3 melt for the small diffraction angle 2θ = 4°. For
pressures below 2.5 GPa, a strong (by several times)
decrease in the intensity of the prepeak of the structure
factor, as well as a large shift of the prepeak toward
higher wavevectors Q ~ 1.3–1.4 Å–1, is observed (see
Fig. 5a). In the range of 2.5–3.5 GPa, significant change

Fig. 3. Experimental x-ray diffraction curves obtained by
the energy-dispersive method for (a) ZnCl2 at P = 1.25 GPa
and (b) AlCl3 at P = 0.65 GPa for various detector angles.
The crystalline peaks corresponding to the container–heater
material are removed by means of the extrapolation of the
scattering curve.

(Å–1)
in the structure of the AlCl3 melt is absent. At P ~
4 GPa, an additional sharp decrease in the prepeak
occurs.

Change in the intensity and shape of the second
peak of the structure factor for the AlCl3 melt is illus-
trated in Fig. 5b for the detection angle 2θ = 8°. An
insignificant variation in the diffraction pattern with
increasing the pressure to 3.5 GPa, which indicates that
the tetrahedral short-range order is conserved, changes
to a sharp decrease in the amplitude and smoothing of
the second peak at P ≈ 4 GPa, which is associated with
a sharp structural transition in the melt. The structure
factor of the AlCl3 melt at P > 4.5 GPa becomes similar
to the corresponding structure factors of liquid triha-
lides such as LaCl3 in the ionic state.

4. Thus, AlCl3 and ZnCl2 are substances in whose
melts under pressure two bright phenomena are
observed: the decay of intermediate-range structural
correlations in the initial pressure range and transition
in the liquid with change in the coordination number
upon further compression. In this case, the transition in
AlCl3 is a sharp (assumingly, first-order) transition,
whereas the coordination changes in ZnCl2 are

Fig. 4. X-ray diffraction curves for liquid ZnCl2 at various
pressures (after smoothing) as obtained for the detection
angles 2θ = (a) 4° and (b) 10°. The thick and thin lines in
panel (b) correspond to the liquid before and after the tran-
sition, respectively.
JETP LETTERS      Vol. 82      No. 11      2005
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smoother. Even separate experimental observations of
both phenomena are scarce [25–27]. The transition in
the liquid with an increase in the coordination number
(from a pseudocovalent melt to the ionic one) is associ-
ated with a decrease in the relative contribution from
the dipole interaction with respect to the Coulomb
interaction. Since the intermolecular interaction in the
AlCl3 and ZnCl2 melts is well described by a simple
potential [1–5], it is of interest to theoretically the sim-
ulate the changes in its coordination as the pressure
increases.

An anomalous behavior of the structure of a melt
under pressure should be expected for many pseudoco-
valent halides. Compared to covalent oxide melts, sig-
nificant changes in the structure of liquid halides must
occur at lower pressures and lower temperatures, which
makes halides attractive for experimental investiga-
tions. In particular, a change of the tetrahedral short-
range order to the octahedral order can be expected in
CdCl2, MnCl2, and MgCl2 melts at comparatively low
pressures 1–2 GPa. For pseudocovalent halides GaCl3,
AlBr3, and BeF2, the transition from the network
molecular structure to the ionic structure should be

Fig. 5. X-ray diffraction curves for liquid AlCl3 at various
pressures (after smoothing) as obtained for the detection
angle 2θ = (a) 4° and (b) 8°. The thin and thick lines in panel
(b) correspond to the liquid before and after the transition,
respectively.
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expected when the pressure increases both in the crys-
talline state and in the melt. A behavior similar to the
behavior of AlCl3 may be expected for the FeCl3 melt
under pressure.
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The crystal structure of an NdBaCo2O5 + δ (δ = 0.72) solid solution with a layered perovskite structure is studied
by neutron diffraction. It is found that a new crystal-structure phase with the cation–anion ratio 1 : 1 : 2 : 5.75
forms in this solid solution. At the same time, oxygen vacancy ordering occurs in the plane of the rare-earth ion

in the crystallographic position 1c  of the Pmmm space group. Oxygen vacancy diffusion along the

crystallographic axes in the pane of the rare-earth element is also proposed as a mechanism for the formation
of other crystal-structure phases found in double-layered cobaltites. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.12.Ex, 61.72.Dd
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The effect of oxygen vacancy ordering on the struc-
tural, magnetic, and electric properties of manganites
[1] and cobaltites [2, 3] with the perovskite structure
has been intensively studied in recent years. This is
explained by the potential possibility of practically
using a number of effects discovered in these materials
and by the occurrence of a great number of phase
transformations whose nature is a subject of discus-
sions. Studying cobalt-containing oxides of the
REBaCo2O5 + δ type (where RE is a rare-earth ion, and
0 ≤ δ < 1) attracts intense interest. Depending on the
oxygen content, a layered perovskite structure with
alternating REOx/BaO (0 ≤ x < 1) layers forms in these
compounds. This structure is characterized by specific
oxygen vacancy ordering. This ordering results in the
doubling of the unit cell of the perovskite structure ap

along the c axis [4, 5].
The formation of oppositely directed CoO5 square

pyramids rather than CoO6 octahedra, which are typical
of stoichiometric REBaCo2O6.00 perovskites, was
observed in REBaCo2O5.00 compounds [4]. As a result,
the pentahedral environment of cobalt ions turned out
to be capable of affecting the spin states of these ions,
which complicated the interpretation of the magnetic
structure of these compounds. The ordering of oxygen
vacancies observed in REBaCo2O5.50 is somewhat dif-
ferent [3, 5]. The vacancies in these compounds form
channels in the plane of the rare-earth element, thus,
leading to the alternation of chains of CoO5 pyramids
and CoO6 octahedra. This results in the doubling of the
unit cell along the b axis.

Recently, the formation of a new type of oxygen
vacancy ordering was detected in the PrBaCo2O5.75
0021-3640/05/8211- $26.00 0719
compound [6]. This compound, being synthesized in
air, was characterized by the tetragonal symmetry of
the unit cell (space group P4/mmm) with the doubled
perovskite structure parameters (~2ap × 2ap × 2ap). In

such a unit cell, vacancies formed in the 1b 

position.

Thus, a pronounced relation exists between the oxy-
gen content and the type of oxygen vacancy ordering in
layered REBaCo2O5 + δ perovskites. Because the oxy-
gen vacancy ordering found in PrBaCo2O5.75 has not
been observed in compounds with another rare-earth
ion, it seems interesting to study the possibilities of
obtaining this type of oxygen vacancy ordering in lay-
ered cobalt-containing oxides with another type of rare-
earth ion and to study the physical properties of these
compounds. The mechanism of the transition from one
crystal structure phase to another one upon varying the
oxygen content in these compounds remains unclear.

A sample of NdBaCo2O5 + δ was obtained with
regard to the fact that it is difficult to obtain composi-
tions with a near-stoichiometric oxygen content in the
synthesis of REBaCo2O5 + δ compounds in air [5]. The
smaller the ionic radius of the rare-earth element, the
greater the oxygen deficit. Therefore, the sample of
NdBaCo2O5.72 was synthesized from oxides and car-
bonates of the corresponding elements in two steps.
First, the sample was first calcined at a temperature of
1000°C, then, slowly cooled, and, finally, ground. The
synthesis was carried out at a temperature of 1100°C.
The slow rate of cooling (less than 20°C/h) from the
synthesis temperature and holding at 250°C for 24 h
favored the saturation of the compound with oxygen.
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Fig. 1. Neutron diffraction pattern for the NdBaCo2O5.72 compound processed by the FullProf program in the Pmmm space group.
The Bragg positions of the structure reflections and the differential curve between the experimental and theoretical data are also
shown.
X-ray powder diffraction analysis performed on a
DRON-3M diffractometer using CuKα radiation
showed the presence of a perovskite phase with weak
orthorhombic distortions of the unit cell.

The further refinement of the unit cell parameters
and the accurate determination of the oxygen content of
the sample were performed by the full-profile analysis
of the neutron powder diffraction data using the
Rietveld method (Fig. 1) with the FullProf program [7].
The neutron-diffraction pattern was obtained at a tem-
perature of 250 K on a high-resolution neutron powder
diffractometer E9 with a germanium monochromator.
The analysis of the neutron-diffraction pattern was per-
formed in tetragonal and rhombic systems. It was
expected that the implantation of neodymium ions with
a smaller ion radius would distort the unit cell from the
tetragonal (characteristic of the P4/mmm space group
and similar to the PrBaCo2O5.75 phase) to orthorhombic
(Pmmm space group) structure.

