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The cross section for the process e+e–  π+π– is measured in the c.m. energy range 1.04–1.38 GeV by ana-
lyzing 995 000 selected collinear events including 860000 e+e– events, 82000 µ+µ– events, and 33000 π+π–

events. The systematic and statistical errors of measuring the pion form factor are equal to 1.2–4.2 and 5–13%,
respectively. © 2005 Pleiades Publishing, Inc.

PACS numbers: 13.25.–k, 13.40.Gp, 13.66.–a, 29.30.–h
† INTRODUCTION 

Study of the cross section for the process e+e– 
π+π– provides important information on the electro-
magnetic form factor of the pion, which describes its
internal structure. Moreover, precision measurement of
this cross section is necessary for calculating the anom-
alous magnetic moment of the muon (g – 2)µ [1] and its
comparison with precision measurements, one of
which was carried out recently at BNL [2]. Such com-
parison is an important test for the Standard Model.

EXPERIMENT

Measurements were conducted at the VEPP-2M
collider [3] with the CMD-2 universal detector (cryo-
genic magnetic detector), which combines the proper-
ties of a magnetic spectrometer and good calorimetry
[4, 5]. The coordinates, emission angles, and momenta

† Deceased.
0021-3640/05/8212- $26.00 0743
of charged particles are measured by the coordinate
system of the detector, which consists of the drift and Z
chambers located inside a thin (0.38X0) superconduct-
ing solenoid with a magnetic field of 1 T. Cylindrical
and endcap electromagnetic calorimeters based on CsI
and BGO scintillation crystals ensure measurement of
energy and photon emission angles and make it possi-
ble to separate electrons and hadrons. A range system is
used to identify muons.

This work continues a cycle of precision measure-
ments of hadron cross sections with the CMD-2 detec-
tor. The results of measurement of the pion form factor
in the energy range 0.61–0.96 GeV were published in
[6]. In this work, we present the results of measurement
of the form factor in the energy range 1.04–1.38 GeV.
A more detailed description of the data analysis was
given in [7].

An integrated luminosity of 6 pb–1 was collected in
the experiment. For analysis, we selected 33 000 π+π–

events accumulated in 35 beam energy points from 520
© 2005 Pleiades Publishing, Inc.
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to 690 MeV with a step of 5 MeV. The beam energy was
controlled with an accuracy of no worse than δE/E ~
10–3 using the magnetic field value in the VEPP-2M
storage ring.

SELECTION OF COLLINEAR EVENTS

To separate the events e+e–  e+e–, e+e–  µ+µ–,
and e+e–  π+π–, the following conditions were used.

•  One vertex with two tracks of particles with oppo-
site charges was found in the drift chamber.

•  The event vertex was located near the beam inter-
action point; i.e., ρvtx = min( , ) < 0.15 cm, where

 is the minimum distance between the particle track
and beam axis, and |Zvtx | < 10 cm, where Zvtx is the posi-
tion of the vertex along the beam axis.

•  Track collinearity conditions:

|∆ϕ| = |π – |ϕ+ – ϕ– || < 0.15, where ϕ± is the azimuth
track angle;

|∆θ| = |π – (θ+ + θ–)| < 0.25, where θ± is the polar
track angle.

•  Constraint on the solid angle of the event detec-
tion:

θmin < (π + θ– – θ+)/2 < π – θmin, where θmin = 1.1.

•  The mean momentum was bounded from above to
reduce the cosmic particle background and from below
to suppress e+e–  K+K– events:

ρtr
+ ρtr

–

ρtr
±

Fig. 1. Distribution of collinear particles over the energy
deposition in the calorimeter.

ionization
where p+ and p– are the momenta of the positive and
negative particles, respectively.

The main sources of the background for the process
e+e−  π+π– are the e+e–  π+π–π0π0, e+e– 
π+π–π0, and e+e–  K+K– reactions and cosmic parti-
cles. The physical background contribution to the pion
form factor was calculated using experimental cross
sections [8, 9] by taking into account the detection effi-
ciency determined from the total simulation. The total
contribution of these processes does not exceed 0.8%
and is taken into account as a correction to the pion
form factor according to Eq. (2). The number of cosmic
particle background events was determined from the
distribution of the event vertices over the distance from
the beam interaction point.

EVENT SEPARATION

To determine the number of events of each process,
we used two-dimensional distributions over the energy
deposition in the CsI calorimeter (Fig. 1). The number
of events (Nπ, Nµ + Ne) was determined by minimizing
the maximum likelihood function

where fi is the probability density function for events of
a given type (π, µ, e, cosmic). Electrons and positrons
initiate an electromagnetic shower in a calorimeter and
thereby noticeably differ from other charged particles
in their energy deposition. The energy depositions of
muons, cosmic particles, and pions with only ionization
losses are almost identical. For this reason, to deter-
mine the number of muons, we used additional infor-
mation on the ratio of the cross section for muon pro-
duction to the cross section for e+e–  e+e– as
obtained from the QED calculation with the inclusion
of the resolutions and detection efficiencies in the
detector.

DETERMINATION OF THE PION FORM FACTOR

The cross section for the e+e–  π+π– process inte-
grated over the detection solid angle is given by the
expression

(1)

Ebeam 150 MeV/c p+ p–+( )/2>+

> max Ebeam
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+ Ni f i E+ E–,( )
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where  is the cross section calculated under the

assumption of the absence of the internal structure of
the pion. The contribution of vacuum polarization to the
photon propagator is also included in the form factor.

At each energy point, the form factor is calculated as

(2)

Here, /(  + ) is the ratio of the number

of detected pions to the number of muons and electrons

as obtained in the minimization procedure,  is the
Born cross section in the lowest order of perturbation
theory, δii is the radiative correction, εii is the detection
efficiency,  is the correction for background

processes, and ∆loss is the correction for the pion loss on
the vacuum chamber wall and drift chamber material
due to nuclear interactions. The ∆loss correction was
determined from simulation by comparing the number
of selected pions with the inclusion and exclusion of
nuclear interactions. The correction value was equal to
0.8–1.2%.

Collinear events were selected using only informa-
tion from the drift chamber. For this reason, by select-
ing desired (test) events from the CsI calorimeter and
checking whether the reconstructed tracks are in the
drift chamber, one can determine the event reconstruc-
tion efficiency. The reconstruction efficiency was 97–
98%. According to Eq. (2), only the difference between
the detection efficiencies for different processes, which
was 0.16 ± 0.09% between electrons and muons, is
important for the determination of the pion form factor.

The radiative corrections for the processes e+e– 
e+e–, e+e–  µ+µ–, and e+e–  π+π– are calculated
using a procedure that was developed in [10] and was
based on the formulas from [11, 12]. The probability of
the emission of many photons along the initial and final
particles, the emission of one photon at a large angle,
and the vacuum polarization contribution to the photon
propagator are taken into account in these formulas.
Since the vacuum polarization is usually included in the
definition of the form factor, its contribution was not
included in the radiative correction for the process
e+e−  π+π–. According to [10], the accuracy of the
calculation of the radiative corrections is estimated as
0.2% for all the processes. The number of selected col-
linear events depends on the angular and momentum
resolutions of the drift chamber. In order to include
them in the calculation for radiative corrections, the
emission angles and momenta of particles were addi-
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tionally simulated according to the experimental reso-
lution and then the selection criteria were imposed. For
the e+e–  e+e– process, the bremsstrahlung energy
losses of electrons and positrons on the vacuum cham-
ber wall and first 10 cm of the drift chamber were taken
into account.

Table 1 presents the form factor at each energy
point.

SYSTEMATIC ERROR

The main contributions to the systematic error are
listed in Table 2. The systematic error increases with
energy, because the error in the number of muons
makes a direct contribution to the error in the number
of pions, and the ratio of the number of muons to the
number of pions increases from 1 to 7 when the c.m.
energy increases from 1 to 1.38 GeV. The total system-
atic error is equal to 1.2–4.2% and does not exceed one-
third of the statistical error at each experimental point.

One of the tests of the separation procedure was per-
formed using the simulation of e+e–, µ+µ–, and π+π–

events. The simulation data were analyzed with the
inclusion of the following corrections: pion loss due to
the nuclear interaction, the energy losses of electrons
on the vacuum-chamber wall, and the resolution of the
drift chamber when calculating radiative corrections.
The calculated difference between the detection effi-
ciencies for e+e– and µ+µ–, π+π– in the simulation was

Table 1.  Experimental pion form factor |Fπ|2. Only the sta-
tistical error is given

E, MeV |Fπ|2 E, MeV |Fπ|2

490.0 3.596 ± 0.163 605.7 1.069 ± 0.082

520.0 2.598 ± 0.134 610.0 0.989 ± 0.075

525.0 2.262 ± 0.112 615.0 1.069 ± 0.088

530.0 2.185 ± 0.135 620.0 0.988 ± 0.081

535.0 2.295 ± 0.130 625.0 0.794 ± 0.064

540.0 1.884 ± 0.119 630.0 0.696 ± 0.063

545.0 2.120 ± 0.110 635.0 0.719 ± 0.057

550.0 1.704 ± 0.120 640.0 0.693 ± 0.052

555.0 1.641 ± 0.106 645.0 0.571 ± 0.042

560.0 1.449 ± 0.146 650.0 0.640 ± 0.046

565.0 1.683 ± 0.103 655.0 0.570 ± 0.050

570.0 1.531 ± 0.088 660.0 0.483 ± 0.054

575.0 1.374 ± 0.150 665.0 0.460 ± 0.040

580.0 1.386 ± 0.087 670.0 0.524 ± 0.062

585.0 1.197 ± 0.115 675.0 0.347 ± 0.049

590.0 1.200 ± 0.088 680.0 0.357 ± 0.040

595.0 1.014 ± 0.093 685.0 0.424 ± 0.078

600.0 0.983 ± 0.079 690.0 0.338 ± 0.032
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equal to εMIP –  = 0.189 ± 0.004% in good agree-

ment with the measured value. The difference between
the form factor obtained and the form factor used in the
simulation varies from 0.2 to 1.5% in dependence on
the energy. The difference at the highest energy was
equal to 1.5% and consisted of 1% for the separation
procedure and 0.5% characterizing the systematic error
in the inclusion of the above corrections.

DISCUSSION

Figure 2 shows the results, which are in good agree-
ment with the data obtained in the previous experiments
with the detectors OLYA [13], DM1 [14], DM2 [15],
BCF [16], and ACO [17]. The form factor in this energy
range was measured in detail only in the experiment
with the OLYA detector with a systematic error of 10–
15%. The experimental energy dependence of the form

ε
e

+
e

–

Table 2.  Various contributions to the systematic error in
|Fπ|2. The given range corresponds to the scanned energy
range

Error source
Error

 = 1.04–1.38 GeV

Detection solid angle 0.2–0.5%

Detection efficiency 0.5–2%

Pion loss 0.2%

Bremsstrahlung e+e– 0.05–1.7%

Radiative corrections 0.5–2%

Background events 0.6–1.6%

Energy calibration 0.7–1.1%

Particle separation procedure 0.2–1.5%

Statistical error at the point 1.2–4.2%

5–13%

s

Fig. 2. Experimental data obtained for the pion form factor
|Fπ|2 in this work in comparison with other experiments.

OLYA
DM1_78
DM2
ADONE_bcf78
ORSAY-ACO85
CMD2
factor is well reproduced in the framework of the vec-
tor-meson dominance model by the sum of the ampli-
tudes of the ρ(770), ρ(1450), ρ(1700), ω, and φ mesons
[6]:

(3)

Here, (s) is the ρ meson parametrization in the
Gounaris–Sakurai model [18]; BWω(s) and BWφ(s) are
the parametrization of the ω and φ resonances, respec-
tively, which were represented by the relativistic Breit–
Wigner form due to small width; δω, δφ, β, and γ are the
model parameters describing the relative contributions
of the ρ–ω and ρ–φ interferences and ρ(1450) and
ρ(1700) states, respectively. In order to determine the
model parameters, it is necessary to use all the available

data on the form factor in the energy range  = 0.36–
3.7 GeV, which will be done in a future work with anal-
ysis of all the information accumulated on the CMD-2
detector in the energy range from 0.37 to 1.38 GeV.

CONCLUSIONS

In this work, the cross section for the process
e+e−  π+π– was measured in the c.m. energy range
1.04–1.38 GeV with the best accuracy in the world. The
systematic and statistical errors of the measurement are
equal to 1.2–4.2 and 5–13%, respectively. The mea-
sured cross section agrees well with the results of the
previous experiments.

This work was supported by the Russian Foundation
for Basic Research (project nos. 03-02-16477, 03-02-
16280, 03-02-16843, 04-02-16217, 04-02-16223, and
04-02-16434).
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The stability and instability of quantum evolution are analyzed in the interaction of a two-level atom with a
quantized-field mode in an ideal cavity with allowance for photon recoil, which is the basic model of cavity
QED. It is shown that the Jaynes–Cammings quantum dynamics can be unstable in the regime of the random
walk of the atom in the quantized field of a standing wave in the absence of any interaction with the environ-
ment. This instability is manifested in large fluctuations of the quantum entropy, which correlate with a classi-
cal-chaos measure, the maximum Lyapunov exponent, and in the exponential sensitivity of the fidelity of the
quantum states of the strongly coupled atom–field system to small variations of resonance detuning. Numerical
experiments reveal the sensitivity of the atomic population inversion to the initial conditions and to correlation
between the quantum and classical degrees of freedom of the atom. © 2005 Pleiades Publishing, Inc.

