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This paper discusses how an electromagnetic field consisting of a superposition of a constant
magnetic field and a field of laser type can affect nuclear beta decay. In general it is

not assumed that the intensities of the two types of fields are small compared to the characteristic
field HX, = B,H,,, whereH . =m?c/ef and the quantity3,; depends on the energy

liberated in the decay and the configuration of the electromagnetic field. For nonrelativistic
decays the quantity, is found to be of the same order as the maximum kinetic energy of an
electron referenced to its rest energy~1<<1. It is assumed that the frequency of the

wave field satisfied w/mc<I1. The behavior of the probability for the process is studied over a
wide range of the fundamental parameters that characterize the fields. Corresponding
asymptotic expressions are derived in the “weak”- and “strong”-field regimes. Also discussed
are so-called interference corrections to the unperturbed decay probability, which cannot

in principle be studied by the methods of perturbation theory. It is shown that the times and
distances that are important in generating these contributions exceed the parameters of

the unperturbed processes, just as in the case of a plane-wave field previously investigated in
detail by Nikishov and Ritus. However, in contrast to the case of a pure wave field,

when a system is simultaneously subjected to a constant magnetic field and a wave field, the
degree to which these characteristic regions are enlarged can depend not only on the
intensities of the electromagnetic fields but also on their rates of change, even in the limit in
which the wave field is slowly varying. €997 American Institute of Physics.
[S1063-776(197)00101-1

1. INTRODUCTION In essentially all of the papers devoted to this topic, the
authors have noted that the external fields can give rise to
Considerable attention has been focused on the study éfindamentally new physical effects when the intensities of
the excitation and decay of nuclei under the action of intensehe electric and magnetic components are comparable to the
electromagnetic fields. A large number of papésse the quantity H!,=8,H.,, whereH,=m?/e is a characteristic
review article Ref. 1have been written about the possibility field magnitude that measures the importance of fundamental
of using both constant magnetic fields and focused laser rajuantum electrodynamic phenomefizere e, m are the
diation to affect nuclear beta decay. In another group of paeharge and mass of an electron; the value of the characteris-
pers, the authors discuss how intense plane-wave electrde field is written in a system of units whefie=c=1, which
magnetic fields affect such decafsee Refs. 2, 3 and the is also used in what follows In this case the coefficient

papers cited therein 1 depends both on the energy liberated in the decay,
Interest in this problem dates back to the 1920’s, when

Einstein first discussed the possibility that radioactivity could . _ My—My 1)

be induced by the action of optical quaft®ecently, re- 0 m

newed interest in this .pOSSIbIIIty has arisen, relnfprced b.o.tQ/vhereMX, M, are the masses of the mother and daughter
by new data from studies of processes observed in the vicin-

. L . . o .. nuclei respectively, and on the specific type of electromag-
ity of pulsars, where magnetic fields with gigantic intensities P y P yp 9

are well known to exist. and by the development of neWnetic field configuration acting on the nuclei. Thus, e.g., for
' y P nonrelativistic decayd,—1=1<1) in a constant magnetic

experimental techniques. 21489
The first studies of the beta decay of a neutron in an
intense electromagnetic field were carried out by Korovina  g,=2I, 2

et al® and Ternowt al? In these studies the effect of a static ] ) o )
magnetic field on the process was included. A comprehenWh”e for a wave field that varies sufficiently slowly, 01r4|n
sive investigation of weak-interaction decays in a planeine® case of the so-called constant crossed ield
wave field can be found in Ref. 7, which also contains a(E=H, ELH),

detailed analysis of the analytic properties of the probability B,=(21)32 3)
with respect to charge. A description of the important char-

acteristics of neutron decay under the combined action of a It is noteworthy that results analogous(®), (3) apply to
magnetic field and a wave field was presented in Ref. 8. a variety of situations in which processes that occur in the
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absence of an electromagnetic field are subject to such fieldagtic field and the field of a plane electromagnetic wave with
both static magnetic fields and fields of laser type, when theircular polarization and with frequency and amplitugde
wave frequency is sufficiently low> andE, respectively.

Although the presence of electromagnetic fields with in-  In this paper we discuss the effect of an intense electro-
tensitiesH <Hg, can be felt only through corrections to the magnetic field with the Redmond configuration on the
total decay probability in the absence of the field, it turns outnuclear beta decay process-X +e+ v. We assume that the
that even in this range, nontrivial behavior of field depen-massesvl, andM, of the initial and final nuclei are so large
dences can be observed. In particular, a few papers haw®mpared to the electron massand the energy yield in the
noted that there are external fields of a special type for whicltlecayme that we can neglect effects of ordevM and
the decay probability contains nonanalytic terms when théneo/M. In this case, however, we assume that the intensi-
fields are turned off, which cannot in principle be reproducedies of both the constant and time-varying fields can be com-
by the methods of perturbation theory. It must be pointed ouparable tog;H., or even exceed that value.
that the basis for studying such effects was laid by V. I. Ritus ~ The fundamental result of this paper is the derivation of
in Ref. 7, who concluded that at the time the external field isa relatively compact analytic expression for the total prob-
turned off, the probability has an essential singularity as @bility of beta decay in an external field with the Redmond
function of the external field. The emergence of this type ofconfiguration and its detailed analysis in both the nonrelativ-
behavior in the decay probability when a static magnetidstic and relativistic limits. Let me emphasize that the inte-
field is present was discussed in Refs. 1, 15. gral representations given here, to my knowledge, have not

Although each of these examples has been studied iReen presented anywhere in the literature before, even for
considerable detail in isolation, it is fair to say that we arethose special cases where one of the components of the Red-
still far from Constructing any sort of definitive theory of mond Configuration is miSSing. The nonrelativistic limit of
beta decay in external fields. Among other things, this conthe decay probability in a field with the Redmond configu-
clusion follows from the limitations that characterize essentation is investigated here using an expression in the form of
tially all studies in this area, namely those connected witH® Single integral, which in special cases agrees with the re-
having to treat the interaction in the nonrelativistic limit. Sults of Refs. 1-3, 5-15. Another topic we will investigate
However’ there is also a lack of studies of interference efjn detall is interference effects for a field with the Redmond
fects arising from the simultaneous application of differentconfiguration over a wide range of the fundamental param-
kinds of electromagnetic fields. Although predicting such ef-eters, including the region of cyclotron resonance. The re-
fects is usually difficult even at the qualitative level, we canSults obtained here generalize well-known studies of analo-
distinguish, for example, the possibility that the total field 90us effects in a plane-wave fiéft~**to the case in which
might act resonantly on the charged particles of a reaction.2 constant magnetic field affects the decay at the same time.

It is this latter situation, i.e., nuclear beta decay in the
presence of a superposition of electromagnetic fields that ad-
mit the possibility of resonant behavior, that excites interest?: PROBABILITY OF NUCLEAR BETA-DECAY IN AN

ELECTROMAGNETIC FIELD WITH THE REDMOND
It should be noted that although a general approach based NFIGURATION
the use of exact solutions of relativistic quantum equations o
motion of charged particles in an external fiditie Furry In Ref. 8, Ternowet al.investigated effects related to the
representationhas been known for a relatively long time, polarization of particles that participate in the beta- decay of
inclusion of external fields of a specific type requires formu-a neutron in an intense electromagnetic field with the Red-
lation and development of special methods of investigatiormond configuration. In obtaining expressions for the beta
(see, e.g., Refs. 1-3, 9,116 decay probability that took into account the influence of an

The fundamental difficulty in studying how fields with external field, they used exact solutions of the Dirac equation
compound structure affect the course of a decay is the conthat describe the motion of an electron. If we repeat all the
plexity of the equations involved and their analysis, which isfundamental steps of their calculation, which is described in
typical of multiparameter processes. This difficulty can todetail in Ref. 8, but generalize their results to the case in
some extent be avoided if the superposition of fields undewhich the energy, released in the decay is arbitrary, we
study consists of a static magnetic field and the field of acan write the final expression for the total decay probability
plane electromagnetic wave propagating along it. of nucleus X within the allowed-transition approximation in

This combination of electromagnetic fields is well the form(analogous to Eq6) of Ref. 8
known to have the property that the relativistic quantum oL .
equations of motion of a charged particle interacting with it .-G, > f daf dr 72d;8(f;), (4)
can be solved exactly. This enables us to develop and gen- nn’ JO 0
gralize methods baspd on exact inclusion of the cha_rac.teri"?,\—,here i=1, 2, W=W,+W,, Go=G2m’(1+3a?)/4r,
ths of the external field to the case of electromagngtlc fleld%v is the weak interaction constant, is the ratio of the
v_wth com_pound structure. We note_that these solutlons_wergxial vector and the vector contributions, and
first obtained by Redmont/;hence, in what follows we will
refer to this superposition of electromagnetic fields as the fDl:alﬁ,’n_l(z), (5)
Redmond configuration, with the understanding that it con- 3 ’ 5 12
sists of the following components: a constant uniform mag- Po=aly, (D&l o, 1(2)
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+2&1\2unly 1421 -10-1(2). (6) £n | % B sirf(xA) .
U=|—= A? exp(—ix)
Here we also introduce the notation: sinx
Po—P3 Pot P3 ek fw _ Sin(xBp)sin(xA)
T BT e 8T 7 '
H o XS, XEnB & sinxBmsinxA)
,LL:H—cr, Oy=Mu, o61=aw—wy, “ Au wAZ Sin x )
po and ps are the energy and longitudinal componénith A=1-pBn.

respect to the direction of the magnetic fietd the electron
momentum,r is the neutrino energy, arlg: ,(z) is the La-
guerre function, which is related to the degenerate Gau
hypergeometric function:

The procedure for obtaining this result will be demonstrated
Sfé)r the example of contributiofb). For this we can use the
integral representation of thé-function and the explicit
form of the dependence of its arguments on summation in-

| (2= 0 Vn!/n’! exp( ) n 2 dex:
(n—n")! f,=An+Bn'+C, 9)
XF(—=n',n—n"+172),

where

wherez=£2u/(2\?), A= w/m. L o
In Eq.(l4) we have averaged over the polarization states =2pt2unp, B=—2ump,

of the nucleus X and summed over the states of Y. The C=¢5BA " 1—S,—2uyB,
contributions®; essentially correspond to the different ori-
entations of the electron spin. The special property of arnd apply the formula for summation of bilinear combina-
electron in the quantum state=0 (wheren is a Landau tions of Laguerre functionsee Ref. 15
level), i.e., that its spin can only be oriented opposite to the %
magnetic field, leads to two different conservation laws, 2 Iﬁn,(z)exp(—in’go)
which are determined by the differeatfunction arguments n'=0
that correspond to orientations of the electron spin along and
opposite to the direction of the magnetic field:

f1=—S+2Bun(n—n"*1)—2un

=exd —i(ne+zsin@)]l, q(u).

After summation over the index’, the expression

+&Bnl(1-By), (7) PF=q 2 12 (2)5(fy)

where So=1-2a(eq—7)+a?, n=yolwy, y=M,/m, n.n"=0
vB=a. takes the form

Note in comparing with Eq(6) of Ref. 8 that in(4) the "

. . . . o *
variable of integration has been changed: PF = f dt exp(iCt)E ex] —i(ng+z sin ¢

277 —o0 n=0
dq3 _ dCY
a  a’ —tAn) ]I, n(u), (10

the expression has been integrated over the angle of flight afhereu=4z sir’(¢/2), ande=—tB, z=¢2/(2uA?) is the
the neutrino, and a new summation index=n+1+1 has argument of the Laguerre function in EdS), (6).
been introduced. Hergj is the average energy of an elec- The remaining sum ovar can be expressed in terms of
tron in a field with the Redmond configuration, agglis the  elementary functions. For this it is necessary to use yet an-
longitudinal component of its quasimomentisee Ref. 8 other formula for the summation of, ,(z), which can also

By exchanging the orders of integration and summatiorbe obtained from the properties of the Laguerre function:
in (4) and using the properties of the Laguerre functions, we - exp—ied2)

i i ini i exp(—i

can obtain a representation for the total probability of nuclear S exging;)l, ()= $1

beta decay in the form =0 M 2 sin(@4/2)
|G
W, = =9 f dxf daf d7r72 exp(iSFix)Fy, (8) ><ex;{ — % cot%) (11)
wherek=1,2, W=W;+W,, wherep;=t(A+B)=—2ut.
o After these transformations we can obtain
Fl: T . -
2sinx’ ia (= exdi(S;— ¢4./2
gog—7—al2 iU T #1
Fo=r—r— —,
sin x 0% where
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sin( ¢/2)sin( ¢,/2) then it is easy to obtain fror(il6)

S,=Ct—2z

Sin(¢1/2) Gop = ol upl2)
W=—ex =i — ﬁz—exmpl)dp
P2=@+ ;. N
Introducing the new variable of integratioo= ut and 17
shifting the index of summation by unity, we finally obtain In the weak-field limit <) it follows that
for th tribution® o
or the contribution®, e [1 2 I'(9/2)22"B,, M 2n
i (> dx 0 I
2 ®,8(f exifi(S=x)]. (2n)!1T'(9/2—2n)
nn’ =0 47-r,u —w» SiNX 712
7 5
13 31T é(—z,vH, 19
By making analogous transformations fbp, we obtain

the result(4) given above. Note that in these expressions wevherev=a—[a], a=I/u, 0<v<1,[a] is the integer part
must pass the contours under the real-axis singularities of thef the numbem, and
function being integrated. Before integrating over the neu-

trino factor r, we may regard expressi@d) as the differen- Wo=-—— Gg(21)72 (19)
tial probability distribution with respect to the neutrino en- 105
ergy. is the decay probability in the absence of a field in the non-

The integration over the neutrino spectrum is easily car
ried out using the expression

Telativistic limit.
Note that the asymptotic expansi@B) can be obtained

T(1+)\) by expanding cox in (17) about zero
f th exp(—ixt)dt=—i ex;{ —— .
0 (x—i0) (—1)n22n N
(14) cotx—nz0 G B

AFE=L=2e where B,,, are the Bernoulli numbers. If we integrate this

which we must regard as an integral transformation of genseries term by term, also taking into account the contribu-
eralized functions. After this the total probability for nuclear tions to the integral17) from nonvanishing poles of the
beta decay in an electromagnetic field with the Redmonaotangentp=2nmx/u, wheren==1, +2,..., we findthat
configuration reduces to the form the generalized Riemann zeta functi(a,v) appears.
G q Substituting in the values of the Bernoulli numbers
0'“ f @ J (COtX-I—i)—i(a B,=1/6,B,= — 1/30,Bg=1/42 and using the Hurwitz rep-
- resentation foZ(—5/2,v), we can write Eq(18) in the form

3i
80+
P

U exp(ix) - 3B (w\2 7 [\t 1 u)\®
+ Y ) expiS*), (15 W=W, 1+1—2 E) —Zg E) +9_6(§)
wherex= up/(2a), S*(p,a)=S(p,a,7)+ p7 no longer de- 105 [ w\" (2@l = 1 (47l
pends onr. T8 (ﬁ) Z[sm(— 7 + > sm(—
Equation(15) enables us to obtain rather easily a number
of new representations for the probability of nuclear beta T
decay when the Redmond configuration is lacking one or the T4 o (20

other of its components. . ) .
Thus, for example, if we reduce the parameter that char- 1€ appearance in the field depende(@® of “mono-

acterizes the wave intensigyto zero, we have from Eq15) tonic” and.“oscillating” c.omponents is unremarkable for
processes in an external figee Refs. 1-3, 7, 11-1L8Both

GoM du (= dp [uup of these contributions disappear when the field is turned off.
f p° COt( 2 ) However, in contrast to the monotonic term, which owes its
) appearance to our expanding the expression under the inte-
exr{ ipeg— 'p gration.sign in(17) about zero, the oscillatqry contrﬁbution i.s
2 determined by a broader range of the variable of integration.
whereu=1/a. Since this integra(17) is essentially a so-called proper-time

Equation(16) defines an integral representation that has representation of the probability of the procéSsye can

not been presented previously in the literature. It corresponq"’lsrgue physically that the time for creation of the oscillatory

i . . Corrections can considerably exceed the characteristic time
to the total probability for nuclear beta decay with arbitrary
. : for creation of the monotonic terms. Thus, from E¢k?7)—
energy release in the presence of a constant uniform ma

netic fieldH. If we assume that the energy released in the g320) it follows that whereas the time for generation of the
decay is small, i.e €monotonic corrections is determmed only by the energy re-

leased in the decay~171, as in a free process, for the
1. Inasmuch as

— o

3i
X 80+ ;

1

u+ G (16)

go—1=1<1, oscillatory corrections we have~u~
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<, this indicates that the characteristic time and region othe exponen§* and the functiorJ under the integral sign in
formation of the decay in a field exceed the time and regiorthe limits u— 0 and7n— 0. Note also that in obtainin{3),
of the unperturbed process by a factorlff.. The specific (24) we have discarded terms due to wave polarization.
form of the dependence of the oscillatory contributions onHowever, this contribution is easy to recover if we include
field is determined by the characteristics of the process itselerms of higher order in 3 in these processes, assuming in
and the field configuratiofisee Refs. 7, 11-13, L5how- this case thakB#%~ 1. In particular, in this approximation
ever, a common feature for both is nonanalyticity wh(—;-n the Uekdx & CsiPf sinfcosf sirf f
field is turned off. The need to include a broader region of =2 —j + ——|df,
generation of the oscillatory terms than the region around Y « f f f
zero implies that the form of these terms cannot be repro- (25)
duced by the methods of perturbation theory, but rather rewheref = B7x; the exponent in the same variables reduces
quires the use of other, more powerful, methods of investito the expression
gation. Sir? f

In the strong-field limit >1) in (17), taking into ac- S,=—Af+B
count the rule for avoiding poles and approximating the co- f
tangent in the upper half-plane of the complex variableyhere
x=upl2 (for |x|>1, cotx~—i), we have

A 2 1(u+1) &u 5 £u
=" lg—2 -7 =2
W=Z—"|LWO. (21) MO 2 )2 A
and the dependence on neutrino energy is recovered.

From (22) it follows directly that in this strong-field limit, From (24), (25) we obtain the well-known representation
the beta decay probability increases linearly with field  for the probability of beta decay in a wave field in the form
which first noted in Ref. 5. of a sum of bilinear combinations of Bessel functions. Note

Also of no small interest is the fact that if we use thethat to do this, we transform the integrals
representation of the functiof(s,a) for large values of the .

. : : = df _ __ sir? f
argumenta=1/u>1, in place of(18) we can obtain a more I(A’B):f — exp(—iAf )EXD{IB _]
general result: — f f
7 7 5 5 by representing the second exponential factor in series and
W= Wo[ 1 a '+ > a7/z[ Z( - E,v) - §< —5.a ] trigonometric functions in the numerator by exponentials, to

(22) the form

In a strong field whereu>1, it follows in particular Lkoay_ | dx ; o
from (22) that[a]=0, and hence thah=v, which again ! (A)_Jfoo X1 exix(2l = 2k=A)]. (26)
leads to Eq(21). Equation(22) clearly demonstrates that the
total probability for beta decay ceases to oscillate when the
parametery reaches values at least equalltoNote that
Nikishov et al. predicted similar behavior for the total prob-
abilities of certain processes in the field of an electromag- Lk |'+l |
netic wave in Ref. 13. Ay =27 = (21 =2k=A),
In the other limiting case, where there is no constant
magnetic field in the Redmond configuratiop{-0), we  Where 2—2k—A=0, whereupon
obtain from(15) another new representation for the nuclear A A
beta decay probability in the field of an electromagnetic kskmax:[l_g 30

wave with arbitrary release of energy:
Thus,1(A,B) represented in the form of a sum,

Recalling that in(26), as before, the singularity at “zero” is
shlfted into the upper half-plane, after integration oxewe
have

v ==

G0 Jw du jw dp IiS*) k | Kk
=T | L pE eXIS; oo Bl2D1(-1)
T Jo U —x P — ;
y (AB)=2mi 2 2 (i5magik
o[ Ap i
X1{eo— &2 S|n2<7 +F , (23 X (21 —2k—A)'.
where Changin_g tr_le order of summatiqn and introducing a new
2 summation indexn=I1—k, we obtain
* P pu[ 2( S ()\plz))] © ==l © © 0 ©
=pgg— 55— 5 1+& 1 ——m | ¢,
AL T E N ROV T DD T TS
= k=0 k=0 1=KT I min k=0 n=npin
w
A= o (24 while for I(A,B) we have

o

» K(/9y2n+2k
Note that Eqs(23), (24) follow from (15) after we ex- | (a gy_pzi S 3 (=DX22)*""#T(2n+2k+1)
pand the cotangent about zero, and evaluate the function in nZhmn koo KITA(n+k+1)(2n+k+1)
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wherez=\B(2n—A), n,,,.=[A/2]. = dp _ i 2
It is easy to see that the sum overeduces to the well- W==Go| P expipeo) VAL | &0t 3 Hy
known representation for the square of Bessel functions:
o Ry
- ¢ smz(—) H<2>] : (27)
I(AB)=27 > J2). 2)°°
N=Nmin

These results, which are single integrals owe32> and

The contribution H(12) , correspond as before to a proper-time representation of
i the distribution function for a light, charged particle in the

d_f Sin? f exp(—iAf )exp{iB E] field of an electromagnetic wave. This assertion becomes

f f obvious if we note that the total probability of the process

can be calculated by starting with the optical theorem and

identifying this probability as the imaginary part of the elas-

©

11(A,B)= f

— oo

can be reduced to the form

tic scattering amplitude integrated over all final states, leav-
I1(A,B)=— 2zdz1% 4z |(A,B)}, ing the integration with respect to time to the final stage of
the calculation. Note that an analogous result was used in
which in turn gives Refs. 13, 14, and 19 in investigating processes in an external

field. As the wave field turns off§—0) it is easy to obtain
an analogous representation fr¢gY), expressed in terms of

-
__ 2 2 A2
l(AB)= 2 2 (Jneadn-1=2J0). the free-particle distribution functiof. For this, using the

N=Nmin
integral
In a completely analogous way, we obtain for the re- N q 3i
- . . O o0 u 0 80 I .
maining terms in(25) Wo:—j — f dp(—4+—5 exp(iSep)
) ¢ T Jo U — P p
| o]
I,(A,B)=— > fﬁ T sin(2f ) and the replacement described above, we have
. . * gg 3i .
iB sir? f W:—Gf dpH? (p)| — + — | exp(i .
X exp—iAf )expl’ . ’ 0 of _“PH1 (p) ot PP Aiegp)

This last expression furnishes an explicit form for the depen-
dence of the decay probability on the energy relegsé we

<« N ,
=27 > Z n(@h(2), take into account that

N=Nmin
- df iB sir? f T SHIPEY) oy g 2Ty
|3(A,B):if <2 Si? £ exp(—iAf )exq’f} J,x o Hi(p)=—4iVeo—1,
" and use the analytic dependence of the right-hand side on the
7 . L
—omi = 3(D3(2). parametereq. In the special case of a nonrelativistic decay
B n=§n:min n(2)3n(2) (1<1), which provides the main contribution to the integral

o ) ) o ) coming from valuegp|>1, after approximating the Hankel
Substituting these expressions into the original integral, We,«tions for large values of the argument
obtain an expression for the probability in the field of an

electromagnetic wave which agrees with the results obtained 2 -3 .
9 9 H(lz)(p)lew—pex;<|Zw)exp(—lp),

previously in investigations of beta decay in a laser
ﬁekiLKSJOJZ

The integral representatio(23) makes it possible to it follows that

write the probability in an electromagnetic wave field in the 71

form of a single integral, while including the relativistic WO:EGO(ZU '

character of the interaction. For this, note that the integral = | . )

over the energy variable can be written in the form which is found to be in agreement with EQ.9).

fwdu p A+1
OuZex 5| uAt o

whereH{?)(z) is a Hankel function, and

e AH® re 3. ASYMPTOTIC EXPRESSION FOR THE BETA DECAY
VA (pVA), PROBABILITY IN A FIELD WITH THE REDMOND
CONFIGURATION

We now discuss in more detail the case in which both
sin? f) the influence of the constant magnetic field and that of the

f electromagnetic wave field in the Redmond configuration are
not assumed to be small. Let us assume jhetl. In this

In a completely analogous way, we also calculate the remairapproximation the dominant term in the integ¢ab) comes

ing integrals entering intd23). Substituting these expres- from the regionx<1. Let us expand the integrand about

sions, we have zero. Then the exponent reduces to the form

Al:1+§2(1—
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S=—-yz—y33, Therefore, setting, >1, we must close the integration con-
tour on the right. Then froni30) we obtain a series in in-

where verse powers o, :
N 2/3 u 2/3 u 2/3 A o B
y:<§?) P Z:(_) - f:(_) T WeWo(3y, )7 2 S, -
X X 00X 12.67%4T (5/6) o n!
EN=X,
. o L) anaene ™
and the preexponential factor is given by XL\ 5+ 5|3"cos7 (2n+1)
iUeiX % 2/3
_ 2 _| A 4 2
dx=£uf df= u) uydy. X n(n—l)+Eu + U (9—n+2n2)}.

Thus, in this limit, the beta decay probability can be

_.,—23
written in the form Hereu=y,

Using the latter relation, we obtain

Go = dy (=du F{ o y3) 2
W= 20 2f ay e o —ivemi L 512(2/3) (6 I'(1/6) )
877 X — y5 0 u y 3 WZWO(SX*)YIS 2471_2273 +§F(5/6) (SX*) 23
X\ 3 8 (1/2)
X soy—u(—) (y3——i>]. (28) _ _ 43
0 5 g (%) (31)

This expression coincides with the analogous expressio
for the probability in a constant crossed field taking into
account the relativistic character of the interaction, written in
terms of Airy functiong It generallzes prewous results for a
nonrelativistic integral representatiéh'*and also allows us
to analyze this process without appealing to the properties of
the Airy functions, which were widely used previously.

In particular, in the nonrelativistic limitl<1), we can
obtain from (28) an expression in the form of a Mellin—

Note that the first term of our expansion was derived previ-
ously (see Refs. 3, 11, 23n a discussion of the analogous
process in a constant crossed field in the low energy release
limit.

n the opposite limiting case, where the parameter
« <<1, the asymptotic series is obtained by closing the inte-
gratlon contour on the left, because the singularities of the
gamma function fos<<0 lie there:

Barnes-type integral: W=Wy(R;+Ry),
G where
W= —= x"R(x), (29 ) 2
Vm I3n+1/2) [ X2 o
= —5] 11+ 5 (18+9n
where n=0 n'F(l/Z) 3
s 375 1 7+in s, 1 . 15 )
X)=705 271 13" s (—s) +10)+ 75 X (36n*+240+3) 1, (32
X| = 75/3uSF(u s)cosz(25+1)ds (30 LS [ g dh 5
3 ' 3 ' 2=§Z sing| — — 1+3—g2
—1/2<y<0, 2 14
15 + 37 (asn+by) [+972"" ! cosg| — 3 dnt fi
F(u,s)=4u*+u{18+ 2s+4s(s— 1)}+?s(s— 1), . 5 X
n Cn
- =1+ =]+ =||- 33
u=21/y23 gz)( 392) 3¢° } (33
The singularities of the integrand {80) are determined by Here
the poles of the gamma function; The integration contour
) . . ) . 2 2 1
contains the vertical straight line Re-vy, which separates a g= . bp==asi1—|2n+ < |ay,,
left-hand and a right-hand series of poles. Hence, by closing SXx 3 3
the contour of integration respectively “on the right” or “on 4 2
the left,” we can obtain asymptotic expansions fr¢d@) for cn=§ asnr1| N+ 3

different values of the field parametgr It should be noted
that in the present case, i.e., the nonrelativistic limit with ¢ =2c,+2b,(2n+1),
respect to energy released in the decay, the actual expansion

arameter is 2
P fn=2b,—4nay,— 3 An+1,

X
Xx = (2132 h,=4c,(n+1),
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and the coefficients are given by Gox = do 3j
== | f —3 | exaigeo)| | et — |HP(2)
22'“ (2k—1)!! T(3m—k+1/2) Vizw [Jo @ 4
am= & 3 Kom—K) (2K (U2 3 3
. _ . —i \/;xe%”(z) +exﬂ—i980){ g0~ 5)

Expressions(32), (33) determine the monotonicRy)
and oscillating R,) contributions in this weak-field approxi- 3
mation y, <1. Calculation of the coefficients that determine XHM(z)—i \[Z xeHP(2) J (36)
the oscillatory field corrections in general leads to somewhat
more complicated expressions than for the case of a consta@herez= o \/Wﬁz
magnetic fieldsee(18), (20)); however, the first of these can In this approximationy can be regarded as the largest
be easily calculated by using the values parameter; hence, it is not difficult to see that the dominant

contribution to the integral36) in this case will come from

-1 _E _ 205 _5-7-11-59 the regionz>1. Using the asymptotic form of the functions
=1, a1=-5, A2¥5552, a3~ 7 a2k (1,2)
12 2”3 2"-3 H12)(z) for large values of the argument, we have fr(86)
which finally yields 2GA * d T
vy w=—">2 f —gsin ap?+—
5 T o @ 4
wWew 1235 2, 35 . (352 ¢
=Wj 8 Xx 128)(* 32 X Y J,w dQ { , T (37)
-— — cog ap°+—| 1,
+1054_(2 . @ J12Jo @° ey
— X, Sin e
16 Xx > 3y, 327
A12_1_1214 Xllz-

The first correctiongup to x&) coincide with analogous
results of calculations given previouslyee Refs. 1, 7, 10— Recall that we avoid the singularities in the integi@if)
14). It is also quite noteworthy that despite the formal pres-yy getouring below them, as before. In this case the calcula-
ence in the expansio(83) of terms of all orders irg, the  {jon can make use of tabulated integrélis:
oscillatory part vanishes gg—0 like x; . _

Finally, it is also of interest to obtain the asymptotic Jw sint - (—D" {f cos{n Z) —w(n
dependence of the probability when the paramgtdurns th+t n! 2 2
out to be large, while at the same time taking the relativistic
character of the interaction into account. In this limit we use +1)sin( n Z)
Eqg. (28) and discuss the situation in which the parameter 2
takes on valuegy>ey>1. Introducing a new variable of

integration * cost S 7
g 0 tn—+1dt=T \I’(n+1)co nE
U=L, +7T . v

J1+aZp? 252
where where
23 1 1 1
X 2(u E VY(n+1)=1+s+5+...+ =
a=—, p1=—\|= Y, ng)\:_v 2 3 n
V12 ulx Her

is the y-logarithmic derivative of the gamma function. Sub-
the expression for the probability can be written in the formstituting these values int(87), we finally obtain

5/2
GO * dPl «© dUl 5> W= 3 G L —
_ >0 “P1 O = 0 (1+7—2y), (39
W= — L fo 7 V1+ap] 4w \2v3
3i 2 2 from which it follows that in this approximation the prob-
X1 gg+ St_xpr W ability is independent of the energy released in the decay and
pr 4 J1+a%? increases with increasing field 48> Note that in the non-

relativistic limit, the leading term of the asymptotic expan-
(35) sion of the decay probability a8, >1 is also independent of
1,311 which is clearly indicated by Eq32) in particular.
The explanation is that in these limits, the region of forma-
Using Hankel functions, from here it is not difficult to tion of the decay is determined exclusively by the field; how-
obtain once again a representation for the beta decay prolever, the field dependence turns out to be different when we
ability in the form of a single integration: take the relativistic structure of the interaction into account.

xexr{iplso—i % \/1+a2p§
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4. NONRELATIVISTIC LIMIT OF THE BETA DECAY F (8)
PROBABILITY IN A FIELD WITH THE REDMOND L
CONFIGURATION M,

The least-studied situation is the one in which both the ™
magnetic field and a wave field are retained in the Redmond ™) 1

. . i . . . R\ —2'—1, §< 1
configuration; that is, neither of these is regarded as small. 2/ &
Expression(15) can give a complete picture in this case, if ¢
we take the relativistic character of the interaction into ac- 0 1 8
count. However, the double integration eliminates the possi- \
bility of a thorough analysis. In the nonrelativistic limit \\ —12-1,.§>1
(I<1), one of the integrations ifil5) can be carried out, - N §
after which the total probability for nuclear beta decay be-
comes

FIG. 1.

w:“—GOeXp(—i f)f COURPI2)  iS)dp. (39

V2 4w p single point or at two point4A plot of the left-hand side of
where (42) is shown in Fig. 1. Thus, whené<1, this occurs at
5=0 andé=£2. Whené&> 1, the left-hand side of the equa-

S=¢2 20 [x o 1) 1-6 sin X sin(xé) tion can vanish only as=0. At ¢&=1, the root for the left-
NS [T & o sinx(1-9)])" hand side merges with the endpoint value of the parameter
N ° H 6=1. It is easy to see thai=1 corresponds to eliminating
X= p_, S5=1— ﬁ, AN=—, u=——) (40)  the constant magnetic field from the Redmond configuration
2 A m Her (u—0). In this limit the left- and right-hand sides of Eq.
and the characteristic parameter for the wave intensity in th&42) reduce to
nonrelativistic limit has the form 1
; eE F=p~ 1
mwy21’ F() Sin(2x) . Sir? x
X)=— L]
Expressions(39), (40) provide information about the R X 'S

process over a wide range of the fundamental parameters gf,q the stationary points are determined in the same manner
the problem. Representing the exponent in the form as for an electromagnetic wave field, which was discussed in

2| &2 detail in Ref. 13. In particular, it was shown in Ref. 13 that
S=Q¥(x), Q=+, only as¢ approaches unity does the series of saddle points
become infinite.
S 1— 6 sin x sin(x &) In an electromagnetic field with the Redmond configu-
V(x)=|z"1 i — ration this situation is much more complex. Thus, e.g., when
& 6 sin(1-6)x] )
o o . 6=1/2, which corresponds te=2wy, we have from(41)
and finding the derivatives of the functioh(x), that
v 5 L 1— 8 sir?(x8) — & sir? x 1 .
T2t TS SiP[x(1—6)] \If(x)=<2—§2—l X+ sin X, (43
, 1—0]2cog(1+9)x] (1 sin(2x) 1
8 sin(1—6)x] (1= sirP[(1— 6)x] v (X)=Eg—1+cosx, (44)
Sir? x cog (1— 6)x "(x)=—si
Lo(1- 5 X fﬁﬁ ) ]}, 1) P (x)=—sin x. (45)
sin'l( )X] The stationary points in this case are roots of the equation
we can use the conditioW’(x)=0 to find the stationary 1
points in the integra(39), which leads to the equation 1— 2—§2=cosx, (46)
) in? o ,
5(—2— 1) =(1- 5): (1-9) n25|—x from which it follows that for 1/Z &< the series of saddle
§ sin[ (1 9)x] points is unbounded. F@&> 1 the roots of Eq(46) reduce to
sin (1+ 8)X] 42 the form
sim(1-0)x]|" (“42) Xp=2mnx1/é§, n=0,£1,+2,....

Note thaté can take on values-«<é<1. Depending By virtue of the evenness of the functioh’(x), the
on where the value of field intensity lies within the range saddle points appear in pairs; the first pairtis; = * 1/,
of &, the left side of Eq.42) reduces to zero either at a which yields

9 JETP 84 (1), January 1997 V. N. Rodionov 9



1 ; 1 F(x)
‘P(X1)=3—§3, v (Xl):_g- R
1 . " R . s . . s X
Substituting these values into the original integral N2 3% 4 5 6/ 7 8 910
-10r
——exp(—| —) 20
-30}
A 7’2J'°° cot(x/2) 41 2000 b 40}
5 B 72—ex i Tf (x) 1 dx, sl
which is determined by the saddle-point method, leads to the ~60[
probability in a slowly varying fieldsee(32), (33)), but with —70}
a frequency dependence that differs from the dependence of
a pure wave fieldsee Refs. 3, 13
FIG. 2.
7 X 17X 2 )
- 2 Ax  __ Ax
W=Wol 1+ 5" Xa ~ 1282 T 62 & | °°9 3y,
X 2 without bound. In the regiog>1, as we have already veri-
- 1—; sin( 3 + } fied, the probability47) becomes the probability of a slowly
X varying field.
By taking the limit5—0 in (39), which physically cor- Let us estimate the probability fof<1. It is easy to

responds to equating the frequency of the wavand the ~Show that the first pair of roots of E¢48) then takes the
cyclotron frequencyw,, we can reduce the integrég9) to  form

the form +x,=+a(1—&).
Go\"? ) (= cotx 21 Moreover, by estimating the quantiti€s¥ (x;) =21 #/\ and
W= 8 exp — 7 f_oc 7z eXp i € W"(x,)=2/mw&3, we obtain for the decay probability
1 35 , 105(\\*
?—1 x+x2 cotx ]dx, (47) W=Wo) 1+ & Xs ~ g4 | o1
from which it once again follows that faf>1, the probabil- 1 (27 =
ity (39) will have a form characteristic of that of the constant X\/?g SN~ 3% (49)

crossed field case, preserving the overall structur€3af,
(33), but with modified frequency dependences of both théNote that in Eq(49) the dependence of the oscillatory con-

monotonic and oscillatory contributions: tribution on the field parameters is appreciably changed. In
this case the oscillation frequency is determined not by the
o 7 Xi 7 Xi 2 wave field intensity, but by its frequency. Note also that the

W=Wo) 1+ 5 Xt 96 £2 48 &2 3xx formal presence of the small paramegen the denominator

of this expression increases the importance of the oscillatory
contributions in the resonance case; however, it can be
shown that a$—0 its inclusion requires special consider-

. . ) ation, due to overlap of the regions of influence of the saddle
In order to estimate the integred7) by the saddle-point points (which in this case become larger and lajger

method, we must determine the stationary points from the Equation(39) can also be greatly simplified by discuss-

2

33X«

equation ing the limit | 5|> 1. Physically this situation implies an in-
1 X2 crease in the importance of the constant magnetic field, al-
1—?=2x cotx—m. (48)  though here we must still formally take the relationship

between 5| and& into account. In this case the characteristic
A plot of the right-hand side of Eq48), F(x), is shown in  integral in(39) reduces to the form

Fig. 2. Depending on the value ¢f Eq. (48) can have dif- = cot(| 8|x) 212

ferent numbers of roots. Maxima of the even function R(&E N, u,1)= f 772 exp{i NG

Fr(x) for x=0 occur atx=0, 4.29, 7.60... . Values of the

function at these points are respectively 1;18.3, | 5]

—57.7,. .. Theleft-hand side of Eq48) reaches these same X z +1|x—sinx ]dX- (50)

values até=«, 0.23, 0.13...
Thus, for 0.23< ¢< o there is only one pair of stationary When &2<| 4|, (39), (50) lead to a result that coincides with
points. As¢ decreases, the number of saddle points growshe constant magnetic field cagee(17)—(19)). In the other
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limit ¢2>|8|>1 we once again find that the probability is parameter becomeg;= x, /\2[4], which effectively im-
the same as for slowly varying field; however, the expansiomplies a weaker role for the quantum field effects due to the

parameter then turns out to be different: increase in the classical paramejtéf> 1.
Finally, in the region whergs|— 1, the problem of find-
Y= X* (51) ing the decay transition probability reduces to the case of a
v 2le plane wave field with expansion parameggr.’~4

Intermediate ranges of the paramefaequire a separate

Note that in the regiohs|>1 the effect of the field, as mea- investigation of the decay probability; however, we can as-
sured by the quantum parametgy , is thus weakened by sert in this case that whes>1, we are dealing with a
the increase in the classical paramet@r slowly varying plane wave, although the frequency depen-
dence of both the monotonic and oscillatory contributions
may change.

The asymptotic forms we have found for the probability
in strong fields also suggest that in these cases the external

An electromagnetic field with complex configuration can field can completely determine the course of the decay, in
affect nuclear beta decay by giving rise to corrections to thdoth the nonrelativistic and in the relativistic limits. Note,
total probability for an unperturbed decay. The identificationhowever, that inclusion of the relativistic structure of the
of so-called monotonic and oscillatory contributions to thesenteraction leads to an appreciable change in the character of
corrections makes it plausible that their origins are signifi-the field dependence.
cantly different. Whereas the monotonic contribution comes  To summarize, we can say that the approach developed
from the work that the field does over distances of the ordehere, which is based on a generalization of well-known
of the de Broglie wavelength of an electron, i.e., in regionsmethods that exactly solve for the motion of an electron in
where the free particle is created, for the oscillatory contri-electromagnetic fields of complex structure, enables us to
bution considerably larger scales are involved. The superpcstudy interference effects that arise when a beta decay pro-
sition of two electromagnetic fields, one a constant magneticess is simultaneously subjected to a static magnetic field
field and the other the field of an electromagnetic planeand a wave field. Remarkably, there are a number of situa-
wave, possesses a number of special features. tions in which the decay probability in the combined fields

In particular, our investigation of the influence of the reduces to the probability in a plane wave figfd: with a
magnetic field leads us to conclude that in a weak fieldelabeling of the effective parameters. However, there are
n<l, the time and spatial region over which oscillatory also conditions in which the magnetic field and the wave
contributions form increase by a factor of 2 ! as com- field act together to produce behavior that differs signifi-
pared to the unperturbed process. An analogous study of preantly from the plane wave limit, in particular for resonant
cesses in the wave field, which was carried out in Refs. 3 antields.
13, shows that the increase is proportional td)¢ZH., /E. The author is grateful to V. R. Khalilov for his interest in

However, when the magnetic field and the wave field acthis work and for valuable comments. The author is grateful
simultaneously, a situation can aris®@ € wy) in which the to the Competitive Center for Higher Education in the Fun-
coefficient that determines the scale of enhancement of thdamental Natural Sciences, Goskomitet, of the Russian Fed-
role of the electromagnetic field is determined not only byeration at St. Petersburg State University for their support
the field intensity but also by its rate of changbr, 1, (grant 95-0-5.3-58
which for o<ml also leads to a considerable increase of the
time within which the field acts on the process, even under
conditions in which its intensity is bounded.
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Parametric excitation of spin waves in ferromagnets by longitudinal pumping localized
in space
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Zh. Eksp. Teor. Fiz111, 199-219(January 199y

The equations of motion for the slowly varying complex amplitudes of spin waves parametrically
excited by a localized pumping magnetic field have been derived. A solution of these

equations satisfying given boundary and initial conditions has been obtained. The energy dissipated
by spin waves decreases with the pumping intensity beyond a certain pumping power,

which can be termed the regeneration threshold. The losses vanish and change sign at the
instability threshold. Both thresholds depend heavily on the linear dimehsiointhe pumping

zone, increasing with decreasihg Owing to the regeneration process, the dissipation

length of spin waves increases without bound as the pumping power approaches the instability
threshold. Consequently, perturbations of a uniform state due to the boundary penetrate
throughout the pumping zone, regardless of the dimenisiofs a result, the full pattern of

parametric instability is strongly affected by the zone boundaryhé spatial distribution of wave
amplitudes becomes nonuniform everywhere inside the zonde2amplitude growth rate

in the unstable regime decreases at all points when perturbations due to the boundary reach these
points; 3 the instability threshold is independent of the spin-wave frequency offset from the
parametric resonance frequency. The calculated minimum instability threshold as a function of the
bias magnetic fieldthe “butterfly” curve) changes shape with, in agreement with the

available experimental data. @997 American Institute of Physid$1063-776(97)01301-3

1. INTRODUCTION stage is related to progress in the growth of YIG single-
crystal films by liquid-phase epitaxy. Owing to this progress,

The parametric instability of spin waves which was ini- experimenters’ attention was switched, starting with the
tially discovered and investigated in ferromagnets in thel970s, to traveling spin waves generated in YIG films by
1950s and 605%,® has remained a subject of research to thislocal sources—conductors carrying microwave currents, di-
day. In a recent review articfit was noted that this research electric resonant cavities, etc.
can be divided into two stages. In the first, the theoretical A typical experimental configuration is shown in Fig. 1.
description did not take into consideration the boundaries oft has the following features:)la magnetic microwave field
a sample or pumping zorté. This approach was probably generating spin waves is localized near the source in a region
based on the seemingly obvious assumption that inside af linear sizeL, and 2 the resulting spin waves can propa-
large enough system with uniform parameters, the ampligate beyond this localization region. At high enough ampli-
tudes of parametrically generated waves should be indepetdde of the pumping magnetic field, parametric instability
dent of the coordinates. In our discussion we will term thiscan occur in the localization region. Thus we have a new
approach the uniform model. Theoretical results of the unisituation in which the sample size in some direction can be
form model are in good agreement with experiments of thosénfinite, but the size of the pumping field localization zone in
times. this direction is limited”

The second stage of reseafchyas stimulated by Parametric instability was studied experimentally in this
progress in technology that led to fabrication of high-qualitynew configuration by Melkov and Sholdthand Zilberman
spherical samples of yttrium—iron garné¥iG). Jantz and et al,?° who used slightly different techniques for generating
Schneidel® were the first to record the fine structure of the the localized pumping field and detecting parametric insta-
subsidiary absorption spectrum due to the effect of thevility. Their basic conclusions, however, were identical: the
spherical boundary, i.e., the reflection of parametrically ex-instability threshold depended on the dimensiorof the
cited spin waves from this boundary and standing wavesield localization zone and, as a rule, the threshold increased
established in the sample. The boundary effect on the spewvith decreasing.. This effect was interpretéd?in terms of
trum of parametric absorption was also detected in experithe theory developed earliét According to that theory, the
ments with antiferromagnets. A similar effect in ferrite  instability threshold increases because the propagating wave
films was later investigated both theoretically andcan carry the energy away from the pumping zone.
experimentally->~14 Some fundamental problems of the theory, however,

If, following Patton? we classify the experiments on have yet to be discussed. For examplghibw the ampli-
parametric instability and take recent research into accountudes of parametrically excited spin waves depend on posi-
the onset of the third stage becomes apparent. This lategbn and time; 2 how these amplitudes behave las»o; 3)
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3 with respect to the bias field. The basic features of the con-
Z figuration with a longitudinal confinement region will be dis-

- L / — cussed at the end of the paper.
/T We now proceed to the equations of motion and note
-— — 7 that we are essentially dealing with spin-wave turbulence in
H— an inhomogeneous medium. The equations of motion were
a T T b ho . derived in general form from the Hamiltonian by Zakharov
H, b » and L'vov? and L'voc and Rubenchi® According to their

calculations, if the inhomogeneities are sufficiently smooth
FIG. 1. Typical experimental setup for excitation of traveling spin waves by@nd the lengths qf ?ched waves are sfibthe d_ynam|ca| _
pumping localized in spacé) YIG film; 2) localized source of spin waves; equations for statistical averages of wave amplitudes, which
L) approximate size of the pumping zone. Arrows in filnshow the direc-  can be derived from the Landau and Lifshitz standard equa-
tion of spin wave propagation. The lower part of the figure shows two.. . . .
orientations of the bias fieltH, and longitudinal pumping field, with tIOI’.lS for precession and th? magnetOStatlcs equations, are
respect to the pumpmg Zon@ transverse|y localized pumpmg)) |ong|_ Va“d Therefore our Ca|Cu|atI0n W|” be based on the Iatter
tudinally localized pumping. equations.

Let us neglect for simplicity the effect of ferromagnetic
anisotropy and express the total magnetic fiel@,t) and

how the instability threshold depends on the difference bemagnetlzatmri\/l(r,t) as sums, 1.e.,

tween the spin-wave frequency and the parametric-resonance H(r,t)=H,+ hp(r,t)+ 6H(r,1),

frequencyw,/2; 4) the behavior of the minimal instability

threshold as a function of the bias magnetic fi¢ldutter- M(r,t)=Mgo+ M(r,t), (1)
fly” curve) at finite L. The aim of our work was to get where the static values atdg=—Hqe, and Moy=—M,e,,
answers to these questions.

" : . . Ho>0 and My>0, e, is the unit vector aligned with the
In addition, there is a general problem which we wish tc.)z—axis, andSH(r.t) and SM(r.t) are variable components

?r::f;t;it T:f'S Ig?rg[:r\?vaevrgggﬁtdk:gstr:\?)ttgzzg ;;I\E);éarpﬁg'%ue to the pumping field. Assuming that the deviations from
y orp ' : the equilibrium values and the pumping field are small, so

point is that the theorY indicates that the parametric insta- that
bility threshold, is a complicated function &f, that may not
converge to a unique value &s—e. What is the physical |6 H|,|6 |v||<|hp|<|v|o, 2)
reason for it? In this paper we will try to demonstrate that ] ) ] ]
this effect is a direct consequence of parametric instability'Ve Write the linearized system of equations of motipre-
In an unstable system, perturbations due to the boundar§eSSion and magnetostaids the form
cannot be confined near the boundary, but instead efficiently 1 5 sm
penetrate the entire system. For this reason, the boundary —T+[MO,5Heﬁ]+[5M,(HO+ hp)1=0,
should affect the entire pattern of parametric instability, re-
gardless of the sizk. wg  ISM
SHer=6 H+AAS M (M2 ot

(3
2. SYSTEM UNDER STUDY, BASIC EQUATIONS AND [V,6 H]=0, V(6H+4méM)=0,

APPROXIMATIONS . . - .
where y>0 is the gyromagnetic raticA is the nonuniform

In this paper, the typical experimental configuration€xchange constant, amg is the relaxation frequendy. The
(Fig. 1) is somewhat simplified. Instead of a ferrite film with latter is assumed to be small:
large dimensions, we consider a ferromagnet infinite in all

directions. We expect that this model should yield the most ¢ = ®d <1. (4)
faithful description of the experiment when the boundary YWlo
conditions on the film surface lead to either total absorption  The pumping field, which oscillates with frequenay,
of incident waves or diffuse scattering. can be expressed as

We assume, in addition, that the ferromagnet is in a uni-
form saturating bias fieldH, and in the pumping field 1 e ‘o
hp(r,t), which is a function of both timé and radius vector ho(r,6)= 2 [h(r)e e +h*(r)e'“]e,, ®)

r. Let the pumping field be confined in a layer whose bound- ] ] .
aries are perpendicular to a vector(“localization vector” ~ @nd we seek a solution of EB) in Bloch functions,

The mutual orientation of the vectok,, h,, andL is 5M(r,t)=e‘(q"wt)2 M, (r,t)enept,
quite important. The following configurations were imple- n=0
mented in experiment$®® 1) Hyllh,LL and 2 Hyllh, IIL. m (6)

Thus the pumping was always longitudinal, but the region of SH(r t):ei(qr—wt)g SH,(r,t)e nept
the pumping field could be either longitudinal or transverse ’ i=o ’
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where the frequency and wave vectoq satisfy the disper-

we ignore these terms in zeroth-order perturbation theory, we

sion relation for spin waves. We assume that the pumpingbtain a set of noninteracting harmonics. The paranttr
amplitudeh(r) is a sufficiently smooth function of coordi- fixed w is derived by requiring that the determinant (8

nates that
IVhI<1 (7)
e =—<1.
Y qlhl

Then, since the interaction with the pumping field is rela-

tively weak[see Eq.(2)],
En=E < 1, (8)

the complex amplitudes of the harmonics ®M(r,t) and
SH,(r,t) must also be slowly-varying functions ofandt.

vanish whem=0. This harmonic can then always be treated
as an eigenstate, amdand w as parameters coupled by the
dispersion relation for this wave:

w2=(wH+Zq2wm)(wH+z\q2wm+ wp, Sir? 6), (11

where wy=vyHq, won,=47yM,, and A=Al4m. We next
find w by requiring that another determinant for a harmonic

Without loss of genera"ty, we can assume that the ComWith n#0 vanish. ThUS, harmonic numbemalso becomes an

plex amplitude of the pumping field(y) is a function only
of the coordinatey, and that the vectaq is in theyz-plane,

eigenstate. This condition is satisfied at the frequency of
parametric resonance=—nw,/2. Only two harmonics of

ie., q=q,ey+0,e, andg,/q,=tan o (the localization vector those in Eq(6) can describe eigenstates at the same time.

L ll'ey). Given these conditions, by substituting E¢S. and

The two characteristic harmoni¢sumbers 0 and) are

(6) into Eq.(3) and equating coefficients of identical powers coupled by the pumping field, generally speaking, via a set

to zero, we obtain the following equations férM, and
6H,:

1 96Mpy d6Mpy
anoMpy+boM,, — 5H“V:WO P +2iAq, 7y
. h(y)
+I8n5Mny+ 2—M0 5Mn—1,y
h*(y)
+ Mg Mpi1y,
1 oM., _ dSM
b5Mnx—an5Mny=m ot +2|Aqy
. h(y)
+ieyoM Z_MO OMp_1x
h*(y)
+ Mg OMpi1xs
| | 78H, ®
|qy5HnZ—|qu‘Hny=T, oM,,=0, 6H,=0,
. ) d(SH v+ 4m7M )
iqy(SHpy+476M o)) +iq,6H,,= — ny 7y W
where we have introduced the notations
i(0+nw,) Ho
a,=—~, b=—+Ad%
" YMy Mg g
wyg(w+Nw
_ el @) o1, (10)

EdnT T (M )?

In (9), the harmonics with inder are coupled, owing to the

pumping field, to harmonics with indices+1 and n—1.

of driven harmonics with intermediate numbers ranging be-
tween=+1 and=(|n|—1). This coupling is of the order of the
parameters|", ", ande!l'. The coupling is the strongest at
n==1. In what follows, we limit our study to the case of
strong coupling between the characteristic harmonics with
numbers 0 and-1 at frequencies close ©,/2.

To first order ingy, g, andey, terms with amplitudes
oM, and 6M 4, of the (+1)st harmonic in the equations for
the zeroth harmonic can be omitted, and in the equations for
the (—1)st harmonic, terms with amplitudedM _,, and
oM _,, of the (—2)nd harmonic can be dropped. We then
have a closed system of eight partial differential equations
with eight unknown functions.

3. DERIVATION OF EQUATIONS FOR THE AMPLITUDES OF
PARAMETRICALLY COUPLED SPIN WAVES

Even after these simplifications, the systé®y is too
cumbersome. This is not surprising, since these equations
contain nearly all information about spectra of spin waves,
whereas in zeroth-order perturbation theoryejn ¢, and
g4, the structure of spin waves is knowhTwo questions
must be answered, namely how the amplitudes of spin waves
change in space and time owing to the pumping field, and
what the small corrections are to the spin wave structure
caused by the pumping field. In order to answer in the con-
text of second quantization, it suffices to obtain only equa-
tions for the amplitudes.

The standard technique for deriving such equations is
based on introducing amplitudes through the Holstein—
Primakoff transform$2* There is, in principle, a different

Therefore all harmonics are in principle coupled to eachand simpler approach, which can be reduced to direct trans-
other, but this coupling is weak because the paramsgter formations of Eq.(9). We will use the latter for subsequent

[Eq. (8)] is small.

On the right-hand side of Eq9) the terms of first order
in g, [Eq. (8)], &, [Eq.(7)], andey [Eq. (4)] are collected. If
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Let us write the equations for the amplitudes of the ze-
roth and(—1)st harmonics derived from E@9) as
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A&e -~ 06 1Al

—+Q —+ Ré+Eé=Pf,
lhyf
- 12
0 80 RisRi-pre . 0 —
at "y e AL R
where the unknown functions and f are column vectors FIG. 2. Profile of the pumping-field amplitude.
with four components:
oM 0x 5M—1x N
- Moy - oM _yy functions e and 6f can be omitted. Eliminating these func-
€= SHoy f= SH_1, || (13 tions from Eq.(12), we obtain two equations for the ampli-
SHo, SH_4, tudesC andD,
and the coefficients in Eq12) are 4x4 matrices: dC dC
2 TtV G nC=iy)D+ 7iCo,
ag b -1 0 (18
E_ b ao 0 0 dD Y dD Do c 5
=1l o 0 —iq, gy’ o V2 ay+?’2 92(y)C+ y2Do,
0 dmiqy gy g, where the parameter¥;, ¥, and g;, connote the
a_; b -1 0 y-components of the group velocity, dissipation, and para-
R b -a_, 0 0 metric coupling of waves, respectively. For these coeffi-
F= 0 0 —ig, iq,| " cients, we obtain
0 4miqy iqy iq, Vi=—-V,=V
~ 01 . .. - opsing [~ cog 6
0= M A, Q=-2iAq,B, R=-—igqB, V=2kT A - ,
7o 2K| k+ 2™ sir? 0)
~ h -« wp
P=om, B (14 y1= yAHK, y,=yAHK—2iAw, (19)
-1 0 0 O 01 00 smzawm
A=l o o o of' B flo 0 0 o
0O 0 0 O 0 00O g-(y)=07(y), k= \/1+ —smzﬁ),
The frequencyw can be offset from parametric reso-
nance, i.e.,w=[w,/2+Aw], where Avlwy,~ep,e,e4. IN AH= 4%
this caseF =F,+ 6F, where 2y°Mq’
" o “ iAw - In order to take into account an initighoise amplitude
Fo=F(0)|o=0y2, OF=- Mo A. (159  of spin waves at zero pumping field, additional summands
_ _ vCo and y,D describing “sources” of noise are added to
We now seek a solution of E¢12) in the form the right-hand side of Eq18). Then at zero pumping field
6=Cé,+ 56, ]::Df*o+ St (16) the wave amplitudes ar€=C, and D=D,. We demand

R that the following condition be satisfied &0, when the
where€, and f, are solutions of the unperturbed problem pump is turned on:

E6,=0, Fofy=0, 17 C(y,t=0)=Co, D(y,t=0)=Dy. (20)

C andD are the amplitudes of spin waves described by slow The pumping fieldh(y) is confined to the region
functions of r and t, which are, generally speaking, not 0<y<L (Fig. 2). At the edges of this interval it drops to zero
small, andsé and 6f are small and slowly-varying correc- over a distancéL<L defined by

tions to the solution describing the changes in spin-wave C 9D
“structure” due to the pumping field. Since the determinants AL‘ ‘<|C| AL|—
of the matricesE andF, vanish, we set one component of % %
each of the vectors, andf, to unity for definiteness. More-  Within this interval the pumping field is constanttat. Note
over, we set one of the componentsda and 5f to zero in  that the condition(7) introduced previously is equivalent to
order to maintain a fixed number of unknown functions. Af-qAL>1. Thus the lengtiAL is bounded in our model both
ter substituting Eq(16) into (12), terms of zeroth order van- above and below. We next take into account that the waves
ish by virtue of Eq.(17). If only terms of first order ingy,, enter the region of the pumping field from opposite direc-
g, and g4 are retained, the derivatives of small and slowtions, sinceV,=—V, [Eq. (19)]. Therefore the amplitude of

<|D|. (21)
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the incident wave at the region boundary is determined by a  B(L-y) Yi— Yo Y
the noise, since boundary conditions similar to those dis- +Esth ——5 vy @

cussed in Ref. 22 must be satisfied:
The expression foD(y,p) can be derived from Eq$26)—

Cly=00=Co, D(y=L.y)=Do. (22) (28) by substitutingy;—v,, Co—Dg, 91—0,, andy—L
If we limit our discussion to the uniform model, we —vy.
should substitute into Eq18) ¢C/dy=dD/dy=0. Then the In order to calculate the inverse transforms, one must

solution of Eqg.(18) would be a linear combination of the investigate the analytic properties of the functid®éy,p)
functions expp,t) and expfp,t), where the arguments of the andD(y,p) in the complex plane of the Laplacian variable

exponentials are p. This topic has been discussed in the literafdré.Some
N — > details, however, call for further investigation. Above all,
P1o=— Y1t Y2 . \/ Y1 7’2) 010, (23  hote _that at the pointp=p;, [Eq. (23)]_the tra_lr_wsformed
2 2 functions C(y,p) and D(y,p) have no singularities at all,

and the coupling parametegs andg, are taken within the €Ven at arbitrarily large lengthk. This can be tested by
pumping region. The instability condition for such a solu- Performing a straightforward, albeit cumbersome, transfor-

tion, Rep;>0, can be written with due account of E.9) mation of Eq.(28) with a view to proving that the function
as U(y,p) is regular in the complex plang@ and can be

expressed near the pointsp=p;, as U(y,p)
V919,> V(Re y1)*+(Aw)?. (24 =(p—p)U’(y,p), where|U’(y,p, )| <= at all L. Thus

Now let us assume that Rg=Re y,. According to Eq(19), ~ the transformed function§(y,p) andD(y,p) can have sin-
this condition cannot be satisfied. But in more complex sys9ularities only app=0 and at the roots of the equation

tems it can be satisfied. For example, it holds in parametric A(p)=0. (29)
generation of plasma waves or in generation of a pair of
waves of different naturespin and acoustjan a ferromag- In order to calculate solutions of EQY), let us intro-

net. By assuming this condition formally, we obtain the fol- duce, following Gorbuno%? a new variablep instead ofp:
lowing instability condition atAw=0:

Vg102> VRe y; Re y,. (25) coshe=

a B
. . . Vo:9, Vo190,
It will be useful to compare Eg.24) and (25) to instability
conditions described below and derived from the nonunifornwherep=u+i(v+ 7v), u andv are real, and is an integer.
model, i.e., for solutions of E¢(18) with boundary condi- Then we obtain the following equations for derivingandv
tions (22). from Eg. (30):

sinh o= (30

u+N(—1)” sinhu cosv=0,
. (31
4. SOLUTIONS OF WAVE-AMPLITUDE EQUATIONS. v+N\(—1)” coshu sinv =0,
INSTABILITY CONDITIONS ) . . ]
where the parametaris defined as/g,g,L/V. It will suffice

Using the Laplace transform with respectttand with  to find only solutions ¢,v) with u=0 andv=0. Then the
due account of Eq20), let us rewrite Eq(18) in the form of  rest of the solutions can be expressedas,v), (u,—v),
ordinary differential equations for the transformed functionsand (—u,—v). The nonnegative solutions of E31) as
C(y,p) andD(y,p). The solution of these equations with the functions of\ are shown in Fig. 3. It is convenient to number
boundary condition$22) is branches of the solutions by the index u,(\) andv ,(\).
Then the desired roots=p,(\) of Eq. (29) are

Cly,p)= ———— P (26)
" p(p—p)(P—PIA(P)’ yity
A P,V =~ =5 +(~1)"Jg10; costiu,(\)
where
AL« BL +iv,(N)], v=3,4,5,... (32
A(p)=cosh— + — sinh—, (27
vV B v Let us proceed to analyzing the roots of Eg2). Sup-
wheren = p+ (1 + ¥2)/2, B=a?—g,9,, and pose thatu#0. Then Eq.(32) can be transformed using Eq.
(31) to the equivalent form
U(y,p)=[91Do+ (p+y1)Col} (P+ ¥2)A(P) + 1 u
pv()\): - 712 72_ X V0192 —tanhu +iv tanhu|,

0192 ., BY Yi—v2L-y
T8 sinh~- exp{ 2 TH which clearly indicates that always Re<0. Thus all the
roots withu#0 describe stable, i.e., decaying with time, con-
B(L—y) tributions toC(y,t) andD(y,t). This conclusion is in agree-

ment with Ref. 22. Now let us consider the roots wiik 0.

—01[92Co+ (p+ v2)Dol| cosh
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0 i FIG. 4. Plane of pumping powe# and localization lengtlE: curvesl, 2,

and 3 are plots of Eq(36) at v=4, 5, and 6, respectively; curvkis the
hyperbolaén=m/2; curve5 is the hyperboakn=\ at \=5m; curve6 is a

plot of = n,=2Re y;Re y,/(Re y,+Re y,) at arbitrary ratio Rey;/Re y,.

13/1t A/ Am

FIG. 3. Numerical solutions of Eq31). Curvesl, 2, and 3 show the
functionv ,(\) at v=3, 4 and 5, respectively, wherg(\)=0 atA<\3, and
the functionv (\) bifurcates at the points=\, with v=4. Curves4,5,....10
show the functionu,(\) at »=3,4,...,9, respectively, where,(\)=0 at

AN, m(v—3)—arctan/ 772— 1

§: 2 L

n—1
S ] ) o o Shapes of the curves defined by Eg6) are shown in
The first line of Eq/(31) is an identity in this case. By elimi- iy 4 since the curve with=4 is below all other curves, it

natingv from the second line of Eq31) and from Eq(32),  presents a special case and defines the instability threshold.

v=4,5,... (36)

we obtain At v=4, Eq.(36) yields a quantitative relation between the
1 threshold pumping power and its degree of localization. Ac-
Imp,(\)=— > (Im y,+1Im y,), cording to Eq.(36) and Fig. 4, the threshold pumping in-

creases with localizatiofwith decreasingé). This conclu-

1 (33 sion is in agreement with earlier publicatiolis? At the

Re py()\)zz(Re v1+Re )T (), same_time, it is noteworthy tha}t a$—>oo the t_h.reshold
pumping powernp—1, so that the instability condition at all

with the dimensionless increment admissible offsetdw and decrements Rg and Rey, takes

the form
£,(N) Y 1
r,azn=-1+ , 34 +
o 1M 1+ 200 34 V0102>5 (Re y1 +Re ;). (37)
where{,(\) are real roots of the equation This condition is different from Eq924) and (25) in two

respects: JLthe threshold is independent of the offset, which
V1+ gf()\) contradicts Eq(24), and 2 at Rey;#Re v, andAw=0, the
A= NI [7(v—3)—arctan,(N)], (39 threshold equals the arithmetic mean of the dissipation fac-
tors, but not the geometric mean, as in E2p). In Fig. 4 the
v=3, 4, 5.., |arctan{,(\)|<n/2, and the dimensionless threshold defined by E¢37) is shown by the horizontal line
pumping powerp=2./g,0,(Rey;+Rey,) L Itis also con- =1, and the threshold defined by E(®5) by the line
venient to introduce a dimensionless pumping field rangey=7,<1. Thus, even in the limiL —~, the expression for
¢é=L(Revy,+Re v,)/2V, hence the parametar=£7. the threshold pumping may be different from that derived
It follows from Eq.(34) that instability can occur only if  from the uniform model. The reason for this discrepancy has
there are roots for whiclf,(\)>0. For such roots a set of not been discussed in literature, and we will try to explain it
curves separating the regions of stability and instability cann the next section.
be drawn in the plane of the system parameigrg). If To conclude this section, let us discuss in detail the in-
I'(\)=0 in Eq.(34), which should occur on the boundary of crement as a function of the pumping powEy(7), working
instability, we obtainZ,(\)=\7°—1 > 0. By substituting from Egs.(34) and (35). A set of such curves at different
this expression into Eq35), we obtain the following equa- localization lengths is given in Fig. 5. It is remarkable that
tions for the above-mentioned set of curves: parametric regeneration of the system, i.e., partial compen-
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FIG. 5. Increments as functions of the pumping povigrincrement calcu- g )
lated by the uniform model using E(R3) at Rey;=Rey, andAw=0, i.e., ]
I'(p)=Rep,/Rey;=—1+7%; 2, 3 and 4) incrementsl'y(7) calculated for 501 2001
systems with boundaries using E¢34) and(35) at é&==/4, /12, andm/20, ]
respectively. m E v
4 3
! 2 100] ,
sation for the dissipative loss due to pumping, has a thresh- 01 ] 1
old if ¢is finite.I'y,=—1, at the regeneration threshold and it 01 1
grows with z. According to Eq(34), this corresponds to the 0 02 08 yL 0 04 08 yL

parametem=/2, for which there is a positive roa=c.

Let us plot the curve§7= w2 (Fig. 4). This curve essentially £ 6. Modulus of the relative amplitud€/C,| as a function of the di-

shows the regeneration threshold as a function of the locakmensionless coordinatgL at different moments of time for characteristic

ization length. Note that at the regeneration threshold, theoints li(II, IfII, an? IV in Fig. 4;- The following val/ues Of( the pa)rameéers

; ; ; ; ; were taken for different points) =3, »=0.16,Vt/L=0 (curvel), an

mcremgnt grows with pumplqg faSter. than in the .unlforth/me (curves2 and?3); 1) £€=5.5m, »=0.9091,Vt/L=0 (curvel), Vt/L

model illustrated by curvé in Fig. 5, which has a derivative _pg (curves 2 and 3), and Vt/L=c (curves4 and 5); IIl) £é=4.95,

dI'/dy=1 atI'=—1, whereas the other curv&s 3, and4  »=1.0101,Vt/L=0 (curve 1), V/L=1.4 (curves2 and 3), and Vt/L =c

have equal derivativedl” ,/dy=\==/2>1 atI',=—1. Thus, (curved); IV) é=4.75m, n=1.0526,Vt/L=0 (curvel), Vt/L=2 (curve2),

although the initial slopes oF () are independent of the 2ndVUL=5 (curve3). In all the graphsdw=0, %1=7,, 01,=d1>, and

localization, they are obviously different from that calculatedc-"_ Do The horizontal lines show for comparison absolute values of rela-
n, they y ail . tive amplitudes calculated by the uniform model.

by the uniform model. Only at high pumping powers does

the functionI’,(7) asymptotically approach that calculated in

the uniform model. The smaller the localization lengthe 4 are plotted. In the first stage of the calculations we assumed

smalleré), the higher the pumping powerrequired to bring  for simplicity that Rey; =Re v,, and the offset was assumed

the curvel',(») closer tol'(). to be zero, i.e.Aw=0.
The feature of type | is that the point is below both the

instability and regeneration thresholds, i.e., below the curves
1 and4 in Fig. 4, respectively. The curves for points of type
I in Fig. 6 indicate that a steady-state distribution of ampli-
The transformed function€(y,p) and D(y,p) [Egs. tude in space is achieved at tintesL/V. This distribution is
(26)—(28)] have no singularities in the-plane except the identical to that obtained in the uniform model throughout
poles at the pointp=0 andp=p,(\) [Eq. (32)]. Therefore almost the entire pumping range except the boundary sec-
we could use the residue theorem in calculating the inversgons, whose length is of the order of the “dissipation
Laplace transforms dE(y,t) andD(y,t). In this calculation length” Ly=2V/(Re y;+Rey,). Thus we can see that the
we took into account that second-order poles occuflat uniform model yields a faithful description at the points of
p=0 if Aw=0 and one of the rootg,(\) is at the instability type | if L>L.
threshold, and2) p=p,()) if the parametek corresponds to The points of type Il are above the regeneration thresh-
a bifurcation point in Fig. 3. Otherwise the poles are simple.old (curve4 in Fig. 4), but below the instability threshold in
At smallt too many poles should be included in the sum ofboth the real system with boundarigsrvel in Fig. 4 and
residues. Then it is more convenient to calculate numericallghe uniform modelcurve6 in Fig. 4). The curves for points

5. WAVE AMPLITUDES AS FUNCTIONS OF COORDINATES
AND TIME. DISCUSSION

the integrals expressing the amplitudes. of type Il in Fig. 6 indicate that the effect of boundaries
Figure 6 shows such calculations of amplitudes. Calcupenetrates into the excitation zone through a much larger
lations for four points of types I, II, lll, and IV shown in Fig. distance than for points of type I. This is naturally accounted
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for in terms of the partial compensation for loss and thesteady-state level, and parametric instability develops.
respective increase in the effective dissipation length. It is  Thus, the boundaries of the pumping zone have a con-
remarkable that in this case the steady-state distribution isiderable effect on the development of parametric instability
markedly nonuniform throughout the excitation zone and deat all L, evenL—. But the instability threshold for spin
viates at all points from that of the uniform model. waves at. — coincides with that calculated in the uniform
The difference between points of type Ill and type Il is model only if Aw=0. In fact, according to Eq(198),
that they are above curvé in Fig. 4. At these points a Re+y;=Revy, for spin waves, so the lineg=1 and »=1
steady-state distribution is not achieved in the uniformcoincide in Fig. 4. Since the threshold level is the parameter
model, but it is achieved in the model with boundafesrve  most often measured in experiments, it is clear that many
3). features of the underlying phenomena are not detected. It
Finally, the point of type IV is above the instability would be interesting to understand why the threshold levels
threshold. According to Fig. 6, the amplitude distribution atcan coincide despite radical differences in the patterns of
the point of type IV is nonuniform, and no steady-state dis-instability development in space and time. The reason for
tribution is achieved. Note that for all points under discus-their coincidence is illustrated by Fig. 8.

sion, the maximum ofC/C,| is shifted to the right of the If the pumping localization length is not too large, as in
excitation zone center. The maximum of the amplitudeFigs. 8a and 8c, the distributions of the moduli and phases of
|D/Dy| is shifted to the left. the amplitude< andD are different, but they are symmetric

Now let us discuss the wave amplitude as a function ofabout the central point=L/2. At any point inside the pump-
time at a fixed point in space. It is convenient to consider théng zone, at least one of the two inequalities,
excitation zone center, i.e., the point L/2. Figure 7 shows dC/dy+0 ordD/dy+0, holds. As the length increases, the
calculations for points of types Il, Ill, and IV in the plane of amplitude distributions are deformed in the directions shown
parameters of Fig. 4. There is a time intervat O<L/2V in by arrows in Figs. 8a and 8c. As a result, at sufficiently large
which the amplitude versus time is identical to that calcu-L (Figs. 8b and 8f the distributions of the amplitud€sand
lated in the uniform model, since the dashed and solid line® coincide, and a flat section, whereéC/dy=0 and
in Fig. 7 coincide. This takes place because of the finitedyD/dy=0 simultaneously, is formed about the center of the
velocity V at which perturbations propagate in the systemzone. This flat section is due to the symmetry of wave pa-
As a result, there is a section around the central po#nk./2 rameters and the fact that the amplitude distribution becomes
within which the boundary is irrelevant, and which narrowsindependent of the direction of wave propagation_as.
with time. Att>L/2V and with a sufficient degree of regen- The coordinate derivatives in E(L8) can be omitted inside
eration in the system for propagating waves not to be attentthe flat section, and the resulting equations directly yield the
ated in the zone, the boundaries affect the entire zone, rénstability threshold equal to that obtained in the uniform
gardless of its length. In Fig. 7, this shows up as a model.
separation between the dashed and solid curves. At a point of We must stress once again that the above conclusion
type Il, both curves tend to different steady-state levels. At @olds only in the symmetric configuration, for which
point of type Ill, a steady-state level is achieved owing to theRe y;=Re y, and Aw=0. If Aw#0, the symmetry of the
effect of the boundaries. At a point of type IV, there is nowave parameters is broken, singg# v, [Eq. (19)]. Our cal-
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a b wm €0SO [~ si 6
. — V'=2k ———— | Ag?— . .
100} q 2k(k+ wp Sir? 0/ w,)
_ 2042 ! 2 1 (39
S I
)
E\-? S0 Equation (38) demonstrates tha¥'=0 at ==/2. Ac-
S 01 ! cording to the dispersion relatiofil), waves with 6=m/2
propagating in the direction normal to the fieltl, really
. . ) or ) . exist at sufficiently smalH,—specifically, when
0 0.4 08 ylL 0 0.4 0.8 yL
w
) HO<HOC=2—; (k—kZ-1). (39)

arg(CIC,), arg(D/Dy)

[¢]
0.8 08 rf _T
1 ' ' ] At these fields, the wave vectogsof such waves are non-
041 |3 4 044 {3 4 zero and may be fairly larg®. Therefore the instability
threshold for these waves can be estimated using the rela-
- . tions of the previous sections. The dimensionless localization
parameter ¢ introduced in Sec. 4 is in this case
0; 07

. ' . &=Ly,/2V' =, sinceV;=0. According to Eq.(36) and

0 04 08 yL 0 04 08 yL Fig. 4, the instability threshold is a minimufm=7,=1) at
&=co, and coincides with the result of the uniform model.