An attempt was made to identify the obtained neu-
tron-diffraction pattern within a model assuming the
oxygen vacancy ordering typical for the NdBaCo2O5.50
phase [3, 8] with the unit cell parameters ~ap × 2ap ×
2ap. In this case, additional reflections were detected in
a wide range of angles and a disagreement was found
between some calculated and experimental intensities
of Bragg reflections. Poor agreement between theoreti-
cal and experimental data was also observed for the tet-
ragonal symmetry of the unit cell with doubled param-
eters of the perovskite structure (in the space group
characteristic of PrBaCo2O5.75). We found that the best
agreement between the experimental and theoretical
curves is observed in the rhombic system with the
parameters ~2ap × 2ap × 2ap. The formation of the
orthorhombically distorted unit cell is clearly demon-
strated by the splitting of the (2k 0 0) reflections (k is an
integer number) of the doubled perovskite structure
(Fig. 2a). This splitting is not identified in the case of
consideration in the tetragonal symmetry of the unit
cell (Fig. 2b). We have not detected additional reflec-
tions pointing to the presence of other phases (Fig. 1).
The refinement of atomic positions and the analysis of
position occupations in the selected Pmmm space group
indicated that oxygen vacancies preferentially form in
the plane containing rear-earth ions in positions 1c with

the coordinates  (Fig. 3). At the same time, the

cobalt ions are in a pentahedral oxygen environment
slightly displaced toward the formed vacancy. The
refined unit cell parameters and atomic coordinates are
presented in the table.
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The oxygen content obtained by processing the neu-
tron diffraction pattern within the selected model was
δ = 5.72 ± 0.02. The calculated results show that, as the
oxygen content decreases from 5.75, additional vacan-

cies form in positions 1d  and 1g 

earlier than in position 1h . Thus, based on the

obtained results, a mechanism of the formation of the
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Fig. 2. Profile of the (8 0 0) structural reflection calculated
within (a) the Pmmm and (b) P4/mmm space groups.
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NdBaCo2O5.50 (REBaCo2O5.50) crystal-structure phase
can be proposed as the process of oxygen ion diffusion
along the crystallographic axes [1 0 0] from the “initial”
NdBaCo2O5.75 phase. At the same time, the oxygen ion

in crystallographic position 1h  remains rela-

tively stable, which first allows the formation of tunnels
from oxygen vacancies characteristic of the
NdBaCo2O5.50 phase. Then, with a further decrease in

the oxygen content, diffusion from positions 

proceeds and, as a result, a phase that is characteristic
of the REBaCo2O5.00 compounds and composed of oxy-
gen pentahedra CoO5 is formed.

Thus, it may be concluded that a new crystallo-
graphic phase is formed in the NdBaCo2O5.72 com-
pound in which oxygen vacancies are ordered in the

plane of the rare-earth ion in position 1c  and

the cation–anion ratio is 1 : 1 : 2 : 5.75. With this order-
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Nd+3

Ba+2

Co+3

O–2

c
b
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Fig. 3. Crystal structure of the NdBaCo2O5.75 compound.
The pentahedral and octahedral environments of cobalt ions
formed by oxygen ions are shown.
Unit cell of the NdBaCo2O5.72 compound calculated within the Pmmm space group with the parameters a = 7.7804,
b = 7.8001, and c = 7.6052 Å and the reliability factors Rp = 4.79 and χ2 = 1.29

Atom Pos. X Y Z Occ. Atom Pos. X Y Z Occ.

Nd 4z 0.2569(8) 0.7527(11) 0.5 1.0 O4 1d 0.5 0.0 0.5 0.93

Ba 4y 0.2525(11) 0.7512(17) 0.0 1.0 O5 1e 0.0 0.5 0.0 1.0

Co1 2q 0.0 0.0 0.7489(39) 1.0 O6 1f 0.5 0.5 0.0 1.0

Co2 2s 0.5 0.0 0.7509(39) 1.0 O7 1g 0.0 0.5 0.5 0.89

Co3 2r 0.0 0.5 0.7480(40) 1.0 O8 1h 0.5 0.5 0.5 1.0

Co4 2t 0.5 0.5 0.7544(37) 1.0 O9 4u 0.0 0.7558(23) 0.7128(8) 1.0

O1 1a 0.0 0.0 0.0 1.0 O10 4v 0.5 0.7580(19) 0.7404(6) 1.0

O2 1b 0.5 0.0 0.0 1.0 O11 4w 0.2417(21) 0.0 0.7177(11) 1.0

O3 1c 0.0 0.0 0.5 0.06 O12 4x 0.2425(21) 0.5 0.7090(11) 1.0
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ing, the unit cell of the perovskite structure is doubled
along the [1 0 0] directions. A decrease in the oxygen
content in this crystal-structure phase leads to the
occurrence of oxygen vacancies in positions 1d

 and 1g  and to the formation of tun-

nels from oxygen vacancies characteristic of the
REBaCo2O5.50.
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It is shown that the growth of a nanosized fullerite film in the C60 molecules–Nb(100) surface adsorption system
depends essentially on the chemical state of adsorbed sulfur. In particular, sulfur as the surface sulfide NbS with
a concentration of (9 ± 0.2) × 1014 cm–2 has almost no effect on the adsorption: as on the pure metal, fullerene
molecules from the first and, partially, second layers undergo considerable degradation and do not desorb at any
temperatures upon the subsequent heating. On the contrary, C60 molecules retain their structure on a valence-
saturated NbS2 monolayer with almost the same surface concentration of S atoms, build a fullerite film as crys-
tallites without the formation of an intermediate monolayer (Volmer–Weber mechanism), and completely leave
the surface at 800 K, which remains unchanged and uncontaminated. © 2005 Pleiades Publishing, Inc.

PACS numbers: 61.46.+w, 68.35.Bs
Along with nanotubes and two-dimensional graph-
ite films, fullerenes form a family of carbon nanomate-
rials with reduced dimensionality, which seem promis-
ing, in particular, as materials for nanoelectronics [1].
Currently, fullerenes find various actual and potential
applications ranging from pharmaceuticals to nuclear
explosive components [2, 3]. The study of the interac-
tions between fullerenes and solid surfaces is a key to
applications in almost any physical technology. The
adsorption of C60 molecules on various atomically
clean metal (W, Ir, Re, Mo, Ag, Cu, etc.) [4–11] and
semiconductor (Si and SiC) surfaces [12] has been
studied and described. However, data on the interaction
of these molecules with film systems are very scanty. At
the same time, surfaces are coated with adsorbate films
in the majority of practically important cases.

Undoubtedly, the same adsorbate can occur on a
surface in essentially different adsorption states, which
exhibit dramatically different electronic, adsorption,
and catalytic properties. Such discrimination has been
currently made only for surface carbon [13, 14] and, to
a lesser degree, silicon [15]. However, it is also valid for
other atoms. In this work, we attempt to consider the
effects of various adsorption states of sulfur on the
interaction of C60 molecules with the most thermally
stable (100) face of niobium.

The experiments were performed in an ultrahigh-
vacuum high-resolution Auger spectrometer, which
was described in [16], at a residual pressure of no
higher than p ~ 10–10 Torr. The Auger spectra of heated
samples were measured over the range 300–2100 K.
0021-3640/05/8211- $26.00 0723
Incandescent niobium ribbons of size 0.05 × 1 × 40 mm
were used as test samples, which were cleaned by heat-
ing successively in oxygen (  ~ 10–6 Torr, 1500 K,
t ~ 3 h) and in an ultrahigh vacuum at T ~ 2100 K for
several hours. After cleaning, only the Auger peaks of
niobium were detected on the surface. The surface was
homogeneous in terms of the work function and corre-
sponded to the (100) face. The Auger signals of sulfur
with E = 150 eV, carbon with E = 269–272 eV, and nio-
bium with E ~ 170 eV were used.

Fullerenes were uniformly sputtered onto the
entire ribbon surface from a Knudsen cell [17]. After
training, the cell gave a stable and easily controllable
flux of fullerene molecules with the density ν = 1010–
1013 cm–2 s–1. The absolute value of the flux was deter-
mined using the method described previously [17]. To
distinguish fullerenes adsorbed on the surface from
other possible states of carbon and to determine the
chemical state of adsorbed C60 molecules, we used the
specific shape of a CKVV Auger peak with E = 269 eV,
as proposed previously [5]. Sulfur from H2S molecules
was applied to the surface using chemical vapor depo-
sition: at T > 650 K, hydrogen sulfide molecules
decomposed on refractory metal surfaces; hydrogen
was desorbed, and sulfur remained in an adsorption
layer [18].

Previously, we studied the adsorption of C60 mole-
cules on a clean Nb(100) surface. The character of the
interaction was very similar to that observed on Ta(100)
[19]: the adsorbed molecules of C60 underwent a trans-

PO2
© 2005 Pleiades Publishing, Inc.
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formation at room temperature and provided an essen-
tially nonfullerene shape of the CKVV Auger spectrum
(see Fig. 1a), whereas the electronic structures of the
molecules from the second and following layers
remained unchanged (see Fig. 1b). The two-dimen-
sional concentration of C60 molecules from the first
layer was  ~ (1.5 ± 0.3) × 1014 cm–2, and this layer
reduced the Auger signal of the substrate by a factor of
~2.7 ± 0.2 due to screening. The film growth occurred
by the Stranski–Krastanov mechanism: crystallites on
top of the first monolayer. Heating to 700–750 K
resulted in the thermal desorption of all the sputtered
C60 molecules, except for those in the first layer, from
the surface. On the subsequent heating, these molecules
decomposed into carbon atoms, which dissolved in the
bulk of the sample at T ~ 900 K, and only surface car-
bide with the carbon atom concentration NC ~ (3 ± 0.25) ×
1014 cm–2 remained on the surface.

At the initial stages of doping the Nb(100) surface
with sulfur atoms, surface sulfide with the sorbate atom

NC60

Fig. 1. Shapes of the Auger signals of carbon from equal
amounts of C60 molecules adsorbed on (a) a surface sulfide
of Nb(100) and (b) a niobium disulfide monolayer produced
on the same substrate. The numerals at the spectra specify
the peak energies in electronvolts. (c) Changes in the above
Auger signals of carbon on stepwise (steps of 50 K) heating.
The surface concentration of fullerenes was  ~ (1.5 ±

0.3) × 1014 cm–2, and the annealing time at each point was
30 s.

