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Abstract—A method of integral equation is stated and applied in the analysis of the characteristic and nonchar-
acteristic modes in 3D weak-guiding inhomogeneous optical waveguides. The dispersion curves for the modes
of diffused channel waveguides are studied near the critical conditions in absorbing media. The accuracy of
recovering the permittivity profile in a channel waveguide from the far-field radiation of the fundamental mode
is estimated. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Most optical waveguides are weak-guiding; that is,

the permittivity of their interior is close to that of the
environment [1, 2]. The key equation in the theory of
such waveguides is the scalar equation [3]

(1)

Here, ψ is the transverse component of the electric field
of the waveguide mode; the complex permittivity ε(x,
y) is represented as ε(x, y) = εs + ∆ε0 f(ξ, η), where εs

and ∆ε0 are, respectively, complex and real constants,
f(ξ, η) is a complex function satisfying the condition

f(ξ, η)  0 at ρ =   ∞, ξ = xM–1, η = yM−1,
and M is the scale factor characterizing the transverse

dimension of a waveguide; V = k0M , where k0 =

2π  is the free-space wave number; and b = γ∆ ,

where γ = h2  –  εs and h is the mode propagation con-
stant.

With appropriately chosen boundary conditions at
infinity, Eq. (1) is the eigenfunction and eigenvalue
problem. It can be solved with a number of numerical
and analytical techniques [3, 4]. To date, the modes of
circularly symmetric waveguides have been studied
most extensively [3]. Waveguides of other types are
usually investigated by variational and net methods [4].
However, these methods are totally inapplicable to non-
characteristic modes, while in the case of characteristic
modes (eigenmodes), they fail under near-critical con-
ditions and when the mode fields are calculated away
from the waveguide.1 Basically, problems such as find-
ing conditions for the single-mode regime, the optimi-
zation of optical sensors, and the solution of inverse

1 Modes are classified in terms of work [5].

∂2ψ
∂ξ2
--------- ∂2ψ

∂η2
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problems in integrated optics and fiber optics can be
solved by the method of integral equation over area
[3, 6, 7]. However, to date, this method was applied
only to the eigenmodes of homogeneous waveguides
with step real functions f(ξ, η) [3, 6, 7]. In this work, we
develop a version of the method of integral equation
that can be applied to the study of various modes in
inhomogeneous waveguides described by complex
functions f(ξ, η).

THE METHOD OF INTEGRAL EQUATION

Let a function f(ξ, η) be analytical in a rectangular
region G with the boundaries ξ = ±α and η = ±β and
take negligibly small values outside this region. There-
fore, we can put f(ξ, η) ≡ 0 outside G and deal with a
nonuniformly filled rectangular waveguide. Consider
first the eigenmodes of such a waveguide. The fields of
these modes are quadratically integrable functions
[2, 5] that allow for the representation in the form of the
Fourier integral

(2)

where the contour of integration Γ1 coincides with the
real axis of the complex plane k.

Substituting (2) into (1) yields an inhomogeneous
ordinary differential equation for the function (k, η).
Its solution in view of the requirement (k, η) = 0

results in the relationship

(3)

ψ ξ η,( ) ikξ–( )ψ̂ k η,( )exp k,d

Γ1

∫=

ψ̂
ψ̂

η ∞→
lim

ψ ξ η,( ) V2 4π( ) 1– k iλ( ) 1– f ξ' η',( )ψ ξ' η',( )∫
G

∫d

Γ l

∫=

× ik ξ' ξ–( ) iλ η ' η––[ ] dξ'dη'.exp
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Here, l = 1, λ = ,

(4)

(5)

(6)

The cuts of the functions λ(k) are shown in Fig. 1 by
wavy lines. They start at the branch points k = ±kb (kb =
λ(0)) and run along the lines Imk = (Rek)–1V 2Imb,
which are labeled 1, 2, and 3 according to conditions
(4)–(6) (line 3 coincides with the imaginary axis).
According to (4)–(6), Imλ < 0 in the real axis; hence,
the outer integral in (3) converges.

Expression (3) is an integral equation for the func-
tion ψ(ξ, η) inside G and at the same time a computa-
tional formula for the mode field outside the
waveguide. Changing the order of integration in (3) and
taking advantage of the Macdonald function in the form

(7)

(where R = ), we come to the
well-known integral equation given, for example, in
[6]. As applied to inhomogeneous waveguides, state-
ment (3), however, seems to be preferable, since it does
not involve the integration of singular function (7). One
more advantage of such a statement is that there is no
need to select an appropriate branch of the Macdonald
function in describing the noncharacteristic modes of
the waveguide. Yet, in this case, Eq. (3) needs some
modification. In fact, for the noncharacteristic modes,
conditions (4) and (5) should be replaced by [5]

(8)

(9)

–V2b k2–

Reλ 0 for Imb 0,< <

Reλ 0 for Imb 0,> >

Imλ 0 for Imb< 0.=

K0 V bR( ) 0.5i λ 1–

∞–

∞

∫–=

× ik ξ' ξ–( ) iλ η ' η––[ ] dkexp

ξ' ξ–( )2 η' η–( )2+

Reλ 0 for Imb 0,><

Reλ 0 for Imb 0.<>

2 1

É3

É2

É1

3

Imk

21

Rek

Fig. 1. Contours of integration Γl on the complex plane.
Then, condition Imλ > 0 will be fulfilled in the
region between curves 2 (Fig. 1) in the case of (8) or
between curves 1 in the case of (9). As a result, with the
real axis retained as the contour of integration in (2) and
(3), we come to the divergent integral over the variable
k. This is quite natural because the noncharacteristic
mode fields (nonrepresentable in terms of the standard
Fourier integral [5]) grow with distance from the
waveguide. To obviate this difficulty, (2) and (3) must
involve integrals along the contours Γ2 and Γ3 that do
not coincide with the real axis.

The contour Γ2, which is parallel to the real axis at
|k|  ∞ and envelops the branch points as shown in
Fig. 1, meets condition (9). On this contour, Imλ < 0 at
|k|  ∞, which provides the existence of the right-
hand part of Eq. (3). If the field varies as exp(iωt), this
equation thus stated describes outgoing modes, since its
solutions satisfy Eq. (1) and have the form of waves
leaving the waveguide. To make sure of it, let us sup-
pose that Eq. (3) is valid. Differentiating it, we obtain

Here, F(k, η) is an integer function of k such that F(k,
η) = O(k–1) at |Rek|  ∞ [8]. Thus, the contour Γ2 in
the above expression allows for a deformation toward
the real axis, which, according to the Fourier theorem
[8], means that expression (1) is fulfilled identically. To
estimate the behavior of the function ψ(ξ, η) outside
the waveguide, we will take into account that expres-
sion (3) can be represented as [9]

(10)

for |kbρ|  ∞ and l = 1, 2, and 3.
The mode behavior mentioned above is a conse-

quence of (10) and also of the inequalities Rekb > 0 and
Imkb > 0, which result from (9). Note that Imkb < 0
when conditions (4)–(6) are met. According to (10),
this means that the characteristic mode fields decay
away from the waveguide.

The contour Γ3 in Fig. 1 meets inequalities (8). At
|k|  ∞, this contour runs parallel to the real axis and
provides the condition Imλ < 0. The adequacy of the
associated integral equation to Eq. (1) is proved as
above. In our case, from (10) and inequalities Rekb < 0
and Imkb > 0, which result from (8), it follows that the
noncharacteristic mode fields under consideration

∂2ψ
∂ξ2
--------- ∂2ψ

∂η2
--------- V2bψ–+ F k η,( ) ikξ–( )exp k,d

Γ2

∫=

F k η,( ) V2

2π
------ f x η,( )ψ x η,( ) ikx( )exp x.d

∞–

∞

∫–=

ψ ξ η,( )
V2 ikbρ–( )exp

8πikbρ
---------------------------------- f ξ' η',( )ψ ξ' η',( )∫

G

∫=

× i
ξ'ξ
ρ

------- η'η
ρ

--------+ 
  dξ'dη'exp
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METHOD OF INTEGRAL EQUATION 1489
approach the waveguide from infinity. Such modes do
not have a clear physical meaning [5]. At the same time,
their consideration is helpful in elucidating the critical
conditions for characteristic modes (see below).

Numerical solutions to the integral equations stated
above will be sought by the method of quadratures; i.e.,
the integral over space variables in (3) is replaced by the
finite sum [10]. The waveguide cross section is covered
by a rectangular net of equidistant lines with the coor-
dinates

As a result, the region G will be partitioned into
2m × 2n rectangles of sides ∆ξ and ∆η. Now we make
a linear interpolation of the product Φ(ξ, η) = f(ξ,
η)ψ(ξ, η) within each of the rectangles by the rule

(11)

where ξ0 = 0.5(ξi + 1 + ξi) and η0 = 0.5(ηj + 1 + ηj).
With (11), space integrals in (3) will take the form

of a linear combination of the functions ψ(ξ, η) at nodes
of interpolation. Thus, assuming that ξ and η in (3) equal
ξµ (µ = 0, …, ±m) and ην (ν = 0, …, ±n) and introducing
the combined indices κ = (m – µ + 1)(2n + 1) + ν – n
and σ = (m – i + 1)(2n + 1) + j – n, we arrive at the set
of homogeneous algebraic equations

(12)

Here, N = (2m + 1)(2n + 1), Xσ = ψ(ξi , ηj), i = m –
Int(σ(2n + 1)–1) (the operator Int means the separation
of the integer part of a number), and j = σ + n – (2n +
1)(m + 1 – i). The values Mκσ are represented by the
sum of three integrals:

(13)

where

ξ i i∆ξ i 0 … m; ∆ξ±, , αm 1–= =( ),=

η j j∆η j 0 … n; ∆η±, , βn 1–= =( ).=

Φ ξ η,( ) Φ0 Φξ' ξ ξ 0–( ) Φη
' η η 0–( ),+ +=

Φ0 0.25 Φ ξi η j,( ) Φ ξi 1+ η j,( )+[=

+ Φ ξi η j 1+,( ) Φ ξi 1+ η j 1+,( ) ] ,+

Φξ' 2∆ξ( ) 1– Φ ξi 1+ η j,( ) Φ ξi 1+ η j 1+,( )+[=

– Φ ξi η j,( ) Φ ξi η j 1+,( ) ] ,–

Φη' 0.5 ∆η( ) 1– Φ ξi η j 1+,( ) Φ ξi 1+ η j 1+,( )+[=

– Φ ξi η j,( ) Φ ξi 1+ η j,( ) ] ,–

Mκσ Xσ

σ 1=

N

∑ 0 κ 1 2 … N, , ,=( ).=

λ 1– D1D2 k, λ 1– S1D2 k, λ 1– D1S2 k,d

Γ l

∫d

Γ l

∫d

Γ l

∫

D1 ik( ) 1– E1
1( ) E1

0( )
–( ),=

S1 U i µ–( )k 2– A1 1–( )E1
1( )

A1 1+( )E1
0( )–[ ] ,–=
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U(x) = 1 at x ≥ 0 and U(x) = 0 at x < 0.
It is easy to check that the integrands in (13) are contin-

uous functions and their absolute values (at |k|  ∞) are
on the order of |k|–2. Therefore, integrals (13) converge
uniformly and can be readily calculated numerically.

The key point in solving set (12) is finding the com-
plex values of the spectral parameter b at which the
determinant of the matrix M (detM) vanishes. Note in
this respect that the transition from conditions (4) and
(5) to (8) and (9), respectively, causes the deformation
of the contours of integration in (3) without crossing the
branch points of the function λ(k) (Fig. 1). It follows
that at V ≠ 0, detM is an analytical function of the com-
plex variable b everywhere except the singular point
b = 0 (at V2b = 0, the two branch points of the function
λ(k) merge together with the result that integrals (13)
become divergent). Thus, the method of contour inte-
gration is efficient for solving the transcendental equa-
tion detM = 0 [11].

As follows from calculations, the rank of the matrix
M equals N – 1 if detM = 0. This allows us to express all
the components of the vector X through one of them,
i.e., to calculate the spatial distribution of the mode
field. Note also that the accuracy of solving Eq. (3) by
the method of quadratures has the same order of mag-
nitude as the accuracy of replacing the space integral in
(3) by the finite sum [10]. Upon the interpolation of
(11), the latter accuracy is a small of the order of
[max(∆ξ, ∆η)]2. This fact can be used to cut the size of
calculation (see below).

ANALYSIS OF CHANNEL WAVEGUIDES 
NEAR THE CRITICAL CONDITIONS

Since Eq. (3) refers to the mode field in the interior
of the waveguide, our approach ignores the field values
away from the waveguide, which are usually difficult to
take into account in variational and net methods.
Because of this, the method of integral equation is effi-
cient in studying the mode behavior near the critical
conditions. Studies of this kind for circular and elliptic
transparent homogeneous waveguides were performed
in [6, 7]. However, the consideration of inhomogeneous
guiding media with absorption is a topical problem.
The conversion of characteristic modes to noncharac-
teristic ones has also been insufficiently explored. In

D2 iλ( ) 1– E2
1( ) E2

0( )–( ),–=

S2 U ν j– 1–( )λ 2– A2 1–( )E2
1( ) A2 1+( )E2

0( )+[ ] ,=

A1 0.5ik∆ξ , A2 0.5iλ∆η ,–= =

E1
l( ) 2A1 I l+( )[ ]exp , E2

l( ) 2A2 J l+( )[ ] ,exp= =

I i µ–( )U i µ–( ) µ i– 1–( ) 1 U i µ–( )–[ ] ,+=

J  = ν j– 1–( )U ν j– 1–( ) j ν–( ) 1 U ν j– 1–( )–[ ] ,+
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this section, these points are highlighted by an example
of inhomogeneous optical channel waveguides.

Channel waveguides incorporated into the surface
layer of insulators are used in many integrated optical
devices [1]. They feature a large (in comparison with
∆ε0) jump of the permittivity at their surface [1].
Because of this, the modes of these waveguides are
described (within the scalar approximation) by the odd
(relative to the axis η = 0) eigenfunctions of Eq. (1)
subject to f(ξ, –η) = f(ξ, η) [12, 13].

Table 1.  Calculated values of b vs. discretization m of the
guiding region

V m Re b × 103 Re b0 × 103 Im b × 103 Im b0 × 103

2.550 8 –3.337 –2.047 3.278 1.576

16 –2.370 –2.019 2.001 1.591

24 –2.175 –2.016 1.773 1.592

32 –2.105 –2.016 1.694 1.593

40 –2.073 –2.016 1.658 1.593

48 –2.055 – 1.638 –

2.650 8 1.565 4.457 –0.1003 –0.1363

16 3.734 4.583 –0.1273 –0.1358

24 4.206 4.595 –0.1320 –0.1358

32 4.376 4.597 –0.1337 –0.1358

40 4.456 4.597 –0.1344 –0.1358

48 4.499 – –0.1348 –

3.486 8 91.96 103.9 –0.3018 –0.3327

16 100.9 104.2 –0.3250 –0.3334

24 102.8 104.2 –0.3297 –0.3336

32 103.4 104.2 –0.3314 –0.3336

40 103.7 104.2 –0.3322 –0.3336

48 103.9 – –0.3326 –
Let us consider a diffused channel waveguide with

(14)

where δ and φ are real parameters. The former is
responsible for absorption, and the latter is the relative
width of a diffusate strip [1].

The bounds of the region G will be β = 2.5 and α sat-
isfying the condition

With such a choice, the properties of the nonuni-
formly filled rectangular waveguide are practically
indistinguishable from those of a waveguide described
by function (14) throughout the space. Since function (14)
is even, set (12) is applicable only to the values of
ψ(ξi, ηj) in the fourth quadrant. In this case, the dimen-
sion of set (12) equals N = (m + 1)(n + 1). Results that
follow were found by solving this set for m = n.

In analytically estimating the φ dependence of the
critical values of V(Vc), it is of interest to consider the
limiting case φ  0 in function (14) [14]. By virtue of
the asymptotic expansion

(15)

we arrive (for φ  0) at Eq. (1) where

(16)

Table 1 and Fig. 2 show the solutions to the equation
detM = 0 subject to (16) and α = β = 2.5. Table 1 illus-
trates the dependence of the roots of the equation
detM = 0 on the parameter m of discretization of the
guiding region for δ = –0.001 and values of V that are
near-critical for the fundamental waveguide mode. The
value V = 2.55 corresponds to the noncharacteristic
mode (case (8)); V = 2.65, to the characteristic one.

f ξ η,( ) 0.5 1 iδ+( ) η2–( )exp=

× erf ξ 0.5φ+( ) erf ξ 0.5φ–( )–[ ] ,

erf α 0.5φ+( ) erf α 0.5φ–( )–[ ] 2erf 0.5φ( )[ ] 1–  = β2–( ).exp

0.5 erf ξ 0.5φ+( ) erf ξ 0.5φ–( )–[ ]

=  Φ π( ) 1– ξ2–( )exp O φ3( ),+

f ξ η,( ) 1 iδ+( ) ρ2–( ).exp=
–2

2.592.58 2.60
V

–4

0

2

4

1

2

3

4

5
6

(a)
Reb × 104, Imb × 104

–3

4.324.28 4.34
V

0

3

6
(b)

Reb × 104, Imb × 104

4.30

–6

3

6
5

4

1, 2

Fig. 2. Dependences b(V) near the critical conditions for (a) the fundamental and (b) first higher modes of the channel waveguide.
For Reb(V): δ = 0 (1) and ±10–3 (2); for Imb(V): δ = 0 (3, 4), –10–3 (5), and 10–3 (6).
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According to Table 1, the convergence of the results
near the critical conditions is relatively slow. In this sit-
uation, it is reasonable to take advantage of the above-
mentioned quadratic dependence of the calculation
accuracy on the step of discretization of the guiding
region:

(17)

where b(m) is the zero of detM corresponding to the
parameter of discretization m, b0 = b(∞), and C is a con-
stant.

Ignoring the small O(m–3) in (17), we have

(18)

The values of b0 calculated by (18) for m1 = m and
m2 = m + 8 are listed in Table 1. It is seen that expres-
sion (18) yields a reliable estimate of b0 if m is suffi-
ciently small. This expression becomes still more effi-
cient if V deviates significantly from the critical value.
In Table 1, this is indicated by the data corresponding
to function (14) when φ = 2, δ = –0.001, and V = 3.486
(this waveguide will be studied in greater detail in the
next section).

To verify the data obtained, we note that the modes
of a radially symmetric waveguide that is described by
functions (16) at ρ < β and by f(ξ, η) ≡ 0 at ρ > β allow
for an independent calculation by the Runge–Kutta
method [3]. It yields b = b1 = –2.044 × 10–3 + i1.622 ×
10–3 at V = 2.55 and b = b2 = 4.561 × 10–3 – i1.357 × 10–4

at V = 2.65. These values are close to those given in the
table. The small discrepancy between them are due to
the use of different domains where f(ξ, η) ≡ 0, since the
solution of the equation detM = 0 subject to f(ξ, η) ≡ 0
and ρ > β yields values of b0 coincident with b1 and b2
to the decimal place mentioned above (for appropriate
V and m1 ≥ 32).

Figure 2 shows the behavior of the b(V) curves near
the critical conditions for the fundamental, ψ11, and the
first higher, ψ21, modes of a channel waveguide (the
subscripts 1 and 2 refer to the number of maxima of the
function |ψ(ξ, η)| along the axes 0ξ and 0η for η > 0). The
curves depicted were calculated with relationship (18) for
m1 ≥ 24 and m2 = m1 + 8.

First, consider the dependences b(V) for δ ≠ 0. Their
shape implies that the real and imaginary parts of b van-
ish at different V. Therefore, since detM is an analytical
function of b and V at b ≠ 0 and V ≠ 0, the solution to
the equation detM = 0 represents a continuous depen-
dence b(V). This means, in particular, that characteris-
tic-to-noncharacteristic mode conversion takes place
continuously. As follows from (4), (5), (8), and (9), the
transition occurs at V = Vc, where Vc is a root of the
equation Imb(Vc) = 0. From Fig. 2, it follows that the
characteristic mode (V > Vc) and noncharacteristic
mode (V < Vc) are fast (Reb < 0). This statement is valid
for both δ > 0 and δ < 0, since the change of the sign of

b m( ) b0 Cm 2– O m 3–( ),+ +=

b0 b m1( ) m2
2 b m2( ) b m1( )–[ ] m2

2 m1
2–( ) 1–

.+=
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δ changes only the sign of Imb, leaving the value of Reb
the same (Fig. 2). Formally, this is explained by the fact
that the solutions to Eqs. (1) and (3) found for the oppo-
site signs of δ in (14) and (16) are complex conjugate
functions that have different physical meanings. With
δ < 0, a characteristic mode becomes physically impos-
sible when passing from the range V > Vc to the range
V < Vc (case (8)), while with δ > 0, it transforms into
a leaky mode that can be observed experimentally. The
latter situation may take place both in absorbing media
(if environmental losses exceed those in the guiding
channel) and in an amplifying waveguide.

The case δ = 0 is singular, since b = 0 for V = Vc [6].
As was already noted, the matrix elements of set (12)
become singular for b = 0; therefore, a rigorous calcu-
lation of appropriate Vc calls for the development of a
special algorithm [6]. A simpler way, however, is to
estimate Vc by extrapolating the curve Reb(V), which
can be calculated in the ranges V < Vc and V > Vc corre-
sponding to |Reb| ≥ d > 0. The validity of such an
extrapolation follows from Fig. 2, where d = 10–5. Here,
the dependence Reb(V) for V < Vc refers to two non-
characteristic modes described by complex conjugate
functions ψ(ξ, η).

From the above consideration, we can conclude that
the functions Vc(δ) are even and reach maxima at δ = 0.
In particular, according to Fig. 2, Vc(±0.001) = 2.589
and Vc(0) = 2.592 for the mode ψ11 and Vc(±0.001) =
4.299 and Vc(0) = 4.339 for the mode ψ21. This is also
valid for model (14), as demonstrated by Table 2, where
the critical values of V for various φ and δ are listed.

Here,  stands for Vc for the mode ψµν of a
waveguide with the function f(ξ, η) like (14). The value

of  is found from the dependence b(V) following
the above scheme:

(19)

where  is  for the mode  of a waveguide
with the function f(ξ, η) like (16).

V c
µν( )

V c
µν( )

V c
µν( )

V c
0( ) φ 1– π,=

V c
0( )

V c ψ µν( )

Table 2.  Critical values of V for the fundamental and first
higher modes of the channel waveguide

φ δ

0.5 0 4.905 4.881 8.169 8.169

0.5 ±10–3 4.901 4.875 8.092 8.094

1 0 3.520 3.451 5.776 5.777

1 ±10–3 3.516 3.447 5.722 5.723

0.5 0 2.941 2.819 4.714 7.717

0.5 ±10–3 2.937 2.815 4.671 4.673

Vc
11( )

Vc
11( )

Vc
21( )

Vc
21( )
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Expression (19) represents an asymptotic approxi-

mation to  that follows from relationships (1) and
(14)–(16). As follows from Table 2, it is quite an
appropriate estimator of the single-mode conditions
for φ ≤ 1.5.

RECONSTRUCTION OF THE CHANNEL 
WAVEGUIDE PERMITTIVITY PROFILE

The solution of the inverse problem, i.e., the recon-
struction of the permittivity profile ∆ε(x, y) = ε(x, y) –
εs in inhomogeneous optical waveguides, is vital for
designing waveguides with desired properties [1, 15,
16]. Among the ∆ε(x, y) reconstruction methods cur-
rently available, those where the spatial intensity distri-
bution of the fundamental mode is measured are the
most efficient. In these methods, the transverse compo-
nent of the electric field of the mode ψ(x, y) is recovered
and then substituted into (1) to give a formula for
directly computing ∆ε(x, y) [15, 16]. A technique for
implementing such a procedure as applied to planar
waveguides with ε(x, y) = ε(y) was suggested in [17]. It
is based on the measurement of the mode intensity
angular distribution in the far-field zone with the subse-
quent determination of ε(y) by the analytic continuation
technique. In this section, we apply the method of inte-
gral equation to estimate the efficiency of the analytic
approach for 3D waveguides.

Let the fundamental mode of an optical waveguide
placed in the half-space z < 0 be emitted from the end
face (the plane z = 0) of the waveguide into the half-
space z > 0 filled with a homogeneous medium with a
wave number ka. The emission intensity is recorded by
a photodetector array placed in the plane z = L. Assume
that the cross section of the waveguide has two axes of
symmetry: x = 0 and y = 0 (in the case of a channel
waveguide placed in the domain y > 0, the axis of sym-
metry y = 0 is provided by a mirror surface brought into
contact with the waveguide surface [17]). Then, if the
mode is polarized along the 0x axis, we have (within the
scalar approximation of the electric field components)
[15, 16]

(20)

where D is a constant.

For transparent media subject to (20) and L  ∞,
the measured intensity S of the mode is given by
[15, 16]

(21)

(22)

V c
µν( )

Ex z +0= Dψ x y,( ), Ey 0,≡=

S k ϕ,( ) 1 k2–( )
3

1 k2 ϕsin
2

–( ) ψ̂ k ϕ,( )[ ] 2,=

ψ̂ k ϕ,( ) s ψ x y,( )
∞–

∫
+∞

∫=

× ikka x ϕcos y ϕsin+( )[ ] dxdy.exp
Here, (k, ϕ) and ψ(x, y) are real functions normalized
so that max[S(k, ϕ)] = 1, k = sinθ, θ and ϕ are the angles
of the spherical coordinate system that are related to the
Cartesian coordinates of the point of observation as x0 =

r0cosϕ and y0 = r0sinϕ, r0 = kL( )–1, and the fac-
tor s is defined by the mode evenness condition
ψ(x, y) = sψ(x, –y).

Some modification of the results of [17] in view of
relationships (1), (21), and (22) yields the reconstruc-
tion formulas

(23)

u0 = up = 0.5; ul = 1 (l = 1, 2, …, p – 1); and the param-
eters Ci(ϕl), α(ϕl), and γ are found by minimizing
the sum

by the gradient method. Here, Wlj = 1 at S(kj, ϕl) ≥  or

Wlj = 0 at S(kj, ϕl) < , ϕl = 0.5πlp–1, and kj = jaq–1. The

constants , a, p, and q depend on the dynamic range
of intensity measurement, photodetector array dimen-
sion, and experimental sample size. The functions

(kj, ϕl) are expressed through experimentally found
values of S(kj, ϕl) in view of (21):

where the parameter r characterizes the order of reduc-
tion of the infinite product when the Fourier transform
of the mode field is represented through its complex
zeros [17].

It should be noted that expression (23) is strict
(within the scalar approximation) only if q > r + 1 +
0.5(1 – s), r  ∞, p  ∞, and L  ∞ [17]. Actu-
ally, however, r, p, q, and L are finite. This introduces
systematic errors in the reconstruction. The errors can
be estimated with the method of integral equation. In

ψ̂

1 k2–

∆ε x y,( ) γ kak0
1–( )2

R2R1
1– ,+=

R1 ul Ci ϕ l( )Iil, R2

i 0=

r

∑
l 0=

p

∑ ul Ci ϕ l( )Ii 1l+ ,
i 0=

r

∑
l 0=

p

∑= =

Iil α ϕ l( )k2–[ ] k
2i 0.5 s 3+( )–

H k ϕ l,( )exp

0

∞

∫=

× k2 k0ka
1–( )

2
γ+[ ]

1–
dk,

H k ϕ,( ) kkax ϕcos( ) 1 s–( ) kkay ϕsin( )sin[cos=

+ 1 s+( ) kkay ϕsin( ) ] ,cos

U Wlj ψ̂ k j ϕ l,( ) ψ̂r k j ϕ l,( )–[ ] 2

j 0=

q

∑
l 0=

p

∑=

S

S

S

ψ̂

ψ̂r k ϕ,( ) α ϕ( )k2–[ ] k2 k0ka
1–( )2γ+[ ]

1–
exp=

× Ci ϕ( )k2i 0.5 s 3+( )– ,
i 1=

r

∑
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this case, the function S(k, ϕ) is first calculated for finite
L for a waveguide with a known ∆ε(x, y) distribution,
and then reconstructed function (23) is compared with
the initial (known) distribution.

With regard for (1) and (20), as well as the fact that
the function Ex(x, y, z) in the domain z > 0 obeys the
Helmholtz equation and satisfies Sommerfeld radiation
condition, we find

(24)

where the asterisk means complex conjugation,

Expression (24) is rigorous and involves the integra-
tion of the function ψ(ξ, η) over the region G alone, for
which Eq. (3) was stated. At L  ∞, this expression
passes to (21) where

S k ϕ,( ) k0M( )4 ∆ε0L( )2ka
3–=

× Im f ξ η,( )ψ ξ η,( )A Mξ x0– Mη y0– L, ,( ) ξd ηd

G

∫∫
*





× f ξ η,( )ψ ξ η,( ) ikar1–( )ζ 2– r1
3–exp[

G

∫∫

× 1 ikar1– Mξ x0–( )2
r1

2– 3 3ikar1 ka
2r1

2–+( )+( )

– 2ζ( ) 1– ζτ–( ) B τ( ) B τ–( )+( )exp τd ] ξd ηd

0

∞

∫ 



,

A x y z, ,( ) 2ζ( ) 1– τζ–( )exp

0

∞
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× K x y z iτ+, ,( ) K x y z iτ–, ,( )+[ ] dτ ,

ζ  = ka
2

k0
2γ+ , r1 = Mξ x0–( )2

Mη y0–( )2 L2+ + ,

K x y z, ,( ) zr0
3– –ikar0( ) 1 ikar0+( ),exp=

r0 x2 y2 z2+ + ,=

B τ( ) ikar2–( )r2
3– 1 ikar2+{exp=

– L iτ+( )2r2
2– 3 3ikar2 ka

2r2
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+ ζr2( ) 2– 3 3ikar2 ka
2r2

2– Mξ x0–( )2(–+[

+ L iτ+( )2 )r2
2– 15 15ikar2 6ka
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3r2
3–+( )
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The equivalency of (22) and (25) follows from
Eq. (1).

The reconstruction of the function ∆ε(x, y) for a sin-
gle-mode (λ0 = 0.6328 µm) channel waveguide with
f(ξ, η) of type (14) and φ = 2, M = 1.57 µm, ∆ε0 = 0.05,
and δ = 0 is presented in Fig. 3. The curves were
obtained by calculating S(kj, ϕl) from (24) at L ≠ ∞ and
from (21) and (25) at L = ∞. The integrals over the
region G were calculated with the values of the function
ψ(ξ, η) found at the nodes of interpolation by solving
set (12) for m = n = 48 (in this case, Imb = 0 and the
dependence Reb(m) coincides with that given in Table 1).
In the calculations, r = 3, a = 0.5, p = 20, q = 25, and

 = 10–6. The correct reconstruction of ∆ε(x, y) is
observed at L ≥ 1 cm. In the limit L = ∞, the function
recovered is virtually indistinguishable from the exact
function, indicating that the description of the mode
field by the method of integral equation is accurate.

CONCLUSION

We showed that the method of integral equation is
adequate in analyzing the properties of the characteris-
tic and noncharacteristic modes of inhomogeneous
optical waveguides. With this method, one can not only
find the critical conditions and estimate errors involved
in the solution to the inverse problem but also study
polarization effects and effects of leakage observed in

ψ̂ k ϕ,( ) ∆ε0M2 s γ kak0
1–( )2

k2+[ ]
1–

=

× f ξ η,( )ψ ξ η,( ) ikkaM ξ ϕcos η ϕsin+( )[ ]exp ξd η .d

G

∫∫

S

0

10 2 3 y, µm

0.02

0.04 1, 2
3

4

5

10

6, 7, 8, 9

5

4
9

10

∆ε

Fig. 3. Reconstruction of the function ∆ε(x, y) for the chan-
nel waveguide. x = 0 (1–5) and 2.2 µm (6–10). (1, 6) Exact
functions. Reconstructed functions are shown for L = ∞
(2, 7), 5 (3, 8), 1 (4, 9), and 0.5 cm (5, 10).
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anisotropic media, which are asymptotically described
with Eq. (1) [2, 12, 13, 18, 19].
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Abstract—A method of controlling the duration of pulses of intense molecular beams is suggested. The idea
of the method is the shortening of an initial molecular beam pulse by producing a pressure shock in front of a
solid surface through which the beam passes. Experiments on shortening H2, He, SF6, SF6/H2(1/10), and
SF6/He(1/10) molecular beam pulses are reported. The parameters of the beams incident on, and transmitted
through, the surface are studied. The gas density in the initial beam and in the pressure shock before the surface
is estimated. The intensity and duration of shortened molecular pulses are found as a function of the initial
intensity, angle of incidence, and the diameter of a hole on the surface through which the beam passes. It is
established that the duration of the shortened beam decreases greatly with increasing incident intensity and
decreasing hole diameter. It is shown that intense pulsed H2, He, SF6, SF6/H2(1/10), and SF6/He(1/10) molec-
ular beams with a pulse duration of ≤10–15 µs and an extent of ≤1–2 cm can be generated with the method
suggested. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Intense (≥1020 molecules/(sr s)) pulsed molecular
beams are used in theoretical and applied investiga-
tions, such as the study of chemical reactions, elastic
and inelastic collisions, molecule–surface interaction,
etc. [1]. In recent years, they have also been widely
employed in laser spectroscopy and photochemistry
[2, 3], as well as in the laser separation of isotopes
[4, 5]. The most commonly used way of generating
intense molecular beams is their extraction by means of
skimmers from dynamically cooled jets produced by
pulsed nozzles [6]. The basic parameters of pulsed
beams are beam intensity and velocity, pulse duration,
and the spread of molecule velocities in a beam (the
extent of gas cooling).

There are several types of nozzles producing pulsed
molecular beams [6]. Among those employed most
extensively are (1) solenoid-controlled nozzles (an
automobile fuel injector is an example), (2) piezoelec-
trically controlled nozzles, and (3) nozzles of the cur-
rent loop type [6, 7]. Nozzles of the first type generate
pulses with a duration from several hundreds of micro-
seconds to several milliseconds; those of the second
type generate pulses of duration from 100 µs to 10 ms.
Nozzles of the current loop type usually generate pulses
of duration from 30–40 to 150 µs. It was reported, how-
ever, that molecular beams with pulses as short as ≅ 7 µs
can be produced by these nozzles [8].

The generation of short (≤20 µs) pulses requires a
sophisticated nozzle design and a high energy (≥20 J)
to provide rapid nozzle opening [6]. At the high ener-
gies necessary to actuate the nozzle, it cannot operate
with a high pulse repetition rate without cooling. More-
over, the service life of such nozzles is greatly cut com-
1063-7842/02/4712- $22.00 © 21495
pared with those operating under normal conditions.
Yet short (in space and time) molecular beams are nec-
essary for many experiments, especially for those
where beam molecules are excited and then dissociate
under the action of intense laser beams [9, 10]. In [11],
we outlined a simple method of shortening intense
pulsed molecular beams down to ≤10 µs. In this way,
we give a detailed description of this method and dis-
cuss at length the shortening of intense pulsed molecu-
lar beams by producing a pressure shock before the
solid surface.

EXPERIMENTAL

In the method suggested, a pressure shock [12–14]
is produced by the interaction of an initial molecular
beam with a solid surface. The pressure shock serves as
a gas-dynamic shutter. The essence of the method is
clarified in Fig. 1. An intense (≥1020 molecules/(sr s))
wide-aperture (divergence ω ≅ 0.05 sr) pulsed molecu-
lar beam is incident on a solid surface (a thin (≅ 100 µm)
metallic plate) with a hole of diameter 2–3 mm at its
center. Upon the interaction of the intense supersonic
molecular beam with the plate, a pressure shock with a
characteristic size on the order of the mean molecule
free path [12, 13] forms before the plate [15, 16].

When the beam intensity is low (the molecule initial
concentration in the beam Nin ≤ 3 × 1014 cm–3), the pres-
sure shock is absent [17, 18]. In this case, the incident
beam, propagating inside a solid angle that depends on
the area of the hole and the nozzle-to-surface spacing,
passes completely through the hole. Molecules
reflected from the surface decrease its intensity only
slightly. If, however, the incident beam (pulse) intensity
002 MAIK “Nauka/Interperiodica”
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is sufficiently high (Iin ≥ 1020 molecules/(sr s) or Iin ≥
1015 cm–3), only the front low-intensity part of the beam
passes through the hole, while the remaining high-
intensity part of the pulse is completely scattered
(“absorbed”) by a pressure shock forming before the
surface. As a result, the initial molecular pulse shortens
significantly. Here, one can draw the analogy to short-
ening an optical, for example, laser pulse by initiating
optical breakdown at the focus of a lens or a telescope,
where the tail of the pulse is completely absorbed by
the resulting plasma.

Fig. 1. Experimental scheme: (1) pulsed nozzle; (2) incident
beam; (3) surface; (4) pressure shock; (5) transmitted beam;
(6) pyroelectric detector; (7) travel; and (8) to turbomolec-
ular pump.
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Fig. 2. Time evolution of the molecular beam pulse
(SF6/He = 1/10) passing through a hole of diameter h0 =
2 mm in a plate for various pressures over the nozzle. The
nozzle-to-surface and nozzle-to-detector spacings are 68
and 143 mm, respectively. The gas pressure over the nozzle
is (a) 0.15, (b) 0.6, and (c) 1.5 atm. U is the signal from the
pyroelectric detector.
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In our experiments, we used a nozzle of the current
loop type [7]. The hole diameter was 0.75 mm. The
time it took for the nozzle to be half open varied within
50–100 µs depending on the gas pressure and composi-
tion over the nozzle. The gas pressure over the nozzle
was varied from ≅ 0.1 to 7 atm. The cross section of the
nozzle was a cone with an apex angle of 15° and a
height of 35 mm. The vacuum chamber where the
molecular beam was generated was evacuated to a pres-
sure of ≅ 1 × 10–6 torr with a turbomolecular pump. The
number of molecules effusing from the nozzle per pulse
was a function of the gas pressure and composition over
the nozzle. In our experiments with SF6, this value var-
ied from ≅ 3 × 1015 to ≅ 1 × 1017 molecules/pulse. The
method for measuring the number of molecules in a
pulse is described in detail elsewhere [17, 18].

In the experiments, we studied the duration and
intensity of shortened molecular pulses as functions of
the incident beam intensity and hole diameter, as well
as measured the molecule mean velocity and the mole-
cule velocity spread in a shortened pulse. The measure-
ments were made with the time-of-flight method that
uses a pyroelectric detector with a time resolution of 3–
5 µs as a molecular beam detector [19, 20]. The pyro-
electric detector design is described in [21]. The time-
of-flight method spectra of the molecules were taken at
various distances from the nozzle. From these spectra,
we determined the beam velocity and molecule velocity
spread in the beams.