FIG. 8. Steady-state curves of complex wave amplitudes versus coordinate  Our conclusion is based on E(8), which determines

atAw=0, 1=7,, 012~ 97, andCy=D,. Curvesl and2 show|C/Col and  the velocity, and applies only to longitudinal localization. In

‘g’ Dy, respectively, ata) £=0.7m 7=1.43 and(b) £&=14.987, 7=1.00L. g, i the case of transverse localization, the velocity is zero

urves3 and 4 are plots of ar¢C/C,) and argD/D,), respectively, atc) .

£=0.7m, 7=1.43 and(d) ¢&=14.98, 7=1.001. only at =0[Eq. (19)]. Waves with#=0 propagate along the

field vectorH,, so they do not interact with the pumping

field® This statement also follows from E€L9): at =0 the

culations indicate that in this case the amplitude distributioP@ametric coupling factog,=0. Therefore the pumping

is also asymmetric, even when—x, and the derivatives field cannot generate waves that do not transport energy out-
dClay and dD/dy in Eq. (18) cannot be neglected at any side _the pumping zone in the case of strlctl_y tr_ansversely
point. As a result, the instability condition can be deriveglocalized pumping. In the case of strictly longitudinal local-
from Eq. (37), assuming Re;=Re y,. Thus, in contrast to ization, such waves can be generated, and they determine the

the uniform model, the threshold is independentafin a ~ Minimum instability threshold. . _
system with boundaries,—this, of course, within plausible_  1he Proposed interpretation of the minimum threshold is
constraints om (recall thatAwlw~sp, &, ,&4<1). in good agreement with experimental ddtabtained under

the condition of almost longitudinal localization. The mea-
sured threshold was an oscillating function of the fiellgl*

6. EEATURES OF LONGITUDINAL LOCALIZATION and the minima corresponded to zero projection of the group
velocity onto the film plane. Such waves did not leave the

As was noted in Sec. 2, in experiments with localizedpymping zone and therefore did not carry off any energy.
pumpind®?°two configurations were studied, namely trans-

verse localization with. L Hy, and longitudinal localization
with LIIHy. To this point, we have limited our discussion to
transverse localization. Now let us consider some features of
Iongitudinal localization. 7. “BUTTERFLY” CURVE
The procedure of constructing the theory described in
the pI'EViOUS sections is almost the same. By following this In this section we discuss the curve of the minimum
procedure, we obtain equations for the wave amplitudes likparametric instability threshold versus the fielg (the “but-
Eq. (18) with the following substitutions: terfly” curve®®). It is interesting to determine how the bound-
9C 9C 9D 9D aries of the pumping zone affect this curve. As was noted in
vV, (9——>V1 =7 v, (9——>V§ o Sec. 6, the boundaries exert an influence over a wider range
y y of fieldsH in the case of transverse localization. Therefore
whereV; andV; are z-projections of the group velocities, we will discuss this type of localization.

and the fieldH, is still aligned with thez-axis. Equations Our calculation is based on E6), which determines
(19 defining the coefficients are still valid, but the newly the instability threshold at=4. In this equation the param-
introduced velocities satisfy the relatiodf;=—V,=V’,  etersé and» can be expressed, with due account of @¢),
where as
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minlk ), dB mum threshold measured in the experiment was independent
] of L, whereas Fig. 9 demonstrates such a dependence.
We assume that this discrepancy is partly due to the
54 difference between the theoretical model and real experimen-
tal conditions'® since the film surface was smooth, rather
44 than rough with diffuse reflection of spin waves. Another
2 reason for the discrepancy may be the dependence between
the line width 2AH and the wave numbey, which is not
reflected in the theoretical model. The importance of this
1 dependence has been pointed out in the liter&tétét the
21 smallestL, comparable to the dissipation lendth or even
smaller, the threshold is almost independentA¢f, and is
11 determined only by the outflow of spin-wave energy from
2 the pumping zone. Under these conditions, the increase in
o4 ! AH with g cannot have a notable effect on the shape of the
Hy . . “butterfly” curve at Hy<Hq.. At larger L this effect is
900 1000 1100 Hy, Oe stronger. As a result, the “butterfly” curve moves upwards
owing to an increase iAH with g. Hence the lower curves
FIG. 9. Calculations of minimum instability threshold, rig, versus ap-  of Fig. 9 should approach the upper curvetgt<H,., and

plied fieldH, expressed in decibels with respect to the threshold at the biagha agreement with the experimental data should improve.
field Ho=Hg. . The pumping fieldh, is localized longitudinallyhliHo) and

transversely(LIHy). The calculations were performed at different dimen-
sions of the pumping zonke: (1) 3.5 mm;(2) 2 mm; (3) 1 mm. The system 8. CONCLUSIONS
arameters are#M ,=1750 Oe,w,=27x9.37x10° ™%, 2AH=0.4 Oe. . . .
P 0 @ The parametric instability of spin waves generated by
localized pumping field is interesting from the viewpoints of
both fundamental and applied research. It is interesting, in

_ vAH qL principle, to determine the effect of boundaries on system
 w, s co2 6 ' instability, which was done in our work, but only in the
k°—1| 2AQ%+ ———— linearized model, the interaction among spin waves being
. k(k+vk“—1) ignored. The role of boundaries in the nonlinear stage of the
lhol VK*—1 instability is an interesting line of further theoretical re-
7= 58 H K (40 search.

From the viewpoint of applications, the instability under
The parameters can thus be expressed as functiogsanfl  the conditions of localized pumping is interesting because it
6. The wave numbeq can be expressed in terms &lising  controls the admissible power fed to linear devices. From
Eq. (11), with o=w,/2. It turns out that the basic equation this point of view, the effects of the following factors should
(36) determines the modulus of the threshold figlg as a  be investigated: JLlboundaries of ferrite films, which often
function of angle¢ at givenMg, AH, w,, L, andH,. The  reflect, but do not absorb or scatter incident spin waves; 2
following values correspond to actual experimentalparametric generation of not only purely exchange, but also
conditions®. 4mM;=1750 G, w,=27x9.37x10° s™. The  dipole spin waves, if the frequenay,/2 is within the dipole
values of# corresponding to the minimum of the threshold spectrum; 3 the actual configuration of the localized pump-
field |hy| at givenH, can be numerically derived from Eq. ing field.

(36). It turns out that ifH, is determined by Eq.39), there ) ) )
is only one optimum value of¢ at Hy<Hq. namely This work was supported by the International Science
[} . .

Bopi=12. At Ho>Ho. the angled,y, tends to zero at large Foundation(Grant MSZ000 and the Russian Fund for Fun-
Ho. The valued= 6, is substituted into Eq(36), and the damental Researo@@rant No. 94—0204928aWe are grate-
minimal threshold field, milhg|, as a function oH, is cal-  ful to S. A. Nikitov, A. G. Temiryazev, and M. P.
culated. Tikhomirova for helpful discussions.

The family of resulting curves calculated at variduss
given in Fig. 9. These demonstrate that the threshold inf’ln this connection, the following comment is relevant. A conductor with a

ith d . t all Ho. Absolut iati . microwave-frequency current pressed to a film surface can generate, in

creases wi ecreasirg at a 0- SO. ute variations Iin principle, dipole or dipole-exchange spin waves of fairly large wavelengths
the threshold aH,<H., however, are slightly smaller than in the linear mode at the current frequenay. These waves propagate fast
at Hyo>H. along the surface and can go far beyond the generator near-field zone; they

It is interesting to compare the curves of Fig 9 to mea- an then act as a driving force, generating a parametric instability at fre-

f I ized fit%Th ’ . quencies close taw,/2. Such processes have been investigated both
surements of a norma.y ma'lgnetlze YIG fi T € .eXpe”' experimentally® and theoretically®~*¢But in this paper, we only mean the
mental geometrj;? was identical to that shown in Fig. 1, and near-field instability when considering the parametric instability in the
the field alignment was close to that of Fig. 1la. Thus the zone of chalized pumping fi_eld. This in_stability is ip some cases the only
localization was almost transverse. One can see that aP"® possible—for example, if the pumping magnetic figlds parallel to
L=0.25-0 87 the th tical ’ d . tal he bias magnetic fieldl, (longitudinal pumping or if the frequencyw, is
=U.2o0-0.6/ mm, the theoretical and experimental CUrVeStyr peyond the boundary of the dipole spectrum of the film.

for Hy>H,. are in fair agreement. AH,<H . the mini-  2The applicability condition is formally equivalent to E().
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9Recall that the theory, in accordance with Hg) and the condition
L>AL, applies agL>qAL>1.
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Density of states near an Anderson transition in a four-dimensional space.
Renormalizable models

I. M. Suslov

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
(Submitted 6 June 1996
Zh. Eksp. Teor. Fiz111, 220-249(January 199y

Asymptotically accurate results are obtained for the average Green function and density of states
of a disordered system for a renormalizable class of mo@slopposed to the lattice

model examined previously. M. Suslov, Zh. Kksp. Teor. Fiz106 560(1994)]. ForN~1

(whereN is the order of perturbation thegryonly the parquet terms corresponding to the higher
powers of large logarithms are taken into account. For IdNgéhis approximation is

inadequate because of the higher rate of increase with respBicbtdhe coefficients for the

lower powers of the logarithms. The latter coefficients are determined from the
renormalization condition for the theory expressed in the form of a Callan—Symanzik equation
using the Lipatov asymptote as boundary conditions. For calculating the self-energy at

finite momentum, a modification of the parquet approximation, is used that allows the calculations
to be done in an arbitrary finite logarithmic approximation, including the principal

asymptote inN of the expansion coefficients. It is shown that the phase transition point moves in
the complex plane, thereby ensuring regularity of the density of states for all energies and
avoiding the “false” pole in such a way that the effective interaction remains logarithmically
weak. © 1997 American Institute of Physid$$1063-776(197)01401-1

1. INTRODUCTION whereS(E,R)~W 2>1. The total probabilityP(E) of the

resulting levelE, which determines the density of states

The proplem of calculgting the average Gregn functionV(E), is obtained by integrating Eq3) with respect toR,
that determines the density of states for the Sdimger | hich in the approximation of the saddle-point method re-
equation with a gaussian random potential is mathematically,ces to replacingR by R,, the minimum point for
equivalent to the problem of a second-order phase transitiog(E R). For d<4 and d>4 'we have Ry~ |E|~ Y2 and

with ann-component order parameter=(¢1,¢2, - .- .#n) R ~a,, respectively’® For d=4 (Fig. 1), the function
in the limit n—0;%? the coefficients in the Ginzburg—Landau S(E,R) = const=S,, and the situation is close to degeneracy:
Hamiltonian for largeR the degeneracy is removed owing to the finiteness

1 1 1 qf E and S(E,R) — Sy~ E2RY, while for sma}IIR. the devia-
H{(p}:j ddX{§C|V<P|2+§Kc2)|<P|2+Zgo|<P|4 (1) tion of the spectrume(k) from quadrgﬂc is Iargg. If
e(k)=k?+ Bk*, then for B>0 the functionS(E,R) lies
above Sy, ensuring the appearance of a minimum at
o~|E|~ ¥4 while for <0 it lies below and the minimum
is attained atRy~a,;° thus, models with3>0 and <0
yield a different asymptote for the fluctuation tail as
E— —o. For small negativeE the boundary between the

whered is the dimensionality of the space is the particle  tWo types of models shifts and is no longer sharp, so that
mass,E is the energy relative to the lower boundary of the integrating Eq(3) with respect toR results in a competition
seed spectrumyV is the amplitude of the random potential, between the contributions from the minimu8y and the
and ag is the lattice constant(in the following c=1 and  higher lying plateauS(E,R)=S,, whose width increases
ao=1.) The “wrong” sign on the coefficient ofe|* leads to  Without bound asE| is reduced:
the “false” pole probleni and for a long time it was doubted
that ane-expansion could be constructed near a spatial di-
mensionality ofd=4.4 Encouraging results in this area have ~ P(E)~v(E)~e i+
been obtained recently by the autfiér.

It has been showithat there are two fundamentally dif-
ferent classes of models which show up in estimates basathereJ~1/ma~1. AsS, is increased the second tefthe
on the optimal fluctuation methd® The probability —contribution of the plateauecomes dominant befof ap-
P(E,R) of the appearance of an energy leet 0 owing to ~ ProachesS,. Direct integration of Eq(3) with respect toR
a fluctuation in a potential with characteristic sRehas the ~ Yields an exponenty=1/2.° which cannot be taken seri-

are related to the parameters of a disordered system by t
equations

c=1/2m, «3=—-E, go=—W?a}2, 2

a

e, (4

form ously, since the accuracy of the method does not allow for an
estimate of the coefficient of the second exponential. The
P(E,R)~exp —S(E,R)}, €)] exact value ofx is 1/3 (see below.
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In the domain of applicability of the optimal fluctuation of « and g alone upon transforming to the renormalized
method, the dampinlj, defined by the imaginary part of the quantities. From dimensional consideratiohs= x*f(g),
self-energy2 (p, x) for p=0 (« is the renormalized value of where the functiorf(g) is determined mainly by the expo-
Kg), is proportional to the density of state§E) and, when nential exp(1/ag) owing to the need to agree with the re-
the dimensionality is taken into account, can be estimated asult from the optimal fluctuation method d&— —o, in
13 which g~g,. Given the relationship between the renormal-

esol_ (5)  ized and bare chargés,

E|

The energy always enters in the combinatio#i iT", and in
the neighborhood of an Anderson transitid can be re-
placed byl". It is easily verified that the first term in brackets (K,=(87?)"! is the area of a unit sphere in four-
is dominant wherS; <3Sy/4, and the second when the in- dimensional space, divided by £3%), we have

equality is reversed. Sinc8(E,R)~W~2,% in the limit of

weak disorder a sharp bounda®y= 3sy/4 appears between I~ 2 exp{ _ i_ % n ﬁ]
the two types of models: fdB; <S; the optimum fluctuation agp a K

is determined by the atomic scale length and the discreteness A2\ ~Wal2a—1 1
of the lattice is of fundamental importance, by analogy with ~AZ2 _2> ex;{ S —
the casal>4. ForS, > S, fluctuations with a large radius are K a%o
important and the analysis can be carried out in a continuurwhich’ given thad~ A2, x2=|E| Y anda= — 3/8x2, repro-

model with a quadratic spectrum; the situation is analogoug;ces the second term of E®). This value ofa is obtained

F~J{e51+

_ 90
g 1+Wzgo In(A/K),

W,o=K,4(n+8) (6)

, 7

to that for the lowest dimensionalities. by a method*?>*3employing the standard instanton solution
The above classification of models is directly related tofy, =4 14
the renormalizability of the theory. Théth-order graph for The need to correctly account for the factorial diver-

the self-energy®, has momentum dimensionality, where  gence of a number of perturbation theories examined via
r=2+(d-4)N. Ford>4 the degree of divergence at high | jpatov's method* according to which subsequent coeffi-
momenta increases with the graph order, and the theory i§ents in the expansion ig, are determined by saddle-point
unrenormalizablé;a cutoff parameteA must be introduced  configurations, i.e., instantons, of the corresponding func-
explicitly as an |_nd|cat|on of the _S|gn|f|cance of the structureijignal integrals, has been clarified previou3fAn instanton
of the Hamiltonian on an atomic scale. Fox4 we have jj the Lipatov method satisfies the same equation as a typical
r<2 atallN: when its value is deducted from each graph forave function in the field of an optimal fluctuatiosee
p=x=0 the indexr is reduced by 2 and the difference chapter IV of Ref. 8 In this way, the model classification
2(p,x)~%(0,0) contains no divergences, which are ab-given above shows up in yet another fundamental guise—the
sorbed by>(0,0), and leads only to a shift in the energy givergence of a number of perturbation theories. Unlike the
origin. For d=4 the differenceX(p,x)~%(0,0) contains |attice models ford=4.° the continuum models fod<4,5
!ogarlthm|c divergences which greoremoved b.y.renormallz-and the renormalizable massless thed‘?éé,applying the
ing the charge and Green functidf) however, it is neces- | jpatov method to studies of four-dimensional modéls
sary to keep in mind that in the standard proofs of renormalyith 0 requires that certain difficulties associated with
izability only distances greater than™! are considered. Of the absence of “true” instantonSec. 7 be overcome

. : .
course, scale lengths shorter than = do not make the In order to obtain asymptotically accurdte the limit of

d-function contributions that are so important fdr—o. \yeak disorderresults in four-dimensional lattice modéli
The above estimate shows that this is not always so: thg,e expansion

renormalizable contribution from large distandése contri- "
bution of the plateauis dominant only forS;>S.; other- ~ A\K
wise, it is small compared to the unrenormalizable contribu- ~ 2(0.4) = %(0,0 =« Nzl 9 KZJO Aﬁ( In ;) ®)
tion from small distances.
Therefore, there are four fundamentally different typesit is necessary to includeia) the parquet coefficientAH
of theory: (1) an unrenormalizable theory fa>4; (b) un-  corresponding to the principal logarithmic approximation,
renormalizable theories under logarithmic conditidds- 4, and (b) for N=Ny>1, the coefficientsAﬁ and A}, which
$,<S,); (¢) renormalizable theories under logarithmic con- have the maximum growth rate with respectNiaand domi-
ditions (d=4, S;>S;); and(d) theories that are renormaliz- nate the higher orders of perturbation theory. They vyield a
able with a single subtractiorisuperrenormalizablefor ~ nonperturbative contribution, which is related to the diver-
d<4. Casesa) and(b) have been examined in Refs. 5 and 6,gence of the series and does not depend on the choice of
respectively. In this paper we examine cdsg the zeroth Ng. The qualitative result consists of a shift in the transition
approximation for the 4 ¢ theory, which belongs to type point from the real axis into the complex plane, which leads
(d). to regularity of v(E) in the neighborhood of an Anderson
The exponentx in Eq. (4) can be determined from the transition and elimination of the false pole. This approxima-
renormalization condition for the plateau contribution. Thetion “deteriorates” asS; approachess.:® (a) the equation
contribution of the latter to the dampidg, which depends for T'(E) has physically meaningless solutions when
on A and the bare values fary andgg, becomes a function S;>S.; (b) the contribution from the approximations fol-
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FIG. 1. The dependence &E,R) on R for E=const wherd=4.

FIG. 2. The vertex"“N) with N free ends and. closed two-line loops
studied in the renormalization theory of Ref. 10.
lowing the principal logarithmic approximation, which are
determined by coefficienta ~ with K~1, increases rap-
idly as S;—S;; and,(c) the plateauFig. 1) makes a contri- 2. SYSTEM OF EQUATIONS FOR THE COEFFICIENTS AX
bution whose strong energy dependence indicates a growing
role for the coefficienté\\ with K # 0 (in the lattice models
the weak dependence 8f on E makes the zero-logarithmic
contribution predominaje that becomes important for

In the following we shall only be interested in logarith-
mic divergences, assuming the quadratic to be eliminated by
the renormalizationc. The Callan—Symanzik equations can
be derived in the usual wdy,but we need them in a some-

S;~S;. Thus, if the “highest” and “lowest”-order loga- - . . . . .
rithms are dominant in the lattice models, then, in general Owhat nontraditional form. Dimensional considerations imply
’ ’ ' O%hat a vertex(“N) with N free ends and. two-line loops

going to the renormalizable models the contributions from, _. . .
all K become important in the su(®). (Fig. 2) can be written in the for

In the latter case we arrive at the following statement of ~ T'“N(p;;x,go,A) = x4~ N@- 2272k
the problem: let us choose an intedes that is large com- ~
pared to 1, but small compared to the large parameters of the XN (py /K;g(:A/K)' ©)
theory. ForN<N, we retain only the parquet coefficients which allows us to proceed to examinidy'N (we omit the
AN which are distinguished by large logarithms, in E8). tilde in the following. Assuming that the bare charggis a
For N=Ng, in general, all the terms are important in the function of A and introducing the renormalized chargg
sum overK, but the conditiorN>1 allows us to calculate applicable to a scale.>«, in view of the multiplicative
the coefficientsAﬁ in the principal asymptotic dependence renormalizability of >N, we have
on N. The latter problem is solved in the following way: the 0, 7
renormalizability of the theory, expressed in the form of the F<RL'N>(—';gM, ﬁ) =Z’\‘/2(—2
Callan—Symanzik equatiofSec. 2, leads to a system of K K z
equations for theA that determines the coefficients with whereZ andZ, are functions ofj, andA/u. Sincel' &V is
K # 0 in terms of specifiedy, On the other hand, the Lipa- independent of\, we have
tov method reproduces the coefficienq with small K dr&N/g in A=0
well, so that they can be used as boundary conditions for this R '
system of equations. In this way it is possible to determinevhich after substitution of Eq(10) gives the Callan—
all A with N>1 (Sec. 3, which for smallg, enables us to Symanzik equation:
find the sum in Eq(8) and determine the energy dependence
of the dampindl” (Sec. 4.

For calculating the density of statéSec. 6 it is neces-
sary to find the self-energ® (p,x) for finite momenta,
which requires solving of the parquet equations in the prin- —L72(90)
cipal logarithmic approximatiof. In the present theory
3(p, ) is the sum of a nonperturbative contribution, mainly 0 A X
determined by the Lipatov asymptote, and a quasi-parquét‘nCt'ons’L 7(9o) and (o) are defined by the equations
contribution corresponding to a logarithmic approximation dgo dinz
of arbitrary finite order, which allows only for the principal W(go)= din A’ 7(Go) =~ din A’
asymptote behavior ilN. The calculations in the next order
can be carried out with the aid of a curious modification of ~dinZ,
the parquet approximatiofSec. 5. 72090 =~ Fin A (12)

L
Pi A
(LN 2L _
F (K1901 K)l (10)

J N
TN A +W(go) @JF(L—E) 7(do)

pi A
F<LYN>(;';go, ;) =0. (11)

The Gell-Mann-Low functionW(g,) and the scaling
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and depena priori on A/w; however, by writing the three
Egs.(11) for differentL andN, expressingV, 7, andz, in

Information on the coefficientéy with N>1 can be
obtained by the Lipatov method. According to Sec. 7, the

terms of'(“N) and noting that the latter functions are inde- Nth order contribution t& (0,«) has the form

pendent of the arbitrary parametgr, it is easy to confirm
that the first of them are independent /®of ..

In order to find the renormalization law for the self-
energy we use the Ward identity for the Green function

G(p,«):
dG~1(0, d
—&(2—K) (?—Kz re2(x), (13
Ko

which, when integrated, yields

Ko~ Ke= K’ Y(go, ) J de’[TH2(0]78 (14

where T12(k)=T®I(p;=0, gy, Alk) and k2=3(0,0).
The functionY satisfies the equation

o 2

(19

1%
+W(go) - o ——+V(go) |Y

Jgln A

with V(go)= 72(gp), Which is easily confirmed by applying

the operator in square brackets to Ef4) and using Eq.
(12). Given thatK§:K2+2(0,K), Eq. (14) can be rewritten
in the form

k?+3(x,0)—3(0,0= x%Y(go,A/ k) (16)

and a comparison with E@8) yields the following logarith-
mic expansion forY:

o -2t

with A8=1. Expanding the functiong/ andV in the series

17

W(go):Nz2 WnGS V(go)zNzl VgD s

(18)
whose leading coefficient$are’
W,=K4(n+8), Wy=—K3(9n+42),
Vi=—K4(n+2), V,=3K23(n+2), (19

substituting Eqs(17) and (18) into Eq. (15), and collecting
terms with the same powers gf and the logarithms, we
obtain a system of equations for the coefficieAf,s:

N—-K+1
—KA= MZ [Wh1(N—M)+Vy]AS Y,
K=1,2,...N. (20)

3. A STUDY OF THE COEFFICIENTS A

2~N N - A

k“ggCI'(N+Db)a™(In N)"7 exp o In? , (21
where
b_n+8 _ 3k _n+2 _n+8 27
_Ti a=— 4, 7_T! O-_T- ( )
Comparing this with the expansidB), we obtain
a" 0 0 N —y

AN KT — AN, Ay=CI'(N+b)a™(In N)~7. (23

Whereas in the lattice modélshe Lipatov asymptote only
reproduces the zero-logarithmic and first-logarithmic contri-
butions, here it yields some “extra” logarithms. Formally, in
Eq.(23) K=0,1,. .. 0, while in Eq.(8) K<N. The reason
for this is the rapid drop imﬁ with increasingK and the
limited accuracy {-1/N) of the leading asymptote. The re-
sult(23) can be believed only for smaifl, but this is enough
to use it as a boundary condition for the system of E26).

Writing out Eq.(20) for smallK,

—1. Ah:

[Wao(N—1)+V]AR 3 +[W3(N-2)

FVLIAY L+ [ Wy 14 V-1 ]AZ+ VL A),

—2-AZ=[W,(N—1)+V,]AL_;+[W5(N-2)

FVo AL o+ H[Wy-1+Vy_1]AT (29

and assuming that Eq23) is valid for A, it is easy to
confirm the factorial growth imN for all A§ with K~ 1. Re-
taining only the first terms in leading order N on the
right-hand sides of Eq$24), we obtain

K N! K AO K<N 1
AN:m(_WZ) AN-k — KT
W\ K
><(—?2 A (25)

which, given thato=—W,/a (see Eqs(19) and (22)), re-
produces the resulR3) for K # 0 and establishes its domain
of applicability, K<N. Retaining only the first terms on the
right of Egs.(24) is justified whenW andV, increase more
slowly thanA0 ¥ which may regarded as a consequence of
the validity of Eq.(23) for K=0, 1, 2.

For K close to N and assuming that(NzAH and
yn=AN"1, ..., weobtain a system of difference equations
from Eq. (20),

Equation(20) is a recurrence relation that determines the

AY in terms of specifiedd_], AKZ3, ..., Af_1 and can

be used to express all tmeﬁ in terms of a single sequence
Aﬁ . The coefficient® andVy can be determined from Eq.

(20) if we specify two sequencesy, and A2 in addition to

Aﬁ. Thus, the renormalizability of the theory sharply re-

duces the arbitrariness in the choice of coefficients in(Bq.
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—NXy=[Wo(N—1)+V]XN_1,
—(N=D)yn=[Wo(N-1)+V;]yn_1+[W3(N—2)
+VoIXN-2, (26)
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which can be solved by the method of variation of constantsvhere the coefficientBﬁ are given by the sum of th@ﬁ

and used to successively determikig, AN ', ... . For the
parguet coefficients we have
I'(N-p) V; n+2
AN=(—WN e, ==
F(N+D)I'(=p) W, n+8
(27)

in agreement with Ginzbutg (see Ref. & For A}~ " with
K~1 it is easy to identify the leading asymptote Nhand
prove the following result by induction:
1 w K
N-k_ — [_ "3 N

Ay =K ( W%Nln N) Ay (29

In order to study theAﬁ with arbitrary K we use the
estimateAl_;/AK=<1/N, which is valid for Egs.(23) and
(28) and is confirmed by the result for #l. Retaining the
two leading terms irN on the right of Eq(20), we have

—KAR=[W,(N—1)+V,]AR "I+ wNAR—L

K=1,2,...N. (29)

The principal term irN is not sufficient, since the calculation

of arbitrary Aﬁ from known A% requires ~N iterations,

which for an accuracy~1/N in each iteration leads to a

buildup of errors. The last terms in E(R4), which contain
Wy and Vy, generally give corrections-1/N, but are

terms,

1
BN= : 36)
N Trpn(it e (50 (
while p;,p,, . .. Pk is a selection without replacement from
the sequence 0,1.., N—1. ForK<N, sampling with and
without replacement are essentiallly equivalent, and we ob-
tain

In N)K
ﬁ~% K<N. (37)

In fact, for largeN, the sum in(35) is always dominated by
K<N, and noting thatp,,=0 for M <0, we obtain

M K
(In' N)

XNm= E el
K=0 Kl

Xf(M)f(M—=1)...f(M=K+1)¢py_« . (39
For the product in(38) we have
fIM)F(M—1)...f(M—K+1)
r(M-p8)
A T(M—K-p)

MK
— (f)", (39

(Ws\ AR«
|

present only in the equations wikh=1, 2 and do not lead to Where

an accumulation of errors. We assume by definition that
AN"1=0, which accounts for the absence of the latter term

in the equation wittK =N. Making the substitution

I'(N-p)

K_/_ K 0
AN ( WZ) F(K+1)F(N_K_B) AN—K)<N,N—K
(30)
and noting tha¥Xy ;m-Xnym~1/N, we arrive at the equa-
tion
f(M)
Xnm=Xn-—1m+ N XN-—1M-1 (3D
with the boundary conditions
Xun=1, Xno=1, (32
where the functiorf (M) is defined by
Wy A1
f(M)=—— (M—1—
(M)= g € B)pu (33)

Equation(31) is convenient for studying a problem with ini-

tial conditions

Xom=ém, where ¢py=0 for M=-1,—-2,...

'(34)

5 _W; _3n+14
fm—hjllﬂ']mf(M)— a_V\lz_ W
For M =0 the boundary conditiofB2) gives ¢o=1 and for
M=N>1 the sum in Eq.38) is replaced by an integral
which is calculated by the saddle-point method and, on com-
parison with the boundary condition82), determinesgy,

for M>1:

(40)

[ 1, M=0
=M, M1

Substituting Eq.(41) in Eq. (38) leads to the results
(Mg=f, InN)

(41)

M M _
NM:%(VWLE) —IF((EAB)Z))A for M<In N,
(42)
xNM=(I—n%e—Mordx exp(——(M_MO_X)Z)
M J27M, Jo 2Mg
X(In x)~ 7P A=
for Mg—M<My or M>My (43

for Mg—M <My or M>My. (In the first case the sum in

where ¢y, can be chosen so as to satisfy the boundary conEd- (38) is determined by the term witK =M and in the

ditions (32). Iteration of Eq.(31) yields
Xnum=bm+Byf M)y -1+ BRF(M)F(M—1) by,
+. ABNF(M)F(M=1)...F(M=N+1)y_n.,
(35
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second, it is replaced by an integyeubstituting Eq(42) in
Eq. (30) reproduces the resu28) and establishes its domain
of applicability, K<InN. In the region M~(My—M),
which is not described by Eq&2) and(43), the magnitude
of Xy m is determined by the values g, for M~ 1, which,
in turn, are determined by the coefficieA§ with N~1.
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aN 91:90/
W3
~lnN ~Jo 1+ W, o In[gol |,

____________ £ ¢ which differs from the parquet forfronly in replacingg, by
N o
Region4 makes a nonperturbative contribution that has

1 been discussed in detail in Refs. 5 and 6. It is obtained by
gy substituting Eqs(30) and (43) in Eqg. (8), summing ovelK
by the saddle-point method, and summing oMewith the

aid of the formula

1+ % i
Wzgo”

1
lgolln( l/lgol)

N0 N o

v
Im >, T(N+b)aV(go—i0)Vf(N)= ——

FIG. 3. Regions in theN,K) plane that are of importance in studying the N=No (ag(’)
sum(8): (1) the nonuniversality region in which information of the coeffi-
cients A% with N~1 is important; the universal asymptotet?) and (43) xexp< _ i i (46)
are valid above and below this regiaf2) the saddle-point values & for ago ago !
N=const; for smallN the parquet coefficients lying on the principal diag-
onal are dominant(3) the region which makes a quasiparquet contribution agy>0, Ng>1,
to the sum(8); and (4) the region which makes a nonperturbative contribu-
tion to the sum(8) (N, may be chosen arbitrarily large which is valid for slowly varying functiong(N). It is ob-

tained by expanding(N) in a Fourier integral, using Eq.
(90) of Ref. 6, and including only the long wavelength Fou-
The latter can be determined to within a few percent byrier components. The arbitrariness in determinfifty) for
matching the first orders of perturbation theory with theN<<N, makes it possible to satisfy the condition of slow
Lipatov asymptotdsee the examples in Refs. 14 and.15 variation for any functionf(N) which does not vary more
rapidly exponentially. The unusual phenomenon associated
with the divergence of the series is that the sum in(&6) is
4. SUMMING THE SERIES FOR X(0,k) determined by arbitrarily larg&l (so the result is indepen-
dent of Ny), but the value off(N) for a finite N=1/ag,
appears in the result. Thus, the correction factor which dis-
tinguishes the exaaﬂkﬁ from the Lipatov asymptoté23), is
determined by Eqs(30) and (43), and is negligible for

depends substantially on the specific vaIuesA(ﬂf with N—-co, will lead to a substantial difference between the com-

N~1. Above and below region 1, the universal asymptoteé)r:ettla__nonperturbative contlr;buti%r; al;dsthat7cslic:ulate_dlfrom
(42) and (43), determined by the trivial coefficierA8=1 the Lipatov asymptotésee Eq(133) of Sec. 7.7 forM =

and the Lipatov asymptote ok, respectively, are valid. below):
The dashed lin@ denotes the saddle-point valuestoffor _ 1 y
N=const assuminggy|<1 andg, IN(A/k)~1. WhenN is [z(o,K)]nonpenziro(Kz)z[z(o,x)]hg)ﬁggyt— (In )
reduced the saddle point vanishes and the parquet coeffi- J; 190l
cients A\ on the principal diagonal become dominant. An b+8=f= |14+ W,g, IN(A/k)
important contribution to the suri8) comes from region8 ( abg,xg/2 )
and4 which are adjacent to the dotted saddle-point line. 170

The above information on the coefficienfs; can be
used to identify the regions in thé&(K) plane which make
significant contributions to the suf8). Regionl of Fig. 3 is
a nonuniversality region in which the behavior of mé,

abgyXo
2

Region3 gives a quasiparquet contribution, determined Livatoy_ 1 1\
by coefficientsA\ ~ < with K~ 1, for which Eq.(28) is valid: [%(0,k) Jndnper= i C2 (g’ (In m)
A W B
- = _3 1 A
Y(go, K” . A+W2go nal, xex;{——)xzex;{aln—),
quasiparq ago K
A=1+Wogy In > (44) 8f 1\
= 290 IN —. S i
K XO ( b2 In ago ’
To within logarithmic accuracy the quantity in the loga- . bx. |7
rithm can be replaced by its minimum valde~|go|In|go| |(y):f dzl In 70 z) 2B exp{ — (y—2)2},
(see below, since forA> A the logarithmic term is unimpor- 0
tant and Eq(44) can be rewritten in the form (47)
B where ¢,~3.44 10" 2 for n=0. The conditionM>M, in

, (45) Eq. (43 corresponds to positive values of the argument
I(y), which happens in this range of parameters.

A
1+W,g4 In »

Y0, — ~
K quasiparg
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Approximating the serie§l7) by the sum of the contri-
butions(45) and(47) and substituting in Eq.14), we have

14
KS_K(Z::K2 1+W,gq In » +ilo(k?),
k?=—E—il, (48)

which is solved similarly to Eq(93) of Ref. 6 and deter-
mines the relationship between the dampihgnd the renor-
malized energ\E with bare energyEsz—KS in the para-

metric form:
I'=T.*sing, E=-T.*cose,

— Eg+ Ec=Tc€%(4K,|g4|x)"*{cog o + ¢/4x)

—tan ¢/3)sin( ¢+ ¢/4x)}, (49
whereE_ is given by Eq.(108 of Ref. 6,
I.=A2 expr—;], (50
4K,/ 94

andx(¢) is a unique function in the interval<O¢ 7 analo-
gous to that shown in Fig. 2 of Ref. 6 and given (ay. Eq.
(100 of Ref. 6

X

X_O L

A )7/4( 4 ) 716 ( l 1 ) 713
_— =X ~lIn—] .
3K 4| gol 37 |90l

(52

The minimum values oA andx are attained simultaneously
and, to logarithmic accuracy, are

—4x/3
_ ¢
=B CO{ §) W“_ |

in o+
sin| ¢+ 7 (51

in which the constanB is equal to
3) 1/4

Bz\/;cz(z

2 s
e (69

~ 7
A=A~ —K INn—, Xmin=~-=In1In
min 4 4|gO| |gO| min 4 | O|

The minimum distance to the false pdlés of order

|golIn In(1/]ge|) and the “effective interaction” turns out to
be logarithmically weak for smalk.

5. THE QUASIPARQUET APPROXIMATION

Calculating the density of states requires knowledge of

the self energy3(p,«) for finite moment® As when

Major difficulties arise in calculating the quasiparquet
contribution to3(p, x), which corresponds to a logarithmic
approximation of arbitrary finite order including the principal
asymptote inN of the expansion coefficients. The principal
logarithmic approximation for calculating (p,«) requires
knowledge of the four-tail verteX'(®¥(p,k,q), which de-
pends on three substantially different momenta,
p>k>q> «.® The method used above allows us to find the
quasiparquet contribution ®B(* for p~k~q> k. Writing
an expansion of the type),

ES N—-1

A K
rp,p,p)=> gy > Aﬁ(ln —) (55)
N=1 K=0 p

(with different coefficient\) and noting that" (** satisfies
an equation liké15) with V(go)=—27%(go), in place of Eq.
(20) we obtain

N—-K
—KAE=MZ:1 [Wy+1(N=M)+Vy,]JAKZY,
K=1,..N—1, (56)

which, given thatV;=0° gives the following instead of
Egs.(27) and (298):

ANTK=—2(—wW)N

(K—1)!
—W. K-1
xﬁmm In )1, K~1. (57)

The quasiparquet contribution to the s&b), which is de-
termined by the coefficientb7), has the form

[F(O'A)( p.p, p)]quasiparq

W
=—209 A+W2g0 In A

_ -20;
1+W,g; In(A/p)’

A=1+W,g, In(A/p)

(58)

In the principal logarithmic approximation, calculating

p=0, this quaptity consists of nonpe(turbativg anq qua.siparr(o,4)(p,k,q) requires summation of the parquet graghis.
guet contributions. The nonperturbative contribution will be4a) obtained by successive splitting of simple vertices into

important only at large negativEé, where it is determined
directly by the Lipatov asymptote and is given by Ef§32
of Sec. 7.7 withM =1, n=0, andp,= — p,=p. Forp below
some pg, [Z(P,«)Inonpert IS independent ofp, while for
p=p, it falls off rapidly with increasingp. Given the loga-
rithmic accuracy of the subsequent calculatiéBec. 8, Ref.
6), the following result is adequate:

[E(pvK)]nonperf%[E(O:K)]nonper@(po_p)a
1 1 1/2

—In—) .

|90l "~ |90l
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Po~ K( (54

126

two parts joined by two lines. When the order of the graph is
increased by unity, the smallnessg, associated with the
additional vertex is compensated by the large logarithm as-
sociated with the additional pair of 1iné8lt is possible to
approach the parquet approximation from the standpoint of a
general structural analysis of the grapfs® the complete
vertex I'®¥ is represented in the form of three “bricks”
Fij « and an irreducible four-tail verteR® (Fig. 4b. Each
brick is the sum of the graphs introduced along the pair of
lines in the corresponding channel and obtained by repeating
a “crossed out” vertexR (Fig. 49, which in turn is the sum

I. M. Suslov 126



2 FIG. 4. (a) A parquet sequence of graphs fBf®* (ob-
//7////////% . N tained by successive splitting of simple vertices into two
1234 | = 222 ] parts joined by a pair of lings(b—d) the system of equa-

tions for the complete verteR(®9, three “bricks” Fj; 4,

b three “crossed out” vertice®;; ,, , and an irreducible ver-

tex R®. The approximatioR?= — 2g, corresponds to sum-

ming the sequence of diagraras

[ i

]+

N

R12, 34
z 3 3 2 4 2 ////
1 4 4 1 3 1 4
d
of two bricks and an irreducible four-tailed vertéig. 49. larger logarithm and shows up only as a quantityQdfl).

Setting up the equations of tymeandd for the two other At first glance, this method of calculation is justified only in
bricks, we obtain a system of 7 equations for 8 variables. the principal logarithmic approximation; in fact, the substi-
All the variables are uniquely determined by specifying thetution k—c« in the principal logarithmg8) yields

vertexR?, so that

r9(p,k,a)=F{R(p,k,a)}, (59) A“(m é)“ﬂ Am(m A C)N, 62
whereF{ ...} is a functional. The parquet approximation K K
corresponds to replacing the irreducible four-tail vertex with
a simple vertexR%(p,k,q) = —2d,, so that the systerh-d ~ Which leads to a change in the coefficients for the lower-
then corresponds to the sum of the graphs order logarithms,
In Appendix 2 it is shown that the verteR? depends
only on the maximum momentum and E®9) takes the

form AmeeAme-i-

r'%(p,k,q)=F{R%p,p,p)}. (50

Taking k=g=p and reverting Eq(60), we can obtain an R JWEVETD - )

approximation forR? that corresponds to the res¢i8), af- th(nT principal asympt_ote iN is “|_nsenS|t|ve.” to the :_subsp—

ter which Eq.(60) solves the problem in principle. tution k—c«. Thus, in the principal order iN, logarithmic
The functionF{ ...} is determined by the system of calcula_tlons. are pe_rm|SS|bIe in an arbnrary finite logarithmic

equationsb-d (Fig. 4), which is very complicated and has approximation. This makes.lt possible fully to employ the

never been solved. Usually the approximation technique oparq(lé%t scheme for calculating the quasiparquet contribution

Sudako?® as refined by PolyakdV is used. This method 17"

does not assume any specific approximationR8r but is

based on logarithmic calculations of the type

—In ¢)X
%NKAN, K~1. (63)

According to Eq.(28), however, AN ¥~AN(N In N)¥ and

Substituting Eq58) in the parquet equati Loarn

1
A kdk A kdk A I®9(x,x,x)=R%(x,x,x) + = K4(n+8)
= = J— 1Ny 1\ 4
JO (k2+K2)2 J;K k4 In K +O(1) (61) 2
The lower limit in the second integral is determined only to % fxdt[f‘(o"‘)(t t,0)]2 (64)
order of magnitude, but this uncertainty does not affect the 0 A
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where x=In(A/p), we obtain R%(x,x,x)=-2g; and
[3(P, &) JquasipargiS determined by the parquet formuig$
with go replaced byg;. The final result forx (p, «) has the
form

—-1/4

t(x)
t0%)
t(x)

—3/4
t(x.) ]

—iTo(k*)O(p—po)
(cf. Eq.(116) of Ref. 6, where

3(p,k)—2(0,k)=«k {1— =

1

(65)

t(X)=1+8K,g.x, x=In(A/p), X.=In(A/x). (66)

6. THE DENSITY OF STATES

Calculations analogous to Sec. 8 of Ref. 6 yield the re-

sult

v(E)=

F 1 i
4] =
+4K4|91|X_4K4|91||”|§11|]

3
<p+—¢

_ 12 i
(4K4|g1]x) 2 sin Ix

] : (67)

which, together with Eqsi49) and (51), determinev(E) in
parametric form. FotE|>T" we have the asymptote

-1/4

1
v(E)= 5 K4E( 1—4K4|g,/In E) , E>T,

2

I'o(E) A
[1 2K4|91||n|E| 2K 4]94/In| gy

v(E)= 4m|g

2\ 1/2
(1 4K4|g1|ln|E|) ] —E>T, (68)

whereT'o(E)=T(||?). For large positiveE the function

v(E) becomes the density of state of an ideal lattice, and for

large negativeE we have the result

W(E)= == To(E)In

1
277 |go|

K4 ( 1 ) 8/3( I 1 ) 2/3
=—2C _— n—
2 72\ 3Kyl g0 |90l

1 A2 1/3
X ex ——AZ(—) , 69
p( 3Kalg0 ) | TE] 9

which corresponds to the asymptotic behavior of a fluctua-

7. CALCULATING THE LIPATOV ASYMPTOTE

The plateau contributioriSec. 1 plays a fundamental
role in the renormalizable models and an analysis can be
carried out in the continuum limit, assuming the spectrum
e(k) to be quadratic. On the whole, the calculations follow
the scheme described in Ref. 6, with(k)—k? and
>—Jd*x. The differences are connected with the higher
symmetry of the four-dimensional continuum model, which
makes it possible to reduce the calculations “to a number”
but lead to a number of technical difficulties along the way.

7.1. Four-dimensional continuum model

The standard proceddreeduces to the following condi-
tions on the saddle point in the functional integral:

1
Ng:'=— 7 [ dxeo0t (70)

—AQDC(X)'FQCQDC(X)B-FKZ(,DC(X):O. (71)

In the “massless” theory £=0) the solution of Eq(71), an
instanton, has the form

JER

¢c(x):(_gc)7l/2¢c(x)l de(X)=
where the parametdR, the radius of the instanton, is arbi-
trary, consistent with the presence of a plateau in the optimal
fluctuation methodSec. ). The deviations from the saddle
point are expanded in terms of the eigenfuncti@ﬁsand

el, which obey the equations

Miet)=xtek(x), Mqel(x)=xlel(x) (73)
for the operators
M =—A+3g.02(X), Mr=—A+g.e2(x), (74

which, as usual, have zero modeshe operatorML the
translation modes

L_ Ly 4 c
A,=0, e,(x) f d (ax ) (?x#
u=1, 2,3, 4, (75
and the operatol@lT the rotational mode
-1/2
=0, efo=| [ dxge?| g0, (79

The arbitrariness of the parametrin Eq. (72) leads to the
existence of yet another zero mode fdr_, the dilatation

modée* 1
Iehc)?
j d4x( &R)

"2 9¢(x)

A5=0, e5(x)= R

(77

tion tail obtained in the traditional forms of the instanton Its existence makes E(/1) insoluble for finitex (a rigorous
method®!213 1t can be obtained by summing the outlying proof is given elsewhefd. Taking «? into account through
terms of the series foG(p,«x) (see Eq.(113). For a qua- perturbation  theory leads to the  equation
dratic spectrum, EQ.69) is only valid in the region M Jd¢=—«k?¢.(x), whose right-hand side is nonorthogonal
|[E|<AZ2. In fact, deviations from a quadratic spectrum showto e(L)(x). The significance of this insolubility is made clearer
up much earlier and lead to an exponential decrease ihy the optimal fluctuation metho(Sec. ): for E<O0, d=4,
v(E).® and e (k) =k? the functionS(E,R) increases monotonically
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with increasingR, so that the derivative 08(E,R) with

respect toR does not go to zero; thus, in the instanton

method the variation of the Hamiltonigf) with respect to
¢, which leads to Eq(71), does not vanish.

This difficulty can be overcome by minimizirtg{ ¢} for
a fixed instanton radiuR followed by an essentially non-
Gaussian integration with respectfRo

7.2. Expansion near an “anomalous” instanton

For the N—1)th coefficient of the expansion of the
M -point Green functiorisee Eqs(29) and(58) of Ref. 6 we
have

[Gm(X1,a1,... XM M) In-1

d
20 [ 52 [ Do) 00,000

X exp{—H{x,9,¢}—N In g}, (78)
where the Hamiltoniat{«,qg, ¢} is given by Eq.(1) and

H 27

S 7\2+ K2

n/2

Zo(K)=f De eXF[—H{K,O,GD}]:(
(79

(the )\2 are the eigenvalues of the operafdj. Let us intro-
duce three expansions of unity under the integral of(E8),

1=[ [ oo ' [ 4%

4
< T1 8- [ atde0oloca .
pu=1

1=J d4X|<p(X)|4f dIn R?
0

X 6 —f d*x|(x)]* |n(X_RX°)2>. (80)
1=f d"us(u—v{e}),
where the unit vectov is fixed by the condition
V{(p}llf d*|e(x)'e(x), 1>1. (81)
Making the change of variables
X=Xo=R¥% @, (Xt R =R *¢,(X) (82)

and changing the order of integration, we have, on dropping

the tildes,

[GM]N,1=f dlIn RZZO(KR)_]'J d4xof d"urRM~4
0

x J 2"_73 J D¢ﬁl a(— f d4x|qo<x)|4xﬂ)

X 8 —f d**|e(x)|* In x2)5(u—v)
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5 X{— X
X(fd4x|¢’(x)|4) ‘Pal( lR 0)---%M

2 el Hixr 0.6l -NIng), (63

where

kr=kR. (84)

The substitution(82) was made as in Eq.79) and cancels
the factor arising from the transformati@y. The transfor-
mations(80)—(83) introduce integrations with respect to ar-
bitrary parameters of the instanton: the location of its
center, its “orientation”u, and radiusr. In the integral of
Eq. (83) the choice of these parameters is already fixed by
the §-functions: the center is at the poirt=0, the orienta-
tion is along the vectou, and the radius is determined by the
condition

f d*xe@e(x)* In x2=0, (85)

or R=1 in the function(72).

Let us make the expansion in E(3) nearg. deter-
mined by Eq.(70) and an arbitrary spherically symmetric
function ¢.(x) which falls off at infinity, assuming that

9=0c+89,  @,(X)=[@c(X)+ 3 (X) U+ SeL(X),

Se'lu (86)

and limiting ourselves to second order terms in the incre-
ments. Introducing the coefficien®; and C{'* of the ex-
pansions in terms of the eigenfunctions of the operdfots

SeL(X)=2, Cheb(x), den(x)=2, Cl%el(x), (87)

we obtain

5 rp
[GM]N1=( | d4x<pc<x>4) [amrezgtnn [ a

X f d"us(|ul—1)ug,...uq R™M

=1 /x,—x
fd“stc(X)'”) ‘Pc( lR 0)

XM~ Xo
...(pc( R )exp[—NIngC

X

dg
_H{XRigC!(PC}}f 2’7T| f DCLJ DCT
4 n—1
<IL o S vict | T1 o S clg,
un=0 S a=0 s
1 [8g\% &
Xexp = N ] ——gz C'S‘wS—Z C'S‘a'S
2 gc gc S S
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1 1 Eq. (71) means that the coefficientg cannot be taken equal
L 2 Ly2 T 2 T,a\2 e
-5 > (AL+kB)(Ch)2- > > > (AN kB (Cl?, to zero. For a correct transition froaf8E(R3) to Eq. (91)
s s« they must be sufficiently small that the shifts in the variables
where Cg during diagonalization of the quadratic form do not take

the expansion88) beyond its limits of applicability. The

4 3 L guestion arises as to how to choagg so as to ensure the
Ws= gcf d"™xez(x)es(X), required smallness af,. When the instanton is chosen in
accordance with Section 7.3, the smmsc; turns out to be
proportional to the surESygcé, whose magnitude is fixed
at zero owing to the presence in E§8) of an appropriate
o-function. In that way, terms linear in the deviations are
y2:4f d*x@3(x)e5(x)In X2, eliminated exactly from the exponent of E&8).

o= f d*xe5(X)[ — A ge(X) + kgee(X) + geee(X)°],

y§:4J' d4X<pg(X)eé(X)XM, u=1,2, 3,4, 7.3. Choice of instanton
We choose the functiong.(x) by minimizing

H{xgr,0.,¢} with the additional condition85) fixing the
_ | T
Bs_f d*xee(X)eg(X). 89 instanton radius. This yields
2 3 3 _
Transforming thes-functions in the exponent using the for-  —A@c(X)+ kr@c(X) +Gc@c(X) + we(x) In x*=0
mula (94)
L ¢ (w is a Lagrange multipliéf) with which it is easy to show
8= 5 f dre'™ (90  that

__F o P oLy 2
and reducing the expression in the exponent to a sum of Ts 47 205 4 7s (s xR)

squares, for the integral with respectgpC", andCT in Eq.
(88) we obtain the result Xf d*xee(x)es(x), H{kgr,gc,¢cJ=N, (95

on |12 o | (D2
[l +——

dc 1—[ from which we have
m™2 5 Atk e MtxR

<02>=(%) (7). (To)=="T (o),
X ((B?)y) 0P

4 —-1/2

IT <7“7">) [N(y%7%) +(w?)
u= M M
(0Y)==7 ("%, (0*)=—2N+Z(wy’),
X<7070>_<w70>2]_1/2 exp{ =N In gc_H{KR-ngDc}

y73
(wy))=3 (), (96)
1, , 1 (ow)?
+ > (o%)— 2 N+{(w?) with which Eq.(92) is greatly simplified and Eq88) takes
the form

L o/ (N+{02)— (cw)(@y)]? . .
‘E<N+<w2>>[<y°y°><N+<w2>>—<wy°>2]]’ . [GM]N1=( | d4x<pc<x>4) [ atx [ amre

where the following notation has been introduced:

fSS fSS
<fg>=23 2 <fg>T=§S‘, 2 (92

7\|S‘+K§' )\l-f—Ké'

X f d"us(|ul = 1)ug,...uq R™M

1o ix,—x
J d4X<P|c+1(X)) ‘Pc( - O)
The averaggfg) is expressed in terms of the Green function R
of the operatoM, + «Z, which, given the obvious symme- Xy —Xo| [ Do\ ("2
try, can be used to prove théds already used in E¢91)) c( R )(D_>
the following quantities vanish: T

X

D 1/2
( _ _0) gc(27r)_(”+5)/2N_1/2

(oy")=(wy*)=0, wu#0; (y*y*)=0, u#u’ D,
(93 4
For a “regular’ instanton that satisfies E¢71) with X 1_:[0 (y*y) (B~
k— kg, the coefficientsrs=0 and the exponent of E¢88) .
contains no terms linear in the deviations. The insolubility of Xexp(—N—NIn g,), (97)
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where the following notation for the determinants has been

introduced:

Dr=I1 (\I+«3),

S

DL=TSI (NS +KR),

Do=11 O3+ xR (98)

7.4. Explicit form of the instanton

The substitutionu=(—g.) g and the transition to the
function ¢¢(x) in accordance with the first of Eq%72)
eliminates g. from Eq. (94). For small kg, when
Mo~ KR In kg (see belowy, Eq.(94) shares two scale lengths:
a length|x|~
the instanton “core” and a lengtix|~ x5 * to which the

instanton “tail” extends. This makes it possible to carry out

the analysis in two overlapping regiongs|<xg' and
[x|>1, and match the solutions.

The region|x|<;<,;l. Forkg=0 andu=0, Eq.(94) has
the exact solutior{92) in which the solution(85) fixes the
choiceR=1. Treating the terms containingg and . as a

perturbation, we have

$e(X)= z+1 1+z U(Z) S
2 4 2
z  (1+2) 2z
v(z2)= f m —In(l+z)+(1+—z)2
A z
+ o — —] —In z—ng2 (99

Calculating the asymptote(z) for z=1 and including only
the terms that increase with for the region X |x|<kg*
we have

1 2.0 2[,2
d(Xx)= 1+ 5 KR 2x2 In|x| + g Mo~ 7 KR|X

+3k3 In?|x|+

210~ 5 KR

1
2 S
In| x| xz]'
(100

The region|x|>1. When the terms that are nonlinear in
¢.(x) are neglected, Eq.(94) has the solution
B|x| K (kgr/X|), whereK(x) is the modified Bessel func-

1
2

tion of the second kind. Treating the neglected terms as a

perturbation, we have
be(X)=B|x| Ky (xrlX])

o dy o
_Rp2 -1 4
X{l Bﬁx|y_K§(K—Fﬂ)ij Kl(KRZ)dZ},
(101

which for the appropriate choice & leads to the following
result in the regiorx|<xg':
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~1 which determines the localization radius of

21f

1+ -

5 kX2 In|x|

bo(X)=

2C—1+2In(krl2)
4

k&x%+ 3k In?|X|

1
6C+ = +6 In

+KR 2

whereC is Euler's constant. Equatiorid00 and (102 co-
incide when

1
In|x| — ] (102

wo=3k3(IN kg+C+1-1In2). (103

Using Eq.(99) for calculating the integral in Eq70), which
is determined by the regigx|<1, we have

N In g.=N In( N +Nf(xg),
1
f(x)E3x2( In2-C-3-Inx|, (104
Here we have introduced the notation
Ipzf d*x¢pP(x) (105

for the integrals in the massless thedirg., for ¢.(x) of the
form (72) with R=1).

7.5. Transformation of the coefficient of the exponential Eq.
(97)

Substituting Eq.(104) in Eq. (97) shows that the
exponential limits the integral with respectfoto the region
Kﬁ In kg=N"! and thereby allows us to calculate the coeffi-
cient of the exponential in the limitg— 0. Then the solution
of Eqg. (94) transforms into the instanton of the massless
theory (72) with R=1. Because the operatokd, and M
have the zero mode&/5)—(77), the averages in Eq97)
contain the divergences

2

Y}
T, 2°
)\M-G-KR

BZ
(B%)r~ Nt

(Y~ (106
which cancel the corresponding factors in the determinants
D, andD+. According to Brezin and PariSi(see details in
Ref. 6), it is convenient to express the latter in terms of the

function
32 X
D(2)= de{ d"’( O|-11 ( ) (107
S Ms
where theug are the elgenvalues of the problem
[p?+ k&= 3ush2(X)]¢hs(X)=0. (108

Constructing a perturbation theory near 1 andz=1/3, it
is easy to show that

iy C
—3Jd4x¢§(x)e'52(x) L fd“( f) D(1)
‘ Dy 1,—{1
x}_:[o()\bwLKé), D—;:iqg (A\2+2), (109
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where the bar denotes elimination of the zero cofactors from 16

the product(107) for z=1 andz=1/3.

The product(107) contains divergences determined by

the divergence of the sunBgu; ' andSug 2. The first is
eliminated by renormalizing,*® while the second satisfies

>

1 AR d*k
Lo
s Mg

(2m)*

XJAR d4q <¢(2:>q<¢’g>fq
o (2m* (K*+kB)[(k+a)2+ ki’

(f)qu d*xf(x)e'9, (110

which is obtained by calculating R(2) orderz? using per-
turbation theory. Fokg=0 we have

1
E —=9Kyl,
s Mg

In AR—In2+C+ =

3| (111

The divergence foA —« in Eq. (111) can be eliminated by

renormalizing the charg®;however, we are interested in an

expansion like(8) which contains a bare chargg and ex-

64
|3:4\/ES4, |4:§ S4, Iezg S4,
16

7.6. Calculating the determinants

An expression for thel-dimensional Laplace operator in
spherical coordinates (¢4, . .. ,¢4-1) IS Obtained through
the standard procedu¢8ection 3 of Vladimiro?*) by induc-
tion with respect to the number of dimensions:

A 9 L4710 12 "
AR (117
wherel? is a differential operator acting on the angular vari-
ables. The spherical functiovi; of Ith order is a homoge-
neous harmonic polynomial;(x) of degreel on the unit
sphere|x|=1.2* Substitutingu,(x) =r'Y,(s) ands=x/|x| in
the Laplace equation, we obtain an eigenvalue problem
12Y,(s)=1(1+d—2)Y,(s), (118

which is soluble only for integrdl, since the Laplace equa-

plicit logarithmic divergences. Introducing the renormalizedtion has no solutions that are not polynomi#l#s homoge-

function

2
Dg(2)= H(l—i)ex i+ z )

(112
2ps )

substituting Eqs(106), (109, and (111 in Eqg. (97), and

using the relationships among the integrals obtained by dif-
ferentiating with respect to the parameters and integrating b

parts, we obtain

[Gm(X1,@1,... Xm am) In

N+M/2+5/2 ( M+n+4

'l N+ 5

=c(—1) (

Iy

xf d“u5(|u|—1)ual...uaMf dInR?
0

a4 X1~ Xo Xm — Xo
4 4—M
XJ‘”"R "’°< R) ( R )

n+8
><exp|’ = IN(AR)— Nf(KR)] , (113
where

2n72312 [14\2 3(n+4) n+8

=W(ZB Jl’zexp{— 2 +T

o o 1 —-1/2

X[—In2+C+1/3] (—DR(l)Dgl<§>) ,
(114

depe(X)

Jd4x¢( )( R ) . (119

The values of the integrals which we require are
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neous polynomial of degrek in d variables hasClH,_1
coefficients(the number of combinations af different ob-
jects chosen at a time with repetitions allowéd). Acted on

by the Laplace operator, it is transformed into a homoge-
neous polynomlal of degreé« 2), which, when set equal to
Z€ero, yleldsCIer 5 conditions. Thus, the degree of degen-
eracyN, of thel-th elgenvalue is determined by the differ-
¥nceC'— 1 +d—1— Cli2 ., e,

NP e P 119
Separation of variables in E¢L08) for kg=0 leads to

# 39 24u |(| 2) 0 120

a_rz+7<9_r+(r2+1)2 P(r)= (120

for the radial equatiom/(r). Settingu=s(s+1)/6 and mak-
ing the substitutiongy/=y cosh *t andt=Inr, we obtain

F{y}=cosht y{;+[2 cosht—2s sinht]y,

+{[s?—1(1+2)]cosht—2s sinhtly=0. (121

The functionalF{y} acting on the exponentia' yields a
linear combination o™+t and ek~ 1t |t is easy to see
that the nontrivial solution of Eq121) is a superposition of
n exponentials with exponents that differ by a@nd coeffi-
cients chosen so as to satisfy Efj21). For the eigenvalues
and eigenfunctions of Eq120) we obtain

n+l1

r
lﬂm(r):(r—m [Alr_”+A2r_”+2+...+Anr”_2],
wm=(n+1)(n+1+1)/6, n=123... 1=0,1,2...,
(122

where n is the radial and the orbital quantum number.
There is an obvious accidental degeneracy like that seen in
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the hydrogen atom. The substantially different cover the n+8
. (0,2M) -y
range of valuess(s+1)/6 with a degree of degeneracy  [I""™"(Pi=0.k)In=Com(In N) 7T’} N+ ——
s(s+1)(2s+1)/6 (s=1,2,...). For thedeterminants in
Eq. (114 we obtain 4)’“ oM n+8I A)
X|——] k" Mexp——In—]|,
5oi1)-2 15+§ s(s+1)(2s+1) L 3k
R( 2 &5 6 4\MrSRI2\ Y o 2a" T (y)
6 Com=Cl 7, 3) 187 v nm)
x| nf 1= sst1)) T s(s+ 1) n—4
y=M+——. (128
18
+ s2(s+1)2 ]%578’ For k=0 andp;=p, and noting that
—(1 = s(s+1)(2s+1 2 3, =8v2m2pKy(p), 129
DR(§)=exp[2 szt ln(l_ss+1) (#2)p=8v272DK, (p) (129
=2 ( we have
2
+ + ~0.872. 123 n+2M+4
s(s+1) SZ(S+1)2] (123 [T M) ()] =ComD N+T)
7.7. Vertex part and nonperturbative contribution 4\N i n+8 | A
For the integral oved"u in Eq. (113 we havé® 171, P RT3 N)
/2
f d"us(|ul = 1u,,...u S A— 4"2(87?)2M (4| M*S2
@ Taam M (M +n/2) Torvem 752M=C—(—)
(124) '(M+n/2) \l,

where | represents the sum of the terms o
a M—5+(n+8)/3 2M
e Aoy obtained by all possible pairings the fol- X fo dy y* Ka(y)™. (130

lowing we excludd , «... from the definition ofG,y). ] ) o
ing the alaeb fl fact 2M | serfeis i to show that We define the nonperturbative contribution to the vertex
Using the algebra of factorial serfei$ is easy to show thai rO2M) g

the transition to the vertex part 8¥°™) proceeds according
to the formula

.....

[TOM(py,....om) INn=[Gm(P1,---Pw) I [T Jponper= 2 [T ](go=i10)",  No>1.
— N0
X (p3+K?)...(p&+«?). (125 (13D
Taking the Fourier transform of E§113 and using the re- The imaginary addition t@, originates in the need for ana-
lation lytic continuation from positiveg, to negative’ which for

Im k?<0 extends through the lower half plane. We obtain the
nonperturbative contribution for the Lipatov asymptote by
substituting Eq(127) in Eq. (131, eliminating the imaginary

) ) . part of k from the sum oveN by making the substitution
for the Fourier components, which follows from the instan-j, . pd¢ gng summing in accordance with E§0) of Ref.

_<¢g>p_ﬂo<¢§ In X2>p~ <¢g>p
{be)p= p2+ K2R p2+ Ké

(126

ton equation(94), we have 6:
roem, ...,
e Z:,ZM)]N T [TOB0(p, ... pyyy) EBE2Y
:Cm G (_H) B 2 72 4\M+S2[ |, \MH(n+a)2
“ITCNMT (M +ni2) T, 4gq|

2M+n+4

XT'| N+ >

focd In RZR*4+2M
0

xexp(—ﬁ)rd In RPR™*"2M(gd)p ...
X<¢§>Rpl---<¢2>Rp2M Qol/ Jo X

n+8 |
n+8 {3 i 4 )
Xexpl’ T In(AR)_ Nf(KR)] . (127) <¢C>Rp2M eXF{ 3 In(AR) 4|go| f(KR)]
. . N (132
Calculating the integral to logarithmic accuracy, for=0
we obtain For p;=0 this yields
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/(1 k|
K +k 2 P FIG. 5. Examples of skeletof@,b) and nonskeletoic)
174, 1th kl+k2 k;"”‘g diagrams for a verteR?. The arrangement of the inter-
ky %;/A = nal momenta in grapha and c corresponds to zero
%///é /// internal momentum.
ky+ky +y k+k+k
a b c

L |, (8 ficients By are defined by Eq130 with p=u andM=2,
[T (p;=0,k)Inbrper= '7TC2M<4|g |) since by definition—2g, =T {*(u)=22T () (the co-
| 1 0_7 efficient — 2 is introduced because of the conditiBp=1)
Xexr{ __4)( n _) A 2M and aZ factor does not have to be included for larbje
4|go| |90l because of the slower rise in its coefficients. Reversion of the
n+8 A factorial seriegA2) yields
Xex T In ?) (133) .
~ (NBy)™ B,

The vertexI'(®? coincides with the self energy and Eqgs. BNm_M=O§;2._ Bn-m —yr =~ " Bn ex;{ - E)’

(128 and (133 imply Egs. (21) and (47). Equation(130) - (Ad)

with M =2 can be used to recover the results of Refs. 14 and

16 for the expansion coefficients for the Gell-Mann—Low for largeN and this makes it possible to determine we.
function (see Appendix L Given thatA}= —K,(n+8), from Eq.(55) we have

The author thanks the participants in seminars at the In-
stitute of Physical Problems and at the Physics Institute of
n+8 A
c,| N+ ——]aN ex = (AB)

the Academy of Sciences for their interest in this work. n+8
This work has been supported financially by the Interna- 6 2
tional Science FoundatioiGrants MOH 000 and MOH 300 o0
. . and the substitutiorA5=—(n+8)K,K4(1—1In(4/3))/2 re-
and the Russian Fund for Fundamental Resegnaject No. produces the results of Ref. 14 and 16, where the definitions

Wi~ — AL —WPINAY

96-02-19527. of g, andg, differ by a factor of 3!
APPENDIX 1
Interrelation of the various normalizations APPENDIX 2

The definitions of the Gell-Mann—Low functions for the properties of the irreducible vertex — R°

A- and u-renormalizations aré . .
Let us introduce the three-momentum notation

Ay v 990 R%(p,k,q) for the irreducible vertexR°(p;,p»,P3,P4) With
W (90)_3 n A , k=0, where
g, -u=const
29, 2p=ps—Ps3, 2k=p;—Pz, Gq=Pp1+pP2=—P3—Pas,
We(g,) = , (A1) (A6)
Hgg.a=const and the numbers of the ends are chosen so that
and the relation between the renormalized and bare charg®sk=0d=0. In general, Whefl%> k>q the following loga-
is determined by Ioganthmlc expansmns lik4), rithmic expansion is valid foR",
of o AVE 0 S el A"
E Bngo = 2 9 2 Al (2)  Rpka=2 g 2 AN
K+L+M<N-1
- - i K L M
9o= E Bng)= E g Z Aﬁ(ln K) : (A3) x| In %) (m é) (A7)
N= N= K=0 q

where B;=B,=1. The functiong,,(go,A/u) satisfies an  and in order to prove that the vert& depends on only the
equation like(15) with V(go)=0, and the coefficientd{ i maximum momentum, it is sufficient to establish its finite-
Eq (A2) Sat|sfy Eqs (55) with WM W(A) and VM 0. ness fork= q= 0 andp # 0. Then P4s=PpP, P3=—P, and
W(") and AK are related in the same way. By finding the Pl—Pz—O and it can be said that the momentum
relationship be'[weemxK and Af for smallN, it is easy to  “passes” from vertex 4 to vertex 3.

confirm that the coeff|C|entsN(A) and W(") coincide for The proof is based on the fact that it is necessary to
N=2,3 but differ in the higher orders. For largkthe coef-  distinguish skeleton graphs of tymeandb (Fig. 5 from
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nonskeleton graphs obtained from the skeleton graphs by diagram, breakingg; lines. Obviously,l;=2N;—E;/2 and
replacing the simple vertices by four-tail blocks. For the casd.;=N;—E;/2;, so that
of the contribution of grapla,

l;—2L;=E;/2—2. (A9)
Obviously, all theE; are even. The casds=0 andE;=2
R?a)(pi=0)~ggf d4k1f d4k2f d*ks correspond to disconnected diagrams and self-energy inserts
and are assumed to be excluded. TEgr 4 and, in view of
X Gy, Gy, Gk, Gk, +k,Ck, +k; Gk +ky kg (A8)  Eg.(A9), we have
l;—2L;=0. (A10)

it is easy to see that the skeleton graphs for the zero external

. . o . %umming over alli and noting that;l;=2M and
momenta contain only singly logarithmic divergences or|g|-2i|_i: M, we see that the equality holds in E#.10), so that

nating ftrom thef rtiglon of mtzgratlfon whgtredall th; internal ee Eq(A9)) E;=4 and all the removed clusters are four-
momenta are ot the same order of magnitude and aré SMag,; .y - gince at least one cluster exists, the assertion is

The absence of other divergence is related to the impossibi -

ity of fl?dlr}gtha .:,lngalef mo?\entut\rzi that det%rlmm((ejsktkt]ﬁ «?r— Lemma 4.A nonskeleton graph can be obtained from
guments of the tw@-functions, two moments; andk; that = ¢, greleton graph by replacing all or part of the simple

determine the arguments of the deFfunctlong, etc. Whgn vertices with four-tail blocks.
momentump passes through any pair of vertices, the singly By successively isolating the four-tail blocks in a non-

Iogtarlthtrr?m dlvergentcefs atrle CUI g;t mgmer}tpﬁlnce It skeleton graph and replacing them with simple vertices, we
?hn ers r:e_arfg_]u_;nefn ko— a_ ga'T'h d_unc lon. 1n f's Wa}klll ultimately arrive at a skeleton graph. Following this proce-
€ graph IS finite Tok=g=1. 1he divergences ol nonskel- ¢ i opposite order, we obtain a proof of the assertion.
eton graphs are cut off .JUSt as are the (_jlvergences of the Lemma 5A nonskeleton graph of ordét obtained from
skel\%on graph(sj ftroT wh|(|:_h tht(;y are ob:(amid. h With a skeleton graph of ordeévl contains a logarithmic diver-

€ proceed 1o Tormalize the remarks. A grap gence of order no greater thdh— M + 1, which is cut off by
external lines in theNth order of perturbation theory has passage of momentu through any pair of vertices

.IZtZN:t.E/Z linternal I?Z‘?‘ and :de__EftiL independertn Let us write down as an example the contribution of the
integrationgloops, and diverges fo at large momenta graphc (Fig. 5 obtained from grapla:

ask* E.1%|n the following we are concerned with four-tail

graphs E=4) with L loops, 4 internal lines, and_+1 0 o 4 4 4

logarithmically divergent vertices. Rig)(Pi=0) d%ky | d%K; | d7ksGi, Gk, BG4k,
Definition. A graph is a skeleton graph if it is impossible

to choosel’ independent integrations in it such tHat<L X G+ By 4yt kgl 100, = Ke =g Ky ko)

and the integration momenikg ,k,, ... k. fully determine X0k Ka — ke — KT a(0Ks +Ka Ko — ki —k
the arguments of thel2 or more Green functions. 2Ok ks, ki —ka)Tg(Oka ks ko, —ha
Lemma 1.A skeleton graph contains only singly loga- —k3)T'4(0,— k;— Ky, — K3,k + kot ks).

rithmic divergences, which are removed when the momens-
tum p passes through any pair of vertices.

The proof is evident from the definition and explanations
given after Eq.(A8). o [ 9K

Lemma 2In a skeleton graph it is impossible to isolate a Rig)(Pi=0) Kk L1 (kT2 (K)T3(k)T (k).
subdiagram with the form of a four-tail block. - . . .

Assume, on the contrary, that this is possible. In the' e blockT; Comam,lp_gll\!i simple vertices has a maximum
isolated block there will bévl <L independent integrations dlvergenc]?;_(lni&/k)s'_ g Ililli "{}CIUdEd 'r;th‘ihﬁ’\j‘r%lljetkse'
with respect to the momentq ks, . . . ky which will enter ~ 9U€NCE O FIQ. 2. SINCE;{N; =1, a graph wi 0cks

; ; N-M+1 var.
only in the 2V Green functions corresponding to the internald'verge.S no more rapidly than (fik) , SO the diver
lines of the block. The remaining’ =L — M integration mo- gence is eliminated when momentympasses through any

menta will fully determine the arguments of the pair of vertices. There are no other divergences. If not all the

2L—2M=2L' Green functions, which contradicts the defi- ?clxlments a(r)e srgall%k), thents glraph.tilvgrgdgs exponen- f
nition of a skeleton diagram. ially ask—0 and suppresses the logarithmic divergences o

Lemma 3lIn a graph which is not a skeleton diagram it the blr?CkS'” h h finite flar o= d q
is always possible to isolate a subgraph in the form of aRO(Tkus’ad t e%rap Isare 'E'te I:'q—O andp # 0, an
four-tail block. p,k,q) depends only on the maximum momentgpm

In a nonskeleton graph there dréintegration momenta
which completely determine the arguments of the Breen _ _ _ .
functions. The remainindl =L —L’ integration momenta Z;EE renormalized energy enters into expressions of the ty®. =
enter only in 2—2L'=2M Green functions. The corre- e fgnctlonsw and 7, are cglcu!ated in Ref. 10 fau-renormalization

. . . . .. and differ from theA-renormalization used here, but have the same lead-
spondlng M Int_emal lines will, in genera_ll, lie in sgpgrate ing coefficients(see Appendix 1t the definitions of charge and the Gell-
clusters. Let us isolate one such cludtie i-th) containing Mann—Low function differ in Ref. 10 by a factor ofiG,.

N; vertices,L; loops, andl; lines and remove it from the 3In Refs. 14 and 16 the coefficientd/y have been calculated in a

he divergence originates from the regiknr-k, for which
arguments of all the vertices arek:
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p-renormalization, for which this assumption is not corresete Appendix
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Semiclassical approach to resonance-optics polarization effects in coherent
and squeezed fields

A. M. Basharov

Moscow State Institute of Engineering Physics, 115409 Moscow, Russia
(Submitted 15 May 1996
Zh. Eksp. Teor. Fiz111, 25-43(January 199y

Equations are derived for the atomic density matrix and relaxation operator for a broadband
squeezed field in an arbitrary polarization state and resonance atomic energy levels with an
arbitrary degree of degeneracy. It is shown that suppression of the relaxation of the

quadrature component of the atomic polarization depends strongly on the type of resonance
transition and the polarization state of the squeezed and coherent perturbing fields. When the
resonance levels are strongly degenerate, the relaxation of the quadrature component of the
atomic polarization under conditions of maximum suppression is nonexponential in character. The
mathematical apparatus developed here makes it possible to calculate polarization-related
aspects of the multifrequency optical behavior of atomic and molecular systems resonantly excited
both by coherent light and by broadband squeezed fields19@7 American Institute of
Physics[S1063-776097)00201-1

1. INTRODUCTION cal equations for the atomic density matrix, and the statistical
properties of the induced light are not considered.

