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Abstract—Amorphous films containing nanocrystalline inclusions, a-nc-GaN, were codoped with Er in the
course of magnetron sputtering. Intense intracenter emission of Er3+ ions in the wavelength region λ = 1510–
1550 nm was obtained only after multistage annealing at temperatures of 650–770°C. The intracenter emission
was excited indirectly through electron–hole pair generation in the a-nc-GaN matrix by a pulsed nitrogen laser.
Subsequent recombination via a number of localized states in the band gap transferred the excitation energy to
the Er3+ ions. Measurements of photoluminescence (PL) spectra carried out with time resolution in various
annealing stages at different temperatures in the range 77–500 K and in the course of decay permitted us to
establish the Stark nature of the PL spectrum and to reveal the dynamic and nonequilibrium character of redis-
tribution of the intracenter emission energy among the Stark modes in the course of the excitation pulse relax-
ation. The information thus obtained was used to interpret the dominant hot-mode contribution and the complex
decay kinetics. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interest in studies of the luminescence of triva-
lent erbium ions in various semiconductor matrices
stems primarily from the possibility of developing nar-
row band, thermally stable emitters for the wavelength
(1535 nm) corresponding to minimum losses in quartz
fiber waveguides [1]. This subject is also of fundamen-
tal significance, because many attendant issues still
remain unsolved. In particular, the specific features of
erbium photoluminescence (PL) at high concentrations
of optically active ions (≥1020 cm–3), the mechanism of
energy transfer from the pumped matrix to erbium ions,
and the PL dynamics at high pulsed pump power levels
on the order of 100 kW/cm2, i.e., in the conditions close
to the superluminescence threshold [2], are very poorly
understood.

While the present study deals to a certain extent with
these issues, it does not claim to have solved them and
should be considered rather as a step in this direction.
This study includes two new elements, namely, (1) the
choice of an amorphous a-nc-GaN matrix for Er3+ ions,
which allows erbium doping to high concentrations (up
to 5 × 1020 cm–3) [3], and (2) the use of a pulsed nitro-
gen laser with a pulse power of 1.6 kW to excite the
matrix–erbium ions system. The laser radiation does
not coincide in energy ("ν = 3.68 eV) with any of the
4f 11 erbium ion shell levels and, therefore, cannot be
transferred to the erbium ion through direct resonance
absorption of a photon. Thus, the erbium ions can be
excited only indirectly, through dissipation of the
1063-7834/04/4606- $26.00 © 21001
energy of the electron–hole pairs created in the matrix
with Eg = 3.4 eV. In the course of interband recombina-
tion involving a broad spectrum of localized states, the
energy of the pairs is transferred to the erbium ions non-
resonantly via the GaN lattice–Er3+ bonds; this
accounts for the multitude of intracenter transitions, of
which we are interested only in the transition connect-
ing the first excited state of the ion to the ground state,
i.e., the 4I13/2  4I15/2 transition at the wavelength λ ≅
1535 nm. The nonresonant mechanism of energy trans-
fer to the ion is very poorly understood, but it undoubt-
edly has specific features and should affect the Er3+ PL
pattern. Furthermore, the high excitation density
reached in a pulse makes the population of the 4I13/2

Stark states a nonequilibrium process, a factor that sub-
stantially modifies the PL decay kinetics.

2. EXPERIMENTAL

Films of amorphous a-GaN measuring 4–7 nm with
a fairly uniform distribution of nc-GaN nanocrystallites
of hexagonal symmetry were prepared by magnetron
sputtering of metallic Ga in a reactive gas mixture Ar +
N2. The critical parameter for the process is the sub-
strate temperature Ts, which was found to be optimal
around 300–350°C. It was established that, at higher
values of Ts approaching 500°C, films tend toward
uncontrollable crystallization under subsequent anneal-
ing. The erbium ion PL in such films is unstable.
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Codoping with erbium was achieved in the course of
film growth by placing small Er-metal platelets of cali-
brated area into the magnetron discharge. The concen-
tration thus introduced was varied in the range (1–10) ×
1020 cm–3. The maximum intensity was achieved at an
Er concentration of 5 × 1020 cm–3. A further increase in
the concentration resulted in a strong decrease in the PL
lifetime.

Structural characterization of the films was done by
means of x-ray diffraction, Raman spectral measure-
ments, and direct HRTEM observation of the micro-
structure. The HRTEM method permitted us to detect
inclusions of nanocrystals and their belonging to the c-
GaN hexagonal phase and determine their dimensions
(5–7 nm), the fractional volume of the phase (≈10%),
and its variation under annealing, namely, the increase
in the volume fraction of the nanocrystals without an
increase in their size [4, 5]. The HRTEM data were
kindly provided by Prof. H.P. Strunk (Erlangen, Ger-
many). While the vibrational mode structure in the
Raman spectra obtained by V.Yu. Davydov (Ioffe Insti-
tute, Russian Academy of Sciences, St. Petersburg) is
fairly diffuse, the maxima of the A1(TO) + E1 + E2 and
A1(LO) + E1(LO) modes nevertheless coincide in posi-
tion with those for the c-GaN. The Raman spectrum of
the films sharpens with annealing, which is evidence
there is a growing contribution from the nanocrystalline
fraction, and is in agreement with the HRTEM data.
Despite this trend, the a-nc-GaN films retain their two-
phase (a + nc) microstructure up to at least 775°C, dem-
onstrating also high adhesion to such substrates as c-Si
and fused quartz.

Directly after deposition, Er-doped films do not
exhibit the characteristic erbium PL at λ ≅  1535 nm. To
obtain this emission, one has to optically activate the
erbium ions, a process consisting in a series of high-
temperature anneals with Tann in the range 650–770°C.
To achieve the maximum Er3+ PL intensity, several
cycles with Tann increased judiciously in each subse-
quent cycle will suffice. Annealing at a temperature in
excess of the maximum Tann, 775°C, initiates a clearly
pronounced macrocrystallization, which brings about
film turbidity and a complete or partial disappearance
of the erbium PL.

PL measurements were carried out with an optical
resolution of 5 nm. The InGaAs-based photodiode with
a sensitivity of 25 µV/mW provided by L.B. Karlina
(Ioffe Institute, RAS, St. Petersburg) had a low internal
resistance, which favored reaching a low level of elec-
tromagnetic noise induction from the pulsed-laser
power supply and permitted us to reach high instrument
sensitivity over a broad enough dynamic range of vari-
ation of the signal amplitude (up to two orders of mag-
nitude). Time-resolved spectra were obtained with a
gate width of down to (3–5) × 10–2 of the PL decay
time. Decay curves were recorded directly with an
oscillograph.
P

3. RESULTS AND DISCUSSION

3.1. Changes in the Er3+ Spectra in the Course 
of Optical Activation

It is known [1, 3, 6] that the mechanism of optical
activation consists in the formation of a local atomic
environment around the erbium ion, generating a crys-
tal field of electrostatic nature without inversion sym-
metry. Such a crystal field results in Stark splitting of
the erbium 4f 11 multiplets. In addition, because there is
no inversion site symmetry, the allowed f–d transitions
become admixed to the f–f transitions forbidden by
selection rules, thus making the f–f intracenter transi-
tions possible, although with a low probability, and this
manifests itself, as will be seen from what follows, in
the low PL decay rate.

The most efficient crystal field is generated by
atoms of highly electronegative elements, such as nitro-
gen and oxygen. The absence of any experimentally
observable optical activity of the erbium ion in as-pre-
pared films implies that nitrogen does not create the
required configuration in the Er3+ ion environment.
Such a configuration does not form even though there
is an excess of chemically active nitrogen in the form of
plasma ions during the film growth. Our experiment
shows that optical activity appears only at temperatures
favoring the generation of nitrogen vacancies in the
GaN structural network [7]. This takes place in the tem-
perature interval 650–770°C. This allows two alterna-
tives, namely, either the released nitrogen becomes
chemically bonded to Er3+ or the process of nitrogen
generation is conducive to the diffusion of residual oxy-
gen (which is always present in the matrix in dissolved
form) to the erbium ions. This residual oxygen is get-
tered efficiently by the erbium to form the ErOx com-
plex, whose erbium ion is acted upon by the field of
negative oxygen charges. Irrespective of the way in
which this process evolves, one can be confident that it
does not occur quickly and is extended both in time and
temperature. By measuring the Er3+ PL spectra in dif-
ferent stages of optical activation, one can follow the
mechanism of crystal field formation, as well as draw
some conclusions concerning the field symmetry and,
hence, understand the nature of the Er3+ PL spectra.

The first anneal (Tann = 650°C) gives rise to a very
weak Er3+ PL signal with a fine structure consisting of
a set of narrow, well-resolved peaks. Curve 1 in Fig. 1
displays this spectrum, obtained by S.B. Aldabergen-
ova on a high-resolution double monochromator
(0.85-m Spex 1404). After the next anneal (Tann =
700°C), the intensity increases by a factor of 2–3, the
spectral lines broaden, and the line structure still per-
sists. Only in the last stage (Tann = 750–770°C) is there
a significant growth in intensity of up to one-hundred-
fold the initial level and does the fine structure in the
spectrum disappear (curve 2, Fig. 1).

The PL displayed in Fig. 1 (curve 1) is obviously a
Stark spectrum. It is specific in that the Stark manifold
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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consists of “hot” transitions only, i.e., of transitions
from the Stark levels of the 4I13/2 manifold to the 4I15/2
ground state. Only the weak line at 1598 nm can be
assigned to “cold” transitions, i.e., transitions from the
lowest 4I13/2 state to the 4I15/2 Stark manifold.

The spectrum obtained in the final stage of optical
activation (curve 2) is fairly diffuse and does not con-
tain distinct Stark lines. Nevertheless, taking into
account the dynamics of the transformation of spec-
trum 1 to spectrum 2, as well as a certain similarity in
the distribution of averaged intensity (which also man-
ifests itself in the dominant contribution of the high-
energy wing), one can assume the final-state spectrum
to derive from a sum of Stark transitions. The Stark
peaks should be broadened compared to the ones in
curve 1, because they originate from the considerably
higher density of elementary emitters, which have an
inherent configurational diffuseness [8]. To verify the
possibility itself of assigning the spectrum to Stark
transitions, we performed a numerical modeling by fit-
ting the radiation originating from the Stark levels by
Gaussians. In this procedure, the positions of the Stark
levels for the high-energy wing of the experimental
spectrum were prescribed in accordance with those in
Fig. 1 (curve 1). As for the low-energy wing, it
appeared reasonable to assume an averaged distribution
of Stark levels spaced about 10 nm apart. This simplifi-
cation does not introduce fundamental errors, because,
first, the difference in the Stark level distribution
between the major types of crystal field symmetries is
of the order of or less than this quantity and, second, the
tendency of ions of rare-earth metals (REM) to form
multipole positions at high densities [9], i.e., positions
with symmetries alternating from one site to another,
inevitably brings about an averaging of the spectrum.
Figure 1 presents a modeled Stark spectrum (curve 3)
and its envelope (open circles on the experimental
curve 2). We readily see that a Stark representation of
the diffuse spectrum is reasonable. Subsequently, we
will consider additional arguments for the Stark nature
of the broad and diffuse experimental spectrum of the
Er3+ ions. It would be appropriate to make a few com-
ments here.

(1) At first glance, the narrowness of the Stark lines
in the initial annealing stage might seem strange. This
observation can, however, be accounted for by the weak
interaction of the erbium ion and its nearest environ-
ment (to be more precise, the oxygen ions) with the
amorphous network of the matrix. The strong chemical
bonding of the ErOx complex governs its structure, and
the weaker external interaction with the matrix does not
affect the structure of this complex noticeably. This
results in the formation of a set of structurally identical
emitting centers, which do not interact with one another
because of their low concentration. This is what
accounts for the fine structure of the spectrum. This
idea is argued for by the fact that a nearly identical
Stark spectrum of Er3+ was obtained by us earlier on a-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
Si : H amorphous silicon, which contains no nitrogen at
all [10]. This suggests that it is the ErOx oxygen com-
plex that produces the emission spectrum. The matrix
plays a secondary role, which is easy to understand
physically. Because it is inherently labile, it adjusts
itself, as it were, to the rigid ErOx complex.

(2) The above observations and conclusions (see the
previous comment) give rise to the legitimate question
of the structure of the ErOx complex, which was raised
more than once before. It was found that the complex
contains six oxygen atoms making up a somewhat
deformed octahedron, on whose C axis the erbium
atom is located in a slightly off-center position, and this
is what accounts for there being no center of inversion
[11, 12]. This complex has a C4v-type tetragonal sym-
metry. Some authors, however, tend to believe that the
erbium site has a lower symmetry and that the ion fea-
tures have, accordingly, a lower oxygen coordination
[13, 14]. We compared an experimental set of Stark
lines (for hot transitions) with the calculations available
for two crystal field symmetry types, namely, the high-
est cubic symmetry Td and the lower rhombohedral
symmetry C3v. No one-to-one correspondence was
found for either symmetry group. The only thing one
can maintain is that the experimental spectrum contains
elements of both symmetries simultaneously. In princi-
ple, this is possible, because the C3v configuration, just
as C4v, is actually the result of a deformation of cubic
symmetry along the (111) and (001) directions. If we
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Fig. 1. Photoluminescence spectra of Er3+ ions in the a-nc-
GaN pseudoamorphous matrix: (1) initial stage of optical
activation following annealing at 650°C, (2) spectrum of the
maximum intensity reached after multistage annealing with
a final temperature of 770°C (solid line), (3) manifold of
Stark emitters whose total spectrum is depicted by open cir-
cles on curve 2, and (4) spectrum obtained at the onset of
macrocrystallization.
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1004 ANDREEV
allow now that the extent of this deformation varies
from one emitting center to another, we come to the
multipole configuration of the erbium centers and,
accordingly, to a structure of the spectrum that does not
lend itself to unambiguous assignment.

(3) Curve 4 in Fig. 1 presents the spectrum of a sam-
ple that was not properly annealed to perform optical
activation; more specifically, the sample was overan-
nealed, which led to macrocrystallization. In addition
to the overall weakening of the PL intensity, one
observes an additional spectral broadening and a
noticeable contribution from the Stark line at
≈1695 nm. The weakening of the PL intensity is most
probably due to a sizable fraction of the erbium ions
being expelled to intergrain voids, followed by their
precipitation. The broadening of the spectrum should
be assigned to the impact of the rigid crystalline matrix
environment, which is capable of straining the ErOx

complexes that became incorporated in the GaN micro-
crystals.

3.2. Er3+ Photoluminescence in a-nc-GaN as Derived 
from Its Time-Resolved Spectra and Decay Kinetics

The pulsed excitation technique offers the possibil-
ity of studying the Er3+ emission kinetics. We obtained
both PL spectra at various gate delays ∆ after the termi-
nation of the pump pulse and PL decay curves at a num-
ber of emission wavelengths. This series of measure-
ments was carried out on samples with the highest PL
intensity. The PL decay in such samples lasted as long
as 500–800 µs. The time-resolved spectra were taken
by properly delaying the 20-µs-wide gate to fixed times
∆ = 5, 150, and 450 µs. The results obtained for 300 K
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Fig. 2. Time-resolved spectra obtained at 300 K under
pulsed excitation by a nitrogen laser with a pulse power of
≈100 kW/cm2 for time delay (1) ≈5, (2) ≈150, and
(3) ≈450 µs.
P

are displayed in Fig. 2, and for 77 K, in Fig. 3. Measure-
ments were also performed at 473 K. The relations
recorded did not reveal any qualitative differences; for
this reason, the data for 473 K are omitted. Neverthe-
less, to illustrate the pattern of the temperature behav-
ior, Fig. 4 presents integral spectra, i.e., spectra mea-
sured without gating, for the three temperatures. As for
the temperature dependence of the amplitude of the
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Fig. 3. Time-resolved spectra obtained at 77 K. The notation
is the same as that in Fig. 2.
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Fig. 4. Erbium photoluminescence spectra obtained at tem-
peratures of (1) 77, (2) 300, and (3) 473 K.
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intensity, it is seen to be practically absent over the
range 77–300 K.

The main and most essential finding that follows
from the above data is that the peak of maximum emis-
sion intensity shifts toward higher energies with both a
decrease in the delay time and an increase in tempera-
ture. The magnitude of the shift amounts to 10 nm.
Because the position of the emission lines of REM ions
and, specifically, of Er3+ does not depend on the method
of measurement or temperature, one may conclude that
the observed shift is only apparent and is due to a redis-
tribution of intensity between the emission peaks in the
manifold of the Stark modes. This conclusion offers an
additional and compelling argument for the validity of
the earlier model, following which the broad PL spec-
trum is represented by a set of narrower band emitters
(the Stark states).

Figure 5 displays the PL decay kinetics measured
for different wavelengths at 300 K. The curves obtained
at 77 and 473 K do not differ radically from the data
collected for 300 K and, therefore, are omitted in the
figure. Figure 5 reveals the presence of two competing
processes, namely, a rise in intensity and a decay, which
occur with different characteristic times τ. The intensity
rise and decay curves can be approximated generally by
a sum of three exponentials, –A1exp(–t/τ1) +
A2exp(−t/τ2) + A3exp(–t/τ3), where τ1 is the time of the
rise in intensity and τ2 and τ3 are the decay times. Fig-
ures 6a and 6b illustrate the fitting of experimental
curves with three and two exponentials, respectively.
The first case applies always to decay curves obtained
at wavelengths of the high-energy wing of the spec-
trum, and the second case, to all other wavelengths. As
follows from an analysis of the complete set of data
obtained for the decay curves, the characteristic times
vary, depending on the actual wavelength and tempera-
ture, within the following limits: τ1 ≈ 10–30 µs, τ2 ≈
10–60 µs, and τ3 ≈ 70–200 µs. For λ ≈ 1535 nm (the
wavelength corresponding to emission from the lowest
4I13/2 state), the times of the intensity rise, τ1, and decay,
τ3, reach maximum values of 60 and 200 µs, respec-
tively. We can add that the decay kinetics follows a
monomolecular law, as should be expected for intrac-
enter emission.

The totality of the experimental data available on the
PL decay kinetics and on the emission peak shift as a
function of delay time ∆ can be understood in terms of
the Stark splitting scheme of the 4I13/2 and 4I15/2 states
proposed earlier. Consider the relaxation of the exter-
nally excited matrix–optically active erbium center sys-
tem. The electron–hole pairs created by the laser
undergo thermalization to the conduction band edge,
their energy being transferred subsequently to the local-
ized-state distribution in the conduction band tail. The
dominant role played by localized states in the energy
transfer to the erbium ions is supported by measure-
ments of the PL excitation (PLE) function in the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
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Fig. 5. Erbium photoluminescence decay curves obtained at
room temperature and various values of wavelength λ:
(1) 1490, (2) 1500, (3) 1510, (4) 1520, (5) 1535, (6) 1550,
(7) 1575, and (8) 1595 nm. Inset: diagram illustrating the
radiative and nonradiative transitions between the Stark
manifold states.
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Fig. 6. Modeling of the intensity rise and decay curves by
(a) a sum of three exponentials for hot transitions at λ ≈
1500 nm and (b) a sum of two exponentials for transitions
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4I13/2  4I15/2 transitions. These measurements per-
formed on c-GaN [15] show that the PLE function con-
tains not only the resonance peaks originating from
direct resonance photon absorption by the 4f 11 multip-
let states but also an exponentially decaying tail, which
extends from the edge of the conduction band deep into
the band gap. This tail is due to nonresonant energy
transfer to ions, apparently through d–f hybridization
and excitation thermalization in the f-multiplet system.
Rather than trying to delve into the physics underlying
this process, which remains largely unknown theoreti-
cally, we stress only the point of most interest for the
present study, namely, that the energy received by the
matrix reaches the first excited state 4I13/2 and dissipates
subsequently in radiative transitions to the ground state.
In the crystal field, the first excited state 4I13/2 represents
a manifold of Stark levels; hence, the excitation energy
is absorbed by these levels. Moreover, if the energy dis-
sipates through thermalization, the first to be reached
by excitation are the upper Stark levels. If we accept
this scenario, the appreciable contribution from the hot
Stark transitions to the PL spectra observed by us, as
well as the dominant part played by them in time-
resolved spectra for ∆  0, become clear; namely,
this is the result of a nonsteady-state process in which
the population of the upper Stark states immediately
after the termination of the pump pulse is nonequilib-
rium and approaches equilibrium only as the excitation
undergoes thermalization over the Stark manifold of
the 4I13/2 state. Thus, immediately after the termination
of the excitation pulse, two competing processes occur
simultaneously, namely, radiative transitions from the
4I13/2 Stark states to the 4I15/2 ground state and nonradi-
ative transitions from the upper 4I13/2 Stark states to
lower lying levels of the 4I13/2 Stark manifold.

The inset to Fig. 5 shows a simplified scheme of
these transitions. This scheme offers the following
explanation for the complex rise in PL intensity and
decay kinetics observed at various wavelengths. For the
shortest wavelengths in the high-energy wing of the
spectrum, 1500–1520 nm, the intensity rise and decay
process can be described by a sum of three exponen-
tials. The first of them, with a characteristic time τ1,
reflects the transfer of excitation energy to the erbium
ion, including thermalization of the excitation over the
f shell to the 4I13/2 Stark states. The second exponential,
with characteristic time τ2, describes thermalization of
the pump energy over the system of 4I13/2 Stark levels
through successive nonradiative transitions from the
uppermost Stark level of this manifold to a lower lying
one, down to the lowest 4I13/2 state. The third exponen-
tial, with characteristic time τ3, describes the radiative
process itself. The second term in the sum is actually
responsible for the apparent acceleration of decay in the
initial stage of the PL decay caused by the decrease in
the population of the upper Stark levels resulting from
nonradiative transitions. This mechanism remains oper-
P

ative until the population of the upper Stark levels
decreases to the equilibrium value determined by the
Boltzmann distribution. Now, considering emission
kinetics from lower energy Stark states and, in the limit,
from the lowest 4I13/2 state, we note that these states
receive excitation energy in the nonsteady-state and
nonequilibrium process in the course of its nonradiative
relaxation from the upper Stark levels. Because this
energy is transferred in a multistage pattern, the popu-
lation of the lower levels slows down and τ1 should
increase, accordingly, by a factor of 2–4, exactly what
is observed experimentally. Furthermore, the lowest
4I13/2 state is no longer capable of transferring the
energy in a nonradiative manner. This results in the loss
of the second term in the sum of the exponentials, so the
emission process is now described by one characteristic
constant only, τ3. Note that the values of τ3 are approx-
imately the same for all the 4I13/2 Stark levels. It should
be stressed that the peak of emission from the lowest
state is located at ≈1535 nm and is seen as the narrowest
line with a half-width of ≈25 nm. Considered within
our model, this comes as no surprise, because emission
from the lowest 4I13/2 state corresponds to the conditions
closest to equilibrium, in which the contribution of the
hot transitions is minimal. We may also add that the
emission spectra measured with long delay times are
very close to those observed under stationary and equi-
librium conditions realized under continuous low-
power excitation (≈20–50 mW).

The temperature behavior of both the time-resolved
spectra and the decay kinetics also agrees with the
above scenario. As the temperature increases, the pro-
cess of nonequilibrium occupation of the upper Stark
levels is paralleled by an increase in the population of
these levels through thermal excitation. Combined
action of these two mechanisms gives rise to an
increase in the intensity of the high-energy PL wing.

4. CONCLUSIONS

(1) The main emission line of Er3+ (4I13/2  4I15/2)
in the a-nc-GaN matrix has been shown to be of Stark
nature.

(2) The relaxation of pulsed excitation energy for a
pulse power of 100 kW/cm2 was established to be a
nonequilibrium process for times of at least up to
100 µs.

(3) The PL intensity rise and decay process occur-
ring in nonequilibrium conditions is described, in a first
approximation, by three exponentials, the first of which
characterizes the mechanism of excitation transfer; the
second, the mechanism of nonradiative energy relax-
ation from the upper to lower Stark levels; and the third,
the radiative process itself.

The characteristic time of the radiative process for
optimized samples can be as long as ≈200 µs.
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004



STARK STRUCTURE OF THE SPECTRUM AND DECAY KINETICS 1007
REFERENCES

1. A. Polman, J. Appl. Phys. 82 (1), 1 (1997).

2. M. S. Bresler, O. B. Gusev, E. I. Terukov, I. N. Yass-
ievich, B. P. Zakharchenya, V. I. Emel’yanov,
B. V. Kamenev, P. K. Kashkarov, E. A. Konstantinova,
and V. Yu. Timoshenko, Mater. Sci. Eng. B 81, 52 (2001).

3. A. A. Andreev, Fiz. Tverd. Tela (St. Petersburg) 44 (2),
239 (2002) [Phys. Solid State 44, 248 (2002)].

4. S. B. Aldabergenova, M. Albrecht, A. A. Andreev,
C. Inglefield, J. Viner, V. Yu. Davydov, P. C. Taylor, and
H. P. Strunk, J. Non-Cryst. Solids 283 (1–3), 173 (2001).

5. A. A. Andreev, Fiz. Tverd. Tela (St. Petersburg) 45 (3),
395 (2003) [Phys. Solid State 45, 419 (2003)].

6. A. Terrasi, G. Franzo, S. Coffa, F. Priolo, F. D. Acapito,
and S. Mobilio, Appl. Phys. Lett. 70 (13), 1712 (1997).

7. S. Nakamura and G. Fasol, The Blue Laser Diode. GaN-
Based Light Emitters and Lasers (Springer, Berlin,
1997), p. 129.

8. A. A. Kaminskiœ, Laser Crystals (Nauka, Moscow,
1975), pp. 25–27.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
9. S. Kim, S. J. Rhee, D. A. Turnbull, E. E. Reuter, X. Li,
J. J. Coleman, and S. G. Bishop, Appl. Phys. Lett. 71 (2),
231 (1997).

10. S. B. Aldabergenova, M. Albrecht, H. P. Strunk, J. Viner,
P. C. Taylor, and A. A. Andreev, Mater. Sci. Eng. B 81
(1–3), 29 (2001).

11. M. Ishii, Y. Tanaka, I. Ishikawa, S. Komuro, T. Mori-
kawa, and Y. Aoyagi, Appl. Phys. Lett. 78 (2), 183
(2001).

12. M. Ishio and Y. Komukai, Appl. Phys. Lett. 97 (7), 934
(2001).

13. H. Przybylinska, W. Jantsch, Yu. Suprun-Belevitch,
M. Stepikhova, L. Palmetshofer, G. Hendorfer, A. Koza-
necki, R. J. Wilson, and B. J. Sealy, Phys. Rev. B 54 (4),
2532 (1996).

14. D. E. Wortman, C. A. Morrison, and J. L. Bradshaw, J.
Appl. Phys. 82 (5), 2580 (1997).

15. Myo Thaik, U. Hommerich, R. N. Schwartz, R. G. Wil-
son, and J. M. Zavada, Appl. Phys. Lett. 71 (18), 2641
(1997).

Translated by G. Skrebtsov



  

Physics of the Solid State, Vol. 46, No. 6, 2004, pp. 1008–1010. Translated from Fizika Tverdogo Tela, Vol. 46, No. 6, 2004, pp. 979–981.
Original Russian Text Copyright © 2004 by Mustafaeva.

                                                                                                                              

SEMICONDUCTORS 
AND DIELECTRICS

                                                                                  
Frequency Dispersion of Dielectric Coefficients 
of Layered TlGaS2 Single Crystals

S. N. Mustafaeva
Institute of Physics, National Academy of Sciences of Azerbaijan, pr. Narimanova 33, Baku, 1143 Azerbaijan

e-mail: itpcht@itpcht.ab.az
Received June 30, 2003

Abstract—Frequency dependence of the dissipation factor tanδ, the permittivity ε, and the ac conductivity σac

across the layers in the frequency range f = 5 × 104–3 × 107 Hz was studied in layered TlGaS2 single crystals.
A significant dispersion in tanδ was observed in the frequency range 106–3 × 107 Hz. In the range of frequencies
studied, the permittivity of TlGaS2 samples varied from 26 to 30. In the frequency range 5 × 104–106 Hz, the
ac conductivity obeyed the f 0.8 law, whereas for f > 106 Hz σac was proportional to f2. It was established that
the mechanism of the ac charge transport across the layers in TlGaS2 single crystals in the frequency range 5 ×
104–106 Hz is hopping over localized states near the Fermi level. Estimations yielded the following values of
the parameters: the density of states at the Fermi level NF = 2.1 × 1018 eV–1 cm–3, the average time of charge
carrier hopping between localized states τ = 2 µs, and the average hopping distance R = 103 Å. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

TlGaS2 single crystals are typical representatives of
layered semiconductors and attract a lot of attention
due to their interesting physical properties. These prop-
erties include strong anisotropy of the electronic
parameters related to special features in the crystalline
structure. Layered crystals usually contain structural
defects, such as vacancies and dislocations. The pres-
ence of these defects results in a high density of local-
ized states near the Fermi level. The states localized in
the band gap are responsible for most electronic pro-
cesses occurring in semiconductors. Both dc and ac
charge transport proceeds via these localized states. In
[1], it was experimentally established that, in layered
TlGaS2 single crystals at temperatures T ≤ 200 K, the dc
conductivity both along and across the natural layers
have variable-range hopping over localized states near
the Fermi level. Using the experimental results on the
dc conductivity of TlGaS2 single crystals along and across
the layers, the density of states at the Fermi level NF was
estimated to be 2.5 × 1018 and 2.0 × 1018 eV–1 cm–3,
respectively; i.e., the density of states is rather high.
From this point of view, TlGaS2 single crystals are
interesting objects for study in ac electric fields. Exper-
imental data on the frequency-dependent conductivity
of TlGaS2 single crystals have been reported in the lit-
erature [2, 3]. In [2], a value of 9.0 × 1018 eV–1 cm–3 was
obtained for NF, which exceeds the value of NF that we
found by measuring σdc across the TlGaS2layers [1]. In
[4], the results of permittivity measurements for a
TlGaS2 single crystal at a frequency of 105 Hz were
1063-7834/04/4606- $26.00 © 21008
described. Quite recently, observations of the disper-
sion of the permittivity and conductivity of TlGaS2

crystals measured at frequencies of 102, 103, 104, and
106 Hz were reported [5]. Whereas in [2] the TlGaS2 ac
conductivity measured in the frequency range 105–
107 Hz was described by a power law (f 0.8), the σac(f)
dependence measured in [5] in the frequency range
102–106 Hz was rather weak. In view of these inconsis-
tencies, we experimentally studied the frequency-
dependent dielectric parameters of layered TlGaS2 sin-
gle crystals and the mechanisms of ac charge transport.

The layered TlGaS2 single crystals studied had a
rather high electrical resistance ρ at room temperature.
The value of ρ was 2 × 107 Ω cm along the natural lay-
ers and ρ = 7 × 109 Ω cm across the layers.

2. EXPERIMENTAL TECHNIQUES

Measurements of the dielectric coefficients of
TlGaS2 single crystals were performed at fixed frequen-
cies in the range 5 × 104–3 × 107 Hz by the resonant
method using a TESLA BM560 Q meter. TlGaS2 sam-
ples formed flat capacitors whose plane was perpendic-
ular to the crystalline C axis. The thickness of a TlGaS2
single crystalline layer was 0.05–0.06 cm, and the
capacitor plate area was 0.5–0.7 cm2. For electrical
measurements, the samples were placed in a specially
constructed screened cell. An ac electric field was
applied across the natural layers of TlGaS2 single crys-
tals. The amplitude of the applied field corresponded to
the Ohmic region of the current–voltage characteristics
004 MAIK “Nauka/Interperiodica”
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of TlGaS2 samples. All measurements were performed
at T = 300 K. The accuracy in determining the reso-
nance capacitance and the quality factor Q = 1/tanδ of
the measuring circuit was limited by errors related to
the resolution of the device readings. The accuracy of
the capacitor graduation was ±0.1 pF. The reproducibil-
ity of the resonance position was ±0.2 pF in capacitance
and ±(1.0–1.5) scale divisions in quality factor.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 1 shows the experimental frequency depen-
dence of the dissipation factor tanδ for a TlGaS2 single
crystal (curve 1). The tanδ(f) curve has two branches: a
steadily descending one (in the frequency range 5 ×
104–106 Hz) and a rising one at f > 106 Hz. A significant
dispersion in tanδ is observed for f > 107 Hz. At room
temperature, where TlGaS2 single crystals exhibit
appreciable ac conductivity, conductivity loss becomes
the main dielectric loss mechanism.

We also measured the electric capacitance of
TlGaS2 samples in the frequency range 5 × 104–3 ×
107 Hz; the capacitances were 21–24 pF. The maximum
capacitance of TlGaS2 samples corresponded to a fre-
quency of ~3 × 107 Hz. Using the measured capacities
of TlGaS2 samples, we calculated the permittivity ε at
different frequencies; the permittivity varied from 26 to
30 (curve 2 in Fig. 1); i.e., no appreciable dispersion of
ε was observed in the whole frequency range investi-
gated.

It was shown in [2] that the permittivity of TlGaS2

samples is frequency-independent in the interval 104–
107 Hz, ε = 22 ± 2. In [4], the TlGaS2 permittivity at a
frequency of 105 Hz was found to be ε = 25. In [5], the
TlGaS2 permittivity varied in the limits ε ≈ 20–38 in the
frequency range 102–106 Hz; the dispersion of ε was
observed in the range 102–104 Hz, whereas for f >
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Fig. 1. Frequency dependences of (1) the dissipation factor and
(2) the permittivity of a TlGaS2 single crystal at T = 300 K.
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104 Hz the permittivity ε was practically frequency-
independent.

Figure 2 shows the experimentally measured fre-
quency dependence of the ac conductivity of a TlGaS2
single crystal at T = 300 K. The ac conductivity σac var-
ies as f 0.8 in the frequency range 5 × 104–106 Hz and
follows a quadratic law σac ~ f 2 in the range f = 106–3 ×
107 Hz. The σac ~ f 0.8 dependence indicates that the
mechanism of charge transport is hopping over local-
ized states near the Fermi level [6]. The magnitude of
this conductivity is much greater than that of the dc
hopping conductivity of TlGaS2 [1]. This charge trans-
port mechanism is characterized by the following
expression obtained in [7]:

(1)

where e is the elementary charge, k is the Boltzmann
constant, NF is the density of localized states at the
Fermi level, a = 1/α is the localization length, α is the
decay parameter of the wave function of a localized
charge carrier, Ψ ~ e–ar, and νph is the phonon fre-
quency. Using expression (1), we can calculate the den-
sity of states at the Fermi level from the measured val-
ues of the conductivity σac(f). For T = 300 K, νph =
1012 Hz, and f = 106 Hz, we obtain from Eq. (1) the fol-
lowing relation:

(2)

where the localization length is measured in angstroms,
σac in Ω–1 cm–1, and NF in eV–1 cm–3. The quantity NF for
TlGaS2 calculated using Eq. (2) is 2.1 × 1018 eV–1 cm–3

with the localization radius chosen as 14 Å, in analogy
with the GaS single crystal [8], which is a double ana-
log of TlGaS2. This value of NF agrees well with the
value NF = 2 × 1018 eV–1 cm–3 found in experiments on
the dc conductivity across the TlGaS2 layers [1].

σac f( ) π3/96( )e2kT NF
2a5 f νph/ f( )ln[ ] 4,=

NF
2 2.1 1050σac f( )a 5– ,×=

σac ~ f 0.8

σac ~ f 2

10–5

10–6

10–7

10–8

10–9

105 106 107 108

σac, Ω–1 cm–1

f, Hz

Fig. 2. Frequency dependence of the ac conductivity of a
TlGaS2 single crystal at T = 300 K.
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The theory of ac hopping conductivity provides an
opportunity to determine the average time τ of charge
carrier hopping from one localized state to another
using the formula [6]

, (3)

where R is the average hopping distance. Using the
experimental σac(f) dependence, τ–1 is found to be 5 ×
105 Hz (τ–1 is defined as the average frequency for
which σac obeys the f 0.8 law). This corresponds to the
average hopping time τ = 2 µs. The average hopping
distance calculated by the formula

(4)

is R = 103 Å, which is approximately seven times
greater than the average distance between localization
centers. From the measurements of the TlGaS2 dc con-
ductivity, the average value of R was found to be 108 Å
[1].

In contrast to the results from [2], where σac follows
the f 0.8 law in the whole frequency range 105–107 Hz
investigated, in our experiments, as indicated above, the
quadratic dependence σac ~ f 2 was observed for f >
106 Hz (Fig. 2). It was shown in [6] that the conductiv-
ity proportional to f 2 is related to optical transitions in
semiconductors and is dominant at high frequencies.
Previously, we also observed the quadratic law σac ~ f 2

in TlInS2 single crystals for f > 106 Hz [9].

4. CONCLUSIONS

Thus, the results of the study of the dc [1] and ac
conductivities across the TlGaS2 layers are in good
agreement. The dc conductivity at T ≤ 200 K and the ac
conductivity for f ≤ 106 Hz are both due to charge car-
rier hopping over localized states near the Fermi level

τ 1– νph 2Rα–( )exp=

R 1/2α( ) νph/ f( )ln=
P

(NF = 2.0 × 1018 eV–1 cm–3). The average hopping dis-
tances are 108 and 103 Å for σdc and σac, respectively.
The values of the TlGaS2 permittivity agree with the
results from [2, 4, 5], and the frequency dependences
σac ~ f 0.8 and σac ~ f 2 observed for TlGaS2 in the ranges
f = 5 × 104–106 Hz and f > 106 Hz, respectively, are sim-
ilar to those obtained for the isostructural TlInS2 com-
pound in [9].
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Abstract—New data on radiation centers of the RC series are obtained by studying the photoluminescence of
boron nitride cubic crystals irradiated with electrons of energies of 150 to 300 eV and annealed in vacuum at
temperatures of 400 to 800°C. Changes in the fine structure of no-phonon lines from these centers were
observed as the electron energy reached the “threshold” value or after annealing. These changes are likely to be
associated with the response of a vacancy (which is a structural element of RC defects) to differently directed
uniaxial stresses. The fine structure of the no-phonon line from the RC3 center is less sensitive to threshold
effects and relaxes more easily during annealing in comparison with those from the RC1 and RC2 centers. New
data are obtained on the fine structure of phonon replicas of no-phonon lines from RC centers; this structure is
due to interaction of the corresponding electron transitions with lattice phonons of energies of 0.1 to
0.125 eV. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Cubic boron nitride (cBN) is well known as a wide-
band-gap semiconductor; this compound is similar to
diamond but excels it in many characteristics, such as
chemical resistance and ability to emit electrons and to
form materials exhibiting both types of electrical con-
ductivity. Cubic boron nitride offers higher resistance
to radiation than does diamond; therefore, it can be
used for devices operating under high-radiation condi-
tions. Unfortunately, the properties of this compound
have not been adequately studied.

Studies into the effect of irradiation with 4.5-MeV
electrons, γ rays, and ions on the defect structure of
cubic boron nitride were performed in [1, 2]. Cathod-
oluminescence (CL) spectra of irradiated samples
revealed the presence of a series of luminescence cen-
ters (irrespective of the quality of the samples) charac-
terized by no-phonon lines at 545 (RC1), 577 (RC2),
and 624 nm (RC3). These centers were found to be
Frenkel pairs differing in the mutual orientation of
nitrogen vacancies and nitrogen interstitials. The tem-
peratures of annealing after which the RC lines in CL
spectra of cBN samples irradiated with ions and elec-
trons disappeared completely were different. For sam-
ples irradiated with electrons, the annealing tempera-
ture was approximately 1000 K. It was also shown in
[1, 2] that all no-phonon lines of RC centers in samples
irradiated with ions can be only doublets. The experi-
mental profiles of these doublets were most closely fit-
1063-7834/04/4606- $26.00 © 21011
ted by three Gaussians. The reason for no-phonon line
splitting was associated with the Jahn–Teller effect.

Another luminescence center, RC4, was observed in
CL spectra of cBN only after irradiation of samples
with ions and was not included in the RC series men-
tioned above.

The RC2 and RC2–RC3 centers were detected in
CL spectra of polycrystals [3] and (111) faces of cBN
single crystals [4] after the samples were subjected to a
pressure of up to 3.5 GPa.

The effect of irradiation with electrons of near-
threshold energies (150–300 keV) on the photolumi-
nescence (PL) of single-crystal cubic boron nitride was
studied in [5], and a new radiation-induced (apparently
interstitial) defect, BN1, was detected. This defect was
characterized by a no-phonon luminescence line at
376.5 nm [5], and its total photoluminescence spectrum
was similar in structure to the CL band of the center
observed at 3.188 eV in diamond [6]. The formation of
BN1 defects in cBN was observed to occur after the
samples were irradiated with electrons with an energy
of 230 keV, which is equal to the threshold energy for
displacements of intrinsic atoms.

In this work, we studied the photoluminescence of
cubic boron nitride irradiated with electrons of near-
threshold energies. New data are obtained on the struc-
ture of the luminescence spectra of RC centers in cBN,
which are of both fundamental and experimental inter-
est. Particular attention is given to the differences in the
defect structure between cBN samples irradiated with
004 MAIK “Nauka/Interperiodica”
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electrons of low (150–300 keV) and high (4.5 MeV)
energies.

2. EXPERIMENTAL

PL spectra of samples of cubic boron nitride were
recorded with a Renishaw-1000 spectrometer at tem-
perature T = 6 K using a helium cryostat and a laser
operating at a wavelength of 488 nm. The surface of a
crystal was scanned in the discrete mode to form a map
and in the line-scan mode along directions crossing the
irradiated and unirradiated areas of the surface, which
made it possible to study the irradiated and nonirradi-
ated materials simultaneously.

Optically transparent cBN single crystals 200 to
400 µm in size were studied. The crystals were synthe-
sized from hexagonal boron nitride (hBN) at high pres-
sures and temperatures using catalysts that ensured an
excess of boron or nitrogen in the crystals (light smoky
gray or light yellow in color, respectively). Different
areas of the single-crystal surfaces were irradiated with
electrons (directly in a Philips EM430 TEM electron
microscope) of different energies in a single experi-
ment (300, 230, 200, 170, 150 keV) [5] at room and liq-
uid-helium temperatures (only at 230 keV), and then
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Fig. 1. (a) PL spectrum obtained from a region of a cubic
boron nitride single crystal irradiated with 230-keV elec-
trons and (b) the lines of RC centers in PL spectra obtained
from different regions of a cBN crystal irradiated with elec-
trons with energies of (1) 300, (2) 230, (3) 200, (4) 170, and
(5) 150 keV.
P

the samples were annealed in vacuum at temperatures
of 400 to 800°C.

3. RESULTS AND DISCUSSION

It was established that cubic boron nitride crystals
irradiated with electrons of near-threshold and high
energies differed not only in the luminescence centers
formed but also in the influence of irradiation on the
parameters of no-phonon lines of RC centers, including
the energy position of the maxima and the structure of
the lines.

3.1. The Formation of RC Defects

It was found in [5] that irradiation of nitrogen-
enriched cBN single crystals with low-energy electrons
does not bring about the formation of RC defects. This
fact can be explained by radiation-induced defects
being compensated for by the defects that were in cBN
(due to departures from stoichiometry) before the irra-
diation. An analogous phenomenon was observed in
electron-irradiated diamond; more specifically, the
GR-1 luminescence center was observed in CL spectra
of diamond [7] only after a critical radiation dose was
reached or after the electron energy was increased in
order to increase the defect production rate. For exam-
ple, RC defects were observed in all cBN samples irre-
spective of their quality when the electron energy was
increased up to 4.5 MeV.

All centers of the RC series (RC1, RC2, RC3, and
RC4, corresponding to PL lines at 543.9, 576.8, 623.1,
and 667.3 nm, respectively) were represented in PL
spectra from five regions of a boron-enriched crystal
irradiated with electrons of various energies (150, 170,
200, 250, 300 keV; dose of 2 × 1020 cm–2); however, the
intensity distributions of no-phonon lines of these cen-
ters and their energy positions were different in these
regions (Fig. 1).

The association between the formation of RC
defects and the stoichiometry of cBN substantiates the
assumption (made in [1, 2, 5]) that these defects are
intrinsic.

Figure 1a shows a typical PL spectrum from a trans-
parent boron-enriched cBN single crystal irradiated
with 230-keV electrons at room temperature. No-
phonon lines and their phonon replicas corresponding
to the BN1, RC1, RC2, RC3, and RC4 centers are
observed in the spectrum.

In this study, the RC4 center was observed to appear
in the PL spectrum only after cubic boron nitride was
irradiated with electrons of energies of 150 to 230 keV
at room temperature, which contradicts the CL data [2].
This center was not observed in PL spectra of cBN sam-
ples irradiated with low-energy electrons at liquid-
helium temperatures and with 300-keV electrons at
room temperature, which can be due to differences in
structure and stability between the RC1–RC3 and RC4
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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defects. We note that the latter center is represented by
a weak no-phonon line.

3.2. The Structure of Phonon Replicas
of No-Phonon Lines of the RC Centers

The Renishaw-1000 spectrometer enabled us to
resolve and analyze the structure of the PL spectra of
RC centers in more detail than that of the CL spectra
obtained earlier.

It was found [2] that electron transitions in the RC1–
RC4 centers involve phonons with an energy of 64 meV
presumably localized on a nitrogen vacancy. In this
study, we established that phonon replicas of the no-
phonon lines of all RC centers are similar in structure;
however, their structure was found to be more complex
than assumed earlier. Each of the four no-phonon lines
is accompanied by a phonon wing consisting of two
wide bands, which also have a structure (see, e.g., the
PL spectrum of the RC2 center in Fig. 2). It was found
that the structure of the first band of each of the four
phonon wings is associated not only with a phonon
with an energy of 64 meV but also with RC phonons
with energies of 47–48 and 71–75 meV, whose interac-
tion with electron transitions is less strong. Note that
electron transitions occurring in the GC-1 and GC-2
centers (nitrogen and boron vacancies bound to identi-
cal defects of unknown nature [8]) interact not only
with phonons with energies of 64 and 56 meV, respec-
tively, but also with phonons with an energy of 48 meV.

The second band in the phonon wings of the no-
phonon lines of all RC centers has a fine structure,
whose resolution depends on the sample. In addition to
the PL spectrum of the RC2 center, Fig. 2 shows the no-
phonon line and its phonon wing (the first phonon rep-
lica) for the BN1 center [5], with the energy measured
from the maximum of the no-phonon line of the corre-
sponding center. It can be seen that the fine structures
of the phonon wings correlate well with each other in
the range 0.1–0.125 eV.

It is likely that the high-energy part of the phonon
wing of the BN1 no-phonon line reproduces the phonon
density of states of cubic boron nitride, with the fea-
tures of the fine structure corresponding to singular
points of the phonon spectrum, as was the case for an
analog of the BN1 center in the luminescence spectrum
of diamond (at 3.188 eV) [6]. Therefore, electron tran-
sitions in the RC centers strongly interact with phonons
with energies of 100 to 125 meV, which are very likely
lattice phonons.

Annealing of the single crystals at temperatures of
400 to 800°C did not change the structure of the phonon
wings of the RC center no-phonon lines.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
3.3. The Structure of the No-Phonon Lines
of RC Centers

In this study, we established that the structure of the
no-phonon lines of RC centers in electron-irradiated
cBN is sensitive to the electron energy and annealing
temperature.

The no-phonon lines of RC centers are observed in
the form of doublets in PL spectra of cBN, in contrast
to CL spectra, after cBN is irradiated with electrons of
even near-threshold energies, which is likely due to the
differences in the conditions of excitation of PL and
CL, as was the case with the GR-1 center in diamond
[9]. However, there is a relation between the splitting of
a no-phonon line and the electron energy in the energy
range under study (Fig. 3). As the electron energy
increases from 150 to 200 keV (in this range, BN1
defects form in small proportion or do not form at all),
the no-phonon lines of the RC2, RC3, and RC4 centers
(in the form of singlets) shift to higher energies by 2.3
(RC2) and 2.2 meV (RC3). Irradiation with 230-keV
electrons (producing BN1 defects in quantity) causes a
higher energy (wider) component to split off from the
no-phonon lines of the RC2 and RC3 centers by
2.1 meV. The no-phonon line of the RC1 center does
not shift noticeably, but a component splits off from it
by ∆ = 1.9 meV at the same electron energy. As the
electron energy is increased up to 300 keV (where BN1
defects no longer form), the no-phonon lines of all RC
centers tend to shift to lower energies. A 400°C anneal-
ing of a cBN single crystal irradiated with electrons of
threshold energy (230 keV) causes broadening of all
no-phonon lines and smoothes their structure but does
not change the energy position of the maxima of their
components. Subsequent heat treatment at 650°C
makes the no-phonon lines narrower than their initial
profiles by decreasing the distance between the energy
positions of their components. Annealing at 800°C
increases the distance between the components of the
no-phonon line of the RC1 center, and this line splits;
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Fig. 2. PL spectra of the BN1 (first phonon replica) and RC2
centers in which the energy (in millielectronvolts) is reck-
oned from the position of the maximum of the no-phonon
line.
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the low-energy components of the no-phonon lines of
the RC2 and RC3 centers increase in intensity, whereas
the high-energy components decrease in intensity (as
an example, Fig. 4 shows the no-phonon line of the
RC3 center). In contrast to an earlier report, annealing
at 850°C does not cause a noticeable decrease in the
intensity of the no-phonon lines of any RC centers.

Note that the case where only low-energy compo-
nents are observed in the structure of no-phonon lines
(RC2, RC3) is characteristic of the crystal regions irra-
diated with electrons of energies below or above the
threshold value (i.e., in the absence of BN1 defects) and
of crystals annealed at 800°C.
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Fig. 3. No-phonon lines of the RC1–RC3 centers in PL
spectra obtained from different regions of a cBN single
crystal irradiated with electrons with energies of (1) 300, (2)
230, (3) 200, (4) 170, and (5) 150 keV.
P

Since the no-phonon lines of all RC centers were
asymmetric, we not only considered their doublet struc-
ture but also performed a thorough analysis of their fine
structures by decomposing them into components using
the ORIGIN-5 software package. The optimal decom-
position corresponded to the minimal error ∆I in fitting
the experimental no-phonon line profile and to the min-
imum possible number of components used for the
given line profile.

The number of components used to fit the no-
phonon lines of RC centers (6, 4, 3, 2) depended on the
RC center, electron energy, and annealing temperature
(Fig. 5). Six components were used to decompose the
no-phonon line of the RC1 center observed in PL spec-
tra after irradiation with electrons with energies of 300
and 230 keV, and three components, for electron ener-
gies of 170 and 150 keV or after annealing at 650–
800°C. After irradiation with electrons with energies of
300, 230, and 170 keV, the no-phonon line of the RC2
center was decomposed into 4, 4, and 3 components,
respectively, and after annealing at T = 400, 650, or
800°C, into 3, 2, and 2 components, respectively. The
number of components used to decompose the no-
phonon line of the RC3 center was 3, 2, and 2 after irra-
diation with electrons with energies of 230, 200, and
170 keV, respectively. For samples irradiated with elec-
trons with an energy of 230 keV and then annealed at
400, 650, or 800°C, the fine structure of the no-phonon
line of the RC3 center was decomposed into 3, 3, and 2
components, respectively.

4. DISCUSSION

The symmetry of defects can be lower than the sym-
metry of their position in the perfect crystal, e.g.,
because of a spontaneous distortion lowering the sym-
metry and resulting in a more stable configuration of a
defect (the Jahn–Teller effect). The symmetry group of
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Fig. 4. No-phonon line of the RC3 center in PL spectra
obtained from a region of a cBN single crystal (1) irradiated
with electrons with an energy of 230 keV and then annealed
at temperatures of (2) 400, (3) 650, and (4) 800°C.
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Fig. 5. Experimental and calculated shapes of the no-phonon lines of (a, a') the RC1, (b, b') RC2, and (c, c') RC3 centers in PL
spectra obtained from regions of a cBN single crystal irradiated with electrons with energies of (a, c) 230 and (a', c') 170 keV. The
Gaussians into which the spectral lines were decomposed are shown by thin lines.
a distorted configuration is a subgroup of the original
group. For example, in the case of diamond, the Td

group (vacancy GR1) can reduce to its (tetragonal) D2d,
(orthorhombic) C2v, and (trigonal) C3v subgroups. A
distortion causes a splitting of degenerate electronic
states of the defect (depending on the character of the
distortion) or a shift of the corresponding energy levels.
The magnitude of the shift is a measure of the amount
of distortion [10].
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
The splittings of energy levels of a defect of symme-
try Td caused by tetragonal, trigonal, and orthorhombic
distortions can be obtained by applying uniaxial
stresses to the defect along the 〈100〉 , 〈111〉 , and 〈110〉
directions, respectively.

Each of the subgroups mentioned above is charac-
terized by electronic states that are different from the
ground and excited states corresponding to the Td

group. For example, in the case of an orthorhombic dis-
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tortion of the GR1 vacancy, the ground state E is doubly
degenerate and the excited state T2 is triply degenerate,
while in the case of tetragonal and trigonal distortions
the excited state T2 is doubly degenerate [11]. In the
former case, the fine structure of the no-phonon line
(GC1) consists of a sextuplet of lines, while in the latter
case it consists of a quadruplet, as observed in the
absorption and cathodoluminescence spectra of dia-
mond [9, 11].

In addition to the Jahn–Teller effect, the state of a
defect can be affected by other defects randomly dis-
tributed over the lattice. In this case, the no-phonon line
associated with electron transitions between the degen-
erate (unsplit) ground and excited states of a defect
belonging, say, to the Td group should be broadened.
This conclusion is supported by the fact that the no-
phonon line of the RC3 center consists of two compo-
nents centered at the same energy and having different
half-widths (Fig. 5c') and that all no-phonon lines in the
PL spectrum are highly broadened after annealing of
cBN single crystals at 400°C (curve 2 in Fig. 4).

Based on the results of the analysis of the structure
of the no-phonon lines of vacancy-type RC centers, the
known data on the vacancy defect V° (GR1) in irradi-
ated diamond, and the similarity between crystal lat-
tices of diamond and cubic boron nitride, the following
conclusions can be drawn regarding radiation-induced
centers in cubic boron nitride.

The fine structure of the no-phonon lines of RC cen-
ters changes after irradiation with electrons of the
threshold energy for atomic displacement from their
lattice sites over a distance smaller than the lattice
parameter of cBN. Vacancies that are located at sites of
Td symmetry and belong to RC defects are affected dif-
ferently (depending, in particular, on the charge state)
by directed and uniaxial stresses arising in the cBN lat-
tice, which can be considered a manifestation of differ-
ent types of distortion of the vacancies (or other defects
substituting for them) [10]. As in the case of diamond
[11], the RC1 no-phonon line can split into six lines
when the vacancy is located along a 〈110〉  direction
with respect to the source of its distortion and reduces
its symmetry to orthorhombic. The RC2 no-phonon
line can split into four components when the vacancy is
located along the 〈100〉  or 〈111〉  directions relative to
the source of its distortion and reduces its Td symmetry
to tetragonal and trigonal, respectively. The source of
distortion that reduces the symmetry of a vacancy
belonging to an RC defect can be another element of
the structure of the defect situated near the vacancy.

The no-phonon lines corresponding to unperturbed
vacancies of Td symmetry should be single lines. The
triplet structure of the no-phonon lines of the RC1 and
RC2 centers (observed after irradiation of cBN with
electrons of energies below the threshold value) and of
the RC3 center (observed when the electron energy is
equal to the threshold value) indicates that the doubly
degenerate ground states of defects with Td symmetry
P

split and that the defect centers are affected by stresses
randomly distributed over cBN. The changes in the fine
structure of no-phonon lines caused by “threshold”
effects characterize the end effect of directed stresses
on the vacancies belonging to RC defects. Judging from
the number of components into which the no-phonon
lines were decomposed, the vacancy belonging to the
RC3 center is affected by threshold and subthreshold
stresses to a smaller extent than the vacancies in other
RC centers.

Annealing at temperatures of 650 to 800°C causes
RC centers in the “threshold” state to relax to the “sub-
threshold” state, the RC3 center being more mobile in
this respect (Fig. 4).

After irradiation with electrons with an energy of
4.5 MeV, stresses are randomly distributed over the
material due to secondary displacements, with the con-
sequence that all RC defects can be in the unperturbed
states for which the no-phonon lines are in the low-
energy position. These lines are either unsplit or their
profiles can be closely fitted by three Gaussians [2].

5. CONCLUSIONS

(1) The RC1–RC4 centers can be produced in cBN
by irradiating a sample with electrons of near-threshold
energies (cathodoluminescence spectra reveal RC4
centers only after irradiating a sample with ions).

(2) The no-phonon lines of RC centers in PL spectra
of cBN irradiated with electrons of near-threshold ener-
gies can be doublets, in contrast to CL spectra, where
the no-phonon lines are not doublets.

(3) The electron energy during irradiation affects the
position of the no-phonon lines of the RC1–RC4 cen-
ters; lines with the longest wavelength are observed
after irradiation by electrons with energies above the
threshold value.

(4) Electron transitions in RC centers strongly inter-
act with the 64-meV phonon and lattice phonons with
energies of 0.1 to 0.125 eV and weakly interact with the
48- and 75-meV phonons.

(5) The no-phonon lines of the RC1–RC3 centers
have a fine structure, which changes as the electron
energy reaches a threshold value; it is likely that, at this
threshold energy, the symmetry of the vacancies
belonging to RC defects is reduced to orthorhombic
symmetry with the axis along 〈110〉  (for the RC1 cen-
ter) and to tetragonal or trigonal symmetry with the axis
along 〈100〉  and 〈111〉 , respectively (for the RC2, RC3
centers); this change in the vacancy symmetry is due to
directed stresses, which can be caused by an element of
the RC defect structure situated near the vacancy. These
conjectures can be useful in modeling the structure of
RC defects.

(6) For samples of cubic boron nitride irradiated by
electrons with threshold energies, annealing at temper-
atures of 650 to 800°C causes relaxation of the defect
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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structure and the structure of the RC center no-phonon
lines to their “subthreshold” state.

(7) The fine structure of the no-phonon line of the
RC3 center is less sensitive to threshold and subthresh-
old effects and relaxes more easily during annealing
than do the structures of the RC1 and RC2 no-phonon
lines.
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Abstract—The overheating temperature of a microvolume of silicon dioxide produced by bombardment by a
high specific-power electron beam has been estimated. Calculations showed that the maximum temperature to
which a microvolume of silicon dioxide is overheated can be as high as 1200°C for an electron beam current of
100 nA. The variation in the cathodoluminescence characteristics of amorphous silica with different contents
of hydroxyl groups was studied for various electron beam specific-power levels. The impact of a high specific-
power electron beam was shown to create additional lattice defects up to the formation of silicon clusters.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The SiO2/Si structure is a basic system currently
employed in the development of modern microelec-
tronics, and it is unlikely to be replaced by a different
system in the near future.

To achieve a higher efficiency of SiO2/Si systems in
optoelectronics, various methods of their fabrication
are currently being tried. The radiative properties of this
system depend on the structural features and geometric
parameters of its components. Such systems can be
produced by a variety of means, for instance, by depo-
sition of off-stoichiometric silicon dioxide films, oxida-
tion of porous silicon, etc. Among these techniques is
modification of silicon dioxide by a high-energy elec-
tron beam of a high specific power [1]. In this case, sil-
icon clusters are produced from silicon dioxide irradi-
ated by electrons. Silicon clusters form as a result of
irradiation and local heating of silicon dioxide by the
electron beam, which brings about a variation in the
cathodoluminescence (CL) characteristics of the
microvolume. 

This communication reports on a study of the varia-
tion in the CL properties of amorphous silica bom-
barded by a high-energy electron beam at different spe-
cific-power levels.

CL spectra of impurity-free amorphous silicon
dioxide contain bands related to structural defects, such
as the non-bridging oxygen atom and the twofold-coor-
dinated silicon atom. The non-bridging oxygen atom
produces a luminescence band peaking at 1.9 eV, which
corresponds to the absorption bands at 4.75 and 2.0 eV
[2, 3]. The other intrinsic defect in silicon dioxide is
responsible for the 4.3- and 2.65-eV luminescence
bands, which are excited at 5.0 eV. The most probable
model of this defect is a silicon atom with only two
1063-7834/04/4606- $26.00 © 21018
neighboring oxygen atoms, i.e., a twofold-coordinated
silicon atom [4, 5]. These emission bands are excited in
a CL spectrum, because the electron beam energy (1–
30 keV) is many times larger than the band-gap width
of silicon dioxide.

The CL properties of the SiO2/Si system vary
strongly in the presence of silicon clusters. Silicon is an
indirect-gap semiconductor with weak luminescence. It
emits in the IR region at 1.1 eV, but silicon microcrys-
tals with linear dimensions on the order of a few
nanometers produce luminescence bands from 1.4 to
1.8 eV [6]. The reason for this lies in the fact that the
band gap width of silicon depends on the geometric size
of the silicon crystals [6]. The presence of silicon clus-
ters in silicon dioxide is always accompanied by a
strong variation in the luminescence properties and the
appearance of an intense emission in the green region
of the spectrum with a maximum at 2.2–2.3 eV [7].

In CL studies, one can vary the electron beam diam-
eter and electron current over a broad range. This
enables one to vary the specific power of the electron
beam to within several orders of magnitude. If the spe-
cific power of the electron beam is high enough, the
sample microvolume heats. Heating can produce addi-
tional structural defects in the irradiated microvolume.

Investigation of the temperature fields generated by
an electron beam in various samples provides informa-
tion of value for interpreting experimental data
obtained in CL studies. Because the experiments were
performed at the maximum attainable focusing of the
electron beam (the beam diameter did not exceed
0.1 µm), the region of heat release was small, which
makes experimental measurement of the overheating
temperature a very difficult problem. This necessitated
a theoretical estimation of the silicon dioxide overheat-
ing temperature under electron beam impact.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Monte Carlo calculation of the spatial stationary energy loss distribution in silica for various beam energies: (a) 20, (b) 15,
(c) 10, and (d) 5 keV. The energy loss densities are in units of J/(m3 s K).

1.2
2. THEORETICAL ESTIMATION 
OF TEMPERATURE FIELDS IN SILICON 

DIOXIDE

To estimate the effect of sample heating under elec-
tron beam irradiation, we calculated the temperature
distribution in silicon dioxide by the technique pro-
posed in [8, 9]. The distribution of the energy loss den-
sity per electron was calculated by the Monte Carlo
method in terms of the single-scattering model. For the
differential cross section of elastic scattering, the Mott
cross section was taken [10], while the inelastic interac-
tion was computed based on optical data with the algo-
rithm proposed in [11].1 

The code followed the trajectories of only the pri-
mary electrons, which resulted in a certain error in the
distribution of the energy loss but did not affect its total
value. The simulation took into account the carbon
layer present on the sample surface.

We made use of the technique proposed in [9] to
obtain the spatial distribution of the energy loss density
q(ρ, z) (here, z is the depth, and ρ is the radius) for an
electron beam current of 100 nA and beam energies
E0 = 5, 10, 15, and 20 keV (Fig. 1).

By approximating the shape of the heat generation
region with a half-ellipsoid, one can take into account
the differences between the lateral and longitudinal
source dimensions. While the real shape naturally does
not coincide with this approximation, this approach

1 The data on the differential electron scattering cross sections
computed by the present authors can be found at
www.ioffe.ru/ES.
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provides an estimate for the maximum overheating
temperature [9].

We considered the problem of uniform heat genera-
tion in the volume of a half-ellipsoid with semi-axes a
and b. The temperature field is given by the equation

(1)

where ∆ is the Laplace operator, κ is the thermal con-
ductivity coefficient, and q is the energy loss density
(Fig. 1),

(2)

The semi-axes a and b were twice the half-widths σz

and σρ, respectively, of the Gaussian distribution

Aexp(–z2/σ2 – ρ2/ ) approximating the energy loss
density distribution.

We obtained estimates for the maximum overheat-
ing temperature for the case of heat generated in a pro-
late ellipsoid of revolution (a > b),

(3)
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and in an oblate ellipsoid of revolution (a < b),

(4)

Figure 2 shows the spatial distribution of the over-
heating temperature for a focused beam with an elec-
tron energy of 5 keV and a beam current of 100 nA. We
readily see that, at the point of electron beam impact on
the sample, the temperature rises 2100°C above the
sample temperature. We calculated the overheating
temperature taking into account the finite beam diame-
ter (0.1 µm); it was found to be 1200°C for a region
about 40 nm in diameter. Indeed, as the electron beam
current is increased to 100 nA, the optical microscope
reveals irreversible surface changes in the silicon diox-
ide sample. A crater forms in the region of electron
interaction with the sample. It is known that, for silicon
islands to form, it is sufficient to heat silicon oxide in
vacuum to 400–600°C [12]. It thus follows that, at an
electron current of 100 nA bombarding silicon oxide,
defects associated with oxygen deficiency should form
in it up to the creation of silicon clusters.

Since the overheating temperature depends linearly,
in a first approximation, on the probing electron current
(the relation of Castaing [13]), it may be conjectured
that the structure of silicon oxide should not undergo
pronounced modification at currents on the order of 10–
15 nA, because the overheating temperature would not
be in excess of 200°C.

In this connection, we studied primarily the CL
spectra of silicon dioxide obtained at electron beam
currents of 15 nA, which contained emission lines of
weakly modified silicon dioxide. The next in line were
the changes in the CL spectra observed with currents of
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Fig. 2. Temperature field isotherms for sources of semiellip-
tical shape. The figures at the isotherms are the overheating
temperatures relative to the sample temperature that were
reached in interaction with an electron beam with an energy
of 5 eV and with a current of 100 nA.
P

100 nA. We also studied the dependence of the intensity
of the main CL bands on exposure time to a 100-nA
electron beam.

3. EXPERIMENTAL TECHNIQUE

The effect produced by a focused electron beam
incident on silica was studied with a Camebax electron
microprobe analyzer equipped with two optical spec-
trometers [14].

To broaden the range of probing the CL properties
of a sample, measurements were conducted in various
operational regimes of the analyzer:

(1) stationary regime, in which a beam bombards the
sample continuously to obtain an emission spectrum;

(2) time-resolved mode, in which two spectra are
measured at each point of the sample, with the first
spectrum being obtained under irradiation of the sam-
ple by an electron beam and the second, with a given
time delay (0.5 µs to a few seconds) after the deflection
of the beam;

(3) study of the emission band decay dynamics; this
mode permits measurement of the emission band inten-
sity versus time following the termination of the excita-
tion;

(4) measuring the dependence of luminescence band
intensity on the sample exposure time to the electron
beam.

The stationary and band decay dynamics spectra
were obtained at an electron energy of 15 keV and a
beam current of 100 nA. The dependence of the lumi-
nescence band intensity on exposure time was studied
at the same electron energy and beam current. The time
resolved spectra were taken at an electron energy of
15 keV and beam current of 15 nA at a gating delay of
200 µs.

We studied CL spectra of two types of SiO2 glasses
containing different amounts of the hydroxyl group
OH: KU with an OH content of 2400–3000 ppm and KI
with an OH content of 1–2 ppm.

The content of other impurities in the glasses stud-
ied was below 3 ppm. Before the measurements, the
glass samples were polished and a carbon layer about
200 Å thick was applied to them to improve the sample
conductivity.

4. MAIN RESULTS AND DISCUSSION

Characteristics of the CL emission bands were
obtained for the KU glass. Figure 3 presents typical
time-resolved CL spectra of amorphous silica mea-
sured at an electron beam current of 15 nA and energy
of 15 keV with a time delay of 200 µs.

The CL spectra of the sample exhibit bands charac-
teristic of such defects as the non-bridging oxygen
atom [the (1.90 ± 0.05) eV band] and the twofold-coor-
dinated silicon atom [the (2.65 ± 0.05) eV band]. The
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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spectrum also has a shoulder in the green region. To
derive the spectral characteristics of the bands, the CL
spectrum was unfolded into three constituent bands
using the ORIGIN code. The observed bands were
assumed to have Gaussian shape. Such a deconvolution
allows us to interpret the green shoulder as a band peak-
ing at (2.20 ± 0.05) eV and having a half-width of
0.4 eV. The spectrum taken with a time delay of 200 µs
clearly reveals a band at 2.65 eV and a shoulder in the
green region. Deconvolution of this spectrum showed
that this shoulder can also be traced to a band with a
maximum at 2.2 eV. The 1.9-eV band in this spectrum
is not observed. This implies that this band decays in a
time shorter than the gate delay time. The strongest
band, peaking at 2.65 eV, has the longest decay time;
therefore, its intensity in the delayed spectrum is maxi-
mum.

These conclusions were supported by measure-
ments of the decay time dynamics of the bands
observed in the spectrum. As seen from Fig. 4, the band
decay dynamics has an exponential character, I =
I0exp(–t/τ), where I0 is the band intensity during the
sample irradiation by the electron beam, t is the time
elapsed from the instant the beam deflects from the
sample, and τ is the decay time of the luminescence
band.

Thus, we obtained the following spectral character-
istics of the main CL bands for amorphous silicon diox-
ide. For the 1.9-eV band, the decay time is (28 ± 1) µs
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Fig. 3. Time-resolved CL spectra of KU-type glass:
(a) spectrum obtained under sample irradiation with an
electron beam and (b) spectrum measured with a delay of
200 µs after termination of the sample excitation.
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and its half-width is (0.13 ± 0.04) eV. For the 2.2-eV
band, these parameters are (59 ± 3) µs and (0.40 ±
0.05) eV. The band at 2.65 eV is comparatively the
longest lived; its decay time was found to be (4.9 ±
0.2) ms and its half-width, (0.30 ± 0.05) eV. Because
the half-widths and decay times for different bands are
different, this can only mean that they are due to differ-
ent defects.

Increasing the specific excitation power brings
about a noticeable change in the CL spectra. We raised
the excitation power in this study by increasing the elec-
tron beam current by an order of magnitude. Figure 5 dis-
plays spectra of two types of glass obtained at an elec-
tron current of 100 nA and an energy of 15 keV.
A comparison of the spectra taken at 15 and 100 nA
reveals that an increase in beam current results in a sub-
stantial growth in the intensity of the 2.2-eV band rela-
tive to the other bands. Comparing CL spectra of
glasses of different types shows that the KU glass (OH
group content 2400–3000 ppm) produces a stronger
luminescence than does the KI glass, which indicates
that the number of defects is larger in SiO2 with a
higher concentration of OH groups. This accounts for
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Fig. 4. Intensity decay dynamics obtained for some bands in
the CL spectrum of KU-type glass: (a) band at 1.9 eV,
(b) band at 2.3 eV, and (c) band at 2.65 eV.
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the lower intensity of the KI glass, because its structure
contains less defects.

The spectral changes are the most pronounced in the
IR region of glass emission. At low specific-excitation
powers, no emission bands appear in the IR range (1.0–
1.8 eV). As the electron current is increased, weak
emission bands peaking at 1.1 and 1.35 eV emerge in
the spectra. The positions of the maxima were found by
unfolding the spectra into two constituent bands. The
shoulder with the maximum at 1.35 eV may be due
either to the emission of amorphous silicon or to the
formation of silicon clusters [15].

Figure 6 presents the dependences of the CL band
intensity on the sample exposure time to the electron
beam. The 1.9- and 2.65-eV bands in the KI glass (with
a low OH group content) reach maximum intensity 200 s
after the modification begins, thus indicating an
increase in the number of defects in the volume under
study. The next to attain maximum intensity are the
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Fig. 5. CL spectra of glasses obtained in the IR and visible
regions: (a) KI glass, IR spectrum; (b) KU glass, IR spec-
trum; (c) KI glass, visible spectrum; and (d) KU glass, vis-
ible spectrum.

1.5
P

bands at 1.35 and 2.3 eV (after 300 s). This can be
attributed to the formation of crystalline or amorphous
silicon clusters of small size. The last band to reach
maximum intensity (in 350 s) is the one at 1.1 eV,
which signals the formation of silicon clusters of a
fairly large size.

The pattern is different for the KU glass with a high
OH content. All bands grow in intensity with increasing
electron irradiation time in the same way, except for the
band at 1.9 eV. However, for all bands, it takes a longer
time to reach the maximum than in the case of the sili-
con dioxide with a low OH group content. The intensity
of the 1.9-eV band decreases and comes to a minimum
200 s after the modification begins. This may mean that
first the defects associated with the high OH content are
healed and only after that do new defects form. The
band at 1.1 eV attains a maximum 400 s after the mod-
ification begins.
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Fig. 6. CL intensity plotted vs. exposure time to an electron
beam for (a) KI glass and (b) KU glass: (1) band peaking at
2.65 eV, (2) 1.9 eV, (3) 2.2 eV, (4) 1.4 eV, and (5) 1.1 eV.
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5. CONCLUSIONS
We thus see that, when exposed to a high-power

electron beam, glass with a low hydroxyl group content
passes through three stages of modification [16, 17]:

(1) an increase in the fraction of intrinsic defects
associated with either a deficiency or excess of oxygen,
which is caused by the rupture of the oxygen–silicon
bonds in the glass;

(2) a fast rise in the intensity of the band with a max-
imum at 2.2–2.3 eV, which originates from the forma-
tion of intrinsic oxygen-deficient defects, as well as the
appearance and growth in intensity of the 1.4-eV band
associated with silicon nanoclusters or islands of amor-
phous silicon;

(3) appearance and growth in intensity of the band
peaking at 1.1 eV, which should be assigned to the for-
mation of relatively large islands of crystalline silicon.

Interaction of an electron beam with KU-type glass
brings about, first of all, a decrease in the fraction of
intrinsic defects associated with an oxygen excess. The
formation of islands or clusters of silicon takes more
time.
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Abstract—Raman scattering in Rb2TeBr6 and Cs2TeBr6 crystals is studied. The phonon spectra of the crystals
are calculated using the factor group method. The number of Raman-active modes, their symmetries, and selec-
tion rules are found. Observed Raman spectrum lines are identified with atomic vibration modes of the crystal.
© 2004 MAIK “Nauka/Interperiodica”.
Crystals of alkali metal chalcogenides 
(where AI is K, Rb, or Cs; BVI is S, Se, or Te; CVII is Cl,
Br, or I) represent a vast class of semiconductors whose
physical properties are virtually unexplored [1–3]. X-
ray structure analysis shows that alkali metal chalco-
genides crystallize into a cubic lattice with space group

–Fm3m (except K2TeBr6) [4, 5]. Therefore, these
materials are promising for use in optical modulation
and scanning devices [6, 7] and comprehensive study of
their optical properties is of considerable interest.

In this paper, the phonon spectra of Rb2TeBr6 and
Cs2TeBr6 crystals is studied by means of Raman spec-
troscopy. In addition to independent determination of
the crystal structure of the materials, this technique pro-
vides valuable information about interactions of atoms
in the crystal and about the nature of their chemical
bonding. Our experiments were performed at room
temperature.

Rb2TeBr6 and Cs2TeBr6 single crystals were grown
using the directional solidification method (Bridgman
technique). The solidification front velocity was 0.1–
0.3 mm/h, and the temperature gradient in the solidifi-
cation zone was 2–4 K/mm. Crystals were annealed at
a temperature of 473 K for three days and then cooled
to room temperature at a rate of 30 K/h. The Rb2TeBr6
and Cs2TeBr6 single crystals thus obtained were 25 to
55 mm long and 15 to 22 mm in diameter.

The phonon spectra of the crystals under study were
calculated beforehand using the positional symmetry
method [8, 9]. As mentioned above, Rb2TeBr6 and
Cs2TeBr6 compounds have cubic structure (space group

–Fm3m) and contain four formula units per unit
cell. Atoms occupy sites as follows: 8 Rb (Cs) atoms
are in position d (0, 1/2, 1/4), 4 Te atoms are in position
a (0, 0, 0), 8 Br atoms are in position e (0, 0, 0.2509),
and 16 Br atoms are in position h (0.2341, 0.2756, 0).
The lattice constant a is 10.918 Å for Cs2TeBr6 and

A2
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C6

VII

Oh
5

Oh
5
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10.713 Å for Rb2TeBr6. The primitive unit cell contains

nine atoms (fcc Bravais lattice). The space group  is
characterized by the following types of atomic posi-
tions: 2Oh(1), Td(2), D2h(6), C4v (6) (6), C3v (8),
3C2v (12), 2Cs(24), and C1(48). X-ray analysis reveals
that Rb and Cs atoms occupy sites with point symmetry
group Td, Te atoms occupy sites with symmetry Oh, and
Br atoms occupy sites with symmetry C4v. The results
of factor group analysis of vibration spectra of
Rb2TeBr6 and Cs2TeBr6 crystals based on these data are
presented in Table 1.

It follows from this table that lattice vibrations of the
crystals under study are distributed over irreducible
representations of the factor group Oh of the crystal at
the center of the Brillouin zone in the following way:

Acoustic modes have symmetry Γac = F1u; therefore,

Here, R stands for Raman scattering and IR, for infra-
red reflection.

Because the crystals under study have a center of
inversion, there are selection rules according to which
the Raman spectra contain only four vibrational modes:
one A1g mode, one Eg mode, and two F2g modes.

The experimental studies of the Raman spectra were
performed on a Raman spectrometer DFS-24 with two
identical diffraction gratings (replicas) serving as dis-
persive elements. The gratings had 1200 lines per mil-
limeter and worked in the first order. A photomultiplier
FÉU-79 was used as a detector of light. The instanta-
neous light intensity (averaged over the specified char-
acteristic time) was measured using electronic circuit
and registered with a PDA-1 chart recorder. The spectra
obtained were processed on computer.