RESULTS AND DISCUSSION

1. Time evolution of shortened beam pulses. The
experiments were carried out with SF6, H2, He,
SF6/H2(1/10), SF6/He(1/10), and SF6/CH4(1/10)
molecular beams. In all the cases, a substantial shorten-
ing (2 to 7 times) of the initial molecular pulse was
observed. Figure 2 shows the time evolution of the
SF6/He = 1/10 molecular beam (the time-of-flight
method molecular spectrum) passing through the hole
in the plate as the pressure over the nozzle is increased.
The nozzle-to-surface spacing is 68 mm; the nozzle-to-
detector spacing, 143 mm. When the pressure over the
nozzle is low (p ≤ 0.15 atm), i.e., when the incident
beam intensity is low and a pressure shock is absent
[17, 18], the molecular beam passes through the hole
without shortening (Fig. 2a). As the pressure grows to
the point where the pressure shock before the surface
arises, the incident beam pulse shortens (Fig. 2b). As
the incident beam intensity (pressure over the nozzle)
grows further, the pulse becomes still shorter (Fig. 2c)
and a secondary pulsed beam due to the pressure shock
[22–24] appears.

As the nozzle–detector spacing increases, the signal
induced by the secondary beam was found to decay
much faster than the signal induced by the primary
beam (Fig. 3). This is mainly attributable to two reasons.
The first is the quadratic (for heavily cooled beams)
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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dependence of the signal on the detector–beam source
spacing: the source of the secondary beam is closer to
the detector; hence, its signal decays faster as the spac-
ing increases. Second, the gas in the secondary beam is
cooled to a much lesser extent than in the shortened pri-
mary beam. Therefore, the signal of the secondary
beam decays faster also because this beam has a larger
spread in the molecule velocities. At distances x ≥ 173
mm from the nozzle (≥105 mm from the plate), the sig-
nal from the secondary beam is more than one order of
magnitude weaker than that due to the primary beam.

To suppress the formation of the secondary beam, the
plate was rotated so that it made an angle α = 60°–70°
with the incident beam. In this case, the gas pressure
and density in the oblique pressure shock generated
before the plate were much smaller (the density was
roughly 1/cos2α times smaller) than in the normal pres-
sure shock [12, 14]. As a result, the intensity of the sec-
ondary beam turned out to be negligibly small com-
pared with that of the shortened primary beam. Figure 4
shows the dependence of the intensities of the short-
ened primary and secondary molecular beams (H2) on
the angle the incident beam makes with the surface. The
secondary beam intensity is seen to drop sharply with
increasing angle of incidence. This is to a great extent
associated with the decrease in the gas pressure and
density in the pressure shock. Note that at large angles of
incidence (α ≥ 75°), when the condition 1/cos2α ≅ Min
(Min is the Mach number for the initial beam) is met, a
pressure shock at the surface does not form [12–14] and
the incident beam does not shorten.

2. Duration of the shortened pulse vs. the gas
pressure over nozzle and hole diameter. It was found
that the higher the incident beam intensity and the
smaller the diameter of the hole, the shorter the
beam.  For an incident beam intensity Iin ≥ 1021–
1022 molecules/(sr s) (Nin ≥ 1016 cm–3), the duration of
a molecular beam pulse passing through a hole of diam-
eter 2 mm was found to be ≤10–15 µs.

Figure 5 demonstrates the dependence of the dura-
tion of the H2 molecular beam on the gas pressure over
the nozzle. The incident beam of duration ≅ 78 µs
strikes the plate at an angle α ≅  65°. As follows from
Fig. 5, at pressures p ≤ 0.15 atm, the pulse does not
shorten, while at pressures between 4 and 5 atm, the
duration of the transmitted pulse is ≤10–12 µs.

The dependence of the duration of the H2 molecular
pulse passing through a hole of diameter 2 mm on the
angle of incidence is presented in Fig. 6 (curve 1). As
the angle increases, the effective diameter of the hole is
seen to decrease (in proportion to cosα, curve 2).
Therefore, this dependence can also be viewed as the
dependence of the pulse duration on the hole diameter.
The pulse passing through the hole shrinks with
decreasing diameter. This is because the time taken to
form a pressure shock decreases with decreasing area
of the hole through which the molecules pass. At α ≥
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
60°–70°, the pulse duration depends on the angle of
incidence only slightly, presumably because of the
rapid decay of the pressure shock at the surface.

In [11], measured data for the molecular beam
intensity, pulse duration, and molecule mean velocity,
as well as data for velocity spreads in the beams, were
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Fig. 3. Amplitude ratio of the signals induced in the detector
by the shortened initial and secondary H2 molecular beams
vs. nozzle-to-detector spacing. The conditions are the same
as in Fig. 2.
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Fig. 5. Duration of the H2 molecular beam pulse vs. gas
pressure over the nozzle. The angle of incidence on the plate
is α ≅  65°. The conditions are the same as in Fig. 2.
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reported for the case of an SF6/He = 1/10 molecular
beam passing through holes of different diameters. The
nozzle–surface spacing was 68 mm. It was established
that the pulse duration decreases substantially with
decreasing hole diameter. Simultaneously, the beam
mean velocity and the molecule velocity spread in the
beam increase. Our results, including those for the
other molecular beams (see table), are in full agreement
with the results of early experiments. The mean veloc-
ity grows because more and more energetic molecules
pass through the hole as the pulse shortens. The
increase in the velocity spread is associated with the
enhanced scattering of the beam by molecules reflected
from the surface and hole walls. In the shortened pulse,
the velocity spread was 1.5–2.0 times greater than in the
incident one. At the same time, it also follows from the
table that the gas in the shortened pulse was rather cold
(the Mach number was M ≅  v /∆v  = 5–8). The durations

8
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α, deg

12

16

20

24

28
τ, µs
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Fig. 6. Duration of the H2 molecular beam pulse vs. angle
of incidence on the plate. The conditions are the same as in
Fig. 2.
of the SF6 and SF6/He(1/10) molecular beams passing
through holes of diameter 1.7 and 2.0 mm, respectively,
were ≤8 µs immediately behind the surface.

3. Gas density in the incident beam and pressure
shock. Note first of all that the gas density in a pressure
shock depends on the ratio γ = cp/cv , where cp and cv are
the specific heats at constant pressure and volume,
respectively. For a gas with a constant specific heat, the
ultimate increase in the density in a normal pressure
shock is defined by the ratio ρsh/ρin = (γ + 1)/(γ – 1),
where ρin and ρsh are the gas densities in the incident
beam and in the pressure shock, respectively. There-
fore, in the case of molecules with a low γ, a rather
dense pressure shock arises at the surface [16, 17] (for
example, in the case of SF6, γ ≅  1.1 at T ≅  300 K [25]
and ρsh/ρin ≈ 21), which significantly shortens the initial
pulse but at the same time generates an intense second-
ary beam. For a higher value of γ (for He and H2, γ ≅
1.66 and 1.4, respectively [25]), the ultimate increase in
the gas density in a pressure shock is much smaller
(ρsh/ρin ≈ 4 and 6, respectively). A pressure shock at the
surface is of moderate density in this case. Hence, the
secondary beam intensity is much lower than in the
case of SF6.

The ratio Nsh/Nin, where Nsh and Nin are the molecule
concentration in the pressure shock and in the initial
(primary) beam, respectively, can roughly be taken
equal to the ratio ∆xb/∆xsh, where ∆xb is the spatial
extent of the incident beam and ∆xsh is the shock front
width; that is, Nsh/Nin ≅  ∆xb/∆xsh. For SF6, ∆xb ≅  4.6 cm
and ∆xsh ≅  3 mm [17, 18]. Therefore, Nsh ≅  15Nin. For a
SF6 pressure over the nozzle of 1 atm, the number of effus-
ing molecules per pulse is Nb ≅  3.5 × 1016 molecules/pulse
Measured parameters of the initial and shortened molecular beams
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v, m/s ∆v, m/s v /∆v

pulse 
duration, 

µs
v, m/s ∆v, m/s v /∆v

relative 
intensity 

Ish/Iin

H2 2.0 143 91 2140 345 6.2 2 27 2400 480 5 0.06

2.7 173 95 2330 333 7 1 30 2500 580 4.3 0.10

SF6/CH4 (1/10) 3.1 173 82 855 111 7.5 2.2 47 917 170 5.4 0.07

SF6 5.8   113 112 480 51 9.5 2 34 545 78 7 0.11

1.5 25 585 90 6.5 0.08

SF6/He (1/10) 0.8 113 92 860 98 8.8 1.7 43 1100 144 7.7 0.11

2.8 143 78 980 105 9.3 2 23 1095 240 4.6 0.09
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[24]. The primary beam volume was estimated at Vb ≅
14 cm3 [17, 24]. Hence, Nin ≅  2.5 × 1015 cm–3 and Nsh ≅
3.8 × 1016 cm–3.

4. Beam scattering in the pressure shock. Let us
estimate the beam attenuation due to scattering in the
pressure shock by an example of the SF6 molecular
beam, whose parameters have been studied in detail
[17, 18]. We will use the following expression for the
molecular beam intensity passing through the pressure
shock:

(1)

Here, Iin(t) is the incident beam intensity, σ is the inter-
action cross section for SF6 molecules, Nsh(t) is the
molecule concentration in the pressure shock, and
∆xsh(t) is the extent (width) of the pressure shock at the
surface. Note at once that relationship (1) is valid when
the gas pressure is low and the molecules experience
single collisions. In our case, this is true only at the ini-
tial stage of shock formation. Nevertheless, this rela-
tionship can apparently be applied as a rough estimator
of the beam intensity at which the beam is nearly com-
pletely scattered in the shock. As was shown above, at
an SF6 pressure over the nozzle of 1 atm, the molecule
concentration in the shock is Nsh ≅  3.8 × 1016 cm–3 and
∆xsh ≅  3 mm [17, 18]. If it is assumed that the interac-
tion cross section for SF6 equals the gas-kinetic cross
section of this molecule (σ ≅  2.4 × 10–15 cm2 [26]), the
exponent in relationship (1) will be (Nshσ∆xsh) ≅  28.
Consequently, an SF6 molecular beam of such an inten-
sity will be completely scattered in the pressure shock.
Only the frontmost part of the pulse, in which the inten-
sity is more than one order of magnitude lower than that
mentioned above and the exponent is still within sev-
eral unities, can pass through the beam-generated pres-
sure pulse. The passage of precisely this portion of the
pulse was observed in our experiments. Note that the
intensity of the initial SF6 molecular beam in our exper-
iments was Iin ≥ 7 × 1021 molecules/(sr s). The intensi-
ties of the H2 and He beams were roughly one order of
magnitude higher for the same pressures over the noz-
zle as for SF6. Therefore, although the shortened beams
obtained in the experiment were one or even two orders
of magnitude less intensive than the initial ones, their
intensities still remained relatively high.

CONCLUSION

We showed that the duration of a molecular beam
passing through a solid surface can be controlled by
producing a pressure shock before the surface. With
this approach, molecular beams with a pulse duration
of ≤10–15 µs and a spatial extent of ≤1–2 cm were
obtained. If the pulses are sufficiently short, one suc-
ceeds in exciting (dissociating) almost all the beam
molecules by a laser beam, thereby significantly

Ish t( ) I in t( ) σNsh t( )∆xsh t( )–[ ] .exp=
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improving the efficiency of the laser action on the
molecular beam [9, 10].

For molecules with a low parameter γ (e.g., for SF6),
the detrimental side effect of the shortening method is
the generation of a rather intense secondary beam from
the forming shock pulse. To suppress the secondary
beam, it is reasonable either to use low-intensity inci-
dent beams (when the pressure over the nozzle is low)
or to expand the nozzle–surface spacing (when the gas
density in the pressure shock is low [16, 17]). If the
molecules have a high value of γ (H2, He, as well as SF6
+ H2 and SF6 + He mixtures), the secondary beam is
absent, as was shown experimentally. In this case,
molecular beams with a pulse duration of ≤10 µs are
easy to generate with our approach.

Note that in [27] the pulses of nitrogen molecular
beams were shortened from 1.5 ms to 150–300 µs by
scattering the beams in a background gas produced by
the front portion of the pulse in the vacuum chamber.
The molecular beams were generated with a solenoid-
driven pulsed nozzle (automobile fuel injector).

ACKNOWLEDGMENTS

The author thanks V.V. Nesterov and A.N. Petin for
their technical assistance.

This work was partially supported by the Russian
Foundation for Basic Research (grant no. 00-03-33003)
and by the CRDF (grant no. RC1-2206).

REFERENCES
1. Atomic and Molecular Beam Methods, Ed. by G. Scoles

(Oxford Univ. Press, New York, 1988).
2. V. N. Bagratashvili, S. I. Ionov, and G. N. Makarov, in

Laser Spectroscopy of Vibrationally Excited Molecules,
Ed. by V. S. Letokhov (Nauka, Moscow, 1990).

3. V. N. Bagratashvili, V. S. Letokhov, A. A. Makarov, and
E. A. Ryabov, Multiple Photon Infrared Laser Photo-
physics and Photochemistry (Academic, New York,
1985).

4. G. N. Makarov, V. N. Lokhman, D. E. Malinovskiœ, and
D. D. Ogurok, Kvantovaya Élektron. (Moscow) 25, 545
(1998).

5. V. M. Apatin, V. N. Lokhman, G. N. Makarov, et al., Opt.
Spektrosk. 91, 910 (2001) [Opt. Spectrosc. 91, 852
(2001)].

6. W. R. Gentry, in Atomic and Molecular Beam Methods,
Ed. by G. Scoles (Oxford Univ. Press, New York, 1988).

7. W. R. Gentry and C. F. Giese, Rev. Sci. Instrum. 49, 595
(1978).

8. W. R. Gentry, Comments At. Mol. Phys. 9, 113 (1980).
9. G. N. Makarov, D. E. Malinovsky, and D. D. Ogurok,

Laser Chem. 17, 205 (1998).
10. G. N. Makarov, D. E. Malinovskiœ, and D. D. Ogurok,

Zh. Tekh. Fiz. 69 (1), 35 (1999) [Tech. Phys. 44, 31
(1999)].

11. G. N. Makarov, Pis’ma Zh. Éksp. Teor. Fiz. 75, 159
(2002) [JETP Lett. 75, 131 (2002)].



1500 MAKAROV
12. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock
Waves and High-Temperature Hydrodynamic Phenom-
ena (Nauka, Moscow, 1966; Academic, New York,
1967).

13. L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow,
1986; Pergamon, New York, 1987).

14. G. N. Abramovich, Applied Gas Dynamics (Nauka,
Moscow, 1991), Part 1.

15. G. N. Makarov and A. N. Petin, Pis’ma Zh. Éksp. Teor.
Fiz. 71, 583 (2000) [JETP Lett. 71, 399 (2000)].

16. G. N. Makarov and A. N. Petin, Chem. Phys. Lett. 323,
345 (2000).

17. G. N. Makarov and A. N. Petin, Zh. Éksp. Teor. Fiz. 119,
5 (2001) [JETP 92, 1 (2001)].

18. G. N. Makarov and A. N. Petin, Chem. Phys. 266, 125
(2001).

19. V. M. Apatin, L. M. Dorozhkin, G. N. Makarov, and
L. M. Pleshkov, Appl. Phys. B 29, 273 (1982).
20. V. M. Apatin and G. N. Makarov, Zh. Éksp. Teor. Fiz. 84,
15 (1983) [Sov. Phys. JETP 57, 8 (1983)].

21. R. V. Ambartzumian, L. M. Dorozhkin, G. N. Makarov,
et al., Appl. Phys. 22, 409 (1980).

22. V. M. Apatin, G. N. Makarov, and V. V. Nesterov, Pis’ma
Zh. Éksp. Teor. Fiz. 73, 735 (2001) [JETP Lett. 73, 651
(2001)].

23. V. M. Apatin, G. N. Makarov, and V. V. Nesterov, Chem.
Phys. Lett. 347, 101 (2001).

24. G. N. Makarov, Zh. Éksp. Teor. Fiz. 120, 1411 (2001)
[JETP 93, 1222 (2001)].

25. CRC Handbook of Chemistry and Physics, Ed. by
D. R. Lide, 74th Edition (CRC Press, Boca Raton, 1993–
1994).

26. I. Burak, J. I. Steinfeld, and D. G. Sutton, J. Quant. Spect-
rosc. Radiat. Trans. 9, 959 (1969).

27. D. Bassi, S. Iannotta, and S. Niccolini, Rev. Sci. Instrum.
52, 8 (1981).

Translated by V. Isaakyan
TECHNICAL PHYSICS      Vol. 47      No. 12      2002



  

Technical Physics, Vol. 47, No. 12, 2002, pp. 1501–1508. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 12, 2002, pp. 15–22.
Original Russian Text Copyright © 2002 by Shutov.

                                                                                           

GASES
AND LIQUIDS

       
The Shape of a Drop in a Constant Electric Field
A. A. Shutov

Karpov Institute of Physical Chemistry (Russian State Scientific Center), 
Obninsk Branch, Obninsk, Kaluga oblast, 249030 Russia

e-mail: fci@meteo.ru
Received November 30, 2001; in final form, May 6, 2002

Abstract—The variation of the shape of a drop immersed in an immiscible liquid under the action of an electric
field is calculated. The charge is transferred both by ohmic current through the interface and by the convective
component over the interface. A solution quadratic in the parameter that is the ratio of the electric pressure to
the capillary pressure is analyzed. Conditions where the drop transforms into a spheroid that is prolate or oblate
along the electric field vector are found. An experimental study of the drop deformation by electric forces is
carried out. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The basic result of theoretical and experimental
investigations into the deformation of a drop exposed to
an electric field is that the drop takes the shape of a pro-
late or oblate spheroid or does not change its shape at
all, depending on the relationship between the permit-
tivity, conductivity, and viscosity of the medium inside
and outside it. The theoretical description of this phe-
nomenon is carried out by constructing electrohydrody-
namic (EHD) models. In models [1–4], the statement of
the problem of drop deformation does not use the
boundary condition relating the surface charge density
to the discontinuity of the electric induction at the inter-
face. This is a serious disadvantage of these models
from the electrohydrodynamics standpoint. Instead of
this condition, the equality of the ohmic currents at the
interface is used, while the effect of the permittivity
shows up only through interfacial electric tensions.
Nevertheless, such models describe adequately the
drop deformation in a number of drop–environment liq-
uid systems. For example, they predict correctly the
deformation sign in highly viscous dielectric liquids
[1, 2]. As a rule, the drop takes the shape of an oblate
spheroid when the environment is of higher conductiv-
ity. Otherwise, the drop is extended along the field
direction [2]. The objective of this paper is to con-
struct a model that would allow us to elucidate the lim-
its of applicability of the approximations used in [1−4]
and to describe the behavior of systems that cannot be
analyzed within this scheme. Our model takes into con-
sideration the surface charge kinetics in an ordinary
layer, which, in the general case, involves the variation
of the charge with time, surface convection, and ohmic
currents toward the moving interface. Physically, a
charge relationship can be derived from the balance of
charge flows with allowance for interface deformation [5].
A more general approach to the derivation of an equa-
tion describing the evolution of the surface charge is
1063-7842/02/4712- $22.00 © 21501
averaging the equation of conservation of space charge
near the interface. In [6], a charge equation for the prob-
lem of a fluctuating double electric layer was derived.
Here, we consider a steady-state problem for an ordi-
nary layer with regard for the surface convection of
charges [7].

STATEMENT OF THE PROBLEM

An equation of charge transfer must meet the defini-
tion of surface charge density σ in electrodynamics.
The density σ is introduced by averaging the equation
divD = ρe along the direction normal to the interface in
such a way [8] that

(1)

where D is the electric induction, ρe is the space charge
density, dN is a length element in the normal direction,
and N = f is the equation of interface. The unit vector of
the normal n to the interface is directed from medium i
to medium e, and the lower and upper limits of integra-
tion refer to liquids i and e, respectively.

Let us integrate the equation of conservation of
space charge in the orthogonal coordinate system q1,
q2, q3 where the coordinates q1 and q2 form an orthog-
onal grid on the interface q3 = f(q1, q2, t). Then, taking
into account (1), we obtain [7]

(2)

where gii are the metric tensor elements for the surface
q3 = f(q1, q2, t); i =1, 2; and g0 = g11g22.

The elements gii are defined as 

Dne Dni– σ, σ ρe N ,d

f h–

f h+

∫= =

∂
∂t
----- σ g0( ) ∂

∂q1
-------- σV1 g11( ) ∂

∂q2
-------- σV2 g22( )+ +

+ g0 λ eEne λ iEni–( ) 0,=
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where

In our case, the metric coefficients coincide with the
definition of the surface metric induced by the space
metric [9]. In particular, in the spherical coordinate sys-
tem r, Θ, φ, the coordinates Θ, φ form an orthogonal
grid on the body of revolution r = f(Θ, t). The length
element on such a surface has the form

(3)

Here, f ' = ∂f/∂Θ.
Consider the steady-state axisymmetric problem of

the shape of a drop suspended in a liquid that is immis-
cible with the drop in a uniform electric field. The ori-
gin of the spherical coordinate system is located at the
drop center. In the absence of the electric field, the drop
is a sphere with a radius r0. The angle Θ is measured
from the field vector E0. The drop radius depends only
on the angle Θ. We assume that the translational motion
of the drop is absent and the electric current in the liq-
uids flows in the absence of the space charge.

Let us introduce the dimensionless variables marked
by bars for the radius, pressure, field strength, electric
potential, and surface charge as follows:

where E = –∇ϕ ; µe, i, εe, i, and λe, i are the viscosity, per-
mittivity, and conductivity of the liquids; T is the sur-
face tension; and ε0 is the dielectric constant. The sub-
scripts i and e refer to the liquids inside and outside the
drop, respectively.

The dimensionless set of equations has the form

(4)

(5)

(6)

where 

gii
∂x
∂qi

------- 
  2 ∂y

∂qi

------- 
  2 ∂z

∂qi

------- 
  2

; i+ + 1 2,,= =

x

y

z 
 
 
  x

y

z 
 
 
 

q1 q2 q3 f q1 q2 t, ,( )=, ,( ).=

ds2 g11dΘ2
g22dφ2+=

=  f 2 f '2+( )dΘ2 f 2 Θdφ2.sin
2

+

r
r
r0
----, p

pr0

T
--------, V

µe µi+

εeε0E0
2r0

--------------------V ,= = =

E
E
E0
-----, ϕ ϕ

E0r0
----------, σ σ

εeε0E0
---------------,= = =

∇ pe i, α Me i, ∆Ve i, , ∇ Ve i,⋅ 0, ∆ϕe i, 0,= = =

r f : Vr VΘ
df

fdΘ
----------,= =

αβ d
dΘ
------- σVΘ f Θsin( )

+ λEne Eni–( ) f 2 1 f '2

f 2
------+ Θsin 0,=
and ∆ is Laplacian.
Here, the impenetrability equation for a steady-state

axisymmetric flow degenerates into condition (5),
which defines the interface as a current surface. Rela-
tionship (6) is charge equation (2) at the interface r =
f(Θ) with metric coefficients (3). Hereafter, bars over
the dimensionless values are omitted. Equations (4)–(6)
are supplemented by the following boundary condi-
tions at the interface r = f(Θ):

(7)

(8)

(9)

Here, [A] = Ae – Ai denotes a discontinuity in the
value of A.

The curvature K and the normal and tangential com-
ponents Πn and Πτ of the viscous stress vector P are
respectively given by

where τij are the components of the viscous stress ten-
sor in the spherical coordinate system. The dimension-
less parameters in (4)–(9) are ε = εi/εe, µ = µi/µe, Mi =
µ/(µ + 1), and Me = 1/(µ + 1).

The interaction between the electric and hydrody-
namic fields in our self-consistent problem can be rep-
resented as follows. The discontinuity of the electric
induction is expressed, according to (8), in terms of the
surface charge density. The surface charge density σ is
found during the solution of the problem, this parame-
ter, according to (6), relating the liquid tangential
velocity at the interface to the electric fields. Dynamic
boundary condition (9), in its turn, also considers the
pressure and surface tension. Equation (5) defines the
drop boundary (unknown in advance). In the general
case, vortex motion arises inside the drop and in the
environment. In some cases, the liquid may be stagnant.
At the uncharged interface between perfect dielectrics

λ
λ e

λ i

-----, α
εeε0E0

2r0

T
--------------------, β

εeε0T
λ i µi µe+( )r0
-------------------------------,= = =

VΘ[ ] 0, Vr[ ] 0, ϕ[ ] 0,= = =

Ene εEni– σ,=

p[ ] n α MP[ ]–

=  –Kn α EneEe εEniEi– Ee
2 εEi

2–( )n/2–( ),+

r ∞: ϕ r Θ.cos–

K
1
f
---

d2

dΘ2
---------- 1

f
---+ 

  / 1 f '2

f 2
------+ 

 
3/2

=

–
1
Θsin

------------ d
dΘ
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f
------------- 

  / 1 f '2

f 2
------+ 

 
1/2
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Πn τ rr 2
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f
----τ rΘ

f '2
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  / 1 f '2
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------+ 

  ,=
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or at the free surface of a perfect conductor, tangential
electric forces do not arise and the problem allows for a
static solution in which the drop shape is determined
from the balance between the forces normal to the inter-
face [10]. We seek a solution to set (4)–(9) in the form
of the expansion in powers of the parameter α:

where Φ stands for p, V, or ϕ.
Expanding the boundary conditions in the parame-

ter α, which also enters into f, and collecting terms with
the same powers of α, we get problems formulated on
the surface f = 1 in each of the approximations. General
problem (4)–(9) will be solved up to the second approx-
imation. The zeroth approximation formally corre-
sponds to the absence of the electric field (E0 = 0). In
this approximation, the drop has the constant radius
f = 1 and the difference between the pressure inside it
and the ambient pressure is equal to the capillary pres-

sure  = 2. Since the next approximations are formu-
lated on the surface f = 1, we can use general solutions
for a sphere. A solution to the hydrodynamic problem
in the Stokes approximation has the form [11]

(10)

where Pn(η) is the Legendre polynomial and η = cosΘ.

Similarly, the general solution to the Laplace equa-
tion for the potential has the form

(11)

Here, an, bn, cn, dn, Bn, and Cn are constants.

f Θ( ) 1 α f 1 Θ( ) α2 f 2 Θ( ) …,+ + +=

σ Θ( ) σ0 Θ( ) ασ1 Θ( ) α2σ2 Θ( ) …,+ + +=

Φ r Θ,( ) = Φ 0( ) r Θ,( ) αΦ 1( ) r Θ,( ) α2Φ 2( ) r Θ,( ) …+ ,+ +

pi
0( )

pi const Mi 2n 2+( ) 2n 3+( )anωn,
n

∑+=

pe cosnt Me 2n n 1–( )bnπn,
n

∑+=

Vi = an n 3+( )r2∇ω n 2nrωn–( )
n

∑

+ n 1+( )cn∇ω n,
n

∑

Ve = bn 2 – n( )r2∇π n 2 n 1+( )rπn+( )
n

∑ ndn∇π n,
n

∑–

πn r–n 1– Pn η( ), ωn rnPn η( ),= =

ϕe = –r Θcos BnPn/rn 1+ , ϕ i

n

∑+  = CnPnrn.
n

∑
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RESULTS OF CALCULATION 

Set (4)–(9) in the first approximation has the form

with the boundary conditions on the surface f = 1

(12)

(13)

(14)

Using representations (10) and (11), we find the fol-
lowing solution to this problem:

(15)

It should be noted that boundary condition (13) is not
used in solving the problem in the first approximation
and serves only for the determination of the density σ0.
Two conditions (13) and (14), which state the fields in
classical electrodynamics, are replaced in this approxi-
mation by conditions (12) and (14). As is seen from
charge equation (6), such a situation takes place at
αβ ! 1. Therefore, the linear approximation is valid
only in the limiting cases of highly viscous media or of
a high-conductivity drop. The first-order contribution
to the drop radius is given by

∇ pi e,
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(16)

The condition F > 0 corresponds to the transforma-
tion of the drop into a spheroid extended along the field
direction. When F < 0, the drop takes the shape of an
oblate spheroid [2, 3].

In the next approximation, the separation of terms of
the same order with respect to α relates quadratic terms
in p and f with linear terms of the other functions. In the
second-order approximation, the problem is stated in
the same manner; however, now the charge equation
includes the convective term unlike the first approxima-
tion. A solution to the electric problem has the form

Using expansion (10), we determine the pressures
and velocities:

f 1 FP2 η( ) 3
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-------------------------- 1 λ2 2λ2ε---–+

= =

+
3
5
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18
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4λ 3+
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12
5
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1 λε–
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2λ 1+( )2
--------------------------------------F,–=

A4 A2
9
5
--- λ 1–

2λ 1+( )2
----------------------F.–=

pe
2( ) Me

r3
------- 4B1P2

56
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 .
The coefficients Bn are related to each other by the
following relationships:

Taking into account the first and second approxima-
tions, we come to the following expression for the lati-
tude dependence of the drop radius:

(17)

where

Here, A12 = F and A20 is a constant found from the con-
dition of drop volume constancy. The terms in (17) that
are proportional to F2 and FU coincide with data in [4].
The contribution of charge surface convection is
allowed for by the parameter W. Figures 1–3 show the
dependences of the coefficients Akj in relationship (17)
on the relative conductivity λ for various µ, β, and ε. As
is seen in Fig. 1, the µ dependence of A12 is weak; for
A22 and A24, the character of this dependence is the
same. Comparing the coefficients Akj shows that the
contribution of the second approximation may exceed
the term linear in α by several orders. Such a behavior
of the coefficients is due to the fact that series (17) is
virtually a two-parametric expansion in α and β. Here,
the procedure of determining the coefficients is per-
formed up to the term linear in β, which is the basic
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term of the expansion at certain values. The drop
remains spherical if λε = 1 and F = 0; that is, if the con-
ditions ε = 1 and λ = 1 are fulfilled simultaneously.

Let us define the degree of drop deformation as 

(18)

where r1 = f(Θ = 0) and r2 = f(Θ = π/2) are the lengths
of the drop semiaxes in the longitudinal and transverse
directions with respect to the field vector, respectively.

The case R > 1 corresponds to a prolate spheroid;
R < 1, to an oblate one.

Figure 4 shows the dependences of the drop defor-
mation R on the field strength for various ε, λ, µ, and β.
These curves were constructed in the range 0 ≤ α ≤ αk,
where αk is the maximum value of α at which the curve
f(Θ) remains convex. By a convex curve, we mean a
closed curve that lies in full on one side of a tangent to
it at any point. Such a choice of the α range follows

R
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r2
----,=
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2
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–10–1

Fig. 1. Coefficient A12 as a function of the relative conduc-
tivity λ. Solid lines, µ = 0.01; dashed lines, µ = 100. ε =
(1) 0.1, (2) 0.5, (3) 2, and (4) 10.

10–1

10–210–3 10–1 1 10 102 103

λ

1

10

102

103

A24

1

2

31'
2'

3'

4'

4

Fig. 3. Coefficient A24 as a function of λ at µ = 1. The nota-
tion is the same as in Fig. 2.
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from observations that the drop remains stable as long
as its shape is ellipsoidal and takes a dumbbell-like
shape at the instant of disintegration [2, 12]. The
parameter β prevents drop compression. From Fig. 4, as
β grows, the drop compression decreases and under
certain conditions the drop becomes extended.

Qualitatively, such an effect can be explained by
convective charge transfer over the drop surface largely
from the equator to the poles. When surface charge con-
vection is absent (β = 0), the deformation is related to
the flow inside the drop as follows [2, 3]. At λε ! 1, the
liquid near the interface, according to (15), flows from
the equator to the poles. At the same time, the function
F in relationship (16) is positive; that is, the spheroid is
extended along the field. When λε @ 1, the flow is
directed from the poles to the equator, the function F <
0, and the spheroid is oblate. If β > 0, then, according
to (7), the gradient of the convective flux of the charges
coincides with the direction of fastest increase of the
ohmic current, which reaches a maximum near the
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–102

–104

1 10

4
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Fig. 2. Coefficient A22 as a function of λ at µ = 1. Solid
lines, β = 0.01; dashed lines, β = 100. (1–4) The same as in
Fig. 1.
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Fig. 2.
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poles. Thus, one can conclude that surface charge con-
vection causes an additional liquid motion from the
equator toward the poles regardless of the drop defor-
mation.

For 0.01 ≤ µ ≤ 100, 0.02 ≤ ε ≤ 50, 10–3 ≤ λ ≤ 103, β ≤
1000, and α ≤ αjk, the drop deformations calculated are
within 0.5 ≤ R ≤ 2.

EXPERIMENTAL
The experimental study of drop deformation was

carried out in a rectangular cell with the base area 4 ×
4 cm and an adjustable height of up to 2 cm. The side
walls were made of glass, and a direct voltage from 0 to

Table 1.  Properties of the liquids

Liquid ρe, i, g/cm3 µe, i, p εe, i λe, i , Ω–1 m–1

PMPS 1.1 11.9 2.69 1.43 × 10–12

CO 0.97 14 5.1 2.1 × 10–10

BO 0.87 0.73 1.9 6.0 × 10–12

TO 0.88 0.67 2.36 9.46 × 10–12

Water 1.0 0.01 81 10–6

Table 2.  Interfacial tension, dyn/cm

Liquid
Liquid

1 2 3 4

PMPS × 1.2 0.14 0.16

CO × 0.6 0.72

BO × –

TO ×

0.6
0.50 1.0 1.5 2.0 α

0.8

1.0

1.2

1.4

1.6

1.8
R

Fig. 5. Same as in Fig. 4. Solid curves are the results of cal-
culation. (j) CO in PMPS, r0 = 0.15 mm, ε = 1.9, µ = 1.18,

λ = 6.7 × 10–3, and β = 0.36; (h) water in PMPS, r0 = 0.5–

0.8 mm, ε = 30, µ = 8.4 × 10–4, λ = 10–6, and β = 10–3;
(m) PMPS in CO, r0 = 0.25 mm, ε = 0.527, µ = 0.85, λ =
150, and β = 56.5.
10 kV was applied to the metallic base. The liquid drop
under study was injected into a liquid inside the cell
through a glass capillary 0.010–0.005 cm in diameter.
A pair of immiscible liquids was chosen from organic
and mineral oils, organosilicon polymer polymeth-
ylphenylsiloxane (PMPS), and water. In the experi-
ment, we measured the density, viscosity, permittivity,
conductivity, and interfacial tension of the liquid pair.
The drop image was photographed with the help of a
long-focus optical system and a pulsed light source
(pulse duration 1 ms). The drop size was measured
using photographs magnified 50 to 100 times. The mea-
surement error for ρi, e, µi, e, εi, e, and potential (field
strength) did not exceed 1%; for the conductivity, 15%.
The interfacial tension was measured by the hanging
drop method or by the method of capillary rise with an
accuracy of ≈5%. The properties of the liquids are pre-
sented in Table 1, and the interfacial tensions for several
pairs of the liquids are listed in Table 2. Except for the
bobbin oil–castor oil pair, the other liquids are practi-
cally mutually insoluble. The surface tension in the
water–PMPS and water–castor oil systems equaled 38
and 18 dyn/cm, respectively.

Figures 5 and 6 show the dependences of the drop
deformation on the field strength for various pairs of
liquids (the drop is named first): castor oil (CO) in
PMPS, water in PMPS, and PMPS in CO. Symbols in
the figures are data points; the curves, results of calcu-
lation obtained using relationship (18). According to
approximation (16) linear with respect to α, the reversal
of the drop–environment combination reverses the
extension/flattering deformation when the product λε
considerably differs from unity, as, for example, for the
PMPS–CO combination (Fig. 5, curves 1, 3). This turns
out to be valid when the parameter β is far from its crit-
ical values. Figure 6 demonstrates the dependences of

0.6

0.50 1.0 1.5 2.0 2.5
α

0.8

1.0

1.2

1.4

1.6
R

1 2
3

4

5

6

Fig. 6. Same as in Figs. 4 and 5. (1–4) PMPS in CO, ε =
0.527, µ = 0.85, and λ = 150. (1) β = 0; (2) j, r0 = 0.3 mm
and β = 47.8; (3) h, r0 = 0.2 mm and β = 71.7; (4) m, r0 =
0.9 mm and β = 159; (5) PMPS in CO, r0 = 0.05 mm, ε =
1.3, µ = 16.3, λ = 4.3, and β = 28; (6) BO in PMPS, r0 =
0.05 mm, ε = 0.74, µ = 0.061, λ = 0.23, and β = 8.8.
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R on α for PMPS drops in CO with drop initial radii of
0.03, 0.02, and 0.009 cm (curves 2–4, respectively).
It is seen that the compression of the drop decreases as
its radius decreases. This effect is more pronounced for
the PMPS–bobbin oil (BO) combination with a drop
radius of 0.005 cm. Within the experimental error, the
PMPS–BO and BO–PMPS combinations demonstrate
only extension (Fig. 6, curves 5, 6). Similar behavior is
observed for the PMPS–turbine oil (TO) and BO–CO
combinations.

The calculations of the drop shape were carried out
under the assumption that the drop deformation is small
(formally for α < 1). At the same time, a number of the-
oretical curves plotted to αk and several data points
extend into the range α > 1 (Figs. 4–6). Such a situation
takes place when F < 1, U < 1, and β ! 1. In this case,
the expansion of the drop radius contains the parameter
α only in the combinations αF and αU. Therefore, the
radius of convergence of the power series for f in α may
be greater than unity.

In Fig. 5, the errors of data points for one of the
curves are shown. The measurement error for R does
not exceed 1%, and the parameter α calculated from the
measured values of Ee, r0, and T has an error of ≈7%. In
the moderate deformation range, the agreement
between the experimental and theoretical data is satis-
factory. However, at R ≈ 1, as in [2], the experimental
deformations systematically exceed the calculated data.

The calculated curves in the figures are plotted up to
the critical value of αk corresponding to the ultimate
convexity of the drop shape. The experimental values of
αk coincide with the calculated ones within the experi-
mental error for the pairs of liquids considered. In gen-
eral, the determination of αk should be carried out
within the problem of stability of the steady-state solu-
tion with regard for various mechanisms of drop stabil-
ity loss [12–17]. The hypothesis for the stability of con-
vex shapes used by us implies the development of a
neck on the critical spheroid. In particular, a flattened
drop in the critical field contracts most intensely along
the line passing through the poles, transforming into a
toroidal body. Observations, which are in complete
agreement with data reported in [2], indicate that the
final shape is not a torus but a bell-shaped figure, which
disintegrates because of complicated motions.

If the drop is extended, one can expect its partition
into two parts at the neck formed at the spheroid equa-
tor. Such a disintegration, accompanied by the emer-
gence of satellite droplets, was observed in our experi-
ments.

Under certain conditions, the disintegration is pre-
ceded by the ejection of jets (or individuals droplets)
from the poles for an extended drop or of a fan-like jet
from the equatorial region for an oblate spheroid. For
example, in our calculations, the water drop disinte-
grates into two parts in air (λ = 0, ε = 81, µ @ 1, and
β @ 1) at αk = 0.329 and R = 1.74. However, in a weaker
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
field at αk = 0.21, the ejection of droplets from the poles
is observed. This is due to the excitation of higher har-
monics of capillary perturbations in regions of the high-
est field strength [10, 18]. At the same time, in the
water–PMPS and water–CO systems, the ejection of
droplets is absent: the drop splits into two roughly equal
parts. The same was observed in [2] for a water drop in
a medium with a viscosity that was one order of magni-
tude higher.