PACS numbers: 05.45.Mt, 05.45.Xt, 42.50.Vk
The problem of the stability of quantum evolution is
important as a fundamental problem of modern quan-
tum mechanics. It is difficult to overestimate its impor-
tance for actively developing areas such as quantum
information and quantum computations. This problem
is a foundation stone of quantum–classical correspon-
dence, which is brightly manifested in the following
contradiction: conventional quantum mechanics does
not involve the instability concept and its extreme man-
ifestation—dynamical chaos unconditionally existing
in nature. The point is not about the probability nature
of quantum mechanics. Classical mechanics can also be
formulated in probability terms by means of the Liou-
ville equation. In contrast to continuous classical phase
space, the phase space of an isolated quantum system is
discrete. Therefore, mixing in volumes less than "N,
where N is the number of degrees of freedom [1], which
is characteristic of chaos, cannot be developed in it. The
solution to this problem is suggested by a simple argu-
ment—real quantum systems are not isolated due to
their inevitable interaction with the environment. The
environment rapidly destroys quantum coherence (see
references on decoherence, e.g., [2, 3]) and weak con-
tinuous measurements in the environment roughen
quantum evolution and can result in quantum–classical
correspondence including chaos (see references on
conditioned evolution and stochastic quantum equa-
tions, e.g., [4, 5]).

In this work, we show that the entanglement of the
quantum states of the atom and field is dynamically
consistent with the motion of the center of mass of the
atom in the field of the standing light wave in the cavity.
The regular motion of the center of mass corresponds to
the regular evolution of reduced quantum entropy and
0021-3640/05/8212- $26.00 ©0748
to the fidelity of quantum states, and quantum evolution
becomes unstable when the motion of the center of
mass is chaotic. Novelty is in the appearance of quan-
tum instability characterized by the classical Lyapunov
exponent and in the manifestations of dynamical chaos
in a quantum–classical system without involving com-
plex models of interaction with the external world,
whose role is played by the translational degree of free-
dom of the atom. Using numerical experiments, we
demonstrate the diverse manifestations of quantum–
classical correspondence including dynamical chaos,
which can be observed in real experiments with atoms
and photons in high-Q cavities.

A measure of classical instability is the maximum
Lyapunov exponent λ, which characterizes the asymp-
totic velocity of the exponential divergence of two ini-
tially close trajectories. Ideally isolated quantum sys-
tems are unitary and their evolution cannot be classi-
cally unstable even if their classical limits are chaotic
[1]. As a measure of quantum instability, Peres [6] pro-
posed the fidelity

(1)

which is the overlap integral of two wave functions Ψ1
and Ψ2 that coincide with each other at the initial time
t = 0 but evolve with slightly different Hamiltonians.

The standard Hamiltonian of cavity QED has the
form

(2)

f t( ) Ψ1 t( ) Ψ2 t( )〈 〉 2,=

Ĥ
p̂2

2ma

---------
1
2
---"ωaσ̂z "ωf â

†â+ +=

– "Ω0 â†σ̂– âσ̂++( ) k f x̂,cos
 2005 Pleiades Publishing, Inc.



        

QUANTUM INSTABILITY IN CAVITY QED 749

                                                                                         
where  are the Pauli operators, and describes the
interaction between a two-level atom, which has lower
|1〉  and upper |2〉  energy states with the energy differ-
ence "ωa between them, and a mode of the quantized

electromagnetic field with the creation  and annihila-
tion  operators, which forms a one-dimensional
standing wave with the frequency ωf and wavenumber
kf in an ideal cavity. The position of the atom with mass
ma on the cavity axis x is described by the operator 
and its momentum, by the operator . The interaction
results in the quantum entanglement of the internal
electronic degrees of freedom of the atom and the
degrees of freedom of the field. This entanglement is
described by the vector of state of the atom–field sys-
tem at the time t

(3)

which is expanded in the basis of the Fock field states
|n〉 , where n = 0, 1, …. Here, an(t) ≡ αn(t) + iβn(t) and
bn(t) ≡ ρn(t) + iηn(t) are the complex probability ampli-
tudes for the field in the state |n〉  and the atom in the
upper |2〉  and lower |1〉  energy states, respectively.
Emission and absorption of photons change not only
the internal state of the atom but also its translational
state. If atoms are not too cold and their mean momen-
tum is much higher than the photon momentum "kf , the
translational degree of freedom can be described classi-
cally. Such a simplification is additionally motivated
because the position of the atom in the cavity in the cur-
rent experiments [7] is monitored by weak continuous
measurement of scattered photons and, as a result, the
atomic trajectory becomes classical.

The complete dynamics (in the framework of the
above assumptions) are described by the Hamilton–
Schrödinger equations [8, 9] written in the reference
frame rotating with the frequency ωf(n + 1/2) in the
normalized form

(4)

σ̂± z,

â†

â

x̂
p̂

Ψ t( )| 〉 an t( ) 2 n,| 〉
n 0=

∞

∑ bn t( ) 1 n,| 〉 ,+=

ẋ ωr p,=

ṗ 2 x n 1+ αnρn 1+ βnηn 1++( ),
n 0=

∞

∑sin–=

α̇n
δ
2
---βn– n 1+ ηn 1+ x,cos–=

β̇n
δ
2
---αn n 1+ ρn 1+ x,cos+=

ρ̇n 1+
δ
2
---ηn 1+ n 1+ βn x,cos–=

η̇n 1+
δ
2
---ρn 1+– n 1+ αn x,cos+=
JETP LETTERS      Vol. 82      No. 12      2005
where x = kf 〈 〉  and p = 〈 〉 /"kf are the coordinate and
average momentum of the atomic center of mass,
respectively. The overdot stands for differentiation with
respect to the dimensionless time τ = Ω0t, where Ω0 is
the amplitude of the atom–field coupling constant.

Equations (4) compose an infinite-dimensional non-
linear dynamical system with two control parameters,
normalized resonance detuning δ = (ωf – ωa)/Ω0 and

normalized atomic recoil frequency ωr = " /maΩ0 ! 1.
Although the number of the integral of motion

(5)

is infinite and the total energy

(6)

is conserved, this system is generally nonintegrable.
The type of the motion of the atomic center of mass

depends strongly on the detuning δ. At exact resonance
for atoms prepared at τ = 0 in one of the energy states,
the optical potential vanishes and the atoms move with
a constant velocity  = ωr p0. Quantum evolution is
strictly periodic with the period π/ωr p0. It is easy to
explicitly find the exact solutions for the purity of the
state, the von Neumann quantum entropy, the fidelity,
and other quantum characteristics. In particular, the
atomic population inversion at δ = 0 has the form

(7)

If the detuning is large enough; i.e., |δ| @ 0, the optical
potential wells are shallow and the atoms move with the
average velocity .ωrp0, which is only slightly modu-
lated by the standing wave. The population inversion
also oscillates with a small amplitude except for in the
Doppler–Rabi resonance case [10] under the condition
|δ| = ωr |p0 |. If the kinetic energy ωr p2/2 of the atom is
not enough to overcome the optical potential barrier,
the atomic center of mass undergoes nonlinear oscilla-
tions in one of the potential wells.

According to the form of the Hamilton–Schrödinger
equations (4), the translational motion of the atom is
described by the nonlinear-oscillator equation with
modulated frequency. The analysis performed in [11]
for an equation of such type shows that, owing to inter-
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ẋ

z τ( ) zn

n 0=

∞

∑ zn 0( ) 2 n 1+
ωr p0

------------------- ωr p0τsin 
  ,cos

n 0=

∞

∑= =

zn αn
2 βn

2 ρn 1+
2– ηn 1+

2 .–+=



750 PRANTS, ULEYSKY
actions between nonlinear resonances, a stochastic
layer whose width depends on δ appears in the corre-
sponding phase space. When the detunings are moder-
ate; i.e., |δ| & 1, and the initial momentum is appropri-
ate, the atom randomly walks over the cavity and such
a motion is well characterized by positive values of the
maximum Lyapunov exponent. The dotted line in Fig. 1
shows the dependence λ(δ) calculated for Eqs. (4) with
the initial conditions x0 = 0 and p0 = 25 (a) for the atom
prepared in the state |2〉  and the field in the coherent
state with the average number of photons  = 10 and

(b) for the atom prepared in the state (|1〉  + |2〉)/  and
the field in the Fock state with n = 10. The normalized
recoil frequency is taken to be ωr = 0.001, which is a
reasonable value for atoms in a high-Q optical micro-
cavity under strong coupling conditions [7].

Let us now demonstrate how the classical motion of
the atomic center of mass correlates with the Jaynes–
Cammings quantum dynamics [3]. As a measure of the
entanglement of the atomic and field states, we take the

purity of the state P(τ) = Tr (τ), where ρa(τ) is the
reduced atomic density matrix with averaging over the
field states. This quantity is maximal if the atom is in

n

2

ρa
2

Fig. 1. Quantum–classical correlation of the dependences of
the standard deviation of the quantum-state purity σP and
maximum Lyapunov exponent λ on the detuning δ of the
atomic–field resonance for (a) coherent and (b) Fock initial
states of the field.
one of its energy states, Pmax = Tr  = Trρa = 1, and is
minimal, Pmin = 1/2, if ρa = I/2, where I is the identity
matrix. The purity is expressed in terms of the probabil-
ity amplitudes as

(8)

Varying the resonance detuning δ, we can cause the
atomic center of mass to move in one of the above
regimes: ballistic flight (|δ| = 0 and |δ| @ 0), nonlinear
oscillations in a potential well (|δ| ! 1 and sufficiently
low initial momentum), and random walk (|δ| & 1).
According to the form of the Hamilton–Schrödinger
equations, P must be a complexly oscillating function
of time, because these equations include an infinite
number of incommensurate frequencies. To reveal the
differences in the behaviors of P in different motion
regimes of the center of mass, we calculate the standard

deviation σP =  of the atomic-state purity
in a wide time interval τ = 2000 for various initial states
of the atom and field. The detuning dependence of this
quantity is shown by the solid line in Fig. 1. Irregular
oscillations in σP were found to be observed for both
coherent and Fock fields under the same initial condi-
tions and in the same detuning interval |δ| & 1, where
λ > 0. As was expected, the calculated variations in the
von Neumann quantum entropy S = –Tr(ρalnρa), which
are not shown in the figure, also correlate with the max-
imum Lyapunov exponent. For the simplest initial state
with the atom prepared in the state |2〉  and the field in
the Fock state |n〉 , entanglement occurs between two
quantum two-level systems (the atom with the states |1〉
and |2〉  and the field with the states |n〉  and |n + 1〉) and
is described by only six equations (4) with a fixed n
value. The purity is determined by the Rabi oscillations
of the atomic population inversion zn by the formula

Pn = (1 + ). At |δ| = 0, these are periodic oscilla-

tions; at |δ| @ 0, regular amplitude modulated oscilla-
tions; and, at |δ| & 1 (and appropriate initial momen-
tum), the Rabi oscillations become chaotic with almost
unpredictable changes in zn when the atom intersects
nodes of the standing wave in the process of its random
walk. Chaotic oscillations of the population inversion zn

and atomic-state purity Pn arise only if λ > 0.

The atomic coordinate x and population inversion z
are experimentally measurable quantities. Similar to
the case of a classical standing wave [12], the chaotic
motion of the atom in the quantized field has fractal
properties. Let atoms be placed one-by-one at the coor-
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dinate origin (x = 0) with various initial momenta p0

along the x axis and with the same initial values of the
other variables and the same parameters. We calculate
both the time T(p0) in which the atom with a given p0

value approaches one of the standing wave nodes clos-
est to the coordinate origin (x = –π/2 and 3π/2) and the
number m of changes in the direction of the atom
motion. The scattering function T(p0) has the self-simi-
lar structure with alternating smooth sections and sec-
tions with poor resolution, a further increase in which
reproduces the same structure of alternating sections.
Figure 2a shows the scheme of generating a Cantorlike
set of initial momenta p0 at which the scattering func-
tion has singularities. We emphasize that the interaction
between the classical and quantum degrees of freedom
of the single atom and one field mode is so complicated
that, within one period of the standing wave, there exist
an infinite number of atomic trajectories with various p0

values for which T  ∞. The results of calculation of
T(p0) for many periods of the standing wave are very
similar; however, they require much longer computa-
tion time. We find that the infinitely large countable set
of separatrix-like trajectories corresponding to the sec-
tion ends in Fig. 2a exists along with an uncountable set
of trajectories with m = ∞. Manifestations of the ran-
dom walk of atoms can be observed in experiments on
the one-dimensional scattering of atoms on the stand-
ing light wave. Figure 2b shows the strong dependence
of the atomic coordinate at a given time on its initial
momentum p0. The smooth section of this function for
p0 & 20 is attributed to the regular oscillations of the
atomic center of mass in the first well, because the cor-
responding kinetic energies are insufficient to over-
come the potential barrier. As p0 exceeds a certain crit-
ical value, it is almost impossible to predict even the
sign of the atomic coordinate. The so-called predict-
ability horizon can be estimated as τp . λ–1ln(∆x/∆x0),
where ∆x is the confidence interval and ∆x0 is the uncer-
tainty of the initial atomic position.

A practically important manifestation of quantum
instability in the chaotic walk regime of the atom is the
strong dependence of the atomic population inversion
zout at a given time on its initial value zin under the same
other conditions. Figure 2c demonstrates the smooth-
ness of this function in the initial-value interval |zin | &
0.8, where the motion of the atomic center of mass is
regular (for the coherent-field phase chosen for calcula-
tion), and its strong fluctuations in the interval |zin | >
0.8, when atoms chaotically walk over the cavity with
the positive Lyapunov exponent.

As a quantitative characteristic of the instability of
the quantum evolution in cavity QED, we can use the
fidelity f(τ), which is the overlap integral (1) of two
states |Ψ1(τ)〉  and |Ψ2(τ)〉  that are identical at τ = 0 but
JETP LETTERS      Vol. 82      No. 12      2005
evolve under two Hamiltonians (2) with slightly differ-
ent detunings ∆δ = δ – δ':

(9)

Here, the unprimed and primed quantities correspond
to the Hamiltonians with the detunings δ and δ', respec-
tively. We found pronounced correlation between this
characteristic of quantum evolution and the classical
characteristic of the motion. If the motion of the atomic
center of mass is regular and characterized by the zero
Lyapunov exponent, the quantum dynamics of the
atom–field system is stable and characterized by the
small values of 1 – f. If the motion of the atomic center
of mass is chaotic with λ > 0, the fidelity decreases

f τ( ) αnαn' βnβn' ρnρn' ηnηn'+ + +( )
n 0=

∞

∑ 
 
 

2

=

+ αnβn' βnαn'– ρnηn' ηnρn'–+( )
n 0=

∞

∑ 
 
 

2

.