NC60
concentration NS ~ (9 ± 0.2) × 1014 cm–2, that is, NbS
with respect to metal atoms on the (100) face, was
formed, which was analogous to sulfides observed pre-
viously on W [20], Ta [21], Mo [22], and Pd [23]. The
absolute concentration of adsorbed sulfur was calcu-
lated from a comparison between the Auger signal
intensities of an adsorbate and a substrate for niobium
and surface tungsten sulfide, which were considered in
the above-cited publication, taking into account pub-
lished element sensitivity factors [24]. For the forma-
tion of the above surface sulfide, the surface should be
exposed to hydrogen sulfide at T ~1000–1100 K and
p ~ 10–7 Torr for ~10 s; in this case, the exposure dose
of hydrogen sulfide was ~1L. That is, ~1015 S atoms
arrived at the unit surface during the adsorption time;
this value is very close to that calculated previously
from Auger-spectroscopic data. This means that all the
sulfur atoms that arrived at the surface remained in an
adsorption layer and built a surface compound rather
than penetrated into the bulk or desorbed from the sur-
face.

As the exposure of a sample in hydrogen sulfide
vapor was increased (T ~ 1100 K;  ~ 10–7 Torr; t >
120 s), a new stable coating was produced, which was
characterized by the ratio IS/INb = 2.3 between the
Auger peaks of sulfur and niobium. This ratio remained
constant on the subsequent exposure to H2S vapor up to
exposure doses of 250L. It is likely that, as in the cases
with tantalum [21] and molybdenum [22], a monolayer
of a layered MeS2 compound (NbS2 in our case) was
formed on the surface. Indeed, the formation of nio-
bium disulfide in the entire near-surface region of the
sample would result in the ratio IS/INb ≈ 5–6 between
the adsorbate and substrate Auger peaks, in contrast to
that observed in experiments. Moreover, special exper-
iments on the high-temperature thermal desorption of
sulfur from these samples (with heating up to 2200 K)
demonstrated that S atoms occurred only on the surface
as a monolayer of NbS2 and were absent in the bulk of
the samples. The formation of a valence-saturated dis-
ulfide layer likely blocked the metal surface and termi-
nated the degradation of N2S molecules, and sulfur
ceased to arrive at the adsorption layer.

We found that the interaction of fullerene molecules
with a sulfur-coated metal surface depends crucially on
the chemical state of the adsorbate. Thus, the adsorp-
tion of C60 molecules on a surface sulfide resulted in the
degradation of fullerene molecules from the first
adsorption layer and in the growth of a fullerite film by
a mechanism analogous to that observed on pure nio-
bium. However, upon the formation of a niobium disul-
fide monolayer, the adsorption changed dramatically
and exhibited a very unusual character.

Figure 2a demonstrates the changes in the Auger
signals of carbon (from fullerenes) and both of the
Auger signals of the substrate (due to niobium and sul-
fur) upon the sputtering of C60 molecules onto a sulfur-

PH2S
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doped niobium surface. It can be seen that, after a rapid
increase in the Auger signal of the adsorbate and a
decrease in the Auger signals of the substrate in the first
200 s, the process was significantly retarded and the
Auger signals exhibited a pronounced trend to stabili-
zation. Note that, even at the earliest steps of adsorp-
tion, C60 molecules retained an inherent shape of the
Auger line of carbon; this is indicative of the retention
of the fullerene nature of these molecules (see Fig. 1b).
Intensity changes in the Auger peaks of the adsorbate
(carbon) and the substrate (niobium and sulfur) were
analyzed using the procedure proposed by Argile and
Rhead [25]. The results of this analysis, which are
shown in Fig. 2b, demonstrate that the rare Volmer–
Weber film growth mechanism occurred: the formation
of fullerite islands immediately on the substrate with-
out an intermediate monolayer of the adsorbate.

Figure 1c shows comparative changes in the Auger
signals of carbon upon the heating of fullerite films
grown on (curve 1) surface silicide and (curve 2) a nio-
bium disulfide monolayer. It is seen that heating at 800–
900 K resulted in a decrease in both the Auger signals
of carbon. However, in the former case, a considerable
amount of carbon remained on the surface; this amount
corresponds to undesorbed molecules from the first
and, probably in part, second layers. At higher temper-
atures, this carbon was atomized and dissolved in the
bulk of the substrate, except for C atoms that formed an
equilibrium surface carbide. In contrast, in the latter
case, the Auger signal of carbon vanished; in this case,
the Auger signals of sulfur and tantalum were restored
to their original values. This means that the complete
desorption of C60 molecules occurs at this temperature,
and the chemical state of the surface remains
unchanged. Note that this is the only currently known
system in which the complete desorption of fullerene
molecules is reliably substantiated.

Let us discuss the experimental results. The inset in
Fig. 2b shows a hypothetical schematic diagram of the
structure of an adsorption layer in this system. A
valence-saturated monolayer of the layer compound
NbS2 is likely formed on the surface. The structure of
this compound is similar to that shown in the figure:
metal atoms are arranged almost exactly in a plane as a
one-atom-thick layer, whereas sulfur atoms are
adsorbed on the two sides of this layer in identical con-
centrations, which are close to that in a surface sulfide
[26]. The fullerene molecule is bound to the substrate
by only physisorption forces, and it retains its structure
on this layer, which protects it from the catalytic effect
of the metal surface. This also explains the possibility
of the complete desorption of fullerenes: even mole-
cules from the first monolayer do not form strong
chemisorption bonds with the substrate, which could
distort their structure and prevent thermal desorption.
In the case of a surface sulfide, adsorbed sulfur likely
cannot passivate the metal, and C60 molecules from the
first and, partially, second layers undergo degradation,
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as in the case on the clean substrate. However, the next
fullerenes are protected from the catalytic effect of the
metal, and they build crystallites as on the valence-sat-
urated layer of NbS2.

An analogous mechanism of the growth of fullerite
islands and unchanged electronic properties of C60 mol-
ecules upon adsorption were observed previously on a
sulfur-doped tantalum surface [21], where a valence-
saturated metal disulfide layer can also be formed. A
similar behavior may also be expected on other
valence-saturated surfaces, including the surface of a
graphite monolayer.

Thus, we found that the formation of a valence-sat-
urated layer on a metal surface resulted in dramatic
transformations in the adsorption–desorption behavior
of C60 molecules: the growth of a film as crystallites
occurred beginning with the earliest steps of adsorp-
tion; the molecular structure remained unchanged, and
the molecules were completely removed from the sur-
face by thermal desorption at T ~ 800 K. Phenomena of
this kind were not observed if adsorbed sulfur occurred
on the surface in a comparable concentration but in

Fig. 2. (a) Changes in the Auger signals of (1) sulfur,
(2) niobium, and (3) carbon upon the sputtering of C60 mol-
ecules with a constant flux at T = 300 K onto a monolayer
of NbS2 deposited on the Nb(100) surface. (b) The above
data plotted as the function (top axis) IC = f(IS) or (bottom
axis) IC = f(INb). Inset: hypothetical schematic diagram of
the structure of an adsorption layer. The flux density of C60

molecules was  ~ (7.5 ± 1.5) × 1011 cm–2 s–1.νC60

auger signal
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another chemical state—the surface sulfide NbS
instead of a niobium disulfide monolayer.
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Detection of Directed Electron–Hole Recombination Energy 
Transfer from an Ionic Crystal Matrix

to Self-Assembled Nanocrystals
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It is found that the energy released in the spin-dependent tunneling recombination of electron–hole pairs and
self-trapped excitons in an ionic crystal matrix is directionally transferred to low-dimensional semiconductor
structures embedded in the matrix as a result of self-assembled growth. The EPR spectra of electron and hole
centers in the matrix crystal are detected by tunneling afterglow and photostimulated luminescence that are
excited in the low-dimensional structure. © 2005 Pleiades Publishing, Inc.

PACS numbers: 71.35.Ee, 73.22.–f, 61.46.+w
In strained heterosystems, there exist mechanisms
giving rise to self-assembled growth of oriented micro-
and nanocrystals embedded in the lattice of the bulk
material (matrix). Of special interest are semiconductor
nanostructures, in which the effect of the quantum con-
finement of carriers and excitons leads to high radiation
efficiency [1]. These phenomena can be used in the
development of various optical systems for quantum
electronics and are also promising in the development
of x-ray storage phosphors [2]. Thus, oriented micro-
and nanocrystals of copper and silver halides embedded
in the matrix crystal lattice form through self-assem-
bled growth in NaCl-type alkali halide crystals (AHCs)
with a copper or silver impurity [3–6], and CsPbCl3
(CsPbBr3) micro- and nanocrystals form in CsCl-type
crystals [7]. The bandgap in the embedded nanocrystals
is smaller by approximately 5 eV in comparison with
the matrix crystal; therefore, systems of such nanocrys-
tals can be considered as arrays of oriented quantum
dots. In the systems in which atoms of one group of the
Periodic Table are substituted, such as NaCl-type crys-
tals with a copper (silver) impurity or InAs/GaAs, the
mechanism of self-assembled growth is due to strains.
In AHCs with an impurity of Pb2+, Mn2+, Eu2+, etc.,
there is a tendency to the formation of impurity nano-
clusters even at room temperature because of the occur-
rence of cation vacancies compensating for the excess
positive charge. Such nanoclusters exist as the Suzuki
phase [8] in matrix crystals of the NaCl type and as nan-
oclusters in matrix crystals of the CsCl type.