Figure 7 displays the photos of drops in the PMPS–
CO system. An initially spherical drop falls in lighter
castor oil (Fig. 7a). Under the action of the electric
field, it transforms into an oblate spheroid. At a certain
field strength, a sharp edge appears at the equator from
which the drop liquid flows out (Fig. 7b). The stronger
the field, the more intense the outflow (Fig. 7c). In the
latter case, a structure similar to a ring wake vortex
forms. When carrying out the experiments, we did not
select pairs of liquids with neutral buoyancy, because
convection in the cell intensifies with growing field
strength. From the deflection of the fan-like jet from the
horizontal in Figs. 7b and 7c, one can conclude that
convection has a minor effect in this case in comparison
with the effect of the gravitational field. A similar trans-
formation of a drop was observed in [2] in a much more
viscous system. However, in [2], in a constant field the
liquid outflow did not occur, while in a variable field,
the ejection of individual droplets from the equatorial
region of the spheroid, rather than a continuous fan-like
jet, was observed.

CONCLUSION

The models that do not allow for the motion of the
charge along the interface between liquids derive the

(a) (b)

(c)

Fig. 7. Shape of a PMPS drop in castor oil. The field vector
is parallel to the plane of the photograph and directed verti-
cally. E0 = (a) 0, (b) 2.5 × 105, and (c) 3.5 × 105 V/m.
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dependences of the drop shape only on the conductiv-
ity, permittivity, and viscosity of the liquids. Experi-
mental data for highly viscous liquids with a total vis-
cosity of hundreds of poises confirm these results [1, 2].
At the same time, in low-viscous emulsions of weakly
conducting liquids, the extension or compression of the
drop along the field direction depends considerably on
its size. This discrepancy is explained by the fact that
these models use a truncated equation for surface
charge transfer, which takes into account only the
ohmic current through the interface. Convective charge
transfer causes additional liquid flows, which act on the
drop unilaterally, preventing its compression. The finer
the drop, the higher the probability of finding the exten-
sion of an emulsion drop in a strong electric field virtu-
ally irrespective of other parameters of weakly con-
ducting liquids. The assumption that the spheroid
retains the convex shape up to the critical field strength
at which the drop disintegrates into equal parts is in
good agreement with observations.
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Abstract—The reverse current range of a Knudsen diode with surface ionization is studied under overneutral-
ized conditions in the presence of electron emission from the collector. The difficulty of the problem is associ-
ated with the need to consider three particle flows: ions and electrons from the emitter and electrons from the
collector. This work consists of two parts. In the first part, the potential distributions and I–V characteristics for
plasma regimes, where the potential distribution has a quasi-neutrality portion, are calculated. In the second,
the diode with a small electrode spacing, where the near-electrode potential jumps overlap, is investigated. The
asymptotic behavior of the current under high negative voltages is examined. Data obtained are compared with
the classical Langmuir results for the diode with two opposing electron and ion flows. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

The study of a Knudsen diode with surface ioniza-
tion (SIKD) in the presence of electron emission from
the collector is of great importance. The electron emis-
sion may greatly affect the properties of thermionic
converters (TCs) filled with a Cs–Ba compound, where
a hot barium-covered collector offers a high emissivity.
Furthemore, finding the self-consistent potential distri-
butions in a three-flow SIKD may reveal intriguing
physical effects. In [1–4], SIKDs were studied without
considering the emission from the collector. The first
attempt to take the emission into account was made in
[5]. However, the calculations were performed only for
some arbitrarily selected conditions.

A basic parameter of an SIKD is the degree of neu-
tralization

(1)

where (0) and (0) are the concentrations of ions
and electrons emitted from the collector immediately
on its surface. Recently [6, 7], the method for comput-
ing potential distributions (PDs) in an SIKD has been
suggested, and the I–V characteristics of the device in
the presence of electron emission from the collector in
underneutralized conditions (γ < 1) have been analyzed.
In the calculations, it was assumed that the emission

γ
ni

+ 0( )
ne

+ 0( )
-------------,=

ni
+ ne

+

1063-7842/02/4712- $22.00 © 21509
from the collector is unrestricted; that is, the electron
flow into the plasma is defined by the potential barrier
near the collector rather than by its work function. It has
been shown [6] that, under negative voltages in the
underneutralized regime, the PD has a minimum near
the collector (i.e., a virtual anode arises), while the PD
near the emitter is monotonic. Also, in the underneu-
tralized regime, the saturation current in the reverse
branch of the I–V characteristic has been found to be
proportional to the saturation current in the forward
branch, with the proportionality coefficient being small
(about 0.2) [7]. In this work, we study the PDs and I–V
characteristics in the reverse current range under
overneutralized conditions (γ > 1). In this case, unlike
the underneutralized regime, the PDs are more compli-
cated: they are no longer monotonic near the emitter.

This work consists of two parts. In the first part, as
in [6, 7], the analysis is performed for plasma condi-
tions, where the potential distribution has a quasi-neu-
trality portion (potential plateau). The results are com-
pared with experimental data for Cs–Ba-filled TCs. In
the second part, an SIKD with a small electrode spac-
ing, where the near-electrode potential jumps overlap,
is studied. In this case, electron emission from the emit-
ter can be neglected if γ is high and one can consider
only two opposing flows of unlikely charged particles:
ions from the emitter and electrons from the collector.
The asymptotic behavior of the current at small elec-
trode spacings and high negative voltages is investi-
002 MAIK “Nauka/Interperiodica”
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gated. These data are compared with the classical Lang-
muir results for the problem of two opposing flows of
electrons and ions [8].

CALCULATION METHOD
We assume that the diode operates under overneu-

tralized conditions and that the emission from the col-
lector is unrestricted. Then, at moderate negative volt-
ages, the PD has a minimum in the electron-enriched
near-collector region; that is, a virtual anode (VA)
forms [6]. However, unlike underneutralized condi-
tions, the PD between the emitter and the top of the
electron VA is nonmonotonic: because of the excess of
the ion space charge near the emitter, a potential maxi-
mum arises, which may be called a virtual cathode (VC)
by analogy with the VA.

The potential diagram for this case is depicted in
Fig. 1. The distance from the emitter is measured in

terms of the Debye length λD = [kTE/(4πe2 (0))]1/2,
and the potentials, emitter and collector work func-
tions, and applied voltage are expressed through kTE/e
(e is the charge of an electron, k is the Boltzmann con-
stant, and TE is the emitter temperature). The associated
dimensionless parameters are as follows: ζ is the dis-
tance to the emitter; η, potential; χE, emitter work func-
tion; χC, collector work function; and u, applied voltage.
The potential diagram exhibits three characteristic
potentials: plasma potential ηp, potential at the top of the
electron VA ηm, and that at the top of the ionic VC ηM.

As in [6], the concentrations of the particles at the
point with the potential η can be represented as

(2)

ne
+

ni ni
+ 0( )F1 η η M,( ), neE ne

+ 0( )FeE η η m,( ),= =

neC ne
– ηm( )FeC η η m Θ, ,( ).=

0

ηM

I

η

ηm

II

|u|
χE

ηC

χC

χ∗
C

ζ

ηp

Fig. 1. Potential diagram for an SIKD under overneutralized
conditions and negative voltages in the presence of electron
emission from the collector. ηm, potential at the top of the
electron VA; ηM, potential at the top of the ionic VC; ηp,
plasma potential; χE, emitter work function; χC, collector
work function; and u, applied voltage.
Here, the subscripts E and C indicate the place where
the particles originate, Θ = TE/TC (TC is the collector

temperature), and (ηm) is the concentration of elec-
trons emitted from the collector at the point with the
potential ηm (the top of the VA). Under the assumption
that the particles are emitted with the semi-Maxwellian
velocity distribution functions, the functions F in the
interval between the points with the potentials ηM and
ηm have the form

(3)

(4)

Formulas (3) can also be used for finding the con-
centrations in regions I and II in the potential diagram
(Fig. 1), which are adjacent to the electrodes. Specifi-
cally, in region I, the electron concentration is found
directly by these formulas, while in region II, the ion
concentration is found by formula (3) for FeE at η < 0 if
η is replaced by –η and ηm, by –ηm. The expression for
the concentration of collector electrons in region II is
given by

In [6], two conditions for finding the potentials ηp
and ηm were used at γ < 1: the plasma quasi-neutrality
condition and the condition of vanishing total charge on
the outer part of the ionic VA (between the points with
the potentials ηp and ηm). In the region where the PD is
monotonic, the total charge vanishes along with the
integral of the concentration over the potential. The
result of integration of the function Fi(e) over the interval
(η1, η) will be denoted as

(5)

where the ellipsis stands for other arguments of the
function Gi(e) (sometimes they will be omitted). For the
integral of the total concentration over this interval, we
have

(6)
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–

Fi η η M,( ) ηM–( )exers ηM η–( ),exp=

FeE η η m,( )

=  
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therefore, a set of equations for the characteristic poten-
tials can be written as

(7)

Here β = (ηm)/ (0),

(8)

To calculate Gi(e), we use the formula

(9)

Unlike γ, the parameter β in (7) is not independent.
It is related to the external parameters χE, Θ, and u
through the relationship

(10)

which is readily found if we assume that the VA emits
electrons like an electrode with the effective work func-
tion  = χE – ηm + u (Fig. 1) and the temperature TC.
In this case, it is sufficient to express the concentrations

(ηm) and (0) entering into the definition of β
through the corresponding emission current densities

(ηm) and (0) and take advantage of the Richardson
equation. Simultaneously, it is easy to derive a formula

γA1 βB1 C1+ + 0,=

γA2 βB2 C2+ + 0,=

γA3 βB3 C3+ + 0.=

ne
– ne

+

A1 Fi ηp ηM,( ) ηM–( )exers ηM ηp–( ),exp= =

B1 FeC ηp ηm Θ, ,( )– exers Θ ηp ηm–( )[ ] ,–= =

C1 FeE ηp ηm,( )–=

=  ηm( )exers ηp ηm–( )exp 2 ηp( ),exp–

A2 Gi ηp ηM,( )– ηM–( ) Ir ηM ηp–( ) 1–[ ] ,exp= =

B2 GeC ηp ηM; ηm Θ,,( )=

=  
1
Θ
---- Ir Θ ηp ηm–( )[ ] Ir Θ ηM ηm–( )[ ]–{ } ,

C2 GeE ηp ηM; ηm,( ) 2 ηp( )exp Ir ηM( )–[ ]= =

– ηm( ) Ir ηp ηm–( ) Ir ηM ηm–( )–[ ] ,exp

A3 Gi ηp ηm; ηM,( )=

=  ηM–( ) Ir ηM ηm–( ) Ir ηM ηp–( )–[ ] ,exp

B3 GeC ηp ηm; Θ,( )–
1
Θ
---- 1 Ir Θ ηp ηm–( )[ ]–{ } ,= =

C3 GeE ηp ηm,( )–=

=  ηm( ) Ir ηp ηm–( ) 1+[ ] 2 ηp( ).exp–exp

exers η'( ) η'd

η1

η

∫ Ir η( ) Ir η1( ),–=

Ir x( ) exers x( ) 2 x/π.+=

β Θ 3/2– ηm u–( )Θ χE Θ 1–( )–[ ] ,exp=

χC*

ηe
– ne

+

je
– je

+

TECHNICAL PHYSICS      Vol. 47      No. 12      2002
for the density of the electron current through the diode:

(11)

Here, the first and second terms are the contributions of
emitter and collector electrons, respectively, to the cur-
rent. Formulas (10) and (11) coincide with the corre-
sponding formulas in [6].

In calculating the I–V characteristic for a given
degree of neutralization γ as the parameter defining a
point in the I–V curve, it is suitable to specify the poten-
tial ηm at the top of the electron VA. Set (7) can be
viewed as a set of linear equations for γ and β. With this
in mind, to find ηM and ηp for given γ0 and ηm, one can
proceed as follows. Let us prescribe, along with ηm, a
tentative value of ηM. Then, from the compatibility con-
dition for the set of linear equations

(12)

one can find the plasma potential ηp, and the solution of
the set yields the values of γ and β. The value of γ found
differs, as a rule, from γ0. Therefore, to solve the prob-
lem for a given γ0, it is necessary to repeat the above
procedure by varying ηM until γ coincides with γ0. In
other words, this procedure defines γ as a function of ηM,
and ηM is found by numerically solving the equation
γ(ηM) – γ0 = 0. The solution to this equation, as well as
the solution to Eq. (12), can be found, for example, by
the chord method. The voltage at the desired point in
the I–V characteristic is found by the formula

(13)

which is readily derived from (10), and the electron cur-
rent is calculated directly from formula (11).

The parameters corresponding to the point α in the
I–V characteristic where ηp = ηm, i.e., where the elec-
tron current vanishes, will be marked by the subscript
α. In [6], a method allowing one to analytically relate
the parameters β and ηp at the point α was described. It
uses the fact that, in the layer (ηp, ηm), there always (in
particular, when ηp  ηm) exists a point η* where the
derivative of the total charge density with respect to the
potential vanishes. Applying this expedient to overneu-
tralized conditions, one can readily show that the rela-
tion between the parameters βα and ηα remains the
same as in the underneutralized regime:

(14)

j

je
+ 0( )

------------ ηm( )exp
β
Θ

--------.–=

det
A1 B1 C1

A2 B2 C2

A3 B3 C3

0=

u ηm
1
Θ
---- β( )ln

3
2
--- Θ( ) χE Θ 1–( )+ln+ ,–=

βα
ηα( )exp

Θ
--------------------.=
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Obviously, the formulas for uα and jα also remain
valid:

(15)

These formulas follow from (11), (13), and (14).
However, unlike the underneutralized regime, where
the parameter ηα is found only from the quasi-neutral-
ity condition, in our case it is found simultaneously
from the first two equations of set (7), which at the
point α take the form

(16)

An algorithm for the numerical solution of set (16)
is similar to that for the solution of set (7).

It should be noted that for the calculation of the I–V
characteristic in the plasma regime, the characteristic
potentials in the PD will suffice. However, if necessary,
the entire PD can be constructed for any point in the I–
V curve, i.e., as was described in [6]. The absolute value
of the electric field strength at a point η is known: |ε| =
[–2G(η, η1)]1/2, where G(η, η1) is the integral of con-
centration (6) over the potential from the potential η1 at
the point with ε = 0 (the top of the VC or VA) to the
potential η. It should be emphasized that the function
G(η, η1) thus defined is always negative. From the

uα ηα χE–( ) 1 1
Θ
----– 

  1
Θ
---- Θ,ln–=

jα

je
+ 0( )

------------ ηα( ) 1 1
Θ
----– 

  .exp=

γ ηMα–( )exp exers ηMα ηα–( ) ηα( ) 1 1

Θ
--------+ 

 exp–  = 0,

γ ηMα–( ) Ir ηMα ηα–( ) 1–[ ]exp

+ Θ 3/2– ηα( ) 1 Ir Θ ηMα ηα–( )[ ]–{ }exp

+ 2 ηα( )exp Ir ηMα( )–[ ]
– ηα( ) 1 Ir ηMα ηα–( )–[ ]exp 0.=

–2

10
0

20 30 ζ

–4

–6

–8

–10
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4

6

η

1

2

3

Fig. 2. Potential distribution for χE = 15, Θ = 2, and u = −20.
γ = 10 (1), 100 (2), and 1000 (3). Corresponding points I–III
are shown in Fig. 4.
known field strength and using the relationship ε =
−dη/dζ, one finds the dependences ζ(η), i.e., the PD in
the monotonicity ranges. For example, for the region
between the top of the VA and the potential plateau, we
have

(17)

RESULTS OF CALCULATIONS

With the approach described above, we performed
the calculations for three values of the parameter γ in
the range of negative voltages (u < uα) (Figs. 2–6). Fig-
ure 2 exemplifies the potential distributions; Figs. 3 and
4, the dependences of the potentials at the characteristic
points and the voltage dependence of the electron cur-
rent. At the point α, the current is always positive but
goes to the range of reverse currents as the voltage devi-
ates slightly from this point.

As follows from Fig. 4, the reverse current in the
vicinity of the point α grows sharply with voltage mag-
nitude. Subsequently, the growth of the current slows
down markedly and the curves tend to saturation. At
high |u |, the reverse current is more than twice as high

as the emission current of the emitter (0) and is vir-
tually independent of γ. Since at γ > 1 the forward satu-

ration current coincides with (0), the basic result of
the calculation can be stated in the following way: The
reverse saturation current under overneutralized condi-
tions in the presence of electron emission from the col-
lector is proportional to the forward saturation current,
with the proportionality factor being about 2. Note that
the proportionality between the reverse and forward
saturation currents was also observed in the underneu-
tralized regime [7], but the proportionality factor was
found to be about 0.2. The fact that the ratio of the
reverse and forward saturation currents at γ > 1 exceeds
that at γ < 1 by one order of magnitude can be used to
identify the operating conditions of the SIKD.

Let us compare our results with those obtained ear-
lier for a nonemitting collector (for details, see [3]). If
the electron emission from the collector is absent, the
collector potential ηC is negative, and γ > 1, the PD has
an ionic VC (as in Fig. 1) but the electron VA is absent.
In [3], detailed calculations for the underneutralized
regime were performed and the principle of symmetry
was stated. According to this principle, if the potential
and charged particle concentration distributions are
known for given γ and ηC, the corresponding distribu-
tions for the degree of neutralization 1/γ and collector
potential –ηC are found by substituting –η for η and
commuting the subscripts referring to the particles. In
particular, the distribution of the ion concentration and
the ion current density under overneutralized condi-
tions coincide with those of the electron concentration

ζm ζ– 2G x ηm,( )–[ ] 1/2– x.d

ηm

η

∫=

je
+

je
+
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and electron current density in the underneutralized
regime.

The voltage dependences of the ion current  [in

units of (0)(me/mi )1/2] that were obtained by using
data in [3] (see also [9]) and the principle of symmetry
are shown in Fig. 5a by dashed curves. The ionic cur-
rent grows appreciably at voltages from 0 to several
units of kTE/e because of the increase in emitter elec-
tron concentration (and, consequently, the additional
neutralization of the ion charge near the VC) due to
electron reflection from the potential jump at the collec-
tor. The ion current is saturated after all the electrons
have been reflected. This effect also shows up in the volt-
age dependences of the ionic current in the absence of
the emission from the collector (solid lines in Fig. 5a).

Roughly, the reverse current vs. voltage dependence
in the presence of the emission from the collector can
be found within a simple model assuming that the col-
lector electrons have no effect on the ionic current from
the emitter and the electron current from the collector
jeC and the ionic current are related as

(18)

This relationship approximates the equality condi-
tion for the total charges in the spacing between the vir-

tual electrodes. Substituting  into (18) yields jeC,
which equals the reverse current at high negative volt-

ages: j = (mi/me)1/2. For γ = 10, the dependence of

j/ (0) on u is depicted in Fig. 5b by the dashed line.
For comparison, the result of the self-consistent calcu-
lation is also shown. In Fig. 6, the dependence of
(je/ji )(me/mi )1/2 on u obtained by the self-consistent cal-

ji
0

je
+

jeC

ji
-------

me

mi
------ 

 
1/2

1.=

ji
0

ji
0

je
+

2

–50
0

4

6

–2

ηM, ηp

–100

1 2 3

1

2

3

u

Fig. 3. Voltage dependences of the characteristic potentials
ηM (solid lines) and ηp (dashed lines) for γ = 10 (1), 100 (2),
and 1000 (3).
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culation (solid curve) is presented. At intermediate |u|,
the curve runs much below unity. At the same time, as

follows from Fig. 5a, ji exceeds  at these |u|. In find-
ing the electron current, both effects compensate each
other; as a result, the model suggested adequately
describes the behavior of the reverse current (Fig. 5b).

We stress that the behavior of the curves in Figs. 4
and 5, which were obtained in the presence of electron
emission from the collector, reflects (1) the penetration
of collector electrons into the emitter region and their

ji
0

–0.5

–20
0

0.5

–1.0

–1.5

–2.0

–2.5

–40–60–80–100

u

1
2

3

III

II

I
1
23

α

j/j+
e (0)

Fig. 4. Voltage dependences of the electron current for γ =
10 (1), 100 (2), and 1000 (3). χE = 15 and Θ = 2; dashed
lines depict associated asymptotic limits.
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+
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Fig. 5. (a) Voltage dependences of the ion current with
(solid curves) and without (dashed curves) emission from
the collector (in both cases, the zero voltage is placed at the
point α). χE = 15, Θ = 2. γ = 10 (1), 100 (2), and 1000 (3).
(b) Voltage dependence of the electron current for γ = 10.
Solid curve, exact calculation; dash-and-dot line, approximate
calculation with using the ion current and relationship (18)
without considering emission from the collector.
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effect on the neutralization of the ionic space charge
near the emitter and (2) the effect of emitter electrons
on the passage of ions into the near-collector region
and the neutralization of the electron charge near the
collector.

0.2

–20 0–40–60–80–100

0.4

0.6

0.8

1.0
(je/ji) (me/mi)

1/2

u

Fig. 6. Voltage dependence of the ratio between the electron
current from the collector and the ion current from the emit-
ter. Solid curve, exact calculation for γ = 10; dashed line,
model representation.
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Fig. 7. Experimental dependence of the reverse saturation
current Ir on the forward saturation current If under
overneutralized operating conditions of the SIKD. Dots,
experimental data; solid line, processing of the experimen-
tal data by the least squares method.
It should also be noted that the approximate equa-
tions for the current coincide, at high voltages, with the
zeroth-order equations used in finding asymptotic solu-
tions at u  ∞ (see Appendix, Eqs. (A2), (A3)).
Therefore, the approximate calculation yields an accu-
rate value of the reverse saturation current.

As follows from Fig. 4, the electron current declines
slowly with increasing γ when γ > 10. With data in [9]
used to find the ultimate (at u  ∞) value of the ion
current, we obtain the saturation electron current values
2.54, 2.46, and 2.41 for γ = 10, 100, and 1000, respec-
tively. These asymptotic values of the electron current
are shown by dashed lines in Fig. 4. It can be shown
(see Appendix) that the electron current asymptotically
tends to two if γ  ∞.

On the other hand, Fig. 3 implies that the VC must
disappear, i.e., the ion current must become saturated,
when γ decreases to some critical value γ*. Hence, at
γ < γ*, the electron current must decrease. It is shown
in the Appendix (Fig. 8) that γ* = 2.47 for |u| = ∞. In the
transition region (γ < 2.47), the PD changes and calls
for special investigation.

Note that χC does not appear in the formulas for cal-
culating the I–V characteristics and finding the charac-
teristic points in the PD and, thereby, does not affect the
PD. This is, however, true until the value of χC becomes
too small. Indeed, a decrease in χC for a given u causes
the collector potential ηC to rise. If ηC exceeds ηM, ions
near the collector partially reflect and formulas (3) for
Fi become incorrect. The work function χC at which
ηC = ηM is found from the equality χC = χE + u – ηM

(Fig. 1). Substituting the values of u and ηm at the point
α into this equality yields the minimal collector work
function for which ions a fortiori will not reflect from
the collector region for any u < uα. For example, for γ =
10, χE = 15, and Θ = 2, the minimal value of χC turns
out to be 5.3.

COMPARISON WITH EXPERIMENT

The asymptotic behavior of the analytical I–V
characteristics was confirmed experimentally. The
experiments were performed in Cs–Ba-filled TCs with
the setup described in [10]. The results of the experi-
mental study under overneutralized conditions at
moderate (to 2000 K) emitter temperatures were pub-
lished in [11].

In the experiments, the collector temperature was
kept at a relatively high level (1000–1300 K). The pres-
ence of Ba allowed us to vary the emitter work function
(and, hence, the parameter γ) over a wide range. The
high temperature and the low work function of the col-
lector provided unrestricted electron emission from the
collector. At the same time, ion emission from the col-
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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lector was negligibly small. Thus, the experiments imi-
tated conditions used in the calculations.

In the experiments, we varied the emitter tempera-
ture, as well as the cesium and barium vapor pressure,
and recorded the I–V characteristics. From the I–V
curves, we determined the forward, If, and reverse, Ir,
currents. It was found that if the electron emission
from  the emitter under overneutralized conditions is
increased severalfold (e.g., by increasing the emitter
temperature), the reverse current increases roughly by
the same factor.

To determine the proportionality coefficient
between the forward and reverse saturation currents,
the experimental values of these currents were plotted
as data points in the plane (If, Ir) (Fig. 7). The propor-
tionality coefficient found by linearly approximating
the experimental Ir vs. If dependence with the least
squares method was equal to 1.9 ± 0.3. This value is in
reasonable agreement with the calculated asymptotic
limit j0 of the reverse current: for the range of γ consid-

ered, j0/ (0) ≈ 2.5 (see Fig. 4 and Appendix). The
value of Ir/If found experimentally is somewhat less
than the calculated value, possibly because the data
points were taken at voltages lower than 10 V, where the
asymptotic behavior of the current is not quire clear.
High reverse voltages could not be used, since the TC
might pass into the arc regime. Moreover, data points
corresponding to small γ (close to γ*) could decrease
the current ratio.

Thus, in this work we elaborated a method of self-
consistent calculation of the potential distribution and
I–V characteristics under overneutralized conditions of
SIKD operation in a range of reverse currents. It was
shown that the potential distribution has an ionic virtual
cathode near the emitter and an electron virtual anode
near the collector. The calculations of the potential dis-
tribution and I–V branch in the range of reverse currents
(at u < uα) for several values of the degree of neutraliza-
tion were performed. For overneutralized conditions,
the calculated reverse saturation current was found
to  exceed the forward saturation current by a factor
of 2.5 in a wide range of γ. This is in good agreement
with the experimental data. The fact that the ratio of the
reverse and forward saturation currents under overneu-
tralized conditions exceeds that in the underneutralized
regime by one order of magnitude can be used for
experimentally identifying SIKD operating conditions.
In the case of a large electrode spacing, the I–V charac-
teristic is constructed by solving a set of transcendental
equations (7) and finding the potentials at points with a
zero electric field. In the regions of monotonicity, the
potential distribution was calculated only for greater
clarity. The situation is quite different when the spacing
is small. In this case, the plasma region disappears, the
electrode regions overlap, and the I–V characteristic
can be constructed only if the complete potential distri-
bution is known. An SIKD with three particle flows and

je
+
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a small electrode spacing will be considered in part II
of this work.
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APPENDIX

Asymptotic Behavior of Electron Current 
under High Negative Voltages

Consider the potential evolution at u  –∞. In this
case, clearly, ηm  –∞. An asymptote will be found
under the assumption that a quasi-neutrality plateau in
the potential distribution exists, i.e., that the electrode
spacing is small. Using the asymptotic behavior of the
functions exers(x) and Ir(x) in set (4) at ηm  –∞
(namely, exers(x) ~ 1/ , Ir(x) ~ 2  + 1/
at x  ∞), one can show that ηM, ηp, β, and j are

expanded in the small parameter ω = 1/ :

(A1)

Then, in the zeroth-order expansion in ω, we have
the following set of equations for ηM, ηp, and β:

(A2)

πx x/π πx

ηm–

ηM ηM
0 ηM

1 ω …,+ +=

ηp ηp
0 ηp

1ω …,+ +=

β β0 β1ω …,+ +=

j j0 j1ω ….+ +=

γ ηM
0–( )exers ∆η0( )exp 2 ηp

0–( )exp– 0,=

γ ηM
0( ) Ir ∆η0( ) 1–[ ]exp 2 Ir ηM
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Fig. 8. γ dependence of the zeroth-order approximation
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where ∆η0 = (  – ). The zeroth-order approxima-

tions for  and  are found from the first two equa-
tions of set (A2). It is interesting that these equations
coincide with equations for overneutralized condi-
tions in the absence of electron emission from the col-
lector [3] at high negative values of u, i.e., under ion
current saturation conditions. This is because the con-
centration of electrons emitted from the collector is
negligibly small in the plateau region and near the emit-

ter when |u|  ∞. Thus, finding  and  is
reduced to using the results of the problem solved pre-
viously.

Once  and  have been found, the parameter β0

is determined from the third equation of set (A2). With
formula (11), we obtain a zeroth-order expression for
the electron current:

(A3)

It is easy to check that (A3) is equivalent to (18), i.e.,
that asymptotic relationship (18) is exact. The γ depen-

dences of  and  are depicted in Fig. 8. It is seen

that  is a nearly linear function of ln(γ) and vanishes
at γ = γ* = 2.47. In addition, the slope of this linear
dependence is close to unity. Then, from (A3) it follows
that the current j0' must be almost independent of γ and
be close to γ*. This is illustrated in Fig. 9 (curve 1). In
a wide range of γ, j0' ≈ 2.5. Note also that, according to
Fig. 8, γ* is the lower limit of the degree of neutraliza-
tion below which the solution with an ionic VC is
absent at high negative voltages.
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Fig. 9. γ dependence of the (1) zeroth-order current j0 and
(2) coefficient j1 by ω in the first-order correction to the cur-
rent.
From set (A2) at γ  ∞, one can find analytical
asymptotic formulas for the parameters of the zeroth-
order approximation:

(A4)

Thus, if the degree of neutralization is infinitely
large, the ratio of the reverse and forward saturation
currents equals two. It should be noted, however, that
this ratio tends to saturation (i.e., to two) very slowly
(Fig. 8) and actually the saturation is never reached.

After tedious transformations, we find for the coef-
ficients by ω in (A1)

(A5)

where d = q1p2 – q2p1,

ηM
0 γ, ηp

0 1
2
--- γln( ),ln–∼ln∼

j0 γ( ) γ ηM
0–( ) 2.exp=

ηM
1 β0

πΘ
------------

p2 p1–( )
d

---------------------, η p
1 β0

πΘ
------------

q1 q2–( )
d

---------------------,= =

β1 γ ηM
0–( )exp=

× Θ
2

-------- ΘηM
1–

Θ
2

--------Ir ∆η0( )– πΘ ∆η0( )exp– ,

q1 γ/ π∆η0– exp η– M
0( ),=

p1 γ exers ∆η0( ) 1/ π∆η0–[ ]–=

× ηM
0–( )exp 2 ηM

0–( ),exp–

q2
1

∆η0
--------- ηM

0–( ) 1 Ir ∆η0( )–( )exp[=
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Fig. 10. Voltage dependences of the current in various
approximations for γ = 10: (1) exact solution, (2) jas (calcu-

lation by formula (A7)), and (3) asymptotic limit j0.
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From (11), using the value of β1, we find for the
coefficient by ω in current expansion (A1)

(A6)

The function j1'(γ) is shown in Fig. 9 (curve 2). It is
seen that, unlike j0', j1' significantly depends on γ.
Figure 10 demonstrates the exact solution j, asymptotic
dependence (first-order approximation) jas = j0 + j1ω,
and the asymptotic limit j0. The first-order approxima-
tion gives a slightly overestimated value of the current.
However, as an estimate, this value can be used even at
relatively low reverse voltages.
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Abstract—A Knudsen diode with surface ionization under overneutralized conditions is studied in the range of
reverse current. The electrode spacing is assumed to be small, which causes the potential jumps near the electrodes
to overlap. The asymptotic behavior of the current under high negative voltage is investigated. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

This paper continues our study of a Knudsen diode
with surface ionization (SIKD) in the case of unre-
stricted electron emission from the collector under
overneutralized conditions, that is, at degrees of neu-

tralization γ = (0)/ (0) > 1 (where (0) is the
concentration of ions (electrons) leaving the emitter
(collector) immediately on the electrode surface). The
diode involves three flows of particles: electrons and
ions from the emitter and electrons from the collector.

In the first part of this work [1], we considered an
SIKD with a large electrode spacing, where the poten-
tial distribution exhibits a quasi-neutrality region
(potential plateau) and the potential varies within the
narrow near-electrode regions. The potential distribu-
tion (PD) and I–V characteristics in the range of reverse
currents were examined. It was shown that, unlike
underneutralized conditions [2, 3], both a virtual anode
(VA) near the collector and an electron virtual cathode
(VC) near the emitter arise in this range of the current
and that the reverse saturation current in the I–V char-
acteristic is more than twice as high as the forward sat-
uration current.

This paper is the second part of the work, where we
study the diode with a small electrode spacing, where
the potential plateau disappears and the near electrode
potential jumps overlap. Note that the use of a small
electrode spacing is one way of improving the effi-
ciency of thermionic converters (TCs), which are, in
essence, SIKDs [4]. Therefore, the analysis of small-
spacing SIKDs is of great applied interest. The method
for calculating the current and constructing the poten-

ni
+ ne

+ ni e( )
+
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tial distribution in such devices, as well as associated
calculations, are given in Section 1 of this paper.

If γ is large and the applied voltage is high, the effect
of electron emission from the collector in small-spacing
SIKDs is insignificant. In this case, the problem of find-
ing the reverse current becomes similar to the Langmuir
problem of two opposing particle flows in a diode [5]. In
[5], Langmuir studied the neutralization of the space
charge produced in the electrode spacing by electrons
emitted from the cathode and by ions originating at the
anode. In our case, ions are generated on the hot emitter
due to surface ionization, while electrons are emitted by
the cooler collector, the electron source being under a
negative potential relative to the ion source in both cases.
Consequently, the SIKD collector and emitter can be
viewed as the cathode and the anode, respectively, in
terms of the Langmuir problem. Therefore, when com-
paring associated results, one should change signs of the
current and voltage values. In Section 2 of this part, we
study the asymptotic behavior of the SIKD reverse cur-
rent under high negative voltages and compare our data
with the classical Langmuir results.

1. ANALYSIS OF A SMALL-SPACING SIKD

In the case considered in [1], the PD has a quasi-
neutral plateau; in other words, the sum of the widths of
the near-electrode regions within which the potential
varies is much less than the electrode spacing d. In this
case, by varying d, we vary only the width of the pla-
teau without changing the passing current and the PD in
the near-electrode regions. However, if the electrode
spacing d is sufficiently small, when the near-electrode
regions overlap (see the potential diagram in Fig. 1), the
002 MAIK “Nauka/Interperiodica”
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current becomes d dependent. In Fig. 1 and thereafter,
the variables and units of measure are the same as in
Part I [1].

At high voltages (|U | @ kTE/e, where k is the Boltz-
mann constant, e is the electron charge, and TE is the
emitter temperature), the critical spacing at which the
plateau in the PD disappears depends largely on the
width of the near-collector region across which the
potential drops. The width of this region can be esti-
mated if it is assumed that the space charge is produced
mainly by collector electrons with negligibly small ini-
tial thermal velocities. In this case, the electron current,
width of the region, and the potential difference across
the region are related by the well-known Child’s law for
a vacuum diode [6]:

(1)

where me is the mass of an electron, U is the applied
voltage, and d is the electrode spacing in the diode.

Using (1), we obtain for the dimensionless critical
spacing

(2)

Here, we took into account the fact that the relative
reverse current roughly equals two in a wide range of γ
under overneutralized conditions and high dimension-
less voltages |u| [1]. The basic difference between the
PD at the critical point in the I–V characteristic and the
PD in a vacuum diode [6] is that there is an inflection
point within the spacing where the second-order deriv-
ative vanishes. Therefore, a more exact estimator of the
critical spacing appears to be

(3)

Further calculations supported the validity of such
an estimate: at δ = δc, the calculated current exceeds the
current in the plasma regime by no more than 10–20%.
The critical spacings for a number of voltages are listed
in Table 1. For given u, the electrode spacing will be
called small if δ < δc. It should be noted that the above
estimate becomes invalid if |u| is sufficiently small.

In [1], three characteristic potentials in the I–V char-
acteristic at δ > δc (plasma potential ηp, potential at the
top of the VA ηm, and potential at the top of the VC ηM)
were calculated by three equations. The first one was
derived from the condition of plasma neutrality; the
second one, from the condition that the total charge
between the top of the VA and the plateau (i.e., between
the points with the potentials ηm and ηp) equals zero;
and the third equation, from the condition that the total
charge between the plateau and the top of the VC (i.e.,
between the points with the potentials ηp and ηM)
equals zero. At small δ, the plasma potential ηp in the
PD is absent and the number of the desired parameters

j3/2
1

9π
------ 2e

me
------ 

  1/2U3/2

d2
---------,=

δ̃ 2
3
---π1/4 u 3/4 j

je
+ 0( )

------------ 
  1/2

1.25 u 3/4.≈=

δc 2δ̃.=
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diminishes by one. Of the three equations, only the one
following from the zero total charge between the VA
and VC tops (the points with the potentials ηM and ηm)
remains. It can be written in the form

(4)

Here, β = neC(ηm)/ (0); neC(ηm) is the concentration of
collector electrons at the VA top; and the coefficients A,
B, and C are found by summing the corresponding
coefficients in the equations reflecting the absence
of the charge between the plateau and the VA and VC
tops [1]:

(5)

where Gi(e)(η, η1) are the integrals of the ion (electron)
concentrations over the potential between η1 and η,

Ir(x) = exers(x) + 2 , exers(x) = exp(x)(1 –

erf( )), and erf(x) is the error function integral.
At the same time, when δ is small, there exists an

expression that equates the electrode spacing as a func-

γA βB C+ + 0.=

ne
+

A Gi ηM ηm,( ) ηM–( ) Ir ηM ηm–( ) 1–[ ] ,exp= =

B GeC ηM ηm,( )–
1
Θ
---- 1 Ir Θ ηM ηm–( )[ ]–{ } ,= =

C GeE ηM ηm,( )–=

=  ηm( ) Ir ηM ηm–( ) 1+[ ]exp 2Ir ηM( ),–

x/π
x

0

ηM

I

η

ηm

II

u
χE

ηc

χc

χ∗c

ζ

Fig. 1. Potential diagram for an SIKD under overneutralized
conditions in the range of reverse currents for small elec-
trode spacings.

Table 1

|u | δc

40 20

70 30

100 40

136 50
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tion of the characteristic potentials to a given value. In
essence, the calculation of this spacing is reduced to the
solution of Poisson’s equation for the PD in the entire
electrode spacing. In this case, it is necessary to specify
the collector work function χC, since it, in turn, speci-
fies the width of the near-collector region in the PD.
Recall that for large electrode spacings, the PDs in the
near-electrode regions were calculated only for greater
clarity. In this case, the characteristic potentials and the
current do not depend on χC and can be found without
specifying this parameter as long as the electron emis-
sion from the collector is unrestricted.

A computing algorithm for a small electrode spac-
ing is the following. One prescribes ηm and a tentative
value of ηM. From (4), the parameter β is found and the
voltage u is determined by the formula

(6)

which was derived in [1]. Then, from the relationship
χE – ηC = χC – u (Fig. 1), the collector potential ηC is
found. Once all the characteristic potentials have been
determined, one can calculate the PDs in the central
region (between the VA and VC tops) and also in the
regions adjacent to the electrodes (regions I and II in
Fig. 1) as was described in [1]. Eventually, the widths
of all three regions are found and the entire electrode
spacing as a function of the characteristic potentials
takes the form

(7)

u ηm
1
Θ
---- βln

3
2
--- Θln χE Θ 1–( )+ + ,–=

δ ηM ηm ηC, ,( ) ηd

2G η η m,( )–
---------------------------------

ηm

ηM

∫=

+ ηd

2GI η η M,( )–
-----------------------------------

0

ηM

∫ ηd

2GII η η m,( )–
------------------------------------.