Fig. 2. (a) Fractal set of the initial momenta p0 of atoms
leaving the one-period standing wave after m changes in the
motion directions. (b) The output atomic coordinate xout vs.
the initial momentum p0. (c) The output atomic population
inversion zout vs. its initial value zin.
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exponentially with time with the exponent λ. The dot-
ted line in Fig. 3 exemplifies stable quantum evolution
[the atom is prepared in the superposition state with
z(0) = 0, its translational motion is regular, and λ = 0].
The situation is absolutely different when the atom is
prepared in one of its energy states, z(0) = ±1. In this
case, both the classical motion of the center of mass and
the quantum dynamics are unstable, and the fidelity
decreases rapidly with time with the maximum
Lyapunov exponent (λ . 0.04 for the chosen parame-
ters and initial conditions), which is a classical measure
of dynamical chaos (see the thin and thick solid lines in
Fig. 3 for ∆δ = 10–4).

Thus, we have shown that the existence of one clas-
sical degree of freedom, which naturally appears in the
basic model of cavity QED and is dynamically coupled
with quantum degrees of freedom, is sufficient for the
appearing complex quantum dynamics including insta-
bility and dynamical chaos. This behavior does not
require the presence of an infinite reservoir simulating

Fig. 3. Evolution of the measure of fidelity 1 – f(τ) of the
quantum states of the atom–field system (in the logarithmic
scale) for the (thick and thin solid lines) chaotic and (dotted
line) regular motion of the atomic center of mass.
the environment and/or noise induced by weak contin-
uous measurements. It has been shown that the quan-
tum instability is quantitatively characterized by the
maximum Lyapunov exponent, which ensures the
quantum–classical correspondence in the basic model
of cavity QED.

This work was supported by the Presidium of the
Far East Division of the Russian Academy of Sciences
and the Presidium of the Russian Academy of Sciences
Program “Mathematical Methods in Nonlinear Dynam-
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Terahertz radiation of plasma oscillations excited upon the optical (axicon) breakdown of a gas in the presence
of external fields of other frequency ranges has been analyzed. It has been shown that the spectra and intensity
of oscillations and radiation generated by them depend strongly on the character of the spatiotemporal evolution
of the formed plasma. The intensity is maximal upon the rapid formation of the plasma with a sharp boundary
and decreases to very low values for objects with a smooth density profile. New schemes and regimes of break-
down have been proposed, which make possible, according to preliminary estimates, an emitted energy of about
10 mJ with moderate intensities of ionizing laser radiation. © 2005 Pleiades Publishing, Inc.

PACS numbers: 52.35.–g, 52.38.–r, 52.59.Ye
1. As is known, the breakdown of a medium by
intense laser pulses may be accompanied by the gener-
ation of natural oscillations and waves in the formed
plasma. Two different physical mechanisms of this phe-
nomenon are known. The first mechanism is associated
with the action of the averaged ponderomotive force on
free electrons that excites free Langmuir waves in the
wake of a laser pulse. The longitudinal fields of these
waves can accelerate electrons synchronized with them
to high energies. Owing to this property, this mecha-
nism is used in laser–plasma methods actively devel-
oped in recent years for accelerating charged particles
[1]. The other mechanism of the excitation of natural
oscillations and waves is quite well known but is less
studied and directly associated with an increase in the
plasma density and the corresponding rearrangement of
the wave mode spectrum in the ionized region of the
medium in the process of optical breakdown [2–7]. In
contrast to the first mechanism that is nonlinear in phys-
ical nature, the second mechanism is linear in essence
and, therefore, ensures much more efficient transforma-
tion of the energy of moderately intense pumping fields
to the energy of free oscillations. Both the ionizing
radiation itself [3, 4] and the extraneous fields of other
frequency ranges (including static fields) [2, 5–7] can
serve as pumping that ensures the energy of excited
oscillations in this mechanism. Since a considerable
fraction of the energy of oscillations can be reemitted
coherently to the environment and their frequencies can
be controlled over a wide range by varying the param-
eters of the ionized medium (e.g., gas pressure), this
mechanism seems to be promising as a tool for gener-
ating electromagnetic radiation in certain, hardly acces-
sible, frequency ranges (terahertz, soft x-ray). In partic-
ular, the authors of [5–7] studied both theoretically and
0021-3640/05/8212- $26.00 0753
experimentally various schemes of generating terahertz
radiation arising upon the optical breakdown of a gas in
the presence of static electric fields. They considered
breakdown induced by a beam focused in the spacing
between the plates of a charged plane capacitor [6], as
well as fast ionization waves in the focal region of a
cylindrical lens (in a spatially periodic electric field) [5]
and on the axis of a Bessel beam formed by an axicon
lens (in a uniform electric field) [7].

The results obtained demonstrate the principle pos-
sibility of using the parametric transformation of fields
upon the breakdown of the medium to generate tera-
hertz radiation. However, those investigations cannot
enable one to calculate the real efficiency of such a
transformation and to indicate (at least qualitative) opti-
mum conditions for its realization, because they
ignored important problems concerning the depen-
dence of the intensity of the excited oscillations and the
corresponding radiation on the character of the spa-
tiotemporal evolution of the plasma in the breakdown
process. In the theoretical models [2, 5, 7], only a
homogeneous plasma with a sharp boundary was con-
sidered and the breakdown time interval was assumed
to be negligibly small. The aim of this work is to ana-
lyze the processes of the transformation of external
fields (both static and varying) to the fields of the natu-
ral oscillations of the plasma that is formed upon gas
breakdown with allowance for its real inhomogeneity,
the nonzero time interval of its formation, and the radi-
ative damping of excited plasma oscillations that was
previously ignored. As will be shown, the inclusion of
these factors can significantly change the pattern of the
phenomenon under consideration. In particular, a
smooth density gradient in the boundary layer of the
plasma results in the strong additional broadening of
© 2005 Pleiades Publishing, Inc.
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the spectrum of excited natural oscillations and sup-
pression of their emitting component (even under the
conditions of instantaneous gas ionization).

2. For the generation scheme [7] involving the gen-
eration of a fast transverse polarization wave that is
excited behind the front of a superlight breakdown
wave in a narrow near-axial region of the axicon lens,
we primarily analyze the natural quasi-electrostatic
oscillations (with frequencies on the order of the maxi-
mum plasma frequency ωp0) generated in the presence
of a given external electric field (varying or constant) in
the time-varying cylindrically symmetric plasma. The
plasma is created by a short laser pulse (with the dura-
tion τp ~ 100 fs) focused by a conic lens (axicon) into a
so-called Bessel wave beam propagating without diver-
gence along the symmetry axis z at the distance ∆z = L,
which depends on the wave-beam radius b at the
entrance of the lens and the angle ϑ0 between the rays
passed through it and the axis (in particular, ϑ0 ~ 0.1,
b ~ 1 cm, and L ~ b/sinϑ0 ~ 10 cm in experiments [8]).
The velocity of the ionization wave created by the laser
pulse in the segment ∆z is equal to the phase velocity of
the light wave Vi = c/cosϑ0 > c. A given external field
E0 = exE0x (perpendicular to the z axis in the scheme
under consideration) either is uniform and constant (as
was assumed in [7]) or is a wave with frequency ω0 that
propagates with phase velocity V0 along the z axis

(1)

In the latter case, we really suppose that the ionizing
laser pulse is introduced into an open or closed
waveguide directing a wave of a certain type. The fre-
quencies ωp0 and ω0, characteristic ionization time τi,
and the radius a of a formed plasma cylinder for the
case of interest satisfy the conditions ω0τi ! 1, ω0 !
ωp0, a ! L, h0a ! 1, and aωp0 ! c, which make it pos-
sible to calculate perturbations of the field and the elec-
tron density in each given cross section z = const by
solving the two-dimensional quasi-electrostatic prob-
lem on the potential oscillations of the radially inhomo-
geneous nonstationary plasma in the external trans-
verse field E0 and to perform this calculation by disre-
garding the transverse inhomogeneity of both this field
and the plasma cylinder created in it. In this approach,
the longitudinal coordinate z appears in the solution
only as a parameter determining the beginning of the
breakdown time tb = z/Vi and the external-field phase at
this time φb = ω0tb – h0z. In addition, the plasma density
(in fact, ion density) N(r, τ), which is completely deter-
mined by the dynamics of the optical breakdown, is a
function of the distance r from the axis and delaying
time τ = t – tb.

The character of the joint spatiotemporal evolution
of the optical field and plasma in axicon breakdown
depends strongly on the ratio between the concentra-
tion Ng of the neutral molecules of the gas, which deter-
mines the plasma density maximum Nmax, and the den-

E0x E0 ω0t h0z–( ), h0cos ω0/V0.= =
sity N1 = NcLsin2ϑ0 corresponding to the total reflection

of the optical radiation (NcL = m /4πe2 is the critical
concentration for the optical frequency ωL). According
to the calculation based on the solution of the corre-
sponding self-consistent problem [4], two substantially
different scenarios of the process under consideration
are possible for the moderate parameters of ionizing
laser pulses (which have been obtained in many labora-
tories) that we consider in this work (the intensity I ~
1014–1015 W/cm2, and τp ~ 100 fs). In the first scenario
realized when the formed plasma strongly screens the
radiation (Ng > N1), the radial density profile N(r) is
bell-shaped at all stages (with a maximum on the axis
equal or close to Ng) and is characterized by a certain
unified scale a(τ). The second scenario is realized when
the plasma slightly perturbs the optical field (Ng ! N1),
even upon the complete (single) ionization of the gas.
In this case, the breakdown process occurs in two
stages. At the first stage, which completes at the time of
the complete ionization of the gas on the axis, the pro-
cess occurs through the first scenario (the radial profile
remains single-scale). At the second stage, a continu-
ously expanding region of the homogeneous plasma
with N = Ng [the plateau of the radius r = R(τ) on the
density profile] appears near the axis. At the end of this
stage, both characteristic sizes (the outer radius a and
the plateau radius R) are determined by the transverse
size of the Bessel beam (a ~ R ~ c/ωLsinϑ0) and their
difference (the width of the transition boundary region)
is a – R ~ (0.2–0.3)a.

3. The interaction of the formed inhomogeneous
plasma with the external field E0 in the approximation
under consideration can be described by the system of
equations for the volume charge density ρ and self-con-
sistent field potential E = –∇ϕ (r, τ):

(2)

Here, (r, τ) = 4πe2N(r, τ)/m, and ν is the effective
collision frequency between electrons and heavy parti-
cles. The first of Eqs. (2) is easily derived from the
charge conservation law and the equation for the elec-

tron current density ∂j/∂τ + νj = ( /4π)E, which is
valid for any variation rate for the plasma density N in
the breakdown process [3, 4]. In view of the assumed
uniformity of the external field, we are interested in the
dipole-type solution for which the field potential out-
side the plasma is the sum of the potentials of the given
external field and the field of a two-dimensional (linear)
electric dipole with the dipole-moment density per unit

length P =  (the integral is calculated over the

cross section of the cylinder). As follows from the
boundedness of the function ϕ(r, τ) at r = 0 and the con-

ωL
2

∂2ρ
∂τ2
-------- ν∂ρ

∂τ
------ ωp

2ρ+ +
1

4π
------ ∇ω p

2 ∇ϕ ;=

∆ϕ 4πρ.–=

ωp
2

ωp
2

ρx sd∫∫
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tinuity of the field and the potential at r = a, this func-
tion satisfies the boundary conditions ϕ(0, τ) = 0 and
(∂ϕ/∂r)r = a + ϕ(a)/a = –2E0xx/r.

For a uniform cylinder with a sharp boundary
(ωp(r < a) = ωp0 = const), it is easy to show that the
charge is located on the plasma surface [ρ ~ δ(r – a)]
and the dipole moment satisfies the known equation

(3)

where the frequency ωc = ωp0/  of the so-called geo-
metric resonance of the cylinder and the external field
E0x can be treated as given arbitrary functions of time.
As was shown in [9, 10], the oscillatory properties of a
plasma object with smooth density distributions
strongly differ from those for stepwise distributions.
The spectrum of the plasma oscillations becomes con-
tinuous, because their frequency ωp(r) is a function of
coordinates [10] and the geometric resonance weakens
strongly due to resonance absorption at N ≈ Nc =

m /4πe2 [9].

In order to describe the oscillatory processes in the
inhomogeneous nonstationary plasma formed under
the conditions of the optical breakdown of the gas,
Eqs. (2) with the above boundary conditions and with
the zero initial conditions ρ = ∂ρ/∂τ = 0 corresponding
to the problem formulated above at τ = 0 are integrated
numerically. The spatiotemporal density distributions
N(r, τ) simulating the breakdown scenarios described
above are approximated by certain simple piecewise
analytic functions. As the basic parameters entering
into the definition of these functions (which are not
given here, because they are comparatively lengthy),
we specify the maximum density Nmax = Ng, the time of
reaching the steady state (characteristic ionization
time) τi, and the structure parameters of this state—the
ionized-region radius a and plateau radius R (which is
nonzero only for the second scenario). In view of the
accepted conditions ω0τi ! 1 and ω0 ! ωp0, the external
field was assumed to be constant (independent of τ) in
the calculations: E0x = E0cosφb.