Oh
5

Γ A1g Eg F1g 2F2g 4F1u F2u.+ + + + +=

Γopt k = 0( ) = A1g R( ) Eg R( ) 2F2g R( ) 3F1u IR( ).+ + +
004 MAIK “Nauka/Interperiodica”
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Table 1.  Factor group analysis of lattice vibrations of Rb2TeBr6 and Cs2TeBr6 crystals

Number and 
type of atoms

Site symmetry with 
inclusion of translation 

(groups C4v, Td, Oh)

Correlation

Factor group Oh
Number of 

modes Symmetry Activity

A1g 1 αxx + αyy + αzz R

A1

6Br Eg 1 αxx + αyy – 2αzz, 
αxx – αyy

R

E F1g 1

F2g 2 αxy, αyz, αzx R

2Cs F2

F1u 4 µx, µy, µz IR

Te F1u F2u 1
An LGN-215 He–Ne laser (λ = 0.6328 µm, W =
50 mW) working in a single-mode regime was used to
excite Raman spectra. We utilized the 90° scattering
geometry, which provides for maximal collections of
scattered light. This geometry offers the best reduction
of parasitic Tyndall and Rayleigh scattering. A polariz-
ing prism was used to check the polarization of the scat-
tered light. The spectral resolution was 1 cm–1. The rel-
ative error in measuring the intensity for the maxima of
spectral lines and of their half-width distortion in com-
parison to the true half-width of the spectral lines did
not exceed 1%. We used single crystals of good optical
quality oriented along the {100} planes. Because of the
cubic symmetry of the crystals and the small number of
lines in the Raman spectra, it is possible to identify
observed vibrations correctly by means of unpolarized
light measurements.

The experimental Raman spectra of Rb2TeBr6 and
Cs2TeBr6 crystals are presented in Fig. 1, and the sym-
metries and frequencies of all observed modes are
listed in Table 2. The experimental results agree with
theoretical calculations; the Raman spectra do have
four vibrational modes, in contrast to those reported in
[10], where only three modes were observed. Vibra-
tions with the F1u symmetry could be observed in the
IR-transmission (reflection) spectra only. Hence,
Raman spectroscopy data confirm the structure of
Rb2TeBr6 and Cs2TeBr6 crystals established previously.

Our interpretation of the experimental results is
based on the features of the crystal structure. The lat-
tices of these compounds consist of closely packed
{Rb(Cs)Br3} layers, with half of the [Br6] octahedral
voids filled with Te atoms. Hence, it is possible to sin-
gle out an isolated group of atoms TeBr6 with an octa-
hedral symmetry Oh. The vibrational spectrum of the
crystal can be considered to consist of internal vibra-
tions of these atomic complexes and their external
oscillations relative to Rb(Cs) atoms. Normal modes of
the free octahedral molecule are shown in Fig. 2 [11].
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
The Raman spectrum of this molecule contains two
stretching vibrations ν1 and ν2 with A1g and Eg symme-
tries and one bending vibration ν5 with F2g symmetry.

Frequencies of these modes were measured for Te
ions in a water solution: ν1 = 166, ν2 = 151, and ν5 =

Br6
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Fig. 1. Raman spectra of (a) Cs2TeBr6 and (b) Rb2TeBr6
crystals.
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74 cm–1 [11, 12]. Because the Te  ion and crystals
under study are similar in structure, we can assume that
the crystal field does not cause significant distortion of

the Te  ion and does not break the selection rules
for its vibrational spectrum. The crystal field can give
rise to an insignificant frequency shift of the modes,
and this is actually observed experimentally. Hence, for
the Rb2TeBr6 and Cs2TeBr6 crystals, the vibrational
modes at 180 and 174 cm–1, respectively, could be
attributed to the fully symmetric A1g stretching vibra-
tion of bromine atoms; the modes at 155 and 150 cm–1,
respectively, to the antisymmetric Eg stretching vibra-
tion; and the modes at 90 and 91 cm–1, respectively, to
the triply degenerate F2g bending vibration of the TeBr6

group. The Raman spectrum of the free TeBr6 molecule
has only one F2g mode. In Rb2TeBr6 and Cs2TeBr6 com-
pounds, another Raman active F2g mode arises because
of the presence of the alkali atoms and the appearance
of a crystal field (Table 1). It is natural to attribute this

Br6
2–

Br6
2–

Table 2.  Raman-active modes of Rb2TeBr6 and Cs2TeBr6
crystals

Symmetry
Frequency, cm–1

Rb2TeBr6 Cs2TeBr6

A1g 180 174

Eg 155 150

F2g 90 91

F2g 54 45

ω1
ω2 ω3

ω6ω5ω4

Fig. 2. Normal modes of the TeBr6 octahedral molecule.
P

mode to external oscillations of the TeBr6 complex rel-
ative to the Rb and Cs atoms situated in the octahedral
voids. The frequency of these vibrations is 45 cm–1 for
the Cs2TeBr6 crystal and 54 cm–1 for the Rb2TeBr6 crys-
tal (Fig. 1, Table 2). The minor difference in electrone-
gativity between the Te and Br atoms indicates the
covalent nature of the Te–Br bond. This feature is the
cause of noticeable changes in polarizability during rel-
ative oscillations of these atoms and of the considerable
intensity of the Raman scattering lines corresponding
to these oscillations (Fig. 1). At the same time, the Rb–
(TeBr6) bond has a pronounced ionic nature and the
Raman scattering line corresponding to this stretching
vibration has a low intensity. Note that the replacement
of Rb atoms in these crystals by the heavier Cs atom
has only a slight effect both on the frequencies of the
phonon modes at the center of the Brillouin zone
(Table 2) and on the intensities of the corresponding
Raman spectral lines.
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Abstract—The electrical conductivity σa and permittivities εa, εb, and εc of a LiCuVO4 single crystal have been
measured along the a, b, and c crystallographic axes, respectively, in the temperature range 300–390 K at a fre-
quency of 103 Hz. The temperature dependences σ(T) and ε(T) were found to be typical for superionics. © 2004
MAIK “Nauka/Interperiodica”.
Measurements of the electrical conductivity σ of
LiCuVO4 performed in the temperature interval 300–
500 K and the anomalous behavior of thermal conduc-
tivity in the range 100–300 K led to the conclusion [1]
that this compound is a quasi-one-dimensional superi-
onic.

When the temperature is increased, superionic con-
ductors exhibit, in addition to an exponential growth in
electrical conductivity, an exponential increase in the
permittivity ε, which can reach fairly large values at
high enough temperatures [2, 3]. For instance, ε of the
Li2B4O7 quasi-one-dimensional lithium superionic [2]
(which belongs to materials with the 4mm tetragonal
symmetry) measured along the polar c axis of the crys-
tal at ~102 Hz increases from 20 at 300 K to 4200 at
500 K.

The present study was aimed primarily at measuring
ε(T) for LiCuVO4 in order to verify the conclusion from
[1] that this material is a fairly good superionic.

LiCuVO4 crystallizes in an orthorhombic distorted
inverted spinel structure, in which the nonmagnetic V5+

ions occupy tetrahedral voids and the nonmagnetic Li+

and magnetic Cu2+ (S = 1/2) ions are arranged in an
ordered manner in octahedral voids of the anion sublat-
tice [4, 5]. The CuO6- and LiO6-octahedra make up
“magnetic” and “nonmagnetic” chains, respectively,
aligned in LiCuVO4 with the b and a crystallographic
directions (see inset to Fig. 1).

The LiCuVO4 single crystals intended for permittiv-
ity and electrical conductivity measurements were
grown using the technique described in [6]. They were
grown from solution in a LiVO3 melt under slow cool-
ing in the range 650–580°C. Such crystals are conven-
tionally called [1] “high-temperature” LiCuVO4 single
crystals.
1063-7834/04/4606- $26.00 © 21027
A chemical analysis of a large set of such high-tem-
perature LiCuVO4 single crystals revealed, despite a
certain scatter of data, that their average composition is
Li0.92Cu1.03VO4, i.e., that they are off-stoichiometric
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Fig. 1. Temperature behavior of the permittivity of a
LiCuVO4 single crystal in the a, b, and c crystallographic
directions. Inset shows (A) the crystal structure [4] and (B)
the rod model [5] proposed for LiCuVO4. The mutually per-
pendicular Li and Cu rod layers alternate.
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both in lithium and in copper [1]. The main type of
defects in these crystals is, however, vacancies on the
lithium sublattice.

The electrical conductivity σa(T) and the permittiv-
ity εa(T), εb(T), and εc(T) were measured in the range
300–390 K at a frequency ω ~ 103 Hz. The experimen-
tal data obtained on σa(T) and εa, b, c(T) for LiCuVO4 are
presented graphically in Figs. 1 and 2.

Consider the results obtained on σa(T). As is evident
from Fig. 2, the experimental points fall on a straight
line, which is described, in the case of ionic conduction,
by the Arrhenius relation [7, 8]

(1)

where ∆Ha is the activation enthalpy for electrical con-
duction.

∆Ha for LiCuVO4 was found to be ~0.40 eV, which
is in good agreement with the values of ∆H quoted for
lithium-based superionics [8].

Because the LiCuVO4 single crystals at our disposal
were fairly small, the values of σa may have been deter-
mined with some error, but the slope of the log(σa) =
f(103/T) straight line was found with good accuracy.

The increase in σa(T) with temperature should be
assigned primarily to the diffusion of Li ions over
vacancies on the lithium sublattice in LiCuVO4.

Consider the data obtained on εa(T), εb(T), and εc(T)
(Figs. 1, 2). As in the case of the Li2B4O7 quasi-one-
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Fig. 2. Temperature dependences of the electrical conduc-
tivity and permittivity of a LiCuVO4 single crystal mea-
sured along the a crystallographic direction.
PH
dimensional superionic [2], LiCuVO4 exhibits expo-
nential growth in ε with increasing temperature. The
increase in the permittivity is the strongest for εa(T)
(Fig. 2); it scales with temperature as εa(T) ~
exp(−∆Ea/kT) with ∆Ea ~ 0.46 eV, a figure close in
magnitude to the value of ∆Ha obtained for σa(T)
(Fig. 2).

εb(T) and εc(T) also grow with temperature but not
as strongly as εa(T) does (Fig. 1). This behavior of
εa, b, c(T) can apparently be explained by the observation
that ionic conduction is realized most easily over the
defected lithium sublattice in LiCuVO4, i.e., along the
a axis. This conclusion is corroborated by our measure-
ments of σ(T) in LiCuVO4 performed with an ac current
at ~103 Hz at 390 K in the a, b, and c directions, for
which we obtained the following values: 1.5 × 10–4, 7 ×
10–6, and 4.5 × 10–6 Ω–1 cm–1, respectively.

The permittivity of LiCuVO4 in the region 2–300 K
was extracted earlier [9] for the a(εa) and b(εb) crystal-
lographic directions from optical high-frequency mea-
surements in the IR region; εa varied from 10.9 at 2 K
to 11.4 at 300 K, while εb remained practically constant
in the same temperature region (10.4 at 2 K and 10.6 at
300 K).

Analysis of experimental data on σ(T), ε(T), and
other kinetic coefficients in materials with ionic con-
duction is complicated by the need to take into account
and evaluate parameters that are determined not only by
the volume of the material but also by its near-electrode
regions [7, 8]. Applying an external voltage may bring
about the formation of a space charge region to a depth
d0 ~ 10–4 cm near one of the electrodes in this material
[7], and it is this region which will govern the magni-
tude of the capacitance C and electrical conductivity
being measured. In a uniform dielectric (with no near-
contact charged layer present), ε is determined
uniquely by the measured capacitance of the material
filling the space between the electrodes (a distance d
apart). Therefore, the error in determining ε, with a
near-contact space-charge layer d0 ~ 10–4 cm thick and
for sample thicknesses d ~ 0.2 cm, would constitute
d/d0 ~ 103, which may result in an overestimated mag-
nitude of ε calculated under the assumption of the
absence of a near-contact space-charge layer in the
sample under study.

We attempted several experimental approaches to
answering the question of whether such a near-contact
charged layer does indeed form in our case in the mea-
surement of ε(T) and σ(T) in LiCuVO4.

(1) A near-contact space-charge layer should have
made the dependence of the voltage drop along the
layer thickness d nonlinear. We observed no such effect
on the samples studied.

(2) The voltage on the samples on which the capac-
itance and electrical conductivity were measured with
an ac current (ω ~ 103 Hz) was 4.3 V. We also per-
YSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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formed measurements in which an additional dc volt-
age of 20 V was applied simultaneously across the sam-
ple, which could have produced a noticeable impact on
both the magnitude and distribution of the near-elec-
trode potential and affected the capacitance and electri-
cal conductivity measurements. We did not observe any
differences between the measurements of C(T) and
σ(T) with and without the dc bias applied.

(3) The concentration of the electric field (E0) in a
thin near-contact layer of the material should have gen-
erated a field E0 ~ 104–105 V/cm capable of causing
electric breakdown in the near-contact region or current
instability. No such effect was observed by us experi-
mentally.

Thus, the above experiments permit the conclusion
that, most likely, no thin near-contact layer was present
in LiCuVO4 in the ε(T) and σ(T) measurements.

Not all factors capable of affecting the behavior of
ε(T) in the LiCuVO4 superionic were, however, taken
into account by us (we disregarded the effect of the con-
tact material, the existence of electronic conduction,
etc.). It would therefore be more prudent to call the ε(T)
obtained by us experimentally the “effective permittiv-
ity” of LiCuVO4.

We emphasize in conclusion that in carrying out this
study we were not interested in the question of why
εa, b, c(T) in LiCuVO4 have such high values or of
whether these values could be assigned to the existence
of a near-contact space-charge region, thus invalidating
our calculation of ε(T). The only thing we can be confi-
dent of is that LiCuVO4 features ionic conduction,
because ε grows markedly with temperature. Furnish-
ing supportive evidence for this conclusion was the
main purpose of this experiment.
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Abstract—Epitaxial films of composition (Gd,Nd)3Ga5O12 or (Gd,Y,Nd)3Ga5O12 with a neodymium content
varying from 0.3 to 15 at. % are grown by liquid-phase epitaxy from a supercooled PbO–B2O3-based solution
melt on Gd3Ga5O12(111) substrates. The optical absorption spectra of the epitaxial films grown are measured
in the wavelength range 0.2–1.0 µm. The results of interpreting the absorption bands observed in the spectra
are used to construct the energy level diagrams of Nd3+ and Gd3+ ions in the matrices of the epitaxial films.
© 2004 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

Neodymium-doped lasers with various solid matri-
ces, especially with those made up of single-crystal gar-
nets (for example, gadolinium gallium garnet
Gd3Ga5O12), have been extensively used in quantum
electronics [1]. The basic problem of increasing the
efficiency of these lasers is associated with the impos-
sibility of growing optically homogeneous crystals
with a high concentration of doping rare-earth ions, in
particular, Nd3+ ions, whose distribution coefficient is
considerably less than that for the ions replacing them
in the matrix [2]. As a result, the concentration of dop-
ing rare-earth elements changes significantly along the
axis of the growing single crystal.

The above disadvantage can often be eliminated
upon changing over to single-crystal films grown by
liquid-phase epitaxy from a supercooled solution melt.
In this case, the difference between the distribution
coefficients of the rare-earth elements introduced into
the epitaxial film can be decreased through appropriate
choice of the ratio between garnet-forming components
in the solution melt. Since only an insignificant amount
of these components passes from the solution melt into
the film, the concentration of rare-earth elements in the
bulk of the film remains almost unchanged over the film
thickness.

The first mention of a thin-film single-crystal laser
based on an Y1.25Ho0.1Er0.55Tm0.5Yb0.6Al5O12 garnet
film grown on an Y3Al5O12 substrate was made in 1972

† Deceased.
1063-7834/04/4606- $26.00 © 21030
by van der Ziel et al. [3]. In 1973, Bonner [4] succeeded
in generating stimulated emission at a wavelength of
1.06 µm at 300 K in Y3Al5O12 epitaxial films containing
2 at. % Nd3+.

In this work, we investigated the optical absorption
in the wavelength range 0.2–1.0 µm in neodymium-
containing single-crystal garnet films grown on
Gd3Ga5O12(111) substrates through liquid-phase epit-
axy from a supercooled PbO–B2O3-based solution
melt.

2. THE GROWTH OF FILMS

Epitaxial single-crystal gallium garnet films with a
neodymium content C(Nd) ranging from 0.3 to 15 at. %
were grown through liquid-phase epitaxy from a super-
cooled PbO–B2O3-based solution melt [5]. For a
neodymium content C(Nd) ≥ 1.7 at. %, yttrium was
introduced into the epitaxial single-crystal films with
the aim of matching the lattice parameters of the film
and the substrate. The composition of the batch was
characterized by the following molar ratios (R1, R2, R3):

R1 Ga2O3[ ] / Σ Ln2O3[ ]( ) 14.4,≈=

R2 PbO[ ] / B2O3[ ] 16.0,≈=

R3 Σ Ln2O3[ ] Ga2O3[ ]+( )/ Σ Ln2O3[ ] Ga2O3[ ]+(=

+ PbO[ ] B2O3[ ]+ ) 0.08,≈
004 MAIK “Nauka/Interperiodica”
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where Σ[Ln2O3] = [Gd2O3] + [Nd2O3] + [Y2O3] and
brackets designate the oxide content in the batch in
mole percent.

The growth experiments are illustrated in Fig. 1,
which shows a fragment of the concentration triangle of
the ((Nd2O3–Y2O3)–(Cd2O3–Ga2O3)–(PbO–B2O3) sys-
tem. In order to prepare an epitaxial single-crystal film
of the specified composition, the ratio between rare-
earth oxides in the batch was determined with due
regard for the known distribution coefficients of the
rare-earth elements [2]. Epitaxial films were grown
under supercooling conditions ensuring the absence of
additional absorption associated with the intervalence
pair transitions of Pb2+ and Pb4+ impurity ions [6, 7].
The epitaxial single-crystal films thus grown were col-

Fig. 1. Fragment of the concentration triangle of the
(Nd2O3–Y2O3)–(Gd2O3–Ga2O3)–(PbO–B2O3) pseudoter-
nary system. Mole fractions of oxides contained in the batch
are plotted along the sides of the triangle. Closed circles
indicate the compositions of the solution melts used to grow
epitaxial single-crystal films of gallium garnets with a
neodymium content ranging from 0.3 to 15 at. % (parame-
ters of the films are given in Table 1).
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orless and optically homogeneous, except the films
with a neodymium content C(Nd) ≈ 15 at. %, which
were yellowish brown and had microcracks.

The solution melt was homogenized in a platinum
crucible at a temperature T = 1100°C for 4 h. Then, the
temperature was reduced step-by-step to the crystalli-
zation temperature of the solution melt. At each tem-
perature step (i.e., at the growth temperature Tg =
const), we carried out the growth of the films. As the
neodymium content increased, the temperature of satu-
ration Ts of the solution melt decreased from 1030 to
920°C. The maximum thickness of the epitaxial films
grown amounted to 50 µm. Thick films with a thickness
h ≥ 25 µm were grown after an additional homogeniza-
tion of the solution melt.

Pb2+

λ = 276 nm

Gd3+

200 400 600

1 000

100

10

1

0.1

λ, nm

α,
 c

m
–

1

λ = 280 nm
Nd3+

1 2

3

4
50

Fig. 2. Optical absorption spectra α(λ) for (0) the
Gd3Ga5O12 substrate; (1) the neodymium-free Gd3Ga5O12
film; (2–4) Gd3Ga5O12 epitaxial film samples (2) 5, (3) 7,
and (4) 10 with different neodymium contents; and (5) the
Nd3Ga5O12 single crystal. The numbering of the films is the
same as in Table 1.
Table 1.  Characteristics of (Gd,Y,Nd)3Ga5O12 epitaxial single-crystal films

Sample no. C(Nd), at. % Tg, °C 2h, µm fg, µm/min α806.9, cm–1 ∆λ, nm

1 0.3 999 105.0 0.44 3.8 0.84

2 0.9 979 76.8 1.28 13.7 0.86

3 0.9 976 33.4 0.56 16.7 0.87

4 1.7 950 95.8 0.40 – –

5 2.3 964 73.8 0.37 30.6 0.92

6 3.3 950 53.8 0.90 47.8 0.92

7 5.0 930 67.9 0.28 76.2 0.92

8 10.0 944 12.0 0.20 125.0 0.96

9 10.0 935 68.7 0.19 123.0 0.96

10 15.0 887 99.8 0.16 176.3 1.01

Note: Tg is the growth temperature, α806.9 is the absorption coefficient without regard for scattering at the maximum of the spectral line, and
∆λ is the half-width of the spectral line at a wavelength of 806.9 nm.
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Fig. 3. Diagram of Stark levels of the Gd3+ ion in the Gd3Ga5O12 single crystal at room temperature.

6 I 6 P
For the above ratio of components in the batch, the
growth of films on the surface of the solution melt and
platinum auxiliaries was accompanied by spontaneous
crystallization of garnet single crystals in the form of
tetragonal trioctahedra with {211} facets.
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Fig. 4. Optical absorption spectra α(λ) for Gd3Ga5O12 epi-
taxial films with different neodymium contents C(Nd):
(a) (1) 0.3 and (2) 0.9; and (b) (1) 5, (2) 10, and (3) 15 at. %.
PH
3. EXPERIMENTAL TECHNIQUE

The total thickness 2h of the films grown on both
sides of the substrate and the growth rate fg of these
films (Table 1) were determined by weighing the sub-
strate prior to the epitaxial growth and the film–sub-
strate–film structure after the growth. In this case, we
ignored the difference in the quantitative compositions
of the film and the substrate.

The transmission spectra of the films were measured
on a Lambda 900 (Perkin-Elmer) spectrophotometer in
the wavelength range λ = 0.2–1.0 µm in steps of 2 nm
at room temperature.

The absorption spectra of the films were calculated
from the transmission spectra as follows. Initially, the
transmission spectrum of the substrate, which was mea-
sured prior to the growth, was divided by the transmis-
sion spectrum of the substrate with the grown films.
Then, the natural logarithm of this ratio was divided by
the total thickness of the films grown on both sides of
the substrate.

4. RESULTS AND DISCUSSION

Figure 2 shows the optical absorption spectra α(λ)
for the Gd3Ga5O12 substrate (curve 0), the neodymium-
free Gd3Ga5O12 epitaxial film (curve 1), Gd3Ga5O12
epitaxial films with different neodymium contents
(curves 2–4), and the Nd3Ga5O12 single crystal (curve 5)
grown by the Czochralski technique. As can be seen
from Fig. 2, the optical absorption spectra of neody-
mium-containing films exhibit absorption bands asso-
ciated with Nd3+ ions that are characteristic of
Nd3Ga5O12 single crystals (curve 5). Moreover, these
spectra contain an absorption band with a maximum at
a wavelength of 280 nm, which, as in the case of
Gd3Ga5O12 epitaxial films (Fig. 2, curve 1) [6], is attrib-
uted to the (6s2) 1S0  3P1 transition of the Pb2+ ions
[8]. It should be noted that all absorption bands of
neodymium ions that are characteristic of the
YSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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Table 2.  Stark levels of the Gd3+ ion in the Gd3Ga5O12 crystal at 300 K

Term Nos. of Stark levels 
in the term (Fig. 4)

Positions of Stark levels
in the term, cm–1

Number of Stark components
∆E,
cm–1

theory experi-
ment

[10]
YAG : Gd3+

[11]
GdCl3 · 6H2O

8S7/2 0 0 4 – – – –
6P7/2 1–3 31942, 31972, 32020 4 3 4 4 78
6P5/2 4, 5 32545, 32575 3 2 3 3 30
6P3/2 6 33150 2 1 2 2
6I7/2 7–10 35694, 35731, 35748, 35834 4 4 4 4 140
6I9/2 11–13 36044, 36061, 36071 5 3 5 5 27
6I17/2 14–20 36125, 36140, 36150, 36166, 36177, 

36184, 36194
7 7 3 7 69

6I11/2 21, 22 36320, 36335 6 2 3 5 15
6I13/2 23–27 36413, 36438, 36448, 36456, 36482 7 5 – 7 69
6I15/2 28–32 36515, 36534, 36549, 36569, 36594 8 5 – 8 79
6D9/2 33–36 39320, 39425, 39464, 39505 5 4 – 5 185
6D1/2 37 40465 1 1 – 1 –
6D7/2 38, 39 40602, 40645 4 2 – 2 43
6D3/2 40 40748 2 1 – 2 –
6D5/2 41 40860 3 1 – 3 –
Nd3Ga5O12 single crystal are observed in the absorption
spectra of neodymium-containing films.

The optical absorption spectrum of the substrate
(Fig. 2, curve 0) exhibits narrow bands in the wave-
length range 244–314 nm due to the presence of Gd3+

ions in the substrate. In this range, the transmission
spectra were additionally measured in steps of 0.1 nm
with a spectral resolution of 0.1 nm. As a result, we
revealed 41 maxima in the absorption bands of the
spectra. Figure 3 shows the energy level diagram of the
Gd3+ ion in the Gd3Ga5O12 single crystal, which was
constructed taking into account the data available in the
literature [9–11]. Although Hellwege et al. [11] studied
GdCl3 · 6H2O and Y(Gd)Cl3 · 6H2O matrices with a
nongarnet structure, we used their data for the interpre-
tation of our experimental results. This is explained by
the fact that those authors obtained more complete
information as compared to Azamatov et al. [10], who
investigated the Y2.95Gd0.05Al5O12 matrix (YAG : Gd3+).
However, our results of the measurements of the wave-
lengths at the maxima of the absorption bands proved
to be in closer agreement with the data obtained in [10].
Note also that the diagram of the 6I17/2 and 6I11/2 electron
terms obtained in [11] (and, consequently, in our work)
differs from that proposed in [10]. The Stark levels
shown in Fig. 3 are numerated sequentially starting
from the fundamental term 8S7/2. The level positions and
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
complete splittings ∆E of the electron terms of the Gd3+

ion in the Gd3Ga5O12 single crystal at room temperature
are listed in Table 2. Since the ground state of the Gd3+

ion at room temperature corresponds to a single level
(level 0 in Fig. 3), the absorption spectrum of the
Gd3Ga5O12 single crystal contains bands associated
with the transitions from the ground state to excited
states of the Gd3+ ion.

Moreover, we revealed that the short-wavelength
edge of the absorption band of Gd3+ ions in the
Gd3Ga5O12 epitaxial films with a neodymium content
of 15 at. % is shifted by 0.014 nm toward the longer
wavelength range with respect to the absorption band of
the Gd3+ ion in the substrate. In order to determine this
shift, we measured the absorption bands associated
with the substrate and films in the wavelength range
from 270 to 285 nm with a step of 0.2 nm and a spectral
resolution of 0.05 nm. This shift can be attributed to the
distortion of the crystal lattice at a high neodymium
content, which is confirmed by the formation of micro-
cracks in the epitaxial films at C(Nd) = 15 at. %. There-
fore, we can state that the energy level diagram of the
Gd3+ ion in the grown films differs from that of the Gd3+

ion in the Gd3Ga5O12 single crystal (Fig. 3) in terms of
the magnitude of the aforementioned shift. For epitax-
ial films with a lower neodymium content, these energy
levels coincide with each other.
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Fig. 5. Diagram of Stark levels of the Nd3+ ion in the Gd3Ga5O12 : Nd epitaxial film at room temperature.
Figure 4 shows the absorption bands associated with
the presence of neodymium in the epitaxial films and
the conventional notation for electron terms of the Nd3+

ion (Fig. 4b) [12, 13]. It turned out that the positions of
these bands are independent of the neodymium content
and completely coincide with those in the optical
absorption spectrum of the Nd3Ga5O12 single crystal
(Fig. 2). In the general case, both the intensity of each
absorption peak and the intensity of absorption at any
wavelength in the range under investigation increase in
proportion to the neodymium content C(Nd).
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P

The energy level diagram of the Nd3+ ion in the
Gd3Ga5O12 : Nd film is depicted in Fig. 5. The experi-
mental data on the position of the Stark levels and the
complete splitting ∆E of the electron terms of the Nd3+

ion in the Gd3Ga5O12 : Nd film at a temperature of
300 K are presented in Table 3. In this case, the trans-
mission spectra of the epitaxial films were additionally
measured with a step of 0.5 nm and a spectral resolution
of 0.5 nm in the wavelength range from 200 to 950 nm.
As a result, we revealed 61 maxima of the absorption
bands. For the purpose of determining the positions of
the Stark levels more exactly, the spectral lines were
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film at room temperature.
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Table 3.  Stark levels of the Nd3+ ion in the Gd3Ga5O12 : Nd film at 300 K

Term
Nos. of Stark 
levels in the 
term (Fig. 5)

Positions of Stark levels
in the term, cm–1

Number of Stark components
∆E,
cm–1

theory experi-
ment

[12]
Nd : YGaG

[13]
Nd : Gd3Ga5O2

4I9/2 1–5 0, 95, 178, 249, 761 5 5 4 5 761
4F3/2 6, 7 11438, 11484 2 2 2 2 46
4F5/2 8–10 12383, 12423, 12519 3 3 3 3 136
2H9/2 11–14 12565, 12596, 12598, 12810, … 5 4 5 5 –
4F7/2 + 4S3/2 15–18 13375, 13415, …, 13560, 13597, … 6 4 5 6 –
4F9/2 19–22 14638, 14661, 14785, 14884, … 5 4 4 4 –

2H11/2 23–28 15779, 15840, 15883, 15993, 16088, 
16095

6 6 6 6 316

4G5/2 29–31 16888, 16991, 17053 3 3 3 3 165
2G7/2 32, 33 …, 17266, …, 17551 4 2 4 4 –
4G7/2 34–37 18771, 18828, 18872, 18986 4 4 4 4 215
2G9/2 + 2K13/2 38–45 19248, 19324, 19383, 19494, 

19570, 19692, 19821, 19991
12 8 10 10 743

4G9/2 46, 47 …, …, 20813, 20825 5 2 3 4 –
4G11/2 48–52 21012, …, 21089, 21116, 21171, 21190 6 5 5 6 178
2K15/2 53–56 21602, 21679, …, …, 21768, 21867 8 4 6 6 265
2D3/2 57 21978 2 1 – 1 –
2P1/2 58 23172 1 1 1 1 –
2D5/2 – – 3 – 3 3 –
2P3/2 – – 2 – 2 – –

4D3/2 + 2I11/2

+ 4D5/2 + 4D1/2

59–61 27718*, 28270*, 28854* 12 3 – – –

Note: The ellipsis … indicates the position of the Stark levels, which we failed to determine in the grown films. The level positions marked
by an asterisk require further refinement.
decomposed into components with the use of a spe-
cially developed program. The results of this decompo-
sition with numbering of the maxima of the absorption
bands are presented in Figs. 6a–8a. The diagrams of the
crystalline splitting of the electron terms of the Nd3+ ion
in the Gd3Ga5O12 : Nd film are depicted in Figs. 6b–8b.

In order to determine the absorption coefficient at
the maximum of the absorption band at a wavelength of
806.9 nm (Table 1), we additionally measured the
transmission spectra for the films and substrates in the
wavelength range from 770 to 860 nm with a step of
0.1 nm and a spectral resolution of 0.1 nm. As the
neodymium content increases, the absorption coeffi-
cient in the absence of scattering increases from
3.8 cm–1 at C(Nd) = 0.3 at. % to 176.3 cm–1 at C(Nd) =
15 at. %. The half-width (the full width at half-maxi-
mum) of this band also increases from 0.84 to 1.01 nm,
respectively. For calcium niobium gallium garnet
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
(CNGG) and calcium lithium niobium gallium garnet
(CLNGG) crystals doped with neodymium ions at
C(Nd) = 1 at. %, the full width at half-maximum is
equal to 4 nm. For yttrium aluminum garnet (YAG)
crystals with the same neodymium content, the full
width at half-maximum is approximately equal to 1 nm.
The absorption coefficient at a wavelength of 807.5 nm
is equal to 4 cm–1 for CNGG and CLNGG and 12 cm–1

for YAG [14].

It should be noted that, during double passage of a
semiconductor diode laser at pumping wavelengths of
805 and 808 nm, epitaxial films with a neodymium con-
tent C(Nd) = 1.7–3.3 at. % absorb approximately 1/3 of
the power. Therefore, these films can be used in cross-
beam lasers. Moreover, epitaxial films with a neody-
mium content up to 3.3 at. %, for which the lumines-
cence lifetime can be as long as 60 µs [5], hold promise
for lasing.
4
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5. CONCLUSIONS

In this work, we obtained the following results.

(i) Neodymium-containing single-crystal gallium
garnet films with a neodymium content varying from
0.3 to 15 at. % were grown by liquid-phase epitaxy
from a supercooled PbO–B2O3-based solution melt on
Gd3Ga5O12(111) substrates.

(ii) The energy diagram of Stark levels was con-
structed for different electron terms of the Gd3+ ion in
Gd3Ga5O12 at room temperature.

(iii) It was found that the short-wavelength edge of
the absorption band of Gd3+ ions in epitaxial films at a
neodymium content of 15 at. % is shifted by 0.014 nm
with respect to that in the substrate.

(iv) The positions of the Stark levels of the Nd3+ ion
were determined for (Gd,Nd)3Ga5O12 and
(Gd,Y,Nd)3Ga5O12 epitaxial films at room temperature.

(a) (b)
cm–1

23172

249
178
95
0

4I9/2

2P1/2

1' 2' 3' 4'

1'
2'

3' 4'

23300 23200 23100 23000 22900 22800
ν, cm–1

Fig. 8. (a) Optical absorption spectrum of the 4I9/2 
4P1/2 transition and curves of the decomposition into com-
ponents and (b) diagram of the crystalline splitting of the
4I9/2 and 4P1/2 terms of the Nd3+ ion in the Gd3Ga5O12 : Nd
film at room temperature.
PH
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Abstract—Expressions for the intensities of bands in the edge luminescence spectrum of a solid containing
both isolated defects (shallow acceptors and donors) and defect pairs are given. Conditions under which the
contribution of defects to the edge luminescence bands is negligible or dominant are found. Analysis of the edge
luminescence spectrum of semi-insulating GaAs shows that situations in which the intensities of the edge lumi-
nescence bands are determined by the states of isolated shallow acceptors and donors and donor–acceptor pairs
are quite probable. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that, in the luminescence spectra of sol-
ids, intense edge (impurity and exciton–impurity)
bands are observed; their appearance is due to recombi-
nation of electrons and holes at defects (shallow accep-
tors and donors) and annihilation of excitons bound to
defects. When calculating the intensities of edge lumi-
nescence bands, it is usually assumed that a solid con-
tains isolated defects (shallow acceptors and donors;
we call them acceptors and donors in what follows) [1–
5] or acceptors and donors forming donor–acceptor
pairs [1, 6, 7]. However, it is obvious that there are both
isolated acceptors and donors and donor–acceptor
pairs. In this study, we calculate the intensities of near-
edge luminescence bands in solids containing both iso-
lated defects (shallow acceptors and donors) and defect
pairs. We show that, in this case (in contrast to existing
concepts), the contribution of isolated impurities and
pairs to the edge luminescence spectra is not always
determined only by the relationship between their con-
centrations. In particular, situations are quite probable
in which isolated impurities and impurity pairs give
substantially different contributions to the intensities of
edge luminescence bands even if their concentrations
are of the same order of magnitude. The relationships
obtained are used to clarify the role of isolated impuri-
ties and impurity pairs in forming the edge lumines-
cence spectrum of semi-insulating gallium arsenide
crystals.

2. MODEL AND BASIC ASSUMPTIONS

We consider a solid at low temperatures, where there
are no thermally stimulated processes and the conduc-
tivity is determined by uniformly distributed photoelec-
trons (with concentration δn) and photoholes (with
concentration δp). Let the concentrations of isolated
1063-7834/04/4606- $26.00 © 21037
acceptors and donors be NA1 and ND1 and the concentra-
tions of acceptors and donors in the pairs be NA2 and
ND2, respectively (the total acceptor concentration is
NA = NA1 + NA2, and the total donor concentration is

ND = ND1 + ND2). We denote by  and  the capture
coefficients of free electrons by acceptors and donors,

respectively, and by  and  the capture coeffi-
cients of free holes by acceptors and donors, respec-
tively. Let the average coefficient of interimpurity

recombination be . The probabilities of occupation
of the acceptors in the pairs (at low interimpurity tran-
sition rates) and isolated acceptors by holes are  =

 + , the probability of donors

filling by electrons is  =  + ,

and the probability of donors filling by holes is 1 –  =

 +  [5, 7]. Free X excitons (with
concentration nX) can be bound to neutral acceptors A0

and ionized D+ and neutral D0 donors forming exciton–
impurity complexes A0X, D+X, and D0X (the binding
coefficients are , , , and the probabilities

are , , , respectively). Below,

we write expressions for intensities of edge lumines-
cence bands corresponding to free-electron (e) transi-
tions to neutral acceptors ( ), free-hole (h) transi-

tions to neutral donors ( ), donor–acceptor transi-

tions ( ), and annihilation of bound excitons A0X,

D+X, and D0X ( , , and , respectively) (see

Fig. 1) under the assumption that recombination transi-
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tions are mainly radiative. Moreover, the intensities of
the edge spectrum bands are usually determined using
the most probable relationships between the quantities

 = b and  = d (b @ d or d @ b) and

for the case of low [ (b + d) @ (  +

)(  + ) = a] and high [a @ (b +
d)] values of δp and δn. The reason for this is that one
can obtain convenient analytical expressions for the
concentrations of acceptors and donors in pairs in dif-
ferent charge states only in these cases [5, 7].

3. THEORETICAL EXPRESSIONS
FOR THE INTENSITIES OF EDGE 

LUMINESCENCE BANDS IN 
SEMICONDUCTORS CONTAINING BOTH 

ISOLATED IMPURITIES
AND DONOR–ACCEPTOR PAIRS

3.1. General Relationships

Obviously, in the case under study, the spectrum of
edge luminescence is formed by electron–hole transi-
tions both to isolated acceptors and donors and to
donor–acceptor pairs and also by annihilation of bound
excitons (Fig. 1). The band intensities are determined
by the concentrations of neutral acceptors and ionized
and neutral donors both that are isolated ( , ,

and , respectively) and form pairs ( , ,

and , respectively; we have  +  = ND1

and  +  = ND2), as well as by the concentra-

tions of photoelectrons, photoholes, and free excitons
(δn, δp, and nX, respectively, which are possibly depen-
dent on NA and ND). The intensities are given by (see
Fig. 1)1 

(1)

1 When writing expressions (4)–(6), we assumed that only a small
number of neutral acceptors and ionized and neutral donors are
occupied by bound excitons.
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Fig. 1. Radiative (wavy lines) and nonradiative (straight
lines) transitions to isolated donors D and acceptors A, tran-
sitions in donor–acceptor pairs DA, and bound exciton tran-
sitions A0X, D+X, and D0X.
P

(2)

(3)

(4)

(5)

(6)

It follows from Eqs. (1)–(6) that the relative effects
of isolated acceptors and donors and of donor–acceptor
pairs on the intensities of edge luminescence bands
depend on the relationship between the values of 

and ,  and , and  and  (the

intensities are determined by isolated acceptors and
donors if  @ ,  @ , and  @

 and by donor–acceptor pairs if  @ ,

 @ , and  @ ). It also follows from

Eqs. (1)–(6) that the intensities  and  are

related to the same state of acceptors (isolated if
 @  and belonging to pairs if  @ )

and that the intensities  and  are determined by

the same state of donors (isolated if  @  and

belonging to pairs if  @ ).

In what follows, we use expressions (1)–(6) to
define the intensities of edge luminescence bands in
semiconductors containing both isolated acceptors and
donors and donor–acceptor pairs at low and high con-
centrations of photoholes and photoelectrons (the quan-
tities , , and  in these expressions

are given in [5, 7] for different relationships between b
and d and for low and high values of δp and δn).

We represent each of the above expressions for ,

, , , and  as the sum of two terms, one

of which describes the contribution of isolated accep-
tors and donors to the intensities of edge luminescence
bands and the second represents the contribution from
donor–acceptor pairs.

3.2. Low Values of δp and δn

For simplicity, we restrict ourselves to the typical

cases  @  and  @

.

3.2.1.  @ . If this condition on
the recombination parameters of shallow defects is sat-
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isfied, then the intensities of the impurity, interimpurity,
and exciton luminescence are given by

(7)

(8)

(9)

(10)

(11)

(12)

(here, obviously, /  ! 1,

/(  + ) ! ND2, and ND1 + ND2 =
ND).

In this case, we have the following:2 

(1)  =  if  is

determined by isolated acceptors [therefore,  !

 if NA2 ≥ NA1 and  . 1; /  = NA1/NA2

(  >  for NA1 > NA2, and  <  for NA1 <

NA2) if  ! 1], and /  =  !

1 if  is determined by acceptors of the pairs;

(2) /  =  if  is deter-

mined by isolated donors, and /  =

 if  is determined by donors of

the pairs (typically,  ! , since one might

expect that  ! );

2 Obviously,  . 1 if  @ ;  =

/  ! 1 if  ! ;  . 1 if  @

 (then 1 –  . /  ! 1); and  =

/  ! 1 if  ! . Of course, , 1 –

,  ≠ (δn, δp) if δp ~ δn.
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(3)  ~  and  ~  if the radiation

is due to isolated acceptors (then  ~ δp and  ~

(δp/δn)nX if  ! 1), and  ~ δpδn/  and  ~

nXδp/  if the radiation is due to acceptors of the pairs

(then  ~ δp2 and  ~ (δp2/δn)nX if  ! 1);

(4)  ~ δp,  ~ (1 – )nX, and  ~

nX if the radiation is due to isolated donors or to

acceptors and donors of the pairs [then  ~

(δp/δn)nX if  . 1 and  ~ δn and  ~

(δn/δp)nX if  ! 1].

3.2.2. NA2dp @ ND2dn. If this inequality is
satisfied, then the intensities of edge luminescence
bands are determined by

(13)
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(here, obviously, δn/  ! 1 and NA1 +
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ND2) if  ! 1], and /  =  !

1 if  is determined by donors of the pairs;

(3)  ~  and  ~  if the radiation

is due to isolated acceptors or acceptors of the pairs
[then  ~ δp and  ~ (δp/δn)nX if  ! 1];

(4)  ~ ,  ~ (1 – )nX, and  ~

nX if the radiation is due to isolated donors [then

 ~ (δp/δn)nX if  . 1 and  ~ δn and  ~

(δn/δp)nX if  ! 1], and  ~ δpδn/ ,  ~ nX,

and  ~ nXδn/  if the radiation is due to donors of

the pairs [then  ~ δn2 and  ~ (δn2/δp)nX if

 ! 1].

3.3. High Values of δn and δp

Obviously, at high δn and δp, the intensities of edge
luminescence bands are

(19)

(20)

(21)

(22)

(23)

(24)

where, as noted above, NA1 + NA2 = NA and ND1 + ND2 =
ND.3 

In this case, (1) ,  @  and (2) the form

of the dependences , , , , and  on

δp and δn is the same for the cases where the radiation
is related to isolated acceptors and donors and to
donor–acceptor pairs [  ~ (δp/δn) for  . 1;

 ~ δp and  ~ (δp/δn)nX for  ! 1; and  ~

δn and  ~ (δn/δp)nX for  ! 1].

3 In Eq. (23) for , we took into account that  ≈ (1 –

)ND2 at high δp and δn [7]. As follows from the general

expression for  = –  = 0 (see [7, Eq. (2)]), this

is justified for  @  ≈ , i.e., for high δp.
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3.4. Discussion

3.4.1. Low values of dp and dn. When analyzing
the above expressions for the intensities of edge lumi-
nescence bands at low photohole and photoelectron
concentrations, we can make the following comments.
Only in certain cases do the contributions from isolated
acceptors and donors and from donor–acceptor pairs to
the intensities of edge luminescence bands of a semi-
conductor depend only on the relative concentrations
(they are proportional to the concentrations if δn, δp,
and nX are independent of NA and ND). These cases cor-
respond to the situation in which the quantities ,

, and  are only slightly affected by interimpu-

rity transitions, i.e., , , and  ≠ ϕ( ). In

these cases, the edge luminescence spectrum is deter-
mined by isolated acceptors and donors if NA1 @ NA2
and ND1 @ ND2, and, on the contrary, by acceptors and
donors of the pairs if NA2 @ NA1 and ND2 @ ND1. For
b @ d, this statement refers to the intensities  and

, and for d @ b, to the intensities , , and

 [see Eqs. (8), (12), (13), (16), (17)]. However, in

most cases (where interimpurity transitions essentially
affect the quantities , , and ), the contri-

butions from isolated acceptors and donors and from
donor–acceptor pairs to the intensities of the edge lumi-
nescence bands of the semiconductor depend not only
on their relative concentrations but also on the recom-
bination characteristics. Thus, for  @

( δp/ )NA2 and  @

( / )ND2, the luminescence intensities

 and  (for b @ d) and  and  (for d @ b)

can be determined by isolated acceptors and donors
even if their concentrations NA1 and ND1 are much lower
than the concentrations of acceptors NA2 and donors
ND2 in the pairs [see Eqs. (7), (10), (14), (18)]. At the
same time, the intensity of exciton luminescence 

can be determined by acceptors of the pairs (for b @ d)
even if their concentration NA2 is lower than the donor

concentration ND [for NA2 @ , see Eq. (11)]
and by donors of the pairs (for d @ b) even if their con-
centration ND2 is much lower than the concentration of
isolated donors ND1 [this is the case for ND2 @ (1 –

)ND1; see Eq. (17)]. Obviously, the intensity of

interimpurity luminescence is determined only by
acceptors and donors of the pairs [see Eqs. (9), (15)].

Typically, under the conditions considered, we have
,  !  (see Subsection 3.2). Only in certain
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cases (if the intensities  and  are determined by

isolated acceptors and donors, NA1 > NA2,  ! 1, and

ND1 > ND2,  ! 1) can the inequalities ,  >

 be satisfied.

Of course, at low photohole and photoelectron con-
centrations, the illumination–brightness characteristics
for the intensities  and  and for , , and

 coincide ( ,  ~ δn or δp, and , ,

 ~ nX) if they correspond to isolated acceptors and

donors and δp ~ δn [i.e., ,  ≠ ϕ(δp, δn) (see Sub-

section 3.2). At the same time, the illumination–bright-
ness characteristics for the intensities  and  or

for  and  are substantially different if they are

determined by acceptors and donors of the pairs.
3.4.2. High dp and dn. Clearly, at high photohole

and photoelectron concentrations, the contributions of
isolated acceptors and donors and of donor–acceptor
pairs to the intensities of edge bands of impurity and
exciton luminescence of a semiconductor depend only
on their relative concentrations (the intensities are pro-
portional to the concentrations if δn, δp, and nX do not
depend on NA and ND) [see Eqs. (19), (20), (22)–(24)].
Obviously, the intensity of interimpurity luminescence
in this case, as well for low values of δp and δn, is deter-
mined only by donor–acceptor pairs [see Eq. (21)]. In
the case considered, the illumination–brightness char-
acteristics for the intensities  and  or for ,

, and  coincide ( ,  ~ δn or δp, and

, ,  ~ nX) irrespective of their being deter-

mined by isolated acceptors and donors or by donor–
acceptor pairs and δp ~ δn [i.e., ,  ≠ ϕ(δp, δn)]

(see Subsection 3.3).

4. ANALYSIS OF THE SPECTRUM OF EDGE 
LUMINESCENCE OF SEMI-INSULATING GaAs

Figure 2 shows the spectrum of edge luminescence
and the dependence of the spectral-band intensities on
the excitation intensity L measured for undoped semi-
insulating gallium arsenide at 4.2 K at low δp and δn
(the luminescence was excited by He–Ne laser radia-
tion, λ = 632.8 nm, hν = 1.96 eV; the conductivity was
controlled by excess holes and electrons, δp, δn ~ L).
The shape of the edge luminescence spectrum and
intensities of spectral bands are determined by (a) radi-
ative transitions in the donor–acceptor pairs (lumines-
cence band ), (b) radiative recombination due to

transitions of free electrons to isolated acceptors (band
) and radiative annihilation of excitons bound to
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isolated acceptors (band ), and (c) radiative annihi-

lation of excitons bound to isolated donors (bands 

and ). The intensities , , and  depend

on the excitation intensity L in a similar way; namely,
, , and  ~ L2 (see Fig. 2 and Subsection 3.4);

this is possible if δp ~ δn. The similar excitation inten-
sity dependence indicates the dominant role of isolated
acceptors and donors in forming the corresponding
luminescence bands. The dominant contribution of iso-
lated acceptors to the band intensity  is confirmed

by the fact that the defects responsible for the band
intensity  were established to be isolated acceptors

(as noted in Subsection 3.1, the bands with intensities
 and  are related to the same acceptor state).

This conclusion is also confirmed by the close values of
the intensities  and  at any value of L ( ,

 ~ L; i.e., the ratio /  does not depend on

L) (see Fig. 2 and Subsection 3.4). Therefore, both iso-
lated acceptors and donors and donor–acceptor pairs
contribute to the spectrum of edge luminescence in
semi-insulating gallium arsenide.
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Fig. 2. The spectrum of edge luminescence of semi-insulat-
ing gallium arsenide (different dashed lines correspond to
the decomposition of the spectrum into elementary compo-
nents). The inset shows the dependence of the intensities of
edge luminescence bands (1) , (2) , (3) ,

(4) , and (5)  on the excitation intensity (the

ratios of the band intensities are arbitrary; the actual rela-
tions between the band intensities can be seen from the
spectrum). Measurements were performed at T = 4.2 K for
low values of δp and δn; the spectrum was recorded at L =
1018 quanta/cm2 s.
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5. CONCLUSIONS

The contribution from shallow isolated defects and
defect pairs to the intensities of low-temperature edge
luminescence bands can be both additive (depending
only on the relative defect concentrations) and nonad-
ditive (depending both on the relative concentrations
and on the recombination characteristics of the defects,
as well as on the photoelectron and photohole concen-
trations in a solid). This conclusion is based on the fact
that the filling of shallow defects by electrons and
holes, i.e., the values , , and , is affected

differently by interimpurity transitions. The above rela-
tions between the intensities of impurity, interimpurity,
and exciton radiation bands, as well as the dependence
of the intensities of edge luminescence bands on the
excitation level, enable one to experimentally establish
the contributions of shallow isolated defects and defect
pairs to the spectrum of edge luminescence in solids.
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Abstract—This paper reports on the results of an experimental study of IR photoconductivity induced in NaCl
single crystals colored under gamma irradiation and subjected to plastic deformation after preliminary exposure
to F-center exciting light. The IR photoconductivity spectrum is decomposed into main components, among
which the broad band observed in the range 0.64–2.20 eV upon plastic deformation is of special interest. The
assumption is made that this band can be caused by photoionization of electrons in the dislocation band and
deeper localized electronic states associated with the dislocation. © 2004 MAIK “Nauka/Interperiodica”.
1. The electronic properties of dislocations in semi-
conductors have been intensively studied in recent
years (see, for example, [1, 2]). Similar investigations
in dielectrics, in particular, alkali halide crystals, are
also of great interest. These investigations go back to
the discovery of the phenomenon of luminescence in
colored alkali halide crystals under deformation [3–5].
More recently, it was found that luminescence is also
observed under plastic deformation of alkali halide
crystal samples without fracture of the material. These
findings provided a basis for the development of model
concepts regarding the existence of a dislocation elec-
tronic level (band) [6–13] (see also references in [13]).
A considerable contribution to the elaboration of the
model concepts was made by the discovery of IR
quenching of the photoplastic effect in alkali halide
crystals [14]. Ermakov and Nadgornyœ [14] interpreted
the measured IR quenching spectrum in terms of the
photoionization spectrum of electrons in a dislocation
level (band). Subsequent investigations of the photo-
plastic effect in alkali halide crystals have actually
proved not only the participation of “dislocation” elec-
trons in the photoplastic effect itself and in its manifes-
tations (such as IR quenching, aftereffect, photoplastic
memory) but also the motion of electrons along a dislo-
cation (i.e., the existence of dislocation-induced elec-
tron bands in alkali halide crystals) and with a disloca-
tion [15, 16] (see also references in [16]).

Infrared photoconductivity induced after exposure
of a sample to F-center exciting light (F-induced IR
photoconductivity) is an efficient tool for studying elec-
tronic levels in colored alkali halide crystals. Electrons
released from F centers under exposure to F light
occupy electron traps, including the dislocation level.
The observed IR quenching of the photoplastic effect at
room temperature [16] indicates that dislocation elec-
1063-7834/04/4606- $26.00 © 21043
trons have a long lifetime at room temperature and
remain stable at low temperatures. Therefore, the expo-
sure of a sample to light at a specific wavelength
(according to [14], IR light) should lead to photoioniza-
tion of dislocation electrons and, consequently, the pos-
sibility of observing IR photoconductivity. Our first
attempts to carry out such experiments enabled us to
detect an intense signal due to polaron-type electronic
states at liquid-helium temperatures (see [17] and refer-
ences therein). These experimental investigations
revealed that polaron states in NaCl disappear at tem-
peratures T > 90–100 K. On the other hand, according
to our data, the deformation of NaCl crystals brings
about the formation of a large number of defects that
have a dipole moment and are responsible for the strong
signal detected at T > 180 K. In our more recent work
[18], these findings were taken into account when
choosing the temperature of the sample and the experi-
ments were performed in the temperature range from
110 to 120 K. It was found that, upon plastic deforma-
tion of NaCl crystals colored under gamma irradiation,
the spectrum of IR photoconductivity induced by F
light contains a broad band with two sharp maxima at
photon energies of 0.74 and 0.88 eV. It is known that
plastic deformation leads to the formation of a large
number of point defects and their complexes in the
sample; part of these defects can capture electrons from
the conduction band and thus initiate a signal of IR con-
ductivity induced by F light. Therefore, it can be
assumed that the observed band consists of individual
peaks (forming the aforementioned two sharp maxima)
corresponding to electron traps of different types. Since
the position of the maximum at 0.74 eV is close to the
position of the maximum at 0.7 eV in the IR quenching
spectrum [14], we can also assume that the former max-
imum is attributed to the photoionization of dislocation
004 MAIK “Nauka/Interperiodica”
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electrons. In the present work, an attempt was made to
decompose the F-induced photoconductivity spectra of
plastically strained NaCl samples into its main compo-
nents with the aim of separating and analyzing the con-
tribution from a signal caused by the photoionization of
dislocation electrons. For this purpose, prior to each
measurement, the sample was additionally exposed to
monochromatic light at a specific wavelength. After
subtracting the spectrum of the sample subjected to
additional exposure to monochromatic light from the
spectrum of this sample measured prior to additional
exposure, we obtained the spectrum of electronic states
sensitive only to the additional monochromatic treat-
ment (which effectively depletes these states). By vary-
ing the wavelength of monochromatic light used in
additional treatment, it is possible to reveal the main
components of the spectrum under consideration.

2. The experiments were performed with NaCl crys-
tal samples 2 × 2 × 12 mm in size. The NaCl crystal
samples were irradiated with gamma rays at a dose of
107 rad and were then subjected to plastic deformation
at a rate of 1.8 × 10–5 s–1 to a strain of 12–14% at room
temperature. The experimental technique and condi-
tions for measuring the IR photoconductivity induced
by F-center exciting light were described in our previ-
ous work [18]. Initially, the sample was exposed to light
at wavelengths in the range 450–800 nm (SI-8 lamp,
S3S25 optical filters) for 30 s in order to excite centers
(F, M, etc.) donating electrons to the conduction band
and to deplete “undesirable” traps (see [18]) in the
range 600–800 nm. Then, these traps were further
depleted for 20 s with the use of an OS14 optical filter
(without excitation of the F and M centers) added to the
S3S25 filters. Thereafter, if required, the sample was
additionally exposed to monochromatic light from an
IKS-21 spectrometer. Finally, the IR photoconductivity
was measured under exposure to monochromatic light

1.2
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0.6 0.8 1.0 1.2
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Fig. 1. IR photoconductivity spectra induced by F light for
plastically strained NaCl crystals (1–3) with and (4) without
additional exposure to monochromatic light at photon ener-
gies (1) E1 = 0.91 eV, (2) E2 = 0.74 eV, and (3) E3 = 1.07 eV
(indicated by arrows E1–E3).
P

from the same spectrometer. This cycle was repeated
two times at different polarities of the voltage applied
to the sample for the purpose of preventing electrical
polarization. Then, the measurements were carried out
at the next point of the IR photoconductivity spectrum.

Figure 1 shows the spectra measured in one of these
experiments (test experiment; strain of the sample,
12.65%; T = 113 K). Initially, the IR photoconductivity
spectrum was measured for the sample without addi-
tional exposure to monochromatic light (Fig. 1, curve 4).
Then, the time of additional monochromatic treatment
was chosen so that the intensity of the signal at a wave-
length corresponding to the monochromatic light used
in this treatment was approximately halved (the time
required to accomplish the additional monochromatic
treatment turned out to be 10 s). The same procedure
was performed when measuring the other spectra with
additional exposure of the sample to the monochro-
matic light. Thereafter, we measured first the IR photo-
conductivity spectrum for the sample additionally
exposed to monochromatic light with photon energy
E1 = 0.91 eV (Fig. 1, curve 1) and then the spectrum for
the sample subjected to additional exposure to mono-
chromatic light with photon energy E2 = 0.74 eV
(Fig. 1, curve 2). As can be seen, spectrum 2 coincides,
to within a constant factor, with spectrum 1 over the
entire range of measurements, including the range
between the photon energies E1 and E2. In the range E2–
E1, the difference between these spectra, if it exists,
should be the most pronounced. Therefore, spectrum 2
was not measured at E > E1 (in this range, the spectra
should be all the more identical to each other). More-
over, it should be noted that the decrease in the number
of measurements was dictated by the necessity of
reducing the bleaching of the crystal as much as possi-
ble (for the recording of each point of the spectrum, the
sample was twice exposed to F light for 30 s). For the
same reason, all the spectra were measured with a rela-
tively large step. Then, we measured the IR photocon-
ductivity spectrum for the sample additionally exposed
to monochromatic light with photon energy E3 =
1.07 eV (Fig. 1, curve 3).

3. The processing of the measured spectra was per-
formed as follows. The spectra recorded for different
additional monochromatic treatments were sequentially
subtracted from the total spectrum (Fig. 1, curve 4). As a
result, we obtained, to within a constant factor, the
spectra of electronic states destroyed upon these addi-
tional treatments and then compared them with each
other. The calculated spectra are shown in Fig. 2. The
difference between spectra 4 and 1 in Fig. 1 is repre-
sented by spectrum 1 in Fig. 2. The difference between
spectra 4 and 2 in Fig. 1 was multiplied by 0.9 and also
depicted in Fig. 2 (spectrum 2). As can be seen from
Fig. 2, spectra 1 and 2 virtually coincide with each
other. The difference between spectra 4 and 3 in Fig. 1
(multiplied by 1.23) is represented by spectrum 3 in
Fig. 2. It is seen from Fig. 2 that spectrum 3 almost
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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coincides with spectra 1 and 2 in the range between E1
and E2 but deviates from them at E > E1. The difference
between spectra 3 and 1 (or 2) in Fig. 2 is depicted by
curve 4. From analyzing the results obtained, we can
make the inference that, in the plastically strained NaCl
crystal, there exist single-type electron traps, for which
the photoionization spectrum is represented by curve 1
in Fig. 2. This spectrum remains unchanged with varia-
tions in the photon energy in the range 0.74–1.07 eV;
i.e., it cannot be further decomposed into components
by the method employed. Moreover, the plastically
strained NaCl crystal contains electron traps of another
type, for which the photoionization spectrum is repre-
sented by spectrum 4 in Fig. 2. This spectrum most
likely corresponds either to the low-energy tail of the
peak located at E > 1.2 eV or to the sum of similar
peaks. Furthermore, this spectrum can be associated
with the electronic states that remained destroyed under
additional exposure of the sample to nonmonochro-
matic light (orange light; see [18]). A comparison of
spectrum 1 in Fig. 2 with the spectra obtained in [18]
allowed us to draw the conclusion that the electronic
states responsible for spectrum 1 are absent in the
unstrained samples and appear in the strained samples.
The spectrum of these states extends to photon energies
E > 1.2 eV, which cannot be measured with our experi-
mental setup.

Spectra 1 and 4 in Fig. 2 are the spectra of electronic
states that are effectively destroyed under additional
exposure of the sample to the monochromatic light
used. If the spectrum of these states is subtracted from
the total spectrum (Fig. 1, curve 4), we obtain the spec-
trum of electronic states that are not destroyed upon the
monochromatic treatments with a pulse duration of
10 s. The latter states are responsible for the IR photo-
conductivity signal and, hence, are destroyed by IR
light; however, they remain undestroyed in our experi-
ment. This situation occurs only with F and M centers.
Their concentration is too high to be changed signifi-
cantly by the action of a short IR light pulse (under
exposure to F light from the same source for 1 h, the
intensity of the F band decreases by only 10–20%). In
this case, only the long-wavelength tails of the spectra
of the electronic states under consideration lie in the IR
range. It should be noted that the photoconductivity
induced by a light pulse with an intensity identical to
the intensity of IR light used in the additional mono-
chromatic treatment, but with a wavelength 475 nm
(F light), is at least four orders of magnitude higher
than the photoconductivity observed in the above
experiments. Thus, the high concentration of these cen-
ters and the high sensitivity of the equipment make it
possible to observe their photoionization under expo-
sure to IR light without a noticeable decrease in the
concentration.

Figure 3 depicts the total spectrum (curve 1 is simi-
lar to curve 4 in Fig. 1), the spectrum of electronic
states destroyed upon additional monochromatic treat-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
ments (curve 2 is the sum of spectra 1 and 4 in Fig. 2),
and their difference (curve 3). As expected, the spec-
trum of undestroyed states consists predominantly of
long-wavelength tails whose maxima are located in the
visible range. Moreover, there is one more signal at E =
0.67 eV. Since this signal is absent at E > E2, it cannot
be destroyed under exposure to monochromatic light at
any energy. It is not surprising, then, that the electronic
states responsible for this signal appear to be unde-
stroyed in our experiment. The above signal can be
associated with any traps (not necessarily generated
under plastic deformation).

0.4

0.2

0
0.6 0.8 1.0 1.2

E2 E1

E3

1
2
3
4

I, pA

E, eV

Fig. 2. Photoionization spectra of electronic states
destroyed under additional exposure of the samples to
monochromatic light at photon energies (1) E1 = 0.91 eV,
(2) E2 = 0.74 eV, and (3) E3 = 1.07 eV. (4) Photoionization
spectrum of electronic states destroyed under additional
exposure to monochromatic light at photon energy E3 and
electronic states not destroyed at photon energies E1 and E2.
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Fig. 3. (1) Total IR photoconductivity spectrum of the
strained NaCl crystal and photoionization spectra of elec-
tronic states (2) destroyed and (3) undestroyed under addi-
tional exposure to monochromatic light.



1046 KOROVKIN
As can be seen from Fig. 3, the IR photoconductiv-
ity signal at E = 0.74 eV is almost completely provided
by the electronic states generated under deformation of
the sample and characterized by a spectrum in the form
of a broad band (spectrum 1 in Fig. 2 will be referred to
hereafter as the broad spectrum). Therefore, the signal
at E = 0.74 eV can serve as a measure of concentration
of these states.

In the next (second) experiment, this signal was
used to determine the high-energy edge of the broad
spectrum. The wavelength of the monochromatic light
used in the additional treatment varied in the range
1000–562 nm (1.2–2.2 eV, SI-8 lamp, interference fil-
ters). The rate of depletion of the electronic states
responsible for the broad spectrum upon exposure to
monochromatic light can be estimated from the inten-
sity of the IR photoconductivity signal induced by IR
light at a photon energy of 0.74 eV, which, in turn,
makes it possible to determine the high-energy edge of
the broad spectrum.

It was assumed that the broad spectrum does not
extend to wavelengths longer than 700 to 800 nm. Oth-
erwise, the states under consideration would also be
destroyed upon depletion of undesirable states with
orange light. However, it turned out that even the light
at a wavelength of 562 nm (2.2 eV) effectively depletes
the former states. The dependences of the intensity of
the IR photoconductivity signal on the time of addi-
tional exposure to monochromatic light at wavelengths
of 1000 and 562 nm are plotted in Fig. 4. It can be seen
that, in both cases, the electronic states are depleted
according to an exponential law, however not to zero
but to a particular level (differing for different filters).

A similar dependence was observed in our earlier
work [15] concerned with the destruction of photostop-
pers (electron traps that can interact with a dislocation

10

8

6

4

2

0
0 10 20 30

1
2

I, pA

t, s

Fig. 4. Dependences of the intensity of the IR photoconduc-
tivity signal induced by IR light at a photon energy of
0.74 eV on the time of additional exposure to monochro-
matic light at wavelengths of (1) 1000 and (2) 562 nm. The
fitted curves represent exponential functions plus constants.
P

through different mechanisms depending on whether or
not they capture an electron) located at immobile dislo-
cations under exposure to light. This dependence can be
explained by a complex mechanism of the action of the
light used. On the one hand, the exposure to the light
corresponding to the photosensitivity spectrum of traps
results in their depletion. On the other hand, the light
excites F centers (possibly, also M centers) donating
electrons for the filling of traps, expels electrons from
them, and thus provides repeated filling of the traps
under consideration. Consequently, there is a limit
below which traps cannot be destroyed. Since the light
wavelength of 562 nm is closer to the light wavelength
of the F band (475 nm) as compared to the light wave-
length of 1000 nm, the regenerating effect of the light
at a wavelength of 562 nm is more pronounced (see
Fig. 4), which provides a higher equilibrium concentra-
tion of filled traps.

Thus, the above experiment showed that the spec-
trum of electron traps created under plastic deformation
(Fig. 2, curve 1) extends from 0.64 eV to photon ener-
gies of no less than 2 eV. It is difficult to perceive the
origin of such a broad spectrum that cannot be decom-
posed into individual components. The photoionization
spectra of electron traps produced by point defects and
their simple complexes, as a rule, have a smaller width.

Such a broad photoionization spectrum can be
attributed to electrons in a sufficiently narrow disloca-
tion band. In this case, the mass md of a dislocation
electron should be considerably greater than the mass
mc of an electron in the conduction band. As a result, the
substantial difference between the slopes of their para-
bolic dispersion curves leads to a large width H of the
photoionization spectrum: H = ∆E(md/mc), where ∆E ≈
(1–2)kT is the energy width of the band of filled states
in the dislocation band.

Moreover, the results of the second experiment can
be explained in another way that does not require
extending the spectrum to an energy of 2 eV or higher.
Actually, localized electronic levels of defects located
in the vicinity of dislocations, for example, photostop-
pers (see [15]) with a maximum in the photoionization
spectrum at approximately 620 nm, can be associated
with the dislocations. The transfer of electrons from
these levels to the conduction band under exposure to
light will initially lead not to a decrease in the number
of electrons in these levels but to a decrease in the num-
ber of electrons in the dislocation band. Indeed, the
electrons lost by defects will be immediately compen-
sated for by dislocation electrons. Only after depleting
the dislocation band will the levels of these defects
begin to lose their electrons.

Consequently, the width of the photoionization
spectrum can be little more than 1 eV. In our case, we
have ∆E ≈ 0.01 eV and the above width of the spectrum
will be observed for dislocation electrons with a mass
md ≈ (100–150)mc. The following factors can be
responsible for this large mass of dislocation electrons.
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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(i) The distance between equivalent sites in an edge
dislocation is larger than the analogous distance in an

ideal NaCl lattice by a factor of . This leads to a
threefold or fourfold decrease in the overlap integral.

(ii) The structure factor, i.e., the number of equiva-
lent sites surrounding a given site in the NaCl lattice, is
six times larger than that in the dislocation (twelve and
two, respectively). As a result, the probability of the
dislocation electron leaving the occupied site is six
times less than the same probability for the electron in
the conduction band, all other factors being equal.

(iii) In an edge dislocation, a negative chlorine ion is
located between two equivalent sites (sodium ions).
This affects the electron wave function and drastically
decreases the overlap integral.

If the above hypothesis explaining the large width of
the photoionization spectrum holds true, the width of
the spectrum should substantially depend on the tem-
perature. This offers possibilities for experimentally
verifying the hypothesis, even though low-temperature
investigations involve problems due to the presence of
a strong IR signal caused by the bound polaron states
(studied in our earlier work [17]) at temperatures T <
78 K. It should also be noted that the real situation is
much more complex, because the electron captured by
the dislocation is most likely to be a dislocation polaron
than a dislocation electron.
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Abstract—Electron microscopy is used to study changes in the dislocation structure of high-purity rolled
(001)[110] tungsten single crystals during short-term high-temperature annealings. The effects of the annealing
temperature and time on the formation of low-angle boundaries are investigated. Local defects, which are sim-
ilar to those detected earlier upon annealing in the structure of molybdenum single-crystal ribbons, are found
to form and dissociate upon annealing. These defects are concluded to have a dislocation nature. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It was shown in [1, 2] that, under certain conditions,
oriented rolling of refractory bcc single crystals can
produce single-crystal ribbons of metals, such as Mo,
W, and Nb. Upon long-term high-temperature anneal-
ing (at temperatures above 0.8Tm, where Tm is the melt-
ing temperature), the single-crystal ribbons produced
do not recrystallize and retain the orientations of the
initial single crystals.

The evolution of rolled and annealed single crystals
has a number of peculiar features. For example, a
detailed electron-microscopic study of polygonization
in (001)[110] single-crystal ribbons of molybdenum
having different degrees of purity (with the resistivity
ratio RRR = ρ273 K/ρ4.2 K = 1000 and 140000) showed
that a stable dislocation structure forms in several
1063-7834/04/4606- $26.00 © 1048
stages, which includes the formation and dissociation
of the so-called “local” defects [3] located in disloca-
tion lines and at subgrain-boundary dislocation nodes.

It is of interest to compare the data on the formation
and dissociation of local defects in molybdenum sin-
gle-crystal ribbons with analogous data for other
refractory metals, in particular, tungsten.

2. EXPERIMENTAL

As the initial materials for our investigations, we
used cylindrical [110] tungsten single crystals grown
by electron-beam zone melting. The purity of the mate-
rial was characterized by the residual resistivity ratio
RRR = ρ273 K/ρ4.2 K, which was 50000 and 200000 for
the single crystals under study. Single-crystal ribbons
were fabricated by rolling along the (001) plane in the
2 µm 0.5 µm(‡) (b)

Fig. 1. Local defects in subgrain boundaries in tungsten single crystals with RRR = 50000 after annealing at 2200°C for 10 s:
(a) hexagonal network consisting of two families of (a/2)〈111〉  dislocations (dislocations with Burgers vector a[001] form at the
points of intersection of these families) and (b) vertical wall of a[001] edge dislocations.
2004 MAIK “Nauka/Interperiodica”
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[110] direction. High-temperature annealings of vari-
ous duration were performed by passing an electric cur-
rent through the ribbons in an USU-4 vacuum device in
an oil-free vacuum of 10–6 Torr at temperatures varied
from 2000 to 2300°C. Electron-microscopic studies
were carried out on JEM-100CX, JEM-1000, and JEM-
2000FX electron microscopes.

3. RESULTS

Local defects in the structure of tungsten single
crystals with RRR = 50000 are detected after annealing
at 2200°C for 10 s. This annealing results in the forma-
tion of subgrain boundaries; some of the boundaries are
dislocation networks. Figure 1a shows a hexagonal net-
work consisting of two families of (a/2)〈111〉  disloca-
tions; at the points of intersection of these families, dis-
locations with the Burgers vector a[001] are formed.
Figure 1b shows a subgrain boundary, which is a verti-
cal wall of a[001] edge dislocations. As seen from
Fig. 1, local defects form in dislocations with b =
a[001] and in the nodes of dislocation networks. These
defects are also visible after annealing at the same tem-
perature for 20 s and disappear when the annealing time
increases to 40 s. After 60 s of annealing, the structure
is made up predominantly of walls of edge dislocations
with b = a[001] almost without dislocation networks
(Fig. 2). This structure is stable; it does not change as
the holding time increases at this annealing tem-
perature.

It should be noted that the diffraction contrast of
local defects is extremely complex and cannot be inter-
preted unambiguously; the presence of these defects
does not cause any additional reflections in the electron
diffraction pattern.

The tungsten single crystals with RRR = 200000
have no local defects upon annealing at 2200°C for
even the shortest time (3 s). However, by decreasing the
annealing temperature, we could find that local defects
appear in these crystals in subgrain boundaries upon
annealing at 2000°C for 10 s (Fig. 3) and disappear
when the annealing time at this temperature exceeds
30 s.

4. DISCUSSION OF THE RESULTS

It was shown in [3] that the local defects forming in
molybdenum have a dislocation nature. It was assumed
that they can form by the mechanism proposed by Cot-
trell and Beilby for bcc crystals [4]. According to this
mechanism, part of a perfect lattice dislocation can split
into two partial dislocations, one of which is a sessile
dislocation and the other is a glide dislocation. The
region between the two partials is a twin stacking fault.
The cross slip of a partial dislocation leads to the for-
mation of new stacking faults lying in the plane of
motion. One partial dislocation can turn around a pole
dislocation to form a spiral. The result of the disloca-
tion restructuring is likely to be visible as local defects.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
The stacking fault energy for refractory bcc metals
is very high, 0.3 J/m2 in molybdenum [5] and 0.5 J/m2

in tungsten [6]. However, it should be taken into
account that a large number of excess vacancies (as
compared to the equilibrium concentration) are present
in the material under study due to the high degrees of
deformation. If the velocity of vacancies moving to dis-
locations is higher than the rate of their disappearance
at dislocation jogs, Cottrell vacancy clouds can form
around a dislocation [7]. The high concentration of
point defects can result in a significant decrease in the
stacking fault energy and make the Cottrell–Beilby
mechanism operative.

When the vacancy concentration decreases with
increasing annealing time, the reverse process occurs:

1 µm

Fig. 2. Structure of the tungsten with RRR = 50000 after
annealing at 2200°C for 60 s.

2 µm

Fig. 3. Local defects in subgrain boundaries in the tungsten
single crystals with RRR = 200000 after annealing at
2000°C for 10 s.
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partials transfer into perfect dislocations, which are
more stable for bcc crystals. This process is accompa-
nied by the disappearance of stacking faults.

This explanation implies that the rate of the disloca-
tion restructuring should noticeably depend on the
stacking fault energy. Pronina et al. [8] showed that
annealing of tungsten single crystals at 2300°C did not
cause the formation of local defects in subgrain bound-
aries. However, annealing of molybdenum at the same
homologous temperature brought about the formation
of local defects about 0.1 µm in size, which existed for
a time that was sufficient for their detection and obser-
vation.

These parameters should also strongly depend on
the presence of impurities, which can also decrease the
stacking fault energy; the rate of the process in a pure
material might be expected to be higher.

A significant increase in the purity of tungsten (to
RRR = 200 000) leads to an increase in the rate of the
dislocation restructuring such that we can detect local
defects only at low annealing temperatures (as low as
2000°C).

Thus, our experiments support the assumption [3]
that the aggregates termed local defects have a disloca-
tion nature.
P
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Abstract—The incubation-period-based criterion for fracture is considered in terms of the Zhurkov kinetic
model of fracture. Within the kinetic model, fracture is treated as a continuously developing process, which
starts immediately after the application of a tensile load to a sample and consists in breaking of the interatomic
bonds and gradual accumulation of broken bonds in the material in the course of a fracture test. For certain
materials, the inclusion of the thermal-fluctuation mechanism for fracture in the incubation-period-based crite-
rion significantly affects the position of the static branch of the time dependence of strength. Time dependences
of strength are calculated for a number of materials. The experimental data are analyzed using the structural-
time criterion for fracture, which allows one to obtain a unified time dependence of strength for quasi-static and
high-rate short-term loadings. The temperature dependence of the incubation period (latent time) is calculated
analytically, and a relation is found between the latent fracture time and the thermal vibration frequency of
atoms. © 2004 MAIK “Nauka/Interperiodica”.
In classical criteria, it is assumed that the energy and
momentum that go into forming new surfaces and frac-
ture regions are expended continuously. Allowance for
the discreteness of the process of dynamic fracture
leads to a dynamic generalization of the linear mechan-
ics of fracture.

In particular, in [1–4], a structural-time approach is
developed in which the pulse characteristics of the
stress field and the structural features of materials are
taken into account. The structure is considered on both
space and time scales [1, 2]. The corresponding time
scale τ is referred to as the latent (structural) time of
fracture.

It is assumed that fracture occurs when the impulse
of a force acting over time τ reaches a critical value,
J(t) ≤ Jc. In terms of the continuum mechanics, we can
write

(1)

where σc is the ultimate stress for the defect-free mate-
rial, i.e., a material that does not contain intentionally
produced defects and concentrators, such as cracks and
sharp notches.

Applying a stress σc is not enough to destroy an ele-
ment; the critical stress must act over a certain period of
time. The time τ is defined as the minimum time neces-
sary for fracture of a material subjected to a critical
stress σc. It is shown in [3–5] that, in the case of defect-
free materials, the experimental data on high-rate frac-
ture (chipping-off) can be adequately explained under

σ t '( ) t 'd

t τ–

t

∫ σcτ ,≤
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the assumption that τ = d/c, where c is the maximum

velocity of elastic waves and d =  is a length char-

acterizing an elementary fracture cell on the given scale
(Klc is the toughness of the material). At the present
time, the physical meaning of the length d is not clearly
understood. The problem of interpreting d is discussed
in [6, 7].

It is shown in [4] that τ can be interpreted as the min-
imum time introduced in [8]. Within this approach, the
parameters σc and τ describe the strength of the defect-
free material. The structural fracture time τ character-
izes the dynamic features of brittle fracture and should
be determined experimentally for each material. As for
σc, the physical meaning of this parameter needs clari-
fication and can be determined using the approach
developed by Zhurkov and coworkers. The present
paper is devoted to this problem.