ηm

ηC

∫+
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O

j/j+
e(0)

u

Fig. 2. Voltage dependence of the electron current for δ = 10
(1), 15 (2), 20 (3), and 25 (4). χE = 15, Θ = 2.
Here, G(η, ηa) = γGi(η, ηa) – βGeC(η, ηa) – GeE(η, ηa) =
–ε2(η), ηa is the potential at an extreme point (ηm or
ηM), ε(η) is the potential-dependent dimensionless
electric field strength, and the superscripts I and II refer
to the related near-electrode regions. By varying ηM

with ηm fixed, we find ηM such that the electrode spac-
ing equals some given value δ. Along with the electrode
spacing, one also calculates the dependences ζ(η) in all
three regions to obtain the desired PD. Finally, the cur-
rent density j is found by the formula

(8)

which was also derived in [1]. Formulas (6) and (8)
define the parametric dependence of j on u, i.e., the I–V
characteristic in a voltage range for which given δ is
small. It should be emphasized, however, that this algo-
rithm is also applicable to a δ – u domain that admits a
narrow plateau in the PD. On the other hand, this
approach has a natural restriction when δ is sufficiently
small (|u| is high). Indeed, as δ shrinks (|u| grows), the
VC height ηM also decreases and vanishes at a certain
δ = δ0 (u = u0) when the ion emission becomes restricted.
This approach was applied until the VC disappeared.

The voltage dependences of the current thus
obtained for γ = 10 and various electrode spacings are
depicted in Fig. 2. For δ = 10, the curve is drawn up to
the point where ηM = 0 (the point O); the others are
“cut” at u = –100. If δ is sufficiently large, the current
curves flatten. The horizontal portions of the curves
correspond to the reverse saturation current in the pres-
ence of the plateau in the PD (for example, the segment
near point II in curve 4 for δ = 25 and the PD at point II
(Fig. 3, curve 2)). As |u| grows within the horizontal
portions, the near-collector region in the PD widens and
the plateau shrinks. Subsequently, the near-electrode
regions overlap and the current grows noticeably. The
larger the δ, the higher the |u| at which the curve starts
rising. The rise voltage at various δ agrees with esti-
mates given in Table 1. Figure 3, which shows the PD
at δ = 20 and various voltages, illustrates the disappear-
ance of the quasi-neutral plateau as |u| grows.

2. COMPARISON WITH THE LANGMUIR 
PROBLEM OF TWO OPPOSING ELECTRON 

AND ION FLOWS IN A DIODE

If the electrode spacing is small, the relative contri-
bution of emitter electrons to the total concentration
decreases with increasing γ. Therefore, it is of interest
to compare our results with the solution to the problem
of electron and ion flows propagating from the opposite
electrodes. The expression for the electron current in
such a diode was first found by Langmuir [5], who
solved the problem assuming that the particles had zero
initial velocities. For the case of unrestricted electron
and ion emission, the neutralization of the electron

j

je
+ 0( )

------------ ηm( )exp
β
Θ

--------,–=
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space charge by ions was shown to increase the electron
current je by a factor of 1.87 compared with the ion-free
current j3/2 that obeys Child’s law (1). The ion and elec-

tron currents are related by the formula (ji/je)  = 1.
Note that we found a mistake in Langmuir’s work [5].
In the case of unrestricted ion emission, the relative
electron current equals 1.8655, rather than 1.8605 as in [5]
(we calculated the same integral as Langmuir to the
12th decimal place).

If the initial velocities are zero and the particle emis-
sion is unrestricted, the condition of zero electron field
strength is imposed directly on the electrodes. If the ini-
tial velocities are thermal, the zero-field points are the
VA and VC tops. Therefore, for comparison with the
Langmuir results, we will relate the electron current to
the current  that follows from Child’s law at the
effective spacing d* (spacing between the VA and VC
tops) and voltage U* (the potential difference between
the VA and VC tops). These effective values are found
during calculations.

Since the transition from the plasma condition to
conditions where the near-electrode regions heavily
overlap can be accomplished by narrowing the spacing,
let us consider the results of calculation when δ is var-
ied and γ is relatively high. By way of example, we
present the results for γ = 1000, χE = 15, χC = 3, Θ = 2,
and u = –25. For these values, δc . 15, as follows from
(1) and (2). During the calculations, δ was varied from
25 (.1.7δc) to 0.415 (the distance δ0 at which the VC
disappears). Figure 4 (curve 1) shows the δ dependence
of the current ratio I = | j |/ . When δ is large and
decreases, I drops roughly following the quadratic law.
This means that the current j in the plasma regime is
constant and the current  grows in proportion
to 1/δ*2. At δ . δc, the decrease of I slows down and I
tends to saturation. However, at δ . 3.3, the curve I(δ)
passes a minimum and then the current increases
sharply. The minimal value of I is nearly twice as high
as the Langmuir value.

Table 2 lists the ratio of the electron current to the

emitter current, I' = | j |/ (0), for different δ. It is seen

that, for δ & 3, the collector current exceeds (0) by
two or three orders of magnitude. Hence, in this range
of δ, the effect of emitter electrons is negligibly small
and the situation is close to that considered by Lang-
muir. In this situation, one might expect the smooth sat-
uration of the I(δ) curve. Note that the collector work
function was taken sufficiently small, χC = 3, so as to
provide unrestricted emission from the collector for any δ.
Actually, however, the collector work function is
greater and the electron current may become saturated
prior to reaching the ultimate point with ηM = 0.

The reason for the anomalous behavior of curve 1 in
the range of small δ in Fig. 4 can be clarified by analyz-

mi/me

j3/2*

j3/2*

j3/2*

je
+

je
+
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ing the δ dependences of δ*/δ and u*/|u| (Fig. 5). For
any δ, the effective spacing differs from the actual value
insignificantly. However, u* decreases substantially. If
the particles leaving the virtual electrodes had zero
velocity, a decrease in u* with δ would not affect the
value of I. However, together with corrections for ther-
mal spread, which shift the zero-field points from the
electrode tops into the electrode spacing, there is
another correction due to the variation of the charged
particle concentration distribution and the PD between
the electrodes. A decrease in u* must cause the PD
and current ratio I to deviate further from the Lang-
muir values.

In [7] current passage in a vacuum diode was con-
sidered, assuming that electrons are emitted with ther-
mal velocities. In the presence of the ion current, the
asymptotic expression for the electron current under
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Fig. 3. Potential distribution for δ = 20 and u = 10 (1), 30 (2),
and 60 (3). Points I–III are shown in the I–V characteristics
in Fig. 2.
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(1) and j/jT (2) for B = 1.9 and (3) I = j/jT for B = 3.3. Panel
(a) shows the same on another scale for a range of small δ.

j3/2*



1522 BABANIN et al.
high negative voltages takes the form (in our designa-
tions) [7]

(9)

Here, B = 2.7Θ–1/2 (the factor Θ–1/2 arises because u* is
measured in terms of kTE/e, and the spread in electron
velocities depends on the collector temperature TC).
The coefficient KT is responsible for the second correc-
tion mentioned above. It is natural to relate the current
to jT, not to , i.e., to divide the dependence I(δ)
(Fig. 4, curve 1) by KT (at Θ = 2, B = 1.9 in (9)). The

jT j3/2* KT , KT– 1 B u*( ) 1/2– .+= =

j3/2*

Table 2

δ I '

24.9 1.8

14.6 2.4

7.7 6.3

5.9 10.1

2.9 35.5

1.49 117

1.1 209

0.57 597

0.415 937

Table 3

γ u = –25 u = –100 u = –1000 u = –10 000

5 21 4.2 0.30 0.005

10 10 2.1 0.13      0 

102 6 1.0 0.07      0 

103 6 1.0 0.06      0 

0.6

100 20

0.8

1.0

0.4
δ

δ*/δ, u*/|u|

Fig. 5. δ dependences of δ*/δ (dashed line) and u*/|u| (solid
line).
resulting dependence is depicted by curve 2 in Fig. 4. It
is seen to have a smoother peak than curve 1.

Thus, the nonmonotonic run of the dependence I(δ)
can be explained by the second-type correction for ther-
mal spread. However, in our problem, this spread must
include velocity spreads for both electrons and ions. In
SIKDs, the latter have an even higher temperature than
the collector electrons. We will assume that, in the pres-
ence of ions, the KT vs. u dependence retains its form
and only the coefficient B changes. The curves were
constructed for different values of B in (9). Curve 3 in
Fig. 4 implies that the selection B = 3.3 eliminates com-
pletely the minimum in the j/jT vs. δ curve and allows
the curve to reach saturation smoothly and approach the
Langmuir value for j/jT at δ/δ0.

The comparison with the Langmuir problem is com-
plicated by the fact that the problem of opposing elec-
tron and ion flows in a diode has not yet been solved for
the case when the particles emitted from the electrodes
have semi-Maxwellian velocity distributions. This
problem is of independent importance. When compared
with our calculations, its solution will help in elucidat-
ing effects associated with the presence of the third
flow (electrons from the emitter).

The above analysis was carried out for actual oper-
ating voltages of SIKDs (at TE = 2000 K, |u| = 25 corre-
sponds to a voltage of about 4 V). Formally, one can
take much higher voltages and pass to the limit |u|  ∞.
In this case, the thermal velocities of the particles can
be ignored. Moreover, in this case, emitter electrons
become localized in the infinitesimal neighborhood of
the emitter and must not influence the PD and passing
current. Consequently, one can expect that the solu-
tion to our problem at |u|  ∞ will approach the
Langmuir solution over a wide range of γ. However,
the asymptotic behavior of the current at high |u| must
depend on γ.

To verify these statements, we calculated the elec-
tron current at various γ over a wide voltage range. For
each voltage value, we took the maximum possible δ
value for the conditions of unrestricted ion emission (δ0).
The dependences obtained indicate that, at u > 10 000,
the diode current is well approximated by the formula

(10)

The coefficients A and B were found by the least
squares method. It was established that A equals 1.87
for any γ, that is, coincides with the Langmuir value,
while B depends on γ: B = 4.34 for γ = 5, 3.76 for γ =
10, 3.34 for γ = 100, and 3.305 for γ = 1000. The γ
dependence of B is associated with the increased effect
of emitter electrons on the current.

Note that these results were obtained numerically.
To reliably estimate the coefficients A and B (to three
significant figures in our case), it was necessary to carry
out calculations in low-field regions near the virtual

j
j3/2*
------- A 1 B u*( ) 1/2–+[ ] .≈
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electrodes especially carefully, since these regions
introduce the greatest errors into the calculated values
of δ and, eventually, limit the accuracy of finding the
constants A and B. Our method makes it possible to
accurately calculate the PD in an SIKD.

Table 3 gives the deviations (in percent) of the val-
ues of I calculated by asymptotic formula (10) for δ =
δ0 over a wide range of γ and u. The asymptotic formula
obtained by processing the calculations for u > 10 000
also adequately describes the behavior of I at much
lower voltages. Such an asymptotic voltage depen-
dence of the relative current was also found by calculat-
ing the curve I(δ) at a relatively low voltage, |u| = 25
(Fig. 4). Moreover, the coefficient B = 3.3 in (9) found
in this way is nearly coincident with the coefficient B in
(10) for γ = 1000. The deviations from the asymptotic
behavior at low |u| and small γ are explained by the joint
effect of emitter electrons and thermal velocities of the
particles on the current. A deviation of about 6% at u =
–25 and large γ is associated only with the thermal
spread and can be reduced by including higher order
terms in the asymptotic formula.

Thus, our analysis showed that the solution to our
problem approaches the Langmuir solution [5] in a
wide range of γ at sufficiently high voltages.

CONCLUSION

The basic results of the investigations performed in
Parts I [1] and II of this work are as follows.

A method of self-consistently calculating the PDs
and I–V characteristics in an SIKD under overneutral-
ized conditions in a range of reverse current is elabo-
rated. It is shown that the PD has an ionic virtual cath-
ode near the emitter and an electron virtual anode near
the collector. Calculations were carried out in a range of
reverse currents for a number of degrees of neutraliza-
tion γ.

It is established that, under overneutralized condi-
tions, the reverse saturation current is approximately
2.5 times higher than the forward saturation current
over a wide range of γ. This result agrees well with
experimental data. The fact that the reverse-to-forward
saturation current ratio under overneutralized condi-
tions is roughly one order of magnitude higher than that
in the underneutralized regime can be used as an
express experimental criterion for identifying SIKD
operation conditions.

A computing technique in the case of small elec-
trode spacings, where the potential distribution lacks a
quasi-neutral plateau, is developed. It should be noted
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
that the use of small electrode spacings is one way to
improve the TC efficiency. The technique developed
can be useful in designing small-spacing converters.

Our results are compared with those obtained by
Langmuir for the problem of two opposing electron and
ion flows in a diode. In the limit of very high negative
voltages, the current equals the Langmuir value. It is
demonstrated that the addition of the third, even minor,
particle flow (electrons from the emitter) at low volt-
ages or large electrode spacings drastically changes the
potential distribution and the electron current value
compared with the Langmuir solution.

The computing method and the results obtained can
be used for finding the potential distributions and I–V
characteristics in the forward current range on the right
of the point α and also in the intermediate (between
over- and underneutralized conditions) regime. This is
of particular importance for the optimization of TC
parameters. It is also shown that the electron virtual
anode in the potential distribution near the collector
disappears at the point α. In addition, the asymptotic
behavior of the current at high voltage [1] suggests that
a decrease in γ causes the ionic virtual cathode to disap-
pear. Hence, one can expect radically new potential dis-
tributions in the range on the right of the point α and at
intermediate values of γ.
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Abstract—Using KCl as an example, the electronic detonation parameters are studied in solid dielectrics at
supersonic velocities of pulsed discharge channel propagation from the anode. The technique used to estimate
the detonation parameters is based on theoretical approaches and experimental methods involved in the physics
of detonation, explosion, and dense nonideal plasma. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The investigation of processes in a discharge gap
with a solid dielectric that precede the occurrence of a
breakdown channel bridging the gap showed that the
propagation of breakdown channels is accompanied by
primary phase transitions of solid dielectrics to the melt
or plasma. The first case corresponds to a cathode dis-
charge solely with a subsonic velocity v dis; the second,
solely to a supersonic discharge from the anode [1]. The
properties of the latter process have led researchers to
describe it in terms of shock waves and methods of the
detonation theory. The mechanism of the supersonic
propagation of a discharge channel has been named
electronic detonation [1, 2].

In [3], a detonation process was defined as “the
occurrence and existence of a steady-state shock wave +
energy release zone combination.” To date, several vari-
ations of this phenomenon have been established and
studied. Along with the well-known chemical detona-
tion of explosives, there also exist light and nuclear det-
onations, as well as hybrid processes, such as light-
chemical detonation, electrotechnical detonation, etc.
[4]. The general rules for the formation of a detonation
wave are similar for all the variations. An initial mate-
rial is compressed by a shock wave with a velocity D
equal to the detonation velocity. In a detonation wave,
the velocity u of all states is the same but the values of
pressure p and volume V differ. The difference between
these parameters depends on how the energy sustaining
the propagation of the shock wave is released. Depend-
ing on the conditions for energy release, detonation
may be overcompressed, undercompressed, overheated,
or overcooled [5, 6]. The most general and most fre-
quently used approach to the quantitative description of
the detonation wave parameters is based on the classi-
cal concepts, which require the following relation to be
fulfilled in the wave:

(1)D u C,+=
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where u and C are the mass velocity and velocity of
sound in the energy release zone, respectively.

Equation (1), known as the Chapman–Jouguet rela-
tionship, describes the steady-state detonation process.

ESTIMATION OF ENERGY RELEASE ZONE 
PARAMETERS IN AN ELECTRONIC 

DETONATION WAVE

In order to estimate the parameters of an electronic
detonation wave within the Chapman–Jouguet detona-
tion theory, it is appropriate to begin by finding the pos-
sible ranges of these parameters. To this end, one can
use experimental Hugoniot adiabats; i.e., the depen-
dences of the density ρsh of the dielectric or of its com-
pressibility δ = ρsh/ρ0 = V0/Vsh on the shock wave pres-
sure psh. Hugoniot adiabats for many solid and liquid
dielectrics are well known and presented elsewhere [7,
8]. Below, all the parameters of electronic detonation
waves will be calculated for potassium chloride as an
example. Thus, using Hugoniot adiabats, one can find
the effective polytropic index in the equation pVn =
const for condensed media:

(2)

If detonation is in any way initiated in a dielectric,
the values of p and n(p) found from Hugoniot adiabats
allow one to calculate (in the energy release zone of the
detonation wave) 
the compressibility 

(3)

the detonation velocity 

(4)
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the specific heat of explosive transformation 

(5)

the pressure in the detonation wave

(6)

the internal energy

, (7)

and the temperature [9]

(8)

As was mentioned in [10], Eq. (7) can be applied in
the range where the temperature T0(p, U) can be either
found experimentally or calculated reliably by methods
of statistical physics. According to [9], the temperature
T = 3800 K at a pressure p ≈ 3.3 × 1010 Pa can be taken
as the reference point T0.

Hugoniot adiabats for potassium chloride have been
studied experimentally at a pressure psh ≅  400 GPa. As
the pressure psh increases in the range 20–400 GPa, the
parameters of the detonation process in the Chapman–
Jouguet approximation (Eqs. (2)–(7)) vary in the ranges
1.92 ≤ n ≤ 4.38, 5.2 ≤ D ≤ 17.1 km/s, 1.23 ≤ δD ≤ 1.53,
6.8 ≤ Q ≤ 54.4 MJ/kg, 10 ≤ pD ≤ 200 GPa, 4.8 ≤ UD ≤
71.0 MJ/kg, and 1500 ≤ T ≤ 9300 K.1

For small velocities of electronic detonation and,
hence, relatively low pressures in the energy-release
zone, the specific heat Q sustaining the shock wave is
of Joulean nature [2]. However, this mechanism can be
applied within certain limits. For example, as the deto-
nation velocity increases to 12 × 103 m/s and, hence, the
detonation wave pressure increases to 80 GPa, the con-
ductivity of alkali-halide crystals increases by six
orders of magnitude [11]. Under these conditions, Joule
losses can no longer sustain the shock wave. For such
electronic detonation velocities, the mechanism of Q
formation should be changed.

Estimates of the degree of ionization in KCl at pD ≥
100 GPa, T ≥ 104 K, and high densities (δ > 1.5) have
given rise to the model of dense nonideal plasma, where
the general laws of detonation are retained [12, 13]. In
this model, detonation in the energy release zone
becomes a two-step process. It starts with the occur-
rence of a plasma in the state of a physical cluster
behind the shock wave front. A physical cluster is
known to be stable if a medium where it has originated
has certain values of p and T. If the medium disappears

1 If the detonation of solid explosives proceeds with D ≅ 8–
10 km/s, n is usually in the range 2.6 < n < 3.2, depending on the
material density [11].
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or its parameters change, the cluster spontaneously
breaks down with the release of the stored energy U0
[14]. During electronic detonation, the high pressure of
the electron gas, which initiates the breakdown of solid
dielectrics in the vicinity of the discharge channel, may
be a factor responsible for the breakdown of the cluster.

For a dense plasma with a degree of ionization xe ≥ 0.5,
the equations of state in the averaged sphere model can be
approximated by formulas [12, 15]2

(9)

(10)

Here, U is the internal energy,

In formulas (9) and (10), Γ and θ are the parameters
of nonideality for the ion and electron subsystem,
respectively. They are given by

(11)

where d = (0.75πne)1/3 and Ef is the Fermi energy.
From (9)–(11), one comes to 

(12)

If the functions ni (DeD) and ne(DeD) are known, a
solution to Eq. (12) allows one to estimate the temper-
ature T(DeD) of the nonideal plasma and then calculate
the parameters of nonideality Γ and θ. Then from the
values of Γ, T, and ne, the energy U stored in the plasma
can be determined with Eq. (9). The conductivity of the
plasma is calculated by the well-known Spitzer–Harm for-
mula where the Coulomb logarithm at Γ > 1 equals [12]

(13)

RESULTS AND DISCUSSION

As follows from the aforesaid, to determine the real
parameters of a material in an electronic detonation
wave, one should first find the experimental depen-
dence of the discharge channel velocity v dis and the det-
onation velocity D on the breakdown voltage Ubr. The
dependence v dis(Ubr) was found to have a threshold
value of the voltage pulse (Ubr ≥ 150 kV) starting from
which the velocity of the anode discharge increases by

2 The formulas are presented in the Gaussian system of units,
which is commonly accepted in the plasma physics.
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one to two orders of magnitude up to v dis ≅  1.5 ×
103 km/s. This is observed most vividly when the
breakdown is due to breakup by rectangular voltage
pulses (Fig. 1).
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Fig. 1. Velocities of discharge channel propagation from the
anode for the breakdown of (a) NaCl and (b) KCl due to
rectangular voltage pulses [1]. C0 is the velocity of sound.
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Fig. 2. Experimental data derived from chromatograms of
the plasma pulsed discharge plasma flowing from the
anode; (1) leading edge of the plasma glow and (2) trailing
edge of the high-speed plasma glow; v i(ti) are the time
dependences of the low-speed plasma flow velocities (i = 1,
2, 3), ∆t is the time of high-speed plasma flow and z = 0 is
the coordinate of the dielectric surface.
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Fig. 3. Detonation velocity D and the flow duration ∆t of
high-speed plasma vs. amplitude of a high-voltage rectan-
gular pulse Ubr .
The dependence D(Ubr) can be determined with the
well-known technique based on measuring the shock
wave velocity v sh in air. This shock wave is generated
by detonation products when the detonation wave
reaches the interface, where v sh ≅  D [16]. It was found
experimentally that the plasma flows out of the nano-
second discharge channel with different velocities
(Fig. 2). This suggests a considerable difference in the
plasma thermodynamic properties [17].

It is natural to assume that the high-speed plasma
flowing out of the leading part of the discharge channel
lies in the energy release zone. It has been found that
both the velocity v sh ≅  D and the outflow time ∆t vary
with voltage pulse amplitude (Fig. 3). A comparison of
these dependences with the values of D calculated from
the experimental Hugoniot adiabats show that the
velocities of electronic detonation are higher than those
expected from the shock wave experiments (see above)
at Ubr > 150 kV. Moreover, the anomalous increase in
the velocities v dis is observed in this very range of volt-
ages and detonation velocities (Fig. 1). Obviously, this
effect is related with a change in the energy release
mechanism in the electronic detonation wave. This
effect is also in agreement with the above-mentioned
transition from the Joulean to cluster mechanism of
energy release. In the detonation approximation, a dif-
ference between the velocities v dis and D at Ubr = const
attests that an oblique shock appears.

From the experimental dependences D(Ubr), one can
compare the parameters of an electronic detonation
wave in the detonation approximation and in the case of
the cluster mechanism of energy release. In the first
case, for velocities up to D = 26 km/s, the calculation is
carried out by formulas (2)–(8). In the second case, for
velocities D < 14 km/s, expressions (9)–(13) are used.
Recall that if relationship (1) is fulfilled, the parameters
of the detonation wave (pD, UD, TD, QD) define only
conditions for sustaining the shock wave with a veloc-
ity D and are not related to a specific mechanism of
releasing the energy QD.

To apply formulas (9)–(13), the effective ion charge
numbers z should be determined or specified. To this
end, the specific heat Q in the detonation wave was cal-
culated using the technique of determining a change in
the enthalpy for a known composition of detonation
products [16]. For the electronic detonation process, we
applied sequential ionization schemes and, hence, the
values of Q such that they sustain a detonation wave
with velocities D > 1.4 × 104 m/s [1]. To the values of
Q desired, there corresponded ionization schemes with
different charge numbers, which allowed us to choose
appropriate values of zeff (Fig. 4).

A comparison of these two approaches to estimating
the parameters of an electronic detonation wave at
velocities D > 14 km/s is shown in Figs. 5–7. The
dependences obtained agree qualitatively; quantita-
tively, they differ 1.4–1.6 times. The parameter of non-
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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ideality for a dense plasma with δ = 1.56 lie in the
ranges 10 < Γ < 15 and 0.1 < θ < 0.5 for 14 < D < 26 km/s.
According to the classification in [12], the electronic
subsystem in the plasma is degenerate, while the ionic
subsystem is classical. Both subsystems are character-
ized by strong interaction. The ultimate conclusion on
this issue can be made when zeff and, accordingly, the
electron density ne are determined experimentally.

Nevertheless, there is good reason to believe that the
detonation rules following from the Chapman–Jouguet
approximation combined with the aforementioned
technique for quantitatively determining the depen-
dence Q(D) allow the estimation of the electronic deto-
nation parameters in the entire range of detonation
velocities and for power densities 1013 ≤ q ≤ 1016 W/m2.

Next, it was found that a high-speed plasma flowing
out of the discharge channel to air forms a spherical
sector with an angle α ≅  π/2. In this case, the shock
wave produces a spherical surface S1 = 1.81R2(t). The
surface propagation R(t) follows the point explosion
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Fig. 4. Relationship between the specific heat Q, detonation
velocity D, and effective charge numbers z in a physical
cluster; (1) calculation by (7) and (2) calculation by (9).
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Fig. 6. Pressure in the electronic detonation wave; (1) cal-
culation (6) and (2) pressure of the degenerate electron
Fermi gas.
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law [19]3

(14)

Here, Q0 is the energy of a point explosion generating a
spherical shock wave with a surface S0 = 4πR2(t), ρ0 =
1.29 kg/m3 is the air density, and α = 0.5 at γ = 5/3.

On the other hand, the length of the energy release
zone is l = u∆t and the material mass in the zone is
given by

(15)

where r0 is the Ubr-dependent radius of the discharge
channel [20], u = D/(n + 1) is the mass velocity of
the material in the zone, and ∆t is the outflow time
(Fig. 3).

3 This law was found earlier and used in [18]. 
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Fig. 5. Internal energy of the material in the electronic det-
onation wave; (1) calculation by (7) and (2) calculation
by (9).
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Fig. 7. Temperature of the material in the electronic detona-
tion wave; (1) calculation by (8), (2) calculation by (10),
and (3) envelope.
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The values of Q calculated from

(16)

(Fig. 4) differ from those calculated by (7) by a factor
of 1.3–1.8. Taking into account the errors in determin-
ing ∆t and r0, the agreement between these values can
be considered satisfactory.

According to the detonation theory, the material in
the energy release zone is of higher density and pres-
sure and releases more thermal energy in comparison
with the material outside the zone. As was mentioned
above, for a pulsed discharge from the anode, this
shows up in the different velocities with which the
plasma flows out of the leading and channel parts of the
discharge. The properties of a channel plasma have
been discussed most fully as applied to the electro-
pulsed destruction of materials [21]. It has been found
that upon the pulsed breakdown of solid dielectrics, the
maximum density and specific energy of the channel
plasma are observed at the instant t0 the channel crosses
the discharge gap. For KCl at t = t0 + 10–7 s, these
parameters equal p = 1.0–1.5 GPa, ρ ≅  0.1 g/m3, and
Q ≤ 1.3 × 106 J/kg (the particle concentration in the plasma
is n ≅  3 × 1021 cm–3).

At this instant, the plasma temperature T ≅ 5000 K
is minimum. At the maximum of the through current in
the first period, the temperature increases up to (15–
18) × 103 K, which is accompanied by a further
decrease in the pressure (p ≅ 0.5 GPa) and plasma den-
sity (ρ ≅ 10–4 g/cm3). The parameter of nonideality Γ
drops from 2.0–2.5 to 0.2–0.5.

If we compare these values with the associated val-
ues for electronic detonation in KCl (see above), we can
easily check that the parameters in the energy release
zone do exceed those in the channel part.

CONCLUSION

A technique for estimating expected and actual
parameters of electronic detonation is offered. It is
applied to the process taking place at supersonic veloc-
ities of a pulsed discharge channel propagating from
the anode in solid dielectrics. The technique can be
helpful in studying electronic detonation in solid
dielectrics with different properties and in various
applications.

Q
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Abstract—A model of spalling that takes into account the shape and defect structure of the fracture surface is
developed. Spalling strength and its relation to various characteristics of the spalling process are studied theo-
retically and experimentally. The model proposed eliminates a number of disadvantages encountered in the con-
ventional determination of spalling strength. © 2002 MAIK “Nauka/Interperiodica”.
In spite of the recent progress in generally under-
standing the spalling process, adequate models of phe-
nomena attendant on spalling are still lacking.

Moreover, there are a number of problems in the
experimental determination of spalling strength. This
parameter is measured by various methods [1]
because of the complex wave pattern in shock-
stressed specimens, and the relation between the spal-
ling strength and the defect concentration in the spec-
imens is as yet little understood. Moreover, the defect
size distribution vs. applied load and the type of the
fracture surface in relation to the spalling strength still
remain unclear [2, 3].

In this work, by analogy with [3], we proceed from
the concept that material particles in loading and
unloading waves move as a set of mesofluxes with dif-
ferent velocities relative to each other. This concept was
repeatedly confirmed experimentally by Meshcherya-
kov and colleagues.

Along with the mean particle velocity 〈u〉 , stressing
in this case is characterized by two more parameters,
namely, the deviation of the velocity from the mean
velocity (the “pulsation” velocity ∆u = u – 〈u〉 [4]) in
terms of turbulent hydrodynamics and the difference
δu = umax – umin between the maximum and minimum
velocities of the mesofluxes. Methods of their determi-
nation are given in detail elsewhere [5].

MODEL OF THE PROCESS

Let us consider the stages of spalling. Aptukov [6]
and several other researchers discuss two stages of spal-
ling, while Naœmark and Belyaev [7] divide the process
into three. It was shown [3, 8] that the spalling crack
contour and the spalling surface are fractal clusters con-
sisting of micro- and mesodefects of the first and sec-
ond levels (according to the terminology of Panin and
coworkers [9]). Therefore, we assume that a spalling
crack is formed in four stages: the first stage, the explo-
sive appearance of multiple micro- and mesocracks; the
second stage, coalescence of individual cracks into
1063-7842/02/4712- $22.00 © 21529
groups (finite-size clusters); the third stage, coales-
cence of finite clusters into an infinite percolation (frac-
tal) cluster; and the fourth stage, disintegration of the
specimen into parts (the formation of a spalling
“plate”). The fourth stage is not obligatory; therefore,
we may consider only the first three.

Based on the model proposed, we will determine the
spalling strength of materials. In the general form, the
spalling strength σs vs. uniaxial strain εs dependence is
given by [10] σs = Kεs + (4/3)τ or, in terms of strain rate,

(1)

where K is the bulk modulus, τ is the shear strength,
τ0 is the static component of τ,  is the shear strain rate,
cs is the longitudinal plastic wave velocity, and µτ is the
shear dynamic viscosity.

Since the first stage is of explosive type and, hence,
can hardly be analyzed numerically, it is obvious that
basic processes occur at the second and third stages.
Then, we can assume that the specimen is a cracked
medium with a shear strain rate determined from the
relationship [11]

(2)

Here, G is the shear modulus, ∆h is the displacement of
the crack edges, n(l, t)dl is the number of cracks per
unit surface, V(l) is the crack velocity, and t is time.
Based on the theory of percolation clusters, we will
determine the crack size distribution function n(l, t).
According to [12], the probability p of the existence of
a finite cluster of n nodes (in our case, cracks or defects)
that is normalized in the form

has the asymptotics

σs K u〈 〉 /cs 4/3( ) τ0 µτγ̇+( ),+=
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(3)

for large n, where A is the normalizing factor, a = a(p,
d1), m = m(p, d1), and d1 is the dimension of the topo-
logical space (in our case, d1 = 2).

The exponents m and λ at d1 = 2 have the following
values:

(4)

where p∗  ≥ 1/7 is the critical probability of the forma-
tion of an infinite cluster [13]. The coefficients a(p = 0,
15 > 1/7) ≅  0.36 and a(p∗ ) = 0 at d1 = 2 [12].

The size of a finite cluster consisting of n defects
with the mean defect length l0 is L = nl0. By definition,
the probability density can be written as pndn = f(L)dL,
where f(L) is the probability density of the finite cluster
sizes falling into the range (L, L + dL). Taking (3) into
account, the probability density is given by

(5)

By definition, the fraction of clusters with a size
larger than L is

With (5) and (4), we have

or L = nx (x is the characteristic defect size). Then,

This agrees with the Rozin–Ramler law [14]

(6)

with the distribution function

which is a particular case of the Weibull distribution
function [14].

It should be noted that dependence (6) is a theoreti-
cal estimate of the distribution n, unlike the defect size
distribution

experimentally found in [15] upon shock stressing.
Here, N is the number of defects with a size larger than
R, N0 is the total number of defects, and R1 is the math-
ematical expectation of the crack length distribution
function.

Since cracks responsible for the shear strain in
Eq. (2) are shear cracks, the relationships [16]

pn p n( ) An1 m– anλ–( )exp= =

m 0 p p*< <( ) 1, m p*( ) 2,= =

λ 0 p p*< <( ) 1, λ p*( ) 0,= =

f L( ) A/l0( ) L/l0( )1 m– a L/l0( )λ–( ).exp=

Z L( ) f L( ) L.d

L

∞

∫=

Z L( ) A/l0( ) a L/l0( )–( )exp=

n x( ) A/l0( ) an x/l0( )–[ ] .exp=

n x( ) n0 b x/l0( )–[ ]exp=

F x( ) 1 n0 b x/l0( )–[ ] ,exp–=

N N0 R/R1–( )exp=

x ∆u∆t and l0 δu∆t= =
are valid.
Substituting these dependences into (6) and taking

into account that the number of spalling cracks are
equal to that of shear cracks yields

(7)

where n0 is the number of shear cracks with the mean
length l0 per unit volume.

It is reasonable to assume that the crack velocity
upon shock-wave loading is limiting and constant; i.e.,
V ≅  0.7cR (cR is the velocity of the Rayleigh surface
waves) [16]. This assumption is also supported by
experimental data [17]. For ∆h, as in [11], we choose
the critical crack opening δcr in the Leonov–Panasyuk
model [18]. Substituting (7) and the value of V into (2),
putting cR = δcr/∆t, and taking into account that µτ =
ρ∆ul0 = ρ∆uδu∆t, we obtain Eq. (1) in the form

(8)

Here, the first term in (2) is neglected because of its
smallness and ρ is the target density. As compared to
the conventional relationships for spalling strength,
expression (8) has both advantages and disadvantages.
First, it removes the question of which sound velocity
(longitudinal c1 or volume c0) should be substituted into
the standard formula [1]

(9)

where ϕ = 0.5 or ϕ = 1/(1 + c1/c0) and us = Vmax – Vmin
is the difference between the maximum and minimum
velocities of the free surface.

Second, it is unnecessary to determine ∆σ, whose
form is not quite clear, and, finally, Eq. (9) itself
becomes unnecessary for the calculation of spalling
strength.

The disadvantages of Eq. (8) are the complexity of
determining cs under nonsteady loading and difficulties
in calculating n0 and δcr. The difficulty in determining
the latter characteristic (δcr) is related mainly to the fact
that spalling is a highly dynamic process and also to
insufficiently advanced techniques for the determina-
tion of the crack resistance parameters under high-rate
stressing.

Now, consider the effect of clustering on spalling
from other points of view. As was already mentioned,
finite clusters join together at the third spalling stage to
form a fractal cluster. In this case [19], the density of
particles (defects) making up this cluster is a function
of the type

(10)

where β is the normalizing factor, H is the spalling zone
width (for an axisymmetric shock, H ≅  B, where B is the
spalling zone diameter), and D is the fractal (Haus-
dorff–Bezikovich) dimension [19].

n x( ) 0.5n0 b ∆u/δu( )–[ ] ,exp=

σs K u〈 〉 /cs 4/3( )τ0 0.5n0ρ∆uδuδcr.–+≅

σs ϕρus ∆σ,+=

n1 βH
D d1–

,≅
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In our case, n1 specifies n0 in the relationships
derived above. Then, with (10) taken into account,
Eq. (8) for spalling strength takes the form

(11)

which shows that spalling strength increases with frac-
tal dimension (by definition, D < d1). This conclusion
totally coincides with the conclusion drawn in [8] and
physically means that σs increases with the spalling sur-
face.

Now let us discuss the effect of dynamic stressing
parameters on the fractal dimension. To this end, we
take advantage of the fact that the propagation of an
elastoplastic front in a structurally nonuniform medium
is a random process. It is described by the Fokker–
Planck equation [3], which determines the nonequilib-
rium practicle velocity distribution function f(x, V, t) in
a medium:

where F1 is the applied force, m is the particle mass,
Q1 is the drift coefficient, and Q2 is the diffusion (per-
colation) coefficient.

The solution to this equation corresponds to self-
organization in a system upon the interaction of two
transfer phenomena (drift and diffusion). The Fokker–
Planck equation is known to have two types of solution:
steady-state solutions, where the argument is indepen-
dent of time, and non-steady-state solutions, which can
be found in the self-similar mode alone [20]. In the lat-
ter case, a function of two arguments x and t (in the uni-
dimensional case) is replaced by a function of one vari-
able, y = x/a(t):

where the functions l0(t) and ϕ(y) and the exponent α
are to be determined. Note that the function ϕ(y) can be
found only if the scaling properties of the drift force
(Q1mf ) and the diffusion component Q2 f are speci-
fied [20].

It was also shown in [20] that, for a stochastic sys-
tem to be self-similar, the following relationship should
be fulfilled:

where µ = ρ∆u∆h is the dynamic viscosity [4], ∆h is the
mesoflux width, ξ = 1 – D, and l0 is the characteristic
scale specifying the characteristic value of the vari-
able x.

Substituting µ and ξ into this relationship and taking
into account that l0 = (δu)t, we have

(12)

σs K u〈 〉 /cs 4/3( )τ0 0.5βρ∆uδuδcrH
D d1–

,–+=

∂f /∂t V∂f /∂x F1/m( )∂f /∂t+ +

=  –∂ Q1V( )/∂V 0.5∂2 Q2 f( )/∂V2,+

f x t,( ) l0
αϕ y( ),=

l0 µ 1 ξ–( )[ ] 1/ 1 ξ–( )t1/ 1 ξ–( ),=

δu( )t ρ∆u∆h( )D[ ] 1/Dt1/D.=
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Thus, the fractal dimension is determined by δu, t,
and  ∆u. Hence, the spalling strength of materials
depends on the velocity characteristics 〈u〉 , ∆u, δu, and
the time to failure t (see (11)).

From Eq. (12), it follows that the fractal dimension
increases with decreasing δu (thus favoring an increase
in the spalling strength with a decrease in the fractal
dimension) and increases with decreasing ∆u. As a
result, the function σs = Φ(∆u) is uncertain.

RESULTS AND DISCUSSION

Planar 7- to 35-mm-thick 12Kh18N10T steel speci-
mens (Table 1) and 5.6-mm-thick KhN75VMYu
nickel-based alloy specimens were shock-stressed
under conditions of uniaxial deformation at striker
speeds of 100–500 m/s. The striker thickness in all
cases was 1.98–2.0 mm. The testing results are given in
Figs. 1 (12Kh18N10T) and 2 (KhN75VMYu). Figure 3
shows the results of calculating the fractal dimension of
the spalling crack contour (the technique for its deter-
mination is given in [3]).