Calculation results are shown in Figs. 1–3. Figure 1
shows the time dependences of the dipole moment per
unit length p(τ) normalized to its stationary value Pb =
a2E0x/2. For small values of the ratio ν/ωc, the damping
rate and amplitude of the dipole oscillations accompa-
nying the transition from the initial state with P = 0 to
the final state with P = Pb depend strongly on the diffu-
sion of the plasma boundary (determined by the param-
eter R/a) and the dimensionless ionization time ωp0τi. In
the absence of the plateau, the oscillations are very
small and rapidly damped even for the case of instanta-
neous ionization (Fig. 1a); as the ratio R/a increases, the
amplitude of the oscillations increases and their damp-
ing rate decreases (Fig. 1b). An increase in the ioniza-
tion time τi noticeably reduces the amplitude of the
excited oscillations beginning with the parameter

Ṗ̇ ν Ṗ ωc
2P+ + ωc

2/2( )a2E0x,=

2

ωc
2
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ωp0τi ≈ 3; the amplitude for ωp0τi = 10 and R ≈ a is about
one fifth of the value for τi = 0 (see Figs. 1c and 1d).

Strong damping of the natural dipole oscillations of
the plasma cylinder with a smooth radial density profile
for low collision frequencies can be interpreted as the
manifestation of a certain additional (collisionless)
mechanism of dissipation associated with the transfor-
mation of the energy of the large-scale component of
the field and plasma polarization to the small-scale
component that does not contribute to the dipole
moment. This process of the accumulation of the
energy of the small-scale component, which is finally
due to the continuous increase in the gradient of the

Fig. 1. Time dependences of the dipole moment p(τ) =
P(τ)/P0 at ν/ωc = 5 × 10–3 for (a) R/a = 0 and ωp0τi = 0,
(b) R/a = 0.75 and ωp0τi = 0, (c) R/a = 0.9 and ωp0τi = 3, and
(d) R/a = 0.9 and ωp0τi = 10.

Fig. 2. Radial profiles of the charge density ρa/E0x on the

x axis at ν/ωc = 5 × 10–3, τi = 0, and R/a = 0.5 for ωp0τ =
(a) 10 and (b) 50.

Fig. 3. Radiation spectra Jω at ν/ωc = 5 × 10–2 for (a) R/a =
0 and ωp0τi = (1) 0, (2) 3, (3) 10, and (4) 20 and for (b) R/a =
0.6 and ωp0τi = (1) 0, (2) 3, and (3) 10.
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plasma-oscillation phase ωp(r)τ with time, is illustrated
in Fig. 2, where the spatial charge density distributions
ρ(r) are shown for various times. We emphasize that the
continuous decrease in the spatial scale of the oscilla-
tions under real conditions ceases at a certain time due
to the onset of actual dissipation (e.g., Landau damping
that is ignored here); however, this circumstance is
already immaterial for describing the dipole oscilla-
tions of interest.

4. In order to describe the radiation generated by
natural dipole oscillations, we calculate the Fourier
spectra of the second derivative of the dipole moment.
Figure 3 shows the frequency dependences of the quan-
tity Jω = |(d2p/dτ2)ω|2, which determines the spectral
intensity of the radiation in the principal-maximum
direction. As is seen, for small ν/ω values, the linewidth
∆ω (determined by the internal energy losses consid-
ered above) increases both as the ratio R/a decreases
and as ωp0τi increases. In this case, the maximum radi-
ation intensity Jωmax can decrease by several orders of
magnitude.

For the case of fast ionization and low internal
losses (i.e., for ν ! ωc, R ≈ a, and ωp0τi < 1), which is
of most practical interest, the solution of system (2) can
be found analytically using the Laplace transform. The
time dependence of the dipole moment that corre-
sponds to this (approximate) solution is described by
the function

(4)

where γi = ν/2 + ωcl/a, l = |N/∇ N  ! a, θ(τ < 0) =
0, and θ(τ > 0) = 1. Dependence (4) agrees well with the
above numerical calculation (γi ≈ ∆ω/2) for l ! a and
can also be used in approximate estimates at l ~ a. In
view of Eq. (1), the varying polarization component P~
determined by function (4) can be represented as the
superposition of two damping waves (excited in the
interval 0 < z < L behind the moving ionization front)
with the frequency ωc and different longitudinal wave-
numbers:

(5)

where P0 = a2E0/2 and h1, 2 = ωc  ± ω0(  – ).
Since these waves are fast under the conditions on hand
(V1, 2 = ωc/h1, 2 > c), each of them emits in the directions
forming the angles ϑ1, 2 = arccos(c/V1, 2) with the z axis
and the angular width of the emission maxima is
∆ϑ1, 2 ≈ c/ωcLsinϑ1, 2. As is easily shown by calculating
the electromagnetic field in the far zone of the linear
radiator of the length L @ c/ωc under consideration and
generalizing Eqs. (4) and (5) with the inclusion of radi-
ative losses, the total power Π and energy W of radia-

P Pb 1 ωcτ( ) γiτ–( )expcos–[ ]θ τ( ),=

|N Nc=

P~

P0

2
----- ωct h1z–( )cos ωct h2z–( )cos+[ ]=

× γiτ–( )θ τ( ),exp

Vi
1– Vi

1– V0
1–
tion for the case of weak damping and fast ionization
are given by the expressions

(6)

Here, γr = π a2/8c2 is the radiative damping constant,
W0 = P0E0L/2 is the energy of the electrostatic dipole
interaction between the external field and the plasma,
and γ = (ν/2) + ωcl/a + γr is the total linewidth including
internal and radiative losses. For nonzero ωp0τi values,
a correcting factor µ < 1 depending on the parameters
R/a and ωp0τi should be introduced into expressions (6)
and its value can be determined by using the plots in
Figs. 1 and 3.

5. The above results enable one to approximately eval-
uate the power and energy of radiation in various break-
down regimes and to indicate the optimum conditions for
realizing the mechanism considered for generating tera-
hertz radiation. In particular, for the parameter values
accepted in [7] (the air pressure p = 1 atm, the external
static field E0 = 30 kV/cm, the frequency fc = ωc/2π =
30 THz, the plasma-cylinder sizes a = 2 µm and L =
1 cm, the focusing angle ϑ0 ≈ 0.1, and the collision fre-
quency ν = 1013 1/s) and using data from [4], we obtain
ωp0τi ≈ 20 and R = 0 (the first breakdown scenario is
realized). As follows from the plots in Figs. 1 and 3, a
large ωp0τi value and the absence of a sharp density
gradient at the boundary strongly reduce the amplitude
of the oscillations and the intensity of the radiation.
The energy emitted in this case is W ≈ 3 × 10–2W0 ≈ 3 ×
10−13 J (rather than the value of 10–10 J obtained in [7]
disregarding the radiative damping of the oscillations
under the assumption of instantaneous homogeneous
ionization).

In the above example, the external field E0 was taken
to be equal to the threshold field of the static breakdown
of air Eth(kV/cm) = 30p(atm). This threshold can be
increased in alternating fields for which Eth ≈

30p  (in the same units), where
λ0(cm) = 2πc/ω0. In this case, the gas density can
decrease to Ng < NcLsin2ϑ0, at which the axicon break-
down regime can be realized with ωp0τi ~ 1 and l ! a.
In addition, the parameters of the plasma and the radia-
tion generated by it depend strongly on the angle ϑ0, the
beam radius b on the lens, and the wavelengths λ0 and

λc = 2πc/ωc = 10–3/ (atm). The emitted energy is
maximal near the boundary of the region of the quasis-

tatic description (ωca/c ≈ ωc/ωLϑ0 =  ≈
0.5), where the optimum angle is ϑ0 ≈ 1.6 × 10–4/λc,
ωp0τi < 3, l/a ≈ 0.1, γr ≈ γ/2 ≈ 0.1ωc, Π(W) ≈
106(λc/λ0)2b, and W(J) ≈ 10–5b /  (λc, λ0, and b are
measured in centimeters) in a wide wavelength range

Π
πωc

3

4c2
---------P0

2L 2γt–( ), Wexp Π td

0

∞

∫ W0

γr

γ
----.= = =

ωc
3

1 20 pλ0( ) 2–+

p

Ng/2NcLϑ 0
1–

λ c
3 λ0
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(6 × 10–3 cm < λc < λ0 < 2 cm) for the parameters real-
ized in the experiment described in [8] (λL ≈ 0.8 µm,
I ~ 1014 W/cm2, and τp ~ 100 fs). In particular, a radia-
tion pulse with λc ~ 10–2 cm (central spectral frequency
fc = 3 THz), power Π ≈ 40 kW, and energy W ≈ 4 nJ is
generated for λ0 = 0.1 cm and p = 10–2 atm at the param-
eters b = 4 cm and ϑ0 = 1° realized in the experiments
reported in [11].

A significant increase in energy can likely be
achieved by removing the constraint E0 < Eth. In this
case, fast optical breakdown can occur against the
background of a slower ionization process initiated by
pulses of the external field E0(t) exciting natural oscil-
lations. If the time t = tb of introducing a femtosecond
laser pulse is well synchronized with the time of reach-
ing the maximum excited field [E0(tb) = E0max] and the
plasma at this time is not too dense (N < Nc0 =

m /4πe2), the amplitude of excited oscillations and
emitted energy are determined by the quantity E0max. In
particular, such a situation may be realized at an air
pressure of p = 10–3 atm (corresponding to the radiation
frequency fc = 1 THz) and at the parameters of exciting
microwave pulses achieved at present in the accelerat-
ing systems of electron–positron colliders [12] (λ0 =
1 cm, duration ~3 ns of the leading front of a pulse, and
E0max ≈ 4 × 106 V/cm). Under these conditions, we
obtain W ≈ 10 mJ at the small angle ϑ0 = 20′ for the
parameters b = 4 cm and I ~ 1014 W/cm2. This prelimi-
nary estimate shows that the generation method under
consideration with the use of pulsed exciting fields can
ensure emitted energies that are much higher than both
the experimentally measured (<100 nJ) and theoreti-
cally predicted (100 µJ) values reached in laser–plasma
systems in which the mechanism of the ponderomotive
excitation of plasma oscillations and acceleration of
electron bunches in intense beams (~1019 W/cm2) is
used [13].

ω0
2
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A symmetry-breaking disruption occurs in a system of two dust particles with a decrease of the particle sepa-
ration. This disruption is attributed to the formation of the common ion wake in the system. In the experiment,
the particles levitate in the sheath of a radio-frequency (rf) discharge at low gas pressures (≤60 mTorr) and their
separation is changed by the laser manipulation. The experiment is complemented by molecular dynamics
(MD) numerical simulations. The experimental and simulation data agree that the disruption condition corre-
sponds to the common ion wake formation at the interparticle distances less than the electron Debye length.
© 2005 Pleiades Publishing, Inc.

PACS numbers: 52.27.Lw, 52.35.Py, 52.80.Pi
The complex plasmas, i.e., plasmas containing solid
mesoscopic particles (“dust” particles, larger as com-
pared with the sizes of ions and neutral atoms but less
than the typical collective plasma scales such as the
Debye length), recently appear to be useful and conve-
nient objects to model numerous fundamental physical
phenomena such as phase transitions, diffusion and
transport, and symmetry breaking [1, 2]. The ability to
study phenomena at the individual particle level allows
researchers to directly investigate the kinetics of many
fundamental phenomena previously attributed mainly
to condensed matter physics.

The dust particles in a complex plasma tend to self-
organize themselves in various ordered structures such
as dust crystals, strings, and clusters [3, 4]. In a typical
experiment [3, 4], the dust structures levitate in the
sheath region, where the strong ion flow to the electrode
is established. The ion flow naturally provides a distinc-
tive direction and reduces the symmetry of the consid-
ered system. This is responsible for the vertically
aligned crystal structure and string formation.

The nature of the particle alignments in systems
containing a large number of particles can be under-
stood by considering simplified systems of just a few
(e.g., two) particles [4–9], thus, allowing us to elucidate
the physics of the reduced symmetry in dust-plasma
structures. One of the major factors that affect the sym-
metry of the dust arrangements in discharge plasma is
the ion wake formed downstream from the particles in
the presence of an ion flow, as demonstrated theoreti-
cally, experimentally, and numerically [10–15]. With
this reasoning, the dust particles behave as Cooper-like
pairs and the plasma polarization in the ion focus leads
to the appearance of the “binding” force that is respon-

¶ The text was submitted by the authors in English.
0021-3640/05/8212- $26.000758
sible, e.g., for the formation of dust molecules [4, 11].
Thus, the wake changes the symmetry of the particle
interaction, and, therefore, the symmetry of the dust
structures.

It is well known that the symmetry breaking occurs
if a system allows an asymmetric stable state when a
controlling parameter (such as an order parameter)
reaches a certain value [16]. One of the striking obser-
vations of the symmetry breaking in a complex plasma
was the disruption in the two particle system where the
particles changed their arrangement from the horizontal
to the vertical one depending on the discharge parame-
ters (pressure or input rf power). It was pointed out that
the state of the system is determined by the values of
the particle coupling energy and the energy of the hori-
zontal and vertical confinements, as well as by the
influence of the wake potential [6]. Later, the effect of
the horizontal and vertical confinements on the stability
of the particle arrangements was analytically consid-
ered in [7]. The further elucidation of the role of the
horizontal and vertical confinements was done in the
experiment [9] where the symmetry breaking was trig-
gered by applying an additional bias voltage to change
the confinements' ratio.

The symmetry breaking in the two particle system
generally appears as an initially continues change of the
position of one particle going closer and below another
one followed by an abrupt change of the symmetry (the
first particle jumps straight below the second particle)
at the second (discontinuous) stage. All the previous
analyses were concentrated on the first continuous
stage. This corresponds to the absence of the bifurca-
tion and allows a simple analytic treatment in terms of
the stability of small (linearized) oscillations. The anal-
ysis of the second discontinuous stage, as was stressed
in [6], is a rather complicated problem requiring under-
 © 2005 Pleiades Publishing, Inc.
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standing of the ion wake focus characteristics in the
presence of the nearby particle and involving the non-
linear wake dynamics that can be adequately treated by
numerical simulations—an issue not resolved at that
time.