Recently there has been increased interest in nonlinear |In this article, the semiclassical approach of Refs. 9-11
optics phenomena arising from the combined action of elecis generalized to include degeneracy of the atomic energy
tromagnetic fields that are in both coherent and squeezedvels with respect to the projection of the total angular mo-
states. In his groundbreaking papeBardiner showed thatin mentum and the polarization state of the squeezed field. De-
a squeezed vacuum, the real and imaginary parts of thgeneracy of the atomic levels with respect to angular mo-
atomic polarization are attenuated with different decay conmentum projection must be taken into account if the
stants. References 2—8 were devoted to investigating the ipolarization properties of the optical phenomena are to be
fluence of this effect on various optical phenomena. In Refstreated properly. Moreover, real states of atoms and mol-
2-4 the authors considered spectral features of the absorgeules are degenerate with respect to the direction of the total
tion of a weak signal by a two-level system in a squeezengular momentum. In order to obtain equations for the
vacuum which simultaneously interacted with an intense coatomic density matrix, a quantum stochastic Ito equation is
herent wave. In Ref. 5, Parkiret al. discussed photon echos derived that takes into account the degeneracy of the levels
formed by pulses of coherent and squeezed fields that wertnd states of polarization of the quantized fields. Since the
separated in time. References 6, 7 discuss the optical bistéermalism of Refs. 9—11, 15 is not of interest here, a deriva-
bility that accompanies the interaction of a coherent waveion of the Ito equation is given that is simpler than that used
with an optical resonator filled with resonant atoms simultain Ref. 9, despite the complications introduced by the Zee-
neous illuminated by an electromagnetic wave in a squeezegan structure of the atomic levels and polarization of the
state. The authors of Ref. 8 analyzed optical bistability of gphotons. In addition, a relaxation operator is obtained whose
thin film of resonant atoms in a squeezed vacuum. structure clearly reveals that the state of polarization of the

A distinctive feature of Refs. 1-8 is their authors’ use of electromagnetic wave determines both the relaxation matrix
the semiclassical approach to describe the observed effedisr optical coherence and the Zeeman sublevels in a signifi-
and to take into account the quantum properties of the elecant way, and that squeezing of the electromagnetic wave
tromagnetic pumping; this approach is grounded in the clasehanges the character of the former. This latter chéwhen
sical Maxwell equations for an intense electric field and athe matrix for optical coherence is excited cohereritiyturn
corresponding treatmeht™ of the generalized quantum me- affects the distribution of atomic level populations with re-
chanical equations for the atomic density matrix. By doingspect to the direction of the angular momentum.
so, these authors elucidated the important manifestations of The example of an atomic transition between levels with
the “squeezed” nature of the pump light. Moreover, theyvalues of the angular momentum 0 and 1 shows that, in
also demonstrated that the standard semiclassical approachdontrast to the nondegenerate ch3e-*for an arbitrary state
nonlinear optics problemsee, e.g., Refs. 12—L4vhich has  of the polarization of the squeezed field the Zeeman structure
been used with great success in laser physics, can aftervéll in general increase the minimum possible relaxation
suitable generalization be applied to a wide class of problemeonstant for the quadrature components of the atomic polar-
that involve an intense broadband optical field in a squeezeitation. The physical reason for this is that two alternative
state as well. In this latter case, as Gardiner and his copaths are available for a transition from a Zeeman sublevel of
authors showed; ! the nonclassical properties of the pump one energy level to another with participation of differently
are “hidden” in the relaxation part of the quantum mechani- polarized photons. The case of an atomic transition between
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energy levels with the same value 1/2 of the total angulag. INITIAL EQUATIONS
momentum is exceptional, since the system splits into two We d ibe th ‘ hich ists of bl
independent subsystems, each of which interacts only with € describe the system, which consists of an ensembie

. . . of noninteracting atoms and a classical electromagnetic field
left- or right-circularly-polarized photons, and thus math-

. i . with intensity E, using the ordinary semiclassical approach
ematically the problem separates into two independent pro in the electric-dipole approximation by means of the Hamil-

lems which are equivalent to the nondegenerate case inveﬁinian
tigated previously:®~! It is established that maximum

. . ﬁZ 2
suppression of the relaxation must be expected for a H :2 E 4 p ot a
squeezed field consisting of photons with the same circular sys o Sa Y 2M | TPaTRe
polarization, for any degree of degeneracy of the resonance 1
levels. T\ 2 E(qat)daa’a;aapfqa’ (1)
For large values of the angular momenta of the reso- v pgaa’

nance levels, the relaxation operator reduces to the simplefq the Maxwell equation
form corresponding to a quasiclassical description of the to- 5 5
tal angular momentum. In this paper we discuss the distribu- v2 14 E 4w d

; . : et ~ 2| Et)="z 3 P. @
tion of level occupation numbers with respect to the direction co ot at

of the total angular momentum when the atomic system iNYere ay, is an operator that annihilates an atom with mo-

teracts with polarized coherent radiation. The presence of Phentum#p and masM in the quantum stathe); V is the

squeezed field leads to narrow angular structures in the%eystem volume. The labels, a’ enumerate eigenstates of
distributions, and these depend both on the type of atomighe HamiltonianH, of an isolated atom at rest:

transition and on the state of polarization of the coherent and
squeezed fields. It is estgpllshed that stro.ng degeneracy of Hola)=E,|a), (ala’)y=6,, 2 la)(a|=1.
the resonance levels modifies the exponential character of the @

relaxation of atomic polarizations. For the case of maximumMiq, 4 atomiqmoleculay gas, these states are distinguished
suppression of the relaxation and a resonant transition bg:ym one another by their enerdy, , and total angular mo-

. (03}
tween levels with th_e same.values of the total angular MOmentumj, and(or) its projectionm,, onto the axis of quan-
mentum, the relaxation rate is further decreased, whereas f@gation: the energy levels are degenerate with respect to dif-
transitions where the angular momentum changes, the relayerent orientations of the total angular momentum. We
ation rate increasegompared to the nondegenerate gase denote byd,,  the matrix elements of the dipole moment

The equations obtained here provide a basis for a sempperator of an atom, and write the matrix elements of a given
classical approach to the polarization propertiegranlin-  atomic operatoA, in the following equivalent forms:
ean optical phenomena created by polarization-coherent and N . .
squeezed fields interacting with atomic systems that are de- (alAle’)=(Ea.ja:Mal AlEar far Mar)
generate with respect to projection of the total angular mo- =Ase=Am m ,-
mentum.

In the next section the initial equations are formulate \uel - Lo
Then in Secs. 3 and 4 the Ito equation is derived, as is thglectrlc field intensity:
equation for the atomic density matrix, which contains a re- g
laxation operator that takes into account degeneracy of the E(q,t):f E(r,t)e "*dr.
resonance levels and the polarization state of the squeezc_el_(]:i1 larizationP of the atomi di is defined in th
field. In Sec. 5 matrix elements of the relaxation operator are € polanizafion= ot the atomic medium 1S defined in the
; usual way:
derived for small values of the angular momenta of the reso-
nance levels, and those polarization states of the squeezed
field are analyzed that correspond to the maximum suppres-
sion of the atomic relaxation. In Se6 a representation is : : . . . .

. . . . . Wherep is the density matrix of atoms moving with veloci-
obtained for the relaxation operator using the quasmlassme\gr

e . Ties in the range fronv to v+dv, andN is the density of
description of the angular momentum. Sections 7 and 8 dis;, o _jevel atoms

cuss the distribution of population differences of the levels We derive equations for the atomic density majsifor

with respect to various orientations of the total angular mMoihe case in which the atoms also interact with a quantized
mentum and the decay law for the atomic polarization undepne-gimensional electromagnetic field propagating along the
conditions of maximum suppression of the relaxation. In the, axis. For simplicity we neglect depletion during the
Conclusion it is emphaSized that in order to observe the Efabsorption/emission of a photon, Raman effects with the par-
fects of squeezing experimentally in atomic relaxafithe ticipation of the classical and quantum fieldsand Stark
absorption spectra of a probe sigfdl, or in optical  shifts of the levels. We first obtain an equation for the den-
bistability>~8it is necessary to choose the polarization prop-sity matrix of a single atom at rest, which we then generalize
erties of both the coherent excitation signal and the squeezad an ensemble of atoms. In this case we treat the atom as a
field for each specific transition. two-level system with quantum numbek,, j,, m and

CZ

d.The quantityE(q,t) is the spatial Fourier component of the

P=NJ Tr(pd)dv, 3
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Ey. jb, m, Which characterize the upper and lower levels

respectively. The total Hamiltonian of this problem has the R‘i=ﬂ2m a:;amd,:r%! = Z ama,udlgn,u,_ (R1)™.
form
H=H.+H.+V The labelsy, q’, etc., specify the spherical components of a
stobT b vector. We next adopt the following definitions. For an arbi-
He= Eata,+> EbaZaM trary vectord, the spherical componentt, g=0,=1 are

d°=d,, dﬂ:Ii (dy*idy).
-2 E(r,0)(dmuama,+d,mayan), V2
™ Hered,, dy, andd, are projections ofl on Cartesian axes;
Hb=2 f dofiwb by, . the z axis is taken as the axis of quantization. The matrix
@rhe elements for the dipole momedtare related to the reduced
dipole momend,,, of an atomic transition,— j, by
b=—ih > | doK(w)(e,, d,ma;amb,,+H.c.

Aum Lo jb 1 ja
(4) dim=(—1)/o"#dyq q m),
Hereb, , andb,, are creation and annihilation operators of ] _
a photon of frequencyw with a polarization unit vector — (—1)ib-mgx Ja 1 b
e.,, andK(w) is the coupling constant. In deriving the op- bl —m q w/

eratorVy, for the interaction of an atom with a quantum field,

we use the rotating-wave approximation. The definition of the $ symbols is standart.

We assume that there is no feedback of the atoms to the
3. QUANTUM ITO EQUATION photonic heat bath, so that the Heisenberg operators for an-
We assume that the quantized electromagnetic field repiihilation of photons in(7) are given by the expression for

resents ideal squeezed white noise, which implies that free evolution

(by ()b (t"))=Nppmypr S(t—t"), by = byu(to)exd —iw(t—ty)],

(by ()b (1)) =(8ynr+Nppman) S(t—t'), and that the operatds, , commutes with the atomic opera-

b, (t)b, (")) =M L S(t—t"), tors referenced to the same instant of time.

< 1( » (+ % p*hm: ( ) Following Ref. 9, we assume that the coupling constant

(b, (t")by (1)) =Mg,my,, o(t—t"), (5)  K(w) does not depend on frequeney which corresponds
where to the Markov approximation:

1 K(w)=kl2m.

by(t)=— f do exd —io(t—1tg)]by,(to), (6) ) o

V2w Moreover, we assume that the polarization veagy also
the angle brackets imply averaging over the squeezed photgoes not depend on the frequenay e,,=8,. Then the
nic heat bath, the matrices, = 7*,, and 7,,,= 7, char-  quantum Langevin equation follows from E@):
acterize the polarization state of the squeezed field, the pa- |
rameter|M ;| represents the degree of compression, and A=-—— [A Hs]+ \/_2 [A, R ]efb,(t)
Npn represents the intensity of this field. We also assume that
M ph=|M prlexp(—2iwrt), where the center frequency of the

squeezed heat bath is denoteddyy. For a squeezed field - \/_2 [ARY eq by (t). (8)
prepared in an ideally degenerate parametric amplifier, the
quantity wr- is the center frequency of the amplifeGener- We introduce the quantum Wiener procesBgét,ty) in

ally speaking, the center frequeney can be separated into the following way:
right- and left-circularly-polarized photons. All such features .
are taken into account by the phases of the quantiigs Bx(t,to)ZJ dt’b, ("),
and the off-diagonal elements, . The annihilation opera- t
tor for photons, ,(tg) is referenced to a certain initial time
tO .

We write the Heisenberg equation of motion for a given
atomic operatoA'

where [B,(t,to),B, (t,to)]=(t—to) ), . Defining the Ito
integral and differential in the standard wa3f we seek the
quantum lIto equation for the atomic operafoin the form

Ac— ﬁ A, Hs]+2 fdwK(a,)[A RI7e%. b, , dA=-+ N Hs]dt+\/—z [A,R%1eddB, (t)
~3 | doK(w)[ARTIEN DS, . (7) —Vk X [ARY 1S *dBY (1) +Idt, )
A’q’ )\’q'
Here we have introduced the operators where
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dB, (t)dB, (t)=N dt, . )
A (DABy /(1) =Npp7yn +<g2 (RI[ART1+[RY ,AIRY )qu,>

dB)\/(t)dB;\r(t):(b‘)\)\/‘i‘NphT)\)\/)dt, qq’
dB, (t)dB, . (t)=M !dt, K ’ ’
(DB (1) =Mpnm _<§2 (RI[ARY T+[RY ,A]Ri)Mq,q>
dB, (1)dB} () =M}, 77, dt, aq
dtdt=dtdB,(t)=dtdB; (t) _<g S (RIARI][RE ,A]Rq,)M:’q>.
aq’

=dB,(t)dt=dB, (t)dt=0,

and the termdt in Eq. (9) is determined by satisfying the Ito  On the other hand,
differentiation rule: for any atomic operatofg andA,,

d(A{A)=(dA)A+AdA+ (dA)(dA,). 10 d{A dp(t
(Aq ?) (dADA; 1A+ (dA;)(dAy) (10 <A>=Tr{A(to)p(t)}, fjt>=Tr[A(t0) F(;(t)].
We seek in the form
I=y¢1 2> (RUARYI+[RL,AIRY)(S8qq + Tqrq) Let us write(dA)/dt=d(A)/dt in the form
qaq’
q qr q qr d<A> | K q/ q
422, (RUARTTH[REAIRY) Toq —gt = T Alto)| 5 [p.Hsl+ 5 > (2RTpRY
aq aq’
+ 932, (RI[ARYT+[RY ATRY )M/ —pRIRY —RIRY p) (83 + Tqrg)
qq’

K ’ ’ ’
, , += 2 (2RYpRI—pRIRY —RIRY p) Tqq
+ 42 (RUARTIH[RY AIR)MY ), (1D) 2 4
aq’

K ’ ’ ’
where —52 (2RY pRY —pRIRT —RIRY p)M /¢
aq’

_ q' % e
Tq’q_NphE ege)\, T)\r)\—qu,, K , ,
AN _EE (2RY pRY — pRIRY
aq’
_ q a’' _
qu’_MphE e)\ﬂ}\)\/e)\,—Mq/q,
AN

~RIRYp)M?, [+ =Tr

dp(t
A(to) %]

and the parameteg,, ., 3, andy, are defined by using
Eqg. (10). The structure of Eq(11) is prompted by the form
of the expressiondA;)(dA,) whenl,=1,=0, wherel,dt  These equations are valid for any atomic operator; therefore,
andl,dt are the corresponding terms of the Ito equation forwe obtain the following equation for the density matrix:
atomic operatord\; andA,. It is not difficult to show that

1= o= — h3= — Py = K/2. (12 dp

- i
. gt TLe=7 [p.Hsl, (13
Thus, Egs.(9), (11), and(12) are the Ito equations re-
quired for this problem. Note that this method can be used to
address the case in which degeneracy and polarization effecihere we have introduced the relaxation operator
are absent, in which case we obtain the Ito equation of

Ref. 9. . K . , ,
Lp=-3 > (2RY pRY = pRIRY —=RIRY p) (84 + Tqrg)
aq’
4. EQUATIONS FOR THE ATOMIC DENSITY MATRIX K ! ! !
Q ~5 2 (2RYpRI —pRIRY ~RIRY p)Tyq

The transition from the Ito equation to equations for the o’

atomic density matrix is accomplished in the standard
way’~*% since the coefficients ofiB,(t) and dB,(t) are
unspecified functions, by averagi@ we obtain
K ’ ’ ’
(dA) i K , += > (2RYpRY —pRIRY —RIRY p)M¥, . (14
i = \z[AHs)+ 52 (RI[ART] 2 4 e
qq

K ’ ’ ’
+5 2 (2RTpRY—pRIRT —RIRT p)Mg1q
aq’

. The matrix elements of the relaxation operdtbf) have
+[RL,AIRY ) (8qq T Tqrg) the form
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h _K E 4@ 49 (—1)9T operatorT’p does not contain terms with=0 if we do not
(I'p) 2 Pt Ay, Ay (= 1) g specifically require it to, and consequently does not take into
#a account the spontaneous decay of an atom with emission of a
" K z 4 dfqlp (= 1) T photon perpendicular to the direction of propagation of the
2 M= uwmEmem q9 wave (5). Such processes, and also other channels for relax-

s ation and/or cases in which the lower energy leliglis not

_ da’ A9 (= 1)U S+Ture), the ground state, can be described with the help of the sim-
Kw%q, muP e’ Gy (— 1) (S + Tara) plest generalization of Eq13):

~ K ’

F == //d7,9 dq ’ _1 q 5 /+T ! d ~ ~ |

R I A T T+ T+ Top= 2 [p.H, 13)

K ’
t5 2 il e (— DS _ . .
2 g Mt a where we have introduced a phenomenological relaxation

operatorfop with the following matrix elements:

X(éqqr‘f'Tqrq)_K E d;r?.] pmm'dgn/,u'

mm/qq/ ~

(Lop) mm = YaPmm = Winny »
(_ 1)qqu' y

5 K a (T0P) e = Yot =Wy
(Fp)“mZE ,Z ,dm?vd%'wpu’m(_l)q(5qq’+Tq’q) . a .
m’u'qq

K , (Fop)ﬂm: YoP ym-

s q -9 _

"2 m,z, PGy G = 1D Tgg
poaq Here y,, ¥y, and vy, are relaxation constants, while the

termsW,y andW,,,, take pumping processes into account.

- 7q, ! ! 7q - q r
P> Gy Pt a0y — 1) Mg As usual, we assume for simplicity that

mlﬂqul
~ K _ ’
(Fp)m,u,zz /2 ) Pmp,’dﬂrqmrd?nrﬂ(_1)q(5qq’+Tq'q) W ’=7aNa5mm’ ’=7bNb5,u,u’
m’ ' qq M 2j,+1 7 AR 241
K ’
+ = 9 d 3 o (—1)9T 4 .
2 m,g‘qq, Gy Gy P~ 1) Taq whereN, andN,, are the steady-state densities of atoms that
populate the energy leveE, and E,. Here and in what
—x E dﬂ; ,pwm,dgq, (—1)IM*%, . (15) foIIovys we assume the density matrix is normalized by the
muaq ” aa atomic density.

When Tq=Mgq =0 and the summation with respect If the matrix p describes atom@nolecule$ moving with

to q includes the valua =0, the relaxation operatof5) velocities lying in the interval from to v +Awv, then it is

14 . .
coincides with the relaxation operator for spontaneous radiarje/cessarvy FO £ replf;:?e d t1h§ de(;watlvekdpr/]dtf ”by
tive decay under conditions where the energy ldvgls the (9/dt+vV)p in Egs.(13) and(13'), and to make the follow-

ground staté? If Mgq =0 while Tqq # 0 andq # 0, then ing replacement in the matrix elements of the operator

(15) describes relaxation processes in the field of a nois%op_: Na—NaF(v), Np—NpF(v), whereF(v) is the distri-
light wave that is structured and polarized in a certain wayPution function of the atoms with respect to velocity.
Interaction with such a wave alters the distribution of atoms

with respect to the Zeeman sublevels from the case of spon-

taneous radiative dechy(see Sec. 7 of the present artjcle

Although squeezing of the electromagnetic wave directly af-

fects only the optical coherence matrix, which determineg: RELAXATION OPERATOR FOR SMALL VALUES OF THE
TOTAL ATOMIC ANGULAR MOMENTUM

transitions between Zeeman sublevels of different energy
levels, in the final analysis this also affects the equilibrium The simplest form of the relaxation operator is obtained

distribution of atoms in the field of a coherent wave with . " .
for atomic transitions between levels with small values of the
respect to Zeeman sublevels of both the upper and lower

energy levelgsee Sec. )/ Moreover, the rate of relaxation of angtlilsrr ?Or?seonr;[;rr:?:ae: ()J%Tclﬁfaiggij of"nz \(/)vEtib:_ l': 1/2 we
the real and imaginary parts of each optical coherence matriﬁ Ib
. S S : ave
element is explicitly changed, which in turn leads to different
attenuation laws for the imaginary and real parts of each

projection of the atomic polarizatiofsee the next sectign ~ 2 :K|dba|2 [p% 1 Tai— p° (14711
It is important to emphasize that by virtue of the geom- Pr21z= 37 LP12 121 117 P=1/2-172 wh
etry of the quantized field we have chosen, the relaxation (163
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. k| dp4l? We now discuss the relaxation of the amplitude
IﬂP—1/2—1/2:—3 [P0 12T -1-1

p9=>, pmd% expiort) (19)
—Pp1d 1+ T4 1], (16b) am TR
- K| dpal? of the atomic polarization
a

Uplo-12= 6 P2y T1atTo1-1)
P=2 pmOm.+c.C.
um

Kldba|
T 1.1, 16¢ _ - . .
3 PPl 11 (169 It is not difficult to show that the corresponding relaxation
X K| ba| oplerqtort§ for thelrtea(ljb@eﬁp an?himfaginary b.) parts of the
b
b, el [ (14T 4 ) polarization amplitude have the form
I | bal 1
- pi 1/2— 1/2T_1_1], (17@ I‘plgeal preal qu+ | M qq| +
~ b Kldba| ~ K d 2
T2 1o 1= [P 12- 12 1+ T10) = 2 2T ], FpﬁnF% Taq— [Mqql + >

(17b
dy 2 (repeated indices here do not imply summatjoince
; K1Ya IM ol <VTqaq(Taqt+ 1), WwhenTy,>1, and under certain con-
Tp2, = 2+ T +T_ Vlqq qal g™ 4), WheNlgq> 4, _ :
Prz-12=""g pia-ud 1 1-1) ditions whergM 4|~ T, it is clear that there is appreciable
suppression of the relaxation pf,, and enhancement of the

k|d )
% P2 1o i1 1, (179  attenuation rate op?ea|:
~ Kldba|
|dba| 1-‘piqmw 6 -|— pﬁmwo
I‘/01/2 w2 pr A(1+2T 5 q) qq
~ 2K|dba|2
Kdﬁa % p?ealw —a qupreal-
b
+ 3 Pr2-1M 1 1, (183 3
The picture we obtain of the density relaxation agrees with
K|dba| the solution of the problem without taking into account de-

o3 1= - P 141+ 2T 1) generacy of the resonant levels and polarization states of the

) coherent and squeezed waves.

4 XCba kg, ba* (18b) Entirely different relaxation effects occur for the atomic
3 P-1ew2iin transitionj ,=0=j,— 1. We first write the following expres-
a[d | sions for the relaxation operator:
ba
Tp8% 1 6 P 1ALt Tyt Ty y) . kldygl® K| dpal?
Ip®= 3 P E qu_ 3
q
d2
oa Pbal*/z 12M-11 (189
3 e Y b b
2 pqq+2 qurqu’>y
P q aq
K|dba|

o4 1= =% P12l Tt T 1y) «|dpal?

o0 _ b «|dpql? 2 b 1
2 Tp™) = 3 Puw 6 0 (PugT-p'—q

dea *
T3 P M1 (180

Here, the density matrices are furnished with appropriate la-
bels that describe atomic levdisa and transitions between
them for the sake of convenience.

When linearly polarized coherent light propagates in
such a medium, interacting with the system of Zeeman sub-
levels of the resonant atomic levels, two independent sub-
systems separate out, one of which interacts with left-handed
circularly-polarized photons of the coherent field only, the
other with right-handed circularly-polarized photons only. If
the atomic medium is initially in thermodynamic equilib-
rium, then only relaxation operatordl6a, (16b), (173,

(17b), and (183, (18b) turn out to be important. ture

18 JETP 84 (1), January 1997
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b K|dba|
P T-q-p) = 3 PT s

|dba|
5 1+§‘, Taq
x|dp |
+ : EQ pEST_q_“
Kd?
223 M. 20

For a squeezed field with the simplest polarization struc-
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T .=8.,N Mor=35.M ja=]p=1/2) of any quadrature component of the atomic po-
qa’ = 9qq'Ng: qq’ = 9%qq'Mgq: b ; L .
larization amplitude. Note that a definition different from

IMg|=<VNg(Ng+1), (21) (19 for the amplitude of the atomic polarization will change
the relaxation operator for the transitipg=0=j,— 1 takes the form of the relaxation operatol3pf, and I'pit,, but
the form will not affect quantities that characterize the limiting param-

eters of the polarization relaxation in a squeezed field.

o o kldpal? K|yl ?

a_ al  a ba b
pr=—m P (N_1+Nyp)— 3 [p=1-1(1+Ny)
6. RELAXATION OPERATOR FOR THE ATOMIC ANGULAR
+p2(1+N_p], MOMENTUM: QUASICLASSICAL DESCRIPTION
R K|dpal? Kldpal? Let us assume thgt,>1, j,>1. Then we can use the
(pr),m; 3 Puw T 6 P N-u semiclassical representation of thg /mbol (Ref. 17, par.
223, Eqg.(1)) and assume that the matrix elements of the
b K|dpal? a spherical components of the dipole moment operator are
P N-p)— 3 P Spuu Ny given by
~ ba K|dba|2 ba dd %%gl (0,9,0)8
(I'p”%) yo= 6 Puo(1+N_1+Ny) NGY Al =ige Y ummap
K|dba|2 ba dez)a ab dya
5 PuoN-ut 3= PoM-. (22 T (=197 g, 1,(0.9.0) g

From the last of Eqs(22) we obtain the next term, \where j=(j,+j,)/2, cosd~K/j, K=(u+m)/2, while
which determines the attenuation of the real and imaginar;@x , (@B, is the Wigner@-function.”

parts of the spherical components of the atomic polarization 9
amplitude vector for the transition=0=j,—1 (when(21)
is satisfied and the phases of the quantikiks; andM; are

Following Ref. 18, let us go to a new representation for
the matrix elements of the atomic density matrix:

equa): i ,
) 2 pal0)= 3 pheg-z 0 K=(mem)2
- K| dpgl
Ipia=—g — (1+Ny+N_g+Ng+2[Ml)pla. P
- «|dpql? —i ,
Ipit,= 6a (14N +N_;+Ng—2[Mghpfl,. (23 Pb(ﬁ!‘P)zz§ PE+§/2K—§/29 e K= (ut )2,
It is clear that the suppression of relaxation of the imaginary E=u—pn',

part of the polarization is maximized only when a squeezed
field is used, consisting of photons with the same circular Poal @)= pﬁi§/2K7§IZe_i§(P' K=(u+m)/2,
polarization. For example when N_;=M_;=0, é

M;|=+N¢(N;+1), N_;>1, we can say that
M| 1(N;+1) 1 V) E=p—m, (24)

2
I iquvMi 4~0 with cosd9=~K/j, j=(jat+]p)/2 everywhere. Let us assume
6 N that the effective interval where the density matrix is nonzero
compared to with respect to the variablé is much smaller than the char-
) acteristic scale of variation of the density matrix with respect
Fpd ~2 K| dpal N to the variableK. Then the summation ovérin Eq. (24) can
Preai 1Prear be extended to infinity and
If the squeezed field contains both left- and right-hand polar- 1

2
. . .\ = i&
ized photons, then because there are two possible transitions PK+&2Kk-¢2=5 = fo e**p(0,¢)de.
from level E, to sublevels of leveE, with =1 andu= )
— 1, the smallest possible relaxation is determined by thd Nus, the transformatiof4) can be regarded as analogous

expression to the Wigner transformation for the incoming degrees of
5 freedom. Assuming that quantities of tyje are the same
Fpd = «|dpg (N 4 %‘) q when in the same expression, we obtain semiclassical repre-
im 6 ™ N, Pim sentations of the relaxation operators:

where Npin=min{N;, N_}, Npa=maxN;, N_;}. Thus, we . K| dpg)? -
may conclude that for an arbitrary polarization state of the ! Pa(% @)= “2i Pa( D, ¢).7 5( 9, )
squeezed field, the Zeeman structure of the resonance levels d?
increases the smallest possible value for the relax&tiom- K|Upal p.
- - - +.9
pared to the nondegenerate case and the specific case 2j Po( 9, @) 7o(H) 7 o(D,0)],
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| ba|

pn(,0)= "5 (9. €) 7o) +.7,(9,)]
K|dba|
T Pa(0,¢).7 (D, ¢),
- kdZ,
Eonal(9,9)= 77 poe 9, €) 7o(9) +27,(9,9)]
Kdtz)a .
+ 2 Pha(0,0).7 (0, 0). (25

The anglesd and ¢ characterize the direction of the total

angular momentum, while the quantity=j,— j, identifies

Na ile] o
ra(%,¢)=7va E+ 7 [ra(D, @) Zx(0, )

d
a"")’a

—Ia(3,0) 75 (9,9)]
- Yra(ﬁl(P)?(r(ﬁv(p)
Ty p(0,@)[7,() +.7 (3, 0) ],

N, i|#]

d
(a+ ’)/b)rb(ﬁvgo): b z_ T [r’bca(ﬁi(P)g//o'(ﬁa(P)

—Tha(9,0) Z5(9,0)]

the type of resonant transition. The following functions are

introduced:
To(D0)=5 (Ty+To_p)siP &
1 —2ie 2i¢p n2
—E(e T, 1 +e¢T_qpsir 3,
_ 1
. tl(ﬁ (P)— (1+C0§ 0)(T11+T 1— l)
IE(Tll_Tflfl)Cosﬁ
1 —2ig 2igp ;
+ (e Ty te T_10)Sir? 9,
A 1 2i —2ig\ i
,%0(1?,¢)=§(Mlle $+M_;_,e ?9)sir? 9
1 .
_E(M171+M711)5m2 U,
1 .
Taa(Be)=7 (1+cog 9) (M2 ¢+M_, e 2%)
_1 2ip —2ig
+§(M11e —M_;_,e"“®)cosd
1 -
"‘Z (My_1+M_yp)sir? 9,
. 1
To(9)=SiF 9, 721(9)=5 (1+c0S 9).

7. DISTRIBUTION OF LEVEL POPULATIONS WITH RESPECT
TO ORIENTATION OF THE TOTAL ANGULAR
MOMENTUM FOR STATIONARY COHERENT AND
SQUEEZED FIELDS

Assume that an atom that interacts resonantly both with

the coherent field

E=¢ exdi(kz— wt)]+c.c., (26)

and with the squeezed fielh) is characterized by many

=Y p( 9, Q)7 D) +.7 (D, )]
+yra(V,9).7 (9, ¢),
RPN MPY P
at —i1A+y|rpa( V)= 2] [Fo(,¢)

_ra(ﬁ,(P)]yo.(l‘},QD)

= 2 T 9,0 7,(9)
+27,(9,0)]

- ‘yr;a('ﬁv()o)f(r(ﬁv()o)-

Here the following notation has been used:

ra(ﬁrﬁo)zpa(ﬁuﬁp)a rb(ﬁ,cp)=pb(ﬁ,(p),

(27)

*

dfa
a0, 0) = poa(9,¢) —= extli(wt—k2)],

V2j

Kldba|2

A=w—wqy, y= T

To(9,9)= 2, Tt 4,(0,8,09919, 9= 29| ];
q

the functionf ,(¥, ¢) differs from the function” (9, ¢) by
the sub;titution ofM g9’ =Mgq' exf 2i(kz— wt)] _for Mg -
Depending on the relation between frequencieand wr,
the quantitym,, can be an oscillatory function.

The steady-state solutiai27) for the population differ-
ence in the simplest cas€1), where w=owr=w, and
Ya= Yb="7, can easily be written in the form

ra(ﬂ,gD)_rb(ﬂ,qD)

(Na—Np)/2j
N 29 H(9,0)
Y
+ A1+ (¥ 70 7o (9,011 7,
+(Y12y0) [ o(9,0) ZEA(D, )
+E5(9,0) 729, @) D[ 1+ (¥ 70)-7 (3, 0) ]

(8,¢)|?

values of the angular momentum, so that in the resonance -1

approximation Eq(13') can be written in the form

20 JETP 84 (1), January 1997
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FIG. 1. Plots of the distributioi28)

-0.2 of population differences between
03 lower and upper resonance levels as
_6 5 a function of the direction of the total

angular momentum for resonant ex-
citation by a noisy quantized fiel®)

. ) under conditiong21) for the transi-
a b 0.2 tions j—j, N;=N,=2 (a) and
jt+1—j with parameters
N;=N,=2 (b), N;=2,N,=0 (c),
andN;=0,N,=2 (d). Other param-
eters arey=y,=1, j>1; the transi-
tion is denoted byj,—j,. The
ranges over which the angular orien-
tation of the total angular momentum
varies are w<e<27w and
Osd=m.

PORIR
i

whereA =4|#1?|dy .| %% %yy7y,2] is the ratio of the square of photon polarization and the type of transitiop+1—j or
the Rabi frequency to the product of the phenomenologicaj—j+1) (see Figs. 1c, Id Examining thej +1—| transi-
relaxation constants. tions instead of thg— j + 1 transitions for the same circular

In the absence of a quantized figld), i.e., wheny=0,  polarization of the field, we find that the molecules that in-
the solution(28) coincides with the solution of Nasyrov and teract more intensely with the field rotate opposite to those
Shalagint® In the absence of a coherent field, i.e., forwhich would interact strongly with the field for the other
A=0, Eqg. (28) describes steady-state atomic level populatype of transition.
tion differences in the field of a resonant noisy polarized For these special cases, the distribution of populations
wave described quantum mechanically(By. As in Ref. 18, does not depend on the squeezing of the field. Introducing a
a striking dependence of the distributié@8) on the type of coherent field does lead to such a dependence, but the change
resonance transition is observed. This is evident from thén the distribution of atomic level population differences
fact that for the transitiofj— j, molecules with angular mo-

ra(9,0)—rp(9,¢)

mentum directed along the axis essentially fail to interact AN = _
with the field, whereas molecules whose angular momentum (Na—Np)/2j
is close to the plane perpendicular to thexis interact so ra(ﬂ'go)_rb(ﬁ,@)‘

strongly with the field that their population differences re- -
duce to zero as the field strength increases. For the transition

j+ 1], for which the field contains the same number ofis h merically insignificant, as Fig. 2 illustrates. As before,

left- and right-hand circularly-polarized photons, the mol-y,q <hange depends on the type of transition and polarization
ecules interact with it in essentially the same way, indepengate of both the squeezed and the coherent fields.
dent of the orientation of the total angular momentum and

the type of molecular transitiofj + 1—j or j—j+1). How-
ever, this situation is considerably changed when the light i
circularly polarized: although there is no narrow selectivity
with respect to orientation of the angular momentum as hap- The polarization of an atom with degenerate energy lev-
pens in the case of the—] transitions, the molecules that els is made up of polarizations from each individual transi-
interact most strongly with the field are those whose angulation between the Zeeman sublevels of the resonant levels
momentum points in the direction of propagation of the field(19). Since each of these transitions is characterized by its
or opposite to it, depending on the direction of rotation of theown relaxation constant due to the different values of the

(Na_Nb)/ZJ |M_1=M1=0

. DECAY OF ATOMIC POLARIZATIONS IN A SQUEEZED
ACUUM
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y Giee,
02 AL
¥ 0 ¢'//I//IIII|““'Q., FIG. 2. Variation of the distribution
!,#“‘“‘/" 5 of population differenced. /" plot-
0.1 i‘\‘,‘.‘&”?&"" ted as a function of the polas and
: ~‘.;-\4“‘.'§'" &/ azimuthald orientation angles of the
02 ‘ total angular momentum of a reso-
nant atom driven simultaneously at
-0.3 resonance by a coherent and a
0.2 squeezed electromagnetic field under

conditions (21). Figures(a) and (c)
correspond to an induced transition
when both the excitation fields are
linearly and circularly polarized;
Figs. (b) and (d) correspond to the
transitionj +1—j. The values of the
parameters are as follows: for
@, (b, I=&, Ny=N_;=M;
T =M_;=2; for (o), (d),
'.,'ﬂu\t\\; : ON I=—(e—ig)/V2, N,=M;=2,

" ) N_;=M_;=0. The other param-
eters are: y=y,=y,=1, A=5,
j>1. The ranges over which the ori-
entation angles of the total angular
momentum vary are € 4<= and
—TSQS=T.

dipole moments of the Zeeman transitions, for large values y
of the total angular momentum the attenuation law for the ~ T'omin( =7 (N1=[My|)sir? 9,
total atomic polarization in the squeezed vacuum that results
from adding up all these partial polarizations will differ from 0% B )
the simple exponential law obtained for atomic transitions ! =1min(%)= 7 (Ny=[My])(1%cos 9)%,
between nondegenerate levels and levels with small val-
ues of the total angular momentsee Sec. b and we sew=wp=wo. o

In what follows we illustrate this fact for the case in N @semiclassical description of the angular momentum,
which the atomic relaxation is maximally suppressed. As wehe spherical component of the atomic polarizapdn(19) is

established in Sec. 5, this occurs for a squeezed field consiiiven by the expression

ing of photons all of which have the same circular polariza- i 20 o
. a__ .
tion, for example p 27 o d<pf0 sin ¥
Tqq= 049N y M qq' = Ogq'M y N_,=M_;=0. . .
@ TaaTar A TaaTra S g XAV 4,(0,0,008 99 (9, ). (30)

Furthermore, let us assume for simplicity that the atom isThen we can write the spherical componeri{(t) of the
initially excited by an ultrashort coherent field pul§6)  atomic polarization in the form

with the same polarization as the squeezed field in the time L(t)=pi(ry) exd — yo(t—71)]

interval O<t<r;. When the coherent field ceases to act, the P P Yo !
atom remains in a squeezed field with paramet28s As a XT(E(Ny—|My])(t— 1)),
result, for timesr;<t and for a small-area excitation pulse,

we obtain the following expression for the atomic densityWhere for the atomic transitiop—J, j>1 we have

matrix: 3 1 Jm(e ¥+ 2xe M Erf(v/X)
2 Fx=71-x7 32 :
_ifdea® o Na=Np X X
rba('ﬂvgo)_ - 2J O/‘ 71 2] 4‘/—10—(01'&10)
Y
x€® exp{~[ Yo+ Ty mn( H)](t= )}, <2
where while for the atomic transition+ 1< j, j>1 we have
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FIG. 3. Relaxation functioi’(x) for the case of maximum suppression of
the relaxation for transitions—j, j>1 (upper curvg for a nondegenerate
transition (middle curve—ordinary exponentjaland for the transition
j+1—j, j>1 (lower curve.

4x
b,
XSZ

JmErf(2/x)
4

r 3 1 v
=g x® 4
Here Erf(z)=(2/\/F)fée‘X2dx is the error function,
Erf(ix) =1 Erfi(x).

For comparison recall that for an atomic transition
1—0, the quantityl’(x) is a simple exponential:

d 2
F(x)=e %, ¢= %

observed in Ref. 1, i.e., suppression of the atomic relaxation,
is manifested in some way, be it measurement of atomic
polarization relaxation, the absorption spectrum of a probe
coherent signal, or observation of novel effects in optical
bistability, it is necessary that certain polarization conditions
be satisfied both for coherent and squeezed fields. These con-
ditions can be obtained if the effects are analyzed by using
the mathematical apparatus developed in this article. The
specific constraints on the polarization state of the excitation
fields explain the current lack of convincing experimental
studies of mechanisms for suppression of atomic relaxation
by a squeezed field.

The author is grateful to the organization “Russian
Gold” for material support in carrying out these investiga-
tions.
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Capabilities of a muon method for studying the diamagnetic domains accompanying
the de Haas—van Alphen effect

Yu. M. Belousov and V. P. Smilga

Moscow Physicotechnical Institute, 141700 Dolgoprudioscow Region, Russia
(Submitted 20 June 1996
Zh. Eksp. Teor. Fiz111, 250-261(January 199y

This paper analyzes the capabilities of a mya$R) method for studying the de Haas—van

Alphen effect and the diamagnetic domain structure accompanying it. It is shown that, unlike the
NMR method, theu SR method makes it possible to observe the formation of a diamagnetic
domain structure in all metals. It is not currently known what type of domain structure
accompanies the de Haas—van Alphen effect: one-dimensiaralna) or two-

dimensional. It is shown that the line shape of the Fourier spectrum of the signal makes it
possible to determine both the character of the domain stru@tueedimensional or laminarand

the magnetic field distribution in the domains. 97 American Institute of Physics.
[S1063-776(97)01501-1

1. The de Haas—van AlpheHvA) effect was discov- noted that it was impracticable to use the NMR method to
ered in 1930:2 Using the classical Faraday—Curie method,study metals with nuclear spins bf 1/2.
de Haas and van Alphen observed oscillations of the macro- In 1979, Ref. 7 showed that the muon method makes it
scopic magnetic moment of a sample as they varied the expossible to investigate diamagnetic domains, and obtained
ternal magnetic field. A number of modifications of the mea-the main formulas for analyzing the domain structure. We
surement scheme were later proposed that substantialBhould also note that, following the classic work of Landau
improved the accuracy of the measureme(sse, for ex- and Lifshitz, everyone tacitly assumes that the domain struc-
ample, Ref. 3 but until now they all fundamentally reduced ture accompanying the dHvA effect has a laminar character.
in essence to the measurement of the total magnetic momerdowever, no one has proven that this structure is energeti-
and the question of the structure of the magnetic field districally more favorable than a two-dimensional domain lattice
bution in the sample during the dHVA effect has remainedsimilar in its geometry to Abrikosov's vortex lattice in
open. type-1l superconductors. The muon method makes it possible

This situation is quite understandable if we recall that,to give an experimental answer to this question. An analysis
until the muon(xSR) method appeared, there were no mag-is carried out below of the use of the muon method to study
netic microprobes capable of investigating the internal magthe dHvA effect. In what follows, for simplicity, we shall
netic fields inside a metal. The region of application of EPRconfine ourselves everywhere to the case in which the
and NMR is limited to the depth of the skin layer. Although sample target is a thin plate and the external magnetic field is
it is true that Mssbauery optics makes it possible to study perpendicular to the plane of the sample. The muon spin is
samples with thicknesses of the order of several micromeparallel to the sample plane, and thus transverse polarization
ters, difficulties arise when resolving effects of the order ofis considered.
104—10"° of the value of the external magnetic field and 2. Transverse polarization of the muon spin in a metal is
when monitoring the implantation of the Msbauer iso- determined by the general formulsee, for example, Ref)8
topes. It should also be pointed out that, when macroscopic _ . _ .
measurements of the dHvA effect are made, considerable P+ =P +IPy(H=G(exp(~1w,HP(0), @)
difficulties arise in processing the resuits. wherew,, = y,b, b is the local field at the muon, ar@l(t) is

The muon method has no restrictions on the sampl@ relaxation function. As is well knowfsee, for example,
thickness and makes it easy to directly measure the magnetiRef. 8), functionG(t) is determined by the spins of the lat-
field with an accuracy of 1. In principle, it is simple to  tice nuclei and is different for diffusing and nondiffusing
obtain a measurement accuracy substantially greater thanuons. For nondiffusing muons in metals, the relaxation is
that of macroscopic methods. The limitations of the availabledetermined by the Gaussian exponential
me_thods are ep|t0m|zed_ by the _fact that, even t_hough the G(t)=exp(— o2t2), @
existence of diamagnetic domains was theoretically pre-
dicted as long ago as 196antil Ref. 5 distinctly observed where the second momeatis proportional tou,, the mag-
domain structure in Be by a muon method in 1995, there wagetic moment of the lattice nuclei. The picture is more com-
only a single experiment in which diamagnetic domains wereplex for diffusing muons, but, in the case of rapid diffusion
observed, in Ad. The measurements were made by the NMR(diffusion ratev> o), the relaxation function has the form
method, and, accordingly, Condon and Walstedt studied only _
a thin surface layer, where the laminar structure of the do- Gy =exp(~Ab), ©)
mains is strongly distorted, and in fact only the “shadows” whereA o« ¢?/v. In any case, for an ideal lattice, the depo-
of the domains themselves were studied. Moreover, thelarization rate is determined by the magnetic moments of the

137 JETP 84 (1), January 1997 3-378/97/010137-07$10.00 © 1997 American Institute of Physics 137



TABLE I. Nuclear spins and magnetic moments of the stable isotopes of

5
certain metals. Pw)10
- - 0.81
Element Atomic number Concentration, % | nd e i
Mg 24, 26 89.89 0 o0 ] v >,
25 10.11 5/2 —0.85532 0.57 :
Ca 40 99.92 0 0 1
43 0.129 7/2 —1.31720 o 2:
Ti 46, 48, 50 86.74 0 0 ]
47 7.75 5/2 —0.788130 , ]
49 551 7/2 —1.10377 o, o, @
Cr 50, 52, 54 90.45 0 0
53 9.55 3/2 —0.74391 o . ) o
Fe 54 56. 58 97.79 0 0 FIG. 1. Qualitative behavior of the Fourier spectrum of the polarization for
'57 ' 221 3/2 +0.05 a diffusing muon and a one-dimensional domain structurevferv, and
Ni 58, 60, 62, 64 98.75 0 o0 V1= V2.
61 1.25 3/2 —0.74868
Zn 64, 66, 68, 70 95.89 0 0 _
67 411 5/2 +0.87571 P.(t)=[codAwt)+iAv siAwt)]e ¢ (6)
Sr 84, 86, 88 93.04 0 0 ]
87 6.96 9/2 —1.09302 As can be seen, the time dependence of the transverse polar-
Zr 90, 92, 93, 94 88.77 0 0 ization forv,=v, experiences beats at frequenty. When
91 11.23 52 -1.9 vy # vy, the time dependence does not reduce only to beats.
Mo 92, 94, gg' 98, 100 1;47'22 5/3 o ;)327 Let us now explicitly take into account the depolariza-
97 .46 52 —0.9523 tion effects associated with the magnetic moments in the
Pd 102, 104, 106, 108, 110 87.4 0 0 nuclei of the metal. If the muon rapidly diffuses, we have
105 22.6 5/2 —0.57 . . (A i
o al o o P (t)=[cogAwt)+iAv sinfAwt)]e” ATt (7)
Ce all 0 0

The presence of depolarization can make it difficult to ob-
serve two frequencies. Actually, the Fourier transform of the
polarization componer®,(t) is

lattice nuclei. The simplest case correspondsltel/2, Pyw)=-— Avs =+ — Ava 5. (8
where there are no effects associated with quadrupole inter- At (o=w)” AT (0-wy)
actions. The principal isotopes of a large number of metal®©bviously, whenA~Aw, one line should be observed.
have a spin of =0 (see the table in Ref.)9 However, as a rule, when diffusion is rapil<10° sec . It

The depolarization rate is small for most metals, whichis expected thah w=10 sec !, and therefore the two lines
makes it possible to make precise measurements of the prean be well resolved. Figure 1 shows a typical Fourier spec-
cession frequency and to study small field inhomogeneitiesrum for a diffusing muon in the case of one-dimensional
This last point is essential, since inhomogeneities can alsdomain structure. In writing Eqg7) and (8), we neglected
arise because of magnetic-susceptibility anisotropy effectshe possibility that the muon might undergo a transition as it
In this case, it is convenient to study the field inhomogenediffuses from one domain to another. This effect can be ne-
ities from the appearance of weak damping of the longitudiglected for the usual size of the diamagnetic domains, but

nal polarization of the muon spin. qualitatively it simply causes some broadening of the lines in
3. The most interesting case is that in which diamagneticrig. 1.

domain structure appears in the sample. When this happens, If the muon does not diffuse, we have

two close-lying frequencies appear in the transverse polariza-

o ying freq bP P P.(t)=[v; COS wt)+ v, cOL wot)Jexp — 02t?).  (9)
Letv,; andv, be the relative volumes of the phases with The Fourier transform of the polarization is

fieldsb, andb,, respectivelyv,+uv,=1. We shall initially "

assume that the thickness of the domain walls is negligible. P (w)= ReJ [v, expli(w— wq)t}

Let P(0)|x andP(0)=1; then the precession of the muon- -

spin polarization is determined by the formulas

+v, expli(w— wy)t}]exp — o?t?)dt

Px(t)=v1 cogw;t) +v, cogwyt), 2
T w—wq
Py(t)=—v; sin(wit) —v, sin(w,t), (4) - \/; {Ul exr{ _( 20 )
where  w;,=v,b,,. We introduce the notation 0= wy)2
(w1+ wy)12=wy and (w;— w,)/2=Aw. Introducing com- +v2ex;{—< 5 ) ] (10

plex polarization, we can write E@4) in compact form as
In this case, it is harder to resolve the two frequencies in the

— —iAwt iAoty a—iot
P+()=G()(vse Tuet)e ®) Fourier spectrum. Indeed, after simple transformations, Eq.
Letv;—v,=Av>0, and then Eq5) can be rewritten as (10) takes the form
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— )24 A w? 121+ 5) .
P(w)= \/EGXF{_M# P, (t)=2 exd —iwgt) exd —i Qf(X)t]dx.
a 4o —812(1+8)

17

(w—wo)Aw
Xivq exp{T 5. Let us now estimate the period of a one-dimensional
laminar structure. A qualitative estimate of the period can be
(w—wg)Aw found in any referencésee, for example, Ref. 10out it is of
+UzeXF{_ T 9,2 } 11 interest to obtain estimates containing the dependences on

. . various parameteréemperature, magnetic figldntil now,
The Fourier transform has the simplest form whenthere has been no good calculation of the field distribution in

v1=v,=1/2 the domain walls. In a recently published wdtkgalcula-
P () tions were carried out of the magnetic field distribution and
the period of the domain structure, based on minimization of

(w—wo)Aw the total energy of a sample with an inhomogeneous mag-
252 ' netic field distribution. The magnetic field distribution in the
sample was determined on the basis of a standard functional.
(12) The calculations showed that the magnetic field distribution
The function P,(w) has two maxima relative to the dip in the domains strongly depends on the external magnetic
wq, at the pointst Aw. If o~Aw, the two frequencies are field and the temperature. However, as will be seen below,
unresolvable. However, as noted above, one can expetiskovy et all! wrote the boundary conditions for determin-
o<Aw for most metals. ing the magnetization incorrectly, and this led to a nonphysi-
4. Let us now take into account the finite width of the cal result: a discontinuity of the magnetization gradient at the
domain walls. We first consider a one-dimensional laminaicenter of the domains. Thus, we shall obtain the magnetic
(layered structure whose period . Obviously, the width  field distribution in the thin-wall limit, where it is possible to
of domains of the first and second kinds is, respectivelyuse Kittel's modef? which is quite satisfactory in our case.
vy a. We shall neglect the depolarization caused by interacFor simplicity, let us consider the situation in which the
tion with the nuclear magnetic moments. This is the case thgthase volumes are identical;=v,. The magnetization of
will be of interest for the study of the field distribution in the the paramagnetic phagd” ) equals+ Mg, while that of the
domain walls. As is well known, the Fourier transform of the diamagnetic phase equalsM,. We shall expand the mag-
polarization makes it possible to directly study the magnetimetization of the sample, which depends only on coordinate

\/; F{ (00— wo)?+ Aw?
=\/—expg — > cosh
) 4o

field distribution in the sample: x on the surface=0, in a Fourier series:
. dw *
_ —iwt 2 - 2m(2n+1)x
P+(t) f Poe ™ o (13 M(x)= 3 e sin—— ——, (18)

Let the field in the plate vary only along thecoordinate.
Since the spin polarization of each muon precesses with SinCeV X B=0 i bl introd
definite frequency, which depends on the position of thﬁar poltnecnetiaI'Bz_— V":/jogrzzr: Oelr:’awp?rcf;r;rl: J\ﬁthugamailn:a-

muon in the sample, the Fourier transform of the polarizatio A .
of an ensemble of muons is determined by the obvious for_structure, potentia is independent of thg coordinate, and

\g/herecn=4M o/ m(2n+1).

mula therefore
2 2
2T Y Y
Po=— | 80— w(x)dx w2 t270 (19
A (voal2 with the boundary condition
=— Sw—w(X))dx. (14
a J-vjar Y Y
. - - =47M(X). (20
Accordingly, 9Z|,_ o 92— o
2 al2(1+96) . . . .
P, (t)=2 f exq] —i w(x)t]dx, (15) A solution of Eq.(19) is sought in the form of a series:
a J-sai2(1+9) o
o 2m(2n+1)x
wheres=v,/v,. #(x,2)= >, b, sin———
The field inhomogeneity in the sample when the dHVA n=0
effect occurs is small by comparison with the mean field in 2m(2n+1)z
the sample, and the functian(x) can be written as X ex;{ B (21)

X) = wo+ Qf(x), 16 " .
@(X)=wo (%) (16) From the boundary condition given by E@0), we get
where w, is defined above() is the field-inhomogeneity

parameter Q~Aw), andf(x)— +1 asx— +a/2. The po- bo & oo 4aMg
larization of Eq.(15) takes the form "2n+1 " @w(2n+1)°

(22
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In addition to the magnetic field energy, a nonuniformly From the functional in Eq(25) we obtain Lagrange’s

magnetized sample creates an energy of equation for magnetization, and, for a homogeneous domain
structure,
1
oU;== fﬁ oM - df. (23 d’Mm 27F _(87%F
2 @ ———47M+ —— A(T)sinl —>— M |=0.  (26)
dx Ho Hg

SinceM||B||z, integration over the entire surface reduces t
integration over the surfaces=0 andz=—L,, whereL, is
the thickness of the sample. The energy density per @in
sample surface is

0The inhomogeneity energy is determined from the last term
in the functional of Eq.(25). In order to compute it, it is
necessary, first of all, to solve E(R6). The nonlinear Eq.
(26) can be solved in quadratures, but it has no simple ana-

1 rar 4aM(2) Iytic solution, and therefore we sedk(x) in the limit of a
8% 1=— J M(X) p(X)dx= — thin transitional layer whose thickness ds<a. We put the
a2 & coordinate origicx=0 atM(0)=0, and thenM (x)<0 for
1 7M2a —al2<x<0, andM (x)>0 for 0<x<a/2.
=—9 . i i [ iaBles
x}n: Zn+1)° - 2n2 (3) (249 We introduce the dimensionless varial

27wF
Along with the field-output energy, an additional contribu- 5z =k (k>1),  47kM=m, K’A=.7, (27)
tion will be introduced by the energy associated with the 0
inhomogeneous field distribution in the finite although thinand then Eq(26) takes the form
transitional region between domains of different kinds. Al-
though this region is called a domain wall, it is essentially
different in its properties from a domain wall of a ferromag- wherea= a/4xr.
netic substance: here the field does not change its direction, As can be seen from this equation, wher>1, the
but only negligibly varies in magnitude. To estimate the in-solution ism=const and, consequently, there is no homoge-
homogeneity energy, we shall use the simplest represent@ieous state. Boundary conditions must be set for (2§).
tion, in which the magnetization oscillates with a single fre-Obviously, the magnetization has an extremum at the center
quency. In other words, there is only one extremal cros®f the domains, and therefore
section of the Fermi surface for a given field direction. In

am’—m+.7Z sinm=0, (28

i S . : - dMm
this case, taking into account the inhomogeneity, the addition — =0 — =0 (29
to the thermodynamic potential has the fdrh x=+ald dX|,_ s aa
= and, accordingly,
O— 2
o The first integral of Eq(28), with the boundary conditions of
+ > (VM)2idV, (25 Egs.(29) and(30), can be found in the standard form:
1
where [m’(X)]2=§[.%(Cosmo—cosm)+(m2—mS)]- (3D
eh |93 g2g| 12 We carry out the subsequent integration in the approximation
A(T)= A B ap2 of small values ofm<1. This is the case if#=1 but can
z fail to hold when.Z>1. Unfortunately, this case, which is
1 2m°Tlho simplest to investigate, cannot be considered the general
m* sinn272T/ i)’ case. The most general case is that for whick 1, for

which as has been pointed out, there is no simple analytic
m* is the cyclotron massS,, is the area of the extremal cross solution, even though E¢28) can be solved in quadratures
section of the Fermi surface, ahfS/9p2|~1. The oscilla-  in the general case. We shall obtain an analytic solution in a
tion frequency of the magnetizationfs=cS,/2mefi; Hyis  special case that includes the dependence on all the neces-
the field for which the phase is a multiple of72  sary parameters.

F/Hy=n, wheren is a natural number. The phenomenologi- Equation(31) can be solved fojx|<a by using the ex-
cal parameter=r?, wherer, ~cpg/eB is the Larmor ra- pansion cosn~1—n¥/2. We get

dius. In Refs. 14-17, as a result of microscopic calculations, P

for the parameter « we obtain values m'2—___ (mg_mZ):o_ (32
a~27FA(T)ré/4H3. The field in the sampléhe plate is 2a

B=H+47M. From the simplified Eq(32), we immediately find the solu-

For the valueH=H,, the volumes of the phases are tjgn
identical,v,=v,; therefore,(B)=H, for thin walls. Since

M<H,, it is possible to havB~H, everywhere. In the _ . /«’5—2)
general casefi=Hy+h. M=Mo SIN XN 57 ) 33
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which is valid in the region where the argument of the sine is
small. The solution given by Eq33) differs substantially
from the standard form of a domain wall. However, it should
be emphasized that even when the equation externally re-
sembles that for the magnetization in the domain wall of a
ferromagnetic substandsee Ref. 18 they describe quite
different behavior of the magnetization and have different
boundary conditions. Sincg?/a>1, we obtain a constraint
for which the solution of Eq(33) describes the field inho-
mogeneity in the transitional layer:

T 2a
X$§Xo, %=\ % (34

Let us now compute the field inhomogeneity energy per unif!G. 2. Qualitative diagram of the field distribution in a two-dimensional
area: domain structuréa square lattice

) L, (™2 «a [dM)? L, ma
5?&2=—f 7 ax dx=—— M. (35

a —x/2 2

=exp(—i wot){ ( 1- %) cofAwt)+ WJO(Q'[)) .
To find the period of the domain structure, one must, as

usual, minimize the total energy associated with the field (40)
distribution, As can be seen, another oscillating term decreasing in time is
L, added to the two-frequency pictutto the beats Accord-

2
Mo - 4x Mo- (36) ingly, the Fourier spectrum is described by

7M3a
W= 800+ 7= {(3)+ —

in terms of parametea. For the period of the structure, we P I ‘ Nw—wq)+ S(w—wy)

“ a

_\/TLZQ_ \/ - \/m " 2% } (41)
“Viww "N7um Vo2 7 V07 (0 0o’

7. We now consider the features of the spin-polarization

behavior of the muon if a two-dimensional periodic structure
T L, F is formed(see Fig. 2.
=1, V723 V2aA(T). (38) In this case, the magnetic field distribution has a form
_ _ _ similar to Abrikosov’s vortex structure in the mixed state of

The resulting estimate gives the same dependence on parafpe-Il superconductors. However, it should be kept in mind
etersL, and « as follows from the simple qualitative treat- that b, ,,—b,=b;—b,<B in our case. As is well known
ment of Ref. 10, but also contains a dependence on ﬁel(gee for examp|e Ref. j_'ghe character of the Fourier spec-
Hg that is not obtained from the qualltatlve considerations. ltirym is determined by the Van Hove singularities. The Fou-
is Interestlng that the domain siaex HO and increases with rier Spectrum of the Sp|n po|ar|zat|0n of the muon in Abri-
decreasing field, but it is precisely at relatively weak fieldskosov’s two-dimensional vortex structure has a logarithmic
that the condition for the formation of domain structure iSdivergencdsee, for examp|e' Ref. 2_0|n our case, the cor-
also satisfied. responding Eqgs(16) and (17) for a one-dimensional struc-

6. Let us now consider the behavior of the polarization,tyre should be rewritten in the form
taking into account the field distribution of E¢B3). Then
we have in Eq(16) p

In the limit .Z>1, we find

2
g | de—w(xy)dxdy,

f(x)=sin (39

1
P+(t)=§f exd —iw(x,y)t]dx dy, (42
Furthermore, it should be taken into account that B§) is ) o ) .
valid for x< mwx,/2<a/2, whereas the integration in Eq.6) ~ Where the integration is carried out over the area of a unit

is carried out over the intervék|<a/2. Therefore, Eq(16)  Cell. _ . _ . _
should transform to When integrating the first of Eq&42), it is convenient to

transform, as usudbee, for example, Ref. 1%o curvilinear
coordinates:

P,.(t)= (—— X—) [exp(—iwqt) +exp —iwst)]

o(X,y)=w(l,h), o(l)=w=const, (43
1 . . .
+exp(—iwot)j exp(—iQt sin ¢)de S0 thatd S=dldh, and accordingly, in the neighborhood of a
-1 line of constant frequency,
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w(l,h)=w(|)+j—;)h. @8 A a A b

Here dw/oh=|V w|. For the Fourier amplitude we get

p, 27 f S(Volhydl ah= 22 [ 4
0T S w ~ g '
S S |V0)|w(|)=w
45 J‘/
Consider the isotropic case, in which a triangular or
square lattice is formed. We emphasize that elucidating the @ &% 9 @ o Go o

conditions for forming a one-dimensional or two- o _ . o
dimensional structure is a special, separate problem. Here V\II:éG 3. Qualitative behavior of the Fourier spectrum of the polarization for

. L. . . . a two-dimensional structuréa) for v,=uv,, (b) forv,>v,.
explain how to distinguish a one-dimensional from a two- v e
dimensional structure experimentally. Taking into consider-
ation the equal-areas rule when forming the domain structure

(see, for example, Refs. 3 and)1@e arrive at the conclu- _ 1 n W~ g (50)

sion thatb,,,, andb,;, remain constant as the external field w=wg Jl Dy oyl

varies. Accordingly, a singularity corresponding to a saddle o _ .

point will lie halfway between w,=y,b and The qualitative behavior of the Fourier spectrum of the po-
wMmax . . . . .

®2="Y,bmin if the volumes of the phases are identical, andlarization is shown in Fig. 3. _ _

will shift toward the field in the stable phasevif # v,. Let As can be seen, the Fourier spectrum makes it possible

us consider the possible picture for the Fourier spectrum if® Unambiguously identify whether a one-dimensional or

more detail. two-dimensional structure was formed. The behavioPgf

The expansion in Eq44) is invalid close to the extrema close to the singularities makes it possible to test the validity
sinceVw=0, and one must writéwe assumav,, # 0 and of the equal-areas rule for both one-dimensional and two-
1 XX

wyy#0) dimensional structures. In the experiment of Ref. 5, the Fou-
i rier spectrumP,, has two characteristic maxima, the posi-
1(Pw , Fo , tions of which are independent of the external field within

o(X,Y)|1,= w12+ Sl Xt a2 Y ) (46)  one period of the dHVA oscillations. This supports the as-

sumption that, under the experimental conditions of Ref. 5, a
Herew,, andw,,<0 in a paramagnetic domain, ang, and  one-dimensional laminar structure was observed and the
wyy>0 in a diamagnetic domain. equal-areas rule was satisfied.

For the Fourier component, we have 8. There is currently no reliable calculation of the field
) distribution in the domains. Obviously, af {(—T)/T.<1,
:Ai 1 a7 relatively large magnetic field fluctuations-@Ab) should be
oo, g ‘/wxxwyy 12' observed, and the domain-wall thickness can be expected to
' be comparable to the period of the domain structure. More-

When the volumes occupied by the fieldsbs (v;) and  over, rather than a domain structure, a structure with a peri-
b<bs (v,) are identical, the Fourier amplitudes are odically inhomogeneous magnetic field distribution can be

P

Pwl= sz. If v,>v4, then established in the samdé.lt is these cases that are of sig-
nificant interest, since the SR method is probably the only
WOxx@yyl2 < W0y, instrument for identifying such structures. It is therefore ex-

tremely crucial to do experiments for different magnetic

and we getP, <P, . Correspondingly, iv,<v,, we get _ .
98F 0,5 o, P gy, a=vy 9 fields, temperatures, and sample sizes.

P,>P,.

@1 @2
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Energy spectrum and phase transitions in C  ,, fullerite crystals at high pressure
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Zh. Eksp. Teor. Fiz111, 262-273(January 199y

Measurements have been made of the Raman, optical absorption, and luminescence spectra of
single crystals and pellets of the fulleriteat T=300 K and at pressures up to 12

GPa. The baric shiftlw/dP and the Graeisen parameters of the Raman-active intramolecular
phonon modes have been determined. It has been established tdat/the value for

certain phonon modes abruptly changes at pressurBsof GPa andP,~5.5 GPa, as do the
half-widths of the Raman lines. These features in the Raman spectrum are associated with
phase transitions at high pressure. The baric shifts of the absorption and luminescence edges of
C, crystals have been determined and ai@ 12 eV/GPa and-0.11 eV/GPa, respectively,

for absorption and luminescence. The baric shift of the absorption edge decreases significantly with
increasing pressure and is0.03 eV/GPa at 10 GPa. These data have been used to

determine the deformation potential of the fullerite,Cwhich is about 2.£0.1 eV. © 1997
American Institute of Physic§S1063-776(97)01601-9

1. INTRODUCTION point group as 1&;+22E,+19E;. In a Gy crystal, which
contains four molecules per unit cell, the number of active
The discovery of the family of multiatomic carbon mol- modes increases significantly because of lowering of the
ecules known as the fullerites has resulted in intensive studgymmetry and Davydov splitting. The first detailed measure-
of the physical properties both of the molecules and crystalgnents of the Raman and IR absorption spectra g flins
themselves and of various compounds based on {tfefhe  made it possible to determine the frequencies of the intramo-
fact that most of the attention in this case has been devotgdcular vibrations active in Raman scattering and IR absorp-
to the fullerite G, is mainly associated with the discovery of tion and to compare them with the results of numerical
superconductivity at relatively high temperatures in com-calculations* Measurements of the temperature dependence
pounds of G, with the alkali metal$:* A definite role in this  of the Raman spectra of £single crystals made it possible
is played by the circumstance that the method developed fab determine the frequencies of the intermolecular phonon
synthesizing the fullerenes preferentially yieldg, @nd that modes and the critical variations of the Raman spectra asso-
it is more available than the other representatives of the famgiated with the orientational-ordering phase transition at
ily, in particular G.° T=276 K% The structural aspects of the orientational-
Nevertheless, a fairly great amount of attention has beeordering phase transitions were studied by x-ray and electron
paid to the study of the properties of the fullereng CThis  diffraction® Detailed studies of the thermodynamics of these
is associated both with the high intensity of the studies ofransitions were carried out by differential thermal analySis.
many-atom carbon clusters as a whole and with the successes In our opinion, there is special interest in studying the
in obtaining fairly pure starting material and single-crystalenergy spectrum and the phase transitions jgd@ystals at
samples of G,. Unlike Gsg, the G molecule has the shape high pressure. They are a source of additional information on
of a rugby ball and consists of twelve pentagons and twentythe intermolecular interaction and are needed for qualitative
five hexagon$§. The molecule belongs to th®g, point  numerical calculations of the band structure and the energy
group, and the g, crystal has hcp structure with parametersspectrum of G,. The first measurements of the Raman spec-
ap=1.01 nm andc,=1.68 nm and belongs to the space trum at high pressure were made on a powdered mixture of
group P63/mmc7 Annealing crystals with the hexagonal Cyy/C,, fullerenest’ Measurements of the Raman spectra of
structure in high vacuum causes it to be altered, and it be€;o single crystals at high pressure made it possible to estab-
comes predominantly cubic, with a small concentration oflish the features in the baric dependence of the phonon fre-
the hexagonal pha§elt should be pointed out that most quencies associated with phase transitions of the orienta-
C, single crystals grown from the vapor phase have a cubitional ordering of the molecules in the crystél.
structure, although about 10% of the crystals are obtaineeasurements of the IR absorption spectra ef & high
with a hexagonal structure. pressure made it possible to determine the baric shift coeffi-
Much interest and attention have been devoted to theients and the Gneisen parameters of the IR active
molecular dynamics and the phonon spectrum gf @ys-  modes'® The baric shift of the fundamental absorption edge
tals, which have been studied in a number of theoretical and/as studied in Ref. 20.
experimental paper81* According to theoretical calcula- This paper presents the results of detailed measurements
tions of the molecular dynamics, theSpectrum contains of the Raman spectra and the optical absorption and lumi-
fifty-three Raman-active vibrations, classified in tBey, nescence spectra of single crystals of the fullerifga® high
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TABLE I.

dw,/d P, dw,/d P, dw,/d P, wj , wj , dw,/d P,
o, cm YGPa cm YGPa cm YGPa cm? cm? cm YGPa
cm? P<2.0 2.0<P<5.5 P>55 Y (Ref. 14 (Ref. 19 (Ref. 17
256 3.2 3.2 3.2 0.226 261 257 1.65
412 0.1 0.1 0.1 0.004 411 410 -
509 - 1.0 1.0 0.036 501 506 0.38
570 -0.3 -0.3 -0.3 —-0.01 573 570 —0.06
708 -0.3 -0.3 -0.3 —0.008 704 710 -
737 0.9 0.9 0.9 0.022 739 738 0.12
776 0.8 0.8 0.8 0.019 770 768 -
1061 3.7 5.4 15 0.063 1062 1062 11
1181 7.1 9.4 35 0.109 1186 1184 4
1228 5.3 6.3 3.1 0.078 1231 1229 3.2
1254 7.8 7.5 0.9 0.113 1260 1258 -
1367 6.3 8.2 5.3 0.083 1370 1369 1.1
1432 5.2 4.5 3.0 0.066 - 1438 -
1445 6.0 7.6 3.6 0.075 1448 1448
1468 6.0 6.3 5.0 0.074 1471 1469 -
1511 3.8 7.8 2.2 0.046 1517 1517 45
1565 4.2 5.9 3.3 0.049 1569 1566 2.73

pressure. The baric shifts and the @eisen parameters are The Raman and luminescence spectra were measured by
determined for a large number of intramolecular phonormeans of a Dilor-XY triple spectrometer with an optical mul-
modes. The baric shift of the fundamental absorption andichannel recording system. An argon lager 488 nm and
luminescence edge is determined, as well as the deformatiam He—Ne laser(\=632.8 nm were used as radiation
potential of crystalline ¢. Characteristic singularities sources. The radiation power directly in front of the high-
caused by phase transitions are revealed in the baric depepressure chamber was0.5 mW, and the excitation spot
dence of the phonon frequencies at pressures of about 2 GE@ameter, allowing for defocusing by the diamond anvils,
and about 5.5 GPa. equalled about 1Qum. The absorption spectra were mea-
sured on an MDR-23 monochromator by the technique de-

scribed in Ref. 20.
2. EXPERIMENT

Single crystals of the fullerene ;g were grown from
solution in toluene. The starting-gmaterial was obtained
by the method described in Ref. 5, and, according to the data In the Raman spectra of,gsingle crystals at normal
of a mass-spectrometric analysis, its purity was at leagpbressure and room temperature, seventeen vibrational modes
98.5%. The Raman and luminescence spectra were measunedre observed, whose frequencies are given in the first
on single-crystal samples of ;& with a size of column of Table I. These frequencies are essentially identical
100x 80% 20 um°. The optical absorption spectra were mea-with the data of Refs. 14 and 15 forfilms, shown in the
sured on thin polycrystalline pellets of,&; fabricated from  right-hand part of the table. They are also very close to the
separate crystallites of the starting material. The pellets werphonon frequencies in the Raman spectra gf @ystals of
fabricated in a high-pressure chamber with diamond anvilhexagonal modification, measured Bt 23 K and normal
whose working areas are parallel to within arc minutes. Tapressuré® Some of the frequency difference of the separate
do this, a crystallite placed between the parallel workingmodes is possibly associated with the presence of stresses in
areas was squeezed with no gasket in a sequential loadirige G, films and with heating of the crystals by the argon
cycle until its coloration in the unloaded state became clealaser radiation ak =488 nm, in the strong-absorption region
red. Measurements show that pellets with a uniform thick-of the G,. The presence of stresses in the, @Ims in-
ness from 1 to Sum are obtained in this case. creases the phonon frequencies somewhat, whereas heating

The optical measurements at high pressure were madae crystals has the opposite effect. It should be pointed out
by means of a high-pressure chamber with diamond anvils ahat a reversible decrease of the phonon frequencies in the
Merill-Basset typé! The working area of the anvils was Raman spectra of fullerite as the laser radiation power in-
600 um across, the diameter of the working opening of thecreases was observed earlier ig, €rystals?® It was associ-
stainless steel gasket was 2a@n, and the thickness of the ated with the formation of a large number of excited triplet
gasket after preliminary compression was gtn. A 4:1  states; however, in our opinion, it is not impossible that it
methanol—ethanol mixture was used as a medium to transmiian be associated with significant local heating of the crystal.
the pressure. The pressure in the working volume of th&Ve observed a similar effect in,gcrystals. To explain it, it
chamber was determined with an accuracy of 0.05 GPa froris necessary to specially investigate the value of the local
the shift of theR, luminescence line of ruby microcrystdfs. heating in the laser excitation spot and its effect on the Ra-

3. RESULTS AND DISCUSSION
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FIG. 2. Baric dependence of frequencies of the phonon modes,&ii@le

FIG. 1. Raman spectra of,gsingle crystals at various pressurEs; 300 K. crystals in the interval 1350-1650 ch

initial intensity distribution. However, increasing the pres-
man spectra. In this paper, we strove to set the laser power aure further again changes the resonance conditions of the
the minimum possible level in order to reduce the effect ofexcitation and alters the intensity of the lines in the Raman
laser heating. spectrum.