Studies of the physical basis of strength of solids
have shown that there are universal features character-
izing the temperature and time dependences of
strength. It was established in [9] that the time t∗  elaps-
ing between the application of a tensile breaking stress
σ and fracture of the test sample is described well by
the formula

(2)

where T is the absolute temperature and U0, t0, and γ are
constants characterizing the strength properties of the
material: U0 is closely related to the energy for inter-
atomic bond breaking and characterizes the activation

2
π
---

Klc
2

σc
2

-------

t* t0 U0 γσ–( )/kT[ ]exp ,=
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energy for fracture, t0 = 10–13 s is a fundamental char-
acteristic of the material coinciding with the period of
thermal oscillations of atoms, and γ is a coefficient
that is proportional to the excess stress applied to
interatomic bonds (relative to the average stress in the
sample).

According to the kinetic model developed in [9–11],
fracture is a process that starts immediately after the
application of a load to the sample and continuously
develops in time. This process consists in the breaking
of interatomic bonds and the gradual accumulation of
broken bonds in the material subjected to a fracture
load. It was shown in [9] that the time factor is a funda-
mental characteristic of strength. One cannot gain a
deep insight into the phenomenon of strength without
considering the time taken by fracture. Equation (2)
shows that tensile breaking is an activation process
whose rate is determined by the mean thermal fluctua-
tion frequency (or waiting time) and that there is an
energy barrier U0 that must be overcome in order to
break the bonds responsible for the strength of the
material. This barrier depends on the nature of these
bonds, and, according to Eq. (2), a certain mechanism
operates that decreases the initial barrier U0 by γσ when
tensile stresses are applied.

Let us analyze the fracture of a defect-free material.
The one-dimensional problem of fracture of an elastic
rod subjected to a tensile stress pulse triangular in shape
(Fig. 1) was solved in [12] using the incubation-period-
based criterion (1).

Let us consider the reflection of a compressive stress
pulse that is triangular in shape from the free end of a
semi-infinite rod aligned with the x axis and located in
the region x > 0. The incident pulse is written as σ– =
−A(1 – t/ti – x/cti)[H(ct + x) – H(ct + x – cti)], where A
is the amplitude of the pulse, ti is its duration, H(t) is the
Heaviside step function, and c is the maximum velocity
of acoustic waves. The rise time of the pulse is zero.
The pulse reflected from the free end of the rod is σ+ =
A(1 – t/ti + x/cti)[H(ct – x) – H(ct – x – cti)]. The total
stress is σ = σ– + σ+.

A

tiPulse duration

A
m

pl
itu

de

Fig. 1. Tensile stress pulse.
P

The tensile-stress maximum first arises at the point
x = cti/2. The minimum amplitude A∗  at which fracture
occurs for a given pulse duration ti can be found from

the condition I = σc, where I = (t ')dt '.

As a result, we obtain the following expression
describing the time dependence of strength for any
loading duration with allowance for the latent fracture
time:

(3)

The time t∗  elapsing between the application of a stress
and fracture is given by

where τ is the structural fracture time, σc is the static
strength, ti is the stress pulse duration, and A∗  is the
threshold amplitude.

Since the static tensile strength σc is defined ambig-
uously and has no clear physical interpretation [9], we
transform Eq. (3) using the Zhurkov formula (2) and
obtain the time dependence of strength (Fig. 2). The
fracture of a material subjected to external forces is not
a purely mechanical phenomenon; thermal fluctuations
are of fundamental importance here, and tensile
stresses only favor the fluctuation process by lowering
the energy barrier and making the fracture more proba-
ble. Let us represent Eq. (2) in the form

(4)

Substituting Eq. (4) into Eq. (3) gives

(5)

The parameters t0, U0, and γ can be determined
experimentally and are listed in the table. All calcula-
tions are performed for the same temperature, equal to
300 K. For comparison, Fig. 2 also shows the results
obtained without regard for the Zhurkov correction
(dashed lines). The experimental data are taken from
[15], where brittle fracture of solids subjected to tensile
stress waves was studied using transverse impacts of a
plate-shaped target and a parallel striking plate.

It should be noted that earlier attempts have also
been made to analyze the kinetic nature of strength. For
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instance, the kinetics of fracture was discussed in [16]
in terms of the Bailey criterion. However, this approach
cannot be extended to the case of high-rate pulse tests.
Using the incubation-period-based criterion with cor-
rection (4) makes it possible to describe the entire range
of loading durations (covering both quasi-static and
dynamic tests). It can also be seen from Fig. 2 that the
substitution of Eq. (4) for σc has a significant effect on
the position of the static branch of the strength time
dependence. The kinetic model of fracture describes
the experimental data more adequately. However, using
Eq. (2) has no effect on the dynamic branch, whose
position is mainly determined by the incubation period
of fracture.

Let us show that, in the limiting case, the latent time
can be expressed in terms of t0. This condition must be
satisfied, because the parameters of the structural–time
criterion should be chosen so that the results obtained
within the kinetic model of fracture are reproduced in
the limiting case. Therefore, we will analyze the
strength in structural-time terms within the kinetic
model in the transient region of the time dependence of
strength, i.e., for loading pulse durations ti ≥ τ and ti ~
τ, where the effect of the incubation period is signifi-
cant. For this purpose, we use Eq. (3), which corre-
sponds to the period of time before fracture character-
ized by the time t∗ . Using Eq. (2), the latent (structural)
time is found to be

where t0 is associated with the period of thermal oscil-
lations of atoms and σ is determined by Eq. (5) or is
chosen as the stress corresponding to the given pulse
duration in the strength–time curve. By introducing the
notation ti = nτ, the latent time can be written as

(6)

The dependence of the latent time on the stress pulse
duration is shown in Fig. 3. The time τ is seen to be con-
stant over almost the entire range of pulse durations.
Therefore, the latent time is independent of the loading
parameters and can be considered a parameter of the
material.

According to Eq. (6), τ can be expressed in terms of
the parameter t0 as τ ≅ λ t0, where λ = exp[(U0 –
γσ)/kT]/(1 + n/2). This equation can be used to analyze
the temperature dependence of the latent time.

Thus, the following conclusions can be made:
(1) In the case of slow loadings, the structural-time

criterion given by Eq. (1) in which the static strength is
calculated from the Zhurkov formula (2) allows one to
obtain a more correct unified time dependence of
strength [in comparison with that calculated without
regard for Eq. (2)].

(2) Taking into account the thermal-fluctuation
mechanism for fracture and using the incubation period

τ t0 U0 γσ–( )/kT[ ]exp
ti

2
---,–=

τ t0 U0 γσ–( )/kT[ ] / 1 n/2+( ).exp=
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Points are experimental data [16].

Fig. 3. Dependence of the latent fracture time at a constant
temperature on the relative duration of a threshold pulse cal-
culated with allowance for the Zhurkov formula for (1) alu-
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model makes it possible to more correctly determine
the breaking load in dynamic fracture tests.

(3) A relation is found between the latent time and
the thermal oscillation period.

(4) Allowance for the kinetic nature of fracture
makes it possible to find the temperature dependence of
the latent fracture time, which can be used in further
analysis of the fracture of materials.
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Abstract—The molecular dynamics method is applied to simulate spalling during the plane shock interaction
between plates. The effect of lattice defects in a material on the propagation of a shock wave and the process of
spalling is studied. The plastic effects are described using a model of imperfect particle packing with defects
(vacancies). The model proposed can describe the separation of the shock-wave front into an elastic precursor
and a plastic front and give velocity profiles for the free target surface close to the experimental profiles. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the last decades, the molecular dynamics (MD)
method has been widely used to simulate the deforma-
tion and fracture of solids [1–5]; the representation of a
material as a set of interacting particles allows one to
describe its mechanical properties at both the micro-
and macrolevel [6, 7]. To construct computer models
for high-strain-rate fracture of materials, it is conve-
nient to use the results of full-scale spalling tests, in
which extremely high loads are created in a material
under the conditions of uniaxial deformation [8–10]. In
most works dealing with the MD simulation of spalling,
ideal single-crystal particle packing was studied [11–
13]. However, the mechanical properties of materials
are rather sensitive to structural defects [14, 15]. More-
over, in many processes where real materials exhibit
plastic properties, single crystals behave elastically
until fracture. Although plastic behavior manifests
itself upon MD simulation of the propagation of shock
waves in single crystals [16], it differs substantially
from the plastic deformation of real materials. In partic-
ular, in full-scale tests, a shock wave is clearly divided
into an elastic precursor and a plastic front, whereas
this division is weak or even absent in ideal single crys-
tals. To solve this problem and describe the phenomena
mentioned above, we propose a model of a crystalline
material with artificially introduced structural defects
(vacancies).

2. SIMULATION PROCEDURE

The simulation procedure applied in this work is
identical to that used in [13, 17] and is described in
detail in [18]. The material is represented by a set of
1063-7834/04/4606- $26.00 © 21055
particles interacting through a pair potential Π(r). The
equations of particle motion have the form

(1)

where rk is the radius vector of the kth particle, m is the
particle mass, N is the total number of particles, and
f(r) = –Π'(r) is the interparticle interaction force. Con-
trary to [13], dissipative forces do not act in this system.
We use the following notation: a is the equilibrium dis-
tance between two particles, f(a) ≡ 0, C is the stiffness
of the interatomic bond in equilibrium, and T0 is the
period of vibrations of the mass m under the action of a
linear force with stiffness C:

(2)

We will use the quantities a and T0 as microscopic dis-
tance and time scales.

For a particle of mass m that is in equilibrium in the
potential field Π(r) to be at infinity, its minimum veloc-
ity (dissociation velocity) must be equal to

(3)

where D = Π(a) is the binding energy. The velocity of
propagation of long-wavelength waves in an infinite
chain is determined by the formula

(4)

In this work, we analyze a two-dimensional material. In
the case where particles are packed to form an ideal tri-

m ṙ̇k

f rk rn–( )
rk rn–

-------------------------- rk rn–( ),
n 1=

N

∑=

C Π'' a( ) f ' a( ), T0–≅ 2π m/C.= =

v d 2D/m,=

v 0 a
2
C/m.=
004 MAIK “Nauka/Interperiodica”



 

1056

        

KRIVTSOV

                                 
angular (close-packed) crystal lattice, the velocity v l of
propagation of long longitudinal waves is

(5)

We will illustrate these formulas for the case of the
classical Lennard–Jones potential:

(6)

where D and a are the binding energy and equilibrium
interatomic distances introduced earlier, respectively.
The corresponding interaction force f(r) = –Π'(r) has
the form

(7)

In the case of the Lennard–Jones potential, the stiffness
C and binding energy D obey the relation C = 72D/a2;
therefore, the velocity of propagation of long waves and
the dissociation velocity are connected by the simple
relation v 0 = 6v d. The Lennard–Jones potential is the
simplest potential that allows one to take into account
the general properties of interatomic interaction: repul-
sion of particles that approach each other, attraction of

v l
9
8
---v 0 1.06v 0.≈=

Π r( ) D
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Fig. 1. Setup of the computer experiment: (a) impactor and
(b) target.

Calculation parameters

Parameter
Experiment

A B C

Approximate number of 
particles N

100000 500000 1000000

Impactor velocity v imp 1.05vd vd 1.1vd

Particle-velocity
deviation ∆V0

0.001vd 0 0

Vacancy concentration p, % 0 6 1

Cutoff radius acut 2.1a 2.1a 2.1a

Impactor (target) width w 708a 1584a 2238a

Impactor thickness h1 35a 78a 111a

Target thickness h2 88a 196a 277a

Number of particle layers Nz 142 319 450

Integration step ∆t 0.03T0 0.03T0 0.03T0

Calculation time tmax 3ts 3ts 3ts
P

particles moving away from each other, and the absence
of interaction at large distances between them. In this
work, we study the principal possibility of describing
the plastic effects upon spalling rather than simulate the
behavior of a certain material; therefore, we will use
only the Lennard–Jones potential. Our results can eas-
ily be extended to more complex potentials describing
the properties of materials more exactly.

3. SIMULATION OF SPALLING

Figure 1 shows the setup of the computer experi-
ment. Particles form two rectangles lying in the xz
plane; they simulate the sections of an impactor (a) and
a target (b). The impactor and target consist of the same
particles, whose interaction is described by Eq. (6). The
particles are ordered to form a triangular lattice, which
is identical for the impactor and target; the lattice is ori-
ented so that one of its basis vectors is directed along
the x axis. Free boundary conditions are used at all
outer boundaries. The lattice parameter ae in the initial
configuration is chosen so as to ensure the absence of
internal stresses at a cutoff radius of 2.1a [18].1

Initially, the target has a zero velocity and the
impactor velocity is directed along the z axis toward the
target. Moreover, at the initial instant of time, each par-
ticle in the impactor and target is given an additional
random velocity that is chosen from a two-dimensional
uniform random distribution with a given variance σ,
defined as

(8)

Here, Vk is the projection of the velocity of the kth par-
ticle along the shock direction and k runs over the val-
ues specifying a certain set of particles that enters the
total system of particles to be analyzed in the experi-
ment. We also use the standard deviation of the particle

velocities ∆V = .
The states of the impactor and target after simula-

tion are shown in Fig. 2. A spalling crack formed in the
target is clearly visible. However, the interface between
the impactor and target is invisible because of the ideal
coincidence of the contacting surfaces (matching of the
crystal lattices in the impactor and target). The param-
eter values for this case are given in the table (experi-

1 ae = 0.9917496a.

σ 1
n
--- Vk V–( )2

, V
k 1=

n

∑ 1
n
--- Vk.

k 1=

n

∑= =

σ

Fig. 2. Formation of a spalling crack.
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ment A). Computer experiments show that the mini-
mum impactor velocity at which spalling begins is
approximately equal to the dissociation velocity v d;
therefore, it is worthwhile to compare the velocities
used in the calculation with this value (see table). The
dimensions of the impactor and target in this computer
experiment are such that h1/w ≈ 1/20 and h1/h2 ≈ 2/5.
The spalling time ts can be estimated from the formula
ts = (h1 + h2)/v l, where h1 and h2 are the thicknesses of
the impactor and target, respectively, and v l is deter-
mined from Eq. (5). In this case, ts = 18.4T0. Of course,
this estimation is very rough, since v l is the velocity of
longitudinal waves according to linear theory; i.e., this
velocity corresponds to small-amplitude waves.
According to nonlinear theory, the larger the amplitude
of waves in a single crystal, the higher their velocity.
However, in a crystalline material with defects, the
wave velocity can be lower than v l. Moreover, a wave
has a certain extent in space, which can also introduce
error in the spalling time. Nevertheless, it is convenient

500

300

100

0
–0.5 0 0.5 1.5 2.5

(a)

v , m/s

t, µs

500

300

100

0
–0.5 0 0.5 1.5 2.5

(b)

v , m/s

t, µs

Fig. 3. Time dependence of the velocity of the free target
surface for (a) single crystal (calculation) and (b) titanium
alloy (experiment).
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to use the time ts as a time scale, since it has a clear
physical meaning and can easily be determined. The
quantity Nz in the table is equal to the total number of
particle layers (in the impactor + target system) along
the shock direction.

Figure 3a shows the simulated time dependence of
the velocity of the free target surface. To measure the
velocity of the free surface, we used two lower particle
layers, more specifically, only the central part of these
layers of width w0 = w – 2(h1 + h2), to eliminate edge
effects. The dependence obtained was averaged over
time to exclude high-frequency vibrations. For compar-
ison, Fig. 3b shows an analogous experimental depen-
dence obtained during a full-scale spalling test of a tita-
nium alloy at an impactor velocity of 602 m/s [9]. The
time and velocity scales in Fig. 3a are chosen according
to the full-scale experiment. The shapes of the curves
are seen to be similar: the main maximum correspond-
ing to the instant at which the shock wave reaches the
free surface and vibrations in the target are clearly
defined in both dependences. However, there are sub-
stantial differences. First, the shapes of the shock-wave
fronts are different. In the full-scale experiment, the
shock front is clearly divided into an elastic precursor
and the subsequent plastic front, whereas this division
is absent in the simulation. In the latter case, only the
elastic component of the front exists and the plastic
front is virtually absent; this behavior is caused by the
ideal (defect-free) structure of the model single crystal.

To simulate plastic deformation at the shock front,
we consider a crystalline material with lattice defects.
As the initial material, we choose the single crystal
mentioned above. To produce an imperfect material, we
randomly remove atoms from the initial material to
achieve the required defect (vacancy) concentration,
which is calculated as the percentage ratio of the num-
400
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0 0.5 1.0
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v , m/s
400
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0.5 1.0

(b)
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0
0 0

Fig. 4. Time dependence of the velocity of the free target surface for (a) a perfect single crystal (calculation), (b) a single crystal
with defects (calculation), and (c) VT-20 titanium alloy (experiment).
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Fig. 5. Velocity profiles for the free target surface (simulation): (a) at v imp = vd and a vacancy fraction of (1) 0, (2) 1, (3) 2, (4) 4,
(5) 6, and (6) 9%; (b) at a vacancy fraction of 6% and v imp/vd equal to (1) 0.1, (2) 0.2, (3) 0.4, (4) 0.6, (5) 0.8, (6) 1.0, (7) 1.2, and
(8) 1.4.
ber of removed atoms to the initial number of atoms.
When a shock wave moves in such a material, vacan-
cies initiate irreversible changes in its structure, which
lead to plastic deformation of the medium.

The initial values of the parameters are given in the
table (experiment B). The model contains ~5 × 105 par-
ticles, with the ratios of the impactor and target dimen-
sions remaining as before. Figures 4a and 4b show the
time dependences of the velocity of the free surface
when the shock wave reaches the surfaces of the perfect
single crystal and the imperfect material (vacancy frac-
tion 6%), respectively. For comparison, Fig. 4c shows
the experimental curve recorded during a full-scale
spalling test of a VT-20 titanium alloy at an impactor
velocity of 365 m/s [9]. The time and velocity scales in
Figs. 4a and 4b are chosen according to the experimen-
tal scales. In Fig. 4a, the shock-wave front is virtually
vertical and carries only elastic deformation. In con-
trast, Figs. 4b and 4c demonstrate a pronounced elastic
precursor followed by a plastic front.

The relation between the amplitudes of the elastic
and plastic fronts depends on the defect concentration
and the impactor velocity, which is illustrated in
Figs. 5a and 5b. Figure 5a shows the velocity profiles of
the target free surface simulated at the same parameters
as those in Fig. 3b but at different defect concentra-
tions. The time and velocity are measured in units of the
calculated spalling time ts and the dissociation velocity
v d. As the defect concentration increases, the elastic-
precursor amplitude decreases significantly faster than
P

the plastic-front amplitude, which leads to their distinct
separation. Figure 5b shows the results of analogous
simulations at the same defect concentration (6%) and
various values of the impactor velocity v imp. At low v imp

values (v imp ≤ 0.2v d), the shock-wave front contains
only an elastic component. However, as the impactor
velocity increases, a plastic component appears, which
increases much faster than the elastic component with
a further increase in v imp.

a

b

c

d

Fig. 6. Structure of the model material before passing a
shock wave: (a) microvoid and (b–d) pairs of vacancies.
The particles that have less than six neighbors at a distance
of 1.1a are dark.
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4. DISCUSSION OF THE RESULTS

To elucidate the behavior of defects at the shock-
wave front, we consider an element of the model mate-
rial before and after passing a shock wave (Figs. 6, 7).
These pictures are obtained as a result of simulating
spalling at the parameters given in the table (experi-
ment C). The material element shown in Figs. 6 and 7
contains about 4800 particles, which is less than 0.5%
of the total volume to be simulated. To study the behav-
ior of defects, we analyzed the total volume; this ele-
ment is shown only for illustration. In Figs. 6 and 7, the
particles located near lattice defects are dark.2 In the
undeformed material (Fig. 6), the defects are vacancies.
However, due to their random distribution, some of
them are in immediate vicinity to each other and some
vacancies combine to form microvoids (Fig. 6a). Let us
choose several closely spaced vacancies (Figs. 6,
vacancies a–d) and follow their evolution upon passing
a shock wave (Fig. 7, vacancies a–d). Microvoid a in
Fig. 7 is seen to change its orientation under the effect
of the shock wave. As for the other chosen vacancy
groups, they decompose into pairs of moving disloca-
tions (Fig. 7, groups c, d; the arrows show the directions
of dislocation motion). The shock front in Fig. 7 moves
from the top down; therefore, different stages of the
decomposition of the vacancy groups are visible in
Fig. 7 (groups b–d): nucleation of dislocations (Fig. 7,
group b) and their recession (Fig. 7, groups c, d). A
comparison of single vacancies in Figs. 6 and 7 shows
that a shock wave of the given intensity cannot cause
their migration or transformation into dislocations.
Thus, plasticity in the imperfect material under study
occurs mainly via the decomposition of closely spaced
vacancies to form dislocation-like defects, which

2 Specifically, the particles that have less than six neighbors at a
distance of 1.1a are dark (in the ideal triangular lattice, the num-
ber of neighbors for each atom is equal to six).

a

b

c

d

Fig. 7. Changes in the material structure upon passing a
shock wave: (a) microvoid, (b) dislocation nucleation, and
(c, d) decomposition of pairs of vacancies into dislocation
pairs.
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causes shear strains at the shock front upon defect
motion.

Note that even an insignificant number of defects
results in a significant change in the velocity profile of
the free surface. Figure 8 illustrates the results of simu-
lating a perfect single crystal and a similar crystal
where one atom per one thousand atoms is removed
(the defect concentration is 0.1%). The impactor veloc-
ity is v imp = 1.1v d, and the values of the other parame-
ters correspond to experiment B (see table). For illus-
tration, the curves were not averaged over time. There-
fore, the profile of the perfect single crystal
demonstrates clearly visible high-frequency vibrations
(induced by the discreteness of the MD representation)
at the shock front. These vibrations virtually disappear
in the material with defects. Moreover, the vibrations in
the target strongly change in character and the rate of
their damping increases significantly. At the low defect
concentration used in the simulation, the elastic and
plastic fronts cannot be separated. However, these
fronts will likely be separated in this material as the
crystal thickness along the shock direction increases.

5. CONCLUSIONS

Thus, when loaded with a shock wave, a single crys-
tal consisting of particles that interact through the Len-
nard–Jones potential and containing a sufficient con-
centration of lattice defects demonstrates pronounced
plastic effects, such as separation of the shock-wave
front into elastic and plastic components. As a result,
we could obtain time dependences of the velocity of the
free target surface very close to the experimental
curves, in particular, to the curves recorded upon spal-
ling of titanium alloys.

1.00.5 1.5 2.0 2.5 3.0
t/ts

0

0.2

0.6

1.0

1.4

v
/v

d

Fig. 8. Velocity profiles of the free target surface for the
vacancy concentrations of 0 (thin line) and 0.1% (heavy
line).
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Abstract—The refractive index of surface spin waves propagating in a ferromagnetic medium with a nonuni-
form distribution of the parameters of uniaxial and orthorhombic magnetic anisotropies and exchange coupling
is determined within the spin-density formalism. The coefficients of reflection and transmission of spin waves
at the interface between two homogeneous magnets with different constants of uniaxial and orthorhombic mag-
netic anisotropies, exchange coupling, and saturation magnetization are calculated. The dependences of the
intensity of a reflected wave and the refractive index on the wave frequency and the strength of an external dc
homogeneous magnetic field are determined. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Considerable progress achieved in the field of nano-
technologies and nanoelectronics over the last decade
has brought to the fore the necessity of designing new
materials and devices based on the use of unique prop-
erties of high-frequency waves. In this respect, it is of
interest to investigate the specific features of surface
spin waves from the practical standpoint.

A theoretical description of the features of propaga-
tion of spin waves, as a rule, has been performed within
the wave approach, which, for example, has been suc-
cessfully used to determine the spectral characteristics
of magnetic materials [1–5].

In this work, the behavior of surface spin waves
propagating in a ferromagnetic medium with a nonuni-
form distribution of magnetic parameters was
described using mathematical tools of geometrical
optics. Within this approach, the required change in the
direction of propagation of surface spin waves (in par-
ticular, focusing) can be achieved both through the cre-
ation of artificial inhomogeneities of the magnetic
parameters of a medium of the specified configuration
and by varying the strength of an external magnetic
field.

Earlier [6, 7], we calculated the refractive indices of
bulk and surface spin-wave rays and investigated their
behavior at the interface between two homogeneous
magnets with different parameters of exchange cou-
pling and uniaxial magnetic anisotropy. The purpose of
the present work was to analyze (i) the case of a contin-
uous distribution of the aforementioned parameters of
exchange coupling and uniaxial magnetic anisotropy
and (ii) the case of a continuous distribution of the
parameter of orthorhombic anisotropy in a magneti-
cally biaxial medium. Moreover, I calculated the refrac-
tive index and the intensity of reflection of a surface
1063-7834/04/4606- $26.00 © 21061
spin wave from the interface between two homoge-
neous ferromagnets with different constants of uniaxial
and orthorhombic magnetic anisotropies, exchange
coupling, and saturation magnetization.

2. EQUATIONS OF MAGNETIZATION 
DYNAMICS

Let us consider an infinite ferromagnet consisting of
two semi-infinite parts that are in contact along the yOz
plane. In the corresponding half-spaces, these parts of
the ferromagnet are characterized by the saturation
magnetizations M01 and M02, as well as by continuously
(or piecewise continuously) and slowly varying param-
eters of exchange coupling (α1, α2), uniaxial magnetic
anisotropy (β1, β2), and orthorhombic magnetic anisot-
ropy (ρ1, ρ2). The easy magnetization axis of the ferro-
magnet and the external dc magnetic field are directed
parallel to the Oz axis.

For a magnet of the above configuration, the energy
density in the exchange approximation has the form

(1)

Here,

(2)

Θ(x) is the Heaviside step function, A is the parameter
characterizing the exchange coupling between the half-
spaces at x = 0, and Mj = M0jmj (where mj are the unit
vectors aligned parallel to the magnetization vector and
j = 1, 2).

w Θ 1–( ) j
x[ ] w j Aδ x( )M1M2.+

j 1=

2

∑=

w j
α
2
---

∂m j

∂xk

--------- 
 

2 β
2
--- m jx

2
m jy

2
+( ) ρm jx

2
H0M jz,–+ +=
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In the framework of the spin-density formalism [8],
the magnetization can be represented in the form

(3)

where Ψj are the quasi-classical wave functions, which
play the role of an order parameter of the spin density;
r is the radius vector in the Cartesian coordinate sys-
tem; t is the time; and s is the Pauli matrix.

The Lagrange equations for the quasi-classical wave
functions Ψj take the form

(4)

where µ0 is the Bohr magneton and Hej = –  +

.

Making allowance for the fact that, in the ground
state, the material is magnetized parallel to the vector ez

and assuming that (r, t) = const in each half-space,
we will seek the solution to the Lagrange equations (4)
in the following form:

(5)

where χj(r, t) is a small addition accounting for the
deviation of the magnetization from the ground state.
After linearization of the Lagrange equations (4) with
due regard for expression (5), we obtain

(6)

where  = H0/M0j and j = 1, 2.
By separating out the quantity χ*(r, t) from one of

the equations in system (6) and substituting it into the
other equation of this system, we derive the equation of
magnetization dynamics:

(7)

M j r t,( ) M0 jΨ j
+ r t,( )sΨ j r t,( ), j 1 2,,= =

i"
∂Ψ j r t,( )

∂t
---------------------- µ0Hej r t,( )sΨ j r t,( ),–=

∂w j

∂M j

----------

∂
∂xk

--------
∂w j

∂ ∂M j/∂xk( )
-----------------------------

M j
2

Ψ j r t,( ) iµ0H0t/"( ) 1
χ j r t,( ) 

  ,exp=
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2µ0M0 j
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--------------------–

=  α r( )∆ β r( )– ρ r( )
2
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ρ r( )
2
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2µ0M0 j
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∂χ j* r t,( )

∂t
----------------------

=  α r( )∆ β r( )– ρ r( )
2

---------– H̃0 j– 
  χ j* r t,( )

ρ r( )
2

---------χ j r t,( ),–

H̃0 j

"
2

2µ0M0 j( )2
-------------------------

∂2χ j r t,( )

∂t
2

-----------------------– α 2∆2
2α β ρ

2
--- H̃0 j+ + 

  ∆–=

---+ β H̃0 j+( ) β ρ H̃0 j+ +( ) χ j r t,( ).
P

In this case, the boundary condition satisfied at the sur-
face z = 0 can be written in the form [9]

(8)

where Lj is a parameter characterizing the spin pinning
on the surface of the magnet. After the Fourier transfor-
mation, we obtain the dispersion relation for the expo-
nential damping of a surface spin wave along the Oz
axis of a homogeneous uniaxial magnetic material [7]:

(9)

where Ωj = ω"/2µ0M0j, ω is the frequency, k = (k⊥ , kz)
is the wave vector, and r⊥  = (x, y).

3. GEOMETRICAL-OPTICS APPROXIMATION

Now, we will attempt to simplify the equation of
magnetization dynamics (7). For this purpose, we will
use the Wentzel–Kramers–Brillouin method described
in [10, 11].

In the equation of magnetization dynamics (7), we
introduce the function χj(r⊥ , t) = Cexp[i(k0sj(r⊥ ) –
ωt)], where k0 is the magnitude of the wave vector of
the surface wave, for example, at an infinitely large dis-
tance from the boundary x = 0 as viewed from the inci-
dent wave [the precise definition of this quantity, as will
be shown below, is necessary only for the relative mea-
surement of the wave vector k(r⊥ ) when determining
the refractive index] and C is the slowly varying ampli-
tude. From the dispersion relation (9), we obtain

Next, we assume that the length of a spin wave λ sat-
isfies the geometrical-optics condition:

(10)

where a is the characteristic size of inhomogeneities
involved in the medium. Then, from the equation of
magnetization dynamics (7), we deduced an equation
analogous to the classical Hamilton–Jacobi equation,
that is,

(11)

where

(12)

∂χ j

∂z
-------- x y 0 t, , ,( ) L jχ j x y 0 t, , ,( )– 0,=
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2 r⊥( ) β r⊥( ) H̃0 j α r⊥( )L j
2

–+ +[ ]=

× α r⊥( )k ⊥
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– H̃0 j Ω j
2 ρ2 r⊥( )/4+ .±

λ  ! a,

—⊥ s j r⊥( )( )2
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—⊥ ex
∂
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2 r⊥( )/k0
2
.=
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As has been done in optics [12], we assume that the
right-hand side of expression (11) is the square of the
refractive index,

(13)

because the ratio between the magnitudes of the wave
vectors at two different points of the space character-
izes the change in the direction of propagation of the
spin wave.

Therefore, the pinning of spins on the surface of a
magnetic material makes it possible to observe the
effect of birefringence of a surface spin wave. It should
be noted that, for bulk spin waves propagating in a mag-
netic material, there exists only one branch that corre-
sponds to the positive sign in expression (13), as is the
case in the absence of spin pinning on the surface. If the

value of α(r⊥ )  is relatively large, there appears
another branch that corresponds to the negative sign in
expression (13).

Equation (11) can be represented in the form

where p = —⊥ s. From this relation, we derive the equa-
tions describing the ray path in the Hamiltonian form:

Hence, it follows from expression (11) that |—⊥ s⊥ (r⊥ )| =

ds(r⊥ )/dτ = n(r⊥ ), where dτ =  is the ele-
ment of the ray path. Therefore, the function s can be
determined as the curvilinear integral taken along the
ray path; that is,

(14)

Minimizing the curvilinear integral (14) with the
use of Fermat’s principle [13], we deduce the following
equation of the ray path [10]:

4. REFRACTION OF A SPIN-WAVE RAY 
AT THE INTERFACE BETWEEN TWO 

HOMOGENEOUS MAGNETS

Formula (14) can be applied to the case of a semi-
infinite magnet composed of two contacting homoge-
neous parts.

n j
± r⊥( ) 1
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1/2
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1/2
,
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--- p2

n
2 r⊥( )–[ ] 0,= =

ṙ p,=

ṗ
1
2
---—⊥ n

2 r⊥( ).=

dx
2

dy
2

–

s n τ .d

A

B

∫=

d
dτ
----- n

dr⊥

dτ
-------- 

  —⊥ n.=
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We will consider the situation where a spin wave is
incident on the interface between two homogeneous
magnets that are in contact along the yz plane and are
characterized by the parameters α1, β1, ρ1, M01, and L1
and α2, β2, ρ2, M02, and L2, respectively. Note that the
spin wave is incident on the interface as viewed from
the first magnet. A spin-wave ray propagates from the
point (x1, y1, z1) located in medium 1 with a refractive
index n0 = 1 to the point (x2, y2, z2) in medium 2 with a
refractive index n±, which, according to expression (13),
can be written in the form

The spin-wave ray passes through the interface at the
point (0, y, z). In this case, from the extremum condi-
tions of the function s, we have

(15)

where  is the angle of incidence and  is the angle
of refraction.

The same result can also be obtained from other
considerations. In the equation of magnetization
dynamics (7), we introduce the following designations:

(16)

for an incident wave,

(17)

for a reflected wave, and

(18)

for a transmitted wave.
In expressions (16)–(18), R is the complex ampli-

tude of reflection of the spin wave from the interface;
D is the transmission amplitude; and k0, k1, and k2 are
the wave vectors of the incident, reflected, and trans-
mitted waves, respectively.

Taking into account the boundary condition (8), we
can write the following relations:

n
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Here,

,

where the sign “–” in the expression for k1x corresponds
to a spin wave propagating from the interface and k0y =
k1y = k2y are the magnitudes of the wave vectors at the
interface. It follows from these equations that the inci-
dent, reflected, and transmitted waves, as well as the
normal to the surface at the point of incidence, lie in the
same plane. In this case, the angle of incidence is equal
to the angle of reflection (by analogy with the law of
reflection of light waves in optics [12]).

For real values of k2x, i.e., under the condition

which is equivalent to the condition

we obtain formula (15).

If the condition  <  (  > 0,  < 0) is sat-
isfied, we have

This means that the quantity h is the depth of penetra-
tion of the spin wave into the second material:
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2
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2

– ,–=
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2
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2 ρ2
2
/4+±

α2L2
2 β1– ρ1/2– H̃01– Ω1
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,sin
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2
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±( )
2

–
---------------------------------------------------.=
P

The critical angle of total reflection of the spin wave
is determined from the expression

5. REFLECTION OF SPIN WAVES
FROM THE INTERFACE BETWEEN TWO 

HOMOGENEOUS MEDIA
In all cases where waves of arbitrary nature undergo

reflection and refraction, it is necessary to estimate the
intensity ratio of the transmitted and reflected waves. If
the intensity of the reflected wave is substantially
higher than the intensity of the transmitted wave, the
structure under investigation can be used for designing
mirrors of different types (for example, plane, convex,
or concave mirrors of spherical or cylindrical type).
Otherwise, when the intensity of the reflected wave is
considerably lower than the intensity of the transmitted
wave, the studied structure can be used for fabricating
lenses with specified parameters.

Let us derive appropriate expressions for the ampli-
tudes of reflection and transmission of a spin wave. For
this purpose, we will use the boundary conditions for
χ(r, t) at the interface, which follow from formulas (1)
and (2):

(19)

where γ = M02/M01.
Upon substituting the functions χ(r, t) in the expo-

nential form [see formulas (16)–(18)] into the system of
equations (19), we obtain the following expressions for
the amplitudes of reflection and transmission of a spin
wave (for simplicity, the signs “±” are omitted from the
formulas):
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-------------------------------------------------------------------------------------------------------------------------------------------------------.=
6. ESTIMATION OF THE PARAMETERS 
OF SPIN LENSES AND MIRRORS

Now, we estimate the parameters of a material of a
thin lens in the case when the angles of incidence of
spin-wave rays with respect to the optical axis of the
lens are small and ensure the required transparency of
the lens. Recall that the intensity of a reflected wave is
determined by the square of the reflection amplitude
and, as follows from expression (20), |R |2 ≈ [(α1 –
α2γ2n)/(α1 + α2γ2n)]2 (for small angles of incidence and
A  ∞). On this basis, under the condition |R |2 < η
(where η is a parameter specifying the required degree
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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of smallness of the reflection coefficient), we obtain the
following restrictions on refractive index n and, conse-
quently, on the parameters α, β, ρ, ω, L, M0, and H0:

In particular, at α1 = α2, M01 = M02, and L1 = L2, the
reflection coefficient does not exceed 10%, provided
the refractive index falls in the range 0.52 < n < 1.92.
For a mirror, the restrictions are as follows:

For example, the reflection amplitude squared |R |2 >
0.9 can be reached in the case when α1 = α2, M01 = M02,
and L1 = L2 at n < 0.03 or n > 37.97.

The geometrical-optics condition (10) is satisfied
when the thickness of the lens (or mirror) is limited by
the inequality

(21)

As can be seen from expressions (15), (20), and
(21), the choice of the parameters for a lens or a mirror
does not present any problems, even with a large variety
of magnetic materials [14]. Specifically, in the case of
garnet-type ferrites, from condition (21) for a thin lens,
it follows that the characteristic size of inhomogeneities
should fall in the range a > 10–4–10–6 cm.

1 η–

1 η+
-----------------

α2

α1
-----n

1 η+

1 η–
-----------------.< <

α2

α1
-----n

1 η–

1 η+
----------------- or

α2

α1
-----n

1 η+

1 η–
-----------------.><

a @ 2π α/ α L
2 β– ρ/2– H̃0– Ω2 ρ2

/4+±( ).

1.0

0.6

0.2

0
5 6 8 10

|R+|2

ω, 1011 s–1

Fig. 1. Dependence of the reflection coefficient |R+ |2 on the
frequency ω of a surface spin wave for the following param-
eters: α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100,

ρ1 = 10, ρ2 = 20, L1 = L2 = 104 cm–1, M01 = 100 G, M02 =
125 G, A = 100, θ1 = π/80, and H0 = 1870 Oe.
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Figures 1 and 2 show the dependences of the
reflected intensity  = |R+ |2 and the refractive index n+

on the frequency of a surface spin wave for characteris-
tic parameters of the material [14]. It is clearly seen
from these figures that, at a chosen frequency, the

I
R

+

0.6

0.4

0.2

0
4 6 8 10

n+

ω, 1011 s–1

Fig. 2. Dependence of the refractive index n+ on the fre-
quency ω of a surface spin wave for the following parame-
ters: α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100,

ρ1 = 10, ρ2 = 20, L1 = L2 = 104 cm–1, M01 = 100 G, M02 =
125 G, and H0 = 1870 Oe.

1.0

0.6

0.2

0 0.5 1.5 2.0

|R+|2

Η0, kOe
1.0

Fig. 3. Dependence of the reflection coefficient |R+ |2 on the
external dc magnetic field H0 for the following parameters:

α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100, ρ1 =

10, ρ2 = 20, L1 = L2 = 104 cm–1, M01 = 100 G, M02 = 125 G,

A = 100, θ1 = π/80, and ω = 5.55 × 1011 s–1.
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required intensity ratio of the reflected and transmitted
waves can be achieved by appropriately choosing the
material parameters. Moreover, as can be seen from
Fig. 3, the reflected intensity substantially depends on
the strength of the external homogeneous magnetic
field. Therefore, the intensity of a reflected wave can be
controlled over a wide range by varying only the
strength of the external magnetic field for constant
parameters of the material. The corresponding depen-
dence of the refractive index n+ on the external homo-
geneous magnetic field is depicted in Fig. 4.

Thus, the coefficient of reflection of spin waves
from an inhomogeneous inclusion that plays the role of
a lens or a mirror can be controlled by varying the
strength of the external magnetic field. It should be
noted that, in this case, the reflection coefficient can
change significantly, even though the parameters of the
medium remain constant. Consequently, the same inho-
mogeneities can be used both as lenses and as mirrors
for the same parameters of the structure.

The dependences of the reflected intensity  = |R–|2

and the refractive index n– on the frequency of a surface
spin wave and the strength of the external magnetic
field for parameters of the material that allow for the
existence of this branch of spin waves are shown in
Figs. 5–8. It is worth noting that the refractive index
becomes infinite in the ranges of spin-wave frequencies
and external magnetic fields that correspond to the edge
of the band gap in the first material (Figs. 6, 8). In
Figs. 5 and 7, these ranges of spin-wave frequencies
and external magnetic fields are indicated by conven-
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0 0.5 1.5 2.0

n+

Η0, kOe
1.0

Fig. 4. Dependence of the refractive index n+ on the external
homogeneous magnetic field H0 for the following parame-

ters: α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100,

ρ1 = 10, ρ2 = 20, L1 = L2 = 104 cm–1, M01 = 100 G, M02 =

125 G, and ω = 5.55 × 1011 s–1.
PH
tional lines of the total reflection, even though, in this
case, the incident wave is actually absent because of the
fast damping in the first material.

Furthermore, the material parameters, if required,
can be chosen so that the spin waves corresponding to
only one of the two branches will be transmitted
through the interface between the two materials,
whereas the waves of the second branch will be com-
pletely filtered out. Obviously, the material parameters
can also be chosen so that a situation will occur in
which the “negative” branch of spin waves will corre-
spond to the forbidden band of the second material with
an increase in the frequency (or in the external mag-

1.0
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0.6
2 4 6 8 10

|R–|2

ω, 1011 s–1

Fig. 5. Dependence of the reflection coefficient |R– |2 on the
frequency ω of a surface spin wave for the following param-
eters: α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100,

ρ1 = 10, ρ2 = 20, L1 = L2 = 8 × 104 cm–1, M01 = 100 G,
M02 = 125 G, A = 100, θ1 = π/80, and H0 = 750 Oe.
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Fig. 6. Dependence of the refractive index n– on the fre-
quency ω of a surface spin wave for the following parame-
ters: α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100,

ρ1 = 10, ρ2 = 20, L1 = L2 = 8 × 104 cm–1, M01 = 100 G,
M02 = 125 G, and H0 = 750 Oe.
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netic field), whereas the relevant band of the first mate-
rial will remain allowed. It is this situation that actually
arises with the total reflection of spin waves from the
interface.

7. CONCLUSIONS

Thus, the geometrical-optics approximation, as
applied to the case of propagation of surface spin waves
in biaxial ferromagnets, made it possible to determine
the restrictions imposed on the material parameters at
which the spin waves possess properties specific to
rays. It was demonstrated that the refraction of a sur-
face spin wave at the interface between two homoge-
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0.6
0 1 2 3

|R–|2

H0, kOe

Fig. 7. Dependence of the reflection coefficient |R– |2 on the
external dc magnetic field H0 for the following parameters:

α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100, ρ1 =

10, ρ2 = 20, L1 = L2 = 8 × 104 cm–1, M01 = 100 G, M02 =

125 G, A = 100, θ1 = π/80, and ω = 5.55 × 1011 s–1.
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Fig. 8. Dependence of the refractive index n– on the external
homogeneous magnetic field H0 for the following parame-

ters: α1 = 10–7 cm2, α2 = 2 × 10–7 cm2, β1 = 50, β2 = 100,

ρ1 = 10, ρ2 = 20, L1 = L2 = 8 × 104 cm–1, M01 = 100 G,

M02 = 125 G, and ω = 5.55 × 1011 s–1.

n–
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neous media is accompanied by birefringence due to
the pinning of spins on the surface of the material. In
this situation, each of the two branches is characterized
by a specific dependence of the coefficient of reflection
of a spin wave from the interface between these two
media. Consequently, it becomes possible to control the
ratio between the intensities of the waves transmitted
through the interface between two materials and corre-
sponding to different branches. This ratio can be
changed to the extent that one of the branches will be
eliminated completely. The regularities revealed in this
work can be used in designing devices for spin-wave
microelectronics, including filters and spin-wave ana-
logs of optical devices.
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Abstract—The electrical properties and the Hall effect in the FexMn1 – xS magnetic semiconductors (0 < x ≤
0.5) have been experimentally studied in the range 77–300 K in magnetic fields of up to 15 kOe. The cation-
substituted sulfides with 0.25 ≤ x ≤ 0.3 possessing colossal magnetoresistance (CMR) were established to be
narrow-gap semiconductors with carrier concentrations n ~ 1011–1015 cm–3 and high carrier mobilities µ ~ 102–
104 cm2 V–1 s–1. It is believed that the CMR effect in these sulfides can be explained in terms of the model of
magnetic and electron phase separation, which is analogous to the percolation theory in the case of heavily
doped semiconductors. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Despite an impressive number of experimental and
theoretical studies into the colossal magnetoresistance
effect (CMR) [1–5], clear understanding of its mecha-
nism is still lacking and the criteria governing the real-
ization of this effect in a substance are unknown. An
efficient method to gain insight into the mechanisms of
conduction is based on investigating the Hall effect;
this approach makes it possible to determine the type,
concentration, and mobility of charge carriers. Com-
bined study of the Hall effect and the magnetoresis-
tance may help us to understand the mechanism of
CMR in magnetic semiconductors [6–8].

2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The present communication reports on the results of
a study on the electrical and galvanomagnetic proper-
ties of solid solutions in the FexMn1 – xS sulfide system
(0 < x ≤ 0.5). The technology of synthesized polycrys-
talline FexMn1 – xS samples and the results of their x-ray
characterization are described elsewhere [2, 3]. X-ray
diffraction analysis showed the FexMn1 – xS samples
prepared from α-MnS by cation substitution to have a
NaCl-type fcc lattice deformed slightly in the region
~150 K. Experimental studies on the electrical and gal-
vanomagnetic properties of the samples were carried
out using the standard four-probe dc method at temper-
atures of 77 to 300 K in magnetic fields H = 5, 10, and
15 kOe oriented normal to the sample plane. To avoid
possible side effects, the Hall voltages were measured
for two field and current directions in a sample [9]. The
samples prepared for measurements were 3 × 5 ×
10 mm parallelepipeds pelletized from the starting
powder material and annealed at 1000°C for 2 h.
1063-7834/04/4606- $26.00 © 21068
3. EXPERIMENTAL RESULTS

At room temperature, manganese monosulfide is a
p-type semiconductor with carrier concentration n =
1018 cm–3 and carrier mobility µ = 0.065 cm2 V–1 s–1

[10]. When in the paramagnetic phase, the conduction
activation energy of manganese monosulfide is 0.3 eV
in the range 150–300 K. Below the Néel temperature
(TN ~ 150 K), conduction has a practically nonactivated
character (similar to LaMnO3 [1]).

Increasing the cation substitution x in the FexMn1 – xS
sulfide compounds prepared from α-MnS changes the
type of magnetic order from antiferromagnetic to ferro-
magnetic [2], as occurs in manganese oxide compounds
synthesized from LaMnO3 and possessing CMR [1].
Similar to the LaMnO3-based cation-substituted sys-
tems, the FexMn1 – xS sulfides exhibit CMR for some
concentrations x [2].

Figure 1 plots the temperature dependences of the
electrical resistivity ρ of the cation-substituted
FexMn1 – xS sulfides (0 < x ≤ 0.5) measured with no
magnetic field applied. As the cation substitution x
increases, the electrical resistivity of the FexMn1 – xS
sulfides changes behavior with temperature in the range
77–300 K. One observes a decrease in the electrical
resistivity and activation energy for conduction (the
slope of the logρ vs. 1/T curves), a feature characteristic
of the Anderson-type concentration transitions [11].
The critical concentration at which the FexMn1 – xS sul-
fides switch from the semiconductor to semimetal state
is xc ~ 0.4 [12].

Figure 2 displays the temperature dependences of
the electrical resistivity measured for the compositions
with x ~ 0.29 and ~0.3 in magnetic fields of up to
30 kOe. The variation in the electrical resistivity in the
temperature interval from 4.2 to 300 K with magnetic
field (for a given composition x) is similar in character
004 MAIK “Nauka/Interperiodica”
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to the variation in ρ(T) observed in FexMn1 – xS with
increasing cation substitution x without a magnetic
field; in other words, application of a magnetic field
brings about a simultaneous decrease in the electrical
resistivity and conduction activation energy, as is seen
as the substitution concentration x increases. Negative
magnetoresistance δH = (R(H ≠ 0) – R(H = 0))/R(H ≠ 0) ×
100% is observed in the FexMn1 – xS sulfide system in
ferromagnetic compositions in the range 0.25 ≤ x ≤ 0.4.
The value of the magnetoresistance depends on the
concentration x and reaches a maximum for the compo-
sition x ~ 0.29 (δH = –450% in a magnetic field of
30 kOe at a temperature of 50 K) [2, 3]).

Figure 3 shows temperature dependences of the Hall
constant, carrier concentration, and mobility obtained
for x ~ 0.25 in a magnetic field of 10 kOe. The Hall con-
stant RH grows with decreasing temperature and is pos-
itive. When measured at temperature T = 110 K in a
field of 10 kOe, the carrier concentration and mobility
for x ~ 0.25 are n = 0.32 × 1011 cm–3 and µ = 1.2 ×
104 cm2 V–1 s–1.

Figure 4 presents graphs of the temperature depen-
dences of the Hall constant, carrier mobility, and con-
centration measured in different magnetic fields on the
FexMn1 – xS sulfide with x ~ 0.29, the composition with
maximum magnetoresistance. In magnetic fields H = 5
and 10 kOe at temperatures of 77–300 K, our sulfide
samples with x ~ 0.29 are p-type semiconductors,
which is illustrated by the positive sign of the Hall con-
stant RH (Fig. 4a). The Hall constant changed in sign to
negative in a magnetic field of 15 kOe for T < 180 K,
with electrons becoming the majority carriers in this
temperature region. For a given field H = 5 kOe, the
mobility of the p-type carriers in this sample increases
and their concentration decreases with decreasing tem-
perature, similar to the way this occurs in the x ~ 0.25
composition in a field of 10 kOe. An increase in mag-
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Fig. 1. Temperature dependences of the electrical resistivity
of samples of the FexMn1 – xS sulfide system obtained for
compositions with (1) x = 0.3, (2) 0.33, (3) 0.36, (4) 0.4, and
(5) 0.5 in zero magnetic field.
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netic field (up to 10 kOe) brings about a decrease in the
mobility of p carriers and lead to a weak temperature
dependence in the sample with x ~ 0.29 (Fig. 4b). The
p-carrier concentration increases (Fig. 4c). For T =
110 K and H = 10 kOe, the carrier concentrations and
mobilities in the sample with x ~ 0.29 are n = 8.6 ×
1012 cm–3 and µ = 1.3 × 103 cm2 V–1 s–1.

Figure 5 illustrates the temperature behavior of the
Hall constant and carrier concentration in different
magnetic fields studied for the composition with x ~
0.3. The majority carriers in this sulfide are negatively
charged particles, electrons. In a magnetic field of
5 kOe, the temperature dependence of n(T) is similar to
that for the x ~ 0.25 composition (Fig. 3b), with the
temperature at which n(T) undergoes a sharp change
shifting toward high temperatures with increasing field.
At T = 110 K and H = 10 kOe, the carrier concentration
and mobility for the sample with x ~ 0.3 are n = 6.94 ×
1013 cm–3 and µ = 1.92 × 102 cm2 V–1 s–1. As the mag-
netic field is increased to 15 kOe, the carrier concentra-
tion increases to n ~ 1015 cm–3. The carrier mobility for
this composition depends only weakly on temperature
and was measured to be ~102 cm2 V–1 s–1.
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(x ~ 0.29) obtained in different magnetic fields H: (1) 5, (2)
10, and (3) 15 kOe.
P

Figure 6 shows field dependences of the electrical
resistivity, carrier concentration, and magnetization for
the x ~ 0.29 composition measured at 160 K. We see
that the decrease in the electrical resistivity and the
growth in the magnetization are related to the increas-
ing carrier concentration.

4. DISCUSSION OF THE RESULTS

The CMR effect was first discovered in NaCl-type
fcc magnetic semiconductors (such as europium chal-
cogenides EuSe [13]), which are isostructural to man-
ganese monosulfide. Just as in the europium chalco-
genides, the magnetic transition from the paramagnetic
to antiferromagnetic state in manganese monosulfide is
accompanied by a rhombohedral-type lattice deforma-
tion caused by the exchange–striction mechanisms
[14]. The antiferromagnetic transition in the cation-
substituted sulfides FexMn1 – xS is apparently of the
same nature. As the cation substitution in FexMn1 – xS
increases from x = 0 to ~0.3, the Néel temperature
increases from 150 K (x = 0) to 230 K (x ~ 0.3) [2, 3],
which indicates expansion of the temperature region in
which the antiferromagnetic state exists. As follows
from Hall effect data, the concentration of the p carriers
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Fig. 5. Temperature dependences (a) of the Hall constant in
magnetic fields H (1) 5, (2) 10, and (3) 15 kOe and (b, c) of
the carrier concentration in magnetic fields H (b) 5 and (c)
15 kOe for FexMn1 – xS (x ~ 0.3).
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decreases and their mobility increases. This suggests
that the nature of the antiferromagnetic transition in
the FexMn1 – xS solid solutions is related to a decrease
in the p-carrier concentration and an increase in their
mobility.

Many researchers relate the origin of the CMR in
magnetic semiconductors (for instance, in EuSe,
CdCr2Se4, HgCr2Se4) to a red shift of the conduction
band bottom and carrier localization in ferron-type
impurity states [6]. The dependence of the carrier con-
centration and mobility on magnetic field observed in
these compounds is assigned to the delocalization of
electrons in the ferron states, which gives rise to a
reversal of the carrier sign and an increase in the elec-
tron concentration and mobility.

The above results obtained in an experimental study
of the galvanomagnetic properties of the FexMn1 – xS
sulfides permit us to conclude that, in magnetic fields
H ≤ 10 kOe at temperatures from 77 to 300 K, the
FexMn1 – xS sulfides (x ≤ 0.29) are p-type semiconduc-
tors, similar to manganese monosulfide. As x is
increased from 0 to ~0.29, the p-carrier concentration
decreases by five orders of magnitude and their mobil-
ity rises by the same factor (relative to α-MnS, x = 0).
In the composition region of x ~ 0.3, the carriers reverse
sign, with n-type carriers becoming the majority spe-
cies. The conduction activation energy Ea ~ 10–1 eV, the
carrier concentration n ~ 1011–1015 cm–3, and the mobil-
ity µ ~ 103 cm2 V–1 s–1 found for the FexMn1 – xS sulfides
in the range 0.25 ≤ x ≤ 0.3 are typical of semiconductors
with narrow-band gaps and small (m*/m ~ 10–2) effec-
tive carrier masses (for instance, PbS, Ge, Si) [11].

The Hall resistivity in magnetic semiconductors is
defined as ρH = R0B + RsM, where R0 and Rs are the nor-
mal and anomalous (spontaneous) Hall coefficients,
B is the induction in the sample, and M is the magneti-
zation. For a sample geometry with a demagnetizing
factor of unity, we have B = H. Studies of the Hall effect
in manganese monosulfide [10] showed that the Hall
constant R0 in the range 77–300 K is so small that it lies
within the experimental error. Our studies demon-
strated a similar situation to exist in a FexMn1 – xS sam-
ple with x ~ 0.25 at temperatures of ~200–300 K.
Below 200 K, the Hall constant in the antiferromag-
netic phase grows sharply (Fig. 3a). In ferromagnetic
samples with x ~ 0.29 and ~0.3, the Hall effect is
observed throughout the temperature range 77–300 K.
It may be conjectured that the Hall constant observed in
the interval from 200 to 300 K is actually the anoma-
lous component Rs. It has positive sign for the compo-
sition x ~ 0.29 and negative sign for x ~ 0.3. The rever-
sal of the carrier sign from the hole to the electronic
sign in manganese monosulfide (x = 0) is observed to
occur above ~480 K [10]. In view of this observation
and the results of studies into the Hall effect in cation-
substituted sulfides, the compounds investigated by us
could be assigned to semiconductors with mixed con-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
duction character, where both holes and electrons act as
carriers. The ratio of the electron to hole concentrations
determines the type of the carrier, which varies depend-
ing on the temperature and composition. A magnetic
field apparently exerts a similar impact on the x ~ 0.29
composition in the range 77–200 K, where CMR and
the coexistence of the antiferromagnetic and ferromag-
netic phases are observed [15]. The sharp rise in the p-
type carrier mobility as the degree of cation substitution
x in the FexMn1 – xS sulfides is increased compared to
the starting manganese monosulfide indicates either the
formation of a light-carrier impurity band or a weaken-
ing of the polaron or ferron effects, as is the case with
the magnetic semiconductors La1 – xSrxMnO3 and
HgCr2Se4 [6–8].

To explain the concentration-driven transition from
an antiferromagnetic semiconductor to a ferromagnetic
metal occurring in FexMn1 – xS for zero magnetic field,
an electronic level diagram was proposed, which
includes a p–d hybridized valence band E1 and a narrow
impurity band E2 [16]. It was shown that as x is
increased, an Anderson transition takes place in
FexMn1 – xS through a shift of the mobility edge Ec and
crossing of the Fermi level EF. The similarity observed
in the behavior of the electrical resistivity as a function
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of concentration x (Fig. 1) and of magnetic field H
(Fig. 2) suggests that the mechanism of the concentra-
tion transition and the decrease in the electrical resistiv-
ity in a magnetic field (the negative CMR effect) have
the same (percolation) character. This conjecture fits
the model of electronic and magnetic phase separation
[1], which is analogous to the theory of percolation in
heavily doped semiconductors [17].
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Abstract—The field dependence of the high-frequency susceptibility and the ferromagnetic resonance were
experimentally studied in a thin (d ≈ 0.1 µm) (111)-oriented single-crystal film of substituted yttrium–iron gar-
net with the factor q ! 1. It was shown that the anomaly in the high-frequency susceptibility observed in a mag-
netic field H parallel to the normal to the film surface in the magnetization saturation region (H ≈ Hs) has a dual
nature; more specifically, this anomaly is associated with an abrupt collapse of the stripe domain structure and
a ferromagnetic resonance in the experimental configuration H || [111] and h ⊥  H. In this case, the film transi-
tion from the inhomogeneous multidomain state to the homogeneous (single-domain) state at the point H ≈ Hs
has no indications of a second-order phase transition. The experimental frequency–field dependence of ferro-
magnetic resonance (FMR) in the sample under study, having a characteristic minimum at the point ω0 = 5 MHz
and HFMR = Hs, agrees qualitatively and quantitatively with calculations. The influence of the cubic magnetic
anisotropy and the film thickness on the FMR spectrum and the orientation of the spontaneous magnetization
in domains with respect to the film plane in the zero field H was theoretically studied. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Thin films of yttrium–iron garnet (YIG) with partial
rare-earth substitution and diamagnetic dilution and an
in-plane magnetic moment were previously used as thin
underlayers controlling the domain-wall structure in
the above-lying magnetically uniaxial garnet ferrite
layer of a two-layer garnet structure [1, 2]. Recently,
significant attention has been given to the domain struc-
ture (DS) of the thinnest YIG films due to new possibil-
ities for their application. In particular, they can be a
component of the layered periodic structure of photonic
crystals containing a stripe DS with a period of the
order of the light wavelength [3, 4]. Since the Faraday
rotation is small in such a film, it is not feasible to study
DSs using conventional magnetooptical methods.

Previous studies [5, 6] of the spin-wave interactions
in the above-mentioned two-layer garnet ferrite struc-
tures suggest that the ferromagnetic resonance (FMR)
method used in combination with high-frequency mag-
netic susceptibility (HFMS) makes it possible not only
to detect specific dynamic effects in ultrathin YIG films
but also to obtain certain information on the “hidden”
DS. In this study, the HFMS and FMR spectra are mea-
sured in an ultrathin (d ≈ 0.1 µm thick) single-crystal
YIG-type film with a DS and theoretical estimates are
made.

Interest in this study was stimulated in some
respects by paper [7], where it was reported that two
1063-7834/04/4606- $26.00 © 21073
second-order orientational phase transitions (OPT-2)
were observed in a similar film at room temperature.
This result seems to be unique, since well-established
OPTs were observed exclusively in the low-tempera-
ture range (mostly at T = 4–150 K) in long-term studies
of both spontaneous and field-induced OPTs in crystals
and films of rare-earth–iron garnets [8–10]. The exper-
iments in [7] cast doubt on the interpretation of the
results obtained and the validity of the corresponding
conclusions. With thin films similar to those studied in
[7], we carried out experimental and theoretical studies;
the results are considered below.

2. EXPERIMENTAL

2.1. Sample under Study and Experimental Technique

Experimental studies were performed using a sin-
gle-crystal garnet film of composition
(YLaGd)3(FeGa)5O12 with a thickness d ≈ 0.1 µm
grown on a single-crystal Gd3Ga5O12 substrate oriented
in the (111) plane such that the [111] crystallographic
axis of the film was parallel to the normal n to the sur-
face. To grow such a thin film, we used modified liquid-
phase epitaxy from a wetting melt-solution layer [11].
According to the original destination of such films,
their composition was selected with the intent to mini-
mize the growth-induced magnetic anisotropy along
the normal to the surface. In the demagnetized state,
004 MAIK “Nauka/Interperiodica”
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such a film should contain a stripe DS. The orientation
of the spontaneous magnetic moment vector M in
either of the two types of oppositely polarized magnetic
domains in such a film is mainly controlled by the com-
petition between the demagnetization field, which
tends to align the vectors M in the film plane, and the
cubic magnetic anisotropy field, which tends to deflect
the vectors M from the film plane toward one of the
easy magnetization axes of the [111] type, three of
which form an angle of 19°30′ with the film surface.

The magnetic characteristics of the film were deter-
mined by measuring the FMR parameters. The effec-
tive uniaxial anisotropy, which is equal to 4πMs in this
case (since there is almost no growth- and stress-
induced uniaxial magnetic anisotropy in the sample),
was determined according to [12]; more specifically,
the experimental and theoretical dependences of reso-
nant fields were constructed for the (110) plane perpen-
dicular to the film plane and, by setting various values
of 4πMs, these dependences were brought into coinci-
dence. The gyromagnetic ratio γ was determined from
the slope of the frequency–field dependence (straight
line) for the field direction perpendicular to the sample
plane [13]. The cubic anisotropy field HA was deter-
mined from the angular (azimuthal) dependence of the
resonant field for a fixed polar angle θ ≈ 52°, which is
the most accurate method for determining HA in a (111)
film. The values determined are γ = 1.76 × 107 Oe–1 s–1,
HA = 45 Oe, and 4πMs = 1350 Oe.

The HFMS was studied using the autodyne tech-
nique. The sample under consideration was placed on a
rotator in a high-frequency (HF) magnetic field h
induced by high-frequency Helmholtz coils incorpo-
rated in a drive circuit of an autodyne oscillator, whose
frequency was set between 5 and 30 MHz. The external
dc magnetic field H was induced by an electromagnet
placed on an independent rotator. The electromagnet
was power-supplied from a stabilized dc source. The

χ

–500 0 500 1000 1500
H, Oe

F = 5 MHz

F = 20 MHz

Fig. 1. High-frequency susceptibility of a (111)-oriented
garnet ferrite film in a field H || [111] at frequencies of 5 and
20 MHz.
P

field H could be varied within 0–2000 Oe. The two rota-
tors made it possible to rotate the sample about the nor-
mal n to its surface and to rotate the field H in the ver-
tical plane with respect to the sample from the position
H ⊥  n to H || n. The drive circuit voltage varied with the
HF power absorbed by the sample. A change in this
voltage was amplified and applied to the Y input termi-
nals of an X–Y recorder. A voltage proportional to the
external magnetic field was applied to the X input ter-
minals.

The FMR parameters were determined using a
reflection-mode setup allowing study in the frequency
range 0.005–10 GHz with magnetic field modulation.
As a measuring cell (sensitive element), a copper
microstrip 0.1 mm wide and 6 mm long was used at the
first stage (operation at frequencies above 1 GHz); at
the second stage, a copper meander on a polycore sub-
strate was used (operation in the range 0.005–1 GHz).

A sample 6 mm in diameter was glued to the end of
a brass axis of the rotator and was densely tightened to
the meander by a spring. The rotation axes of the sam-
ple and magnet were mutually perpendicular, which
allowed us to apply the external field along a required
direction.

2.2. High-Frequency Susceptibility

The studies presented in this paper were initiated by
the observation of a significant change in the HFMS of
an YIG-based thin film in a quasi-static magnetic field
H || n in the vicinity of the point H = Hs (Hs is the mag-
netization saturation field of the film, generally defined
as a characteristic point (region) in the magnetization
curve). Figure 1 shows the dependence of the sample
HFMS on the field H || n at frequencies of 5 and
20 MHz. We can see that the first and second suscepti-
bility jumps are observed near the points H = 0 and
H ≈ Hs, respectively. The second jump is reliably
observed only in the case of exact orientation of the
external field H along the [111] axis of the film and cor-
responds to the film transition from the inhomogeneous
multidomain to a homogeneous single-domain state.
Based on published experimental data, we analyze
whether or not a causal relation exists between these
phenomena.

Studies of the static susceptibility of garnet ferrite
films [14] have shown that the DS plays a part in the
formation of the sample response to an external field. It
is clear that the HFMS of YIG-type multidomain films
should also differ from the HF susceptibility of single-
domain samples [15]. However, the question arises of
how sharply the DS rearrangement or disappearance
occurs. In this regard, study [16] is worth noting as it
dealt with the field dependence of the YIG film HFMS
in an external magnetic field oriented in the film (111)
plane (i.e., H ⊥  [111]). It was shown that an HFMS
jump occurs only in the case of sharp DS rearrangement
in the narrow range of values of the field strength H
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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where distinctive features in the film magnetization
curve are observed. No susceptibility anomalies at the
point H ≈ Hs were detected during magnetization rever-
sal of the film along either the easy (Hs = 30 Oe) or hard
(Hs = 50 Oe) axes.

A similar feature should presumably also be
observed in the experimental configuration H || [111] if
the magnetization reversal in a sample proceeds as was
assumed in [7], i.e., via gradual rotation of the sponta-
neous magnetization vectors M toward the field H in
oppositely polarized stripe domains separated by 180°
walls. However, near the field H = Hs, these vectors are
almost aligned along the field H and domain walls are
spread; therefore, such a film state (in terms of energy)
differs only very slightly from the single-domain state.
This means that no sharp rearrangement of the film DS
occurs in the vicinity of H = Hs; hence, there is no cause
for the HFMS anomaly.

In this case, a question arises concerning the cause
of the HFMS jump near H ≈ Hs in Fig. 1. According to
[7], as mentioned above, an OPT-2 takes place at
H || [111] at the point H = Hs in the sample under study.
However, in this case, for H ≈ Hs, there is a critical point
passage through which should be accompanied by a set
of characteristic features. Such features, observed in
spin-orientational transitions in rare-earth magnets, are
anomalies in the static magnetic susceptibility, specific
heat, Young’s modulus, thermal expansion, magneto-
striction, and others [8, 9]. However, in the case of a
very thin film, measurement of many static characteris-
tics is complicated in practice. It is more convenient to
observe critical dynamic phenomena, which should
take place during an OPT-2 in cubic ferrimagnets, for
example, the critical spin dynamics that is observed in
a YIG single crystal at the Curie temperature TC (where
a typical second-order phase transition occurs) and
manifests itself in a characteristic change in the relax-
ation rate of uniform magnetization precession (spin
diffusion) [17]. This relaxation rate can be determined
from the measured linewidth ∆HFMR.

The field dependence of ∆HFMR for H || [111] was
experimentally studied in the vicinity of the point H ≈
Hs. The quantity ∆HFMR has been repeatedly measured
in the resonance frequency range 5–180 MHz. The
∆HFMR measurement accuracy was 0.1 Oe. The average
value of this quantity was 15 Oe, with the spread being
±1.5 Oe, whereas the change in ∆H near TC in the YIG
crystal was tens of oersteds [17]. As follows from these
data, the critical spin dynamics was not observed exper-
imentally.

The situation that arose in the above-described study
of HFMS called for additional analysis (see below).

2.3. Ferromagnetic Resonance

The first stage of this study was carried out using an
FMR setup before it was modernized as described
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
below. Figure 2 shows the experimental frequency–
field dependence of the FMR (curve 1a) in the sample
under study in a field H || [111] at h ⊥  H. Solid lines
represent the theoretical dependence of the FMR corre-
sponding to the type of oscillations excited in the sam-
ple. The calculation of these dependences is described
in Section 4. As follows from Fig. 2, there is good
agreement between the experimental (curve 1a) and
calculated (curve 1c) data, except in the region of H ≈
Hs. In this region, the resonance frequency does not
vanish, in contrast to the prediction from the theory,
which results in a “gap” ~200 MHz wide in the experi-
mental curve; this gap is similar to that described in [7].
The fact that the FMR frequency ω0 = γHeff in the sam-
ple must vanish in the field H ≈ Hs follows from general
considerations. With no external field H, the magnetic
moment in an anisotropic ferromagnet is subject to the
resulting anisotropy field, which, in general, is due to
the uniaxial, cubic, orthorhombic, and other types of
crystallographic anisotropy, as well as the shape anisot-
ropy of the sample and domains. This field is the effec-
tive field Heff that controls the frequency ω0 at the point
H = 0 in the FMR spectrum. As an external field H is
applied along a hard magnetization axis of the sample,
the magnetic moment begins to rotate from the easy
magnetization direction to the hard magnetization axis.
This rotation lasts until the external magnetic field H
become equal to the anisotropy field. At this point, the
effective magnetic field Heff (acting on the magnetic
moment) becomes zero and the FMR frequency ω0 van-
ishes. In the sample at hand, any direction in the (111)
plane is easy, while the [111] axis, parallel to the nor-
mal n to the film surface, is the hard direction along
which the external field H is applied. When the mag-
netic moments cease to rotate in domains and become
directed along n || [111], the field H is the saturation
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Fig. 2. Frequency–field dependences of FMR in a (111)-ori-
ented garnet ferrite film for field H || [111]: (1) curve calcu-
lated for transverse (h ⊥  H) FMR in a multidomain film,
(1a, 1c) FMR observed (1a) before and (1c) after modern-
ization of the setup, (2) uniform FMR, and (3, 4) presum-
ably nonuniform FMR in the saturated state of the sample.
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field Hs exactly equal to the resulting anisotropy field
Hk, which (in the absence of uniaxial anisotropy) is
given by Hk = 4πM – (4/3)K/M, where 4πM is the
demagnetizing field (shape anisotropy) for an
unbounded film and K is the first cubic anisotropy con-
stant. Taking into account that the first term is an order
of magnitude greater than the second for the sample at
hand, we can write Hs ≈ 4πMs. Hence, when the field
magnetizing the sample along the hard magnetization
axis varies from zero to a value above the magnetiza-
tion saturation field, the FMR frequency must pass
through zero as the external field becomes equal to this
anisotropy field. If the magnetic field H is not directed
strictly along the hard magnetization axis, only the pro-
jection of the anisotropy field onto the external field
direction (rather that the total anisotropy field) will be
compensated. In this case, the magnetic moment con-
tinues to be in a certain nonzero field Heff and the FMR
frequency will not reach zero. Another cause for the
FMR frequency not reaching zero can be the difference
in the symmetry of the components of the effective
anisotropy or insufficient sensitivity of the microstrip
sensor at frequencies close to zero.

Taking into account the above factors, we modern-
ized the FMR setup as follows.

(i) The electromagnet rotator was equipped with an
optical laser device for orienting the external magnetic
field with an accuracy of several arc minutes with
respect to the normal n to the film surface.

(ii) The 6-mm-long microstrip used as a measuring
cell was replaced with a copper meander grown by pho-
tolithography on a polycore substrate (for operation in
the range 0.005–1 GHz). The meander dimensions
were as follows: the width and thickness of a strip were
0.1 and 0.05 mm, respectively, and the distance
between the strips was 0.1 mm. The total strip length in
the meander was 180 mm. For the range 1–10 GHz, the
distance between strips was chosen to be 2 mm. This
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Fig. 3. Coordinate system and (inset) the domain structure
(schematic) accepted in the theoretical consideration of the
problem.
PH
modernization significantly improved the sensitivity of
the measuring cell.

The frequency–field dependence of FMR in the
sample under study, measured using the modernized
radio spectrometer, is shown in Fig. 2 (curve 1c). We
can see that the FMR frequency almost vanishes in the
saturation field, in full agreement with theory.

3. Theory and Calculations

Let us study the factors determining the shape of the
experimental frequency–field dependence of FMR
shown in Fig. 2. To this end, we calculate the theoretical
curve with allowance for the magnetic properties,
domain structure, and shape of the sample under study.

(i) We now consider an infinite plate of the cubic
YIG single crystal with a negative anisotropy constant
K. The [111] easy magnetization axis coincides with
the normal to the plate. The external magnetic field is
also perpendicular to the film plane. Under these condi-
tions, saturation in such a sample takes place in the field
Hs = 4πM – (4/3) |HA |, where HA = K/M. At H > Hs, the
sample is saturated and the FMR frequency can be
determined immediately from the Smith–Suhl equa-
tions

(1)

where θ and ϕ are the polar and azimuthal angles of the
magnetization vector, respectively. The energy density
for such a structure is given by

(2)

where UH, UM, and UA are the energy densities of the
magnetization M in the external field and of the demag-
netizing and anisotropy fields of the plate, respectively
[13]. Substituting expression (2) into the second equa-
tion of set (1) and setting θ = 0, we immediately derive
the FMR frequency

(3)

The fact that θ is positive means that the absence of
domains is possible if H > Hs.

(ii) Let us consider the case where the external field
H is directed along the normal to the film plane and is
weaker than the saturation field, H < Hs. We assume that
the sample contains two domain groups forming a peri-
odic stripe DS oriented along the Y axis, as shown in
Fig. 3 (the dashed lines indicate the projections of the
three other triad axes onto the film plane).

Following [12, 13], we write the Lagrangian func-
tion for such a structure. With allowance for the energy
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of domain wall oscillations, the Lagrangian takes on the
form

(4)

where

(5)

is the kinetic energy density and

(6)

is the potential energy density, consisting of the energy
densities of the magnetization M in the external field
and of the demagnetizing and anisotropy fields of the
plate, as well as the energy density of domain walls (the
third term). Subscripts 1 and 2 indicate two domain
groups, θi and ϕi are the polar and azimuthal angles of
the magnetization vector in each domain, νis the rela-
tive domain size, ω0 = 4πMγ, and β = mγb/4πM2 (mγ is
the domain wall mass and b is the average thickness of
a domain). Here, we introduced the dimensionless
anisotropy constant d = |HA |/4πM and the dimension-

less external field  = H/4πM. The parameter q
(depending on the film thickness) defines the contribu-
tion from the domain demagnetizing field to the total
energy and should be determined experimentally (for
an indefinitely thin domain, this parameter is equal to
zero, which means that the stripe structure half-period
is much larger than the film thickness). The energy den-
sity of the ac field is given by

(7)

where  = h/4πM. With no perturbation δU, the equi-
librium orientation of the magnetization vectors can be
determined from the equilibrium conditions

(8)
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from which, by differentiating Eq. (6), we immediately
obtain

(9)

(see Fig. 3 for the angle ϕ in domains). The equilibrium
angle θ0 is related to the external field as

(10)

The corresponding dependence is shown in Fig. 4.
We can see that the equilibrium angle of the deviation
of the vectors M1 and M2 from the film plane is greater
than one degree in a zero field. We one can also see that
the sample transfers to the saturation state in a jump,
since the derivative of θ0(H) changes sign in the region
of H ≈ Hs. This jump is approximately 3°. These fea-
tures in the θ0(H) dependence arise exclusively as a
result of cubic magnetic anisotropy in the sample and
are absent in the case HA = 0.

Writing the Lagrange equations

(11)

for this system and expanding the derivatives near the
equilibrium values (assuming the domain wall mass to
be infinite, since the magnetization is changed due to
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rotation processes), we solve Eqs. (11) and find the fre-
quency–field dependences of FMR:

(12)

where y1 and y2 are expressed in terms of the FMR fre-
quency and the equilibrium angle as

(13)

The coefficients c1 and c2 are given by

where

(14)

By substituting the previously determined constants
(γ = 1.76 × 107 Oe–1 s–1, HA = 45 Oe, 4πM = 1350 Oe)
and setting q = 0.01, we can derive the frequency–field
dependences shown for transverse oscillations in Fig. 2
(solid lines).

4. DISCUSSION

Let us compare these results and the data obtained in
other studies of YIG [16] and substituted YIG [7] films
where the autodyne technique was used to study the
HFMS and FMR, as in this work.

We recall that this technique makes it possible to
observe variations in the HF energy absorption by a
sample in the drive oscillatory circuit of an HF-power
signal generator as the sample is exposed to a mutually
perpendicular or parallel external dc magnetic field H
and HF field h. The frequency Ω of the field h was set
between 5 and 25 MHz [16] or was 5 MHz [7]. In both
cases, the sensitive element of the measuring circuit,
whether it be a Helmholtz coil or a planar multiturn
coil, is the inductance in the oscillatory circuit, whose
Q factor varies under the influence of the sample. These
variations give rise to a change in the amplitude and to
a frequency shift of HF oscillations of the signal gener-
ator. It makes no difference whether the signal propor-
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tional to the amplitude or the frequency shift is mea-
sured. It is of no importance what processes cause a
change in the magnetic state of the sample; this change
will be measured only as a result of an increase in the
HF power absorption (magnetic loss in the sample).
Hence, identification of the processes initiated in the
sample by the field H calls for not only HFMS mea-
surements but also additional studies (microscopic
observation of the DS, construction of the magnetiza-
tion curve, FMR parameter measurements, etc.).