In this work, we study CsBr:Pb (promising for com-
puter x-ray tomography) and KBr:Ag systems, in
which the optical properties of CsPbBr3 nanocrystals
[7] and the properties of AgBr nanocrystals [5, 6] were
studied previously. Crystals of CsBr:Pb (0.02–0.2%
0021-3640/05/8211- $26.00 0727
PbBr2 in the melt) and KBr:Ag (1–2% AgBr in the
melt) were grown by the Bridgman method. After x-ray
irradiation at 77 K, persistent tunneling afterglow (TA)
due to tunneling recombination between x-ray-induced
electron and hole centers was observed in these systems
at low temperatures (1.5–80 K). Long-wavelength opti-
cal excitation in absorption bands of particular radia-
tion defects, for example, color centers of the F-center
type, gives rise to photostimulated luminescence (PSL)
at shorter wavelengths due to various recombination
processes, exciton recombination included. It is PSL
that is used in computed radiography. Based on the spin
dependence of TA and PSL, optically detected mag-
netic resonance (ODMR) techniques were developed
for the detection of recombining centers and excitons
by TA and PSL [9, 10].

Figure 1 demonstrates (1) TA and (2) PSL spectra
measured in CsBr:Pb crystals subjected to x-ray irradi-
ation at 77 K. The TA spectrum can be observed only in
complete darkness at low temperatures for ~10 h after
short-term (10 min) x-ray irradiation at 77 K. The shape
of the spectrum did not depend on the temperature in
the range 1.5–80 K. The PSL spectrum was excited by
weak red-light illumination (650 nm) in the absorption
region of F-centers, and its shape was also independent
of temperature in the range 1.5–80 K. Two types of
emission spectra are observed in both cases: broad and
relatively narrow bands. The narrow band coincides
with lines measured in works [7] by photolumines-
cence (PL) and absorption and assigned to excitons in
micro- and nanocrystals of CsPbBr3 embedded in the
CsBr lattice. For comparison, Fig. 1 presents (3) the PL
spectrum observed in an unirradiated CsBr:Pb crystal
upon optical excitation in the UV region by the light of
a deuterium lamp. Only a narrow line is seen in the fig-
© 2005 Pleiades Publishing, Inc.
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ure, which belongs, according to [7], to micro- and
nanocrystals of CsPbBr3 embedded in the CsBr lattice.
The broad bands in TA are caused directly by the elec-
tron–hole recombination (EHR) of electron and hole
centers induced by x-ray irradiation in the matrix CsBr
crystal. It is unlikely that electron and hole centers
whose recombination leads to persistent tunneling
afterglow form in nanocrystals, because the small sizes
of nanocrystals confine the distance between recombin-
ing partners. Moreover, we also observed such broad
TA bands in CsBr crystals with impurities of other ele-
ments; that is, at least partially, TA is caused by the
recombination of intrinsic matrix defects. Thus, the
excitation of afterglow in micro- and nanocrystals
embedded in the matrix points to the directed energy
transfer of electron–hole recombination that proceeds
in the (CsBr) matrix to a nanocrystal through the inter-
face. Previously, we observed energy transfer for the
tunneling recombination of electron–hole pairs in a
crystal to impurity rare-earth ions (Er3+), which, as well
as nanocrystals, are not directly involved in recombina-
tion [11]. Along with the bands peculiar to TA and asso-
ciated with EHR, the PSL spectra exhibit an additional
band due to the emission of triplet self-trapped excitons
(STEs), which form through the capture of electrons
released from excited F centers by self-trapped holes
(STHs). The formation of self-trapped excitons upon
photostimulation of irradiated ionic crystals was
proved by ODMR in [10]. The narrow band belonging
to excitons in CsPbBr3 nanocrystals embedded in the
CsBr lattice has the same shape in the PSL and TA
spectra. Thus, as well as for TA, directed transfer of the
recombination energy from the matrix to nanocrystals
occurs in the case of PSL. An increase in the energy of

Fig. 1. (1) Tunneling afterglow and (2) photostimulated
luminescence spectra in the CsBr:Pb system detected after
x-ray irradiation at 77 K. Vertical lines mark the emission of
excitons in CsPbBr3 nanocrystals and self-trapped excitons
in the CsBr crystal, whose emission band is indicated by a
dashed line and marked as STE. Line 3 is the photolumines-
cence line shown for comparison.
the exciton band in a CsPbBr3 nanocrystal in reference
to the exciton energy in the bulk crystal equal to
2.322 eV [7, 12] allows the size of the nanocrystal
(quantum dot) to be estimated in accordance with the
equation

where the effective exciton mass µ = 0.52me and LQD is
the length of a face in the case of the representation of
the quantum dot as a cube. The shift in the emission
energy toward high energies in reference to bulk crys-
tals in the spectrum presented in Fig. 1 was 0.086 eV.
Hence, the size of CsPbBr3 nanocrystals in the sample
was approximately 3 nm. 

In the case of irradiation of a nominally pure CsBr
crystal at a low temperature, self-trapped holes (Br2 or
VK centers) and electron color centers of the type of F
centers form first. In impurity-activated crystals, elec-
tron and hole centers associated with impurities also
form. Recombination between x-ray-induced centers
that proceeds at a low temperature, at which thermally
activated processes are frozen, gives rise to spin-depen-
dent tunneling afterglow. As a result, magnetic quench-
ing of tunneling afterglow is observed in strong mag-
netic fields and at low temperatures because of the spin
polarization of electron and hole centers in accordance
with the Boltzmann distribution. This effect allowed
the EPR of recombining electron and hole centers to be
detected by the increase in the TA intensity at the
instant of resonance (this increase was due to spin flip
in one of the recombining partners). Thus, these defects
were identified. Moreover, the potentiality of detecting
luminescence generated by single recombination acts is
very promising because of the high sensitivity of this
technique due to the facts that the exciting light is
absent in the case of TA and long-wavelength illumina-
tion (continuous or pulsed) is very weak in the case of
PSL. It should be emphasized that PSL bands are sub-
stantially more intense (by more than an order of mag-
nitude) than TA bands.

Figure 2 shows the decrease in the TA intensity I in
a magnetic field at a temperature of 1.8 K. The charac-
ter of quenching corresponds to the recombination of
two centers with electronic g factors 2.0 and spins S =
1/2 in accordance with the equation I = I0(1 – PePh),
where I0 is the TA intensity in a zero magnetic field, and
Pe and Ph are spin polarizations of the electron and hole
centers, respectively, in the magnetic field (the calcu-
lated dependence is shown by the dashed line). The
application of a microwave field (35 GHz) results in an
increase in the TA intensity in the magnetic fields cor-
responding to EPR transitions for electron and hole
centers due to electron spin flip processes and switch-
ing of the recombination regime; that is, optical detec-
tion of the magnetic resonance takes place. The inset in
Fig. 2 shows the ODMR spectra measured by (1) the
total afterglow and (2) the emission of nanocrystals.
These spectra have the same shape and consist of EPR

∆E "
2π2/2µLQD

2 ,=
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signals from F centers and self-trapped holes (VK cen-
ters). Figure 2 demonstrates EPR signals of F centers
and VK centers for the B || [100] crystal orientation in
the magnetic field simulated using the known parame-
ters for F centers and VK centers in the CsBr crystal [13,
14]. It is evident that the simulated spectra are close to
the experimentally observed ones. The fact that the
EPR signals of F and VK centers recombining in the
matrix are detected by the intensity of the emission of
micro- and nanocrystals embedded in the matrix lattice
unambiguously indicates that this emission is excited
by matrix recombination processes. Because of the
small sizes of nanocrystals and small distances at which
energy is transferred, it is very likely that the energy
transfer is due to near-field interactions without emit-
ting photons into the environment. In such a system of
CuCl quantum dots embedded in an NaCl crystal,
energy transfer from smaller quantum dots to larger
quantum dots with a decrease in energy (a so-called
nanofountain) has been observed recently [15] by near-
field spectroscopy. In our work, it is shown that the
matrix recombination energy is spontaneously and
directionally transferred to a quantum dot, which repre-
sents a nanocollector of excitations (a peculiar nano-
sink) from a rather large region surrounding the quan-
tum dot. It is not excluded that the subsequent interac-
tion between quantum dots leads to the formation of a
nanofountain by the mechanism proposed in [15].
However, it should be noted that external optical exci-
tation is absent in our experiment and all the processes
are spontaneous.