All the observed Raman modes relate to intramolecular The baric dependence of the phonon frequencies is
modes; the intermolecular, rotational, and vibrational modeshown in Figs. 2—4, corresponding to three different energy
are located in the 10—60-Ch frequency intervaP and were  intervals. The vertical dashed lines in these figures indicate
not considered in this work. Figure 1 shows segments of théhe pressures of 2.0 and 5.5 GPa, at which the slope of the
Raman spectra of g crystals in the 200-800-cnt and  baric dependence of virtually all the phonon modes abruptly
1000-1650-cm* frequency regions at several pressures. Nochanges. WheR~2.0 GPa, new phonon modes also appear
spectra were recorded in the 800—1000-¢megion, since in the spectrum and are indicated in Figs. 3 and 4 by black
there are no Raman-active phonon modes £fi@ this re-  dots. The solid straight lines are linear approximations of the
gion. The region close taw~1332 cm! has also been experimental baric dependences of the phonon frequencies,
eliminated from the Raman spectrum, since a very strong
diamond vibration is located in this region, and the contribu-
tion to the Raman spectrum from the diamond anvils is 1300
dominant. The experiments were done at room temperature,
but, as indicated above, some local heating of the crystal in
the laser-excitation spot is not excluded. The phonon modes

i
. . 1250
of C; observed in experiment at all pressures are noted on E‘:

the upper spectrum of Fig. 1 by dashes. The frequencies of
the overwhelming majority of the phonons increase with in-
creasing pressure. The two phonon modes at 570 and 708
cm ! are exceptions, since their frequencies decrease with
increasing pressure. A relative redistribution of the intensity
of the phonon modes with increasing pressure is also ob-
served in the Raman spectra and is associated with a change
in the resonance conditions of the excitation because of a

significant baric shift of the optical absorption spectrtfim. 1100f %9,9/40-

-

1200

1150

Phonon frequency, cm™’

Most importantly, a significant strengthening of the low-

frequency part of the Raman spectrum should be noted. A /
similar effect was also observed in the Raman spectra of andil I . . .
Ceo Crystals. Changing the excitation wavelength from 0 2 4 6 8 10 12
A=488 nm toA =632.8 nm in these spectra B=3.4 GPa Pressure, GPa

partially cancels the negative baric _Shift of the at_)sorptior\:IG. 3. Baric dependence of frequencies of the phonon modes,afi@yle
spectrum and at first causes a partial reconstruction of theystals in the interval 1050-1300 cth
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— T was carried out on the same sample. The closeness of the
800  looi-o—6—0—0] data obtained for the position and half-width of the line in
o o —o—O—o— the two loading cycles indicates that the phase transition in
700 e—f_._.-.e’_o_ oo — o the P=2.0+0.2 GPa region, at least, is reversible with re-
00 spect to pressure.
- o The Raman data from the,gcrystals at high pressure
§ 600+ 1 do not make it possible to unambiguously determine the na-
& p—e-p—o—g—o—9—0o—0 ture of the observed phase transitions. As is well known,
§ i. " _.3____.-0——0 orientational-ordering phase transitions that occur in two
g S00r ’ stages take place in,gcrystals, as in g, crystals. In a G
g crystal at normal pressure, the first stage of the orientational-
é 40RO 00— —o——0_ ordering phase transition occurs @t=260 K and corre-
o sponds to freezing out of the random rotations of the
molecule®* After this, the molecules occupy two energeti-
3001 ° 7 cally equivalent orientational positions, between which they
aee—'e”M X o can jump. These jumps completely freeze ouflat85 K,
200l i”",_'—q L which corresponds to the second stage of the orientational-
60 2 4 6 8 10 12 ordering phase transiticd. The orientational phase transi-
Pressure, GPa tions at high pressure afid= 300 K also occur in two stages,

at P;=~0.4 GPa and®,~2.4 GPa, with the baric shift coef-
ficient of the phase-transition temperature being equal to
about 100 K/GPa for both stagés=>° According to x-ray
and electron diffraction data, the orientational ordering in
drawn independently in three pressure ranges:2.0 GPa, Cro Crystals at normal pressure also occurs in two stages,
2.0<P<5.5 GPa, andP>5.5 GPa. For some phonon Which presumably correspond to freezing out of the rotations
modes, these lines are shown by a dashed line, which reflecg$ the molecule along the short and long axed gt 335 K
inadequate statistics of the experimental data. andT,~276 K, respectively.

Figure 5 shows the pressure dependence of the width of It is tempting to associate the phase transitions that we
the most intense line, for the 1565-chphonon. It clearly —observed at high pressure with orientational ordering of the
shows the abrupt increases in the line width at the boundariggolecules. However, to do this, it must be assumed that the
of the three pressure regions, whereas the dependence is d@ser radiation heats the crystal to a fairly high temperature,
scribed by a virtually identical linear function in the interme- the value of which we estimated earlier as about 108 k
diate regions. These data are unambiguous evidence th#iis case, an estimate of the baric shift coefficient of the
there are two phase transitions in the,@rystal in the phase-transition temperature gives a value significantly
P,=2.0+0.2 GPa an®®,=5.5+0.5 GPa regions. It should lower than in the &, crystal. The observed data do not rule
be pointed out that the measurements at high pressure weét the possibility that both phase transitions that we ob-
made in two loading cycles with direct application of pres-served at high pressure are associated with orientational or-
sure. In the first loading cycle, measurements were made fdtering, but additional studies, using other methods, are
pressures of 0.55 and 4.1 GRhe black dots in Fig. 5then  needed to reliably explain their nature.
the pressure was dropped to zero and a second loading cycle The baric shift coefficientsdw;/dP of the phonon

modes are given in Table | for three pressure intervals. Their
values varied betweer 0.3 and 9.4 cm'/GPa for various

FIG. 4. Baric dependence of frequencies of the phonon modesyafitgyle
crystals in the interval 200—-800 crh

Aw om”’ modes and pressure intervals. The @isen parameters;
T T T T T of the intramolecular phonon modes are determined from
40+ ] these data:
8
9 [+) (?wi /wi BO &wi 1
30k . MUV T W) P @
It was assumed in this case that the equation of state of
20k N crystalline Gg is described by a Murnaghan-type depen-
dence:
B!
10 8 Bo | [Vo| °
TS PR PZQ(V -1 @
0 2 4 6 8 10 12 0

P . . o
Pressure, GPa (whereV,/V is the relative variation of the volume of the

FIG. 5. Raman line width for the phonon with frequency 1565 &ms. crysta) with a bulk mod_ulus oB,= 18-1t_1-8 GPa and that
pressure. B,=dBy/dP=5.7+0.6 is the same as in the case of crys-
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. - FIG. 7. Initial sections of the luminescence spectra of,adystal at vari-
31 7
talline CBO' The values of the Gneisen parameters for the ous pressures, GPa) 0, b) 0.44,c) 0.82,d) 1.6. The inset shows the baric

intramolecular phonon modes of§; determined for the ini-  dependence of the position of the luminescence edge.
tial pressure region, are given in Table I.

Figure 6 shows the dependence of the itgisen param-
eters of fullerite crystals on the frequency of the intramolecu-and the stronger influence of weak variations of the confor-
lar phonon modes. The open dots show the data of this papanation of the molecule on the spectrum of intramolecular
the black dots show the data from IR absorption ify C vibrations.
films,® and the squares show the data from Raman scattering Figure 7 shows the initial sections of the luminescence
in Cq Crystals®? As can be seen from the figure, a distinct spectra of G, crystals atT=300 K and various pressures.
correlation is observed between the results of the work usin@urve a corresponds to normal pressure, and curves b, ¢, and
Raman scattering and the IR absorption if €ystals. This d correspond to pressures 0.44, 0.82, and 1.6 GPa, respec-
dependence, on which three characteristic regions can be digvely. The luminescence spectrum is very extensive, and its
tinguished, also agrees well with the data from Raman scatew-frequency edge lies beyond the limits of spectral sensi-
tering in G crystals. The vibrations are stiffest in the initial tivity of the optical multichannel analyzer.ggcrystals are
region of phonon frequencies, from 200 to 350 ¢mand  likewise characterized by photoluminescence spectra that ex-
correspond to the maximum values of the @isen param- tend to 1 eV in the low-frequency region. The spectra were
eters. Several vibrations in which the @grisen parameters measured at constant laser-excitation power density and were
are close to zero occur in the frequency region close to 400orrected for the spectral sensitivity of the recording appara-
cm™ 1. Next, another group of vibrations, in which the @ru  tus. Thus, the intensity distribution in the luminescence spec-
eisen parameters again assume rather large values, occurdra reflects the true picture, and its scale is identical for all
the 450-600-cm® region. A large group of the highest- pressures. This makes it possible to determine the position of
frequency vibrations, in the region from 1100 to 1600the edge of the spectrum accurately at any pressure.
cm ! has approximately the same parameters. Finally, a The luminescence spectrum shifts toward the red as
group of vibrations with negative Gneisen parameters oc- pressure increases, while its shape changes little. However,
curs in the frequency region from 700 to 800 tmwhose we are mainly interested in the baric shift of the lumines-
values for G are higher in absolute value than the corre-cence edge. It was determined as follows: the initial section
sponding values for £. of the spectrum was approximated by a parabola, and the

Negative values of the Gngisen parameters for crystal part adjacent to it in the higher-energy region was approxi-
phonon modes are evidence of structural instability of thanated by a straight line parallel to thxeaxis. The intersec-
crystal and closeness of the phase transition. In the case tbn of these two curves was taken as the point from which
intramolecular modes, they can be evidence of changes difie luminescence edge was measured for each pressure. The
the conformation and instability of the molecule. Negativespectral edge is at about 1.94 eV at normal pressure, and it
Gruneisen parameters in thes@Omolecule characterize the shifts toward lower energies as pressure increases. The baric
Hy(3) andHy(4) modes, which correspond to flattening of shift of the luminescence spectrum is thus negative, which is
the moleculegthe squashing moglé? From this viewpoint, characteristic of molecular crystals, whose molecules in the
it is not especially surprising that the absolute value of theslectron ground state possess a center of inversion and zero
negative values of the Gneisen parameters is significantly dipole moment. The baric dependence of the position of the
greater in (g crystals than in &,. This is possibly associ- luminescence edge, determined by the method indicated
ated with the initially higher symmetry of thegg&molecule  above, is shown in the inset to Fig. 7. The straight line in the
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minescence spectrum, shifts toward lower energies as pres-
sure increases. The baric dependence of the position of the
absorption edge is shown in the inset of Fig. 8, where the
L6r straight line is the tangent to this dependence at the begin-
ning region of pressures, and its slope defines the baric slope
L4r 4 of the spectrum. This value equals abeud.12 eV/GPa and
agrees fairly well with the baric shift of the luminescence
spectrum. The baric shift of the absorption spectrum strongly
decreases with increasing pressure and is abdu03 eV/
GPa atP=10 GPa. The same behavior is characteristic of
Ceo Crystals, as it is for molecular crystals as a whbtle.

As is well known, molecular crystals of the fullerites
Ceo and G are semiconductors with a rather large band gap.
Its value can be determined by the position of the optical
absorption edge and by the beginning of the luminescence
spectrum of the crystal. Our data on the baric shift of the
absorption edge and the beginning of the luminescence spec-
/ trum essentially determine the pressure dependence of the

— band gap of the & crystal. They make it possible to deter-

0 15 20 25 3.0 : : : :
Energy, eV mine the deformation potential of the fullerite,C

JEq dE,

Energy, eV

Optical density, In(1/T)

_.rQ
&

()

FIG. 8. Absorption spectra of the fullerite,£at various pressures. Curve a Y= m =—DBg W
shows the absorption of a solution of,{n toluene; curve b shows the 0

absorption of a thin pellet of £ at normal pressure. Curves c, d, e, and f : ;
show the absorption of a thin pellet of,{at pressures of 0.2, 1.4, 4.7, and Its Valui‘ determined from Eq'(3) with parameters
8.0 GPa, respectively. The inset shows the baric dependence of the positic_ﬁof 18.1+1.8 GPa andiE;/dP= —0.115-0.005 eV/GPa,
of the absorption edge. is =2.1+0.1 eV.
This value of the deformation potential is somewhat less

than the valuezZ~1.3 eV determined in Ref. 32 for .

inset is the tangent to the initial region of this dependence¥Nlike Geo, for which there are theoretical band structure
and its slope defines the baric shift of the spectrum, whosgalculations at normal and high pressures, and the deforma-
value is about-0.11 eV/GPa. tion potential has been determined both numerically and ex-
Figure 8 shows absorption spectra of the fulleritg @  Perimentally, there are no such data for thg €rystal. For
T=300 K and various pressures. Curve a corresponds to tH8iS reason, it is not currently possible to compare experi-
absorption of a solution of 4 in toluene and is given for mental results for the baric dependence of the electron and
comparison with the absorption spectrum of a thin pellet ofPhonon spectrum of the-gcrystal with the results of other
C, (curve B, obtained by the method explained abdie ~ PaPers. Nevertheless, we assume that our results can be use-
the section on experimental techniguas can be seen from ful for further development of theoretical and experimental
the figure, these two spectra have identical structure, whicfitudies of the energy spectrum ofC _
reflects the rather low level of mechanical stresses in the This work was supported by the Russian Fund for Fun-
pellet that unavoidably arise in the process of fabricating itdamental ResearctProject NO“96'02'174893”O| the State
Curves c, d, e, and f correspond to the absorption of a thinne$C|ent|f|c—_Techn|caI Program “Fullerenes and Atomic _Clus-
pellet at pressures of 0.2, 1.4, 4.4, and 8.0 GPa, respectivellgrs” (Project No. 97015 One of the author¢K.P.M) is.
The position of the absorption edge, determined by the sam@'ateful to NATO for support of scientific collaboration with
method as for the luminescence spectrum, is about 1.8 eV fdistotle University in Salonika, GreeceProject NATO
normal pressure. This value is about 1.84 eV, however, fofFRG No. 960555 and the other two authof®\.A.M. and
the solution of G, in toluene, and the difference of0.04 I.IL.T.) are grateful for support to the State Scientific—
eV between them determines the so-called crystal shift of thd €chnical Program on high-temperature superconductors
electron terms in molecular crystd®&.The difference be- (Project No. 93198
tween the position of the absorption edge and the beginning
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Dielectric enhancement of excitons in semiconducting quantum wires
E. A. Mulyarov and S. G. Tikhodeev
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The energy of the exciton ground state in a semiconducting cylindrical quantum wire surrounded
by a dielectric has been calculated using a variational technique accounting for the effect of
dielectric enhancement. The effect of dielectric enhancement in such a system has been clearly
demonstrated. Exciton parameters have been calculated for an intercalated leadiodide-based
quasi-one-dimensional semiconductor and GaAs wires in asbestos nanotub&897@merican
Institute of Physicg.S1063-776(97)01701-0

1. INTRODUCTION 2. EXCITONS IN A THIN DIELECTRIC WIRE.
RENORMALIZATION OF THE COULOMB POTENTIAL AND

The binding energy of excitons in semiconducting films VARIATIONAL CALCULATION OF THE BINDING
and semiconductor/insulator quantum wells is considerabl)';'\"zRGY
higher than that of three-dimensional excitons in bulk semi-  consider a thin semiconducting wire shaped as a cylin-
conductors. In addition to dimensional quantization effectsder with a radiusR and surrounded by a dielectric. We as-
which make an exciton quasi-two-dimensional, image potensume that charge carriers are confined in the semiconductor.
tials due to the large difference between dielectric constantt order to determine the ground state of the Wannier—Mott
of the semiconductor and dielectrior vacuum in case of a exciton, we will vary the energy functional
semiconducting filmalso play an important role. They no- 72 1 2
tably intensify the attraction between the electron and hole, H{W¥}= ) f f dredrh{ e

hence the strengthening of excitois®-called dielectric con- oZe
finement or dielectric enhancemght 2 g |?
In a semiconducting quantum wire surrounded by a di- T Vet my, |9z,
electric, an electron and a hole are bound even more tightly. 1
The dielectric environment in case of a quantum wire is + — Vph\Ifz}+f f dredryV(re,ry) |3,
more important than around a quantum well, since a larger My
fraction of electric field is contained in the dielectric, thus the )

attraction between the electron and hole is intensified. ASvherem,, , are the electron and hole effective masses in the
concerns '.[he_ effect of dlmen3|onal _quant{zanon, it is knowngjrection of thez-axis aligned with the wirem, ., are the
that the binding energy in a one-dimensional Coulomb pomasses in the perpendicular directi®fy,,r},) is the poten-
tential is infinite> therefore we expect a larger binding en- tial of the electron—hole interaction=(p,z), z, and z, are
ergy of a quasi-one-dimensional exciton. The effect of excithe electron and hole coordinates along zkexis, p, and py,
ton enhancement in wires was previously studiedare radius vectors of the electron and hole in tlyeplane.
totic (with a logarithmic accuragyexpression for the exciton ;emiconducting wire surrounded by the dielectric is selected
binding energy in the limit of a quantum wire of a small in the form
radius. This expression yields an estimate of the exciton en- 1 a 1
hancement within an order of magnitude, but cannot be use (re.rn)=\/ \/—_ exp{ -5 a?(ze—zp)?
in calculating binding energies of real systems. m

In the present paper we have developed a variational X R pe) T2n(Pn)s 2
technique for calculating the binding energy and dimension . . . L

. . : . . ; . -whereL is the wire lengtha is the variational parameter,

of a quasi-one-dimensional exciton confined in a thin semi-

. o . . . T2 n(pe,n) are normalized one-particle wave functions of the
conductmg wire inside a bulk dlelgctrlc. The calcullatlon has’,electron and hole ground states in the two-dimensional con-
been applied to two systems which can be studied experkning potential of the wire. The choice of the trial function

mentally, namely(1) intercalated lead iodide-based com- i, this form will be justified below.

pound GH;(NH,Pbl,® in which Pbk semiconducting wires The most important assumption in our reasoning is that
are surrounded by a bulk organic dielectric, a2l GaAs the length of the quasi-one-dimensional exciton is much
wires inside asbestos nanotulSes. larger than the wire radius,i.e.,
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aR<1. 3 kIR

e
(I)O(k):_ﬂ_sb(ln 5 +C

: (C)

Another necessary condition is that the radRidas to be
sufficiently small so that the energy distance between dimenwhereC is Euler’s constant. In this casg=¢,/¢,,, Whereg,
sionally quantized levels is much larger than the excitorande,, are the dielectric constants of the dielectric and semi-
binding energy. This condition allows us to separate the variconductor, respectively,

ablesp andz in the wave function defined by E(). On the R*

other hand, we assume that_ the wire is sufﬂmently thick so |n == no(R)+ o(»)— a(R), (10)
that the macroscopic dielectric constant of the semiconductor

can be used. Below we will see that the result weakly de-

X
pends on the shapes of the functiorg ,(p) if the confining a(x)=(2w)2f pdp In % jpp’dp’{.%é(p),%ﬁ(p’)
potential is sufficiently strong(which is the case in a 0 0
gemmonductorldmlectnc structt)_reso that thfa wave func- +%<2;(P')/5ﬁ(9)}- (11)
tions decay rapidly beyond the interface. Finally, it follows _ . _
from the shape of the trial functiof®), in which the vari- The function defined by Eq9) is none other than the

ablesz andp are separated, that the second and fourth termEourier transform of the potential in the range of snikafbr
in the braces in the energy functiof&lq. (1)], i.e., the com- large z). We can see that, with due account of the finite
ponents describing the kinetic energy and not containing deexciton dimension in the quantization plane, the Coulomb
rivatives with respect tae,h’ are independent & and can potential is smooth over intervals af- R*. This potential is

be omitted. finite around the poinz=0, and its variation is proportional
The potential of the electron—hole interaction has thelo Z*, irrespective of the shape of the trial function. There-
form fore, we select the function in Eq2) in the shape of the
quantum harmonic oscillator wave function, rather than the
V(re,ry)=—e@(re,rp), (4)  Coulomb function. As concerns the contribution of the image

potentials, it is equivalent to a renormalization of the
electron—hole interaction constant and the effective wire ra-
dius R*.

After calculating the integral in Eq6) and the average
kinetic energy, we obtain the exciton ground-state energy

where¢(r,r) is the electrostatic potential atof a chargee
placed atr,. Using the axial symmetry of the system and
performing Fourier transform with respectzpalong which
the structure is uniform, we can express the potential as

° _ . 2 2
¢(r’r0):f,xdkék(27Z0)n;w emﬁq)n(k,Papo)' (5) E(a)::l_aZ_ini(“'] a_R+EC+770-(R)
M~ €p 2 2

where ¢ is the angle between the vectgraand py, and the
expressions for the functionB, are given in Appendix. + (%) —of R)], (12

After averaging the potential enerd$) over the wave
function, Eq.(2), only the zeroth harmonic in the Fourier whereu *=m;.;'+m;;} and u is the exciton reduced mass.
series in Eq.(5) remains, since the wave functions of the The exciton binding energy depends primarily on the dielec-
electron and hole ground states are axially symmetric anttic constant of the environment because the electrostatic in-
independent of the angle. Thus the potential energy as teraction energy between two charged particles confined to

function of a takes the form the narrow wire is concentrated mostly in the dielectric.
2 The functions7, and.7,, may be very different. This is
V(a)=(W|V(fe,r)| W)= _ef dk exp( _ _2) Dy (K), es;entlal, fqr examp'le, for the oscillator strength of the exci-
—w 4da tonic transition. In this paper, however, we calculate only the

(6) ground-state energy. Owing to its weak dependence on the
shapes of the functiong’, and.7%,,, these functions can be

where expressed in the simplest form and considered identical. Ac-
w [ tually, since the functionsz, ,(p) vanish rapidly outside the
<Do(k):(277)zj J Do(K,pe,pn) quantum wire, the difference(=)—o(R) in Eq. (10) can be
00 neglected. Irrespective of the shapes of the functions
X 7o pe)- Z2n(pr) pepndpedpn . (7)  Zen(p), the parametes(R) is of the order of unity, there-

o . _ . fore, given the conditior§3), the functionno(R) is smaller
We can see that only<a is important in the integral in Eq. than In@R). It follows from Eq. (3) and Eq.(12) that the

(6). Given that exciton energy should depend weakly on the shapes of the
1 functions .72, ,(p). Therefore we assume hereafter these
p (aR)?In(aR)|<1, (8)  functions is the simplest form:

we can use the expansi¢A.7) in the limit of smallk. After . B L p=R,

averaging over the dimensionally quantized wave functions, Te(p)=7n(p)=\ V7R (13

we have 0, p=R,
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and o(R) =o(«)=—1/4. Then the exciton ground-state en- typical separation between wired~d,,d,. Therefore the
ergy as a function of the variational parameter finally takesexciton parameters can be calculated in a fairly good ap-
the form proximation by taking an isolated semiconducting cylinder
52 262 a aR 1 surrounded by_the dielectric, instead of the periodic structure
E(a)= — a4+ — — {In —_+Zc- 2]_ (14)  of quantum wires. Moreover, the small parameter for the
4p &b \m 2 2 4 image potential due to other quantum wires is not the ratio
In the next section we will use E4L4) to calculate the Ro/d: as in the case of a superlattice of plane quantum wells
exciton binding energy in specific semiconducting structures-€- the ratio of the well width to the lattice periodut its
By using the expansion of the electrostatic potential at smaffduare. This statement has been confirmed by numerical es-
k [Eq. (A.7)], we can, however, estimate the exciton binding{imates, which we do not give in this paper. It naturally

energy with the logarithmic accuracy, regardless of the shap{@!loWs, however, from a simple consideration, namely, that
of the trial function f(a&), where « is the dimensionless the contribution to the image potential due to other quantum

variational parameteg, = z/a} , andal, = #%e,, /€. wells or wires is proportional to the fraction of the volume
Let the trial function be normalized so that where the electric field is significantly redistributed, i.e., the
fraction of the volume occupied by the semiconductor.
Jm fz(g)dgfw £2(£)de=£4(0). The radiusR of the semiconducting wire, however, can
—w — differ from its geometrical radiuR, by a value of the order

Then the exciton ground-state energy can be expressed ad! th(_a iodine |on|c_re_1d|u§2| 18, R=Ro+R,, andR, can be
considered as a fitting parameter in the model. It cannot be

2 larger than the iodine ionic radius, which is approximately
Fr2()dé A
E(a) , J = 22 A
Ry* =a - In order to obtain a reasonable agreement between our
f f2(&)dé calculations and the experimentally determined exciton bind-

ing energy inpp-Pbl, we set the iodine radius at 2 A, i.e.,

£2(0) R R=4 A. The dielectric constant of the quantum barrigy, is
da —In| « 2 @) (15  taken equal to the high-frequency dielectric constant of pure
f f2(£)dé B piperidiniun?: e,=2.1.
T The crystal structure of semiconducting wires is very
where RY = pue*/2%e2, similar to the trigonal structure of Phlwhich is used, by the
1 . way, as a starting material for fabricating intercalated com-
N w=C+ > n+ f—2(o)f F f2]In|k|dk, (16)  pounds. Phlis a very anisotropic material because it is com-

posed of one-dimensional arrays of iodine and lead atoms

andF [ f?] is the Fourier transform of the functidi(¢). The ~ united by common iodine atoms in planar layers, and the
exciton binding energy can be estimated with the logarithmic@nisotropy axis is perpendicular to these layeirs.the pro-

accuracy: cess of intercalation, the chains are separated and the space
between them is filled with piperidinium molecules to form
Ee~4RY* In? E* (17) pp-Pblk. This similarity between the two structures allows
ag us to assume that the parameters oL, Rold of semiconduct-
Equation(17) is identical to the formula obtained in Ref. 4 NG WIr€s in pp-Pbl; should be close. Therefore, we take
for a thin quantum wire. ew=6.1.
As concerns the exciton reduced mass in the plane of
Excitons in the quasi-one-dimensional lead iodide-based Pbl, layers, the experimental data on the electron and hole
compound and in GaAs wires in asbestos nanotubes masses vary over a wide ran%)bl,’lzand the reduced mass is
In CsH; oNH,Pbl; compound, abbreviated gsp-Pbl;,  in the range of(0.1-0.5m,, wherem, is the free-electron

which is produced by intercalating piperidinium organic mass.
molecules into a Pl semiconducting substrate, excitons Figure 1 shows the binding energy and averaged length
with a very large binding energy estimated by experimentersf the exciton in quasi-one-dimensionap-Pbl; as a func-
at about 700 meV were observad. tion of the exciton reduced magscalculated by varying to

The structure opp-Pbl; is a superlattice of Pb-1 semi- minimize the energy, Eq14). The exciton binding energy is
conducting chains with an ordered dielectric medium ofup to 900 meV at a reduced mass©f0.1m,, which is in
CsH;oNH, molecules among thefnlodine atoms are clus- reasonable agreement with the experimental *détzking
tered around lead atoms to form octahedra, which have conmnto account that the exciton luminescence line width is quite
mon sides and thus are united in one-dimensional arrays. THarge, of the order of 230 meV Note that in the range of
distance between a lead atom and closest iodine atoms is 3arge u, the condition(3) does not hold. The potential energy
A on an average, therefore the geometrical radius of thén this case is notably larger than the kinetic energy, and the
chain(the distance between aratom and the chain a3iss  selected wave function given by E) is no longer appro-
Ro~2 A. The superlattice has a rectangular unit cell with twopriate.
semiconducting wires. Its dimensions atg=8.69 A and Figure 1 also shows parameters of the exciton calculated
d,=18.36 A, so that the wire radius is much smaller than thewithout the image potential, i.e., whes,=¢,, (dashed
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FIG. 1. Variational calculations of
(a) the binding energy antb) mean
length 2¥a of the exciton, as func-
tions of the exciton reduced mags
in pp-Pbly quasi-one-dimensional
semiconductor, allowing for image
potentials (solid lineg and without
them (dashed lines

lines). These curves demonstrate that the dielectric enhanceemiconducting quantum wire embedded in a bulk dielectric
ment effect of the exciton in a semiconducting wire is essenean be increased by the dielectric enhancement effect to 200
tial. meV when the wire radius is 20 A angl=2 (compare with

In recent years GaAs quantum wires filling cylindrical 24 meV in the wire without accounting for the image poten-
pores in asbestos nanotubes have been fabriafefihe tial and 4 meV in bulk GaAs
diameter of the channel filled with the semiconductor varies  Thus the dielectric enhancement effect of excitons in
between 20 and 100 A in different samples. Owing to thequantum wires is quite evident. The variational approach de-
effect of dielectric enhancement of quasi-one-dimensionaleloped for this model allows one to calculate exciton pa-
excitons, the binding energy may be dozens of times higherameters in quasi-one-dimensional dielectric structures. Cal-
than in bulk GaAs. No direct measurements of the bindingculations have been performed for specific examples of the
energy are available, therefore it is interesting to obtain a&sH,gNH,Pbl; intercalated semiconductor and GaAs wires
numerical estimate. in asbestos nanotubes.

Figure 2 shows the exciton binding energy as a function , . .
of the semiconducting-wire radius calculated variationally at W& acknowledge helpful discussions with V. S.
different dielectric constants, of the barrier(dielectrig la-  DN€Provski, E. A. Zhukov, A. V. Kvit, G. N. Mikhailova,
beling the corresponding curves. The semiconductor dielecY: V- Poborchi, A. M. Prokhorov, and A. P. Silin. This

tric constant,, and the exciton reduced mass are taken equal/O'k was supported by the Russian Fund for Fundamental
to those of bulk GaAs, namely, =13 and x=0.038n, Research(Grant No. 095-02-06062athe Nanostructures

X(m,=0.067n, and m,,=0.087m,%), respectively. The program financed by the Ministry of Science and Techno-
=0. . , . : :
curve fore, =13 corresponds to the case in which the imagd®dical Policy (Grant No. 1-041, and INTAS (Grant No.

charges are ignored. Thus the exciton binding energy in §4-2112.
E,.eV APPENDIX
0.8
e =1 Electrostatic potential
-
In a cylindrical configuration, the solutioa(r,rq) of the
0.6- Poisson equation for an electrostatic potential generated at
the pointr by a point charge at the poing can be expressed
as
0.4° % , o
2 ¢(r.ro)= f dke @ %0 X "D (k,p,po),  (AL)
— n=—oo
where ¥ is the angle between the vectgssand p,. If the
charge is inside the cylindep,<R, then
. - —— O, =(—1)"y| mnln(kpo)ln(kp)
10 20 40 60 80 100
R A kp)K(k <
In(kp)Kn(kpo),  p=po, R
FIG. 2. Variational calculations of the exciton binding energy in a GaAs In(kpo)Kn(kp), p=pg,]| p="
wire as a function of the wire radiuR at several dielectric constants of the
barrier. ©n=(=1)"yApln(kpo)Kn(kp), p=R, (A2)
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where

_ (1- pKy(KRKH(KR)
ol (KRIK L (KR) — 1, (KR)K(KR) ’

1 (KRIKH(KR) ~ 1 (KR)K (KR
M (KRK (KR — 1 (KRIK (kR (A3)

e €p

= =2, A4
Y= e T e (A4)

I, andK,, are the modified Bessel functios), andg, are the

2

e [kIR e maxp,po)
(I)O(k'p’po):_ﬁ_sb(l C) |HT

+O(7—]; (kR)? In(|k|R)>, (A7)

wheree=¢,, (if p, py=<R) and e=g, in the outside region,
andC is Euler’s constant.

YThe condition on the exciton size is even more strict, see(@delow.
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Field-induced phase transitions in magnetooptical films with a small positive anisotropy
constant
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We study phase transitions induced by a static magnetic field in magnetically uniaxial films with
a small positive anisotropy constant. The phase diagram of these objects is determined in
theH,—H, plane, whereH andH, are, respectively, the components of the magnetizing field
along and perpendicular to the surface normal. The stability boundary is located for all of

the main types of domain configurations observed: a simple stripe domain structure, a stripe
domain structure with periodic bending by surface distortions in the profile of the domain

walls, and hexagonal lattices of cylindrical magnetic bubbles.1997 American Institute of
Physics[S1063-776097)01801-3

1. INTRODUCTION main walls, where the walls are considered to be infinitely

The results of the investigations described in this pape];h'n_ andt ttr? ti:jave 3 colnstan:[[h surfai:ebetnergy thdensny
pertain to magnetically uniaxial films with an anisotropy ow™=const hat depends only on the angie between the mag-

constantg,>0 and an easy axis parallel to the surface nor-N€tization vector in adjacent domaih$lt is also assumed

mal. Among the enormous number of magnetically uniaxialthat the effective domain wall width i,,<d, whered is

thin film samples available to experimentalists at the preserH‘e period of the domain structure. The models of domain

time, the favorites are epitaxial films of magnetic garnetsStructures with “geometric” domain walls have been widely

This choice is dictated by the following considerations. First,uSed in the physics of magnetic phenomena in the early stud-

the parameters of the epitaxial films of mixed rare-earth irorfS Of inhomogeneous magnetic states, and interest in these
garnets can readily be varied by the appropriate choice diodels has not waned to the present tiaereview of the
composition and growth conditions, and therefore they caRresent-day state of the problem can be found in ReOge
exhibit nearly all possible types of domain structures thafnust. however, bear in mind that the domain walls in mag-
exist in any uniaxial ferromagnet. Second, the change in thgetlcally uniaxial f|_Ims are not smply planar m_terface sur-
state of these films in phase transitions can be observed d@ces Petween neighboring domains, but are in fact three-
rectly by ordinary polarization microscopy, since all the gar_dlmenS|onaI objects supporting a highly nonuniform vortical

nets have a rather large specific Faraday rotation in the vidistribution of theM vector (so-called “twisted” domain
ible and near infrared. walls; see Refs. 4 and)5Two types of domain walls are

A thermodynamic equilibrium distribution of the magne- POSsible: those with the same polarity and those with the
tization vectorM corresponds to the absolute minimum of OPPosite polarity of the domain boundarigse vectorM in

the free energy, which for the present case is equal to  the centers of adjacent domain walls are parallel and antipar-
allel to one another, respectivehStructures with opposite-

WZZWMZJ du[a(V-m)2—B,(m-n)>—2(m-h) pplarity_domain structures in thin films with infinite lateral
v dimensions are metastable.
In the problem we are considering, the model of geomet-
—(m-hy)] @) ric domain walls, even with3,>1, is inapplicable over the
with the standard boundary conditions on the film surfaceange of values I{j,h,)~(0,8,), corresponding to the
z=+L/2, wherelL is the film thickness &J||n), M is the  neighborhood of lines of second-order phase transitions
magnetization vectom=M/M; « is the inhomogeneous ex- first-order phase transitions close to second-gréfem the
change interaction constant, h=H/4=M and uniformly magnetized state to the state with the stripe do-
hy=Hyw/47M are the normalized external field strength main structure. The latter in the present case is a frozen-out
and the magnetostatic field, respectivBlyin the general soft mode®*!i.e., the distribution of the magnetization vec-
case, variation of expressidf) yields an equation that can- tor in the film can be described by simple harmonic func-
not be solved analytically; approximation methods are basetlons, and the partition of the magnet into domains and do-
on the Ritz variational principle with trial functions chosen main walls is no longer meaningful. We note that the
on the basis of experimental data. function M(r) undergoes no qualitative changes due to the
For B,>1, a good approximation over a wide range of increase in the magnetic field near the line of phase tran-
the variables I ,h,), where h=H;/(47M) and sitions, but the vortices, which in zero field were localized in
h,=H, /(47wM), are the normalized components of the the narrow domain walls, are broadened to the point of being
magnetizing field parallel and perpendicular to the surfaceomparable in size to the period of the domain structure. A
normal, is the approximation of structureldgeometri¢ do-  similar situation has also been observed in the demagnetized
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problem encounters considerable difficulties, and is not very
successful, despite the many attempts to choose a trial func-
tion adequate to describe the distributionMfover a wide
range of film parametef®.The use of inadequate trial func-
tions frequently leads to absurd conclusions, for example, the
existence of a phase transition for a vafgig=1.2% For bipe-
riodic domain structures, which under certain conditions also
exist in magnetic uniaxial films with a positive anisotropy

a constant(see belowy, no success has been had in calculating
the distribution profile of the magnetization even by com-

< puter simulation.

: Unlike films with strong anisotropy8>1), for which

E the phase diagram in thé(,h,) plane has been studied in

; great detail both experimentally and theoreticabge, e.g.,

E Ref. 10 and the literature cited thergithe analogous prob-
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lem for films with weak anisotropy is essentially unsolved,
although their domain structures have been intensely studied
experimentally over a period of decades. The majority of the
experiments were carried out on metal filrtison, nickel,
cobalt, Permalloy, and other allgy®n single-crystal wafers
of magnetoplumbite and barium ferrites, and epitaxial films
of spinel ferritegthe references to the corresponding original
papers can be found in Refs. 13-18, 20 and Zhe iron
garnets have been studied in only a few publicafitr§
and the special features of domain structures in garnet films
with weak uniaxial anisotropy have also been discussed in a
monograpt.

c It has been established that in magnetically uniaxial

films with a small value of3, with no applied magnetizing

FIG. 1. Distribution of the magnetization in domains and domain walls of field, the following types of ordered distributions of the vec-
magnetically uniaxial films of thickneds=20,, with 8,=1.5(a), 1.1 (b), tor M can exist(see Fig_ l |—a uniformly magnetized
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and 0.7(c) state, which corresponds to the absolute minimum in the
thermodynamic potential only in sufficiently thin films
(L<Lgsq); ll—a stripe domain structure with vertical stripe

state with a lowered anisotropy constg®f. A most con- domain walls, which occurs fdr ;<L <Lg,;; lll—a stripe

vincing demonstration of this statement was recently obdomain structure with in-phase harmonic surface distortions
tained by Antonov and coworkers in computer calculationsof the domain wall profile (%, <L <L,,); IV—a complex

of the equilibrium distribution oM (r) for a class of singly domain structure with stripe domains penetrating the film
periodic functions by the method of dynamic iteratfdrt®  alternating with conical domains that do not penetrate; this
By way of example, Fig. 1, borrowed from Antonet al,, occurs only for thick films L>L,,). Experiments carried
shows the distribution of the transver&e the domain wall ~out with wafers of magnetoplumbite have shéfmat when
surfacey components of the vectdd in films with different  the thickness is changed, the transformation of a domain
anisotropy constants and the same thickiesg0l,,, where  structure of type Il to one of type Il proceeds as a second-
l,, is the so-called characteristic length of the material, equabrder phase transitiofthe amplitude of the harmonic distor-

to tions of the domain wall profile goes to zero as
®) L—Lg,+0), while the transformation of a domain structure

| = Tw —2m\aB,. of type Il into type IV proceeds as a first-order phase

W 2mM? ! transition’ The phase transitions between the various do-

main configurations when the orientation and the strength of
the magnetizing field are changed have scarcely been studied
at all (with few exceptions

Here o =472M2 /a8, is the surface energy density of a
simple 180° Bloch domain wall.

Figure 1 shows that the subdivision of a magnet into
domains and domain walls is entirely meaningless if
Bu=<1. Moreover, when the anisotropy constant decreasea,_ EXPERIMENTAL CONDITIONS
those regions that, fg8,>1, belong to a domain wall, be-
come considerably wider than the regions that were initially ~ To study the field-induced phase transitions between the
regarded as domairisompare Figs. la, Jcand the distri- various domain structures, we selected as samples epitaxial
bution of the magnetization vector throughout the volume offlms of magnetic garnets with the composition
the film is highly nonuniform. For these reasons the use ofBiLu);Fe0;,, in which, with single-crystal wafers of
the Ritz variation principle for solving this micromagnetic gadolinium—gallium garnet G&aO,, used as the sub-
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FIG. 2. Main types of ordered domain structures in magnetically
uniaxial films forH=0.

N

1

.
.,

.

s

strates, one can relatively simply obtain low values of the  The saturation magnetization of the films wa4800 G,
induced uniaxial anisotropy constant. In addition, these filmshe Curie temperaturé: was 560 K, and the specific Fara-
have a low optical absorption coefficieatand a high spe- day rotationég, which varied only slightly with film thick-
cific Faraday rotatio at visible wavelengthée=20 cmi'  ness, was in the rangé—1.9x 10* deg/cm at a wavelength
and f=1.5x 10" deg/cm at\=0.63 um), which makes it )\ =0.6328 um. When the samples were magnetized by a
possible to monitor visually in real time the changes in thefie|d along the normal and by a field perpendicular to it, a
form of th_e domain structure du_ring phase transitions_. field HY =(1500-1750 Oe andH* = (24-200 Oe, respec-
The films of the lutetium—bismuth system used in ourgyely, were required to erase the domain structure in the type
experiments, with a thickness Am<L<30 um, were | ims while in type Il films these fields were, respectively,
grown by isothermal liquid-phase epitaxy 6hll)-oriented (1600—1750 Oe and(300-500 Oe, where the saturation
gadolinium—gallium garnet, with zero film—substrate Iatticemagnetization of the films, as a rule, increased with increas-

mismatch obtained at the composition;LyBio.~6;0;,. To ing film thickness. For a preliminary estimate of the uniaxial

prepare the films we used two fluxes of garnet-forming ox-_ = .
ides: B,O, (type | film) and PbO—BiO; (type Il film). For anisotropy constant we used the relatigp=H7/Hj" . The

the growth of the type | films we added a small amount Off|Im thickness was determined from a transverse cleave by

magnesium oxide MgO to the charge, in addition to themeans of a microscope with a micrometer ocular, and the
Lu,O; and FeOs, to reduce the opticai absorption of the geometrical parameters of the domain structures were mea-

film. The synthesis temperature for the type | films was varSuréd either by the same means or from the diffraction pat-
ied between 780 and 790 °C, and for the type Il films pe-terns. The absolute error in determining the parameters char-
tween 720 and 730 °C, and the substrate was rotated in tfterizing the periodicity of the magnetization vector was no
melt at~100 rpm, with the direction of rotation of the rod higher than 0.0%.m in the two cases.

changed every 10 rotations. The growth time was dictated by ~ The investigations of the magnetic phase transitions in
the required thickness of the film and was from 15 s to 48he films were carried out at room temperature by a magne-
min, with the upper limit corresponding to a film thickness of tooptical method like that described in Ref. 10. The light
about 30um. We were not able to grow thicker films by from the sourcgan incandescent lamp or a las&ras sent
extending the growth time. though a polarizer and focused by a lens on the surface of the
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FIG. 3. Geometric parameters of do-
main structures(d—HM, A—O as
functions of the thickness of a
Lu, 1Big dFe504, film, with the thick-
ness varied by growtte) and by me-
chanical polishingb).

sample, which was affixed to a mount by which it could bethe first group of experiments we grew a series of films of
rotated relative to the optical axes of the system by an arbidifferent thicknesse§1-30 xm), while in the second group
trary angle¢y . The image of the domain structure in the of experiments we used a single film with an initial thickness
films was examined by a polarization microscope with itsof 20 um, which then was reduced in stages to L by
objective placed within the mount containing the sample mechanical polishing. The results fo¢L) andA (L) for the
while the analyzer and the ocular were placed independentlirst and second groups of experiments are shown in Figs. 3a
on the optical bench. To generate the magnetic field we usegnd 3b, respectively, on a log—log plot. The critical thickness
an electromagnet with two pairs of orthogonal coils, with| * = corresponding to the onset of harmonic surface distor-

which, by varying the operating current, we could change thgjons in the domain wall profile, was about&m in both
angle 6, between the direction of the magnetic field and theggges.

film surface and select the necessary relation between the approximatingd(L) andA (L) by power lawsd o L%
projgctions_oﬂ-l on the normal anq on the film surface. The gnd A o L and using the method of least squares, we find
maximum field strengthlly andH  in the working gap were  {hat for L<L* ; the exponenty is equal to 0.64 for the

10 kOe and 2 kOe, respectively. To measure the magneligiy,s with thicknesses determined by varying the growth

fields we used a sensitive transducer, which in its operatingme and 0.68 for films whose thickness was varied by me-
range gave an absolute error of less than 0.1 Oe; hOWeve(ghanical polishing. In both cases these values are quite dif-

the nonuniformity of the film and the resultant diffuseness offerent from that predicted by the theory of Kittety=0.5
the phase transition reduced the accuracy in determining thlgor films with a wave-like distortion of the domain wall
position of the lines on the phase diagram, especially for the

. - S . rofile (L>L%,,), the value ofay in the first case increased
first-order phase transitions. A statistical analysis of the rep ( cr1) %d

. . slightly (to 0.68 and in the second case it decreased to 0.54.
sults of a sampling of experiments showed that for th his difference can be accounted for by the presence of sur-
second-order phase transitions, the error in the critical field y P

was no more than 1 Oe, while for first-order phase transitionf"che layers formed in the epitaxial films at the final stage of

over the range 200—-2000 Oe of the magnetic field, it WasgrOWth’29 \.NhiCh i!q the Sec"r?d group (.Jf expe_riments were
2_20 Oe removed in the first mechanical polishing. This same cause

presumably explains the substantial difference in the expo-
nentsa, in the functionA (L) for the experiments with the
3. EXPERIMENTAL RESULTS first and second groupsee Fig. 3.

In the absence of a magnetic field the ground state of Although the experimental data in Fig. 3 are well repre-
these films corresponded to a non-labyrinthine domain strucsented by a straight lin@n the log—log pldt we cannot rule
ture with randomly oriented domain walls, as in the filmsout the possibility that the functiond(L) and A(L) might
with 8,=1, and an ordered two-dimensional lattice of stripenot be described by a simple power law, but by more com-
domains with modulated or unmodulated domain wélle-  Plicated functions. We can state with confidence only that
pending on the thicknessThe reason for this result is the the nature of the functional dependert{¢) changes when
large projection of theM vector on the film surface, which the harmonic distortions of the domain wall profile appear in
prevents kinking of the domain walls. Structures with addi-the simple stripe domain structure.
tional closure domains were not observed, since the thickest The form of the phase diagram on tHe — H, plane for
films that could be grown by the liquid-phase epitaxy methodilms with a small uniaxial anisotropy constadt, depends
were still thinner tharl,,. on the thicknes$ and becomes more complicated with in-

To study how the period of the stripe domain structure creased thickness. An example of the increased complexity
and the period\ of the wave-like distortions in the domain of the diagram for a type I film having an anisotropy constant
walls on the sample surface depended on the thicknes®  $,~0.08, a thicknes&},,<L=10 um<L,, and a com-
carried out two groups of experiments on type Il films. Forposition Lu BigoFes 9gM0o o012 (designated No. )1 is
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H.Oe responding to the regions of stability of the domain struc-
240‘_ tures of various kinds were determined visually by observing
the development of the magnetic state of a small
(=100%x 100 wm?) region of the film? The first and sim-
plest step is to locate the curve of loss of stability of the
uniformly magnetized statdthe curve with the arrows
U—L;, U—=L,, and U~9) and to identify the type of
nucleating domain structure. Then we must find the bound-
aries Iy and L, of the region of stability of the hexagonal
magnetic bubble lattice. To do this, we first establish the
saturation magnetic field in this direction in order that the
angle 6y correspond to the nucleation of a lattice of mag-
netic bubbles with the maximum domain densifgr ex-
ample, pointsF, , on the diagram in Fig. 4 for the lattice
L,). and then make the transition from the uniformly magne-
tized state to the magnetic bubble lattice by a small reduction
in the fieldH . Then by a coordinated variation in the fields
Hj andH,, we move to a point with other coordinates in
such a way that the trajectory of the points on the diagram
FIG. 4. Phase diagram of a film of LuBiodFe,0MgooO1. With  gre as close as possible to the curvesU; (or U—Ly). In
$,~0.08 andL =10 um (designated film No. jifor ¢, =30 deg. this way we ensured the maximum ordering of the magnetic

bubbles without excess change in the density of bubbles

shown in Fig. 4 with the following notation: U is the uniform (0ver the equilibrium valueby way of collapse and without
state, S is the stripe domain structure with plaammodu-  transformation of the round magnetic bubbles into elliptical
lated domain walls, SM is the stripe domain structure with ONes.
modulated domain Wa”S, anul and |_2 are the Opposite_ After a ClOSE'paCked lattice of magnetic bubbles is ob-
polarity lattices of magnetic bubbles; the arrows on thet@ined, itis necessary at each point of the diagram to increase
curves show the direction of variation of the field. The originthe magnetizing field smoothly until the bubbles collapse
of the coordinate system is at the center of symmetry of théthis corresponds to the points on the curve—U (or
diagram; therefore the stability boundary of the various doL2—U), while maintaining the angléy in such a way that
main structures are not shown for negative valuebl pf the image of the point on the diagram moves approximately

In the demagnetized state the film, No. 1 contains a peon the curve U-L; or U—L,. To obtain the next point on
riodic stripe domain structured& 3.9 wm) with a modulated  the curve L—U or L,—U, all the operations described
domain wall (A = 1.7 um), which maintains its stability even above must be repeated, and so on. A similar procedure of
over a certain range of the external fiettl The wavelike —multiply repeated operations to create the close-packed equi-
surface distortions in the profile of the domain boundariedibrium lattice of magnetic bubbles is also used to determine
have disappeared from the line SM5 and the domain struc- the other stability boundary corresponding to the transition to
ture has become a simple stripe structure. The subsequeife stripe domain structure, i.e., the development of an ellip-
evolution of the collection of domains as the magnetic fieldtical instability. The only difference is that this transition
is increased depended on the direction of the field: for smalpccurs by reducing the magnetizing field.
anglesé#, we observed a transition into the uniformly mag- ~ The region of existence of a stripe domain structure is
netized statgon the curves S:U), and for large angles, a determined in a similar way. In zero field}, a stripe domain
transition to a hexagonal lattice of magnetic bubliles the  structure is nucleated with a period close to the minimum
curves S»L; and S—L,). possible, and then a transition is made close to the curve U

If we start with a uniformly magnetized state and reduce— S to any other desired point. Then by an increase in the
the magnetic field, then the type of nucleating domain strucfield strength we obtain either a transition to the uniformly
ture also depends on the directiontéf for H near the sur- magnetized statéthe point on the curve -SU) or to the
face normal, a lattice of magnetic bubbles is fornfedrves  hexagonal magnetic bubble lattiCde point on the curve S
U—L, and U—L,), while for small angle®,, a stripe do- —L;,. The direction of the field must correspond to the
main structure is formedcurve U—S). The period of the normal to the desired curve, since that ensures the greatest
nucleating magnetic bubble lattice is maximum at the pointaccuracy in the measurements. When the field is reduced the
E on the diagram11.3 uwm), and decreases monotonically point determined is on the curve-SSM corresponding to
(to 2.5 um) as the region of nucleation of the stripe domainthe suppression of surface modulation of the domain wall
structure is approached. The change in the type of nucleatingrofile in a simple stripe domain structure. The procedure for
domain structure occurs smoothly, and over a certain rangéetermining the location of the curve SMS does not re-
of magnetic field strength and orientation a mixed configu-quire explanation; we merely note that the initial step in this
ration exists: alternating blocks of stripe domains and magprocedure is the nucleation of a modulated stripe domain
netic bubbles. structure in zero magnetizing field.

The locations of all the lines in the phase diagram cor- WhenH=0, one frequently observes some preferred di-
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FIG. 5. Dependence of the geometrical parametdrs-[0J,A—O of the
domain structure on the field, for film No. 1.

through which occur transitions between the stripe domain

. | hich th e d . I ient dstructure and the lattice of magnetic bubbles. Second, this is
regtlons along which the s_trlpe omain walls are orientedy, . region of the diagram where polarization reversal of the
This preferred orientation is due to a cubic and, IoOSS'blydomain walls occurs with a change in the direction of the
orthorhombic anisotropy. For a sufficiently large components 4 H
L .

H, not coinciding with the orientation of the naturally pre- The transitions SM-L, and SM—L, are not observed
ferred directions, the domain walls become reoriented. Whepg;, . out-of-phase distortions are required to nucleate mag-

the magnetic field is varied over ranges corresponding to thﬁe’[ic bubbles from a stripe domain structure. The reverse

INNET regions of the phase dlagram, thg period ,Of th? Str'p?ransformation, nonetheless, does take place, since harmonic
domain structure and of the two-dimensional lattices is reoryistortions of the profile of the closed domain walls are not

ganized by the generation, annihilation, and motion of Magt, pidden. The phase transitions5 and S-U are close to

netic defects such as dislocations and disclinations. In somg,. - order. and the others are close to first order. Unfor-

cases, multipl_e clusj[ering of magr_letic _dislocg_ti_ons oceurs ir?unately, there is no sufficiently precise experimental crite-
the fo_rm of dislocation walls. V_arlous |nstab|_||t|es of stripe rion for the identification of first-order phase transitions in
domain structures also occur with the formation of penetraty, .\ i By=1, unlike the case witl8 > 1, where an in

u— - u ’ -

g sinusoidal or sawto_oth distortions in the .doma.'n bour?d’herent attribute of these transformations is the formation of
aries. The transformation of hexagonal lattices into strip&n. <o called “mixed state” in the nucleation of the domain

@mam_ struct_qreg takes place V|a_the development of an e structure, which is characterized by the coexistence of blocks
liptical instability in round magnetic bubbles. In summary,

we note that all these processes are similar to those observ
in films with B,>1.1°%031 An important difference, how-
ever, is that in the films with a loy8,,, global amorphization
of the ordered stripe domain structure does not occur in th
vicinity of the phase transitiofbut is typical of films with a
dominant uniaxial anisotrop$), since the effective stiffness
of the system is high.

of opposite-polarity magnetic bubbles and patches of stripe
88mainsi®3 Nevertheless, other very good criteria can be
used, including the fact that, first, the second-order phase
transitions occur with essentially no hysteregisthin the
?iccuracy of the measurementand second, they are charac-

Figure 5 gives an idea of the modification of the geomet- H, Ce
ric parameters of stripe domain structures as the field 400} s
strengthH, is varied; this figure also showd(H,) and i s 3 "
A(H,) for film No. 1 for Hj=0. It can be seen that the i
period of the domain structure depends strongly on the field 300¢
strengt® and falls off with increasing field, whereas the pe-
riod of the wave-like distortions of the domain walls reacts
only weakly to the change in the magnetic field and increases 200 . . +
with increasingH | . - +

The dips in the curves-SL; and L1j— S near the hori- ok *
zontal axis(the point G and the apex of the curve-£L SM in « ¢ .
Fig. 4 may be due to the following causes. First, this region o
of the diagram corresponds to symmetric stripe domain ob—. . ‘ . ;
structures @, =d,=d/2, whered,; andd, are the widths of 10 15 20 25L - 30

the domains with different directions of the projection

M,); here iS_ where the g_re_at(?St difficulty is 9ncc_)untergd INFIG. 7. Position of the pointA(®), B(+), C(0) andD(*) as functions of
the generation and annihilation of magnetic dislocationsihe thickness of a film of composition LiBig gFe;015.

161 JETP 84 (1), January 1997 Lisovskil et al. 161



240F b

FIG. 8. Schematic plot of the theoreti-
cal phase diagranffor 8,>1) in the
neighborhood of a tricritical pointa)
and the analogous part of the experi-
mental phase diagram for film No. 1

(b).
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terized by nucleation uniformity, the disappearance or transin the phase diagram, which can scarcely be seen in highly
formation of the domain structure over the area of the film,anisotropic uniaxial films. We now discuss this problem in
and a relative insensitivity to microscopic defects. greater detail.

The vertical axis is not a symmetry axis in the diagram  The phenomenological theory of orientational phase
because of the effect of the crystallograptgabic) and in-  transitions in films that has been developed ®>1
duced orthorhombic anisotropy. The change in the positiorshow<'1? that the direct nucleation of hexagonal lattices of
of the film relative to the fieldH, , which can be character- magnetic bubbles from the uniformly magnetized state is
ized by the azimuthal rotation angk¢, from a reference possible only for3,—«, and forh; # 0 the transformation
direction, does not result in any qualitative changes in thevccurs as a first-order phase transition. The point with coor-
form of the phase diagram. The entire diagram is topologidinateshy=0 and h, ~ g, corresponds to a second-order
cally similar, for various values of the anglg,, and the phase transition and is multicritical, since the line of phase
only change is in the position of the characteristic points oftransitions between the uniformly magnetized state and the
the diagram(the pointsA—G in Fig. 4). By way of example, stripe domain structure terminates there. For finite values of
Fig. 6 shows a plot of the coordinate of the polt(the  B,, the line of stability loss of the uniformly magnetized
vertex of the diagram with the vertical tangewersus the state relative to a transition to a lattice of magnetic bubbles
angle ¢ ; the points that are shown are experimental datgthe U—L, ;line in the notation of Fig. Asplits into a line of
and the solid curves are the approximating Fourier seriess second-order phase transitions between the uniform state
which for H, contain only even harmonics, while fé4)  and the stripe domain structufhe U— S line) and a line of
they contain only odd harmonics. For films with a large stability loss of the latter relative to a transition into a mag-
uniaxial anisotropy constant, similar curves for the points ofnetic bubble latticéthe line S—L; ;) , while the multicritical
uniform domain structure nucleation corresponding to gpoint divides into two tricritical point®k; andR, located on
second-order phase transition from a uniformly magnetizedhe curve U-S symmetrically about thl, axis, where all
state into a nonuniformly magnetized state are used to detethe effects described here occur more intensely, the lower the
mine the anisotropy constant, and the orthorhombic and cuwalue of 8,. Finally, the phase diagram near the tricritical
bic anisotropies are determined by comparison with the repoint assumes the form shown in Fig. 84 we now exam-
sults of a calculation®33 In the present case this cannot be ine in detail the structure of the phase diagram for film No. 1
done because of the lack of an analytic theory. in the neighborhood of, for example, tifg point (Fig. 8b

As the film thickness is steadily reduced, the only quali-then it becomes obvious that the main conclusions of the
tative change in the phase diagram is the disappearance thfeory developed for highly anisotropic uniaxial films pro-
the region of existence of a stripe domain structure withvide a qualitative explanation of the properties of the phase
modulated domain walls in the range of thicknesseddiagram for films with a low value oB,,.

L<LZ,,; the positions of the other points on the diagram  This work was carried out with the financial support of
depend only slightly on the thicknegsig. 7). the Russian Fund for Fundamental Resea(loject No.
96-02-16082-pand Korean Science and Engineering Foun-
dation, under the auspices of the Korea—Russia Joint Re-
search Program. The authors are grateful to L. I. Antonov for

A comparison of the form of the phase diagram for filmssharing with us his results on the calculation of the magne-
with 8,<1 (Fig. 4) with that for 3>1 (Fig. 2) of Ref. 10 for  tization distribution and for valuable discussions.

a field-induced phase transition shows that they are topologi- Certain results of this work were published in abridged
cally similar. This cannot be regarded as unexpected beform in Ref. 34.
cause, as mentioned in the Introduction, the distribution of

magnetization in the films does not undergo any qualltatlv%)By magnetostatic we mean the field satisfying the equations of magneto-

Changes Whe.rﬁu. passes through unity. Moregver, in films gtatics that is induced by the desired magnetization vector, and that coin-
with weak uniaxial anisotropy, one can see “fine structure” cides with the demagnetizing field inside the sample and the fringing field

4. CONCLUSIONS
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Anisotropic structure of the gap in high- T, superconductors: competition between S-
and d-type symmetry

E. A. Pashitski and V. I. Pentegov

Institute of Physics, Ukrainian National Academy of Sciences, 252650 Kiev, Ukraine
(Submitted 28 May 1996; resubmitted 1 August 1996
Zh. Eksp. Teor. Fiz111, 298-317(January 199y

We show that the anisotropic structure, observed in angle-resolved photoemission spectroscopy
experiments, of the gap in high: superconductors based on layered cuprate metal-oxide
compounds is the result of the strong anisotropy of the electronic spectrum in the plane of the
layers, an anisotropy caused by the hybridization between the overlapping broad and
anomalously narrow bands. Depending on the values of the electron—phonon coupling constants
and the Coulomb repulsion, which in certain conditions is balanced almost perfectly by the
attraction caused by the electron—plasmon interaction, eithed,thg> or thes,, symmetry is
realized in the superconducting order parameter. When the ifitiasymmetry of the

band spectrum of the B1212) single crystal with a superlattice or thg23) single crystal with
one-dimensional chains is broken, an anomalous temperature dependence of the anisotropic-
gap width A is observed, and this dependence differs dramatically from the stamd@ryl
dependence of the BCS theory. ®97 American Institute of Physics.

[S1063-776(197)01901-X

1. INTRODUCTION pounds. For this reason the Coulomb repulsion between elec-
trons in the given case is not weakened, in comparison to the
Recently experiments in angle-resolved photoemissior|ectron—phonon interaction, by the large Bogolyubov-
spectroscopythe ARPES method ° involving single crys-  Tolmachev logarithm Mgy /@pp), a@s it is in common
tals of layered cuprate metal-oxide compounds of theyperconductors: and the effective coupling constaitis
Bi,Sp,CaCuQ+0g. , and YBaCwO;_;type have revealed gqyg toX jn— uc , Wherel,y, is the dimensionless electron—
a strong anisotrgpy in the electronic spectrum and Fhe SUP€Fhonon coupling constant, ang: is the Coulomb repulsion
CO”dUCt'”gl gap in the plane é)f the Cpl@yers. In particular,  cqnstant. Since the screening of the Coulomb repulsion is
Shenet al” and Dessaet al” used the ARPES method 10 \yeax and there is no contribution from transfer processes in
study cuprate metal-oxide compounds with hole conductiVyg gjectron—phonon interaction due to the small value of the

EY’S c YB?§§307*5(323|)§.S c CY%‘ZCU“Z%TS(RA')& Fermi momentumKg, < w/a), it is difficult to expect a high
flz ;2 UOG*tXrE FD’ .aln | bhrztg b 8”'5 2, arlﬂ t,,value forT., which with allowance for the root singularity in
ound near e ermi level what became Known as Tl -y, o density of states is given by the relationsfijp=E;\?

(nondispersivkbands narrower than 45 meV in the vicinity (see Ref. § without any additional attraction mechanism

of the symmetricY- and M-points near the edges of the :
S 1) . which to a great extent would balance the large valugof
Brillouin zone:’ More accurate measurements by King . ; 14
7 8 : In particular, the retarded electron—plasmon interacifort:
et al." and Gofronet al.,” who used polarized beams of syn- . . o
with low-frequency collective excitations of the electron

chrotron radiation with high energy resoluti@oetter than 3 i ed b tic ol d ic di
meV), revealed that these bands are saddles with an infinitgensfI y(excited by acoustic plasmanand an acoustic dis-
persion law, could produce such attractfdn.

effective mass in th€—M direction for bismuth crystals and X o X ) )
In their photoemission experiments with high angular

in theI’'—M direction for yttrium crystals, and with a quasi- . - 16 _ .
resolution, Dinget al.”® studied a B{2212 single crystal and

one-dimensional electronic spectrum with a positive effec- * k ) \ ¢
tive mass in the perpendicular directions. According to Abri-discovered anisotropic structure in the superconducting gap

kosovet al,®X° these quasi-one-dimensional sections of then the plane of the@—b) layers with maxima of different
spectrum and the related Van Hove root singularities in théizes in the directiond’~M, I'=X, and 'Y and deep
electron density of states are the reason for the Tigof the mlnlma(almost rgachlng zejan certain intermediate direc-
superconductivity transitionT,=100 K, due to ordinary tions. As noted in Refs. 17 and 18, suchdavs. 6 depen-
Cooper pairing caused by electron—phonon interactiondence does not agree with the modetieivave Cooper pair-
However, the width of the saddle sections observed by Kingng of current carriers because of their interaction with spin-
et al” and Gofronet al® below the Fermi level, a width cor- density fluctuations?~>*a model that predicts the existence
responding to the Fermi enerdst,~20—30 meV, is com- of maxima in the gap size in thE—M direction and zero
parable in order of magnitude to the width of the superconvalues forA in the'=X andI'-Y directions.

ducting gap in highF, superconductorgA,=20 meV as Ferenbacher and Normdnhave analyzed the aniso-
T—0), and is much smaller than the characteristic energy ofropic structure of the superconducting gap(d) in
high-frequency optical phonons corresponding to vibration$i,Sr,CaCyOg.,  single crystals, observed by Direg al. '

of oxygen ions(»,,=50 me\) in cuprate metal-oxide com- on the basis of a phenomenological BCS model with an
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electron—electron interaction potential of a special type,
which reflects the symmetry properties of the crystal lattice
and can be written as a linear combination of separable po-
tentials, V(k,k")==V,%; (k)% k'), where the functions
7,(k) form the basis of an irreducible representation of the
symmetry group C,,. As Ferenbacher and Norman
showed.’ the best agreement with the experimental data of
Ding et al*®is achieved in the case of singkgt, wave pair-
ing, with the gap parametek(k)~cosk, cosk,, although
such an approximation cannot describe the asymmetry of
A(6) in different quadrants of the Brillouin zone, an asym-
metry related to the superlattice in the-Y direction with a
wave vectorQ~0.21(w/a,m/a), wherea is the lattice con-
stant in the plane of the layefsNormanet al® arrived at
the same conclusion as a result of a detailed analysis of vari-
ous types of Cooper pairing, includinty2_2-wave pairing ~ FC. 1. Dispersion of the wide @2-band E, (k, ,k,) in cuprate layers of
. - . - - CuG; att;=1 eV andt;=0.8 eV.
with an anisotropic gap (k)~cosk,—cosk, in the field of a
periodic superlattice potential and with allowance for layer-

to-layer  anisotropic s*  pairing,  for  which  tion petween electron—electron attractiécaused by the
A(k)~cosk,+cosk, . electron—phonon and electron—plasmon interaclioasd
However, recent publicatiofi$** reported an error in  Coulomb repulsion, both symmetries of the gap, dhe >
setting up the ARPES experiment of Refs. 16—18 and in thgymmetry and the,, symmetry(or thes* symmetry can be
subsequent interpretation of the experimental data. Measureealized, and because of the dependence of the coupling con-
ments of the superconducting gap in thequadrant of the  stants on the carrier concentration, a transition from one type
Brillouin zone were made with the synchrotron radiation po-of symmetry to the other is possible as doping increases. We
larized in thel'—X direction, while the selection rules for the also show that when th€,, symmetry of the electronic
matrix elements forbid the photoemission of electrons in thepectrum is broken because of the emergence of a superlat-
I'=X direction for such polarization. Hence the gap maxi-tice in Bi(2212 or because of formation of ordered one-
mum observed in this direction by Direg al®is an artifact,  dimensional (D) chains in Y123, the temperature depen-
caused by parasitic reflexé€ghosts”) that are related to the dence of the gap size may become anomalous, differing

transfer processes on the periodic distortions of the crystairamatically from the standard dependenceAdf in the
(superlatticg in the Y direction. BCS theory*!

More accurate measurements by Detgal > of the gap
in the X- andY-quadrants of the Brillouin zone with the light 2 THE STRUCTURE OF Bi(2212) AND Y(124) SINGLE
polarized in thd"—Y andI"—X directions, respectively, have CRYSTALS
shown that there is no superconducting gap along the diago- . L .
i fte Bilun zone, i suggedts» symmery 4% A1 4 Iesiasion oy S 1 i e
in the order parameter. An independent argument in favor of. P P

L the M- and Y-points of the Brillouin zone in the electronic
thed-wave type of Cooper pairing in highg superconduct- (0 oo Bi2212 and Y(123 single crystals within an
ors is the result of interference tunneling experiments in ob-: P 9 y

xtremely narrow energy randéess than 20 me)/can be

serving a spontaneous Josephson current in systems of tfje e ; .
SQUID typ&>2 and in generating half-integral magnetic- e result of hybridization between the overlapping wide and

L : anomalously narrow R-bands. Indeed, let us assume that
flux quanta in rings with an odd number of weak boAHS ) ) » . . )
. near the Fermi level, in addition to a fairly wide conduction
Note, however, that thd,2_,> symmetry in the super-

conducting order parameter is not a firm indication of a Spepand(wder than 1eV caused by the overlap of, and hybrid-

cific mechanism of Cooper pairing of current carriers and, i jzation between, thel,z_y2 orbitals of the copper ions and
. perp 9 - ' Mhe py y Orbitals of the oxygen ions in the plane of the GuO
particular, cannot serve as proof of the validity of the mecha; D and characterized by the following dispersion law

nism of highT . superconductivity suggested in Refs. 19—21,'?3{9er :
in which superconductivity is caused by the exchange oé e
virtual quanta of spin-density excitatiojparamagnonsin E1(ky,ky)=—t;i(cosk,a+cosk,b—2)
an almost totally antiferromagnetic Fermi liquid. ~

In the present paper we show that the extended saddle- +y(cosk,a cosk/b—1), @
like anomalies observed near the edges of the Brillouin zonwith a andb the lattice constants in the plane of the layers,
in the Bi(2212 and Y(123 single crystal$® may be caused there exists a much narrower batmhrrower than 0.1 eV
by hybridization between overlapping wide and narrol-2 caused, for instance, by the slight overlap of thg2_,2
bands near the Fermi level. This leads to strong anisotropy afrbitals of the copper ions Etiwith a similar dispersion law
the cylindrical Fermi surface, which tentatively can be sepa- _ _
rated into “electron” and “hole” sections with positive and Ealki ky) = ~ta(coskatcosk,b—2)
negative curvaturéeffective masg As a result of competi- +1,(cosk,a cos kyo—1)+E,, (2

R
i ¢
\‘\\\\\\\

S
Ry

\
\

N

RN
R
SO0

3
oS

N )
e
W
ety
W

8

165 JETP 84 (1), January 1997 E. A. Pashitskii and V. I. Pentegov 165



FIG. 2. (a) Dispersion of the lower
hybrid_branchE_(k, k,) at t;=1
eV, t,=0.8 eV, E;=03 eV,
F t,=0.016 eV, t,=0.032 eV, and
|V|=0.025 eV.(b) Dispersion of the
lower branch along the three princi-
pal directions in the Brillouin zone.

X M r
(m,m) (m,0)

where t,<t;, T,<t;, and E, is the distance between the into “electron” and “hole” sections corresponding to the
minima of the overlapping band&€,>0). Then the elec- hybridization between different orbitals of the wand G~
tronic spectrum that emerges as a result of hybridization beons in the plane of the CuQayers.
tween bands$l) and(2) is given by the following expression: By selecting the parameters in a certain way the model
spectrum(3) with (1) and (2) can be made to agree both
1 quantitatively and quantitatively with the experimental
E. (ke ky) =5 [Ealku ky) +Ea(ke ky)] datd ~° for Bi(2212 near theM-points and for Y123 near
the Y-points of the Brillouin zone. Note that for a spectrum
1 with a single wide D-band(see Fig. 1there can be no flat
= \/Z [Ea(ky,ky) = Ea(ky -ky)]2+ Vil (to within 102 eV) extended saddle-like sectiofsbserved
3 by King et al” and Gofronet al®) in the spectrum for fairly
broad regions of the Brillouin zone. These saddle-like
whereV,, is the matrix element of the interactidrepulsion _ano_mahes emerge OT"V in the case of crossing and hybrid-
ization between a wide band and an anomalously narrow
of crossed branches. 2D-band  wh lati i d d
Figure Za) depicts the dependence of the energykgn and whose relative posilion depends on many
andk, for the lower branchi_(k,,k,), of the hybrid spec-

parameters—in particular, on the electrostatic interaction of
trum (3), and Fig. Zb) the dispersion relation of this branch the negatively charged ion clusteSu0,) “ clusters and the
along the three principal directions of the Brillouin zone with

positively charged ions G4 (or Y3*), and on the Coulomb
parameter values ensuring the best agreemeithin the rzsrzlrjrlzfer;senme;gycg;:]hz ?/:/?t(k:ltrgcr)]siZ;?:slljgglihsétz’x?enri ttr;ese
given model with the experimental data of Kingt al.” and \F/)vhi h the ion y f th gr tal | tﬁ h reened chan
Gofron et al® The upper hybrid brancte  (k, k) lies N € lons ot the crystal latlice are screened changes
above the Fermi level and hence does not show up in pho-

with the level of doping
toemission spectrdit can only be observed in inverse- In ¥(123 or Y(124) single crystals with CuO chains
photoemission spectra

aligned with the axislly, near thexX-points of the Brillouin
As Figs. 2a and b show, the electronic spectrum contain one there emerges additional hybridization between e 2
two saddle-like structures that sketch in fhe M directions

ands and a narrow O-band with a spectrum
and have an infinitely large effective mass nearkhgoints Eip(ky) =W, cos kb, so that the hybrid spectrum for the
and a finite positive effective mass in the transverse direcl—OWer branch in(3) assumes the form
tions X—M-Y if the Fermi level lies fairly close to the ~ 1
bottom of the saddle. At the same time, in the-X and E:(kkay):§[E1D(ky)+E—(kx'ky)]
=Y directions the curvature of the brangh- (k, ,k,) and,
correspondingly, the effective quasiparticle mass are nega- \/1 5 1= 12
tive. This agrees with Kubo’s conclusidhwhich follows *\ 7 [Eap(ky) —E-(ke ky)] i
from an analysis of numerical band calculations, states that
the sign of the transport mass of the current carriers may be )
different for different sections of the Fermi surfa@eth the  This implies that in the vicinity of the&X-points of the Bril-
sign of their cyclotron mass remaining unchangedhd ex-  louin zone there are no saddle-like anomalies near the Fermi
plains the negative sign of the thermoelectromotive forcdevel, but the extent to which the spectrum becomes one-
with a positive (hole) sign of the Hall constant in cuprate dimensional grows in thd—Y direction. The saddle-like
metal-oxide compound®:**Thus, the anisotropic Fermi sur- structures in the vicinity of th¥-points of the Brillouin zone
face determined by the conditioBs. (k,,k,) =Eg is divided  are retained(see Ref. & Note that Combescot and
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Leyronas* examined the effect of hybridization between the either small or zerdsee Ref. 11 However, the system of

1D-bandE;p and a wide ®-band with a spectrum of type
(1), but the existence of the narrovib2band(2), which leads

equationg6) is valid only for extremely pure superconduct-
ors, where the scattering of current carriers by imperfections

to saddle-like anomalies in the spectrum, was not taken intn the crystal lattice and impurities with a characteristic time

account.

3. THE SYSTEM OF EQUATIONS FOR A MULTICOMPONENT
GAP PARAMETER

When the electronic spectrum is highly anisotropic, on
cannot use the standardidshberg equatiohi for a gap size
that depends only on the energyto describe the supercon-
ducting state. On the other hand, when the electron—electr
interaction is strong\=1), one cannot use the BCS model,
which correspond to the loose-binding approximatiprel).
Furthermore, the BCS thedrylacks the rigorous macro-
scopic justification for
V(k,k")=Vnk)7(k') or a combination of such potentiafs
in describing an anisotropic gapk).

In view of this, we believe it is advisable to employ the

model of a multibandmultivalley) superconductdf~8with

a multicomponent order parametsy , which is defined as a
set of gaps in different parts of an anisotrogmultiply-
connecteg cylindrical Fermi surface:

d2k’
A”(k,w)=TZ J W% Wij,|m(k,k’,a)
—w’)F|m(k',w'), (5)

where v and »’ are discrete Matsubara frequenci®g; |,

on

using a separable potential

7 does not mix electronic states belonging to different sec-
tions of the Fermi surface in the process of Cooper pairing,
i.e., 7>A 1 In the case of “impure” superconductors,

7A;<1, we must allow for the gap becoming isotropic in the

epIane of layerga—b) because of electron relaxation, i.e., the

existence of finite off-diagonal components in the order pa-
rameter. In what follows we examine the case of a pure
superconductof7A;; >1).

The retarded electron—electron interaction in EGg.in
different sections of the Fermi surface, with allowance for
electron—phonon interaction and Coulomb repulsion, can be
written as

Wij (@)= ([ Gon(k,k")|2Dpn(k—K' @)+ Tee(k
_krlw)>ij ’ (7)

whereﬁph andD,, are the matrix element of the electron—
phonon interaction_and the phonon Green’s functifor
nonpolar phononsT .. is the vertex parta four-prong dia-
gram) of the screened electron—electron Coulomb interaction
in the multicomponent Fermi liquid of multiband met&fs,
and angle brackets--);; stand for averaging ovérin theith
section of the Fermi surface and ouerin the jth section.
Because of the low concentration of degenerate current
carriers in D-layers of CuQ in cuprate metal-oxide com-
pounds, and hence the relatively low values of the Fermi

are the matrix elements of the retarded electron—electron irh'womenturrkp<w/a for virtual phonons participating in the
teraction calculated with electronic wave functions beIong—COoper pairing of current carriers, transfer processes are un-

ing to different bands, an#,, are the anomalous Green'’s

important, since the momentum transtpe 2k. lies within

functions. Of course such an approach cannot yield an e first Brillouin zone, in contrast to the case of ordinary

plicit angular dependence of the anisotropic gap sivé),
and takes into account only the average valugdpand the

gap sign in different sections of the Fermi surface as a func;

tion of the coupling constanisee below.