In this letter, we report on experiments on the ion
wake-induced symmetry breaking in the two-particle
arrangement complemented with molecular dynamics
(MD) simulations of the nonlinear ion wake formed in
the system of two nearby dust particles. The previous
experimental studies [5, 6] where the particle disrup-
tions were triggered by changes in the discharge param-
eters, i.e., by changes of all the parameters in the sys-
tems, make proper comparison with the theory and/or
simulations deficient. In our experiments, the disrup-
tion was triggered by a laser beam focused on one par-
ticle, thus, pushing it closer to another particle. In that
case, the change in the particle separation was accom-
panied by keeping all the other system (plasma) param-
eters constant, and the discontinuous stage of the sym-
metry-breaking disruption was induced by only chang-
ing the interparticle distance. Note that the laser-
assisted manipulation of dust particles was first
reported in [11], where the top particles were shifted by
a laser beam with the bottom particles following the
motions of the top ones. This allowed one to reach a
conclusion on the presence of the wake force acting on
the bottom particles and to estimate the strength of the
wake. A similar experiment was repeated in [5], where
the observed hysteresis in the transitions between the
particle arrangements (due to the changed discharge
parameters such as the gas pressure and the input
power) was attributed to the influence of the wake.
However, the particle disruption triggered by a laser
beam has not yet been reported. Ours is a refined exper-
iment allowing us to exclude all the other possible con-
trolling factors except for the only controlling parame-
ters (the particle separation) and make a direct compar-
ison with the associated numerical simulation. In the
simulation, it was observed that a common wake focus
of the two nearby particles appears when the particle
separation is less than the electron Debye length. This
interparticle distance exactly corresponds to that for
which the particle jump was observed in the experi-
ment. This allows us to relate the discontinuous stage in
the change of the particle arrangement with the forma-
tion of the common wake.

In the experiments, monodispersed melamine form-
aldehyde dust particles with diameters of 2.79
(±0.06 µm) were introduced into an argon rf discharge.
The plasma was generated at pressures in the range 20–
60 mTorr, and a 15 MHz signal was applied to the pow-
ered electrode. The peak-to-peak voltage measured
using an electrical feed through was 25–100 V. The
electron temperature, the density, and the plasma poten-
tial were measured with an rf-compensated passive
Langmuir probe. The electron density was (2–9) ×
108 cm–3, the electron temperature was about 6 eV, and
the plasma potential was 15–65 V.
JETP LETTERS      Vol. 82      No. 12      2005
The experimental set up is shown in Fig. 1a (its
details can be found elsewhere [9]). The main differ-
ence in the present setup is that the radial confinement
is applied by the rectangular electrode placed on the
lower electrode. The dc voltage can be applied to the
confining electrode in order to change the horizontal
confinement. The dust particles were suspended in the
plasma using a shaker allowing the release individual
particles. The particles were illuminated using a 20 mW
Helium–Neon laser. A second (1 W) diode laser was
used for the particle manipulation. The diode laser
beam was focused on the side particle, and the power of
the laser was controlled by the laser diode driver and
was varied from 50 mW up to 400 mW. The laser beams
enter the discharge chamber through 40 mm diameter
windows placed opposite to each other. The observa-
tion window, which is mounted on a side port in the per-
pendicular direction, allows a view of the light scat-
tered at 90° by the suspended dust particles and pro-
vides a vertical cross section of the dust particles’
arrangement. Images of the illuminated dust particles
were obtained using a CCD camera with a 60 mm
micro lens and with a digital camcorder (focal length:

Fig. 1. (a) Experimental setup. Two particles levitate in the
sheath of the powered electrode of rf discharge argon
plasma. The confinement is provided by the rectangular
electrode with a size of 20 × 7 mm, and the border height is
4 mm. (b) Sketch of the typical laser-induced disruption of
the two-particle (Q1, 2) arrangement; the transition dynam-
ics for three different cases are shown for the neutral gas
pressure of 50 mTorr. Transition I–II is induced by the bias
(such as 1.2 V for [i], 2.6 V for [ii], and 3.4 V for [iii])
applied by the confining electrode, and transition II–III is
induced by the action of the laser. The symmetry breaking
disruptions occur at the points III that are different for the
particles approaching at the different heights. The jump III–
IV (dashed arrows) brings the lower particles to the same
position IV below the upper particle.



 

760

        

SAMARIAN 

 

et al

 

.

                                                                                                                                                                   
5–50 mm). The video signals were transferred to a
computer via a frame-grabber card with an 8-bit gray
scale and a 640 × 480 pixel resolution. The coordinates
of the particles were measured in each frame, and indi-
vidual particles were traced from one frame to the next.
After the tracking, the data were placed in a spreadsheet
and analyzed. From the data analysis, we obtained the
particle vertical and horizontal coordinates. The accu-
racy of the measurement of the particle separation and
the levitation height was 30 µm.

In the experiment, the main goal was to induce the
symmetry breaking disruption by only the change of
the particle separation, in contrast to all the preceding
experiments. Thus, we can single out the effect of the
ion wake. The experiment was performed in the follow-
ing steps. First, we applied a small confining (in the
horizontal) bias (up to 5V) to force the initial vertical
separation (see Fig. 1b); because of the strong Coulomb
repulsion in the horizontal plane, the particles cannot
get closer to each other while being at the same height.
Second, the lower particle was pushed in the horizontal
direction by the diode laser towards the upper particle.
The laser power was increased to shift the bottom par-
ticle until it jumped directly under the upper one.

Fig. 2. The experimentally determined disruption points for
the two-particle Q1, 2 system (the neutral gas pressure P =
30 mTorr). [i] and [f] stand for the initial and final positions
of the particles. The position of the first particle does not
change in the transition. The final position of the second
particle is always strictly below the first particle. The z axis
represents the vertical separation, while the x axis repre-
sents the horizontal separation.

The mean interparticle distances for which the symmetry-
breaking disruption occurs for different neutral gas pressures

Gas pressure P, mTorr 20 30 40 50 60

Interparticle distance
D/λDe

0.77 0.76 0.74 0.72 0.71

Electron Debye length 
λDe, µm

1021 944 832 657 588
Figure 2 shows the set of the points where the sym-
metry-breaking disruption occurs for the neutral gas
pressure of 30 mTorr. We can see from Fig. 2 that the
disruption occurs when the particle separation is less
than the electron Debye length. This takes place for var-
ious gas discharge pressures. The table gives the aver-

age interparticle distance D =  (at
which the disruption occurs) in the units of the electron
Debye length λDe for different gas pressures. The sym-
metry breaking takes place when the interparticle dis-
tance is between 0.7λDe and 0.8λDe, being almost
unchanged for different gas pressures.

The discontinuous nature of the transition demon-
strates that some principal change occurs in the system.
Since the discharge parameters and confinements are
kept constant, we should assume that, with the particle
separation decreasing below a certain critical value
(~0.75λDe), the particle–particle and particle–plasma
interactions are dramatically changed. The most impor-
tant factor whose influence can crucially affect the sud-
den change in the particle interaction is the ion wake
focus behind the particles. Here, we relate the symme-
try breaking disruption in the particle arrangement with
the qualitative change in the wake, that is, to the forma-
tion of the common wake of two particles when they are
sufficiently close to each other.

To prove this hypothesis, we performed a self-con-
sistent three-dimensional (3D) MD simulation of the
kinetics of the plasma electrons and ions around two
dust grains shifted with respect to each other. To visu-
alize the ion wake focus, we present the simulated dis-
tributions of the ion plasma densities. The details of the
numerical technique are described elsewhere [14, 15].
The numerical method involves simulation of the time
evolution of the fully ionized (Zi = 1, i.e., the ions are
single charged) plasma consisting of Ni positively sin-
gle-charged ions and Ne negatively charged electrons
confined in a simulation box 0 < x < Lx, 0 < y < Ly, 0 <
z < Lz, together with the two macroscopic absorbing
grains (dust particles), each of diameter a = 1 µm, with
the infinite masses and the initial (negative) charges
Q1, 2, 0 = Zd1, 2, 0e = 1000e, where e is the electron
charge. The ions are introduced in the system at the
plane z = 0 as a uniform flow in the z direction with the
Mach number M = V0/Vs = 1.41 and the temperature Ti,
where Vs = (Te/mi)1/2 is the speed of the collisionless
sound waves, Te is the temperature of the plasma elec-
trons (all the temperatures are in energy units, i.e., Bolt-
zmann’s constant is unity), and mi is the ion mass; at
z = Lz, the ions are removed from the system. The dust
particles are placed at z1 = Lz/8; z2 = Lz/8 + ∆z; and
x1, 2 = Lx/2 ± ∆x/2; such that ∆z, x appear as the dis-
tances between them in the direction z parallel to the
ion flow and the direction x perpendicular to the flow
(the other coordinate of the particles is y = y0 = Ly/2).
The equations of motion are solved by the Runge–

∆x( )2 ∆z( )2+
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Kutta method of the fourth order with the automatically
chosen time step. For the characteristic lengths, we
have Lz/3 = Lx/4 = Ly/2 = λDe, where the electron Debye
length λDe = 5.256 µm. The total simulated time of the
physical processes is 4.03 × 10–8 s; this should be com-
pared with the ion plasma period τpi = 2π/ωpi = 0.67 ×
10–8 s.

Figure 3 presents the contour plots of the ion density
ni normalized to ni0 = Ni/LxLyLz for ∆z = 0.6λDe and
three different distances between the grains. Strong ion
focuses are formed behind the dust particles; further-
more, depending on the distance between the particles,
the wake maximums are merged at the interparticle dis-

tance of D =  ~ 0.7λDe (when ∆x =
0.4λDe), the case (b), in contrast to their clear separation
at the larger interparticle distance (∆x = 0.8λDe), the
case (a). In analogy to the Rayleigh criterion in spec-
troscopy [17], the beginning of the common wake for-
mation can be determined as the case when the ratio of
the ion density between the particles to the mean ion
densities behind the particles is 0.7. The common wake
is formed in the case when the ion density between the
particles exceeds the ion densities behind the particles.

The simulations for the different ion flow velocities
were performed, including the case of subsonic ion
flow velocities (e.g., M = 0.8). The results show that,
despite some differences in the ion wake formation for
the subsonic and supersonic flows, the common ion
wake focus formed behind the particles exhibits the
same characteristics depending (crucially) on the parti-
cle separation. We also note that the physics of the com-
mon wake formation includes complex phenomena of
the ion scattering by highly charged macroscopic parti-
cles; in particular, the large-angle nonlinear ion scatter-
ing in the simplified case of one dust particle and the
absence of the flow was investigated only recently
[18, 19].

The formation of the common ion wake dramati-
cally changes the particle interaction and the symmetry
in the system. This, in turn, has to lead to a drastic
change in the particle position. Figure 4 represents the
experimentally observed disruption points, along with
the results of the MD simulation, which show the area
of the common wake formation. The points of the dis-
ruption are in very good agreement with the simulation
data for the particle separation where the common ion
wake is formed. According to Fig. 4, the disruption
occurs when the common wake is either starting to
form (the gray area between the dashed lines) or has
already formed (the “common wake” area below the
left dashed line). This figure clearly relates the common
wake formation and the disruption in the considered
system.

The phenomenon of the common ion wake forma-
tion gives a new insight into the ordering of dust parti-
cles in the sheath region. It is clear that the adequate
description of the state of a many-particle system, as

∆x( )2 ∆z+ )2
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well as its symmetry and phase transitions, has to
include, in addition to the standard linearized (or
weakly nonlinear, such as in the perturbation theory)
analysis of the dust oscillation characteristics (sta-
ble/unstable modes), the influence of the dust particle

λDe

λDe

(a)

(b)

Io
n f

lo
w

Io
n f

lo
w

Fig. 3. Surface plots of the MD simulated ion wake focus
for the two different separations in the direction x perpen-
dicular to the ion flow: (a) corresponds to ∆x = 0.8λDe, and
(b) corresponds to ∆x = 0.4λDe. Note the formation of the
fully developed common wake in case (b).

Fig. 4. The symmetry-breaking diagram for the experimen-
tally observed disruption points (the crosses stand for P =
30 mTorr and the input power W = 40 W, the circles stand
for P = 50 mTorr and W = 40 W, and the diamonds stand for
P = 50 mTorr and W = 60 W). The gray area stands for those
particle separations where the common ion wake appears
according to the MD simulations.
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separation on the ion focusing including the strongly
nonlinear phenomenon of the common wake formation.
The discussed symmetry-breaking disruption can be
considered as a self-organized transition illustrating the
fundamental intrinsic property of a dust structure in a
plasma as a self-organized open system. Indeed, by
changing the dust-subsystem characteristics, such as
the interparticle distance, we inevitably change the
ambient plasma characteristics, such as the ion wake
focus, which, in turn, can crucially affect the dust sub-
system properties (e.g., the positions of the particles)
leading to its transition to another ordering state.

The work of A.A.S. was supported by the Denison
Fellowship. The work of S.V.V. was supported by the
Australian Research Council.
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The problem of a Josephson current through a Coulomb-blocked nanoscale superconductor–normal–supercon-
ductor structure with tunnel contacts is reconsidered. Two different contributions to the phase-biased supercur-
rent I(ϕ) are identified, which are dominant in the limits of weak and strong Coulomb interaction. Full expres-
sion for the free energy valid at arbitrary Coulomb strength is found. The current derived from this free energy
interpolates between known results for weak and strong Coulomb interaction as the phase bias changes from 0
to π. In the broad range of Coulomb strength, the current–phase relation is substantially nonsinusoidal and qual-
itatively different from the case of semiballistic SNS junctions. The Coulomb interaction leads to the appear-
ance of a local minimum in the current at some intermediate value of the phase difference applied to the junc-
tion. © 2005 Pleiades Publishing, Inc.