The intensity of the TA and PSL broad band can be
increased by almost an order of magnitude after the
quenching of the sample from 800 to 77 K. The quench-
ing and annealing of crystals essentially change the
character of the recombination processes in the crys-
tals, which is caused by structural changes in the sys-
tems under study. Thus, quenching reduces the size of
micro- and nanocrystals and increases the concentra-
tion of impurity point defects serving as electron and
hole traps and stimulating an increase in the concentra-
tion of radiation defects participating in recombination,
for example, self-trapped holes (and, as a consequence,
self-trapped excitons) or F centers. Figure 3 presents
the (solid lines) TA and (dashed lines) PL spectra mea-
sured in CsBr:Pb (1) before and (2) after quenching
from 800 to 77 K. It is evident that a relatively narrow
emission band belonging to CsPbBr3 crystals embed-
ded in the CsBr lattice is broadened and is shifted to the
region of high energies after quenching. Similar
changes were found in the PSL spectra. Before quench-
ing, the position of the narrow band in both the PL and
TA spectra corresponds to the relatively large sizes of
the nanocrystals up to CsPbBr3 microcrystals embed-
ded in the CsBr lattice. Quenching results in a decrease
in the size of the nanocrystals to 3–6 nm and in an
increase in the scatter of their sizes. These effects give
rise to the high-energy shift of the emission lines and to
JETP LETTERS      Vol. 82      No. 11      2005
their broadening, respectively. It is important that simi-
lar changes are observed in the PL spectrum on the one
side and in the TA and PSL spectra on the other. This
result demonstrates that, in the case of TA and PSL,

Fig. 2. Magnetic-field dependence of the tunneling after-
glow intensity at a temperature of 1.8 K in the CsBr:Pb crys-
tal. The calculated dependence for the recombination of two
centers with S = 1/2 and g = 2.0 is shown by a dashed line.
The inset presents the optically detected magnetic reso-
nance (ODMR) signal at a frequency of 35 GHz at 1.8 K
detected by (1) the total tunneling afterglow spectrum and
(2) by the narrow line of CsPbBr3 nanocrystals with an
energy of 2.48 eV. The simulated ODMR spectra of F cen-
ters and VK centers in CsBr for the B || [100] crystal orien-
tation in the magnetic field are shown below.

Fig. 3. (Solid lines) Tunneling afterglow and (dashed lines)
photoluminescence spectra in the CsBr:Pb crystal (1)
before and (2) after quenching from 800 K.
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emission in CsPbBr3 nanocrystals embedded in the
CsBr lattice is excited due to electron–hole recombina-
tion in the CsBr matrix.

A broad band with a maximum at 2.345 eV and a
half-width of 0.45 eV was observed in the TA spectra of
KBr:Ag crystals, in which the properties of AgBr
nanocrystals were studied previously [5]. The energy of
this band was less than the bandgap of the AgBr crystal
(2.681 eV). The quenching of TA in a magnetic field at
a low temperature was detected, and the ODMR spectra
were observed for x-ray-induced centers in KBr that
were involved in recombination: F centers, atomic sil-
ver centers Ag0, and self-trapped holes (VK). As distinct
from the CsBr:Pb system, the narrow band observed in
the PL spectra of KBr:Ag belonging to excitons in
AgBr nanocrystals was not excited in the TA spectrum.
This is likely due to the fact that the energy of the nar-
row exciton band equals 2.9 eV and significantly
exceeds the energy released in the electron–hole
recombination, whereas the opposite situation occurs in
the system of CsPbBr3 nanocrystals in CsBr.

Note, in conclusion, that the recombination pro-
cesses were studied in the system CsBr:Pb, in which
CsPbBr3 nanocrystals with sizes of 4–9 nm formed to
be embedded in the CsBr lattice. The emission of
CsPbBr3 micro- and nanocrystals was detected in tun-
neling afterglow and photostimulated luminescence.
Using the ODMR technique to detect TA, it was shown
that the recombination of intrinsic radiation defects (F
centers and self-trapped holes) in the CsBr matrix
excites the emission of CsPbBr3 nanocrystals. PSL is
induced by both the tunneling recombination of elec-
tron and hole centers and the formation of self-trapped
excitons in the CsBr matrix followed by the directed
transfer of the recombination energy to CsPbBr3 nanoc-
rystals.

These experiments provide unambiguous evidence
for the directed transfer of the recombination energy of
electron and hole centers in the CsBr matrix to CsPbBr3
nanocrystals. It is highly probable that the energy trans-
fer is due to near-field interactions without emitting
photons into the environment. The energy transfer can
be equivalent in its principles to processes that proceed
in biological photosystems [15]. The high sensitivity of
the detection of TA and PSL because of the absence of
exciting light (TA) or the use of very weak long-wave-
length illumination (PSL) can provide the possibility of
detecting single recombination acts by transferring the
released recombination energy from the matrix to a
nanocrystal. The resonance microwave quantum can
serve, in this case, as a trigger that initiates optical
emission.

We are grateful to J. Rosa, K. Nitsch, and K. Polak
for presenting a number of crystals. This work was sup-
ported by the Russian Foundation for Basic Research
(project nos. 03-02-17645 and 04-02-17632) and by the
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Temperature Behavior of Resistivity of a Two-Dimensional 
Doped Antiferromagnet Depending on Its Spin Susceptibility
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The temperature dependence of resistivity ρ(T) of a two-dimensional doped antiferromagnet is studied for dif-
ferent forms of spin susceptibility χ(q, ω): with allowance for the damping and renormalization of the magnetic
excitation spectrum and for the so-called strongly damped magnons. The kinetic equation is constructed on the
basis of the spin-fermion model for the carrier scattering from spin fluctuations. The temperature-dependent
scattering anisotropy is taken into account using the seven-moment approximation for the nonequilibrium dis-
tribution function. It is demonstrated that the resistivity calculation on the basis of the self-consistent expression
for χ(q, ω) with allowance for damping qualitatively reproduces the experimental anomalous behavior of ρ(T)
in high-temperature superconductors. At the same time, the strongly damped magnon approximation, which is
widely used for χ(q, ω) representation, proves to be incorrect in the high-temperature region. © 2005 Pleiades
Publishing, Inc.

PACS numbers: 71.38.+i, 74.20.Mn, 75.30.Mb, 75.50.Ee
It is well known that the transport properties of high-
temperature superconductors (HTSC) in the normal
state exhibit an anomalous temperature behavior [1–3].
A linear dependence of resistivity ρ = ρ0 + AT was
observed for different HTSC materials with different
doping levels. Various deviations from linearity, which
were also observed in the experiment [4], were attrib-
uted to specific changes in the excitation spectrum with
varying the doping level (e.g., the appearance of a
pseudogap on the Fermi surface) [2, 5–8]. The Hall
coefficient RH strongly depends on the temperature and,
at high temperatures, is approximately proportional to
1/T. The cotangent of the Hall angle cotθH = ρ/RHB has
a quadratic temperature dependence cotθH = αT2 + C,
where the constant C is determined by the contribution
of impurity scattering [2].

Most of the theoretical models used for describing
these properties are phenomenological and include the
parametrization of either the carrier relaxation time τk
or the scattering operator. In [9, 10], the consideration
is based on the Boltzmann equation in the relaxation
time approximation, where the relaxation time is
assumed to be highly anisotropic in different areas of
the Fermi surface. This gives rise to the “cold” and
“hot” points on the Fermi surface. The temperature
dependence τk(T) is introduced phenomenologically. In
[11], the parametrization of the scattering matrix was
performed by breaking the Brillouin zone and the
Fermi surface into cold and hot patches. The tempera-
ture dependence for the scattering amplitudes of carri-
ers scattered between different patches was postulated
in the scattering matrix Ckk'. As a result, in addition to
0021-3640/05/8211- $26.00 0731
the strong dependence on k (the anisotropy of scatter-

ing), the relaxation rate 1/τk ≡  exhibited a
non-Fermi-liquid behavior at low temperatures: τk ~ T
within the cold patches and τk ~ const within the hot
patches. Among the models used for studying the trans-
port properties and postulating the non-Fermi-liquid
nature of quasiparticles, we note the marginal Fermi
liquid model [12] and the model with two independent
relaxation times for the Hall and transport current [13].

One of the possible microscopic mechanisms that
lead to an anomalous behavior of τk is the carrier scat-
tering from antiferromagnetic (AFM) spin fluctuations.
The doped CuO2 planes, which govern the properties of
HTSC, are known to have noticeable AFM spin corre-
lations of copper ions and can be adequately described
in the framework of a two-dimensional doped antiferro-
magnet. Experiments with inelastic scattering of neu-
trons [14] clearly demonstrate that, for the metal state
of an underdoped HTSC, χ(q, ω) has a peak at the AFM
wave vector Q = (π, π). The spectral function χ''(q, ω) =
Imχ(q, ω) strongly depends on the doping level and
temperature. As the doping level increases, the spectral
weight of the fluctuations decreases, the width of the
peak δm increases, and the spectrum of the spin fluctua-
tions takes the form of a wide continuum typical of
uncorrelated metals. When the doping is close to opti-
mum, the magnetic correlation length ξm, which is
determined experimentally from the half-width of the
peak of the spectral function χ''(1/ξm = δm/2), is equal
to ξm ~ (1–2)a (a is the lattice constant) and almost does
not depend on the temperature.

Ckk 'k '∑
© 2005 Pleiades Publishing, Inc.
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To describe the AFM fluctuations at a doping level
close to optimum, when a considerable damping of
spin-wave excitations is observed (γ * , where γ
represents the damping and  is the characteristic
magnon frequency), the common practice is to use the
form of χ(q, ω) that is called the susceptibility of
strongly damped magnons χso(q, ω) [15–17]:

(1)

The calculation of ρ(T) on the basis of Eq. (1) was
performed in [15, 16]. The function Ωq(T) was phe-
nomenologically chosen to have the form Ωq = T* +
αT + ωDψq with temperature-independent parameters
T*, α, and ωD, and the quantity Bq was assumed to be
constant. The function ψq can be represented as ψq =
2 + cos(qxa) + cos(qya) or ψq = (q – Q)2/2. The values
of the parameters T*, α, and ωD are usually chosen so
as to fit the experimental temperature dependence of
resistivity ρso(T). Note that, even under the assumption
that the damping γ is constant, the function Ωq is non-
trivially related to the spectrum of spin fluctuations 

by the formula Ωq = /γ. This fact does not allow one

to identify Ωq with .