From the results given in the tables and figures, it
follows that the spalling model proposed and the rela-
tionships obtained do not contradict the experimental

Table 1.  Testing results for 12Kh18N10T steel

Shock speed, m/s ∆u, m/s δu, m/s Us, m/s

108 0 33 –

181 13.0 48 97

216 24.0 81 66

248.5 28.0 64 81

285 30.0 12 102

308 38.0 14 100

344.5 43.0 30 100

447 – 171 84.5

Table 2.  Testing results for KhN75VMYu alloy

Shock speed, m/s ∆u, m/s δu, m/s Us, m/s

217.8 24.0 13.3 164.7

230.1 25.8 18.3 168.0

251.8 25.8 19.2 160.1

276.2 25.2 1.1 174.9

299.2 25.3 16.6 153.3

343.0 27.1 8.875 177.3

350.4 25.4 4.9 189.5

363.5 29.9 6.6 183

386.6 41 13.7 176.2

298.2 49.5 2.18 193.7

Note: Values are averaged over two or three tests.
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Fig. 1. Effect of the shock speed on the parameters (1) ∆u,
(2) δu, and (3) us for 12Kh18N10T steel.
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Fig. 3. Effect of the shock speed on the fractal dimension
for (1) 12Kh18N10T and (2) KhN75VMYu. 
data. For example, the spalling rate (which defines the
spalling strength) is clearly seen to be in antiphase with
us and δu, whereas there is no clear relationship
between us and ∆u. Figure 3 also illustrates the increase
in the fractal dimension with shock speed, which in
general supports the conclusion that spalling strength
grows with fractal dimension.

Thus, we can conclude that our model adequately
fits the actual process of spalling.
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Abstract—X-ray diffraction patterns, Raman spectra, and the hardness of C70 fullerite subjected to a high pres-
sure with shear are investigated. It is shown that these conditions favor the phase transformation of molecular
fullerite into the hard amorphous phase. The hardness of a specimen removed from a diamond anvil cell loaded up
to 26 GPa under shear deformation applied is found to be equal to 30 GPa. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The superhard high-pressure phases of C60 fullerite
that are stable under normal conditions were obtained
by us earlier [1–5]. The hardness [6] and elasticity [7]
of some of them were higher than those of diamond. In
searching for novel superhard materials, we investi-
gated C70 fullerite at high pressures P and high temper-
atures T [8]. In [8], several polymorphic modifications
were reported and their nonequilibrium P–T phase dia-
gram was presented. Also, we succeeded in producing
superhard phases. The superhard phases of both fuller-
ites were obtained in both the crystalline and amor-
phous states [3, 8], the amorphous phases offering the
higher hardness [4]. The existence of the amorphous
C60 and C70 phases obtained under high pressures and
temperatures was confirmed in several studies [1–10]
and is beyond question. The most widely debated issue
has been structural and phase transformations in C70 at
room temperature. In early studies, authors reported the
observation of phase transitions at ≈1 [11], ≈2 [12], and
≈5.5 GPa [12]; however, their existence was not con-
firmed [13, 14] and subsequently attention was mainly
focused on the transition to the amorphous carbon
phase. Using X-ray diffraction methods, the authors of
[15] observed irreversible amorphization under com-
pression stresses exceeding 18 GPa. At the same time,
Raman and photoluminescence spectra [11, 16] indi-
cate reversible amorphization arising upon releasing
the pressure P = 31 GPa in high-pressure cells. These
results were obtained under high pressures directly in
diamond anvil cells. Recently, when investigating
Raman spectra [13] and electrical and mechanical
properties of C70 [14], it was found that the pressure-
induced amorphous phase begins to form at a pressure
of about 12 GPa and the specimen becomes completely
amorphous in the range 18–20 GPa [11, 13, 14]. After
1063-7842/02/4712- $22.00 © 21533
relief, the amorphous phase reverts to the initial struc-
ture of fullerite if the pressure does not exceed 35 GPa
[14]. At pressures higher than 35 GPa, the specimen
remains amorphous even after the pressure has been
removed. At pressures above 10 GPa, the electrical
resistance of C70 decreases gradually by 4–5 orders of
magnitude with a minimum at 20 GPa. As the pressure
rises further, the resistance starts increasing and attains
its initial value at P > 35 GPa [14]. The microhardness
of the amorphous phase measured by nanoindentation
after the pressure 48 GPa has been released was about
30 GPa [14].

In this paper, we studied X-ray diffraction patterns,
Raman spectra, and mechanical properties of C70 fuller-
ite at high pressures in a diamond cell where the speci-
men was under shear. The application of shear defor-
mations narrows the hysteresis of structural phase
transformations and homogenizes the phase [17]. We
expected that, under shear, the transformation of
molecular C70 fullerite into the hard phase will occur at
lower pressures and that other phase transitions will
appear. C70 fullerite of purity higher than 99% was pro-
duced in the Institute of Metallorganic Chemistry
(Nizhni Novgorod).

X-RAY DIFFRACTION

Our investigations were performed in an X-ray dia-
mond anvil cell (DAC) with shear under pressures of up
to 50 GPa [18]. High shear strains in the specimen are
produced by rotating one of the anvils with respect to
the other about the axis of stressing. The rotation is per-
formed using a thrust bearing.

In order to clarify the effect of shear strains on the
phase transitions, a pressure-transfer medium was not
applied. The nonhydrostatic character of the pressure
due to the uniaxial stressing of the specimen in the DAC
002 MAIK “Nauka/Interperiodica”
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was compensated for in part by using a gasket that was
plastic at high pressures. The surface of the immovable
anvil was covered by a ruby powder to measure the
pressure from the pressure-dependent shift of narrow
luminescent R lines of ruby (R1 = 694.2 nm and R2 =
692.7 nm). The pressure distribution in the specimen
was found from the luminescence spectra of ruby,
whose particles (1–3 µm in size) were uniformly

5
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Fig. 1. Pressure distribution in the C70 specimen along the
diameter (d) of the diamond anvil. Solid and dashed curves
correspond to the situation before and after shear, respec-
tively.
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Fig. 2. Diffraction patterns from C70 removed from the dia-
mond cell after the action of high pressure under shear:
(a) initial C70, (b) 12 (22 GPa after applying shear stress),
(c) 16 (30), and (d) 26 (40) GPa. The asterisk indicates the
diffraction peak from the steel gasket.
applied on the working surfaces of the anvils. The par-
ticle spacing was about 10 µm.

The pressure was evaluated from the more intense
line R1. The gasket with a hole where the specimen was
mounted was attached to the movable anvil. The cell
with the specimen was assembled, and stressing was
accomplished by rotating the clumping nut of a spring-
and-lever stressing system. The smoothness of stress-
ing was provided by disk springs. Diffraction patterns
from C70 pressed in the gasket were taken with a
KARD-6 X-ray diffractometer (CuKα) [19] before and
after the action of pressure. The Raman spectra were
recorded under pressure directly in the DAC.

Earlier, it was shown theoretically that plastic defor-
mation is a universal mechanism for reducing internal
strains [17] and favors polymorphic transformations. It
turned out that when C60 is subjected to shear under
pressure, phase transition to the superhard phase
occurs. This transition is accompanied by the giant
effect of self-multiplication, the pressure at the center
increasing by more than twofold [20]. Figure 1 shows
the pressure distribution in C70 along the diamond anvil
diameter before and after shear. After the rotation of the
anvil, the pressure at the center of the specimen grows
up to 30 GPa. By analogy with C60, this phenomenon
testifies to the formation of the superhard phase in C70.

The diffraction patterns from C70 taken out of the
cell after it had been subjected to a high pressure and
shear are shown in Fig. 2. Since the sizes of the speci-
men (≈250 µm in diameter and 20 µm in thickness) are
very small, we did not remove it from the gasket; there-
fore, the diffraction patterns also contain reflections
from the gasket made of stainless steel. For each of the
diffraction patterns, the pressure value after shear is
indicated. The diffraction pattern from initial C70 is pre-
sented at the bottom of Fig. 2. After being subjected to
a pressure of 22 GPa, C70 recovers the crystalline state.
However, the significant broadening of the diffraction
lines and the enhanced background under the most
intense diffraction peaks indicate the breaking of long-
range order in the lattice and partial amorphization.
Under the action of higher pressures, the amorphization
increases; however, a small amount of the crystalline
phase is present even after 40 GPa.

It should be noted that the diffraction patterns
obtained from the C70 specimens after the action of a
high pressure and shear at room temperature and those
obtained after the action of a high pressure at a high
temperature differ. High temperatures (T > 1000 K)
lead to irreversible amorphization at a pressure of 5–
13 GPa [8, 13]. In the range 2θ = 25°–30°, the diffrac-
tion patterns exhibit an intense halo. This fact suggests
that this amorphous phase has a layered structure [8].
The diffraction patterns of the C70 amorphous phase
that were obtained in the diamond cell at room temper-
ature do not contain the halo.
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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RAMAN SCATTERING

Raman spectra were excited by laser radiation
(514.5 nm) with a power density of about 50 W/cm2.
For each of the pressures, the Raman spectra of fullerite
were first recorded in the absence of shear; next, at the
same pressure after the application of shear deforma-
tion and, finally, after pressure relief and removing the
specimen from the diamond cell.

The spectra of C70 fullerite in the diamond cell can
be recorded only in the range above 1400 cm–1, where,
as is known [8], the Raman lines of fullerite are the
most intense and the measurements are unaffected by
the strong line 1333 cm–1 from the diamond anvils. In
this range (at atmospheric pressure), the most intense
line of fullerite is the high-frequency (“graphite-like”)
line at 1567 cm–1. The doublet at 1444–1468 cm–1 is
slightly weaker, and the faint line at 1511 cm–1 can also
be seen.

The behavior of these lines with an increase in pres-
sure was investigated previously [11, 13] (see Fig. 3).
Wide bands at wave numbers above 1700 cm–1 belong
to the Raman spectrum at combined frequencies of the
diamond anvils. They can serve as an internal standard
for estimating the changes in the fullerite spectrum
intensity with increasing pressure. At a pressure of
7 GPa, only two bands at 1505 and 1592 cm–1 (under
atmospheric pressure, at 1468 and 1567 cm–1, respec-
tively) can be seen. The low-frequency component of
the doublet at 1444–1468 cm–1 and the line at 1511 cm–1

virtually disappear, thereby confirming the data in
[11, 13]. At higher pressures (12 and 16 GPa), the
intensities of the lines at 1502 and 1592 cm–1 decrease
and the low-frequency component of the doublet (lying
at 1460 and 1480 cm–1 for 12 and 16 GPa, respectively)
becomes visible. In the range 7–16 GPa, the line at
1592 cm–1 almost does not shift but broadens with pres-
sure. At 26 GPa, the spectrum intensity increases and
only one very broad band that peaked at 1620 cm–1 is
observed. The appearance of the single broad band at
high pressures in the range above 1400 cm–1 instead of
the line spectrum of initial fullerite was associated
[11, 13, 14] with the crystalline-to-amorphous transi-
tion in fullerite.

The application of shear deformation considerably
modify the spectra. The spectra shown in Fig. 4 were
obtained at the same pressures and from the same spec-
imens as in Fig. 3 but under shear. After the application
of shear deformation, the pressure in the diamond cell
increases (due to self-multiplication) from 7 (before
shear) to 10 GPa (after shear), from 12 to 22 GPa, from
16 to 30 GPa, and from 26 to 40 GPa. At a pressure of
7 GPa with shear (Fig. 4), the form of the fullerite spec-
trum is close to that obtained at 16 GPa without shear.
Indeed, in both cases, one can observe a broad line near
1590 cm–1 and a faint line at 1480 cm–1. At a pressure
of 12 GPa, the line at 1590 cm–1 splits into a doublet at
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
1538–1580 cm–1. At 16 GPa, the spectrum intensity
increases noticeably, and the high-frequency component
of the doublet broadens and shifts toward 1610 cm–1.
At   26 GPa, this component becomes dominant
(1640 cm–1). Thus, shear deformation not only favors
the phase transformations in fullerite but also uncover
new features of the phase transition in the pressure
range 12–16 GPa.

16001400 1800 2000
Wave number, cm–1

d
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b

a

Raman intensity

Fig. 3. Raman spectra from C70 fullerite in the diamond cell
under high pressure before applying shear deformation:
(a) 7, (b) 12, (c) 16, and (d) 26 GPa. Arrows (here and in
Fig. 4) point to the bands discussed in the text.
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Fig. 4. Raman spectra from C70 fullerite in the diamond cell
after applying shear deformation to the specimens the spectra
from which are shown in Fig. 3. Due to self-multiplication,
the pressure applied to the specimens increased from (a) 7
to 10, (b) 12 to 22, (c) 16 to 30, and (d) 26 to 40 GPa.

Raman intensity
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After releasing the pressure and removing the spec-
imen from the diamond cell, the Raman spectra could
be recorded in the entire frequency range, since the
contribution from the spectrum of the diamond anvils
was absent. Figure 5 shows the spectra of fullerite
removed from the cell after applying the pressure and
shear. For pressures of 7 and 12 GPa (Figs. 5b, 5c), the

1600 1800 2000
Wave number, cm–1

Raman intensity
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c

b

a

140012001000800

e

Fig. 5. Raman spectra from (a) initial C70 fullerite and
(b–e) the specimens removed from the diamond cell the
spectra from which are shown in Fig. 4: (b) after applying
the pressure 7 GPa and shear deformation (10 GPa after
shear), (c) 12 (22), (d) 16 (30), and (e) 26 (40) GPa.

Y
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1

2

Fig. 6. Scratched region on the surface of the C70 specimen
removed from the diamond cell and investigated by diffrac-
tion (Fig. 2d) and spectroscopic (Fig. 5e) methods. The sizes
of the scratch are shown in the application. Arrow 1 points to
the scratch, and arrow 2 shows a hexagonal crystallite.
spectrum is seen to consist of the same narrow bands as
initial fullerite before applying the pressure (Fig. 5a).
Therefore, one may assume that the molecular skele-
tons of C70 are still retained. However, after applying
the pressure 7 GPa, the high-frequency line (1567 cm–1

in initial fullerite) shifts to 1569 cm–1, while after
applying 12 GPa, it shifts to 1557 cm–1. At the same time,
the other lines do not noticeably change their positions.
The low-frequency shift of the “graphite-like” line by
more than by 10 cm–1 may be due to the appearance of
fourfold-coordinated carbon atoms (i.e., sp3 bonds) in
fullerite molecules. As is known, molecules of original
fullerite have only threefold-coordinated carbon atoms.
As a rule, sp3 bonds appear in the process of polymer-
ization (or dimerization) of molecules. Specifically, in
the Raman spectra of fullerite containing mainly dimers
(C70)2, a new line near 1550 cm–1 was observed [21].

After applying 16 GPa, the line at 1557 cm–1

becomes very broad (with a width greater than 200 cm–1),
but a number of molecular fullerite lines still remain
(Fig. 5d). However, after applying 26 GPa, only one
broad intense line at 1558 cm–1 is seen (Fig. 5e). There-
fore, it can be assumed that, after applying 16 GPa, the
structure of the specimen is still two-phase, whereas
after 26 GPa, the specimen is nearly monophase. The
spectrum of this phase consists of one nearly symmetric
line at 1558 cm–1. In the case of carbon materials, such
a spectrum was observed in diamond-like films [22], as
well as in spatially polymerized C60 fullerite [3]. Both
materials contain a significant amount of sp3 bonds and
offer good elastic properties. After applying the pres-
sure 26 GPa, our specimen (unlike initial fullerite) was
found to be stable against laser radiation and did not
transform into amorphous carbon or graphite at a
20-fold increase in the laser radiation density.

HARDNESS MEASUREMENTS

The hardness was measured by the sclerometry
method (scratching under constant indentation load),
which was carried out with the specimens removed
from the gasket after the application of high pressure
and shear. The use of a nanosclerometer with a nanoin-
denter made of superhard C60 fullerite [4] (produced in
the Technological Institute of Superhard and Novel
Carbon Materials at a pressure of 13 GPa and a temper-
ature of 1770 K) made it possible to quantitatively
determine the hardness of the superhard materials. The
hardness H is defined as H = kP/b2, where k is the form
factor of the indenter, P is the indentation load, and b is
the scratch width. The shape and dimensions of the
scratch were determined with a Nanoscan instrument
based on the principles of atomic force microscopy [4].
The time of scratching was 2 s; the width and length of
the scratch, 0.6 and 2.5 µm, respectively; and the max-
imum indentation load, 0.1 N. The obtaining of
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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scratches and subsequent scanning were performed by
the same probe.

Figure 6 shows the scratch region on the C70 speci-
men surface. Initially, the pressure applied to the spec-
imen was 26 GPa, which increased to 40 GPa under
shear (the diffraction pattern in Fig. 2d). Against the
background of rounded amorphous features, one can
see the hexagonal prism of the C70 crystal (shown by
arrow 2 at the bottom of Fig. 6). The scratch runs
through the amorphous parts of the specimen. The
hardness determined from the scratch equals 30 GPa,
which completely coincides with that obtained in [14]
for an amorphous specimen after the action of a pres-
sure exceeding 35 GPa.

Thus, our diffraction, spectroscopic, and hardness
measurements confirm the irreversible transformation
of C70 molecular fullerite into the superhard amorphous
phase at high pressures and room temperature. Under
shear, this transformation occurs at lower pressures.
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Abstract—The fracture of a composite material, a spheroplastic consisting of a polyester resin matrix and glass
microspheres as a filler, is studied experimentally and theoretically under static and dynamic stressing. A shock
is generated by a pulsed magnetic field. The fracture type in relation to the shock parameters and material struc-
ture is analyzed. A method for testing the dynamic behavior of the material based on the incubation time accu-
mulation is suggested. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The pulsed stressing of heterogeneous gas-filled
media has not been adequately explored, although the
shock compression of porous materials is widely used
in the physics of shock waves. Interest in such materials
is dictated by the need to study their behavior as targets
used in inertial thermonuclear fusion and in buoyant
facilities of deep-sea apparatuses, as well as by the need
to synthesize novel materials capable of damping
pulsed loads. Of great practical interest is a material
where glass or carbon microspheres are embedded in a
binder: spheroplastic [1]. Such materials have high
structural and insulating properties, a relatively high
impact strength, and a small weight. For example, the
dynamic strength of a material consisting of glass
microspheres (42 vol % or 27.7 wt %) embedded in an
epoxy binder was measured to be 0.24 GPa [2]. The
reinforcement of viscoelastic binders by glass micro-
spheres decreases greatly the density of the resulting
composite and improves its damping properties. The
embedding of microspheres is a promising way to syn-
thesize heterogeneous materials with desired properties.

MATERIALS AND EXPERIMENTAL 
METHODS

In this work, we studied the deformation and
strength properties (in particular, static and dynamic
cracking resistance) of a novel spheroplastic consisting
of a polyester resin matrix and a reinforcing filler (glass
microspheres, 41 vol %). The sphere size determined
by microstructure analysis was found to vary from 6–60
to 12–60 µm (from 21 to 31 µm on average) in various
specimens. The spread in the filler particle sizes is dis-
tinctly seen in Fig. 1. The parameters of the filler are
1063-7842/02/4712- $22.00 © 21538
listed in Table 1. The mean density of the spheroplastic
found by weighing was ρ = (0.79 ± 0.01) × 103 kg/m3.

The static mechanical characteristics of the material
[3] were determined with a P-0.5 breaking machine at
an extension rate of 1.67 × 10–4 m/s. The Young’s mod-
ulus under extension was found to be E = 2400 ±
50 MPa; the rupture strength, σc = 12.4 ± 0.9 MPa; and

80 µm

Fig. 1. Fracture surface of the spheroplastic.
002 MAIK “Nauka/Interperiodica”
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the fracture toughness (critical stress intensity factor),

KIc = 0.52 ± 0.03 MPa . The longitudinal wave
velocity determined with the interferometric method
was c1 = 2196 ± 50 m/s.

The dynamic cracking resistance of the material was
estimated with a new testing method that is based on the
concept of incubation time [4]. According to this
approach, the basic parameter specifying the critical
characteristics of dynamic fracture is the incubation
time τ of a material. It is specific for each material and
can be found by testing cracked specimens. In our
experiments, the specimens were plates measuring
120 × 120 × (9–16) mm with a 60-mm-long middle
through edge notch of width 2.2 mm passing into a nar-
rower symmetrical notch of depth 1.5 mm and width
0.18 mm. The stressing scheme and the shape of the
specimen are shown in Fig. 2. When the current passes
through the lines of the stressing device, they experi-
ence a magnetic pressure, which is applied to the notch
edges. This pressure is uniformly distributed over the
specimen and is uniquely related to the current. A cur-
rent pulse is generated with a magnetic device (ξ = 2)
[5] and is measured with a Rogowski loop on a TDS-
754C oscilloscope. The pulse shape and width are
defined by the parameters of the pulse-generating
device, and the amplitude also depends on the parame-
ters of the stressing device. The pressure is found by the
formula p(t) = Psin2(πt/T), where T is the pulse width.
For strip lines of width b, the pulse amplitude P is given
by P = (µ0/2)(I/b)2, where I is the current amplitude and
µ0 = 4π × 10–7 H/m. The pulsed magnetic device can
generate microsecond current pulses of peak power up
to 1 MA and, thereby, produce controllable stress
pulses of amplitude about 1 GPa and width of >1 µs.

The experiments were carried out for the stress
pulse durations 2.76 and 4.40 µs. Figure 3 shows the
length of a crack grown in the specimen vs. pulse
amplitude. The threshold amplitude was determined by
extrapolating the crack length to zero. They were found
to be 1.68 ± 0.5 and 11.2 ± 0.4 MPa, respectively, for
the above stress pulse widths.

RESULTS AND DISCUSSION

According to our approach, two material constants,
KIc and τ, are responsible for the static and dynamic
cracking resistances of a material on a given scale level.
The critical value of the external load, as well as the rate
dependence of the fracture toughness for a given struc-
ture stressed symmetrically about the crack line, can be
found with the incubation time criterion [4]

(1)

where KI(t) is the stress intensity factor as a function of
time and τ is the incubation time.

m

KI t'( ) td τKIc,≤
t τ–

t

∫
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The stress intensity factor was found by calculation.
To do this, we considered the problem of a semi-infinite
crack whose edges are stressed by pressure pulses of a
given shape. With a unit instantaneous pulse applied to
the notch edges, the stress intensity factor is given by

(t) = α/2/ , where α = 4c2 /(c1 )
[6]. If a pulse of a given shape is applied, the stress
intensity factor is found by the time convolution of the

stress applied with (t). Thus, the stress intensity
factor is experimentally determined from the relation-
ship

(2)

KI
δ( ) t c1

2 c2
2– πc1

KI
δ( )

KI t( ) αP
π t s–( )( )/Tsin

2

2 s
---------------------------------------

0

t

∫ ds.=

Table 1.  Filler parameters

Specimen no. Size, µm Wall thickness, µm

1 48.5 15.5

3 35.1 14.7

4 21.1 14.4

6 30.5 13.1

120

60

1
L0 R

S

Cr

A

2.2

12
0

0.18

P A

1.5

Fig. 2. Pulse-generating circuit and specimen stressing
scheme. Cr, reservoir capacitor; L0, self-inductance of cur-
rent pulse generator; S, high-voltage switch; R, nonlinear
resistor; and 1, specimen. Sizes are given in millimeters.

10

100 20 30 P, MPa

20

30
Lcr, mm

1

2

Fig. 3. Experimental data for spheroplastic fracture by indi-
vidual pulses of duration (1) 4.40 and (2) 2.76 µs.
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This relationship for the stress intensity factor is
valid as long as the problem of semiinfinite crack is
applicable, i.e., until the waves reflected from the
boundaries reach the notch tip. For pulse models used
in the tests, one should consider times t ≤ 27.3 µs, i.e.,
time periods within which the longitudinal wave travels
along the notch edge. For these times, the stress inten-
sity factor vs. time is shown in Fig. 4. The value of KI(t)
grows, reaches a maximum, and then decreases. The
instant the maximum is attained slightly exceeds that of
pulse application (T/2).

0.25

50 10 15 t, µs

0.50

0.75

1.00
1.25

1.50

1.75
KI(t)/KIc

Fig. 4. Stress intensity factor vs. time. Continuous and
dashed lines refer, respectively, to the durations 4.40 and
2.76 µs.

10

10 2 3 4 5 6 T, µs

20

30

P, MPa

Fig. 5. Breaking amplitude P vs. pulse duration T.

50 10 15 T, µs

0.2

0.4

0.8

1.0
KId/KIc

0.6

Fig. 6. KId/KIc vs. pulse duration. Circles show the dynamic
fracture toughness for the durations used in the experiment.
The incubation time is found from the parameters
found experimentally: threshold pulse amplitude P and
its duration T. From these parameters, one can deter-
mine the stress intensity factor for a threshold pulse.
A  threshold pulse is a breaking pulse such that any
decrease in its amplitude no longer causes fracture.
Hence, the maximal value of the integral in (1) trans-
forms inequality (1) into an equality. From this equal-
ity, one finds the incubation time τ. The incubation time
thus found for the spheroplastic considered is τ = 3.93 ±
0.25 µs for a pulse of duration T = 2.76 µs and 3.94 ±
0.30 µs for T = 4.40 µs. Thus, the incubation time equals
3.93 µs.

Figure 5 shows the threshold pulse amplitude vs.
pulse duration. Circles are data points, and the continu-
ous curve stands for the threshold amplitude calculated
by criterion (1). The threshold amplitude determined
with the conventional critical stress intensity factor cri-
terion (KI(t) ≤ KIc) is somewhat lower (dashed curve in
Fig. 5). For the pulse durations T = 2.76 and 4.40 µs, the
breaking amplitude found with the critical stress inten-
sity factor amounts to 64 and 76%, respectively, of that
observed in the experiment.

The dynamic fracture toughness, i.e., the value of
the stress intensity coefficient at the instant of fracture
onset (KId = KI(t∗ ), where t∗  is the instant of fracture
onset) can be found with criterion (1). In this case, first
the instant of fracture onset t∗  is found from (1), and
then the stress intensity coefficient at this instant is
determined from (2). In the experiments where the frac-
ture was caused by threshold pulses, the dynamic frac-
ture toughness was found to be KId = 0.61KIc and
0.67KIc for T = 2.76 and 4.40 µs, respectively. The
instant of fracture onset t∗  was 5.4 and 6.1 µs, respec-
tively. In both cases, the fracture has a delay, i.e., occurs
some time after the stress intensity coefficients have
reached their maximum (Fig. 6).

The specific features of the deformation behavior
and fracture of heterogeneous materials are associated
with elastic stress sources arising at the continuous
interfaces between homogeneous structure elements
during deformation. The sources are due to a mismatch
between the properties of dissimilar constituents. In the
stress field, the constituents undergo various deforma-
tions and the complex shape of the interfaces can be
retained if the elastic strains exceed their mean value.

The micrographs of the fracture surface are shown
in Figs. 1, 7, and 8, and Table 2 lists the crack length vs.
filler size. The fracture of the spheroplastic takes place
largely between the glass microspheres. The crack
propagates in the binder, usually bypassing the spheres.
The spheres are crossed in few cases, as follows from
Fig. 7.

As a rule, two cracks originate at the notch, which
usually propagate at a certain angle to each other (8°–
12°). At distances of 2 or 4 mm from the fracture site,
the crack may sharply change its propagation direction,
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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deviating from the initial one by 8°–10°. Then, passing
roughly the same distance, the crack may start propa-
gating in the initial direction again. The crack travel
varies from 7 to 27 mm, depending on the shock inten-
sity. As follows from Table 2, the smaller the sphere
radius, the shorter the final length of the crack. This can
be explained by the increase in the number of obstacles
over the crack path.

The microstructure of the spheroplastic at a high
magnification is depicted in Fig. 8. The traces of the
irreversible deformation of the binder and microcracks
on several areas surrounding the glass microspheres are
seen. At an even higher magnification, one can observe
the pattern of filler fracture typical of other plastics,

80 µm

Fig. 7. Crack propagation in the spheroplastic.

Table 2.  Final crack length vs. filler size

Specimen no.
Crack length, mm

Filler size, µm
first second

1 24 27 48.5

3 9.6 11.9 35.1

4 7 11 21.1

6 9 11.2 30.5
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
e.g., of polymethylmethacrylate: specular region,
rough region, and parabolic region.

Comparing the fracture of the statically and dynam-
ically stressed material, one can conclude that the num-
ber of broken microspheres in the former case far
exceeds that in the case of pulsed stressing.

CONCLUSION

The dynamic strength properties of the spheroplas-
tic were tested with a new method based on the incuba-
tion time concept.

The threshold amplitude values obtained with the
new method differ markedly from those predicted with
the conventional stress intensity factor criterion, and
the values of the dynamic fracture toughness turn out to
be much less than KIc.

It is shown that the fracture due to threshold pulses
originates at the crack tip when the stress intensity fac-
tor starts decreasing.

The fracture analysis of the spheroplastic shows that
the smaller the spheres, the smaller the crack travel for
a given stress level.

20 µm

Fig. 8. Traces of plastic flow and microcracks on the frac-
ture surface of the spheroplastic.
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Abstract—The microdeformation behavior of polyamide-6 (PA6) oriented films is studied by X-ray diffraction
at the early stages of reorientation at an angle of 45° to the direction of primary orientation. In the elastic strain
range (up to 22%), the shear of crystallites and the rotation of fibrils take place simultaneously. The rotation is
provided by the mutual slip of neighboring lamellas inside the fibrils. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

For flexible-chain crystalline polymers, the shear of
crystallites seems to be a basic deformation process
occurring at the supermolecular level. The study of
polymer reorientation at different angles α relative to
the primary orientation direction is a suitable technique
for gaining information on the properties of polymer
systems at the supermolecular level [1, 2]. In [1], X-ray
diffraction was used to study the reorientation of poly-
ethylene films. Upon analyzing the initial (elastic)
deformation stages, it was assumed that the crystallites
are subjected to shear and gradually turn toward the
direction of secondary extension. However, the mecha-
nism of fibril rotation and the reasons why fibrils
remain intact have not been clarified. In this work, an
attempt is made to elucidate a mechanism of fibril rota-
tion upon PA6 stretching.

EXPERIMENTAL

The starting material was 70-µm-thick films of PK-4
commercial oriented polyamide. The films were addi-
tionally oriented by extending by 60% along the orien-
tation direction at 150°C. Then they were annealed in
the free state at T1 = 200°C for 2 h at a pressure of
0.13 Pa. This caused the films to shrink by 7%. After
the annealing, the films were cut into specimens at an
angle α = 45° to the direction of primary stretching in
the form of a double-sided blade with working parts
measuring 20 × 10 mm. The specimens were then
extended in steps at T2 = 20°C. X-ray diffraction pat-
terns were taken from the stressed specimens and from
those in the free state (i.e., after relaxation for 24 h).
Small-angle and large-angle X-ray scattering (SAXS
and LAXS) patterns were taken from the same section
of the specimen simultaneously. Quantitative SAXS
and LAXS measurements were performed with a
1063-7842/02/4712- $22.00 © 21543
KRM-1 X-ray camera and a DRON-2.0 diffractometer,
respectively. Ni-filtered CuKα radiation was used. The
crystallite size was calculated by the Scherrer formula.

RESULTS AND DISCUSSION

Figures 1a and 1b show the experimental scheme,
the mutual arrangement of reflections in SAXS and
LAXS patterns, the crystallite faces, and the directions
of macromolecule axes in the initial state, and Fig. 1c
demonstrates the hypothetical changes in the scattering
patterns at the early stage of deformation (within the
elastic range). The scheme uses the Tsvankin model of
fibrils (with beveled crystallites) [3], where the direc-
tion of long periods is aligned with the macromolecule
axes in the crystallites. It is also shown that shear in the
crystallites is accompanied by fibril rotation [1].

Figure 2 shows X-ray patterns taken from PA6 spec-
imens at different values of elongation ε0. For ε0 ≤ 20–
25%, the changes in the scattering patterns and speci-
men sizes are reversible (Fig. 2b). In the SAXS pat-
terns, the centers of streak reflections shift sideways
from the initial direction M of the macromolecule axes
(cf. Fig. 1c) according to the shear of the crystallites. In
the LAXS patterns, (002) reflections rotate in the azi-
muth direction toward the direction of secondary exten-
sion. At the same elongations, (200) reflections shift
insignificantly. These changes in the scattering pattern
are explained by intracrystallite shear along the (002)
planes, which is accompanied by the rotation of the
macromolecule axes (Fig. 1c), and, at the same time, by
the absence of tangible shear in the crystallites along
the (200) planes. One may assume that the shear of the
crystallites along the (200) planes also takes place but
the b axes do not rotate. However, other experiments
indicate that the shear along the (200) planes is absent.
Indeed, the shear of crystallites usually widens reflec-
002 MAIK “Nauka/Interperiodica”



 

1544

        

GINZBURG 

 

et al

 

.

                                                                                                                                                                      
(a)

W1

α å
Ö

é

W2

W1

Öé

2Θm

α
(200)

(002)

n

ω = γ
 η 90°

Ö Ö' é2Θ'm n'

W1

γ
å'

W2(200)

(002)

W1éÖ'
Öψ

 η

W2

(b) (c)

Fig. 1. Experimental scheme. (a) Reorientation scheme, (b) initial shape of crystallites and fibrils and associated X-ray patterns, and
(c) the same as in (b) under reversible (elastic) “reorientation” extension. W1, direction of primary extension; W2, direction of sec-
ondary extension; α, reorientation angle; η, shear angle of crystallites; ψ, divergence angle of equatorial reflections; n, direction of
the normal to the end faces of the crystallite; M and M', initial and new directions of the macromolecule axes, respectively; γ, rota-
tion of the macromolecule axes; ω, rotation of fibrils; 2Θm, angular position of the intensity maximum of the small-angle reflection;
and d0, long period.
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Fig. 2. SAXS and WAXS patterns taken from the PA6 films
under reorientation at an angle α = 45° for T2 = 20°C. ψ is
the divergence angle of (002) and (200) equatorial reflec-
tions. Reorientation extension is horizontal. Strain ε0 = (a) 0,
(b) 22, and (c) 35%.
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Fig. 3. Effective transverse crystallite size Heff vs. strain of
the PA6 specimen under reorientation as measured from the
(002) reflection for the (1) stressed and (2) unstressed spec-
imen and from (3) the (200) reflection for the stressed or
unstressed specimen.
tions from shear planes in the radial direction. Figure 3
shows the effective transverse crystallite size Heff vs.
strain. The widening of the (002) reflection does take
place; accordingly, the crystallite size decreases, the
decrease being reversible for strains of up to ≈22%:
after the stress is relieved, Heff recovers to the initial
value. At the same time, the width of the (200) reflec-
tion and, hence, the crystallite size remain unchanged.
This argues against the supposition that shear deforma-
tion occurs along the (200) planes.

The change in the (002) reflection width goes in par-
allel with a decrease in the reflection intensity (Fig. 4).
This may be due to a decrease in the size of coherent
scattering areas under shear: in region A (Fig. 5), these
areas retain their transverse size, whereas in regions B
and C, they shrink. This fact can be used for interpreting
a decrease in the intensity of reflections from paratropic
planes, which is often observed when highly oriented
systems are deformed along the axis of orientation [4].

When estimating the shear strain of the crystallites,
we assumed that the mean direction of the normal n to
the upper and lower faces of the crystallites coincides
with a straight line connecting the center of the SAXS
pattern with the maximal intensity of the reflection. In
the initial state, the directions of n, macromolecule axes
M, and primary orientation W1 coincide (Fig. 1b). After
the extension, they diverge (Fig. 1c). In the first approx-
imation, however, we will assume that the direction M
of the macromolecule axes in the crystallites and the
direction M1 of the fibril axes (the direction of the long
periods) coincide. Let us draw a new direction of the
macromolecule axes M' perpendicularly to the line
E'E', which passes through the centers of the (002)
reflections, since precisely these (002) planes are the
shear planes. Then, knowing the new direction of the
normal n', one can find the angles of intracrystallite
shear (see table). Since the position of the (200) reflec-
tion remains unchanged in the elastic strain range of the
specimens, the angle γ through which the direction M'
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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rotates equals the angle ψ, which is the difference
between the azimuth rotations of the reflections (002)
and (200) (Fig. 1c, table). Then, the angle γ through
which the (002) reflections rotate under the elastic
strain ε0 = 12 and 22% equals, respectively, 8° and 15°;
i.e., they are roughly half as large as the angles η. This
means that shear in the crystallites involves not only
intracrystallite slip with macromolecule rotation but
also pure shear along the macromolecule axes without
rotation. The long periods under deformation were esti-
mated by the Bragg formula and from the angular posi-
tion 2Θm of the projection of the small-angle reflection
maximum onto the new “meridian” (i.e., onto the new
direction of the macromolecule axes; Fig. 1c). With
strains of 10–12%, the long period increases by ≈7%
and then remains unchanged until necking. Figure 6
shows the deformation scheme for a fibril fragment at
ε0 ≈ 22% with all the geometrical relationships met. In the
initial (unstrained) state of the PA6 specimens, the trans-
verse and longitudinal crystallite sizes are H0 = 58 ± 2 Å
(according to the (002) reflection profile) and L0 = 52 ±
2 Å (according to the meridional (0.14.0.) reflection
profile). Since the transverse and longitudinal crystal-
lite sizes are roughly the same and the specimens are
strained at an angle of 45°, the square cross section
OBCA (Fig. 6a) takes the rhombic shape OB'C'A'; the
shear angles η1 and η2 (Fig. 6b) are roughly equal to
each other, ≈15°, so that the total shear angle η = 30°.
This is consistent with the fact that the rotations of mac-
romolecules in the crystallites are half the shear angle η
(see table).

If the position of the crystallite apexes O remains
unchanged, the long period must decrease and macro-
molecules in the amorphous regions must rotate in
opposition to the crystallite rotation. Actually, the long
period obtained by projecting the maximum position of
the small-angle reflection intensity on the direction M'
(Fig. 1c) grows by ≈7%. Just such a value of the long

40

23°40′

80

120

2Θ

1

2

I, arb. units

Fig. 4. Changes in the (002) and (200) reflection profiles.
Strain ε0 is (1) 0 and (2) 20%.
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period dε is shown in Fig. 6b. To match dε with the posi-
tion of the apex O, the apex should be placed at the
point O1. In other words, interlamellar slip in the direc-
tion Wλ by λ ≈ 20 Å (≈34% of the length of the crystal-
lite edge OA') must occur. As a result, the structure
shown in Fig. 6c forms. The angle δ between the direc-
tion of the long period and that of the macromolecule
axes in the crystallites is ≈4°, which nearly does not
affect the determination of the long period and the crys-
tallite shear angle. Therefore, even the first approxima-
tion used in selecting the direction of a “new meridian”
and estimating the long period under strain proved to be
adequate. Such a scheme explains the fact that
fibrils  remain intact (elastic deformation of the speci-
mens) and rotate toward the direction of secondary
extension, as well as validates the use of the Tsvankin
model [3] for treating experimental data. It seems that
this scheme is also valid for other polymers. It is worth
noting, however, that if the directions Mf and M diverge
significantly, it is necessary to employ the Seto–Hara
fibril model [5] (where these directions diverge) and the
long period and shear angles should be estimated by the
method of successive approximations. In fact, this

(a) (b)

ηC

B

A

B

C

A0

Fig. 5. Diagram explaining the decrease in the size of coher-
ent scattering areas and in the intensity of reflections from
the shear planes: (a) initial crystallite and (b) crystallite after
shear deformation.