PACS numbers: 73.21.–b, 74.45.+c, 74.50.+r
The Josephson current in the contact of two bulk
superconductors through a small normal grain (SINIS
structure) was recently studied in [1] within the saddle-
point approximation for the effective action functional
that described [2] superconductive proximity effect in
the presence of Coulomb interaction. We found in [1]
that Coulomb blockade in the grain results in a very
special Josephson current dependence on the phase dif-
ference ϕ (see the dashed lines in Fig. 1). As ϕ
approaches π, the proximity effect in the grain is sup-
pressed, the Coulomb blockade becomes relatively
strong, and the spectral minigap induced in the normal
grain becomes exponentially small. This led us to the
erroneous conclusion that the super-current through the
grain is exponentially weak as well. In fact, as was
pointed out to us by Beloborodov and Lopatin [3], the
supercurrent in the SINIS structure may flow without
any spectral minigap at all. The same result was
obtained originally by Bruder, Fazio, and Schön in [4]
by means of perturbative analysis that is valid as long
as the charging energy EC = e2/2C is much larger than

the proximity-induced minigap (denoted below as ).
This additional (with respect to our result in [1]) contri-
bution to the supercurrent is due to fluctuational diffu-
sion and Cooperon modes in the N grain, as explained
below.

In [1], the replicated dynamical sigma-model was
used. The Coulomb interaction in the grain is taken into
account in the framework of the adiabatic approxima-
tion developed in [2]. The key point of this approxima-
tion is the separation of energy scales: the electric
potential of the grain fluctuates at a frequency much
larger than the proximity induced minigap. This

¶ The text was submitted by the authors in English.

Ẽg
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assumption is valid provided that EC @ δ, where δ is the
average level spacing in the grain per one spin projec-
tion. The saddle point of the sigma-model gives the free
energy of the system F0(ϕ); the current is then calcu-
lated using the identity I0 = (2e/")∂F0/∂ϕ.

The above-mentioned additional contribution to the
supercurrent is due to the fluctuations near the saddle
point of the sigma model. Below, we present a some-
what more general result used for calculating the fluc-
tuational correction to the total free energy of the sys-
tem. The supercurrent being the derivative of the free
energy with respect to ϕ acquires significant correction
in the regime when the saddle point itself gives an
exponentially small result. This, anyhow, happens
when the phase difference ϕ comes close to π. There-
fore, the results of [1] and [4] for the Josephson current
are, in fact, valid in two limiting cases of weak and
strong Coulomb effect, correspondingly.

In order to find the Josephson current in the full
range of the Coulomb/proximity ratio, it is necessary to
supplement our results presented in [1] by the fluctua-
tional contribution. The saddle-point approximation

used in [1, 2] is justified by the inequality  @ δ. The
correction due to fluctuations near the saddle point is
negligible in this limit. When the phase bias ϕ is close

to π, the parameter  becomes exponentially small
and the above inequality is violated. It is this violation
that makes fluctuational correction important. How-
ever, due to the large value of the junction’s dimension-
less conductance, it is sufficient to consider the fluctua-
tional contribution in the Gaussian approximation not
going beyond the quadratic expansion of the action in
soft modes. In this paper, we extend the approach of [1,
2] to allow for Gaussian fluctuations near the sigma-

Ẽg

Ẽg
© 2005 Pleiades Publishing, Inc.
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model saddle point. The fluctuations are calculated on
the background of a non-zero proximity-induced mini-
gap. The resulting dependence I(ϕ) interpolates
between that from [1] and that from [4] as ϕ varies from

Fig. 1. The dependence of the Josephson current I on phase
bias ϕ. The current is normalized by its maximal value,
which is reached at ϕ = π/2 in the absence of Coulomb inter-

action Imax = (eδ/4")GLGRlog(8∆/δ ). The

dashed lines show the dependence (8) found in [1] without
fluctuational correction. This correction is depicted by the
dotted lines, while the solid curves are the sums of the two
contributions. The three plots correspond to the different
relative strength of the Coulomb blockade: (a) weak inter-

action ECδ/ (0) = 0.5, (b) intermediate ECδ/ (0) = 1.5,

(c) strong blockade ECδ/ (0) = 2.5. For all three plots, we

assume a symmetric junction with GL = GR = 20 and ∆/δ =
3000. As ϕ approaches π, the Coulomb interaction always
becomes strong and the current is dominated by the fluctu-
ational contribution (29).

GL
2

GR
2

+

Eg
2

Eg
2

Eg
2

0 to π. Moreover, in the crossover region, a local mini-
mum of the supercurrent appears (see Fig. 1). We start
with the derivation of the fluctuational contribution to
the free energy valid for an arbitrary relative strength of
the Coulomb blockade and proximity effect. Then, the
current-phase dependence is found by numerical differ-
entiating. To reduce unnecessary complications, the
temperature is put to zero. We assume the SINIS junc-
tion between two bulk superconductors with tunnel
contacts characterized by the large (in e2/" units) nor-
mal conductances GL and GR. It is convenient to intro-
duce the effective conductance

(1)

Formally, one may treat the system as an SIN junction
with one superconductive lead and normal conductance
given by the above expression [1]. We quantify the
proximity effect in the normal grain by the bare value
of the induced minigap Eg(ϕ) = G(ϕ)δ/4. This minigap
is realized if the Coulomb interaction is absent.

The sigma model for SINIS junction [1, 2] deals

with the matrix field , which bears two replica and
two Matsubara energy (or, equivalently, imaginary
time) indices along with a particle-hole structure in
Nambu–Gor’kov space. Another field is the scalar

phase , which is dependent on the imaginary time
and replica number. The action has the form

(2)

The symbol  is used for Pauli matrices operating in
Nambu-Gor’kov space. The operator Tr implies sum-
mation over all indices including the Matsubara ener-
gies and replicas, while tr denotes a trace in Nambu–
Gor’kov space only.

The adiabatic approximation allows integration out

of the field K assuming that  is fixed. The steady

matrix  is diagonal in energies and trivial in replicas

(3)

Here  is the proximity-induced minigap in the nor-
mal grain renormalized by the Coulomb interaction.

The value of  will be determined self-consistently
later.

G ϕ( ) GL
2 GR

2 2GLGR ϕcos+ + .=

Q̃εε '
ab

Kτ
a

S Q̃ K,[ ] π
δ
---Tr ετ̂3Q̃( )– τ K̇τ

a( )
2

4EC

-------------




d

0

1/T

∫
a

∑+=

–
π
2
---G ϕ( )tr Q̃ττ

aa τ̂1 2Kτ
a τ̂2 2Kτ

asin+cos( )[ ]




.

τ̂ i

Q̃

Q̃

Q̃εε '

ab
2πδabδ ε ε'–( )

ετ̂3 Ẽgτ̂1+

ε2 Ẽg
2

+
-------------------------.=

Ẽg

Ẽg
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Using the adiabatic approximation, we derive the
effective Hamiltonian that determines the dynamics of
phase K:

(4)

(5)

The parameter q quantifies the relative strength of the
Coulomb blockade [2] in comparison with the proxim-
ity effect. In the limit q @ 1, the Coulomb interaction is
effectively weak and can be treated perturbatively,
while, in the opposite case q ! 1, the Coulomb block-
ade destroys the proximity effect up to an exponentially
small correction. The value of q is determined self-con-

sistently along with .
At zero temperature, K is frozen in the ground state

of the Hamiltonian (4) with energy E0(q). Then, the
total free energy acquires the form

(6)

The divergent integral is to be regularized by subtract-

ing its value for the “normal” state with  = 0. In all
the subsequent analysis, we assume this regularization
to be performed.

The minigap  is set by the condition ∂F0/∂  = 0.
This gives the self-consistency equation

(7)

The last expression implies the average value at the
ground state of (4). Together with (5), this equation

forms a closed system that determines q and .
In [1], we calculated the supercurrent using the

identity I0 = (2e/")∂F0/∂ϕ. The result was

(8)

This dependence of the supercurrent on ϕ is shown in
the Fig. 1 by the dashed lines.

To take into account the fluctuations of  near the
saddle point that was found (for detailed calculations

see [5]), we use the parametrization of  as a rotated

 matrix:  = V–1e–iW/2 eiW/2V. This choice is moti-

vated by the fact that  =  at ε = 0. Below, we’ll see
that different modes of fluctuations near the saddle
point, diffusions and Cooperons, decouple in this repre-
sentation. The matrix V diagonal in energies and repli-

cas is determined by the identity  = V–1 V and

H EC ∂2/∂K2– 2q 2Kcos–[ ] ,=

q
Eg ϕ( )Ẽg

ECδ
-------------------- 2∆

Ẽg

-------.log=

Ẽg

F0 ϕ( ) 1
δ
--- ε2 εd

ε2 Ẽg
2

+
---------------------∫– E0 q( ).+=

Ẽg

Ẽg Ẽg

Ẽg

Eg ϕ( )
--------------

1
2EC

---------
∂E0

∂q
---------– 0〈 | 2K 0| 〉 .cos= =

Ẽg

I0 ϕ( ) eδ
4"
------

Ẽg

Eg

----- 
 

2

GLGR ϕ 2∆
Ẽg

-------.logsin=

Q̃

Q̃

τ̂1 Q̃ τ̂1

Q̃ τ̂1

Q̃ τ̂1
JETP LETTERS      Vol. 82      No. 12      2005
expressed as V = cos(π/4 – θ/2) – i sin(π/4 – θ/2) with

θ being a standard Usadel angle, and tanθ = /ε
dependent on the Matsubara energy. The matrix W

describes deviations of  from the saddle point .

W anticommutes with  and, hence, contains two

components  =  + . Below the (off-)

diagonal in Nambu space, element ( ) is referred
to as a diffuson (Cooperon) mode. However, these
modes are only analogs of the standard diffuson and
Cooperon that describe the fluctuations near the normal
metallic saddle point with no minigap.

Now, we substitute the above parameterization into
(2) and expand the action to the second order in W. The
result is a sum of three terms

(9)

where S0[K] is the action corresponding to the Hamilto-
nian (4). The terms S1, 2[W, K] are linear and quadratic
in W respectively; the explicit expressions for them can
be found in [5]. Our strategy is to integrate out the
phase K. As the fluctuations near the saddle point are
assumed to be small, we treat the last two terms of (9)
as a perturbation of the bare action S0[K], or, equiva-
lently, of the Hamiltonian (4). Thus, we expand the sta-
tistical weight e–S[W, K] to the second order in S1 and to
the first order in S2. Integration with respect to K
implies averaging these terms at the ground state of (4).
Once the integral is calculated, we rewrite the result in
the form of a single exponent

(10)

(11)

The integral of the term  yields a W-independent
factor to the partition function corresponding to the free
energy F0 calculated at the saddle point. The value of F0
is given by (6), while N is the number of replicas. The
symbol 〈…〉  denotes the average with respect to the
ground state of the Hamiltonian (4). To calculate the

terms S(1) and , we use the identity 〈sin2K〉  = 0,
while the average value of cos2K is determined by (7).
The self-consistency equation provides S(1) = 0 as it
should be at the saddle point. The two remaining terms
describe fluctuations near the saddle point. They can be
written in the form

(12)

τ̂2

Ẽg

Q̃ Q̃

τ̂1

Wεε '
ab τ̂3dεε '

ab τ̂2cεε '
ab

dεε '
ab cεε '

ab

S W K,[ ] S0 K[ ] S1 W K,[ ] S2 W K,[ ] ,+ +=

DWDKe S W K,[ ]–∫ e

NF0

T
-----------–

DWe
S

1( )– S0
2( )– Sint

2( )–
,∫=

S 1( ) = S1〈 〉 , S0
2( ) = S2〈 〉 , Sint

2( ) = 
S1

2〈 〉 S1〈 〉 2–
2

-----------------------------.–

e
S0–

S0
2( )

S0
2( ) ε ε'dd

8πδ
------------- ε2 Ẽg

2
+ ε'2 Ẽg

2
++( )∫

a b,
∑=

× cεε '
ab cε 'ε

ba dεε '
ab dε 'ε

ba+( ),
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(13)

In the last expression, we use the following notations

(14)

(15)

(16)

(17)

The two functions X(ω) and Y(ω) appeared from the

averaging of . They are nothing but the Fourier com-
ponents of the irreducible correlators 〈〈 cos2K0cos2Kτ〉〉
and 〈〈 sin2K0sin2Kτ〉〉 , respectively. In expressions (16)
and (17), we use |i 〉  and Ei to denote eigenvectors and
eigenvalues of (4).

With all these definitions in hand, we employ the
standard replica trick to calculate the free energy

(18)

The last term of this expression is the fluctuational con-
tribution. It contains a Gaussian integral with a rather
complicated quadratic form in the exponent. The term

 is fully diagonal with respect to both the replica
and Matsubara energy indices of the c and d compo-

nents. The complication arises from the  term,
where different energies are coupled (13). The Gauss-
ian integration is equivalent to computing the determi-
nant of this quadratic form. To find the value of this
determinant, we use the standard trick [6]. Let us con-
sider the derivative of the free energy with respect to
G2: ∂F/∂(G2). The factor G2 is present explicitly only in

the  term. Then, the derivative is

(19)

The preexponent of the integrand is quadratic in c and
d. Hence, differentiating with respect to G2 reduced the

Sint
2( ) G2

2
------ ε ε' ωddd

2π( )3
--------------------∫

a

∑–=

× λc ε ε'; ω,( )cε ε ',
aa cε ' ω+ ε ω+,

aa[

+ λd ε ε'; ω,( )dε ε ',
aa dε ' ω+ ε ω+,

aa ] .