In the model of an almost antiferromagnetic Fermi
liquid, we introduce the effective interaction of elec-
trons with spin fluctuations described by the dynamic
spin susceptibility χaf(q, ω). The latter is determined by
fitting to the data of NMR relaxation experiments [18]:

(2)

where ξ is the correlation length and ωsf is the charac-
teristic energy scale of the spin fluctuations. In doped
HTSC systems, the correlation length ξ is usually small
and lies within 2a < ξ < 8a [19]. The quantity ωsf is fit-
ted to the NMR data for YBa2Cu3O7 by using the for-
mula ωsf = [6 + 0.06T(K)] meV [18, 19]. Since the sus-
ceptibility has peaks at the wave vectors Q, hot quasi-
particles, which are strongly scattered through the
vector Q, and cold quasiparticles, which are scattered
only weakly, appear in the system. The susceptibility
χaf actually is an expansion of χso in the vicinity of the
vector q = Q with ωsf = ΩQ and χQ = BQ/ΩQ.

The representation of susceptibility by Eqs. (1) or
(2) cannot be considered as adequate, because this
dependence correctly describes the spin dynamics only
in the vicinity of the vector Q in the region of small ω
and, in addition, does not satisfy the general sum rule
for χ(q, ω). Note that the actual spectrum of spin fluc-
tuations remains hidden in the phenomenological
parameters Ωq or ωsf.

ω̃q

ω̃q

χso q ω,( )
Bq

Ωq iω–
-------------------.=

ω̃q

ω̃q
2

ω̃q

χaf q ω,( )
χQ

1 ξ2 q Q–( )2 iω/ωsf–+
---------------------------------------------------------,=
The aim of our study is to investigate the behavior of
ρ(T) with a more realistic (microscopic) form of χ(q,
ω) that, in particular, satisfies the sum rule. The form of
χ(q, ω) plays a decisive role in the kinetics of carriers.

We consider the spin subsystem, which is a two-
dimensional S = 1/2 frustrated Heisenberg antiferro-
magnet on a square lattice, in the self-consistent spher-
ically symmetric approximation. In particular, this
means the absence of sublattices and the presence of
three degenerate branches of triplet spin excitations
with the mean-field spectrum ωq, whose parameters
(including the gap ∆(T) ≡ ωQ(T) at the AFM vector Q =
(π, π)) are calculated self-consistently at each tempera-
ture with allowance for the validity of the sum rule

 = 3/4 [20]. The exchange Hamiltonian 
responsible for the AFM interaction between spins has
the form

where g and d are the vectors of the nearest and next-
to-nearest neighbors, p (0 ≤ p ≤ 1) is the frustration
parameter, and I1 = (1 – p)I and I2 = pI are the exchange
interaction constants for the nearest and next-to-nearest
neighbors.

Using the irreducible Green’ function method [21]
or the memory function method [22], we represent the
spin susceptibility in the form

(3)

where ωq is the spin excitation spectrum in the mean-
field approximation and R(q, ω) is the Fourier compo-
nent of a new complex function with the same analyti-
cal properties as those of the function χ(q, ω). The
function R(q, ω) = R'(q, ω) + iR''(q, ω) corresponds to
the three-node irreducible retarded Green function R(q,

ω) = :

where δ( ) =  – 〈 〉  describes the decay
of a spin wave into three spin waves or the effective
decay of a spin excitation into an electron excitation
and a hole one. Since R*(q, ω) = R(q, –ω), the functions

SR
α SR

α〈 〉 Î

Î
1
2
--- I1 SR g+

α SR
α 1

2
--- I2 SR d+

α SR
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R d,
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--------------------------------------------,= =
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R'(q, ω) and R''(q, ω) are even and odd with respect to
the variable ω and can be represented as

Below, we ignore the frequency dependence of α and γ.
Then, the susceptibility takes the form

(4)

For αq ! 1, spin waves with the frequency  =

/(1 – αq)1/2 and damping  = γq/(1 – αq) propagate
in the system. The parameters R'(q, 0) and (1 – αq)
determine the renormalization of the spin wave spec-
trum. When αq  1, the damping  becomes

greater than , and the term spin waves with a defi-
nite frequency becomes meaningless. This limiting
case corresponds to the approximation of strongly
damped magnons, which are described by susceptibil-

ity (1) with Bq = Aq/"2γq and Ωq = /γq.

Now, we consider ρ(T) on the basis of susceptibil-
ity (4). The functions Aq and ωq were calculated in the
mean-field approximation (where the function R(q, ω)
is ignored) with the use of the self-consistent procedure
of solving the corresponding set of equations for every
temperature value [20]. The mean-field spectrum ωq
and the numerator Aq depend on the frustration param-
eter p and on the finite number of spin–spin correlation

functions Cr = . They have the form

(5)

where

The parameters bi of the spectrum depend on tempera-
ture through Cg, C2g, Cd, C|g + d|, and C2d. The functions
Aq and ωq tend to zero when q  0. In the limit q 
Q, the numerator Aq tends to a positive constant AQ

while the spin wave spectrum  ≈ ∆2 + c2(q – Q)2 is
separated from zero by the gap ∆ ≡ ωQ, which increases
with temperature. When T  0, the gap tends to a
finite limit determined by the frustration parameter p.
Figure 1 shows the spectrum ωq for T = 0.3I with the
parameters p = 0.1 and I = 0.1 eV (the dashed line). It
is commonly believed that p increases with the doping

R ' q ω,( ) = R ' q 0,( ) αq ω, ω2, R '' q ω,( )+ ωγq ω, .–=

χ q ω,( ) 1

"
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2
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γg k( ) kxa( )cos kya( )cos+( )/2,=
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2
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level nh. Since we consider the case of doping close to
optimum (nh ≈ 0.15), we take p = 0.1 [23]. Note that the

spin–spin correlation function Cq =  has a
sharp peak at q = Q, which leads to a strong depen-
dence of the carrier scattering on the resonance struc-
ture of the spin fluctuation spectrum.

The simplest way to construct a realistic susceptibil-
ity χ(q, ω) of type (4) is to take into account the damp-
ing. We assume that the latter is constant and tempera-
ture-independent: γq = γ. Recent analytical and numer-
ical calculations of γ(q, ω) in terms of the t–J model
[22, 25] testify in favor of such an approximation. We
assume that the parameter αq is constant, αq = α, and
consider two limiting cases: α = 0 and α = 1 (the
approximation of strongly damped magnons). In real-
ity, some intermediate case should be realized.

We determine the renormalized spin wave spectrum
 from the condition that the sum rule holds for spin

susceptibility (4) with allowance for the damping:

(6)

In addition, for δωq(T, γ) = R'(q, 0), we postulate a func-
tional form that (i) conserves the mean-field gap ∆(T) =
ωQ(T):

(7)

and (ii) reflects the spectrum structure for intermediate
values of q, for which ωq is linear in q. Thus, only one
free parameter η(T, γ) is left in the problem (the depen-

S q–
α Sq

α〈 〉

ω̃q

C0 = SR
α SR

α〈 〉  = 
1
N
---- "

π
--- nB "ω( )χ '' q ω,( ) ωd

∞–

+∞

∫
q

∑  = 
3
4
---.

δωq T γ,( ) η T γ,( )q̃, q̃∼ q Q– ,=

Fig. 1. (Dashed line) Self-consistent spin spectrum ωq cal-
culated in the mean-field approximation and (solid line) the
renormalized spectrum  = ωq + δωq along the direction

Γ(0, 0)  M(π, π) at T = 0.3I for the parameters γ = 0.5I,
p = 0.1, and I = 0.1 eV. The inset shows the temperature
dependence of the spin gap ∆(T) for the same energy param-
eters.

ω̃q

ω
q

(0, 0) (π, π)
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dence on T enters through (T, γ)). This parameter is
determined from the sum rule given by Eq. (6). The
renormalized spectrum  for T = 0.3I with the param-
eters γ = 0.5I, p = 0.1, and I = 0.1 eV is shown in Fig. 1
by the solid line.

We analyze the behavior of ρ(T) in a two-dimen-
sional doped antiferromagnet (2D AFM) on the basis of
the spin–fermion model with carrier scattering from
spin fluctuations. To determine the kinetic coefficients,
we use the multimoment method of solving the kinetic
equation, which is an alternative of the multipatch
model [11].

Constructing the kinetic equation, we proceed from
the Hamiltonian of the spin–fermion model

(8)

where  represents the Pauli matrices. The interaction
H1 of the carriers (with charge e) with the external
homogeneous electric field E (parallel to the CuO2
plane) is introduced through the carrier polarization
operator:

Along with the spin susceptibility, the spectrum εk
plays a decisive role in the kinetics. The charge dynam-
ics of carriers in the CuO2 planes is adequately
described by the Emery three-band model [26–28]. The
calculation of the elementary excitation spectrum using
the spin-polaron approach leads, for a wide range of
doping levels, to the spectrum observed in angle-
resolved photoemission spectroscopy (ARPES) [23].
For example, in the absence of doping, a residual Fermi
surface is observed; as the doping level increases, a
pseudogap appears on the Fermi surface. In the case of
the optimum doping, a large Fermi surface is formed
with the center at (π, π).