If the condition Ω = ω0 = γHeff is satisfied in the
study of a YIG-type film using the scheme described
above, these devices will measure a jump in the HF sus-
ceptibility; however, the jump will be caused in this
case by resonant absorption of the HF power in the
sample as a result of FMR, because FMR is the selec-
tive absorption (by the YIG film in this case) of the elec-
tromagnetic field energy at the frequency equal to the
frequency ω0 of precession of magnetic moments of the
electronic system in the internal effective magnetic
field Heff [13].

In [16], the HFMS was studied in fields H < 100 Oe
in the frequency range ω = 5–25 MHz, which is much
lower than the precession frequency ω0 for a thick (5–
7 µm) YIG film in such a field at any relative orientation
of the vectors H and h and the [111] axis. For this rea-
son, that experiment was free of side FMR effects (in
terms of the objectives pursued in [16]). This circum-
stance allowed the authors of [16] to observe the anom-
alous HFMS caused only by the critical DS rearrange-
ment in the YIG film under study. It was shown that the
transition of the film from the multidomain to the sin-
gle-domain (saturated) state at the point H ≈ Hs is not in
itself a critical process in the sense that it is not accom-
panied by an HFMS anomaly.

The experimentally observed resonant absorption of
the HF power (5–20 MHz) at the point H ≈ 1300 Oe
(Fig. 1) corresponds to the frequency range of uniform
magnetization precession for the sample under study, as
follows from Fig. 2; therefore, this absorption must be
considered in connection with FMR.

As already noted, the above-mentioned HFMS
anomaly was interpreted in [7] as a magnetic suscepti-
bility jump due to the OPT-2. In this case, an important
role in the arguments in favor of this version was
assigned in [7] to the shape of the frequency–field
dependence of the FMR, which corresponds to experi-
mental curve 1a in Fig. 2 in this paper. Special attention
was paid to distinct minima in weak fields and in a field
of the order of 1300 Oe, i.e., at the starting (the first
OPT) and ending point (the second OPT) of reorienta-
tion, and it was postulated that the observed spectrum
corresponds to soft quasi-ferromagnetic modes, since
they always have a minimum frequency at OPT-2
points. The energy gap in the region H ≈ 1300 Oe (ν0 ≈
200 MHz) is also interpreted in [7] in favor of the OPT
version by analogy with rare-earth orthoferrites, in
which such a gap is observed at the phase transition
YSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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point as “a result of the dynamic interaction of various
oscillatory systems of a magnet.” Moreover, the results
calculated in [7] agree with the experimental value ν0 ≈
200 MHz.

Our counterarguments are based on the above
results of the experimental and theoretical studies per-
formed for an identical garnet ferrite film and are as fol-
lows.

(i) A number of factors were determined that possi-
bly control the HFMS jumps observed in the garnet fer-
rite film under study regardless of the phase transition.

One of these factors is irreversible rotation [18] of
the spontaneous magnetization vector M in stripe
domains in the region H ≈ 1300 Oe. As follows from the
dependence of the polar angle θ on the field H || [111]
(Fig. 4), the gradual rotation of the vector M toward the
field H || [111] stops at the point H = Hs. As the field is
further strengthened, the vector M abruptly transfers to
the position M || [111]. In [16], it was shown that such
an abrupt DS rearrangement is always accompanied by
an HFMS anomaly.

Another factor is FMR, which occurs, in particular,
in an external field H || [111] for h ⊥  H at the point ω =
5 MHz and H ≈ 1300 Oe corresponding to the coordi-
nates of the second HFMS jump for the sample under
study (Figs. 1, 2). In this context, it should be noted that
the autodyne technique dealing with electromagnetic
oscillations with a frequency of 5 MHz is incorrectly
interpreted in [7] to be a method of static magnetic sus-
ceptibility, whereas it is conventionally considered a
method of HF susceptibility [16, 19]. Since such a
purely dynamic effect as FMR is observed at this fre-
quency, this cannot be statics. However, even an anom-
aly in the static magnetic susceptibility is not an unam-
biguous attribute of the OPT, which is indicated, e.g.,
by the shape of the magnetization curve of magneti-
cally uniaxial garnet ferrite films in the vicinity of the
bubble domain collapse field, where the OPT is absent
a priori [19].

The HFMS anomaly at the point H || [111] = 0 also
results from irreversible processes of magnetization
rotation [18], which, in turn, is caused by cubic anisot-
ropy.

(ii) It was shown that the critical spin dynamics, i.e.,
a characteristic change in the spin relaxation rate at the
boundary of the second-order phase transition, does not
manifest itself near the point H ≈ Hs (see Subsection 2.2).

(iii) It was shown that the gap in the FMR spectrum
of the sample is caused by incorrect measurement. In
[7], measurements were carried out without precision
orientation of the external field with respect to the [111]
axis; a microstrip sensor was used whose sensitivity is
insufficient for this film at frequencies below 200 MHz.
A more sensitive sensor and an optical device for pre-
cise orientation of an electromagnet by a laser beam
allowed us (for the same setup and an identical sample)
to apply the external field accurately along the [111]
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
axis of the sample and to measure the actual FMR spec-
trum (containing no gap) at frequencies 5–200 MHz
(Fig. 2, curve 1c). According to [7], the second OPT-2
occurs when the angle θ between the vector H and the
[111] axis is zero: “at θ ≠ 0, the transition disappears.”
As follows from Fig. 2, the gap in the FMR spectrum
simply indicates the misorientation (θ ≠ 0) at which (as
argued in [7]) the OPT-2 does not take place. In this
case, there is no reason to interpret the minimum at H ≈
1300 Oe in the FMR spectrum as “softening … of the
soft mode at the end point of reorientation.”

(iv) It was shown that the existence of a minimum at
H ≈1300 Oe in the FMR spectrum follows from the
FMR theory as a result of the vanishing of the effective
magnetic field, around whose direction the vector M
precesses (Section 4, Fig. 2). The existence of the min-
imum at H = 0 is also substantiated by the FMR theory
for a cubic ferromagnet with a nonzero cubic magnetic
anisotropy energy (Fig. 2). The sample under study is
similar to such a ferromagnet under the conditions of
this experiment. The calculation carried out in [7] dis-
regards the cubic magnetic anisotropy and the actual
contribution from the demagnetizing fields of domains
in such a thin film and disagrees with the experiment,
which was incorrectly interpreted in [7] in favor of the
occurrence of the OPT (namely, as the result of “soften-
ing … of the soft mode at the start and end points of the
reorientation” [7]).

(v) The first OPT-2 observed in the sample under
study is interpreted in [7] as the transition from the state
where the magnetization in domains lies strictly in the
film plane (i.e., M ⊥  [111]) at H = 0 to the state where
the magnetization makes an angle with the film plane at
H ≠ 0. In such a case, the initial phase M ⊥  [111] has
no domain of existence in the magnetic phase diagram
for the field H || [111], which should induce the OPT.
This is impossible from the viewpoint of the Landau
theory of phase transitions. Furthermore, the calcula-
tion we carried out with allowance for the experimen-
tally measured cubic anisotropy constant shows that,
even in the field H = 0, the magnetization M in domains
does not lie in the film plane and forms an angle α ≈ 1°
with it even in such a thin film (see the calculation per-
formed in Section 4). In other words, the OPT-2 is
absent at the point H = 0 by definition.

(vi) The second OPT-2 is defined in [7] as the end of
the transition from the state where the vector M makes
an angle with the film plane (at H < Hs) to the state
where M || H || [111] at H ≈ Hs. Thus, it is assumed that
the sample contains two magnetic phases, with M ⊥
[111] and M || [111], between which an induced orien-
tational transition via a third phase takes place. We
recall that, according to the phenomenological Landau
theory, the phase transition is a transition between the
magnetic phases possible in this crystal that correspond
to the minimum of the thermodynamic potential [8, 9].
The question concerning the magnetic phases that can
exist in cubic ferromagnets (among which is included
4
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garnet ferrite with a paramagnetic rare-earth sublattice)
was studied theoretically and experimentally in [20].
The results are as follows.

(1) Only three high-symmetry magnetic phases M ||
[100], M || [110], and M || [111] can exist in this sys-
tem; there are no equilibrium canted phases, i.e., states
in which the magnetization direction does not coincide
with these axes [8, 9].

(2) In an external magnetic field H || [111], the tran-
sition to the phase M || [111] is possible only from the
phase M || [100] or M || [110]; both transitions are first-
order OPTs. These conclusions were experimentally
verified for rare-earth–iron garnets in a magnetic field
by measuring the magnetization, susceptibility, and
nuclear magnetic resonance [20].

Thus, the statement made by the authors of [7] about
the occurrence of an OPT-2 in a thin garnet ferrite film
seems to be theoretically and experimentally
unfounded.

Some interesting results obtained in this study were
not properly analyzed, because they are beyond the
scope of this work. In particular, the experimental
observation of magnetic-resonance modes correspond-
ing to straight lines 3 and 4 in Fig. 2 should be the sub-
ject of a separate study. We can only conjecture that
these modes are spin-wave resonances excited along
the film surface by the inhomogeneous HF field of the
microstrip meander.
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Abstract—The magnetocaloric effect ∆Tex and the magnetization in La1 – xSrxMnO3 single crystals (x = 0.1,
0.125, 0.175, 0.3) have been experimentally studied. The magnetic entropy and the magnetocaloric effect ∆Tth
were computed from magnetization curves. All the samples exhibited a maximum in the ∆Tth(T) curve at T =

. A step was observed on the ∆Tex(T) curve in the region of , with the value of ∆Tex on this step being
substantially smaller than ∆Tth. The step on the ∆Tex(T) curve was followed by a maximum, which appeared at
a temperature 20–40 K above . This anomalous behavior of ∆Tex and ∆Tth is assigned to the coexistence
of two magnetic (ferro- and antiferromagnetic) phases in the crystal. The calculated value of ∆Tth is determined
primarily by the ferromagnetic part of the crystal and disregards the negative contribution from the antiferro-
magnetic part of the crystal to ∆Tex. © 2004 MAIK “Nauka/Interperiodica”.

Tmax' Tmax'

Tmax'
Studies of perovskite-type manganese compounds
R1 – xAxMnO3 (here, R stands for rare-earth elements
and A = Ca, Sr, Ba) have been recently attracting con-
siderable attention. The interest in these materials
stems primarily from their colossal magnetoresistance
(CMR), which is exhibited by some of them at room
temperature. The giant volume magnetostriction found
in [1] in the vicinity of the Curie point in some manga-
nite compositions makes them promising materials for
use in various magneto-mechanical devices. The above
compounds also revealed a large change in magnetic
entropy near the Curie point [2, 3]. For some composi-
tions, this change is even larger than for Gd, for which
the magnetocaloric effect reaches 5 K in a field of 2 T;
therefore, they could be expected to feature a large
magnetocaloric effect. However, there are almost no
publications on direct measurement of the magnetoca-
loric effect in manganites.

An ever increasing number of researchers have been
recently tending to believe that the CMR in manganites
originates from the coexistence in them of two mag-
netic phases, ferro- and antiferromagnetic, caused by
the strong s–d exchange interaction [4, 5]. The mag-
netic two-phase state (MTPS) can be insulating at low
doping levels, where ferromagnetic (FM) regions are
embedded in an insulating antiferromagnetic (AFM)
matrix, and conducting at higher doping levels, where
insulating AFM regions are incorporated in a conduct-
ing ferromagnetic matrix. In the La1 – xSrxMnO3 system,
the compounds with x = 0.1 and 0.125 are semiconduc-
tors and the compounds with x = 0.175 and 0.3 are met-
als [6]. Therefore, it may be conjectured that the insu-
lating MTPS takes place in the former compounds and
1063-7834/04/4606- $26.00 © 21081
the conductive MTPS takes place in the latter. The
MTPS should become manifest in specific features of
the magnetocaloric effect, because this effect is nega-
tive for antiferromagnets and positive for ferromagnets.

We report here on a study of the temperature depen-
dence of the magnetocaloric effect and of the magneti-
zation in La1 – xSrxMnO3 single crystals (x = 0.1, 0.125,
0.175, 0.3). The single crystals were grown using the
crucibleless zone melting technique. The magnetiza-
tion was measured with a vibrating magnetometer. The
magnetocaloric effect was studied with the use of a
copper–constantan thermocouple, whose one junction
was fitted tightly in the sample. The thermocouple EMF
was measured with a microvoltmeter, thus providing
sensitivity as high as 0.01 K.

According to classical thermodynamics, the change
in the magnetic part of the entropy of a ferromagnet
induced by the adiabatic application of a magnetic field
can be written as

(1)

where M is the magnetization. The magnetocaloric
effect is calculated from the relation

(2)

where CH is the specific heat at constant field.
We calculated ∆Tth from Eq. (2), with ∆SM deter-

mined with the use of Eq. (1) from magnetization mea-
surements and with CH taken from [6]. Numerical inte-

∆SM
Md
Td

-------- 
 

H

H ,d

0

H

∫=

∆T th

CH T( )
T

---------------∆SM T( ),=
004 MAIK “Nauka/Interperiodica”



 

1082

        

DEMIN, KOROLEVA

                                                        
gration in Eq. (1) was performed following Simpson’s
method. The dM/dT derivative was found by interpola-
tion through three points following numerical smooth-
ing of the M(T) curves. Figure 1 plots the temperature
dependences of the magnetization M, and Fig. 2, the
∆Tex(T) and ∆Tth(T) curves obtained in a field H =
8.2 kOe for all samples. As seen from Fig. 2, all the
curves have maxima but differ in terms of the tempera-
ture positions: on the experimental curves, the maxima
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Fig. 1. Magnetization of La1 – xSrxMnO3 single crystals in
a field of 8.2 kOe plotted vs. temperature.
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Fig. 2. Theoretical and experimental magnetocaloric effects
obtained for La1 – xSrxMnO3 single crystals in a field of
8.2 kOe.
P

lie 20–40 K higher than those obtained from Eq. (2).
Interestingly, the ∆Tex(T) curves exhibit a step in the
temperature region where the ∆Tth(T) curves have a
maximum. This observation, as well as the difference
between the temperatures of the maxima on the ∆Tex(T)
and ∆Tth(T) curves, can be explained as being due to the
coexistence of the FM and AFM phases in the samples.
Invoking the entropy-based treatment [7], we write the
condition of adiabaticity of the process assuming the
magnet to consist of two subsystems, namely, a sub-
system of magnetic moments with entropy SM and a
subsystem of lattice atoms with entropy SC. The condi-
tion of adiabaticity of the process can be cast as

(3)

In the case where the sample is in the MTPS and the
FM and AFM parts can be considered to be decoupled,
one can roughly assume SM to be the sum of two parts,
the entropy of regions of ferromagnetically ordered
magnetic atoms, SFM, and the entropy of regions of anti-
ferromagnetically ordered atoms SAFM. In this case, the
condition of adiabaticity of the process for the MTPS
can be written in the form

(4)

According to Eq. (4), the magnetocaloric effect can be
considered approximately to be the sum of two parts,

(5)

where ∆TAFM and ∆TFM are the changes in the sample
temperature induced by a change in the magnetic order
in the FM and AFM regions of the crystal, respectively.
Obviously enough, the value of the magnetocaloric
effect ∆Tth calculated from Eq. (2) is determined prima-
rily by the change in the temperature of the sample
caused by the change in the magnetic order in the FM
part of the sample, because the existence of the AFM
part should only provide an insignificant contribution to
∆SM near the Curie point TC. Therefore, if we subtract
the magnetocaloric effect calculated from Eq. (2) from
the experimental value, we obtain the contribution to
∆Tex(T) due to the AFM part of the crystal. The graph of
the temperature dependence of this AFM contribution
plotted in Fig. 3 has a shape characteristic of antiferro-
magnets [8, 9].

At the Néel point, the magnetocaloric effect van-
ishes, and above this point a positive magnetocaloric
effect typical of paramagnets is observed. The above
reasoning applies to compositions with x < 0.175,
where the MTPS is either insulating (x = 0.1, 0.125) or
conducting (x = 0.175) but the FM and AFM phases are
comparable in volume. In the x = 0.3 composition, how-
ever, the FM phase occupies nearly all of the sample
volume at low temperatures when there is no magnetic
field, although the contribution from the AFM part to
∆Tex is fairly large, as is evident from Fig. 3. This fact
should apparently be assigned to the strong increase in

∆SC ∆SM+ 0.=

∆SC ∆SAFM ∆SFM+ + 0.=

∆Tex ∆TAFM ∆TFM,+=
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004



INFLUENCE OF A MAGNETIC TWO-PHASE STATE 1083
the magnetic nonuniformity in this composition near
TC. Indeed, data obtained from neutron diffraction [10],
EPR [11], absorption spectra [12], and other studies
quoted in review [13] suggest the existence of a mixed
FM–AFM state in compositions with 0.17 < x < 0.3
near TC. Note that Eq. (4) does not take into account the
entropy of the interface separating the FM and AFM
regions. However, it was shown in [1] that the exchange
interaction between the FM and AFM regions is sub-
stantially weaker than that within these regions; there-
fore, there should be practically no transition layer
between them.

Thus, the existence of the MTPS can account for the
anomalous behavior of the experimentally observed
magnetocaloric effect. This is one more argument for
the existence of the MTPS in the system under study.
Earlier [1], we invoked the mixed FM–AFM phase state
in La1 – xSrxMnO3 to explain the analogous behavior of
the volume magnetostriction and magnetoresistance
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Fig. 3. Magnetocaloric effect induced by a change in mag-
netic order in antiferromagnetic regions of La1 – xSrxMnO3
single crystals.
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and the displaced hysteresis loops of samples cooled in
a magnetic field. Furthermore, the giant red shift
~0.4 eV observed by us in this system and associated
with the FM order implies that the energy of mobile
holes decreases with increasing FM order, with the
result that localization in the FM part of the crystal is
preferable for the holes [14].
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Abstract—The effect of isothermal annealing on the magnetic anisotropy, bilinear and biquadratic exchange
coupling energies, and domain structure of Co/Cu/Co trilayer films with dCo = 6 nm and dCu = 1.0 and 2.1 nm
prepared by magnetron sputtering has been studied. It is shown that, under isothermal annealing, the biquadratic
coupling energy decreases by more than an order of magnitude in films with dCu = 1.0 nm and increases in films
with dCu = 2.1 nm. The fourth-order magnetic anisotropy is shown to be related to the existence of biquadratic
exchange energy. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Interlayer exchange coupling between ferromag-
netic (FM) layers separated by nonmagnetic spacers
plays a key role in many properties observed in multi-
layer films. For instance, the variation in the pattern of
the magnetoresistance field dependence (or the magne-
tization curves) under rotation of the film about the film
plane normal, considered together with the energy of
indirect exchange coupling between the ferromagnetic
layers, provides information about the order of the
magnetic anisotropy of multilayer films [1]. Any multi-
layer structure in which the easy magnetization axes of
layers are noncollinear and the magnetization direction
changes from one layer to another has a high order of
anisotropy. Two exchange-coupled films with identical
thickness, magnetization, and anisotropy, whose easy
magnetization axes are mutually perpendicular, reveal
biaxial anisotropy of Ku/2Eb in weak magnetic fields,
where Eb is the coupling energy [2]. In strong magnetic
fields, the anisotropy decreases in proportion to 1/H,
with the system becoming gradually isotropic. Fields
H  0 give rise to biaxial and four-axial anisotropy,
which is small for high coupling energies between fer-
romagnetic layers and decreases as 1/H3 in strong fields
[3, 4].

This communication reports on a study of the
behavior of the biquadratic exchange coupling, mag-
netic anisotropy, and domain structure under isothermal
annealing and the effect of biquadratic coupling energy
on the magnetic anisotropy.

2. EXPERIMENTAL TECHNIQUES

Co/Cu/Co samples were prepared by dc magnetron
sputtering in an Ar atmosphere (PAr = 5 × 10–3 Torr).
The films were applied to (111)Si single crystals at
room temperature. The layer thickness was monitored
1063-7834/04/4606- $26.00 © 21084
in relation to the deposition time. The rate of Co and Cu
deposition was 0.1 and 0.08 nm/s, respectively. We
studied Co/Cu/Co films with a Co layer thickness dCo =
6 nm and a copper spacer thickness dCu = 1.0 and
2.1 nm. The film structure was probed by electron
microscopy and electron diffraction techniques. The
magnetoresistance was measured by the four-probe
compensation method in magnetic fields varied from 0
to 10 kOe, and the magnetic hysteresis loops were
recorded with a computerized vibrating-sample magne-
tometer. The isothermal annealing of the films was per-
formed at Tann = 250°C in a vacuum of 10–5 Torr.

3. RESULTS AND DISCUSSION

Electron microscope images showed all the films
studied to be polycrystalline with a grain size of ~5 nm.
The magnetic anisotropy of the trilayers was extracted
from magnetization curves obtained in one cycle of
film rotation about the surface normal in a step of 10°.
Figure 1 shows polar diagrams M/Ms = f(H, ϕ) of a
trilayer film with dCu = 1.0 nm (the first antiferromag-
netic (AFM) maximum) obtained for several fixed val-
ues of the magnetic field. We readily see that, in mag-
netic fields H = 100 and 250 Oe, the magnetization in
the as-deposited film reaches the maximum value in all
directions. In fields H = 20 and 60 Oe, the M(H, ϕ)
curves exhibit four maxima, which indicates the pres-
ence of biaxial anisotropy in the film. The pattern of the
polar diagrams obtained in fields H = 100 and 250 Oe
does not change under isothermal annealing (Tann =
250°C). By contrast, the diagrams measured in fields
H = 20 and 60 Oe vary substantially with annealing. A
30-min anneal reduces the two maxima in the diagram,
with the polar diagram acquiring the shape of an elon-
gated lobe. Increasing the annealing time to 230 min
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Polar diagrams of the relative magnetization M/Ms of the Co/Cu(1 nm)/Co film for (1) H = 20, (2) 60, (3) 100, and (4) 250 Oe
and various values of tann: (a) 0, (b) 30, and (c) 230 min.
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Fig. 2. Polar diagrams of the relative magnetization M/Ms of the Co/Cu(2.1 nm)/Co film for (1) H = 50, (2) 100, and (3) 150 Oe and
various values of tann: (a) 0, (b) 30, and (c) 230 min.
makes the lobe shape more distinct, which indicates the
onset of uniaxial in-plane magnetic anisotropy.

The polar diagrams of relative magnetization of the
Co/(2.1 nm)Cu/Co film (the second AFM maximum),
both as deposited and after annealing, are displayed in
Fig. 2. In a field of 150 Oe, the polar diagram of the as-
deposited film is isotropic. The diagram obtained at
100 Oe (curve 2), however, reveals a weak high-order
anisotropy. The M/Ms = f(H, ϕ) curves measured in
fields H = 100 and 150 Oe after 30 min of isothermal
annealing exhibit four clearly pronounced maxima,
thus indicating the formation of in-plane fourth-order
magnetic anisotropy, which becomes enhanced after an
additional tann = 80 min of annealing.

The parameters of the bilinear, J1, and biquadratic,
J2, exchange coupling were found by fitting the theoret-
ical magnetization curves to experimental data. It was
revealed that the Co layers in the as-deposited films are
coupled both bilinearly and biquadratically (see table).
The bilinear coupling energy of the film with dCu =
1.0 nm increases with increasing time of annealing, to
reach saturation for tann = 80 min. The biquadratic cou-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
pling energy decreases gradually with increasing time
of annealing, to reach J2 = –0.003 erg/cm2 after 230 min
of annealing.

The bilinear and biquadratic exchange coupling
energies in the film with dCu = 2.1 nm increased after
isothermal annealing by a factor of 2.1 and 2.2, respec-
tively (see table). The increase in the biquadratic cou-
pling energy brought about a clearly pronounced
fourth-order anisotropy.

Thus, films with biquadratically coupled Co layers
are biaxial and those in which J2  0 are uniaxial.
Indirect exchange coupling appears to induce biaxial
anisotropy in the upper Co layer during condensation
(or under subsequent isothermal annealing), because
the growth conditions of the bottom and top layers are
different. The uniaxial anisotropy of the bottom Co
layer is induced by the magnetron field. The anisotropy
in the top Co layer is induced by the magnetostatic field
of the bottom layer and the field of indirect exchange
coupling of the bottom layer with the growing top Co
layer through the Cu spacer.
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Magnetoresistance ratio and the bilinear and biquadratic coupling energies in isothermally annealed Co/Cu/Co films

dCu, nm tann, min –J1, erg/cm2 –J2, erg/cm2 Hs, Oe , 103 erg/cm3 , 103 erg/cm3 ∆ρ/ρ, %

1.0 0 0.05 0.017 550 60 10 1.4

30 0.14 0.005 750 30 60 3.3

80 0.14 0.04 790 25 110 3.4

230 0.135 0.03 760 20 105 3.3

2.1 0 0.04 0.018 450 60 30 1.2

30 0.075 0.043 570 70 25 2.2

80 0.082 0.042 620 80 24 2.4

230 0.085 0.04 630 85 22 2.4

Note:  and  are magnetic anisotropy constants of second and fourth order, respectively, derived by fitting theoretical relative

magnetization M/Ms = f(H) and the magnetoresistance ratio ∆ρ/ρ = f(H) curves to experimental data.

Ku
2( ) Ku

1( )

Ku
1( )

Ku
2( )
Annealing initiates an increase in effective indirect
exchange coupling between the ferromagnetic layers
Hs = 2|Jeff |/MsdCo, where Jeff = J1 + 2J2 [4] and Ms is the
saturation magnetization (see table), and of the magne-
toresistance in both films, but the actual relation
between the bilinear and biquadratic coupling compo-
nents after annealing depends on the thickness of the
Cu spacer. As seen from Figs. 1 and 2, isothermal
annealing of the Co/(2.1 nm)Cu/Co film results in an
increase in the biquadratic exchange coupling energy
and a more pronounced fourth-order anisotropy,
whereas in the Co/(1.0 nm)Cu/Co film the biquadratic
exchange coupling energy decreases by an order of
magnitude (J2  0) and makes the film uniaxial.

Several mechanisms of biquadratic coupling
between ferromagnetic layers in multilayer films have
been proposed to date. These are the model of bilinear
coupling fluctuations [5], the free-spin model based on
the presence of impurity atoms in the nonmagnetic

1000 200 300
t, min

–0.15

–0.10

–0.05

0
ln(ρ/ρ0)

1

2

Fig. 3. Logarithm of the relative electrical resistivity vs.
annealing time for a multilayer Co/Cu film.
P

spacer or of ferromagnetic atoms at the interface [6, 7],
and the magnetic dipole mechanism related to interface
roughness [7]. In fine-grained polycrystalline trilayers,
it is the latter two mechanisms that are apparently real-
ized. Biquadratic indirect exchange coupling between
ferromagnetic layers in a film can result in noncollinear
magnetic order only under the condition J2 < –|J1 |/2 [8].
For our films with dCu = 1 and 2.1 nm annealed at Tann =
250°C, the conditions J1 – 2J2 < 0 and J1 < 0 are satis-
fied. This shows that the equilibrium state for H = 0 can
be identified with antiferromagnetic ordering of mag-
netic moments in adjacent Co layers.

The difference in the behavior of biquadratic cou-
pling observed to occur as a result of isothermal anneal-
ing between films with dCu = 1 and 2.1 nm should pos-
sibly be assigned to the impurity mechanism of biqua-
dratic coupling. Annealing of films at Tann = 250°C is
accompanied by a growth in the size of grains (up to
10 nm) and impurity diffusion toward sinks, which are
grain boundaries in polycrystalline films. It may be
conjectured that, in films with a thinner spacer, impu-
rity atoms escape faster from the spacer at the given
temperature of isothermal annealing, which results in a
faster decrease in the J2/J1 ratio in the film with dCu =
1 nm. This conjecture is corroborated by the calculated
diffusion coefficients D. If we accept the approximation
proposed for multilayer structures [9, 10], we can
derive the diffusion coefficient from the relation D =
−(Λ2/8π2)dln(ρt/ρ0)/dt, where ρ0 is the initial electrical
resistivity, ρt is the electrical resistivity after isothermal
annealing for a time t, and Λ = dCo + dCu. For this pur-
pose, we derived a relation connecting the logarithm of
the relative electrical resistivity with the time of anneal-
ing (Fig. 3). The behavior of the ln(ρt/ρ0) = f(t) relation
suggests that diffusion in multilayer Co/Cu films can
occur at two rates, depending on the isothermal anneal-
ing time. Within region 1 in Fig. 3, the diffusion rate is
D1 = 7 × 10–22 m2/s, and within region 2, D2 = 0.2 ×
10−22 m2/s. The relaxation processes are characterized
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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by an activation energy Q = 0.15 eV, a figure typical of
point defect annealing and internal stress relaxation.

To be able to observe the domains, domain walls,
and magnetization ripple simultaneously, the domain
structure of films with dCu = 1 and 2.1 nm was studied
by Lorentz microscopy. As seen from images of the
domain structure, the films have partially antiferromag-
netic and partially ferromagnetic coupling (Fig. 4). Fig-
ure 4 reveals the presence of coupled Néel walls in the
films. The Néel walls in the top and bottom Co layers
are displaced with respect to one another. In the photo-
graphs, the AFM regions are identified by arrows. We
readily see that the annealing-induced change in mag-
netic anisotropy is accompanied by rearrangement of
the domain structure. The as-deposited film with dCu =
1 nm (Fig. 4a), whose polar diagram exhibits biaxial
anisotropy, has a complex domain structure; namely,
the domain wall arrangement lacks geometric regular-
ity, there are regions with closed domain walls, and the
domains themselves are small (~0.43 µm). Such a
domain structure is characteristic of films with strong
indirect exchange coupling between the ferromagnetic
layers. The complex domain structure persists in the
annealed film, as seen from the image shown in Fig. 4b.
However, the domain size increased nearly twofold
(average domain dimension ~0.83 µm) and the domain
walls became more extended.

In the film with dCu = 2.1 nm (where the polar dia-
gram reveals high-order anisotropy), the domain struc-
ture is larger (average domain size ~3 µm) and the
domain walls are more extended (Fig. 4c). The overall
pattern of the domain structure suggests the presence of
a certain preferential magnetization orientation in the
film. The film features regions with AFM and FM cou-
pling between Co layers. After the annealing, the film
exhibits a clearly pronounced biaxial anisotropy
(Fig. 2b) and the domain structure changes; more spe-

1.5 µm 3 µm

(‡) (c)

(b) (d)

Fig. 4. Domain structure of Co/Cu/Co films with
(a, b) dCu = 1 nm and (c, d) dCu = 2.1 nm; (a, c) as-depos-
ited, (b, d) after annealing. Arrows identify regions in which
the Co layers are antiferromagnetically coupled.
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cifically, the domain walls are no longer preferentially
oriented and become more twisted and the average
domain size decreases to 1.8 µm (Fig. 4d).

4. CONCLUSIONS

Studies of fine-grained, polycrystalline Co/Cu/Co
trilayer films have shown the fourth-order magnetic
anisotropy to be due to the presence of biquadratic
exchange coupling between the ferromagnetic Co lay-
ers; the effect of isothermal low-temperature annealing
on the energy of the bilinear and biquadratic exchange
coupling between the Co layers depends on the thick-
ness of the nonmagnetic spacer. Films with fourth-
order magnetic anisotropy feature a complex domain
structure with no geometric regularity in the domain
wall arrangement and whose domain walls are closed
and domains small.
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Abstract—The Mössbauer effect in the Fe1 – xVxBO3 solid solutions has been measured at 130 and 300 K. The
Fe0.05V0.95BO3 composition was studied in the interval 4.2–300 K. The experimental data obtained are
described in terms of the model of a dilute magnetic insulator in which atoms of the first coordination sphere
provide a major contribution to the hyperfine field at iron nucleus sites. It was found that, at low temperatures,
the field Hhf is generated primarily by the iron ion itself and depends only weakly on substitution. The hyperfine
interaction parameters in the discrete configuration series 6Fe, 5Fe1V, 4Fe2V, 3Fe3V, and 2Fe4V were deter-
mined. The magnitude of the isomer shift suggests that iron in the crystal resides in the trivalent state. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Transition metal borates with the chemical formula
MBO3 crystallize in the calcite structure [space group

]. Strong electronic correlations offer the
possibility of observing the rich variety of magnetic
structures and electronic properties in this series of
compounds governed by the presence of one or another
transition metal M3+ = Fe, V, Cr, or Ti. FeBO3 has been
a subject of intense interest since the time it was first
prepared [1]; studies were made on its optical and mag-
netooptical properties [2–6], crystal structure [7, 8],
magnetic properties [9–11], and NMR [12, 13] and
Mössbauer [14, 15] spectra. The FeBO3 iron borate is
transparent in the visible region, and its magnetic order-
ing temperature is above room temperature, TN =
348 K. Unfortunately, experimental information on
other representatives of this class of borates is scarce.
The isostructural compounds VBO3, CrBO3, and TiBO3

were first synthesized in 1964 [16]. VBO3 is known to
be a ferromagnetic semiconductor with TC = 32 K, and
CrBO3 is a low-temperature antiferromagnet with TN =
15 K and an insulator [17]. TiBO3 was reported to be a
weak ferromagnet (TN = 25 K) [18]. There are publica-
tions on studies of hyperfine interaction in iron borate–
based solid solutions Fe1 – xMxBO3, where the ions M =
Al, Ga, and Cr act as substituting ions [19–21].

A coordinated investigation of the magnetic, electri-
cal, and optical properties of Fe1 – xVxBO3 solid solu-
tions was performed earlier in [22]. This communica-
tion reports on a measurement of the Mössbauer effect
in iron-containing samples of Fe1 – xVxBO3.

R3c D3d
6( )
1063-7834/04/4606- $26.00 © 21088
2. SAMPLES AND EXPERIMENTAL 
TECHNIQUES

The Fe1 – xVxBO3 single crystals under study were
grown by spontaneous crystallization from a melt solu-
tion [22]. The crystals were hexagonal platelets up to
4 × 4 mm in size and about 0.1 mm thick. The concen-
tration x quoted in [22] was derived from the content of
components in the charge (xch). The exact amounts of
the elements were determined by EDAX ZAF quantifi-
cation. The values of x thus obtained are listed in Table 1
together with the earlier xch figures.

Mössbauer measurements were performed on pow-
dered samples of the Fe1 – xVxBO3 single crystals. The
isomer shift δ was determined relative to metallic (α-
Fe) iron.

The experiments on the Fe1 – xVxBO3 samples were
carried out at 130 and 300 K with a Co57(Cr) source.
The optimum sample thickness was calculated with due
account of the iron content and the absorption factor
and was found to be 5–10 mg Fe/cm2. The model spec-
tra were least squares fitted to experimental data under
the assumption that the spectral lines have Lorentzian
shape. We took as an additional fitting parameter the

Table 1.  Vanadium concentration in Fe1 –  xVxBO3 solid
solutions

xch 0.25 0.5 0.6 0.75 0.95

x 0.02 0.13 0.18 0.3 0.95

Note: xch was derived from the content of components in the
charge, and x, from energy-dispersive analysis of x-rays
(EDAX ZAF quantification).
004 MAIK “Nauka/Interperiodica”
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broadening of the outer sextet lines with respect to the
inner lines (Γ16/Γ34), which is proportional to the hyper-
fine field at the nucleus site. Processing of the experi-
mental spectra revealed the presence of an impurity
phase, Fe3BO6, in the solid solutions, which should be
assigned to the crystallization temperatures of these
compounds being very similar and was described ear-
lier in [21].

The spectra of the Fe0.05V0.95BO3 crystal in the range
of 4.2 to 300 K were measured with a Co57(Rh) source
of an initial activity of 25 mCi (925 MBq). The mea-
surements were performed in the transmission geome-
try. The source was placed inside a 4He cryostat close to
the sample. The maximum source velocity was

where Ueff is the effective amplitude of the sine signal and
C is the calibration factor, equal to 0.041326 mm/s mV.
The measurements were performed on polycrystalline
samples containing 1 mg Fe/cm2 that were mixed thor-
oughly with Al2O3.

3. EXPERIMENTAL RESULTS

Figure 1 shows Mössbauer spectra of Fe1 – xVxBO3
solid solutions obtained at room temperature. The
FeBO3 spectrum is a well-resolved sextet (Fig. 1, a).
The hyperfine interaction parameters are in agreement
with the data from [14]. The spectral line intensities are
in the ratio 3 : 2 : 1 : 1 : 2 : 3.

Because of the compositional disorder characteristic
of solid solutions, impurity atoms can be considered to
be distributed randomly in the matrix. Thus, all the cat-
ion states are equivalent and can be occupied by iron
and vanadium atoms in random fashion. Because the
exchange interactions have short-range character, we
analyze experimental spectra in the nearest neighbor
approximation. The central iron atom has n atoms of
vanadium and (6 – n) atoms of iron in its nearest envi-
ronment. The probability of finding such atomic config-
urations in a crystal is described by the well-known
binomial distribution

where x is the vanadium concentration. The local
molecular field theory was applied to interpret complex
Mössbauer spectra of mixed oxide systems in [23].

Following this assumption, the spectrum of the
Fe0.98V0.02BO3 crystal (Fig. 1, b) can be unfolded into
two sextets with occupations of 76 and 24%. The
former sextet relates to the nearest iron environment
consisting of six iron atoms (6Fe), and the latter sextet,
to the configuration in which there is one vanadium
atom among the nearest neighbors (5Fe1V). The prob-
ability distributions of hyperfine fields at the iron
nucleus sites and the calculated hyperfine interaction

Vmax CUeff,=

P6 n( ) 6!
n! 6 n–( )!
------------------------ 1 x–( )n

x
6 n–

,=
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parameters in the solid solutions are displayed in Fig. 2
and listed in Table 2. It is assumed that the hyperfine
field in insulators is well described in the nearest neigh-
bor approximation; therefore, the fields of the 6Fe,
5Fe1V, 4Fe2V, etc., configurations are discrete and well
resolved and the 6Fe configuration in a substituted
crystal has the same hyperfine field as in an unsubsti-
tuted one. In our case, while the 5Fe1V configuration
(Hhf = 323 kOe) differs noticeably from the 6Fe config-
uration (Hhf = 335 kOe), the field of 335 kOe is substan-
tially smaller than Hhf = 345 kOe in the unsubstituted
borate FeBO3. Quite probably, the hyperfine field at

a

b

c

d

e

–10 1086420–8 –6 –4 –2
V, mm s–1

Fig. 1. Mössbauer spectra of (a) FeBO3, (b) Fe0.98V0.02BO3,
(c) Fe0.87V0.13BO3, (d) Fe0.82V0.18BO3, and (e) Fe0.7V0.3BO3
obtained at 300 K.
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iron nucleus sites in FeBO3 is contributed to markedly
by next-to-nearest neighbors.

The spectrum of the Fe0.87V0.13BO3 has a complex
shape (Fig. 1, c). The distribution of the hyperfine field
probabilities allows us to isolate three regions (Fig. 2c).
The region of 350–400 kOe corresponds to fields
higher than the field in FeBO3 but lower than that in
Fe3BO6, Hhf = 521 kOe [24]. This region can be
assigned to the vanadium-substituted Fe3BO6 phase.
The broad region of 150–300 kOe can be identified
with the Fe1 – xVxBO3 crystal. The width of the hyper-
fine field distribution for the Fe1 – xVxBO3 crystal is
larger than that for the substituted Fe3BO6 phase. This
may be explained by the fact that the iron in Fe3BO6 has
a larger number of magnetic bonds (6 for the 8d and 8
for 4c sites, symmetry group Pnma) [25] compared to
FeBO3 (6 bonds) and that the number of magnetic
bonds is a factor that stabilizes the hyperfine field.
Moreover, the Néel temperature of FeBO3 (348 K) is
substantially lower than that of Fe3BO6 (508 K) [26].
Note also that the degree of vanadium substitution for
the FeBO3 crystal is larger than that for Fe3BO6. The
hyperfine field probability distribution in the 150- to
300-K region is almost symmetrical, with a slight devi-
ation toward higher fields. The experimental spectrum
is fitted well by a set of sextets, whose parameters are
listed in Table 2. In accordance with the binomial dis-
tribution, their assignment is specified by the number of
Fe and V neighbors. The weak peak in the hyperfine
field probability distribution in the low field region is
due to a paramagnetic doublet, which probably belongs

P
0.20
0.15
0.10
0.05

0

(a)

P
0.20
0.15
0.10
0.05

0

(b)

P
0.20
0.15
0.10
0.05

50 100 200 300 400 500 600
0

(c)

H, kOe

Fig. 2. Hyperfine field probability distribution for iron
nuclei at 300 K obtained for (a) FeBO3, (b) Fe0.98V0.02BO3,
and (c) Fe0.87V0.13BO3.
P

to superparamagnetic regions in Fe1 – xVxBO3 or to the
substituted Fe3BO6.

The room-temperature spectra of the Fe1 – xVxBO3
solid solutions with vanadium concentrations x = 0.18,
0.3, and 0.95 represent quadrupole doublets with asym-
metry in the intensities of the 3/2  1/2 and 1/2 
1/2 nuclear transitions. This could be assigned to the
crystallite c axes being oriented preferentially parallel
to the γ-ray direction; however, we study here powder
samples and the observed asymmetry is actually a man-
ifestation of the Gol’danskii–Karyagin effect [27]. This
effect is small for monoclinic lattices and, hence, the
asymmetry is due to the rhombohedral lattice of the
Fe1 – xVxBO3 crystal. We may thus conclude that each
doublet can be unfolded into two doublets, symmetric
and asymmetric.

Figures 3 and 4 display the Mössbauer spectra and
the distribution functions of the hyperfine field proba-
bility at iron nucleus sites, respectively, obtained for the

a

b

c

d

e

–10 1086420–8 –6 –4 –2
V, mm s–1

Fig. 3. Mössbauer spectra of (a) FeBO3, (b) Fe0.98V0.02BO3,
(c) Fe0.87V0.13BO3, (d) Fe0.82V0.18BO3, and (e) Fe0.7V0.3BO3
obtained at T = 130 K.
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004



MÖSSBAUER EFFECT STUDY 1091
Table 2.  Hyperfine interaction parameters in Fe1 – xVxBO3 solid solutions obtained at 300 K

Compound δ Hhf ∆EQ Γ34 Γ16/Γ34 S Assignment

FeBO3 0.40 345 0.38 0.29 1 1 “FeBO3”

Fe0.98V0.02BO3 0.40 335 0.39 0.30 1.04 0.76 6Fe

0.39 323 0.36 0.30 1.58 0.24 5Fe1V

Fe0.87V0.13BO3 0.39 278 0.41 0.43 1.72 0.20 6Fe

0.40 251 0.41 0.43 1 0.11 5Fe1V

0.39 231 0.38 0.41 1 0.14 4Fe2V

0.39 212 0.36 0.38 1 0.12 3Fe3V

0.39 189 0.41 0.30 1.91 0.13 2Fe4V

0.38 159 0.30 0.53 1.58 0.13 1Fe5V

0.44 1.31 0.06 –

0.36 375 0.54 0.20 5.26 0.11 “Fe3BO6”

Fe0.82V0.18BO3 0.42 0.40 0.28 0.70 “FeBO3” (GKE = 1.1)

0.38 0.47 0.32 0.30 “Fe3BO6”

Fe0.7V0.3BO3 0.41 0.42 0.32 0.71 “FeBO3” (GKE = 1.09)

0.40 0.45 0.30 0.29 “Fe3BO6”

Fe0.05V0.95BO3 0.42 0.43 0.17 0.43 “FeBO3” (GKE = 1.67)

0.39 0.48 0.39 0.57

Note: δ is the isomer chemical shift relative to metallic iron (αFe), ±0.02 mm/s; Hhf is the hyperfine field at an iron nucleus site, ±5 kOe;
∆EQ is the quadrupole splitting, ±0.04 mm/s; Γ34 is the FWHM of inner sextet lines, ±0.02 mm/s; Γ16/Γ34 is the ratio of the outer to
inner sextet line widths, ±0.04 mm/s; S is the fractional site occupation, ±0.05; and GKE stands for the Gol’danskii–Karyagin effect.
Fe1 – xVxBO3 solid solutions at 130 K. The temperature
dependences of the hyperfine field for FeBO3 and
Fe3BO6 are known to cross in the temperature region
close to 240 K, and the resolution of the sextets
becomes poorer as the temperature is lowered [21]. The
hyperfine field probability distribution function does
not permit identification of the individual iron positions
6Fe and 5Fe1V (Fig. 4b) for the Fe0.98V0.02BO3 crystal.
Deconvolution into two sextets makes it possible to
evaluate the probable occupations of these configura-
tions. For the same reason, one cannot reliably deter-
mine the occupations of the inequivalent positions in
the Fe0.87V0.13BO3 composition (Fig. 4c).

The Mössbauer spectra of Fe0.82V0.18BO3 and
Fe0.7V0.3BO3 samples measured at 130 K are superposi-
tions of several sextets and of a paramagnetic doublet
(Figs. 3d, 3e). This complexity of the hyperfine interac-
tion pattern can originate from the nonuniform mag-
netic state occurring in these crystals. Local deviations
from stoichiometry are capable of affecting magnetic
order in the sample. The temperature dependence of the
magnetization of these solid solutions follows a non-
trivial pattern and exhibits two magnetic transitions in
the temperature range from 30 to 200 K [22]. The broad
hyperfine field distribution observed in the
Fe0.82V0.18BO3 and Fe0.7V0.3BO3 crystals (Figs. 4d, 4e)
allows isolation of a discrete set of the 6Fe, 5Fe1V,
4Fe2V, 3Fe3V, and 2Fe4V configurations, whose
hyperfine parameters are listed in Table 3. The binomial
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
distribution passes through a maximum at the 5Fe1V
configuration (17%) for the x = 0.18 composition and at
the 6Fe configuration (15%) for the composition with
x = 0.3. The isomer shift is the same for all positions to
within experimental error. The spectra obtained suggest
the existence of a vanadium-diluted superparamagnetic
phase of Fe3BO6.

The Fe0.05V0.95BO3 solid solution remains paramag-
netic down to 130 K. To gain deeper insight into the
hyperfine interactions in this crystal, we performed
Mössbauer studies at temperatures spanning the range
from 4.2 to 300 K. The results of calculations and mea-
surements are listed in Table 4 and presented in graph-
ical form in Fig. 5. The spectrum of the Fe0.05V0.95BO3

composition measured at 4.2 K is a sextet with an
admixture of the paramagnetic phase, which adds up to
not over 10% of the magnetically ordered phase
(Fig. 5a). The relative sextet line intensities are close to
3 : 2 : 1 : 1 : 2 : 3. The hyperfine field Hhf at iron nucleus
sites in this sample is 507 kOe, which is 8.6% lower
than that in the unsubstituted FeBO3 crystal (555 kOe)
measured at the same temperature [14]. The nearest
neighbor contribution to the effective hyperfine field at
iron nucleus sites in FeBO3 is approximately 10% of
the ion-core spin polarization. The lower effective field
Hhf in Fe0.05V0.95BO3 compared to that in FeBO3 can be
assigned to the perturbation introduced by vanadium
impurity atoms.
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The Mössbauer spectra of the sample obtained at 70
and 130 K are asymmetric doublets characteristic of the
paramagnetic state (Figs. 5b, 5c). Each spectrum can be
unfolded into doublets relating to different atomic con-
figurations. According to the binomial distribution, for
a vanadium concentration x = 0.95, the probable occu-
pations of the 6V and 1Fe5V configurations acquire
maximum values of 76 and 25%, respectively. The two
doublets characterizing these configurations are identi-
fied in the figures by solid lines. The isomer shifts for
these configurations are independent of temperature
and are δ = 0.23 mm/s for iron in the 6V position and
δ = 0.29 mm/s for the 1Fe5V environment. These config-
urations have a constant quadrupole splitting (Table 4).
Unfortunately, the poor resolution of the Fe0.05V0.95BO3

spectrum does not allow isolation and identification of
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Fig. 4. Hyperfine field probability distribution for iron nuclei
obtained at T = 130 K for (a) FeBO3, (b) Fe0.98V0.02BO3,
(c) Fe0.87V0.13BO3, (d) Fe0.82V0.18BO3, and (e) Fe0.7V0.3BO3.
P

the inequivalent iron positions at room temperature
(Fig. 5d).

4. DISCUSSION OF THE RESULTS

Thus, deconvolution of solid-solution spectra into
constituent spectra of the components of these solu-
tions, which was made under the assumption of a ran-
dom impurity distribution and of additivity of the con-
tributions due to impurity atoms to Hhf and δ and with
due account of the influence of atoms in the first coor-
dination sphere, has permitted us to evaluate the hyper-
fine parameters for the 6Fe, 5Fe1V, 4Fe2V, 3Fe3V, and

–10 –8 –6 –4 –2 0 2 4 6 8 10

(a)

–4 –3 –2 –1 0 1 2 3 4

(b)

–2 –1 0 1 2

–4 –3 –2 –1 0 1 2 3 4
V, mm s–1

(c)

(d)

Fig. 5. Mössbauer spectra of a Fe0.05V0.95BO3 crystal
obtained at temperatures of (a) 4.2, (b) 70, (c) 130, and
(d) 300 K.
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Table 3.  Hyperfine interaction parameters for Fe1 – xVxBO3 solid solutions obtained at 130 K

Compound δ Hhf ∆EQ Γ34 Γ16/Γ34 S Assignment

FeBO3 0.50 540 0.46 0.47 1 1 “FeBO3”

Fe0.98V0.02BO3 0.50 539 0.37 0.44 1 0.87 6Fe

0.49 528 0.33 0.32 1 0.13 5Fe1V

Fe0.87V0.13BO3 0.50 524 0.39 0.46 1.05 0.76 “FeBO3”

0.50 491 0.44 0.51 1.19 0.19 “FeBO3”

0.50 425 0.07 0.87 1.01 0.05 “Fe3BO6”

Fe0.82V0.18BO3 0.51 514 0.41 0.28 2.54 0.10 6Fe

0.51 484 0.44 0.50 1.15 0.17 5Fe1V

0.51 462 0.45 0.44 1.13 0.14 4Fe2V

0.51 436 0.43 0.48 1 0.11 3Fe3V

0.52 403 0.54 0.53 1.11 0.08 2Fe1V

0.52 351 0.41 0.36 12.3 0.30 “Fe3BO6”

0.46 1.31 0.1 “Fe3BO6”

Fe0.7V0.3BO3 0.51 501 0.41 0.41 1.49 0.15 6Fe

0.50 471 0.49 0.45 1.40 0.14 5Fe1V

0.49 430 0.49 0.57 1.94 0.12 4Fe2V

0.50 374 0.45 0.56 1.06 0.13 3Fe3V

0.49 273 0.30 1.77 1.06 0.22 “Fe3BO6”

0.49 0.43 0.51 0.23 “Fe3BO6”

Fe0.05V0.95BO3 0.50 0.44 0.48 1 “FeBO3”

Note: δ, ±0.02 mm/s; Hhf, ±5 kOe; ∆EQ, ±0.04 mm/s; Γ34, ±0.02 mm/s; Γ16/Γ34, ±0.04 mm/s; and S, ±0.05.

Table 4.  Hyperfine interaction parameters for a Fe0.05V0.95BO3 crystal obtained at different temperatures

T, K δ Hhf ∆EQ Γ34 S Assignment

4.2 0.28 ± 0.005 507.2 ± 0.03 0.22 ± 0.01 0.40 ± 0.02

70 0.23 ± 0.01 0.42 ± 0.01 0.29 ± 0.023 0.75 6V

0.29 ± 0.013 0.48 ± 0.016 0.16 ± 0.02 0.25 1Fe5V

130 0.23 ± 0.003 0.42 ± 0.004 0.33 ± 0.007 0.76 6V

0.29 ± 0.002 0.47 ± 0.003 0.14 ± 0.004 0.24 1Fe5V

300 0.27 ± 0.002 0.43 ± 0.003 0.26 ± 0.005

Note: δ, ±0.01 mm/s; Hhf, ±0.03 kOe; ∆EQ, ±0.02 mm/s; Γ34, ±0.02 mm/s; and S, ±0.02.
2Fe4V positions in the Fe0.87V0.13BO3 crystal at room
temperature and in the Fe0.82V0.18BO3 and Fe0.7V0.3BO3

crystals at a temperature of 130 K. The hyperfine fields
at iron nucleus sites decrease monotonically in the
series of these configurations in discrete steps of ∆Hhf =
20–30 kOe, in full agreement with the usual concepts
concerning a dilute magnetic insulator. The chemical
isomer shifts for these configurations are the same to
within experimental error. The isomer shifts at room
temperature, δ = 0.38–0.40 mm/s, and at 130 K, δ =
0.51–0.52 mm/s, indicate that iron in the Fe1 – xVxBO3

system is trivalent. Note that the idea of substitution of
an average-sized ion used in [28] to interpret Möss-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
bauer spectra of the (Fe1 – xVx)2O3 system, according to
which low vanadium contents are conducive to the for-
mation of Fe2+–V4+ ion pairs, did not find support in our
studies. This implies that the electronic state of iron
does not depend on substitution by vanadium. The iron
ion resides in an octahedral environment, and the elec-
tric field gradient at iron nucleus sites is directed paral-
lel to the [111] threefold axis. The quadrupole splitting
in the Fe1 – xVxBO3 solid solutions is close in magnitude
to ∆EQ = 0.46 mm/s, the value for the unsubstituted
FeBO3 crystal. The small change in the hyperfine field
for the Fe0.05V0.95BO3 sample at 4.2 K compared to that
in FeBO3 indicates that the Hhf field in these crystals is
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produced primarily by the iron ion itself and depends
only weakly on the environment.
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Abstract—It is shown theoretically that a deformed crystal exhibiting structural instability can be treated as a
quantum system of pseudospins. The quantum behavior of atoms becomes significant when the characteristic
distance between sites of the original crystal lattice and the corresponding sites of the final phase is less than
the amplitude of zero-point oscillations of atoms (0.1 Å) and when the area under the barrier separating the two
minima of the double-well potential is less than aV2 = 5 × 10–10 eV cm. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Certain phenomena that occur during deformation
of solids cannot be described in terms of the classical
microscopic models of crystals [1]. Among these phe-
nomena are nonlinear elastic effects, pretransition phe-
nomena, and structural transitions that are accompa-
nied by excitation of additional degrees of freedom of
the atomic lattice under deformation [2]. Therefore,
new microscopic models of crystals are needed to
describe such phenomena. In this paper, we propose a
microscopic model of a deformed crystal in which an
atomic lattice is treated as a quantum system of pseu-
dospins. Within this model, it is shown that the one-par-
ticle potential acting on an atom can be approximated
by a double-well potential and that the atoms of the lat-
tice of a deformed crystal obey quantum-mechanical
laws. The pseudospin model of a crystal allows one to
avoid the problem of strong anharmonicity, which
always arises near a structural transition.

The conclusion that the one-particle potential acting
on an atom can be approximated by a double-well
potential can be drawn from the calculated coefficients
of expansion of the interatomic pair interaction poten-
tial in powers of atomic displacements. According to
calculations [3], the anharmonic terms in the pair
potential increase sharply near structural transitions
and become comparable in magnitude to the harmonic
terms. The potential profile changes; more specifically,
an infinitely high potential barrier observed far from the
transition point is replaced by a barrier of finite height,
which is indicative of the existence of another mini-
mum in the interatomic pair interaction potential in the
pretransition state [3].

Experimental evidence for the formation of a one-
particle double-well potential acting on an atom is the
existence of a structural pretransition state to which
titanium nickelide transfers with varying temperature
1063-7834/04/4606- $26.00 © 21095
[4] and the γ  α  γ structural transition in auste-
nite steels observed in the region of a stress concentra-
tor [5]. Another prominent example of systems in
which an atom moves in a double-well potential is the
surface of a crystal. When a crystal is subjected to
external fields, its surface undergoes structural phase
transformations. Since the crystal surface exhibits
structural instability, the surface layer is characterized
by two different types of atomic configurations, e.g.,
the bcc and fcc structures [6].

These specific features of the behavior of a
deformed crystal suggest that the one-particle potential
in which an atom moves can be represented as a sum of
one-particle potentials characterizing the original and
final phases (i.e., as an asymmetric double-well poten-
tial). In the absence of external fields, the deeper poten-
tial well corresponds to the original structure and the
shallower well, to the final phase. The configuration in
which an atom is located in the deeper well corresponds
to the ground state, and the configuration with the atom
located in the shallower well corresponds to an excited
(virtual) state, because the transfer of the atoms to the
virtual state can occur only via a structural (coherent)
transition. In this paper, we discuss the possible physi-
cal cause of the coherent transition and the physical
mechanism through which a pretransition state occurs
in a deformed crystal as a superposition of several
structures with the formation of new allowed states in
the space of interstitial sites [2].

2. THE POTENTIAL IN WHICH AN ATOM MOVES 
IN A DEFORMED CRYSTAL

In order to find the potential acting on an atom, we
introduce the atomic density in the crystal:

(1)ρ r t,( ) v iδ r ri t( )–,( ),
i

∑=
004 MAIK “Nauka/Interperiodica”
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where v i is the volume of the ith atom. The energy of
the atomic system characterized by the atomic density
ρ(r, t) can be represented in the form of a functional
series,

(2)

Here, Vk is the k-particle interaction potential between
atoms. The one-particle potential acting on an atom at
time t can be found as

(3)

Substituting Eq. (2) into Eq. (3) gives

(4)

According to Eq. (4), the potential profile u(r, t)
depends on ρ(r, t). Therefore, the problem should be
solved self-consistently, which can be performed using
the pseudopotential theory [7], the electron density
functional [8], or computer simulation methods [9].

In considering the macroscopic properties, we
should perform averaging over microscopic fluctua-
tions in atomic density ρ(r, t), i.e., over time t. Accord-
ing to the ergodic hypothesis [10], we can average over
an ensemble of effective (smoothened in time) potential
profiles {U(r)} rather than average the single potential
profile u(r, t). In this case, the average potential profile
takes the form of a functional integral,

(5)

where P{U(r)} is the probability that the specific pro-
file U(r) belonging to the ensemble {U(r)} will occur
in the crystal. Let us assume that, when the deformed
crystal undergoes a structural transition, the potential
profiles corresponding to the original and final phases,
UM(r) and UA(r), respectively, are the most probable.
For the sake of simplicity, we also assume that, in the
vicinity of the structural transition, the probability
P{U(r)} is the sum of δ functions

(6)

Substituting Eq. (6) into Eq. (5) gives

(7)

Since the averaged one-particle potential profile is a
periodic function of the space coordinates, it will suf-
fice to consider this profile for the unit cell centered at
the origin of coordinates. The distance between the
potential wells corresponding to the site of the original
structure and to the site of the finite phase in the unit
cell is equal to a ≈ 10–9 cm [5]. If the widths of the local
wells of the original structure, UM(r – a/2) and the final
phase, UA(r + a/2), centered at r = –a/2 and r = a/2,

E t( ) E0 V1 r t,( )ρ r t,( ) rd∫+=

+ 1/2( ) V2 r r',( )ρ r t,( )ρ r' t,( ) r r'dd∫ ….+

u r t,( ) δE t( )/δρ r t,( ).=

u r t,( ) V1 r t,( ) V2 r r',( )ρ r' t,( ) r'd∫ ….+ +=

U r( )〈 〉 U r( )P U r( ){ } DU r( ),∫=

P U r( ){ } 1/2( )δ U r( ) UA r( )–[ ]=

+ 1/2( )δ U r( ) UM r( )–[ ] .

U r( )〈 〉 1/2( )UA r( ) 1/2( )UM r( ).+=
P

respectively, are significantly smaller than the distance
between the wells, then the potential 〈U(r)〉  in which an
atom moves can be written in the form

(8)

It follows from Eq. (8) that the one-particle potential in
which an atom moves in a deformed crystal is a double-
well potential.

3. ATOM IN AN ASYMMETRIC 
DOUBLE-WELL POTENTIAL

Let us consider a crystal undergoing a structural
transition from the original phase to a final phase stim-
ulated by external influences (temperature variations,
external forces). In the absence of external influences,
the crystal is in the original phase and a lattice atom
moves in an asymmetric potential with two local min-
ima differing in depth. The deeper potential well corre-
sponds to the initial structure, and the shallower well
corresponds to the final phase. We assume that the min-
ima are located on the x axis coinciding with the crys-
tallographic axis of the crystal along which the struc-
tural transition occurs. In this case, the potential Ua(x)
in which an atom moves can be written as

(9)

Here, δ(x) is a Dirac function; a is the distance between
the minima of the potential; V1 and V2 are the depths of
the left-hand (deeper) and the right-hand (shallower)
well, respectively (V1 > V2); and b is the width of these
local wells. We assume that the distance between the
local wells is much larger than their width (a @ b). It is
convenient to separate the asymmetric potential Ua(x)
into a symmetric part Us(x) with local wells of equal
depth and a correction ∆Ua(x) taking into account the
difference in depth (asymmetry) between the local
wells:

(10)

(11)

First, we consider the motion of a lattice atom in the
symmetric potential and then take into account the
asymmetry of the potential by using perturbation the-
ory under the assumption of smallness of the asymmet-
ric correction, (V1 – V2)/V1 ! 1. The motion of an atom
in the potential well Us(x) is described by the
Schrödinger equation [11]

(12)

where Ψ(x) is the wave function of the atom and –ε is
its energy (ε > 0). An atom moving in the symmetric
potential Us(x) has two equilibrium positions. If the
tunneling effect can be ignored, the ground state of the
atom in each local well is doubly degenerate; i.e., ε+ =

U r( )〈 〉 V δ r a/2+( ) δ r a/2–( )+[ ] .–=

Ua x( ) –V1bδ x a/2+( ) V2bδ x a/2–( ).–=

Ua x( ) Us x( ) ∆Ua x( ),+=

Us x( ) –V2bδ x a/2+( ) V2bδ x a/2–( ),–=

∆Ua x( ) V2 V1–( )bδ x a/2+( ).=

– "/2m( )∂2
/∂x

2
Us x( )+[ ]Ψ x( ) εΨ x( ),–=
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ε– for the even and odd wave functions, Ψ+(x) and Ψ–
(x), respectively. Allowance for the quantum tunneling
of the atom through the potential barrier between the
local wells lifts the degeneracy (ε+ > ε–). To find the
energy eigenvalues ε+ and ε– and the eigenfunctions Ψ+
and Ψ– from Eq. (12), we represent the wave functions
Ψ+ and Ψ– in the form (for x < –a/2)

(13)

Here,  are the characteristic localization lengths for
the even (+) and odd (–) wave functions and A± are the
normalization constants. Wave functions (13) must sat-
isfy the corresponding boundary and normalization
conditions, from which the quantities κ± and A± can be
determined.

Solving the Schrödinger equation (12) with the use
of Eq. (13), we find

(14)

We calculate the correction "∆ to the energy eigen-
values associated with the asymmetry of the potential
∆Ua(x) to first order in perturbation theory using the
even and odd wave functions (13). The result is

(15)

In the “weak”-tunneling limit κ±a @ 1, it follows
from Eqs. (14) and (15) that the splitting of the energy
levels of the even and odd states "ω = ε+ – ε– tends to
zero and the tunneling effect is practically absent. Let
us estimate the quantities in Eqs. (14) and (15) for a
typical transition metal. Putting V2 = 4 eV, b = 10–10 cm,
a = 10–8 cm, m = 10–22 g, and V1 – V2 = 10–4 eV, we

obtain  = 6.4 × 102, κ+ ≅ κ – = 6.4 × 1010 cm–1,
"ω  0, and "∆ = 1.6(V2 – V1) = –1.6 × 10–4 eV. Thus,
for the distance a = 10–8 cm, the area under the barrier
separating the minima of the double-well potential is
V2a = 4 × 10–8 eV cm, quantum tunneling is practically
absent, and the potential is highly asymmetric.

In the intermediate case of moderate tunneling,
κ±a ≈ 1, the level splitting "ω is nonzero, but the tun-
neling effect is weak. For V2 = 4 × 10–1 eV, b = 10–10 cm,
a = 10–9 cm, m = 10–22 g, and V1 – V2 = 10–4 eV,

Eqs. (14) and (15) give  = 6.4, κ+ = 6.40 × 109 cm–1,
κ− = 6.41 × 109 cm–1, "ω = 8.8 × 10–4 eV, and "∆ =
0.16(V2 – V1) = –1.6 × 10–5 eV. Thus, for the distance

Ψ± A± κ± x a/2–( )[ ]exp κ± x a/2+( )[ ]exp±{ } ,=

Kq "
2
/m( )/ V2ba( ).=

κ±
1–

"
2
/m( )κ± V2b 1 κ±a–( )exp±[ ] ,=

2A±
2
/κ±( ) 1 1 κ±a+( ) κ±a–( )exp±[ ] 1,=

ε± "
2
/2m( )κ±.=

"∆ Ψ–〈 |∆Ua Ψ+| 〉=

=  V2 V1–( )bA+A– 1 κ+a–( )exp+[
– κ–a–( )exp –κ+a κ–a–( )exp– ] .

Kq
1–

Kq
1–
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a = 10–9 cm, the area under the barrier is V2a = 4 ×
10−10 eV cm, quantum tunneling of an atom is signifi-
cant (i.e., the quantum properties of atoms of the crystal
lattice should be taken into account), and the asymme-
try of the potential becomes weaker.

In the limit of intensive tunneling, κ±a ! 1, it fol-
lows from Eqs. (14) and (15) that the level splitting "ω
is large and the tunneling effect is pronounced. For
V2 = 1.6 × 10–1 eV, b = 10–10 cm, a = 4 × 10–10 cm, m =
10–22 g, and V1 – V2 = 10–4 eV, Eqs. (14) and (15) give

 = 1.03, κ+ = 3.6 × 109 cm–1, κ– = 1.5 × 108 cm–1,
"ω = 4 × 10–2 eV, and "∆ = 0.05(V2 – V1) = –5 × 10–6 eV.
Thus, for the distance a = 4 × 10–10 cm, the area under
the barrier is V2a = 6.4 × 10–11 eV cm, quantum tunnel-
ing plays a decisive role in the motion of an atom, the
atom is highly delocalized in the double-well potential,
and the asymmetry of the potential is very weak.

4. PSEUDOSPIN FORMALISM 
AND THE HAMILTONIAN OF A SYSTEM

OF PSEUDOSPINS

The estimates made above show that quantum tun-
neling of an atom between the related sites of the orig-
inal and final phases is of importance in a structurally
unstable crystal. In other words, in addition to small-
amplitude thermal vibrations, an atom in the deeper
(left-hand) well of the double-well potential undergoes
quantum zero-point oscillations (tunneling) of a certain
amplitude along a certain direction, which corresponds
to additional discrete degrees of freedom. Therefore,
the wave function of the atom depends not only on the
continuous space coordinate x but also on a discrete
variable related to the projection of the pseudospin onto
the z axis. For the two-level system at hand, the wave
function of an atom has the form of a spinor Ψ(x, Sz)
consisting of two components, namely, the even
Ψ(x, +1/2) = Ψ+(x) and odd Ψ(x, –1/2) = Ψ–(x) coordi-
nate functions corresponding to different values of the
z component of the pseudospin.

In terms of the model considered above, the energy
of the system of pseudospins subjected to a mechanical
force field is described by the Hamiltonian

(16)

In the basis formed by the even and odd wave functions

Ψ±(x), the Hamiltonian  has the form

(17)

Kq
1–

H Hl
1

Hl
int

.
l

∑+
l

∑=

Hl
1

Hl
1

"ωSl
z

"∆Sl
x
,+=

∆ 1/2( ) JlkSk
x

1/3( ) IlkmSk
x
Sm

x
,

k m,
∑–

k

∑–=
4
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where the asymmetry of the double-well potential is
associated with two- and three-particle interactions
between pseudospins and "Jlk and "Ilkm are the two- and
three-particle interaction constants of pseudospins,
respectively.

Assuming that the external mechanical force stimu-
lates quantum tunneling and decreases the asymmetry
of the double-well potential, we describe the interaction
of the pseudospins with the mechanical force field

Wl(t) = ( (t), 0, (t)) by the Hamiltonian

(18)

Here, (t) =  and (t) =  are the z and
x components of the mechanical force field, respec-

tively; Gt and Ga are positive constants; and  is the
shear component of the stress tensor stimulating the
structural transition.

In the basis of the wave functions ϕL and ϕR local-
ized in the left- and right-hand wells, respectively, the
Hamiltonian of the pseudospin system in the mechani-
cal force field has the form

(19)

In the molecular-field approximation [11], the
Hamiltonian of the pseudospin system (19) is replaced
by the effective Hamiltonian

(20)

(21)

In this case, the average value of the pseudopotential
in the ith unit cell is defined as

(22)

Ωl
a Ωl

t

Hl
int

"Ωl
a

t( )Sl
x

"Ωl
t

t( )Sl
z
.+=

Ωl
t

G
tµl

xy Ωl
a

G
aµl

yx

µl
yx

H "ωSl
x

1/2( ) "JlkSl
z
Sk

z

l k,
∑–

l

∑=

– 1/3( ) "IlkmSl
z
Sk

z
Sm

z

l k m, ,
∑

+ "Ωl
a

t( )Sl
z

"Ωl
t

t( )Sl
x

+( ).
l

∑

H
M hiSi

i

∑– ∂ H〈 〉 /∂ Si〈 〉[ ] Si,
i

∑= =

hi –"ω0 "Ωt– 0 "Ωa ∫–, ,




=

+ "Jij S j
z〈 〉 "Iijm S j

z〈 〉 Sm
z〈 〉

j m,
∑+

j

∑ 



.

Si〈 〉 Tr Si βHi
M

–( )exp[ ] /Tr βHi
M

–( )exp[ ]=

=  ∂ Ziln( )/∂ βhi( ) 1/2( ) hi/hi( ) βhi/2( ),tanh=
P

(23)

5. STATIONARY STATES 
OF THE PSEUDOSPIN SYSTEM

Let us consider the case where there is no external
mechanical force, Ωt = Ωa = 0. We assume that the
structural transition from the initial to the final phase is
associated with the “longitudinal” interaction of pseu-
dospins oriented along the z axis and is characterized by

the order parameter Sz = 〈 〉 . Expanding the self-con-
sistency equation (22) in powers of the order parameter
Sz near the structural transition temperature TMA, we
obtain

(24)

(25)

where J0 = , I0 = , α0 =

( ) /2kBTc), and δ0 = 2"I0 .
The coefficients α and δ can change sign, and γ is pos-
itive. The corresponding Landau expansion of the free
energy near the temperature TMA has the form

(26)

The solution to the self-consistency equation (24) is

(27)

(28)

It follows from Eq. (27) that there is a temperature
range (T+, T–) over which the crystal lattice can be in a
pretransition state Sz = 0. The temperature at which the
transition from the original phase to the pretransition

state occurs is T+ = TMA + 4α0γ[  – 4α0γ]–1∆T, and the
temperature at which the crystal undergoes the transi-
tion from the pretransition state to the final phase is

T− = TMA – 4α0γ[  + 4α0γ]–1∆T, where ∆T = TMA – Tc > 0.

Let us consider the case of strong interaction
between pseudospins ("J0 = 0.4 eV) and weak tunnel-

hi hi "ω0 "Ωt+( )2
–"Ωa "Jij S j

z〈 〉
j

∑+




+= =

+ "Iijm S j
z〈 〉 Sm

z〈 〉
j m,
∑ 




2 1/2

.
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z

αS
z δ S
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2

γ S
z( )

3
+ + 0,=

α  = "J0 1 J0/2ω0( ) β"ω0/2( )tanh–[ ]  = α0 T Tc–[ ] ,

δ δ0 TMA T–
1/2

TMA T–( ),sgn=

γ "J0 J0
3
/4ω0

3( ) β"ω0/2( )tanh[=

– β"ω0/2( ) β"ω0/2( )cosh
2– ] ,

kBTc "ω0/2( ) 2ω0/J0( )arctanh[ ] 1–
,=

Jiji∑ Iijmi m,∑
"

2
J0

2
/4kBTc

2
("ω0cosh

2–
TMA

1/2–

∆F α S
z( )

2
/2 δ S

z( )/3 γ S
z( )

4
/4.+ +=

S
z

–δ δ2
4αγ–±[ ] /2γ for δ2
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S
z

0 for δ2
4αγ .≥=

δ0
2

δ0
2
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ing, "ω0 ≈ 0.0001 eV. From the condition α = 0, the
temperature of the transition to the pretransition state
can be estimated to be kBTc ≈ 0.1 eV and Tc ≈ 1000 K.
Therefore, we have 2ω0/J0 ! 1 and Tc @ TMA. In the
region T > TMA, Eq. (24) has a nonzero (positive) solu-
tion corresponding to the thermodynamically stable
original phase. Below the temperature TMA, Eq. (24) has
another nonzero (negative) thermodynamically stable
solution. Therefore, in the case of strong interaction
between pseudospins and weak tunneling, the crystal
bypasses the pretransition state and directly undergoes
the transition from the initial to the final phase.

Now, we consider the case of a moderate strength of
interaction between pseudospins ("J0 = 0.04 eV) and of
moderate tunneling ("ω0 ≈ 0.001 eV). From the condi-
tion α = 0, the temperature of the transition to the pre-
transition state is found to be kBTc ≈ 0.01 eV and Tc ≈
100 K. Therefore, 2ω0/J0 < 1 and Tc < TMA. Above the
transition temperature, in the region Tc @ TMA, Eq. (24)
has a single nonzero (positive) thermodynamically sta-
ble solution, which corresponds to the initial phase.
When the temperature TMA is approached in the region
T ≥ TMA > Tc, there is a unique thermodynamically sta-
ble solution to Eq. (24), Sz = 0, which corresponds to
the pretransition state of the crystal. Below Tc (in the
region T < Tc), Eq. (24) has a nonzero (negative) ther-
modynamically stable solution. Therefore, in the case
of a moderate strength of interaction between pseu-
dospins and of a moderate tunneling intensity, the trans-
formation of the crystal from the initial to the final
phase goes through the pretransition state.

Finally, let us consider the case of a moderate
strength of interaction between pseudospins ("J0 =
0.04 eV) and of intensive tunneling ("ω0 ≈ 0.04 eV).
From the self-consistency equation (24), it follows that
the structural transition from the pretransition state to
the initial (or final) phase can occur if the “transverse”
tunneling field 2ω0 is weaker than the “longitudinal”
interaction field of pseudospins J0. Indeed, the temper-
ature Tc is found by linearizing Eq. (24). The linearized
equation has a real solution for Tc only if 2ω0/J0 ≤ 1.
Therefore, in the case of 2ω0/J0 ≥ 1, there is no solution
for Tc and Sz = 0 is a unique thermodynamically stable
solution to Eq. (24) at any temperature. Thus, in the
case of moderate interaction between pseudospins and
intensive tunneling, the crystal can be only in the pre-
transition state.

Let the crystal be subjected to a mechanical force
field with a nonzero component Ωa decreasing the
asymmetry of the double-well potential. In this case,
the Landau expansion of the thermodynamic potential
near the structural transition point has the form [12]

(29)
∆Φ α S

z( )
2
/2 δ S

z( )
3
/3+=

+ γ S
z( )

4
/4 "ΩaS

z
1/2( )λΩa

2
.–+
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The order parameter Sz is determined from the thermo-
dynamic equilibrium condition

(30)

It can be seen from Eq. (30) that the solution Sz = 0
exists if "Ωa = 0. This condition is satisfied when there
is no external force, σ = 0, and the stress field in the
crystal is equal to zero. Another condition under which
the solution Sz = 0 exists is the relation "Ωa ≈ Sz. This
relation takes place in the vicinity of the critical value
of the external force σ = σc, where the component Ωa of
the mechanical force field is of a relaxation character
due to softening of the elastic constant λ = λ0(σ – σc).
In this case, the thermodynamic equilibrium equation
(30) should be supplemented by the equilibrium equa-
tion

(31)

This equation relates the component Ωa of the mechan-
ical force field to the order parameter, and the corre-
sponding self-consistency equation takes the form

(32)

(33)

Self-consistency equation (32) has a solution

(34)

(35)

It can be seen from Eq. (34) that there is a range (σ–, σ+)
for the external force over which the crystal lattice is in
the pretransition state. The value of the external force
causing the transition from the original phase to the pre-
transition state is σ– = σc – 4γ[δ2λ0]–1, and the value of
the external force causing the transition from the pre-
transition state to the final phase is σ+ = σc +

(4µ"6 δ–2)1/5. For the sake of definiteness, we
assumed that the coefficient δ is negative in the original
phase; therefore, when σ < σc, we have Sz > 0 and the
crystal is in the original phase, whereas for σ > σc we
have Sz < 0 and the crystal is in the final phase.

Thus, when the external force is within the range
(σ−, σ+), the thermodynamically stable solution to self-
consistency equation (32) is Sz = 0 and, hence, the crys-
tal is in the pretransition state.

6. DISCUSSION OF THE RESULTS

Thus, the proposed model describes a deformed
crystal as a quantum system of pseudospins. The quan-
tum behavior of lattice atoms becomes significant when

∂∆Φ/∂S
z αS

z δ S
z( )

2
γ S

z( )
3

"Ωa+ + + 0.= =

∂∆Φ/∂Ωa "S
z λ0 σc σ–( )Ωa– 0.= =

α̃S
z δ̃ S

z( )
2

γ̃ S
z( )

3
+ + 0,=

α̃ αλ 0 σc σ–( )"
2–

1, δ̃+ δλ0 σc σ–( )"
2–
,= =

γ̃ γλ0 σc σ–( )"
2–
.=

S
z

–δ̃ δ̃
2

4α̃ γ̃–±[ ] /2γ̃ for δ̃
2

4α̃ γ̃ ,≥=

S
z

0 for δ2 4αγ .≤=

λ0
5–



1100 SLYADNIKOV
the characteristic distance between the sites of the orig-
inal structure and the corresponding sites of the final
phase is less than the zero-point oscillation amplitude
of atoms (0.1 Å) and when the area under the barrier
separating the minima of the double-well potential is
less than aV2 = 5 × 10–10 eV cm.