λ c ε ε'; ω,( )

=  
π2

4
-----X ε ε'–( )

θε θε '+
2

-----------------
θε ω+ θε ' ω++

2
------------------------------,coscos

λd ε ε'; ω,( )

=  
π2

4
-----Y ε ε'–( )

θε θε '–
2

----------------
θε ω+ θε ' ω+–

2
------------------------------,coscos

X ω( ) 0〈 | 2K n| 〉cos 2 2 En E0–( )
ω2 En E0–( )2+
-------------------------------------,

n 0>
∑=

Y ω( ) 0〈 | 2K n| 〉sin 2 2 En E0–( )
ω2 En E0–( )2+
-------------------------------------.

n 0>
∑=

S1
2

F F0 T
1
N
---- 1 DWe

S0
2( )– Sint

2( )–

∫– .
N 0→
lim+=

S0
2( )

Sint
2( )

Sint
2( )

∂F

∂ G2( )
--------------

T

NG2
----------- DWSint

2( )e
S0

2( )– Sint
2( )–
.∫N 0→

lim=
problem of calculating the determinant to the calcula-
tion of the inverse matrix elements. They correspond to
the two-particle Green’s functions that are Cooperon
and diffuson. The Cooperon is

(20)

The analogous diffuson function is similar to the above
average with the c components being replaced by d. We
denote this propagator by Dab(ε, ε'; ω). The angle
brackets in the last expression imply the average with

the Gibbs weight given by the quadratic action  +

. This averaging also contains normalization by the
partition function that is the determinant we are calcu-
lating. However, this normalization factor is canceled
when the N  0 limit is taken in (19). (Note, the rep-
lica trick was originally invented, namely, for this can-
cellation.)

Below, we concentrate on the quantity Cab(ε, ε'; ω).
Another propagator is found in an analogous way; the
only change is in the replacement of λc by λd. To find
Cab(ε, ε'; ω), we have to solve a simple Dyson equation

(21)

where the bare correlator C0(ε, ε') is determined by

inverse eigenvalues of the diagonal quadratic form 

and the vertex is the matrix element of 

(22)

(23)

The solution to equation (21) is

(24)

In the denominator of the last term, the screening func-
tion &(2Ω) appears

(25)

This integral contains a logarithmically divergent con-
tribution that gives the first term in square brackets. The

cε ε ',
ab cε ' ω'+ ε ω+,

pq〈 〉  
ε ' b, ε' ω' p,+

ε a, ε ω q,+
=

=  2πδaqδbpδ ω ω'–( )Cab ε ε'; ω,( ).

S0
2( )

Sint
2( )

•= + ,

S0
2( )

Sint
2( )

C0 ε ε',( ) δ
π
--- 1

ε2 Ẽg
2

+ ε'
2

Ẽg
2

++
--------------------------------------------------,= =

ε', b

ε, a

 
ε ' b, ε' ω+ b,
ε a, ε ω a,+ G2δabλ c ε ε'; ω,( ).=•

Cab ε ε'; ω,( ) C0 ε ε',( ) 2πδ ω( ) ∫=

+ δab G2λ c ε ε'; ω,( )
1 G2& ε ε'–( )–
-------------------------------------C0 ε' ω+ ε ω+,( ) .

& 2Ω( ) εd
2π
------λ c ε Ω+ ε Ω; 0–,( )C0 ε Ω+ ε Ω–,( )∫=
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δ
8
---X 2Ω( ) 2∆
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second term comes from small values ε & max{Ω ,

}.
The analogous screening function for the correlator

Dab(ε, ε'; ω) is

(26)

Now, everything is ready for the calculation of the
derivative ∂F/∂(G2). The preexponent in (19) contains
the sum over a single replica index. The saddle point is
trivial in the replica space. Therefore, this sum will be
canceled by 1/N. Another feature of the preexponent is
the factor 2πδ(0). This factor appears from the delta
function in the definition of Cooperon (20). The same
is also true for the diffuson term in the preexponent. At
a finite temperature, 2πδ(0) = 1/T, which cancels the
temperature in (19). Once this cancellation is estab-
lished, we can safely assume that T = 0.

After the substitution of (24) and a similar expres-
sion for Dab(ε, ε'; ω) into (19) and integration with
respect to ω and the sum ε + ε', we come to a single inte-
gral over Ω = ε – ε':

(27)

In the limit G2 = 0, the vertex part of the action, , is
absent. This leads to the absence of the fluctuational
contribution at G2 = 0 in the limit N  0. Using this
fact, we finally come to the full expression for the free
energy by integrating (27)

(28)

The total Josephson current is now easy to find by
differentiating the free energy I = (2e/")∂F/∂ϕ. The cur-
rent derived from the first term F0 was found in [1]. A
rather simple expression (8) exists for this quantity. The
fluctuational contribution is much more complicated.
The dependence on the phase difference ϕ is contained
not only in the factor G2 according to (1) but also in the
screening functions. The situation is very much simpler
in the physically interesting limit of strong Coulomb
blockade. The minigap is strongly suppressed, and the
saddle point itself produces a negligible contribution to
the Josephson current. In the fluctuational part of the

free energy, we put  = 0. Expression (4) becomes a
free particle Hamiltonian as q = 0. Only the first term is
left in both sums (16) and (17); hence, X(ω) = Y(ω) =

4EC/(16  + ω2). The screening functions (25) and

Ẽg
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(26) become identical and contain only log(∆/Ω) in
square brackets. The dependence of the free energy on
ϕ is now provided only by the factor G2 in (28). For the
Josephson current in the strong Coulomb blockade
regime, we have

(29)

Thus, the result of [4] is reproduced.
In the opposite limit of the weak Coulomb blockade,

the fluctuational contribution to the supercurrent is
small in comparison with I0. When the phase difference
changes from 0 to π, the system goes from a weak to
strong Coulomb blockade regime. This means that the
result (8) gradually transforms into (29). Numerical dif-
ferentiating of (28) gives the solid curves plotted in the
figure for the current-phase dependence. Note the local
minimum that appears in the crossover region. There is
no simple analytic theory for this effect. However, this
is likely to be the most prominent feature of the system.

In conclusion, we have calculated the fluctuational
correction to the free energy and to the Josephson cur-
rent in the Coulomb blockaded SINIS junction. This
correction plays a major role in the limiting of strong
Coulomb interaction. At intermediate values of the
phase bias, a well-defined local minimum of the
Josephson current appears.
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A general method is proposed for privacy protection upon correction of errors in primary keys in quantum cryp-
tography through an open communication channel. By the example of the cascade procedure for correcting
errors, a method is described for removing information sent through an open communication channel when
cleaning a key. The critical percentage is found for the quantum cryptography protocol BB84 to which the cas-
cade error correction method with deletion guarantees the security of the final key. The method proposed for
removing information sent through the open communication channel is quite general and can be used for many
cleaning protocols for primary keys in quantum cryptography. © 2005 Pleiades Publishing, Inc.

PACS numbers: 03.65.Bz, 03.67.Db
Quantum cryptography, which is a system of secure
key distribution between remote users, makes it possi-
ble to transfer keys through an open quantum commu-
nication channel. Any quantum cryptography protocol
of generating secure keys includes three stages [1, 2].
The first stage—the stage of generating primary keys—
is the transmission of quantum states through the quan-
tum communication channel and conduction of mea-
surements at the receiver end by a certain protocol. The
result of the measurements is a bit string, which gener-
ally differs from the bit sequence at the transmitter end.
After the measurement results have been obtained,
information is exchanged performed through an open
classical communication channel, e.g., for agreement
between the bases and estimation of the probability of
errors at the receiver end as in the most widespread pro-
tocol BB84 [1]. In this case, a part of the bit sequence
is opened and then open positions are removed. As a
result of the first stage of the protocol, a primary key
arises for legitimate users (usually named Alice and
Bob).

Any quantum cryptography system guarantees the
security of keys if the percentage of errors at the
receiver end does not exceed a certain critical value [3–
5]. Otherwise, the protocol is interrupted.

At the end of the first stage, an eavesdropper (usu-
ally named Eve) already can have1 certain information
on the primary key, which he can acquire from the
quantum communication channel during the transmis-
sion of quantum states. Further information exchanges

1 In this context, “can” means the following. Generally speaking,
the eavesdropper can acquire information on the final key at the
last stage by, e.g., storing his quantum states in quantum memory
when all the auxiliary exchanges by classical information
between the legitimate users are completed.
0021-3640/05/8212- $26.00 0768
between the legitimate users through the open classical
communication channel cannot increase the eavesdrop-
per’s information on the primary key, because the open
positions are omitted.

The second stage of the protocol is the correction of
errors by means of exchange of classical information
through the open classical communication channel.
The correction of errors at the receiver end is in essence
a classical procedure. The fundamental difference of
this procedure from conventional error-correction
methods in classical information theory is that it is per-
formed between remote users and all auxiliary informa-
tion transmitted through the open communication chan-
nel is assumed to be known to the eavesdropper. The
main requirement imposed on the error correction pro-
cedure is protection of privacy. In other words, the cor-
rection of errors should not increase the information
known to the eavesdropper about the “clean” key that
he has acquired up to this stage. In this case, Alice and
Bob are forced to omit some bits in the primary
sequence. According to the second requirement refer-
ring to the procedure efficiency, the clean key must be
as long as possible.

Strictly speaking, the critical error to which the pro-
tocol ensures the security of keys, the efficiency of the
error correction procedure in the primary keys, and the
length of the final key are closely related to each other.
For example, the maximum allowable critical error
(11%) for the protocol BB84 is achieved when errors
are corrected by means of random codes (the Shannon
limit [6]), which are not constructively realizable,
because they require an exponentially large set of code
words over the length of the bit sequence. The maxi-
mum of the minimum code distance is reached on ran-
dom code words. In this case, if the sequence is suffi-
© 2005 Pleiades Publishing, Inc.



        

ON THE PRIVACY-PRESERVING CASCADE METHOD 769

                           
ciently long (formally for n  ∞) and the error prob-
ability is less than the critical value, the entire length of
the bit sequence after the correction of errors can be
taken as the final secure key. If errors are corrected with
codes on which the Varshamov–Hilbert rate boundary
[7] is reached, the admissible error percentage does not
exceed 7.5% [3–5]. In this case, after the correction of
errors, the entire sequence also can be taken as the final
secure code.

The use of constructive codes when correcting
errors is the forward correction of errors; i.e., in depen-
dence of the observed error percentage, a set of code
words that are openly announced is chosen. Errors at
the receiver end are corrected by means of a calculated
syndrome. In this case, the critical error percentage to
which the protocol guarantees the security of the entire
corrected bit sequence depends on the redundancy of
the code. In this approach, the critical error should be
calculated separately for each code.

More practically convenient are iteration error cor-
rection procedures, which are reduced to the calcula-
tion of parities of various subsets of the primary key
and bilateral exchange of information on these parities
through the open communication channel. In this case,
the parities of these subsets become known to the
eavesdropper. If some bits are removed in a certain way,
either in the cleaning process or after its completion,
the eavesdropper cannot acquire additional information
compared to the information that he had before the
error correction procedure.

The third stage of the protocol is the privacy ampli-
fication or the compression of the clean key [8]. After
the correction of errors and the deletion of some bits, a
shorter bit sequence remains for legitimate users. The
eavesdropper’s information about this string is limited
by the initial information that he could acquire from the
quantum communication channel. Thus, if it were pos-
sible to find a reliable upper bound for the information
that the eavesdropper can acquire from the quantum
communication channel, the problem of the extraction
of the secure key from the primary bit sequence would
be constructively solved. This information can be
reduced to an exponentially small value in a chosen
security parameter by compression (hashing of the
clean key by means of universal homogeneous func-
tions of the second kind [8, 9]).

Cascade method of error correction (CASCADE).
The simplest iteration procedure of error correction is
the bisection search for error, which is reduced to the
division of the primary key into random nonoverlap-
ping blocks and to the calculation of the parities of
these blocks. The parities of sets at the receiver and
transmitter ends are compared through the open chan-
nel. After the parity of a certain set is opened, one of the
randomly chosen bits is removed. If the parities do not
coincide, the size of the block is halved and the process
is repeated. Since the blocks do not overlap, the dele-
tion of bits is simple. Such a procedure protects the pri-
JETP LETTERS      Vol. 82      No. 12      2005
vacy; i.e., the eavesdropper does not acquire additional
information upon the cleaning of the primary key. How-
ever, such a procedure is extremely inefficient, because
a few bits remain in the clean key (e.g., for an error
probability of 10% in the primary key, no more than
10% of the initial length remains in the clean key).

In terms of the length of the clean key, the cascade
error correction method proposed in [10] is most effi-
cient at present. In the initial variant of the cascade
method, the parity bits of the individual and generally
overlapping subsets are stored and used in the next
passes. In this method, no bits are deleted. For this rea-
son, the method does not protect privacy. It is difficult
to estimate the information that is acquired by the
eavesdropper when opening the parity bits of overlap-
ping subsets that appear in different passes. As far as we
know, a complete analysis has not yet been performed.

The privacy and efficiency of the method can be
retained if a certain number of bits are deleted at the end
of the cleaning of the primary key. Since the bit sets
arising in each pass overlap with each other, such a
deletion procedure is not trivial.

In this work, a simple regular method for retaining
privacy is proposed. For convenience, we first describe
the cascade method of error correction without dele-
tion.

The CASCADE algorithm consists of several passes
over the primary key. At each pass, the key is randomly
divided into blocks of a certain size by means of auxil-
iary hash functions and the errors in these blocks are
sought according to the algorithm described below. The
number of passes and the size of the blocks are deter-
mined in advance from the error probability in the pri-
mary key by the method described in [10].

Each pass consists of the following steps.
(i) The key is divided into blocks by means of aux-

iliary hash functions: the mth block includes bits with
numbers satisfying the condition fk(i) = m. The function
is taken in the class of universal hash functions [9].

(ii) Alice and Bob calculate the parities of their
blocks and compare them. If the parities of a certain
block do not coincide for Alice and Bob, this block con-
tains an odd number of erroneous bits. In this block, the
error can be found by bisection search: Alice and Bob
bisect this block and compare the parities of the first
half of the block. If they coincide, the second half con-
tains an odd number of errors; otherwise, an odd num-
ber of errors are in the first half. The block half contain-
ing errors is again bisected and the process continues
until the error is localized. Then, Bob corrects the erro-
neous bit.