The spectrum of the carriers (holes) εk is obtained
from the calculation of the lower spin-polaron band
[23, 24]. Its analytical form can be approximated by
using the square symmetry harmonics:

(9)

Here, for the coefficients, we use the values τ = 0.2 eV,
a1 = 1.5, a2 = 3.0, a3 = –1.25, a4 = 0.0, and a5 = 0.1.

Note that, in most of the studies, the spectrum is
chosen on the basis of the Fermi surface parametriza-
tion given by the ARPES measurements.

ω̃q
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2 k( ) a5γg k( )γd k( ) ).+
Below, to take into account the scattering anisot-
ropy, which occurs in our case because of the strong
scattering through the vector Q, we use the multimo-
ment approach to solving the equation of motion of the
density matrix. This approach was developed for
describing the low-temperature behavior of resistivity
and the Hall coefficient in polyvalent metals in the pres-
ence of phonon scattering [29, 30], where the scattering
anisotropy increases due to the umklapp processes.

In the stationary case, the deviations from equilib-
rium can be preset by using the density matrix. The

most general form of this matrix is  = (1 + ),

 = Z–1exp(– /T), Z = Tr{ },  ≡ Tr  = 0.
To calculate the single-particle distribution function

fk = Tr , which determines the transport

coefficients, we can choose the operator  to be a sin-

gle-particle one, i.e., represent it in the form  =

akσ. In this case, fk can be written as fk =

 + gk, where  = (1 + exp(εk – µ)/T)–1, gk =
T(−∂f0/∂εk)F(k), and µ is the chemical potential.

We seek  in the form of a linear superposition of a

set of moments; i.e., operators :  = ,  =

(k) akσ. In terms of the single-particle dis-
tribution function, this means that the nonequilibrium
addition gk to the equilibrium Fermi distribution func-
tion has the form

(10)

In the framework of the resistivity problem, the
solution of the evolution equation for the density matrix
in terms of the linear response leads to the set of equa-
tions

(11)

The scattering matrix Ck, k + q is related to the imaginary
part of the spin susceptibility:

(12)
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Here,  and nB("ω) are the Fermi and Bose distribu-
tions. A characteristic feature of the scattering matrix
Ck, k + q is that it contains the imaginary part of the spin
susceptibility. Because of the resonance behavior of
χ(q, ω) near q = Q, this feature leads to the governing
effect of the carrier scattering through the vector Q.

A specific choice of the moments Fl(k) is deter-

mined by the form of the electric field term . In our
previous work [31], we restricted our analysis to two
moments N0 = 2. The two-moment approximation
allows us to reveal the presence of cold and hot regions
in the Brillouin zone, which reflects the strong scattering
of carriers from the spin mode with the AFM vector Q.
At the same time, a greater number of moments is nec-
essary for a more accurate description of the nonequi-
librium single-particle distribution function gk, as well
as for demonstrating the convergence of the method.

Below, for the moments Fl(k) of the distribution
function, we use polynomials in the velocity compo-
nents vk = ∂εk/"∂k and their derivatives:

(13)

From the coefficients , we determine the current
density (az is the distance between CuO2 planes, and a
is the spin lattice constant):

Because of the square symmetry, the resistivity tensor

ραβ =  is diagonal and determined by the single
independent component ρ = ρxx = ρyy.

The results presented below are obtained for p = 0.1,
I = 0.1 eV, and J = 0.2 eV. The hole spectrum εk is cal-
culated using the spin-polaron approach [23] and corre-
sponds to optimum-doped HTSC compounds. The
chemical potential is chosen so that the Fermi surface
εF = 0.82τ = 0.164 eV crosses the (0, π)–(π, 0) line near
the saddle point. The bandwidth W ≅  0.66 eV used by
us coincides with the experimental value for the lower
band of quasiparticle excitations in the HTSC [32–34].
A specific feature of the spectrum of optimum-doped
cuprates is the presence of the saddle point near the
Fermi surface. In the spectrum under consideration, the
saddle point is separated from the Fermi surface by the
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interval εSP – εF ≈ 0.042 eV ≈ 460 K, which is close to
the experimental value (e.g., in Bi2212 with optimum
doping, εSP – εF ≅  0.035 eV [35]). Precisely this energy
scale is characteristic of the considerable variations
observed in the spectrum topology and carrier velocity.
The Fermi surface used by us corresponds to the hole
filling nh = 1.13. However, we should remember that the
actual number of carriers  is close to  = 0.17 and
determined by the weight of bare holes (Zk ~ 0.15) in
each of the k states of the lower band εk of the spin
polaron [23]. To reduce the calculated ρ to practical
units, we take the distance between the CuO2 planes to
be equal to az = 6.6 Å and the unit cell volume to be
a2az = 93 Å3. Figure 2 shows the temperature depen-
dence of resistivity ρ(T) obtained for different values of
the damping parameter γ/I = 0.5, 1.0, and 1.5 and for
different forms of susceptibility given by Eqs. (1) and
(4). In accordance with the experiment, the resistivity
curve exhibits a linear dependence starting from low
temperatures. When the damping is small (γ = 0.5), the
low-temperature part is nonlinear and does not agree
with the experimental dependence. This confirms the
assumption that the actual spin excitations have relax-
ation dynamics, i.e., are strongly damped. For such
magnons (γ = 0.5), the resistivity curve is linear over the
whole temperature range studied in the experiment.
However, the use of susceptibility (1) leads to a satura-
tion of ρ(T) and a change of sign of the second deriva-
tive at T * 350 K. This is related to the fact that Eq. (1)
underestimates the weight of the spectral function
χ''(q, ω), ω * , γq. The imaginary parts of suscepti-

nh nh

ω̃q

Fig. 2. Temperature dependence of resistivity ρ(T). The
solid curves represent ρ(T) obtained on the basis of suscep-
tibility (4) with α = 0 for the damping values γ/I = (a) 0.5,
(b) 1.0, and (c) 1.5. The dashed curves d and e represent
ρ(T) on the basis of susceptibility (4) with α = 1, which cor-
responds to susceptibility (1) of strongly damped magnons.
For all the curves, I = 0.1 eV.
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bilities (1) and (4) are different. They coincide if the
following inequality is satisfied:

(14)

Inequality (14) is always true for the frequency region

ω2 ≈ 2 . However, in the range of frequencies ω
where inequality (14) fails, Eq. (1) yields Imχso(q, ω) <

Imχ(q, ω) (for ω2 < 2 ). As a result, the scattering
matrix Ck, k + q given by Eq. (12) may noticeably differ
for the susceptibilities χ(q, ω) and χso(q, ω). Then, the
resistivity value ρso calculated using χso(q, ω) may be
much smaller than ρ calculated with the use of χ(q, ω).
As one can see, this occurs for γ & 500 K in the temper-
ature range T * 300 K. This means that the strongly
damped magnon approximation is only valid for suffi-
ciently low temperatures.

In closing, we note that we analyzed different forms
of dynamic spin susceptibility χ(q, ω) by using the sum
rule (6) and the temperature-dependent self-consistent
mean-field spin spectrum ωq. We studied the influence
of different forms of χ(q, ω) on the temperature depen-
dence of resistivity ρ(T). The results show a relatively
good agreement with the experimental linear depen-
dence ρ(T) for a realistic set of parameters of the spin
subsystem model and the band parameters taken from
the calculation of the lower band of the spin polaron.

This work was supported by the Russian Foundation
for Basic Research (project no. 04-02-17367) and the
Russian Science Support Foundation.
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The effect of intrinsic defects on the electronic structure of boron–nitrogen nanotubes (5, 5) and (9, 0) is inves-
tigated by the method of linearized associated cylindrical waves. Nanotubes with extended defects of substitu-
tion NB of a boron atom by a nitrogen atom and, vice versa, nitrogen by boron BN with an impurity concentration
of 1.5 to 5% are considered. It is shown that the presence of such defects significantly affects the band structure
of boron–nitrogen nanotubes. A defect band Dπ(B, N) is formed in the bandgap, which sharply reduces the
width of the gap. The presence of impurities also affects the valence band: the widths of s, sp, and pπ bands
change and the gap between s and sp bands is partially filled. These effects may be detected experimentally by,
e.g., optical and photoelectron spectroscopy. © 2005 Pleiades Publishing, Inc.

PACS numbers: 67.57.Lm, 76.60.–k
The observation of carbon nanotubes by Iijima [1]
in 1991 initiated numerous experimental investigations
of the properties of these structures and construction of
diverse nanotube-based electronic devices: nanotrans-
istors [2], nanodiodes [3], light nanodiodes [4], electro-
mechanical nanotransducers [5], displays [6], sensors
[7], etc. Advances in carbon nanomaterials science
stimulated interest in noncarbon analogues of nano-
tubes. As early as in 1994, quantum-mechanical calcu-
lations of the strong-coupling method predicted the
existence, stability, and basic electronic properties of
tubulens based on hexagonal boron nitride [8]. A year
later, boron–nitrogen nanotubes were synthesized in a
laboratory [9]. Later, the band structure of ideal boron–
nitrogen nanotubes was studied in many works using
the strong-coupling method and pseudopotential theory
[10–12]. In complete agreement with quantum-
mechanical prediction, nanotubes based on hexagonal
boron nitride of a sufficiently large diameter appeared
to be wideband semiconductors in which the width of
the bandgap is equal to 4.5–5.5 eV and is almost inde-
pendent of their diameter and chirality. This is a consid-
erable difference of boron–nitrogen nanotubes from
carbon nanotubes, because, as is well known, the latter
nanotubes may be both metallic and semiconducting in
dependence on their structure. A weak dependence of
the width of the bandgap on the structure of boron–
nitrogen nanotubes and a large optical gap make the use
of boron–nitrogen nanotubes in nanoelectronic devices
favorable over carbon nanotubes in some cases. In par-
ticular, due to the wide bandgap, molecular transistors
based on boron–nitrogen nanotubes could operate at
higher temperatures. Moreover, boron–nitrogen nano-
tubes can be used as an outer insulating shell in nano-
0021-3640/05/8211- $26.000737
cables with a conducting metallic core [13]. Boron–
nitrogen nanotubes are stable under the action of oxi-
dants [14] even at high temperatures and this property
also expands the potential field of their application.
However, all these statements are valid for ideal nano-
tubes, whereas the presence of packing defects may
significantly change their physical properties, limiting
and, in some cases, expanding the possibilities of their
applications. The intrinsic substitution defects corre-
sponding to the presence of a boron atom BN in a nitro-
gen position or, vice versa, nitrogen NB in the boron
position are the simplest and most important defects
that are easily formed in the processes of synthesizing
nanotubes [15].