If we ignore the “crossed” Cooper pairing of electrons
from different sections of the anisotropic Fermi surface an
setA;;=0 fori#j, the system of equation®) for the gap
sizesA;=A;; after averaging over the momeriiaithin each
section of the Fermi surfag@ssumes the form

M)==TS [ deS bWy (0o Fy(ew),
’ ©®)

polyvalent metals withkg>m/a (in the extended-band
schemé Hence, in ionic crystals of metal-oxide compounds,
all phonon branches are either poldipole-active or non-
polar (both acoustic and opticaland polar optical phonons
(in particular, high-frequency oxygen vibrational modean

e incorporated into the dispersion of the effective dielectric
constant of the ionic crystal, as is the case with multivalley
semiconductord®=4:

Furthermore, as shown in Refs. 42 and 43, when a lay-
ered crystal contains an anomalously narrolv-Band near
the Fermi level, partially filled by “heavy” i) charge car-
riers that are almost totally localized at lattice sites, the entire
Brillouin zone contains a slowly decaying branch of acoustic

where ¢ is the electron energy measured from the common,asmons that hybridizes with longitudinal optical phonons.
Fermi level, andy; andW;; are the density of states and the The glectron—electron attraction caused by the exchange of

matrix element$V;; ;; averaged over the area of thi sec-
tion of the Fermi surfacéthe matrix elements describe both

virtual quanta of hybrid phonon—plasma vibrations to a great
extent balances the Coulomb repulsion near the Fermi sur-

the retarded electron—electron attraction near the Fermi sUfzce in ionic crystals with a large DC dielectric constant.
face caused by electron—phonon interaction and screengflyeed, in view of the Kramers—Kronig relation for the re-

Coulomb repulsiopn HereW;; for i #j determine the prob-
ability of virtual two-particle transitions between the differ-
ent sections of the Fermi surface.

Note that “crossed” Cooper pairing with;; #0 (i # )

can be ignored, since for sections of the Fermi surface with

ciprocal dielectric constant of a crysta "}(q,w), the
electron—plasmon coupling constant is giverf®by

2 * dw ~ 1

different curvatures, such pairing leads to the formation of

pairs with finite momentung~ 7/a whose binding energy is
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where angle bracketg:--) stand for averaging oveq w=Eg;, with Aﬂl<,uu (see EQ(8)). This implies that\; is
(momentum transfer V(q) is the matrix element of negative, while\;; can be either positive or negative depend-
the unscreened Coulomb interaction, anding on the values of the nonpolar electron—phonon coupling
we=v(0)(Ve(a)/e..(q)) and ud=v(0)(Vc(q)/eo(q)) are  constan\P° and the static screened Coulomb repulsion con-
the dimensionless Coulomb repulsion constants at higlstantu)= u;; —\p'>0.

(w—) and low (w—0) frequencies, withe.(q) and e¢(q)

the high- and low-frequency lattice dielectric constants. As4. SYMMETRY OF THE MULTICOMPONENT ORDER

(8) implies, whene;>¢..(0), i.e., whenul<ug, the coupling PARAMETER IN A Bi(2212) SINGLE CRYSTAL

constant\,,, is approximately equal tpg, i.e., the combina-
tion of the electron—plasmon interaction and the polar

electron—phonon interaction balances Coulomb repulsion af5usly narrow D-bands, the electronic spectrum of a lay-
most perfectly.

. . . ered crystal of the B2212 type contains extended saddle-
On the other hand, one must bear n mind j[hat n t,hqike structures in thd’—M directions. These structures have
“electron” and “hole” sections of the anisotropic Fermi been observed in ARPES experiménfswith high energy
surface Wit.h different signs of the effective m?ksrs' the BIOChresolution. As a result of this, at a certain level of doping,
wave functions of the band stateEkj(r)_:_ukj(_r)e , are de- .. when the Fermi level lies above the bottom of the saddle-like
termined .by the overlap of, anq hybr@zauon between, dlf'structure(Fig. 2), the anisotropic cylindrical Fermi surface
ferent orbitals of the Cif and G ions in the Cug layers, can be divided into four pairs of quasi-one-dimensional

S0 th‘f"t the oﬁ—dlggonal matrix elements;; (i#]) must “electron” sections and four “hole” sections with, respec-
contain the matrix elements of the electron—phonon a:qiﬁ

As noted earlier(see also Ref. 44 because of strong
ybridization between the overlapping wide and anoma-

. . ively, positive and negative curvatugeffective maspg Here
electron—plasmon interactions and of unscreened Coulo y: P g

. . . e density of states in the quasi-one-dimensional “electron”
repulsion, calculated using differe@nd almost orthogonpl sections near thdl-point of the Brillouin zone has a Van
wave functions:

Hove root singularity, which strengthens the electron—

_ - electron interaction and drives the superconducting transition

gk k=2 Jdr‘l’ﬁi(f)(elz,k/VVei(f))‘I’krj(f), temperatureTl, up>*°

! 9) If we ignore the breaking of th€, ,-symmetry of the
initial spectrum and Fermi surface caused by the appearance

_ T/gi(r) of a superlattice in th&—Y direction?! the system of equa-
gﬁ'(k,k')Zf drii(n| ————|Yi,(r), (100 tions (6) allows for four types of solution:
ZiVc(a) (1) the gaps in the mutually perpendicular “electron”
o2 sections of the Fermi surface are equal in absolute value but
ij?(k_k'):J drj dr’\lf’k‘i(r)\P:,.(r’) — have opposite signs, while the gaps in the “hole” sections
B r=r (along the diagonals of the Brillouin zoneanish; such a
X W (1) (1), (11)  Solution corresponds to thig._.-wave type of Cooper pair-
ing;
wheree; is the polarization vector of theth phonon branch, g (2) the gapsA; in all the “electron” sections of the

Vei(r) and Vec_i(f) are the screened pseudopotential of therermi surface are equal in absolute value and have the same
electron—ion interaction and its Coulomb patt,is the av-  sign, while the gapg, in the “hole” sections are nonzero
erage chargévalence of an ion, andV¢(q) is the matrix  and have a sigfia phase shift byr) opposite to that oft;;

element of screened Coulomb repulsisee Appendix such a solution corresponds to thg- (or s*-) type of sym-
Because the nonpolar electron—phonon interaction is lometry in the superconducting order parameter;

cal and the wave functions in the electron and hole sections (3) the gaps in all sections of the Fermi surface are of the
of the Fermi_surface are practically orthogonal_, _the off-same sign(say A;>0 and A,>0) but differ in magnitude
diagonal matrix elementd9) can be assumed negligible, so (A;+#A,) because of a difference in the densities of states;

that the matrix elements of the non-lo¢édng-range Cou-  this corresponds to a quasi-isotropic solution of shiype;
lomb interaction, Eq(11), and of the electron—plasmon in- gnd

teraction, Eq(10), remain finite. (4) the solution with thed,,-type of symmetry of the
Thus, on the Fermi surface the dimensionless couplingap: A (k) ~sin ky sink, .
constants can be written as The last solution is probably possible only if the Fermi

level is near the bottom of the saddle-like sections, where

Ne=— Wi (0)=APP AP — 4
Ni ViWii (0) =N N = ai these sections of the band spectrum contribute little to the

’):”_E_ VJ\TVij(O)=>\ﬁ'—Mij , (12) effective coupling constant, irrespective of the high density
of states.
where )\ﬁh: vi(|gﬁh|2? are the nonpolar electron—phonon In the case ofd,2_,2 symmetry(Fig. 33 the system of

coupling constants\ f}' = vj(|gﬁ'|2> are the electron—plasmon equations(6) in the loose-binding approximation leads to a
and polar electron—phonon coupling constamikich allow  simple equation for the absolute value of the gap dize

for hybridization between acoustic plasmons and dipole- _ oy "

active optical phonons and w;;=v;(V) are the corre- 1= 2 Al (13
sponding Coulomb repulsion constants at high energiewhere
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FIG. 3. The structure of the aniso-
tropic superconducting gap for a
dy2_,2-symmetric order parameter and
the constant-energy lines of the lower
hybrid branch of the spectrum,
E_(Kky,ky). The thick solid curves in
the section of the cylindrical Fermi
surface indicate the “electron” sec-
tions, and the dashed curves the
“hole” sections. (b) The structure of
the anisotropic superconducting gap
for a s, -symmetric order parameter.

1 (Er dé¢ Ery In the case of as-type of symmetry in the order param-
L1(|A1|)=§ f \/§+ Erl eter, the system of equatior{§) for the gapsA; and A,

~Epy VEZ A assumes the form
2 2 ' " ’
Xtanh—ngAﬂ (14) Aj=A;(N1+ 2N+ N L+ 2A5(N o+ N o)Ly, (15
2T ’

Ap=As(Nopt 2N+ N5) Lo+ 2A (A +N5)Ly, (16)
Er, and \,; are the Fermi energy and the dimensionlesg/vhere
coupling constant in the quasi-one-dimensional “electron”
section of the Fermi surface with a root singularity in the o d¢ VE+]A,?
density of state$;®and\ }, and\j, are the constants of the Lao(|As) = f 2SIV tanh————, (17)
interaction between electrons in different saddle-like sections 0 VEHA,|
of the Fermi surface near thé-points of the Brillouin zone  with () the interaction-energy cutoff in the “hole” section of
separated by the wave vectdrs/a, n/a) and (0,2n/a), re-  the Fermi surface. Here we assume that the Fermi energy in
spectively. the “hole” sections,Eg,, is higher than(}, so that in addi-
Note that the case where all coupling constants are negaion to allowing for the electron—phonon and electron—
tive (\11<<0,A3; < 0, and\]; < 0) corresponds to the magnon plasmon interactions the constamis, \j,, and\j, allow
mechanism of Cooper pairing in an almost totally antiferro-for the Coulomb pseudopotenti@ee Ref. 1},
magnetic Fermi liquid:~**so that a superconducting transi-
tion is possible, as Eq13) implies, only when the interac-
tion is highly anisotropic, when the absolute value of the
coupling constank 1, along a diagonal of the Brillouin zone ) , , i
satisfies the conditiom 4| > (1/2)(\ 11| + [\T4]). while the constanta,, \i;, and\j; contain the unrenor-
On the other hand, when near the Fermi level theMalized Coulomb repulsion constgai;, sinceEg; <.
electron—electron attraction caused by the electron—phonon AN analysis of the system of equations5) and (16)

and electron—plasmon interactions is predominant in each o?h°W§ that for negative values of the cross constants;0
the “electron” sections of the Fermi surface, and\j; < 0 fori#j (i,j=1,2, which means that Coulomb

A =AP"—40.>0, but there is also Coulomb repulsion be- repulsion between the “electron” and “hole” sections of the
tween electrons in neighboring sectiofis], < 0 and\’, Fermi surface is predominant, the solution that is energeti-

< 0), and Cooped-pairing is possible, according ta3), if cally favored and has the highest superconducting transition
temperatureT? is the one with gapd, and A, of opposite

Ag=N11+2|\jg| =N} >0. sign (say,A;>0 andA,<0), which is equivalent to the eight-
lobe s, -type of symmetry in the superconducting order pa-

In (14), we have allowed here for the fact that when therameter(Fig. 3. When\;;>0 and)\i’j > 0 (attraction, the
Fermi level is close to the bottom of the saddle-like struc-favored solution is the one in which; and A, are of the
tures, the Fermi enerdg, is much lower than the average same sign, which corresponds to quasi-isotrappairing.
phonon energys,,=50 meV and, what is more, it is much If for the sake of simplicity we ignore the root singular-
lower than the energy of the bourfldybrid) phonon—plasma ity in the density of states in(14) and assume that
vibrations2=0.1 eV (see Ref. 48 so that with allowance L;=L,=In(1.134)/T) as T—Tg, then the condition that
for the root singularity in the density of states agbairing  the system of equationd5) and(16) linearized forA; ,—0
the superconducting transition temperature is, in order ohas a solution yields the following exponential formula for
magnitude, equal td%~E;;A2 (see Ref. 9 T? of the BCS type:

W3o= 22

Epp|

F2

1+ upyIn =1 (18
2 Q]
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FIG. 4. (a) The surface that separates
the regions ofd ands pairing in the
space of parameteks; = N1 + N\;,
Ao = Ngp + 2N\5, + N3y, andhy; at
N,=0.1. Under the surfac@?>Ts,
and above the surface>T¢Y except
for a shaded area above whislpair-
ing is impossible in the given model.
(b) The curves representing the de-
pendence ofTS and T¢ on A}, at
N2=0.5\;; and N\ ,=0.1 for ;=1
(curve 1), \;,;=0.5 (curve 2), \y;=0
(curve 3), N\;=—0.5 (curve 4), and
N1=—1 (curve 5). The dashed sec-
tions are the continuations of curves
1 and 2 into the regions where the
corresponding values of$ and T4
are smaller than the maximum value

of T..

. ~ 1 When there is attraction between electrons belonging to

T=1.134) exg — A (19 the same quasi-one-dimensiortaaddle-like section of the
Fermi surface produced by the electron—phonon and

where electron—plasmon interactions, i.e\;>0, even a weak
2(A iAo N2 Coulomb repulsion between the electrons in different sec-

(MaA 22— A7) . . "
= , (200  tions of the Fermi surface, whexj; < 0 and\f; < O (but
(A +A2)i\/(A _A2)2+4)\2 " ~ . .. ..

1T A2 11" 12 N1, < N11andh;,>>0), is sufficient ford pairing to emerge.

Ag=Ng+ 2NN =12, Such repulsion can be the result of either the electron—

I magnon interaction or incomplete balance between screened

)\izz(y\lﬁ N2 (No1F Njp). (21 Coulomb repulsion and the attraction caused by electron—
In (20 ¢ select the | fthe t ut h hphonon and electron—plasmon interactions.
n (20) we must select the larger of the two solutions, whic On the other hand, Fig. 4a shows that when repulsion in

corresponds to the maximum value T. . . : . o
X A " - <
A comparison of the superconducting transition temperaEhe saddle-like sections is predominaiy,<0), d pairing is

turesTg andTS calculated on the basis of Eq43) and(14), pgssible only fo,r Iargg absolute values of the r.1egativ.e §ou-

on the one hand, and on the basis of Hd§)—(17), on the pling _constant)xll, wh|ch corresponds to an aq|sotrop|c in-

other, makes it possible to find the range of parameters iffraction of current carriers and paramagntng

which the gap is eithed-symmetric ors-symmetric. Figure 4b present3? and T¢ as functions of\j;. The
Figure 4a depicts the surface that separates the regiofignctions were calculating using the linearized equations

of d- ands-pairing in the space of the parametags = \,;  (13), (15), and(16) for different values ofy; at A,;=0.5\y;

+ N1, A=A, and\}, for a value of the constant of cross and\;,=0.1. Clearly, when 1,<0, there is a range of values

interaction between the “electron” and “hole” sections on of X1, within which bothTg and T¢ vanish(curves4 and5).

the Fermi surface),, equal to 0.1. Under this surface lies At the same time, attraction in the “electron” sections of the

the region ofd pairing, whereTS<TY, and above it the re- Fermi surface(xll>0), even against the background of re-

gion of s pairing, whereT§>T‘c’. (Note that within a certain pulsion, which forms thel symmetry of the gapX;; < 0),

range ofk;;, above the shaded section of the surface thergrives T, up in comparison to the effect produced by the

lies a region where there is neith@nor d pairing) electron—magnon interactid;;<0).

We see thad pairing is possible only for negative val- Thus, the competition between attracti@aused by the
ues of the constant,, which describes the interaction be- electron—phonon and electron—plasmon  interactioasd

tween Fhe neighboring “electron” sections of the Fermi Sur- o lomb repulsion, combined with the high anisotropy of
face with a momentum transfgr= wv2/a. The smallness of . )
= the electron spectrum, may lead either to-aymmetric or

A1, is due to the smallness of the matrix elemég§)| an s-svmmetric superconducting aap. depending on the val-
caused, on the one hand, by the local nature of the electron— Y Ic sup ucting gap, depending v

phonon interaction and the orthogonality of the electronic!€S Of the various parameters. Note that the values of the
wave functions in different sections of the Fermi surface andS0UPINg constant may change considerably as a result of
on the other, by the almost perfect balance between th¥ariation of the level of dopindby holes or electrons as
weakly screened Coulomb repulsion and the retarde§uggested by the strong concentration dependendg ai
electron—plasmon interactiofsee Eq.(8)).Y As \,, in-  cuprate metal-oxide compoundsee, e.g., Ref. 47 This
creases, the boundary between the regions svithdd pair-  means that in high-. superconductors, such as(&212

ing shifts in the direction of larger absolute values of thesingle crystals, the order parameter may change symmetry
negative coupling constant;; . under a changing dopant concentration.
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5. BREAKING OF THE SYMMETRY OF THE SPECTRUM crystaf®>~2’ (see also beloy At the same time, if one of the
AND THE TEMPERATURE DEPENDENCE OF THE tunneling junctions is aligned with a diagonal of the Bril-
GAP WIDTH IN Bi(2212) AND Y(123) SINGLE CRYSTALS louin zone(say,I'—X), then in such a circuit there should, at

As shown in Refs. 16 and 22, @212 single crystals least in principle, be a phase shift bybecausg the signs
contain a long-wave superlattice aligned with one of the diPhasesof the “lobes” of the order parameter in tHé-M
agonals of the Brillouin zonéin the T—Y direction. This  andI'—X directions are oppositesee Fig. Sa Such tunnel-
superlattice breaks the,, symmetry of the electronic spec- N experiments should resolve the problem of the type of
trum in the plane of the layers. In the casedopairing, this ~Symmetry of the superconducting order parameter in

should not greatly affect the symmetry of the superconductBi(2212 for different doping levels. _
ing order parameten 4(k)~cosk,a—cosk,a, which van- In Y (123 and Y(124) single crystals the quartic symme-
ishes in tha"—X andT'—Y directions. Y try C,, is broken because of theDtchains of CuO forming

However, in the case d,, pairing, the presence of a along the axidlly when oxygen content is at its maximum.

superlattice may lead to symmetry breaking in the spectrurh!€re 0 approximately describe the structure of the aniso-
and the superconducting géfpr instance, to different values TOPIC superconducting gap we can use the system of equa-
of the gap size in th&—X and['—Y directions. Such sym-  ions (22—(24), provided thatA,, andA, are interpreted as
metry of the spectrum and gap has been observed in ARPE&E gap sizes in th(_e cylindrical sections of the Fermi surface
experiment$® In this case, within the model of an aniso- that are coupled with the2-layers of Cu@ by the Cooper
tropic superconductor with a multicomponent orderParing of the electrons on, respectively, the “banks” of the
parametef~3the system of equatior(§) can be written as guasi-one-dimensional extended saddle-like structures in the

follows (i,j=1,2,3: vicinity of the Y-points of the Brillouin band and in the
_ _ _ region of strong hybridization between thé®4 and D-
Ag(1=Npl 1) =ANT5l o+ AghTal g, (220 bands in the vicinity of theX-points of the Brillouin zone,
~ ~ ~ andA; is interpreted as the gap size in the flat sheets of the
Az(1=Azk2) = Ashagls+Aghzgl s, (23 Fermi surface that are coupled to th®-hains of CuO.

AalL=NEL D= A Nail 1+ ANEL , 24 Allowing for the Van Hove root singularity in the density of
(1) = Arhailbat Aahsrlz @9 tates of the wide -band, we can write the integrak as
whereA, and A5 are the gaps in the nonequivalent “hole”

_ 2
sections of the Fermi surfad the '—X and 'Y direc- L[ dé [_Bes onn [€+A3 (25
tions), L5 is defined in(17) with |A,| replaced byAg|, and the Y2 ) a2+ A2 Vé+Egs 2T °
arametera. differ from the constants;; in that the Cou- . : .
b i o i ! " whereEg; is the Fermi energy of the electrons in th®1

lomb constantsy;; are replaced by the pseudopotenpid] i

— il + o InE _/5)],1. Here the diagonal coupling chains Er3z>Q). C.omb.escot and Leyron#sound thatA'1
Fal b 2 A TR 2 h andA, have opposite signg\;>0 andA,<0), and the sign

constants\;;, A3,, andAz; are positive because of the strong ¢ 1 principal “lobe” of A, in the '—Y direction (along

electron—phonon and electron—plasmon_interactions, whilg, 1D-chaing coincides with the sign of\,. The corre-

the off-diagonal coupling constanks; and\s; are negative ¢ onding structure of a gap with opposite signs in fhex

because of suppression of the electron—phonon interactiofl, y1-_ v girections is shown in Fig. 5b

caused by the dommanl*natu.re of Coulomb repulsisee Note that the possibility that such a gap structure exists
Eq. (12)). The constantsj ati#j (j=2,3 can be either iy v (123 and imitates thal-wave type of symmetry in the
negative or positive thanks to the weakening of repulsion b%uperconducting order parameter in the tunneling experi-
the factor{ 1+ u; In(Eg;/Q)], although in the given case the ents of Wollmaret al,2 Iguchi and Warf® and Browner
Bogolyubov—-Tolmachev logarithm is much smaller than ingnq o7 was pointed out independently in Refs. 48 and 49.
common superconductot. - - To determine the temperature dependence of the param-
Equations(22)—(24) imply that for1;>0 and\j > 0 etersA,<0, A,<0, andA;<0, we solved the system of non-
(i=2,3) but),;<0 and\3,<<0 (with \j} of arbitrary signthe  linear equation$22)—(24) numerically. Figure 6 depicts the
absolute values oy, Ay, andA; attain their maxima when  yesylts of calculations obtained wit,;<0, Ng;<O0, andXﬁ
the signs ofA; and A; are opposite to the sign d; (Say, < q (fori+|) butk,,;>0 and\* > 0 (i=2,3). Clearly, in this
A,<0 andA;<0 for A,>0), which corresponds to the break- ¢45e the temperature behavior of the negative gapsidA,
ing (A7A;) of the symmetry of thes,,-type in the super- giffers dramatically from the behavior predicted by BCS
conducting order parametéfFig. 53. . theory. In particular, a “step” dependence & on T, which
Note that such a many-lobed gap structure, with theyyajitatively agrees with the experimental data of Ref. 50,
“lobes” in the I'-M andI"'—-X(Y) directions having differ- -4 pe achieved by proper selection of the values of the
ent signs(opposite phasgscan, at least in principle, lead to parameters in the problem. Figure 6 shows that the anisot-

generation of spontaneous magnetic fluxes in supercondu%py of the absolute value af(6) is temperature-dependent
ing Bi(2212 rings for certain patterns of the we&koseph- 54 increases aE, is approached.

son bonds?® On the other hand, because the signs of the gap
lobes” in the I'=M directions in the case &, symmetry 6. CONCLUSIONS

are the same, no spontaneous Josephson current should ap-

pear in interference experiments with tunneling junctions on  Using the model of a superconductor with a multicom-

the mutually perpendicular faces of a layere@Bil2 single  ponent order parameter, we found that the anisotropic struc-

171 JETP 84 (1), January 1997 E. A. Pashitskii and V. I. Pentegov 171



FIG. 5. (a) The structure of the gap in
% Bi(2212 with brokens,, symmetry of
the “butterfly” type.*® (b) The struc-
ture of the anisotropic gap in (¥23
imitating d pairing.

ture of the superconducting gap, observed through ARPES When in Bi2212 single crystals with a superlattice or
experiments with higfF, superconductors based on cupratein Y (123 single crystals with orderedl-chains the initial
metal-oxide compounds, is a consequence of the strong a&,, symmetry of the band spectrum in the plane of the layers
isotropy of the electronic spectrum in the plane of the layersis broken, one may observe asymmetric structures in the an-
Such anisotropy may be the result, on the one hand, of hyisotropic superconducting gap and an anomalous temperature
bridization between overlapping wide and narrow bands andyehavior of the gap size differing dramatically from the stan-
on the other, of competition between effective attractiondard temperature behavior A&fin the BCS theory.

caused by electron—phonon and electron—plasmon interac-

tions and Coulomb repulsion. Depending on the values of the

coupling constants, the superconducting gap is eithegppenpix

d-symmetric ors-symmetric. Furthermore, since the cou-

pling constants and the characteristic interaction enekgies In the case of “heavy” ) charge carriers in the anoma-
particular, the Fermi energlg; in the saddle-like sections lously narrow band, which are almost totally localized at
of the Fermi surface, and the energy of acoustic plasmonerystal lattice sites, the matrix element of electron—plasmon
hybridizing with optical phononsdepend on the carrier con- coupling can be calculated by using the Hamiltonian of the
centration, a fact revealed by a strong concentration depemlectron—ion interaction,

dence of T, for cuprate metal-oxide compountfsjt be-

comes possible, at least in principle, to initiate a transition HE = | SR,V V,i(r—RY)

from one type of symmetry to the other by varying the dop- n

ing level. According to a recent repdft,a change in the 5Z,(r—R)
symmetry of the order parameter in(Z201) and Bi{2212 0 vgi(r—Rg) , (A1)
occurs under variations of oxygen content. Z;

whereV,; and VS, is the screened electron—ion interaction
pseudopotential and its Coulomb pa#R, is a small dis-
placement of an ion from its equilibrium positidk®, and
6Z; is the deviation of the charge of an ion with a varying
(fluctuating valence from its average valig at thenth site
caused by the longitudinal field(r) of the collective vibra-
tions of the number density of thecarriers. The first term
on the right-hand side of EqAl) describes the ordinary
electron—phonon interaction with acoustic and optical
phonons in the harmonic approximation with matrix ele-
ments (12). The second term corresponds to the adiabatic

-0.2c T . . : Lo . . .
0 0025 005 0075 0.1 0.125 0.15 electron—plasmon interaction and, with allowance for the
T2 Poisson equation
FIG. 6. The temperature curves of the positivyg) and negativgA, and _ r_pO0
Aj) parameters othhe superconductingNgap for theNfollowing values of the Ae(r) 4776; SZi(r R“)

coupling constant§i1£=0.58,X§2 = 0.45A33 = 0.42,\], = —0.01 N5 = ) ) )
— 0.0, Ay =—0.0015\% = —0.0215;=—0.001, and%, = —0.001; here  IN the Fourier representation, by analogy wift?) assumes
Er,/Q=0.7. the form
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(k=k") 2@ = " A A A -
amze VeV, He-p1=,2 Opi(@c:q08k.0(Eq +E-0), (A9)

A2 ~

(A2) where g§|(q)=vc(q). Comparing(A9) and (A5), we find
where ¢, is the Fourier transform of the potential(r), that
which is related to the Fourier transform of the perturbation

“g’ﬁ'(k,k'>=f drvfi(r)

8Z;(q) of the ion charge density by the formula qupngm(Q): 1 (A10)
q2¢q:477e52i(q). Aqre Vc(q) /vc(q) ’

On the other hand, the field operators of the collective
excitations of the charge density are define¢§sz qog c; from .which Eq.(13) follows. Note that because of the sin-
andg’qu(pq&q, Wheregoa‘ = ¢_q, andég andéq are the cre- gularity c_>f the Cpulomb part o_f the pseudopotent}éff,-(r),
ation and annihilation Bose operators, which are related t@t the point =0, in the electronic wave functiong, ;(r) we

the electron density operatgig = S&,, ¢, , by can replace the smooth Bloch factarg;(r) by uy;(0) and
5 ) ) ' - take the latter outside the integral with respectr tdf we
~ 0 . 0¢q. . PO 2 also bear in mind that the Fourier transform\df(r) is
Pa~ 2 7e Y97 e Ca» P07 27e P97 4re Cq - 2
el q q2+ K|2 ’

In view of this, the Coulomb Hamiltonian
we can write the matrix element of the electron—plasmon

1 A A interaction in a partially factorized form
He=5 2 Ve(@)pgh-q (A4) | parialy ’
! gl (k,k")=ug i (0)uy ;(0)gpi(k—k"), (AL1)

n dthg stglf—con3|s§ent f'?l? apfp roximation, ththballtt_)wanc? ];?]rwhich reflects the anisotropy of the band spectrum in single
adiabatic screening ot low-lrequency per“L_Jr aﬂlons 0 ecrystals of cuprate metal-oxide compounds.
charge density oh-carriers by almost free “light” () cur-
rent.carrlers Wlthm. a broad cqnductlon bar.].d’.can be Wntteq)ln Nd,_,Ce,CuQ, compounds, where conductivity is of the electron type,
to high accuracy in a form similar to the Fiich Hamil- there are no “flat” bands near the Fermi level.
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The magnetization of single crystals of the cupratesBCuQ and HgBaCuQ along different
crystallographic directions is measured using a SQUID magnetometer in fields up to

54 kOe. Spectroscopic investigations of the exchange splitting of the levels bfpEsbe ions

in these cuprates are also performed. It is shown that the cuprates investigated are highly
anisotropic antiferromagnets, which display quasi-Ising behavior in a magnetic field. The nature
of the two spontaneous magnetic phase transitions detected jBaDyQG, and

Ho,BaCugQ is analyzed. It is shown that the low-temperature transition is due to an increase in
rare-earth—copper exchange. 1®97 American Institute of Physi¢&§1063-776(97)02001-5

1. INTRODUCTION netic behavior of BBaCuQ,. The most characteristic prop-
. erty of most of these compounds with magnetic rare earths,
Rare—ear_th cuprates having the general formmaparticularly Dy,BaCuQ and HgBaCuQ, which were in-
R,BaCuQ with R=La, Nd-Gd, Dy-Lu, and Y are known yegtigated in the present work, is that they have two mag-
as attendant compqnents in 1-2-3 highsuperconductors. atic ordering temperatures or &lepoints Ty; and Ty,
The compounds with La and Ndhe so-called "brown (Refs 4-11 The high-temperature transition &, is a
phase’) are tetragonal and belong to t®d/mbm space o onqd.order phase transition, while the transition at the

group.1 The compounds With_ the smaller rare-earth ions|OWer temperaturély, occurs abruptly and is apparently a
(Sm-Gd, Dy-Lu, and ¥, which have been termed the first-order phase transition.

“green phase,” crystallize in the orthorhombic system with

According to the results of different investigatiofmea-
the Pbnmspace group? d gatiofms

surements of the magnetization, magnetic susceptibility, spe-
The crystal structure of the green phase gBRCUQ g 9 P Y. SP

) . . cific heat, and Young’s modulus, as well as spectroscopic
can be described as a thre.e-dlmensm.nal'fr.amework of Romeasuremen)é}‘“ Ty=18-20 K. andT,,=9—-11 K for
polyhedrongmonocapped triangular prisin®ined by com- : B _

I . + Dy,BaCuQ,, while Ty;=17 K, and Ty,=7-8 K for
mon faces and edges, whose cavities are occupied By Cu Ho.BaCuG. According to the spectroscopic data. the low-
and B&" ions. The C&@" ions are located in isolated C4O 2 Q. 9 b b ’

tetragonal pyramids, and the Baions are found in BaQ tempirr;lture transition splits into two in the dysprosium
polyhedrons. All the cations occupy fourfold sites wiily cuprate.

symmetry, there being two inequivalent sites R1 and R2 for It was presumgd n th? early stuq‘iésth_at the h|gh-.
the rare earth. The cations are located atzthe/4, and 3/4 (emperature transition diy, is caused by antiferromagnetic

levels? through which mirror symmetry planes of the local ordering of the copper subsystem, while antiferromagnetic

C. symmetry point group of the cation site pass. The o3°rdering of the rare-earth subsystem oc;:grsT,qé._ How-
oxygen ions are found in these planes. ever, neutron diffractichand spectroscopicinvestigations
The oxygen coordination polyhedrons for the rare-earttshowed that the Iow-te_mperature transition is gccompgnled
ions in the two sites differ only slightly; however, their local N0t only by an increase in the degree of magnetic order in the
environments differ significantly. The rare-earth ion in therare-earth subsystem, but also by a change in the type of
first site is bonded by means of oxygen ions to six nearbyantiferromagnetic ordering. For example, in dysprosium cu-
copper ions, five of the siR—O—Cubond angles being close Prate the wave vectoithe propagation vectpiof the mag-
to 180°, while the ion in the other site is bonded to onlyhetic structure, which equaks=[0,0,1/7 in the temperature
three copper ions at bond angles close to 90°. range Ty >T>Ty, (the magnetic unit cell is doubled in
Figure 1 shows the two inequivalent rare-earth ions Ricomparison with the crystallographic unit cell along the
and R2 together with their local environments projected ont@xis), transforms into the wave vectd=[0,0,0] below
the z=1/4 plane in the case of DBaCuG,. Tn2 (the magnetic unit cell coincides with the crystallo-
The presence of two magnetic subsystems formed by thgraphic unit cell. In addition, the directions of the magnetic
CU?* and R* ions is responsible for the complicated mag- moments also change @&t,. Above Ty, the copper mag-
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duced as probes into DBaCuQ, and HgBaCuQ, were also
performed.

2. SAMPLES AND EXPERIMENTAL METHODS

Single crystals of RBBaCuQ, (R=Dy and H9g of length
3—4 mm and transverse dimensions 0.1-0.2 mm were grown
from nonstoichiometric melts of the,®;—BaO—-CuO sys-
tems by cooling the melts from 1200-1300 °C at the rate of
2 °C per hour in aluminum oxide crucibles. According to
Ref. 12, the long axis of the crystals is parallel to thaxis
of the unit cell. On the lateral facets of the crystals there are
{110 and{010 faces, so that the cross section of each crys-
tal is an irregular hexagon. In determining the demagnetizing
factor, we regarded the cross section of the sample as a
FIG. 1. Fragment of the structure of fBaCuQ; together with the direc-  jrcle.

tions of the magnetic moments in the high-temperat(ae and low- . . . .
temperaturgb) phasegaccording to the data in Ref) Projected onto the An analysis of the magnetic neutron diffraction d%mﬁ

z=1/4 plane. The atoms lying in this plariByl, Dy2, O3, Cu4, and cu Well as preliminary measurements of the magnetization,
4') are denoted by unfilled circles. Each blackened circle corresponds to showed that there is considerable anisotropy of the magnetic
pair of copper atoms positi_oned over one anotkier t_he z=3/4 and properties in theb plane. We determined thee andb axes
z=—1/4 plane; each gray circle corresponds to a pair of oxygen atomst the crystals from their habit. The orientation of the axes

arranged symmetrically above and below #el/4 plane. The cross in the ified by th f th . . .
left-hand drawing corresponds to the presence ofthejection of the Dy2 was verine y the symmetry of the magnetic properties in

magnetic moment. A primed number refers to the respective copper site in the ab plane, and, as can be seen from Fig. 2, the various

neighboring cell. The B-O-Cubonds are depicted by lines. The bond directions in this plane could be determined quite accurately
angles calculated from the structural data in Ref. 3 are indicated. (to within 3—4 °)

The magnetization measurements were performed in
fields up to 54 kOe over the temperature range 2—-100 K

netic moments, like the Dyl magnetic moment, are collineausing a SQUID magnetometer. The error in the measurement
with the b axis of the crystal, and the Dy2 magnetic momentof the absolute value of the magnetization was 5—10%. Such
lies in thebc plane. Below that temperature the copper mag4ow accuracy is attributable mainly to the small mass and
netic moments are collinear with tleeaxis, while the Dyl  dimensions of the samplghe error in the measurement of
and Dy2 magnetic moments are preferentially oriented alonghe absolute value of the magnetic moment of a sample using
thea andb axis, respectivelythere are small components of a SQUID magnetometer did not exceed 0)1%

the magnetic moment along theaxis for Dyl and along the The magnetic susceptibility was determined from mag-
a axis for Dyd. The magnetic structures of BBaCuQ  netization measurements in fields up to 1 kOe.
above and below , are shown in Figs. 1a and 1b. Polycrystalline samples of QygryBaCuQ and

The magnetic structure of HBaCuQ has been studied Ho, ofEr, o BaCuQ obtained from the oxides by solid-phase
less thoroughly. It has been reporiethat aboveTy, the synthesis at 1030 °C, and which were phase-pure to x-rays,
wave vectork=[0,0,1/2 and that below this temperature were used for the spectroscopic measurements.
there are two wave vectork; =[0,0,1/2 andk,=[0,0,0]. The diffuse transmission spectra were recorded in the
Assuming that the copper magnetic moments are ordered juségion of the intensél ;5,,— 1,3, magnetic-dipole allowed
as in DyBaCuQ and that the wave vectoks; andk, de-  optical transition of the free EBf ion (near 6500 cm?) us-
scribe different components of the magnetic moments in éng a Bomem DA3.002 FT spectrometer with a spectral reso-
single magnetic phase, Golosovsgt al® found that below |ution to 0.1 cnt. The samples were immersed in helium
Ty2 the holmium magnetic moments in the two structuralvapor at temperatures from 2.1 to 100 K.
sites differ strongly in magnitude and that, in contrast to
Dy,BaCuQ,, there is a projection of the Ho2 magnetic mo- 3. EXPERIMENTAL RESULTS
ment onto thec axis.

We note that all the studies enumerated above were pe
formed on polycrystalline samples, and we do not know of  Figure 3 presents the temperature dependence of the
any research in which the magnetic properties ofmagnetic susceptibility of DyPBaCuQ and HgBaCuQ
R,BaCuQ single crystals were investigated. Neverthelesssingle crystals along the, b, andc axes of the crystals. The
the low crystal symmetry of these cuprates, as well as tharrows in these figures show the temperatures for antiferro-
results of neutron diffraction investigations of their magneticmagnetic ordering of the copper subsystem() and the
structuré and investigations employing rare-earth spectrorare-earth subsystenT(,) determined in Ref. 8 via specific
scopic probe° suggest that the anisotropy of the magneticheat measurements. It is seen that the transition of the copper
properties should be significant. subsystem to the antiferromagnetic state is barely noticeable:

For this reason, we undertook an investigation of theit is accompanied only by slight variation of the slope of the
magnetic properties of DBaCuQ, and HgBaCuQ single  x versusT curve along the axis of the crystal. As we first
crystals. Measurements of the spectra of 'Eions intro-  noted in Ref. 4, this is because the contribution of the copper

?_.1. Magnetic susceptibility
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subsyste_m to the _total magn_etic susceptibility is small. Thghe two compounds studiedCp,=75.5 Mé/ks (Npy=2,
COHtI‘IbL!tIOI’] of the!th.ma}gnetlc su.bsystem to the Fotal para—gDy:4/3, Joy= 15/2), Cpo= 75,U«§/ks (No=2, Gro=>5/4,
magnetic susceptibility is determined by the Curie constanﬁHo: 8). Although the values just presented are approximate,
of that subsystem: since the magnetic moments in a crystal can differ from the
Ci=ngJ;(J;+1) ua/3kg, (1)  magnetic moments of the free ions, it is seen that the anoma-
lous susceptibility associated with the magnetic ordering of
g; is theg factor, kg is Boltzmann’s constang; is the total the copper subsystem is negligible against the background of

angular momentum of the ion, ands is the Bohr magneton. the large susceptibility of the rare-earth subsystem.
For the copper subsysteimc,=1, gc,=2, Jo,=1/2 we The transition to the antiferromagnetic state of the rare-

have Co,=1u/ks, which is two orders of magnitude earth subsystem &y, is accompanied by a decrease in the
smaller than the Curie constant of the rare-earth subsystem Busceptibility. In DyBaCuG; this decrease is observed along

wheren; is the number of ions of typein a formula unit,

x. G/O x G/O
03— 0.3 T
o a 4 -
S '
0.02+ 0.021
: FIG. 3. Temperature dependence of
| the magnetic susceptibility of
i Dy,BaCuQ (a) and HgBaCuQ, (b)
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thea andb axes and is very abrupt, while in EBaCuG, Ho,BaCuG;. Figure 6a presents plots M (H) at 5 K

only the magnetic susceptibility along theaxis exhibits an for various directions. It is seen that the magnetization along
anomaly aftTy,, and the transition to the antiferromagnetic the a axis and in the(110) direction has a metamagnetic
state of the Ho subsystem is more diffuse. character, there being two metamagnetic transitions in the

For both compounds the susceptibility along thexis is  latter case. At the same time, no metamagnetic transitions are
considerably smaller than the susceptibility in thle plane  observed in the plot d¥1 versusH along theb axis. There is
and depends weakly on the temperature in the temperatusdso strong anisotropy of the magnetization in #ieplane
range investigated. in strong magnetic fieldésee also Fig. 2

The magnetization along theaxis (perpendicular to the
ab plane is considerably weaker than that in thé plane
3.2. Magnetization and depends almost linearly on the field, exhibiting a weak
dendency to saturate in strong fields.

The metamagnetic transitions are diffuse by 5 K. They
dapidly become more diffuse as the temperature rises, and
metamagnetic behavior is not observed abdyg, as is
gclearly seen from Fig. 6b, which shows plots Mf versus

Dy,BaCuG;. Figure 4a presents the dependence of th
magnetization on the field in different directions at 5 K. It is
seen that in the range of fields investigated, the magnetiz
tion along thec axis of the crystal is small and nearly lin-
early dependent on the field. At the same time, the magneti=™=<""Y T
zation in theab plane undergoes a metamagnetic transition I different directions at 8 K.
in all the directions investigated. The critical fields for the
metamagnetic transitions are approximately the same for
field directions along tha andb axes of the crystal, and are
somewhat greater when the field is oriented along interme- H.. kOe
diate directions. In these directions the magnetization under- 15 - . r
goes one more diffuse metamagnetic transition in stronger
fields. The appreciable anisotropy of the magnetization in
strong magnetic fields greater than the fields of the metamag-
netic transitions is noteworthfsee also Fig. 2

As the temperature rises, the character of the magnetiza-
tion curves does not vary significantly except for the fact that : ]
the metamagnetic transition in a field oriented along lthe 8¢ ]
axis of the crystal also bifurcatéBig. 4b. At the same time, [ ]
the second metamagnetic transition in #1l0) direction

quickly becomes diffuse and then negligible as the tempera- af 3
ture rises. b ]

The temperature dependence of the critical fields of the ]
metamagnetic transitions in different directions is shown in S O T TP ST
Fig. 5. It is noteworthy that the values of the critical fields 4 6 8 10 12

decrease as the temperature rises, and that they tend to zero LK

as the Nel point Ty of the Iow-tgmperature transition Is FIG. 5. Temperature dependence of the fields for the metamagnetic transi-
approached. Metamagnetism vanishes above that tempefigns of Dy,BacuQ along thea (#) andb (O,*) axes and in thé110)

ture. direction (7).
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3.3. Optical spectra of Er 3% probe ions mined mainly by the Er—Cu exchange interaction, while the

The low-symmetry crystal field in the compounds Er—R interactions are insignificant, and that the Er—Cu ex-

R,BaCuQ, completely removes the degeneracy, except fohange is highly anisotropi'é.‘lsTherefo're, the spectrum of
the Kramers degeneracy, of the levels of Emprobe ions the'probe ions depends on the orientation of the copper mag-
replacing R1 and R2 ions. In the magnetically ordered state]€tic moments closest to them. .

the Kramers doublets split because of magnetic interactions, Figure 7 shows how the two spectral lines at 6532 and
and, as a result, each spectral line splits into a maximum d#40 cm* (see the spectra at 80 K in the paramagnetic
four componentgsee the scheme in the upper part of Fig. 7 Phase, which correspond to the two inequivalent structural

The experimental data show that these splittings are detefites of the erbium probe ions in the dysprosium and hol-
mium cuprates, split as the temperature is lowered.

In the temperature rang&,,<T<Ty; the spectra for
4 both compounds are essentially identi¢se the spectra at
—_— B 14 K), in agreement with the conclusions in Ref. 3 regarding
L the identical magnetic structures of the copper subsystem in
‘\_A__l a this temperature range.
4 “ T
o4
YT

At Ty, the spectral lines for both BBaCuG and
B2 R Ia Ho,BaCuQ; narrow sharply as a consequence of the order-
\ I L S @ ing of the rare-earth subsystem. However, the form of the
I spectrum of the erbium probe ions®B& Ty, is significantly
different for the dysprosium and holmium compour(dse
Er+ free ion + crystal field + exchange interaction the spectra at 6.5 and 2.1)KWhile the picture for
Dy,BaCugQ; is faithfully described by a simple scheme with

g lata one set of splittings of the Ef levels for each structural site
\\ la e (at 2.1 KA=0.5 cm * andA,=1.8 cm ! for the structural
u site corresponding to the line at 6532 chmA=1.3 cm'!
%03 21K and A,=3.7 cm ! for the other site corresponding to the

4,
A

c

§ line at 6540 cm?), there are at least two such sets for

T %03 M Ho,BaCuQ,, and each of them differs significantly from the

g , 6.5 K set just described for DBaCuQG,.

g /\/M /\/\_/\ The appearance of inequivalent spectroscopic sites for

g M 14K :‘//\/\ erbium probe ions in HBaCuQ at T<Ty, can be associ-

< . . 80 K : ) ated either with the establishment of a complicated magnetic
6530 6540 oM 6530 6540 cm! structure in the copper subsystem or with the appearance of

Dy,BaCu0;;: Ert Ho,BaCuOy: Bt two different magnetic phases. The analysis of the magnetic

structure of HgBaCuQ proposed in Ref. 3 gives one spec-
FIG. 7. Two lines of the spectrum of Er in Dy,BaCuQ:Er(1%) and  troscopic site for an Ef probe ion in each of two structur-
Ho,BaCuQ :Er(1%) corresponding to two inequivalent sites of the rare ally inequivalent sites. Golosovsket al.® however, point
earth at different temperatures. The scheme in the upper part of the figurg,,+ that pecause of the weakness of the magnetic reflections
elucidates the splitting of the spectral lines observed upon magnetic order- . . . . . .
ing. The labels of the transitions in one of the structural sites are underlined(,rom copper, Inaccuracies are pOSSIble in the determination

and those for the other site are not. of the magnetic structure of the copper subsystem, and that
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the possibility of the two wave vectors detected for Dy2 Dy2

Ho,BaCuQ, belonging to two different magnetic phases has a

not been ruled out. It should also be borne in mind that the

experimental data from the powder neutron diffraction of

polyatomic compounds can usually be described equally well Dyl <=—__\ Dyl

by several different magnetic structurés’ Dy m——
Thus, the spectroscopic data are consistent with the mag- Y Y

netic structure of DyBaCuQ proposed in Ref. 3 and are not

consistent with the low-temperature magnetic structure of

Ho,BaCugG; from the same report. The magnetic structure of

Ho,BaCuQ, is more complicated than that of P§aCuG b

and is in need of refinement.

Dy2
4. DISCUSSION b

Some general features that are characteristic of the mag-
netic behavior of both cuprates investigated here can be
noted. —_— a

First, these compounds exhibit two spontaneous mag- Dyl
netic transitions afy; andTy,.

Second, there are n@r very small anomalies of the
magnetic susceptibility at the high-temperatureeNpoint
Tni1, @and a considerable decrease in the magnetic suscepti- Dy2
bility is observed upon the low-temperature phase transition
atTys. c

Third, there is distinct anisotropy of the magnetic prop- a
erties: the magnetization and the magnetic susceptibility are Dyl Dyl
considerably greater in theeb plane than along the axis.

Fourth, metamagnetic transitions are observed when the l[

samples are magnetized in thb plane at low temperatures
(below Ty). Dy2 Dy2
As follows from the data presented, the susceptibility b
_along theC axis of the DyBaCuG; and HQ_B_a_CL_IQ’ crystals FIG. 8. Magnetic structure of the dysprosium subsystem ipHauQ at
is considerably smaller than the susceptibility in #eplane 11, ,: 5 0<H<H_; b) H>H,, Hila; ) H>H,, Hib.
(except for the case of very low temperatures in
Dy,BaCuG,, at which the susceptibilities along tleeand
c axes are comparabldn weakly anisotropic antiferromag-
nets this finding would indicate that the antiferromagnetisnmform an obtuse angle with the field are reoriented by 180°
vector is collinear with thec axis. However, the neutron during these transitions. Such a simple model also allows us
diffraction datd show that the magnetic moments lie prefer- to attribute the presence of the two metamagnetic transitions
entially in theab plane of the crystal, and, therefore, the observed in some cases in JBaCuQ to the fact that reori-
transverse magnetic susceptibility is measured when thentation of the magnetic moments in the two inequivalent
magnetic field is oriented along theaxis of the crystal. positions does not occur simultaneously. In addition, such a
Thus, it can be concluded from the experimental magmodel qualitatively explains why the saturation magnetiza-
netic susceptibility data that the anisotropic magnetic intertion is greater along tha axis than along thé axis of the
actions leading to preferential orientation of the magnetiacrystal. The magnitude of the saturation magnetic moment
moments in theab plane significantly exceed the isotropic along the other directions in the crystal is also consistent
exchange interactions in the cuprates investigated. with the model under consideratidgfrom our experimental
The cuprates studied, however, cannot be regarded akta we haveM ,:My:My5.-=1:0.875:1.3, and from Ref. 3
easy-plane antiferromagnets, since the occurrence of met#-follows that this ratio is 1:0.93:1.37 in the Ising moyel
magnetic transitions af<Ty, when the samples are mag- The strength of the critical transition field when the field is
netized in theab plane is evidence that at low temperaturesoriented at a 45° angle relative to theandb axes is also
the anisotropic interactions in this plane are comparable iexplained in the Ising model: according to this model the
magnitude to the isotropic exchange interactions. strength of this field &5 K should be 16.6 kOe, while the
The structure of the dysprosium subsyster &tTy, in experimental value equals 17 kOe.
zero magnetic field indicated by the data from the neutron  The qualitative arguments presented above can probably
diffraction studies in Ref. 3 is shown in Fig. 8a. In the sim- be applied to the description of the magnetic behavior of the
plest Ising model, the metamagnetic transitions observetdolmium cuprate. However, in this case the situation is more
along thea andb axes of the crystal can be represented acomplicated, since the low-temperature antiferromagnetic
shown in Figs. 8b and 8c, i.e., the magnetic moments whiclstructure of HgBaCuQ is presumably described, as we
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have already noted above, by the two wave vectorsnagnetic moments of the rare-earth ion and the copper ions
k,=[0,0,1/2 and k,=[0,0,0] and, in contrast to closest to it, which are labeled by the subscjipt

Dy,BaCuQ,, in the holmium cuprate there is a projection of Above Ty,, at which the wave vector of the magnetic
the holmium magnetic moment onto theaxis of the crystal structure k=[0,0,1/2, the copper magnetic moments in
at low temperatures. In addition, the spectroscopic data thateighboring cells along the axis are oppositely directed
we obtained cannot be described within the magnetic strudsee Fig. 13 and the exchange interaction of Dyl with each
ture proposed in Ref. 3, and additional research is needed.of the Cu3—Cu3 and Cu2—-Cu2 pairs vanishes. In this tem-

It should be stressed that the simple Ising model considperature range the main contribution to the ordering of the
ered above is very approximate, since the copper subsysteByl magnetic moments probably comes from the antiferro-
is neglected and the relationship between the copper amiagnetic Dyl—Cu4 exchange interaction.
rare-earth subsystems is not considered in it. At the same Below Ty, we havek=[0,0,0], and the spins in the
time, the available experimental data show that the rare€u3—Cu3 and Cu2-Cu2 pairs are parallel. Thus, at
earth—copper exchange interaction has a significant influence< Ty, the strength of the Dy1—-Cu exchange increases with
on the properties of the cuprates in the low-temperatur@ resultant increase in the degree of magnetic order in the
phase. This follows, first, from the fact that as our magnetialysprosium subsystem.
and spectroscopic investigations of the isomorphous com- Note that the decisive factor influencing the orientation
pounds RBazZnQ, showed, the rare-earth—rare-earth ex-of the dysprosium magnetic moments at temperatures below
change interaction is weafho magnetic ordering was ob- Ty, is probably the anisotropy caused by the crystal field.
served in these compounds in the temperature rang€his is evinced by the fact that in this temperature range the
investigatedT=2.1 K) and cannot account for the values of magnetic moments of dysprosium in each of its inequivalent
Tno Observed in the dysprosium and holmium cuprates. Secsites have approximately the same orientation with respect to
ond, as was shown above, it follows from the results of thehe corresponding Dyfcoordination polyhedron.
spectroscopic and neutron diffractioh investigations that We note that belowly, the dysprosium magnetic mo-
the magnetic ordering of the rare-earth subsysteffj@tis = ments in one of the sitg®y1) are almost collinear with the
accompanied by alteration of the magnetic structure not onlgopper magnetic moments, while the magnetic moments in
in the rare-earth subsystem, but also in the copper subsysteithe other sit€Dy2) are almost perpendicular to them. Hence

Thus, the rare-earth—copper exchange interaction alonig follows that at low temperatures the symmetric part of the
with the magnetic anisotropy specifies the behavior of theexchange interaction involving the Dy2 site is small. In ad-
rare-earth subsystem. It would seem that beldy, at dition, it follows from Fig. 1 that the Dy2—Cu symmetric
which an antiferromagnetic structure with the wave vectorexchange constants must be small because of the nearly 90°
k=[0,0,1/7 appears in the copper subsystem, the coppeDy—O-Cubond angles, i.e., the symmetric exchange appar-
subsystem interacts weakly with the rare-earth subsystengntly does not have a significant influence on the ordering of
only partially polarizing it. Upon further cooling tdy, a the Dy2 magnetic moments. However, it follows from the
change occurs in the type of magnetic ordering in the coppeexperimental data in Ref. 3 that values of the Dyl and Dy2
subsystem under the influence of the isotropic and anisomagnetic moments above and beldy, are approximately
tropic interactions between the copper and rare-earth sulthe same, i.e., approximately equal to the molecular fields
systems, which in turn leads to enhancement of the rareéfrom the copper subsystem that act on the dysprosium mag-
earth—copper exchange interaction and a sharp inciégse netic moments in these positions. For Dy2 the decisive inter-
means of a first-order phase transijiimthe degree of mag- action is probably the Dzyaloshinskii—Moriya antisymmetric

netic order in the rare-earth subsystem. exchange interaction, which can be represented in the form
Qualitatively, the change in the strength of the
dysprosium—copper exchange interaction in response to the EthiSym:E D;-[Mxm|], (3
]

change in the magnetic structure of the copper subsystem at

the Neel point Ty, of the low-temperature phase transition where the antisymmetric exchange param@gcan be ex-

can be understood by analyzing Fig. 1, which depicts th(?)ressedsee for example, Ref. 1&s

environments of the two inequivalent dysprosium ions an ' '

shows the orientations of the dysprosium and copper mag- Dj=d;[rg;Xr;]. (4)

netic mtpmehnts n thetrf:lgg—te.mp?rtiturg ?m.j Icl)?w}te:;nperaturﬁereroj andr; are vectors that join the intermediate oxygen

Mmagnetic pnases on the basis of the data in Ket. . ion to the Dy2 and Cuions, respectively, and; is a con-
As we have already pointed out, the environment of Dy1

. stant.
is such that the angles of most of theg-BO—Cubonds are As follows from Eq.(4), the nearly 90° bond angles

close to 180°. This generally promotes symmetric eXChang%romote the large value of the Dy2—Cu antisymmetric ex-
e., Ieads o large values of_the exchange integrali t_he change parameter, and it is seen from E3).that antisym-
gxpressmn for the symmetric part of the exchange INteraC etric exchange orients the dysprosium and copper magnetic
tion: moments perpendicularly to one another, as is observed for
the Dy2 site(Fig. 1).2
EYM=2 IiMimy;, 2 Also, as can easily be seen from Fig. 1, abdyg the

N antisymmetric exchange interaction of the Dy2 ion with the

wherei=x, y, z, andM; andm;; are the components of the Cu4’ ion is equal to zero, and the interaction with the
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Cu3—Cu3 pair fails to vanish only because this ion has a”From here on we use the notation of the axes inRi&m configuration.
projection onto thec axis. Below this temperature all the Other configurations, in which the order of the axes is different, are used in
nearby copper ions make comparable contributions to thgS°™® publications. _ o _

. . ., 2The small component of the Dy2 magnetic moment that is collinear with
antisymmetric exchange, and, therefore the molecular fleldthe copper magnetic moments is clearly due to weak symmetric antiferro-
from the nearby copper ions that acts on Dy2 also increasesnagnetic exchange.
in the low-temperature phase.

Summarizing the foregoing discussion, we briefly for-
mulate what is, in our opinion, the nature of the two mag-
netic phase transitions in BBaCuQ and HgBaCuQ,. In
R,BaCuQ cuprates the exchange interaction within the cop-1J. K. Stalick and W. Wong-ng, Mater. Le8, 401 (1990.
per subsystem is dominant, the rare-earth—copper interactiofiC. Michel and B. Raveau, J. Solid State Chet8, 73 (1982.

. . . 3 ¥ i
is considerably weaker, and the rare-earth—rare-earth interac!: V- Golosovski, V. P. Plakhti, V. P. Kharchenkoet al, Fiz. Tverd.
la(Leningrad 34, 1473(1992 [Sov. Phys. Solid Statg4, 782(1992].

tion can be neglected. Because each copper atom is iSOIate‘i‘.eZ. Levitin, B. V. Mill, V. V. Moshchalkovet al., Solid State Commun.

and there are no directusO—Cubonds through a single 73 433(1990.

oxygen jon, the different @-O-O-Cu and °R. Z Levitin, B. V. Mill, V. V. Moshchalkovet al, J. Magn. Magn.

Cu—-O-R-0O-Cthonds cause the two magnetic structures in lea;(;rl'ir?g;—%];nscshise(zlgsoéaez—Puche and M. A. Lario-Franco, J. Solid State

the copper subsystem with the wave vectkrs[0,0,1/2 C.hem.89, 361(1996. ‘ ' T T

andk=[0,0,0] and copper magnetic moments directed along7y. N. Popova and G. G. Chepurko, JETP L&®, 562 (1990.

the a andb axis, respectively, to have similar energies. At 8V. V. Moshchalkov, N. A. Samarin, I. O. Grishchenko al, Sverkhpro-

Tt ordering occurs in the structure Wilkh=[0,0,lla under vodimost: Fiz., Khim., Tekh4, 1892 (1991 [Supercond., Phys. Chem.

the influence of the copper—copper interaction in the COppeB;r/e?nl\%ihiﬁglcl)(g/ggl\]l)].A Samarin, I. O. Grishchenkt al, Solid State

subsystem, and the copper magnetic moment is parallel tocommun.73, 879(1991). T ’

the b axis. The rare earth is weakly polarized. When the'°Mm. N. Popova and I. V. Paukov, iixcited States of Transition Elements

temperature is lowered, the role of the single-ion anisotropy ¥V Sgretk, Wk R&éba-l\?/&)mlzngwskit._ff]- lée_gend-ZiE\égczy anzdllB- Jezowska-

caused by the crystal field increases, leading to a definita "¢ O EES ML ERA e STOCRACTE B e
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inequivalent positions relative to the coordination polyhe-12T. Kobayashi, H. Katsuda, K. Hayaskt al, Jpn. J. Appl. Phy27, L670

dron. At Ty, reorientation to the structure with=[0,0,0] 13(1988-
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Field dependence of spin—lattice relaxation of Nd 37 ions in Y 3AlIsO;, crystals
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Our studies involve measuring spin—lattice relaxation times fot'Ndns in yttrium—aluminum

garnets over the temperature range 4-50 K at 9.25 and 36.4 GHz for different orientations

of the external magnetic field in relation to the crystallographic axes. The temperature dependence
of the relaxation rate is described By '=AT"+b exp(—A/KT), wheren varies from

sample to sample, with=1 for “perfect” samples(i.e., with the longest relaxation timedere

A is approximately 130 cimt, which is the energy of the excited Kramers doublet of the
neodymium ion closest to the ground state, and this makes it possible to interpret the second term
in Tl’1 as the contribution of two-stage relaxation proceeding through the intermediate level

A. A strong field dependence of these processes has been discovered: when the frequency was
increased fourfold, the relaxation rate increased by a factor of 10. The effect is a specific
manifestation of the degeneracy of the excited level, breaking of the symmetry of the crystalline
field due to lattice defects, and the prevalence of deformations of a certain type in the

spin—lattice interaction. ©1997 American Institute of Physid$1063-776(97)02101-X

1. INTRODUCTION T, 1=34T+4.5x 10 exp(— 75X 1.44/T)[s™1].

Y ;Al;0;, crystals(yttrium—aluminum garnets, or YAG

have found wide application as active media in lasers and in The presence of the segond term on the rlght-hand side
other devices of radio electronics and engineering. Sucf?" be explained by relaxation processes resulting from op-

tical lattice vibrations with an energg=75 cm . Note,

hysical properti f YAG crystals as a wide transparenc :
phy properties o G cty de oP %owever, that studies of IR and Raman spectra have revealed
range, high thermal conductivity, hardness, and resistance 10" .

; ; ing i -6
laser light make it possible to use this material as a matrigg(;':éag%gsi(m;h _?Eghsei?]erg;; ;nr;:giio:%?qgezf?ons
for building solid-state lasers with unique characteristics. ' pin—

Among trivalent rare-earth ions, Nt ensure the most effec- at h|gh't?r1‘npe9ratures was found to result from Raman pro-
tive lasing in YAG crystals. YAG:Nd lasers have low lasing cessBesle “ T 7 died th | . £ N
thresholds and high outputs. Hence the literature devoted t\? Al %g asqrovet a:j. _stu Ie‘tht ere axatt'lon fo n f
the study of the optical properties of these crystal is Veat #NsJpp USING @ dEvICe WIth an operaling trequency o
Kaminski’s monograph and the literature cited therain 9.34 GHz and an operating temperature in the liquid-helium

: - : . : : range. Measurements on a single line in a magnetic field
In investigating the physical properti f impurity para- .
\vestigating the physica’ properties o7 Impury p H=3875 Oe revealed a complicated temperature dependence
magnetic crystals, attention must be focused on EPR spectre? . . : . i
of the relaxation rate, which varied with concentration. The

and the processes of spin—latice relaxation of the lower en_ffect was attributed to cross-relaxation among the levels of
ergy levels of the paramagnetic ions. However, there arg 5/ ) o ong
d®" and the excited levels of foreign impurity ions that had

only a few papers devoted to the study of the spin—lattic . .
relaxation of rare-earth ions in garnets, and the results aﬁgnded n the.crystal dur|r_19 the grov_vth process.
To establish the precise relaxation mechanisms of rare-

inconsistent. . . ) .

Svare and Seid@lstudied the spin—lattice relaxation of earth ions in garnets, we carried ou.t a de‘Faned StUdY of the
some rare-earth ion€r®*, Dy**, Yb%*, and Nd*) whose temperatur(.a'depend.ence of the spin—lattice relaxation rate
concentration in various insulator garnet crystdsAl;0;5, for a specific YAG:Nd system. The measurements were
LuAleOy,, Y4GaO,,, and LuGaO,,) was 1%. For the re- mad_e over a broz_id tempe_rature range on _san(p_le&pa_red
laxation rate of N&" in Y,GaOy, they found that by dlfferen_t technlqu_esat_dﬁferent frequenqes, with dlffe_r-

ent EPR lines, and in different external fields. By the time
T, 1=17T+9.0x 10" exp( — 85X 1.44/T)[s 1], the first measurements were complete, we had discovered a
strong field dependence of the contribution of two-stage re-
but they observed systematic deviations that exceeded tHaxation processes, and we specifically studied this depen-
range of experimental errors in measurifig(the YAG:Nd  dence at a fixed temperature of 11.4 K. In Sec. 2 we present
system was not examingd data on the samples used in the measurements, the experi-

Huang studied the spin—lattice relaxation of f{din mental conditions, and the results of relaxation-time mea-
Y ;Als0,, by the method of pulsed saturation at 8.9 GHz in asurements. In Sec. 3 we discuss experimental results and the
magnetic fieldH =1900 Oe directed along tH&10] crystal-  possibility of describing the field dependence of the relax-
lographic axis. The temperature dependence of the spination rate in terms of existing theories. Finally, in Sec. 4 we
lattice relaxation rate was: draw conclusions concerning our study.
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2. EXPERIMENT -1 -1

T .s

Y3Al;0;4, single crystals exhibit the cubic symmetry YA1(1) + 1% N&*
OF°. The unit cell contains eight molecules, and rare-earth o ‘3_,\5(2,80 Oe)
ions (R*") are activated at the positions of Y. The nearest 10°F _ A (1685 Oe) 3
neighbors of the yttrium ions are eightOions, forming a ,{ ®- B (4480 Oe)
distorted cubdthe local symmetryD,). The yttrium ions can 10°f o- B (1685 Oe) 3
occupy six magnetically inequivalent positions, and for an
arbitrary orientation of an external magnetic field in relation 10°F 7
to the crystal, the EPR spectrum of afi'Ron consists of six
lines. If the magnetic field is directed along thE)Q] axis, 10'E 4
the EPR spectrum consists of only two lines. Since in our
work we studied the spin—lattice relaxation of Ndons in 10° A K e
Y ;AI0,,, we list the gyromagnetic ratio for this ion: accord- 4 6 8§ 10 12 1‘; 11(6

ing to Ref. 8,9,=1.743,9,=1.160, andgy,=3.908.

The measurements were made via the pulsed saturatigfic, 1. Temperature dependence of the spin—lattice relaxation rate #r Nd
method in theX-band (using an IREB-1003 relaxometer at ions in single-crystal samples ofs%150;, of type A and B. The magnetic
9.25 GH2 and Q band(at 36.4 GHz in the 4-15 K tem- field was directed alonf00]. The solid curves represent calculations with
perature range, primarily with the magnetic figtd[100]  =95(3-©:

For this orientation of the magnetic field, the resonant mag-
netic field at 9.25 GHz it =1685 Oe(double ling and  jonal dependences of the spin—lattice relaxation rates on

H=4480 Oe(quadruple ling. At 36.4 GHz, measurements temperature, which are in good agreement with the experi-
of spin—lattice relaxation were made only on the double lingyental data.

with H=6660 Oe. The magnetization restoration kinetics in - gample A:

most casesalways at high temperatunewas strictly single-

exponential. Errors in measuring the spin—lattice relaxation ~H=1685 Oe, T '=[2.7T%'+5.2x10"

rate by this method did not exceed 10%. At-20 K, the _ -1

EPR lines of Nd* begin to broaden considerably because of X exp(—128x1.44MM)] s, &
rapid spin-lattice relaxation, and disappear above 50 K. The H=4480 Oe, T;'=[0.3T*+3.1x10"
temperature dependence of the linewidthH,;) makes it

—1
possible to estimate the spin—lattice relaxation times in the Xexp(—128x1.44/M)] s = 4
25-50 K range. Sample B:
The method of determining these times is as follows. _ 1 g0
The formula H=1685 Oe, T, =[0.38T+5.2x1
— —1
AHZ = AHpoH o+ (AHS )2 (1) X exp(—128x 1.44/T)] s 1, )
— -1_ 1
relates the observed linewidthH,, the part of the line- H=4480 Oe, T, =[1.5T+3.1X 10
width AH,, due to spin—llattice relaxatioﬁorentzian line- X exp(—128x 1.44/T)] s L. 6)
shapg, andAng, which is the temperature-independé¢at

T<20 K) linewidth (Gaussian profile® Using (1), we find Figure 2 depicts the results of measurifigat different fre-
AH,, and then determin&,'°

|
r71=2% s, @ s | I
2% PP 3+
E Y,ALO,, + 1% Nd
For our sam%Ie$H3p=15—20 Oe, and the values &t-50 10°E o-B' (364 GHz) 1
K exceedAH,, by a factor of approximately 20. The accu- »-B (9.25GHz) |
racy of the spin—lattice relaxation rate in this case was at 10°k o-B'(9.25 GHz) .
worst 20%. The YAG samples used to measure the spin—
lattice relaxation times were prepared by different tech- 5[ ]
nigues: sample A was grown at the Institute of Crystallogra- 10
phy of the Russian Academy of Sciences by the method of .
horizontal oriented crystallization, and samples B and B 10°¢
were grown by the Czochralski method at the “Polyus” 1 ]
company. _ - o1 02,
The results of measuring, are presented in Figs. 1-4. T7,K

Figure 1 shows the results of measurihgfor samples

: ; FIG. 2. Temperature dependence of the spin—lattice relaxation rate for Nd
A and B at 1685 Ogthe double line correspondmg to tlgg ions in YzAl;0;,. The measurements were made for the weak-field EPR line

compone.n)t and _4480 Oe(quadrUple ling at 9-25 GHz. The with H [I[100]. The solid curves represent calculations using Efsand
results will be discussed later. Here we give only the func<7).
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FIG. 3. Spin—lattice relaxation rate for Ridions in Y;Al;0;,. The mea- i ) ) ) ! ]
surements were made for weak-field and strong-fled EPR lines withFIG. 4. Field dependence of the spin—lattice relaxation rate fdf Mahs in

H 11[100] at 9.25 GHz. The solid curve represents the results of calculations! 32501 The magnetic field was oriented arbitrarily in a plane WitB0],
using Eq.(6). and the temperature was roughly 11.4 K. The solid curve represents the

results of calculations using Eqd.1) and (19) with y=2x10' s,

guencieg9.25 and 36.4 GHzfor the same orientation of the
magnetic fieldlnamelyg,) and, naturally, in different mag-
netic fields(1685 and 6660 Oe, respectivefpr samples B

_and_ B. 'I_'heEobzerveo(lj tetrr;%eérlagge q!{e_p?ndence at 9.25 GHgq agreement with the increase in the coefficiéntvith
is given in Eq.(5), and at 36. zI1tis. field strength, although such an increase is not as rapid as
T11:[1_331-+ 4.6x 10" exp(—128x1.44/M)] s L. might be expected from the Kronig—Van Vleck mechanism
(7)  (AxH%. This can probably be explained by the fact that at
Figure 3 depicts the results of measuring the spin—Iatticémpur"[y lon concentrations of about 1%, two-particle relax-

relaxation rate for sample B at 9.25 GHz both in the Weak-atlon mechanisms of the Waller type beglr_1 tq operate.
For samples A we have>1, which qualitatively makes

field and strong-field EPR lines, obtained by using the pulse(gh_ tuati ble low-t ; laxati fi
saturation method4-12 K), and from the temperature niS situation resemble low-temperature rezaxa lon oFimpu-
rity rare-earth ions in K¥F;, single crystald? Possibly, in

broadening of the line$25—-50 K). The solid curve corre- . . ) .

sponds imperfect garnet crystals, rapidly relaxing centers like those

0 (6) in two-level systems in glasses are formed. The interaction
! of rare-earth ions with these centers can explain, at least in

Clearly, in the high-temperature rangehere processes ~ .~ le. th licated t tre d d  rel
exponentially dependent on the reciprocal temperature dompPINCIPie, the complicate lsempe_ra ure dependence ot relax-
tion times. Ashurowet al.” studied the possible types of

nate, there is a strong dependence of spin—lattice relaxatiof, _ :
on the magnitude of the external magnetic field, both in mea: isorder in garnet crystals doped .W'th rare-earth eleme_nts.
surements at different frequencies for the same orientation hey foutnd that IS d(.:tr.ystzﬁls_synth;a&zed tfrom the melt at h'gr\
the magnetic field and in measurements at a single frequen mFera L:cr;ahs, aad |0nte;] mpurity centr(]ers m?ty apg;;rl.

but on lines in different fields. For a detailed study of this. action ot the rare-earth 1ons occupy the positions .
dependence we measurEgdat 9.25 GHz withT=11.4 K for ions and generate internal stresses, which reduces the quality

arbitrary orientations of the field in relation to crystallo- of thj ?rytstal.t v inth idered h in Ref. 12
graphic axes in EPR lines corresponding to different field niortunately, in the case consioered Nere, as in Ret. 2z,

strengths(Fig. 4). Note that when the EPR lines coincided, f[he banom:louls temperature b«tahawor ct>f the relaxatu_:;ﬂ {ate
no jumps in the relaxation rates were observed. Figure 4 alsg OPServed only OVer a narrow temperature range, with tem-

depicts the result obtained at 36.4 GHz and 6660 Oe. peratures differing by roughly one order of magnitude.
Let us discuss the results Within this range one can establish fairly good agreement

with the experimental data by approximating the measured
rateT; ' by a sum of several exponential terms. Bagdasarov
et al.” reasoned along approximately these lines and used a
The temperature range over which the measurementsum consisting of a term linear in temperature and an expo-
were made can be tentatively divided into two regions: thenential term. They explained the presence of the second term
high-temperaturg T>8 K), in which relaxation processes as an effect of foreign impurity ions. Here we can merely
with rates exponentially depending on the reciprocal temstate that the “anomalous” behavior of the rate at low tem-
perature dominant, and the low-temperat(ire.8 K), where  peratures is due to the imperfect nature of the crystal, and do
T1 1« AT". For “perfect” samples B with the longest relax- not provide a concrete mechanism that would explain such
ation times we haven=1; a linear dependence of rate on behavior.
temperature usually indicates the presence of direct relax- Now let us examine the high-temperature range. Here

ation processes involving a single phonon with a frequency
equal to the EPR frequendy This assumption is in qualita-

3. THEORY AND DISCUSSION
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the results for samples A and B under similar conditions ofwhich means we are justified in believing this behavior to be
observation are essentially identical, i.e., the difference in thelue to the interaction of the ions and optical vibrations with
quality of the samples has little effect on the spin—latticeenergyA (see Ref. 12 On the other hand, in garnets the
relaxation of the impurity ion. The relaxation rate can berelaxation of YB* obeys aT; T ° law, as noted earlier.
written Ty =B exp(—A/T), with the coefficientB strongly =~ We conclude that the optical vibrations of a garnet lattice at
dependent on the magnetic field strength: for the same line ifrequencies of approximately 120 ch either do not
the EPR spectrurtthe weak-field line, corresponding tg)  strongly interact with the impurity ions, or their spectrum is
the rate at 36.4 GHz is approximately eight times the rate agxtremely blurred. In both cases, the specific way in which
9.25 GHz(see Fig. 2. Of the same nature is the dependencethey show up in spin—lattice relaxation is lost in comparison
in sample B on the magnetic field strength when we go fronto acoustic vibrations: they only slightly modify the fre-
the weak-field(doublg line to the strong-fieldquadrupl¢  quency distribution density of the vibrations(w)ew?, char-

line at the same frequency of 9.25 GKee Fig. ], so that  acteristic of acoustic branches. Thus, the most probable re-
we can expect to obtain detailed data on the field dependend@xation process in YAG:NY at high temperatures is a two-
of the relaxation rate by changing the orientation of the magstage process through an intermediate level with an
netic field in relation to the crystallographic axes and mea€xcitation energy of 130 ciit. These assumptions also agree
suring the rate at a fixed frequency on EPR lines in differenwvith our estimates of the relaxation rate based on the ap-
fields (the results of such measurements are shown in Fig. 4proximate Orbach-Jeffries scherteee Ref. 1},

The value of the parametdr, determined in spin—lattice In calculating the spin—lattice relaxation rates, we used
relaxation studies, is close to the interval of 130 ¢reepa- the values of the crystalline-field parameters for
rating the closest excited doublet from the principal doubletY 3Als012:Nd®" obtained by Morrisoret al:*®
of Nd®* in YAG,"**which indicates the presence of a two- B,g= —208 cn, B,——306 cml,
stage relaxation process of the resonance-fluorescence type
through this excited level. We also note that studies of the IR B, =—-339 cm'®, B,,=-410 cm},
spectrum of YAG have revealed the presence of vibrations
with an energy of approximately 120 (fr’n(se(te3 Refs. 4-% B4=1065 cm !, Bg=70 cm %,
Hence, one cannot ignore the possibility thatNébns may _ _
relax by an ordinary Raman process involving optical Beo=197 cm*, Bg,=1116 cm
phonons with an energy that might also lead to an exponen- Bee=41 cmi L,
tial dependence of the spin—lattice relaxation rate on the re-
ciprocal temperature, with the dispersion of this branch ofCalculations were carried out for the case in which the mag-
lattice vibrations being small. We see that there can be twaéetic field was parallel to thELOQ] crystallographic axis for
mechanisms of spin—lattice relaxation of the®Ndon in  the weak- and strong-field lines. In both cases we arrived at
YAG at high temperatures. the following temperature dependence for the relaxation rate:

The literature suggests a field dependence of the spin—- ___; 1
lattice relaxation rate due to distinctive lattice vibrations with Ty =111x 10" exp(—130x 1.441T).

a narrow frequency spectrum near A quadratic field de- Note that the calculations do not reflect the dependence of
pendence of the relaxation rat&; '=H? exp((—A/T) was  the spin—lattice relaxation rate on the magnetic field strength
discovered in studies of the spin—lattice relaxation ofYb that we established experimentally. Obviously, this is due to
ions in BaY,Fg (see Ref. 1k Calculations demonstrated that the approximate nature of the formulas used in the Orbach—
one of the prerequisites for such a dependence is the pro¥effries method. However, such an approximation was
imity of the two excited levels of Y. The second excited thought of as being quite satisfactory, because the existing
level of Nd®* in YAG is separated from the ground level by experimental data did not suggest any appreciable field de-
199 cm!, which is rather far from the first, i.e., the condi- pendence of the relaxation times due to two-stage processes.
tion is not met. A field dependence of the relaxation rate of  Allowance for the effect of variations in the magnetic
the form T *ocH ~2 exp(—A/T) was discovered in studies of field strength om\, a quantity contained in the exponent in
spin—lattice relaxation of T ions in CaWQ (see Ref. 1§  the expression foff;* and in the pre-exponential fact@

and this was attributed to crystal lattice vibrations with an(through the distribution density(A)), leads to corrections
extremely narrow spectrurtof the order of EPR frequen- to the rate of the order ofugH/kT)? and (ugH/A)? (here
cies. This field dependence is the opposite of the one obug is the Bohr magnetgnboth are unimportant at high tem-
served in YAG:Nd. peratures and values Afof order 100 cm. More important

These facts lead one to doubt the effectiveness of theorrections emerge when one allows for the specific features
second relaxation mechanism, which assumes a strong linkf the Kramers degeneracy of the Stark levels of rare-earth
between the impurity N¥ ion in YAG and the branch of ions!® ?2The authors of these papers have demonstrated that
optical vibrations, which has a sharp maximum of the distri-in relatively weak magnetic fieldshe splitting of an excited
bution densityp(w) at A~120 cmi L. If this mechanism were doublet,Aw, is comparable to the doublet’s widthresulting
effective for YAG:N&*, it would show up in other rare- from the finiteness of the respective lifetime¢he rateT;?®
earth ions. For instance, in KF¥,, the high-temperature re- consists of terms with and without the factdtsw/y)?, and
laxation rate for all three studied ions of Ce, Nd, and Ybsince Aw « H, a field dependence of the rate may emerge.
follows the patterrl; 1=B exp(—A/T) with A=87.5 cm }, We illustrate this dependence by using a simple approach in
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which the rate of two-stage processes is obtained by slightly The splitting of the excited doublet iAw=g,,ugH,
modifying the expression for the probability of two-phonon whereg?,= gZ,,n%+ gz,,n5+ g3, n> is the effective gyromag-
Raman processédsf. Refs. 11 and 22 netic ratio of the excited doublet of the Ridion, with the
Let us write that part of the probability of a Raman tran-field orientation determined by the direction cosimes For
sition between the statesandn’ of the principal doublet of a fixed line in the EPR spectrum and a given orientation of
a paramagnetic ion that without allowance for the width ofthe field, the splittingAw is proportional to the magnetic
the intermediate levely,,) would be represented by a diver- field strength or the resonance frequengy. For a fixed

gent integral: frequencyw, and different components of the spectrum, or a
1 fixed component but different field orientations, the value of
_ 6 the effective ratiog,, changes, as well.
Wy = igi | o°ny(n,+1 Zgm e
" T2 hedoy ; i, f ( ) The coefficientsB; and B, in (11) also depend on the
2 orientation of the field. For locdD, symmetry they can be

s oVidmymivin'y

: (8)  expressed in terms of the four paramet&is ; 4as follows:
m W= OnntiYm2 |

2

Hered is the crystal density; is the average speed of sound, B1= 2, AiA;— — [(AjA+AzA,)gons
q; and g; are numerical factors of order 1, and 7 g
n,=[exphw/kT)—1] ! is the average number of phonons of +(A1Ag+ A A OINE+ (A1AL+AAz)goN7 ], (12)
frequencyw. The expressiont8) was written by using the
Debye model of crystal vibrations, and the spin—lattice2(B,+ B)=(A;+A,+Az+A,)?
Hamiltonian is 1
— [ (Ar+Ap— As— Ag) G m:
Ta=>, Vier, 9 9"9m

I (A1 A= Ar— Ay xmd
where thee, are the components of the displacement tensor
‘e=aular, Wlhich transforms as real-valued spherical harmon- +(A1+A4—A2—A3)gygmyn§]2. (13
ics (€1~ &t eyyt €7, €28ty —2€;;, €3 €x €y,  The parameterd; are combinations of the matrix elements
€~ 8y, t €y, 878y, &y, etc), with u(r) the displace-  of the operatorsy; in (9) between the statesN(N’) and
ment at the point of the crystal lattice under a deformation. (M,M’) of the principal and excited doublets, respectively,
We allow only for the level closest to the ground level, thehe states being selected in such a way that they diagonalize
m,m’ doublet with excitation energyA. For Kramers-  {he component, of the angular momentum operator. The
conjugate statesn and m’, the “widths™ are almost the g nctions|N’) and|M’) are the result of time reversal of the
same, ym=ymw=v, but the matrix elements fynctions|N) and|M), respectively, so that under a rotation
U = (n|Vilm)(m[Vj[n") andvj;=(n[Vi[m"){m’[V;[n") are o 180° about the axis,|N) and|M) are multiplied byi and

not necessarily equal; for instance; = —uv;; . We retain IN’y and|M’) by —i. Then

only the contribution of the “resonant” part of the integral

in (8), associated with frequencies~A. Here it is important A1=01|U|%+q,|U5|2+ a3 Us)?,
to allow for the splitting of the statem andm’ by the mag-

netic field: Aw=w,,— @y n. Direct calculations of this con Az2=0g|Ug|*+qo|Ug|?,

tribution yield
As= 0| Wyl %+ 07| W5|%,  As=0s|Ws|*+ 0g| Wa|?,

AGHA(nA-I-l) 9 9
wnnr~mg aidjd|vij|*+ |ujj] where
Ui=(N[Vi|M), W;=(N|V{|M"). (15

2
+ Aot 2 [v* Re(ujjv )+ yAw Im(u;vi)1},
If the parameterg\; are approximately equal in magnitude,
(100  the relaxation rates contain essentially no orientational de-

where+ stands for complex conjugation. The usual eXprespendence. This dependence can show up quite clearly if one

sion for the probability of a two-stage process can be opParameter is much larger than the others, i.e., if the paramag-
tained in the approximatioriy/Aw)—0 by dropping the netic ion is effectively related to a definite type of deforma-

terms in braces that contain Bearing in mind thakT<kA, tion. . i )
we can write the following formula for the relaxation rate _ 1he fact that magnetic ions are firmly related to a defi-
due to two-stage processes: nite type of deformation is a characteristic feature of many

phenomena in crystals. We note, for instance, that magneto-

4 A® striction in LITmF, in a magnetic field parallel to a crystal-
Ty =Wapy +Wn’n:m lographic axis(H|[c) resulting from the totally symmetric de-
) formationse,, ande,,+e,,, is weaker by a factor of 1000

«|B.+B Aw exp< _ A) (11) than magnetostriction in a magnetic fie¢td c, due to defor-
P22 Aw?+ 92 KT/ mationse,,—e,, ande,, (see Ref. 2B Hence we can make
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an assumption that makes it possible to describe the orienta- Note that there is one more possible explanation of the
tional dependence of the relaxation rate observed in experdependence of the relaxation rate on the magnetic field
ments: strength: the proximity of the optical phonon frequencies to
the frequencyA of the transition of an impurity ion into the
Ar=na, A=Az=A,=a, n~1C° (16)  excited state. If the edge of the phonon band is clos,to

For estimates we also used the calculated values of thd'€ extent to which optical phonons participate in two-stage

the j-multiplets of the ground state terfhof the N* ion: .the magnetip figld strength increases, this line, wh.ose width
is v, moves inside a small interval of 2—3 ¢ but this can

Omx=0.765, 0nyy,=0.609, gn,,=4.355. (17)  be sufficient for an appreciable increase in the above-
0rpentioned overlap and, accordingly, for an increase in the
rate of relaxation with participation of optical phonons. Per-
haps this mechanism is an addition to the one mentioned

0x=—1.249, g¢,=1.83, g,=—3.973 (18) Qarlier, and facilitates a more cle_arcut maqifestation of the
field dependence of the spin—lattice relaxation rate.
obtained in a similar manner agree fairly well with the ex-  Thys, the field dependence of the spin—lattice relaxation
perimental data given at the beginning of Sec. 2. For theate of N¢* ions in YAG discovered in the high-temperature
width of the intermediate level we take=2x10"*s™* (the  range can probably be interpreted as a specific manifestation
average pre-exponential factor in E¢3)—(7)) and examine  of the degeneracy of the excited level participating in the
the dependence of the relaxation rate on the orientation afyo-stage relaxation process. This is also in full agreement

the external field in th€100) plane of the crystalthis plane  with the fact that the temperature-dependent part of the EPR
contains thez axis and the bisectrix of the angle between thejinewidth does not depend on the field strength, since it is

Note that the calculated values of the gyromagnetic ratios
the principal doublet,

local x andy axes, i.e.n,=ny). determined by the probability of direct transitions from the
In this case ground states to the excited and, therefore, does not depend
B.—4 2 on whether the latter are degenerate or not. For the same
1=4(n+1)a%, . e ;
reason, the estimates of relaxation times done by using the
B,=0.5n—1)%a%{1—g 2g,%(17.1 co 6—0.082}, linewidth is in better agreement with the pulsed measure-
ments ofT;* at large values of the magnetic field strength.
Aw?=wigig 2 According to Eq.(11), several conditions must be met
for the field dependence of the spin—lattice relaxation time to
g?=13.1 cod 9+2.19, g%=18.49 cod 6+0.48, show up: the lifetime of the intermediate level must be suf-

(19 ficiently short(y=w), and the coefficienB, must be large
(B,>B,). The quantityy is proportional to the phonon dis-
tribution densityp(A), and an increase in the Debye value of
the density due to optical vibrations at a frequency close to
éhe energy\ of ion excitation may also play a role in that the
r\](AG:Nd system proves to be a convenient object for observ-
jng this dependence.

where6 is the angle between theaxis and the field, ana,

is the fixed frequency of the variable fie{@7x9.25 GH2.