Changes in the shear angle η of crystallites, divergence
angle ψ of equatorial reflections, and long period under the
reorientation of the PA6 films for α = 45°

Specimen 
strain ε, %

Shear angle η 
of crystallites, 

deg 

Divergences 
angle ψ, 

deg 

Long
period d, Å

0 0 0 100
12 15 (0) 8 (0) 107
22 30 (0) 15 (0) 107
35 (9) 55 (22) 27 (10) 107

Note: In parentheses, the residual values of these parameters after
stress release are given.
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Fig. 6. Schematic representation of the fibrillar structure of the PA6 specimen under shear deformation at an angle of 45° to the
direction of primary orientation. A fibril fragment (two crystallites and the amorphous region in between) is shown. (a) Initial state,
(b) deformed state, and (c) state after interlamellar slip.
method was used in this work; however, a single itera-
tion sufficed because of the smallness of δ.

Consider the contribution of the shear strain of the
crystallites and long periods to the total strain of the
specimen (Fig. 6c). Having projected the apexes B and
B' of the crystallite onto the direction W2 of secondary
extension, we see that the crystallite elongation in the
direction of secondary extension is 17%, that is,
roughly equals the strain of the whole specimen. Simi-
larly, having projected the points O and O1 onto the
same direction, we see that the strain of the long period
εd in the direction W2 is ≈26%, which far exceeds the
specimen strain ε0. The relationship εd > ε0 is typical of
the nonuniform deformation of long periods [6]. This
agrees with the results of [7], where it was shown that
the same PA6 films exhibit the sharply nonuniform
deformation of long periods under elastic extension at
room conditions. Interfibrillar slip under these condi-
tions is virtually absent.
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Abstract—The efficiency of conversion of pulsed CO2 laser energy to acoustic energy is measured with holo-
graphic interferometry. The method suggested is simple and does not require that fringe shifts in the interfero-
gram be converted to local pressure values in the acoustic wave. The efficiency measured for the thermal mech-
anism of energy conversion is in good agreement with analytical calculations [1] where the temperature depen-
dence of the volume thermal expansion coefficient of water is taken into account. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In our previous work [1], we derived relationships
for the efficiency of laser-to-acoustic energy conversion
for the acoustooptic (thermal) mechanism of interac-
tion and calculated the efficiency for the specific case of
the interaction between a pulsed transversely excited
atmospheric-pressure (TEA) CO2 laser with water tak-
ing into account the temperature dependence of the vol-
ume thermal expansion coefficient of water. This paper,
which is a continuation of [1], is concerned with the
experimental measurement of this efficiency by the
method of holographic interferometry.

The starting formula for calculating the conversion
efficiency has the form (see formula (3) in [1])

(1)

where ρ0 is the initial density of the medium, c0 is the
velocity of sound in the medium, EL is the laser radia-
tion energy, and PS is the excess pressure in the acoustic
pulse with respect to the initial pressure P0 at an arbi-
trary point S on the wave front surface.

To calculate the efficiency by formula (1), one must
know the pressure time profile throughout the wave
front surface rather than at a given point of the space.
The space–time pattern of the pressure field P(r, θ, t) is
most conveniently obtained with the method of holo-
graphic interferometry, which was applied by us earlier
in studying hydrodynamic phenomena accompanying
the interaction of CO2 laser radiation with water [2–4].

η 1
ρ0c0EL
----------------- PS t( )[ ] 2

td

∞–

+∞

∫ 
 
 

S,d

S

∫=
1063-7842/02/4712- $22.00 © 21547
EXPERIMENT

The experimental setup is depicted in Fig. 1. Mirror 1
directs the radiation of a pulsed TEA CO2 laser toward
water-filled cuvette 2 normally to the water surface.
Circular diaphragm 3 of diameter 2 cm cuts the most
uniform part of the laser beam, and BaF2 lens 4 (F =
30 cm) narrows the laser beam. Having passed through
the diaphragm and the lens, the radiation had an energy
of ≈1.5 J. The laser energy density εL on the surface was
varied between 0.75 and 8 J/cm2 by varying the focal
spot size. The latter, in turn, was varied by varying the
lens–water surface spacing. The spot size was deter-
mined from its print on heat-sensitive paper.

1

2

3
4

5 6 7 8

9 10

11
12

13

14

CO2

15

16
z

Fig. 1. Experimental setup.
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(a)

(b)

(c)

Fig. 2. Holographic interferograms of an acoustic wave generated when the radiation of a CO2 laser interacts with the free surface
of water at energy densities εL = (a) 1 and (b) 3 J/cm2. The distance from the surface is d = 7 cm. (c) Interaction with the rigid water–
germanium interface. εL = 0.5 J/cm2, d = 0.6 cm.
Holograms were recorded with the radiation of an
OGM-2 pulsed ruby laser 5. A laser beam passed
through diaphragm 6 of diameter ≈1.5 mm and then
was expanded to a diameter of 20 cm by means of a
telescopic system (lenses 7 and 8). Semitransparent
mirror 9 split the laser beam into object and reference
beams, which were then made coincident in the plane
of hologram 13 with mirrors 10–12. The object beam
passed through the cuvette parallel to the water surface
at a distance d = c0τd from it (τd is the time delay
between the pulses from the CO2 and ruby lasers). The
holograms were recorded using the focused image
technique: the cuvette plane (corresponding to the CO2

laser beam axis) was projected onto the hologram plane
with objective lens 14. To make the mode structures of
the object and reference beams coincident in the holo-
gram plane, objective lens 15, which is similar to lens 14,
was introduced into the reference beam. Glass wedge
16, which was rotated through a certain angle between
the first and second exposures, was used to obtain holo-
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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graphic interferograms in finite-width fringes. Typical
holographic interferograms are shown in Figs. 2a and 2b.
Figure 2c also shows the interferogram of an acoustic
wave generated at the rigid (germanium–water) inter-
face in our early experiments.

INTERFEROGRAM PROCESSING
AND EFFICIENCY CALCULATION 

WITH THE USE OF ABELIAN INVERSION

Fringe shifts are known to be integral along the line
of observation:

(2)

where ∆n(x, y, z) = n(x, y, z) – n0; n(x, y, z) and n0 are,
respectively, the local value of the refractive index in an
object and its initial value in the environment; and x1
and x2 are the boundaries of the object.

The value of ∆n and the local pressure P(x, y, z) are
related as ∆n(x, y, z) = (n0 – 1)ξP(x, y, z), where ξ is the
compressibility factor (4.5 × 10–5 atm–1 for water) and
n0 = 1.33. With this in mind, the relationship between
the fringe shift and pressure can be written in the form

(3)

where A = (n0 – 1)ξ/λ = 0.22 atm–1 cm–1 if λ = 6.94 ×
10−5 cm.

Prior to calculating the efficiency, it is necessary to
construct the spatial pressure field from the fringe shifts
in the interferogram. If the energy distribution within
the laser spot on the liquid surface is assumed to be uni-
form, the experiment geometry can be considered to be
symmetric about the vertical z axis (Fig. 1). Then,
expression (3) transforms into the Abelian integral

(4)

where R is the distance from the z axis and R0 is the
radius corresponding to the object boundary.

The spatial pressure distribution P(R, z) in an acous-
tic pulse can be found by numerically solving integral
equation (4) (Abelian inversion) [5, 6]. The spatial
pressure distribution P(R, z) obtained by processing the
interferogram in Fig. 2a is shown in Fig. 3a. To find the
distribution along the z direction, which corresponds to
the time profile of acoustic pulses on the scale z = c0t,
Abelian inversion was accomplished for several sec-
tions of the interferogram that ran normal to the z axis
in the interval between A–A' and B–B', i.e., between the
beginning and end of an acoustic perturbation. The true
spacing between these sections was ∆l = 0.6 mm, or

K y z,( ) 1
λ
--- ∆n x y z, ,( ) x,d

x1

x2

∫=

K y z,( ) A P x y z, ,( ) x,d

x1

x2

∫=

K y z,( ) 2A
P R z,( )P Rd

R
2

y2–
-----------------------------,

y

R0

∫=
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∆l/c0 = 400 ns on the time scale. It is seen that the wave
front surface F–F ', passing through the maxima of the
first positive pressure pulse, is virtually flat. It is curved
due to diffraction divergence only at the periphery of
the front and shows up in the time shift of the pressure
pulses.

Figure 3b demonstrates the time profiles of pressure
pulses at different distances from the axis of symmetry.
The time t is counted from the section A–A'. Curve 1 is
the profile of the pulse averaged in the range R = 0–
3 mm. Vertical bars show a spread in the measured
pressure values at a given time instant for these inter-
vals of R. Away from the axis of symmetry, the time
shift due to the distortion of the wave front is observed,
the negative pulse amplitude decreases markedly rela-
tive to the maximum of the positive pulse, and both
pulses somewhat widen. Such changes in the acoustic
pulse shape at the wave front periphery, as well as the
small positive pressure peak appearing in curve 1 after
the negative pulse, are typical diffraction distortions of
the pulse at distances on the order of diffraction length
LDF = a2/2c0τ [7]. In our case (the radiation spot radius
a ≈ 1 cm, positive pulse duration τ = 120–150 ns, and
the velocity of sound in water c0 = 1.5 × 105 cm/s),
LDF ≈ 25 cm and the wave travel is d ≈ 7 cm; i.e., the dif-
fraction distortion is minor. Therefore, rejecting the
time shift due to the wave front curvature, we can con-

P, atm
(‡)

(b)

A

B F
400 ns

A'

B'F'
R

3

2b
20 mm

3

2

1

0

–1

–2

–3

P, atm

1 2 4 t, 10–7 s

1

2

4
3

z

Fig. 3. (a) Two-dimensional pressure distribution in the
acoustic wave obtained by processing the interferogram in
Fig. 2a and (b) time profiles of the acoustic pulse at dis-
tances r from the z axis (1) 0–3, (2) 5, (3) 7, and (4) 9 mm.
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struct the averaged pulse profile (Fig. 4a, curve 1)
ϕ(t) ≈ (t, R) = P(R, t)/PF(R), where averaging is over
R between 0 and 5 mm. Here, PF(R) = P(R, tmax) is the
radial pressure distribution over the front and tmax is the
time position of the positive pressure maximum at a
given R. In turn, PF(R) can be represented as PF(R) =
Pmaxψ(R), where Pmax = PF(R = 0). Thus, with a fairly
good accuracy, the pressure field in the acoustic wave
can be given by

(5)

Substituting (5) into (1) yields an expression for the
conversion efficiency:

(6)

where

(7)

(8)

The functions ϕ(t) and ψ(R), which are found by
processing the holographic interferograms correspond-

ϕ
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ψ(R) = P(R)/Pmax

Fig. 4. Experimentally found functions (a) ϕ(t) and (b) ψ(R)
describing, respectively, the time profile of the acoustic
pulse and the spatial pressure distribution on the acoustic
wave front at energy densities in the focal spot (1) 1, (2) 2,
and (3) 3 J/cm2.
ing to various energy densities in the focal spot, are
depicted in Fig. 4.

The integral Φt can be found by either numerically
integrating the functions ϕ(t) found experimentally or
approximating them by analytical functions, for exam-
ple, segments of a sinusoid. In the latter case,

(9)

where ∆t+ and ∆t– are the respective durations of the
positive and negative pulses and P+ and P– are their
amplitudes.

The quantity ΨS  entering into (6) can be found
by numerically integrating the experimentally found
pressure distribution PF(R) = Pmaxψ(R) (Fig. 3b) over
the acoustic wave front:

(10)

The values of Φt and ΨS  calculated by formu-
las (9) and (10) for various energy densities in the focal
spot are listed in Table 1 (columns a). Here, the conver-
sion efficiencies obtained by substituting these values

of Φt and ΨS  into (6) are also presented.

Thus, constructing the space–time pressure field
from an interferogram, one can find the laser-to-acous-
tic energy conversion efficiency. However, the proce-
dure associated with Abelian inversion in several sec-
tions of the interferogram is tedious and not very accu-
rate. Below, we describe another much simpler way of
calculating the optical-to-acoustic energy conversion
efficiency that does not require Abelian inversion.

CALCULATION OF THE CONVERSION 
EFFICIENCY FROM INTERFEROMETRIC DATA 
INTEGRAL ALONG THE LINE OF OBSERVATION

Let us represent the pressure distribution over the
acoustic wave front as PF(R) = Pmaxψ(R), where ψ(R) is
a certain analytical function that has a maximum at R = 0
and decreases monotonically with increasing R.
A number of approximating functions ψ(R) are given in
Table 2, and their shapes are depicted in Fig. 5. Figure 5
also contains data points found by Abelian inversion
from the interferogram (Fig. 2a) for the section z = 0
and the wave front F–F'. Table 2 also lists the values of
ΨS calculated by formula (8) for each of the approxi-
mating functions and divided by the area of a circle of
radius a.
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Table 1.  Φt and  calculated (a) with Abelian inversion and (b) from the integral data

εL, J/cm2
Φt, ns , cm2 atm2 n × 107

a b a b a b

1.0 115 ± 10 130 ± 10 8.8 ± 2 10 ± 1 4.5 ± 1.5 5.7 ± 1.0

1.5 115 ± 10 160 ± 20 17.6 ± 2 17 ± 2 8.9 ± 2 12 ± 3

2.0 190 ± 20 160 ± 20 30 ± 3 31 ± 4 25 ± 5 22 ± 5

3.0 200 ± 20 190 ± 20 38 ± 5 43 ± 5 33 ± 8 36 ± 8

ΨSPmax
2

ΨSPmax
2

Table 2.  ΨS/πa2 and Γa calculated for various approximating functions

Curve no. in Fig. 5 ψ(R) ΨS/πa2 Γa

1 ψ(R) = 1 for R ≤ a, ψ(R) = 0 for R ≤ a 1.0 π/4 = 0.79

2 ψ(R) = [1 – (R/a)4] for R ≤ a 8/15 5π/24 = 0.65

3 ψ(R) = [1 – (R/a)2] for R ≤ a 1/3 3π/16 = 0.59

4 ψ(R) = [1 – |R/a |] for R ≤ a 1/6 π/6 = 0.52

5 ψ(R) = exp[–(R/a)2] 0.5 0.50
As follows from Table 2, ΨS depends significantly
on the approximating function. Specifically, its values
for curves 1 and 4 differ sixfold.

Now, for each of the functions listed in Table 2, we
calculate the maximal shift of the fringes at the axis of
the interferogram, putting z = 0 and y = 0 in (3). Then,

(11)

where x' = +∞ for Gaussian function (5) and x' = a for
the other functions.

Having found Pmax from (11), we come to an expres-

sion for ΨS  (this quantity enters into formula (6)
for the efficiency):

(12)

where

(13)

The dimensionless coefficient Γa, whose values for
various functions ψ(R) are listed in the last column of
Table 2, depends neither on Pmax nor on a and varies
with the approximating function only slightly. In partic-
ular, for functions (2)–(4), which approximate most
closely the actual distributions found by Abelian inver-
sion (Fig. 4b), the mean value of Γa is 0.59 (≈7%).
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The calculation of ΨS  by formula (12) does not
require Abelian inversion. The only parameter to be
measured in the interferogram is the fringe shift K0 on
the acoustic wave front at the axis of symmetry. Strictly
speaking, such a calculation is valid only if the wave
front is flat, since formula (11) for K0 ignores its curva-
ture. Indeed, when the wave is illuminated along the
line z = 0, integration is only over the flat part of the
front from –b to +b (Fig. 3a and data points in Fig. 5);
hence, its periphery does not contribute to K0, b mea-
sured from the interferogram.

The curvature of the wave front can be included if Γa

in (12) is replaced by Γa, b = (K0, a/K0, b)2Γa, where K0, a

and K0, b are integrals (11) calculated, respectively, for

Pmax
2

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0 1.2

123

4
5

ψ(R) = PF(R)/Pmax

R, cm

Fig. 5. (1–5) Analytical functions (see Table 2) approximat-
ing the experimental distribution ψ(R) and experimental
pressure distributions (d) over the section z = 0 and (s) over
the wave front F–F' found from the interferogram in Fig. 2a.
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Table 3.  Comparison of experimental and theoretical values of η and Pmax

εL, J/cm2
η × 107 Pmax, atm Conditions on

liquid surface1 2 3 1 2 3

1.0 5.1 1.5 4.7 3.0 ± 0.2 2.4 (1.4) 3.6 (2.2) Free surface

1.5 10.5 2.25 10 4.2 ± 0.3 3.6 (1.8) 7.2 (3.6)

2.0 24 3.0 21 6.0 ± 0.7 4.8 (1.9) 12 (4.8)

3.0 35 4.5 57 7.5 ± 0.5 7.2 (2.2) 24 (7.2)

0.5 260 100 300 8.4 ± 0.5 6.2 8.0 Rigid interface

Note: 1, experiment; 2, linear theory; 3, nonlinear theory.
x' = a and x' = b. Then, formula (12) takes the form

(14)

For parabolic function 3 in Table 2, the ratio of the
integrals K0, b/K0, a = (3.2)(b/a)[1 – (1/3)(b/a)2]. Putting
b/a = 0.8 (which corresponds to the spatial distribution
in Fig. 3a and data points in Fig. 5), we obtain
K0, a/K0, b ≈ 1.06 and Γa, b ≈ 0.66.

The values of ΨS  calculated by formula (14)
for various energy densities are summarized in Table 1
(columns b). In our experiments, the energy density on
the surface was increased by decreasing the laser spot
size; as a result, as εL grows, the diffraction distortion
of the wave front increases and the ratio b/a diminishes.
Therefore, the value Γa, b ≈ 0.66 was used only for εL =
1 and 1.5 J/cm2. At higher energy densities, the ratio b/a
was determined from the interferogram geometrically.
For example, at εL = 2 and 3 J/cm2, b/a ≈ 0.7 and 0.6,
respectively, which corresponds to Γa, b ≈ 0.76 and 0.91.
These values of Γa, b were used in the calculations. As

follows from Table 1, the values of ΨS  calculated
by formulas (10) and (14) always coincide within the
experimental error (10–15% on average).

It should be noted that the function Φt, which is nec-
essary to calculate the conversion efficiency by for-
mula (6), can also be found with a reasonable accuracy
directly from the shift of the fringe near the z axis of
symmetry (associated data are given in Table 1). In this
case, an extension of the first positive pulse due to the
superposition of time-shifted peripheral pulses is com-
pensated for by a decrease in the negative pulse ampli-
tude, so that the values of Φt calculated by (9) remain
within the experimental error with which the values of
Φt were calculated using Abelian inversion in several
sections of the interferogram (Table 1). In both cases,
the error in determining Φt is 10–20 ns and is compara-
ble to the time resolution of holographic interferometry,
which is defined by the width of a ruby laser pulse
(≈20 ns).

ΨSPmax
2 Γa b, K0 b,

2

A2
--------------------.≈

Pmax
2

Pmax
2

Obviously, our simplified method of calculating the
conversion efficiency from the integral (along the line
of observation) fringe shifts in an interferogram is the
more accurate η, the smaller the wave front curvature
due to diffraction divergence.

RESULTS AND DISCUSSION

The measured conversion efficiencies for the acous-
tooptic (thermal) interaction mechanism are summa-
rized in Table 3, where the conversion efficiencies η are
averaged over the data arrays picked up by the two mea-
suring methods (Table 1). This table also lists the theo-
retical data for η calculated by the method described
in [1] in the linear and nonlinear approximations, i.e.,
respectively, without and with considering the temper-
ature dependence of the volume thermal expansion
coefficient of water β.

As follows from Table 3, the measured values of η
for the free boundary are in good agreement (within
≈10%) with the theoretical values of η calculated in
view of the thermal nonlinearity. The only exception is
the overestimated theoretical value η = 57 × 10–7 for
εL = 3 J/cm2. The reason for such a high value is likely
to be the disregard of heat conduction in the theoretical
model adopted, as well as the linear approximation of
the temperature dependence β(T). In fact, within our
model, the water surface temperature had to rise to
100°C for ≈130 ns; that is, the evaporation had to start
and the associated evaporation-induced pressure pulse
had to appear immediately after the positive pulse.
However, as follows from the interferogram in Fig. 2b,
the evaporation-induced pressure pulse lags behind the
beginning of the acoustooptic pulse by ≈300 ns, which
indicates that the actual surface temperature at the
instant the acoustooptic pulse forms was somewhat
lower than that taken in the calculations. Note also that
the evaporation threshold (≈1.5 J/cm2) observed exper-
imentally [2] during the CO2 laser–water interaction is
much higher than the energy density (0.4 J/cm2)
needed to heat the surface to 100°C. This is another
demonstration that heat conduction should be taken
into account.
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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Table 3 also lists the maximal pressure values Pmax
in the positive pulse that were calculated from interfer-
ograms using Abelian inversion, as well as the theoret-
ical values of Pmax calculated in the linear and nonlinear
approximations (formulas (15) and (29) in [1]). At first
glance, the experimental values of Pmax are close to
those found within the linear theory. However, this
coincidence is accidental if we take into account that
the pressure was measured at a large distance d from the
surface, while the calculations were made for pressure
pulses formed immediately on the surface. With regard
for the fact that the distance d = 7 cm is comparable to
the diffraction length LDF = a2/2c0τ (which varies from
25 to 6 cm as the energy density varies from 1 to
3 J/cm2), it becomes clear that the diffraction distortion
of the pulse amplitude should be taken into account for
the experimental and theoretical pressure values to be
compared correctly. According to [7], with d/LDF ≈1 (or
with the energy density ≈2.5 J/cm2 for our case), the
pulse amplitude at the wave axis decreases roughly
threefold. The parenthesized figures in Table 3 are pulse
amplitudes estimated at a distance of 7 cm from the sur-
face with the diffraction effects included. In view of
corrections for diffraction, the theoretical values
obtained with allowance for the thermal nonlinearity
are in fairly good agreement with Pmax found experi-
mentally.

The pattern is completed by the lowest row in
Table 3, where the experimental and theoretical values
of the conversion efficiency and maximal pressure in
the acoustic pulse are listed for the case when the laser
radiation acts on the rigid (water–germanium) inter-
face. The experimental values were found by process-
ing the interferogram in Fig. 2c, which was obtained in
our earlier experiments. The laser radiation density at
the water–germanium interface with regard for the radi-
ation absorbed in the germanium was 0.5 J/cm2, and the
wave travel from the water surface was d = 6 mm. Since
d is small, a correction for diffraction divergence was
not introduced in this case. As follows from Table 3, in
this case, too, the experimental data are in good agree-
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
ment with the calculations allowing for the thermal
nonlinearity.

In the experiments described, the interferograms of
acoustic and shock waves were obtained in an energy
density interval that was much wider than shown in
Table. 3. However, at εL above 3 J/cm2, the acoustoop-
tic pressure pulse almost coincides with the evapora-
tion-induced pulse. The evaporative mechanism of gen-
erating acoustic and shock waves in a liquid and the
conversion efficiency for this mechanism will be con-
sidered in further publications.
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Abstract—The transformation of plane electromagnetic waves caused by a synchronous stepwise temporal
change in the permittivity and permeability of a layer of a free anisotropic magnetodielectric medium is con-
sidered. No constraints are imposed on the layer thickness and the jump magnitude. The problem is solved ana-
lytically with the integral equation method. Exact expressions for the electric component of the field throughout
the space after the jump are found. The expressions derived are analyzed from the physical viewpoint. © 2002
MAIK “Nauka/Interperiodica”.
INTRODUCTION

The radiation and propagation of electromagnetic
waves in media where the permittivity ε and permeabil-
ity µ change stepwise in time have been analyzed in a
variety of works (see, e.g., [1–4]). The importance of
those papers for the development of modern radiophys-
ics is difficult to overestimate. However, they consid-
ered parameter jumps in either infinite [1, 2] or semi-
infinite [3, 4] media. Therefore, it would be logical to
extend this study by introducing one more boundary,
especially with regard for the fact that an insulating
layer serves as the 1D model of a dielectric waveguide
[5]. This makes the theoretical study of wave transfor-
mation in a magnetodielectric layer due to a step
change in its parameters particularly important for
further advances in present-day optoelectron trans-
mission lines.

In this work, we study the transformation of plane
electromagnetic waves (a plane monochromatic wave
and a Gaussian pulse) in a magnetodielectric layer of a
free isotropic nonconducting magnetodielectric
medium. The layer is formed by a step change in the
permittivity and permeability from ε0 and µ0, respec-
tively, to ε1 and µ1 at the initial time instant t = 0 in the
domain x ∈  [0, d]. It is assumed that the permittivity
and permeability in the domains x ∈  (–∞, 0) and x ∈
(d, +∞) remain constant and equal to ε0 and µ0.

Let a TM wave with an electric component E0(t, x)
be present in a homogeneous isotropic nonconducting
free (unbounded) medium prior to the time instant t = 0.
Such a statement allows one to readily reduce this (gen-
erally three-dimensional) problem to the one-dimen-
sional case [6] and still makes it possible to reveal gen-
eral laws governing the transformation of plane electro-
magnetic waves in isotropic nonconducting media with
parameters that sharply vary in a layer of arbitrary size
and location.
1063-7842/02/4712- $22.00 © 21554
In our statement (t > 0), the electromagnetic field
behavior in the domain x ∈ [0, d] can be described by
the Volterra integral equation of the second kind [7]. In
this case, it takes the form

(1)

where

(2)

is the difference kernel of integral equation (1). Here,

m = , a = , v 0 = c/ , c is the veloc-
ity of light in a vacuum, δ(t) is the delta function, and
Θ(t) is the Heaviside function.

A solution to Eq. (1) in the domain x ∈ [0, d] can be
found by the resolvent method [8] using the integral

(3)

where the resolvent R(t, t', x, x') is the solution to the
integral equation

(4)

The construction of the resolvent R(t, t', x, x') satis-
fying integral equation (4) is a complicated problem

E t x,( ) E0 t x,( )=

+ t' x'K t t' x x', , ,( )E t' x',( ),d

0

d

∫d

0

+∞

∫

K t t' x x', , ,( ) 1 m2–[ ]δ t t'–( )δ x x'–( )=

–
1 a2m2–

2a2
--------------------m2 ∂

∂t
-----δ v 0 t t'–( ) x x'––( )

µ0/µ1 ε0/ε1 ε0µ0

E t x,( ) E0 t x,( )=

+ t' x'R t t' x x', , ,( )F t' x',( ),d t 0,>
0

d

∫d

0

+∞

∫

R t t' x x', , ,( ) K t t' x x', , ,( )=

+ t' x''K t t'' x x'', , ,( )R t'' t' x'' x', , ,( )F t' x',( ).d

0

d

∫d

0

+∞

∫
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consisting of two steps. First, a resolvent neglecting the
effect of boundaries is constructed; then, the part
describing the contribution of the field due to the
boundaries x = 0 and x = d appearing at the time instant
t = 0 is added. In other words,

(5)

The expression for the resolvent in the boundary-
free problem has been derived previously [4]:

(6)

where v 1 = c/ .

An expression for the second part of the resolvent,

(t, t', x, x'), is constructed in a way similar to that
used in [7], where only the permittivity of the layer
experienced a jump (Fig. 1). Figure 1 depicts schemat-
ically the layer appearing at the zero time instant. It is
split into zones indexed by two figures. The figures
indicate the number of rereflections for the world lines
of backward (first figure) and forward (second figure)
waves existing prior to a corresponding time instant in
the layer (t > 0).

Thus, according to the rereflection principle [7], an
expression for the second part of the resolvent,

(t, t', x, x'), can be found in the form

(7)

It is clear (see Fig. 1) that the integer variables M
and N in (7) must meet the inequality

(8)

Also, Fig. 1, in view of inequality (8), implies that
any set of the integer variables M and N corresponds to
a certain space–time domain of the layer. Mathemati-

R t t' x x', , ,( )  R1 t t' x x', , ,( )=

+ R2
M , N t t' x x', , ,( )Θ x'( )Θ d x'–( ).

R t t' x x', , ,( ) 1 1

m2
------– δ t t'–( )δ x x'–( )=

–
1 a2m2–

2m2
-------------------- ∂

∂t
-----δ v 1 t t'–( ) x x'––( ),

ε1µ1

R2
M N,

R2
M N,

R2
M N, t t' x x', , ,( ) 1 a2m2–

2m2
-------------------- ∂

∂t
----- 1 a2m2–

1 a2m2+
--------------------- 

 
l

l 1=

M

∑




–=

× δ v 1 t t'–( ) x– 1–( )l x' d/2–( )+(

– l 1/2–( )d ) 1 a2m2–

1 a2m2+
--------------------- 

 
s

δ v 1 t t'–( )(
s 1=

N

∑+

+ x 1–( )s 1+ x' d/2–( ) s 1/2+( )d)–+




.

M N– 1.≤
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cally, this can be represented by the set of inequalities

(9)

FIELD IN THE DISTURBED LAYER

Let the initial (primary) field be generated by a
plane monochromatic wave of unit amplitude

(10)

where k = ω0/v 0 is the wave number and ω0 is the fre-
quency of the primary wave.

Substituting (5)–(7) into (10) and (3) yields an
expression (t > 0) for the electrical component of the
field in the layer x ∈  [0, d] arising at the zero time
instant. This expression has arbitrary values of the inte-
ger variables M and N, which specify space–time
domains of the layer:

(11)

Here,

M N, N 1– N,
x v 1 t N 1–( )d/v 1–( )>
x –v 1 t N 1–( )d/v 1–( ) d;+>




⇒=

M N, M M 1–,
x v 1 t N 1–( )d/v 1–( )<
x –v 1 t N 1–( )d/v 1–( ) d;+<
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M N,  = M M,  = N N,

x v 1 t N 1–( )d/v 1–( )<
x –v 1 t Nd/v 1–( ) d+<
x –v 1 t N 1–( )d/v 1–( ) d+>
x v 1 t Nd/v 1–( ).>
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E0 t x,( ) e
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+ei amωt kx–( )=
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Fig. 1. Computational algorithm.
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where

and

where

Hereafter, the waves appearing in the formulas

will  be designated according to their amplitudes 

and .

The structure of Eq. (11) reflects the general picture
of transforming the primary monochromatic wave E0(t, x)
in the layer x ∈  [0, d] where the permittivity and perme-
ability change stepwise. At the instant of the jump, the

primary wave is split into opposing forward, , and

backward, , monochromatic waves that have new
frequencies (amω) and amplitudes compared with
those of the primary wave. Furthermore, two plane-par-
allel interfaces separating the three space domains
appear at the time instant t = 0. Therefore, either of the

waves  and , partially reflecting from the inter-

faces x = 0 and x = d, initiate respective backward, ,

and forward, , waves. The latter, rereflecting from

the interfaces, generate respective forward, , and

backward, , waves, etc. Also, at the instant the dis-
turbed layer appears jumpwise, a forward monochro-

matic wave  appears in it. This wave, which is the
transmitted primary wave with a new value of the wave
number (k/am), partially reflects from the interface x = d

and gives rise to a backward monochromatic wave .

When striking the interface x = 0, the wave  initiates

A0
± 1 am±

2m
2

----------------am, B0
±± 1 am±

2m2
----------------,= =

E2
M N, t x,( ) Θ –t x 2ld+( )/v 1+( ){

l 1=

M

∑=

× Θ t x 2l 1–( )d+( )/v 1–( )Al
+ei amωt k x 2ld–( )–( )

+ Θ t x 2ld+( )/v 1–( )Bl
+ei ωt k x 2ld–( )/am–( ) }

+ Θ –t x 2s 1+( )d+( )/v 1–( ){
s 1=

N

∑

× Θ t x 2sd–( )/v 1+( )As
–e i– amωt k x 2sd–( )+( )
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–ei ωt k x 2s 1+( )d–( )/am+( ) } ,

A j
± A0

± 1 am–
1 am+
---------------- 

 
j

, B j
± B0

± 1 am–
1 am+
---------------- 

 
j

.= =

A j
±

B j
±

A0
+

A0
–

A0
+ A0

–

A1
–

A1
+

A2
+

A2
–

B0
+

B0
–

B0
–

the process of generating pairs of respective forward

and backward waves  and  (s = 1, …, N).

Of interest is an expression for the electric compo-
nent of the field under steady-state conditions. It can be
derived from (11) if the superscript M for the zone MM
(or N for the zone NN) approaches infinity. The corre-
sponding limit on the right of (11) can easily be found
if it is taken into account that the space–time domains

where the waves  (j = 1, 2, …) exist are bounded by
plane-parallel boundaries moving in the same direction
with the same velocities. (This directly follows from
the forms and structures of the arguments of the Heavi-

side functions standing as factors by the amplitudes 
in formula (11).) These moving planes asymptotically
go to infinity, thereby leaving the finite domain of the
space free of the field due to the forward and backward

waves . Moreover, the one-sided boundaries of the

fields induced by the waves  (j = 0, 1, …), which
also go to infinity, asymptotically “make up” the fields
of the two waves in the layer. The amplitudes of these
waves are easy to find by using the formula for the sum
of an infinite geometric progression [9] (in this case, the
inequality (1 – am)/(1 + am) < 1 is fulfilled). With the
aforesaid in mind, we arrive at an expression for the
transformed component of the electric field in the layer
under steady-state conditions:

(12)

where

Thus, a jump of the permittivity and permeability in
a layer of a magnetodielectric space transforms the field
of a plane monochromatic wave into a field that is,
under steady-state conditions, the superposition of the
fields of forward and backward monochromatic waves
with new values of the wave number and amplitude.

Now let us derive an expression for the transformed
component of the electric field in the domain x ∈  [0, d]
(in the same layer created stepwise) when the primary
field has the form of a Gaussian electromagnetic pulse

(13)

Substituting (5)–(7) into (13) and (3) and integrating
the Gaussian with the formula for differentiation of
parameter-depending integral [10] yields

(14)

Bs
+ Bs

–

A j
±

A j
±

A j
±

B j
±

EM M, t x,( )
M +∞→
lim A+ei ωt kx/am–( )=

+ A–ei ωt k x d–( )/am+( ),

A± 1 am±
2m2

---------------- 1

1 am 1 am–( )e 2ikd /am±–+
---------------------------------------------------------------.=

E0 t x,( ) e
ω0t kx–( )2

–
, k ω0/v 0.= =

EM N, t x,( ) E1 t x,( ) E2
M N, t x,( ),+=
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where

and the expressions for the amplitude coefficients coin-
cide completely with those in formula (11).

The structures of expressions (11) and (14) coincide
completely. Thus, we can conclude that the transforma-
tion of a plane monochromatic electromagnetic wave is
physically totally identical to that of a Gaussian electro-
magnetic pulse when the parameters of a layer of a free
magnetodielectric space undergo a step change.

With the approach used in deriving Eq. (12), we
obtain an expression for the field electric component in
(14) under steady-state conditions:

(15)

Even if the structure of field (12) for each of the sub-
domains MM is retained, the expression for field (15)
cannot be reduced to the form of (12), because the sum
in (15) cannot be found with the formula for the sum of
an infinite geometric progression.

FIELD IN UNDISTURBED DOMAINS 
OF THE SPACE

Of interest also are expressions for the fields outside
the disturbed layer x ∈  [0, d]. With regard for the struc-
ture of expressions (11) and (14) for the fields, one may
conclude that each of the components of these fields
interacts with one of the two interfaces dividing the
space into three domains. Therefore, expressions for
the fields in the domains x ≤ 0 and x ≥ α (t > 0) can be
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+e ωt k x 2ld–( )/am–( )2

–{
l 0=

M

∑≅

+ Bl
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M @ 1
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derived if the interaction of each plane component of
fields (11) and (14) with these interfaces is consid-
ered. First, we will find a solution to the problem of
diffraction of a nonsteady plane wave given in the
general case by

(16)

which propagates in medium 1 with a velocity v 1 nor-
mally to the interface x = β between media 1 and 2 (the
velocity of the plane wave in medium 2 is v 2 =

c/ ). It is assumed that both media are homoge-
neous, isotropic, and nonconducting and have the per-
mittivity and permeability εj and µj (j = 1, 2). The math-
ematical statement of the diffraction problem has the
form

(17)

Using direct Fourier transformation, we write the
function of the primary wave as

(18)

where k1 = ω/v 1 and γ1 = β/v 1.

Now, using the condition for radiation [11], we
write the expressions for the transmitted, Etr(t, x), and
reflected, Eref(t, x), waves in the form of (18):

(19)

(20)

where k2 = ω/v 2 and γ2 = β/v 2.
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According to the principle of superposition [11], the
solution to problem (17) has the form

(21)

To find the Fourier transforms Etr(ω) and Eref(ω), we
substitute expression (21) into the boundary conditions
for the set of differential equations (17) to obtain a set
of linear algebraic equations of second order with
respect to the Fourier transforms. The solution to this
set is given by

where R is the reflection coefficient for the Fourier
transform of the plane wave reflecting from the inter-
face x = β between media 1 and 2 and T is the transmis-
sion coefficient of the Fourier transform of the plane
wave passing through the interface x = β.

To obtain the components Etr(t, x) and Eref(t, x) of
the electric field, we now consider the electric field
component as a function of three variables:

(23)

Then, using direct Fourier transformation and tak-
ing into account that the coefficients R and T are inde-
pendent of the variable of integration ω, we come to

(24)

(25)

Thus, to find expressions for the electric field com-
ponents in the undisturbed domains of the space, one
must be sure that formulas (24) and (25) are applicable
to individual terms of expressions (11) and (14). Such
an approach is valid, since both a plane monochromatic
wave and a Gaussian pulse can be represented in the
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×
E0 ω( )e
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=  R ωE0 ω( )e
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d
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∫ RE t x v– 1, ,( ).=
form of (16). Therefore, we will apply formulas (24)
and (25) to fields (11) and (14).

In order to find an expression for the primary wave
reflected from the disturbed layer into the domain x < 0
(wave 1), one should apply formula (25) to the primary
wave functions in (10) and (13). Next, in order to find
an expression for the primary wave transmitted into the

domain x > d (wave ), one should apply formula (24)

to the expressions for the waves  and  in (11)
and  (14). Formula (24) should also be applied to the

expressions for the waves  and  (s = 0, …, N) in
order to find expressions for these waves transmitted

into the domain x < 0 (waves  and , respectively).
Finally, formula (24) should be applied to the expres-

sions for the waves  and  (l = 1, …, M) in order
to find expressions for these waves transmitted into the

domain x > d (waves  and , respectively).

Before we write expressions for the fields in the
undisturbed domains, it should be noted that in expres-
sion (25) for the primary wave reflected from the inter-
face x = 0, parameters with the subscripts 1 and 2 refer,
respectively, to the undisturbed domains and the dis-
turbed layer. For the other waves, these subscripts in
expressions (24) and (25) should be understood in the
reverse sense.

With the aforesaid in the last two paragraphs,
expressions for the electric field component in the
undisturbed domains of the magnetodielectric space are
as follows:

(26.1)

(26.2)

Q0
+
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+ B0

–

As
– Bs

–

Ps
– Qs

–

Al
+ Bl

+

Pl
+ Ql

+

EN t x,( ) Θ t x/v 0+( )IF ωt kx+( )=
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l 1=
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∑
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+F am ωt k x 2ld–( )–( )( )
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(26.3)

where

It is also of obvious interest to find long-term
approximations of expressions (26), i.e., to find
fields  (26) under steady-state conditions. For a plane
monochromatic primary wave, the transition from
expressions (26.1) and (26.2) to their long-term approx-
imations is based on the same reasoning as in going
from (11) to (12). Note only that in this case, the waves

 (s = 1, …, N) and  (l = 1, …, M) asymptotically
go to infinity; hence, in the finite domain of the space,
the electric component of the field under steady-state
conditions is given by

(27)

where

Comparing expressions (12) and (27) shows that the
latter can be derived from the former directly by apply-
ing to (12) formulas (24) and (25).