Near the structural transition from the initial to the
final phase stimulated by external influences (tempera-
ture variations, external forces), the area under the bar-
rier between the minima of the double-well potential
decreases under an external influence. As a result, the
quantum-tunneling effects become significant, the
asymmetry of the double-well potential decreases, and
the initial state of the lattice with the asymmetric dou-
ble-well potential becomes unstable with respect to the
occurrence of the pretransition state of the lattice with
a symmetric double-well potential. The pretransition
state is taken to mean a condensed state of the crystal in
which a lattice atom is completely delocalized in the
symmetric double-well potential because of quantum
tunneling; i.e., the atom occupies the site of the initial
phase and the corresponding site of the final phase with
equal probability.

Thus, on the one hand, a crystal exhibiting structural
instability transforms into the pretransition state as the
temperature is varied near the structural transition tem-
perature TMA; on the other hand, the deformed crystal
transforms into the pretransition state as an external
force varies in the vicinity of the critical value σc.

Let us compare the quantum-tunneling frequency
and the frequency of thermally assisted hopping of an
electron in a double-well potential in the case where the
pretransition state occurs at a temperature Tn ≈ 300 K.
The average thermal energy of an atom is kBTn ≈
0.02 eV, and the thermally assisted hopping frequency
is ωn = kBTn/" ≈ 1013 s–1. In the case where the barrier
height between the minima of the double-well potential
is V2 = kBTn = 0.02 eV and the distance between a site
of the original lattice and the corresponding site of the
final lattice is a = 10–9 cm, the quantum-tunneling fre-
quency of an atom is ω0 ≈ 1014 s–1. Therefore, in a crys-
tal exhibiting structural instability at a temperature
much lower than room temperature, the quantum-tun-
neling mechanism is more efficient than the thermally
assisted hopping mechanism. Furthermore, if V2 @
0.02 eV at room temperature, the thermally assisted
hopping mechanism is also of minor importance in
determining the structural transition. The occurrence of
P

the pretransition state is associated with the fact that the
three-particle interatomic interaction responsible for
the formation of the original and final phases weakens
significantly near the temperature TMA of the transition
from the initial to the final phase, with the consequence
that the two-particle interatomic interaction becomes
important and takes part in the formation of the pretran-
sition state.

It is reasonable to suggest that quantum tunneling of
atoms is the physical basis of the mechanism for the
coherent structural transformations occurring in a crys-
tal under loading [4, 5]. Since the wave function of an
atom is significantly delocalized because of quantum
tunneling, the pretransition state can be considered a
superposition of the initial and final structural states of
the crystal [2].
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Abstract—Two electrostatic models have been developed that allow calculation of the critical concentration of
hydrogen-like impurities in three-dimensional crystalline semiconductors corresponding to the insulator–metal
and metal–insulator transition in the zero temperature limit. The insulator–metal transition manifests itself as a
divergence of the static permittivity observed in lightly compensated semiconductors as the concentration of
polarizable impurities increases to the critical level. The metal–insulator transition is signaled by the divergence
of the dc electrical resistivity in heavily doped semiconductors as the compensation of the majority impurity
increases (or its concentration decreases). The critical impurity concentration corresponds to the coincidence
of the percolation level for the majority carriers with the Fermi level. The results of the calculations made with
these models fit the experimental data obtained for n- and p-type silicon and germanium within a broad range
of their doping levels and impurity compensation. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The critical concentration Nc of the majority dopant
for the insulator–metal (I–M) and metal–insulator (M–
I) phase transitions is derived in the zero temperature
limit (T  0) from low-frequency measurements of
the macroscopic permittivity and electrical resistivity,
respectively. It is believed that the critical concentra-
tions of the transition determined by these two methods
coincide [1]. A relevant review and a comparison of the
microscopic models describing the difference between
an insulator and a conductor under dc bias can be found
in [2]. Performing calculations and making predictions
from these models meets, however, with difficulties.

On the insulator side of the I–M transition, increas-
ing the dopant concentration N up to the critical level Nc

brings about a divergence of the relative permittivity
εr(N) of a crystalline sample [3–5]. Quantitative
description of the behavior of εr(N) in the vicinity of the
I–M transition is, however, lacking (see, e.g., [5]).

On the metallic side, the M–I transition manifests
itself experimentally for T  0 as a divergence of the
dc electrical resistivity as the concentration of the
dopant decreases or as the degree of its compensation
increases. On the metallic side of the transition, the
majority carrier concentration is nc = (1 – K)Nc, where
K is the semiconductor compensation. The critical car-
rier concentration nc for the M–I Anderson transition
driven by the introduction of compensating impurities
into a heavily doped semiconductor has been experi-
mentally shown [6] to be well described, for high com-
1063-7834/04/4606- $26.00 © 21101
pensation ratios (K  1), in terms of percolation the-
ory [7], according to which the transition can be consid-
ered a consequence of the Fermi level EF becoming
equalized with the percolation level Eµ in the potential
relief of large-scale (non-tunneling) fluctuations. For
small compensation ratios (the value K = 0 corresponds
to the Mott transition), the fluctuations are not large
scale, so the critical concentration nc can be described

by Mott’s relation [8–12]  ≈ 0.25, where aB =

4πε"2/me2 is the Bohr radius for the electron (hole)
with an effective mass m in a lattice with static permit-
tivity ε = εrε0 (ε0 is the free-space permittivity). The
case of intermediate compensations (K ≈ 0.5) has been
explored to a lesser extent, thus making description of
the dependence of the critical carrier concentration nc

on the compensation of the majority impurity K at the
M–I transition an important problem.

The present communication reports on an analytical
description of the I–M and M–I transitions in crystal-
line semiconductors doped by hydrogen-like impuri-
ties. The variation of the macroscopic static permittiv-
ity at the I–M transition is treated in terms of the Clau-
sius–Mossotti–Lorentz–Lorenz (CMLL) model. The
M–I transition is considered with due account of spatial
fluctuations of electrostatic energy in the crystal. Only
pure Coulomb interaction among the nearest neighbor
charges (the majority carriers and impurity ions) is
included.
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2. THE INSULATOR–METAL TRANSITION

For the sake of definiteness, we consider an n-type
crystalline semiconductor with a concentration of
donors N = N0 + N+1 in charge states (0) and (+1) and
with acceptors in the charge state (–1) with concentra-
tion N–1 = KN, where K is the donor compensation ratio.
The charge neutrality condition can be written as N+1 =
KN = N–1. On the insulator side, at a temperature T  0,
the criterion for the onset of the I–M transition is diver-
gence of the relative permittivity εr(N) of a crystalline
sample with the hydrogen-like donor concentration N
increasing to the critical value Nc.

The permittivity of the material governs the connec-
tion between the local electric field El acting on each
(native or impurity) polarizable atom and the average
macroscopic field Eav [13–15]. This connection is
approximated by the CMLL relation. It is usually
assumed that the CMLL relation is applicable only to
systems made up of single point dipoles. However, in
reviews [13, 14], it was shown convincingly that the
CMLL relation is also valid for insulators and semicon-
ductors of a fairly general class, including those con-
sisting of atoms or molecules with overlapping electron
shells.

In terms of our model [11], with allowance for the
superposition of the electric fields of the crystal matrix
atoms with a concentration Nm and polarizability αm of
a matrix atom and the electric fields of electrically neu-
tral donors with a concentration N0 = (1 – K)N and
polarizability α0 of a donor atom, we can write (cf. [16,
17])

(1)

where βm is a fitting parameter taking into account the
point symmetry of the lattice (βm = 3 corresponds, in
accordance with the CMLL model, to the case of the
matrix atoms making up a cubic lattice or distributed at
random) and Nm @ N0.

The polarizability of a single neutral hydrogen-like

donor [18] is α0 = 18π , where aH = e2/8πεId is the
Bohr orbit radius of the optical electron of a donor with
ionization energy Id. For N < Nc, the average radius of
the spherical crystal region per neutral donor, which is
0.62[(1 – K)N]–1/3, exceeds aH by more than a factor of
2.5 even for K  0 [1, 3, 4]. Therefore, the use of the
crystal lattice permittivity ε = εrε0 in the relation for the
Bohr radius aH is valid.

The total macroscopic polarization of crystal matrix
atoms and neutral donors can be written as [15]

(2)

where εr(N0) is the relative permittivity of the doped
semiconductor. For a crystal without impurities (N 

El Eav
αmNm

βm

--------------
α0N0

3
------------+ 

  El,+=

aH
3

αmNm α0N0+( )El εr N0( ) 1–[ ] Eav,=
P

0), Eqs. (1) and (2) yield the relative permittivity of the
crystal lattice (matrix):

(3)

Using Eqs. (1)–(3), we obtain the macroscopic relative
permittivity of the donor-doped semiconductor:

(4)

in the absence of neutral donors (N0  0), we come
to εr(N0  0) = εr.

The criterion εr(N0)  ∞ for the onset of the I–M
transition for N  Nc or N0  N0c = (1 – K)Nc can
be used to derive from Eq. (4) the following relation:
3βm – (εr – 1 + βm)(1 – K)α0Nc = 0. For βm = 3, we obtain
the critical donor concentration 

(5)

where α0 = 18π  is the polarizability of the dopant in
charge state (0) and aH = e2/8πεrε0Id(a) is the electron
(hole) orbit radius in a single hydrogen-like donor
(acceptor) localized in a crystal lattice with relative per-
mittivity εr.

The Nc(aH) relation calculated from Eq. (5) for
K  0 is plotted in Fig. 1 by solid lines [(1) for Si
with εr = 11.5 and (2) for Ge with εr = 15.4]. Note that
the critical concentration Nc calculated with models
[16, 17] for εr(N0) was found to be εr(εr + 2)/3 and εr

times larger, respectively, than the value obtained using

Eq. (5) for the same polarizability α0 = 18π  per
donor (acceptor).

Equations (4) and (5) yield the dependence of the
macroscopic permittivity on the doping level of a crys-
talline semiconductor (the ratio of the dopant concen-
tration N on the insulator side to its critical concentra-
tion Nc):

(6)

where N/Nc = N0/N0c, with N0 = (1 – K)N being the con-
centration of the majority dopant in charge state (0).

The εr(N) relation calculated from Eq. (6) for crys-
talline silicon is plotted in Fig. 2 together with experi-
mental data. The experimental data [3, 5, 19, 20] were
processed using average values of the critical dopant
concentrations for K  0 (see the data in Fig. 1):
Nc(Si : As) = 7.8 × 1018 cm–3, Nc(Si : P) = 3.81 ×
1018 cm–3, and Nc(Si : B) = 4.1 × 1018 cm–3.

εr N0 0( ) 1
αmNm

1 αmNm/βm–
--------------------------------+ εr.= =

εr N0( ) 1
3 εr 1–( )βm 3 εr 1– βm+( )α0N0+

3βm εr 1– βm+( )α0N0–
---------------------------------------------------------------------------------;+=

Nc
9

1 K–( ) εr 2+( )α0
-------------------------------------------,=

Nc
1/3

aH
0.542

1 K–( ) εr 2+( )[ ] 1/3
----------------------------------------------,=

aH
3

aH
3

εr N( )
εr 2N /Nc+
1 N /Nc–

---------------------------,=
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Note that the use of Eqs. (5) and (6) is more appro-
priate for low compensation ratios of the majority
dopant (K ! 1).

3. THE METAL–INSULATOR TRANSITION

Taking into account spatial fluctuations of the elec-
trostatic potential, the average electron concentration n
in the conduction band of a degenerate n-type semicon-
ductor can be described by the relation [7, 21, 22]

(7)

where ν is the number of valleys, i.e., the energy min-
ima in the band allowed for the majority carriers (ν = 4
for n-Ge, ν = 6 for n-Si, ν = 1 for p-Ge and p-Si); m is
the effective electron mass in one valley; f = [1 +
exp((E – EF)/kBT)]–1 is the Fermi–Dirac function;

P(U) = (W )–1exp(–U2/2W2) is the Gaussian distri-
bution of fluctuations of the electrostatic electron
potential energy U created by point charges in the crys-
tal (impurity ions and conduction electrons); W is the
rms fluctuation; and the total energy E = ("k)2/2m + U
of a conduction electron with quasi-momentum "k is
reckoned from the conduction band bottom of the
undoped crystal (in the band gap, the electron energy E
is negative).

On the metallic side of the M–I transition, where all
impurities are ionized and n = (1 – K)N, Eq. (7) for tem-
perature T  0 can be recast to [11, 22]

(8)

where kF(U) = "–1(2m(EF – U))1/2 is the Fermi quasi-
wave vector of an electron with kinetic energy EF – U >
0 in the conduction band. The charge neutrality condi-
tion of the crystal can be written as n + KN = N, where
N is the concentration of donors and KN is that of
acceptors.

Based on Eq. (8) and the condition of equality of the
percolation level (mobility edge) Eµ under a dc bias and
the Fermi level EF, the dependence of the critical major-
ity dopant concentration for the onset of the M–I tran-
sition, Nc = nc/(1 – K), on the compensation ratio K for

n
ν 2m( )3/2

2π2
"

3
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P U( ) Ud

∞–

E
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∫=
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ν
π2
----- P U( ) U f k

2
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2
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Fig. 1. Critical concentration Nc of hydrogen-like impuri-
ties for the onset of the I–M phase transition in Ge and Si
plotted vs. Bohr radius aH for K ≤ 0.01. Points are experi-
mental data: (a) n-Si : As [23], (b) n-Si : P [24], (c) n-Si : P
[25], (d) n-Si : P [26], (e) p-Si : B [27], (f) n-Si : Sb [28],
(g) n-Ge : As [29], (h) n-Ge : As [30], (i) n-Ge : As [1, 31],
(j) n-Ge : As [32], (k) n-Ge : P [29], (l) n-Ge : P [1, 31],
(m) p-Ge : Ga [29], (n) p-Ge : Ga [33], (o) p-Ge : Ga [34],
(p) n-Ge : Sb [29], (q) n-Ge : Sb [35], and (r) n-Ge : Sb [36].
Line 1 is Nc(aH) for Si calculated from Eq. (5), and line 2 is
the same for Ge.
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Fig. 2. Macroscopic relative permittivity εr(N) of lightly
compensated silicon plotted vs. majority dopant concentra-
tion N. Points are experimental data: (a) n-Si : As [3], (b) n-
Si : P [19], (c) n-Si : P [20], and (d) p-Si : B [5]. The curve
presents εr(N) calculated from Eq. (6) for εr = 11.5.
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this dopant can be presented, according to [11, 22], in
the form (cf. [7])

(9)

where aB = 4πεrε0"
2/me2 and EB = e2/8πεrε0aB are the

Bohr radius and energy of an electron (hole), respec-
tively, and εrε0 is the static permittivity of the undoped
crystal.

In the model proposed in [11, 22], the quantity W =
Wnn ≈ 1.64(e2/4πε)(8πNc/3)1/3 originates from the Cou-
lomb interaction of the nearest neighbor charges (impu-
rity ions, electrons) only. The value Eµ/Wnn = –1.15 is
found by fitting equality (9) to experimental data [1,
23–36] for uncompensated semiconductors [Nc(K 
0)]1/3aB/ν2/3 = 0.1 (Fig. 1). In what follows, we assume
that the Eµ/Wnn ratio is –1.15 for all compensations (0 <
K < 1). In this case, Eq. (9) yields the dependence of the

Nc
1/3

aB 0.238
W
EB
------ 

  1/2

=

× ν
1 K–
-------------

Eµ

W
------ x– 

 
3/2 x

2
–
2

-------- 
  xdexp

∞–

Eµ/W

∫
1/3

,

Fig. 3. Critical concentration Nc of donors (acceptors) in Ge
and Si plotted vs. their compensation ratio K. Points are exper-
imental data: (a) p-Ge : Ga [6, 38, 39], (b) p-Ge : Ga [33],
(c) p-Ge : Ga [40], (d) n-Ge : As [6, 29, 41], (e) n-Ge : As
[30], (f) n-Ge : As [35], (g) n-Ge : Sb [35], (h) n-Ge : Sb
[29], (i) n-Ge : Sb [42], (j) n-Ge : P [6, 29], and (k) n-Si : P
[24]. Solid line is calculated using Eq. (10), and dashed line
is calculated within model [7]. Dotted line at K = 0 identifies
the range of experimental data on Nc covered in [1, 23–36]

and plotted in Fig. 1 with an average value  = 0.1.Nc
1/3
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critical concentration of the impurity, Nc, on its com-
pensation K in the form

(10)

The function Nc(K) calculated from Eq. (10) is plotted
in Fig. 3 with a solid line.

The quantity W = Ws = [(e2/4πε)/ ](1 +
K)2/3[Nc/(1 – K)]1/3 in model [7] originates from the
screening of large-scale dopant-ion concentration fluc-
tuations by electrons.1 Assuming the critical fractional
volume of the semiconductor that contains electrons
and corresponds to their percolation level to be 0.17, we

obtain Eµ/Ws = –0.675 . The function Nc(K) calcu-
lated within model [7] using Eq. (9) for W = Ws for a
compensated semiconductor is shown in Fig. 3 with a
dashed line.

4. RESULTS AND DISCUSSION

The dependences of the critical concentration Nc for
the Mott transition at K = 0 on the Bohr radius aH, cal-
culated using the criterion εr(N0)  ∞ [see Eq. (5)],
are displayed graphically in Fig. 1 for Si and Ge
(curves 1 and 2, respectively). The points in Fig. 1 are
experimental data for n- and p-type germanium and sil-
icon [1, 23–36].

The critical impurity concentration Nc on the metal-
lic side of the M–I transition is given by Eq. (9) and is
a function of the ratio of the Fermi level (equal to the
percolation level Eµ) to the impurity band width W. The
parameter Eµ/W was found by extrapolating Eq. (9) to
the limit K = 0 and by subsequent comparison with
experimental data [1, 23–36] available for Nc for the
case of K ≤ 0.01 (Fig. 1).

The dependence of the critical concentration Nc of
the majority dopant for the M–I transition on the com-
pensation ratio K on the metallic side of the transition,
calculated using Eq. (10), is plotted by a solid line in
Fig. 3, which also displays the available experimental
data we are aware of on n- and p-Ge [6, 29, 30, 33–35,
38–42] and n-Si : P [24], with the dashed line showing
the prediction made in [7] for W = Ws . We see that the
proposed model fits experimental data well practically
throughout the total range of compensations.

A comparison of the experimental data presented in
Figs. 1 and 3 with Eq. (9) for W = Wnn shows that the
percolation level for a Gaussian distribution of electro-
static potential fluctuations lies within the interval
−1.5W < Eµ < –W (here, the minus sign means that the
percolation level lies in the band gap). This result cor-
relates well with estimates made by other researchers

1 The temperature dependence of the large-scale potential relief
W = Ws is treated in [37].

Nc
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2
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[7, 43, 44]. Note that model [7] is valid only for large
compensation ratios K. As seen from Fig. 3, for K < 0.5,
the calculation made with model [7] yields values of Nc

less than the experimental figures.

5. CONCLUSIONS

Thus, we have developed models for the I–M and
M–I transitions in crystalline covalent semiconductors.

On the insulator side, the transition manifests itself
as a divergence of the relative permittivity εr(N0) of
lightly compensated semiconductors, which is due to
polarization of neutral impurity atoms as their concen-
tration increases from N0 to N0c = (1 – K)Nc. The critical
concentration N0c is expressed through the Bohr radius
aH = e2/8πεId(a) for an electron (hole) on a neutral donor
(acceptor) with an ionization energy Id(a) in a crystal
with lattice permittivity ε = εrε0. The εr(N0) dependence
is quantitatively described for Si crystals near the I–M
transition (N0  N0c).

The M–I transition on the metallic side is observed
as a collapse of metallic conduction as the concentra-
tion of the dopant atoms is decreased or their compen-
sation ratio is increased. Use is made of the Bohr radius
aB = 4πε"2/me2 for the majority carriers, which depends
on the effective mass m of the electron (hole) and the
static permittivity εrε0 of the undoped crystal matrix.2 It
is assumed that the amplitude of electrostatic potential
fluctuations is determined by the interaction of the
nearest neighbor charges (impurity ions and majority
carriers). The dependence of the critical majority
dopant concentration Nc for the onset of the M–I transi-
tion on the compensation ratio K for this dopant was
found and compared with the prediction from model [7]
and experimental data available for Ge and Si within a
broad range of variation of the compensation ratio.
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Abstract—The specific features of chemisorption on a quantum-well wire are studied. It is shown that the
energy of an electron of an adatom chemisorbed on the quantum-well wire changes jumpwise with variations
in the wire radius. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since particular research interest has been expressed
in the properties of quantum wires, it is important to
investigate the chemisorption on a quantum-well wire.
The specific features of chemisorption of an atom are
governed by the density of states of the electronic sub-
system of the substrate. For a quantum-confined film, it
has been demonstrated that the energy of the electronic
subsystem of a chemisorbed atom is an oscillating
function of the film thickness and external magnetic
field [1–5]. This is associated with the fact that the den-
sity of states of a quantum-confined metallic film
depends on the film thickness and external quantizing
magnetic field in a stepwise manner.

In this work, we investigated the case where a quan-
tum-well wire serves as a substrate.

2. THEORETICAL BACKGROUND

Theoretical treatment will be performed in the
framework of the Anderson–Newns model [6–10] gen-
eralized to the case of chemisorption on low-dimen-
sional systems [1–5]. According to the Anderson–
Newns model [6–10], the energy of an electron of the
adatom can be represented by the relationship Ea, s =
εa + U〈n〉 , where εa is the energy of an electron of an
isolated atom, U is the potential of the intra-atomic
Coulomb repulsion, and 〈n〉  is the perturbation of the
electron density of the adatom due to the interaction
with the substrate. For the perturbation of the electron
density of the adatom 〈n〉 , we can write the relationship

where  is the correlation function of the electron of
the adatom. Basic relationships for equilibrium correla-

n〈 〉 ωd
π

-------g ω( ),

∞–

∞

∫=
<

g
<
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tion functions of electrons of an adatom and a substrate
are presented in our previous work [5].

In our case, the electron energy spectrum of a quan-
tum-well wire can be described within the model of an
infinitely deep two-dimensional potential well in the
following form [11]:

(1)

Here, R is the radius of the quantum-well wire, αn are
the roots of the Bessel function Jl(αkl) = 0 in ascending
order, m is the electron mass, and px is the electron
momentum along the quantum-well wire. In particular,
for the first four roots, we have the following values:
α1 = α10 = 2.42, α2 = α11 = 3.835, α3 = α21 = 5.14, and
α4 = α12 = 5.5.

The density of states of a quantum-well wire takes
the form

(2)

Here, Lx is the linear size of the quantum-well wire and
Θ(x) is the Heaviside step function. The electron con-
centration can be represented as follows:

(3)

where nF is the number of filled discrete energy levels
of the quantum-well wire. Expression (3) relates the
chemical potential µ, the electron concentration N, and
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the radius R of the quantum-well wire: µ = µ(R, N). It
follows from expression (3) that the chemical potential
is an oscillating function of the wire radius. The wire
radius at which the next n + l energy level is filled is
determined from the condition µ(Rn, N) = εn + 1. No gen-
eral expression describing the radius of a quantum-well
wire Rn has been derived to date. For example, for the
quantum-wire radii R1 and R2, we have the following

expressions: R1 = R0(  – )1/6 and R2 = R0[2  –

 –  + 2 ]1/6. Here, R0 =
(π2N)–1/3 is the characteristic scale. Figure 1 shows the
dependence of the dimensionless chemical potential on
the dimensionless radius of the quantum-well wire
µ/ε0(R/R0) calculated with the use of expression (3). As
can be seen from Fig. 1, the dependence µ/ε0(R/R0)
exhibits an oscillatory behavior.

When calculating the energy of the electron of the
adatom Ea, s, we used the expression

(4)

The correlation function (ω) can be written in the fol-
lowing form [5]:

(5)

Here, f(ω) is the Fermi–Dirac distribution function.
The spectral function of the adatom a(ω) is determined
by the relationship

(6)
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Fig. 1. Dependence of the dimensionless chemical potential
µ/ε0 on the dimensionless radius R/R0 of the quantum-well
wire.
P

where the spectral function of the electron of the quan-
tum-well wire is given by the expression

(7)

By using the expressions (4)–(7) and taking into
account the electron energy spectrum of the quantum-
well wire, which is described by relationship (1), we
obtain the final expression for the perturbed density of
electrons of the adatom:

(8)

where ρ0 = |V |2Lx /". Figure 2 shows the depen-
dence of the perturbed density of electrons of the ada-
tom on the dimensionless radius of the quantum-well
wire 〈n〉(R/R0) calculated according to expression (8).
As follows from the calculations, the perturbed density
of electrons of the adatom depends on the film thick-
ness. Specifically, upon filling of the next quantum
level of the quantum-well wire, the perturbed density of
electrons of the adatom 〈n〉  jumpwise increases, which,
in turn, leads to a jumpwise change in the chemisorp-
tion energy of the adatom. The calculations were per-
formed for the following parameters: ρ0 = 5, U/ε0 = 7,

and εa/ε0 = 0.1. Here, ε0 = "2/2m  is the characteristic
energy.

Experimental observations of the aforementioned
effects will make it possible to determine the specific
features of the energy characteristics of an adatom and
the electronic subsystem of the quantum-well wire. The
effect of oscillations in the energy of interaction
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Fig. 2. Dependence of the perturbed density of electrons of
the adatom 〈n〉  on the dimensionless radius R/R0 of the
quantum-well wire.
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between the adatom and the quantum-well wire is of
interest from the viewpoint of controlled changes in the
electronic properties of quantum-well wires. The con-
dition of observation of oscillations in the interaction
energy in a magnetic field has the form ∆εn @ T, "/τ
(where T is the absolute temperature and τ is the relax-
ation time).
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Abstract—The size of an ionistor capacitor structure is found to change during its charging and discharging.
The specific feature of this effect that distinguishes it from other known effects of changing sizes under electric
and magnetic fields (the piezoelectric effect and striction) is the complete hysteresis; i.e., the size reached under
the exposure remains unchanged after the field is turned off. © 2004 MAIK “Nauka/Interperiodica”.
Submicrometer- and nanometer-scale engineering
and technology dictate, among other things, the need
for precisely controlled methods and devices for mov-
ing instruments and objects in the corresponding spatial
scale. Currently, these functions are almost exclusively
implemented using piezoelectric movers. In recent
decades, their design has been perfected due to the
development of scanning probe microscopy techniques
(see, e.g., [1]). Alternative techniques for implementing
controlled submicrometer-scale displacements can
present additional technological possibilities.

In this paper, we report on the detection of the effect
of a change in size arising during charging and dis-
charging of capacitor structures based on superionic
conductors (ionistors). The effect has a clear physical
nature; this effect is observed as low voltages are
applied to the ionistor structure and significantly differs
from the commonly used piezoelectric effect by the fol-
lowing feature. The size reached under the applied volt-
age remains unchanged when the power supply (control
signal) is removed from the ionistor structures.

An ionistor is a device based on a superionic mate-
rial, intended for reversible charge accumulation. An
ionistor consists of three layers: a composite anode (an
activated carbon–superionic interpenetrating compos-
ite); a superionic interlayer (RbAg4I5), suppressing the
electron current component flowing through the struc-
ture; and a metal cathode. During charging, as a voltage
of corresponding polarity is applied, silver cations go
away from the coal–superionic conductor heterointer-
face and are reduced to metal silver at the negatively
biased cathode [2]. Material deposited on the cathode
forms an additional metal interlayer. The anode, from
which the cations leave, changes in size only slightly,
since, first, the relative change in the cation content in
the superionic material remains minor and, second, the
1063-7834/04/4606- $26.00 © 21110
composite anode size is stabilized by the coal skeleton.
As a result, the charging (discharging) process should
cause an increase (decrease) in the total size. In fact, the
mechanical action of the ionistor charging–discharging
is caused by the fact that the electric current flowing
through the superionics is accompanied by a galvanic
mass transfer. After the control current is switched off,
the newly formed metal interlayer on the cathode
remains unchanged and the structure size remains the
same as it was at the instant the current was turned off.
As follows from the model of the process, the change in
the structure size is formally determined by the charge
accumulated by the structure; namely, the change in
size is proportional to the integral of the control current.
It is this feature that qualitatively distinguishes the ion-
istor structure as a mover from the known devices based
on other effects. Furthermore, in comparison with other
possible devices based on the galvanic mass transfer, a
device based on solid materials is more convenient and
reliable and can operate in a wide temperature range.

In practical implementation of the idea, it was nec-
essary to take into account the fact that the superionic
material most used in commercial industry, RbAg4I5, is
unstable in air under light. For this reason, experiments
were performed with ionistor structures encapsulated in
a thin metal case similar to that of a watch battery. The
height and diameter of the encapsulated element used
in the experiment were 3.5 and 23 mm, respectively.
The experiments were carried out at room temperature.
The change in the size was preliminarily detected by
interference measurements. Testing the ability of the
ionistor structures to controllably and reversibly pro-
vide very small changes in size, as well as the possibil-
ity to retain sizes when the power supply is off, was of
particular interest. For this reason, most of the experi-
ments were carried out at small control influences. The
004 MAIK “Nauka/Interperiodica”
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changes in size were measured using an atomic-force
microscope (AFM).

The experimental layout is shown in Fig. 1. The
SMENA AFM operated in the tapping mode. Since the
atomic-force microscope does not operate immediately
in the size measurement mode, a charging–discharging
current (control influence) was applied during scanning
of the top surface of the encapsulated structure. As a
result, the microscope recorded a seemingly complex
surface profile, which was a reflection of the dynamic
change in size. Figure 2 (bottom) shows one of such
profiles; the top of the figure shows the surface profile
recorded in the absence of control influence. The
observed longitudinal depressions in the top profile are
methodical distortions caused by the preceding cantile-
ver passage above sizable local hills.

Figure 3 (top) shows a control current series; the
bottom of the figure shows the surface section (similar
to that shown in Fig. 2) measured during this current
action. It is clearly seen that the ionistor structure size
is indeed a function of the integral of the control cur-
rent. It is also seen from Figs. 2 and 3 that the structure
size remains unchanged in the absence of a control sig-
nal (e.g., portions A, B). Comparison of Figs. 2 and 3
demonstrates that a certain slope observed in these
regions is caused by the initial surface profile.

The samples under study were characterized by a
size/charge conversion factor of 200–100 nm/C. We
note that the charge/size conversion factor was appre-
ciably higher for small control currents. The measure-
ment accuracy was limited by the SMENA model char-
acteristics and surface roughness. In the first experi-
ments, the capsule material roughness was found not to
allow realization of the potential of the AFM. There-
fore, further experiments were conducted over the sur-
face of an additional glass coating deposited onto the
capsule. We can see from Fig. 2 that surface defects are
nevertheless observed; however, sufficiently accurate
measurements of changes in size become possible.

Test current source

Cantilever

Ionistor

Fig. 1. Experimental layout.
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Fig. 2. (a) Surface area scanned by an atomic-force micro-
scope as the control action was applied to the ionistor struc-
ture and (b) the actual profile of the same area recorded in
the absence of action (demagnified).
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Fig. 3. (a) Test current series used to obtain the relief shown
in Fig. 2 and (b) a section of the surface profile shown in
Fig. 2; A and B are the portions corresponding to the
absence of control current.
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Although the nature of the effect is in general clear,
the numerical estimate of the expected effect and the
experimentally determined value differ. The chemical
type of the released material is beyond question; this
material can only be silver, whose ions are charge car-
riers in RbAg4I5. Let us estimate the thickness d of the
newly formed interlayer under the assumption that this
layer is formed by ordinary metal silver. Elementary
formulas of electrolysis yield

(1)

where µ is the atomic weight of silver, It is the charge
accumulated in the ionistor, ρ is the density of metal sil-
ver, Na is Avogadro’s number, e is the elementary
charge, and S is the cathode area. Substituting numeri-
cal values into expression (1) for a cathode of 20 mm in
diameter yields the value ~340 nm/C. As noted, the
experimentally determined numerical value of the
charge/size conversion factor is 200–100 nm/C.

This disagreement can be explained as follows. The
disagreement means that the mass transfer process in a
solid-state composite structure is more complex than in
the case described by an elementary model of electrol-
ysis. In the case under consideration, the cause of the
slightly smaller effect in comparison with the estimate
could be a partial release of metal into micro- and nan-
opores during its deposition onto the cathode. This
behavior of a deposited material in systems similar to
that under study is known and has been studied previ-
ously [3]. Moreover, to accurately estimate the change

d µIt/ρNaeS,=
P

in the ionistor structure size, one should consider the
contribution from the decrease in the anode size and the
influence of the shell. Details of the effect are of interest
for further investigation.

The result of this study is the detection of a change
in the ionistor structure size during recharging. A char-
acteristic difference is the strong hysteretic property of
the effect, i.e., retention of the structure size when the
control voltage is turned off. This hysteretic galvano-
mechanical effect offers new functionalities for devel-
oping nanometer mechanical devices and systems.
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Abstract—The interaction between the rotational degrees of freedom of a diatomic impurity molecule and
phonon excitations of a two-dimensional atomic matrix commensurate to the substrate is investigated theoret-
ically. It is shown that the translational–rotational interaction leads to renormalization of the crystal field con-
stants and a change in the form of the operator for the rotational kinetic energy as compared to the correspond-
ing expression for a free rotator. The contribution from the rotational degrees of freedom of impurities to the
low-temperature heat capacity of a diluted solution of diatomic molecules in the two-dimensional atomic matrix
is calculated. The possibility of experimentally observing the predicted effects is discussed. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the effects associated with interac-
tion between translational and rotational degrees of
freedom in solids is an important problem in the phys-
ics of condensed matter [1]. In particular, the inclusion
of these effects has made it possible to offer an ade-
quate quantitative interpretation of the low-temperature
anomalies in heat capacity due to rotational degrees of
freedom of molecular substitutional impurities in three-
dimensional atomic cryomatrices [2–7].

In two-dimensional atomic–molecular cryosolu-
tions, the dynamics of an impurity molecule appears to
be substantially more complex than that in a three-
dimensional system. At present, these objects have not
been adequately studied both experimentally and theo-
retically. Additional factors (such as the type of sub-
strate, coverage, etc.) affecting the physical properties
of two-dimensional crystals provide a means for pro-
ducing (under different conditions) systems with radi-
cally different characteristics [8]. As a consequence,
these systems can exhibit a wide variety of effects asso-
ciated with translational–rotational interactions.

In the general case, theoretical analysis of the
dynamics of a molecular impurity in an atomic matrix
with due regard for the mutual influence of phonon
modes of the crystal and rotational modes of the molec-
ular impurity is a sufficiently complex problem [1]. In
this respect, in our earlier work [9], we investigated a
model in which a diatomic impurity molecule moves in
a crystal field induced by the immobile environment
and took into account only the effects induced upon
interaction between the rotational degrees of freedom
1063-7834/04/4606- $26.00 © 21113
of the molecule and the translations of its center of iner-
tia. However, even such a simplified model provides
deeper insight into the basic features in the dynamics of
an impurity molecule with a mobile center of inertia in
an external crystal field with low symmetry that is char-
acteristic of two-dimensional systems.

The inclusion of phonon degrees of freedom is not
only a further step toward generalizing the results
obtained previously [9] but is necessary for correct
description of the low-temperature thermodynamics of
two-dimensional atomic matrices with molecular
impurities. It should be noted that, unlike the problem
examined in [9], the problem under consideration
becomes many-particle and there arises a nontrivial
problem of adequate description of the interaction
between the rotational degrees of freedom and local
(quasi-local) levels in the phonon spectrum of the
impure crystal. In the present work, we theoretically
analyzed how translational–rotational interaction
affects both the rotational dynamics of diatomic impu-
rity molecules in a two-dimensional close-packed
atomic matrix and the impurity heat capacity of the
system.

2. FORMULATION OF THE PROBLEM

Let us consider a diatomic homonuclear molecule
with mass M and internuclear distance 2d, which is a
substitutional impurity in a two-dimensional close-
packed monoatomic matrix (with the coordination
number in the layer z1 = 6) located on a substrate. We
examine the case where the matrix and substrate struc-
tures are commensurate, so that each atom has z2 near-
004 MAIK “Nauka/Interperiodica”
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est neighbors in the substrate. The substrate has either a
triangular (z2 = 3) or hexagonal (z2 = 6) lattice. For def-
initeness, we assume that the impurity is located at the
origin of the coordinates. The OZ axis is perpendicular
to the layer and is directed away from the substrate. The
OX and OY axes are oriented along the matrix plane.
We will restrict our consideration to the case of an iso-
topic impurity. The complete Hamiltonian of the sys-
tem has the form

(1)

Here, Hrot is the kinetic energy of the impurity mole-
cule, which is defined by the relationship

(2)

where B = "2/(2I) is the rotational constant of the impu-
rity molecule, I = Md2 is the moment of inertia of the
molecule, and ϑ  and ϕ are the azimuthal and polar
angles specifying the orientation of the molecular axis,
respectively. The Hamiltonian of the phonon subsystem
Hph can be written as

(3)

where

(4)

is the phonon Hamiltonian of the impurity-free atomic
layer, m is the mass of the matrix atom, ε = (m – M)/m
is the mass defect, uf is the displacement of the atom
located at the site f from the equilibrium position, pf =

–i"∂/∂uf,  is the matrix of force constants, and
i, j = x, y, z.

Now, we expand the displacement vectors uf into a
series in terms of the polarization unit vectors eν of
phonon excitations of the impurity-free layer; that is,

where ν = (k, α); k is the two-dimensional wave vector;
α = l, t, z are indices characterizing the polarization of
the phonon branch (l and t correspond to the longitudi-
nal and transverse modes, respectively, polarized in the
layer plane, and z refers to the mode polarized perpen-
dicularly to the layer); Rf is the radius vector of the site
f; ξν are the expansion coefficients; and N is the total

H Hrot Hph H1.+ +=

Hrot B
1

ϑsin
----------- ∂

∂ϑ
------- ϑ ∂

∂ϑ
-------sin 

  1

ϑsin
2

------------- ∂2

∂ϕ2
---------+ ,–=

Hph Hph
0( ) ε

p0
2

2M
--------,+=

Hph
0( ) pf

2

2m
-------

f

∑ 1
2
--- Λf f ',

ij
uf

i
uf '

j

f f ' i j, , ,
∑+=

Λf f ',
ij

uf N
1/2– ξνeν ikRf( ),exp

ν
∑=
P

number of particles in the layer. In this case, Hamilto-
nian (3) takes the form

(5)

where πν = –i"∂/∂ξν and Ων are the frequencies of
phonon excitations of the impurity-free crystal. For the
two-dimensional commensurate structure under con-
sideration, the spectrum of the ideal triangular lattice
can be calculated exactly. The appropriate expressions
for the three spectral branches Ων can be represented in
the following form [10]:

(6)

(7)

where

Here, ∆, ∆z, Ω , and D are the constants expressed
through the mass of the lattice atom and parameters of
the potentials of the interaction of layer atoms with
each other and with the substrate [10] and R1 is the dis-
tance from the matrix atom to the nearest neighbor in
the layer. As can be seen from relationships (6) and (7),
all branches of the phonon spectrum of the impurity-
free commensurate structure are characterized by gaps;
in this case, ∆z > ∆ and, as a rule, D ! Ω2. Therefore,
the z mode is virtually dispersionless. In the presence of
an isotopic impurity, the phonon spectrum involves
local and quasi-local frequencies [11–13]. When the
impurity is light (ε > 0), the local levels ωloc are located
above the upper edge of the continuous spectrum. If
the impurity is heavy (ε < 0), the frequencies ωloc lie
below the lower edge of the continuous spectrum, i.e.,
in the gap.

The Hamiltonian H1 involved in expression (1)
describes the interaction between the impurity and the
environment. This interaction will be taken into
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account in the atom–atom potential approximation
[14]; that is,

(8)

Here, V1 is the potential of the interaction between the
impurity atom and the matrix atom; V2 is the potential
of the interaction between the impurity atom and the
substrate atom; U1 is the potential of the interaction
between the matrix atoms; U2 is the potential of the
interaction between the matrix atom and the substrate
atom; ra, b = u0 ± wd are the coordinates of the atoms in
the impurity molecule; w = (sinϑ cosϕ, sinϑ sinϕ,
cosϑ) is the unit vector specifying the spatial orienta-
tion of the impurity molecule; rd = R1d + ud is the coor-
dinate of the layer atom of the nearest environment;
rD = R2D is the coordinate of the substrate atom of the
nearest environment; R2 is the distance from the matrix
atom to the nearest neighbor atom in the substrate; d
and D are the unit vectors specifying the direction to the
nearest neighbors in the layer and the substrate, respec-
tively; u0 is the displacement of the center of inertia of
the molecule from the equilibrium position; and ud is
the displacement of the lattice atom from the equilib-
rium position.

When writing expression (8), we took into account
that the impurity is isotopic (and, hence, the equilib-
rium position of the center of inertia of the impurity lies
in the layer plane) and, moreover, restricted our treat-
ment to the rigid-substrate approximation. Further-
more, it was assumed that the potentials Vi(r) and Ui(r)
are short-range potentials (which is the case in real sys-
tems). Consequently, only the interaction with nearest
neighbors was included in Hamiltonian (8). Note also
that the theory proposed below is assumed to be valid,
in principle, for potentials Vi(r) and Ui(r) of arbitrary
type. Hence, all further calculations will be carried out
without specifying the form of these potentials, except
for numerical evaluations in which, for definiteness, the
interatomic interaction will be described using the Len-
nard-Jones potential [14].

By assuming that the displacement of the center of
inertia of the impurity molecule from the equilibrium
position is small compared to the distances Ri and
allowing for the smallness of the ratios d/Ri, we expand
Hamiltonian (5) into a series in terms of these small
parameters [9]. In subsequent calculations, insignifi-
cant constants that lead only to a change in the energy
origin will be omitted.

The first-order terms do not depend on the orienta-
tion of the molecular axis and determine the equilib-
rium position of the layer with respect to the substrate.
In contrast to three-dimensional crystals with cubic

H1 = V1 rd ra–( ) V1 rd rb–( ) U1 rd u0–( )–+{ }
d
∑

+ V2 rD ra–( ) V2 rD rb–( ) U2 rD u0–( )–+{ } .
D
∑
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symmetry, in which the crystal field Hc arises only in
the fourth order in d/R [15], in the system under inves-
tigation, these terms appear even in the second order.
Nonetheless, we will retain the fourth-order terms in
the relationship for the crystal field, because, as will be
shown below, the interaction of phonons with the impu-
rity molecule substantially affects these terms. As a
result, we have

(9)

Here,

(10)

and the parameters b for the substrates with the triangu-

lar and hexagonal lattices are equal to R1/( R2) and
R1/(3R2), respectively. It can be seen from expres-
sions (10) that the interactions of the impurity with the
layer and the substrate make additive contributions to
the coefficients G0, 1. An analysis of these coefficients
demonstrates that the substrate and matrix fields tend to
orient the impurity molecule along the layer plane and
perpendicular to the substrate, respectively. As a conse-
quence, the equilibrium position of the impurity is
governed by the competition between the above two
factors. From expression (9), it also follows that the
relationships for the crystal field are different for z2 = 6
and 3. For z2 = 3, the crystal field has symmetry group
S6 (sixfold inversion-rotational axis) [16, 17]. The term
determining this symmetry is of the order of (d/Ri)4,
and the coefficient G2 of this term depends only on the
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parameters of the substrate field [see relationships (9),
(10)]. For z2 = 6, the symmetry of the crystal field
should correspond to symmetry group C6. However, the
corresponding terms arise only in the sixth order in
d/Ri, which is not considered in our work. As a result,
the symmetry of the crystal field Hc at z2 = 6 corre-
sponds to the continuous two-dimensional rotation
group C∞.

The terms describing the interaction of the phonon
subsystem with the rotational degrees of freedom of the
impurity molecule appear only beginning with the
third-order terms [9, 18]. In this approximation, the
interaction Hamiltonian under consideration can be
written in the form

(11)

Here, we introduced the following designations:

(12)

(13)

(14)

(15)

where Qαβ = wαwβ – ∆αβ/3 is the dimensionless quadru-
pole moment of the impurity molecule. Therefore, the
complete Hamiltonian of the system is the sum of rela-
tionships (2), (5), (9), and (11).

3. DYNAMICS OF THE IMPURITY 
MOLECULE

In this section, we analyze how the interaction
between the rotational degrees of freedom of the impu-
rity molecule and the matrix phonons affects the rota-
tional motion of the molecule. The magnitudes of the
corresponding effects are calculated by functional inte-
gration [19]. Within an insignificant normalizing factor,
the partition function Z has the form

(16)

H int
d

2

2 N
----------- f ν*ξν c.c.+( ),

ν
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Z D ξ τ( )[ ] D w τ( )[ ] S/"( ),exp∫=
P

(17)

where β = 1/T (the Boltzmann constant is taken equal
to unity) and τ is the imaginary time. The dot denotes
differentiation with respect to τ. Expression (17) can be
represented as the sum of two terms. The first term S0
depends only on the rotational degrees of freedom of
the impurity molecule, and the second term S1 includes
both rotational and phonon variables:

(18)

Let us now expand the functions ξν(τ) and fν(τ)
(entering into the second term S1) into a series in terms
of the Matsubara frequencies:

As a result, the integrand in the partition function
(16) transforms into a form that is bilinear in the Fou-

rier amplitudes  and . The bilinear form can be
rearranged into diagonal form by changing the vari-
ables

(19)

where
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Integration over the phonon variables gives the follow-
ing expression for the partition function:

(20)

(21)

In expression (20), the factor Zph represents the
phonon partition function of the two-dimensional crys-
tal and the quantity Z1 accounts for the rotational
motion of the molecule with due regard for the contri-
bution of the phonon subsystem. As follows from
expressions (20) and (21), this interaction leads to the
appearance of the additional term ∆S. In principle,
expression (21) is the solution of the posed problem.
This solution will be analyzed with allowance made
for the fact that the rotational states for the majority of
molecular impurities in two-dimensional atomic lat-
tices are characterized by low energies (the spacing
between the ground and first excited rotational levels,
as a rule, is less than ∆ [17]) and, hence, the specific
effects due to the rotational excitations manifest them-
selves only at low temperatures. For this reason, our
interest here is in the temperature range T ≤ "∆ or
"ωloc. On this basis, by analogy with the transforma-
tions performed in [9, 18, 20], we found that, in the
basic approximation in T/("∆) or T/("ωloc), the addi-
tion ∆S is separated into terms of two types. The terms
of the first type renormalize the constants of the crystal
field; that is,

(22)

The terms of the second type lead to a change in the
form of the kinetic energy:

(23)

Unlike correction (22) to the crystal field, addition
(23) to the kinetic energy depends on the mass defect ε.
This is obvious from the general relationship (21).

Indeed, the term dependent on ε contains the factor ;
i.e., it is determined by the derivatives of the dimen-
sionless quadrupole moment and, hence, makes a con-
tribution to the kinetic energy of the system. Note also
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that, since ε < 1 and any function Fν satisfies the ine-
quality

(24)

the addition ∆Hrot is a nonnegative quantity.
Now, we analyze relationships (22) and (23) with

the aim of elucidating the physical effects caused by the
additions ∆Hc and ∆Hrot. First and foremost, it should
be noted that the expression for fν [see formulas (11)–
(14)] involves summation over the nearest neighbors in
the layer plane. For lattices with sufficiently large coor-
dination numbers, an efficient method for calculating
the corresponding sums consists in replacing the sum-
mation over the nearest neighbors by integration over
the unit circle [10, 21]. This approximation is justified,
because corrections (22) and (23) are integrated charac-
teristics that are weakly sensitive to the dependence of
the integrands on the direction of the wave vector. As a
result, the sums entering into relationships (12)–(14)
take the form

(25)

where Jn(x) is the nth-order Bessel function. Moreover,
for convenience of calculation, exact expressions (6)
and (7) can be replaced by the approximate relation-
ships for the branches of the phonon spectrum [10, 21],
which were derived in the aforementioned approxi-
mation:

By substituting relationships (11)–(14) into expres-
sion (22) and using formula (25), we find that the inclu-
sion of the interaction between the rotational degrees of
freedom of the impurity molecule and the phonons does
not lead to a change in the general form of expression (9)
for the crystal field but results in the renormalization of
all the coefficients entering into it; that is,

(26)
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Here,

where the superscripts L and S indicate that the contri-
butions are predominantly made by the interactions of
the impurity molecule with the matrix and substrate
atoms, respectively. From symmetry considerations, it
is a priori evident that allowance made for the interac-
tion of the impurity molecule with nearest neighbors in
the layer leads only to renormalization of the coeffi-
cients G0 and G1 and does not affect the last term in for-

mula (26). The corresponding corrections ∆  can be
written as

(27)

where

(28)

From expressions (27) and (28), it follows that the

corrections ∆  and ∆  are negative in sign. The
additions to the crystal field due to the interaction with
the immobile substrate can be represented in the form

(29)

where
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(31)

Note that, for short-range potentials (of Lennard-
Jones type), the inequalities K0 > 0, K1 < 0, and |K2 | <
K0 are satisfied and, hence, ∆  > 0.

The crystal field (9) contains additive contributions
associated with the interaction of the impurity molecule
with the layer and substrate atoms. An analysis shows
that these contributions each decrease in the amplitude
owing to additions (27) and (29), respectively, which
appear upon the translational–rotational interaction.
This result is physically quite obvious. Actually, the
rotator moves in the environment of mobile atoms of
the matrix and is most strongly affected by the high-
frequency phonons that generate the highest strains in
the first coordination sphere around the impurity mol-
ecule. In this sense, the problem under consideration is
similar to the known problem regarding the motion of
a particle in a rapidly oscillating field [22], when the
averaging over oscillations results in an effective
decrease in the depth of the initial potential well.

A different situation is observed for the additions to
the kinetic energy. It follows from relationship (23) that
the interaction between the rotational degrees of free-
dom of the impurity molecule and the phonons leads to
a substantial change in the form of the Hamiltonian
Hrot. Indeed, after a number of manipulations, the addi-
tion ∆Hrot can be rewritten in the form

(32)

Here, the corrections ∆I⊥ , z to the moment of inertia of
the impurity molecule have the following form:
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ments (with respect to ); that is,

(34)

Therefore, the interaction of the impurity molecule
with phonons results in a radical change in its inertial
properties; more precisely, the effective kinetic energy
of the rotator takes the generalized positively definite
quadratic form [see expression (23)] of the components
of the angular velocity, which corresponds to the sym-
metry of the system under investigation (C∞ or S6). By
virtue of the positive definiteness of the addition ∆Hrot
(32), we can write the condition ∆I⊥ , z > 0. Actually,

since ζ⊥ , z ≥ 0 [see inequality (24)], the quantities ∆

and ∆  are obviously positive. As regards the addition

∆ , this quantity can appear to be negative at specific
molecular orientations; however, the total addition ∆Iz

is always positive. Consequently, the interaction
between the rotational degrees of freedom of the impu-
rity molecule and the phonons leads to an increase in
the principal moments of inertia of the impurity mole-
cule, i.e., to an increase in its weight.

It should be noted that the separation of the renor-
malizations of the crystal field and the moments of iner-
tia into the layer and substrate contributions is conven-
tional in a sense. Although each contribution explicitly
depends on the parameters of the potential associated
with one component of the system (only the substrate or
only the matrix), all the contributions, according to
expressions (27)–(29) and (33), are functions of the fre-
quencies Ων of phonon excitations, which characterize
the system as a whole.

All the corrections to the crystal field and the
moment of inertia are of the order of (d/R)4. In explicit
form, the corrections expressed through the parameters
of the system in the general case are rather complicated
[see formulas (27)–(31)]. However, the situation can be
simplified in some cases, for example, in the tight-bind-
ing limit, when the crystal field is sufficiently strong as
compared to the rotational constant of the impurity
molecule. If the condition G0 – 2G1 > 0 is satisfied, the
molecule executes small librations with respect to the
equilibrium position at which the molecular axis is per-
pendicular to the layer. In this case, the off-diagonal
elements arising in the inertia tensor due to the transla-
tional–rotational interaction prove to be negligible and
only the corrections to the diagonal elements make sig-
nificant contributions. We performed numerical calcu-
lations of the renormalizations for a number of systems
under the assumption that the interaction of the impu-
rity molecule with atoms of the matrix and the substrate
is described by the Lennard-Jones potential with the
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parameters corresponding to the interatomic interaction
in the gaseous phase [15]. It was found that the maxi-
mum relative change in the moment of inertia is
approximately equal to 30% and the renormalization of
the crystal field amplitudes can be as large as 50–60%.
Undeniably, the above estimates are rather crude,
because the Lennard-Jones potential used is extremely
sensitive to the choice of parameters, whose real values
for two-dimensional systems can differ substantially
from those for gaseous phases [21]. Nonetheless, we
can argue that the renormalization effect associated
with the translational–rotational interaction is signifi-
cant and should be accounted for when discussing
physical phenomena in the systems under investigation.

Finally, we should note that, in the limit of the
immobile environment, the expressions for the renor-
malization of the crystal field constants and the addi-
tions to the rotational kinetic energy of the impurity
molecule transform into the corresponding expressions
obtained in our earlier work [9].

4. IMPURITY HEAT CAPACITY

Now, we calculate the contribution made to the low-
temperature thermodynamic properties of a two-
dimensional atomic crystal by the rotational degrees of
freedom of a system formed by noninteracting diatomic
impurity molecules with due regard for the transla-
tional–rotational interaction. Our treatment will be car-
ried out in the tight-binding limit when a molecule exe-
cutes small librations with respect to the equilibrium
position coinciding with the normal to the layer plane.
In this case, the Hamiltonian of the system can be
derived under the assumption [20]

(35)

where the angle brackets denote the thermodynamic
average of the corresponding functions and qαβ is a
small addition. Only the diagonal elements 〈Qxx〉  =
〈Qyy〉  = –1/3 and 〈Qzz〉  = 2/3 are nonzero. The quantities
〈ξ ν〉 , which are nonzero due to the translational–rota-
tional interaction, satisfy the relationship [20]

(36)

The deviation of the rotator axis from the equilib-
rium position is conveniently described in terms of the
variables u = sinϑ cosϕ and v  = sinϑ sinϕ, which are
small quantities for the system under consideration.
Then, the vector w takes the form

(37)

By substituting formulas (35)–(37) into relation-
ships (2), (5), (9), and (11) and retaining the terms up to
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the second order, we obtain the Hamiltonian of the
system:

(38)

Here, *ph is the Hamiltonian of the phonon subsystem,

(39)

and *2 is the Hamiltonian related to the rotational
degrees of freedom of the impurity molecule,

(40)

The Hamiltonian *1 describing the interaction
between the rotational degrees of freedom of the mole-
cule and phonon excitations has the form

(41)

Here, we introduced the following designations:

(42)

(43)

Hamiltonian (39) describes the phonon subsystem
of a two-dimensional crystal that is located on the sub-
strate and contains an isotopic impurity. It is known
that, in the presence of such an impurity, the vibrational
spectrum is characterized by local and quasi-local fre-
quencies [11]. Note that, in the spectrum of a three-
dimensional cubic crystal, all local frequencies are tri-
ply degenerate [11–13]. By contrast, the spectrum of
the two-dimensional atomic crystal on the substrate
involves a doubly degenerate vibration polarized in the
layer plane and a nondegenerate vibration polarized
perpendicularly to the layer plane. The corresponding
equations for determining the local and quasi-local fre-
quencies have the form [10]
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One more specific feature of the two-dimensional sys-
tem (as compared to the three-dimensional case) is that
it has no threshold mass defect for localized vibrations;
i.e., localized vibrations occur at any ε < 1. Note that to
every local level there necessarily corresponds a conju-
gated quasi-local state. These results are similar to
those obtained for localized states in the vicinity of a
rectilinear dislocation [23]. The translational–rota-
tional interaction leads not only to renormalization of
the rotational parameters of the impurity molecule but
also to a modification of the vibrational spectrum of the
system.

The thermodynamic characteristics of the system
described by Hamiltonian (38) will be calculated using
the following procedure. The auxiliary numeral factor λ
is introduced so that

(45)

It is evident that Hamiltonian (45) coincides with
Hamiltonian (38) at λ = 1. The free energy correspond-
ing to Hamiltonian (45) obeys the relationship

(46)

Then, the free energy of the system under consider-
ation can be represented in the form

(47)

where ∆^ is the addition associated with the transla-
tional–rotational interaction and ^0 is the free energy
in the absence of this interaction. The latter quantity
includes the contributions from the impurity-free layer,
local and quasi-local frequencies, and the rotational
degrees of freedom of impurities with nonrenormalized
parameters.

Therefore, the problem is reduced to calculating the
quantity 〈*1〉λ. This can be accomplished in terms of
two-time Green’s functions. The two-time retarded
commutator Green’s function is defined by the expres-
sion [24]

The equations for the Fourier components of the
Green’s function for the system described by Hamilto-
nian (45) are written as

(48)
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The equations for the Green’s functions with the
variable v  have a similar form. After eliminating the
functions 〈〈πν|u〉〉 ω and 〈〈 Pu |u〉〉 ω, Eqs. (48) are reduced
to a system of integral equations with degenerate ker-
nels whose solution can be found in an explicit form. As
a result, for the Green’s function under consideration

, (49)

we obtain

(50)

Here,

(51)

where ω0 = 2 /" is the frequency of rotator libra-
tions in the absence of the translational–rotational

interaction and a = 2 /(m"2) is the parameter
characterizing this interaction. It follows from expres-
sions (44) and (51) that, within our approximation, dis-
placements of the center of inertia of the impurity mol-
ecule along the OZ axis do not affect the rotational
motion of the molecule. This is obvious even from the
form of relationship (41), which contains only the in-
plane components of the displacement of the center of
inertia of the rotator in the monolayer.

By using the spectral representation for the Green’s
function [24]

(52)

and expression (47), after integration over λ, we derive
the following relationship for the addition to the free
energy:

(53)

After substituting expression (51) into relationship
(53) and a number of transformations, the addition ∆^
can be represented as the sum of three terms. Two terms
cancel out both the contribution made to the free energy
^0 by the rotational degrees of freedom of the rotator
with the nonrenormalized parameters and the contribu-
tions from the local and quasi-local states (polarized in
the layer plane) of the phonon spectrum. The third term
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is the part of the impurity contribution that is modified
through the translational–rotational interaction. This
last term, which involves the contributions from the
rotational and translational degrees of freedom of the
impurity, can be written in the form

(54)

Here,

(55)

(56)

The procedure for calculating integral (54) depends
on the location of the librational frequency ω0 with
respect to the lower edge ∆ of the continuous spectrum
(hereinafter, the continuous spectrum will be consid-
ered to mean only excitations belonging to the l and t
modes of the impurity-free monolayer).

For the majority of real systems, the librational fre-
quency ω0 of the nonrenormalized rotator is low com-
pared to the upper edge Ωmax of the continuous spec-
trum of the impurity-free two-dimensional crystal. This
implies that the librational frequency ω0 lies either in
the gap (ω0 < ∆) or in the range of the continuous spec-
trum in the vicinity of the lower edge. It is these low fre-
quencies ω0 that are of interest from the standpoint of
the possibility of observing effects due to the rotational
heat capacity in experiments. Indeed, in the impurity
system, apart from the contribution of the rotational
degrees of freedom, there are contributions from trans-
lational excitations (associated with both the continu-
ous spectrum and the local and quasi-local states).
Therefore, the lower the frequency ω0 and the lower the
temperature, the simpler the separation of the rotational
contribution to the heat capacity against the back-
ground of the translational contribution.

Initially, we consider the systems for which the
librational frequency ω0 lies in the gap of the phonon
spectrum (ω0 < ∆). For a light impurity (ε > 0), local
and quasi-local translational levels of the impurity mol-
ecule are located in the vicinity of the upper edge Ωmax
and their influence on the low-temperature thermody-
namic characteristics of the system can be ignored.
According to relationships (54)–(56), the contributions
made to the free energy and the heat capacity (per par-
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ticle) by the rotational degrees of freedom have the
form

(57)

where  is the smallest root of the equation

(58)

This root is given by the formula

(59)

In the absence of the translational–rotational inter-
action, the frequency  coincides with the frequency
ω0 of unperturbed librations. Expression (57) describes
the heat capacity of a two-dimensional Einstein oscilla-
tor with the renormalized librational frequency . It is
easy to verify that formula (59) coincides with the cor-
responding formula derived from relationships (27),
(29), (33), and (34) in the tight-binding limit. As could
be expected, the renormalization of the parameters of
the rotational motion leads to an effective decrease in
the frequency ω0 and, hence, to an increase in the rela-
tive fraction of the rotational degrees of freedom in the
low-temperature heat capacity of the system.

In the case of a heavy impurity (ε < 0), apart from
the frequency ω0, there is a local vibrational level at
ωloc < ∆ in the gap. The contribution from this level to
the thermodynamic functions can be comparable to that
from the rotational degrees of freedom. Note that the
main contribution made by the impurity to the free
energy and the heat capacity consists of two terms
defined by formulas similar to expression (57) with fre-
quencies determined as the roots of Eq. (58), which can
be conveniently represented in the form

(60)

In the case when the difference between the unper-
turbed frequencies ωloc and ω0 is large compared to the
parameter a of the translational–rotational interaction,

i.e., when the inequality a ! (  – )2 is satisfied,
the excitations under consideration, as before, can be
treated as librational and local excitations with the
renormalized frequencies

(61)
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As follows from relationships (61), irrespective of
the mutual arrangement of the nonrenormalized libra-
tional and local levels, the translational–rotational
interaction leads to a decrease in the free energy and,
hence, to an increase in the heat capacity of the system
at low temperatures. It is easy to see that, at ωloc @ ω0,
relationship (61) for  coincides with formula (59).

If the parameter a of the translational–rotational
interaction is comparable to or exceeds the spacing
between the rotational and local levels, i.e., at a ≥
(  – )2, the frequencies are mixed. As a result,
molecular librations and local vibrations cease to be
well-defined eigenstates of the system.

A more complex situation is observed in the case
when the librational frequency is located in the range of
the continuous spectrum of phonon excitations in the
vicinity of the lower edge (ω0 > ∆) [12, 20]. For a heavy
impurity (ωloc < ∆), the contribution from the rotational
degrees of freedom to the thermodynamic functions of
the system is small compared to that from the local fre-
quencies. Therefore, we dwell on the more interesting
case of a light impurity. In order to derive the contribu-
tion from the rotational degrees of freedom to the free
energy, we rewrite relationship (54) in the following
form:

(62)

The analytical and numerical treatment demon-
strated that the function ∂φ/∂ω exhibits a sharp maxi-
mum at the frequency  and rapidly decays away

from this frequency. The frequency  coincides to
high accuracy with the frequency determined from rela-
tionship (59). This agreement is explained by the fact
that the density of phonon states in the system under
consideration drastically increases at ω  Ωmax.
Therefore, at ω0 – ∆ ! ∆, the main contribution to the
renormalization of the rotational frequency of the
impurity molecule is made by high-frequency phonons.

By approximating the function ∂φ/∂ω in the vicinity
of the maximum, we obtain the contribution from the
rotational motion of the molecule to the free energy:

(63)

where γ0 = –aµ( )/(2 ) is the half-width of the
Lorentzian peak of the integrand in the vicinity of the
frequency . It should be emphasized that approxi-
mation (63) holds true if the frequency ω0 is not too
close to the lower edge of the continuous spectrum, i.e.,
if the inequality ω0 – ∆ @ γ0 is satisfied.
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The integrand in expression (63) has the form of a
standard dispersion relation in which the half-width γ0
is proportional to the interaction parameter a. Physi-
cally, this result can be explained as follows: the
phonon subsystem is excited by the rotator and, in turn,
has an effect on the rotator state. This effect, as in any
distributed system, is characterized by a retardation
determined by the response function of the system.
Actually, the quantity γ0 includes the interaction param-
eter a and the characteristics of the phonon subsystem.

Since the half-width γ0 is small, the contribution
from the rotational degrees of freedom of the impurity
molecule to the heat capacity can be approximately rep-
resented by expression (57). Therefore, the rotational
part of the heat capacity at low temperatures has an
exponential form,

, (64)

whereas the corresponding dependence for three-
dimensional crystals is described by a power function
[20]. The result obtained is explained by the gap char-
acter of the phonon spectrum of the two-dimensional
atomic crystal commensurate to the substrate [8, 21]. In
this respect, we recall that the heat capacity of the
matrix also has an exponential form [8, 21],

The above dependence of the heat capacity on the tem-
perature differs from that represented by relationship
(64) in terms of the preexponential factor. This circum-
stance can appear to be useful in separating the rota-
tional contribution from the total experimentally mea-
sured heat capacity of the system, especially in the case
when ω0 and ∆ are close in magnitude.

5. CONCLUSIONS

The behavior of a diatomic impurity molecule in a
two-dimensional atomic matrix located on a substrate
turns out to be considerably more complex than that in
a three-dimensional atomic matrix with cubic symme-
try [18, 20]. In a three-dimensional system, owing to
the high symmetry of the environment, the interaction
of the rotator with phonons leads only to an increase in
its moment of inertia without changing the character of
the rotational motion. In a two-dimensional system,
which is characterized by the anisotropy due to a pref-
erential direction (perpendicular to the layer plane), the
interaction of the rotator with phonons brings about
substantial changes: the inertia tensor components
become dependent on the orientation of the axis of the
impurity molecule. In this case, the inertia tensor
remains diagonal when the substrate atoms form a hex-
agonal structure and has off-diagonal components for
substrates with triangular lattices. Therefore, the impu-
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rity molecule in the two-dimensional matrix located on
the substrate represents a parametric rotator whose
dynamics significantly differs from the behavior of
both a free rotator and a rotator in a three-dimensional
cubic lattice.

Upon introduction of molecular impurities into the
two-dimensional atomic lattice, the low-temperature
heat capacity of the system is characterized by an addi-
tional contribution that is associated with the rotational
degrees of freedom of the impurity molecule and can be
observed experimentally. For commensurate structures,
two-dimensional solutions of light impurities are
experimentally simpler, because the contribution made
to the heat capacity by local translational frequencies
does not affect the contribution from the rotational
degrees of freedom. The case of a heavy impurity is the-
oretically more interesting and, at the same time, is
more complex for experimental investigations. This is
explained by the difficulties encountered in correct sep-
aration of the contributions from the localized and rota-
tional states.

Thus, the results obtained in the present work dem-
onstrated that the inclusion of the translational–rota-
tional interactions is of considerable importance in ana-
lyzing and interpreting the dynamics and thermody-
namics of molecular impurities in two-dimensional
crystals.
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Abstract—The concept of photoinduced ion transfer in heterojunctions based on solid electrolytes with a
mixed ionic–electronic (hole) conductivity is justified. This concept is confirmed by the experiments on photo-
deposition of a metal in a heterojunction based on a solid electrolyte with a mixed conductivity. The possibility
of using heterojunctions based on a solid electrolyte layer with a mixed ionic–electronic (hole) conductivity for
optical recording of information is considered. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the advent of heterojunctions and, especially,
with the advance of their technology and theory, hetero-
junctions have been widely used in fabricating diodes,
transistors, photodiodes, solar cells, light-emitting
diodes, semiconductor lasers, etc. [1–3]. Despite the
extensive application in many fields, the possibility of
using heterojunctions for optical recording of informa-
tion has not been adequately studied. In this respect, the
present work is devoted to the design and investigation
of specific heterojunctions intended for optical record-
ing of information.

It is known that one of the applications of hetero-
junctions is based on the generation of a photovoltage
under illumination [4, 5]. The generation of a photo-
voltage is associated with the fact that electron–hole
pairs excited by light in both parts of the heterojunction
are separated by an electric field in space-charge
regions of the heterojunction. The photovoltage can be
determined from the relationship [4]

(1)

where σ is the conductivity induced under illumination,
∆σ is the photoconductivity, χ is the electron affinity,
Nc is the density of states in the conduction band, Nv is
the density of states in the valence band, ξ0 is the
strength of the electric field in the heterojunction, and
Eg is the band gap.
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The electric field induced by separated electrons and
holes is opposed to the electric field generated in the
space-charge regions of the heterojunction. The
strength of the photoinduced field can be defined as

(2)

where ∆x is the distance between electrons and holes
separated by the heterojunction. Under exposure of the
heterojunction to light, the electric field is induced both
in the space-charge regions of the heterojunction and in
the quasi-neutral region.

Let us now assume that charged particles (differing
from electrons and holes), such as ions with a particular
charge and mobility, are placed in either of two parts of
the photoelectric heterojunction. In this case, the elec-
tric field arising upon generating a photovoltage should
initiate ion migration across one of the parts of the het-
erojunction. Therefore, illumination of the heterojunc-
tion, which induces the photovoltage, should also stim-
ulate an ion mass transfer. Correspondingly, the differ-
ence in the concentration distribution of ions over the
thickness in one of the parts of the heterojunction
before and after exposure to light can be used for opti-
cal recording of information.

Since mobile charges of two types, namely, ions and
electrons (or holes), reside in solid electrolytes with a
mixed ionic–electronic (hole) conductivity, it is possi-
ble to fabricate a specific heterojunction between a con-
ventional semiconductor with electronic (or hole) con-
ductivity and a solid electrolyte (whose illumination
generates a photovoltage) with a mixed conductivity.
This heterojunction is characterized by the photoin-
duced ion transfer across one of the two parts of the het-
erojunction.

The interface between two materials with different
bond lengths contains a large number of defects in the

E
V
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form of dangling bonds [3]. Dangling bonds can serve
both as electron trapping centers and as recombination
centers. The recombination of electrons and ions at the
interface formed by two parts of the heterojunction
brings about the photodeposition of a chemical element
responsible for ionic conductivity in the solid electro-
lyte.

For the purpose of experimentally verifying the pos-
sibility of photoinducing mass transfer of ions across
the layer of a solid electrolyte with mixed conductivity
in a heterojunction, we investigated how illumination
affects the properties of heterojunctions between AIIBVI

semiconductors and vitreous As2S3 layers photodoped
with silver at a content of 2–32 at. %.

The choice of the AIIBVI semiconductor material as
a constituent of a heterojunction was made for the rea-
son that these materials are characterized by a high pho-
tovoltage [6].

Silver-photodoped As2S3 layers are solid electro-
lytes with a mixed (ionic and hole) conductivity [7–9].
Photodoping allows one to vary the metal content in a
semiconductor layer over a wide range and, thus, to
control the ionic and hole conductivities (Table 1). In
turn, this makes it possible to vary substantially the
conditions of experimental investigations into the prop-
erties of heterojunctions with solid electrolytes.

The photoinduced transfer of silver ions and the
photodeposition of silver in a heterojunction were
found experimentally in CdSe–As2S3Agx (x = 0.9–2.4)
heterojunctions. The experimental results obtained in
this work proved that heterojunctions with mixed
ionic–electronic (hole) conductors can be used for opti-
cal recording of information.

The main objective of the present work was to jus-
tify the concept of photoinduced ion transfer and to
reveal experimentally the photoinduced transfer of sil-
ver ions across one of the parts of the heterojunction
with a solid electrolyte under illumination.

2. EXPERIMENTAL TECHNIQUE

Photoinduced changes in heterojunctions were initi-
ated under exposure to light of a KG-220-500 halogen

Table 1.  Characteristics of electrical conductivity of As2S3
films photodoped with silver at different contents (tempera-
ture, 300 K) [7] 

CAg, at. % σi, Ω–1 cm–1 σp, 10–5

Ω–1 cm–1 ηi

20 7.6 × 10–8 0.17 0.04

25 8.2 × 10–6 2.8 0.23

29 3.5 × 10–5 4.7 0.43

32 3.0 × 10–4 6.3 0.83

Note: CAg is the silver content, σi is the ionic conductivity, σp is
the hole conductivity, and ηi is the transport number. 
P

lamp at different illuminances. In the course of illumi-
nation, the sample was cooled with an air stream pro-
duced by a fan.

After exposure to light, the samples were examined
under a Biolam optical microscope. The concentration
distribution of the metal over the thickness of a solid
electrolyte layer was investigated on a JAMP-10S
Auger analyzer.

Heterojunctions were prepared through thermal
evaporation under vacuum with the use of a VUP-5 vac-
uum setup. During evaporation, the residual pressure
was no less than 10–3 Pa.

Photodoping of As2S3 layers with silver was carried
out according to the procedure described in [10, 11].
After deposition of a silver-photodoped As2S3 layer on
a quartz or silicon substrate, this layer was coated with
a CdSe layer through thermal evaporation.

The optical reflectance and transmittance spectra of
the heterojunctions before and after illumination were
recorded on a KSVU-23 spectrophotometer in the
wavelength range 200–1200 nm.

The photovoltage was measured with the use of a
V7-45 voltmeter. The internal resistance of the voltme-
ter was equal to 1016 Ω .

3. EXPERIMENTAL RESULTS

The heterojunctions studied in this work contained
400- to 500-nm-thick As2S3 layers photodoped with sil-
ver and 200- to 500-nm-thick CdSe layers.

At the first stage of our investigation, we examined
heterojunctions between a CdSe layer and a silver-
photodoped As2S3 layer without exposure to light. Ini-
tially, these unexposed heterojunctions were studied
using an optical microscope. No inhomogeneities, pre-
cipitates, or clusters were found in the heterojunction
structure.

The unexposed heterojunctions were subjected to
chemical treatment. The CdSe layer was removed by
chemical etching in a mixture of HNO3 and HCl acids.
The remaining As2S3 layer photodoped with silver was
examined with the use of an electron microscope from
the Auger analyzer. This examination also did not
reveal precipitates or clusters in the silver-photodoped
layer. The results of Auger spectroscopy demonstrated
that the silver content in the surface region of the As2S3
layer photodoped with silver at a content of 25 at. %
differs from this value by no more than 1 at. %.

At the second stage of the investigation, the hetero-
junctions were exposed to light.

For heterojunctions between a CdSe layer and an
As2S3 layer photodoped with silver at a content of 15–
32 at. % (the chemical composition corresponds to the
formula As2S3Agx at x = 0.9–2.4), exposure from the
side of the photodoped layer to light of a KG-220-500
halogen lamp at an illuminance of 8 × 104 lx for 2 h
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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leads to the formation of silver precipitates of two
types, namely, small-sized and large-sized precipitates,
in the heterojunction. The precipitates are formed in the
photodoped layer in the vicinity of the interface. The
characteristic sizes of the precipitates are equal to 0.2–
0.5 (smaller precipitates) and 2–5 µm (larger precipi-
tates).

According to the results of Auger spectroscopy, the
exposure of the heterojunctions to light results in an
increase in the content of silver ions in the vicinity of
the interface between the layers. These experiments
were performed as follows. A CdSe–As2S3 heterojunc-
tion photodoped with silver at a content of 25 at. % (the
chemical composition corresponds to the formula
As2S3Ag1.67) was exposed to light of the halogen lamp
at an illuminance of 8 × 104 lx for 20 min in the cham-
ber of the Auger analyzer. Then, under exposure of the
sample at the same illuminance for 20 min, the CdSe
layer was etched away with an argon ion beam. Expo-
sure under these conditions brought about the forma-
tion of precipitates 0.2–0.3 µm in size in the surface
region of the photodoped layer. In the regions free of
precipitates, the silver content in the surface region of
the photodoped layer increased by 5 at. % as compared
to that in the bulk of the photodoped layer.

Moreover, the CdSe–As2S3Ag1.67 heterojunction
was exposed and etched under the same conditions but
at an illuminance of 2 × 104 lx. In this case, no forma-
tion of photoprecipitates was observed and the silver
content in the surface region of the As2S3Ag1.67 layer
increased by 3 at. %.

The size of the photoprecipitates formed under
exposure of the CdSe–As2S3Ag1.67 heterojunction to
light depends on the illuminance and exposure time.
The exposure of the heterojunction to light at an illumi-
nance of 8 × 104 lx for 2 h leads to saturation of the pho-
todeposition of silver, i.e., to the formation of large-
sized silver photoprecipitates whose height is equal to
the thickness of the photodoped layer.

Similar results were obtained for the CdSe–
As2S3Agx (x = 0.9–2.4) heterojunctions exposed from
the side of the CdSe layer.

In the heterojunctions under investigation, we mea-
sured a dark voltage with a positive potential at the
CdSe layer. However, under exposure of the hetero-
junction to light, we revealed a photovoltage with a
negative potential at the CdSe layer.

For example, in the CdSe–As2S3Ag1.67 heterojunc-
tion between a CdSe layer 200 nm thick and an
As2S3Ag1.67 layer 430 nm thick, the dark voltage with a
positive potential at the CdSe layer is equal to 105 mV.
The exposure of this heterojunction to light at an illu-
minance of 8 × 104 lx induces a photovoltage of 90 mV
with a negative potential at the CdSe layer. Upon gen-
eration of the photovoltage with this sign, the electric
field induced in the layer of the solid electrolyte is
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
directed such that it initiates the migration of positive
silver ions toward the interface.

The reflectance and transmittance spectra of the ini-
tial and exposed CdSe–As2S3Ag1.67 heterojunctions are
depicted in Fig. 1. The exposure of the As2S3Ag1.67 het-
erojunction to light results in a decrease in the ampli-
tude of interference oscillations, which indicates an
increase in the absorption by the photoinduced layer.
As was shown in our earlier work [12], an increase in
the silver content in the photodoped As2S3 layer leads
to a shift in the absorption edge toward the long-wave-
length range and to an increase in the absorption in the
layer. Therefore, the observed decrease in the ampli-
tude of interference oscillations can be associated with
an increase in the silver content in photodoped layer
regions of different thicknesses.