The aim of this work is to analyze the effect of such
defects on the electronic structure of boron–nitrogen
(BN) nanotubes using the example of (5, 5) and (9, 0)
nanotubes. We study nanotubes with extended defects
of substitution of a boron atom by a nitrogen atom and,
vice versa, that contain one defect per one, two, and
three unit cells, which corresponds to an impurity con-
centration from 5 to 1.5%. It is shown that the presence
of such defects significantly affects the band structure
of BN nanotubes.

All the calculations are performed by the method of
linearized attached cylindrical waves (the LACW
method) [16–19]. It is the method of linearized attached
plane waves [20–23] that is generalized for cylindrical
systems. The latter method is well known in the theory
of the band structure of bulk crystals. The electronic
potential of a nanotube in the LACW method is taken
in the so-called cylindrical muffin-tin (MT) approxima-
tion; i.e., the electronic potential is considered as spher-
 © 2005 Pleiades Publishing, Inc.
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ical symmetric in the region of atoms and as constant in
the interatomic space between two impenetrable cylin-
drical barriers, inner and outer, surrounding the atoms
of the nanotube. The electronic structure of the system
is determined by the free motion of electrons in the
interatomic space between cylindrical barriers and
electron scattering on atomic centers. The solution of
the Schrödinger equation in the interatomic space is a
cylindrical wave corresponding to the free motion of an
electron in the cylindrical layer with the impenetrable
barriers. In the region of atomic spheres (MT spheres),
the wave function is obtained as the solution of the
Schrödinger equation for the motion of the electron in
the spherically symmetric atomic potential. The elec-
tron dispersion laws are obtained by means of varia-
tional principle and conditions of continuity and
smoothness of wave functions everywhere inside the
cylindrical layer.

In the MT approximation, the results of calculations
depend on one parameter, the cylindrical layer thick-
ness δ, which is taken using experimental data. In this

Fig. 1. Band structures of BN nanotubes (5, 5) and (9, 0).
Hereinafter, the energy is measured from the potential of the
region between spheres that is common for all nanotubes
and the dashed straight line is the position of the upper filled
level.
case, the value δ = 2.4 Å is obtained from the condition
that the width of the bandgap Eg of ideal BN nanotubes
of a sufficiently large radius approaches the calculated
value Eg = 4.5 eV [14] for the hexagonal boron nitride.

We emphasize that the LACW method was previ-
ously successfully applied to study the band structure
of carbon and boron–nitrogen nanotubes both pure and
metal-intercalated, as well as carbon nanotubes in a
metal matrix and with substitution defects in the carbon
lattice [24–27].

We first discuss the band structures (Fig. 1) of ideal
nanotubes of the “armchair” type (5, 5) and “zigzag”
type (9, 0), which have almost identical diameters d =
6.6 and 6.8 Å, respectively. In the region of the bottom
of the valence band in both nanotubes, there is a band
of hybridized s(B) and s(N) states with a width of about
5 eV. This band is separated by a gap of about 5 eV
from the spσ band, where the contribution of s states
decreases as energy increases. A band of predominantly
pσ states is located above, and its high-energy part over-
laps with low-energy states of the π band.

The top of the valence band in armchair nanotubes
is located near the point k = (2/3)(π/c), which agrees
with the results obtained by the strong-coupling
method [8, 12] and pseudopotential method [13, 14].
The minima Ec(Γ) and Ec(X) of the conduction band are
located at the points Γ and X of the Brillouin zone, and
their energies almost coincide with each other. In all
zigzag nanotubes, the bottom of the conduction band
and the top of the valence band are at the point Γ, so that
the minimum gap in these nanotubes is straight, which
is consistent with the available theoretical data [8, 12–
14].

Figures 1–3 show the band structures and densities
of states of the nanotubes (5, 5) and (9, 0) with the
intrinsic substitution impurities BN and NB. It is seen
that the partial substitution of nitrogen by boron (BN) or
boron by nitrogen (NB) significantly affects the band
structure and densities of states for BN nanotubes of
both types. The main feature of the band structure of
nanotubes with such defects is the appearance of a new
band—the defect band Dπ(B, N)—in the bandgap of the
ideal nanotube.

In the (5, 5) nanotube with one defect per unit cell,
the defect band Dπ(B, N) is located in the ranges 25.2–
27.05 and 24.1–26.9 eV for the substitution of nitrogen
by boron and vice versa, respectively. When boron is in
excess, the defect band Dπ(B) is completely unfilled
and forms the conduction-band bottom. When nitrogen
is in excess, the band Dπ(N) is completely filled and
forms the valence-band top. As a result of the formation
of such defects, the BN nanotube is transformed from a
wideband semiconductor to a narrowband semiconduc-
tor. In the presence of a BN defect, the minimum of the
conduction band is located at the point Γ for 25.2 eV
and the valence band has two maxima with almost iden-
tical energies of 24.59 and 24.53 eV at the point Γ and
JETP LETTERS      Vol. 82      No. 11      2005
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Fig. 2. Band structures of nanotubes (5, 5) and (9, 0) with defects and with one substitution impurity per unit cell.
near k = (2/3)(π/c), so that the energies of the direct and
indirect transitions virtually coincide with each other
and are equal to 0.61 and 0.67 eV, respectively. In the
presence of an NB defect, the top of the valence band is
located at k < 0.5π/c, the bottom of the conduction band
has two maxima at the point Γ and near k = (1/3)(π/c),
and the minimum gap is equal to 0.52 eV.

In the (9, 0) nanotube with one defect per unit cell,
the width of the defect band Dπ(B, N) is half the value
for the (5, 5) nanotube. This relation is attributed to the
approximately double difference in the defect concen-
tration in the (9, 0) and (5, 5) nanotubes with 36 and
20 atoms in a unit cell, respectively. The minimum of
the defect band Dπ(B) in the BN (9, 0) system is located
at the edge of the Brillouin zone at 25.25 eV and forms
the bottom of the conduction band, and its maximum is
located at the center of the Brillouin zone and corre-
sponds to the energy of 26.46 eV. The minimum optical
band corresponds to indirect Ev(Γ)–Dπ(B) transition
from the center to the edge of the Brillouin zone with
an energy of 1.36 eV, which is low as compared to a gap
of 3.6 eV in an ideal nanotube. For the NB (9, 0) system,
the filled defect band Dπ(N) is characterized by a
smooth maximum near k = (1/3)(π/c) at 25.8 eV and a
JETP LETTERS      Vol. 82      No. 11      2005
minimum at 25.1 eV and the minimum optical gap is
almost the same, 1.56 eV.

It is seen that a decrease in the symmetry of nano-
tubes due to the appearance of defects gives rise to the
splitting of all twice degenerate bands and broadening
of the densities of states. When nitrogen is in excess,
the structure of the valence band of nanotubes changes
more significantly. First, the width of the valences band
increases by more than 2 eV due to a separation of one
Ds(N) branch. Second, the gap between the s and sp
bands is filled due to the separation of the Dsp(N) band.
When boron is in excess, the gap between the s and sp
bands decreases by only 2 eV and the width of the s
band almost does not change.

In the defect-concentration dependence of the den-
sity of states (Fig. 3), it is clearly seen that a decrease in
the defect concentration in nanotubes results in a fast
decrease in the widths of the Dπ(B, N) bands located in
the gap of ideal nanotubes. The center of these bands is
almost not shifted. For the lowest calculated concentra-
tion, the Dπ(B, N) bands are degenerate virtually into
discrete levels and BN nanotubes with intrinsic defects
appear to be semiconductors with a bandgap width of
1 to 2 eV in dependence on the structure of the nano-
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Fig. 3. Defect-concentration dependence of the density of states of the (5, 5) nanotube.
tube and the type of the impurity atom. Similar narrow-
ing and smoothing of the bands that accompany a
decrease in the defect concentration is also observed for
the Ds(N) and Dsp(N) branches of the valence band of
nanotubes with the excess of nitrogen atoms.

Thus, on the basis of the above quantum-mechanical
calculations, one may conclude that the presence of
intrinsic substitution impurities significantly affects the
band structure of BN nanotubes, which must be taken
into account when constructing nanoelectronic devices
based on these nanotubes.

This study was supported in part by the Russian
Foundation for Basic Research (project no. 04-03-
32251).
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