If a primary wave is a Gaussian pulse, the long-term
approximations of expressions (26.1) and (26.2) have
the form
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As in the case of a plane monochromatic primary
wave, this result can be found directly by applying for-
mulas (24) and (25) to expression (15).

Because of the simplicity of expressions (27), it is
worth comparing the absolute value of the forward
wave amplitude in the domain x > d with the primary
wave amplitude. The associated numerical results for a
monochromatic primary wave are shown in Figs. 2 and
3. For certain values of relative changes in the permit-
tivity and permeability, disturbed layer thickness, and
primary wave frequency, the absolute value of the
transmitted primary wave amplitude is seen to be
enhanced.

CONCLUSION

In this work, we considered the transformation of a
plane monochromatic electromagnetic wave and a
Gaussian pulse for the case when the permittivity and
permeability undergo a jump in a layer of a free
(unbounded) magnetodielectric isotropic space. At the
instant both parameters change stepwise, two layers
form in the layer. One of them and the primary wave
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Fig. 2. Absolute value of the amplitude of the primary wave
transmitted into the domain x > d vs. relative change in the
permittivity a for relative changes in the permeability m =
0.7 (1), 1.2 (2), and 1.4 (3) at kd = 106.
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Fig. 3. Absolute value of the amplitude of the primary wave
transmitted into the domain x > d vs. relative change in the
permeability m for relative changes in the permittivity a =
0.6 (1), 1.1 (2), and 1.3 (3) at kd = 106.
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copropagate, while the other moves in the opposite
direction. The new waves and the primary wave interact
with the two planar interfaces dividing the space into
three domains and generate sets of forward and back-
ward waves throughout the space. These waves are of
two types: those induced by the parameter jump in the
layer and those initiated when the jump-induced waves
and the primary wave cross the boundaries of the layer.
For each of the waves, the domains of existence are
bounded by one or two plane-parallel boundaries mov-
ing in the opposite directions. The velocity of these
boundaries depends on the material parameters in
domains where they propagate. Once all the moving
parallel planes have asymptotically gone to infinity, the
finite domain of the space is free of the jump-induced
waves. The numerical study of the amplitude of a plane
monochromatic primary wave transmitted through the
nonsteady layer suggests that a monochromatic pri-
mary wave can be amplified within our model of distur-
bance of a free magnetodielectric space.
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Abstract—Open resonators are studied based on the scattering theory. In particular, a theory of open resonators
with a dielectric plate is constructed. This theory is used to develop a technique for measuring small dielectric
loss. Measurements of the loss tangent in diamond plates show that the volume absorption in the best samples
is ≈7 × 10–6 in the high-frequency part of the millimeter-wave range. A significant absorption in thin surface layers
that is caused by surface treatment techniques (polishing, vacuum soldering, etc.) is revealed. © 2002 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Open resonators have long been used in various
facilities that measure the complex permittivity in the
millimeter- and sub-millimeter-wave ranges [1–3]. How-
ever, ultra-low-loss materials recently developed for
power electronics, such as high-purity silicon [4] and
particularly CVD diamond [5], have sent researchers to
revise the existing concepts of open resonator operation.

When developing windows through which the energy
of megawatt millimeter-wave generators (gyrotrons) is
extracted, it was found that thin surface layers of a dia-
mond disk (used as the window through which the
microwave energy is extracted) feature an increased
absorption.

These thin (of thickness on the order of the surface
roughness) layers have been shown to appear as a result
of surface treatment by various mechanical and/or
chemical techniques, such as polishing, chemical etch-
ing, etc. The contamination is the most severe when the
disk is soldered to a metal fixture. For instance, after
soldering a diamond disk to a metal waveguide and then
to a cooler to create energy-extraction windows, an
excessive absorption arises in the thin surface layer,
which is often higher than that in the disk volume. This
excessive absorption breaks the thermal conditions of
the window to such an extent that it fails. We will not
discuss here the nature of the excessive absorption.
Note only that the problem of how to eliminate it is yet
to be resolved.

In this paper, we describe a method for measuring
extremely low dielectric losses in high-quality CVD dia-
mond plates with the help of Fabri–Perot open resonators
[5–7]. The method relies on the refined theory of open res-
onators [8] that allows for dispersion introduced into a res-
onator by a plane-parallel dielectric plate several wave-
lengths thick with highly absorbing thin surface layers.

The eigenfrequencies of the resonator modes are
found by analyzing the field structure at the exit of a
1063-7842/02/4712- $22.00 © 21561
resonator excited by a Gaussian beam. The frequencies
and the Q factors of the eigenmodes are determined with
allowance for the absorption in the plate and the coupling
losses in the mirrors. The frequencies and the Q factors
of the eigenmodes obtained by numerical analysis are
used to justify simplified analytical formulas that relate
the measured Q factors to the losses in the plate.

1. DESCRIPTION OF A RESONATOR 
WITH A PLANE-PARALLEL DIELECTRIC PLATE

Consider the resonator illustrated in Fig. 1. It is
formed by nontransparent metallic mirrors with a
radius of curvature R0 and diameter 2am that are L apart.
The ohmic reflection coefficient of both mirrors is
Rohm ≈ –1.

A coupling element (dielectric film) with a reflec-
tion coefficient jR (where j is the imaginary unit) and
transmission coefficient T makes an angle of 45° with
the resonator axis. The coupling film divides the reso-
nator into two arms with lengths L1 and L2 (L1 + L2 = L).
With such a description, the film can be viewed as a
four-port network. Ports 1 and 2 are directed toward the
dielectric plate and mirror II, respectively. Radiation is
fed to the resonator through port 3 and is extracted
through ports 3 (reflection from the resonator) and 4
(transmission through the resonator).

We assume that the coupling film is lossless and dis-
persion-free; therefore, for real R and T,

The distance from the coupling film is measured
from its center. The projection of the film onto the plane
perpendicular to the resonator axis is a circle of diame-
ter 2aex. Arm 1 contains a plane-parallel dielectric plate
of diameter 2apl, thickness Lpl, and refractive index npl =

n , where n is real and  is the loss
tangent of the dielectric material.

R
2

T2+ 1.=

1 j δpltan– δpltan
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Resonator with a dielectric plate: I and II are mirrors.
The planar surfaces of the plate are assumed to be
covered by thin films (Fig. 2) of thickness Lfil and

refractive index nfil = n , where  is
the loss tangent of the films. The plate is placed at a dis-
tance L6 from the first mirror perpendicular to the reso-
nator axis and at a distance L1, 5 (between points 1 and
5) from the coupling film (L1, 5 + Lpl + L6 = L1). The dis-
tance between the coupling film and the left film on the

dielectric plate is  = L1, 5 – Lfil, and the distance
between the right film on the dielectric plate and the

first mirror is  = L6 – Lfil.

The fields in a resonator with a dielectric plate will
be described in terms of the theory of open structures
proposed in [9, 10]. In this theory, the fields varying

1 j δfiltan– δfiltan

L̃1 5,

L̃6

Lfil Lpl

n 1 jtanδfil–

Lfil

n 1 jtanδfil–n 1 jtanδpl–

Fig. 2. Surface layers on the dielectric plate.
with time as exp( jωt), where ω is the circular fre-
quency, are assumed to have transverse (relative to the
propagation direction) components. We use linearly
polarized electric fields with amplitudes denoted by

. In each cross section of the resonator, the fields are
represented as two counterpropagating wave beams

(Fig. 1). An input wave beam with an amplitude 
impinges on the coupling film and excites the resonator.

Output wave beams with amplitudes  and  leave
the film and go out of the resonator.

Let us denote the amplitudes of the beams that travel
from the coupling film towards the first and second mir-

rors by , respectively; the amplitudes of the beams

that come to the film from these directions, by .
Equations that relate the wave beams on the coupling
film have the form

This formulation neglects beam diffraction near the
coupling film.

The variation of the beam amplitudes Ψ(x, y, z) with
the transverse coordinates x and y and longitudinal

Ψi
±

Ψ3
±

Ψ3
– Ψ4

–

Ψ1 2,
–

Ψ1 2,
+

Ψ1
– TΨ2

+,=

Ψ2
– TΨ1

+ jRΨ3
+,+=

Ψ3
– jRΨ2

+.=
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coordinate z as the beams propagate in the resonator is
described by a relationship that follows from the repre-
sentation of the field as the superposition of plane
waves. This relationship will be written in detail for the
beam propagating towards the second mirror. It has the
form

(1)

where  is the amplitude of the beam incident on the

second mirror, S2 is the propagation operator, (x, y)

and (kx, ky) are the operators of forward and inverse
double Fourier transformations,  = exp(–jkzL2), kzL2

is the phase advance,

(2)

is the longitudinal wave number of the plane wave, k =
ω/c = 2πf/c, c is the velocity of light, f is frequency, and
kx and ky are the transverse wave numbers.

We will describe resonator mirrors as phase correc-

tors, so that the amplitude  of the beam that leaves
the second mirror is related to the amplitude of the
beam incident on this mirror as

(3)

In formula (3), positive values of R0 correspond to a

concave mirror and  denotes the operator of beam
transformation by the mirror.

Relationships similar to (1) can be written for the
amplitudes of wave beams propagating in each section
of the resonator. The variation of the beam structure as
it travels from the coupling film to the left end face of
the dielectric plate is described by the operator S1, 5,

(4)

and from the left end face of the dielectric plate to its
right end face, by the operator :

(5)

Note that the refractive index npl of the plate is complex.
With such a refractive index, relationship (2) inside the
dielectric plate must be replaced by

The variation of the beam structure from the right
end face of the dielectric plate to the first mirror is

Ψ2m
+ S2Ψ2

– Φi kx ky,( )SL2
Φf x y,( )Ψ2

–,= =

) ) )

Ψ2m
+

Φf)

Φi)

SL2

kz k2 kx
2– kz

2–=

Ψ2m
–

Ψ2m
– R0Ψ2m

+=

=  Rohm 2 jk R0 1 x2 y2+

R0
2

----------------– R0––
 
 
 

Ψ2m
+ .exp

)

R0

)

Ψ5
+ S1 5, Ψ1

– Φi kx ky,( )SL1 5,
Φf x y,( )Ψ1

–,= =

) ) )

Spl

)

Ψ6pl
+ SplΨ5

– Φi kx ky,( )SLpl
Φf x y,( )Ψ5pl

– .= =

) ) )

kz npl
2 k2 kx

2– ky
2– .=
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
described by the operator S6:

(6)

The beam incident on the first mirror is related to the
beam leaving it through an equation similar to (3).

On the left end face of the left film, the field is

formed by the incident beam with the amplitude 

and the outgoing beam with the amplitude ; on the
right end face of the left film, by the incident beam with

the amplitude  and the outgoing beam with the

amplitude . These amplitudes are related as [11]

(7)

(8)

where [11] r± are the reflection coefficients for the
waves incident on the film from the second mirror and
from the plate and  are the transmission coefficients
for the waves incident on the film from the second mir-
ror and from the plate, respectively.1 We will represent
these coefficients through the thicknesses and refractive
index of the films:2

On the left side of the right film, the field is formed
by the incident and reflected beams with the amplitudes

 and , respectively; on the right side of the

1 We neglect diffraction inside the films assuming that they are
thin.

2 Here, we assume that the refractive index of the resonator
medium equals unity and the velocity of electromagnetic waves
in this medium equals the velocity of light in a vacuum.
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right film, by the beams with the amplitudes  and

. These beams are related as

(9)

(10)

A solution to the system of equations (1)–(10) yields
the fields scattered by the resonator, i.e., the beams with

the amplitudes  and .

We will characterize these fields by two coefficients
that are the functionals of the fields scattered by the res-
onator. These are the coefficient of reflection from the

resonator, , and the coefficient of transmission

through it .

In this so-called single-mode [8] case, the reflection
coefficient (transfer coefficient upon reflection) and
transmission coefficients (transfer coefficient upon
transmission) are given by

where P = dxdy is the power of the beam that

excites the resonator,  = PrtNrt, Pr = dxdy is

the power of the beam leaving the resonator toward the

incident beam, and Pt = dxdy is the power of

the beam transmitted through the resonator.
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Fig. 3. Coefficient of reflection from the resonator as a func-
tion of frequency. The figures by the curves are the values
of .δfiltan
The beam–detector coupling coefficients Nr, t char-
acterize the portion of the incident radiation that is
picked up by the detector:

where function  describes the field structure of
the detector operating mode on the coupling film; Pr, n =

ds is the power of the beam with this struc-

ture; and

where Ψt, out is the field structure of the detector operat-

ing mode on the coupling film and Pt, n = ds is

the power of the beam with this structure.
Hereafter, the beam of the detector operating mode

is assumed to be Gaussian:

with a half-width ar for the detector that measures the
reflected wave and at for the detector that measures the
transmitted wave.

A method for solving the system of equations (1)–
(10) is reported in [8]. It was solved by iterations at a
given frequency. As the initial value of the functions

, , and , we usually took the function .
The transverse distribution of the exciting wave beam

 was taken to be Gaussian:

where ab is the half-width of the exciting beam.
The amplitudes of the reflected and transmitted out-

put beams were calculated from the relationships

into which the function  found above was substi-
tuted.

Then, the frequency was varied and the response of
the resonator was measured. At certain resonance fre-
quencies fres, the reflection coefficient increased and the
transmission coefficient decreased.

Figure 3 plots the coefficient of reflection from the
resonator vs. frequency at the following realistic
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parameters: L = 400.31035 mm, R0 = 240.583 mm,
Rohm = 0.9992, Lpl = 1.84285, Lfil = 0.001 mm, n =
2.3808, am = 60 mm, aex = 60 mm, and  = 10–5.
The speed of light is taken to be c = 2.9969518 ×
1011 mm/s. We assume that the exciting beam width is
equal to the width of the beam in the resonator near the
coupling film and that the dielectric plate is at the center
of the resonator.

The maxima of the reflection coefficient correspond
to a particular resonator mode. This mode can be char-
acterized by a longitudinal index ms that is an integer
equal to the number of field maxima for this mode on
the resonator axis. The index ms can roughly be found
as an integer nearest to a number :

where

λ = c/fres, and fres is found from the solution to system
(1)–(10).

When the plate executes plane-parallel motion
along the resonator axis, the frequency of the mode
changes in general. However, for a given plate thick-
ness, the resonator length can be chosen such that the
eigenfrequency of one of the modes remains almost
unchanged. This effect is illustrated in Fig. 4, which
plots the resonance frequency for the mode with the
longitudinal index ms = 458 vs. plate displacement L at
several resonator lengths (at L = L0, which keeps the
frequency almost unchanged; at L = L0 + 5 µm; and at
L = L0 + 10 µm). Figure 5 shows the width of the reso-
nance curve of this mode vs. plate displacement from
the resonator center at L = L0 for several values of the
film loss tangent. The width varies because, as the plate
shifts, the field distribution inside it changes, which
causes the ohmic loss to change.

In the experiment, the dielectric loss tangent in the
plate was determined from the maximum values of the
mode Q factor. It was found that one can construct a
much simpler theory for a resonator with such a plate
inside that adequately describes the behavior illustrated
in Fig. 5.

RESONATOR WITH A PLANE-PARALLEL PLATE 
AND INFINITE PLANE MIRRORS

Let us apply system (1)–(10) to a resonator with
infinite plane mirrors (in this case, the integral opera-
tors  become numbers; in particular,  = exp[–jkL2],
etc.) and find the eigenfrequencies of the resonator by
setting the exciting field equal to zero. The system of

δpltan

m̃s

m̃s = 2
L Lpl 2Lfil+( ) n 1–( )+

λ
------------------------------------------------------- g( )arccos

π
------------------------– 458.003,≈

g 1 L
R0
-----– 

  ,=

Si

)

S2

)

TECHNICAL PHYSICS      Vol. 47      No. 12      2002
integral equations is then reduced to the transcendental
characteristic equation

(11)

where D = r+r– – t+t–.

To find a solution to Eq. (11), we use the perturba-
tion technique, assuming that small parameters are the

–1 r+T2Rohm 2 jk L2 L1 5,+( )–[ ]exp+[ ]

× –1 r+Rohm 2 jkl6–( )exp+[ ] 2 jknplLpl–( )exp–

× –r T2RohmD 2 jk L2 L1 5,+( )–[ ]exp+[ ]

× –r– RohmD 2 jkL6–( )exp+[ ] 0,=

170.627
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Fig. 4. Eigenfrequency versus plate displacement ∆L from
the resonator center at various L (mm).
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Fig. 5. Resonance curve width versus plate displacement ∆L
from the resonator center at various loss tangents in the
films. The figures by the curves are the values of .δfiltan
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dielectric loss tangents ( ,  ! 1), the ohmic

losses in the mirrors (δohm = 1 –  ! 1), the coefficient

of reflection from the coupling film (δcoupl = 1 – T2 ! 1),
and the thickness of the absorbing films (ϕ0 = knLfil ! 1).

In the zeroth approximation (when the small param-
eters are zero), the equation for the eigenfrequencies

δpltan δfiltan

Rohm
2

(a)

(b)

Fig. 6. Field structure in a resonator with a plate. The sides
of the plate are located at (a) the maxima and (b) zeros of
the electric field.
takes the form

(12)

It follows from Eq. (12) that, if

(13)

(14)

where m1 and m2 are the integer numbers of half-waves
falling on the resonator axis inside and outside a dielec-
tric plate with absorbing films, respectively, there exists
a mode with a wave number k0 and frequency that does
not change when the plate executes plane-parallel
motion along the resonator axis [2].

In the first-order approximation of the perturbation
theory, the variation in the eigenwavenumber ∆k = j∆k''
of this mode with the index m1 + m2 due to the coupling
losses and thermal losses in the mirrors ∆ , thermal

losses in the dielectric plate ∆ , and thermal losses in

the films that cover the plate ∆  is given by
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----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.=
First, consider the width of the resonance curve,
∆k'' = ∆  + ∆ , as a function of the plate position in
the resonator (of length L2 + L1, 5) without the covering
absorbing films:

(16)

As follows from this expression, the Q factor Q =
k0/2∆k'' of the mode of interest oscillates as the plate

kR'' kpl''

∆kR'' ∆pl''
δpltan

2
--------------≈+

×

δohm δcoupl+

k0nLpl δpltan
----------------------------

1 2r+ 2k0 L2 L1 5,+( )〈 〉cos r+
2+ +{ }

1 r+
2–

-------------------------------------------------------------------------------+

L1 L1 5, L6+ +
nLpl

---------------------------------
1 2r+ 2k0 L2 L1 5,+( )〈 〉cos r+

2+ +{ }
1 r+

2–
-------------------------------------------------------------------------------+

-----------------------------------------------------------------------------------------------------------------------.
moves along the resonator axis, reaching extrema when
2k0(L2 + L1, 5) = sπ, where s is an integer.

When s is even, the sides of the dielectric plate are
located in the zeros of the electric field of the standing
wave in the resonator. In this case, the electric field
amplitude in the dielectric plate is minimal (Fig. 6a).
The Q factor of this mode is

(17)

When s is odd, the sides of the dielectric plate are
located in the maxima of the electric field of the stand-
ing wave and the electric field amplitude in the dielec-
tric plate is maximal (Fig. 6b). The Q factor of this

Q+

k0 L2 L1 5, L6 Lpl+ + +( )
δohm δcoupl δplk

0Lpltan+ +
-------------------------------------------------------------.=
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mode is

(18)

If the dielectric is lossless, the mode with Q–, which
has the maximal electric field amplitude, also has the
higher Q factor due to the energy stored in the plate. If
the dielectric losses prevail and the energy stored in the
plate is small compared to that stored in the remaining
space of the resonator, the mode with Q+ has the higher
Q factor. As a rule, the latter case is the one observed
experimentally [2]. As follows from (16), when

or

the Q factor does not oscillate.
The dielectric losses are determined by measuring

the extremum values of the Q factors, Q+ and Q–, as
well as the Q factor of the empty resonator mode with
the same index m1 + m2 at the same frequency:

(19)

Next, by eliminating the losses in the empty resona-
tor, δohm + δcoupl, from any pair of equations (17)–(19),
we come to the following three expressions for 
in terms of Q0, Q+, and Q–. The corresponding values
are denoted as  when (17) and (19) are used;

, (18) and (19); and , (17) and (18):

(20)

(21)

(22)

When using formulas (20)–(22), one should keep in
mind that the expressions

can take both positive and negative values.
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Thus,  can be measured at two positions of
the dielectric plate: when the dielectric loss in the reso-
nator is minimal (this case is used to measure relatively
large values of , up to 10–2) and maximal (this
case is applied to ultra-low-absorption materials).

The technique that does not use the Q factor of an
empty resonator is very convenient when the parame-
ters of the plate vary in the course of the experiment, for
example, when the temperature dependence of 
is taken.

Undoubtedly, results of calculating  from
measured values of Q0, Q+, and Q– must be independent
of the plate position inside the resonator. Therefore,
when we use the three versions to calculate ,
a self-check of the result becomes possible.

When examining diamond disks (and, earlier, sili-
con disks), we found out that the theoretical 
depends strongly on their position in the resonator, the
value calculated from Q– and Q0 being significantly
higher than that calculated from Q+ and Q0 (Table 1).
This disagreement may arise, in particular, because of
additional losses on the surface of the dielectric plate.
Under the assumption that these additional losses are
concentrated in a thin surface layer, it follows from for-
mulas (15) that they are introduced only into the mode
with Q–:

(23)

The extremal values of the resonance curve width
calculated from formulas (17) and (23) agree with those
predicted by the more rigorous theory (Eqs. (1)–(10))
with an accuracy of four significant figures for the same
resonator length and at the resonance frequency calcu-
lated from solutions to (1)–(10).

From the assumption that the surface absorbing
layer on the plate sides is thin, we can evaluate the
absorption of a traveling wave separately in the volume
and at the surface of the plate.

Moreover, with this assumption, the values of
 and  found can be used to estimate the

volume, Ppl, and surface, Pfil, losses in the plate for the

δpltan

δpltan

δpltan

δpltan

δpltan

δpltan

Q–

k0 L2 L1 5, L6 n2 Lpl 2Lfil+( )+ + +[ ]
δohm δcoupl n2 δplk

0Lpltan 4n2k0Lfil δfiltan+ + +
-------------------------------------------------------------------------------------------------------------.≈

δpltan δfiltan

Table 1

Disk no. Thickness, 
mm

Frequency, 
GHz tanδpl– × 104 tanδpl+ × 105

87 0.41 152 6.5 7.6

93 0.38 166 4.0 5.8

128 0.37 170 1.7 2.5

131 0.46 136 2.0 9.6
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traveling wave at its resonance frequency. The losses
can be calculated from the following expressions:

where

Ptot

P̃
-------- δpltan δfiltan,( )

Ppl

P̃
------ δpltan 0,( )≈

+
Pfil

P̃
------- 0 δfiltan,( ) –1 K 2– Rpl

2,–=

K δpltan δfiltan,( )
t+t– iknplLpl–( )exp

1 r+r– 2iknplLpl–( )exp+
----------------------------------------------------------=

Table 2

Frequency, 
GHz tanδpl × 105

Absorption
in the plate 

volume

  × 104

Absorption
in the surface 

layers

 × 104

22DB1 (ITER-1) plate
thickness Lpl = 2.22 mm, diameter 2apl = 119 mm

56.585 5 3.5 4.0

84.867 3.5 4.4 3.0

113.153 3.0 4.9 4.0

141.432 2.45 5.2 5.0

169.710 2.45 6.2 5.0

197.990 2.5 7.1 5.0

22DB5 (ITER-3) plate
thickness Lpl = 1.86 mm, diameter 2apl = 104 mm

67.846 2.3 1.8 8

101.741 2.0 2.8 10

135.645 1.7 3.2 12

169.549 1.4 3.1 14

203.448 1.35 4.1 18

22DB6 plate
thickness Lpl = 1.85 mm, diameter 2apl = 106 mm

68.276 2.2 2.0 13

102.393 1.9 2.6 16

136.514 1.6 2.8 19

170.630 1.4 3.1 22

204.747 1.3 3.6 24

53DB1 plate
 thickness Lpl = 1.798 mm, diameter 2apl = 106 mm

70.182 1.05 0.9 4.4

105.257 1.00 1.3 5.3

140.332 0.79 1.4 5.9

175.407 0.64 1.4 6.6

Ppl

P̃
-------

Ppl

P̃
-------
is the transfer coefficient of the plate with the film,

is the coefficient of reflection from the plate, Ptot are the

total losses in the films and plate, and  is the power of
the wave incident on the plate.

DIAMOND PLATES WITH LOW DIELECTRIC 
LOSSES

The absorption in the diamond plates was mea-
sured with a setup built around a Fabri–Perot open res-
onator [12]. The measurements were conducted at the
resonance frequencies of the plates placed approxi-
mately at the center of the resonator perpendicular to its
axis. The sensitivity of the setup in terms of  is
~10–7 for <λ/2 thick diamond plates. The plates mea-
sured in the experiment were several half-waves thick
and the loss tangent was  was ~10–6. Therefore,
the sensitivity margin was sufficient for precision mea-
surements.

We tested several plates 2a = 60 mm in diameter
fabricated by the DIGAZKRON Co. (Moscow) and
four disks from De Beers. The parameters of the disks
are summarized in Tables 1 and 2.

For all the plates, the refractive index was n = 2.38
and the surface roughness was 0.5–1.0 µm. Metal
flanges were soldered to the De Beers disks through
aluminum rings by thermocompression. To these
flanges, cooling fittings and flanges needed to fasten the
window to the gyrotron and overmoded waveguide
were then welded.

Table 1 demonstrates the discrepancy between the
values of  calculated from Q– and Q0 and from
Q+ and Q0, which indicates the presence of the addi-
tional surface absorbing layer on the plates. Leaving
aside the nature of this layer, we only note that all our
attempts to appreciably clean the surfaces by various
mechanical and chemical techniques both separately
and in combination failed. As yet, the only reliable
technique for cleaning the surfaces is to heat them to
600°C in air. Apparently, the oxygen present in air com-
pletely burns out impurities from the plate surfaces.

After the heating, the values of  calculated
from Q– and Q0 and from Q+ and Q0 coincide within the
accuracy of the experiment. It is noteworthy that the
value of  remains unchanged, while the value of

 becomes equal to . This result corrobo-
rates the assumption that the additional surface absorp-
tion occurs in a very thin layer.

The thickness of this layer is impossible to measure
mechanically. We suppose that it is comparable to that
of the layer damaged by the mechanical treatment
(about 0.5–1.0 µm). On the other hand, it was found

Rpl δpltan δfiltan,( )
r+ r– 2iknplLpl–( )exp+

1 r+r– 2iknplLpl–( )exp+
----------------------------------------------------------=

P̃

δpltan

δpltan

δpltan

δpl+tan

δpl+tan

δpl–tan δpl+tan
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that the resonance frequency of the disk increases by
≈150 MHz after each heating cycle, which corresponds
to the thinning of the plate by approximately 1 µm.
These data have given impetus to the development of
the above theory.

Table 2 lists the values of  and absorption
coefficients for four De Beers windows calculated
under the additional assumption that the absorbing
films are ≈1 µm thick. It can be seen that the surface
absorption is much higher than the volume absorption.
This caused the overheating of the windows and rf
breakdowns over its surface. Direct calorimetric mea-
surements of the power absorbed by window 3 (thermal
conductivity 18 W/(cm K)) in the operating gyrotron
agree with the theoretical results on the volume and sur-
face losses. It should be noted that the other three win-
dows failed during the operation, probably due to the
overheating.

From the frequency behavior of the loss tangent, it
follows that  varies inversely with frequency in
the low-frequency region, then stabilizes, and even
slightly grows above 170 GHz. This indicates that the
absorption mechanism in CVD diamond changes from
predominantly free-carrier absorption to lattice absorp-
tion presumably by impurity centers and lattice imper-
fections. Unfortunately, this also means that the losses
in the window increase with gyrotron operating fre-
quency.

Note that the minimal loss tangent measured in the
high-frequency part of the millimeter-wave range was
≈7.0 × 10–6 at 170 GHz. This loss depends on the dia-
mond quality and is as yet far from the theoretical limit
of ~10–8 [13].

CONCLUSION

Based on the resonator method, a technique for
measuring low losses in dielectrics is developed. Our
measurements showed that the best diamond disks have
a loss tangent of ≈7.0 × 10–6 at 170 GHz.

An excessive absorption in thin surface layers of
diamond disks, which is much higher than the volume
absorption of the disk, is found. This effect is due to
various surface treatments (polishing, soldering, chem-
ical treatment, etc.).

A technique for measuring and evaluating this
excessive absorption is developed.

δpltan

δpltan
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Loss tangents are measured for diamond disks and
real diamond power-extracting windows of high-power
gyrotrons.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project no. 00-02-16423), the Council
in Support of Leading Scientific Schools (project
no.  00-15-96772), the research programs “Scientific
Instrument Making” and “Quantum and Nonlinear Pro-
cesses,” and INTAS (grant no. 2173).

We thank Yu.K. Verevkin for submitting the results
of illuminating diamond plates with the radiation of a
3-µm high-power XeCl laser.

REFERENCES

1. R. A. Valitov, S. F. Dyubko, V. V. Kamyshan, et al., Tech-
nology of Submillimetric Waves (Sov. Radio, Moscow,
1969).

2. Yu. A. Dryagin and V. V. Parshin, Int. J. Infrared Millim.
Waves 13, 1023 (1992).

3. A. L. Cullen, IEEE Trans. Microwave Theory Tech.
MTT-24, 534 (1976).

4. V. V. Parshin, R. Heidinger, B. A. Andreev, et al., Int. J.
Infrared Millim. Waves 16, 863 (1995).

5. V. V. Parshin, V. G. Ralchenko, and V. I. Konov, in Con-
ference Digest of the 23rd International Conference of
Infrared and Millimetre Waves, Colchester, 1998, p. 232.

6. J. R. Brandon, S. E. Coe, R. S. Sussmann, et al., Fusion
Eng. Des. 53, 553 (2001).

7. M. Thumm, Int. J. Infrared Millim. Waves 19, 3 (1998).
8. S. N. Vlasov and E. V. Koposova, Radiofizika 44, 940

(2001).
9. N. G. Bondarenko and V. I. Talanov, Izv. Vyssh. Uchebn.

Zaved., Radiofiz. 7, 313 (1964).
10. V. I. Talanov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 8,

260 (1965).
11. M. Born and E. Wolf, Principles of Optics (Pergamon,

Oxford, 1969; Nauka, Moscow, 1970).
12. A. F. Krupnov, M. Yu. Tretyakov, V. V. Parshin, et al.,

J. Mol. Spectrosc. 202, 107 (2000).
13. B. M. Garin, Fiz. Tverd. Tela (Leningrad) 32, 1917

(1990) [Sov. Phys. Solid State 32, 1917 (1990)].

Translated by A. Khzmalyan



  

Technical Physics, Vol. 47, No. 12, 2002, pp. 1570–1575. Translated from Zhurnal Tekhnichesko

 

œ

 

 Fiziki, Vol. 72, No. 12, 2002, pp. 88–93.
Original Russian Text Copyright © 2002 by Bannykh, Povarova, Kapustin.

                                                                   

SURFACES,
ELECTRON AND ION EMISSION

                              
New Approach to Surface Ionization and Drift-Tube 
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Abstract—A new physical model of ionization of organic molecules from the class of amines on the oxidized
surface of transition metals is suggested. According to this model, the process involves the capture of protons
or hydroxyl groups forming on the oxide surface upon water molecule adsorption. The adequacy of the model
is demonstrated experimentally with test amines, such as Novocaine (procaine), bencaine, Dimedrol (diphenyl-
hydramine), etc. A theory of drift motion of ion beams that includes the space charge effect is proposed. It is

shown that the quantity Pi = µj/ε0  (where µ is the ion mobility, j is the ion current density, ε0 is the permit-
tivity, and v g is the longitudinal velocity of an ionized gas) plays the role of perveance for intense drift ion
beams. A new type of drift-tube spectrometer that uses an ion source due to surface ionization is developed.
© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The ionization of atoms and molecules on a heated
body surface has been long known. The pioneering
works on this subject studied the ionization of alkali
metal atoms and alkali halides on the surface of refrac-
tory and noble metals (see, e.g., [1]). Experimental data
obtained at that time were successfully treated in terms
of the well-known Saha–Langmuir equation [2].

In the mid-1960s, the selective surface ionization of
molecules of several organic materials (specifically,
amines) on the heated and preoxidized surface of
refractory metals (tungsten, molybdenum, and rhe-
nium) was discovered. This effect was observed in both
a medium vacuum [3] and air [4]. The surface ioniza-
tion was assumed to proceed in two stages: (1) dissoci-
ation of an organic molecule M on the adsorbent sur-
face into fragments (M–H) and (M–R), where H is a
hydrogen atom and R is a radical of the molecule M,
and (2) desorption of fragments (M–H)+ and (M–R)+ as
ions with the transfer of one electron to the solid [5, 6].
Within such a consideration, the Saha–Langmuir equa-
tion yields the following expression for the ion current
from the solid surface [5, 6]:

(1)

where T is temperature, E is the electric field strength at
the solid surface, Ii(T) is the current of ions of i sort
from the solid surface, e is the charge of an electron,
ν is the organic molecule flux per unit surface area of
the solid, S is the surface area of the solid, γi(T) is a cor-

Ii T( ) eνSγi T( )βi T E,( ),=
1063-7842/02/4712- $22.00 © 21570
rection factor (in [5], it was called the coefficient of
conversion of the organic molecule flux to particles of i
sort), and βi(T, E) is the surface ionization coefficient
for particles of i sort. The coefficient βi is given by [5]

(2)

where Vi is the adiabatic ionization potential for parti-
cles of i sort, Ai(T) is the ratio between the partition
functions for the ionized and neutral states of particles
of i sort, and ϕ is the so-called “ionic work function” of
a solid.

In our opinion, the conventional approach to treating
the surface ionization of organic molecules is inade-
quate for the following reasons. First, it makes
researchers introduce the concept of ionic work func-
tion, which does not have a clear physical meaning;
second, it fails in explaining the experimentally found
electric field dependence of the ion current; third, it
does not explain the appearance of ions like (M + H)+,
(M – H – 2nH)+, and (M – R – 2nH)+ in the ion spec-
trum; fourth, the origin of the “concentration depen-
dence” of the ion current (i.e., the dependence of the ion
current on the organic molecule flux toward the solid
surface) remains unclear; and, fifth, it cannot explain
the very effect of ionization selectivity as applied to
amine molecules on the oxidized surface of refractory
metals.

βi T( ) 1

1
1

Ai T( )
--------------

Vi ϕ– eE( )1/2–
kT

------------------------------------- 
 exp+

----------------------------------------------------------------------------,=
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PHYSICAL MODEL OF SURFACE 
IONIZATION

When considering the surface ionization of amine
organic molecules, one should take into account the
specific electronic configuration of amine groups enter-
ing into associated compounds, as well as the specific
structure of the metal oxide surface.

Figure 1 shows a model of the oxide surface con-
taining Brensted acid-type centers 1 (BACs) and Bren-
sted base-type centers 2 (BBCs) [7]. These centers,
which form on the surface of W, Mo, Re, Al, Zr, Mg, etc.
oxides, consist of hydrogen ions and a hydroxyl group
chemisorbed, respectively, on oxygen ions and metal
oxides as a result of the dissociative adsorption of water
molecules on the oxide surface. An oxide surface con-
taining active BACs and BBCs may initiate exchange
reactions between protons and hydroxide ions.

Nitrogen atoms in a molecule of an organic com-
pound from the class of amines are known to have a pair
of free valence electrons [8]. They can take on a proton
to produce a secondary ion. Simultaneously, the proton
acquires a closed electron orbital:

(3)

Instead of a proton, reaction (3) may also involve an
ion of an alkali metal, for example, sodium. In this case,
however, the secondary ion will be less stable, because
the electron affinity of sodium, SNa = +0.08 eV, is less
than that of a hydrogen atom, SH = +0.75 eV [1].

Thus, amine ions on the oxide surface may form
without electron exchange between the organic mole-
cules and the oxide surface. In this case, the overall pro-
cess of ionization can be represented by a sequence of
ionization reactions:

(4a)

(4b)

(4c)

Since the Saha–Langmuir equation is inapplicable
to reactions (4a)–(4c), the rate of surface ionization (the
ion current) for the organic molecules can be calculated
from these reactions with methods used in the theory of
absolute reaction rates [9]:

(5)

Here, A is a constant; P is the partial pressure of the
organic molecule vapor or gas at the oxide surface;
∆W is the activation energy of ion desorption from the
oxide surface; and n is the reaction order, which
depends on the order of molecule–surface bonds.

R1 : N : H⊕ R1 : N : H[ ] ⊕ .+

:
:

:
:

R2

R3

R2

R3

BAC} M      M H+( )+M      M H–( )+ H2gas,++

BBC{ } M      M OH+( )–M      M H–( )– H2Ogas,++

BAC{ } MM      M R–( )+ R H+( )gas.++

Ii T( ) A
Pn

T5/2
-------- ∆W eE( )1/2–

kT
-------------------------------– 

  ,exp=
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Figure 2 demonstrates the temperature dependences
of the background ion current in air. Curve I is the cur-
rent of positive ions from the oxidized molybdenum
surface, and curve II is that of negative ions. Peak 1 of
the ion current corresponds to the hydroxide ion des-
orption from BBCs; peak 2, to proton desorption from
BBCs; peak 3, to proton desorption from BACs;
peaks 4, to the phase transition in the molybdenum
oxide at a temperature of 467°C; and peaks 5, to ther-
mal vibrations of hydrogen ions on the oxide surface.
Table 1 lists the basic properties of Brensted centers on
oxidized molybdenum calculated from Fig. 2. The fun-
damental frequency of hydrogen ion vibrations on the
surface of oxidized molybdenum calculated from the
position of peaks 5 was found to be 6.4 × 1011 Hz.

DESIGN OF A NEW DRIFT-TUBE 
SPECTROMETER

We developed and tested a new drift-tube spectrom-
eter where the vapor of organic molecules delivered to

Me+ Me+ Me+

Me+Me+Me+

O2–O2–

O2–O2–O2–

– H
O

– H
O

1

2

MemOn

Fig. 1. Model of MemOn oxide surface: (1) Brensted acid-
type centers and (2) Brensted base-type center.
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5

100 300 500 700
T, °C

I × 109, A

×2
1

2

3

45

I

II

×0.3

Fig. 2. Thermograms of the background current for (I) pos-
itive and (II) negative ions from the oxidized molybdenum
surface in air.

0
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the instrument with a carrier gas undergoes surface ion-
ization (Fig. 3).

Ion emitter 1, where the surface ionization of
organic molecules is performed, is made of oxidized
molybdenum. The working temperature of the emitter
within 200–500°C is kept with heater 2. An analyzed
sample M containing amine organic molecules is deliv-
ered with the carrier gas (atmospheric-pressure air)
flow Q1. The transport of ions in the instrument is
accomplished by means of another atmospheric-pres-
sure air flow Q0.