The photosensitivity of the CdSe–As2S3Ag1.67 het-
erojunction was calculated from the spectral depen-
dence of the reflectance. The photosensitivity S was
defined as the reciprocal of the radiant exposure
responsible for the relative change in the reflectance R,
that is,
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Fig. 1. (a) Reflectance (R) and (b) transmittance (T) spectra
of the CdSe–As2S3Ag1.67 heterojunction (1) before and
(2) after exposure to light.
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where E is the illuminance, t is the exposure time, and

(4)

The photosensitivities of the CdSe–As2S3Ag1.67
bilayer structure at different wavelengths are presented
in Table 2.

4. DISCUSSION

The observed increase in the content of silver ions in
the vicinity of the interface formed by the heterojunc-
tion layers and the formation of photoprecipitates at the
interface under exposure of the heterojunction to light
have demonstrated that the illumination of the hetero-

A
∆R
R

-------.=

Table 2.  Photosensitivities of the CdSe–As2S3Ag1.67 hetero-
junction at different wavelengths

λ, nm S, 10–9 lx–1 s–1 

1200 0.30

1180 0.35

1140 0.20

1100 1.10

1060 1.20

1020 0.30

980 0.10

940 0.14

900 0.20

860 0.21

820 0.70

780 0.10

740 0.30

700 0.20

660 0.70

620 0.40

580 0.50

540 0.01

0.
20

 e
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 e
V 1.
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 e
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CdSe As2S3Ag1.67

Fig. 2. Band diagram of the CdSe–As2S3Ag1.67 heterojunc-
tion. The parameters of the material are taken from [6, 10].
PH
junction leads to photoinduced mass transfer of silver
ions to the interface between the layers. This mass
transfer is induced by an electric field arising upon gen-
eration of a photovoltage. Thus, the experimental
results obtained confirm the concept of photoinduced
ion transfer in a heterojunction with a solid electrolyte,
which was proposed in formulating the problem to be
solved in this work.

The photoinduced processes occurring in a hetero-
junction that contains a solid electrolyte with a mixed
ionic–electronic (hole) conductivity can be explained
in terms of the energy band diagram of the heterojunc-
tion. For this purpose, we will consider the formation of
a heterojunction between a CdSe layer and an As2S3
layer doped with silver at a content of 25 at. %.

The electron affinity of silver-doped As2S3 exceeds
the electron affinity of CdSe by 0.3 eV [13]. As a con-
sequence, when CdSe is thermally evaporated onto the
As2S3Ag1.67 layer, electrons diffuse from CdSe into the
As2S3Ag1.67 layer and recombine with holes. These pro-
cesses bring about the formation of a positively charged
region in the CdSe layer and a negatively charged
region in the As2S3Ag1.67 layer.

The formation of the space-charge regions in the
heterojunction that contains the solid electrolyte with
mixed conductivity results in two competing processes
of ion migration.

First, the ions involved in the space-charge region of
the solid electrolyte are expelled from this region under
the action of an electric field induced by the space-
charge regions.

Second, the ion migration can be initiated by the
interaction between the charges that form the positively
and negatively charged regions in the heterojunction
with positive ions located in the bulk of the solid elec-
trolyte layer. If the charges distributed in the positively
and negatively charged regions in the heterojunction
induce a dipole field at distances considerably larger
than their sizes, the positive ions should be attracted to
the negatively charged region of depletion of the het-
erojunction.

These two processes of ion migration result in the
formation of a close-packed layer of ions after the
space-charge region of the solid electrolyte. The exist-
ence of such close-packed layers of ions is characteris-
tic of interfaces between solid electrolytes and other
materials, in particular, in double electrical layers [14].

In the heterojunction with a solid electrolyte, the ion
migration occurs until the sum of forces acting on each
ion from the space-charge regions and other particles
becomes equal to zero.

The band diagram thus obtained for the CdSe–
As2S3Ag1.67 heterojunction is shown in Fig. 2. This dia-
gram was constructed without regard for the migration
of ions from deep within the solid electrolyte layer to
the space-charge region, because the strength of the
electric field of the space dipole is substantially weaker
YSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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than that inside the space-charge region of the solid
electrolyte.

The above band diagram is similar to the band dia-
gram of a graded-gap heterojunction [15].

The illumination of the CdSe–As2S3Ag1.67 hetero-
junction leads to the generation of electron–hole pairs
that are separated by the electric field in the space-
charge regions of the heterojunction. The potential bar-
rier on the side of the As2S3Ag1.67 layer can be over-
come by electrons through injection, injection with pre-
liminary thermalization, and tunneling. As follows
from the results of investigations of the CdSe–
As2S3Ag2.4 heterojunction [16], the injection is the
most important mechanism of overcoming the potential
barrier by electrons. Owing to these processes, elec-
trons are accumulated in quasi-neutral regions of the
CdSe layer, whereas holes are concentrated in quasi-
neutral regions of the As2S3Ag1.67 photodoped layer.

The schematic drawing of the space-charge regions
in the CdSe–As2S3Ag1.67 heterojunction is presented in
Fig. 3. The concentration distributions of photoexcited
electrons and holes separated by the electric field of the
heterojunction are also schematically shown in this fig-
ure. The distributions of photoexcited electrons and
holes are given according to the data taken from [3].

Under exposure of the heterojunction to light, the
electric field induced in the region between photoex-
cited electrons and holes separated by the electric field
of the heterojunction (Fig. 3) acts on positive Ag+ ions
and thus induces mass transfer of silver ions toward the
interface. The former field affects both the quasi-neu-
tral region of the solid electrolyte layer and the space-
charge region.

Owing to the spatial distribution of the electric field
induced by photoexcited carriers and the electric field
of the heterojunction, the most intensive mass transfer
of ions occurs from the quasi-neutral region to the
depletion region of the solid electrolyte. This can be
explained by the fact that the strength of the electric
field in the quasi-neutral region is relatively high and is
directed toward the interface between the layers,
whereas the field strength of the heterojunction in the
space-charge region is opposite in direction (i.e., it is
opposed to the electric field of separated electron–hole
pairs).

After the ion transfer from the quasi-neutral region
to the space-charge region, silver ions diffuse in the
space-charge region of the solid electrolyte toward the
interface between the layers. This diffusion becomes
possible under exposure of the heterojunction to light,
because the electric field of separated electron–hole
pairs reduces the strength of the electric field of the het-
erojunction and, in the limiting case at high illumi-
nances, can provide the band alignment of the hetero-
junction. Furthermore, silver ions are entrained by elec-
trons that moves in response to the electric field of the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
heterojunction toward the CdSe layer (the electron
wind effect [17]).

The interface between the CdSe and As2S3Ag1.67
layers is a boundary between polycrystalline and amor-
phous materials with different bond lengths. Therefore,
this interface contains a large number of defects in the
form of dangling bonds. It is known that dangling
bonds can serve both as electron trapping centers and as
recombination centers [2, 3]. As a consequence, the
photodeposition of silver occurs through the recombi-
nation of an electron and an ion at the interface. The
precipitates can grow either through the same process
(the capture of an electron by a dangling bond and
recombination of this electron with another ion, fol-
lowed by binding of both ions) or through the capture
of an electron upon the photodeposition of silver and
recombination of the next ion with this electron. When
multiply repeated, these processes provide the growth
of precipitates.

The theoretical analysis of the photoinduced pro-
cesses observed in heterojunctions based on mixed
ionic–electronic (hole) conductors and the analysis of
the experimental results obtained have demonstrated
that, depending on the conditions of illumination of the
heterojunction with a solid electrolyte, there are two
variants of photoinduced ion transfer: (1) photoinduced
ion transfer with subsequent photodeposition of the
chemical element responsible for the ionic conductivity
and (2) photoinduced ion transfer without photodeposi-
tion.

The second variant is observed under exposure of
the heterojunction to light at lower illuminances when
the electric field induced upon the generation of a pho-
tovoltage cannot ensure mass transfer of ions to the
space-charge region of the solid electrolyte toward the
interface between the layers.

The analysis of the results obtained in the present
work allowed us to propose a new method of designing
a medium for optical recording of information. This
medium can be prepared in the form of a bilayer or mul-
tilayer thin-film structure in which heterojunctions
capable of generating a photovoltage are formed
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Fig. 3. Schematic drawing of the space-charge regions in
the CdSe–As2S3Ag1.67 heterojunction and the concentra-
tion distributions of photoexcited electrons and holes sepa-
rated by the electric field of the heterojunction over its
thickness.
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between layers of a solid electrolyte with mixed con-
ductivity and layers of other materials with electronic
or hole conductivity. Exposure of the heterostructure to
light leads to photoinduced transfer of ions across the
layer of the solid electrolyte. Moreover, depending on
the conditions of illumination of the heterojunction and
the properties of the constituent materials, there can
occur photodeposition of the chemical element respon-
sible for the ionic conductivity in the solid electrolyte.
In this medium, the data recording is based on the dif-
ference between the reflectances (or transmittances) in
exposed and unexposed regions.

The proposed method makes it possible to prepare
media for optical recording of information from numer-
ous combinations of solid electrolytes (possessing a
mixed conductivity) with semiconductors, dielectrics,
and metals. Consequently, heterostructures based on
solid electrolytes with mixed conductivity can be
expected to differ substantially in terms of their physi-
cal properties. In this case, the possibility of producing
heterojunctions with band diagrams of different types
has assumed a particular importance. Furthermore,
solid electrolytes differ in the type and magnitude of
conductivity. For example, the conductivity of
As2S3Agx (x = 0.9–2.4) glasses falls in the range from
7.6 × 10–8 to 3.08 × 10–4 Ω–1 cm–1 [7], whereas the ionic
conductivity of the (Ag2GeS3)48(AgI)52 glass is equal to
6 × 10–3 Ω–1 cm–1 [18].

It should be noted that the ionic conductivities of
Cu4RbCl3I2 and Ag4RbI5 crystals are considerably
higher (0.5 and 0.3 Ω–1 cm–1, respectively) [19].

If the electronic (hole) component of the conductiv-
ity is provided in the aforementioned materials either
through doping with impurities or by other methods
and the materials thus modified are used to prepare het-
erojunctions capable of generating a photovoltage, it
can be expected that the time of data recording with
these heterojunctions will be several orders of magni-
tude shorter than that for the CdSe–As2S3Agx (x = 0.9–
2.4) heterostructures.

5. CONCLUSIONS

Thus, the results obtained in this work demonstrated
that a necessary condition for photoinduced mass trans-
fer of ions in a heterojunction that contains a solid elec-
trolyte with a mixed ionic–electronic (hole) conductiv-
ity is the generation of a photovoltage.

Depending on the conditions of illumination of the
heterojunction and the properties of the constituent
materials, there are two variants of photoinduced ion
transfer: (1) photoinduced ion transfer with subsequent
photodeposition of the chemical element responsible
for the ionic conductivity and (2) photoinduced ion
transfer without photodeposition.
P

The analysis of the photoinduced processes occur-
ring in heterojunctions based on solid electrolytes with
mixed conductivity showed that, depending on the type
of band diagram of the heterojunction and the type of
conductivity of the constituent materials, the photoin-
duced ion transfer can occur in two directions. This pro-
cess can proceed from deep within the solid electrolyte
layer to the interface between the layers or in the oppo-
site direction (from the interface between the layers to
the surface of the solid electrolyte layer).
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Abstract—The temperature dependence of the intracrystallite conductivity of Langmuir–Blodgett films of the
(C16H33–TCNQ)0.4(C17H35–DMTTF)0.6 charge-transfer complex (CTC) is studied by measuring the surface
acoustic wave attenuation in a piezoelectric delay line coated with such a film. (C16H33–TCNQ)0.4(C17H35–
DMTTF)0.6 is a surface-active CTC made from a 1.5 : 1 mixture of heptadecyl-dimethyltetrathiafulvalene
(C17H35–DMTTF) and hexadecyl-tetracyanoquinodimethane (C16H33–TCNQ). The temperature dependence of
the intracrystallite conductivity is found to have a maximum at TMD = 193.5 K. Above TMD, the conductivity of
the films is metallic (∂σ/∂T < 0), while below this temperature it obeys a law that is close to the one-dimensional
Mott law. The decrease in the conductivity with decreasing temperature at T < TMD is shown to be related to the
localization of electron states in the quasi-one-dimensional system under study and to be caused by the presence
of impurities and defects in the TCNQ chains, along which a charge is transferred. The detected variation in the
conductivity with temperature below TMD is found to qualitatively and quantitatively agree with the model of
localization in a weakly disordered quasi-one-dimensional system proposed earlier by Nakhmedov, Prigodin,
and Samukhin. Fitting the experimental results to the theoretical dependences obtained in the framework of this
model allows us to find the electron–phonon and electron–impurity scattering times. The structural parameters
of the conducting layer are used to estimate the density of states at the Fermi level and the Fermi velocity in the
films. With these values, the mean free path and the localization length in the films under study are determined.
© 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Conducting Langmuir–Blodgett (LB) films based
on surface-active charge-transfer complexes (CTCs)
are being intensively studied now because of their
potential application in molecular electronics (ME) [1].
The LB technology makes it possible to fabricate
homogeneous conducting films having a nanometer-
scale thickness and stable properties from CTC mole-
cules, which opens up broad fields for their application
in thin-film ME devices [2].

In the last decade, substantial progress has been
achieved in producing LB structures with increasing
conductivity. Among CTC-based LB films, the maxi-
mum conductivity has been reached in systems based
on bis(ethylenedioxy)tetrathiafulvalene (BEDO–TTF)
with various acceptors. For example, films made from
a mixture of (BEDO–TTF)0.71(C10H21–TCNQ)0.29 with
arachidic acid have a conductivity σ of about 10 S/cm
at room temperature [3], whereas LB films made from
a mixture of BEDO–TTF with behenic acid exhibit a
record room-temperature value σ ≈ 40 S/cm [4]. It
should be noted that the conductivities of LB systems
are several times lower than those of the corresponding
bulk organic-conductor crystals.1 This circumstance
narrows the area of application of LB films in ME.

1 For example, (BEDO–TTF)ReO4 · H2O crystals have σ ≈
147 S/cm at room temperature [5].
1063-7834/04/4606- $26.00 © 21131
Two main causes of the decreased electrical conduc-
tivity of LB films are currently known: first, their poly-
crystalline structure and, as a result, the presence of
intercrystallite potential barriers causing thermally
activated transport through them, and, second, the sig-
nificant difference in the mechanism of intracrystallite
conductivity in the films, compared to that in the bulk
parent crystals. It is obvious that a detailed study of
electron transport in crystallites might contribute to
improving the conductivity of such films as a whole.
Moreover, such studies could reveal new physical phe-
nomena, since the conductivity mechanism in LB sys-
tems can have unique features that are absent in bulk
crystals because of the low dimensionality of these sys-
tems.

Electron transport in individual crystallites of LB
films was first investigated in [6] using a microwave-
cavity perturbation technique that had been success-
fully applied earlier for studying the conductivity of
bulk crystals of organic conductors [7, 8]. However, the
application of this technique for examining LB systems
encounters difficulties, since it is impossible to separate
such films from the substrates. The microwave field
perturbation caused by a substrate with thickness of
about 0.5 mm is many orders of magnitude higher than
the perturbation caused by an LB film with thickness of
300–500 Å. Therefore, to ensure the required measure-
ment accuracy, it is necessary to provide a stable driv-
ing-oscillator frequency and stable parameters of the
004 MAIK “Nauka/Interperiodica”
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experimental device used during measurement. These
circumstances determine the measurement accuracy
and the accessible temperature range. Earlier [9], we
proposed another approach for studying the tempera-
ture dependence of the intracrystallite conductivity of
films, which was based on measuring the attenuation of
surface acoustic waves (SAWs) in piezoelectric delay
lines coated with an LB film. In that work, we showed
that the SAW attenuation is mainly determined by the
film conductivity and is directly proportional to the
acoustic-wave frequency. Moreover, the film-induced
attenuation is higher by 1–1.5 order of magnitude
(depending on the SAW frequency) than the attenuation
induced by the losses due to the divergence of a SAW
beam and dissipative processes that are unrelated to
conductivity (losses in the material delays lines and the
attenuation caused by the film viscosity). Therefore, the
studying of electron transport in crystallites with this
technique is much simpler and not a less accurate pro-
cedure than using the microwave technique.

In this work, we measured the temperature depen-
dences of the intracrystallite conductivity of (C16H33–
TCNQ)0.4(C17H35–DMTTF)0.6 films using the acoustic
technique developed in [9]. The temperature depen-
dence of the intracrystallite conductivity is found to
have a maximum at TMD = 193.5 K. Above TMD, the
conductivity of the films exhibits metallic behavior
(∂σ/∂T < 0), whereas below this temperature it follows
a close-to-Mott law. We show that the conductivity
decreases with decreasing temperature at T < TMD

ΩFilm

6
4

5

3

2

1

7

b ca

Fig. 1. Schematic diagram of the experimental setup:
(1) cryostat cold finger, (2) sapphire substrate with sput-
tered Au electrodes for measuring the conductivity by the
two-probe method, (3) delay line, (4) high-frequency oscil-
lator, (5) pulse oscillator, (6) precision attenuator, and (7)
oscilloscope.
P

because of the localization of electron states in the
quasi-one-dimensional system under study and that the
metallic behavior of conductivity at T > TMD is caused
by the suppression of the localization effects by inelas-
tic electron–phonon scattering, which becomes signifi-
cant at high temperatures. It should be noted that the
structure of the films under study and the conductivity
mechanism in them are typical of conducting LB sys-
tems based on quasi-one-dimensional CTCs. There-
fore, all the conductivity mechanism features caused by
one-dimensional localization that are discussed here
are common for this class of conducting LB films.

2. EXPERIMENTAL TECHNIQUE

Figure 1 shows the measurement circuit. As SAW
delay lines, we used substrates of lithium niobate
(LiNbO3, Y + 128° cut) with three groups of interdigital
transducers (IDTs) photolithographically patterned
onto the substrate surface. A pulse-modulated signal
with a high-frequency component was applied to the
central IDT group from a high-frequency oscillator.
Thus, this group was the source of SAWs and the two
other transducer groups were receivers. The film stud-
ied was deposited between IDT groups b and c (Fig. 1),
and the space between groups a and b remained clear.
This measurement circuit allowed us to eliminate sys-
tematic errors related to random spontaneous changes
in the output power of the driving oscillator. Signals
from IDT groups a and c were fed to a two-channel
high-frequency oscilloscope, and the readout of the sig-
nal levels was performed visually. To increase the sen-
sitivity, a precision attenuator was built in one of the
receiving paths.

Before the deposition of the LB film, the surface of
the delay line was carefully cleaned chemically and
treated in an oxygen plasma. Then, two layers of stearic
acid were deposited in the gap between groups b and c
for hydrophobization of the surface. They were coated
with 18–20 layers of the film under study by the verti-
cal-lifting LB technique. The deposition of the film
onto a sapphire substrate with contacts for two-probe
dc conductivity measurements (Fig. 1) was performed
simultaneously with the film deposition onto the delay
line. Then, the delay line and the sample for two-probe
measurement were glued to the cold finger of the insert
of an evacuated cryostat, which was used to measure
the temperature dependence of the acoustic-wave atten-
uation.

As shown in [9], the main cause of SAW attenuation
is the interaction of the field of an acoustic wave with
charge carriers in the film. The alternating electric field
with the SAW frequency that accompanies a strain
wave in the piezoelectric substrate induces electric cur-
rents in the deposited film and, hence, Joule’s losses. As
a result of this interaction, the wave power is absorbed.
However, this source of attenuation is not the only one,
since the wave also loses its energy due to the viscosity
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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of the film and dissipative processes occurring in the
material of the delay line. To exclude the contributions
from these sources, we performed the following check
experiment. The insert with the glued samples was
removed from the cryostat and placed inside a quartz
tube, which was then filled with nitrogen. Then, the
samples were irradiated with light from a DRT 125-1
mercury ultraviolet lamp located at a distance of 7–
8 cm from the sample for 200 h (the radiation intensity
was about 100 µW/cm2); as a result, the film became
nonconducting. Then, the insert was again placed in the
cryostat and we measured the temperature dependence
of the attenuation caused by the nonconducting film.
The results of these measurements were subtracted
from the data obtained in the experiments performed on
the conducting film. The thus-determined attenuation
(per unit length) was then used to calculate the film
conductivity from the Adler formula [9], whose tem-
perature dependence is discussed in this work.

We measured several delay lines with IDTs having
resonance frequencies in the range 200–400 MHz and
obtained similar results. Here, we present the data
obtained on the typical sample with fundamental fre-
quency f0 = 355.6 MHz.

3. RESULTS AND DISCUSSION

Figure 2 shows the temperature dependences of the
conductivity of the film found using the acoustic and
usual dc techniques (curves 1 and 2, respectively). The
temperature dependence measured from the SAW
attenuation is seen to have a characteristic feature at
TMD = 193.5 K; above TMD, the conductivity of the film
is metallic (∂σ/∂T < 0), whereas below this temperature
it varies according to the law lnσ ∝  –1/Tγ (where 0 <
γ < 1). At the same time, the measured dc conductivity
of the film decreases with decreasing temperature
according to the Arrhenius law σ ∝  exp(–Ta/T), where
Ta ≈ 1393 K. This temperature dependence is mono-
tonic and has no characteristic features at TMD. Note
that the activation energy kBTa of the dc conductivity
measured in this work (0.12 eV) coincides with the
value measured earlier in [10] with the four-probe
method.

It is generally accepted [1] that the activation char-
acter of the dc conductivity of the LB film is caused by
its polycrystalline structure, because the film consists
of randomly oriented two-dimensional (2D) crystallites
(Fig. 3a); therefore, charge carriers need to overcome
intercrystallite potential barriers, whose height deter-
mines the activation energy kBTa. The regions adjacent
to grain boundaries make a dominant contribution to
the resistivity of the film; the variation of the electric
potential within crystallites is small as compared to its
jump at the boundaries. Therefore, the temperature
dependence of the dc conductivity mainly characterizes
the properties of the intercrystallite barriers. Informa-
tion on the electron transport within crystallites of the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
film turns out to be masked, and it is virtually impossi-
ble to extract it from the results of such measurements.

Unlike the dc measurements, the acoustic technique
measures a quantity that is related closely to the intrac-
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Fig. 2. Temperature dependences of the conductivity of the
LB film measured with (1) the acoustic technique and
(2) the dc two-probe method. The temperature dependence
of the dc conductivity is fitted to the function σ ∝
exp(−Ta/T), where Ta ≈ 1393 K. Inset (a) shows the struc-
tural formulas of the molecules forming the film. Inset
(b) schematically shows the cross section of the LB system
consisting of four monolayers. The conducting bilayers of
thickness h ≈ 10 Å are formed by the –TCNQ and –DMTTF
head groups, and the dielectric bilayers of thickness H ≈ 25 Å
are formed by the –C16H33 and –C17H35 side groups.
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Fig. 3. Two-dimensional polycrystalline structure of the
conducting bilayer: (a) dc conductivity (determined by
intercrystallite barriers) and (b) transport in the high-fre-
quency field of an acoustic wave. Within a half-period of
field oscillations, there is no time for charge to accumulate
at grain boundaries; therefore, the applied electric field is
not shielded by the space charge. Thus, the effect of inter-
crystallite barriers on the conductivity is eliminated. (c)
Transport at the microscopic level (schematic); electrons
move along the TCNQ stacks, jumping from one stack to
the similar nearest neighbor stack from time to time.
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rystallite conductivity. Indeed, as noted above, the
SAW attenuation in delay lines coated with a conduct-
ing Langmuir film is determined by the ohmic losses
caused by the coupling of the high-frequency (107–
109 Hz) electric field of an acoustic wave with charge
carriers in the film. The non-Arrhenius temperature
behavior of the film conductivity measured with the
SAW technique suggests that charge carriers do not
accumulate at grain boundaries at such high frequen-
cies; therefore, the shielding of the applied electric field
of the acoustic wave by the space charge is insignifi-
cant. Thus, electron transport in a field of such a high
frequency is insensitive to intercrystallite barriers and
the ohmic losses are completely determined by the con-
ductivity mechanism within the crystallites. Actually,
with the SAW technique, we measure the conductivity
σ(ω, T) of the polycrystal formed by randomly oriented
2D crystallites with short-circuited intercrystallite bar-
riers (Fig. 3b). The conductivity σ(ω, T) can be repre-

6.37 Å

4.76 Å

Side group

Side group

DMTTF stacks

aLB

a >
LB

h/2

(a)

(b)

TCNQ stacks

Fig. 4. (a) Schematic representation of the conducting
monolayer structure (according to data from [13]); for sim-
plicity, only the first two –CH2– links of the side groups
(−CnH2n + 1, n = 16, 17) are shown. (b) Structure of the con-
ducting bilayer; the axes of the TCNQ and DMTTF stacks
are normal to the sketch plane. aLB ≈ 7.65 Å [13], h/2 ≈ 5 Å,

and  =  ≈ 9.2 Å.a⊥
LB

h/2( )2
a

LB( )
2

+

P

sented in the form σ(ω, T) = 〈σ(T)〉  + σac(ω, T), where
〈σ(T)〉  is the dc conductivity of the 2D polycrystal with
short-circuited intercrystallite barriers and σac(ω, T) is
its ac conductivity, which is an isotropic quantity. The
problem of finding 〈σ〉  was solved by Dykhne [11]:

〈σ〉  = , where σ11 and σ22 are the principal val-
ues of the intracrystallite conductivity tensor. As will be
shown below, σac is several times smaller than 〈σ〉  at
frequencies of several hundreds of megahertz. As a
result, it is the intracrystallite conductivity averaged
over all possible crystallite orientations that is mea-
sured using the acoustic technique. Hence, the temper-
ature dependences of the conductivity measured with
this technique (Fig. 2, data set 1) reflect the features
inherent in the electron transport within crystallites.

Below, we will consider the microscopic structure
of the films, the mechanism of charge transfer within
crystallites, and the related theoretical models. This
consideration will allow us to choose expressions for
σ11, σ22, and σac, which will be used for fitting the
experimental data to the function σ(2πf0, T) =

 + σac(2πf0, T) and finding the quanti-
ties that characterize the electron transport in the films.

3.1. The Structure of the Films and a Model 
of Electron Transport in Them

Inset b in Fig. 2 schematically shows the cross sec-
tion of the LB system consisting of four monolayers
formed by CTC molecules (Fig. 2, inset a). The thick-
nesses of the dielectric (H ≈ 25 Å) and conducting (h ≈
10 Å) bilayers were determined by small-angle x-ray
diffraction [12]. The structure of the conducting layer
was schematically presented in [13] (Fig. 4a). Based on
those data, we show the detailed structure of the con-
ducting bilayer in Fig. 4b. It is seen that the head groups
(–DMTTF and –TCNQ) in the film are arranged in sep-
arate stacks (chains), similarly to the molecular packing
in bulk TTF–TCNQ crystals. However, the distance
between the neighboring DMTTF and TCNQ stacks in
the layer is aLB ≈ 7.65 Å and the lattice parameter along
the TCNQ chains is bLB ≈ 4.76 Å, whereas the corre-
sponding distances in TTF–TCNQ crystals are equal to
acryst/2 ≈ 6.8 Å and bcryst ≈ 3.8 Å, respectively [14].
Charge carriers in the bilayer move mainly along the
DMTTF and TCNQ stacks, just as in the case of bulk
crystals. From time to time, the carriers jump between
similar nearest neighbor chains. In other words, the sys-
tem is quasi-one-dimensional. The negative sign of the
Hall coefficient detected in our films in [15] indicates
that, just as in the crystals, the films exhibit electronic
conductivity and that a charge is mainly transferred
along the acceptor TCNQ stacks. Note that the distance
between the nearest neighbor TCNQ chains in the

bilayer is  =  ≈ 9.2 Å (Fig. 4b),
which virtually coincides with the distance between the

σ11σ22

σ11 T( )σ22 T( )

a⊥
LB

h/2( )2
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LB( )
2

+
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nearest neighbor TCNQ stacks in the bulk crystals

(  = ccryst/2 ≈ 9.1 Å) [14].

As noted above, the dc conductivity within the 2D
crystallite of the film is characterized by a 2 × 2 tensor
σij. One of the principal axes of this tensor is parallel to
the TCNQ stacks, and the other axis is orthogonal to
them (Fig. 3c). In the principal axes frame, we have
σij = σikδkj, where δkj is the unit tensor and σ11 = σ|| and
σ22 = σ⊥  are the conductivities along the TCNQ stacks
(longitudinal conductivity) and along the orthogonal
direction to them (transverse conductivity), respec-
tively. Impurities and defects in the TCNQ chains,
along which a charge moves, cause electron-wave scat-
tering, whose intensity is characterized by the electron–
impurity scattering time τ. The quantum interference of
scattered electron waves leads to the localization of
electronic states, thereby changing the conductivity in
character and decreasing its magnitude. On the con-
trary, the interaction between individual TCNQ chains,
which is characterized by the interchain transfer inte-
gral t⊥ , favors delocalization. The presence of these two
opposite tendencies results in the possibility of the
quasi-one-dimensional disordered system being in
either metallic and dielectric state, depending on the
relation between the values of t⊥  and "/τ. Note that the
inelastic scattering of electrons by phonons with suffi-
ciently high energy dispersion (the intensity of this pro-
cess is characterized by the electron–phonon scattering
time τin) also weakens the localization and, at τin ! τ,
completely suppresses it [16]. It was found in [17] that,
at t⊥ τ/" = 0.3, the quasi-one-dimensional disordered
system at hand undergoes a metal–insulator transition
(the system is in the insulator state at t⊥  < 0.3"/τ and in
the metallic state at t⊥  > 0.3"/τ). The frequency and
temperature dependences of the conductivity of this
system at various relations between t⊥  and "/τ were
analyzed in [18], where the cases t⊥  ≅  tc = 0.3"/τ (the
system is near the metal–insulator transition) and t⊥  ! tc

(the system is characterized by a weak transverse over-
lapping and is far from the transition) were considered.
In what follows, the expressions derived in that work
for σ||(T), σ⊥ (T), and σac(ω, T) will be used for fitting the
experimental temperature dependence of the conduc-

tivity to the function σ(2πf0, T) =  +
σac(2πf0, T) in order to determine the parameters char-
acterizing the electron transport within the crystallites.

The experimental temperature dependence (Fig. 2,
data set 1) shows that our films belong to systems with
weak interchain overlapping (t⊥  ! tc), where, according
to [18], the conductivity is nonmetallic in the tempera-
ture range corresponding to the inequality τ < τin(T). In
this range, three characteristic regions (modes I, II, III)
in the temperature dependence of the conductivity can
be distinguished (see [18, Fig. 2]).

a⊥
cryst

σ|| T( )σ⊥ T( )
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
In the range T1 < T < T0 (mode I), the transverse con-
ductivity is described by the Mott-type relation2 

(1)

and the longitudinal conductivity obeys the Arrhenius
law

(2)

where T0 = π"/(4kBτ), e is the electron charge, g(εF) =

1/(π"vF ) is the density of states (per spin) at the
Fermi level, vF is the Fermi velocity, a⊥  is the distance
between nearest chains, T1 = 3T0/(4κ), κ =
ln[4kBT0/(πt⊥ )], z is the number of nearest neighbor
chains (in the two-dimensional case in question, z = 2;

Fig. 4b), ξ|| = 4vFτ, and νph = .

In the range T2 < T < T1, where T2 = T0 /(2κ2)
(mode II), the transverse conductivity is still described
by Eq. (1), but the longitudinal conductivity is deter-
mined by Eqs. (68)–(71) from [18].3 Finally, at T ! T2
(mode III), the temperature dependences of the longitu-
dinal and transverse conductivities are determined by
Eqs. (77)–(80) from [18].4 As shown in [18], σac mani-
fests itself at frequencies ω ≥ ω1 = νphexp[–3T0/(2T)];
more specifically, σac(ω, T) = 0 at ω < ω1 and σac(ω, T) ∝
ωs(ω, T) at ω1 ≤ ω ≤ ω2 = νphexp[–2(2T0/T)1/2], where
s(ω, T)  1 at ω  ω2. At higher frequencies
(ω > ω2), the ac conductivity should be calculated
within the pair approximation. Therefore, we have
σac(ω, T) = σp(ω, T), where

(3)

in accordance with [19], where N(εF) = 2g(εF). The
expressions describing the frequency dependence of
the conductivity in the different ω ranges transform
continuously into one another. Below, we will find
which of the modes of the dc and ac conductivities
describes our experimental data at T < TMD most ade-
quately.

3.2. Determination of g(εF), t⊥ , and the Form
of νph(T)

The relations given for σ||(T), σ⊥ (T), and σac(ω, T)
are seen to depend on four parameters: νph, T0, g(εF),
and t⊥ . The density of states g(εF) and the interchain
transfer integral t⊥  can be estimated from the structural

2 Equations (48) and (63) in [18], describing σ|| and σ⊥  in the range
T1 < T < T0, contain misprints and, hence, somewhat differ from
Eqs. (1) and (2) in this work.

3 Equation (68) in [18] contains an incorrect sign in the exponent.
4 In Eqs. (77)–(79) from [18], T2 should be replaced by T0.
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data given in Fig. 4. In turn, the fitting of the measured
temperature dependences (Fig. 2, data set 1) to a func-
tion σ(2πf0, T) allows us to determine νph and T0 and,
hence, to find the electron–phonon and electron–impu-
rity scattering times. Using these values and g(εF), we
will find the mean free path and the localization length
in the films. 

The interchain transfer integral t⊥  characterizes the
intensity of electron tunneling between neighboring
TCNQ chains and decreases exponentially with
increasing interchain distance a⊥ . As noted above, this

distance in the film bilayer, , virtually coincides
with the distance between TCNQ chains in the bulk

crystals, ; therefore,  in the films should coin-

cide with . The latter quantity is known to be

 ≈ 5 meV [20]. This value of  is confirmed by
modern quantum-chemical Hartree–Fock calculations

[21, 22]. Thus, we have  ≈ 5 meV.

Based on the structural parameters of the bilayer
shown in Fig. 4, we can find the value of vF in the film
and determine the value of g(εF). Indeed, since vF ∝ bt||
(where t|| is the intrachain transfer integral and b is the

translation period along a chain), we obtain /  =

. The value of  is known to be
135 meV [20], and the values of bcryst and bLB are given

above; therefore, we only have to calculate . Simi-
larly to t⊥ , t|| also decreases exponentially with increas-
ing distance u between the neighboring TCNQ mole-
cules in the stack and can be represented in the form t|| =
Auexp(–u/r0) [19]. The constants A and r0 can be deter-

mined from the condition  =  and

 = –0.20 eV/Å [23] (here, ucryst =

bcrystcosθ = 3.17 Å [14], where θ is the angle between
the stack axis and the normal to the plane of the TCNQ
molecule). Assuming that θ in our films has the same
value as in TTF–TCNQ crystals, we obtain uLB =
bLBcosθ = 3.95 Å. After simple calculations, we arrive

at /  ≈ 3.18, whence it follows that  ≈

42.5 meV and /  ≈ 2.55. The Fermi velocity in

TTF–TCNQ crystals is known to be  ≈ 1.2 ×

107cm/s [23]; therefore, we have  ≈ 4.7 × 106 cm/s.

Taking into account  ≈ , we calculate the ratio
of the density of states at the Fermi level in the films and

the crystals: gLB(εF)/gcryst(εF) ≈ /  ≈ 2.55. The
value of gcryst(εF) is known to be 4.7 × 1021 eV–1 cm–3

[24], whence it follows that gLB(εF) ≈ 1.2 × 1022 eV–1 cm–3.
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As noted in [16, 18], the νph(T) = (T) dependence
is different in temperature ranges above the Debye tem-
perature ΘD of the system under study and below it. At

T > ΘD, we have  ∝  T, and, at T < ΘD,  ∝  T3. The
Debye temperature of DMTTF–TCNQ crystals was

found to be  ≈ 85 K [25]. Let us show that, in LB

films,  ≤ . Indeed, as noted above, the dis-
tance between the neighboring DMTTF and TCNQ
chains in the film and the distance between the nearest
neighbor molecules in the chain are greater than the
respective distances in the crystals. Therefore, the
bonding forces between individual molecules in the
chain and between chains in the monolayer are weaker
than the corresponding forces in the crystals. Moreover,
the insulator layers (Fig. 2, inset b) formed by the
hydrocarbon side groups (–CnH2n + 1, n = 16, 17)
weaken the interaction between the conducting bilayers
of the film. As a result, the LB structures turn out to be
“softer” systems than the crystals, which results in the

inequality  ≤ . Hence, we should assume that

νph =  ∝  T over the whole temperature range under
study (125 < T < 300 K).

To quantitatively describe the temperature depen-

dence of  in TTF–TCNQ crystals, Bright et al. [26]

proposed using the Hopfield relation (T) =
2πkBTλ/", where λ is the dimensionless electron–
phonon interaction constant (according to [27], λ ≈
0.23 in TTF–TCNQ). When fitting our experimental
data to the dependence σ(2πf0, T), we also assume that
νph(T) = 2πkBTλ/". Since the electron–phonon interac-
tion constant in the LB films under study is unknown,
the parameter λ is taken to be free and adjusted during
fitting.

Finally, the quantity T0, which enters into Eqs. (1)
and (2) and is related to the electron–impurity scatter-
ing time, is also taken to be a free parameter and is
determined by fitting.

3.3. Fitting the Experimental Data
at T < TMD

Before processing the experimental data, let us con-
sider the second term in the expression σ(2πf0, T) =

 + σac(2πf0, T). As seen from Eq. (3),
σac(2πf0, T) decreases almost linearly with decreasing
temperature, whereas at T < TMD the experimental
dependence (Fig. 2, data set 1) most likely decrease
exponentially with decreasing temperature. Therefore,
we can conclude that, in the temperature range under
study, the ac contribution to the conductivity at the
given frequency f0 = 355.6 MHz is much lower than the
dc contribution. Hence, as a fitting function, we can
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simply use  instead of σ(2πf0, T). After
T0 and λ have been determined, we can calculate
σac(2πf0, T) and check the validity of neglecting this
term in σ(2πf0, T).

Assuming t⊥  = 5 meV and g(εF) = 1.2 × 1022 eV–1 cm–3

and varying T0 and λ, we fit the experimental data

(Fig. 2, data set 1, T < TMD) to the 
dependence, whose components are determined from
Eqs. (1) and (2), respectively.5 As a result, we find that
T0 = 1344 ± 4 K and λ = 0.26 ± 0.01. As noted above,
the expressions for σ⊥ (T) and σ||(T) in mode I are valid
in the temperature range T1 < T < T0 however, the cal-
culated value of T0 leads to T1 = 298 K > TMD. Whence
it follows that Eqs. (1) and (2) cannot be applied for
describing our results at T < TMD.

The expressions for the longitudinal and transverse
conductivities in mode III also cannot be used to
explain our data. Indeed, these expressions are valid at
T ! T2. Therefore, for them to describe the experimen-
tal data over the whole range T < TMD, at least the con-
dition T2 > TMD must be satisfied. At TMD = 193.5 K, the
latter inequality results in T0 > 12 500 K. However, the
calculation by Eqs. (77)–(80) from [18] at such a high
value of T0 and reasonable values of λ (λ < 3 [28]) gives
values of the conductivity that are eight orders of mag-
nitude smaller than the experimental values.

Our experimental data can adequately be described
by the expressions for conductivities in mode II. Fitting
the data in Fig. 2 (data set 1, T < TMD) to the

 dependence, where σ⊥  is described by
Eq. (1) and σ|| by Eqs. (68)–(71) from [18], we obtain
T0 = 1317 ± 6 K and λ = 0.11 ± 0.01.6 The fitting results
are shown in Fig. 5, curve 3. Using the known value of
T0, the temperatures T1 and T2 (which determine the
limits of applicability of the mode II formulas) are
found to be T1 = 294 K and T2 = 58 K. It is seen that the
temperature range under study (125 K < T < TMD) falls
in this range.

Now, having the values of T0 and λ, let us return to
the problem of estimating σac(2πf0, T). Curve 4 in
Fig. 5 shows the σp(2πf0, T) dependence calculated by
Eq. (3) using the values of T0 and λ obtained. Compar-
ing 2πf0 with the values of ω1 and ω2 introduced above,

5 Fitting was performed using the nonlinear Levenberg–Marquardt
least squares method, which is available in the Origin software
package intended for numerical data processing and visualiza-
tion. The final values of T0 and λ thus obtained are insensitive to
the choice of their initial values.

6 Recent electronic band structure calculations for TTF–TCNQ
crystals using a modification of the pseudopotential method [29]
give values of t⊥  that are, on average, three times greater than the
generally accepted value t⊥  = 5 meV [20]. Fitting our data at t⊥  =

15 meV and g(εF) = 1.2 × 1022 eV–1 cm–3 gives T0 = 1609 ± 7 K
and λ = 0.11 ± 0.01.

σ|| T( )σ⊥ T( )

σ⊥ T( )σ|| T( )

σ⊥ T( )σ|| T( )
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we find that, at T < 141 K, σac(2πf0, T) = σp(2πf0, T)
(Fig. 5). At temperatures T > 217 K, σac(2πf0, T) = 0,
and the range 141 < T < 217 K corresponds to the tran-
sition range where σac increases monotonically from 0
to σp. Therefore, in the range 141 < T < 300 K, curve 4
in Fig. 5 is the upper estimate for σac(2πf0, T). The ac
component of the conductivity is seen to be far less than
the dc component, σac(2πf0, T) ! 〈σ(T)〉 , over the
whole temperature range under study, which supports
our assumption that the contribution of σac(2πf0, T) to
σ(2πf0, T) can be neglected.

Using the calculated value of T0, we determine the
electron–impurity scattering time τ = π"/(4kBT0) ≈
4.6 × 10–15 s. With this time and the value of  cal-
culated above, we can determine the mean free path l =

τ and the localization length lloc = 4l [16] in the

film; they are l ≈ 0.45bLB and lloc = 4 τ ≈ 8.6 Å. The
value of lloc is seen to be smaller than the double lattice
parameter along the TCNQ chains.

Let us compare the obtained values of τ and l with
analogous parameters in other disordered quasi-one-
dimensional systems in which the effects of electron
localization are also important. The best known exam-
ples of such systems are conducting polymers and dis-
ordered 1 : 2 complexes of quinolinium (Qn) and acri-
dinium (Ad) with TCNQ [Qn(TCNQ)2 and
Ad(TCNQ)2, respectively]. In [30], the values of τ and
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Fig. 5. Temperature dependences of the conductivity
obtained using different approximations: (1) the experimen-
tal data determined with the acoustic technique (Fig. 2);
(2) the temperature dependence of the conductivity of the
type σ ∝  T–1 constructed according to [18] at T > TMD; and
(3) the best fit to the experimental results at T < TMD with

the dependence , where σ||(T) and σ⊥ (T) are

the mode II longitudinal and transverse conductivities,
respectively. The best fit to the experimental points is
achieved at T0 = 1317 ± 6 K and λ = 0.11 ± 0.01. (4) The
temperature dependence of σp(2πf0, T) calculated by
Eq. (3) using the determined values of T0 and λ; f0 =
355.6 MHz.
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l in polypyrrole (PPy) doped with hexafluorophosphate
(PF6) were found to be 5.5 × 10–16 s and 0.85a, respec-
tively (a is the length of the repeated polymer structural
unit). The corresponding parameters of Qn(TCNQ)2

were found to be 1.3 × 10–14 s and 2.5b, respectively
[31] (b is the lattice parameter along the TCNQ stacks).
It is seen that our LB films are intermediate in degree of
electron localization between the conducting polymers
and TCNQ salts with asymmetric cations.

In the literature, the degree of electron localization
is estimated by comparing the value of kFl with unity
(kF is the Fermi wave vector). If kFl ≤ 1, the localization
is strong (Anderson localization); otherwise (kFl @ 1),
the localization is weak. In our films, we have kFl =
πρl/bLB, where ρ is the degree of charge transfer from
donor to acceptor. Assuming that the value of ρ in our
films is identical to that in TTF–TCNQ bulk crystals
(ρ ≈ 0.6 [20]), we obtain kFl ≈ 0.85, which indicates
strong electron localization in them.

As noted above, LB films based on a mixture of
BEDO–TTF with fatty acids have the highest conduc-
tivity among CTC films. Recently, negative magnetore-
sistance was detected in films prepared from a mixture
of BEDO–TTF with stearic acid (SA) [32]; this fact
was explained in that work in terms of weak electron
localization. Note that the localization in our films is
much stronger than in the BEDO–TTF + SA films,
whose conductivity is metallic down to 120 K and
decreases weakly (logarithmically) with decreasing
temperature in the range 15 < T < 120 K. This fact is
explained by a strong interaction between the chains of
BEDO–TTF molecules in the conducting bilayers of
such films, which results in the formation of a quasi-
two-dimensional electron system. In other words,
charge carriers in the films studied in [32] move along
conducting planes rather than along quasi-one-dimen-
sional chains, as in our case. It is known that, at the
same defect concentration, localization effects in a
quasi-one-dimensional system are much more pro-
nounced than in a quasi-two-dimensional system. 

Thus, the temperature dependence of the intracrys-
tallite conductivity of the films under study at T < TMD
agrees with the model of electron-state localization in a
disordered quasi-one-dimensional system [18]. Fitting
the experimental data to the relations from that work
leads to reasonable values of the electron–phonon and
electron–impurity scattering times, as well as the mean
free path and the localization length.

3.4. Metallic Conductivity at T > TMD

We now consider the temperature range T > TMD,
where the conductivity has metallic behavior (∂σ/∂T <
0). In terms of the electron localization described
above, the change in the character of conductivity at
T > TMD is explained by the fact that the quantum inter-
ference of scattered electron waves is suppressed by the
P

inelastic electron–phonon interaction, which becomes
substantial at sufficiently high temperatures (when the
inequality τin ! τ is satisfied). In this case, the longitu-
dinal and transverse conductivities are given by
Eqs. (28) in [18]. According to those equations, the
temperature dependences of the conductivities are fully

determined by the inelastic-relaxation rate (T),
which reflects the specific features of the phonon sub-
system of quasi-one-dimensional materials. As noted

above, at high temperatures (T > ΘD), we have  ∝  T;
therefore, according to [18], we can expect σ⊥ (T),
σ||(T) ∝  T–1 at T > TMD. The conductivity 〈σ(T)〉  mea-
sured in our experiments should also obey this law,

namely, 〈σ(T)〉  =  ∝  T–1. However, Fig. 5
shows that the temperature variation of the curve is
much weaker. This discrepancy can be due to the sim-

plified approach used to describe the (T) depen-
dence. Indeed, the properties of the phonon subsystem
of low-dimensional organic materials are specific: at
high temperatures, one has to take into account
intramolecular phonon excitations in addition to lattice
phonons. Gor’kov et al. [33] tried to describe the tem-

perature dependence of  in such systems; however,
they considered only the case of low temperatures (T !
ΘD). At high temperatures, a large number of phonon
modes is excited and the situation becomes very com-

plex. Therefore, the description of (T) with the
Hopfield relation, which is justified at not very high
temperatures above the Debye temperature, can be too
rough an approximation at T > 200 K. The situation is
also complicated by the fact that, at sufficiently high
temperatures, thermally excited phonons contribute to
the random potential [31], which leads to additional
electron localization.

Note that the crystals of the Qn(TCNQ)2 salts with a
weak intrinsic structural disorder caused by a random
orientation of asymmetric Qn cations also exhibit a
change in the character of conductivity from semicon-
ducting (∂σ/∂T > 0) to metallic at 240 K, which is
caused by suppression of the localization by inelastic
electron–phonon scattering. The mechanisms of elec-
tron transport and localization in this compound can be
explained in the same way as in the case described
above for films. However, the temperature dependence
of the conductivity of these crystals also deviates from
the law σ ∝  T–1; namely, at T > 240 K, σ ∝  T–n, where
n = 1.5–2 [7].

However, the most serious discrepancy between the
predictions made in [18] and the experimental data

[which indicates that the approximation used for (T)
becomes rough at high temperatures] manifests itself
when the temperature of the conductivity maximum

 is estimated. In terms of the model developed in
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σ⊥ T( )σ|| T( )

τ in
1–

τ in
1–

τ in
1–

τ in
1–

TMD*
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004



ELECTRON LOCALIZATION 1139
[18],  can be found from the condition that, at this
temperature, the inelastic electron–phonon scattering
time becomes equal to the electron–impurity scattering
time, i.e., τ = (2πkB λ/")–1. Whence it follows that

 = "/(2πkBλτ) = 2426 K, which exceeds the exper-
imental value of TMD by an order of magnitude. Similar

estimations for Qn(TCNQ)2 lead to  = 406 K.7

This value also differs from the experimental tempera-
ture of the conductivity maximum (240 K), although
this discrepancy is not as high as in the case of the films.

The fact that using the Hopfield relation for describ-

ing (T) at high temperatures causes problems was
noted long ago. For example, Bright et al. [26] estab-
lished that the experimental room-temperature values

of  in TTF–TCNQ crystals correspond to λ equal to
approximately 1.3 in the Hopfield relation.8 However,
as mentioned in review [20], this high value of λ is
about an order of magnitude greater than the value
required for correct description of the whole spectrum
of the magnetic and structural properties of these crys-
tals. Due to the reasons given above, the problem of

finding the form of (T) in quasi-one-dimensional
organic materials at high temperatures has not yet been
solved, and this circumstance hinders comparing the
results from [18] with the experimental data at T > TMD.
At the same time, as shown above, the Hopfield relation

is a valid approximation for  in the temperature
range ΘD < T < 200 K and its using leads to reasonable
values for λ in the films.

4. CONCLUSIONS

We have presented the results of studying the tem-
perature dependence of the intracrystallite conductivity
of the LB films of (C16H33–TCNQ)0.4(C17H35–
DMTTF)0.6 measured with the acoustic technique pro-
posed by us in [9]. We have found that the temperature
dependence of the conductivity has a characteristic fea-
ture at TMD = 193.5 K; more specifically, the conductiv-
ity of the films above TMD is metallic (∂σ/∂T < 0),
whereas below this temperature it obeys the law σ(T) =
σ0(T)exp[–(8T0/Tz)1/2], where σ0(T) varies with tem-
perature more slowly than the exponential factor. We
believe that the nonmetallic behavior of the conductiv-
ity at T < TMD is related to the localization of electron
states in the quasi-one-dimensional system under study

7 When calculating , we assumed that the electron–phonon

interaction constant λ in Qn(TCNQ)2 is the same as that in TTF–
TCNQ crystals, λ ≈ 0.23 [27].

8 Note that calculating  in the films at λ = 1.3 gives  =

205 K, which is close to the experimental value TMD = 193.5 K.
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and is caused by the presence of impurities, defects, and
distortions in the linear conducting chains of TCNQ
molecules, along which charges are transferred. The
observed temperature dependence of the conductivity
agrees qualitatively and quantitatively with the model of
electron localization in a weakly disordered quasi-one-
dimensional system [18]. Fitting the experimental results
to the theoretical dependences taken from [18] allowed
us to evaluate the electron–phonon [τin(193.5 K) = 6 ×
10–14 s] and electron–impurity (τ = 4.6 × 10–15 s) scat-
tering times. Based on the structural parameters of the
conducting layer, we estimated the density of states at
the Fermi level (gLB(εF) ≈ 1.2 × 1022 eV–1 cm–3) and the

Fermi velocity (  ≈ 4.7 × 106 cm/s) in the films
under study, which allowed us to determine the mean
free path l and the localization length lloc = 4l =

4 τ ≈ 8.6 Å in the films. Our estimations show that
a strong (Anderson) localization mode (kFl ≤ 1) is real-
ized in the films.

The metallic temperature behavior of the conductiv-
ity at T > TMD is caused by suppression of the localiza-
tion effects by inelastic electron–phonon scattering,
which becomes substantial at high temperatures, when
the inequality τin ! τ is satisfied. The experimental tem-
perature dependence of the film conductivity at T > TMD
differs from that predicted in [18]. Moreover, the esti-
mates of TMD based on the results of that work are an
order of magnitude higher than the experimental val-
ues. We believe that these discrepancies can be
explained by the imperfection of the approximation

used for (T), whose roughness becomes more pro-
nounced at high temperatures. In concluding, it should

be noted that the problem of finding the form of (T)
in quasi-one-dimensional organic materials at high
temperatures has remained unsolved for more than
thirty years [20, 26].

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project nos. 01-02-16068, 03-02-
22001) and the federal program of support for leading
scientific schools (project no. NSh 1391.2003.2).

REFERENCES

1. P. Delhaés and V. M. Yartsev, in Spectroscopy of New
Materials, Ed. by R. J. H. Clark and R. E. Hester (Wiley,
Chichester, 1993), Vol. 22, p. 199.

2. S. N. Ivanov, L. A. Galchenkov, and F. Ya. Nad’,
Radiotekh. Élektron. (Moscow) 38 (12), 2249 (1993).

3. T. Nakamura, G. Yunome, R. Azumi, M. Tanaka,
H. Tachibana, M. Matsumoto, S. Horiuchi, H. Yamochi,
and G. Saito, J. Phys. Chem. 98 (7), 1882 (1994).

v F
LB

v F
LB

τ in
1–

τ in
1–
4



1140 GALCHENKOV et al.
4. H. Ohnuki, T. Noda, M. Izumi, T. Imakubo, and R. Kato,
Phys. Rev. B 55 (16), R10225 (1997).

5. S. Kahlich, D. Schweitzer, I. Heinen, S. E. Lan,
B. Nuber, H. J. Keller, K. Winzer, and H. W. Helberg,
Solid State Commun. 80 (3), 191 (1991).

6. J. Richard, M. Vandevyver, P. Lesieur, A. Barraud, and
K. Holczer, J. Phys. D: Appl. Phys. 19 (12), 2421 (1986).

7. I. F. Shchegolev, Phys. Status Solidi A 12 (1), 9 (1972).
8. H. W. Helberg and M. Dressel, J. Phys. I (France) 6 (12),

1683 (1996).
9. V. Chernov, L. Galchenkov, S. Ivanov, P. Monceau,

I. Pyataikin, and M. Saint-Paul, Solid State Commun. 97
(1), 49 (1996).

10. L. A. Galchenkov, S. N. Ivanov, F. Ya. Nad’, V. P. Cher-
nov, T. S. Berzina, and V. I. Troitskiœ, Biol. Membr. 7
(10), 1105 (1990).

11. A. M. Dykhne, Zh. Éksp. Teor. Fiz. 59 (1), 110 (1970)
[Sov. Phys. JETP 32, 63 (1971)].

12. O. V. Konovalov and I. I. Pyataœkin, unpublished.
13. F. Rustichelli, S. Dante, P. Mariani, I. V. Myagkov, and

V. I. Troitsky, Thin Solid Films 242 (1–2), 267 (1994).
14. T. J. Kistenmacher, T. E. Phillips, and D. O. Cowan, Acta

Crystallogr. B 30 (3), 763 (1974).
15. L. A. Galchenkov, S. N. Ivanov, F. Ya. Nad’, V. P. Cher-

nov, T. S. Berzina, and V. I. Troitsky, Synth. Met. 42 (1–
2), 1471 (1991).

16. A. A. Gogolin, V. I. Mel’nikov, and É. I. Rashba, Zh.
Éksp. Teor. Fiz. 69 (1), 327 (1975) [Sov. Phys. JETP 42,
168 (1975)].

17. V. N. Prigodin and Yu. A. Firsov, Pis’ma Zh. Éksp. Teor.
Fiz. 38 (5), 241 (1983) [JETP Lett. 38, 284 (1983)].

18. É. P. Nakhmedov, V. N. Prigodin, and A. N. Samukhin,
Fiz. Tverd. Tela (Leningrad) 31 (3), 31 (1989) [Sov.
Phys. Solid State 31, 368 (1989)].
PH
19. Z. H. Wang, A. Ray, A. G. MacDiarmid, and A. J. Epstein,
Phys. Rev. B 43 (5), 4373 (1991).

20. D. Jérome and H. J. Schulz, Adv. Phys. 31 (4), 299
(1982).

21. E. B. Starikov, Int. J. Quantum Chem. 66 (1), 47 (1998).
22. E. B. Starikov, private communication.
23. E. M. Conwell, Phys. Rev. B 22 (4), 1761 (1980).
24. S. K. Khanna, E. Ehrenfreund, A. F. Garito, and

A. J. Heeger, Phys. Rev. B 10 (6), 2205 (1974).
25. T. Wei, P. S. Kalyanaraman, K. D. Singer, and A. F. Garito,

Phys. Rev. B 20 (12), 5090 (1979).
26. A. A. Bright, A. F. Garito, and A. J. Heeger, Phys. Rev. B

10 (4), 1328 (1974).
27. A. J. Berlinsky, Contemp. Phys. 17 (4), 331 (1976).
28. L. N. Bulaevskiœ, V. L. Ginzburg, G. F. Zharkov,

D. A. Kirzhnits, Yu. V. Kopaev, E. G. Maksimov, and
D. I. Khomskiœ, in Problem of High-Temperature Super-
conductivity, Ed. by V. L. Ginzburg and D. A. Kirzhnits
(Nauka, Moscow, 1977).

29. S. Ishibashi and M. Kohyama, Phys. Rev. B 62 (12),
7839 (2000).

30. K. Lee, R. Menon, C. O. Yoon, and A. J. Heeger, Phys.
Rev. B 52 (7), 4779 (1995).

31. A. A. Gogolin, S. P. Zolotukhin, V. I. Mel’nikov,
É. I. Rashba, and I. F. Shchegolev, Pis’ma Zh. Éksp.
Teor. Fiz. 22 (11), 564 (1975) [JETP Lett. 22, 278
(1975)].

32. Y. Ishizaki, M. Izumi, H. Ohnuki, K. Kalita-Lipinska,
T. Imakubo, and K. Kobayashi, Phys. Rev. B 63 (13),
134201 (2001).

33. L. P. Gor’kov, O. N. Dorokhov, and F. V. Prigara, Zh.
Éksp. Teor. Fiz. 85 (4), 1470 (1983) [Sov. Phys. JETP 58,
852 (1983)].

Translated by K. Shakhlevich
YSICS OF THE SOLID STATE      Vol. 46      No. 6      2004



  

Physics of the Solid State, Vol. 46, No. 6, 2004, pp. 1141–1144. Translated from Fizika Tverdogo Tela, Vol. 46, No. 6, 2004, pp. 1108–1110.
Original Russian Text Copyright © 2004 by Davydov.

                                                                                                           

LOW-DIMENSIONAL SYSTEMS
AND SURFACE PHYSICS

       
Adsorption of Barium and Rare-Earth Metals on Silicon
S. Yu. Davydov

Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia
e-mail: sergei.davydov@ioffe.mail.ru

Received September 8, 2003

Abstract—The change in the work function of the Si(111) surface caused by deposition of a submonolayer film
of barium has been calculated with due account of dipole–dipole adatom repulsion and metallization effects.
The results of the calculations agree satisfactorily with experimental data. The character of the variation in the
model parameters in the Ba–Sm–Eu–Yb series is discussed. The electron tunneling probability from an adatom
quasi-level to the substrate conduction band and the energy barrier for interatomic transitions of electrons in an
adlayer were estimated. © 2004 MAIK “Nauka/Interperiodica”.
1. Submonolayer films of alkali (AM) and alkaline-
earth metal (AEM) atoms have been intensely used in
emission electronics to lower the work function of
high-melting thermionic cathodes; as a result, the AM
and AEM interaction with metallic substrates has been
studied fairly well [1, 2]. AM films on semiconductor
substrates have been explored to a much lesser extent,
because such adsorption systems undergo structural
rearrangement and feature metal–semiconductor elec-
tronic transitions (see, e.g., [3] and references therein).
As for AEM films on semiconductors, their investiga-
tion is only at the earliest stage.

A scanning tunneling microscopy study [4]
explored the effect of a barium film deposited on a
Si(111)-(7 × 7) surface on the variation of the work
function ∆φ(Θ) of the adsystem, where Θ = N/NML is
the coverage (N is the concentration of adatoms and
NML is the concentration of adatoms in a monolayer). It
was established that an increase in Θ brings about a
lowering of the work function of the system and rear-
rangement of the silicon (111) surface from the (7 × 7)
structure to (3 × 1)  (5 × 1)  (2 × 8). This com-
munication reports on a calculation of ∆φ(Θ) in the
Ba/Si(111)-(7 × 7) system carried out within the model
developed in [5] for describing the adsorption of rare-
earth metals (REM) on semiconductors.

2. To describe AM adsorption on semiconductor
substrates, a model was proposed in [6, 7] based on the
Anderson–Newns Hamiltonian [2]. This model takes
into account the dipole–dipole adatom repulsion and
the metallization effects associated with electron
exchange among atoms in the adlayer. The model dis-
regarded the specific adlayer structure, which made it
possible to describe the ∆φ(Θ) relation for AM adsorp-
tion on silicon [6] and rutile [7] fairly simply (and sat-
isfactorily). This model was subsequently extended to
cover REM adsorption on Si(111) [5]. Considered in
terms of the Anderson–Newns Hamiltonian, the differ-
ence between the AM and REM adsorption is that, in
1063-7834/04/4606- $26.00 © 21141
the former case, the adsorbed atom has one electron in
the outer s shell, while in the latter, the s shell contains
two electrons. Because the barium 6s shell also con-
tains two electrons, it appears only natural to use here
the results obtained in [5].

In accordance with [5], the adatom charge Z is

(1)

Here, ξ is the adatom dipole–dipole repulsion constant,
e is the positronic charge, 2λ is the adsorption bond
length (which is equal to the thickness of the double
electric layer), A = 10 is a dimensionless coefficient that
depends weakly on the adatom array geometry, Ω = (I –
φ + ∆) is the position of the adatom quasi-level relative
to the substrate Fermi level, I is the s-shell ionization
energy, φ is the substrate work function, ∆ = e2/4λ is the
Coulomb shift of the level of the adatom caused by the
interaction of its electron with the substrate electrons,
Γ0 is the quasi-level half-width of a single adatom, and
γ is a dimensionless parameter taking into account the
broadening of the adatom quasi-level into a two-dimen-
sional band, i.e., the metallization effects.

The change in the work function ∆φ(Θ) resulting
from adsorption is given by

(2)

3. Prior to continuing our calculations, we have first
to specify the model parameters. The value of NML can
be derived from the distance between the nearest neigh-
bors in bulk barium samples, d = 4.35 Å [8]. As in [5],
we set λ = 0.7ra, where ra = 2.24 Å is the atomic radius
of barium [9]. As in [4], we assume the silicon work
function φ to be 4.8 eV and the barium ionization
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Table 1.  Model parameters

Film Ω , eV Γ0, eV Φ, eV ξ, eV γ NML, 1014 atoms/cm2 λ, Å Z0 ZML

Ba 1.88 1.88 15.1 8.7 0.575 5.3 1.6 0.50 0.14

Sm 1.725 2.55 17.6 10.0 1.87 7.5 1.3 0.38 0.08

Eu 1.50 1.87 15.5 8.6 0.45 6.0 1.4 0.43 0.12

Yb 1.12 1.37 15.3 8.1 0.10 6.5 1.3 0.44 0.11
energy to be I = 5.21 eV. To find Γ0 and γ, we make use
of the scheme proposed in [6, 7] based on fitting the val-
ues of (d∆φ/dΘ)Θ → 0 and ∆φML ≡ ∆φ (Θ = 1) to experi-
mental data. Note that, for the work function of the
monolayer coverage, we took the value corresponding
to the intensity of the Auger signal equal to unity [4,
Fig. 2]. The model parameters found for Ba are pre-
sented in Table 1, which also lists the parameters for
REMs for comparison.

The calculated ∆φ(Θ) data are compared with the
experimental data in the figure. The agreement between
the calculations and experiment is seen to be quite sat-
isfactory. Note that not all of the available experimental
data are displayed in the figure. The reason for this is
that the values of ∆φ for the coverage region Θ ≈ 0.15
quoted in [4] have a large scatter and vary from 0.2 to
0.8 eV [4, Fig. 2]. The figure shows ∆φ(0.15) = 0.8 eV,
the value closest to the calculation. (Note that, at larger
coverages, the experimental scatter is also quite large.)

The agreement between the calculated and experi-
mental data permits us to interpret the change in the
work function differently from what was accepted in
[4], where the reduction of the work function was
believed to be a consequence of a rearrangement of the
silicon surface caused by barium adsorption. Our
model, disregarding reconstruction of both the sub-
strate and the adlayer, assigns the ∆φ(Θ) dependence to
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adatom depolarization through the dipole–dipole and
exchange interactions, i.e., through the same effects
that are significant in adsorption on metals [2]. This
does not come as a surprise. Indeed, the electron affin-
ity for silicon is χ = 3.99 eV and the band gap is Eg =
1.11 eV [10]; therefore, the adatom quasi-level, which
for zero coverage is at an energy Ω = 1.88 eV, overlaps
the silicon conduction band, a typical “metallic” situa-
tion.1 For monolayer coverage, where ΩML = Ω – ξZML =
0.66 eV, the situation for the silicon substrate possess-
ing intrinsic or electronic conduction (the material used
in [4] is n-Si) does not change. Thus, we believe that
structural rearrangement of the silicon surface is not the
primary reason for the decrease in the work function;
rather, both the decrease in φ and the reconstruction of
the silicon surface are a consequence of a change in the
electronic structure of the adlayer (see, e.g., [11] and
references therein).

4. Consider the variation of the model fitting param-
eters Γ0 and γ in the adsorbate series Ba–Sm–Eu–Yb
(Table 1). Such a consideration is appropriate for two
reasons. First, all these atoms have a filled outer 6s
shell, and second, barium is a model atom for calculat-
ing the REM cohesion energy [12] and the REM
adsorption energy on d metals [13].

In the Anderson–Newns model, the quasi-level half-
width is Γ0 = πρsV2, where ρs is the substrate density of
states (in our particular case, the density of states in the
conduction band), which for the sake of simplicity is
assumed to be constant, and V is the matrix element of
the adatom–substrate interaction representing a two-
center tunneling integral between the states of the ada-
tom |a〉  and of the substrate |s〉  [14]. According to [15],
the matrix element V squared can be presented in the
form

(3)

where ρs(a) is the density of states of the substrate (ada-
tom) and Ds is the probability of electron tunneling
through the energy barrier separating the adatom from
the substrate. The probability of an electron having an
energy E = χ – I + ∆ (the energy is reckoned from the

1 The metallic situation is identified in this case with the possibility
of direct electron tunneling from the adatom quasi-level to free
substrate states.

V
2 ρs

1– ρa
1–
Ds,∼
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Table 2.  Probability of adatom electron tunneling Ds into the substrate

Parameter Ba Sm Eu Yb

Ds 0.13 0.22 0.145 0.09

Ds/ρa, eV 1.52 2.57 1.40 0.65

Ua, eV 3.78 1.69 4.33 6.41

Note: The ratio Ds/ρa is proportional to the half-width of the single adatom quasi-level Γ0; Ua is the barrier height for electron tunneling
from the adatom quasi-level into the adlayer.
conduction band bottom) to cross a barrier of height χ
and width b is [16]

(4)

where "k1 =  and "κ2 = .
We set the barrier width b equal to the half-sum of

the atomic radii of silicon and of the adsorbed atom.
Because Γ0 = πρsV2, we have, in accordance with
Eq. (3),

(5)

where the density of states for the adatom is ρa =

Γ0/π(Ω2 + ). The calculated tunneling probability Ds

and the Ds/ρa ratio are listed in Table 2, from which it
is seen that the value of the ratio Ds/ρa correlates well
with the value of Γ0 for Ba, Sm, and Eu, whereas for Yb
the agreement is not as good.

Consider now the parameter γ. If one takes into
account only direct electron exchange between the
nearest neighbor adatoms, γ can be shown to have the
form [17]

(6)

where zn.n. is the number of nearest neighbors in a
monolayer and tML is the electron transfer integral
between the nearest neighbor adatoms in a monolayer.
Equation (6) can be recast as

(7)

We have introduced here the half-width of the adatom
quasi-level Γa related to the possibility of electron tun-
neling in the adlayer. We can thus set

(8)

where Da is the probability of an electron tunneling into
the adlayer by crossing a barrier of height Ua and width
d/2. Hence, parameter γ determines the probability ratio
for an adatom electron to tunnel into the adlayer and
into the substrate.

The probability Da is calculated from Eq. (4), with
the electron affinity χ replaced by Ua and a replaced by
d/2. Equating Da to the product γDs calculated from the

Ds

4k1
2κ2

2

k1
2 κ2

2
+( )

2
κ2b( )sinh

2
4k1

2κ2
2

+
------------------------------------------------------------------------,=

2mE 2m χ E–( )

Γ0 Ds/ρa,∼

Γ0
2

γ T
2
/ Ω2 Γ0

2
+( ), T

2
zn.n.tML

2
,≡=

γ Γa/Γ0, Γa πρaT
2
.= =

γ Da/Ds,=
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data in Tables 1 and 2, we obtain the values of Ua listed
in Table 2. The values of Ua for Ba, Sm, and Eu appear
quite reasonable, whereas for ytterbium the barrier
height is obviously a gross overestimate, which is a
consequence of the extreme smallness of the corre-
sponding parameter γ = 0.1. (In this connection, it
should be stressed that the magnitude of the fitting
parameter γ derived from [6, Eq. (6)] or [7, Eq. (4)], is
extremely sensitive to variation of the adatom charge in
the monolayer, ZML, which is small. Indeed, a decrease
in ZML for Yb by one one-hundredth brings about a two-
fold increase in the parameter γ.2 

To sum up, we have shown that, first, the model pro-
posed originally for describing the adsorption of alkali
metal atoms on semiconductors has a broader area of
application. Second, we have demonstrated that the fit-
ting parameters of the proposed model are quite reason-
able. From this it follows that the major factor govern-
ing structural transitions in the substrate, which were
pointed out in [4], is the depolarization of the adatoms,
which grows in significance as their concentration
increases.
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Abstract—The extent and phase chemical composition of the interface forming under atomic layer deposition
(ALD) of a 6-nm-thick Al2O3 film on the surface of crystalline silicon (c-Si) has been studied by depth-
resolved, ultrasoft x-ray emission spectroscopy. ALD is shown to produce a layer of mixed Al2O3 and SiO2
oxides about 6–8 nm thick, in which silicon dioxide is present even on the sample surface and its concentration
increases as one approaches the interface with the substrate. It is assumed that such a complex structure of the
layer is the result of interdiffusion of oxygen into the layer and of silicon from the substrate to the surface over
grain boundaries of polycrystalline Al2O3, followed by silicon oxidation. Neither the formation of clusters of
metallic aluminum near the boundary with c-Si nor aluminum diffusion into the substrate was revealed. It was
established that ALD-deposited Al2O3 layers with a thickness up to 60 nm have similar structure. © 2004 MAIK
“Nauka/Interperiodica”.
The method of atomic layer deposition (ALD) has
recently been attracting increasing interest as a promis-
ing means of forming heterostructures for the develop-
ment of modern micro- and nanoelectronics devices. In
view of the extremely small size of the nanostructures,
their formation requires the control of the growth pro-
cess at the monatomic layer. To solve this problem, one
has to apply to the surface of one compound very thin
perfect layers of other compounds in a given order and
of a predetermined thickness. The principles underly-
ing the ALD method are outlined in [1].

In this study, we used the ALD process to deposit the
oxide Al2O3 on the Si(100) surface layers. Because alu-
minum oxide has a considerably higher value of dielec-
tric permittivity k than silicon oxide, this structure is
considered a promising material for microelectronics
(the so-called high-k material). Obviously enough, the
electrophysical properties of the heterostructure are
determined not only by the characteristics of the thin
Al2O3 layer but also by the characteristics of the inter-
face with silicon. The present study addresses this
issue. We are interested here in the phase chemical
composition of the Al2O3/Si interface and its extent
(thickness).

Considerable attention has been focused recently on
the analysis of the properties of Al2O3 films fabricated
by ALD [2–8]. The formation of the structure of thin
ALD-deposited Al2O3 films and the underlying pro-
cesses have been studied primarily by electron (x-ray
photoelectron and Auger electron) spectroscopy, sec-
ondary ion mass spectrometry, recording the elastic
recoil of light atoms upon scattering of heavy atoms,
etc. However, the results obtained in such studies
1063-7834/04/4606- $26.00 © 21145
remain contradictory in many respects. This is appar-
ently associated with the application of destructive
methods to a depth-resolved analysis of the structure
and chemical composition of films. These methods also
do not permit one to study thick coatings.

The present communication reports on a study of
interfaces using a nondestructive method of probing the
phase chemical composition, namely, depth-resolved
ultrasoft x-ray emission spectroscopy [9, 10]. This
method makes use of the dependence of the depth of
escape of characteristic x-ray radiation on the primary
electron energy. The characteristic x-ray emission
bands are created by valence band electrons spontane-
ously filling the vacancies produced by electron impact
in the inner atomic shells. The dependence of the shape
of the x-ray emission bands on the chemical state of the
emitting atom permits reliable determination of the
phase chemical composition of a sample.

Silicon plates were preliminarily exposed to hydrof-
luoric acid vapor and a glow discharge plasma in the
presence of water vapor at a temperature of 200–300°C
under reduced pressure. The actual atomic layer depo-
sition process consisted of the following cycles. The
reactor was filled by vapors of trimethyl aluminum
(TMA) for a few tenths of a second, with subsequent
evacuation of the reagent and admission of water vapor
to the reactor, which prepared the surface for the next
ALD cycle. These cycles were repeated the required
number of times. Samples with Al2O3 layer thicknesses
varying from a few nanometers to a few hundreds of
nanometers were prepared. X-ray spectroscopy showed
the interfaces of thin films, with thicknesses of up to
about 60 nm, to have similar properties, which vary
with increasing coating thickness (i.e., interface depth).
004 MAIK “Nauka/Interperiodica”
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Because the amount of the data obtained is too large to
be presented in one publication, we describe only the
results of a study of thin coatings using the example of
a 6-nm-thick layer. The studies of deeper lying Al2O3/Si
interfaces will be reported later.

We studied the dependence of the shape of the alu-
minum and silicon L2, 3 x-ray emission bands on the pri-
mary electron energy E0. The measurements were con-
ducted on an RSL-1500 ultrasoft x-ray spectrometer
[11]. The spectra in the range 50–110 eV were obtained
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with a wavelength resolution of 0.2 nm. The primary
electron current did not exceed 1 mA, and the reproduc-
ibility of the results and the constancy of the electro-
physical parameters of the structures were monitored
periodically.

Figure 1 shows L2, 3 x-ray emission bands of pure
crystalline aluminum and silicon (c-Si) and the bands
of the same atoms in stoichiometric oxides. These
bands will be used as references when analyzing the
emission spectra of an ALD-deposited Al2O3/Si film.
Figure 1 also shows the spectral response of the absorp-
tion coefficient of x-ray radiation by an Al2O3 film. The
fine structure of the absorption spectrum near the L2, 3
absorption edge may distort the spectral shape of the
silicon radiation passing through the film, and this
effect should be taken into account in analyzing the
shape of the spectra. This effect (self-absorption of
escaping radiation) was found to be small for the thin
coatings studied here and could not produce noticeable
distortions in the spectral shape.

Figure 2 displays x-ray emission spectra of a sample
with the silicon surface coated by a 6-nm-thick Al2O3
layer (Al2O3(6 nm)/Si) that demonstrate the depen-
dence of the spectral shape on E0 in the range including
Al and Si L2, 3 bands. The labeling of the maxima of the
spectra is the same as that in Fig. 1, and the spectra are
normalized against the intensity of the Si L2, 3 band.

The spectra obtained at the minimum primary elec-
tron energy (0.3 keV) are seen to contain L2, 3 bands of
the Al and Si atoms entering into Al2O3 and SiO2,
respectively (maxima A, B, C, D, E). After E0 has been
increased to 0.5 keV, a maximum b appears in the sili-
con spectrum. As E0 is increased still further, maxima a
and c become evident and the silicon spectrum practi-
cally coincides with the c-Si spectrum (Fig. 1). The
shape of the Al L2, 3 band is independent of E0, with only
its relative intensity changing. At E0 = 1.5 keV, the con-
tribution from the aluminum band intensity to the total
intensity of recorded radiation becomes negligible.

The explanation for the observed variations is
straightforward. Indeed, at the lowest energy E0 =
0.3 keV, the sample layer responsible for the x-ray
emission bands does not exceed the Al2O3 coating in
thickness and contains, in addition to the aluminum
oxide, oxidized silicon atoms in the coordination char-
acteristic of SiO2. As E0 increases, the lower boundary
of the emitting layer shifts away from the surface to
cross the substrate interface and its contribution to the
spectrum increases (the c-SiL2, 3 band in pure silicon,
maxima a, b, and c) and quickly becomes dominant.

Analysis of the band shape evolution with increas-
ing E0 suggests the obvious conclusion that ALD of
Al2O3 on an oxide-free surface of a silicon single crys-
tal produces an interface containing, nevertheless, a
considerable amount of the silicon oxide SiO2. This
conclusion can be supported in a more revealing way.
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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Figure 3 shows deconvolution of an experimental sili-
con spectrum into constituents for two values of E0. For
constituents, we chose only the SiL2, 3 bands in c-Si and
SiO2 (Fig. 1). The fit to the experimental spectrum
unfolded into constituents by the standard least squares
procedure turned out to be very good. This shows that,
in the region of the interface, silicon atoms are coordi-
nated either as in c-Si (the substrate) or as in SiO2 (the
coating). Figure 3 identifies the fine structure in the
experimental spectra in the notation used in Fig. 1.