By adjusting the parametea in such a way that for the

z-orientation the calculated relaxation rate coincides with th

experimental value, and plotting the relaxation rate for eac

orientation as a function of the corresponding value of thd

external magnetic field strength, we were able to adequateIX CONCLUSION

represent the pattern of the experimental points in Fighd :

solid curve depicts the result of relaxation rate calculajions We now summarize the main results of our investigation
When the field is oriented along the principal axes of theof the spin—Ilattice relaxation of the impurity Ridions in

g-tensor, the coefficienB, vanishes, and, according to our YAG.

theory, in perfect crystals there should be no field depen- 1. Low-temperature relaxation is determined to a great

dence of the relaxation rate for such orientati@fsRefs. 19  extent by the method of sample preparation. In the most

and 21. One can expect, however, that the crystal contains dperfect” crystals, relaxation results from direct energy

number of positions of impurity centers of lower symmetry, transfer to the phonon system. The existence of defects

and that there is a noticeable deviation of the axes of thenarkedly increases the relaxation rate.

g-tensors from the crystallographic axes. AlreadBgst-B; 2. At high temperatures, the difference in relaxation rates

the relaxation of such centers is strongly dependenfHdn  for different samples becomes smaller. The transfer of ion

The reason for such distortions may be the imperfection o€nergy to the lattice is a two-stage process through an inter-

the crystals discussed above and the paramagnetic impuritiesediate level with excitation energg~130 cm . We

proper, whose concentratigr1%) is fairly high. For such a found that here relaxation strongly depends on the external

concentration, the spins are strongly coupled and relax as magnetic field. We know of no reports of such a dependence

single system, which imposes the overall field dependence ah experiments involving various systems.

the relaxation rate. To verify this point it would be desirable 3. The probable reason for such a dependence is the

to study the concentration dependence of the relaxation ratguasidegeneracy of the excited doublet level of the ion, for

especially at extremely low concentrations. which the doublet splitting is comparable to the reciprocal
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lifetime of the state. The presence in the YAG lattice of°Gh. Cristea, T. L. Bohan, and H. J. Stapleton, Phys. Rew, R081

optical vibrations with frequencies close 1 probably re-

duces this lifetime, and results in a more clearcut manifesta-

tion of the field dependence of the relaxation rate.
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Instability of single-electron memory at low temperatures in Al/AIO «/Al structures
V. A. Krupenin, S. V. Lotkhov, and D. E. Presnov

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
(Submitted 4 July 1996
Zh. Exsp. Teor. Fiz111, 344—-357(January 1997

A nanostructure based on a uniform one-dimensional array of ultrasmall tunnel jun@tisimgle-
electron trap characterized by an ability to maintain an excess charge of several electrons

in an island is fabricated and investigated. Changes in the state of the trap are detected by a single-
electron transistor. At the working temperatdre 35 mK the storage time of a charge state

is more than 8 hwhich is the duration of the experimentt is demonstrated that the possible
factors limiting the lifetime of a state at temperatures below the typical temperatures for

thermal activation include the influence of the random distribution and drift of the effective
background charges of the metal islands, as well as the reverse influence discovered

here of the transistor on the trap. As the current passing through the transistor increases, the
hysteresis loop in the dependence of the charge in the trap on the control voltage narrows. It is
noted that an increase in the current from 5 to 300 nA is equivalent to raising the working
temperature to 250 mK. €997 American Institute of Physids$$1063-776(97)02201-4

1. INTRODUCTION age applied to the gate. Depending on its height, the barrier
) , is capable of isolating an excess chamge in the island,
The development of nanolithographic methods has madgore n is an integer in a certain range of values:

it possible to fabricate single-electron systems of SmeicrO'P\mm(Vg)<n<nma)(vg). The discrete number of stable charge
tunnel junctions, whose behavior is based on the CoulomQiaiasMm in the trap as a function of the gate voltadg is3
blockade. In order for the charge effects to predominate over

the background of thermal fluctuations and the quantum NCs 1 1
spreading of the energy levels, the parameters of the struc- M :{ c -1+ Eii’ ©)
ture must satisfy the following conditiorts: t

C<e?/2kT, R> Ry, (1)  whereCy is the total capacitance of the islaAd By asym-

o ) metrizing (“tilting” ) the barrier by means of one of the in-
whereC andR are the characteristic capacitance and tunnelements AV)in OF (AV,) oy We can cause the tunneling of

resistance of the junctions; is Boltzmann’s constanil is g electron into or out of the island, respectively, with the
the temperature of the samptejs the electron chargé is  resyjtant changen—n=1. For the reverse transition
Planck’s constant, anBq=h/4e?~6.5 K} is the quantum .1 . 1o occur, the direction of the asymmetrization
resistance. Remarkably, the conditiofld do not lead to (“tilting” ) of the barrier must be reversed by an opposite
fundamental restrictions on the minimum topological dimen‘change invy. Thus, the dependence of the island charge on
sions of single-electron structures. This makes singIeVg has a hysteretic charactésee Fig. 6 in Sec. 3)2The
electron structures promising for further miniaturization of,,;4tn of the hysteresis loop depends on the height of the
the basic cells of microelectronic structufes. _ _barrier, the temperature, thg sweep rate, and the influence
The present research is devoted to an experimental inst external excitations. The state in which the system is
vestigation of a prototype single-electron memory cell or.fong at the current time is determined by the history of the
stated differently, a single-electron trap. The simplest form, g iation ofVg, i.e., the system has memory. A pair of ad-
of a single-electron trap is depicted schematically in Fig. 1ajacent states withn andn+ 1 electrons in the island can be
The metal islandd, which is under the electrostatic in- assigned to logical 0 and (or low and high, and such a

fluence of a control electrodégatg, is connected to & gjngle-electron trap can be used to store a single bit of digital
grounded electrode by a uniform one-dimensional array ofntormation.

N tunnel junctions with capacitand®; . In energy terms the Unfortunately, there are several mechanisms that lead to
presence of this array is represented by the presence of afdesirable switching between the charge states of the trap
electrostatic barrier controlled by the gate voltag  4nq thereby reduce the accuracy of stored digital informa-
(Fig. 2 tion. They include the thermal activation of tunnelifipe

AEi=e2/2C‘E—eVi(Vg), ) influence of this effept on a single-electron Frap was thor-

_ oughly examined in Ref. )4 macroscopic quantum

where Cy is the total capacitance of thigh intermediate tunneling® and tunneling due to photon excitatidhe be-
island in the array (&i < N), defined to be the charge of the havior of the experimental structure is also influenced sig-
island produced by unit potential when all external elec-nificantly by the random drift of the background effective
trodes are grounded, ang(V,) is the contribution to the charges of the islands in the structure, on which we shall
potential of theith island from the field created by the volt- dwell in detail in this paper.
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We observed a reverse influence of the single-electron
electrometer used to detect the tunnel events on the charge
dynamics of the trap. It was discovered that the width of the
hysteresis loop in the dependence of the trap island charge
on the gate voltage decreases as the constant current supplied
to the single-electron transistor is increased, shortening the

__M__EI lifetime of the states.
_w__m_.

1

#p
T

Electrometer 2. EXPERIMENTAL METHOD

The equivalent circuit of the experimental structure is
depicted in Fig. 1b. The structure includes an additional
similar one-dimensional array of tunnel junctions connected
to the trap island, making it possible for current to flow along
two one-dimensional series arrays. For this reason, the prin-
cipal electrical parameters can be determined in this circuit
directly from measurements without enlisting topological
calculations of the capacitances. It is kndwthat the
current—voltage characteristic of a one-dimensional array of
tunnel junctions has a Coulomb-blockade segment at volt-
ages less than a certain thresholt(Vy,) and that it tends
to a linear asymptote ar>V,,. Thus, by supplying a bias
voltage several times the threshold voltage of the Coulomb
blockade of each array or, in other words, by selecting a
nearly asymptotic regime, we can neglect the nonlinearity of
the current—voltage characteristic of each array in evalua-
tions and calculate the voltage on the central island using
Ohm'’s law. This permits the direct determination of both the
ratio between the asymptotic resistances of the arrays and the
mutual capacitanc€,,, of the central islands of the transistor
and the trap from measurements. Knowiflg,, we can
evaluate the total capacitance of the trap isl&d which is
needed to calculate the height of the electrostatic barrier.

In our experiment, variations in the state of the island in
the single-electron trap were detected because of the capaci-
FIG. 1. Eguivalent circuits _of a very simple single-electron ttapand of tive coupling of the trap island to the single-electron transis-
the experimental structure investigatd. tor alongside if The need to compensate for the influence of
the background charge called for the introduction of addi-
tional tuning gated'; andT, for the arrays.

A system of small-areé80x 80 nn?) Al/AIO /Al tunnel
junctions was fabricated on a silicon substrate with an insu-
lating Al,O5 coating of thickness 200 nm by the two-shadow

AE,mev deposition of Al through a two-layer electron-beam litho-
0.9r ] graphic mask with suspended segments and intermeidiate
0.8t 1 situ oxidation(see, for example, Ref.)9A photomicrograph
0.7t of the experimental structure is presented in Fig. 3.
0.6} ] The measurements of the electrical characteristics were
0.5 performed in a dilution refrigerator at temperatures from 30
0.4k to 200 mK. The parts of the cryostat and the measuring cir-
ol cuit that are at higher temperatures, the electromagnetic
i background in the laboratory, and the “noisy” power sup-
0.2 plies of the measuring instruments can be sources of electro-
0.1t ] magnetic excitations capable of provoking a tunnel event.
01 23 4 5 6 7 8 9 10 External noise is capable of reaching the single-electron

Island number structure both along the electrical conductors and through

leaks in the shielding of the sample. To protect the sample

FIG. 2. Dependence of the free enedyiz; on the position of the electrode  frgm noise, it was enclosed in a hermetically sealed metal
in the array for various values of the self-capacitance of the intermediate . . .
islands:1) C,=0,2) C.= 10 aF.3) C,— 15 aF 4) C.— 20 aF. The data were capsule, and the el_ectrlcal connecting lines from the sample
obtained numerically, using Eq(2), C,=200 aF, Cy=240 aF, and (O the measuring instruments were interrupted by coaxial

Vy=e/2C,=1.14 mV. cable microwave filter® which were located in the same
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FIG. 4. Period of the modulation characteristg(V,) of the electrometer

) ) by the trap gate in the “compensated” regime. There @re 24 tunnel
FIG. 3. Photomicrograph of the experimental structure. events in one modulation period.

capsule with the sample in direct proximity to it and were atapout 20% ofC;,), it can be assumed that the electrometer
ments were used in the experiment. The power sources of thgentical incrementaV,;=AV, to the voltages at the ends
control circuits and preamplifiers were storage batteries. Thgf the arrays, which have been shifted into the conducting
typical noise level of the measuring instruments wasstate by the fixed potential differenag —V,, we find the

Vims~30 nV/HZ'? at a frequency of 10 Hz. mutual capacitanc€;, of the transistor island and the trap
island from the period of the plot of, (V).
3. EXPERIMENTAL RESULTS 4. If the effective electrostatic influence of the trap gate

on the transistor island is balanced by applying a correspond-

ing voltage to the “transistor's” gate, the modulation of the
1. To determine the resistance ratio, the arrays must bgansistor will be stepwiséFig. 4) and will occur exclusively

brought into a conductingunblocked state by applying a as a result of electron tunneling events from its island to the

potential differencé/; -V, several~10) times greater than trap island. This permits evaluation of the total capacitance

the blockade voltage to their ends. In this case the potentiaif the trap islancCy (which is defined in analogy t6% , see

of the central island in the trap is determined by the ratiothe Introduction.

between the total resistances of the arr&<R, and the The passage of one modulation period corresponds to

applied voltage¥; andV, at the ends. We record the signal variation of the trap island charge bye, wherem is the

from the electrometer and supply a small positive voltagenumber of electrons that entered the island. The change in

incrementAV; to one end of the structure. The amplitude of the trap island potential not balanced by the “electrom-

the signal from the electrometer varies. By applying a negaeter’s” gate equals

tive voltage incremenmAV, to the other end of the structure,

3.1. Determination of the parameters of the structure

we can restore the original “reading” of the electrometer. It AVo=me/Cs. ®)

is clear that On the other hand, this voltage change led to variation of the
Ry /R,=|AV, /AV,|. 4) effective charge of the transistor island &ytherefore,

The ratio between the resistances of the arrays CimAVo=e. ©®

R;/R,=0.88 justifies considering them to be the same toComparing(5) and(6), we obtain
within the accuracy of our evaluatiofapproximately 20% _

2. The periodAV, of the modulation characteristic Cy=mGip. @)
Vi(Vgy) of the transistor is determined by the mutual capaci- 5. The increment of the voltagé, between two succes-
tance between the island of the transistor and the modulatingive jumps in Fig. 4 equale/C (see, for example, Ref.)3
electrode C4 and is equal to 21 mV, whence whence we can easily determi@g, i.e., the mutual capaci-
Cqi=e/AV,=7.6 aF. The capacitanceS; of the tunnel tance of the island and the gate.
junctions evaluated from the offset voltalygs=e/Cg,, Of 6. Let us define the total nontunnel capacitance of an
the current—voltage characteristic of the transigtmder the  intermediate island in an arra@g as the sum of the self-
assumption tha€,,~2C,, whereCg,,is the total capaci- capacitancéthe “capacitance to ground”of the island and
tance of the transistor islahdre approximately equal to 200 the mutual capacitances of the island to all the electrodes
aF. surrounding it, except those separated from it by tunnel bar-

3. When the mutual capacitances of the islands in theiers. Starting with the assumption that the structure under
arrays with the island of the transistor are negledteddu-  consideration is one-dimensional and lin¢see Fig. 3 and
lating the conductivity of the transistor by the ga®sand taking into account that the length of the central island of the
T, to the arrays, we estimated that together they amount ttrap is 10 times the effective length of an intermediate island
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TABLE |. Numerical values of the parameters of the experimental structure.

Capacitance, aF

Parameter Ri+R, R/R, Cyt Cq Cint C, Cs C Cs
Value 2 MQ 0.88 7.6 70 10 200 240 45 15
in an array, we hav€,=10C,, whereC,, is the total non- The approximate values obtained for the parameters of

tunnel capacitance of the trap island, which is defined byour experimental structure are presented in Table I.
analogy toCs. Using the obvious relation

Cs=2C+C,~2C+10C, (8)

hereC is th it ¢ £ iuncti hich The height of the energy barrier and therefore the num-
wheret. 1S the capacitance ot one array of junctions, whic Tber of stable states and their lifetimes are greatly dependent
is numerically equal to the charge of the right-hand end o

the array induced by unit potential when the left-hand end iSon the electrostatic influence of the distribution of the un-
. : . compensated charge in the substrate and the space surround-
grounded, and takin@~C;/N~22 aF as a zeroth approxi- P 9 P

i btain th h esti 20 aF ing the structure, i.e., on the electrostatic environment. This
mation, we obtain the rougn es lme@ ar. _ can be seen indirectly after taking into account that the
For a more accurate determination ©fwith consider-

i  the finit | oF i . infinite” height of the energy barriekE also specifies the value of
ation of e finite values oL we consider a “semi-infinite the threshold voltage of the Coulomb blockade in an array of
array of metal islands with a total nontunnel capacitanc

. . . Sunnel junctions: ¥;—V,)1~AE/e. Figure 5 presents an
Cs, which are separated by tunne‘l‘ barr_u_ars_ W't,r,] a Capac''experimental plot of the dependence of the voltage at a small
tanceC;. The capacitanc€, of the “semi-infinite” array,

being equal to the capacitance of any semi-infinite segme gurrent through the array, which is thus close to
thereof, satisfies the equation rt\/lt_hVZ)T, o.n'the v?ltage on the gafk, for zero voltages

' on the remaining gates.

(Cy t=(Ccy t+(Cc+Cy L. 9) As is seen from Fig. 5, the maximum threshold voltage
and, therefore, the maximum barrier height are achieved at a
nonzero value of the compensating voltage ©n More-
over, the form of the dependence varies with the passage of

3.2. Lifetime of a charge state

The potentiaV; of theith island from the end of the array is
related to the potential of the end of the arrfdy by the

expression time, demonstrating the drift of the distribution of the effec-
B Cx Cy 2_ tive background charged;, wherei labels the islands. In
Vi=Vioa C,+ CS_Vi—Z C,+Cq the ideal case, complete compensation of the drift phenom-

: ena requires the inclusion &f—1 tuning gates in the struc-
Cyx ) (10 ture (in accordance with the number of intermediate islands
C,t+Cq/ - which is not feasible in complicated applied systems. For
Eliminating C, by plugging the solution of Eq9) into (10) this re(;is?]n, the_sea_lrcr: forI mtethodf oftoverctonknng the bac_k-I
and taking into account tha&t,/Cs>1, we obtain g:ggzcyc arge In single-electron structures takes on specia
Vi=Vgy exp(—i/\), (11 Figure 6 shows twi,(V,) hysteresis loops, which were

where\ = \C,/C. is the characteristic electrostatic shielding recorded by the electrometer with a time interval for optimal

length in the array. The physical meaning of Etfl) is’ that

the electrostatic field in the array is localized within a se-
guence ofA junctions counted from the voltage source. The
remaining tunnel junctions are scarcely polarized and are un-
der the influence of a nearly zero potential. The estimates of 3r
C; and C, presented above giva~3-4 for a “semi-
infinite” array with the parameters of the structure that we
investigated. The field damping coefficient fde=9 equals 2r
exp(—=N/\)=0.06. Clearly, grounding thalth island of the

array, which transforms it from a “semi-infinite” array into

a real array, does not lead to significant redistribution of the !

:VO

AL

potential and the polarized charges in the array, and to within ol . . . ; . .
Vn/Vo=~exp(=N/\) Eq. (9) is also applicable to the deter- -60 -40 -20 0 20 43 6\(/)
mination of the capacitance of a finite arr@y 12> M

(0)71: (Ct)71+ (Cs+ C)il. (12 FIG. 5. Dependence of the voltage at the small curters pA through an

. . . array as a function of the voltage on the tuning gije The time interval
Solving the system of equatiof®) and(12), we find the  petween the measurements of the plots depicted by the dotted line and the
valuesC,~15 aF andC~45 aF. solid line was 70 h.
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FIG. 8. Temperature dependence of the mean lifetime of a charge state.
FIG. 6. Narrowing of the hysteresis loop with the passage of timse5
pA). Pair of curve2, which were obtaing 2 h after curved, is displaced
downward along the vertical axis by 1%0V for the sake of clarity.

(Tyocexp(AE/KT), (13

whereAE is the height of the energy barrier. In other words,
tuning of the gate§; and T, and are actually diagrams of the tunneling rate is proportional to the probability of the
the charge states of the island. The number of stable statédermal excitation of an electron to a level exceeding the
can be determined from the number of steps in the diagraffieight of the electrostatic barrier. The barrier height at which
of states intersected by the single vertical straight liner1=7o=7, as determined from the slope of the semilog plot
Vy=Vgo. When the temperature, sweep rate, operating coref 7(1/T) in Fig. 8, is 0.190.3 meV.
ditions of the electrometer, and voltages on the tuning gates The estimate of the lifetime of the state at 35 mK, ob-
were fixed, gradual narrowing of the hysteresis loop with atained by extrapolating the data in Fig. 8, is expB8*° s,
decrease in the number of states frorftdrve in Fig. 6) to which is much greater than the experimental observation
3 (curve2) was observed with the passage of time, attestingime.
to lowering of the electrostatic barrier, which is, in all like- ~ Macroscopic quantum tunneling of a charg®tunnel-
lihood, due to the redistribution of th@; . ing) is also known to be one of the channels for the decay of

For the two neighboring states 0 and 1 corresponding t@ state. The time constanm,, of the cotunneling process in

the hysteresis loofABCD (Fig. 6), the ratio between the an array ofN tunnel junctions can be estimatéetB) to be

mean lifetimesry and 7, depends on the choicg Ly ip the Too= 2RC[(N— 1)1 12N~ 2N(2N—1)!
rangeVep<Vg<Vpag. The temperatur@ was fixed in the

range 150—200 mK, in which the characteristic lifetimes are TR\ Ec|\ Nt 14
convenient for measuremenfFig. 7). It is clear that X Ry eV ' (14)

70> 711~0 at the pointV,=V,g and thatr;>7,~0 at the
pointV,=V¢p . Therefore, there is an intermediate value of
Vg for which 7= 7,.

If the lifetime of a state is governed by the thermal
mechanism for activating electron tunneling, we Have

whereE.=e?/2C, is the characteristic Coulomb energy and
V is the potential difference across the array of tunnel junc-
tions.

According to (14), the cotunneling rate drops signifi-
cantly under the conditionEc/eV=1. The inequality
Ec/eV>3, at least, holds for a symmetrizead= ;= 1)
barrier, giving the estimate,,>107s.

Ve HV . . i . ' To demonstrate the memory effect, we stored an electron
177 mK for more than 8 h. After this time, the voltagg, varied
‘ ! significantly (by more than the height of a stedue to the

100- ‘ § drift of the effective background charge of the electrometer

island. Therefore, in order to demonstrate the constancy of
the state, we took a “reading” of the trapped electron after
‘ raising the value oWy aboveV,g, which caused a jump in
Vi
| < As we have already stated, the hysteresis 14, in

sor T the dependence of the trap island charge on the gate voltage
\ , . . N can narrow under the influence of external excitations that
0 50 100 150 200 250 are capable of provoking a random tunnel event. We discov-

hs ered that the single-electron electrometer used to detect
FIG. 7. Alternating random switching of the charge states of a single-events in the trap is one of the sources of such excitations:

electron trap recorded on a background of noise using an electrometer with€ Width of the hysteresis |00ﬁ:ig_- 9 decr.eases as the
a current in the transistdr=5 pA. currentl, through the electrometer increagésg. 10. At a
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mv do not allow us to unequivocally rule out that the effect is
- T g y due to heating.

06: w At the present time additional experiments are being set
‘ 300 pA; up, and a model which describes the phenomenon is being

300 developed.
0.4f M o |
| 100 -
ook 0 ] 4. DISCUSSION
r 20 The lifetime of the charge state of the trap depends on

or q‘% 5 1 the maximum height of the electrostatic barrier. When the

L : . . ; L intrinsic capacitances of the intermediate islands in the array
-2 0 2 4 6 8 10 . . . .

V. mv are neglected, the maximum barrier heigt in the sym-

’ metric case of equal heights of the barriers to the entry and
FIG. 9. Hysteresis curves corresponding to different current valabsling departure of ?—n electron, '-eAuEin:A.Eoutv. is determined
the curves The curves have been displaced in the vertical direction with aby the capacitanc€, of the tunnel junctions, how many
spacing of 12QuV for clarity. there are in the arrajl, and the total capacitance of the
islandCy :

2
working temperature of 35 mK, an increase in currentfrom5 AE= = NG -
to 300 pA narrows the loop to the value characteristic of 250 8Cs G
mK. Thus, even at low temperatures, the transistor itself caSubstituting the values ofy and C; obtained above into
still be one of the factors limiting the storage time of a trap(15), we haveAE~0.8 meV forN=09.
state. In our opinion, the increase in the absolute value of the Consideration of the intrinsic capacitances of the inter-
derivativeld(AV|00p)/d(Ie|)| of the dependence presented in mediate island$Fig. 2) leads to an increase in the capaci-
Fig. 10 at low current is a significant feature of the effect. Ittance C of the array and lowering of the barrier. For
distinguishes the current dependence of the loop width fronC,=200 aF andC,=15 aF the barrier is lowered by one-
the temperature dependence, which is characterized by flatiird, i.e. to approximately 0.5 meV, which is still almost
tening at small values of, thereby setting it apart from a twice the experimental value.
number of temperature-induced effects. As a working hy-  In our opinion, one possible reason for the decrease in
pothesis to explain the effect, we suggest that the activatiobarrier height is the nonzero effective background charges
of the trap by the transistor is associated with broadband,, of the intermediate islands. For a simple estimate of the
noise in the voltage of the transistor island due to the influmagnitude of this effect, we place a negative charge
ence of tunnel events on the spectrum of states of the tragg= —e/20 on one of the intermediate small islands in the
island. array. This charge fully characterizes the actual scale of the

On the other hand, the estimates of the warming of thelrifting of the background charges of the islands in the struc-
trap AT by the transistor curreriRef. 11, Eq.(3.1)] at the  ture and, in particular, can be determined from the drift of
helium bath temperaturg,=35 mK and an electric power the working point of the electrometer. Whely>C, the
P=200 nAX1 mV as a function of the effective heat dissi- contribution of the electrostatic field of the charge
pation ares5

(15

AE%~eq/4C~—0.1AE (16)
2
S, pm” - 300x300 20<20 2x2 amounts to 10% of the height of the idealized barrier. Taking
AT, mK 0.6 40 190 into account the total number of intermediate islands in the

array and the possible correlation betweenGhe (Ref. 12,
we can estimate the overall effect to be several tenths of an

AV . mv meVv.
A At low temperaturegbelow 50 mK, where thermal ac-
25¢ 1 tivation is suppressed, one of the factors restricting the life-
time and number of states is excitation of the trap by the
20r ) transistor. The data in Fig. 10 suggest that even a small cur-
15k - rent passing through the transistor is capable of significantly
narrowing the hysteresis loop and thereby shortening the
Lor ] storage time of a state.
osh ) Estimates of the time constants of the processes leading
to the decay of states as a result of cotunneling and thermal
0 (') : 166 “2(1)0. . ‘3(')0‘ . 4(')0 . 560 activation yield va_llues_ S|gn|f|cantly exceeding t_he ob_se_rva-
L, pA tion times accessible in the experiment. The drift variations

of the characteristics were recorded experimentally. We as-
FIG. 10. Dependence of the width of the hysteresis loop on the currenpUme that they _are related to the red|3t”bu“9n of uncompen—
passing through the electrometer. sated charge in the local electromagnetic environment,
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mainly in the substrate, which alters the effective back-of the dominant factors limiting the storage time at low tem-
ground charge®); of the metal islandsincluding the cen- peraturegat which the thermal activation mechanism is sup-
tral islands of the trap and the electrometir the single- pressed

electron structure. This results, first, in the lower energy  Another factor influencing the activation of tunneling in
barrier mentioned above, second, in displacement of the oghe trap is the reverse influence discovered here of the sens-
timum working point of the trap with respect to the control ing electrometer on the trap. With respect to its influence on
voltageV,, and third, in instability of the “output” voltage charge hysteresis, an increase in the current supplied to the
of the single-electron sensing transistor. Despite the fact thdtansistor is similar to an increase in temperature, although it
the overall effect of the drifts did not result in switching is possibly not associated with direct heating of the structure
during the 8 h ofexperimental storage of a charge state, weby the current flowing through the transistor.

assume that random switching of the states is possible during
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Nonequilibrium noise-induced phase transitions in simple systems
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The theory and the results of an investigation of nonequilibrium noise-induced phase transitions
in the simple example of a physical pendulum with a randomly oscillating pivot are

presented. It is shown that such transitions lead to the appearance of a more ordered state of the
system. The possibility of a difference between noise-induced oscillations and chaotic

oscillations of dynamic origin is discussed. ®97 American Institute of Physics.
[S1063-776(197)02301-9

1. INTRODUCTION turns of the pendulum through angles that are multiples of

L " - . 2. Such full turns complicate the analysis of the results
Noise-induced phase transitions similar to those d's'obtained

cussed below were considered theoretically by Van den When nonlinear friction is taken into account, the equa-

1’2 . . . _ . . . ) ) -
Bro;:clk etfal. 'folr ds%stems Idescrlped byf finite dn‘fervfance tion of motion of a pendulum with a randomly oscillating
models of partial differential equations of a certain Orm'pivot can be written in the form

Noise-induced two-dimensional structures, which can be re-
garded_ as a distinctive fc_)rm o_f turbulenc_e, were discqv_ered ¢:25(1+a¢2)¢+wg(1+ £(t))sin ¢=0, (1)
numerically in Ref. 3. This indirectly confirmed the opinion
previously advanced by one of ¥isthat the turbulence in  Whereg is the angular deviation of the pendulum relative to
open flows is not the result of self-induced oscillations, but isthe equilibrium positionwy=\mbgJ is the frequency of
induced by noise. small natural oscillations of the penduluthandm are, re-
The transitions that we are speaking about here diffespectively, the moment of inertia and the mass of the pendu-
fundamentally from those considered by other investigatordum, b is the distance from the center of mass to the pivot,
(see, for example, Refs. 6 ang Who used this term for the g is the acceleration of gravity3=H/2J is the damping
appearance of additional maxima in a probability distributioncoefficient of the oscillationsi ¢ is the frictional tongue in
due to multiplicative noise, mainly in systems having thethe linear approximationg is the coefficient of nonlinear
property of multistability. We note that this fact was also friction, andgé(t) is the acceleration of the pivot, which is a
mentioned in Refs. 1 and 2. comparatively broadband random process with nonzero
It is very interesting that the noise-induced phase transispectral density at the frequencyg. We assume that the
tions under consideration are possible in very simple sysintensity of the oscillations of the pivot is small enough that
tems, for example, in a physical pendulum with a randomlysin ¢ can be represented in the form
oscillating pivot. Investigating just such simple systems is , )
convenient, because, on the one hand, it is possible to per- SN ¢=~(1=7¢%¢, @)
form an approximate analytic treatment, and, on the Othe\yvhereyz 1/6.
hand, a pendulum is a perfectly real physical object, which

An approximate analytic solution of the problem of in-
offers the possibility, in principle, of performing an experi- Pp A ’

terest to us can be obtained, if it is assumed {BVaby~ €

ment. and yp?~ €, wheree is a certain provisional small param-
eter, which can be set equal to unity in the final expressions.
Now it is convenient to rewrite Ed1) with consideration of
2. THEORETICAL TREATMENT OF PENDULUM (2) in the following form:
OSCILLATIONS CAUSED BY RANDOM OSCILLATIONS OF
THE PIVOT Pt wie=e(—2B(1+ ag?) o+ wiye®)
The possibility of exciting an oscillator under a random —Je&t)(1— eye?) @, 3)

parametric influence was first demonstrated analytically by

Stratonovich and RomanovsKi® The same problem was Here e in front of the noise term has the same meaning as
subsequently solved by DimentbéftjTo obtain a constraint on p. 346 of the Russian edition of Stratonovich’'s b3ok.
on the amplitude of the oscillations excited, those investigaThis way of writing the term is useful, because the spectral
tors took into account nonlinear friction. However, as will be density of the noise, which appears in the final expressions,
shown below, the inclusion of nonlinear friction is not is of ordere.

obligatory, since the amplitude can be constrained by means We solve Eq(3) by the Krylov—Bogolyubov method to

of a nonlinear restoring force. On the other hand, its incluthe accuracy of a second approximation with respect to the
sion is convenient, since nonlinear friction of sufficiently small parameter e. For this purpose we set
large magnitude makes it possible to eliminate random fulko=A cosy+eu;+ Uy + . . ., Wherey= wot + ¢,
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=ef;+ef+ ..., 22

dp=€eF + e’ F,+ ... . (4) L8)
anduq,U,, ..., f1,f5, ..., andF{,F,, ... are unknown g 1.4}
functions. Using the Krylov—Bogolyubov procedure for sto- % -
chastic equationgsee Refs. 9 and )1lwe can easily find 5 1.0f
expressions for the unknown functiofs, f,, andF; (F, C%—
introduces only small corrections #; and is therefore not 0'6_ ]
of interes}. Leaving only the nonlinear term ify, and sub- 0.2 e

0 0.4 0.8 1.2 1.6 2

stituting the expressions found into Ed), we obtain
Frequency, Hz

. 3 wg ——
. b 2 2| g
A_( Bl 1+ 4 (awpty)A )+ 2 & sin 2”[’)A’ ) FIG. 1. Spectral density of the noig¢t).
: 3 S
¢=— 3 woYA%+ woé cog i, (6)
_ . o awiK(2wo)
where the line over an expression denotes averaging with M=— —————-.
4(16wy+ a“)

respect to time. As was shown in Ref. 9, in E§)
€ sin 2p={£ sin 2)+ {4(1) 7) Taking into accoun{7)—(12), we rewrite Eqs.(5) and

) ~(6) in the form
where the angle brackets denote averaging over a statistical

2

ensemble, and,(t) is a random process, which can be re- 3 5, @0
garded as white noise with zero mean and interi§ityequal B_ 7 BYASE T Ky|A Agl(t) (13
to
1 b= =2 oyAZ+ oM
Klzi K(2(1)0). (8) ¢__§ woY +w0 +(1)052(t),
In (8) wherey=y+ aw.
The following Fokker—Planck equation corresponds to
K(2wg) = f (E(VE(t+ 7)) 008 20g7 d7 Egs. (13):
- wAG) 9 [[wiKy ,
is the spectral density of the procesd) at the frequency — A \lTa 7 BVA AW(A, ¢)
2wq. Because there is a correlation betwegeand ¢, the
quantity (& sin 2) in Eq. (7) is nonzero and equal to 3 IW(A, @)
—wo| 2 YA?-M | ———
— w » 8 ad
- 0 0
(& sin 21//>:T K(2w0) = 5 Ky. ©) Koo
10
A2w(A,
Similarly, in Eq. (6) 8 aA -7z (A°W(A,¢))
& coS Y=(¢& coS )+ {o(1), (10 . Kowg d2W(A, 2 14
where 2 ap?
wy (© _ where
(€ cog )= 2 f (E(t)é(t+ 7))sin 2wer dT=M,
Cw 48
1
{,(1), as in(7), can be regarded as white noise with zero °
mean and intensiti, equal to The stationary solution of Eq14) satisfying the condi-
1 1 tion that the probability flux equal zero does not depend on
K2:Z( x(0)+ 5 K(Zwo)). (12  ¢- Itis convenient to write it in the form
C A 27 68y
The value ofM depends on the character of the randomw(A, qS)— 5 ex f — dA- A dA;.
processé(t): if £(t) is white noise, therM =0; if, on the A 1 A 0 “’OKl
other handg(t) has a finite correlation time, as, for example, (15
when its spectral density is The constanC is determined from the normalization condi-
a“k(2wq) tion

f:”J;w(A,(p)A dA dp=1.
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After integrating(15) over ¢ and calculating the integral in 3. NUMERICAL SIMULATION OF THE EQUATION
the exponential, we find the expression for the density distriDESCRIBING THE OSCILLATIONS OF A PENDULUM WITH

bution of the oscillation amplitudes: AN OSCILLATING PIVOT
38y Since the theoretical results obtained, first, do not make
W(A)=CA>7"* exp[ T 2K AZ] (16) it possible to find the form of the noise-induced oscillations
@01 of the pendulum and, second, are approximate, we numeri-
From the normalization condition we find cally investigated the solution of the equation
(ngl -7 4 o e+0.2A1+ a?) o+ (1+&(t))sin ¢=0, (19
c=2{ | 38y Tn) or where £(t) is sufficiently broad-band noise, whose spectral
0 for =<0 density is shown in Fig. 1.
A term describing nonlinear friction was included in Eq.
and, therefore, (19) in order to avoid rotation of the pendulum at noise in-
oL tensities significantly exceeding the critical value. The inves-
(wo_Kl) 7 L 29-1 tigation showed that, as the noise intensity increases above
38y I'(n) the critical value[ k,(2)=0.8], the average values of the
W(A)=2 385 . instantaneous a_mplitude of the pendulum oscillations calcu-
><exp{ - — Az} for >0 lated using a Hilbert transforrtsee, for example, Refs. 12
woKy and 13 and of its square become nonzero and then increase,
S(A) for =<0 as follows from the theory. The corresponding dependences

(17 are shown in Fig. 2. We see that their initial segments coin-
The distribution density of the amplitudes turned out to beCide quite W.e" with the theoretical dependences §pecified by
delta-shaped wher < 0 because we did not take into ac- Eq.. (13)’ Wh'.Ch we calculated un.d_er the assumption that the
count additive noisd. noise |nten.3|ty is plose .to. t'he critical value. .
Using (17), we can find(A) and (A2): _ In the_: immediate V|C|r_1|t_y of the threshold_, the o_scﬂla-
' ' tions excited are very reminiscent of the chaotic self-induced

w(Z)Klr(”Jr 1/2) o 1=0 o_scillations that result frpm loss of stability pf the equilib-
B 355 T+ 1) 7 n rium state due to merging, for example, with an unstable
(A)= Y i ' limit cycle, and therefore exhibit intermittené§.The form
0 for »=<0 of such oscillations and the projections of their phase portrait
) in the ¢(t),¢(t) plane are shown in Fig. 3. We note that
woKy turbulence in a region of transitional Reynolds numbers also
ot for >0 uten g ) ey .
(A%y=1{ 3By 7 _ (18)  exhibits intermittency> "It is no accident that the first de-
0 for 7=<0 tailed analyses of these phenomena were published specifi-

cally by specialists in turbulencé.
Hence, it is clear that parametric excitation of pendulum os-  If nonlinear friction is not introduced, the pendulum be-
cillations due to the noise influence occurs whgn0. This  gins to undergo full turns through angles that are multiples of
is manifested by the fact that the average values of the an2s from time to time when the noise intensity deviates only
plitude and the square of the amplitude become nonzero. Wery slightly from the critical valugsee Fig. 3l In order to
such oscillations are observed and their cause is not knowmyvoid this unacceptable phenomenon, we performed the cal-
it can be concluded that they are chaotic self-induced oscileulations at these noise intensities allowing for nonlinear
lations. This naturally raises the question of whether the profriction. As the deviation from the critical value increases,
cess observed can be distinguished from such oscillationshe duration of the segments during which the pendulum

This question is the subject of Sec. 4. oscillates near the equilibrium position gradually decreases,
(A)
0.12
0.08r FIG. 2. Dependence dfA) (a) and
(A?) (b) on the spectral density of
r the noise«(2) (points. The solid
curves show the corresponding theo-
0.04r retical dependences calculated using
Eq. (18).
0
0.6

. @ .
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and when the noise intensity is sufficiently greater, thesgers have recently appearéske, for example, Refs. 20 and
segments vanish. This is illustrated in Fig. 4. 21), in which it was shown that noise signals with &“/
Since the observed oscillations of the pendulum arespectrum can have a finite correlation dimengialeast for
caused exclusively by noise influences, it might have beell < a < 3). However, as we shall see below, the spectrum of
expected that they should exhibit the infinitely high dimen-the observed noise-induced oscillations does not always have
sion of the corresponding set constructed in some infinitethe 1f, form; nevertheless, their dimension was always
dimensional space. However, our calculations of the correlafound to be finite.
tion dimension both in an ordinary Takens space and using Because the dimension corresponding to the noise-
the well-fit basis techniqd® showed that the dimension is induced oscillations of a pendulum is finite, it can be asserted
finite. This is evidenced by saturation of the correlation di-that an attractor is induced in a certain phase space charac-
mension as the dimension of the embedding space increasesrizing the motion of the pendulum, for example, in a Tak-
An example of such saturation is shown in Fig. 5. As theens space, under the influence of noise.
noise intensity increases, the dimension increases slightly, For comparison, we consider the chaotic oscillations of a
but remains finitg¢see Fig. 6, which presents the dependencependulum caused by sufficiently large periodic oscillations
of the correlation dimension on the relative spectral density of the pivot. When nonlinear friction is taken into account,

of the noisex(2)/x(2)]. these oscillations are described by the equation
Thus, as our investigation showed, the dimension does
not make it possible to distinguish noise-induced oscillations ¢+ 2(1+ a¢?)Be+(1+B cos 2)sin ¢=0, (20

from chaotic oscillations of dynamical origin, for which the

dimension should be finite. An example of such oscillationswhereB is the relative amplitude of the oscillations in the
is considered below. We stress that this result contradictacceleration of the pivot. The behavior of the solution of Eq.
some widely accepted theories, according to which the di¢20) for =0 and varyingB was studied in detail in Ref. 22
mension, in particular, can be used to distinguish chaotidy numerical simulation. We repeated the calculations per-
oscillations in dynamical systems from random noise-formed in that work for several values &, at which the
induced oscillationgsee Ref. 11 Granted that several pa- oscillations of the pendulum are chaotic. An example of such
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FIG. 4. Plots ofe(t) and ¢(t) for
a=100 whenx(2)/x,(2)=1.25(a)
and x(2)/kg(2)=14 (b), and pro-
jections of the corresponding phase
portraits in thep(t), ¢(t) plane(c).
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oscillations is presented in Fig. 7. It can be seen from thehaotic oscillations equals 2.510.05, and whe= 3.5 and
figure that the pendulum performs irregular rotations in ei-a=2, it equals 2.0%20.03. We see that the presence of non-
ther direction, which result in slow drifting of the rotation linear friction significantly reduces the dimension.

angle ¢. The presence of nonlinear friction, if it has suffi- The spectra of the oscillations excited are also of con-
cient magnitude, causes the rotation to vanish, and the pesiderable interest. In the case of excitation of the pendulum
dulum executes only chaotic oscillations relative to the equiby a harmonic influence in the absence of nonlinear friction,
librium position (Fig. 8. When B=3 and a=0, the inwhich the pendulum performs irregular rotations, the spec-
correlation dimension of the attractor corresponding to thes&rum of its oscillations contains a low-frequency part due to

4.5 T T T v T T T T

35} o -

251

15+ ] 2 . . , .

o 1 5 10 15 20 25

1 2 3 4 5 6 7 8 9 10 K(2)/x(2)
n

FIG. 6. Dependence of the correlation dimensioon the relative spectral
FIG. 5. Dependence of the correlation dimensioon the dimension of the  density of the nois&(2)/x(2) for =100 (diamond$. The solid line is a
embedding space for «(2)/x.(2)=14 anda=100. linear approximation of this dependence.
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these slow rotations, the spectral density decreasing with irheight is small enough that the assertion in Refs. 20 and 21
creasing frequency, but not monotonicallgee Fig. 9a  that noise signals with a i spectrum have a finite dimen-
When nonlinear friction is present, the low-frequency por-sion, because the correlation time for them is very small, is
tion of the spectrum is significantly smaller, and the specin need of refinement in our case.
trum contains pronounced maxima at frequencies which are
multiples of the natural frequencié€Big. 9b).

In the case of a pendulum excited by noise, the oscillay e RyTOV-DIMENTBERG CRITERION
tion spectrum calculated without allowing for nonlinear fric-
tion has a maximum at a frequency close to the natural value Let us now turn to the question of whether noise-induced
when the noise intensity is close to the critical valfidg.  oscillations can be distinguished from chaotic oscillations of
103. As the noise intensity increases, this maximum de-dynamical origin. A similar question was posed by S. M.
creases and ultimately vanish@&g. 10b. As a result, the Rytov!? and subsequently by M. F. Dimentbétgin refer-
spectrum takes on a monotonically decreasing form similaence to the problem of distinguishing between a noise signal
to a flicker noise spectrum. At high noise intensities the specpassed through a linear narrow-band filter and periodic
trum can be approximated by affl/power function, in  noise-contaminated self-induced oscillatidhk. was shown
which we obtainedh=12 for «(2)/x.(2)=22 (Fig. 100. in their work that in the latter case, the probability density
When nonlinear friction is present, the behavior of the specfor the square of the instantaneous amplitude, which can be
trum remains qualitatively unchangésee Figs. 9d, 9e, and determined using a Hilbert transform in the case of a broad-
9f). Only when the noise intensity is sufficiently large andband process, should have a maximum at a certain finite
the spectrum takes on a monotonically decreasing form can italue of the amplitude, while in the case of noise that passed
be approximated by two linear segments on a semilogariththrough a filter it should decrease monotonically. It can be
mic scale(Fig. 10g9. The correlation functions of the signals expected that in the case of chaotic oscillations of dynamical
for the parameters corresponding to Figs. 10d and 10f arerigin, the probability density for the square of the instanta-
presented in Fig. 11. We see that the correlation time of theeous amplitude should also have a maximum at one or more
signals determined from the width of the correlation at half-finite values of the amplitude.
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FIG. 8. Solution of Eq(20) and projection of the
phase portraits onto the,¢ plane forB=3.5 and
a=2.

¢, rad/s

Such a result was, in fact, obtained by us for the chaotidlistribution for x=yA? is W(x)=w(\/x/7)/2\/yx, where
pendulum oscillations resulting from periodic oscillations of w(\/x/) is specified by Eq.(17). A plot of W(x) for
the pivot that we considered above. Figure 12 shows a his;= 0.2 is presented in Fig. 13a. We see that the analytically
togram of the probgbility distributiqn Qf the Square of th? calculated probability density for the square of the amplitude
instantaneous amplitude of the oscillations determined usinga reases monotonically with increasing amplitude. The

a Hilbert transform. It is clear that the probability density is same result was also obtained as a result of the numerical

not a monotonically decreasing function and that it has sev-. . .
eral weak maxima. simulation of Eq.(19) (Figs. 13b and 13c

As follows from the theoretical results presented in Sec. D_'m?(?tbe_rg _also proposed aqother version of . _h's
2, in the case of the excitation of pendulum oscillations as &terion;™ which is based on the notion that the probability

result of random oscillations of the pivot, the probability densityx(t) for the process under investigation can be ana-
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>
2 140} ‘a .
@ 5 9ol FIG. 9. Spectral densities of the so-
g [ ° lution of Eg. (20) on a logarithmic
= 120 g r scale forB=3 anda=0 (a) and for
5 3 70f B=3.5 anda=2 (b).
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lyzed instead of the probability density for the square of thefor x>0 decreases monotonically, no unequivocal answer
instantaneous amplitude. Dimentberg showed in a particulatan be given: the procesgt) can be either noise that has

example that if the probability density for positive values of passed through the filter or strongly noise-contaminated self-
X is not a monotonically decreasing function, the processnduced oscillations. Although the authors make no mention
X(t) is auto-oscillatory. However, if the probability density of this fact, it should be noted that the use of either form of

K K
08 a ] o8 b 1
0.4 ] [ . FIG. 11. Correlation functions for
’ [\ { o4t . the solutions of Eq(19) for =100
O [ififo—rroe vy A v | ] when «(2)/k.(2)=1.25 (a) and
04 1 o k(2)/k(2)=14 (D).
0 50 100 150 200 0 50 100 150 200
T T
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FIG. 12. Probability distribution of the square of the instantaneous oscilla- 81(1))0

tion amplitude fora=2 andB=3.5. T b
700

this criterion is likely to be possible only if the probability 500

density forx is an even function.
We tested the second form of Dimentberg’s criterion for 300 1
both noise-induced pendulum oscillations and chaotic oscil- 1
lations caused by a harmonic parametric influence. Despite 100 h‘!‘m .
the ambiguity and the incomplete symmetry of the distribu- 0
tions indicated by the author, it was found that this form of
the criterion also gives correct results. This is illustrated in
Fig. 14, which shows the probability distributions for the
rotation anglep of the pendulum in the two cases indicated 16 . . . .
above. 14 c
Thus, despite the essentially nonlinear transformation of 12
the noise, the Rytov—Dimentberg criterion is valid in the
examples that we considered. Of course, the question of the
validity of this criterion in the general case and the possibil-
ity of using it when the probability distribution for the pro-
cess under consideration is not an even function calls for a
more detailed investigation.

20 40 60 80 100
aAZ

OON&O\OO

5. EXCITATION OF OSCILLATIONS OF A PENDULUM WITH
A RANDOMLY OSCILLATING PIVOT AS A NOISE-

INDUCED PHASE TRANSITION. KLIMONTOVICH CRITERION
FOR ORDERED MOTION

FIG. 13. Dependence ¥(x) = (2757 C)w(x) for »=0.2 (a) and probabil-
ity distribution for «A? obtained by numerically solving Eq19) for
k(2)/K(2)=1.25(b) and x(2)/ke(2)=14 ().

The excitation of pendulum oscillations as a result of a
parametric noise influence can be interpreted as the onset of
a nonequilibrium second-order phase transition in the system
under consideration whep=0. Either(A) or (A%) can be WO(X)ZEXD[
taken as the order parameter characterizing this transition. As
follows from (18) and Fig. 2, under such a choice of the
order parameter the critical index equals 1. where Fq is the free energyH(X,ap) is the Hamiltonian

To demonstrate that the motion in the system becomefiinction, andD, is the temperature, which can be set equal
more ordered following the transition under consideration !0 unity. We introduce the notation
we utilize the criterion proposed by Klimontoviéh?® the
essence of which can be described as follows. Two states Fo(1) —H(X,a9)=—He,
corresponding to different values of a certain control param-
etera are selected in the system under investigation. One ofnd we takeH . as the effective Hamiltonian, which does
these states, which correspondsde ag, is provisionally not depend ora. Clearly, the mean value of the effective
taken as the state of physical chaos. The probability densitidamiltonian, which is equal to the effective energy, depends
for the set of variableX describing the state of the system is on a in the general case. Klimontovich proposed renormal-
denoted byw(X,a). We representv(X,a)=wy(X) in the izing the initial probability distribution in such a manner that
form of a canonical Gibbs distribution the effective energies in the initial stateehena=a,) and

Fo(Do)—H(X,ap)
D, '

(21)
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final state(whena=ay+ Aa)coincide. For this purpose, the i.e., even if we found thad <1. However, it would then not
renormalized probability densityio(X,a,Aa), which satis- characterize the degree of ordering of the motion. Thus, as

fies the condition we have already stated, the criterion for a transition to a more
_ ordered state i®(Aa)>1 and notAS>0.
J HeffWO(XraaAa)dX:J HerW(X,a0+Aa)dX, (22) Let us now turn to our problem and take the state corre-

o - ] sponding ton= 7, as physical chaos and the state corre-
is introduced. In Eq. (22 the probability density gnonding toy> 7, as the state whose degree of order we
WO(X’a’,Aa)' I|.ke WO(,X)_’ can be represented in the form of wish to determine. Assuming that, ,<1 and performing

a canonical Gibbs distribution: all the calculations indicated above, we find that
F(D)—Heg D=1+2(n— 7o) (1+27+37%%+ ...), i.e., we correctly
T] (23 selected the state of physical ch4b%he calculation of the
entropy differencedS is fairly cumbersome, but it can be
shown that5S~ 7%( 57— 71,). The expressions found are also

v~v0(X,a,Aa)=exp|’

whereF (D) is the effective free energy, aidl is the effec-
tive temperature, which depends . The unknown func-

tion F(D) is determined from the normalization condition valid for 7,=0. -
Thus, we have found that upon the phase transition con-
J Wo(X,a,Aa)dX=1 (24) sidered above, the motion becomes more ordered from the
R ' standpoint of Klimontovich’s criterion, although the degree

and the dependence & on Aa is found from Eq.(22). of ordering varies only slightly. From the standpoint of pure
Comparing (21) and (23), we see thatD(0)=1 and common sense this result seems paradoxsildoes Klim-
F(1)=0. ontovich’s well-known finding that the transition from lami-

Klimontovich claimed that if the value dD(Aa) thus nar to turbulent flow is accompanied by an increase in the
found is greater than unity, the state of the system withdegree of ordering of the motipnFor this reason, Klimon-
a=ap+Aa will be more ordered than the state with tovich's criterion has aroused and still arouses strenuous re-
a=ap, i.e., in this case we correctly took the latter as thesjstance among many investigators, especially those who
state of physical chac$ After the state of physical chaos is gea exclusively with dynamical systems and do not consider
determinedwe shall assume that it corresponds to a value ofjctyations. However, in our opinion, Klimontovich's crite-

a equal t0a,), Klimontovich proposes introducing the dif- jqn contains a rational core when it is applied to systems in
ference between the entropies which fluctuations play a decisive role.

Klimontovich interpreted his results with respect to tur-
bulence in the following manner. When turbulence develops,
an increasingly larger part of the energy of the chaotic mo-
tion of the molecules is transformed into the energy of the
considerably more ordered, large-scale motion of eddies, i.e,
the fraction of the energy in the small-scale chaotic motion

as a quantitative measure of the degree of ordering of theecreases. Therefore, the degree of ordering of the motion as
motion whena varies froma, to a+Aa. It follows from a whole increases. It is difficult not to agree with this inter-

'éoz_Jv’“vo(x,a,Aa)ln Wo(X,a,Aa)dX
and

S=—f w(X,ag+Aa)ln w(X,ap+Aa)dX

the normalization conditions and E@®2) that pretation. A similar interpretation can be given for the noise-
induced phase transition in a pendulum considered here. We
~ w . o o . .
AS=S,—S= j wIn =— dX (25)  question both the feasibility and utility of applying Klimon-
Wo

tovich’s criterion to systems in which the presence of fluc-
We note thatA' S, which is defined by25), cannot be nega- tuations is not fundamental, for example, self-excited oscil-
tive, even if we incorrectly chose the state of physical chaosators.
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6. STABILIZATION OF THE UPPER EQUILIBRIUM POSITION —exp(— p,7)[{ &) E(t+ 7))dT. (33

OF A PENDULUM WITH A RANDOMLY OSCILLATING i o . .
PIVOT To calculate the integral in this expression, we specify the

correlation function of the proces4t) in the form
It is widely known that when the pivot of a pendulum o —r
undergoes rapid periodic oscillations, its upper equilibrium (E)¢(t+ 7)) =0 " cosor,
position can become stable under certain conditises, for where o?= ax(w)/2 is the variance of the random process
example, Refs. 26—-29This phenomenon was observed ex- £(t), () is the value of the spectral density of this process
perimentally by P. L. Kapits®3! It will be shown below at its center frequency, and is the half-width of the spec-
that a similar phenomenon occurs when the pivot undergoesum of the procesg(t). From (33) we find
sufficiently high-frequency random oscillations. For this pur-
y ngA e ency P o¥(w?=(p1+a)(po+ @)

pose we consider the equation t)So)= — t).
o _ R T [ e L
e+2Be+(1+&(t))sin ¢=0. (26) (34

If the spectrum of the random proce&) is concentrated in  Under the conditionn>1,8,a we thus obtain

a sufficiently high-frequency region and does not contain o2

components in zones of parametric resonance, fluctuations of (£(t) Sp)~— — ¥(t). (35

the variablep due to random oscillations of the pivot will be @

small. Settinge=(¢)+ dp, where Sp<(¢), in (26), we Substituting(35) into (29), we obtain the approximate

obtain equation
(¢)+2B(¢)+sin @) +cog @)(£(t) 5¢) =0, Ut 2Byt wGy=0, (36)
S¢+2B8p+cos o) S+ £(t)sin @) =0. (27)  wherewp= Jo?lw?—1 is the natural frequency of small os-

cillations of the pendulum about the upper equilibrium posi-

tion whenB=0. It follows from Eg.(36) that the mean de-
(¢y=m, &p=0. (2g)  Viation of the pendulum from the upper equilibrium position

) ] o ~will decay, i.e., the equilibrium position will be stable, if the

This solution corresponds to the upper equilibrium positionrequencyw, is real.

of the pendulum, in whose stability we are interested. The transition to a regime with stabilization of the upper
To investigate this stability, we can write linearized gqujlibrium position of the pendulum due to either periodic

equations for small deviations from the steady-state solutiog, random high-frequency vibration of the pivot can be re-

(28). Setting(e) = 7+ ¢, from (27) we obtain the following  garded as the creation of an averaged sydtbm deviation

One of the stationary solutions of Ed27) has the form

linearized equations foy and 6¢: of the upper equilibrium position for this system is described
y : _ by Eq. (36)] of some new attractor induced by the high-
8P+ 2BY— h—{(£(1) 9)=0, 29 Lo
Y2y Y (£ de) @9 frequency vibration in phase space. In some sense we can
So+2B5p— Sp— E(t)Yy=0. (300  forget about the high-frequency vibration and consider a new

dynamical system with two stable equilibrium states. Just

Under steady-state conditions the solution of &§) has the such an approach was developed by I. I. BlekhAfah pro-

form cedure for obtaining equations that describe this new system
1 ¢ was also given in his monograph. On the other hand, the
op(t)=— f [exp(pi(t—t")) process of stabilizing the upper equilibrium position of a
2Vy1+p° )= pendulum by means of high-frequency random vibration of
—exp(py(t—t' ) JE(t ) p(t))dt, 31) the pivot, as well as the process of exciting vibrations con-

sidered above, can be interpreted as a noise-induced second-
wherep, ,= — 8=+ J1+ B2 are the roots of the characteristic order phase transition, in which the parametérplays the
equationp?+28p—1=0. Hence we find role of the “temperature,” and the real part of the frequency

wg plays the role of the order parameter. It follows from the

expression fok that the corresponding critical index equals

1 t
<§(t)5¢>=m f_w[exlipl(t—t ) 12,

—exp(pa(t—t) KE(E(L"))e(t')dt’.
(32) 7. CONCLUSIONS

Settingt’ —t= 7 in this expression and noting that the value  we have thus shown that nonequilibrium second-order
of ¢ does not vary significantly during the correlation time phase transitions, which lead to the appearance of an induced
of the random proces&(t), we rewrite(32) in the following  attractor of finite dimension, are possible even in such a
form: simple system as a physical pendulum under the influence of
multiplicative noise. The investigation of such transitions in
other, more complicated systems will undoubtedly be of

1 =]
dp)=— —— -
(§(t) o) N ‘/’(t)fo [exp(=pa7) great physical interest.
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ERRATA

Erratum: Logarithmic radiative corrections to the dipole matrix elements in the
hydrogen atom [JETP 82, 656—-663 (1996)]

V. G. Ilvanov

Main Astronomical Observatory, Russian Academy of Sciences, 196140 Pulkovo, Russia

S. G. Karshenboim

D. I. Mendeleev Scientific-Research Institute of Metrology, 198005 St. Petersburg, Russia
[S1063-776(97)02401-3

The following corrections were reported by the authors:

1. Table | should read as follows:

TABLE I. Analytic and numerical values @, ,.

n n'=2 n=3 n =4 n' =~
131 4] 55 3 | 1103 8 3 5,
2amI] 24wl | == +me N2— 2 — %+ 2
Llggthng | 5ty 50 M3 nemg o7 ge
3.0168 1.9332 1.6190 1.2524
1 21351 6 | 1843 4 235 47
L L2 | BB o m- 22 e+
2 12 70 T M5 | 9g0 T3 | Moot
0.0833 3.4476 2.2075 1.2376
451 5 1 676223 8 541 325
2 2 - 2 i ne! In2- e — F +
3750 g 18 [90400 7| In2- 5~ %t ep¢
-5.8606 0.0556 3.6851 1.2836
875 3| 21107 7 1 413551 6973
—_——_— P — — —_——— e = e
419 330 % 2 In2- @0 - 2" a70ae
—4.9628 ~5.3890 0.0417 1.3269
7 2 181
o 4 2 6 el 8
el Fi-ge | FTomge | e
—4.2558 ~3.6611 ~3.3318

2. Equation(10) should read as follows:

2A(Za)m? 1 1 Dyt [ dt 1 D
8dyyn=—————dyn| > 372 2 + T —2at :
zmn T = N 1 =1n" Yy Jo (1N 1R%) 1-e7 ™ Dy

3. Equation(21) should read as follows:

o Zam? e~ /2 n (_Zn)nfs n! 2

Go(Eni0N =" = 2 o |mogi| | ("9 (Mn+D)-2¢(n-s+1)
2(n—s)+3—2z,
———F—+Inz,|+1;.

2n

4. The second equation in Appendix(Section A, p. 662, should be numbered a¢C1).”
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5. The first equation in Appendix (Section B, p. 662, should read as follows:

"2 (-

T(n'—=1) T(4)

n

2 (=D%(v—=s)n, *T(v+ 1) (v—s+4+1)

QVn,:gi 2 tl
t=0 :

T(n' —1+1) ['(t+4)

6. Table IV on p. 661 should read as follows:

TABLE IV. Corrections to the line intensities and partial and total line widths

s=0

sl [T(v+1-5)]?

corresponding to transitions in the lower levels, in unitsA¢Za)m?/ .

JETP 84 (1), January 1997

Corrections to the intensities and widths
Level -
Transition| ¢I/! |Partial and total 6T/T
p | 2p—1s | ~4.6331 ~1.9664 } — 1.9664
3s | 3s— 2p| —9.5879 ~10.121 } - 10.121
Ip— s | ~5.1336 ~2.8836 | _
313,25 | —0.3048 14957 | — 2364
4s — 2p | —9.2589 ~9.4256
451 4g 1 3p | —8.2066 —8.8494 } — 9.1860
dp — 1s | —5.2953 ~3.1620
4p — 2s | —0.9183 0.4150
P lapo3s| 12750 27988 (24981
4p — 3d 0 0
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Vacuum splitting of the energy levels of a system consisting of an atom and a dielectric
microsphere

V. V. Klimov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117294 Moscow, Russia

V. S. Letokhov

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
(Submitted 13 June 1996
Zh. Eksp. Teor. Fiz111, 44-51(Janaury 1997

Expressions are found for the vacuum splitting of the energy levels of a system consisting of a two-
level atom and a dielectric microsphere. These expressions coincide with those obtained

from a purely classical approach. @997 American Institute of Physics.
[S1063-776(197)00301-9

1. INTRODUCTION The geometry of the problem is shown in
Fig. 1.
Contemporary technology has progressed to the point
where various structurdmicrospheres, sharp poiftsan be
fabricated with characteristic d|mep3|ons in the hundreds or QUANTIZATION OF THE ELECTROMAGNETIC FIELD IN
even tens of na.nometer.s. For.thls reason, there. has begN- bRESENCE OF A MICROSPHERE
more and more interest in the investigation of optical phe-
nomena near such nanostructures. In order to solve this problem we must first quantize the
Nanostructure optics is a very specialized area of opticelectromagnetic field properly. For the most part, this proce-
and spectroscopy, because it involves optics over dimensiorture is well understood; however, a special approach is re-
that are comparable to or even smaller than a wavelengtiyuired for each specific case. In our problem, we choose as
This implies that many of the concepts of ordinary optics andhe quantization volume a perfectly conducting sphere with
spectroscopy are subject to considerable modification. large but finite radius\ —« (see Fig. 1 The classical ex-
One of the most interesting directions of inquiry in this pansion of the electromagnetic field and its vector potential
area is the investigation of how the spectroscopic charactepver a complete set of eigenstates can be written in the form
istics of an atom change near a nanostructure. In this case,

+ +
t_he_ formal quantum mechani_cal problem_ can be soIv_ed i_f we g_ % as.— as osr), B=> astasg b(s.r),
limit ourselves to first order in perturbation theory, yielding s iv2 s V2

both the level shiftand the change in linewidthin Ref. 4

this problem was discussed and applied to an atom neara , ~ C E agtag e(s.r)

dielectric microsphere, and the shift in frequency and change ws S V2 o

in linewidth were found.

A more interesting case is that of strong electromagnetic
coupling, where perturbation theory cannot be applied. In
this case a situation can arise where the radiation of an atom Atom
is absorbed by the resonator and the radiation of the resona-
tor is absorbed by the atom, i.e., the case of Rabi splitting.
Although this effect has been discussed in a nhumber of pa-
pers(see, e.g., Refs. 3 and fsom a general point of view, in
specific situations its treatment is a complicated problem. In
Ref. 6, Duttaet al. discussed vacuum Rabi splitting in a
model problem where the interaction of an atom with a
sphere was approximated by distributing a dielectric permit-
tivity with resonance properties uniformly over the latter; the
coupling strength of the atom to the sphere was controlled by
varying the resonant part of the dielectric constant.

In Refs. 4 and 7, Klimowet al. discussed the classical
problem of the resonant effect of a dielectric microsphere on
the radiative properties of an oscillator located near its sur- X\ Quantization
face. In this paper we discuss this problem from a quantum boundary
mechanical point of view for a two-level atom interacting
with the resonant modes of a dielectric microsphereFIG. 1. Geometry of the problem.