Organic molecule ions produced on the flat working
surface of emitter 1 are extracted by ion-optical lens 3,
directed to analyzer 4 of the transverse drift mobility,
and detected in the circuit of ion collector 6. Ion sup-
pressor 5 serves to improve the ion collection effi-
ciency.

It is known [10, 11] that in air, the drift velocity of
ions VD depends on the electric field strength E in the
drift space:

(6)VD µ0 1 αE
2

+( )E,=

Table 1.  Parameters of Brensted centers for oxidized
molybdenum

Ion being
desorbed

Type of
Brensted 

center

Desorption 
maximum

temperature, °C

Activation 
energy of

desorption, eV

H+ Base 268 1.36

OH– " 234 1.27

H+ Acid 610 2.34

12

3 4 5 6Q0

Q1 + M

Fig. 3. Drift-tube spectrometer with the emitter using selec-
tive surface ionization of organic molecules.

Table 2.  Ionization parameters for Novocaine on oxidized
molybdenum

Amount of 
Novocaine in 
air flow, ng

Energy of ion 
desorption 

activation, eV

Order of
ionization 
reaction

Ionization 
efficiency,

C/mol

3300 1.77 –1/6 20

400 1.29 1/2 100

50 1.26 1 200
where µ0 is the low-field ion mobility and α is the non-
linearity parameter of the drift mobility (µ0 and α may
be both positive and negative according to the structure
of an organic molecule and its electric charge).

To identify ions in transverse-mobility drift-tube
spectrometers, an electric field of strength up to
30 kV/cm is usually applied between the outer and cen-
tral electrodes of analyzer 4. This field separates ions
by the nonlinearity parameter of their drift mobility
[12, 13]. The voltage across the analyzer has two com-
ponents: a pulse asymmetric voltage with a frequency
500–800 kHz (a positive pulse of amplitude U and
duration τ and a negative pulse of amplitude U/2 and
duration 2τ) and a constant spectrum-sweeping voltage
varying in the interval –10…+10 V.

SPACE CHARGE IN THE DRIFT MOTION 
OF IONS

The drift motion of ions in an atmospheric-pressure
gas is usually studied without considering their space
charge [10]. However, if the ion current exceeds 10–9–
10–10 A, the effect of the space charge may become
essential.

In the absence of longitudinal gas flow, the solution
of Poisson’s equation for the drift motion of ions from
the ion emitter surface in a flat-side gap of width d
yields the following expression for the I–V characteris-
tic of such a diode:

(7)

where j is the density of the ion current to the collector
and U is the emitter-to-collector voltage.

By jointly solving Poisson’s equation and the equa-
tion of motion in the drift tube where a gas flows along
the z axis, one obtains an expression for the radius r of
an initially axisymmetric ion beam of radius r0:

(8)

The quantity Pi = µj/ε0  (where µ is the ion mobil-
ity, j is the ion current density, ε0 is the permittivity, and
v g is the longitudinal velocity of the ionized gas) plays
the role of perveance for intense ion beams.

By way of example, Fig. 4 depicts the trajectories of
an initially axisymmetric ion beam of radius 0.5 mm
when it moves in a 9-mm-long drift tube of radius 1 mm
(the tube wall is shown by the dashed line). The curves
were obtained with formula (8) for various ion currents
and a transport gas flow rate of 3.5 l/min along the tube
axis. It is seen that the tube “capacity” is no more than
7 × 10–9 A.

Similarly, the width a of a ribbon-shaped ion beam
entering into a flat gap parallel to its walls will vary as

(9)

j
9
8
---

ε0µ
d3

--------U2,=

r r0 1 Pi*z/2+[ ] 1/2
.=

v g
2

a a0 1 Pi*z+[ ] ,=
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where a0 is the initial width of the ion beam.

Figure 5 shows the trajectories of a ribbon-shaped
beam with an initial width of 0.5 mm passing in a flat
channel 35 mm wide and 40 mm long. The plate spac-
ing in the channel is 1 mm, and the transport gas flow
rate is 3.5 l/min. The capacity of this channel is seen to
be no higher than 5 × 10–11 A.

For axisymmetric and ribbon ion beams, the space
charge induces a potential along their axes. It depends
on the ion current and transport gas flow rate and may
reach 200–300 V according to our calculations.

When ion beams move in an asymmetric flat gap,
the transverse component of the ion current appears
even if the potential difference between the flat-channel
walls is absent.

Our approach, taking into account the effect of the
space charge on the drift motion of ion beams, made it
possible to optimize the design of the drift-tube spec-
trometer shown in Fig. 3.

SURFACE IONIZATION OF AMINES

Organic molecules of test amines underwent surface
ionization in the drift-tube spectrometer shown in
Fig. 3. Test microsamples of weight from 1ng to 10 µg
were introduced into the carrier gas flow over a helical
heater and evaporated by pulsed heating for 2–3 s. Cur-
rent pulses from the first collector were recorded with
an x–y recorder, the ion emitter temperature being
fixed. Time scan was accomplished along the x axis,
and the pulses were recorded along y axis. From five
to seven measurements were made for each emitter
temperature, each emitter–first collector voltage, and
each sample weight. Varying the emitter–first collec-
tor voltage, we constructed the I–V characteristics of
the diode gap.

All the I–V curves can be subdivided into two
regions, the demarcation line between them lying in the

0.5

20 4 6 8 10

1.0

1.5

2.0

z, mm

r, mm

1

2
3

Fig. 4. Calculated boundaries of an axisymmetric ion beam
in a drift tube of diameter 1 mm. The carrier gas flow rate is
3.5 l/min, and the beam current is (1) 1 × 10–8, (2) 3 × 10−9,
and (3) 3 × 10–10 A.
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interval 120–200 V depending on the emitter tempera-
ture, sample weight, and transport gas flow rate. The
“low-voltage” region of the curves is well described by
Eq. (7); the “high-voltage” one, by Eq. (5). With (7), we
found the ion current for the zero electric field at the
emitter surface. The current value was then used to
determine the activation energy of ion desorption from
the emitter surface and the order of the desorption reac-
tion, which are involved in Eq. (5).

Figure 6 shows the experimental dependences of the
positive ion current on the sample weight introduced
into the surface ionization zone for Novocaine,

100 20 30 40 50

0.5

1.0

z, mm

h/2, mm

1

2

3

Fig. 5. Calculated boundaries of a ribbon-shaped ion beam
in a flat channel with a plate spacing of 1 mm. The carrier
gas flow rate is 3.5 l/min, and the beam current is (1) 5 ×
10−11, (2) 3 × 10–11, and (3) 1 × 10–11 A.

101

10 ng
100

100 ng 1 µg 10 µg
m

102

103

104

1

2

3

I × 109, A

Fig. 6. Dose dependence of the positive ion current for
(1) Novocaine, (2) bencaine, and (3) Dimedrol.



1574 BANNYKH et al.
Table 3.  Nonlinearity parameter of the drift mobility for several organic molecules from the class of amines

Peak in spectrum
α × 1010, cm2/V2

novocaine papaverine dimedrol bencaine quinine

Basic +0.018 –0.045 –0.034 +0.034 +0.023

Satellite –0.65 –0.21 –0.53 –0.50 –0.94
bencaine, and Dimedrol. All the dependences have
characteristic regions differing in slope and, hence,
order of the ion desorption reaction. Table 2 lists the
desorption orders and activation energies for Novocaine
that were determined from the temperature depen-
dences of the positive ion currents in these characteris-
tic regions.

1

0 4 8
u, V

–4–8

2

3

4
I × 1012, A

Fig. 7. Drift spectrum of quinine hydrochloride at a concen-
tration of 1 × 10–10 g/cm3 in an air flow.

0.05

1 ng100 pg 10 ng 100 ng 1 µg 10 µg
m

0.5

5

50

500

2( × 103)

1

Q/m, C/g

Fig. 8. Sensitivity of the drift-tube spectrometer vs.
Novocaine amount in terms of (1) emitter and (2) collector
current.
DRIFT SPECTRA FOR TEST AMINES

The drift-tube spectrometer with surface ionization
that is described in this paper (Fig. 3) offers higher ana-
lytical and operating capabilities compared with con-
ventional instruments.

Figure 7 demonstrates the drift spectrum of one of
the test amines, quinine hydrochloride, for its concen-
tration in the carrier gas flow 1 × 10–10 g/cm3. The drift
spectrum of this substance, as well as of the other
amines studied, has two peaks: basic (at a sweep volt-
age close to zero) and satellite (at a negative bias volt-
age of 4.15 V). From the positions of these peaks, one
can find the nonlinearity parameter of the drift mobility
α of the ions. Note that the positions of the peaks are
specific for each of the organic molecules. Table 3 sum-
marizes the values of α for several amine compounds
studied in this work.

Thus, our instrument allows for the identification of
a class of organic molecules in a sample: with the emit-
ter material selected appropriately, the very presence of
the ion current from the emitter indicates the presence
of amine compound molecules in the sample.

Organic molecules in a sample are analyzed quanti-
tatively with the ion current from the emitter and the ion
current from the collector. Figure 8 shows the concen-
tration dependences of the instrument sensitivity in
terms of the emitter current (curve 1) and collector cur-
rent (curve 2) for Novocaine.

The type of organic molecules from the amine group
is identified from the positions of the peaks in the drift
spectrum, i.e., from the nonlinearity parameters of the
drift mobility α1, 2 of ions responsible for the peaks.

The instrument is insensitive to the humidity of car-
rier and transport gases. It makes it possible to analyze
solid and liquid microsamples and samples of surface
deposits, as well as to analyze air samples when air
passes through the instrument or by trapping organic
impurities of air with special sorbents. The sensitivity
of the instrument is 1 × 10–6 g (by weight) or 3 ×
10−17 g/cm3 (by concentration) in terms of the emitter
current and 1 × 10–12 g or 3 × 10–13 g/cm3 in terms of the
collector current. The drift-tube spectrometer measures
200 × 50 × 60 mm, weighs 0.8 kg, and can be used in
compact portable equipment for detecting narcotics and
explosives [14].
TECHNICAL PHYSICS      Vol. 47      No. 12      2002



NEW APPROACH TO SURFACE IONIZATION 1575
CONCLUSIONS
(1) A new physical model of amine selective ioniza-

tion on the oxidized transition metal surface in air is
suggested. The model explains adequately experimen-
tal data for this phenomenon, namely, the dependence
of the ion current on the amine concentration, tempera-
ture, and electric field strength at the metal oxide sur-
face.

(2) A new approach to treating the drift motion of
ions in an atmospheric-pressure gas is suggested. It
takes into account the effect of the ion space charge on
the ion path, including in the presence of a gas flow in
the ion-drift tube. The concept of perveance for the drift
motion of intense ion beams is introduced.

(3) A new type of a drift-tube spectrometer with sur-
face ionization is developed. It is shown that the sensi-
tivity of the new instrument is two or three orders of
magnitude higher than that of similar spectrometers
containing ion sources on radioactive isotopes.

(4) The nonlinearity parameters of the drift mobility
are found experimentally for Novocaine, bencaine,
papaverine, quinine hydrochloride, and Dimedrol.
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Abstract—The use of liquid-crystal (LC) cells for the visualization of the Langmuir–Blodgett (LB) film struc-
ture is described. Images appearing in LC cells upon LB film application are presented. The images are ana-
lyzed in relation to the LB film structure (application conditions) and to the relief formed by indium tin oxide
(ITO) electrodes. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The behavior of liquid crystals are known to be
highly sensitive to the state of the surface with which
they are in contact.

The use of LCs for the visualization of the surface
relief on substrates is also well known. However, this
approach is today used only for research purposes.

The recent advances in Langmuir–Blodgett (LB)
technique may regenerate interest in this domain of LC
applications. In particular, if during the deposition of an
LB monolayer one of the plates in an LC cell serves as
a dummy sample, one can visualize the macrostructure
of the resulting LB film.

The macrostructure of the LB film under test can be
judged from the structure of the dummy sample with an
express method proposed in this work

PREPARATION OF SAMPLES 
AND OBSERVATIONS OF ORIENTATION 

EFFECTS IN LC CELLS 

The cross section of LC cells used for studying the
LB film macrostructure is schematically shown in
Fig. 1. The cell consists of two spaced glass plates (sub-
strates).

As substrates, we used pure glass plates, as well as
glass plates with strip transparent ITO electrodes,
which are usually used in LC screens. The gap between
the plates is provided by 6-µm-thick polyethylene
stripes applied along the perimeter.

The dummy plate was prepared in the usual way: the
orienting plane was obtained by rubbing with a felt-
covered roller or special brushes on an industrial setup
produced in the Volga Research Institute.

The other plate was covered by monolayers (MLs)
of the octadecyldimethylamine salt of polyamide acid
by the vertical LB technique [1]. After the deposition,
the samples were subjected to thermal treatment with
1063-7842/02/4712- $22.00 © 21576
the resulting polymerization of polyamide acid to poly-
imide [2, 3].

The cells thus prepared were filled with ZhK-807
nematic liquid crystal in the isotropic state (at a temper-
ature between 85 and 90°C). The material is provided
by the Volga Research Institute.

1

2

3

4

5

Fig. 1. (1) Glass, (2) ITO electrodes, (3) test coating, (4) LC,
and (5) Langmuir–Blodgett film.

1 mm

Fig. 2.
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After the samples had been cooled to room temper-
ature, the pattern containing light and dark regions was
observed in crossed polaroids.

PARAMETERS OF THE SAMPLES 
AND CONDITIONS OF LB FILM PREPARATION

Orientation effects observed in LC cells are illus-
trated in Figs. 2–8. The conditions for film preparation
are listed in the table.

According to previous studies [2–4], at low pres-
sures (less than 20 dyn/cm), orientation effects in LC
cells are virtually absent. In this case, the patterns

1 mm

Fig. 3.

1 mm

Fig. 5.
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obtained in crossed polaroids exhibits a grain structure,
indicating the polycrystallinity of the LB films. The
size of grains on the patterns corresponds to that of sin-
gle-crystal domains in the film deposited. Estimated
visually, this size varies from 20 to 300 µm.

ANALYSIS OF THE PATTERNS

Single monolayer. Though orientation effects are
lacking in this case, the LC cell patterns may still con-
tain useful information. For example, they can defi-
nitely testify to the fact that a single monolayer is depos-
ited. Figure 2 shows the distinct boundary between the

1 mm

Fig. 4.

Fig. 6.
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bare part of the substrate on the left and the part covered
by one monolayer on the right. It should be noted that
the grain size varies: the grain size between 100 and
130 µm becomes prevalent in the patterns of the LC
cells with the LB film.

LB films deposited at different pressures. Col-
lapse of LB film. Comparing the images in Figs. 2–4
indicates that an increase in the deposition pressure not
only coarsens the grains up to 300 µm (Fig. 3) but also
results in the formation of alignment texture (Fig. 4).

A further rise in the pressure in the monolayer leads
to its collapse. Films that were transferred at the col-
lapse pressure can easily be identified with the help of
the LC cell. For example, Fig. 5 shows the clear-cut
contour of an appreciable LB film fragment that broke
down during deposition (marked by an arrow). Such
cracks are typical of films compressed to the single-
crystal state. In this state, the film loses elasticity and
has no time to melt even at small variations of the work-
ing surface area of the cell.

1 mm

I

II

Fig. 7.
Another type of collapse is illustrated in Fig. 6.
Clearly distinguishable folds indicate the formation of
a multilayer structure after the collapse of the mono-
layer. Such deformations are usually irreversible. When
the excessive pressure is released, the folds in the film
do not straighten out. Most often, a monolayer depos-
ited after severe compression is fragmentary rather than
continuous. Figure 7 shows two regions with different
structures: region I, where the film becomes multilayer,
and region II with the initial stage of collapse. Two
interpretations of this pattern are possible: either the
structure of the under layer may be seen through voids
in the upper layer or the region that has become free of
collapsed layer I is filled with layer II, which is formed
by separated and unfolded pieces of layer I.

Influence of substrate relief (electrodes under the
LB film). Usually, both the method of preparing the
substrate and the initial relief on its surface are impor-
tant for LB film deposition. The presence of electrodes
on the glass substrate surface also influences the LC
orientation in the cell. A cell with transparent ITO elec-

1 mm

Fig. 8.
Table

Pattern no. π, mN/m ML transfer type Number of MLs Presence of
electrodes Notes

2 15 Z 1 No ML boundary

3 20 Z 1 Yes

4 25 Z 1 No LC meniscus edge

5 35 Z 5 Yes ML breaks

6 50(?) Z 1 No ML collapse

7 30(?) Z 1 No Expanded after collapse

8 – – – Yes
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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trodes applied in LC screens is shown in Fig. 8. Here,
an LB film was not applied on the electrodes.

A comparison of Fig. 8 with Figs. 3 and 5 (see table
for LB film deposition conditions) implies that the ori-
entation effect due to the LB film is greater than that
attributed to the electrodes. Note that the electrodes are
about two orders of magnitude thicker than the LB film.

From the cell images, we can conclude that the ori-
entation effects due to the LB films grow with both the
number of layers and the deposition pressure. The
images gain more contrast and sharpness. This may be
illustrated by Fig. 5, where the electrodes are hardly
seen under the film.

CONCLUSION

The aforesaid not only confirms the possibility of
using LB films for orienting liquid crystals but also
demonstrates the potentiality of the technique for
observing the macrostructure of mono- and multilayer
LB films. As it is rather illustrative, this method may
also be very convenient for many applications, espe-
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
cially upon choosing a new material and refining the
deposition technique.
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Abstract—The generation of powerful electron beams in a single magnetron gun and in a set of magnetron
guns with cold secondary-emission cathodes is studied. The possibility of generating tubular electron beams of
current 50–100 A, particle energy 30–100 kV, and pulse power 1–5 MW is shown. Such beams can be used as
electron sources in the technology of accelerators, as well as in ordinary and multibeam high-power microwave
devices. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, injection magnetron guns with nor-
mal [1–6] and reflex [6, 7] cold secondary-emission
cathodes (SECs) have attracted particular interest.
These sources offer a number of advantages (long ser-
vice life, high current density, simple design, tubular
beams, etc.), which allow for their use in accelerators,
reliable powerful microwave sources [3], and high-
speed high-voltage devices [8]. In injection magnetron
guns with cold SECs, the cathode is subjected to back-
ward bombardment by primary electrons (the second-
ary emission coefficient of the cathode is above unity),
which gain energy when moving in a decaying electric
field. Primary electrons can be produced by field (cold)
emission, emission from insulating inclusions on the
cathode surface, or emission from an additional thermi-
onic cathode [6, 9]. Under these conditions, the elec-
trons are multiplied by secondary emission, their den-
sity builds up in an avalanche-like manner, an electron
sheath forms near the cathode, and an electron beam is
formed and extracted from the gun. At the early stage
of electron sheath formation, the secondary-emission
multiplication process takes place because the elec-
trons, when following a cycloidal path, gain energy in
the decaying electric field. Once the electrons have
been accumulated (steady-state stage), the process is
governed by electric fields due to space-charge density
oscillations. Of interest is the stable generation of elec-
tron beams with a high peak power in injection magne-
tron guns with cold SECs. In this work, we study the
generation of high-power electron beams in a single
gun and in a set of the guns. We also trace a correlation
between the beam current and the electric and magnetic
fields, as well as evaluate the transverse size of the
beam.
1063-7842/02/4712- $22.00 © 21580
EXPERIMENT

Experiments on generating powerful electron beams
in magnetron guns with SECs were performed with the
setup shown in Fig. 1. The magnetron gun is fed by
modulator 1, which forms a voltage pulse of amplitude
4–200 kV, duration ≈4 µs, and pulse repetition rate 10–
50 Hz. A negative-polarity flat-top pulse with an over-
shoot is applied to copper cathode 5. Anode 6 (made of
stainless steel or copper) is grounded through the resis-
tor R3. The secondary-emission process is triggered in
a decaying electric field produced by the falling edge
(duration 0.6 µs, steepness 50–100 kV/µs) of an over-
shoot that is specially produced on the top of the cath-
ode voltage pulse [4]. The magnetic field is generated
by solenoid 4. The beam current is measured with Fara-
day cup 7 and resistor R4; the cathode voltage, with the
divider R1R2; the anode current, with the resistor R3;
and the beam size, with prints on an X-ray film and
molybdenum foil that are placed on the Faraday cup.
The magnetron gun is positioned in stainless-steel vac-
uum chamber 3, where the pressure is kept at a level of

1

2

3
4 5 6 7

R1 R2

R3

R4

2

2

Fig. 1. Experimental setup.
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~10–6 torr and is insulated from the chamber with insu-
lators 2.

In the experiments, two approaches to generate
magnetic fields necessary for beam generation and
transportation were employed: a pulsed discharge
through a solenoid [10] and dc feeding of a solenoid
[11]. Figure 2 shows the distribution of the magnetic
field along the solenoid axis for both cases, as well as
the arrangement of the magnetron gun and the Faraday
cup.

In the former case (Fig. 2, curve 1), the axial field of
the solenoid can be very uniform (±5%) and high
(5000–6000 Oe). However, one should take into
account the decay of the pulsed field when it diffuses
through the walls of the cavity and vacuum chamber,
which may change the longitudinal distribution of the
pulsed magnetic field (see, e.g., [9, 12]). The repetition
rate of magnetic field pulses depends on the value of the
reservoir capacitor and the selection of the switch. If
the pulse rate is low, the cathode surface is contami-
nated for the time between the pulses. Due to electron
bombardment, the contaminants may fall into the
anode–cathode gap, causing its vacuum breakdown [9].

In the latter case, a high density of the feed power
and water cooling are necessary to provide a high per-
manent magnetic field by passing current through the
solenoid. Here, the field strength is limited by the heat
being released in the solenoid and the magnetic field
distribution along the solenoid axis is less uniform
(Fig. 2, curve 2). Also, due to current ripple in the sole-
noid, the repetition rate of pulses driving the modulator
should be related to the mains frequency.

RESULTS AND DISCUSSION

1. Generation of High-Power Beams in a Single 
Magnetron Gun

In this case, high-power beams can be produced if
the cathode diameter is large. This is because the beam
current (and consequently, beam power) can be
increased by raising the voltage across the cathode–
anode gap. However, the voltage cannot exceed the
breakdown voltage of the gap. The larger the cathode
diameter, the lower the electric field strength at the
cathode and the lower the breakdown probability.
Therefore, higher cathode–anode voltages can be used.
In our experiments, the cathode diameter in the magne-
tron guns were varied from 40 to 80 mm; the anode
diameter, from 50 to 140 mm; and the voltage ampli-
tude, from 20 to 120 kV.

In a ≈100-mm-long single magnetron gun, stable
beam generation was achieved at a cathode diameter of
40 mm, anode diameter of 78 mm, and voltage ampli-
tude of 100 kV (hereafter, the flat-part amplitude is
meant). The beam current was found to be about 50 A,
which corresponds to a microperveance of ≈1.6 and a
beam power of ≈5 MW. The magnetic field strength
was ≈1800 Oe in this case. Figure 3 plots the beam cur-
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
rent at the Faraday cup against the cathode voltage
pulse amplitude. It is seen that the beam current obeys
the Child–Langmuir law. During the measurements, to
each voltage value there corresponded the optimum
value of the magnetic field at which the beam current
amplitude was the highest. It turned out that the gun
readily withstands the voltage 120 kV. Hence, a peak
power of up to 8 MW can be obtained. We also mea-
sured the electron current to the anode. It varied from 1
to 10% of the beam current, depending on the experi-
mental conditions.

Next, we studied the beam parameters as functions
of the electric and magnetic fields. When the cathode
voltage amplitude is higher or lower than the optimal
value (with the magnetic field fixed), the conditions for
secondary-emission multiplication are violated and the
process ceases. If the top of a voltage pulse is harmon-
ically modulated, electron bunches arise at the exit of
the gun at those instants of time at which the sinusoid
falls (forced modulation [4]). The beam current vs.
magnetic field dependence shows that, as the magnetic
field grows (with the cathode voltage amplitude fixed),
the beam current amplitude at the Faraday cup first
grows sharply, then exhibits a plateau, and sharply falls.
Such behavior reflects changes in the electron trajecto-
ries and in the conditions under which the electrons
gain energy in the anode–cathode gap with increasing
magnetic field. When the magnetic field amplitude var-
ies, so does the shape of the beam current pulse. At a
cathode voltage of 55 kV and a magnetic field of 700 Oe,
the beam current pulse breaks down into spikes of
amplitude ≈30 A and duration of 10–30 ns. When the
magnetic field grows to ≈1200 Oe, the beam current
pulse becomes flat.

In a ≈100-mm-long magnetron gun with a copper
cathode of diameter 40 mm and a stainless-steel anode
of diameter 50 mm, we obtained a beam current of 50 A
at a voltage of 30 kV and a magnetic field of 2200 Oe.
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Fig. 2. Distribution of the magnetic field along the solenoid
axis and the arrangement of the gun (A, anode; C, cathode)
and the Faraday cup (FC). (1) Pulsed magnetic field;
(2) static magnetic field.



 

1582

        

DOVBNYA 

 

et al

 

.

                                                       
This corresponds to a microperveance of ≈10 and a
pulse power of ≈1.5 MW.

In [6], single magnetron guns of both normal (cath-
ode diameter 50 mm, anode diameter 60 mm) and
reflex type (cathode diameter 54 mm, anode diameter
43 mm) generated a beam current of ≈100 A at a volt-
age of 40 kV in a magnetic field of ≈1800 Oe (the cath-
odes were made of the BeCu alloy and the anodes, of
stainless steel). This corresponds to the beam power
≈4 MW and the microperveance 12, which agrees with
our results.

2. Production of Multiple Electron Beams 
in a Set of Magnetron Guns

Another way of increasing the beam power is the
use of a system of parallel-connected injection magne-
tron guns. The beam current, power, microperveance,
and size for each of the guns are small, whereas the
total beam current and power of the system are signifi-
cant.

The generation of stable electron beams with a sys-
tem of parallel-connected SEC magnetron guns may
pose difficulties like those associated with parallel-con-
nected switches. When a partial beam is generated or
one of the guns breaks down, the voltage amplitude at
the cathodes of other guns decreases. This may quench
generation or cause beam instability. In actual systems,
a voltage decrease at the cathodes of the other guns due
to parasitic inductances and capacitances lasts several
nanoseconds. It was shown [13] that the formation time
of the electron beam in SEC guns (hence, the rise time
of the beam current pulse) may be decreased to 2 ns (if
secondary-emission multiplication is triggered by the
nanosecond trailing edge of a voltage pulse with a
steepness of more than 300 kV/µs). Thus, in a system of
the guns, the formation of the electron sheath and the
electron beam is possible even if one of the guns breaks
down. If the feeding modulator has a low output resis-
tance, the amplitude of the generation-driving pulse

5
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Fig. 3. Beam current at the Faraday cup vs. cathode voltage
amplitude. Dashed line describes the Child–Langmuir law.
decreases insignificantly (in our experiments, by less
than 20% at an output resistance of the modulator of
2000 Ω). It was demonstrated [14] that the beam gener-
ation continues when the cathode voltage changes by
30% (with the magnetic field fixed), which exceeds the
above value. Thus, the difficulties associated with the
beam generation in a system of the guns are quite sur-
mountable.

In a set of magnetron guns, the electric strength can
by reduced because of an increase in the total surface
area of the cathodes (the breakdown voltage is inversely
proportional to S0.1 , where S is the surface area of the
cathodes). If the number of the guns is eight or more,
the decrease in the breakdown voltage is 15–20%. In a
set of eight guns with cathode and anode diameters of 5
and 22 mm, respectively, the breakdown voltage was
shown to diminish roughly by 30% (from 70 to 50 kV)
as compared with a single gun with the same electrode
geometry. Note that this decrease is not only due to the
above effect but also results from the asymmetric
arrangement of the guns, poor vacuum conditions, and
other adverse factors.

In our experiments, high-power beams were gener-
ated in a system of six and eight guns. The cathodes and
anodes were made of copper, and the gun length was
≈100 mm.

In the former case, the system generated six beams.
All the guns were arranged in a circle of diameter
60 mm. The anode and cathode diameters were 5 and
26 mm, respectively. For a cathode voltage of ≈40 kV
and a magnetic field strength of ≈2000 Oe, each of the
guns generated a beam current of 18 A with a microp-
erveance of ≈2.5. The total beam current was ≈100 A
with a peak power of ≈4 MW.

In the latter case, eight guns were arranged in a cir-
cle of diameter ≈70 mm. The anode and cathode diam-
eters were 5 and 22 mm, respectively. For a cathode
voltage of ≈30 kV and a magnetic field strength of
≈2000 Oe, the total beam current was ≈60 A with a peak
power of ≈2 MW. The microperveance of each of the
beams was ≈2.

3. Beam Size

In the SEC guns, the beams traveled a distance of
50–100 mm from the anode surface. It was found that
they have a ring-shaped cross section with a uniform
azimuth distribution of intensity. The inner diameter of
the ring is roughly equal to the cathode diameter, and
the “wall” thickness is 1–2 mm.

The outer and inner diameters of the beam generated
in the single magnetron gun (with anode and cathode
diameters of 40 and 70 mm, respectively) were mea-
sured to be 45 and 41 mm, respectively. For the magne-
tron diode (single gun) with cathode and anode diame-
ters of 80 and 140 mm, respectively, it was found that,
when the electric field is nonuniform within 5% in the
transverse direction, the distinct beam trace in the azi-
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
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muth direction is surrounded by a wide diffuse region.
For a more nonuniform field, the beam is disrupted in
the azimuth direction (over a length of about 20 mm).
This indicates that the coaxiality of the electrodes must
meet stringent requirements.

In the system of magnetron guns, the beams were
found to be arranged in a circle of a given diameter
(60 or 70 mm). The sizes of each of the beams equaled
those of the beam in the single gun (the outer and inner
diameters were, respectively, ≈9 and ≈5 mm). The
intensity of the beams was uniformly distributed in the
azimuth direction.

CONCLUSION
Our experiments show that magnetron guns with

cold secondary-emission cathodes can provide high-
power electron beams. We studied the correlation
between the beam current and the electric and magnetic
fields. Beam generation in a set of magnetron guns and
its electrical strength were considered.
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Abstract—The results of an experimental study of long-lived plasmoids, analogues of ball lightning, are pre-
sented. The study focuses mainly on the establishment of the conditions for the prolonged existence of plas-
moids in the atmosphere. Experimental setup is described and the observation data displayed in the form of pho-
tographic pictures. © 2002 MAIK “Nauka/Interperiodica”.
The large-scale questioning of eye-witnesses became
the basic method of study of this natural phenomenon
[1–5]. Analyses of the subjective evidence, rich in con-
jectures and fantasies, gave birth to scores of hypothe-
ses as to its nature. However, there is still no conclusive
evidence that ball lightning, i.e., an airborne, long-
lived, isolated, and luminous formation, has been reli-
ably reproduced in a laboratory.

The most general conditions required for the origin
of ball lightning are known: high electrical activity of
the atmosphere and a high concentration of water vapor
in the air [2]. Water vapor possesses a number of unique
properties: it is lighter than air, does not support com-
bustion, and inhibits the oxidation of inflammable sub-
stances, but at the same time, it is capable of interacting
with heated carbon or iron with the formation of molec-
ular hydrogen. An extremely inhomogeneous distribu-
tion of electron density across an H2O molecule induces
large effective charges on the hydrogen and oxygen
atoms. Dipole water molecules attach to free ions and
envelope aerosol particles. The binding energy of the
first H2O molecule to the H+ ion is 7.18 eV, for the sec-
ond, 1.6 eV, and for the fifth, 0.51 eV [6]. The binding
energy of water dipoles to other ions, both positive and
negative, is of about the same magnitude.

In studies [6, 7], computer simulation of the interac-
tion of water molecules with H+ and OH– ions in air sat-
urated with water vapor is reported. It is shown that, as
hydrated ions of opposite sign come close together,
additional water molecules are drawn into the gap
between them and a stable cluster is formed. This clus-
ter consists of two ions of opposite sign and a hydrate
envelope. Water molecules prevent the ions from com-
ing close enough for recombination; therefore, the life-
time of the ions in the cluster rises to tens of minutes,
i.e., by 12–13 orders of magnitude. On the other hand,
because of the dipole–dipole interaction of the clusters,
first chains and then spatial structures arise; i.e., a cloud
of cold plasma or plasmoid forms. The internal energy
1063-7842/02/4712- $22.00 © 21584
of a plasmoid is insufficient for the ionization of its
molecules but can accumulate a huge amount of energy
(up to 500 J/l) from an external source. This energy
should be given to a plasmoid at its formation.

In Fig. 1, a diagram of the setup is shown in which
a large population of ions can be introduced into a
cloud of warm air saturated with water vapor. The main
part of the setup comprises a bank of 0.6 mF capacitors;
this bank could be charged to 5.5 kV. A polyethylene
vessel 18 cm in diameter was filled to a height of 15 cm
with weakly conducting tap water. A ring-shaped cop-
per electrode was placed at the bottom of the vessel and
connected by an insulated copper busbar to one termi-
nal of the bank of capacitors. The second terminal was
connected to a cylindrical electrode positioned at the
center of the vessel close to the water surface and point-
ing into the half-space of air. As the central electrode, a
rod of spectral-pure carbon 5–6 mm in diameter was
used in most cases. The quartz tube surrounding the
central electrode protruded above it by 2–4 mm and
above the water by 3–8 mm. The electrical resistance of
the water contained between the submerged electrodes
was 1.0–1.2 kΩ .

1

2

3

4

56

7
8

9

Fig. 1. Setup for generating long-lived plasmoids: (1) poly-
ethylene vessel, (2) ring electrode, (3) central electrode,
(4) bank of 0.6 mF capacitors, (5) discharger, (6) drop of
water or water suspension, (7) quartz tube, (8) carbon or
metal electrode, and (9) copper busbar.
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To produce an artificial ball lightning, two to three
drops of water (about 0.1 ml) were applied to the cen-
tral electrode of carbon. Fast closing-breaking of the
discharger caused a plasma jet to issue from the central
electrode with a light popping sound and an isolated
luminous plasmoid separated from the jet. It slowly
floated up in the air and in 0.2–0.5 s disintegrated. The
detachment of the plasmoid from the plasma jet is
shown in Fig. 2.

The ring made of a thin (0.1 mm) copper or
nichrome wire weighed on an analytical balance placed
in the path of the ball lightning was partially sputtered
and in the plasma jet even melted, probably on account
of intensive recombination on the metal surface. The
ends of the retrieved wire fragments carried character-
istic fused balls (Fig. 3).

In most cases, the central electrode was connected
to the negative terminal of the bank of capacitors. At
some optimum potential difference between the elec-
trodes, the plasmoid assumed a rounded shape. For the
setup with the given dimensions, this potential differ-
ence was 4.2–4.8 kV. The discharge current did not
exceed 30–50 A.

In the horizontal electrical field produced by a plane
condenser, the ball lightning stretched to the sides and
its lifetime decreased. The approximate equality of vol-
ume charges of the positive and negative ion popula-
tions does not exclude the possession of a small excess
charge by the plasmoid.

The size of plasmoids differed between the dis-
charges but was predominantly in the range 10–18 cm.
The coloring of the “water” ball lightning is close to
that of a gas discharge generated in humid air at low
pressure. The lilac-colored central part of the plasmoid
is surrounded by a diffuse yellowish envelope. A small
admixture of sodium or calcium salts gives the plas-
moid core a yellow or orange color.

In changing to iron, copper, or aluminum central
electrodes, the basic features of the phenomenon
remained the same. The pulsed discharge from a metal
electrode wetted with water without organic additives
produced a bright plasma jet that dislodged a flying
plasmoid. Its coloring depended on the emission spec-
trum of the excited atoms in the electrode: iron plas-
moids were whitish, copper ones were greenish, and
aluminum ones were white with a red glint.

The ball lightning temperature can be estimated
from the velocity of its vertical ascent. If the plasmoid
is considered as a cloud of warm humid air 14 cm in
diameter ascending in the atmosphere at 293 K with a
velocity of 1.0–1.2 m/s, then the calculated average
temperature of the plasmoid does not exceed 330 K.

The lifetime of an artificial ball lightning depends
on quite a number of factors: the size and geometry of
the central electrode, the voltage across the electrodes,
the amplitude and duration of the current pulse, and the
temperature and electrical conductivity of water
applied to the central electrode. It is also possible to
TECHNICAL PHYSICS      Vol. 47      No. 12      2002
change the lifetime of the plasmoid by introducing a
dispersed phase into it. This is done by applying a sus-
pension of some substance to the central electrode: it is
sputtered and dispersed by the pulsed discharge and
gets into the plasmoid together with the ion population.

Scores of substances were tried: carbon powders,
hydrocarbons with a high heat of combustion, soot, a
mixture of carbon and fine silica, carbonyl iron powder,
a colloidal suspension of Fe3O4, clay, samples of soil,
sawdust, colophony, and other natural substances. For
the detailed study, colloidal graphite and fine iron
oxides were chosen, although it is possible that other
more suitable suspensions exist. It is only necessary
that the suspension have high electrical resistivity.

In most of the experiments, a suspension of 3 g col-
loidal graphite, 8–10 ml acetone (wetting agent), and

Fig. 2. Floating plasmoid at the moment of detachment
from the plasma jet. The diameter of the vessel with water
is 18 cm.

Fig. 3. Enlarged photograph of the wires after contact with
the plasma jet.
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90 ml of water was applied to the central electrode.
Under an electric discharge through the layer of this
suspension there emerged a floating, rounded plasmoid
(Fig. 4), which slowly ascended in the air and disap-
peared in 0.3–0.8 s; long-lived plasmoids rarely
occurred. The core of the plasmoid had a flame color-

117

106

95

84

Fig. 4. Stages of origination, flight, and disintegration of
the artificial ball lightning produced using a colloidal
graphite, acetone, and water. Figures are the frame num-
bers in the videofilm. The time interval between the frames
is 0.2 s. The complete film “fball02.avi” can be seen at
ftp://biod.pnpi.spb.ru/pub/people/stepanov.
ing, i.e., the dispersion of carbon and destruction of the
organic substances under the pulsed discharge pro-
duced glowing particles of soot and chemical radicals.

Thus, as a result of introducing a considerable pop-
ulation of ions of both signs into a cloud of warm air
saturated with water vapor, a rounded luminous long-
lived plasmoid emerges. This plamoid accumulates the
energy spent by the electrical discharge upon formation
of the ion pairs and conserves it for a long time. The
plasmoid temperature slightly exceeds room tempera-
ture, and the plasmoid disintegrates with an explosion
only on the rare occasion when it contains a lot of
hydrogen. On metal surfaces, the recombination rate of
the ions is much higher and, at the same time, aerosols
of fine carbon and oxidized iron introduced into the
plasmoid do not reduce its lifetime. Laboratory dis-
charges are not as grandiose as natural discharges; how-
ever, artificial ball lightnings are readily reproducible
and accessible for detailed study.

Artificial ball lightning is an exceedingly beautiful
physical phenomenon. Luminous globes floating up in
a darkened room are an unforgettable sight, especially
for those who have happened to observe short-lived nat-
ural ball lightning. For such people, the similarity of the
two phenomena is undoubted.
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