While the above analysis provides evidence for the
presence of not only aluminum oxide but also a sub-
stantial amount of SiO2 (in a concentration comparable
to that of Al2O3) in the surface layer, it does not offer
insight into the silicon oxide distribution in depth. This
information can be extracted from data on the depen-
dence of the relative band intensities on E0. Figure 4
displays the behavior of the integrated intensities of the
SiL2, 3 bands in SiO2 and c-Si obtained from unfolded
spectra and normalized against the AlL2, 3 band inten-
sity in Al2O3 (Fig. 2). The relative intensity of the c-Si
spectrum grows rapidly, which reflects the shift of the
center of gravity of the excitation into the substrate with
increasing E0. Obviously enough, excitation of the c-Si
band starts when the energy E0 reaches a value close to
0.3 keV. This means that the c-Si interface is overlaid
and, in order for the electrons crossing the layer to be
able to ionize the Si 2p shell, their energy has to exceed
the binding energy of the electrons in this shell
(99.8 eV) by approximately 200 eV.

The E0 dependence for the SiO2 band is more com-
plex; its relative intensity increases and saturates at
E0 = 0.8 keV. Extrapolating this graph to zero through
the first three points shows that the SiO2 spectrum
appears when E0 enters the region of 100.0 ± 0.5 eV,
which includes the binding energy of the Si 2p elec-
trons in SiO2 (104.1 eV). The matching (to within
experimental error) of the extrapolation point to the
binding energy of the scanning 2p level means that sil-
icon oxides are not only present in the synthesized
Al2O3 film but emerge onto its surface as well. Let us
estimate the pattern of the silicon dioxide distribution
across the coating thickness. In our case, where the
atomic numbers of the elements and the ionization
energies of the scanning 2p shells are similar and the
film thickness is small, it can be shown that the depen-
dence of the intensity ratio of the Si and Al L2, 3 spectra
on E0 should be determined primarily by the ratio of the
2p-shell electron-impact ionization cross sections,
σSi(E0)/σAl(E0). This ratio was calculated using the
Grysinsky formula for the cross sections of np shell
ionization by electron impact [12] and is shown in
Fig. 4 by circles (the experimental and theoretical
curves are matched in magnitude at the 0.8-keV point).
The cross-section ratio also grows with E0, but substan-
tially faster than the experimental intensity ratio. For
E0 ≥ 0.8 keV, the graphs become identical in shape. The
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
observed difference in shape between the experimental
and theoretical curves can be accounted for as follows.
The theoretical graph is constructed under the assump-
tion that the Al and Si atoms are present in equal con-
centrations (the cross sections are given per atom);
therefore, by varying the scale of the σSi(E0)/σAl(E0)
curve, we vary, as it were, the relative concentration of
the Si and Al atoms. Far from the thresholds, the cross
sections follow the same course and, therefore, their
ratio saturates. This corresponds obviously to about
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0.8 keV (Fig. 4). The relative intensity of the SiL2, 3
band should also reach saturation with increasing E0,
because at high enough values of E0 the conditions of
excitation of Si and Al spectra in a thin near-surface
film become practically the same, irrespective of the
relative concentration distributions. The same reason
accounts for the saturation in the theoretical relation;
thus, there is nothing strange in the fact that the satura-
tion starts in both cases at the same point (0.8 keV).
Thus, by normalizing the theoretical and experimental
relations in this region, we reduce the relative, layer-
averaged atomic concentrations in the theoretical curve
to the experimental value. After this procedure, the the-
oretical curve provides an estimate of the relative Si
radiation intensity for a certain constant average silicon
concentration. As seen from Fig. 4, for any E0, the ordi-
nates of the experimental curve lie below the theoretical
values, but the difference between them decreases with
increasing E0. This fact is a direct indication of the Si
atom concentration (in the SiO2 coordination) increas-
ing as one approaches the interface.

Let us estimate the thickness of the surface layer
coating the silicon substrate. For this purpose, we can
use the empirical relation describing the behavior of the
maximum escape depth from which the Si L2, 3 radiation
emerges from SiO2 [9] by properly changing the layer
density. The coating density should apparently be an
average between the densities of SiO2 and Al2O3, i.e.,
approximately 3–4 g/cm3, in which case the layer thick-
ness is 6–8 nm. If we take into account that ALD is capa-
ble of depositing Al2O3 layers 6 nm thick with a high
accuracy, this estimate appears reasonable. Indeed, the
presence of SiO2 in noticeable amounts, irrespective of
its location, should bring about film swelling.

As follows from an analysis of our results, ALD of
a thin Al2O3 layer on a c-Si surface freed of its native
oxide is a complex process. It gives rise to the forma-
tion of a 6–8-nm-thick layer of mixed Al2O3 and SiO2
oxides, in which silicon dioxide is present even on the
surface of the structure and its concentration increases
as one approaches the c-Si substrate interface. Strictly
speaking, the Al2O3/Si interface does not form, with a
more complex Al2O3–SiO2/Si boundary appearing in its
place. Clusters of metallic aluminum were reported to
have been observed to form in the vicinity of the inter-
face [2–4]. No such clusters at the thin film interface
were found by us within the limits of sensitivity of our
measurements (less than 0.5 wt %) for a thickness of
the emitting layer of about 6–8 nm.

Noticeable oxygen diffusion was found to occur
through the Al2O3 layer in the course of ALD [6–8], and
silicon was observed to diffuse from the substrate to the
surface during the ALD and annealing [8]. Our results
corroborate the findings reported in [6–8]. Indeed, the
most probable mechanism for the formation, in the
Al2O3 film, of the SiO2 oxide, whose concentration
increases as one approaches the substrate, is interdiffu-
P

sion of the oxygen and silicon, followed by silicon oxi-
dation. One could agree with the suggestion from [8]
that oxygen diffuses most probably over grain bound-
aries of the Al2O3 polycrystalline layer, although this
requires supporting evidence. The distributions of ele-
ments in depth presented in [8] indicate that Al atoms
penetrate deep into the substrate. Our results indicate
that the boundary between the c-Si substrate and the
variable-composition Al2O3–SiO2 layer is sharp, with
no Al diffusion into the c-Si observed.

Our study has demonstrated a high efficiency of
ultrasoft x-ray emission spectroscopy in investigating
thin surface layers, and our data offer the possibility of
examining the results obtained by traditional methods
from a different standpoint.
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Abstract—The dependences of the coefficients of reversible thermal expansion on the tensile stress and the
temperature dependences of the elastic modulus are measured for solids with different structures, such as a
metal, rigid-chain oriented polymers, and a flexible-chain oriented polymer—poly(ethylene) in the devitrified
state. For these materials, the elastic moduli differ by several orders of magnitude, whereas the thermal expan-
sion coefficients can differ not only in magnitude but also in sign. It is found that, for a solid, the derivative of
the thermal expansion coefficient with respect to the stress is close to the derivative of the reciprocal of the elas-
tic modulus with respect to the temperature. The inference is made that these parameters do not depend on the
specific features of the solids under investigation. Calculations are performed for several mechanisms of ther-
mal and stress deformations of solids with different structures. The results of these calculations are in reason-
able agreement with experimental data. © 2004 MAIK “Nauka/Interperiodica”.
† 1. INTRODUCTION

Thermal and stress reversible deformations of solids
have different origins.

Reversible thermal deformation (thermal expan-
sion) is caused by a change in the temperature T and is
characterized by the thermal expansion coefficient α =

, where ∂ε =  is the relative change in the size of

a solid.

Reversible stress deformation (elastic deformation)
is caused by a change in the mechanical stress σ and is

characterized by the elastic modulus E =  or the

reciprocal of this quantity, i.e., the elastic compliance

E–1 = .

The quantities α and E–1 have different dimensions
(K–1 and Pa–1, respectively) and, therefore, cannot be
quantitatively compared for a particular solid.

At the same time, the thermal expansion coefficient
and the elastic compliance E–1 for a solid are not con-
stants and depend on the stress and the temperature. For
the stress-dependent thermal expansion coefficient
α(σ) and the temperature-dependent elastic modulus or

† Deceased.

∂ε
∂T
------ ∂l

l
----

∂σ
∂ε
------

∂ε
∂σ
------
1063-7834/04/4606- $26.00 © 21149
temperature-dependent elastic compliance E–1(T), we
can write the following relationship:

(1)

Therefore, the derivative of the thermal expansion
coefficient with respect to the stress and the derivative
of the reciprocal of the elastic modulus with respect to
the temperature have identical dimensions (Pa–1 K–1)
and coincide in magnitude (i.e., there is a peculiar
invariant). Relationship (1) is general and, hence,
should be satisfied for any solid.

Moreover, solids with different structures exhibit a
great variety of mechanisms of thermal expansion and
elastic deformation and differ substantially in terms of
the thermal expansion coefficients (and even in their
sign) and elastic moduli.

A considerable amount of data is available in the lit-
erature on the temperature dependence of the elastic
modulus for low-molecular crystalline materials (pre-
dominantly, metals) [1] and polymers [2]. There are
only a few works concerned with the stress dependence
of the thermal expansion coefficient for metals [3, 4]
that provide a means for verifying relationships (1).
However, there is virtually no data on the stress depen-
dence of the thermal expansion coefficient for polymers
(it is these polymers that can have negative coefficients
of thermal expansion).

∂α
∂σ
------- ∂ E

1–( )
∂T

----------------
∂2ε

∂σ∂T
--------------.= =
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In the present work, we measured the thermal defor-
mation with a variation in the stress and the stress
deformation with a variation in the temperature for
metals and polymers. The stress derivatives of the ther-
mal expansion coefficient were compared with the tem-
perature derivatives of the elastic modulus. The ratios
of the experimentally obtained derivatives of these
quantities were interpreted in terms of several mecha-
nisms of thermal expansion and elastic deformation of
solids with different structures.

2. EXPERIMENTAL TECHNIQUE AND OBJECTS 
OF INVESTIGATION

The thermal and stress deformations were investi-
gated using rodlike samples with an operating length of
100 mm. The deformation of samples was measured
with an accuracy of 3 µm. The temperature was kept
constant to within 0.5 K. The tensile stress was con-
trolled to within 2%.
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Fig. 1. (a) Temperature and (b) stress dependences of the
recoverable strain of the steel wire. (a) Tensile stress σ:
(1) 303, (2) 730, and (3) 1090 MPa. (b) Temperature T:
(1) 293, (2) 323, (3) 353, and (4) 381 K.
P

The stress dependence of the thermal expansion
coefficient was measured as follows: the sample at the
initial temperature was subjected to a number of speci-
fied stresses; under each stress, the sample was heated
at different temperatures; and the thermal strain of the
sample upon heating at these temperatures was mea-
sured.

The temperature dependence of the elastic modulus
was measured as follows: the sample was thermostated
at several specified temperatures; at each temperature,
the sample was subjected to a number of different
stresses; and the stress strain of the sample under these
stresses was measured.

During measurements, the temperature and stress
were varied over sufficiently narrow ranges; as a result,
the thermal and stress strains were virtually recoverable
(i.e., plastic and shrinkage deformations were absent).

The experiments were performed with a metal sam-
ple and several polymer samples.

2.1. Metal

The high-elasticity steel wire used as a metal sample
was 0.4 mm in diameter and possessed a positive coef-
ficient of thermal expansion.

2.2. Polymers

Highly oriented fibers (10–12 µm in diameter) from
rigid-chain polymers, namely, poly(4,4'-oxydiphe-
nylene pyromellitic imide) (PM), poly(p-phenylene
terephthalamide) (Kevlar-49, K-49), and poly(amido-
benzimidazole) (synthetic high-polymer material,
SHPM), had a negative coefficient of thermal expan-
sion along the axis.

Oriented rods (~1 mm in diameter) from a flexible-
chain polymer, namely, poly(ethylene) (PE), had a
large negative coefficient of thermal expansion along
the axis.

3. RESULTS AND DISCUSSION

3.1. Metal

The temperature dependences of the recoverable
strain of the steel wire under different tensile stresses
are shown in Fig. 1a. The stress dependences of the
recoverable strain of the steel wire at different temper-
atures are depicted in Fig. 1b. Since the thermal strains
are positive, we deal with a conventional thermal
expansion. As can be seen from these figures, the ther-
mal expansion of the sample increases under tensile
stresses (Fig. 1a), whereas an increase in the tempera-
ture leads to an increase in the elastic elongation
(Fig. 1b).

It can be seen from Fig. 1 that the temperature and
stress dependences of the recoverable strain exhibit an
almost linear behavior. From the slopes of these depen-
dences, we can determine the thermal expansion coef-
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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ficients α = ∆ε/∆T at different stresses σ and the values
of the reciprocal of the elastic modulus E–1 = ∆ε/∆σ at
different temperatures T. The stress dependence of the
thermal expansion coefficient α(σ) and the temperature
dependence of the reciprocal of the elastic modulus
E−1(T) for the steel wire are plotted in Figs. 2a and 2b,
respectively. After linear approximation of these depen-
dences, we determined the quantities ∆α/∆σ and ∆(E–

1)/∆T, which are given in the table. The thermal expan-
sion coefficients α at T = 293 K and σ = 0 and the elastic
moduli E at T = 293 K are also listed in the table. More-
over, the table presents the characteristics of thermal
and stress deformations for metallic copper [4, 5].

As follows from the table, the quantities ∆α/∆σ and
∆(E–1)/∆T are close to each other (especially for cop-
per). The small difference between these quantities for
the steel can be associated with the errors in the mea-
surements, because, as can be seen from Fig. 1, the
effects of the stress σ on ε(T) and the temperature T on
ε(σ) are insignificant.

Let us consider the factors responsible for the close
values of ∆α/∆σ and ∆(E–1)/∆T and determine the mag-
nitudes of these derivatives for metals. It should be
noted that, in this case, the dominant role is played by
the anharmonicity of the interatomic interaction. It is
this factor that governs not only the thermal expansion
but also the stress dependence of the thermal expansion
coefficient and the temperature dependence of the elas-
tic modulus.

In the simplest model of a solid (a diatomic mole-
cule with an anharmonic bond), the potential of the
interatomic interaction can be represented by an
approximate expression, that is,

(2)

where D is the dissociation energy, f is the coefficient of
linear elasticity, g is the anharmonicity coefficient, and
a is the equilibrium interatomic distance.

According to [6], from expression (2), we derive an
approximate relationship for the elastic modulus,

(3)

(4)

where K is the Boltzmann constant.
The elongation of the anharmonic bond by ∆l leads

to a change (a decrease) in the bond rigidity, i.e., the
coefficient f, which can be represented as follows:

(5)

where f0 is the initial value of f (at ∆l = 0).

U r( ) –D
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  ,≈
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Then, from relationships (3) and (4) for small ∆l, we
obtain

(6)

(7)

An analysis of expressions (6) and (7) shows that the
thermal expansion coefficient and the elastic modulus
depend on the bond elongation, which, in turn, can be
caused by both the stress σ and heating (thermal expan-
sion). Therefore, the thermal expansion coefficient α
and the elastic modulus E depend on the stress σ and
the temperature T. Consequently, upon heating of the
loaded sample (when measuring the dependence of the
thermal expansion coefficient on the stress), the strain
is determined not only by the thermal expansion but
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Fig. 2. (a) Stress dependence of the thermal expansion coef-
ficient and (b) temperature dependence of the reciprocal of
the elastic modulus for the steel wire.
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Characteristics of thermal and stress deformations 

Material α, K–1 (at 293 K, 
σ = 0)

E, Pa (at 293 K)
∆α/∆σ,
Pa–1 K–1

∆(E–1)/∆T, 
Pa–1 K–1

Calculation

∆α/∆σ
= ∆(E–1)/∆T, Pa–1 K–1

Metals Steel 1.12 × 10–5 1.9 × 1011 0.9 × 10–15 2.7 × 10–15 (0.6–1.3) × 10–15

Copper [4, 5] 1.65 × 10–5 1.2 × 1011 2.9 × 10–15 3.1 × 10–15

Polymers PM –0.66 × 10–5 1.1 × 1011 6 × 10–15 7 × 10–15

K-49 –0.53 × 10–5 1.2 × 1011 3 × 10–15 6 × 10–15 ~5 × 10–15

SHPM –0.75 × 10–5 1.2 × 1011 4 × 10–15 4 × 10–15

PE –34 × 10–5 0.7 × 109 0.6 × 10–11 2.2 × 10–11 ~1 × 10–11
also has a stress component due to the change in the
elastic modulus with variations in temperature. Corre-
spondingly, upon loading of the heated sample (when
measuring the dependence of the elastic modulus on the
temperature), the strain is governed not only by the
elastic elongation but also has a thermal expansion
component associated with the change in the thermal
expansion coefficient under a stress. Thus, the thermal
expansion coefficient and the elastic modulus, which
are defined as derivatives of the strain with respect to
the temperature and stress, respectively, turn out to be
more complex functions.

Making allowance for the combined character of the
bond elongation involving the stress component ∆lσ =
a(E–1)∆σ and the thermal component ∆lT = aα∆T, we
obtain the expression

(8)

Therefore, the analysis of the diatomic model con-
firms the validity of the general relationship (1), i.e., the
equality of the cross derivatives.

Now, we quantitatively estimate the magnitude of
the “invariant.” According to the data presented in the
table, the thermal expansion coefficient can be esti-
mated as α0 ≈ (1.1–1.6) × 10–5 K–1. The atomic volume

can be taken as a3 ≈ Va or Va ≈ , where A is the

atomic mass, ρ is the density, and NA is the Avogadro
number. For iron and copper, we have Va ≈ 1.2 ×
10−2 nm3. As a result, from expression (8), we obtain

We can assert that the calculations in the framework
of a rather crude model of a solid lead to a quantitative
result that is in close agreement with the experimental
data.

Thus, for low-molecular materials with a conven-
tional positive coefficient of thermal expansion, the
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PH
invariant is explained in terms of the anharmonicity of
the interatomic interaction.

3.2. Rigid-Chain Oriented Polymers

Rigid-chain polymers are polymers whose skeletons
contain ring groups that prevent conformational transi-
tions and, thus, provide a straightened form of chain
molecules in the polymer material. In oriented poly-
mers, the axes of chain molecules are predominantly
aligned along the axis of the orientation of the polymer
(fiber axes).

In this work, the thermal expansion coefficients and
elastic moduli were measured in the longitudinal direc-
tion under tensile stresses applied along the fiber axis.

Figure 3 shows the temperature dependences of the
recoverable longitudinal strain at different tensile
stresses (Fig. 3a) and the stress dependences of the
recoverable longitudinal strain at different tempera-
tures (Fig. 3b) for a rigid-chain oriented polymer—
polyimide PM.

First and foremost, it can be seen from Fig. 3a that
the longitudinal thermal expansion of the fiber is nega-
tive. The tensile stress leads to a decrease in the magni-
tude of the negative expansion (contraction).

The stress strain of the fiber is positive (Fig. 3b). An
increase in the temperature results in an increase in the
stress strain.

Consequently, the stress strain and the temperature
dependence of the stress strain for the fiber are similar
to those for the metals, whereas the thermal strain and
the stress dependence of the magnitude of the thermal
strain for the fiber are opposite in sign to those for the
metals (cf. Figs. 3, 1). As can be seen from Fig. 3, the
temperature and stress dependences of the recoverable
longitudinal strain exhibit an almost linear behavior.
From the slopes of these dependences, we can deter-
mine the thermal expansion coefficients α = ∆ε/∆T at
different stresses σ (from Fig. 3a) and the elastic mod-
uli E = ∆σ/∆ε at different temperatures T (from
Fig. 3b). The thermal expansion coefficients α at σ = 0
and the elastic moduli E at T = 293 K are presented in
the table. As can be seen, the elastic modulus E for
YSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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polyimide PM is close in magnitude but opposite in
sign to the elastic moduli E for steel and copper.

The stress dependence of the longitudinal thermal
expansion coefficient α(σ) and the temperature depen-
dence of the reciprocal of the longitudinal elastic mod-
ulus E–1(T) for polyimide PM are depicted in Figs. 4a
and 4b, respectively. The table presents the quantities
∆α/∆σ and ∆(E–1)/∆T, which were determined from the
slopes of the linear approximations of the dependences
α(σ) and E–1(T) shown in Figs. 4a and 4b.

The results of similar measurements for other rigid-
chain oriented polymers (K-49, SHPM) are also given
in the table. It can be seen from the table that the values
of each parameter (α, E, ∆α/∆σ, or ∆(E–1)/∆T) for dif-
ferent rigid-chain polymers are close to each other.

We call the reader’s attention to the main result of
these investigations: the close values of ∆α/∆σ and
∆(E–1)/∆T for different rigid-chain polymers are consis-
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Fig. 3. (a) Temperature and (b) stress dependences of the
recoverable longitudinal strain for a rigid-chain oriented
polymer—polyimide PM. (a) Tensile stress σ: (1) 2,
(2)  126, and (3) 253 MPa. (b) Temperature T: (1) 293,
(2) 323, (3) 353, and (4) 381 K.
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tent with the general relationship (1), as is the case with
negative coefficients of thermal expansion.

Let us now analyze the mechanism ensuring the
validity of this relationship for rigid-chain polymers.
This mechanism is associated with the specific features
of the molecular dynamics in these polymers, which are
primarily responsible for the negative sign of the longi-
tudinal thermal expansion coefficient. The skeleton of
chain polymer molecules has a high longitudinal rigid-
ity due to the rigidity of covalent interatomic bonds. As
a consequence, the characteristic temperature of longi-
tudinal vibrations of polymer molecules is relatively
high (1000–1500 K [2]); hence, virtually no longitudi-
nal vibrations are excited at room temperature. The
characteristic temperature of transverse vibrations is
considerably lower (200–400 K [2]). It is these trans-
verse vibrations that bring about the so-called mem-
brane effect [7] or, more specifically, a decrease in the
projection of the molecular skeleton contour onto the
molecular axis, i.e., a decrease in the axial length of the
molecule with an increase in the temperature (negative
coefficient of longitudinal thermal expansion). The the-
ory of negative longitudinal expansion in crystals and
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Fig. 4. (a) Stress dependence of the longitudinal thermal
expansion coefficient and (b) temperature dependence of
the reciprocal of the longitudinal elastic modulus for poly-
imide PM.
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vitrified oriented polymers was developed in [8, 9].
This analysis did not include the effect of stresses on
the thermal expansion coefficient.

In our calculations, we used the model allowing for
the transverse vibrations, which was proposed earlier in
[9], and additionally took into account the effect of the
longitudinal stress σ on the sample. As a result, we
derived the following expression for the negative longi-
tudinal strain in a sample due to the combined effect of
temperature and longitudinal stress (to the first order in
T and σ):

(9)

where f|| and f⊥  are the longitudinal and transverse rigid-
ities of the polymer molecule, respectively; Sm is the
cross-sectional area of the molecule; a|| is the length of
the interatomic bond in the molecular skeleton; and q is
a coefficient of the order of unity.

From formula (9), we obtain the relationships for
the longitudinal thermal expansion coefficient and the
longitudinal elastic modulus:

(10)

(11)

According to relationship (10), the thermal expan-
sion coefficient α is negative at σ = 0 and decreases in
magnitude with an increase in the longitudinal stress σ,
which is actually observed in the experiment.

As follows from expression (11), the quantity E–1

should increase with an increase in the temperature.
This behavior is also in agreement with the experimen-
tal data.

An analysis of relationships (10) and (11) shows
that the aforementioned properties of the thermal
expansion coefficient and the elastic modulus are asso-
ciated with the transverse vibrations. This can be
judged from the coefficient f⊥  (the rigidity of transverse
vibrations) involved in these formulas.

The main result following from relationships (10)
and (11) can be represented as

(12)

This means that the processes under consideration are
consistent with the general relationship (1) (invariant).

The quantitative estimates were made for the follow-
ing parameters: the longitudinal rigidity of the carbon-
chain molecular skeleton f|| ≈ 400 N m–1 [10], the trans-
verse rigidity of the molecular skeleton f⊥  ≈ 20 N m–1

[10], the projection of the C–C bond onto the molecular
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axis a|| ≈ 0.13 nm [11], and the cross-sectional area of
the molecule Sm ~ 0.3 nm2 [11].

Upon substituting the above parameters into rela-
tionships (10)–(12), we obtain the longitudinal thermal
expansion coefficient α ≈ –1 × 10–5 K–1 at σ = 0, the lon-
gitudinal elastic modulus E ≅  1.5 × 1011 Pa at T =
293 K, and the derivatives dα/dσ = d(E–1)/dT ≈ 5 ×
10−15 Pa–1 K–1.

The results of these calculations are in reasonable
agreement with the experimental data for rigid-chain
polymers (see table).

Thus, for rigid-chain oriented polymers with spe-
cific negative coefficients of thermal expansion, the
invariant is explained in terms of the anisotropy of the
molecular dynamics.

3.3. A Flexible-Chain Oriented
Polymer—Poly(ethylene)

Flexible-chain polymers are polymers with simple
“one-dimensional” molecular skeletons of the –C–C–C–
type, which can twist upon devitrification due to con-
formational transitions [2].

The temperature dependences of the recoverable
longitudinal strain at different tensile stresses for a flex-
ible-chain oriented polymer—poly(ethylene) are
shown in Fig. 5a. The stress dependences of the recov-
erable longitudinal strain at different temperatures for
the flexible-chain oriented poly(ethylene) are depicted
in Fig. 5b.

As can be seen from Fig. 5, the behavior of the flex-
ible-chain oriented poly(ethylene) is qualitatively simi-
lar to that of the rigid-chain oriented polymers. Indeed,
the longitudinal thermal expansion of poly(ethylene) is
also negative and the tensile stress leads to a decrease
in the magnitude of the thermal expansion (Fig. 5a).
The stress strain of poly(ethylene) also increases with
an increase in the temperature (Fig. 5b). However,
quantitatively, the thermal expansion coefficients and
elastic moduli of the flexible-chain oriented poly(ethyl-
ene) differ substantially from those of the rigid-chain
oriented polymers (see below).

It is worth noting noted that the temperature depen-
dences of the recoverable longitudinal strain ε(T)
(Fig. 5a) are nonlinear (this inconstancy of the thermal
expansion coefficient with a variation in the tempera-
ture is in agreement with the data obtained for oriented
poly(ethylene) in [12]). In order to elucidate the charac-
ter of the stress dependence of the thermal expansion
coefficient, we analyzed the values of α(σ) = ∂ε/∂T in
the vicinity of only one temperature (300 K). The ther-
mal expansion coefficient α for the flexible-chain ori-
ented poly(ethylene) at σ = 0 is given in the table, and
the stress dependence of the longitudinal thermal
expansion coefficient α(σ) is plotted in Fig. 6a.

The stress dependences of the recoverable longitu-
dinal strain ε(σ) are approximately linear (Fig. 5b). The
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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elastic modulus E = ∂σ/∂ε for poly(ethylene) at T = 293 K
is presented in the table, and the temperature depen-
dence of the reciprocal of the longitudinal elastic mod-
ulus E–1(T) is shown in Fig. 6b.

The table also presents the quantities ∆α/∆σ and
∆(E−1)/∆T, which were determined from the slopes of
the linear approximations of the dependences α(σ) and
E–1(T) depicted in Figs. 6a and 6b.

As follows from the table, the quantities ∆α/∆σ and
∆(E–1)/∆T are in satisfactory agreement. This implies
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Fig. 5. (a) Temperature and (b) stress dependences of the
recoverable longitudinal strain for a flexible-chain oriented
polymer—poly(ethylene). (a) Tensile stress σ: (1) 5, (2) 10,
(3) 15, and (4) 20 MPa. (b) Temperature T: (1) 293, (2) 305,
and (3) 311 K.
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that the general relationship (1) is satisfied for the flex-
ible-chain oriented poly(ethylene), as is the case with
metals and rigid-chain oriented polymers.

However, quantitatively, the characteristics of
poly(ethylene) and rigid-chain polymers differ signifi-
cantly. For poly(ethylene), the negative coefficient of
longitudinal thermal expansion is approximately one
and a half orders of magnitude larger, the longitudinal
elastic modulus is nearly two orders of magnitude
smaller, and the temperature–stress invariant [∆α/∆σ =
∆(E–1)/∆T] is almost four orders of magnitude greater
than those for the rigid-chain polymers.

These differences suggest that the data obtained for
poly(ethylene) cannot be interpreted within the model
proposed for rigid-chain polymers. Actually, the
extremely small elastic modulus of poly(ethylene) indi-
cates that the stress strain is inconsistent with the elon-
gation of covalent bonds in the polymer skeleton. Cor-
respondingly, the large negative coefficient of thermal
expansion has defied description in the framework of
the membrane mechanism. It is evident that, in the flex-
ible-chain oriented poly(ethylene), the thermal and
stress deformations occur through a different mecha-
nism.

In poly(ethylene), the thermal and stress deforma-
tion processes proceed through the conformational
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Fig. 6. (a) Stress dependence of the longitudinal thermal
expansion coefficient and (b) temperature dependence of
the reciprocal of the longitudinal elastic modulus for
poly(ethylene).



1156 LAŒUS et al.
mechanism. This mechanism involves local conforma-
tional transitions of fragments in the chain molecule
that lead to a change in the axial length of the molecule
(projection of the molecular skeleton contour onto the
molecular axis) [13].

The polymer molecule can be considered as a
sequence of trans conformers (straightened fragments)
and gauche conformers (bent fragments). The conform-
ers can transform from one type into the other type,
which results in a change in the axial length of the mol-
ecule. These transitions are accompanied by overcom-
ing the potential barrier due to local fluctuations of the
thermal energy [13]. The difference between the poten-
tial energies of the conformers leads to an increase in
the equilibrium concentration of gauche conformers
with an increase in the temperature [13] and, hence, to
a negative longitudinal expansion. Under longitudinal
tensile stresses, the difference between the energies of
the gauche and trans conformers increases. This leads
to a decrease in the equilibrium concentration (at a
given temperature) of gauche conformers and, corre-
spondingly, to an increase in the axial length of the mol-
ecule (i.e., to an elongation of the oriented polymer).

Therefore, in amorphous (noncrystalline) regions of
a flexible-chain devitrified oriented polymer, the ther-
mal and stress deformations occur through the mecha-
nism of conformational transitions. The approximate
calculations of the longitudinal strain of the devitrified
(i.e., at temperatures above the glass transition point)
oriented polymer due to conformational transitions
were carried out in our previous works [9, 14].

The expressions derived for the quantities under
investigation are as follows.

The longitudinal thermal expansion coefficient is
determined by the formula

(13)

The reciprocal of the elastic modulus has the form

(14)

From relationships (13) and (14), we obtain

(15)

where lt is the axial length of the trans conformer, δl is
the difference between the axial lengths of the trans and
gauche conformers, ∆U is the initial difference
between the potential energies of the gauche and trans

α ∆ε
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------- 1 χ–( )δl
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---- 1

kT
2

-------- ∆U
kT
--------– 

 exp–≈=

× ∆U δlSmσ ∆U
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 – .

E
1– ∆ε
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kT
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kT
--------– 
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∂ E
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2
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  ∆U
kT
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  ,exp
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conformers, Sm is the cross-sectional area of the mole-
cule, and χ is the degree of crystallinity (volume frac-
tion of crystallites).

Thus, the general relationship (1), i.e., the equality
of the derivatives, is satisfied for poly(ethylene).

Now, we perform a number for quantitative estima-
tions.

Poly(ethylene) is an amorphous–crystalline poly-
mer. The glass transition temperature of poly(ethylene)
is approximately equal to 240 K. At higher tempera-
tures (T > 240 K), poly(ethylene) is in the devitrified
state. For oriented poly(ethylene) samples, the degree
of crystallinity is estimated as χ ≈ 0.4. An elementary
conformer in poly(ethylene) involves four CH2 groups.
The length of the elementary trans conformer is
approximately equal to 0.5 nm, whereas the length of
the elementary gauche conformer is approximately
equal to 0.3 nm. The difference between the potential
energies of the trans and gauche conformers is esti-
mated as ∆Ue ≈ 2.3 × 10–2 eV [2].

A single conformational transition of an elementary
conformer in a long-chain molecule is virtually impos-
sible. Such transitions occur with the participation of
several (three or four) conformers [2, 13]. Hence, the
calculations were performed for the following parame-
ters: lt ≈ (1.5–2.0) nm, δl ≈ (0.6–0.8) nm, ∆U ≈ (7–10) ×
10–2 eV, and Sm ≈ 0.3 nm2.

Then, from relationships (13)–(15), we found α ≈
−20 × 10–5 K–1 at σ = 0, E ≈ 1 × 109 Pa at T = 293 K,
and ∂α/∂σ = ∂(E–1)/∂T ≈ 0.5 × 10–11 Pa–1 K–1.

With due regard for the roughness of the calcula-
tions and the errors in the measurements, the calculated
and experimental data (see table) are in reasonable
agreement.

4. CONCLUSIONS

The thermal expansion of solids proceeds through
different mechanisms. These are the vibrational–anhar-
monic mechanism (due to the anharmonic interatomic
interaction) in low-molecular solids, the vibrational–
anisotropic (membrane) mechanism in polymer crys-
tals and oriented polymers in the vitreous state (without
participation of the anharmonic interatomic interac-
tion), and the conformational mechanism (associated
with the jumpwise fluctuation dynamics) in polymers
in the devitrified state. As a result, the thermal expan-
sion coefficients of solids can differ not only by several
orders of magnitude but also in sign.

It should be noted that solids undergo elastic defor-
mation also through different mechanisms, such as
stress elongation (contraction) of interatomic bonds in
low-molecular materials and polymers in the vitreous
state and conformational transitions in polymers in the
devitrified state. In these cases, the elastic moduli of
different solids are always positive but can differ by
several orders of magnitude.
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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All the above mechanisms were revealed in the
materials studied in this work (see table).

The results obtained in the above investigation dem-
onstrated that, although solids involved in the processes
under consideration can exhibit quite different thermal
and stress behaviors, all materials share a number of
traits. In particular, the thermal expansion coefficient
depends on the mechanical stress; however, tensile
stress can lead to an increase in the thermal expansion
coefficient for metals and a decrease in the (negative!)
coefficient of thermal expansion for polymers. The
elastic modulus for all materials depends on the tem-
perature in a similar manner: i.e., it decreases with an
increase in the temperature. The equality between the
temperature and stress derivatives ∂α/∂σ = ∂(E–1)/∂T
holds good for all solids (with allowance made for inad-
vertent errors in the measurements). This implies that
the general relationship (1) (thermodynamically inde-
pendent of the specific properties of different solids) is
valid for all solids.

The results of the approximate calculations per-
formed in this work are in reasonable agreement with
the experimental data. These results confirm and justify
the concept regarding different mechanisms of thermal
and stress deformations of solids with different struc-
tures.

Moreover, the values of the invariant ∂α/∂σ =
∂(E−1)/∂T, which can differ by several orders of magni-
tude for solids (see table), correspond to different
mechanisms of thermal and stress deformations of sol-
ids with different structures.
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Abstract—The static and dynamic characteristics of layer displacement fluctuations in smectic-A films sup-
ported on the surface of a solid substrate are calculated with due regard for the profiles of the flexural and tensile
(compressive) moduli of smectic layers. The difference in the surfaces bounding the film and the asymmetry of
the profiles of the elastic moduli with respect to the central layer of the film are taken into account. The profiles
of fluctuations of smectic-layer displacements and the correlations between these fluctuations are determined
for the films formed by liquid-crystal compounds that can undergo a bulk smectic-A–nematic phase transition.
The dynamic correlation functions derived for these fluctuations are used for calculating the correlations
between the intensities of x-ray scattering by a film at different instants of time. It is demonstrated that, in smec-
tic-A films supported on the surface of a solid substrate, unlike free-standing smectic-A films, the effect of tem-
perature on the dynamics of layer displacement fluctuations can be observed in experiments on dynamic x-ray
scattering from films that are not very thick (the number of layers N ~ 20) and at considerably smaller recoil-
momentum components in the film plane. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Smectic liquid crystals have a one-dimensional lay-
ered structure [1] and, consequently, can form free-
standing films with a macroscopic area (~cm2) [2] and
a thickness that can be varied from several hundreds to
two smectic layers or even to one layer [3, 4]. In this
respect, smectic liquid crystals are the most appropriate
model objects for use in studying the physics of two-
dimensional systems. Moreover, in thin free-standing
smectic films, the effects associated with their micro-
scopic thickness are combined with surface effects. As
a result, these films exhibit effects and phenomena that
are not observed in the bulk phase of liquid crystals [5–
9]. For this reason, over the last 20–25 years, free-
standing smectic films have been extensively studied
both experimentally and theoretically.

In recent years, considerable interest has been
expressed by researchers in smectic films supported on
the surface of a solid substrate [10–15]. These systems,
like free-standing smectic films, have been predomi-
nantly studied using specular and diffuse (nonspecular)
small-angle x-ray scattering, as well as neutron scatter-
ing. The aforementioned scattering methods provide a
means for determining the equilibrium characteristics
of smectic liquid-crystal films (such as the number of
smectic layers, the layer thickness, and the type of
molecular packing in a layer) and reliable data on ther-
mal fluctuations in films. Over the last decade, experi-
ments on diffuse x-ray scattering have revealed useful
information about defects on the surface of a solid sub-
strate that induce distortions in layers of the film over-
1063-7834/04/4606- $26.00 © 21158
lying the substrate [10–12, 15]. In particular, de Boer
[16] showed that, for these films, the correlation func-
tions of layer displacement fluctuations, which deter-
mine the intensity of diffuse x-ray scattering, can be
separated into two components. One component is gov-
erned by the thermal fluctuations of smectic-layer dis-
placements, and the other component is determined by
the defects on the substrate surface. Therefore, the ade-
quate theoretical description of thermal fluctuations of
layer displacements in a smectic liquid-crystal film
offers possibilities for using x-ray scattering as an effi-
cient tool for obtaining information on both thermal
fluctuations in the film and defects on the surface of a
substrate.

The thermal fluctuations of layer displacements in
smectic-A (SmA) films supported on the surface of a
solid substrate were theoretically described by de Boer
[16] and Romanov and Ul’yanov [17]. In these works,
the thermal fluctuations of layer displacements were
treated in the framework of the well-known discrete
model (Holyst model) [18–20] proposed for describing
the layer displacement fluctuations in free-standing
smectic-A films. Within this model, the smectic-A film
is considered to be spatially homogeneous and charac-
terized by the following parameters: the number N of
smectic layers, the surface tension coefficient γ of the
free surface (note that, in [16], the surface tension coef-
ficient of the film–substrate interface was treated as
infinitely large, whereas in [17], the equivalent assump-
tion was made that the smectic layer at the boundary
with the substrate is fixed), and the flexural modulus K
004 MAIK “Nauka/Interperiodica”
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and tensile (compressive) modulus B of the smectic lay-
ers. The last two quantities are considered to be identi-
cal for all layers in the film irrespective of their location
and are taken equal to the corresponding elastic modu-
lus in the bulk of the smectic-A phase. In my previous
works [21–23], it was noted that, even for free-standing
smectic-A films, the above assumption is physically
justified only at temperatures substantially lower than
the temperatures of the SmA–nematic (SmA–N) or
SmA–isotropic (SmA–I) phase transitions in the bulk of
liquid crystals. In this case, the film has a pronounced
smectic-A structure throughout the volume and the ori-
entational and translational orders of molecules and,
hence, the elastic characteristics of the inner and sur-
face layers of the film only slightly differ from each
other. However, thin smectic layers of particular liquid
crystals can exist at temperatures considerably higher
than the temperatures at which the smectic order in the
bulk of mesogens disappears [5–9]. The microscopic
model proposed in [24–27] for free-standing smectic-A
films describes the behavior of these films upon heating
above the temperatures of the SmA–nematic and SmA–
isotropic phase transitions rather well. According to the
predictions of this model, both the orientational and
translational orders in inner layers of the film at these
temperatures can be substantially less pronounced than
those in the vicinity of the free bounding surfaces. This
theoretical result was experimentally confirmed in
studies of the optical transmission spectra of free-
standing smectic-A films [28] and the specular x-ray
reflectivity of smectic-A films above the temperature of
the SmA–nematic phase transition in the bulk of liquid
crystals [9]. It is well known [1] that, in the bulk of liq-
uid crystals, the flexural modulus K is proportional to
the square of the orientational order parameter p and the
tensile (compressive) modulus B of smectic layers is
proportional to the square of the translational order
parameter s. Under the assumption that these relation-
ships are also valid for liquid-crystal films, the elastic
moduli of the smectic layers at temperatures higher
than the temperatures of the SmA–nematic or SmA–iso-
tropic phase transitions in the bulk of liquid crystals
should decrease with an increase in the distance to the
free surface and reach minimum values at the center of
the film. Since this profile of the elastic moduli is com-
pletely ignored in the model proposed in [18–20], the
model at the aforementioned temperatures should
incorrectly predict the fluctuations of smectic-layer dis-
placements and correlations between these fluctuations.
The influence of spatial inhomogeneity of the free-
standing smectic-A films on the thermal fluctuations of
layer displacements was theoretically analyzed in [21–
23]. It turned out that the results obtained differ signif-
icantly from the data predicted by the Holyst model at
the highest temperatures of existence of free-standing
smectic-A films with a specified thickness. However, it
should be noted that the assumption regarding the spa-
tial homogeneity of the smectic film supported on the
surface of a substrate can also be invalid at lower tem-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
peratures. This is associated with the fact that the sur-
faces bounding the film (i.e., the free surface and the
film–substrate interface) are not equivalent and can
have different orienting effects on molecules in the
film. As a result, the film has no symmetry with respect
to the central layer, which is inconsistent with the
assumption of spatial homogeneity. This indicates that
the theoretical approach used in [16, 17] for describing
the thermal fluctuations of layer displacements is inad-
equate for the films under consideration.

Although the static properties of thermal fluctua-
tions of layer displacements in free-standing smectic
films have already long been investigated, their dynam-
ics has come under the scrutiny of science only in
recent years. The dynamics of thermal fluctuations of
layer displacements has been experimentally investi-
gated using coherent soft [29] and hard [30] x-ray
dynamic scattering. The experimental results obtained
were theoretically interpreted in [31–34]. The theoreti-
cal interpretation was based on the linearized hydrody-
namic equations for the smectic-A phase and the afore-
mentioned Holyst model [18–20] for the energy of
layer displacement fluctuations in free-standing smec-
tic-A films. The models proposed in [31–34] make it
possible to determine the dynamic correlation functions
for layer displacement fluctuations in films and then to
use these functions for calculating the correlations
between the intensities of x-ray scattering by films at
different instants of time. The predictions of these mod-
els are in qualitative agreement with the experimental
data on coherent x-ray dynamic scattering in free-
standing smectic-A films with different thicknesses [29,
30]. The dynamics of thermal fluctuations of layer dis-
placements in smectic-A films supported on the surface
of a solid substrate has not been experimentally studied
to date. However, this dynamics was theoretically ana-
lyzed in [17] within the Holyst model [18–20], accord-
ing to which the spatial inhomogeneity of the smectic-
A films is disregarded. As a consequence, the results
obtained in [17] turned out to be independent of the
temperature, because the above assumption leads to
complete disregard of the temperature dependence of
the viscoelastic parameters for layers of the film.

The influence of the profiles of the flexural modulus
K and the tensile (compressive) modulus B of smectic
layers and, hence, the temperature on the dynamics of
thermal fluctuations of layer displacements in free-
standing smectic-A films was theoretically treated in
my recent work [35]. It was demonstrated that this
effect can be revealed in experiments on x-ray dynamic
scattering in sufficiently thick films (N ≥ 100) and at
large recoil-momentum components in the film plane
(≥106 cm–1). In films with a smaller thickness and at
smaller recoil-momentum components in the film
plane, the dominant role in the dynamics of thermal
fluctuations of layer displacements in free-standing
smectic-A films is played by the so-called acoustic
4
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mode [31, 32] with a virtually temperature-independent
relaxation time,

(1)

where din is the interlayer spacing and η3 is the viscos-
ity coefficient of interlayer sliding. This mode corre-
sponds to the motion of the film during which the inter-
layer spacing remains constant, and, hence, the motion
does not depend on the profiles of the elastic moduli K
and B. However, the acoustic mode is absent in smectic
films supported on the surface of a solid substrate [17].
Therefore, thermal fluctuations of layer displacements
in the smectic film are always accompanied by a change
in the interlayer spacing and the dynamic characteris-
tics of thermal fluctuations should depend on the pro-
files of the elastic moduli K and B and, consequently, on
the temperature even for not very thick films and at not
very large recoil-momentum components in the film
plane. To put it differently, the thermal fluctuations of
layer displacements in the smectic films supported on
the substrate surface should be affected by the spatial
inhomogeneity to a greater extent than those in free-
standing smectic-A films.

In this work, the static and dynamic characteristics
of layer displacement fluctuations in smectic-A films
supported on the surface of a solid substrate were cal-
culated with due regard for the dependences of the flex-
ural modulus K and the tensile (compressive) modulus
B of smectic layers on the distance to the surfaces
bounding the film. The computational procedure was
similar to that used in [21–23, 35] for calculating the
thermal fluctuations in free-standing smectic-A films
but also took into account the difference in the surfaces
bounding the film (the surface tension coefficient γ was
taken to be finite for the free surface and infinitely large
for the film–substrate interface) and the asymmetry of
the profiles of the elastic moduli K and B with respect
to the central layer of the film. The elastic modulus pro-
files were determined in terms of the microscopic
model proposed in [24–27] with allowance made for
different orienting effects of the bounding surfaces on
molecules in the film. The profiles of smectic-layer dis-
placement fluctuations and correlations between these
fluctuations were calculated for the films formed by liq-
uid-crystal compounds that can undergo a bulk SmA–
nematic phase transition. The calculations were per-
formed both at temperatures considerably below the
temperature of the phase transition in the bulk of liquid
crystals and at the highest temperatures of existence of
films with a specified thickness. It was shown that, at
temperatures below the temperature at which the smec-
tic order disappears in the bulk of liquid crystals, the
inclusion of the profiles of the elastic moduli K and B
does not lead to disagreement with the data obtained
within the Holyst model [16, 17]. However, at temper-
atures considerably above the temperature of the bulk
phase transition, this inclusion can result in substantial
deviations from the predictions of the Holyst model,

τ 1( )
Nd inη3/2γ,=
P

especially when the orienting effect of the solid sub-
strate on liquid-crystal molecules is appreciably weaker
than that of the free surface of the film. Moreover, the
dynamic correlation functions derived for the layer dis-
placement fluctuations were used to calculate the corre-
lations between the intensities of x-ray scattering by the
film at different instants of time. It was demonstrated
that, in smectic-A films supported on the surface of a
solid substrate, unlike free-standing smectic-A films,
the effect of temperature on the dynamics of layer dis-
placement fluctuations can be observed in experiments
on dynamic x-ray scattering from not very thick films
(N ~ 20) and at considerably smaller recoil-momentum
components (≤105 cm–1) in the film plane.

2. FLUCTUATIONS OF LAYER DISPLACEMENTS 
IN A SMECTIC-A FILM ON THE SURFACE 

OF A SOLID SUBSTRATE AND FLUCTUATION 
CORRELATIONS

In [16, 17], it was shown that thermal fluctuations of
smectic-layer displacements from equilibrium posi-
tions in a smectic-A film supported on the surface of a
solid substrate can be described in the framework of the
discrete model proposed in [18–20] for calculating
thermal fluctuations of layer displacements in free-
standing smectic-A films. We will consider a smectic-A
film that is supported on the surface of a substrate and
consists of N discrete layers. Let un(x, y) be fluctuation
displacements of layers from the equilibrium positions
zn = (n – 1)d along the z axis perpendicular to the layer
plane, where d is the thickness of the smectic layer and
n is the number of the smectic layer. These displace-
ments are characterized by the excess free energy F,
which involves the bulk contribution FB described by
Eqs. (2) and (3) from [21] and the surface contribution
FS. According to [16], the surface contribution FS can
be written in the form

(2)

Here, γ1 is the surface tension coefficient of the free sur-
face of the film, γN is the surface tension coefficient of
the film–substrate interface, R is the radius vector in the
plane of smectic layers (R2 = x2 + y2), and ∇ ⊥  is the pro-
jection of the operator — onto the (x, y) plane.

With the use of the continuous Fourier transform

, (3)

we obtain a simple expression for the excess free
energy F:

(4)

where Mkn are the elements of the banded matrix. In this
matrix, only the diagonal and first adjacent elements

FS
1
2
--- γ1 ∇ ⊥ u1 R( ) 2 γN ∇ ⊥ uN R( ) 2

+[ ] R.d∫=

un R( ) 2π( ) 2–
un q⊥( ) iq⊥ R( ) q⊥dexp∫=

F
1
2
--- uk q⊥( )Mknun q⊥–( ) q⊥ ,d∫

k n, 1=

N

∑=
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are nonzero. The latter elements are defined by the fol-
lowing formulas:

(5)

(6)

(7)

(8)

where Kn is the flexural modulus of the nth layer of the
film and Bn is the tensile (compressive) modulus of the
nth layer. When the elastic moduli K and B in the bulk
of the smectic-A phase of a liquid crystal are known at
a temperature T0 [K(T0) ≡ K0, B(T0) ≡ B0], which is
lower than the temperature of the SmA–isotropic or
SmA–nematic phase transition, the elastic moduli Kn

and Bn for any liquid-crystal film with a specified thick-
ness at arbitrary temperature T (at which the film exists)
can be determined using the microscopic model pro-
posed in [24–27] for a thin liquid-crystal layer with two
bounding surfaces. The algorithm for calculating these
moduli was described in detail in my previous works
[21, 23].

Knowing the elements Mkn of the direct matrix, we
can determine the elements (M–1)kn of the inverse
matrix. Then, the latter elements can be used to calcu-
late the mean fluctuations of layer displacements in the

film σn = 〈 (0)〉1/2 and the correlations between the
fluctuations gk, n(R) = 〈uk(R)un(0)〉/(σkσn). According to
[18, 19], we have

(9)

(10)

where kB is the Boltzmann constant. On the right-hand
side of relationships (9) and (10), the lower limits of
integration are determined by the transverse sizes L of
the film and the upper limits of integration are deter-
mined by the molecular diameter a (2π/L ≤ |q⊥ | ≤ 2π/a).
If the transverse sizes of the film are macroscopic (L ~
cm), the lower limits of integration in relationships (9)
and (10) can be set equal to zero.

The fluctuations of smectic layer displacements σn

and correlations gk, n(R) were numerically calculated
for the smectic-A film supported on the surface of a
solid substrate and consisting of N = 24 layers. It was
assumed that the film is formed by a liquid crystal that
can undergo a weak first-order SmA–nematic phase
transition. According to the McMillan model [36] for a
bulk smectic-A phase and the model developed in [24–

M11 γ1q⊥
2

K1dq⊥
4

B1 B2+( )/2d+ + b1,= =

MNN γNq⊥
2

KNdq⊥
4

BN 1– BN+( )/2d+ + bN ,= =

Mnn Kndq⊥
4

Bn 1– 2Bn Bn 1++ +( )/2d+ bn,= =

n 2, N 1,–=

Mn 1n+ Mnn 1+ Bn Bn 1++( )/2d– cn,= = =

n 1, N 1,–=

un
2

σn
2

un
2

0( )〈 〉
kBT

2π( )2
------------- M

1–( )nn q⊥ ,d∫= =

uk R( )un0〈 〉
kBT

2π( )2
------------- M
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27] for a thin liquid-crystal layer with two bounding
surfaces, the above situation can be described by the
model parameter α = 2exp[–(πr0 /d)2] ≤ 0.98, where
r0 is the characteristic radius of interaction for the
model pair intermolecular potential used in the
McMillan theory. As in [21–23], the calculations were
performed at α = 0.871. The thermal fluctuations of
layer displacements in the film and the correlations
between these fluctuations were calculated at two tem-
peratures: the first temperature T1 was considerably
lower than the temperature of the SmA–nematic phase
transition in the bulk of the liquid crystal, whereas the
second temperature T2 was only slightly below the lim-
iting temperature at which the film with a specified
thickness can exist. According to [24–27], the limiting
temperature is the temperature at which the smectic
order in the bulk of the film disappears almost com-
pletely (s  0). As in [21–23], the first temperature
was taken as T1 = 0.204(V0/kB) [in [36], the temperature
of the SmA–nematic phase transition in the bulk of the
liquid crystal at α = 0.871 was determined to be TAN =
0.2091(V0/kB)], where V0 is the intermolecular interac-
tion constant in the McMillan theory. In the framework
of the model developed in [24–27], the second temper-
ature T2 is governed by the orienting effect of the sur-
faces bounding the film on liquid-crystal molecules.
This effect is simulated by the effective external fields,
whose strengths are proportional to the interaction con-
stants W1 (the free surface of the film) and WN (the film–
substrate interface). As in my previous works [21–23],
the ratio of the constant W1 to the intermolecular inter-
action constant V0 was taken equal to 1.6. As regards
the constant WN, we considered three cases. In the first
case, the constant WN was equal to W1 (the orienting
effects of bounding surfaces on molecules in the film
are identical). In the second case, we set WN = 5W1 (the
profound orienting effect of the film–substrate inter-
face). In the third case, the calculations were carried out
at WN = W1/5 (the orienting effect of the film–substrate
interface is weaker than that of the free surface). As a
result, the second temperatures were as follows: T2 =
0.21035(V0/kB) in the first case (as in [21–23]), T2 =
0.21039(V0/kB) in the second case, and T2 =
0.2093(V0/kB) in the third case. As in [21–23], the flex-
ural modulus K0 and the tensile (compressive) modulus
B0 of smectic layers for the bulk liquid-crystal phase at
the temperature T1 lower than the phase transition tem-
perature TAN were assumed to be K0 = 10–6 dyn and B0 =
108 dyn/cm2 (typical values for the majority of liquid
crystals [1]). The surface tension coefficient γ1 for the
free surface was equal to 25 dyn/cm (taken from [9]),
and the surface tension coefficient γN (by analogy with
[16]) was assumed to be infinitely large (γN = 1000γ1).
The thickness of the smectic layers in the film did not
depend on the temperature and was taken equal to the
molecular length l = 30 Å, and the molecular diameter
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a was equal to 4 Å (which are typical sizes for liquid-
crystal molecules [1]).

First and foremost, the profiles of the elastic moduli
K and B for the aforementioned ratios between the ori-
enting effects of the surfaces bounding the film were
calculated with the use of the model developed in [24–
27]. As could be expected, in the first case, the calcu-
lated profiles completely coincide with similar profiles
obtained in my earlier works, in which the thermal fluc-
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Fig. 1. Profiles of the flexural modulus K in a smectic-A film
supported on the surface of a solid substrate: (1) at temper-
ature T1 below the temperature of the SmA–nematic phase
transition and (2) at the highest temperature T2 of existence
of the film. N = 24, α = 0.871, W1/V0 = 1.6, WN = W1/5,
T1 = 0.204(V0/kB), and T2 = 0.2093(V0/kB).
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Fig. 2. Profiles of the tensile (compressive) modulus B in a
smectic-A film supported on the surface of a solid substrate:
(1) at temperature T1 below the temperature of the SmA–
nematic phase transition and (2) at the highest temperature
T2 of existence of the film. The parameters are the same as
in Fig. 1.
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tuations of smectic layer displacements were consid-
ered in free-standing smectic-A films (see Figs. 1, 2 in
[21, 23]). The profiles determined in the second case
(WN = 5W1) are also almost identical to the profiles cal-
culated in the first case, even though the values of K/K0
and B/B0 for the Nth layer of the film are slightly larger
than those in the first case. However, in the third case
(WN = W1/5), the profiles for K/K0 (Fig. 1) and B/B0
(Fig. 2) differ substantially from the corresponding pro-
files obtained in [21, 23]. First, as would be expected,
these profiles are not symmetric with respect to the cen-
ter of the film. Second, the minimum elastic moduli
(this is especially true for the moduli B) are observed
not in the central part of the film but in the layer adja-
cent to the surface of the solid substrate. It should also
be noted that, at the low temperature T1, the profiles of
the elastic moduli K and B (curves 1 in Figs. 1, 2;
Figs. 1, 2 in [21, 23]) in all three cases are characterized
by a rather extended plateau in the central part of the
film, in which the moduli are nearly constant and close
in magnitude to the bulk values K0 and B0, respectively.
At the same time, it can be seen that this plateau is
absent at the highest temperature T2 of existence of the
film (curves 2 in Figs. 1, 2; Figs. 1, 2 in [21, 23]). Con-
sequently, at the temperature T1, the major part of the
smectic-A film on the surface of the solid substrate is
actually spatially homogeneous (or almost homoge-
neous) and the Holyst model [18–20] used in [16, 17]
should lead to results that differ very little from our
data. However, in the vicinity of the limiting tempera-
ture at which the film with a specified thickness can
exist (T = T2), the film in all three cases under consider-
ation is spatially inhomogeneous (curves 2 in Figs. 1, 2;
Figs. 1, 2 in [21, 23]). Moreover, in the third case, the
film is not symmetric with respect to its center and the
elastic moduli K and B in the layers adjacent to the sub-
strate surface are considerably smaller than those in the
layers near the free surface. It is in this case that the
results obtained in [16, 17] within the Holyst model
should differ most significantly from our data.

Then, the determined profiles of the elastic moduli
K and B were used to calculate the profiles of the layer
displacement fluctuations σn in the smectic-A film (con-
sisting of 24 layers) supported on the surface of a solid
substrate at the low temperature T1 and the highest tem-
perature T2 of existence of the film. The results of these
calculations for the first (WN = W1) and third (WN =
W1/5) cases are presented in Fig. 3 (the profiles for the
second case at WN = 5W1 differ only slightly from the
profiles at WN = W1). The profile of the displacement
fluctuations σn calculated within the Holyst model [18,
20] is also shown by the dashed line in Fig. 3. As could
be expected, at T = T1, our results do not differ greatly
from those obtained in terms of this model. However, in
the vicinity of the limiting temperature of existence of
the film (T = T2), the inclusion of the profiles of the elas-
tic moduli K and B leads to a substantial deviation from
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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the predictions of the Holyst model [18, 20]. Indeed, in
the first case, the maximum value of layer displacement
fluctuations σn calculated with due regard for these pro-
files at the temperature T2 = 0.21035(V0/kB) is approxi-
mately half the maximum value of σn at the temperature
T1. Furthermore, the maximum of the σn profile is
shifted to the center of the film, where the moduli K and
B have minimum values. At the same time, according to
the calculations carried out in terms of the Holyst
model, this increase in the temperature weakly affects
the profile of these fluctuations. In the third case, an
increase in the temperature from T1 to T2 =
0.2093(V0/kB) leads to a more radical change in the pro-
file of the fluctuations σn. At T = T1, the fluctuations σn

only slightly depend on the number of the layer (except
for a drastic decrease in σn to zero at n = 24). On the
other hand, at the limiting temperature of existence of
the film, T = T2, the fluctuations σn considerably
increase (by a factor of approximately two) with an
increase in n to the penultimate layer of the film and
sharply decrease to zero at n = 24. Therefore, the σn

profile exhibits a maximum in the vicinity of the sur-
face of the solid substrate, i.e., in the region where the
elastic moduli K and B have minimum values (Figs. 1,
2). In other words, in all cases under consideration, the
thermal fluctuations of layer displacements are maxi-
mum in the region where the smectic layer structure is
less pronounced. Note that the profile of the fluctua-
tions is determined by the orienting effect of the bound-
ing surfaces on molecules in the film.

We also calculated the correlations gk, n(R) between
displacement fluctuations of different layers in the
smectic-A films on the surface of the solid substrate.
The results of these calculations for the correlations
between the displacement fluctuations of the central
layer (k = 12) and the other layers (n = 1–24) at R = 0
and WN = W1 are presented in Fig. 4. At temperatures
(T = T1) below the temperature at which the smectic
order disappears in the bulk of the liquid crystal, the
results of the calculations are very close to those
obtained within the Holyst model [18–20] (the dashed
line in Fig. 4). The correlation g12, n(0) substantially
decreases with an increase in the magnitude of the dif-
ference between the number n and 12. However, as
would be expected, the dependences obtained are
asymmetric with respect to the center of the film. The
decay of the correlation g12, n(0) toward the free surface
of the film occurs more slowly than that toward the sur-
face of the solid substrate. The correlation g12, n(0) in
the vicinity of the free surface (n = 1) is larger than 0.2,
whereas the value of g12, n(0) for the penultimate film
layer (n = 23) near the substrate is close to zero. This
difference between the correlations is caused by the fact
that the layers located near the free surface of the film
can be displaced (from their equilibrium positions) syn-
chronously with the central layers. At the same time,
the film layers adjacent to the last layer are rigidly fixed
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
on the surface of the solid substrate and cannot be
involved in a similar process due to high energy expen-
ditures to tensile (compressive) deformation of these
layers.
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Fig. 3. Calculated profiles of layer displacement fluctua-
tions in a smectic-A film supported on the surface of a solid
substrate. The calculations were performed with due regard
for the profiles of the moduli K and B for parameters (1)
WN = W1 and T = T1 = 0.204(V0/kB), (2) WN = W1 and T =
T2 = 0.21035(V0/kB), (3) WN = W1/5 and T = T1 =
0.204(V0/kB), and (4) WN = W1/5 and T = T2 =

0.2093(V0/kB). W1/V0 = 1.6, K0 = 10–6 dyn, B0 = 108 dyn/cm2,
and γ1 = 25 dyn/cm. The dashed line represents the results
obtained in the framework of the Holyst model [18–20].
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Fig. 4. Correlations g12, n(0) between the displacement fluc-
tuations of the twelfth layer and the other layers (n = 1–24)
in a smectic-A film supported on the surface of a solid sub-
strate at temperatures (1) T = T1 = 0.204(V0/kB) and (2) T =
T2 = 0.21035(V0/kB). WN = W1. The parameters N, α, W1,
K0, B0, and γ1 are the same as in Fig. 3. The dashed line rep-
resents the results obtained in the framework of the Holyst
model.
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Our calculations also demonstrate that, upon heat-
ing of the smectic-A films supported on the surface of a
solid substrate to the limiting temperature of their exist-
ence T2, the change in the correlations gk, n(0) between
the displacement fluctuations of film layers is less pro-
nounced than that in the profiles of these fluctuations
(Fig. 4). It should be noted that these changes are com-
pletely determined by the orienting effect of the bound-
ing surfaces on molecules in the film. When the orient-
ing effect of the film–substrate interface is equal to the
orienting effect of the free surface of the film (WN = W1)
or exceeds it (WN = 5W1), an increase in the temperature
leads to a weakening of the correlations g12, n(0)
(Fig. 4), as is the case with free-standing smectic-A
films. If the orienting effect of the film–substrate inter-
face is weaker than that of the free surface of the film
(WN = W1/5), an increase in the temperature results in
an enhancement of these correlations g12, n(0). This
behavior can be easily explained from the physical
standpoint. In the first two cases (WN = W1, WN = 5W1),
heating of the smectic-A film supported on the surface
of a solid substrate to the limiting temperature T2 of its
existence leads to a substantial decrease in the elastic
moduli K and B in the central part of the film, whereas
these moduli in the surface layers remain virtually
unchanged. As was noted above, the profiles of the
moduli K and B in these cases are almost identical to the
analogous profiles for free-standing smectic-A films
(see Figs. 1, 2 in [21, 23]). Since the fluctuation dis-
placements of the central smectic layers of the film are
imparted to other layers through the layers adjacent to
the central layers, a considerable decrease in their rigid-
ity should result in a weakening of the correlations
g12, n(0) between the fluctuation displacements of the
central layers and the other layers of the film. In the
third case (WN = W1/5), an increase in the temperature
to the limiting temperature T2 leads not only to a
decrease in the rigidity of the central part of the film but
also to a more substantial decrease in the rigidity of the
smectic layers adjacent to the surface of the solid sub-
strate (Figs. 1, 2, curves 2), whose fixation hinders syn-
chronous fluctuation displacements of the film layers.
Therefore, in this case, heating of the film, for the most
part, lifts a barrier to these synchronous fluctuation dis-
placements and, hence, should result in an enhance-
ment of the correlations g12, n(0).

3. DYNAMICS OF FLUCTUATIONS OF LAYER 
DISPLACEMENTS IN A SMECTIC-A FILM 

ON THE SURFACE OF A SOLID SUBSTRATE

According to the model proposed in [31, 32], the
time dependence of the fluctuation displacements
un(x, y) of layers from their equilibrium positions in
P

the smectic-A film is described by the equations of
motion

(11)

Here, ρ0 is the mean density of the liquid crystal form-
ing the film, t is the time, and F is the excess free energy
associated with these fluctuation displacements in the
film. By taking the continuous Fourier transform (3) of
Eqs. (11) and introducing the dimensionless variables

t ' = [(K0B0)1/2/(dη3)]t and q' = q⊥ /q0 (where  =
[B0/K0d2]1/2), we obtain a system of equations that can
be written in the following compact matrix form:

(12)

Here,  are elements of the banded matrix similar to
the matrix Mnm introduced above. For the smectic-A
film supported on the surface of a solid substrate, the
nonzero elements can be defined by formulas (11)–(15)
from my earlier work [35] (devoted to the dynamics of
layer displacement fluctuations in free-standing smec-
tic-A films) if the dimensionless surface tension coeffi-
cient  = γ(K0B0)–1/2 in Eqs. (11) and (12) from [35] is
replaced by  = γ1(K0B0)–1/2 and  = γN(K0B0)–1/2,
respectively.

As in [31, 32, 35], the solution un(q', t ') of the system
of equations (12) is represented in the form of an
expansion

(13)

in terms of the eigenvectors (q') of the matrix

(q'). The time dependence of the kth normal mode

(q', t ') is described by the relationship

(14)

in which the exponents (q') are expressed through

the relaxation times (q') and the frequencies ω(k)(q')
with the use of relationships (18)–(21) from [35].
Knowing the time dependences of the normal modes

(q', t '), we can calculate the dynamic correlation
functions of layer displacements in the film. In the Fou-
rier representation, these functions are defined as fol-
lows [31, 32]:
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With knowledge of the dynamic correlation func-
tions Cm, n(q', t '), we can calculate the correlation 〈I(q,
t)I(q, 0)〉  between the intensities of x-ray scattering by
the film at different instants of time (at t = 0 and t). The
quantity 〈I(q, t)I(q, 0)〉/I2(q, 0) is expressed in terms of
the correlation functions Cm, n(q', t ') with the use of rela-
tionships (27) and (28) taken from [35].

The dynamic correlation functions Cm, n(q⊥ , t) and
the correlations 〈I(q, t)I(q, 0)〉  between the intensities of
x-ray scattering at different instants of time from the
smectic-A film supported on the surface of a solid sub-
strate were numerically calculated for films consisting
of 24 layers with the same model parameters used for
calculating the profiles of the layer displacement fluc-
tuations and the correlations between them. The viscos-
ity coefficient of interlayer sliding was taken equal to
η3 = 0.4 g/(cm s), which is typical of smectic liquid
crystals. The calculations were performed for the afore-
mentioned three ratios between the orienting effects of
the bounding surfaces on liquid-crystal molecules in
the film at temperatures T1 and T2.

First, we analyze how the temperature affects the
dynamic correlation functions. In [35], it was demon-
strated that this effect in free-standing smectic-A films
can be observed in sufficiently thick films (N ≥ 100) and
at large recoil-momentum components in the film plane
(≥106 cm–1) (see Figs. 3, 4 in [3, 5]). However, for the
smectic-A films supported on the surface of a solid sub-
strate under consideration, this effect is well pro-
nounced in films with a smaller thickness and at sub-
stantially smaller recoil-momentum components. This
is illustrated in Fig. 5, which shows the time depen-
dences of the dynamic correlation function C12, 12 cal-
culated for the film consisting of 24 layers at q⊥  =
105 cm–1, WN = W1, and temperatures T1 (Fig. 5, curve 1)

30

20
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0 1 2 3 4

1

2

C12, 12, arb. units

t, 10–9 s

Fig. 5. Time dependences of the dynamic correlation func-
tion C12, 12 at temperatures (1) T = T1 = 0.204(V0/kB) and

(2) T = T2 = 0.21035(V0/kB). WN = W1 and q⊥  = 105 cm–1.
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and T2 (Fig. 5, curve 2). It can be seen from this figure
that, at t = 0, the magnitude of the correlation function
C12, 12 at the limiting temperature T2 of existence of the
film is approximately two times larger than that at the
lower temperature T1. Furthermore, this correlation
function at T = T2 decays considerably more slowly
with time as compared to that at T = T1. The depen-
dences of the other dynamic correlation functions (C1, 1,
C1, 12, etc.) exhibit a similar behavior. These dynamic
correlation functions for free-standing smectic-A films
at the same values of N and q⊥  are entirely independent
of the temperature. The difference in the behavior of the
smectic-A films supported on the surface of a solid sub-
strate and free-standing smectic-A films is explained by
the fact that, in not very thick (N ≤ 100) free-standing
smectic-A films and at q⊥  ≤ 106 cm–1, the dominant role
in the dynamics of thermal fluctuations of layer dis-
placements is played by the so-called acoustic mode
[31, 32]. This mode corresponds to motion of the film
during which the interlayer spacing remains constant,
and, hence, the relaxation time does not depend on the
profiles of the elastic moduli K and B. However, the
acoustic mode is absent in the smectic-A films sup-
ported on the surface of solid substrates [17] and ther-
mal fluctuations of layer displacements in the film are
always accompanied by a change in the interlayer spac-

ing. Consequently, the relaxation times (q'), which
determine the time dependences of the dynamic corre-
lation functions, should depend on the profiles of the
elastic moduli K and B and, hence, on the temperature
already for films that are not very thick (N ≤ 100) and
at values of q⊥  that are not large. It should be noted that,
for the smectic-A films supported on the surface of a
solid substrate, the temperature dependence of these
correlation functions manifests itself for even smaller
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Fig. 6. The same as in Fig. 5, but for the dynamic correlation
function C1, 1 at q⊥  = 2 × 104 cm–1.
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recoil-momentum components in the film plane. This is
illustrated in Fig. 6, which depicts the time depen-
dences of the dynamic correlation function C1, 1 at q⊥  =
2 × 104 cm–1 and temperatures T1 (Fig. 6, curve 1) and
T2 (Fig. 6, curve 2). At such a small value of q⊥ , both
dependences exhibit an oscillatory behavior; however,
the oscillations substantially differ from each other.

Then, the correlation functions 〈I(q, t)I(q, 0)〉  were
calculated for the smectic-A film comprised of 24 lay-
ers and supported on the surface of a solid substrate.
The results of the calculations for coherent diffuse
x-ray scattering in the vicinity of the main Bragg peak
(qz = 2π/d) for the recoil-momentum component in the
film plane q⊥  = 105 cm–1 and WN = W1 are presented in
Fig. 7. In this figure, curve 1 corresponds to the temper-
ature T1 lower than the temperature of the SmA–nematic
phase transition in the bulk of the liquid crystal and
curve 2 represents the calculated data at the tempera-
ture T2 close to the limiting temperature of existence of
the film. It can be seen from Fig. 7 that, upon heating of
the film, the correlation function 〈I(q, t)I(q, 0)〉  decays
more slowly with time. This effect is most pronounced
at t ~ 10–9 s. It should also be noted that the results of
the calculations carried out in the case of a profound
orienting effect of the film–substrate interface on mol-
ecules in the film (WN = 5W1) do not differ greatly from
the above data. However, when the orienting effect of
the interface is weaker than that of the free surface of
the film (WN = W1/5), the correlation function
〈I(q, t)I(q, 0)〉  at the limiting temperature T2 of exist-
ence of the film decays even more slowly with time
(Fig. 7, curve 3). Moreover, the calculations performed
demonstrate that the effect of temperature on the time
dependence of the correlation function 〈I(q, t)I(q, 0)〉  is
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Fig. 7. Time dependences of the correlation function 〈I(q,
t)I(q, 0)〉  at WN = (1, 2) W1 and (3–5) W1/5; q⊥  = (1–3) 105

and (4, 5) 3 × 104 cm–1; and T = (1, 4) 0.204(V0/kB),
(2) 0.21035(V0/kB), and (3, 5) 0.2093(V0/kB).
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observed even for smaller recoil-momentum compo-
nents in the film plane (q⊥  = 3 × 104 cm–1) at which the
dependence exhibits a pronounced oscillatory behavior
(Fig. 7, curves 4, 5). At similar values of q⊥ , this corre-
lation function for free-standing smectic-A films is
entirely independent of the temperature of the film.
Thus, compared to free-standing smectic-A films, in the
smectic-A films supported on the surface of a solid sub-
strate, the dynamics of layer displacement fluctuations
is considerably more sensitive to temperature-induced
changes in the internal structure. Experimental investi-
gation into this dynamics can provide valuable struc-
tural information.
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Abstract—For a single-wall (14, 0) carbon nanotube, the total density of electronic states of the ideal structure
and of some possible defect structures is calculated in the framework of the band theory approach using Gaus-
sian-type orbitals and the approximation of the generalized density gradient. It is shown that allowance for
defects of the atomic structure of a nanotube makes it possible to adequately describe the existing experimental
data on nanotube electronic structure. In the framework of the same approach, the total density of electronic
states is calculated for an intermolecular contact of (5, 5) and (10, 0) single-wall carbon nanotubes formed due
to the creation of a 5–7 defect. It is shown that the electronic states related to the contact region and the 5–
7 defect lie in vicinity of the Fermi level. © 2004 MAIK “Nauka/Interperiodica”.
Atomic and electronic structures of a defect (13, 13)
carbon nanotube and of an intermolecular contact
between the (21, –2) and (22, –5) carbon nanotubes
formed by introducing a 5–7 defect were studied using
scanning tunneling microscopy (STM) and scanning
tunneling spectroscopy (STS) in [1–3]. In those studies,
it was shown that a defect introduced into an ideal
atomic network of a (13, 13) metal nanotube generates
a number of spectroscopic features located between the
first Van Hove singularities [1, 3] and that the energy
position and intensity of the new spectroscopic features
depend on the distance from the defect for which the
scanning tunneling spectrum is measured. In [1, 3], the
observed oscillations were interpreted in terms of reso-
nant backscattering of the incident electron plane wave
by quasibound electronic states of the defect. Experi-
mental STS spectra of the (21, –2)/(22, –5) intermolec-
ular contact measured in the vicinity of the structural
defect have shown that the electronic states of the
metallic (22, –5) structure and the semiconductor (21,
−2) structure are mixed. The relative weights of the
spectral features depend on the position of the measure-
ment point with respect to the contact. It has also been
shown that the features caused by the contact decay
over a distance of several nanometers. Local variations
in the densities of states for single-wall nanotubes were
experimentally measured in [2] and qualitatively inter-
preted as interference between the incident and
reflected electron waves. The dispersion law in single-
wall nanotubes with defects has been interpreted in
terms of quantum interference of electrons scattered by
defects [1].
1063-7834/04/4606- $26.00 © 21168
Another type of defects in semiconductor carbon
nanotubes caused by adsorption of O2 and NO2 mole-
cules by the carbon network of these objects was exper-
imentally studied in [4, 5]. Both chemical agents
increased the density of electronic states at the Fermi
level and converted semiconductor nanotubes into
metal nanotubes. On the basis of nonempirical calcula-
tions of the electronic structure [6] of a chemisorbed O2
molecule, these experimental results have been inter-
preted in terms of extra charge carriers (holes) at the
Fermi level and closing of the band gap in semiconduc-
tor p-type nanotubes.

In the theoretical study performed in [7], on the
basis of calculations of the electronic structure of sin-
gle-wall semiconductor nanotubes performed within
the tight-binding model and the local density functional
approximation, it was predicted that a 5–7 defect (a
Stone–Wales defect) should also result in closing of the
band gap in semiconductor nanotubes.

The tight-binding method was also used to calculate
a number of intermolecular contacts between nano-
tubes [8]. These theoretical results have qualitatively
confirmed the experimental observations reported
in [3].

Nevertheless, correct interpretation of some experi-
mental data even for nonchiral single-wall nanotubes
[9] is still lacking. The simplest example is sample no.
7 investigated in the pioneering work [9], where, in par-
ticular, the STM spectra of single-wall nanotubes were
measured for the first time. According to [9], this sam-
ple (of diameter d = 1.1 nm with chiral angle ϕ = 30°)
was a (14, 0) nanotube, which, according to [10], had to
have semiconductor properties. Nevertheless, in the
004 MAIK “Nauka/Interperiodica”
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experiment in [9], this sample had metallic properties.
In our opinion, the presence of defects in the structure
of the carbon (14, 0) nanotube would provide the most
reasonable interpretation of such fundamental differ-
ences between theory and experiment.

In order to check this assumption, we calculated the
electronic structure of an ideal (14, 0) carbon nanotube
and a (14, 0) carbon nanotube with different defects [a
Stone–Wales defect, double vacancy in the carbon net-
work (2V defect), a defect produced by embedding two
additional carbon atoms into the carbon network (an ad
dimmer defect), and two defects produced by saturating
one of the double carbon bonds by the OH and H
groups (2OH and 2H defects)]. All calculations were
performed using the approximation of a generalized
density gradient (the Perdew–Burke–Ernzerhof (PBE)
potential) [11] and the band theory approach using
Gaussian-type orbitals in the 3–21G, 6–31G, and 6–
31G* bases [12]. To correctly describe the electronic
structure of isolated defects, the length of the unit cell
was taken to be 20 Å. When modeling the variation in
the defect density in the atomic network, the length of
the unit cell (and, accordingly, the number of carbon
atoms in it) was varied. To study the electronic structure
of an intermolecular contact, we chose the structure
formed by the contact of a metal (5, 5) and semiconduc-
tor (10, 0) nanotubes. The intermolecular contact con-
sidered is formed by introducing one pentagon and one
heptagon into the (5, 5) or (10, 0) nanotube. To model
noninteracting contacts, the length of the unit cell was
increased to 40 Å.