Microsphere
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wg Wg Ws
VXe(s,r)== - b(sr). (1) z= a%l&’nhﬁl)(? rl+aif nhff)(? r) , @
Hereas, a; are the photon annihilation and creation opera-Which has the asymptotic solution
tors for the corresponding modes with the usual commuta- n+1\ mc
tion relations;w are the frequencies of these modes. ws=| v+ > T+ )

For the case of interest to us, i.&M modes, it is easy
to obtain expressions fa(s,r) andb(s,r) (see, e.g., Ref.)8 From this it follows that the density of final states will be
in terms of spherical harmoniasand spherical Hankel func- given by the simple expression
tionsh:®

A
prm(w)= ——. (6)
b(n,m,»)=[ ek, ;hE(kr)+ ), ;h@ (kr)] mhe
X EYnm(’ﬂ,qo), r>a, 3. CALCULATION OF THE EFFECTIVE ELECTRIC FIELD

AMPLITUDE OF A RESONANT MODE AND THE EFFECTIVE

1 RABI FREQUENCY
e(n,m,v)z—E[VXb(n,m,v)]. (2

In the most interesting case of resonant interaction of an
Here k= w¢/c is the wave vector outside the sphere, andatom with one of the long-lived modes of the electromag-
s={n,m,v}, wheren is the orbital quantum numbem is netic field in the microspheréhe so-called whispering gal-
the azimuthal quantum number, ands the radial quantum |el’y modeéo), the effective Hamiltonian for the dlpole inter-

numberL = —ir X V is the angular momentum operator, and action of the atom and the radiatidrcan be written in the
a is the radius of the microsphere. Within the microspherdorm
analogous representations apply with the spheri(clazl) functions = Ha+He+H,, 7

h, replaced by spherical Bessel functioins and a+y;y, re-
placed byBtwu n-

The coefficientsaly?), and By, can be found in the
usual way from the continuity conditions on the tangentia
components of the field at the boundary of the sphere, and fwp
normalization of the wave functions in a sphere with radius HA:T 03, Hp=fiwres
A to one photon per mode:

where the Hamiltonians of the atokh,, the fieldHg, and
the interactionH, have the following forms for a two-level
jatom:

1
N
+-
a‘at s

+

H=-d E=—edo;——=hQrai(a—a’). (8

(1)

d (2) .
e d_22 [Zzhn (22)]Jn(zl)

ATmMn~
_ Herea™ anda are the usual creation and annihilation opera-
_ i [24)0(20)1h2(25) 1Z2B1Mm.n ’ tors for photons with frequenay, . in the resonant mode of
dz 2g the microsphereg is the amplitude of the resonant modke,
g is the matrix element for the dipole moment, and, o5 are
a(ﬁ\)ﬂ'n: -le 5 [Zzhﬂl)(zz)]jn(zl) Pauli matrices:
2 1 0 {o 1} ©
d iz 03= Al g1= .
- o Tz (z) | 22T 0 -1 1o
1 The Rabi frequency{lg in (8) can be determined in the
omhe K3 usual way in terms of the transition dipole momerdand the
| @iy %= ey %= A ninT D) (3)  amplitude of the electric field in the resonant mode:
In (3) and in what followsz; = Jeka, z,=ka, ande is the QR=E. (10
dielectric constant of the microsphere. Note that the contri- V2h

bution to the normalization of the wave function from the The frequency of the resonant modﬁas and the magnitude

region within the dielectric microsphere is negligible com- of the transition dipole momemt must be set equal to their

pared to the contribution from the region with-A. values for no interaction. As for the atomic transition fre-
In order to find the effective mode amplitudes it is aISOquencywA, it seems |Ogica| to include in it the shift caused

necessary to know the density of final states. The requirepy the pure electrostatic interaction with the microspHere:
ment that the tangential components of the electric field van-

ish on the interior surface of this sphere leads to the tran- 2_ 02— Sw
: WpA= W™ 0wy,
scendental equation

2 3e—-1 Yoo
5&)0:_ 3
8 e+1[ko(r—a)]
In (11), wq, 7y, are the frequency and linewidth of the tran-

d . . .
— (7 =0 sition for the case where no microsphere is present, and
dr (r2) ’

r=A ko=w0/C.

(11)
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FIG. 2. Distribution of quantized frequencies over the resonance line shape. rla

The spacing between discrete linesiid w=1/p(w) = whclA.

FIG. 3. Dependence of the effective electric field on radii mode,
n=9, £¢=6, ksa=5.54873).

In (8) the interaction energy is expressed in terms of the
amplitude of the resonant mode. However, the width of the
resonance line is finite, and it is necessary to take into ac-
count the contribution of all profile discrete modes lying
under the resonance profilgee Fig. 2, including modes that _
are degenerate with respect to azimuthal angle. In this paper —
all modes are included by mean square averaging. The re-
sults obtained confirm the correctness of this approach.

If we consider as a specific example the case in which (14)
the element of the transition dipole moment is oriented along  ynder the assumption of resonant interaction of the atom
the radius, then it can only interact withM modes of the  ith the microsphere, the expression for the Mie coefficient
dielectric microsphere, and consequently the quantity to €Xpan be written in the form
amine is the mean square of the radial component of the
electric field in theTM mode. . Im Qres

The radial component of theth TM mode, which is of o™~ 0= Qes’ 9
interest to us, can be easily found from Eg)

d d
€ d_22 [Z2)n(Z2)1in(Z1) — d_zl [Z1jn(Z1)1in(2Z2)

d d
° 4z [2h(P(25)1jn(20) — az 2 n(21) 10 ()

where (), is the complex frequency that characterizes the
resonant mode€), = w,es—i ("2, while I'{") character-
izes the width of the resonance mode.

i +
e(n,m,v)=— % a(Tl&,nhﬁl)(kf) " ;Jsing elementary relations, E(L3) is easily reduced to
e form
+al?) hP(KN)TY (O 12
aTm nln ( I’)] nm( V). ( )

— 2kfic _,

E7 ry=n(n+1)(2n+1) —= [ja(kn)

Summing the squares of the moduld®) over the azimuthal

guantum numbem with the help of the familiar relation —Re(gn(htY)2(kr)?)]. (16)

on+1 This expression involves only the degenerate modes of one
2 . . . .

E Yin= ypt of the discrete frequencias, (see(5) in Fig. 2). In order to
™ obtain the effective value of the electric field associated with

) ) ) the mode, it is necessary to sUEﬁ,TM over all frequencies
we obtain the following expression for the mean square O{yithin the mode under discussion, i.e., the final expression
the electric field due to all degeneraté! modes: for the square of the effective value of the mode amplitude

must be written in the form

E2.,=n(n+1)(2n+1) %—ﬁf lin(kr) —aah D (kr) |2 — et
rT™ n n''n ’ res —

AT 13 Elac= f .. Efnu(@p(o)do, (17)
where theq. are the Mie coefficients: WhereAw~FEg)S determines the averaging interval. The ef-
€ ' fective Rabi frequency will accordingly be given by

1(  aofy n) dE, .
- ( _ 9T Q=252 18
n~o By R= o (18
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After substituting(15) into (16), the integration in the
second term of16) can be extended to the intervale to

we can set the term with? to zero identically, as a result of
which the expression for the effective mean-square ampli-

o, as a result of which we obtain the final expression for theude of the resonant mode takes the form

mean square of the electric field:
(n)

res

Efac=n(n+1)(2n+1) 5= | Yo, 1l Kresl)

.

res

) AAw
+ ‘]n+ 1/2( kresr) )

whereJ,,, Y, are Bessel functions of the first and second

kind respectively, andk, <= w,es/C. For long-lived modes,
the value ofn is large and the term witl? is small com-

(n)

res

EZ =n(n+1)(2n+1) S

Y§+ 12 Kredl). (22)

Figure 3 shows the dependence of the effective mode
amplitude on the distance from the microsphere to the atom
for aTM resonance witm=9, ¢ = 6, andk,.sa=5.5487.

4. DETERMINING THE ENERGY LEVEL SPLITTING;

pared to the ternY2. Furthermore, by choosing the interval DISCUSSION OF RESULTS

of frequency averaging to be

Once we have found the effective Rabi frequency, the

_ 7l ok problem reduces to diagonalizing the Hamilton{&n which
Aw= . (20 ; : .
4 in the occupation number representation has the form
[ “”%J”"A 0 0 TR 0 T
0 “”‘352_ il ToR 0 0
3wrest
0 0 2resT ®A 0 iVn+10g
H/f= 2 (22
. 2n+1 -
0 —i0g ( );‘”es CA inti0, 0
2n+3 +
~iQg 0 Ciynriog L );”es a 0
L . 0 —iyn+1Qg 0 0 J

In the rotating-wave approximation, which is valid for small values of the Rabi frequency, we have inst@al thie

matrix
[ @reston 0 T 0 T
2
0 Wres™ WA 0 0 0
2
3 +
0 0 2res™ ©A 0 iVn+10g
Hif = 2 : (23
0 0 (2N+1)wes— wa 0 0
2
—i0g 0 0 (@nt3oeston
2
L 0 —iyn+1Qg 0 0 i
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(- @)y, cies, we must use the fact that as the interaction between the

u - atom and the sphere decreases»¢0), one of the solutions
reduces to the frequency of the atomic transition in free
space (;— wg), while the other reduces to the resonant
frequency in the microspherevf— weg).

A clear illustration of these results is shown in Fig. 4,
where the dependence of the frequency splitting on the dis-
tance to the microsphere is plotted.

A remarkable feature of Eq25) is the fact that it coin-
cides up to negligibly small terms with the expression ob-
tained from purely classical relatichSby the usual replace-
e ment d5 anun- 0aasd2. Thus, all the analysis of the Rabi

1.02 1.04 1.06 1.08 a splitting of the energy spectrum carried out#) and(7) can
be taken over without change to the quantum mechanical
FIG. 4. Dependence of the relative shift in frequency on the position of thecase. On the other hand, this agreement verifies the correct-
radially o_scillating atonfor koa=5.548733,w,/y,=10") for a dielectric ness of the procedure we have used for finding the effective
sphere withe =6, n=9, k,.sa=5.548731. .
mode amplitudes.
The dissipative characteristics of this system can be de-
termined with the help of the density matrix.
whose diagonalization is elementary. As a result, the struc-  The authors are grateful to the Russian Fund for Funda-
ture of the energy spectrum of the system under study has thgenta] ResearcfGrant 96-02-19758and to the Department
form of Defense of the United States of Ameri¢tarough the
% University of Arizona for financial support of this work.
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Photon splitting in an ultrastrong magnetic field
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We analyze the splitting of a photon with energybelow thee™ e~ pair-production threshold in

an ultrastrong magnetic field. We use the amplitudes found by employing the operator
diagrammatic technique. In a field considerably above the critical values the process amplitudes
become independent of the field strength. A study of the polarization operator of a photon

in an external field of arbitrary strength in the energy range considered in the present investigation
shows that there is only one set of polarizations of the initial and final photons for which

the splitting amplitude is nonzero. @997 American Institute of Physics.
[S1063-776(97)00401-F

1. INTRODUCTION energy range that is most interesting for applications.
At higher photon energies, electron—positron pair pro-

The creation and annihilation of virtual electron— duction by a photon in an external magnetic field becomes
positron pairs induces nonlinear self-action of the electroimportant, a process that effectively leads to photon absorp-
magnetic field. The splitting of a photon in an external fieldtion. The probability of this process in a strong enough field
is a process of nonlinear QED, and observing it is still aexceeds that of photon splitting by many orders of magni-
challenge for the experimenter. tude.

Theoretical studies of photon splitting in an external ~ Adler® used the Green’s function of an electron in an
field have a long history. In the early 1970s, the process oéxternal magnetic field in Schwinger's proper-time represen-
photon splitting in a uniform, constant magnetic field wastation. The expression for the amplitude obtained in this
studied in Refs. 1—-4, where one can also find references t@anner proved extremely cumbersome, which hinders fur-
earlier work that proved erroneous. In Refs. 1 and 3 thdher use. Nevertheless, numerical results were obtained for
process was examined as a possible mechanism for the prfis amplitude ato=m and w<m over a broad range of
duction of linearly polarized photons in the strong magnetichagnetic field strengthid <H,.
fields of neutron stars. For low-energy photdas<m, with Papanyan and Ritisalso used the electron Green's
m the electron mass; in what follows we use a system ofunction in the proper-time representation to study photon

units in whichc=#=1), the splitting process can be exam- SPlitting in crossed field&1H, E=H. Stoneharh used a

ined by introducing the effective Heisenberg—Euler I_agn,ing_different representation for the electron Green’s function and

ian (see, e.g., Ref.)5 In the limit of weak fieldsH<H, obtained a different representation for the photon splitting

(Ho=m?/e=4.41x 10" Oe is the critical magnetic field, and amleltLtJde. Hot itting i " ant elect

e is the electron chargethe effective Lagrangian can be ater, photon spitiing in a unriorm, constant electro-

expanded in a power series, with only the first term in themagnetlc field for arbitrary values ofzthe tzwo field invariants
' o9 N7 I F = . G= — -

expansion, which is represented by hexagonal diagrams, co'n/- and 7, with 7=(E-H) and 7=(E —H")/2, was exam

L . ined in Ref. 7. The paper employed the operator diagram-
tributing tq the amplitude of Fhe proceészeg Refs. 1'and)2 matic technique developed by Katkov, Strakhovenko, and
What is important here is the selection rules in photon

one of the present authofg.N.B.) in Ref. 8. As a result we

polarizatipns, ipcluding those that emerge when' one allow\civere able to considerably simplify this intricate problem.
for the dispersion of photons in the magnetic field. Theserne amplitudes obtained for the special case of zero electric

. 1
were examined by Adleet al” (see also Ref. 5, Secs. 129 (o, magnetig field have a form that is more compact than the
and 130, who gave a detailed study of the process withone in Ref. 3. In the limiting cases where<m and/or

w<m andH<H,. A thorough analysis of the problem was H<H the amplitudes found in Ref. 7 agree with those
done in Ref. 3, where a formula was derived for the photorfoynd in Refs. 1-3. While in Ref. 3 the numerical calcula-
splitting amplitude by using the complete expression for th&jons were done for photon energies below the electron—
effective Heisenberg—Euler Lagrangian. Naturally, the for-position pair production threshold, in Ref. 7 the casem
mula was valid foro<m, but the magnetic field strength can was examined. We were interested in the possibility of ob-
be arbitrary. serving photon splitting in strong electric fields of oriented
For astrophysical applications, one must know the amsingle crystals at high energi@ll the research cited so far
plitude in the general case of arbitrary photon energies andsed Lorentz-covariant and gauge-invariant formulations of
external magnetic field strengths. Such a calculation was alsQED.
done in Ref. 3, where the amplitude of the transition allowed Lately the process of photon splitting has been once
by selection rules was found fow<2m. This is the more investigated in Ref. 10. The motivation for this re-
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search was the new discoveries in x-ray astronomy. The cal- @
culations of Mentzeét al° were done within the framework k1= k4=0, Kp3=— 71— w?0%Ry 3,
of noncovariant perturbation theory and the Landau gauge.
Their results strikingly contradict all those of previous re- 1 © dx
search. Nevertheless, attempts have been made to use them R2.3= fﬁldv fo sinhx 223 &R~ #),
in astrophysics! The results of Refs. 10 and 11 have been 5 0y 2 .
severely criticized by Adlel? wherea=e =.1/13.’7,0'2=kl/w =sir? 9, with 9 the angle be-
Since the process may have important astrophysical aF;\_/veen the direction of the magnetic field and that of the
plications (see, e.g., Ref. 23we conducted numerical cal- Photon’s wave vectok,
culations and analyzed the photon splitting amplitude, basing g, =coshkxv)—v cothx sinh(xv),
our reasoning on the results of analytic calculations done in
Ref. 7. Here we consider the most interesting energy range =D coshx—coshxv)
w<2m and an arbitrary magnetic field strendth 2 sinf? x
The results of the present work were briefly reported in
Ref. 14. Two papers appeared after that publication, Refs. 15
and 16. Adler and Schubéttsuggested another way of de- Ho[  coshx—coshxv) 25
riving the expression for the amplitude obtained in Ref. 3. ¥= 1~ +x(1=r(1-v?) /|,
They also pointed out that in the expressions for the ampli-
tude given in Refs. 3, 6, and 14, which are similar integralandr = w?¢/4m?. In (2.4) and(2.5) we allowed for the fact
representations, the integrands coincide numerically. Wilkdhat below the electron—positron pair-production threshold
and Wunnel® acknowledged an error in Ref. 10, with the (r<<1), the contour of integration with respect foin the
new results agreeing with those of Ref. 14. integrals determining the functiori®, andR; in Ref. 8 can
be rotatedx— —ix. As a result the resulting representations
for R, and R; are real, which is convenient for numerical
calculations, since the integrands contain no oscillating func-
tions. Note that these functions depend onlykor wo-.

Concerning the propagation of electromagnetic waves, 1 he photon splitting amplitude is nonzero onlyoif# 0

we can say that a region of space occupied by a magneti&.#0). In view of gauge invariance, the modes 1 and 4
field can be interpreted as a medium with a refractive indexéontribute “(?Fh'”g to the amplitude. For mode 2 the zeroth
that differs from unity. The value of the refractive index is C0MPonenb; is zero, and the vectdry/w=e; is perpendicu-
crucial to the selection rules in the polarizations of the initial'@" to the plane containing the vectdssandk. For mode 3
and final photons in the splitting process. Form and  the zeroth compqnerhxg is nonzero, anth;H. In calculating
H<H, this has been analyzed in Ref.(dee also Ref.)5 f[he photon splitting amplitude, one can employ the gauge-
Here we are interested in the selection rules for an arbitrar{fivariance property, and subtract from the vedigra vector
value of the magnetic field and a photon eneagy2m. The p_roportlonal tol_d‘ so that the _zeroth component of the vector
refractive index is found from the photon polarization opera-différence vanishes. After this, the spatial component of the
tor. The contribution to the polarization operafay, (k) of resulting vector lies in the above-mentioned plane and is

the electron loop in an external uniform, constant electroPerpendicular tk. As noted earlier, the region occupied by
magnetic field was found in Refs. 3, 8 and 17. a magnetic field can be considered a medium whose refrac-

We consider the case whee=0 andk?=0. The polar- tive index is a function ofs; . For modes 2 and 3 we have

ization operatoil,,,(k) has four mutually orthogonal eigen- ) Ko a
vectorsb! defined by the equation N2s=1-—7=1+— 0°Ry 3. (2.6)
in, 1=1,2,3, 4. 2.9 Let us analyze the behavior of the functidRsandR; in
The eigenvalues act as the square of the mass of a photo the limiting cases. Whei <H,, the main contribution to
9 ! d P "the integrals determining these functions is provided by the

in the field in the corresponding mode. The solution of this_ . . . . :
L . . : region x<<1. Expanding the hyperbolic functions in power
equation in the special case considered héte is . : ; .
series and calculating the integrals, we obtain
b/f:bff:k’u, bg:(Bk)’u, bg(Ck)#, (22) 2u H 2 Ta H 2

| 0. e o1 2 (s, et 2 (e
with the tensorsB and C introduced in Ref. 18see Egs. 457 \Hg 907 \Hg
(A2), (A3), and(A8) in Ref. 18. At E=0 we have

(2.9

+a,,

az=(1—v?coshx—a,,

sinh x

2. POLARIZATION OPERATOR IN A MAGNETIC FIELD

I, (K)b{= kb

Whenk, <m(r<1), the exponent) in the exponential

*
C,,= FW, V:FMV, (2.3 function in (2.4) tends toHx/H, the integrals with respect
¥ H ¥ H to v can easily be evaluated, and we get
whereF ,, is the electromagnetic field-strength tenﬂv is o dx X
the dual field-strength tensor, arl is the magnetic field R2=2fo CsinEx A 7 p
strength.
The eigenvalueg; have the form(see Ref. 8 X [coshx(sink? x—2x?)+x sinh x],
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FIG. 1. Ry/b vs w= wa/m for different values of the parametbr=H/H,:
0.1 (curvel), 1 (curve?2), and 30(curve3). FIG. 2. R, vs.b=H/H for different values ofv= wa/m: 0.1 (curvel) and

1.9 (curve 2).

o dx X
Ri=| z72——m—exg —+ _
3 JO 3xZ sinf? x e F{ b) 3. PHOTON SPLITTING IN A MAGNETIC FIELD
. Now let us examine the splitting of a photon with energy
2_
X[sinh (2x"=3) +6x], (2.8 w into two photons with energies; and w,. In the collinear

where b=H/H,. Plugging(2.9) into (2.6) yields formulas approximation(see, e.g., Ref.)5 the photon splitting rate
for the refractive indices coinciding with those that follow (probability per unit timg below the pair-production thresh-
from the effective Heisenberg—Euler Lagrangian, which carpld is expressed in terms of the splitting amplitude as fol-
be used at low frequencies and arbitrary external fields. lows:

In the two limiting cases the integrals {2.8) can be

evaluated exactly: _1 p dog 2 2 2
Yy dW= @ |T| ?— H(wln(l)+ wzw(z)—wn ), (31)
1602 28p? o
b<1: RZZE, Rgzﬁ, wherenj), n,), andn are the polarization-dependent refrac-

tive indices for the energias;, w,, andw. The 6-function in

4 4b (2.9 (3.1) is a reflection ofC P-invariance and the selection rules
3 Rszg- in photon polarizationésee Ref. B Below, as in Ref. 7, we

denoted mode 2 b3 and mode 3 byC.

The asymptotic behavior d®, andR; in the limit b<1 has The CP-allowed transitions ar&—CC, C—BC, and
been thoroughly discussésee Refs. 3 and)5and it agrees B BB. The formulas and figures of Sec. 2 imply that for a
with (2.7). We see that while fob<1, the functionR, and  magnetic field of arbitrary strength, the refractive indexBof
R differ only by a numerical factor, but>1 the situation is js smaller than the refractive index @f at any frequency
different: R, is field-independent, buR; increases linearly ratio. From this, it follows that for all th€ P-allowed tran-
with field strength. Our results are valid whep ;—1<1,  sitions the argument of théfunction is positive only for the

which is equivalent to B— CC transition. This rule was obtained in Ref. 1 for fields
a H H<H, and photon energies<m.
3. H—<1. The amplitudeT of photon splitting in a magnetic field
0

for the allowed transition can be found from the general ex-

For arbitrary values of the parametdrssH/H, andr,
the functionsR, andR; were calculated numerically. Figure
1 illustrates the dependence Rf/b onw=k, /m for differ-

ent values of the parametds. Clearly, near the pair- lgz’ e ,
production threshold this function rapidly increases at high

field strengths. Fow<<0.5 and any value df, the function 8t
R4/b is essentially independent wof, and its values for dif-

ferentb’s coincide with those obtained by using the effective 6f
Heisenberg—Euler Lagrangian.

As for R,, its dependence ow is extremely weak. This ar
is especially evident if one looks at Figure 2, which depicts st
the dependence &, onb for valuesw=0.1 andw=1.9. At 1
intermediate values of the parameterthe curves lie in the 0 . . - ' .

. A . 05 1 15 2 25 3 35 4
region between the two curves in Fig. 2. Figure 3 deits HIH
andR; as functions ot for different values ofw, with R, 0
taken atw=1.9. Clearly,R;>R, for all values ofw, i.e., FIG. 3. R, vs.b=H/H, atw=1.9 (curvel), andR; vs.b=H/H, atw=0.1
Nz>n,. (curve2), w=1 (curve3), andw=1.9 (curve4).
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FIG. 4. The photon splitting ampli-
tude as a function of the energy of
one of the final photon&; = w,/w) at
H=Hy/2 (a) andH=H, (b) for dif-
ferent initial-photon energiesw/m
=0.1 (curve 1), w/m=1.5 (curve 2),
and /m=1.9 (curve 3. The ampli-
tude T is normalized to the ampli-
tude T, given by (3.4).

0.08;
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pression(Egs. (2.16—(2.18in Ref.7) by substitutingE=0: where

L (470) g J exp(—Hox/H) [ o Ho 2)2
T 247 X T Sint? x 0 t2 Him/’
t . to(x—t coshx—cosh2t,—
X szth exp(cd)+sinkf t, expcdy) |, (3.2 o= 2(X~to) X 2t X),
0 X 2 sinhx

B 21Zy(t;—t) (11— to+X) — Z3t; (11— X) — Z,t5(t— X)
X

(1—2z,2,)coshx—z; cosh(2t,—X) —z, cosh{2t,—X) +2;Z, coshx+ 2t — 2t,)
a 2 sinhx ’

_ 1-[z; cosh2t;—x)+2z, cosh{2t,—X) ]Jcoshx 33

< +2¢212, sinkP(t,—tq)[ 2, sinl? ty+2, sinff(t,—x)].

G

Herez,; ,=w; ,/w, ando was introduced ir(2.4). To obtain  integrals with respect tb, andt,. The result coincides with
(3.2 we rotated the contour of integration with respect tothe photon splitting amplitude found by using the effective
each variablex— —ix andt; ,— —it; ». This transformation Heisenberg—Euler Lagrangidkg. (22) in Ref. 3. Atw~m,
is applicable ifw<2m. As a result, the integrand if8.2)  the integration in(3.2) was done numerically. Since the en-
contains no oscillating trigonometric functions, which provesergy » and the parameter enter intoT only as the combi-
convenient in numerical calculations. nation wo, we can setr=1 without loss of generality.

Let us discuss the properties Bf Clearly, the amplitude Figure 4 depicts the dependence™fT, on the final-
T is symmetric under interchange of the final photonsPhoton energy atl=H/2 (Fig. 43 andH=H, (Fig. 4b) for
(wy—w,). To prove this we must introduce new variables, different initial-photon energies, where
t,=x—m, andt,=x—m, and interchange the order of inte- 13 (47a)¥? w® [ H\3
gration with respect tay and 7. In view of gauge invari- Tozm—r — ( )

; T m

ance, asw—0 the amplitudeT = ww,w,, and alsoT—0 as
0,—0 for all values ofw. This means that there is very At o/m=0.1 the result agrees, to extremely high accuracy
strong cancellation ir(3.2), a fact that must be taken into (better than one part in a thousandith that obtained by
account in numerical integration. The calculations simplify if using the effective Heisenberg—Euler Lagrangian.
subtractions are performed in the integrand (8.2): Figure 5 depicts the total probability of the allowed tran-
exp(c®)—exp(c®)—1 for the first term inG (proportional ~ Sition W, expressed in units &/, as a function ofv=w/m.
to 1K), and exgcd)—expcd,)—1. Direct calculations Here
show that the sum of the subtracted terms is zero. TS w\5/ H

For w<m, the main contribution to the amplitude is pro- Wo:m =0.llf<—) (H_
vided by the range of variables wheee <1 andc®,<1. 0
By expanding the corresponding exponentials in power seCurvel corresponds tél/Hy=1, and curve2 to H/Hy=1/2.
ries and retaining the terms linear @n we can evaluate the Although the probability changes by many orders of magni-

Ho (3.9

6
cm L. (3.5
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FIG. 5. The total photon-splitting probability¢ (expressed in terms of the FIG. 7. The amplitudel as function of the final-photon energy fbi>H,
probability W, given by(3.5)) as a function of the photon energy € w/m) at different initial-photon energiess/m=0.1 (curve 1), o/m=1.5 (curve2),
atH=H, (curvel) andH=Hy?2 (curve2). and w/m=1.99 (curve 3).

tude within the parameter range considered here, the main
part of its variation is related td,, which is simply the Figure 6 shows that in strong fields the growth in probability
contribution of hexagonal diagrams to the photon splittingslows down considerably. In view of this, the study of the
probability for o<<m. Consequently, Fig. 5 demonstrates thebehavior of the amplitudd in very strong magnetic fields
difference between the probability calculated exactly in theH>Hy is interesting from the theoretical angle.
parameterss/m andH/H, and the probability calculated to WhenH>H,, the main contribution to the double inte-
lowest order in these parameters. The probabilfyz, ob-  gral in (3.2) is provided by the regions where~H/H, and
tained by using the effective Heisenberg—Euler Lagrangian¥—t,~1. In the triple integral in3.2) there are two regions
is also proportional tdw/m)°. Hence the points of intersec- that provide the main contributiorx~H/Hg, t;~H/H,,
tion of the curves and the vertical axis yield the probabilityandx—t,~1; andx~H/Hy, t;~1, andt,~H/H,. After ap-
Wye. propriate expansions the integrals can be evaluated, with the
Figure 5 shows that atl~H, the probabilitiesw and  result that
Wye are much lower thaw,. At the same timeW/W,,¢

increases appreciably as—2m. Hence we must take into T(H>H =T 24m* w1 " w3
account the exact dependence on the photon energy. Ou =T, o | Jam2— o2 arcta VAm?— w?
. L . 2 2 2
numerical results agre#o within several percentvith those
of Adler.? where the numerical values were given form. ) o ® @7
Figure 6 depicts the total probability of the allowed tran- T —F=——arcta 72| aml’ 3.
sition W, expressed in units ofV;, as a function of the @1VAM— w3 Vame—o
magnetic field strengtkin units of Hy) for different initial- where
photon energies. Here
32 3
Ho\© w5 B _(4ma) [
lewo(ﬁ) =o.116(5) cm L. (3.6 h=—]p 3.8

We see that foH>H,, the amplitudeT is independent of
WIW, the magnetic field strength. The amplitude calculated by us-

p ing the effective Heisenberg—Euler LagrangiantorH, is
6 L
st
3
4r 3 W W,
3t 1
2t
l 5
0 . . . .
5 10 15 20
H/H0
FIG. 6. The total photon-splitting probability¢ (expressed in terms of the 2F
probability W; given by (3.6)) as a function of the magnetic field strength , . . ) )
(expressed in units dfly) at different initial-photon energiesr= /m=0.1 05 1 L5 2
(curve 1; this curve coincides, to high accuracy, with the probability found ’ ’ w
by using the effective Heisenberg—Euler Lagrangiam=1.1 (curve 2),
w=1.5(curve 3), andw=1.9 (curve4). FIG. 8. W,.=W(H>H,) vs. the initial-photon energyw(= w/m).
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Magnetization of optically polarized gas atoms by an optical pulse train
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The properties of the density matrix and the multipole moments arising in oriented and aligned
atoms with zero nuclear spin through the interaction with strong resonant ultrashort pulses

with wave vectorky and circular or linear polarization have been found. Calculations have been
made for the time-dependent light-induced magnetizatifti) of a gas of pre-oriented

and prealigned atoms following the passage of a weak resonant elliptically polarized pulse with
frequencyw and wave vectok collinear withkg. It is shown that for oriented atoms,

p(t") is an even function of the detuning from resonange, wy,,, and can be split into two

terms whose directions are a consequence of symmetry and are determined by the

vectorsky andk as well as by the direction of rotation of the electric fields corresponding to the
pulses. For aligned atoms the vecpeft’) is collinear withk, and the first term is an even

function of w— wp,. However, the second term is an odd function @f w,, and reverses
direction when the sign ob — w,, changes, as well as when the orientation of the axes of

the polarization ellipse is changed. It is shown that if a series of weak linearly polarized pulses pass
through the gas, the light-induced magnetization of the oriented and aligned gas atoms can

be decomposed into three factors: the first determines the direction and is a consequence of the
symmetry; the secon@vith the dimensions of magnetic momegmtepends on the

characteristics of the resonant transitions; and the third is a universal functtéorantl o — wy,

that does not depend on the underlying characteristics of the resonant transition. These

vector factors and the universal functions are in principle different for oriented and aligned atoms.
© 1997 American Institute of Physids$1063-776197)00501-3

1. INTRODUCTION series of pulses resonant with the transition frequency
wpa=(Ep—Ea)% 1, whereE, andE, are the energies of the

The experiments of Badalyaet al*? demonstrated the ground and the excited states of the atom. In order to exam-

light-induced magnetization of potassium and rubidium va-ne the problem of the magnetization of the atoms by linearly

por atoms resulting from the sequential passage of linearlpolarized pulses, we must first solve the problem of the op-

polarized pulses in the presence of a static magnetic fielelcal polarization of the atoms by the passage of a strong

H and in zero field K=0). If we bear in mind that for ultrashort pulse with frequency,, wave vectork,, and

H=0 the magnetization of an isotropic atomic gas by thedurationr, under conditions where atomic collisions can be

passage of a single linearly polarized pulse of light violatesheglected and the relaxation is determined only by the spon-

symmetry(see, e.g., Ref.)3we see that the magnetization of taneous emission probability of atoms in the excited state

rubidium and potassium gas in Refs. 1 and 2 by the sequerienergyE,) for 7,<t. For long times;y~1<t, after the pas-

tial passage of linearly polarized pulses for=0 is an ex-  sage of an intense short circularly polarized pulse with po-

traordinary phenomenon. larization vectorl, s (s=+1), oriented atoms are produced
The magnetization of an isotropic atomic gas by a CircUin the gas in the steady state, and in the case of a strong

larly polarized pulse with wave vectds, and polarization  |inearly polarized pulse with polarization vectly;, aligned

vectorly s (wheres=+1) for H=0 is consistent with sym-  51oms’ are produced. If then a weak elliptically polarized

metry, since in this case there exists a real pseudovectgiulse with wave vectok collinear with k, and with fre-

i[IkoslngS], which determines the direction of the induced quency » and polarization vectod,, (A=+*1) passes

magnetic momenj,; of the atom. through the gas, then because of symmetry the induced time-
In this connection a fundamental question arises: whadependent magnetic moment will have the form

should the direction of the pseudoveciay; be if it is in- L b ,

duced by a train of linearly polarized pulgstes whh=07 In "gp(t )=illalIC )+'[|kos :os]D(O)(t )

Ref. 4 the conditions were determined for an atom in a stati(f .

magnetic field for which a linearly polarized pulse induces aora pre-oriented atom and

magnetic m'omenﬁzat collinear withH. .The magnet@zatior} ;ugzt)(t’)=i[lkxlf(‘}\]CQ)(t’)Jr(k/k)lﬁ}\ sin(2¢,)D@(t)

of an atomic gas by a sequence of linearly polarized light

pulses withH=0 observed in the experiments of Refs. 1 andfor a prealigned atom, where the anglg (¢_=— o),

2 is in need of theoretical explanation. defines the orientation of the axes of the polarization ellipse
In this paper we study theoretically the magnetization ofrelative to the vectorl,. The quantitiesC@(t’) and

a gas of atoms with zero nuclear spin by the passage of B¥(t’) with =0, 2 depend on the timg with retardation
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taken into account, and also depend on the detuning from Eo=1li,sRo(t— to)exdi(Ko-r— wot— ag)]+c.c., (1)
resonancew— wy,, the characteristics of the atom, and its

velocity v. These formulas imply the fundamental statementpropagates through a gas of identical atoms, where
that the light pulse magnetizes pre-oriented and prealigned
atoms differently.

Analysis of the magnetization of an atom by a strongand| < is the unit complex polarization vector, orthogonal to
putlﬁe Vt‘;'tth flxefd frequencybg danﬂ atsur)seclluenttweak pulse o wave vectoky. The real amplitud®Ry(t—to) is a func-
with arbitrary frequencys and elliptical polarization serves oo "o varies slowly compared to dikr — wot)]. The

as thetba?s of fsolvmgz thebmore comp][ex problem fof th(Tf(requency wo is close to the transition frequencyp,
magnetization of an atom by means of a series of weal (E,—E.)h L, and the phase shifi, is a constant. The

pulses with parallel wave vectors and identical polarization energy levelsE, andE, belong to the ground state and the

and amplitude, but different frequenciesear the transition excited state of the atom, respectively. The leading edge of

frequencywy,. : .
. . the circularly polarized pulse passes through the boundary
[)r; (2) (41
The results fofu, (1) and (1) make it possible to point ry of the volume of gas at timg&, and arrives at an

gllow for :]he M?xv;/e!llan df|str:|but|orf(v). of atomic veloc- arbitrary pointr inside this volume at time with allowance
ity v in the calculation of the magnetic moment per untfor retardationk(r —rg)/ wg. The vectorl, oS! regardless of

volume of the gas, which is the light-induced magnetization
u(t'). For each successive passage of a weak linearly pola}he choice of right-handed or left- handed coordinates, can be

:il, t6:t0+ko'(r_r0)/w0,

ized pulse with wave vectdt, the light-induced magnetiza- written as
tion at a given point in the gas can be described by the same les=2" v2(g)(L +||<2>) )
formula, in which the initial timet’=0 is taken to be the
time of arrival of this particular pulse; that is, where for right-handed and left-handed circular polarization
Y= — L TV X (10— o)+ WXt 00— @ we have,s=1 ands=—1, respectively. The unit vectors
Ho(t) alVaXadl ba) bal ba) |(k? and Iff)) on the right-hand side of Eq2) satisfy the
Xexp(—yt")], 9=0, 2, necessary conditions
where | ko Il =ko- 1P =11 1P =0, 1% =1,
Lo=(Kko/ko)sB, Lo=(k/k)sin(2¢y).
. . . @ = _|(2 [|(1)|(2)]:k 1k
Here the quantities with the subscrigt=0 andq=2 —ko ko ' L'ko 'ko 0'ho-
refer,_ respectively, tp pre-onented atoms, it 4J,, af‘d With the replacemerik,— — kg the vector Eq(2) can be
prealigned atoms, with<J,, with angular momenturd, in transformed

the ground state, and is the unit pseudoscalar. The quanti-
ties Xaq(t',0—wp) and Xyg(t',w—wp,) are universal |kos_>—|k0’_s, 3
functions that are even iw— wp, for =0 and odd in

w— wy, for g=2. They depend ory and the amplitude of because of the properties of the unit vecﬂé]r)sandl(z) We
the weak pulse in relative units, and on the atomic masshall also consider inversionx——x, y——y, and
m,; and the temperatur® of the gas, which enters by way of z— —z which transforms the vectd®) differently:

the most probable velocity of the Maxwellian distribution

f(v). The angular momentd, andJ,, theg-factorsg, and 'kosﬂ|ko,—s- 4
Op, the reduced dipole momendt,, and the atom number
densityN are subsumed by the constaktgsandW,, which
have dimensions of magnetic moment, and determine th ndJ the angular momentd, andJy, and the projections
order of magnitude of.4(t’). The vectord , andL, yield b 9 b proj

the direction of the light-induced magnetization in the caset tand Mrﬁ of ;hes?hangltjlar Tome?ta ondthedax;s of qutan-
of successive linearly polarized pulse trains wtk- 0. zation erefore the interaction ot an individual gas atom

The fundamental properties found for the Iight-inducedWlth the field, Eq.(1), can be conveniently described by the

magnetization are a consequence of symmetry. They can kgauantum mechanical equations for the components of the

observed experimentally by making relative measurement ensity matrixp in the JM representation,
of the light-induced magnetization. The most important char- J
acteristics of the resonant transition, suchJas J,, 94, ( ot
Oy, anddy, will not have any effect on these measurements,

which is an attractive feature for experimental investigations i

of light-induced magnetization. ~ (Bo-duymzpmim, ~ Pmgm;Eo dmym,) ®)

The states of the atom are characterized not only by the
gnerg|esE and E,, but also by the quantum numbeig

+V-V+iwp,+

7
2 PmpM,

2. OPTICAL POLARIZATION OF AN ATOM IN THE
PASSAGE OF A STRONG CIRCULARLY POLARIZED PULSE

J
—+v-V+
at Y

PMpM{

Let us assume that a circularly polarized pulse of arbi-

[
trary intensity and a rotating electric field vector T (o~ duypPmmy = P Eor At mp ) )
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for a two-level atom without degenerate levels, and in Ref. 8
EJFV'V Pmm! for the case of degeneracy in the projection of the angular
momentum. The final solution of Eq&)—(7) for y = 0 in

the time interval Gst—t{<r,, with the use of the initial

i
T (Bo* dumypmym; = P gm,Eor dugmy) conditions Eq(8) can be written as
y(2J,+1) PMaMé"(t_t(’).S)
TTaE B G Y
a 1
where = 53,71 (1 (B +s(t= 1)1} S, (10
= _3—4|dba|2wga ’ _ 1 B(S) ’ 25 11
Y 3hc (2Jb+ 1) ' prMl’)(t_tO’S)_ 2Ja+1 [ Mb(t_to)] Mle’)a ( )

where dy v, is the matrix element of the electric dipole where

moment operatod of the atom,d,, is the reduced dipole

moment® y is the probability of spontaneous emission of a B(,j)(t—t(’,)=sin
photont wy,, by an isolated atony is the thermal velocity of

AP fo”f"Ro(g)dg},

an atom, and is the speed of light in vacuum. The term on o Ja 1\ |dpal
the right-hand side of Eq7) with the factory describes the AY=(— 1)Jb"\"+s< M oseM - ) ha ,
transition of an atom in the ground levEl, to the excited S S

state with energyE,, as induced by the spontaneous emis-  M=M_+s,M,. (12
sion of a photorfiw,,. In each matrix product repeated in-
dices imply summation.

Equations(5)—(7) will be solved in the resonance ap-
proximation using the inequalitywy— wpa| <wq. The den-
sity matrix p=p(t—tg,s) is a function oft—t;, and de-
pends on the parametsr The components of the density
matrix at timet=t} satisfy the initial condition

Here the 3 symbol € © €) is defined in Refs. 5 and 6. The
calculation of the quantities Eq&l0)—(12) used the fact that
the detuning from resonande,= wy— wp, and the velocity
v satisfy the inequalityA,—kov| 7p<1.

After the ultrashort pulse, Ed1), has passed it is nec-
essary in the regiot},+ 7,<t to take into account relaxation
in Egs.(5) and(7), and the components of the density matrix

Pmym;(0.8)=pn,m,(05)=0, can be written
S pmm(t=1g,S)
Py (09)= 577 (®) .
=pmm(70,8)+ Tdo 2 dmmpPmpm; (70,S)
a

In writing down Egs.(5)—(8) we have assumed that the
gas is sufficiently tenuous so that atomic collisions contrib- X Ay d1—exd — y(t—t)— 7)1}, (13)
ute negligibly to the level broadening, compared to the ra- b™a
d|at|ye width# y. Therefore the n_orm_allzanon of the density PMle’)(t_té ,S)= prMé(TO ,s)exd — y(t—th—70)].
matrix, Tr p=1, does not vary with timéa closed resonant

transition). If atomic collisions are responsible for the width (149
%y, of the ground leveE,, then Eqs(5)—(7) and the sub- The solution, Eqs(10)—(14), does not contain the opti-
sequent discussion are valid over the period of timecal coherence matripgy v (t—to,s), since itis dampedin a
0<t—t{< 7;1 with the conditiony,<1y. time proportional to eXp- y{(t—ty—7)/2], and therefore will
We assume that the circularly polarized puld¢ has not be used in explicit form in subsequent calculations.
duration 7y and is ultrashort If the ultrashort pulse Eq1) has a rectangular amplitude

profile with constant amplitud&, over the time interval

¥70<1, ©  o<t-t'< 7o, then for any detuning from resonanag and
wherey~! is the radiative lifetime of the excited state. Be- arbitrary velocityv, in formulas(10)—(14) one must use
cause of inequality9), it is possible to neglect relaxation in (s)

. : ' A A
Egs. (5)—(7) in the time interval (_9<t—t0§ 79, and set B(,\j)(t—té): (Ol(s';/' sir’{Q(,\j)(t—t(’))],
vy=0. In order to solve these equations wigk-0 we use a M
right-handed Cartesian coordinate systeyz, and take the 1 12
z axis (the axis of quantizationcollinear withk,, with the Q)= 7 (Ag—kov)2+R3(ASH?| (15)

x axis parallel tol(ki). Then the vectof2) becomes
e _ instead of expressiofl2), while in the regiort|+ 7o<t the
lks=2" " (slxt+iooly), quantity Eq. (15) remains constant with the argument
t— t(,): 70-

(1) — =
wherelko lx andoy=(kol,)/ko. Herely, I, andl, are the After a long time

unit vectors of the Cartesian ax&s y, andz. Now Egs. . .
(5)—(7) can be solved by the methods worked out in Ref. 7 ¥ “<t—ty— 1o, (16)
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the excited leveE, is entirely depleted through spontaneouswhere 0<k<2J, and — k<q=<«. The multipole moments

emission, and the density matriXt—t;,s) takes on a con-
stant valuep(e,s) with the following components

pMaM;(W!S):pMa(S)éMaMéi 17
Pmym;(©:8) =puym (*,8) =0, (18
where
(8= 5557 1-[B\ (1) 1*— (235 +1)
X 2 (—1)% Ma~Mp(2,c+1)
kMp
Ja Ja K Jb ‘Jb K
X
M, -M, 0/{M, —M, O
Ja k Ja
X (s) 2
‘Jb 1 Jb][BMb(TO)]]y (19

and the § symbol{3 ° ¢} is defined in Refs. 5 and 6.

of rankk=0,1,2 describe the population, the orientation, and
the alignment of an atom in the ground levg&l, respec-
tively. The property(20) of the density matrix is reflected in
the behavior of the multipole moments as
g’ (Ja,—9)=(-1)"""4(Ja,8), q=0. (23
Because of the equalit§{23), the behavior of the multi-
pole moments of arbitrary rank under separate transforma-

tions ko— —k, s— —s and inversion can be described with
the use of the two equalitles

p(3a,5)=005Bp5"(Ja 1) 8oq for s==1, x odd,
(24)

Pt (32,5)=pt”(Ja) Soq for s==1,
(25

k even andk=0,

where the replacemenks— —ky ands— —s and inversion

The density matriX17) describes the stationary state of can be used separately or conjointly. Hge 1 in a right-

the atom in the ground levél,, and has the following fun-

damental property:

pra,fMé(w-S):PMaM;(ooa_S)- (20)

handed coordinate system afe: — 1 in a left-handed coor-
dinate system.

From Eqs(17) and(22) we obtain an explicit expression
for the multipole moments of the atom in the ground state:

According to(3), the sign of the parametsrin formula 9
(19 is reversed by the replacemenj— —k, and therefore Pq (Ja,S)
the density matriX17) is changed. However, with the simul-

taneous replacemert;— —ky and s— —s it remains the = 85460 _L{E (_1)Ja—Ma( Ja Ja K)
same. Upon inversion the matrix indices change sign: 4 V2J,+1| My Ma —M, O

M,=1,J,——M, and M,— —M/. Also, the parametes
changes sign with the rgplacen?eénl. Therefore, according X [B('\j)aﬂ( 70) 17+ (23p+1)(— 1)t Rt
to Eq. (20), this matrix element does not change sign upon 1k 3

inversion. However, after inversion the density matiix), x( a a]
by virtue of the replacement4), describes the stationary Jb 0 Jp
state of the atom produced by a circularly polarized pulse
with polarization vectorkoy,s, whereas before inversion the
other polarizationkos was involved.

The optical polarization of an atom is characterized by , )
the equality(20). To describe the optical polarization of an Where the sum of all terms in curly brackets vanishes for
atom one can also use the polarization multipole moment§ = 0; and therefore the _p(()oeulatlon in the ground state, as in
pi(Ja.S), which figure in the expansion of the density ma- the unperturbed atom, ig;’(Ja,8)=1 (a closed resonant

trix (17) in a series in the Bsymbols according to the for- ransition. L .
mulas The optical polarization of an atom as described by for-

mulas(20) and(23)—(26) is a consequence of the symmetry

E (_1)Jb—Mb( Jp Jp K)

Mb Mb _Mb 0

X[Bi( To)]z} , (26)

, 2k+1 in the interaction with a circularly polarized pulse when the
Pmm(%,8)=(— 1)t My NERE quantization axis is collinear witky. It is characterized by a
“ a single axis of axial symmetry and two opposite directions
J, J.  « along this axis corresponding 8=1 ands= —1. This axis
S VY, )pg")(Ja,s), (21)  is the axis of quantization in the calculation of the density
a a 9 matrix (17) and the multipole momen{R6). If we take into
. account the rotation of the electric fiel, about the wave
(—1)%aMa vectorkg, then the optical polarization of the atom produced

py’(Ja9)= V230 +1 2
MaM, by the circularly polarized pulse is described by a right-
J, J. o« handed screw fos=1 and a left-handed screw fgre= — 1.
" This optical polarization is characteristic of an oriented atom
a

X
in the state withp{"(J,,s).

)pMaM;(oovs)l (22)

-M; ¢
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3. ALIGNMENT OF AN ATOM BY MEANS OF A STRONG
LINEARLY POLARIZED PULSE

The electric field vectoE, of a linearly polarized pulse
of durationr, is given by
Eoz IoRo(t_ té)eXF{I (ko r— wot_ a’o)] +c.c.,

(27)

where the unit real vector, satisfies the equalities

lo=I{Y=1% and is not changed by the replacement

ko— —kg. The other quantities in Eq27) are the same as
those used in Eql). Formula(27) and these properties of
the vectorl, do not depend on the choice of left- or right-
handed coordinate system.

Besides the right-handedyz coordinate system chosen

in Sec. 2, we shall consider another right-handed coordinat

systemxyz with the z axis (the axis of quantizationalong
the vectorl, and they axis parallel to they axis. Since the
vector |y is unchanged by the replacemdny— — kg, the
direction of the axis of quantizatiofthe z axis) remains the
same when the direction &, is reversed. Moreover, it is
assumed that the length, of the linearly polarized pulse
(27) satisfies the inequality9). Then for such a pulse we
apply the calculation method of Refs. 7 and 8 in thez
coordinate system, and the solution of equatis(7) with
the initial condition(8) is the density matrixp=p(t—t},0)
with the component$10)—(14) in which we have made the
replacements

p—p, Ma—M,, Mp—Mp, s-0, (28)
where M, and M, are the projections of the angular mo-
menta on the axis and the density matrix has the indices
from the seM,, M, M/ andM| . If we make the replace-
ments(28) in formulas(17) and (18) we obtain the compo-
nents of the constant density matgpxe,0) in thexyz co-
ordinate system for long timegxpression(16)) after the
passage of the ultrashort linearly polarized pu®.

The optical polarization of an atom in the figl@7) must
be described in the right-handegz system of coordinates
with the z axis (the axis of quantizationcollinear with kg
and thex axis along the vectoly. In this case thex andz

axes coincide with the two orthogonal directions in space
defined by the linearly polarized pulses independently of the

replacementk,— —Kkq. The transformation from theyz
coordinate system to theyz system is carried out via three
successive rotations by the Euler angtesB, andy, as in

Ref. 6. For this purpose we first carry out the rotation about

the z axis by the anglex=0 with the transformation to the
new coordinate system;y;z;. Then follows the rotation
about the newy, axis by the anglgg= — /2 with the trans-
formation to the new coordinate systexsy,z,. Then the

rotation is carried out about they axis by the angley=0,

with the transformation to the nexyz coordinate system. If
we take into account the density matfie,0) calculated in

the xy z coordinate system, and use the law for the transforwhere k=2n with n=0,1,2, ... .

nate system with the axis (the axis of quantizationcollin-
ear withky and thex axis along thd, direction:

PM M= > p_NTa(O)Eq (2k+1)(—1)% Ma
M, K

Ja Ja K ,
x| —  — —1)%aMa
(Ma _Ma 0)( )
% Ja Ja K p T (29)
M, —M, g/ % 2/
Pmpm; = Pmgm, =0, (30)

wherepy_(0) is given by formula19) with the replacement
28), while dg,(—7/2) is a special case of the real factor

dﬂAM,(B) in the WignerD function

DYy (@, By)=e"Med), (Bre ™7,

The density matriX29) describes the stationary state of
an atom in the ground leveét, a long time(16) after the
passage of the linearly polarized pul§®7), and has the

property
P-My,~M.=PM M- (32)

By analogy with Egs(21) and(22), we expand the den-
sity matrix (29) in a series

’ 2K+1
r=(—1 Ja—May _
Pm M) (-1 % Tla-f—l
Ja Ja  « )
X “(Ja), 32
M, —M, g Pq (Ja) (32)

where, because of the equalit®9), the only nonvanishing
polarization multipole momentg,(J,) are those of even
rank «, including k=0. These multipole moments describe
the optical polarization of the atom, and according to Egs.
(29) and (32) take the form

pg“>(Ja)=5oK50q—ﬁ %‘; (—1)%Ma
% ,\JAaa _J,\;a g)[Biﬁ’;(ro)]zwL(ZJbﬂ)
el T g
. '\‘j'bb —JI\I;Ib g)[BW(To)]ZJdSq(—g),

(33
The upper bound of

mation of density matrices under rotations of the Cartesiawariation of « in the first and second sums is determined by

coordinate system by Euler angles 8, andy (Ref. 6, then

the inequalitiesk<2J, and k<2J,,2],,, respectively. The

we can find the components of the density matrix of the atonguantity Bﬁjl))(ro) with M=M,,M,, is given by formulas

in the stationary state at long timés6) in the xyz coordi-
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(12) and (15) with s=0.
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One can see that the density matrix does not change with The magnetization of a gas in the figld84) cannot be
the replacemenk,— —Kk,. On the other hand, the replace- investigated without knowing the rules for transformation of
mentl,— — I, reverses the direction of theaxis according the polarization vectoré35) and(36) under the replacement
to the calculation$29) and(33). This results in a change in k— —k and inversion. In order to find these rules we used
sign of the angle of rotatio, which for Eqs.(29) and(33) the fact that the equalitie@5)—(39) are satisfied regardless
means the replacementw/2— /2. After this replacement of the choice of right-handed or left-handed coordinates.
the quantitie29) and(33) will be referred to thexyzcoor-  This, together with the equalit§d7), enables us to determine
dinate system with the sanzeaxis collinear withky and the  the transformation of the polarization vectors with the re-
X axis antiparallel tdy. Inversion is accompanied by the placemenk— —k in the form
replacementd ,— —M,, ko— —Kkqy andlyp— —1y and a re-

versal of the direction of the axis. If we take the property ho— =l
(31 into account, then we see that after inversion, the denghere for the new polarization vectdy, with A\=1 and
sity matrix does not change form. A=—1 we have introduced the notation

The optical polarization which we have found is a con-
sequence of symmetry. It is characterized by two orthogonal  lk =1k cosy’ +ili? sin ¢,
axes, the first of which points in thg direction, while the L) i (2 ,
second is collinear with,. These axes are the axes of quan- k1= "I’ sin ¢’ il cosy’, (40
tization in thexyz and xyz coordinate systems when the jth the new parametep’ defined by the formulas
guantities(29) and(33) are calculated. The optical polariza-
tion generated in an atom by a linearly polarized pulse is ¥’ =m2—¢, O<y'<mul2,
characteristic of an aligned atom.

and by the new ratios of the axes of the polarization ellipse

cos ¢/ /sin ¢/ =sin ¢ /cos ¢ and siny/'/cos ' =cos i /sin i,

4. LIGHT-INDUCED MAGNETIZATION OF GAS OF PRE- respectively, for right-handed N\&1) and left-handed

ORIENTED ATOMS (A=—1) polarization. These ratios of the lengths of the po-

larization ellipse axes fax=1 and\=—1 are interchanged

We now study the magnetization of a gas of pre-orientedelative to the initial polarization vector§35) and (36),

atoms during the passage of an elliptically polarized pulse which were specified up to the replacemént —k. If we
E=l,a(t))exdi(kr —wt)]+c.c. (34 Use the equality38), then upon the replacemekit> —k we

can also find the transformation of the vector product

[Tl d=(KIKN sin(2g) —ill 1250

a(t') is the complex amplitude, which is a function that =~ (KA sin(2y) = = (klOX sin(24)).
varies slowly compared to efigkr — wt)], andt, is the time (41)
of arrival of the pulsg34) in the gas at the boundary point
ro. The wave vectok is collinear withk,. The electric field
vector E executes right-handed rotation far=1 and left-
handed rotation fok = — 1. The elliptical polarization vector o=k —x (42
I in the case of right-handed polarization=1, can be
written as

where
A=x1, t'=t-t;, t'=th+k(r—ro)lw.

Moreover, by virtue of(37) and (38), the polarization
vector transforms under inversion according to another rule,

whereas according to E@41) the vector product[ly, [, ]
transforms under inversion in the same way as under the
=1 cosy+ill sin g, (35  replacementk— —k. This important result enables us to

while for left-handed polarization,= —1, can be written write this vector product as

e —1=—1 sin y+il? cos y. (36) i[lalia]= (KK B sin(2y), (43)

In Egs. (35) and (36) the argumenty takes values whereg is the unit pseudovector, which in right-handed and
0= y<m/2. The ratio of the lengths of the polarization el- left-handed coordinate systems is equal g=1 and
lipse axes is cos//sin ¢ and sinyg/cos i, respectively, in 8= —1, respectively. Formul#43) takes into account the
Egs. (35) and (36). If =m/4, the polarization ellipse be- replacement&— —k and\— —\ and inversion, which can
comes a circle, and formula85) and (36) describe right- be carried out individually or in various combinations with
circular polarization and left-circular polarization. If we set One another. According to E(43), the factor in Eq(24) that
A=1 andy=0 or \=—1 andy= =/2, formulas(34)—(35) takes into account circularly polarized pulses can be written
describe linearly polarized pulses. The unit vectors in expresh & different manner:
sions(34) and (36) satisfy the equalities UoSB:iUkos :Os]|2!

K =k@=1P12=0, 15=1Y, 19=-1, 37
K KoKk Kok : K wherel, is the unit vector in the direction of the axis of
(P12 ]=k/k, (38)  quantization.
The state of the atom in the field, E@4), is described
L=l ol =90 AN =%1 (39 i io(t! i isfi i
—ka T ki T O ' -4 by the density matriyp(t’), which satisfies Eq$5)—(7) with
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Eo—E. Its components, which are not diagonal in the en-

ergy, have the following characteristic form in the resonance

approximation| w — wp,| < w:

pugm, (1) =1y m (T expi(kr —wt)],
wheret=t'—1(, so that they are functions af. In addi-
tion, the componentsy, v (t'), pm_m (t'), and PMM ()

vary slowly compared to eXjgkr —wt)] and satisfy the
equations

d , kv\ d ,
S PV T (1) =1 1= ] o Tmgm (1)
d !
=g MMMyt
a ! d ’ !
=t PV [ pam (1) = g7 pumr (1), M=Ma My

where we have omitted small terms of ordéc.
In light of this discussion, we can transform E{8)—(7)
in the field (34) into the simpler equations

d | 0% ia(t")
W"A+§ MM, = 7 Lladmymzpmim,
—pmpm;lndmim, s (44)
d i )
g 77| Pugm; = 7 Ladmm Fm mial(t’)
—a*(t')rMbMal’If}\dMaM{)], (45)
d I * * !
gr Pvam= 7 Liadmm,Fvgmza® (t)
—a(t)rvmyladmym’]
W MaMbprMl’]dMl’]Méa
A=w—wy—kv. (46)

Equations(44)—(46) and their initial conditions can be

conveniently analyzed in the right-handegz coordinate
system withz axis (the axis of quantizationcollinear with
ko and x axis along the vectot(z), since the optical pre-

polarization of the atom was calculated in those coordinate
The initial conditions at’ =0 then assume the simplest form:

rMbMa(O):Oa prMé(O):Oa

(47)

pmm! (0)=pn m/(*.S),

where the right-hand sides of the equalities coincide with th

components of the density matricgls) and(18) of the pre-
oriented atom.

The light-induced magnetization of an atomic gas is rep
resented by a magnetic moment per unit volume, given by

mt')= _/-LBNJ fw)[gadumim o m; (L")
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+0pdm/m M m (1) ]V, (48)
where
ug=|e|h/2mc,
v? 2T\ 12
= -3 - =
f(v)=(mu) exp( u2>, u (mat) :

mg is the Bohr magnetorg and m are the electron charge
and mass,g, and g, are the gyromagnetic ratiogthe
g-factorg, N is the concentration of the gas atoniigy) is
the Maxwell distributionT is the gas temperatureg is the
Boltzmann constantm,; is the mass of the atom, and
Jwm,, andJy v, , are the matrix elements of the angular
momentum operatord, andJ,, respectively.

The density matrices in Eq48) must be calculated by
solving Eqgs.(44)—(46) by perturbation theory if the ellipti-
cally polarized pulse, Eq34), has duratiorr and low inten-
sity. Then the condition on the range of applicability of time-
dependent perturbation theory for a rectangular pulse, Eq.
(34), of constant amplituda can be conveniently written as

< Tpums (49

where 7, is the time of optical pumping,
Tpum— 2[(0— wpa— ku)2+ 72/4](]:27)711

andf=|dy,aln ! is the Rabi frequency.

According to the method of successive approximations
in perturbation theory, the density matrix for the first ap-
proximation in the field(34) is the solution of Eq(44) in
which the component&7) are used on the right-hand side
without taking the field34) into account. The density matrix

elementSpf\Az)M,(t’) and pfwzl)jM,(t’) of second order in the
aV'a b

field (34) are the respective solutions of E¢45) and(46) in
which the right-hand sides retain the terms quadratic in the
field (34). The solution of these latter equations with the
initial conditions(47) can be written in the short form

N — (2) ’
Pmm; (t )—PMaME;(OO,S)+PMaM;(t )s

! 2 !
Py () =Py (1) (50

The termpMaMé(oo,s) in Eq. (50) describes the steady

state of an atom in the ground state before the passage of the
pulse(34). This term, along with formula¢l?), (21), (24),

and (48), enables us to find the constant light-induced mag-
g)etization

pta= — (Ko/Ko) SBusNGaTx( 30T 1) f f(0)pld

X (JgD)dv,

where the multipole momerybgl)(.]a,l) is defined in Eq.
d26) for k=1 ands=1. The light-induced magnetization
M, is produced by the preceding strong pulsg and if there
are no depolarizing collisions it is retained during the time
that the following weak puls€34) passes.

To study the light-induced magnetization in the experi-
ments of Refs. 1 and 2 the light pulses were passed through
a cell containing the atomic gas and situated inside the
pickup coil. The time-dependent light-induced magnetization
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of the atomic gas induced an electric current in the windingsvhere the vectork! with g=0,=1 are the contravariant unit
of the pickup coil, producing a potential differend&t’) vectors®
between the ends, as described by the well-known formula . .

y (D=2, +ily), 1W=2"Y—|+il), 10=],.

du(t’)
dt’ ’

where the unit vecton is collinear withk and the constant

C depends on the experimental arrangement. Hedefines S5=— 3

the fixed direction for which the magnetic flux is measured

andV(t') is the emf of the pickup coil. The experimentally

measured quantity, the projection of the derivative x> (—1)9A_;B,Ga(0,4), (62)

du(t')/dt" in the fixed directiom, provided information on q

the properties of the time-dependent quanjit’). Idy |20
According to Eq.51) the constant light-induced magne- __ s I“bal Ybb 26+ 1)p"(I. s

tization u, cannot be measured in experiments that use a Q5= %o V2J,+1 EK: ( Jpo (JaS)

pickup coil. Therefore, to study the behavior @ft’) as the

weak pulse(34) passes, it is necessary to calculate the time- X >, (—1)9A_4ByGp(d,x), (62)

dependent light-induced magnetization due to the terms in q

Eq. (50) quadratic in the field34). After writing down these

V(t')=-Cn (51) Using the Wigner—Eckart theorem, the rule for contract-

ing 3j symbols>® and Eqs.(58)—(60), we obtain
~ |dba|2‘Jaa

2k+1)p9(J3,,s
5 2Ja+12( )p5”(Ja,9)

2
terms in Eq.(48), we obtain P~:|dba| Jaa(_l)Ja+Jb Ja 1 Ja o (63)
N Job J 1 3<%
’ B ! !
M(t)=72—def(v)[ga|a(t )S—gp!°(t")Q 1 1 K
Ga<q,f<>=2<2w+1><—1)“(o _ )
2J,+1 «' qa q
2P vy pl e, (52)
|dpal® NER K’)[l 1 Kf]
where g 0 —qg/l|Jda Jp Ja
S=JIu:m,(lx A ) ia Gy mr) pmrm: (2,9), (53 % 1« « 64)
Jo b Ja
Q=Jmm,(aduym,) Pmm? (2,8) (ky A my ), (54) 11 W1 ,
K K K
VIR VRYRUPNCVRVIRIYRVIA G Gb(q’K)zg(ZK +1) 0 —q q)(—q 0 q)
X(lndmzm ) drmy), (55) o 1 1 «"[1 « « 5
Jb Ja Jb ‘]a Jb ‘]a'
artry t * _ :
()= [ drat (e (- 287 Jaa=[3a(3at D)2+ DI Jpp=[3p(Ip+1)
v X (2J,+1)]Y2
y .
fo dria(r)exd (y2=1A)n]. (56) The vectorsA andB, which are orthogonal to theaxis,

obey the equality

Ib(t’)zexp(—yt’)ft dra* () exd (y/2+iA) 1]

0 2 (~1)"A-BqGa(d. )

x f “dra(r)exd (yl2—iA) 7). (57) 1

0 =5 1AB[Ga(1,k) + Ga — 1k) ] +i[AB][ Ga(1,x)
To sum over the projections of the angular momenta we

introduce the notation —Ga(— 1)1}, (66)
A=ly,, B=I% (59) where, because of Eget3) and(58), we can set
in Egs.(53)—(55) and write the vectors in Eq&3)—(55) and AB=1, i[AB],=(Ik/K)\B sin(2¢).
(58) as expansions in orthogonal unit vectors Using the formula
A=Y A% B= BylY, (59) Ga(—0, ) =(=1)""'G4(q,x),
q q

we find that the right-hand side of E@66) is equal to
G,(1,x) for odd x and

— q — ) — —1d
S=2 8% Q-2 Qdl% P Zq Pal™ (0 (IKIK)\ B SIN(2¢%)G4( 1) (67)

q q
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for evenk, including k=0. These equalitieg66) and (67)

not only on the population, but also on the optical pre-

are also valid forGy(qg,«) with the change of subscript polarization of the atom produced by the preceding circularly
a—b. In addition, it is necessary to take into account thatpolarized pulse(1). Thus the first term in Eq(68) with

according to Eqs(24) and(25) the multipole moment;ag")
X (Ja,S) have a different form for odd and evat including

k=0 is related only to the populatiopf)o)(\]a,s)=1 of the
ground state and is equal to

x=0. Finally, the time-dependent light-induced magnetiza-

tion (52) in the time interval G<t’, regardless of the choice

of coordinate system, takes the form

p(t")=—(kIk)\B sin(24) :Eozwm')

—(ko/ko)SB :213“(”(” (68)

where
(9(t')=gaDFIML (1) +gsDE'ME(t') + gD}

x[Mg”(t')—MEf)(t')],

2k+1)23,+1 3,.G.(1,k),

DU =6(2k+1)\2J5+ 13pGp(1.k),

(264 1)\235+ 1324Gp( 1) (— 1) %™

Ja 1 3,

J 1 Jb]’

MB |dba|2

- (k) art !
6(2J +1)ﬁ2ff(v)p (‘Javl)lo(t )dV
(69)

D{=6(

D=6

X (2Jp+1)

MYty =

MB | ba|2 f (k) byr
6(20,+ )i f(v)po” (I, Dlp(t")dv
(70)
1p(t)=1°2(t") + 1% (t").
(71
Here the quantity§(t’) after the passage of the pulé)
retains the constant valug(7), in accordance with Eq56).

In addition,lg(t’) because of relaxation falls off in E¢G7)
as

MyO(t') =

Io(t") =13(t") +17*(t"),

13t =15(nexd —y(t'—7)], 7<t’. (72)

For the ultrashort puls€4) with yr<<1 the criterion for
the applicability of perturbation theory is the inequdlity
2

‘h‘ldbajo a(t’)dt’| <1. (73

Here the dependence gi(t’) on the timet’ in the range
0=<t’ is given by Eqs(71), which take the form

13 =1o(t"), 15(t")=1q(t")exp—yt'), (74)
where
t 2
lo(t'>=U0 a(g)exp—iAE)de] . 75

In formula (68) the summation index coincides with
the rank of the multipole moments”(J,,s) characterizing
the initial state of the atom. This means thet’) depends
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ﬂpop(t’)
=—(k/K)\B Sin(2){gaQaM X (t") + gpQuM
X (1) +9aQas MO (1) = M2 () T} (76)

1 1 1
Ja Ja Jb ’
1

1
Qo=6""2Jpp(— 1)Ja+Jb{

where

Qa= 61/2\]aa( - 1)Ja+Jb[

Jo Iy JJ'

1 1 1)(J, 1 J,

Jy Jp JaHJb 1 Jb}'

The value of expressior{76) coincides with the light-

induced magnetization of an isotropic atomic gas resulting

from the passage of an elliptically polarized pulS#) as

denved in Ref. 3 if we seN,=N, N,=7v,=0, y,=7v, and
=v/2.

The second term in Eq68) with k=2 takes into ac-
count the optical pre-polarization of the atom, which is char-
acterized by one component of the multipole momﬁ{ﬁ?
X(J5,5). The state of the atom witp{?)(J,,s) has com-
plete rotational symmetry about tkeaxis, which is collinear
with ko andk. According to Eq(25) this state of the atom is
invariant under inversion or with the replacements
ko— —ko and s——s. The state of the atom withp{®
X(J,,S) also has these properties. Therefore the terms in
(68) with k=0,2 do not depend on the orientation of the
axes of the polarization ellipse of the pul&). In accor-
dance with the symmetry of the atom in the states with

p$9(Ja,8) for k=0,2 and the properties of the fiel@4), the
first two terms in Eq(68) with k=0,2 are proportional to
the only pseudovecto@dd) that is invariant under the inter-
changeko—ky ands— —s and vanishes for linearly polar-
ized pulses described by formulé34) and (35) with A=1
and =0 or by formulas(34) and (36) with A\=—1 and
Y=ml2.

The terms of greatest interest in E§8) are those with
k=1, 3. They take into account the optical pre-polarization
of the atom by means of the multipole moments wiff’
X(J4,8) with k=1, 3. This optical polarization is character-
istic of the oriented atom. The states of the atgi§f
X(Ja,8) with k=1, 3 have complete rotational symmetry
about thez axis, which is collinear wittky andk. Therefore
these terms in Eq68) with k=1, 3 do not depend on the
orientation of the axes of the polarization ellipse of the pulse
(34). However, according to Eq(24) the quantity p{
X(Ja,8) with «=1, 3 changes sign under inversion and
whenky— —Kky ands— —s. In this connection the terms in
Eq. (68) with k=1, 3 can be expressed in terms of the only
pseudovector

Qab= 6jJZJaa(Z‘]b'*' 1)

A. |. Alekseev 43



The orientation of the unit vectot§’ andI{?) relative to
lo in Fig. 1 is independent of the choice of right- or left-
handed coordinates. However the calculation of the light-
lf) induced magnetization E¢48) is more logically carried out
in the right-handedyz coordinate system with the axis
M collinear withk, and thex axis alonglg, since this is the
k system in which the alignment of the atom is given by for-
mulas(29) and(33). Then, according to Fig. 1, the orienta-
tion of the axes of the polarization ellipse of the pu({84)

? L can be written as
1 .
Y x iV =1 cos g+ 1,0y Sin @y, (80)
FIG. 1. Orientation of the axes of the polarization elluia‘,fé and [[”) |f(2): _|X sin GDk‘HyUk COS @y, (81)

relative to the polarization vectdg in the plane perpendicular to the direc-

_tion_ of propagation qf the light pqlses. The unit vedgt is also the polar- whereo, = (1,k)/k and the condition§37)—(39) are satisfied.
ization vector for a linearly polarized pulse. Right- and left-handed polarization is described by the vec-
tors (35) and (36), which after constructing the vecto(80)
and(81) can be written

[ lkyslks] = (Ko/Ko)sB, (77)
lk1=Ix(cOs ¢y cosy—i sin ¢ Sin
that takes into account the change in the atomic states under = Ix(cos e v Pk ¥)
inversion and the separate replacemekts——kq, and +lyo(sin @i cos+i cos gy sin ), (82
s— —s. It should be noted in particular that these terms are ] o
nonzero with the passage of a linearly polarized p(&b li,~1= —Ix(CoS ¢y sin §+i sin ¢ cosy)
with the polarization vecto(35) andA =1 and#=0, or the —ly0(Sin @y SiN i COS i COS ), (83)

polarization vectof36) with A\=—1 andy= /2.

A distinguishing feature of the light-induced magnetiza-where the vector$82) and (83) form the unit polarization
tion, Eq. (69), is also the characteristic dependence on thevector |, that describes right-handed\€1) and left-
detuningw — wy, from resonance when one uses the ampli-handed § = — 1) polarization of the pulsé84) with the axes
tude of the polarization ellipse rotated by the anglg.

, , _ In order to calculate the light-induced magnetization, Eq.

a(t’)=ao(t")exp(~ia) (78) (48), of a gas of pre-aligned atoms by the propagation of the
in Eq. (34) with real ag(t’) and @, for which 1§(t’) and  pulse(34) with polarization vector§82) and(83), it is nec-
Ig(t’) are even functions oA. For the amplitudg78) the  essary to solve equatioré4)—(46) with initial conditions at
light-induced magnetizatior(68) is an even function of t'=0,
®— wp, If the dependence okv in Egs.(71) is negligible or
if p{9(J,,1) is an even function of. The latter is the case, TupMa(0) =0, pmmy(0)=0. pm m:(0)=pw ;s
for example, at exact resonanag= wy, for the previous (84
strong pulse. In this case, making the replacement—v  \yhere the right-hand sides of the equations coincide with the
for the variable of integration in Eq#§69) and(70) produces components of the density matricé9) and (30) of the pre-

the desired result. aligned atoms. For a weak pulé®4), corresponding to the

inequality (49), the solution of Eqs(44)—(46) by successive
5. LIGHT-INDUCED MAGNETIZATION OF A GAS approximations and with the initial conditiori84) has the
OF PREALIGNED ATOMS form

In a gas of prealigned atoms there exist two preferred
orthogonal directions defined by the vectdtg and I,.
Therefore when the puls€4) propagates collinearly with ()= 2) ()
ko it is necessary to set the orientation of the axes of the PMyM; Pygm )
polarization ellipse by means of the formula

' () /
4 t = r+ ’ t y
PMaMa( ) PM M pMaMa( )
(89

W _ where the teranaMé, according to Eq(29), describes the
Llolic"1= (k/K)sin ey, (79 unperturbed state of the prealigned atom. This term does not

where the angle, is reckoned positive from the vectlyto  contribute to the light-induced magnetizatio8), since the

the vectorl{!) in the clockwise direction looking along ~ Series expansion of the density matpiy v’ in the 3j sym-

(Fig. 1. It can be seen thap, is a pseudovector, which bols (Egq. 32 does not contain any term with a multipole

transforms asp,— — ¢ under inversion. In addition, be- moment of the first rank. Thus, unlike a gas of pre-oriented

causel(_1|1=l(k1), the angleg, changes sign whek— —Kk, atoms, a gas of prealigned atoms is not magnetized before

i.e., o_=—@,. The pseudovectof79) is of fundamental the weak puls€34) arrives. Here the time-dependent light-

importance in this problem, since it enables one to determinenduced magnetizatio®8) depends only on the terms in Eq.

the direction ofu(t’). (85) that are quadratic in the fiel(B34). After summation
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over the projections of the angular momenta, and using theriented atoms, and therefore the summations over the index

notation Eqs.(58)—(60), we can write it in the following
way:

u(t'>=’%'\' dvf(v)KE(ﬁF”{gf&“(ﬁ)lﬁ(t')
—gpHG (@)1°(t") — g% HG(@)
bb
><<—1>Ja+Jb<2Jb+1)|J"" J""}[I""(t')
b 1 3,
—1°(t")]t +c.c., (86)
2
F@)= % (—1)979(2k+1)
XpP(Ja) 2 (2k'+1)
«'q'q"
><(—1)Q’A,B,,( l,. Lo
TN -9 9" g+d
(1 K k' )[1 1 K']
X
a 9 —9-9/(Ja b Ja
1 «k «'
XlJa 3 Ja]’ (87
2
Hgﬂ@z%(—lwﬁ(zwn
Xpi(Ja) 2 (2k'+1)
«'q'q"
><(—1)‘4”A,B,,< 1,, Lo
TN -9 g g+a”
(1 K K’ 1 1 K’]
X
9" —q q+q"/ (I Ja I
1 « «'
X[Ja 3 JJ' (89

In Eq. (86) the summation index coincides with the

rank of the multipole moments{”(J,) associated with the

 for the principal quantities in Eq$87) and(88) in the case
g=0 have the form
> FP@=S5, 2 H@=Qg, (89)
k=0,2 k=0,2
where S; and Qg are given by(61) and (62 with p{
X(Ja,5)—p59(J,), which denotes a transition from an ori-
ented atom to an aligned atom.