(iii) In passes beginning with the second pass, the
error found can be used for finding other errors. Let i
and k be the erroneous bit number and pass number,
respectively. The ith bit belonged to certain blocks at
the preceding passes. The parity of each of such block
changes and the errors in these blocks can be found
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using the same method. We construct the set _ from
these blocks, take one block from this set, and find one
more error in it. Let j and } be the erroneous bit num-
ber and the set of blocks containing this bit, respec-
tively. Then, all the blocks containing the jth or ith bit
but not both bits together contain an odd number of
errors. We find an error in a new set _* = }∇ _ that is
equal to the symmetric difference between the sets _
and }. This process continues until that the new set _
becomes empty.

Experience shows that four passes over the key is
enough to clean all the errors in the overwhelming
majority of cases. In order to verify that all the errors
are corrected, we compose N random subsets of key bits
and compare their parities. The probability that a key
with errors passes such verification is equal to 2–N.

Information known to the eavesdropper. Let us
analyze what information on the key is acquired by the
eavesdropper due to the operation of the cascade. As
usual in quantum cryptography, we suppose that the
eavesdropper knows hash functions and all the parame-
ters of the protocol operation. In this case, he acquires
the parity bits for blocks at each pass and receives
log(block size) parity bits of block subsets per found
error. The blocks in one pass do not overlap and each
subset obtained due to the search for an error is com-
pletely embedded either in a certain other subset or in
the block as a whole (Fig. 1). As a result of the verifica-
tion of the key, additional N parity bits are opened.
Thus, all the information known to the eavesdropper is
a certain number of parity bits of the key subsets.

Privacy protection. If there is only one set for
which the parity bit is known, this information can be
deleted by deleting any bit from this set (provided that
the bit values 0 and 1 are equiprobable), because differ-
ent bit values correspond to different parities. Let us
consider two sets, one of which is embedded in the
other (see Fig. 2). The knowledge of the parity bits of
these sets is evidently equivalent to the knowledge of
the parities of these sets (Fig. 3). Then, we consider a
system of overlapping sets M (Fig. 4). It is necessary to
find a bit set B such that, after its deletion, all informa-
tion on the parity of these sets disappears. This means

Fig. 1.

Fig. 3.
that all possible values of the parities of M can be
obtained by searching through the bit values of B. Such
a set exists (e.g., all the bits). Let us determine the least
such set. A change in one bit leads to a change in the
parity of all the sets containing this bit. For each bit Bi,

we compose the bit vector Vi in which the bit  is
equal to unity if Bi ∈  Mj:

A change in the bits i1, …, ik results in a change in
the parity of all the sets containing unity in the linear
combination  + … + . Therefore, if one of the
vectors Vi is a linear combination of other vectors, new
parity values cannot be obtained by means of the ith bit.
Thus, the bits whose vectors form the base of the vec-
tors V can be taken as the set B.

The base can be found by reducing the matrix com-
posed from these vectors to the step form by the Gauss
method. First, we change the system of sets (M) in
order to reduce the number of unities in the matrix.
Omitting all repeated vectors, we obtain

Each system of sets obtained as a result of the search for
one error can be represented as a system of nonoverlap-
ping sets (Fig. 5). After this operation, no sets obtained
in one pass of the cascade overlap with each other, and,
therefore, each row of the matrix contains no more than

Vi
j

V1 1 1 0 0, , ,( ),=

V2 0 1 1 0, , ,( ),=

V3 0 1 1 0, , ,( ),=

V4 0 0 1 1, , ,( ),=

V5 0 0 1 1, , ,( ),=

V6 0 1 0 1, , ,( ),=

V7 0 1 0 1, , ,( ).=

Vi1
Vik

V1 1 1 0 0, , ,( ),=

V2 0 1 1 0, , ,( ),=

V4 0 0 1 1, , ,( ),=

V6 0 1 0 1, , ,( ).=

Fig. 2.

Fig. 4.
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four bits (except for N testing bits). For the example
under consideration, we obtain the system shown in
Fig. 6. Correspondingly, the vectors have the form

We place the sets in order of increasing power:

The matrix can now be stored in the sparse form and the
Gauss method requires many fewer operations. The
Gauss method yields the matrix

Therefore, it is sufficient to delete three bits with the
numbers 1, 2, and 4.

Compression degree of the clean key. The com-
pression degree of the clean key depends on the effi-
ciency of the error correction procedure or, more pre-
cisely, on the redundancy. The use of random code
words (Shannon limit) makes it possible to obtain the
maximum number of information bits nH(Q), where n
is the sequence length, H(Q) = 1 + Qlog(Q) + (1 –
Q)log(1 – Q), and Q is the error probability. Corre-
spondingly, the redundancy of a random code is equal
to n(1 – H(Q)). The Shannon random code has the max-
imum minimum distance (minimum redundancy) as
compared to other codes. Other procedures of error cor-
rection provide large redundancy. In other words, the
information opened in bits when correcting errors can-
not be less than n(1 – H(Q)). The larger the redundancy
of the error correcting code, the shorter the final key
and the smaller the critical error to which the security
of the key is guaranteed. Figure 7 shows the redun-
dancy for the Shannon random code and for the CAS-
CADE procedure with deletion.

Let us use the consequence of the fundamental pri-
vacy-amplification theorem [8]. Eve’s strategy is

described by an arbitrary function E :   {0,
1}t; i.e., Eve knows no more than t bits for an arbitrary
string of nAB bits, where nAB is the bit string for Alice
and Bob after error correction. Let s be the security

V1 1 0 0 0, , ,( ),=

V2 0 1 1 0, , ,( ),=

V4 0 0 1 1, , ,( ),=

V6 0 1 0 1, , ,( ).=

M1 M2 … Mm ,< < <

V1 1 1 0 0, , ,( ),=

V2 0 1 1 0, , ,( ),=

V4 0 0 1 1, , ,( ),=

V6 0 1 0 1, , ,( ).=

V1 1 1 0 0, , ,( ),=

V2 0 1 1 0, , ,( ),=

V4 0 0 1 1, , ,( ),=

V6 0 0 0 0, , ,( ).=

0 1,{ }
nAB
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parameter (s < nAB – t), and G : {0, 1}n  {0, 1}r is a
universal homogenous hash function of the second kind
[9, 8], which itself is random. Then, the mutual infor-
mation K = G(X) known to Eve on the secure key does
not exceed

(1)

Let Z : {0, 1}t be Eve’s string consistent with the string
X of the legitimate users; i.e., this string can follow
from strings X as Z = E(X). We aim to calculate the
length r of the final key about which Eve has informa-
tion exponentially small in s. To this end, it is necessary
to know the second-kind Renyi entropy, which, in turn,
is expressed in terms of the collision probability.

For quantum cryptography (BB84 protocol), Eve

can distinguish no more than  strings, where

(ρ) is the classical capacity of the quantum commu-
nication channel [11], among the general set

, which is the number of possible strings
that Alice and Bob know after the error correction by

I K ; GZ( ) 2 s– / 2.ln≤

2
n

C ρ( )
2

------------

C

2
nHCASCADE Q( )

Fig. 5.

Fig. 6.

Fig. 7. Error correction by the CASCADE procedure with
deletion was performed for a sequence with a length of
104 bits.
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the CASCADE procedure. In other words, nAB =
nHCASCADE(Q) is the length of the bit string that remains
after the error correction by the CASCADE procedure
with deletion (n is the string length before the error cor-
rection).

The conditional probability is determined by the
ratio of the total number of strings to the number of
decoding regions used by Eve:

(2)

In fact, 1/az is the fraction of strings such that z = E(X);
i.e., each partial string of Eve’s is consistent with the set
of strings determined by Eq. (1). The collision proba-
bility is given by the expression

(3)

The second-kind Renyi entropy is equal to

(4)

According to the theorem of privacy amplification [8],

(5)

Taking into account that PZ(z) =  =

/az, we obtain the mutual information
between Eve’s strings and the secure key of Alice and
Bob in the form

(6)

The length of the secure key K = G(X) ∈  {0, 1}r is given
by the formula

(7)
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For the BB84 protocol, (

 

ρ

 

) = 1. Correspondingly, the
cleaning of the primary key by the CASCADE proce-
dure with deletion ensures the security of the final key
if the error percentage does not exceed 
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)/2]. When errors are
corrected by random code words (Shannon limit), the
BB84 protocol is secure to 

 

Q

 

c

 

 

 

≈

 

 11% (H(Qc) =

(ρ)/2)).

The privacy protection method described above is
quite general and can be used for other error correction
procedures.
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Professor Julia Ann Thompson, age 61, was killed in
a car accident on August 16, 2004. After graduation
from Yale University, she worked at the Faculty of
Physics and Astronomy, Pittsburg University, in exper-
imental particle physics. Ms. Thompson participated in
experimental programs at the world’s largest accelera-
tor centers: CERN, Switzerland; Brookhaven National
Laboratory, United States; and the Budker Institute of
Nuclear Physics, Russia. She was involved in interna-
tional collaborations, made a significant contribution to
solving many important problems in particle physics,
and published more than 100 scientific papers.

V. M. Aul’chenko, …, J. A. Thompson, …,
V. W. Hughes, et al., Measurement of the Pion Form
Factor in the Range 1.04–1.38 GeV with the CMD-2
Detector, Pis’ma Zh. Éksp. Teor. Fiz. 82, 841 (2005)
[JETP Lett. 82, 743 (2005)].

Professor Vernon W. Hughes, age 81, passed away
on March 25, 2003. In 1950, he received his PhD at
Columbia University, New York, where he, together
with colleagues, observed two-photon transitions in
atomic spectroscopy for the first time. His scientific
interests covered a wide range from the lowest to the
highest energies. For 30 years, he studied helium atoms

and positronium and observed muonium for the first
time in 1960. These experiments opened a new direc-
tion in experimental investigations of quantum electro-
dynamics and the search for new phenomena beyond
the framework of the Standard Model.

Hughes was one of the pioneers of another very
important direction—the use of polarized electrons in
high- and low-energy accelerators. Studying the deep
inelastic scattering of polarized muons on polarized
protons and neutrons, the collaboration led by Hughes
at CERN discovered a new phenomenon called “proton
spin crisis.” Investigation of this phenomenon is far
from completion, but it has already led to a serious
revaluation of the relation between the internal struc-
ture of the proton and its spin. To date, Hughes was the
inspiration and scientific leader of a brilliant experi-
ment on measuring the anomalous magnetic moment of
the muon at Brookhaven National Laboratory. This
parameter is determined by all existing interactions,
and its comparison with calculation provides verifica-
tion of new ideas in particle physics.

Hughes always focused his interests on the most
fundamental problems in physics. Precise experimental
procedures developed by him made it possible to mea-
sure a number of fundamental constants determining
the mysterious properties of our universe.

Translated by R. Tyapaev
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Igor’ Il’ich Sobel’man, outstanding scientist, Direc-
tor of the Optics Division at the Lebedev Physical Insti-
tute of the Russian Academy of Sciences (RAS), Cor-
responding Member of the RAS, and professor at the
Moscow Institute of Physics and Technology, passed
away suddenly on November 23, 2005. For many years,
he was a member of the Editorial Board of JETP Let-
ters. It was this Editorial Board that determined the
style of the journal for many years to come.

Sobel’man was born on January 26, 1927, in Mos-
cow and graduated from the Faculty of Physics and
Engineering of Moscow State University in 1952
(among the first graduating body from this faculty). All
his scientific and pedagogical activity was connected
with the Lebedev Physical Institute of the RAS and the
Moscow Institute of Physics and Technology, where he
manifested his brilliant talent as a scientist and a
teacher. Sobel’man had wide scientific interests and
intuition in the field of physics; it was his goal to solve
great physical problems and he had the rare ability to
clearly formulate the essence of such problems. One of
Sobel’man’s characteristic features was his ability to
successfully develop theoretical methods and
approaches from various areas of physics and apply
them to urgent problems in optics, spectroscopy, and
quantum radiophysics, in combination with experimen-
tal possibilities.

Sobel’man was among the authors who created the
current theory of the broadening of spectral lines. He
made a considerable contribution to the physics of
atomic collisions, and he formulated and solved a num-
ber of problems in nonlinear laser spectroscopy and
laser frequency standards. Sobel’man proposed new
methods for creating high-powered lasers, including
photodissociation lasers, far-UV and soft x-ray lasers,

and fundamentally new stimulated-scattering-based
light-beam converters. Under his supervision, measure-
ments of parity violation in atomic physics were con-
ducted, a method of polarizing the nuclear spin of 3He
in a dense gas was realized, and a number of unique
studies concerning solar x-ray astronomy were per-
formed. In recent years, Sobel’man worked enthusias-
tically on the problem of time-reversal violation in
atomic physics. He proposed a new method of deter-
mining the electric dipole moment that arises in the
xenon atom due to this effect. Sobel’man made a great
contribution to the education of scientists in optics,
spectroscopy, and quantum radiophysics in the USSR
and Russia. When he was a young scientist, he wrote a
unique monograph that even today is used as a refer-
ence book on atomic spectroscopy. For many years, he
gave lectures on physical optics and spectroscopy at the
Moscow Institute of Physics and Technology. His sci-
entific and pedagogical activity significantly affected
the formation of several generations of scientists in
optics and spectroscopy. He was a member of the edi-
torial boards of several domestic (including JETP Let-
ters) and foreign publications, and he was the chairman
of the scientific council “Atomic and Molecular Spec-
troscopy” of the RAS.

Igor’ Il’ich Sobel’man was not only a brilliant sci-
entist but also a remarkable person. He made wise and
balanced decisions, his interests and erudition were
wide, and he possessed a fine sense of humor. His pass-
ing is an irreplaceable loss to all his friends and col-
leagues.

Translated by R. Tyapaev
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