Optimization of the geometry of defect structures
was performed using the method of the analytical gra-
dient of the potential energy surface and the PBE func-
tional [11] in the 3–21G basis. The number of atoms
per unit cell was varied from 226 for 2H and 2OH
defects (carbon–carbon bonds saturated by two atoms
of hydrogen or two functional groups, 2020 functions
in the 6–31G basis) to 334 for a 2V defect (3006 func-
tions in the 6–31G basis). The electronic structure of
all objects was calculated using 128 points of k space
in the Brillouin zone. The electronic structure of the
ideal (14, 0) nanotube was calculated using both the
PBE functional [11] and the hybrid PBE0 functional
[13], whose distinctive feature is the admixture of 25%
of the exact Hartree–Fock exchange to the pure PBE
potential of the density functional theory; this
approach makes it possible to take into account elec-
tronic correlations in the system more fully. It is
believed that this approach [13] is equivalent to the
Meller–Plesset fourth-order perturbation theory. The
PBE0 functional was shown to provide much better
agreement between the total theoretical electronic den-
sities of states (DOS) and the experimental STS spec-
tra of semiconductor nanotubes [14].

The unit cell of the intermolecular (5, 5)/(10, 0) con-
tact contains 360 carbon atoms (3240 functions in the
3–21G basis). The length of the unit cell for this struc-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
ture is 40 Å. Optimization of the geometry was per-
formed using the semiempirical quantum-chemical
PM3 method (for a cluster containing three unit cells)
and the analytical gradient of the potential energy. To
calculate the electronic structure, 64 points were taken
in k space in the Brillouin zone. For interpretation of
the data on the electronic structure of the intermolecu-
lar contact, band calculations for ideal (10, 0) and (5, 5)
nanotubes were performed using the PBE potential and
128 points in k space.

Figure 1 shows the experimental STS spectra
(Fig. 1, a [9]) and the theoretical densities of electronic
states calculated using the PBE (Fig. 1b) and PBE0
(Fig. 1, c) potentials for the ideal semiconductor (14, 0)
nanotube. It is seen from Fig. 1 that the experimental
spectra exhibit metallic conductivity, which is in dis-
agreement with the previous theoretical prediction [10].
In contrast to the experimental spectrum, the theoretical
densities of states obtained using both the PBE and
PBE0 potentials agree with the results from [10] and
are characterized by the presence of a band gap with a
width of about 1 eV (Fig. 1).

Figure 2 shows the experimental spectrum [9]
(Fig. 2, a) and a set of theoretical spectra for the struc-
tures with a Stone–Wales defect (Fig. 2, b) and 2H
(Fig. 2, c), 2OH (Fig. 2d), ad dimmer (Fig. 2, e), and 2V
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Fig. 1. (a) Experimental STS spectra [9] and the theoretical
(b) PBE and (c) PBE0 densities of states (DOS) for semi-
conductor zigzag (14, 0) carbon nanotubes. The inset shows
a photograph of the structure obtained with a scanning tun-
neling microscope [9]. It is clearly seen that the nanotube
has a zigzag structure.
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defects (Fig. 2, f). Introducing structural defects into
the ideal graphite network results in the appearance of
states in the band gap. In all cases, the main features of
the experimental densities of states at energies of
approximately –0.9 and 1.4 eV are described ade-
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Theoretical DOS of CNT (14, 0)
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Fig. 2. (a) Experimental STS spectrum of a (14, 0) carbon
nanotube (CNT) [9], (b) theoretical PBE 6–31G density of
states for a (14, 0) nanotube with a Stone–Wales defect (the
unit cell contains 226 carbon atoms), (c) theoretical PBE
6−31G densities of states for a (14, 0) nanotube with a 2H
defect (the unit cell contains 226 carbon atoms), (d) theoret-
ical PBE 6–31G density of states for a (14, 0) nanotube with
a 2OH defect (the unit cell contains 226 carbon atoms),
(e) theoretical PBE 6–31G density of states for a (14, 0)
nanotube with an ad dimmer defect created by sorption of a
C2 fragment at the carbon wall (the unit cell contains
282 carbon atoms), and (f) theoretical density of states TR

obtained for a rigid band of a 2V defect using the total PBE
6–31G densities of states calculated for 2V defect densities
of 0.3 and 0.6% per unit cell (the unit cell contains 334 and
332 carbon atoms, respectively).
P

quately. There is a gap in the density of states only for
the structure with a Stone–Wales defect (Fig. 2, b); all
other defects produce metallic-type densities of states.

Characteristic energy-dependent oscillations in the
density of states were simulated in [15] by using 1D
plane waves exp(ikx), where x is the space coordinate.
The incident plane wave can be resonantly reflected
from a quasibound defect state with reflection coeffi-
cient |R |2 [R = |R |exp(–i(kx + δ)), where δ is the phase
shift]. The corresponding standing wave can be written
as ψ(k, x) = exp(ikx) + |R |exp(–i(kx + δ)), which corre-
sponds to spatial oscillations in the densities of states
ρ(k, x) = |ψ(k, x)|2 = 1 + |R |2 + 2|R |cos(2kx + δ) [15].

In order to simulate the effect of the defect density
on the electronic structure of nanotubes, we performed
calculations of the band structure for a 2V defect with
two different cells. The first cell contained one defect
per unit cell (334 atoms, which corresponds to a defect
density of 0.3%), whereas the second cell had two
defects (the unit cell was the same; both defects were
placed on opposite ends and opposite faces of the unit
cell; the defect density was 0.6%). The translation vec-
tor for both unit cells was 25 Å.

Using this special choice of the unit cells, we can
write k1x ~ k2x (k1 is the wave vector of the defect state
with the former density and k2 is that for the defect state
with the latter density); therefore, we can obtain the
energy positions of the density-of-states oscillations for
both unit cells.

For systems with low defect densities, we can use
the model of independent centers [16] (assuming that
defects do not interact with each other) and the models
of rigid bands and impurity bands (a rigid band does not
depend on the occupation numbers, whereas the nature
of an impurity band is fully determined by the type and
density of the impurity). Application of these two mod-
els means that we can distinguish between the two inde-
pendent electronic subsystems of the system (naturally,
in narrow intervals of defect densities), namely, the
subsystem of defect states TD and the subsystem TR

formed by the other states with occupation numbers x
and (1 – x), respectively.

In terms of these two models, we can write two lin-
ear equations

where  and  are the total densities of states for the
systems with different defect densities.

For systems with a significant number of noninter-
acting defects uniformly distributed over the entire
atomic network, we can extract the quantity TR, since
different defects can mutually suppress oscillations in
the densities of states due to interference effects. Most

T1
T x1TD 1 x1–( )T R,+=

T2
T x2TD 1 x2–( )T R,+=

T1
T T2

T
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likely, TR can be seen in spectroscopic experiments for
such systems.

Figure 2, f shows TR obtained by using the theoreti-
cal densities of states for unit cells with 2V-defect den-
sities of 0.3 and 0.6%. It is clearly seen that such an
approach provides an opportunity to quantitatively
describe the experimental density of states obtained in
[9] for a (14, 0) nanotube.

The calculations described above show the high
quality of the results obtained for defect 1D carbon
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Fig. 3. The total densities of states for the (5, 5) and (10, 0)
nanotubes and for the (5, 5)/(10, 0) intermolecular contact.
Arrows indicate the features related to the (5, 5) structure,
triangles indicate the features related to the (10, 0) structure,
and asterisks denote the features related to the intermolecu-
lar contact itself. The (5, 5), (10, 0), and (5, 5)/(10, 0) struc-
tures are shown in the insets.
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*
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nanostructures; thus, we may hope for a qualitative
description of the electronic structure of the (5, 5)/(10,
0) intermolecular contact (Fig. 3). The length of the unit
cell (~40 Å) was chosen to be sufficiently large to avoid
significant interaction between the defects. By applying
the translational symmetry to the unit cell, we can con-
struct an infinite zigzag structure in which the sections
with (5, 5) and (10, 0) structures are separated by the
structures containing five- and seven-membered rings
(the upper inset in Fig. 3).

Figure 3 shows the densities of states for the (5, 5)
and (10, 0) nanotubes and for the (5, 5)/(10, 0) intermo-
lecular contact. According to our nonempirical calcula-
tions, the intermolecular contact is metallic with a non-
zero density of electronic states at the Fermi level,
whose energy position is –4.7 eV. The features near the
Fermi level are produced by the electronic states corre-
sponding to the 5–7 defect, whereas the spectral fea-
tures below and above the Fermi level originate from
either (5, 5) or (10, 0) structures.

Comparison of the experimental STS spectra and
theoretical electronic densities of states calculated
using the band theory approach, Gaussian-type orbit-
als, and the PBE potential of the approximation of the
generalized density gradient shows that the method
described above can be successfully applied to calcu-
late the electronic structure of semiconductor single-
wall nanotubes with defects. Noticeable differences in
the densities of states of ideal nanotubes and nano-
tubes with defects can serve as an elementary test of
the imperfection of the atomic structure of this type of
object.
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Abstract—The electronic structure and parameters of the energy band structure of (n, 0)-type nanotubes mod-
ified by alkali metal atoms (Li, Na) and intercalated by potassium atoms are studied. The quantum-chemical
semiempirical MNDO method and a model of the covalent cyclic cluster built in via ionic bonding are used to
model infinitely long nanotubes. The electronic density of states of modified nanotubes is found. It is shown
that semiconductor–metal transitions can occur in semiconductor nanotubes and that semimetal nanotubes can
undergo metal–metal transitions. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A lot of attention is currently being paid to the
experimental and theoretical study of a recently discov-
ered form of open-surface carbon called nanotubes
(NTs) [1–10]. In the course of partial thermal destruc-
tion of graphite layers, not only fullerene molecules but
also long tubes are formed, whose surface consists of
regular hexagons. These tubes are up to several microns
long and several nanometers in diameter, can consist of
one or several layers (depending on the preparation
conditions), and have open or closed ends. The methods
of NT fabrication are explicitly described in reviews [6,
7]. The NT structures can be classified using the sym-
bols (n, m), as suggested by Hamada et al. [4]. An (n,
m) NT is obtained by rolling a graphite fragment so that
one hexagon is located above another with the shift
mA1 + nA2, where A1 and A2 are primitive translation
vectors for the graphite fragment. Among the NTs
(tubelenes) with cylindrical symmetry, (n, n) NTs are
said to be of the “armchair” type and (n, 0) NTs are said
to be of the “zigzag” type. At present, it is possible to
prepare and study the structure, elastic properties, and
conductivity of separate single-wall and multi-wall
NTs and of bundles of single-wall tubes ~1 nm in diam-
eter [6, 7, 10–12].

One of the interesting aspects of the study of carbon
NTs is the possibility of fabricating structures having
new mechanical, electronic, or optical properties
through doping or modification by other atoms. Imme-
diately after the discovery of carbon NTs, the problem
of filling and modifying NTs by various materials
arose. In particular, an NT filled by conductor, semi-
conductor, or superconductor material can be used in
modern microelectronics as a miniature device [6–8].
Theoretical study of the mechanisms of formation of
filled and modified NTs makes it possible to understand
1063-7834/04/4606- $26.00 © 21173
the synthesis mechanisms and to develop new experi-
mental methods of NT fabrication. In this study, we
present the results of our investigations into the elec-
tronic structure and energy spectrum parameters of
small-diameter carbon NTs modified and intercalated by
alkali metal atoms (Li, Na, K); these investigations were
started as early as in the middle of the 1990s [13–19].

We discuss the results from calculating two possible
alternatives for modifying zigzag-type (n, 0) carbon
NTs: (1) regular adsorption of alkali metal atoms on the
external surface of an NT (surface modification) and
(2) introduction of alkali metal atoms into the NT cav-
ity (intercalation).

2. SURFACE MODIFICATION
OF CARBON NANOTUBES

A model of a covalent cyclic cluster built in via ionic
bonding [20], adapted to calculations for crystals and
polymers in the framework of the semiempirical quan-
tum-chemical MNDO calculation procedure [21], was
applied to calculate the electronic structure and energy
band structure parameters for (6, 0), (8, 0), and (12, 0)
NTs modified by Li and Na atoms. The extended unit
cells (EUCs) of the tubes under study contained three
layers with 6, 8, and 12 carbon hexagons in each layer
and 6, 8, and 12 alkali metal atoms, respectively,
located above the surface hexagons. The distance
between the nearest neighbor carbon atoms was taken
to be 1.4 Å. An example of EUCs for a (6, 0) NT mod-
ified by Na atoms is shown in Fig. 1. Cyclic boundary
conditions for molecular orbitals (MOs) of a cylindrical
EUC were imposed in the direction of the NT axis. Two
possible positions of metal atoms above the tube sur-
face were considered: (I) metal atoms were located
above the hexagon centers along the tubelene circle
004 MAIK “Nauka/Interperiodica”
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forming two “rings” not shifted with respect to each
other (a rectangular superlattice) (Fig. 1) and (II) the
metal atoms of one ring were shifted with respect to the
atoms of the other ring by one hexagon (a rhombic
superlattice). One ring contained three, four, and six

Fig. 1. Extended unit cell of a (6, 0) nanotube modified by
Na atoms.

0.4
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Fig. 2. Density of electronic states of a (8, 0) carbon nano-
tube normalized to an extended unit cell (EUC) and calcu-
lated using the method of covalent cyclic cluster built in via
ionic bonding; the dashed line indicates the position of the
Fermi level (approximately –5eV).
P

metal atoms for (6, 0), (8, 0), and (12, 0) NTs, respec-
tively. The geometrical parameters of the rings of alkali
metal atoms were optimized in quantum-chemical cal-
culations; for NTs, the rigid lattice approximation was
used. The calculated energy structure parameters for
modifications I and II of NTs are given in Table 1.

Analysis of these results shows that modification I is
energetically more favorable and, therefore, more sta-
ble in all cases. As the NT diameter increases, the dif-
ference in the specific energy (i.e., the energy per hexa-
gon) between the two modifications ∆ = EII – EI
decreases from 0.46 [for the (6, 0) tube] to 0.06 eV [for
the (12, 0) tube] in the case of Li and from 0.42 to
0.04 eV for Na. This difference in specific energy
approaches values of 0.05 and 0.02 eV, respectively,
obtained in the case of the same modifications I and II
with the same atoms for a single-layer C72 graphite
cluster (this is actually the limiting case of an NT of
infinite diameter; see Table 1).

Analysis of the calculated electronic structure of
modified NTs shows that the molecular orbitals (MOs)
are grouped into energy bands. The 2s- and 2p-atomic
orbitals (AO) of carbon atoms contribute to the molec-
ular orbitals corresponding to the states of the valence
band. The MOs corresponding to the bottom of the con-
duction band are constructed from the 2p AOs of carbon
atoms and 2s and 2p AOs of Li atoms or 3s and 3p AOs
of Na atoms. Calculations reveal the presence of metal-
lic conductivity (the band gap ∆Eg = 0) in the systems
under study and the appearance of minibands of unoc-
cupied levels in the energy spectrum corresponding to
the AOs of alkali metal and C atoms. These features are
a consequence of the appearance of a superlattice of
metal atoms and indirectly confirm the correctness of
the above results. Due to the presence of defects (atoms
of the superlattice), the band of the crystal splits into
minibands. Figure 2 shows the density of electronic
states in a pure (n, 0) carbon tubelene with n = 8. The
density of states for the (8, 0) NT has a gap of about
2 eV near the Fermi level, thus indicating the semicon-
ductor properties of the tube. Figure 3 shows the den-
sity of states for modification I with Li atoms. Compar-
ison with the case of a pure carbon NT clearly shows an
increase in the peak amplitudes corresponding to mini-
bands near the Fermi level EF (the main contribution to
the minibands comes from the alkali metal atoms).
Generally, for the (n, 0) tubes, the modification by
alkali metal atoms results in the appearance of mini-
bands in the band gap and, therefore, in the disappear-
ance of the energy gap, which indicates the onset of
metallic conductivity in such NTs.

We calculated the Li and Na atom adsorption ener-
gies for both surface modifications using the formula

(1)

where N is the number of metal atoms per EUC, Et is
the total energy of a pure carbon (n, 0) NT, Eme is the

Ead

Et NEme+( ) Emt–
N

-------------------------------------------,=
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Table 1.  Energy structure parameters of modified (n, 0) nanotubes (n = 6, 8, 12)

dt, Å Atom Modification r, Å Q E, eV ∆Eg, eV ∆Ev, eV ∆, eV Ead, eV

(6, 0)

4.6 Li I 1.6 0.68 –509.96 0.0 50.60 0.46 3.7

II 1.6 0.67 –509.50 0.0 49.52 2.3

Na I 1.7 0.65 –510.04 0.0 50.94 0.42 3.9

II 1.7 0.65 –509.62 0.0 49.74 2.7

(8, 0)

6.2 Li I 1.6 0.68 –511.54 0.0 50.10 0.24 3.4

II 1.6 0.66 –511.30 0.0 49.31 2.7

Na I 1.7 0.65 –511.66 0.0 50.28 0.22 3.7

II 1.7 0.65 –511.44 0.0 49.49 3.0

(12, 0)

9.3 Li I 1.7 0.68 –521.66 0.0 50.88 0.06 3.5

II 1.7 0.67 –521.60 0.0 49.90 2.5

Na I 1.8 0.65 –522.32 0.0 51.02 0.04 3.6

II 1.8 0.65 –522.28 0.0 50.10 2.8

Graphite C72

∞ Li I 1.7 0.62 –504.21 0.0 50.51 0.05 –

II 1.7 0.63 –504.16 0.0 50.40 –

Na I 1.8 0.60 –504.16 0.0 50.50 0.02 –

II 1.8 0.60 –504.14 0.0 50.45 –

Note: I and II are the modification types, r is the optimum distance between the metal atoms and the centers of carbon hexagons at the
surface, and Q is the charge on a metal atom; E is the energy of the system per hexagon, ∆ = EII – EI, dt is the tubelene diameter,
∆Eg is the band gap, and ∆Ev  is the valence band width.

Table 2.  Adsorption energies (in electronvolts) of Li and Na atoms for the two modifications of (n, 0) nanotubes with n = 6, 8, and 12

Nanotube type (6, 0) (8, 0) (12, 0)

Metal Li Na Li Na Li Na

Modification I II I II I II I II I II I II

3.7 2.3 3.9 2.7 3.4 2.7 3.7 3.0 3.5 2.5 3.6 2.8
metal atom energy (Li or Na), and Emt is the total energy
of the modified NT. The results of the calculation are
given in Table 2.

It is seen from Table 2 that, for a rectangular super-
lattice, the adsorption energy is greater than for a rhom-
bic superlattice. Thus, modification I actually turns out
to be energetically more favorable than modification II.

The geometrical parameters of the rings of alkali
metals vary only slightly as the NT diameter is
increased (Table 1). For (6, 0) and (8, 0) NTs, all
adsorbed Li atoms are at a distance of 1.6 Å from the
tube surface for both superlattice modifications and the
Na atoms are at a distance of 1.7 Å. Only for a substan-
tially increased NT diameter [in the case of a (12, 0)
NT] do the adsorption lengths change to 1.7 and 1.8 Å,
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
respectively. A further increase in diameter does not
change these quantities appreciably.

The charge distribution over the metal atoms of the
superlattices indicates that electron transfer to carbon
NTs takes place, which increases the number of major-
ity charge carriers in the NTs; as a result, the semicon-
ductor tubes [e.g., (8, 0) NTs] begin to take on semi-
metal properties and the conductivity of metal NTs
[e.g., (6, 0) and (12, 0) tubes] increases. In our case, the
superlattice parameter exceeds 4 Å for the chosen con-
figuration of alkali metal atoms (Fig. 1). The lattice
parameters of bcc alkali metal crystals are 3.5 (Li) and
4.2 Å (Na) [22] and are comparable to the respective
values for the superlattices under study. Moreover, as
noted above, the distance between the metal atoms and
the tubes is 1.6–1.7 Å in most cases. All these facts
indicate that, in an NT modified by alkali metals, there
4
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are two types of conducting channels, namely, the
metal superlattice and the carbon NT itself. However,
the alkali metal atoms are monovalent and have one
electron in their valence electron shell; according to
calculations, the electron is transferred to the NT.
Therefore, in our opinion, the greater contribution to
the conductivity of our NTs comes from the second
channel, namely, the carbon NT itself.

Thus, our calculations show once again that the sur-
face modification of NTs by metal atoms results in the
occurrence of a semiconductor–metal transition in
semiconductor NTs and a metal–semiconductor transi-
tion in semimetal NTs. Therefore, by introducing, e.g.,
metal atoms between the layers of multilayer tubelenes,
it is possible to create hollow alternating metal super-
lattices and NT conductors in a semiconducting carbon
shell that have new conducting, magnetic, and electri-
cal properties.

3. INTERCALATION OF CARBON NANOTUBES

In addition to surface modification of carbon NTs,
we used the method of covalent-cyclic cluster built in
via ionic bonding in the framework of the MNDO
approach to calculate the electronic structures of (n, 0)
NTs (n = 6, 8) with potassium atoms introduced into the
tube cavity. Two ways of intercalating carbon NTs were
considered: one or two K atoms were placed at the cen-
ter of an NT. The EUC of such a system consists of
three layers containing six or eight carbon hexagons
each and of one or two K atoms inside the NT that lie
on the symmetry axis joining the centers of the opposite
hexagons (Fig. 4). The distances between the nearest
neighbor C atoms were chosen to be the same as those

–15 –10 –5 0 5 10 15
E, eV

0.25

0.20

0.15

0.10

0.05

0

N
/E

U
C

Fig. 3. Density of electronic states of a (6, 0) nanotube mod-
ified by Li atoms (modification I); the density is normalized
to an extended unit cell. The dashed line indicates the posi-
tion of the Fermi level (~0 eV).
P

in graphite, i.e., 1.4 Å. In the case where two K atoms
were intercalated, the distance between them was cho-
sen to be ~4.5 Å (the minimum interatomic distance in
the crystal). Application of the cyclic model (with the
cyclic boundary conditions) makes it possible to cor-

(a)

(b)

Fig. 4. Extended unit cell (a) of a (6, 0) nanotube with an
intercalated potassium atom and (b) of a (8, 0) nanotube
with two intercalated potassium atoms.
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rectly describe a special type of filled (endohedral) NTs
called quantum nanowires.

Analysis of the electronic structure of the above sys-
tems shows that intercalation of an NT by K atoms pro-
duces a sharp decrease in the band gap ∆Eg, to the point
of its disappearance, which corresponds to the onset of
metallic conduction in the system (Table 3). In this
case, the semiconductor–metal transition is observed.
This transition occurs because of the appearance of
energy levels in the band gap characteristic of empty
NTs; the energy levels are mainly due to the potassium
AOs. The electronic density of states in an intercalated
(6, 0) tubelene with one potassium atom per EUC is
similar to that for a modified (6, 0) tube (Fig. 3) and
obviously exhibits peaks at the Fermi level, i.e., in the
region of –4.9eV; these peaks generally result in the
disappearance of the band gap characteristic of carbon
NTs of this type. A similar situation is observed for
semiconductor (8, 0) NTs as well.

The charge distribution over the potassium atoms
also indicates the electron transfer to the NT surface;
just as in the case of surface modification, the charge
transfer increases the number of majority carriers in
NTs and, therefore, leads to semimetal properties in
semiconductor NTs [e.g., of the (8, 0) type] and to an
increase in the conductivity of metal NTs [e.g., of the
(6, 0) type].

4. CONCLUSIONS

Thus, our calculations have shown that internal
(intercalation) and surface modifications result in inter-
nal or external metallization of carbon NTs and to the
occurrence of the semiconductor–metal transition in
semiconductor NTs and the metal–metal transition in
semimetal NTs. To date, a number of researchers have
succeeded in experimentally producing carbon NTs
intercalated by atoms of various metals: potassium,
platinum, zirconium, chromium, silver, gold, palladium
[23–27], etc. In particular, the suggested experimental
methods of opening multilayer carbon NTs, filling
them with metal atoms, and then closing them are
described in detail in [27]. In this way, new carbon NT–
based composite materials (quantum nanowires) are
obtained. It should be noted that the nanometer system

Table 3.  Energy parameters of (n, 0) nanotubes (n = 6, 8)
intercalated by potassium atoms

Nanotube 
type

Number of 
K atoms Q ∆Eg, eV ∆Ev, eV

(6, 0) 1 0.32 0.00 48.51

2 0.32 0.00 49.53

(8, 0) 1 0.84 0.00 47.00

2 0.84 0.00 47.23

Note: Q is the charge on a K atom, ∆Eg is the band gap, and ∆Ev is
the valence band width.
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size gives rise to new magnetic and electric quantum-
confinement effects that can find numerous applica-
tions in modern microelectronics and nanoelectronics,
which have been rapidly developing in recent years.

Our results agree well with previous quantum-
chemical nonempirical studies of carbon NTs filled by
transition metal atoms [28–30]. Using modifications of
the linear augmented plane wave method (the linear
augmented cylindrical wave method), a detailed analy-
sis of the variation in the energy band structure of NTs
after filling with various intercalants has been per-
formed. On the whole, the conclusion was drawn that
the density of states at the Fermi level increases for both
metal and semiconductor NTs intercalated by various
transition metals.
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Abstract—The nature of chemical bonding in carbon nanoclusters is investigated by the PM3 semiempirical
quantum-chemical method. The influence of the atomic structure on the electronic characteristics and chemical
properties of nanoclusters is analyzed. A σ–π model is proposed for the chemical bonding in nanotubes. It is
shown that, in the framework of the proposed model, nanotubes are objects characterized by a small contribu-
tion of π states to the valence band top. © 2004 MAIK “Nauka/Interperiodica”.
1. CHOICE OF THE OBJECTS 
FOR INVESTIGATION

The specific feature of elemental carbon is its ability
to form a great variety of complex spatial structures
consisting of polygons. Nanotubes were theoretically
predicted by Kornilov [1, 2] in 1977 and Chernozaton-
skii [3] in 1991 and were found experimentally by Ijima
[4] in 1991. To date, nanotubes have been used as mate-
rials for designing macromolecular structures up to
hundreds of nanometers in size. The discovery of nan-
otubes has attracted considerable attention due to the
possibility of preparing materials with unusual physic-
ochemical properties.

In this work, we investigated the nature of chemical
bonding in carbon nanoclusters and analyzed how their
atomic structure affects the electronic characteristics.
For model calculations, we chose two structures with
the same set of atoms located in a circle of a carbon cyl-
inder. These were zigzag (10, 0) and armchair (5, 5)
nanotubes, which differ in terms of the mutual arrange-
ment of hexagons (with respect to the longitudinal axis
of the tube) and radii. The choice of the tube sizes was
limited by the computational power. In particular, the
number of atoms in nanotubes was varied from 150 to
250 and the tube length was varied from 15 to 25 nm.
Dangling chemical bonds at the ends of carbon nano-
clusters were terminated by hydrogen.

Calculations of the nanotubes were performed by
the PM3 semiempirical method [5] with the GAMESS
program package [6]. Semiempirical methods offer an
adequate description of both the atomic structure (bond
lengths, bond angles) and electronic structure (photo-
electron spectra), which has been confirmed in a num-
1063-7834/04/4606- $26.00 © 21179
ber of works (see, for example, [7, 8]). Moreover, the
PM3 method makes it possible to calculate the elec-
tronic and atomic structures of sufficiently large-sized
clusters.

2. CALCULATION OF THE ELECTRON 
DENSITIES OF STATES

The electronic structure was analyzed in terms of
densities of states. We constructed an energy spectrum
of a molecule in which each molecular orbital was rep-
resented by one line. The intensities of all lines were
taken equal to unity. Then, each line was replaced by a
Gaussian distribution whose half-width at half-maxi-
mum was equal to 0.1 eV. The intensities of all the dis-
tributions at each energy were summarized.

When constructing the partial densities of states of
atomic orbitals x, the intensity of each line correspond-
ing to the molecular orbital y was taken equal to the
sum of the squares of the coefficients of the atomic
orbitals x in the LCAO MO expansion of the orbital y.
Then, the partial density of states was constructed by
the algorithm used to construct the total density of
states.

In standard quantum-chemical programs, the wave
functions of the P orbitals for each atom are oriented in
a global coordinate system. In order to interpret the par-
tial densities of states for molecules with spherical and
cylindrical symmetry, the basis set calculated for each
carbon atom is sometimes transformed from the global
coordinate system into a local coordinate system
through the Euler transformation. In the case of nano-
tubes, this is a cylindrical transformation with respect
004 MAIK “Nauka/Interperiodica”
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to the longitudinal axis of the tube, when one of the P
orbitals of a carbon atom is oriented normally to the
tube surface (Fig. 1). The transformation of the basis set
results in a set of orbitals oriented normally (P⊥ ) and
tangentially (P||) to the tube surface.

3. RESULTS OF CALCULATIONS
OF NANOCLUSTERS

The nature of chemical bonding was investigated by
comparing the electron densities of states. The densities
of states were compared for the P orbitals directed both
tangentially to the molecular plane (P||, σ bonding) and
normally to the tube surface (P⊥ , π bonding) (Fig. 2).
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Fig. 1. Transformation of the P wave functions of carbon
from a global coordinate system into a local coordinate sys-
tem for nanotubes.
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When investigating nanotubes, it is of interest to
compare the electronic structures of fullerenes (with a
spherical structure) and benzene (with a planar struc-
ture) (Fig. 2). It can be seen from Fig. 2 that the upper
levels in the valence band of benzene are characterized
only by the π (P⊥ ) bonding, whereas the P|| and P⊥
states are mixed (with approximately equal contribu-
tions) for C60 fullerene [9]. The benzene molecule has
the shape of a regular hexagon, the σ (P||) and π (Pz or
P⊥ ) bonds differ in energy, and the upper orbitals con-
sist only of the Pz (P⊥ ) orbitals. The C60 fullerene mol-
ecule is icosahedral in shape, and undistorted hexagons
form faces of the structure. The curvature of the surface
leads to mixing of the Pz (P⊥ ), Px (P||), and Py (P||) orbit-
als, and the upper valence levels are composed of the P⊥
and P|| states.

Figure 2 shows the partial densities of P|| and P⊥
states for the calculated carbon nanotubes. As can be
seen from Fig. 2, the electron wave functions that are
aligned normally and tangentially to the surface of the
structure and, correspondingly, determine the σ (P||)
and π (P⊥ ) bonding appear to be mixed as a result of the
surface curvature of the carbon nanotube. The nature of
chemical bonding in nanotubes is governed by the ratio
of the contributions from these wave functions to the
molecular orbitals. The upper filled levels in the
valence band of nanotubes involve, for the most part,
the P|| states and a small number of the P⊥  states. The
nanotubes have a cylindrical structure. Hence, from
general considerations, the ratio of the contributions
from the P⊥  and P|| wave functions to the valence band
top should be intermediate between the corresponding
ratios for benzene and fullerenes. Let us discuss why
this is not the case.

First, we analyze the nature of chemical bonding in
the (5, 5) and (10, 0) nanotubes. A comparison of the
partial densities of states for the (5, 5) and (10, 0) tubes
shows that the contribution from the P⊥  bonding is
somewhat larger in the electronic structure of the (10,
0) tube. This can be explained by the larger diameter
and, hence, by the smaller surface curvature of the tube,
which leads to a larger overlap between the P⊥  orbitals
and an increase in the contribution of the P⊥  orbitals to
the upper occupied molecular orbital (the valence band
top). However, the aforesaid does not explain the small
contribution of the P⊥  bonding to the valence band top,
even though these nanotubes are comparable in diame-
ter to C60 fullerene [d(n, n) < d(2n, 0), d(5, 5) = 6.78 Å,
d(10, 0) = 7.83 Å, d(C60) = 7.09 Å].

4. DISCUSSION

As was noted above, compared to fullerenes, nano-
tubes should possess a sufficiently high density of P⊥
states at the valence band top. Carbon nanotubes are
intermediate in structure between planar benzene (and
graphite) and ideally spherical fullerene C60 (symmetry
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004
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Ih). The large scatter in the diameters of nanotubes leads
to mixing of the Pz (P⊥ ), Px (P||), and Py (P||) orbitals in
the valence band, as is the case with fullerenes. How-
ever, the contribution from the Pz (P⊥ ) orbitals to the top
of the valence band is smaller in nanotubes.

In order to answer the question as to why the elec-
tronic structure of nanotubes possesses such specific
properties, it is necessary to change over from consid-
ering their geometric structure (tube radius, tube
length) to a detailed analysis of the atomic structure of
hexagons forming a carbon skeleton of the tube.

The bond angles in hexagons of all the structures
remain constant throughout the tube and are approxi-
mately equal to 120° (typical angle for the sp2 hybrid-
ization), as is the case in benzene, graphite, and
fullerene hexagons. The scatter of internuclear dis-
tances in nanotubes also slightly differs from the scatter
characteristic of fullerene molecules and, hence, like
the bond angle, does not affect the redistribution of the
P|| and P⊥  bonding.

An analysis of the torsion (dihedral) angles (Fig. 3)
describing polygon distortions (deviations from the
planarity) revealed an interesting regularity. In all nan-
otubes, the structure of all polygons is strongly dis-
torted.

In the structure of the (10, 0) tube, the torsion angle
in hexagons (angle between the planes formed by 1–2–
3–4 and 4–5–6–1 carbon atoms; see Fig. 3a) is approx-
imately equal to 18°. The hexagon plane is folded so
that the fold line is parallel to the tube axis. In the struc-
ture of the (5, 5) tube, the torsion angle in the hexagon
is approximately equal to 24°. The hexagon plane is
folded, and the fold line in the hexagon is perpendicular
to the tube axis (Fig. 3b).

The torsion angle in the (5, 5) structure is, on the
average, 6° larger than that in the (10, 0) structure. The
hexagon structure in the former nanotubes is formed by
two well-defined planes. In the (10, 0) nanotubes, two
less pronounced planes can also be distinguished in the
distorted structure of hexagons. It can be seen from
Fig. 2 that the density of P⊥  states at the valence band
top is higher for the (10, 0) nanotube characterized by a
smaller distortion of the hexagon structure, and vice
versa.

Therefore, the smaller the distortion of hexagons in
the structure of the carbon nanotube, the larger the
overlap of the P⊥  orbitals, which, in turn, results in an
increase in the density of P⊥  states at the valence band
top. As a consequence, strong distortions of carbon
hexagons lead to a change in the character and energy
of overlap between the P⊥  orbitals and to an increase in
the contribution of the σ bonding.

Owing to specific features in the geometry, the hexa-
gons forming the surface of carbon nanostructures are
distorted in the vast majority of carbon nanoobjects.
These spatial distortions are responsible for the sub-
stantial differences in the electronic structure.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
In the case of planar molecules (benzene, graphite),
the overlap between the Pz orbitals leads to the forma-
tion of typical π bonds. Since the fullerene molecule is
spherical in shape, the overlap of the Pz orbitals above
the molecular plane is not equivalent to that below the
molecular plane. This gives rise to mixed states formed
by σ and π bonds. The distortion of nanotube hexagons
results in a shift of the overlap between the Pz orbitals
toward the low-energy range, and, hence, the contribu-
tion of the Pz orbitals to the valence band top for nano-
tubes is small. The above analysis of the electronic
structure permits us to elucidate particular chemical
properties of carbon nanoclusters.

Fullerene molecules possess an electron affinity and
act as weak oxidants in chemical reactions. This can be
observed, for example, in the hydrogenation of C60
fullerene with the formation of C60H36 as the reaction
product [10]. At room temperature, C60 fullerene oxi-
dizes only under irradiation with photons, which is
explained by the formation of negative  ions with a
high reactivity [10]. The composition of the products of
fullerene fluorination substantially depends on the reac-
tion conditions. The reaction of C60 with NaF at T =
500–550 K predominantly leads to the formation of
C60F46 (with addition of 10–15% C60F48). Chlorination
of C60, as a rule, results in the formation of compounds
containing either 12 or 24 chlorine atoms. Moreover,
fullerene participates in addition reactions with the for-
mation of products involving hydrogen radicals, phos-
phorus, halogens, metals and their oxides, benzene rings
and their derivatives, NO2, alkyl radicals, etc. [10].

As a rule, approximately 5–8% of carbon atoms in
nanotubes undergo chemical transformation under soft
conditions depending on the type of carbon structures
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Fig. 3. Torsion angles of (a) (10, 0) and (b) (5, 5) carbon
nanotubes.
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and reactants. Usually, these atoms belong to defects in
the nanostructure. In this case, the terminal atoms have
a higher reactivity as compared to atoms located on the
nanotube surface. Under sufficiently severe conditions
(strong acids, high temperatures, plasma activation,
etc.), more than 50% of carbon atoms undergo chemi-
cal transformation. This leads to a change in the prop-
erties of nanotubes, in particular, to a decrease in the
stability [11–16].

Owing to formally identical sp2 hybridization, the
same type of carbon–carbon bonds, and the predomi-
nance of hexagons in all structures, fullerenes and nano-
tubes should resemble graphite in terms of their chemical
properties. Actually, nanotubes (compared to fullerenes)
are similar in terms of their chemical properties to graph-
ite, because they are rather inactive in reactions.

The chemical properties of fullerenes can be
explained by the difference in the overlap of the P⊥  orbit-
als above and below the molecular plane due to the sphe-
ricity of the molecule. The overlap density above the
fullerene surface is lower. As a result, the corresponding
orbitals are more susceptible to attacks by electrophilic
agents. For this reason, fullerene more easily enters into
chemical reactions as compared to graphite, in which the
overlap densities of the P⊥  orbitals above and below the
plane are identical to each other. For benzene, the config-
uration of the P⊥  orbitals is the same as for graphite. As
a consequence, reactions of substitution for hydrogen
rather than reactions of electrophilic addition to the π
cloud are characteristic of benzene.

All the aforementioned features of fullerene mole-
cules allow us to draw the conclusion that nanotubes
should also readily enter into addition reactions. Since
the geometry of nanotubes is similar to that of
fullerenes, the overlap of the P⊥  orbitals above and
below the tube surface should also be similar to the
overlap in fullerene. However, this is not the case,
because all hexagons in nanotubes are strongly dis-
torted. As a result, the contribution of the π states to the
valence band top is small, since these states are shifted
to the low-energy range. Therefore, the reactivity of
nanotubes is considerably lower than that of fullerenes.

5. CONCLUSIONS

Thus, the electronic structure of carbon nanotubes
was investigated in the framework of the σ–π model. It
was shown that carbon nanotubes are objects character-
ized by a small contribution of the π states to the
valence band top. The surface curvature of carbon
nanostructures leads to mixing of the atomic orbitals
aligned tangentially and normally to the surface. The
ratio of the contributions from these wave functions
determines the nature of chemical bonding in the nano-
structures. Owing to specific features in the geometry,
all hexagons forming the tube wall are strongly dis-
torted in all carbon nanotubes. These spatial distortions
of hexagons are responsible for the substantial differ-
P

ences in the electronic structure. The distortion affects
the character and energy of overlap between the Pz

orbitals, which leads to an increase in the contribution
of σ bonding and, correspondingly, to a decrease in the
contribution of π bonding to the upper occupied orbit-
als. Therefore, the smaller the distortion of hexagons in
the structure of carbon nanotubes, the larger the overlap
of the P⊥  orbitals.
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Abstract—The kinetics of interatomic correlations in low-concentration Ni–Mo (8–18 at. % Mo) alloys is stud-
ied on the basis of the data on residual-resistivity measurements upon isothermal and isochronous annealings,
as well as using x-ray diffuse scattering. The atomic ordering kinetics studied at low temperatures (~373 K)
suggests the coexistence of clusters of various ordered structures, which transform in a complex fashion
depending on the fixed short-range order structure in various temperature ranges. For example, spinodal order-
ing of N2M2-, N3M-, and N4M-type structures is observed in low-concentration Ni–Mo alloys. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

As follows from the phase state diagram, several
equilibrium ordered phases, namely, β-Ni4Mo (D1a), γ-
Ni3Mo (D022), and δ-NiMo (P212121) containing 20,
25, and 50 at. % Mo, respectively, are formed in Ni–Mo
alloys. In this system, ordering processes were studied
in most detail for stoichiometric and close-to-stoichio-
metric compositions [1–6]. A specific feature of these
alloys in the concentration range 8–33 at. %, as well as
of some other alloys (Au4V, Au4Fe, Au4Mn, Au4Cr) is

the presence of -type x-ray diffuse scattering

maxima in samples quenched from the disordered fcc
phase region. Figure 1 shows that the positions of these
maxima differ from the arrangement of superstructural
reflections corresponding to long-range order equilib-
rium phases (the superstructure peaks of the D022 phase

are at the {420} and {420} sites). In Ni–Mo alloys,

ordering processes are accompanied by nucleation and
competition between a number of long-range order
structures. All these superstructures [Ni4Mo (D11),
Ni3Mo (D022), Ni2Mo (Pt2Mo), Ni2Mo2 (I41/amd)] can
be described using static concentration waves [7],
whose amplitude is related to the long-range order
parameters. In the atomic representation, these struc-
tures are characterized by a certain filling of the {420}-
family planes with Ni and Mo atoms (Fig. 2).

Depending on the alloy stoichiometry, the transition
from the quenched state, to which the diffuse maxima

at -type sites correspond, to the long-range

order state is accompanied by the formation and devel-
opment of various intermediate structures. For exam-
ple, it is assumed that the M2N2-to-D1a transformation
takes place in a Ni4Mo alloy, reasoning from the contin-
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uous intensity transfer from the special points 

to the {420} sites observed upon low-temperature

annealing. This transformation corresponds to a contin-
uous transition, which, at the first stage, can promote
the development of the M2N2 structure accompanied by

an increase in the intensity of the  diffuse max-

ima, followed by their decay and the generation of a

{420} concentration wave. Annealing at tempera-

tures close to the order–disorder transition temperature
TC causes a first-order phase transition, at which the
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Fig. 1. Arrangement of the sites, superlattice reflections,
and diffuse maxima in the (001)* plane of the reciprocal lat-

tice: (1) fcc lattice sites, (2, 3)  sites, (4, 5) {420}

D1a sites, and (6, 7) {420} Pt2Mo sites.
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Fig. 2. Filling of the {420} planes, with static concentration waves of subcell clusters for various superstructures observed in Ni−Mo
alloys ([001] projection).
nucleation and growth of D1a-structure particles are
observed, accompanied by the initiation of superstruc-

ture reflections {420}.

The transition from the quenched state to the equi-
librium ordered state in a Ni3Mo alloy is more complex
and is associated with the short-range order structure to

which the  diffuse maxima correspond. Accord-

ing to the model developed in [8, 9], the short-range
order state that arises during quenching is a result of the
initiation and amplification of concentration waves
characterized by the wave vectors k at special high-

symmetry points  of the fcc structure.

These waves are caused by instabilities of the fcc
phase with respect to such waves and occur below the
instability temperature Ti. Concentration waves of the

 type correspond to a coherent Ni2Mo2 struc-

ture, whose development is caused by spinodal order-
ing and represents an order–disorder transition of sec-
ond order. The preferred instability of the fcc phase
with respect to the ordered Ni2Mo2 structure in compar-
ison with other possible ordered structures is confirmed
by calculations of the free energy F(η) of various struc-
tures. This energy was determined by appropriately
selecting the pair interaction energies for the three near-
est coordination shells [2], as well as using ab initio cal-
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culated concentration-dependent values of these ener-
gies for the first four coordination shells [4]. In addition
to thermodynamic factors, the generation of an ordered
Ni2Mo2 structure is also facilitated by the largest ampli-
fication rate of the concentration wave inherent to this
structure. This rate is determined by the second deriva-

tive of the free energy  for the long-range order
parameter η = 0, i.e., by the curvature of the F(η)|η = 0
curve.

However, in contrast to Ni4Mo alloys, which are
characterized by the transformation of only one

-type concentration wave, Ni3Mo alloys feature

secondary ordering as a result of instability of the
formed nonstoichiometric, partially ordered Ni2Mo2
structure at T  0 K. The secondary ordering in this
Ni2Mo2 structure can be accompanied by the develop-
ment of long-wavelength concentration waves with the
wave vector k〈000〉 , which results in decay of the struc-
ture into a phase mixture containing a disordered solid
solution and a stoichiometric ordered Ni2MO2 struc-
ture. Another type of secondary ordering is the forma-
tion of concentration wave 〈100〉 , which gives rise to
the D022 structure. In the third case of secondary order-
ing, there appears a wave analogous to the concentra-

tion wave  generating the nonstoichiometric

Ni2Mo2 structure but with a wave vector k2 perpendic-
ular to the primary-wave direction with vector k1. The

FNi2Mo2
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interaction between these waves gives rise to the N3M
structure. Thus, at the initial stage, ordering in a
quenched sample arises as a result of instability with
respect to the formation of the Ni2Mo2 structure and
subsequent annealing at various temperatures brings
about the formation of various structures caused by sec-
ondary ordering [3].

The above concepts regarding the initial stage of
transformations from short-range order to equilibrium
long-range order in Ni–Mo alloys were developed
using the results of electron-microscopy studies of sto-
ichiometric samples. Such studies do not allow quanti-
tative description of the short-range order structure in
the generated structures. This circumstance is espe-
cially important in the case of low-concentration alloys
far from stoichiometry. Taking into account the spin-
odal ordering dynamics of these structures, which
should be observed in a wide concentration range, one
would expect, on the one hand, the formation of con-
centration waves similar to those described above and,
on the other hand, the absence of certain competing
structures associated with equilibrium intermetallic
ordered phases. A comparison of the ordering processes
in Ni4Mo and Ni3Mo alloys occurring at the initial stage
shows that they differ substantially. Hence, it is impos-
sible to predict the short-range order structure at alloy
concentrations below the region of existence of the
ordered Ni4Mo phase.

This study is devoted to the transformation of the
short-range order structure in low-concentration Ni–
Mo alloys. We took samples containing 8, 11.8, 14, and
18 at. % molybdenum. The short-range order structure
was approximated by studying the isochronous and iso-
thermal dependences of the residual resistivity. The
quantitative characteristics were determined using
x-ray diffuse scattering.

It should be noted that, in the absence of structural
changes in the solid-solution region, the residual resis-
tivity is very sensitive to evolution of the short-range
order structure [10]. However, since this effect is inte-
gral (as in the case of electron diffraction studies), it is
impossible to obtain a detailed description of changes
in the behavior of interatomic correlations by measur-
ing the residual resistivity. The short-range order kinet-
ics can be uniquely described only by studying x-ray
diffuse scattering (or elastic incoherent scattering of
thermal neutrons).

2. RESIDUAL RESISTIVITY
OF Ni–Mo ALLOYS

Ni–Mo alloy samples were prepared differently for
various studies. To measure the residual resistivity,
polycrystalline samples of all compositions indicated
above were used. The samples were obtained by smelt-
ing a charge that contained vacuum-remelted Ni of
99.95% purity and Mo of 99.99% purity in a high-fre-
quency induction furnace in an alundum crucible in
PHYSICS OF THE SOLID STATE      Vol. 46      No. 6      200
purified argon. The casts were homogenized at a tem-
perature of 1123 K for 75 h. Then, the casts were used
to obtain rods, which were stretched into wire and
rolled into strips ~0.1 mm thick. The room-temperature
plastic deformation exceeded 1000%. Such an initial
state of the sample corresponds to a deformed state.
Then, samples deformed in such a way were annealed
at a temperature of 1273 K for 2 h in vacuum and
slowly cooled (at a rate of 2 K/min) to room tempera-
ture. Such processing yields another (in comparison
with deformation) initial state of the short-range order,
which corresponds to the annealed state. A third initial
state of the short-range order was obtained by 1-h
annealing of a deformed sample at 1223 K in vacuum,
followed by room-temperature quenching in a 10 wt %
NaOH solution in water in a special setup.

All samples in each of the initial states were isoch-
ronously annealed. Such annealing was carried out in
the temperature range 323–1073 K in steps of 30 K.
After 10-min annealings at each temperature in vac-
uum, the samples were quenched. The residual resistiv-
ity was measured in liquid nitrogen using the four-
probe potentiometric method. The accuracy of deter-
mining the relative residual resistivity, ∆ρ/ρ, was
0.001%. The kinetics of the residual resistivity for
annealed, and quenched samples was studied upon iso-
thermal annealing at the temperature Ta = 323 and
373 K.

Figure 3 shows the isochronous curves of the resid-
ual resistivity for a Ni–11.8 at. % Mo alloy in the three
initial states indicated above. For the other concentra-
tions, the same features in the behavior of the residual
resistivity are observed, which suggests that the order-
ing processes in the Ni–Mo composition range under
study are similar.

We can see that the residual resistivities in the initial
state differ significantly. In the annealed state, the resid-
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Fig. 3. Isochronous dependences of the residual resistivity
in a Ni–11.8 at. % Mo alloy for (1) the annealed,
(2) quenched, and (3) deformed initial states.
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ual resistivity is larger than that for the other treatments.
Obviously, the defect structure is different in all the ini-
tial states; however, the differences observed in the
residual resistivity are so significant that they cannot be
explained by electron scattering at defects. Therefore, it
can be assumed that these differences are caused by the
difference in the short-range order structure of the solid
solution that takes place in each initial state. As the iso-
chronous annealing temperature increases, i.e., for val-
ues of the residual resistivity measured in the states that
arise in alloys at various temperatures, the behavior of
the resistivity depends on the initial state (up to T =
773 K for a Ni–11.8 at. % Mo alloy; see Fig. 3).

For example, the residual resistivity of annealed
samples (curve 1) decreases at low temperatures, in
contrast to that of quenched (curve 2) and deformed
(curve 3) samples.

For the deformed state, the resistivity increases
upon isochronous annealing, whereas it passes through
a maximum after quenching.

At higher temperatures of isochronous annealing,
beginning from T ≈ 573–623 K, the resistivity increases
for all initial states, although its values differ. For
annealing temperatures above T ≈ 773 K, the residual
resistivities sharply decrease and are identical for all
initial treatments.

Figure 4 shows the evolution of the residual resistiv-
ity measured upon isothermal annealing of the
quenched sample. The annealing temperature T =
373 K corresponds to the first maximum of the isochro-
nous curve measured after the sample quenching
(curve 2 in Fig. 3). We can see that a sharp increase in
the resistivity is initially observed, which is then slowed
down and tends to flatten out.

The isochronous and isothermal curves of the resid-
ual resistivity suggest the complexity of the ordering
processes occurring in low-concentration Ni–Mo alloys
at various temperatures and durations of annealing.
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Fig. 4. Kinetics of the residual resistivity of a Ni–11.8 at. %
Mo alloy quenched at Tq = 1223 K.
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3. SHORT-RANGE ORDER STRUCTURE 
IN A Ni–11.8 AT. % Mo ALLOY: 

RESULTS AND DISCUSSION
The short-range order structure was studied using x-

ray diffuse scattering in a Ni–11.8 at. % Mo single crys-
tal 2.5 × 6 × 6 mm in size grown in argon in an alundum
crucible with a conic seed region. An outer facet of the
sample under study was cut parallel to the (100) plane.
The sample was studied in the annealed and quenched
initial states. Both initial states were obtained similarly
to the states of the samples used for measuring the
residual resistivity. To study the intensity kinetics asso-
ciated with the short-range order, the quenched sample
was isothermally annealed at Ta = 373 K; this was car-
ried out in the same way as in the study of the residual
resistivity.

X-ray diffuse scattering was measured using hard
MoKα radiation, which made it possible to separate
high harmonics and the fluorescent component from
the spectrum of x-rays monochromatized by a one-
dimensionally bent LiF crystal through selecting the
operating conditions of the setup [11]. The use of
obliquely incident hard x-rays in diffractometry of the
samples and the use of low-absorbing fused quartz as a
reference for measuring the intensities in absolute elec-
tronic units require corrections for the angular depen-
dence of absorption [12]. Taking into account these cor-
rections, the diffuse scattering intensity Isp(θ) from a
sample in electronic units expressed in terms of the
intensity from the reference at an angle θ0 is given by

(1)

where Ist(θ0) is the experimentally measured scattering
intensity from fused quartz and Lst and Lsp are the cor-
rections to the absorptance µ for the reference and the
sample, respectively. The monochromator imperfection
is taken into account by the parameter γ', which is close
to unity for the LiF crystal used.

The intensity components associated with the short-
range order and static and dynamic distortions, which
modulate diffuse scattering in alloys [13–15], were sep-
arated using the Cohen–Georgopoulos method [16–
18]. This separation is based on the difference in the
symmetry of diffuse background modulation in the
reciprocal space between these scattering components.
The intensities of two-phonon and multiphonon ther-
mal diffuse scattering were calculated using the tech-
nique described in [11]. The distribution of the x-ray
diffuse scattering intensity was studied at the positions

equivalent to the points (420) (Ni2Mo2), (420)

(Ni4Mo), and (420) (Ni2Mo) and in their vicinity cov-
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Fig. 5. (a) Distribution of the short-range order scattering intensity ISRO(h1, h2, h3) in the (001)* plane and (b) the short-range order
parameters α(r) for (I) annealed and (II) quenched states of a Ni–11.8 at. % Mo alloy.
ering the part of the irreducible Brillouin zone in the
(001)* plane of the reciprocal space.

The Warren–Cowley short-range order parameters
αlmn for atomic positions with coordinates lmn were
calculated by taking the inverse Fourier transform of
the determined intensities of the short-range order
ISRO(h1, h2, h3) at a given point in reciprocal space with
coordinates h1h2h3 according to the expression

(2)

where k is the normalizing factor, which depends on the
position of the atom.

A study of the short-range order structure of the Ni–
11.8 at. % Mo alloy in the initial annealed state shows
that the intensity ISRO(h1, h2, h3) is mostly concentrated

α lmn k ISRO h2 h2 h3, ,( ) πh1I( )cos
h1 h2 h3, , 0=

1

∑=

× πh2m( ) πh3n( ),coscos
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at the  and {420} sites and in their vicinities,

in particular, along the [210] direction. At the point

{420}, the short-range order intensity is low (Fig. 5a,

panel I). The short-range order parameters α(lmn) are
shown in Fig. 5b, panel I. Despite the smallness of the
reciprocal space volume in which the intensities
ISRO(h1, h2, h3) used for calculating α(lmn) were sepa-
rated, these parameters are in good agreement with
those previously determined with a large number of
points h1h2h3 for the same initial state [19–21].

Comparison of these parameters α(lmn) with the
short-range order parameters for the D1a, D022, N3M,
and N2M2 structures suggests that the short-range order
related to the D1a type is dominant in this initial state.

The rather intense diffuse maxima at the  sites

show that the short-range order structure is more com-
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plex and represents a mixed state that also includes the
N2M2-type short-range order.

When a sample is quenched from 1223 K, the distri-
bution of diffuse scattering associated with the short-
range order changes abruptly. The intensity ISRO(h1, h2,

h3) at the  sites and neighboring points increases

by several times. For example, the intensity at this posi-
tion is 31.4 and 70.9 el. units/atom for the annealed and
quenched states, respectively. The intensity at the

{420} sites and their vicinities also increases (Fig. 5a,

panel II). The predominance of the N2M2structure is
also confirmed by the calculated parameters α(lmn)
(Fig. 5b, panel II). It is worth noting that the parameter
α(lmn) for the sixth shell appreciably increases, which
is inherent to the N2M2 structure. However, in this case,
we cannot argue that only the N2M2 short-range order
exclusively exists.

The distribution of the short-range scattering inten-
sity suggests that the short-range order structure in the
quenched state corresponds to the coexistence of spin-
odal-ordered N2M2, N2M, and N4M structures. A com-
parison of the data on spinodal ordering with the data
on residual resistivity in the annealed and quenched ini-
tial states shows that the predominant D1a short-range
order in the annealed alloy samples causes an increase
in their resistivity. The preferential formation of the
N2M2 short-range order in the quenched state causes a
decrease in resistivity.

Isothermal annealing of the quenched sample for
4 min at 373 K results in a sharp decrease in the inten-

sity ISRO(h1, h2, h3) at the point , while the inten-

sities at the two other points remain almost unchanged
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Fig. 6. Kinetics of the short-range order scattering intensity
ISRO at the positions (1) N2M2, (2) N4M, and (3) N2M.
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(Fig. 6). At the same time, the intensity increases in

strands directed from the point  to the positions

{420} and {420}. These intensities, especially near

the point {420}, even exceed ISRO(h1, h2, h3) at the

positions of the D1a and N2M2 superstructures (Fig. 7a,
panel I).

Thus, the destruction of the ordered N2M2 structure

described by the unit concentration wave  is

accompanied (as noted for the initial stages of Ni3Mo
alloy ordering [2, 3]) by secondary ordering caused by

interference from mutually perpendicular  con-

centration waves, i.e., by the nucleation of the N3M
structure. Despite the fact that the short-range order
parameters α(lmn) (Fig. 7b, panel I) still correspond to
the N2M2 structure, their behavior differs from that of
α(lmn) for the initial state. It is worth noting the small-
ness of the parameter for the fourth coordination shell
and the relative values of the parameters for other
shells, whose behavior is similar to that of the Warren–
Cowley parameters for an ordered D022 structure. It is
reasonable to expect that the destruction of the ordered
N2M2structure will be accompanied by an increase in
the residual resistivity, which does actually take place
at this stage of the ordering kinetics of the quenched
sample (Figs. 3, 4).

Further isothermal annealing for 6 min is accompa-
nied by a change in the short-range order, which affects
the ISRO(h1, h2, h3) distribution (Fig. 7a, panel II). A spe-
cific feature of this distribution is the appreciable

decrease in intensity at points  and a certain

increase in intensity at the position {420} (Fig. 6).

The intensity at points {420} and {420} exceeds

the intensity at , although their difference is not

as distinct as that for the initial quenched state.

The intensity of the strands in the directions from

 to {420} and {420} exceeds the intensity at

the point  itself. The most significant increase is

observed near the latter two positions. The change in
the short-range order parameters (Fig. 7b, panel II) sug-
gests preferential formation of the N3M structure.
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Fig. 7. (a) Distribution of the short-range order scattering intensity ISRO(h1, h2, h3) in the (001)* plane and (b) the short-range order
parameters α(r) for quenched Ni–11.8 at. % Mo alloy samples isothermally annealed at Ta = 373 K for (I) 4 and (II) 6 min.
Thus, as time passes, the N3M structure is formed in
the quenched sample at 373 K due to secondary order-
ing. This structure is a mixture of clusters [2, 3] corre-
sponding to the N4M and N2M structures. The formation
of this structure is accompanied by a decrease in the
residual resistivity, which results in a change in slope of
the kinetic curve (Fig. 4). Upon isochronous annealing
(Fig. 3), the resistivity decreases in the temperature
ranges ~323–573 and ~373–623 K for annealed and
quenched samples, respectively. It is reasonable to
assume that such a decrease in the residual resistivity is
also caused by interference from concentration waves

, i.e., by the nucleation of the N3M structure.

From the fact that ordering with the formation of clus-
ters of the Ni4Mo structure results in an increase in the
resistivity, it follows that the increase in ρ (observed
from the isochronous curves) at ~573–773 and ~623–
773 K for annealed and quenched samples, respec-
tively, arises from the solid-solution instability with
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respect to concentration waves {420}. At higher tem-

peratures, the resistivity decreases (Fig. 3), which indi-
cates disordering, i.e., the formation of an ordinary dis-
ordered fcc structure that is stable to the generation of
various concentration waves.

This scheme of spinodal ordering is confirmed by
the behavior of the isothermal residual resistivity in the
case of quenching of isochronously annealed samples
(for both initial states) from 573 and 673 K. As before,
isothermal annealing was carried out at Ta = 373 K
(Fig. 8). We can see that the kinetic curves measured at
these quenching temperatures significantly differ,
which indicates that the short-range order structures are
different at these temperatures.

Indeed, as noted above, isochronous annealing tem-
peratures of 573 and 673 K (curves 1, 2 in Fig. 3) cor-
respond to the existence of the N3M and N4M structures,
respectively. In the former case (curve 1 in Fig. 8), the
resistivity slowly increases, while in the latter case
(curve 2 in Fig. 8) the ϕ(t) dependence is complex. It is
clear that annealing at Ta = 373 K of the sample
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quenched from Tq = 573 K causes destruction of the
N3M structure and that the N2M2 structure prevails,
although its content seems to be lower than in the initial
quenched state. In the case of quenching from Tq =
673 K followed by annealing at Ta = 373 K, the short-
range order with the N4M structure is initially
destroyed, which decreases the resistivity. Then, N3M is
destroyed, which increases ρ(t). This N3M destruction
can be considered a result of the disappearance of the

interaction between concentration waves  at low

temperatures, i.e., the formation of solitary waves. In
this case, the nucleation of the N2M2structure is accom-
panied by a decrease in the residual resistivity. The con-
tent of the N2M2structure formed at this temperature is
not optimal; therefore, this structure is partially
destroyed and ρ(t) increases. As the duration of anneal-
ing increases, the residual resistivity tends to an equi-
librium value, which seems to correspond to a mixed
state of short-range order involving the N2M2 and N3M
structures.

4. CONCLUSIONS

Thus, spinodal ordering of the N2M2, N3M, and N4M
structures takes place in low-concentration Ni–Mo (8–
18 at. %) alloys, which is also observed at the initial
ordering stages in quenched samples of Ni–Mo alloys
with stoichiometric compositions. Moreover, the order-
ing process scheme is simpler in this case, as it excludes
the nucleation of N2M- and D022-structure clusters [2,
3]. Study of the low-temperature ordering kinetics sug-
gests the coexistence of clusters of various structures,
which are transformed in a complex fashion depending
on the short-range order structure observed in various
temperature ranges. Based on the isochronous and iso-
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Fig. 8. Kinetics of the residual resistivity at Ta = 373 K for
isochronously annealed samples quenched at (1) Tq = 573
and (2) 673 K.
P

thermal dependences of the residual resistivity and the
distribution of x-ray diffuse scattering intensity in low-
concentration Ni–Mo alloys, the temperature ranges
where clusters of various ordered structures exist can be
determined.

REFERENCES
1. S. Banerjee, K. Urban, and M. Wilknes, Acta Metall. 32

(3), 299 (1984).
2. U. D. Kulkarni and S. Banerjee, Acta Metall. 36 (2), 413

(1988).
3. S. Banerjee, U. D. Kulkarni, and K. Urban, Acta Metall.

37 (1), 35 (1989).
4. A. Arya, S. Banerjee, G. P. Das, I. Dasgupta, T. Saha-

Dasgupta, and A. Mookerjee, Acta Mater. 49, 3575
(2001).

5. S. Hata, S. Matsumura, N. Kuwano, and K. Oki, Acta
Mater. 46 (3), 881 (1998).

6. S. Hata, T. Mitute, N. Kuwano, S. Matsumura,
D. Shindo, and K. Oki, Mater. Sci. Eng. A 312, 160
(2001).

7. A. G. Khachaturyan, Theory of Structural Transforma-
tions in Solids (Wiley, New York, 1983).

8. D. de Fontaine, Acta Metall. 23 (4), 553 (1975).
9. D. de Fontaine, Solid State Phys. 34, 73 (1979).

10. P. L. Rossiter and P. Wolls, J. Phys. C: Solid State Phys.
4, 354 (1971).

11. N. P. Kulish, N. A. Mel’nikova, P. V. Petrenko,
V. G. Poroshin, and N. L. Zyuganov, Izv. Vyssh.
Uchebn. Zaved., Fiz. 32 (2), 82 (1989).

12. V. G. Poroshin and N. P. Kulish, Metallofiz. Noveœshie
Tekhnol. 21, 75 (1999).

13. M. A. Krivoglaz, Theory of X-ray and Thermal Neutron
Scattering by Real Crystals (Nauka, Moscow, 1967; Ple-
num, New York, 1969).

14. M. A. Krivoglaz, Diffuse Scattering of X-ray and Neu-
trons by Fluctuations in Solids (Naukova Dumka, Kiev,
1984; Springer, Berlin, 1996).

15. C. J. Sparks and B. Borie, Local Atomic Arrangements
Studied by X-ray Diffraction, Ed. by J. B. Cohen and
J. E. Hilliard (Gordon and Breach, New York, 1966).

16. P. Georgopoulos and J. B. Cohen, J. Phys. (Paris) 38
(12), 7191 (1977).

17. P. Georgopoulos and J. B. Cohen, Acta Metall. 29, 1535
(1981).

18. J. B. Cohen, Solid State Phys. 39, 131 (1986).
19. V. G. Poroshin, N. P. Kulish, P. V. Petrenko,

N. A. Mel’nikova, and S. P. Repetskiœ, Fiz. Met. Metall-
oved. 87 (2), 145 (1999).

20. V. G. Poroshin, N. P. Kulish, P. V. Petrenko, and
N. A. Mel’nikova, Fiz. Tverd. Tela (St. Petersburg) 41
(12), 2121 (1999) [Phys. Solid State 41, 1945 (1999)].

21. N. P. Kulish, N. A. Melnikova, P. V. Petrenko, and
V. G. Poroshin, Met. Phys. Adv. Technol. 19, 1147
(2001).

Translated by A. Kazantsev
HYSICS OF THE SOLID STATE      Vol. 46      No. 6      2004



  

Physics of the Solid State, Vol. 46, No. 6, 2004, pp. 997–1000. Translated from Fizika Tverdogo Tela, Vol. 46, No. 6, 2004, pp. 969–971.
Original Russian Text Copyright © 2004 by Nemov, P. Seregin, N. Seregin, Davydov.

                                                                                                                                           

METALS 
AND SUPERCONDUCTORS

                                                                                                           
Hyperfine Nuclear Interaction at Copper Lattice Sites
of High-Temperature Superconductors Studied
by 61Cu(61Ni) Mössbauer Emission Spectroscopy

S. A. Nemov*, P. P. Seregin*, N. P. Seregin**, and A. V. Davydov***
*St. Petersburg State Polytechnical University, Politekhnicheskaya ul. 25, St. Petersburg, 195251 Russia
**Institute of Analytical Instrumentation, Russian Academy of Sciences, St. Petersburg, 198103 Russia

***Ioffe Physicotechnical Institute, Russian Academy of Sciences, 
Politekhnicheskaya ul. 26, St. Petersburg, 194021 Russia

Received October 30, 2003

Abstract—Mössbauer emission spectroscopy on the 61Cu(61Ni) isotope has been used to determine the qua-
drupole coupling constant C(Ni) and magnetic induction B(Ni) for the 61Ni2+ probe at copper sites in Cu2O,
CuO, La2 – xBaxCuO4, Nd2 – xCexCuO4, RBa2Cu3O6, and RBa2Cu3O7 (R = Y, Nd, Gd, Yb). The compounds con-
taining divalent copper were found to exhibit linear C(Ni) vs. C(Cu) and B(Ni) vs. B(Cu) relations [C(Cu) and
B(Cu) are the quadrupole coupling constant and magnetic induction for the 63Cu probe, respectively, found by
NMR], which is interpreted as an argument for the copper being in divalent state. The deviation of the data
points corresponding to the Cu(1) sites in RBa2Cu3O6 and RBa2Cu3O7 from the C(Ni) vs. C(Cu) straight line
may be due either to the copper valence being other than 2+ (in the RBa2Cu3O6 compounds) or to the principal
axes of the total and valence electric field gradient being differently oriented (in the RBa2Cu3O7 compounds).
© 2004 MAIK “Nauka/Interperiodica”.
Mössbauer spectroscopy is widely used in studies of
nuclear quadrupole interactions in high-temperature
superconductors; by comparing experimentally deter-
mined parameters with calculated parameters of the
electric field gradient (EFG) tensor, one can, in princi-
ple, determine the spatial distribution of electronic
defects and the effective charges of atoms [1].

These studies acquire particular significance in
cases where the Mössbauer probe occupies a copper
site, and this is why the version of Mössbauer emission
spectroscopy (MES) involving the 67Cu(67Zn) isotope
was proposed and realized [2]. However, determination
of the parameters of nuclear quadrupole coupling in
magnetically ordered lattices using 67Cu(67Zn) Möss-
bauer spectroscopy did not meet with success for a
number of technical reasons [2]. This communication
reports on an investigation into the nuclear hyperfine
interaction at copper sites in Cu2O, CuO,
La2 − xBaxCuO4, Nd2 – xCexCuO4 (x = 0, 0.15),
RBa2Cu3O6, and RBa2Cu3O7 (R = Y, Nd, Gd, Yb) using
MES on the 61Cu(61Ni) isotope; the 61Ni2+ Mössbauer
probe forming in the decay of 61Cu is localized in the
copper sites, and the nuclear and atomic parameters of
this probe are appropriate for determining the parame-
ters of the combined hyperfine interaction at these sites
[3]. Quadrupole splitting of the 61Ni Mössbauer spec-
trum gives rise to the appearance of five components
with an intensity ratio of 10 : 8 : 1 : 6 : 9, and the mag-
1063-7834/04/4606- $26.00 © 20997
netic field completely lifts the degeneracy of the 61Ni
nuclear levels, to make the 61Ni Mössbauer spectrum a
superposition of 12 lines with a theoretical intensity
ratio of 10 : 4 : 1 : 6 : 6 :3 : 3 : 6 : 6 : 1 : 4 : 10.

Samples were prepared by sintering the correspond-
ing oxides, and x-ray diffraction showed them to be sin-
gle phase. All the starting samples were single phase.
The La2 – x(Sr,Ba)xCuO4 compounds studied for x = 0.1,
0.15, 0.20, and 0.30 yielded Tc = 25, 37, 27, and <4.2 K,
respectively. The Nd2 – xCexCuO4 composition with x =
0 did not become superconducting down to 4.2 K, and
the composition with x = 0.15 yielded Tc = 22 K. For
YBa2Cu3O6.9, we obtained Tc = 90 K, and for the
RBa2Cu3O7 compounds Tc varied from 83 to 90 K. The
samples of RBa2Cu3O6 did not cross over to the super-
conducting state down to 4.2 K. Mössbauer sources
were prepared through diffusion of the short-lived iso-
tope 61Cu into the prefabricated ceramic at tempera-
tures ranging from 773 to 923 K for two hours in an
oxygen environment. Annealing of check samples in
similar conditions did not affect the values of Tc. Four
to six samples were employed to measure an experi-
mental spectrum. 61Cu(61Ni) Mössbauer emission spec-
tra were measured on a commercial spectrometer at
80 K with a Ni0.86V0.14 alloy used as an absorber.

To compare the possibilities offered by MES on the
67Cu(67Zn) and 61Cu(61Ni) isotopes, Figs. 1 and 2
004 MAIK “Nauka/Interperiodica”
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present 67Cu(67Zn) and 61Cu(61Ni) spectra of the
YBa2Cu3O7 and YBa2Cu3O6 compounds [the
67Cu(67Zn) Mössbauer sources were prepared through
diffusion doping of the above compounds with the 67Cu
radioactive isotope, 67ZnS served as an absorber when
measuring the 67Cu(67Zn) spectra, and the spectra were
taken at 4.2 K]. In crystal fields with a symmetry lower
than cubic, the Mössbauer spectrum splits into three
components of equal intensity. As is evident from
Fig. 1, the 67Cu(67Zn) spectrum of YBa2Cu3O7 is a
superposition of two quadrupole triplets with an inten-
sity ratio of 1 : 2. Based on the x-ray diffraction data,
the weaker triplet should be assigned to 67Zn2+ centers
in the Cu(1) sites and the stronger one, to the 67Zn2+

centers occupying the Cu(2) sites. The 67Cu(67Zn) spec-
trum of YBa2Cu3O6 is a quadrupole triplet, although
copper in this compound also occupies two structurally
inequivalent positions. The experimental spectrum
relates to the 67Zn2+ centers in the Cu(1) sites, whereas
the spectrum due to the 67Zn2+ centers in the Cu(2) sites
is split by magnetic interaction and is not seen in the
experimental spectrum (its observation would require
higher Doppler velocities that could not be reached
with the spectrometer at our disposal).

As seen from Fig. 2, however, both copper states in
the YBa2Cu3O7 and YBa2Cu3O6 lattices manifest them-
selves in the 61Cu(61Ni) spectra. The spectrum of
YBa2Cu3O7 is actually a superposition of two quadru-
pole multiplets; based on the relative intensities of the
constituents of the spectrum, the spectrum with the
smaller eQUzz should be assigned to 61Ni2+ centers in
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Fig. 1. 67Cu(67Zn) Mössbauer spectra of (a) YBa2Cu3O7
and (b) YBa2Cu3O6 measured at 4.2 K. The positions of the
quadrupole triplet components for the Cu(1) and Cu(2) sites
are specified.
P

the Cu(1) sites and the spectrum with the larger eQUzz,
to 61Ni2+ centers in the Cu(2) sites. The Cu(2) sublattice
in YBa2Cu3O6 is magnetically ordered; therefore, the
spectrum of this sample may be considered a superpo-
sition of a magnetic multiplet [61Ni2+ centers in the
Cu(2) sites] and a broadened singlet [61Ni2+ centers in
the Cu(1) sites].

The nuclear hyperfine interaction parameters for the
61Ni probe [the quadrupole coupling constant C(Ni) and
the magnetic induction B(Ni)] are displayed in Figs. 3
and 4.

The quadrupole coupling constant C(Cu) was mea-
sured for the 63Cu probe in cuprous oxides by NMR [4–
11], which permits one to check the correlation
between the 61Cu(61Ni) MES data and 63Cu NMR mea-
surements. Figure 3 presents a |C(Ni)| vs. |C(Cu)| graph
for the divalent-copper compounds La2CuO4,
La1.85Sr0.15CuO4, Nd2CuO4, Nd1.85Ce0.15CuO4, and
CuO. We readily see that the experimental points fit a
straight line. This linear dependence can be understood
if we recall that the EFG at nucleus sites for the Ni2+

and Cu2+ centers is generated both by the lattice ions
(the crystal field EFG) and by the nonspherical valence
shell of the ion itself (the valence EFG), so the quadru-
pole coupling constant for the probe can be cast as

where eQ is the quadrupole moment of the probe
nucleus; Vzz and Wzz are the principal components of the
crystal and valence EFG tensors, respectively; and

C eQ 1 γ–( )Vzz eQ 1 R0–( )Wzz,+=
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Fig. 2. 61Cu(61Ni) Mössbauer spectra of (a) YBa2Cu3O7
and (b) YBa2Cu3O6 measured at 80 K. The positions of the
quadrupole and Zeeman multiplet components for the
Cu(1) and Cu(2) sites are specified.
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γ and R0 are the Sternheimer coefficients for the probe
used.

The linear relation |C(Ni)| vs. |C(Cu)| is actually a
consequence of the linear relations C(Ni) vs. Vzz and
C(Cu) vs. Vzz, which were observed [12] for com-
pounds of divalent copper. Because the data obtained
for the Cu(2) sites in the RBa2Cu3O7 and RBa2Cu3O6
compounds fall onto the above straight line, one may
conclude that copper in these sites is in the divalent
state.

As seen from Fig. 3, the points obtained for the cop-
per sites in Cu2O and for the Cu(1) sites in RBa2Cu3O6
and RBa2Cu3O7 deviate from a linear relationship.
There are two reasons for this deviation, namely, the
copper valence state being other than 2+ and different
orientations of the total and valence EFG axes for the
61Ni2+ and 63Cu2+ probes. The first reason is valid for the
Cu(1) sites in RBa2Cu3O6 and for the copper sites in
Cu2O [the copper in Cu2O and in the Cu(1) sites of the
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Fig. 3. |C(Ni)| vs. |C(Cu)| diagram for (1) La2CuO4 [4],
(2)   La1.85Sr0.15CuO4 [5], (3) Nd2CuO4 [6],
(4) Nd1.85Ce0.15CuO4 [6], (5) CuO [4], (6) Cu(2) in
NdBa2Cu3O7 [7], (7) Cu(2) in GdBa2Cu3O7 [7], (8) Cu(2)
in YBa2Cu3O7 [8], (9) Cu(2) in YBa2Cu3O7 [7], (10) Cu(2)
in NdBa2Cu3O6 [7], (11) Cu(2) in GdBa2Cu3O6 [9],
(12) Cu(2) in YBa2Cu3O6 [10], (13) Cu(2) in YbBa2Cu3O6
[9], (14) Cu(1) in NdBa2Cu3O7 [9], (15) Cu(1) in
GdBa2Cu3O7 [9], (16) Cu(1) in YBa2Cu3O7 [8], (17) Cu(1)
in YbBa2Cu3O7 [9], (18) Cu(1) in NdBa2Cu3O6 [9],
(19) Cu(1) in GdBa2Cu3O6 [9], (20) Cu(1) in YBa2Cu3O6
[10], (21) Cu(1) in YbBa2Cu3O6 [9], and (22) Cu2O [11].
The straight line is a least squares fit through points 1–13
corresponding to divalent copper. The references concern
63Cu NMR data.
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RBa2Cu3O6 compounds is univalent], and the second
applies to the Cu(1) sites in the RBa2Cu3O7 compounds
[it is known that, at least for the Cu(1) sites in
YBa2Cu3O7, the z axis of the total EFG tensor is
directed along the b crystallographic axis, whereas the
z axis of the crystal-field EFG is aligned with the a crys-
tallographic axis [13]].

Magnetic induction at the copper sites, B(Cu), was
measured for the 63Cu probe in cuprous oxides by NMR
[4–11]. As is evident from Fig. 4, the 61Cu(61Ni) MES
data are linearly related to the 63Cu NMR data for all the
compounds studied. This is obviously the result of the
probe occupying the copper sites in the lattice.
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