To calculate the remaining terms in E&6) with q # 0
and k=2, we use the equalities

p?1(32)=0, p%(I2)=p5"(Ja),
which follow from the properties ofig,(* m/2) with k=2

andgq==*1,+2. In addition, we take advantage of the prop-
erties of the 3 symbols, which lead to the constraints

g=q+q’'+q",
k'=1, 2

lg+q'|<«’, [g+q"[=«’,

in formulas (87) and (88) with k=2. These constraints are
satisfied for q'=+1 and g’=*+1 only if g=0,
g’'=q"==1 andqg=—2q’. Therefore the sums of the prin-
cipal quantities in87) and(88) with k=2 andq # 0 become

2 F(Z)(a):5~m (2)(J)
“~,"a 0q ’—23a+l p2 " (Ja
X(A_1B_1—A:ByF, (90)
— 5|dpal*Jpp
H@) (@) = — gz —ioeal Jbb (2) 5
L A e
X(A_1B_1—A;B)H, (93)
where
1 1 «'\(1 2 K
F=> (2«'+1
;‘(" No 1 —1)(1 -2 1)

1 1 <1 2 «
X[Ja J JaHJa J Ja]’
1 1 «"\[1 2 &«
0 -1 1)(1 —2 1)

1 1 «'|[1 2 K
Jb ‘Ja Jb \]a Jb Ja.

Using the explicit form for the vectos andB when the

H=2 (2«k'+1)

X

initial state of the atom. Therefore assumes even values, axes of the polarization ellipse are rotated, we find, accord-

including k=0. The range of summation over and k' in
Egs. (86)—(88) is dictated by the properties of thg &nd
6j symbols, and is given by

0=<k'=2, 0=k=<2, k=<2J,,

and byx=<2J, for the third term in Eq(86).
By virtue of the properties of the j3symbols and the
orthogonality of the vectord andB to thez axis, the terms

in Eqg. (86) with gq=0 and =0, 2 are nonzero only for

ing to Egs.(82) and (83),
A_1B_1—AB1=1(AB,+A,B,)
=iox\ coq2¢)sin(2¢y), (92
where
A cog2y) =12,

After multiplying by 1©©=1,, we are able to use E(2)
to resolve the issue regarding the directionudt’) in this

A==x1

9=0. These terms can be calculated in the same way as faroblem. The appearance of the double anglg ,2in con-
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trast to Eq.(79), is a consequence of symmetry. For an t

aligned atom, only one of the two orthogonal symmetry axes l2(t")=i [ fo dra(ry)

is in this directionly. Any direction of the third axis that is

orthogonal to the other two is equally probable. Therefore _ 72 .
the light-induced magnetization(t’) will remain the same Xexp(—|A72)f0 d7,a%(7)
regardless of whethd[;l) is taken parallel or antiparallel to
the third axis. These two directions ¢f) correspond to
rotation by ¢ =/2 and ¢=—m/2. The invariance of
p(t’) under these rotations is secured by the factor
s_in(2x_pk). The results,_ Eq_s(.89)—(92), allow us to vyrite the XeXKiATz)fT2d71a( rexp—iAm) |, (96)
light-induced magnetizatio(86) of a gas of pre-aligned at- 0

oms in the following way:

><exp(iATl)—ft drpa* (1)
0

The final formula(93) retains the same form in the right-
handed and left-handed coordinate systems. It contains the

m(t")=—(kIK)NB sin(2¢) ZJ)ZMBK)(V) multipole moment{”(J,) (x=0, 2 andg=0, +2) of the
o atomic initial state generated by a strong linearly polarized
—(k/K)\ cog2y)sin(2¢,) w2 (1), (93)  pulse(27). The atomic states with{”(J,) for k=0, 2 have
axial symmetry about the axis, which is collinear withk,
where and k. Therefore the terms in Eq93) with =0, 2 and
K) () , () g=0 do not depend on the orientation of the axes of the
(t )= M (t Hng M (t )+ 9aDab polarization ellipse. Moreover, the atomic states V\mg‘i)
X[Ma’g(t’)—Mg’g(t’)], k=0, 2, X(J,) for k=0, 2 are invariant under inversion and when
) ko— —Kg, and also with the replacemdgt— —1,, by virtue
p (1) =09.DMZ (1) +9,DpMZ (t") +9aDap of the equalitiesdQ(+7/2)=1 and d)(+ m/2)=—1/2.
X [M@)(t)— (2)(t N, From these properties of the initial states of an atom with
az pi9(J,) for k=0, 2 it follows that for a weak pulsé34)
Da=30m3aaF, DDZSOWJWH, there is only a single pseudovect(dle)_ invariant under the
replacemenky,— — kg andly— —Iy. This pseudovector van-
D,p=30y2J,+ 1J,H(—1)%2* (2], + 1) ishes for a linearly polarized pulg84) with a polarization
vector (35) for A=1 and ¢=0, or (36) with A\=—1 and
o Ja 1 Ja =l2. Here formula(76) and the related comments apply
b 1 3, to the first term in Eq(93) with p{9(J,)=1.

The last term in Eq(93) with p(z)(Ja) takes into account
(x) meN|[dygl? (%) pre-alignment of the atoms, which does not depend on the
MU(t) = == | F(v)p(Ja) L
6(2J,+1)% q \va replacement&,— — kg andly— — ;. Here the orientation of
the axes of the polarization ellipse is of fundamental impor-
tance. With this symmetry there exists a pseudovector
(k/k)sin(2¢,) that is invariant under the replacements

X1g(t"dv, «,9=0, 2,

Gt )_L”a‘lz J f(0)p(J2) ko— —kg, k— —K, lg——lg, andA— —\. For the ampli-
6(2J,+ 1) tude, Eq.(78), the last term in Eq(93) is an odd function of
x1°2(t")dv, &, q=0, 2, w— wp, if the dependence dkv in Eq. (94) can be neglected

d or if p?)(J,) is an even function of the velocity. More-
I5(t)=i[1®*(t")—13(t")], |2(t’):i[|b*(t’) over, it vanishes for a circularly polarized pulse with
boe) = /4 and is nonzero for linear polarization, which is char-

—1P(t")]. (94 acterized by the vectdB5) with A =1 andy=0 or (36) with

The quantities94) are defined in the region6t’, but A= —1 andy=m/2.

after the pulse(34) passes they assume the characteristic
form 6. MAGNETIZATION OF A GAS BY AN OPTICAL PULSE

TRAIN
asyry__pa brery _ b ’
() =12(7), 1) =lz(mexd = A(t' = 7], To study experimentally the dependenceugt’) on the
r<t'. time t’ and the detuning from resonange- wy, With un-
changed initial conditions, it is necessary to pass through the
In the case of an ultrashort pulse satisfying the inequaligas a sequence of pulses with the same polarization and amp-
ties y7<1 and(73), the following relation is true for the |itude but with different frequencies near the transition
quantities(94): frequencywy,. Each successive pulse must pass through the
Ay , by i , , , gas under the same initial conditions, E@¥7) or (84). This
) =1a(t), () =1x(t)exp—yt’),  O<t '(95) is possible only when the initial conditions are produced by
an intense ultrashort pulse and subsequent pulses are weak.
where The latter must be delayed by more thgn' in order to
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pulse to decay before the series of weak pulses arrive. Theoo(t', @ — wpa) =2(789) "2
each weak pulse will make an adjustment to the initial con-
ditions for the density matrix that is proportional to the X (&€ag(n)exd y(é+n)]cogA(E—n)],
square of the weak field. (100

These adjustments to the initial conditions within the
framework of perturbation theory can be neglected in the ) s, t/ 3
passage of a series of weak pulses with shifted frequencie}éaz(t ;@ = Wpg) =2(7ap) f de(U)fo dgfod”ao
w. Therefore, for each weak pulse, the light-induced magne-
tization u(t’) at an arbitrary point in the gas will be de- X (&)ag(n)exd — v(é—n)/2]
scribed by the same formulé68) or (93), with the initial .
timet’ =0 taken at the instant the pulse arrives. Moreover, in XsinfA(§=n)], (10D
order that the previous pulse not distort the time-dependent v ¢
light-induced magnetization of the preceding pulse, thesz(t',w—wba)=2(7'ao)72J’ de(U)J- de- dnag
pulses must be separated by more thar. 0 0

In this scheme, in which the frequeneyis scanned, the X (€)ag( ) exd y(é+ n)]siMA(E—7)],
weak pulse creates a residual static magnetization. However, (102
this magnetization will not contribute to the emf in the
pickup coil, Eqg.(51), and therefore will not reflect on the
results of the experimental investigations of the time- VYo=0aM lepgK)(Ja,l)(DéK)”LDgﬁ)),
dependent light-induced magnetization created by an indi- oo
vidual weak pulse.

permit the excited state of the atom generated by the intense t/ ¢
fdvf(u)f dgf dnag
0 0

It follows from this discussion that for experimental in- ~ Wo=M 213 p6” (32 1)(9sD5” 9D,
. . P K=41,

vestigations it is advantageous to use a strong ultrashort

pulse with circular or linear polarization, frequeney, and V,=g,MpP(3,)(Da+Dap),

pulse width 1 that satisfy the inequality

|wo— wpa—KoU| 70<1, in order that the multipole moments ~ W,=M p’?(3,)(95Dp— 9D ap).
p$?(3a.5) andp{?(J,) of the optically polarized atoms not , ,

depend on the velocity. In addition, it is convenient to use _ #eN|dba|“(307)

a series of weak pulses with the pulse wid®) and ampli- 6(2J,+1)a% -

tude(78) ordinarily used in experiment. From a fundamentaIHere a, is the largest value of the amplitudg(t’) in the

point of view, the most interesting cases are those of a lin; I B .
early polarized puls€34) with the polarization vecto(35), form of Eq.(78), and the quantitiet99)-(102 are universal

~ - L — ; functions oft” and w— wy,.
A=1andy=0, or(36) with A= —1 andz,_/;— 77./2’ since f(_)r . It can be seen from Eqg97) and (98) that for pre-
these cases the symmetry dependence in this problem is quite. N .
e : roriented atoms, Eq(97), m(t’) is an even function of
transparent. Under these conditions the time-dependent I|gh?— I . :
induced magnetizations, Eq68) and (93), produced by a ®— wp, and reverses direction with the independent replace-

linearly polarized pulse with polarization vectg (see Fig mentsko— —ko and s— —s. However, for prealigned at-
1) for 0<t’ can be written as oms, EQ.(98), u(t’') is an odd function ofw— wy,, and

reverses direction when the sign ef—w,, changes and

m(t")=—(ko/ko)SB[VoXao(t',®— wpa) + WoXpo when the anglep, passes through &,7/2, and + m, and
m(t") is proportional to sin(@,). This behavior is funda-
X(U,o—op)exp(—yt')], 12y,  (97)  mental, since they result from symmetry; they establish the

direction of u(t") when a series of linearly polarized pulses
pass through the gas.

p(t)=—(KIK)SIN 2@ [VaXao(t! s 0 — wpg) _ The_ emf across t.he pickup c_0|I, !5(51), can also be
written in terms of universal functions:

for pre-oriented atoms and

+W2Xb2(t’,w—wb )EXF(_’yt,)], 1<J s , ,
: ? U(t')=(nKo/Ko)SB{UqYao(t",0— wpa)

(98 ~
. T Uo[ Ypo(t', 0= @pa) = yXpo(t", @ — wpa) ]
for prealigned atoms, where
Xexp—yt")}, 1<23,, (103
t/
Xao(t',w—wba)=2(Tao)_2f de(v)fO dé for pre-oriented atoms and
P U(t") = (nk/k)sin(2¢){U,Y ao(t", 0 — wpa)
X | dpa a = / /
Jameo@rant + 0, Yol 0= wpa) ~ yXpa(t 0= wpa) ]
xexf — y(&— n)/2]cog A(é— )], xXexp(—yt")},  1sJ,, (104

(99)  for prealigned atoms, where
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Yag(t' 0= wpa) = 1dXg4(t", 0 — wpa)/dt’, (105

Yipg(t', 0= 0pa) + 7dXp4(t", 0 — wpa)/dt’, (106

Ug=CVqr %, Ug=CW,7r %, g=0,2.

If the amplitude goes to zero at=r7, ayg(7)=0, then
the universal function§105 and (106) for r<t’ are also
zero, while the other function®9)—(102) for 7<t’ remain
constant aftett’=r. In this case the emfs given by Egs.
(103 and (104 at r<t’ can be written in relative units as

U(t)/Uq= — (ko /Ko)SBY™Xpo( 7,0 — wpa)

Xexp —yt'), (107
U(t")/U,= — (nk/K)SIN(2¢y) Y ™Xpa( 7, 0 — @)
X exp( — yt'). (108

In the other possible casay(7) # 0 anday(t’)=0 at
7<t’, the universal function$105 and (106) are discon-
tinuous att’=7. Then (107) and (108 are valid when
7<t', without the isolated valu¢’=7. In both of these

Consequently the experimentally determined edft’), as

a function oft’ for an individual weak pulse of frequency
w permits us to find, by numerical integration, the universal
functions(99) and(101) at frequencyw andt’' =17 :

™o <px ! fxu Ndt',  1<2J

— - = <

Ko SBXa0(T,0— wpa) Ugr o (t")dt’, a
(114

nk 1 S

?S|m2¢k)xa2(71w_wba)zu_27_ fo u(t’)dt’,

1=J,, (115

where the left-hand sides of Eq4.14) and(115 are related
to the light-induced magnetization g <t’ by means of
Eqg. (113.

Formulas(107)—(115 are suitable for experimental in-
vestigations of the vector properties of the light-induced
magnetization and its dependencetonw— wy,, My, and
N, since they relate the experimentally observed quantities in
relative units to the universal functions and the factors

cases, Doppler broadening of the resonant transition changé8Ko/ko)sB and (nk/k)sin(2py, which are a result of sym-
the value 0fXy(t',@— wps) for g=0, 2, but does not affect metry. The universal functions ¢f andw — w,, depend also

the exponential decay, exppt’), at 7<<t’. Therefore the
experimental determination of using of Egs.(107) and

on the relaxation constant the amplitudeag(t’) in relative
units, the atomic mass,;, and the gas temperatufe How-

(109 is an alternate method of Doppler-free spectrosébpy €Ver, they do not depend on the angular momehteor

thanks to the high sensitivity of the experimental metho
using a pickup caoil.

For small-area ultrashort puls€gq. (73)), the strong
inequality y7<<1 dictates that

Xaq(t,:w_ wba):qu(t, O wba)zxq(t, 0 wba)a
(109

Yaq(t, O~ W) = qu(t, ;0= Wpa) +Yq(t,aw_ Wpa)
(110

at O<t’<r, where the universal functions,(t’,w— wp,)
andYq(t',0— wp,) With =0, 2 are given by99)—(102),
(105, and (106 in the absence of relaxation;=0. They
satisfy the inequality

Yq(t' 0= wpa) > y7Xy(t", 0 —wyy), =0, 2,

which can violate only near = . Therefore, for ultrashort
pulses, the dependence of the emf, H463 and(104), on
the timet’ and w — wy, at 0<t’ < r takes the form

U(t")/(Ug+Ug) = (nky/Ko)SBYo(t' ,0— wpa), (111
U(t")/(Uy+Uy) = (nk/K)Sin(2¢,) Ya(t', 0 — wpy).
(112

However, over the entire ranges@’, the emf can be calcu-
lated by means of103) and(104), noting thatyr<1.

The light-induced time-dependent magnetizatja(t’)
at the initial timet’=0 is equal to zerou(0)=0, and at
remote timesy '<t’ it becomes constantu(>)). Using
this information and integrating both sides of E§1), we
find

fmuw)dt'z—cm(oo). (113

0

48 JETP 84 (1), January 1997

Jb. the g-factors g, or g,, the reduced dipole moment

dpa, or the atomic densitil. Those latter factors enter into
the constantdJ, and U, with g=0, 2, which serve as a
scale for the experimental measurements of the emf in rela-
tive units.

In experiments with inhomogeneously broadened transi-
tions, y<<kqu, it is possible to realize the conditions
y<1lm9<kou, under whichp{(J,,1) andp{?(J,) depend
on the velocityv. Then to preserve the form ¢107)—(112),
(114), and(115), which contain the emf in relative units, it is
necessary to use weak ultrashort pulses whose widtis-
fies y<ku<1/7 in order that the Doppler shift in Eq69)—
(102, (109, and(110 may be neglected. As a result, we can
set[f(v)dv=1, and make the replacement

(Il — f F(0)p§ (I Dy,

P (3a)— f f(v)py(Ja)dv.

in all the universal functions, and in the constabks and

Uy with =0, 2. Then, with the aid of Eq$107)—(115 we
can study experimentally the vector properties of the light-
induced magnetization and its dependencet'onw — wy,,
and y. Other physical quantities enter into the constants
Uq andU, with g=0, 2.

In order to get an idea of how the light-induced magne-
tization and emf vary, we examine the universal functions
(109 and (110 for an ultrashort pulse¥r<1) with a rect-
angular amplitude profile

ag(t')=ay for O<t'=r,

ag(t’)=0 for t'<0 and 7<t’, (116
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X(to-w ) Xz(r,co- @)

0.75
0.507 FIG. 2. Universal function
Xt o—wpy) for t'=7 as a
0.251 function of v — wy, for a rectangu-
] lar amplitude profile(Eq. (116)).
0.001 The solid curve includes the influ-
] ence of the Doppler effect with
-0.251 =107 . The dashed curves cor-
] respond to 16=7y, where the
_0.50-: Doppler effect can be neglected. a
] g=0; b) q=2.
-0.751 SR S .
-40 -20 0 20 40 -40 -20 0 20 40
(w— a)b()r (w— a)b‘)r
and with a Gaussian amplitude profile with e=0 for a rectangular amplitude profile, Eq4.16),

andSZ(T/ZTp)Z for a Gaussian profile, Eq117). Hererp is
(117) the Doppler relaxation time. The two other universal func-
tions (110 with g=0, 2 can be obtained by differentiating

whereag(t’)=0 outside of the interval &t’sr._ I—!ere_ao (118 and (119 with respect tat’, according to Eqs(105)
and 7, (47,<7) are constants. The characteristic timg ;.4 (106).

: N AT
enters into the spectral width,, = y2 In 27, of the Gauss- In the case of an inhomogeneously broadened transition,

ian pulse if the inequality 4,<7 is sufficiently strong(for ; ; ; ;
exar% e, &= 1) Inqthes)é beam les the univyersal fSE]ctions v<<ku, Fig. 2 shows the behavior of .the universal function
ple, &p=7). p Xq(T,0— wpy) With g=0, 2 as a function of the offset from

(109 with q=0, 2 have the form resonancew— wy,, for the rectangular amplitude profile

ag(t')=ag exf — (t' —7/2)%/(27,)?], Ost'sr,

ar é (116). For an even functiotXo( 7,0 — wp,), the Doppler ef-
xo(t’*“’_“’ba)zzjo deO d7 cog 6(§—7)] fect lowers and broadens the main bell-shaped maximum of
these curves. The maximum of the odd function
xexp{—e[(§—1/2)%+ (p—1/2)?] Xo(1,0—wp,) in the absence of the Doppler effect
(21526~ )2, (118 (107= 7p) occurs forw — w,,= 3.2/7, whereas with a strong

Doppler effect ¢=10rp) we havew— w,,=9.8/7. Away

t'/r 3 ) from resonance the quantit,(r,0— wy,) goes to zero
XZ(t/""_“’ba)zzfo dgfo d sin5(&—7)] more slowly thanXy(7,0— wpy).
To demonstrate the effect of the shape of the amplitude
Xexp{ — e[ (§—1/2)°+ (n—1/2)?] profile, Fig. 3 shows the behavior of the universal function
_ 205 N2 Yq(t',0—wy,) with q=0, 2 as a function ofw— wy, for
(7270) (&= m), (119 t’q= 712 and the Gaussian amplitude profil€,17) with
0=(w—wpy 7, 7p=1kU, 7=871, (¢=16). The fixed timet’ = 7/2 was selected arbi-

Y(t/2,w— @, )
0.5 Y2(7/2,a)— @)
0.30

0.4 0.20

FIG. 3. Universal function
Yt o—wp,) for t'=1/2 as a
function of w — wy, for a Gaussian
amplitude profile(Eq. (117)) with
7=871, (¢=16). The physical
meaning of the solid and dashed
curves is the same as in Fig. 2. a
g=0, b g=2.

0.3 0.10

0.2
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Y(r.0)

0.6
FIG. 4. Universal function
0.5 Yo(t',0—wpy) as a function ot’
for a fixed offset from resonance,
04 ®w—wp,, and a Gaussian ampli-
tude profile with=87, (£=16).
0.3 The physical meaning of the solid
and dashed curves is the same as
0.2 in Fig. 2. a8 ¢g=0 and
w—wp=0; b gq=2 and
0.1 w—wp,=11.83/r (solid curve
01, and 7.45f (dashed curve
0

trarily. Here the Doppler effect affects the even functions  d,.—dr r, N—N/(21+1)
with q=0 and the odd functions witg= 2 identically, as in bre
Fig. 2. The maximum o¥ 4(7/2,0 — wy,,) as an odd function

of w— wy, is obtained in the absence of the Doppler effect; ’ ; i
(107= 7p) at w— wp,=7.45/7, and when the Doppler effect interval for which the depletion of the sublevugt by optical
a . ,

is strong = 10rp,) the maximum is ato— wp,=11.83/. pumping is negligible. HerdeFa is the reduced dipole mo-

Figure 4 shows the dependence of the universal functiofent of the transitior,—Fy, . _ _
Yq(t',0— wpy) On the timet’ for g=0, 2 and the Gaussian In Ref. 1, Badalyanet al. published an experimental
amplitude profile(117) with 7=87, (¢=16). Forq=0 we  Curve of the emf as a function of offset from resonance in
assume exact resonanae= y,,), corresponding to the op- rubidium vapor, Witzh Quclear spih= 5/3 fé)f the resonant
timum condition forY,(t',w—wy,,) as an even function of transitions 5S,,—5°PY), and §S},—5°P3,, using fairly
w—wp,. For q=2, fixed offsets from resonance were se- weak linearly polarized pulses in the absence of a magnetic
lected, corresponding to the maximum§ (7/2,w— wy,) field, under the conditiong7~1 andy<ku. According to
as an odd function of»— w,, as in Fig. 3. For a Gaussian the published curve, light-induced magnetization of the ru-
amplitude profile symmetric about = 7/2 the behavior of bidium vapor in the vicinity of each resonant frequency of

the universal functions is shown by asymmetric curves thathe transition is an even function @f—w,, with a maxi-
undergo a Doppler effect. mum at w=wy,, Which agrees with the magnetization of

oriented rubidium atoms interacting with linearly polarized
pulses. Additional experimental data are required for a more

detailed analysis.
If the first and second pulses in the train are strong, then

the dependence otf and on w—wy, in (68) and (93
changes. Nevertheless, the symmetry-related properties of
light-induced magnetization are preserved. For example, for

a strong linearly polarized second pulse, E&f) retains the  ta M. Badalyan, A. A. Dabagyan, M. E. Movsesyat al, Izv. Akad.

tthe formulas derived in Sections 4—6 are valid over a time

7. DISCUSSION

term in (ko/Kg)sB and the even dependence @n- wy,, ,Nauk SSSR Ser. Fizt3, 304(1979.
while Eq. (93) retains the term with K/k)sin(2p,) and the é‘éé’l‘"(-l g;\galyan, M. E. Movsesyan, and R. E. Movsesyan, JETP Bet.
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The solution of the problem with three strong pulses is quite*A. I. Alekseev, Zh. &sp. Teor. Fiz.104 2954 (1993 [JETP 77, 371

complex, since the initial conditions for the third pulse (19931
P P 51. 1. Sobel'man,Introduction to the Theory of Atomic Specfia Russiaf,
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Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting
A. |. Parkhomenko, S. P. Pod'yachev, T. I. Privalov, and A. M. Shalagin
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630090 Novosibirsk, Russia
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Zh. Eksp. Teor. Fiz111, 93—-106(January 199y

We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms
when the components of the hyperfine stricture of the electronic ground states are optically
pumped. We show that the absorption lines possess unusual substructures for some values of the
hyperfine splitting of the ground staterhich exceed the Doppler absorption linewidth

severalfold. These substructures in the absorption spectrum are most apparent if the hyperfine
structure of the excited electronic state is taken into account. We calculate the absorption
spectra of monochromatic light near thg andD,, lines of atomic rubidiunf®>8’Rb. With real
hyperfine splitting taken into account, thg andD, lines are modeled by 4- and 6-level

diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to
observe the spectral features experimentally. 1897 American Institute of Physics.
[S1063-776(97)00601-X]

1. INTRODUCTION propagation are employgdee, e.g., Refs. 245
Even in such simple atoms as those of alkali elements, Atoms of alkali metals have served as the objects of such

the electronic ground state consists of a set of sublevels th&Periments. When only one monochromatic traveling wave
are hyperfine components and magnetic sublevels. If the ofS €MPloyed, optical pumping leads to formation of a single
bital angular momentum of the electrons in the ground stat§MeOth absorption line occupying a position between the
is zero(the s stats, these sublevels are exceptionally long- resonant tranS|t|on.frequenC|es associated with the compo-
lived: collisions with the particles of a nonmagnetic buffer "€nts of the hyperfine structuteee, e.g., Refs. 3, 6, and. 7
gas and even with the wall@rovided that the walls are As h_yperflne _spllttlng grows, the line profile remains smooth,
specially treatedalmost never lead to mixing of the popula- and its width is approximately equal to the size of the hyper-
tions of these sublevels. Because of this, for instance, thBne splitting. The greater the hyperfine splitting in compari-
so-called effects of optical orientation and optical pumpingS°n to the Doppler linewidth, the stronger the pumping from
are apparent in atoms of alkali metéé®e, e.g., Ref.)1The ~ One hyperfine component of the ground state to another. In
essence of such effects lies in the fact that even weak optic#is regard, Cs and Rb are the most typical of the alkali
radiation in resonance with the transition to the closest exatoms, with hyperfine splitting exceeding Doppler widths by
cited electronic state of the atoms can create a pronouncetifactor close to 20.
and long-lived nonequilibrium distribution of populations  This, briefly, is the picture of the absorption line profile
over the sublevels of the ground state. In particular, suctiparticularly for a monochromatic linghat the experimenter
radiation can pump practically all the atonwith which ~ observes today in the presence of optical pumping between
there is effective interactiorto a single component of the the levels of the hyperfine structure of the electronic ground
hyperfine structure. In a situation in which optical pumpingstates of atoms.
is a minor effect(for example, the radiation intensity is so In the present investigation, we analyze what we be-
low that no pumping between the levels of the hyperfinelieved to be a simple situation, the absorption of a monochro-
structure occurs in the time it takes an atom to traverse thgnatic traveling wave by atoms with large hyperfine splitting
light bean), the monochromatic absorption line consists ofof the ground state under conditions in which the atom—
separate lines corresponding to intra-atomic transitions. Unkadiation interaction is velocity-nonselective. We arrived at a
der conditions of optical pumping and when other nonlineaicurious result: for certain ratios of the homogeneous and
effects are present, the absorption line profile can undergBoppler widths and within a certain range of hyperfine split-
considerable alteration. tings (which are large compared to the Doppler width, so that
Many theoretical and experimental investigations havevoigt profiles cannot be approximated by Doppler projiles
been conducted in the laser spectroscopy of resonant trangire absorption line profile ceases to be smooth and acquires
tions of atoms initiated by optical pumping within the hyper- substructure which, in general, is related to no real transi-
fine structure of the ground state. A characteristic feature ofions in the atom. This substructure is even more devious
all such investigations is the velocity-selective excitation ofwhen the hyperfine splitting of an excited electronic state is
absorbing atoms and, as a rule, hyperfine splitting that i¢aken into account: the hyperfine splitting of an excited state
moderate compared to Doppler broadening. Under such comdds to the deformation of the absorption line. As a result,
ditions, the absorption spectra consist of Doppler-broadenetthe absorption line can acquire really strange shapes. What is
lines with nonlinear resonances, which emerge when twaharacteristic is that strong deformations of the absorption
fields of different frequencies or different directions of line profile occur over a rather narrow range of values of the
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g, ) The absorption coefficient is related to the absorption
m m g, — probability p:
fiwN
a="F, @
9 —t+—1 g, ] whereN is the number density of the absorbing particles.
The velocity distribution of the populations for the hy-
g, w——— g g, e perfine sublevels of the ground state is assumed to be the
equilibrium Maxwellian one:
FIG. 1. Level diagrams for the three- and four-level models. .
pi(V)=w;W(v), j=n, I, (3

. Wherew; is the probability of finding the particle in levégl

line behaves in full agreement with the picture describeg]tlne assumptiofS) is valid at Ieagt in the presence ofa.fa.urly
small amount of buffer gas, which ensures rapid collisional

earlier. We also show that atomic rubidium vapor provideﬁvI o ) .
: : ; ; . axwellization in comparison to the time that the atom stays
an appropriate medium in which to observe the predicted

. inside the light beam.
spectral anomalies.

The aim of the present work is to demonstrate the exist- With allowance for(3), the partial absorption probability

. S . assumes the simple form
ence of anomalies in the absorption line profile of a mono-

chromatic traveling wave under conditions of optical pump- Om

ing and in velocity-nonselective excitation of the absorbing  Pi=7 ato w; F(x;), (4)

atoms, and to provide a physical interpretation of these

anomalies. 1 (= yexp —t?)dt m’c? T,
f(x)=

- T2 L N2 s '}’= 7 3 ——I 1]
T ) yz-f—(Xj—'{)2 ho’ N
2. THREE-LEVEL SYSTEM

We start our analysis with the simplest situation, in X:“’_“’mj y r — 2kgT
\/ VIR

= : = —_, U
which the hyperfine splitting of the excited state can be ig- ' kv kv

nored (three-level system; Fig.)1Level m is the excited
electronic state, and levetsand| are the components of the
hyperfine structure of the ground state. From laweh par-
ticle radiatively relaxes only to levels andl with constants
I',nandl',, respectively. Additional simplifications, which
we use below, consist in the following. Magnetic structure

(level degeneradyis taken into account by introducing sta- yq radiation, so does the probabiliy. This constitutes the
tistical weightsgyy, 9y, andg, . Such an approach is justified oqsence of optical pumping: as the frequency of the radiation
hecause even the presence of a weak laboratory magnegﬂanges, the atoms become redistributed among the sublev-

field leads to precession of the magnetic moments and Mixg§s of the hyperfine structure of the ground state. The balance
the populations among the magnetic sublevels. We assun?fquations fom: have the form
j

that the radiation represented by a traveling wave with fre-
guencyw close to the frequencies of optical transitions,, d
and wy,,, IS SO weak that saturation of the optical transitions dt
can be ignored. The probability of absorption per unit time

Here f(x;) is the well-known Voigt profilex; is the fre-
guency offset of the radiation from that of the corresponding
atomic transition, normalized to the Doppler paramédey
andv is the most likely velocity(kg is the Boltzmann con-
stant, T is the temperature, arid is the mass of the atom

In Eqg. (4), not only doesf depend on the frequency of

+ 1 | Wn=pi+Pn,

er atom,p, is described by the well-known simple formula d
P P Y P aWI:FmIWm_ Pi,
p=j:En| pj=|j:2nI Bf Y;(v)pj(v)dv, (1) g (5)
' ' — W= W= Pry, Wyt W, +w,=1.
m2c2 I dt
s g+g, ™ In the adopted approximatiotw,,<1 and w,+w,~1)
1 r under steady-state conditions, E¢4). and (5) yield
Y.(v)=— .
! 7TF2+(0)—wmj—k-V)2 W f(Xn)/dn w=1—w,. ®)

Herel andk are the intensity and wave vector of the radia- FOG)/gnt1(x)/g
tion, I' ,=1"\,n+ 'y, is the rate of spontaneous decay of stateThe total absorption probabilitg=p,+ p, (over the transi-
m, I" is the homogeneous halfwidth of the absorption line tions) is given by the well-known expressio(see, e.g.,
pj(v) is the velocity distribution of the population of level Ref. 9

i (j=n,1), andB is Einstein’s second coefficielfhere we
have allowed for the fact thdt,, /T ,,=09,/9, in the selected
three-level modé).

g On

Fx) Tt

P=7Y9m (7)
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FIG. 2. Absorption probabilityp(x)

(in arbitrary unit3 given by Eq.(7)
for a three-level absorbing particle at
(@ A=4, (b) 6, (c) 8, and(d) 12,
with x the dimensionless relative off-
set, andy=0.01. The solid curves
represent calculations that used the
Voigt profile f(x), and the dashed
curves calculations that used the ap-
proximation (8). The vertical lines
mark the positions of the transitions.

A fo_rmula similar to (27) for Doppler profiles(f(x) is asp- y= \/;X(Z) exp(—x2), (9)
proximated by exp-x“)) has been derived by Elbetl al.

Let us examine the absorption line profile described byVhere of the two values ofy, we naturally select the one
the given formula in the special cage T/ (kv) = 0.01 (large that is greater than unity. Flgure 3 clearly shows that the
Doppler broadeningandg, =g, (symmetric three-level sys- transition from the centralGaussiaih part of the Voigt pro-

tem). Figure 2 depictp(x), with file to.the Lorent;ign Wing§ takes place rlight NeaF Xo.
What is characteristic here is that the function rapidly grows
e XX o Omt Omp i_ as we move fronx, to the center of the linét doubles as a
2 2 kv’ result of displacement from, by a distance much smaller

for several characteristic values of the hyperfine splittingthan kv), and slowly decreases as we move away from the

A=w,,/(Ko). At A=4 and smaller, the absorption line has a center(by a factor of two as a result of a displacement from
smooth symmetric profile with a peak a0 (the average Xo by & much greater dls_,tan)(.:e . . .
value of the atomic transition frequencieslowever, begin- ) The dashed. curves in Fig. .2 depict the line profifes
ning with A=6, substructure unexpectedly appears in the ab\_/wth the approximation8). In this case the substructure of
sorption line profile. It first shows up as a narrow dipxat0,

and then(as A increasestwo symmetrically disposed small

“bumps” emerge. AsA increases, the distance between the ARIR0) r r
bumps grows and they become less and less pronounced. 'Alt.oob

A>10, the profile essentially becomes smooth. What is char-

i x500 1

acteristic here is that the special features of the line profile I ‘ﬂ"fj)_ 2
are not related to actual intra-atomic transitions—they are 2 - yNzx )
0.75 3 - exp(~x) 1

due entirely to the spectral features of the Voigt profilg).
When Doppler broadening is largé(x) has a clearcut
double structuréFig. 3): a rapidly abatingGaussiajcentral
part, and smoothly abating Lorentzian wings. Indeed, let us?-59]
roughly approximate the Voigt profile with the function

exp(—x?), |x|<xq(y), 0.25
fx)= yINTXE, x> Xo(y), ®

where the exponential function describes the central part of
the Voigt profile (x<1) for y<1, and the functiory//mx?
the asymptotic behavior df x). The matching poin,(y) is
determined by the condition FIG. 3. lllustration of Eq.(8); y=0.01.
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0.75}
0.50f

025 FIG. 4. Absorption probabilityp(x)

(in arbitrary unit$ given by Eq.(12)
for a four-level absorbing particle,
with w, the probability of finding the
particle at level (Eq. (14)). The po-
sitions of the transitions are shown
by vertical lines from left to right on
the horizontal axis(dimensionless
offsetx): (a) | —1, 2 andn—1; and
(b) 1 —1,2 andn—2.
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the absorption line is especially obvious, the frequencies ofianced. An additional substructure also appears in the ab-
the spectral features are essentially the same as for the actigrption line profile, due to a different physical cause.
profile, and the interpretation of these features is transparent. In this connection we examine the four-level model sys-
If tem represented by Fig. 4. The components of the hyperfine
structure of the excited stata are labeled by, which as-
A>2%o(y), (10 sumes the valueis=1, 2. We keep the previous notation for
there are two characteristic spectral regions that lie withirthe hyperfine structure of the ground statezl, n. The ab-
the absorption line: )1 closer to the line center sorption probabilityp;; for the j—i transition has the fol-
(Ix|<A/2—x,) the radiation interacts with both transitions lowing form (as in Sec. 3, we ignore nonlinear effects in
due to the Lorentzian wings of the Voigt profile, andl 2 optical transitions and assume that the velocity distribution
farther from the line centerfX|>A/2—x,) the radiation in-  of the ground-state hyperfine components is close to Max-
teracts with one of the transitiorishe closer ongvia the  wellian):
Gaussian central part of the Voigt profile, and with the other

via a Lorentzian wing. The indicated spectral features occur  pj; = y&; f(xi;)w;, (11
at the point of transition from one spectral region to another.

The distance from these points to the closest atomic transi- gi I'j; 0= j;

tion frequencies is close tq,. Sincey=0.01 in the example &ji :g_j T, XNt

of Fig. 2, we havex,=2.65. Hence, the absorption line fea-
tures can only show up whek>5.3.

If in Eq. (7) we formally replace the Voigt profile by the szz Ly, j=n, 1, i=1, 2
Lorentzian profiley/ w(x?+y?) (with the halfwidth at half- !
heighty = /In 2), the absorption line spectral features com-

pletely disappear Here I'j; is the spontaneous decay rdtie first Einstein

. . coefficienj for the transitioni—j, and the formulas fo

, Note that N an "?‘Sym”.‘et“c three-level syst.a‘.gmﬁ(g,)), and §; follow from the expressjion for the second Einz/tein
with the absp rptlon I|n_e sh!fted toward the transition with thecoefﬁcient for the transition— i 28 The total absorption prob-
greater statistical weight in the lower level, the aforemen-ability i
tioned features are qualitatively retained, as is their fre-
guency, but their amplitudes become asymmetric.

p=> pij:')’_E > Eif(Xipw;. (12
3. FOUR-LEVEL SYSTEM 1 i=12j=ln

It turns out that if the hyperfine splitting of the excited Under steady-state conditions the balance equations cor-
electronic state is taken into account, then under certain comesponding to(5) for the probabilitiesw; andw; of finding
ditions the spectral features in question are considerably erthe particle in levels andj are
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_ In this case, Eq(14) is transformed intd6) if x, is replaced
FmWi:j;n pji, =1, 2, by x5 and x, by x;,, i.e., the probability of finding the
’ (19 particle in levelsn andl is totally insensitive to the existen-
. ceof level 2. The situation is straightforward since the action
igz FijWi:igz P, i=1, n. of the radiation on the transition-2| can have no effect on
' ' optical pumping; level 2 decays and becomes populated via
Combining these equations with the approximate northe same channel.
malization conditionw,+w,~1, we obtain An absorption line meeting all these requirements is

shown in Fig. 4&(solid curve for
_ [ yénif(Xen) + T pénaf(Xan) g 44 0
[11én1f(Xan) + T o1énof (Xon) + T 1néia (X)) + T onéiaf (X))
w,=1-w,. (14

W)

_On g g2, oD
A==t =Tl o yEgE
_ . The substructure is clearly present, especially a narrow high
The rated’j; of spontaneous decay of the excited sia®  eak. The maximum of this peak is shifted to the right of the
the channel—j and the parameteds in Eqs.(13) and(14)  |ines of the transitions | and 2-I.
obey the relationships

0.01.

. Ty Ty 1 Ty 2
1—‘in—'—l—‘ilzl—‘mi |:1, 2; b) Fln—O, F__l’ F——§, F__§
(15 m m m
£t E :M i=] n Here leveld andn are populated via the action of the radia-
SI2T g +g, I=hn tion on the transition$—2 andn—2, while level 1 has no

effect on the process. The absorption line in Fig.(dblid
curve also has a pronounced narrow peak shifted to the left
of the frequencies of the transitions~1 and 2-I.

The first relationship in(15) reflects the well-known faft
that the total ratd’,, of spontaneous decay of an excited

hyperfine sublevel is the same for all hyperfine sublevéls If we replace the Voigt functions by Lorentzians of the

of the elxci_ted fst?tm. Thelsgcond rt;lationlshifp folrl]owr? frorrfl_ same width, the sharp spectral peaks are washed out both in
an anay3|s_9_ the actu_a ecay channels for the yper In8ase(a) and casedb). However, certain spectral irregularities
components: if the particle distribution over the hyperfine near the 1 and 2-1 transitions still remairidashed curves

components of th_e excited state is an gqui_librium one, spor, Figs. 4a and b The easiest way to understand why spec-
taneous decay will also lead to an equilibrium population o, . tootres emerge is to examine the distribution of popu-

gt]ztgartlcles among the hyperfine components of the IoWelfations over sublevels andl simultaneously as functions of
' ) ) ) e radiation frequencyFigs. 4a and b Typically, because
In the spec[al case in which the channe!s for the decay o f the special properties of the Voigt functidnlevel | be-
levels 1 and 2 into levels andn are proportional, i.e., comes severely depletée,—0 andw, —1) within a sizable
Ly, Ty spectral interval near the frequency of the transition1
T T (16)  (case(a)) or n—2 (case(b)). The population of leveh be-
n Ten haves similarly(w,—0, w,—1) when the frequency of the
the formula for the absorption probability acquires the fol-radiation is in the vicinity of the frequency of the transition

lowing simple form as a natural generalization of Efj: n—1 (case(a)) or n—2 (case(b)). The limits of this interval
are determined precisely bxy of Egs.(8) and(9), i.e., by the
p= 7}?1+92) —. (17  offset from resonance at which the Voigt function drastically
gl[glf(xll)+92f(x2l)] +gn[glf(xln)+92f(x2n)] Changes |ts behavior_

The absorption spectrum described by this formula con- ~ The presence of an additional absorption channel that
tains features similar to those of the three-level systemchanges nothing in the behavior of the populations of levels
There are twice as many because the number of optical traf and | has the following consequences. In cdsg the
sitions doubles, but their contrast remains about the sam@dditional channefthe transitionl —2) is to the right of the
The physical reason for the emergence of these features fgansition| —1 on the frequency scale. Hence, as the radia-
the same, and derives from the properties of the Voigt protion frequency moves from right to left, the additional chan-
file. Replacing the Voigt functions by Lorentzians of the nel affects absorption sooner. When the radiation frequency
same characteristic width washes out these spectral strug@Pproaches to withirx, of the frequency of the transition
tures and smoothes out the absorption line. |—2, the Voigt functionf(xy) increases sharply. At this

It turns out that if conditior(16) is not met, i.e., levels 1 point the levell is still largely populated. The result is a
and 2 do not decay to levefsand! in the same proportion, sharp rise in the absorption probabilitgpecifically, in the
the spectral features will be more pronounced. Their contradt—2 channel As the frequency becomes shifted still farther
becomes higher as the asymmetry of the decay channels fé the left, we land in a frequency interval where the level
levels 1 and 2 increases. To clarify matters, we now examiné depleted, with the result that absorption drops once more.

instances in which one channel is completely forbidden. ~ All this leads to a sharp peak in absorption, which is re-
flected by Fig. 4dsolid curve. Our reasoning suggests that
21 Iy 1 Ty 2 the peak lies in the frequency rangev, +Xokv

a) Tan=0, 3 =1, T, 3 T, 3 >w>wy +Xkv, i.€., its position depends on the ratio be-
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b Flo o Bpb Flo ot whic_h is much larger than the Dopplle.r linewidth. Figure 5
AE, “32'72 3(7[3 AE. “:'ZHIZ AH provides the parameters of the transition£3f'Rb needed
s 252 ek for calculations’® The four-level model considered in Sec. 3
szl';,2 2_ olilo 5B, “E—1il3)o (Egs. (12 and (14)) is valid for calculating the absorption
spectra of théD, lines. For theD, lines one must allow for
” 2152 a2 the four suplevels of the hyperfine strU(_:ture of the_excited
5P2Pm sl 5P2Pm 2|51 st_ate, of which or_1|y two(lev_els 1 an_d 2 in the notatlor_1 of
Fig. 5 affect optical pumpingby virtue of the selection
— 3 m— P 1 rules. Hence, the populations of levelsandn are still de-
sis 6835 53 3036 scri_bed by Eq(14) of_ the fourTIeveI_ mc_>de|. The total prob-
172 —— 1|3]n i 2[5 ability of absorption in theD, lines is given by
FIG. 5. The transition diagrams for tti,- andD,-lines of 88Rb; hereF _ _
is the total angular momgentum of the atomE2 (MHz) is the distance p_% Pij = Wli:;z‘;; §|if(xi|)+wni:§1’2 &nif (Xin) |
petweer_1 the sublevels _of the hyperfine_s_plitting, gr_uﬂasignates_ thg stat_is- (18
tical weights. The notation for the transitions used in the text is given in the
“not” column. where the parameters were defined earlier. Below we give

the ratios of the spontaneous decay constants of the hyperfine

tweenI” andkv and is in no way related to actual transitions sublevels of the excited states in different channels:

in the atom. The same explanation holds for the peak in the _ Iy 7Ty, 2T, 47T, 5
absorption line in cas@), only now the peak is to the left of D, line: I " 9'T. 9T. 9T. 9
the frequencies of the—1 andl—2 transitions, i.e., in the 8°Rb{ Fm 5 Fm 5 Fm . Fm 4
frequency range, — Xokv > 0> w1, — Xkv. D, line: —— ==, A== - _ —2__"
If the Voigt profiles are replaced by Lorentzians of the \ Fn 9Ty 9°In 97Ty 9
same width, levels andl become severely depleted only in p r 5 T 1T 1T 1
the immediate vicinity of the corresponding transition fre- D, line: Moo A~ oo
quencies. The spectral features then become less prergy Im 6" Ty 6Ty 271y 2
nounced, and are more closely linked to the atomic transition Do fine: bt Ta 1 T 5 Ton 1
frequencies: the additional absorption chanthe}2 in case S r, er, 2'r, 6 r, 2
(@ andl—1 in case(b)) leads to an abrupt change in the
absorption probability near the frequency of the “proper” Ez hzl =0 Ta=0 (19
transition, which is quite natural. r, =~ I, — "o 7 “en™

For I',, we took the valud',,=5.6 MHz from Ref. 10. At
room temperature the Doppler paramékterfor rubidium is
Atomic rubidium vapor serves as a striking example ofroughly 300 MHz, so that the minimum value py&I'/(kv)
the experimental realization of the spectral features just disis I',,/(2kv)=0.01. The absorption spectra for monochro-
cussed. The hyperfine splitting of the ground state of rumatic light in the resonant transitions of rubidium for the
bidium atoms is 6835 MHz fdt’Rb and 3036 MHz fof°Rb,  given values okv andy are depicted in Figs. 6 and(Zolid

4. ABSORPTION LINES OF RUBIDIUM ISOTOPES

S, S Y —
1.00 b
r 1-1.0Torr

2 -0.2 Torr
3-0

0.75 0.75

FIG. 6. The absorption probabilitp(x) (in
arbitrary units for (a) the D, line and(b) the
D, line of ®Rb, with x the dimensionless off-
set(in units ofkv). The positions of the tran-
sitions are shown by vertical lines from left to
right along thex axis: (a) | —1,2 andn—1,2;
and(b) |—1,2,3 andn—0,1,2.

0.50 0.50 L—

0.25

0.25 1 - 1.0 Torr
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FIG. 7. The same as Fig. 6 f6fRb. The no-

tation is also the same.
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curves, where the spectral features are readily apparent. Thelamel et al® and Streateret al.” failed to detect a single

number of features proved to be even greater than in thepectral feature discussed here. In their research, which in-

above model. The reason is that in the actual experimentjolved the study of light-induced drift in rubidium, they also

four absorption channels affect the populations of levels calculated the monochromatic-radiation absorption spectrum.

andn, rather than two. One should therefore expect the speddowever, they assumed from the start that the components

tral features to be present near all frequenaigs xokv and  of the hyperfine structure of the excited states are strongly

win+Xokv (i=1,2).quency scale. mixed, with the result that the absorption line profile is
Collisions with buffer-gas particles, even at low pres-smooth and featureless.

sures, lead to significant washing o(gmoothing of the

spectral features. Even inert buffer gases initiate efficient ex-

change within the hyperfine structure of the excited state. T8 CONCLUSION

describe this process, instead of E¢s3) we take the fol- We have shown that as a result of optically pumping the
lowing equationgwhich model equilibrium mixing over the hyperfine components of the atomic ground state, the absorp-

components of the hyperfine structure tion spectrum for monochromatic radiation in resonant tran-
g, sitions acquires unexpected sharp spectral features. This be-

(Tt vWi= >, pji+vm—'wm, comes especially evident if the hyperfine splitting of the

i=hn Im excited state is taken into account. Collisions, which mix the

hyperfine components of the excited electronic state, effec-
> Tyiwi=2> pji, Wa=2 Wi, On=2 g. (200 tively blur these structures and smooth out the spectrum. One
! ' ' ' of the most appropriate experimental substances in which the
The labeli assumes two or four values in the casdDqfor  spectral features can be observed is atomic rubidium gas.
D, lines, respectively. Here,, is the frequency of collisions One must bear in mind, however, that the features show up
that mix the sublevels of the hyperfine structure of the exwithin a rather narrow range of parameter values. Above all,
cited state ). However, it is assumed that collisions have there must be optical pumping, even in the absorption wings.
no effect on the distribution of populations over the levels This imposes lower limits on the radiation intensity and life-
andn, which is sure to be the case for collisions with atomstime in a specified sublevel of the ground state hyperfine
of inert gases. structure. If no special precautions are taken, the latter is
The variation of the linewidtH™ and frequencyy,, of  restricted by the time that the atom spends inside the light
mixing collisions with varying buffer-gas pressure is de-beam, and increases with buffer-gas pressure. We saw, how-
scribed by the characteristic parameter 9 MHz Tbrfsee  ever, that the buffer gas disrupts the effect. Therefore, we
Ref. 11. The resulting transformation of the absorption cannot rule out the need to take radical steps in carrying out
spectrum is depicted in Figs. 6 and 7, which show that byexperiments of this type, for example, by covering the walls
P=2 Torr, all spectral structures become almost entirelyof the cell with paraffin. In this case the lifetime of the atom
washed out, and the spectral line smoothes out. The maim a hyperfine sublevel increases dramatically.
reason for the blurring is collisional mixing of the hyperfine The authors would like to express their gratitude to
components, while colllisional broadening has only a minuteProfs. E. B. Aleksandrov, M. Ducloy, and F. Kh.
effect on this deformation. In becomes clear, therefore, whyGel'mukhanov for fruitful discussions. The present work

57 JETP 84 (1), January 1997 Parkhomenko et al. 57



58

was made possible by financial support from the Interna-°A. M. Akul'shin, V. L. Velichanski, R. G. Gamidov, A. Ch. Izmiv,

tional Science FoundatiofGrant RCM 300, the Russian ngb?EPOVI;EeV' ;2?—9\2 /;é (Slglg;Tkov, Zhkep. Teor. Fiz.99, 107
0o. ov. Phys. ) .

Fund for Fundamental Rgsegr(ﬁrant NO.. 93_ (_)2 03567 SW. A. Hamel, A. D. Streater, and J. P. Woerdman, Opt. Comr&@nNo.

the Netherlands Organization for Scientific Research 1 32(19087.

(NWO), and the Universities of Russia Program. A. D. Streater, J. Mooibroek, and J. P. Woerdman, Opt. ComigdriNo.

2, 137(1987.
81. 1. Sobelman,Introduction to the Theory of Atomic Spectfaergamon
1E. B. Aleksandrov, G. I. Khvostenko, and M. P. Gke Interference of Press, Oxford1973.
2At0mic StatesSpringer, New York1993. °S. N, Atutov, A. I. Parkhomenko, S. P. Pod"yachev, and A. M. Shalagin,
T. W. Hansch, I. S. Shanin, and A. L. Schawlow, Phys. Rev. L&%.707 Zh. Eksp. Teor. Fiz99, 378 (1991 [Sov. Phys. JETH2, 210(1991)].
(1971. ) 10A. A. Radtsig and B. M. SmirnovReference Data on Atoms, Molecules,
3M. Elbel, H. Hthnermann, Th. Meier, and W. B. Schneider, Z. Phys. A  and lons Springer, Berlin(1985.
275, 339(1975. 1IN. Allard and J. Kielkopf, Rev. Mod. Phy&4, 4 (1982.
4V. L. Velichanski, A. S. Zibrov, V. V. Kargopol'ski et al, Kvant. Ele-

ktron. (Moscow) 7, 10 (1980. Translated by Eugene Yankovsky

JETP 84 (1), January 1997 Parkhomenko et al. 58



High density current drive by high frequency radiation
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A self-consistent theory is developed for current drive by intense radiation in the presence of the
ion-acoustic instability. The spectrum of ion-acoustic turbulent noise generated by the

driven current and concentrated in a limited cone of angles along the propagation direction of the
wave is found. Excitation of the instability is accompanied by the establishment of an

electron drift that is excited by the electromagnetic wave and has a velocity on the order of the
ion acoustic speed. This current drive regime is realized over a wide range of intensities,

as long as the region of turbulence in the angles of the acoustic wave vector is expanding. At yet
higher intensities, the driven current increases in proportion to the intensity of the

fundamental wave. Similar behavior is found for driven heat fluxes.13®7 American Institute

of Physics[S1063-776(197)00701-4

1. INTRODUCTION cited by a driven current. The quasistationary distribution is
found for the density of wave numbeki k) with respect to

The generation of quasistationary currents by high frey, 5 e numbek that develops as a result of the competition

quency electromagnetic radiation is of interest in connectionyatween Cherenkov acoustic emission by the driven current,

with thg development of diagnostic techniques for lasefyg apsorption of sound during a Cherenkov interaction with
plasmas, as well as in connection with the problem of gen-ogonant ions, and stimulated scattering on thermal ions.

erating megagauss magnetic fiefddany papers have been Here the same type of frequency distribution of the ion-
devoted to theories for the generation of possible quasistayqstic turbulence is established as in the theory of the
tionary currents in laminar plasmas, v!hoere the main mechasamalous resistance of current-carrying plasmas. The distri-
nism for electron scattering is on 'Oﬁ_sl' Of the types of  ption of the turbulent noise over the angles of the wave
currents discussed, current drive owing to the pressure Q;ector, however, is new. It is unique because, even at high

light on_the electrons is of special interest. Numericalig, |5 ahove threshold, the turbulent noise region is concen-
estimated show that for the laser light intensities presently trated within a cone of angles smaller than a maximum of
available, current drive at high densities with a characteristiy _ 43 g° This latter property is crucial to the behavior of
! . m .6°.
electron drift velocityuy comparable to the electron thermal yhe griven electron currents studied in Sec. 4. It is shown that
velocity vy is possible in laminar plasmas. At such high ¢ excitation of ion-acoustic turbulence leads to the estab-
electron drift velocities, however, the plasma is unstable wWithish ment of a driven current with an electron drift velocity
respect to the ion-acoustic instability. This means that th%d~(1+5)v where the parametes characterizes the
Sy

theory of high density current drive withy=vs, wherévsis  cherenkov damping of sound on hot resonant ions. Currents
the ion acoustic speed, must, on one hand, take the possible 1his |evel are maintained over a wide range of radiation
development of the ion-acoustic instability into account and;nensities until, as the excess above threshold increases, the
on the other, account for the reverse effect of turbulence OPegion of turbulence in the angles of the wave vector contin-
the formation of the driven current itself. A self-consistent ¢ 1o expand. At still higher intensities, the driven current

theory of this type for current drive in plasmas with ion- (ises in proportion to the intensity of the laser light, but much
acoustic turbulence is presented in this paper. The need for g slowly than in a laminar plasma. Similar behavior is

new theory arises for radiation intensities that satisfy the&, nd for driven heat fluxes, which are generated much less

condition efficiently owing to the excitation of ion-acoustic turbulence.
z TleV]
R . A = \"2 -
o~ 10 \/; N TemIN =60 2. KINETICS OF LAMINAR PLASMAS
whereZ is the degree of ionization of the ion&,is the mass Consider a circularly polarized electromagnetic wave

number,T (eV) is the electron temperature, and(um) is ~ With frequencyw, and wave vectok,=(0,0k) in a fully

the wavelength of the radiation. As shown in Sec. 2, here théonized plasma,

driven current excites the ion-acoustic instability. It is also

shown there that along with the ion-acoustic instability the = E exp(—iwgt+iky-r)+c.c., (2.1
intense radiation causes the Weibel instability to develop.

The growth rate for the Weibel instability is found and the whereE=(E,iE,0)/V2 andE is the electric field strength.
conditions under which its effect on current drive can beWe shall assume that the wave frequengyis much higher
neglected are formulated. In S&a self-consistent theory is than both the electron plasma frequeney, and their colli-
presented for the spectrum of the ion-acoustic turbulence exsion frequency. Under these conditions the phase and group
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velocities of the wave are close to the speed of light, i.e., 1 1 v(v) of
. . . 2 2
wo/ko=c and the small change in the wave amplitude owing 4 & 3/PEY 50l Ty oo
to collisional absorption can be neglected. We assume that
the amplitude of the velocity of the oscillations of an elec- , Ko 5, v(v) dfg
. ! —€é(1-¢°) —vpv° — -
tron in the wave field, wo vl v v
ve=|Ve|=|eE/may| 3 ko , dfg
-5 & —vgv(v) —
2 v

(e andm are the electron charge and miss less than the

electron thermal speeg;. Then the action of the wave on 1

the electrons can be described by a perturbation theory, writ- =-v(v) = (1 52) — Bf (2.5

: PR e 2 &

ing the electron distribution function in the form of an ex-

pansion in terms of harmonics of the fundamental frequencyvhereé=cosé and @ is the angle between the velocity vec-

that decrease with increasing harmonic number. We writéor v andk,. We seek a solution to E¢2.5) in the form of

down a kinetic equation for the main part of the distributionthe suméf = 6f . + 6f_ of evendf, and oddsf _ functions

functionf=f(v,t) averaged over the wave period in the form of the variable¢. Then, given that?—1/3 is an eigenfunc-
tion of the electron collision operator, fd@f ., we have

J f+ 1 J S of N
e 2| veo an c.c. Z st :i E_gz 2 v _M% P
koov) 1213 Evw)dv| v vl '
v
ry S\{ Z) (vE P +c.c. Z(v~vE)<k0 In turn, using the regularity condition for the derivative
0 98f_19¢ at ¢é= =1, for the functionsf _ we obtain
a\ 1 of
-~ w_S[(VEE +c.cp =St )+SKf,f), 9 s 3k o0
0 & "2 wy F v
2.2
@2 kovg 02 v(v) ofg
where St,f ) is the electron—electron collision integral and +(1- &%) — —. 27
' 9 209 v(v) v | v v
_ RV o quations(2.6) and(2.7) contain the functiorfy, which is a
Stf)=35 v I, (V" 0up=vavp) I g f 23 solution of Eq.(2.4. We limit ourselves to examining Eq.
_ _ L (2.4) in the case of frequent electron—electron collisions, for
is the electron—ion collision integral. In E(.3) whichv2sZvZ. Then it is possible to neglect the difference
v(v)=4mZenA/m?p3 betweenf, and the Maxwellian distribution functiofy,. In

addition, when Egqg2.6) and(2.7) are used, we shall assume
is the electron—ion collision frequenay,is the electron den- that the Coulomb logarithmh which enters into the defini-
sity, andA is the Coulomb logarithm. In deriving EqR.2)  tion of the frequency(v) is independent of the velocity.
we have neglected the effect of electron—electron collisions  The correctionsf . and§f _ determine various physical
on the high frequency first harmonic of the distribution func-phenomena. In particular, the functigif, can be used to
tion, which is justified forZ>1. In addition, Eq.(2.2) has  find the growth rate for the Weibel instability. Using the
been written taking into account the smallness of the fieldgeneral dispersion relatiGhfor electromagnetic perturba-
induced anisotropy in the distribution functién The differ-  tions of the form expft+iqz), in the limit|y|<qu we have
ence between and the isotropic functiofiy is small in view  the following expression for the growth rate:

of the smallness of the parameters/v3 and (ko-Vv)/wo, 5 L
i.e., f="fy+ of, where y= \[qu = j dv(1—&2)
g 1-& 9 qzcz}
v —+

9 : L?_f) of y + ——|.
anddQ is the element of solid angle for the velocity vector. “Le
The equation forf, is obtained by averaging over the direc- Taking the explicit form(2.6) for 6f. , from Eqg.(2.8) we

|5f|<fo=f dQ /4,
X

(2.9

tions of the velocity in Eq(2.2) and has the forft!? find
2 2

a v 9 afo _., 94 (54

at 0 6 ~. 2 (9 V(U)U - +St(f0 0)- (24) Y= Vm qu (3 ag ’ (29)
In Eq. (2.4) we have left out the small electron—ion collision 2"d
integral Stf,) which describes the slow exchange of energy ®Le ) UE VE ®ie
between the electrons and ions. Subtracting ) from Ym=%5> V=72 Un=5 ——- (2.10

27 mCvT 3ur C

Eq. (2.2), we obtain an equation for the quasistationary axi-
ally symmetric anisotropic correctioaf at times greater According to Eq.(2.9), the instability can develop if the
than the electron momentum relaxation tinhe,1/v(v), spatial scale length of the perturbations is sufficiently long:
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Ly=1/9>1/qv3. Perturbations with a scale length of electron Debye radius, ys= Jal8kvsw, i /w e, and

1/qm have the maximum growth rate= y,,,. Chaotic helical o =kvs/\1+ k2r2De is the ion-acoustic frequency. Using

magnetic fields develop in the plasma owing to the WeibeEq. (2. 7) we obtain an explicit expression for the growth

instability. In the nonlinear state, when the level of longrate of the ion-acoustic instability from E¢.15),

wavelength electromagnetic fluctuations attains a maximum 3( k2 5 cof gu—1

value, the intensity of the helical magnetic fields can be es- yo(K) = ( ws) { oUe 2C08 k72 s

timated using the formul®%/47~nmvZ. In the following ¢ *\ kv

we restrict ourselves to conditions such that the influence of (2.1

the magnetic fields on the electron kinetics can be neglecte&ince w./kv <1, for §,=0 Cerenkov generation of ion-

This is clearly possible when the characteristic electron cyacoustic waves is possible even Wh@@>vsw0 lkg=vC.

clotron frequency ) =|e|B/mc is lower than the self- At the instability threshold, whenZ=uv.wo/ko, the driven

collision rate of the thermal electrons with-v+. The latter  current density(2.13 is 1.7erwg, or much less thaenv.

condition together with the estimate for the magnetic fieldThis means that a rigorous description of the generation of

strength can be written in the form(vy)>w cve/c. high current densities in the range froemv s to env will
Under the above conditions the electron charge and heagquire the development of a theory for current drive under

fluxes are oriented in the direction of propagation of the elecconditions where the ion-acoustic instability is excited. This

tromagnetic wave and are determined by the funcéién . problem is solved in the following sections.

By definition, the current density and the electron heat flux

Qr are

3. THE SPECTRUM OF ION-ACOUSTIC TURBULENCE

J= ef dv§v5f_—e77f dé(1-&?) f dov® — 5f_,
The following assumption is important for a theory of

(2'1D the effect of intense high frequency waves on plasmas when
and the ion-acoustic instability is present. If the frequengy of
the radiation is much higher than the electron plasma fre-
m T 1 . .
Q== f dvév3sf_=— mf dé(1—&2) guency, then the effect of low frequency ion-acoustic fluc-
2 2 -1 tuations in the charge density on the rapidly varying electron
motion at frequencies-wy can be neglectetf:'® On the

f dvv® — 5f_ (2.12  contrary, when considering the slow movements described
by Eq. (2.2, the latter must be supplemented by the quasi-
Using Eq.(2.7), from these we finally have linear collision integral & (f ) which accounts for the
Cherenkov interaction of the electrons with ion-acoustic
J=1.7en ﬁ vE, (2.13 waves. When describing the interaction of the circularly po-

larized wave(2.1), noting the axial symmetry of the excited
nonequilibrium electron distribution, we shall use a quasilin-

and ear collision integral of the forf!’

QT=2—5 nmviﬁvé. (2.14 v of

4 ©o Stou(f)= 372 [(1 Era(V1-8) 72

Equation(2.14) describes the heat flux driven by the high
frequency electromagnetic wave and E8.13 gives the TN = (\/1_—§2)v 5_1
current density of the driven current. The req@il3 coin- 1 S dv
cides with that obtained in Ref. 10 and agrees with the pre-
diction of Ref. 3. In Ref. 3 it was stated that, based on an + izi( 3 US) (V1 \/—)vs
equation of typg2.13 and an increased intensity of the ra- ve dv v dv
diation, it is possible to generate anomalously high current
densities up td~env+. In a real laser plasma, however, the +V1- v (V1- &%) — 7 } (3.2

situation is different. Before a current densityenv can be
achieved by raising the radiation intensity, the ion-acoustiavhere the turbulence frequencies(y1— &%), n=0, 1, 2,
instability will be excited. This can be confirmed by calcu- depend on the form of the distribution of the number density

lating the growth rate of the ion-acoustic instabilfty of the ion-acoustic waves with respect to wave number,
N(k)=N(k,cos8,):
we| Y[ BT § (k) =N(k,cos§)
Ye(K)=¥s| 157 | oo VT COS@kfo dv e? Kmax o s 2-n
S S — _ J—
e S UL b
y sin 6y dé g (2.15
JR— . n
—sin 6 S|F ‘9k 2 (95 kUS ' % j\l—§2 dx N(k,X) X )
. “Vimg2 1-2-x2\J1-¢°
where 6, is the angle of the acoustic wave vector,
Vs=w(ilpe, wi; IS the ion plasma frequencyp. is the (3.2
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In Eq. (3.2), x=cos§, andk,, andk,,,, are the boundaries Ty -1

of the turbulence region in the absolute value of the wave xljl(—f {vz(\/l—gzﬂ—g - I:)—s]
number. In writing down Eq(3.2 we have omitted small V1=¢ Us
corrections of ordemws/kv. We shall regard the electron— (3.6

electron collision frequencyve, as high, such that
Ves> (w1 i/ w o) ?va(V1—&%). Then the ion-acoustic turbu-
lence does not cause a significant distortion of the electro
distribution from Maxwellian and the solution of EQ.2)
combined with the collision integral3.1), as before for a
laminar  plasma, can be .sougr_]t in the fprm B k%2, kvg\® A kvs 3
f=f.+of .+ 6f_. Avoiding a discussion of the possible (k)= K

effect of ion-acoustic turbulence on the Weibel instability,

wheres=(n,/n;)(w /o )vdlvd, ny is the hot ion density,

vy, is their root mean square velocity, is the total ion
Hensity, while the damping rate owing to stimulated scatter-
ing is given by

47Tnimiv§ [OR ws

we shall not consider the equation féf , . We shall dwell 1

on the equation for the odd correctidi _ to the distribu- X J_ldx’Q(x,x’)N(k,x’), 3.7
tion. Neglecting small terms of order/v+<<1, for 6f_ we

have(cf. Eq. (2.5) where vt; is the ion thermal speedpy; is the ion mass,

X=Cc0s§, x'=cosb, Q(x,x") is the nonlinear interaction

_k02 3 dfy 3 d |1 oful| a K o b
w_ovEV{EgﬁJrg(l 52)05% S hew ]_a_g[(l ernel given by d
27
v|d Q(x,x’)=f —¢(k~k’)2[k-k’]2(kk’)*4, (3.9
— &) va(N1-€)+ 5 72 o o 27

¢ and ¢ is the azimuthal angle of the vectkr Here the spec-
+ V1= vy (V1= v, ﬂ] (3.3  trum of the ion-acoustic turbulence is found from the condi-
v tion of balance for wave generation, their absorption and

where v=v(v7). Integrating this equation subject to the repumping over the wave number spectrum,

regularity condition for the functiorsf _ /9¢ for é=+1, we ye(K) + 7i(K) + vy (K) =0. (3.9

obtain
14 -1 ko
vz(\/1—§2)+§ (v—wo v

a (1 of
_g2y,5 | M
&) c?v(v4 &v)

Using the accepted approximation, from the theory of ion-
3 9ty N 1 1 acoustic turbulence, of the last term in the curly brackets of
4 9v 4 Egs.(3.5 and (3.6) by ws/kvg=1, we write the solution to
Eqg. (3.9 in the form N(k)=N(k)®(x). Then, as for ion-
acoustic turbulence generated by a conduction current or
thermal flux, in the range of wave numbers from
Kminf pe<€1 to Ky pe>1 the frequency distribution has the

f
—[V1(v1—§2)/v1—§7]vsi—vm]. (3.4  form

2 3
Equation (3.4) allows us to rewrite the expression for the N(k)=4mn;m;(1+ 5)73(E) k—S( ws)
I'Di

05]‘—
5 =

electron growth rate of the ion-acoustic instabil{.15 in kv
the form o wg |2 wg |
3 X|In| — —0.5(—) —0.25(—) , (3.10
wg 2 sin 6y dé wg kv kvg
K)=vyl —| § — 0 —_— . . . .
velK)= s kvg T €S Ok 0 \Sir? 6,— &2 wherer p; is the ion Debye radius. Under the conditions cor-
1 responding to the distributio8.10), the turbulence frequen-
v ko v 1 5 i 3.2) take the fi
x| v T_ész w_OU_UE(E_Z 2) ciesv, (3.2 take the orm_
o pa(VI= ) = w(An/ M) xo( V1= £2), (3.1
) _
L nVI=8)] es | (35 WhereA=0.5,A,=0.488,A,=0.497,
V1-¢&2 kus

2

In studies of quasistationary ion-acoustic turbulent noise, the vN=L o (1+6) —[;, (3.12
main mechanisms for stabilizing the instability are Cherenkov V8 foi

damping of sound on hot resonant i6h¥ and stimulated gnq

scattering on thermal iorf8:?! According to the self-

consistent theory of ion-acoustic turbuleriéeCherenkov i dxd(x) X .
damping on hot resonant ions has the growth rate Xn(V1-8%)= JO =2\ =g (3.13
3 .
wg 2 sin 6y df W i —
(K =6vd —| { = cos e S e shall neglect the small differencef andA, from A in
7i(k) 75( kvs) [ ™ “Jo VSir? 6,— &2 the following. Noting Eqs(3.10—(3.13, from Eq.(3.9) we
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obtain an equation for determining the distribution of ion- v d [x(x2—x3)%2
acoustic turbulence with respect to the angle of the wave ®(X)=z—— — ©— (4x2+6x%-3)
P 9 3myyx dx| l+e—x 0 '

vector: (3.19
-1
. XJ X2(V trum of the ion-acoustic turbulence excited by the driven
current produced by moderately intense high frequency ra-
X1( [1-¢%) diation when the degree of excess above threshold varies
\/—2 over the range fronp=1 to p<wy/v. This kind of ion-
1=¢ acoustic turbulence can be used to study the reverse effect of
1
=1+J dx' Q(x,x")®(x"), (3.149
-1

Equations(3.10 and (3.19 describe completely the spec-

turbulence on high density current drive.

wherevp pv andp is the degree of excess above threshold4 ELECTRON CURRENT DRIVE

given by We now turn to an analysis of electron current drive with

electron drift velocities greater than the sound speed. First

= = (3.15  we consider the driven current. Following the definition
wous(1+6) (2.1 and using Eqgs(3.4) and(3.11), after integration with

We shall study Eq(3.14) in the limit p<wvy /v, which is of ~ "€SPect to the speed we obtain
greatest interest for applications. Since for a hot transparent 1 tdt y 171
plasma the frequencyy is orders of magnitude higher than f — | x2(t)+ —}
the electron—ion collision frequency, in the limit 0 vl= 2N
p<<wvy/v extremely high degrees of excess above threshold
are possible, i.ep>1. Forp<vy/v, the function®(x) has

a sharp maximum at=1 (6,=0), while far fromx=1 it is

so small that the integral terms on the right of E&14) are  Since the functiongy,(t), which determine the turbulence
much smaller than unity. This circumstance makes it posfrequency are nonzero only foExg, the total current4.1)
sible to include the integral term in an approximate way,is conveniently represented as the sum of two currents,
only for ensuring regularization of the noisexat 1, by re- J=J.+J;. The first currentl. is caused by electrons whose

2
kol) E

3
X| (14 68) — (2t4 2 —t?

placing it with the small constant velocities are oriented at small angles to the propagation di-
1 rection of the electromagnetic wave (gircosd,). These
SZJ dx' Q(x=1—,x")®(x") electrons are scattered only in collisions with ions and their
contribution to the current is
1 s 4 ko |17 sin 00
=J dx(x*=xM)d(x)<1. (3.16 J. —en 10 (34+17 cog 6,
-1
Taking the Abel transform of Eq(3.14 and using Eq.
(3_16)gwe e q g =a +24 coé 90)}. 4.2

At the threshold for excitation of ion-acoustic turbulence,
Xz(t)+_} (817 when 6,= 0, Eq. (4.2 transforms to the formula for the
driven current in a laminar plasma. Far above threshold, i.e.,
lon-acoustic turbulence is excited within a limited range ofwhenp>1 and the anglé, approaches the maximum pos-
angles, for which &x=x,>0, wherexy=cos6, and 6 is sible 6,,, Eq. (4.2) implies
the limiting angle of the cone of angles within which the

ﬁ(Stz—B)tvatXl(t) (1+e)

tgr.bulent noise is conpentrated. Then, according to.the defi- J.=2.9-10 2en ﬁ vé (4.3
nition (3.13), the functionsy,(t) go to zero fot<x,. Given wo
this fact and dropping the correction<1, from EqQ.(3.17  Thys, because of the narrowed range of angles within
we find which electron scattering is caused only by the ions, the nu-
x320.3+ \/m (3.18 merical coefficient in Eq(4.3 turns out to be almost 60
times smaller than in a laminar plasma.
For p=1 this implies x,=1 and for p>1, we have The second currenl; is associated with electrons mov-

Xo=1/0.6 or 6,= 6,,=43.6°. Recall that in the case of ion- ing at large angles to the vectdy, (sin >cos6). These
acoustic turbulence excited by a conduction current, forelectrons undergo intense scattering on turbulent fluctuations
p>1 the noise was excited over angles from 0 to 90°. Nowjn the charge density and their contribution to the driven
however, because of the different angular structure of theurrent is given by
instability growth rate(see Eqs(2.16 and(3.5)), the waves

are excited in a narrow cone of angles. In the interval fromJ :§ envey1— Xo
X=Xp to x=1, the solution of Eq(3.17) has the form 2
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FIG. 1. Contribution to current drive from electrons interacting with turbu- FIG. 2. Driven current as a function of radiation intensity. The dashed line

lent noise as a function of radiation intensity. The dependence of the curren$ the current in a laminar plasma. The smooth curves are the current density
on the amount of Cherenkov damping on ions is illustrated by the curvedn plasmas with ion-acoustic turbulence for three levels of Cherenkov damp-

corresponding to different values &f ing of sound on the ionsd=0,3,6).
row cone of angles along the propagation direction of the
22 . g U] .
% t2(5t2—3)+i Jt dx  VX"—Xp wave, where the intensity is anomalously higbee Eq.
3T Jxg J12—x% 1-X (3.19), the driven current density decreases slightly. With
by 1 increasing distance from the threshold, the turbulence region
2—x L . o

2 2 2 0 2 2 expands and this is accompanied by a rise in the turbulent

X| X207+ 106G =9) + 1-x (4X°+6x,-3) ] ' part of the current]; (4.4) and a fall in the classical part

J. (4.2). The total drive current is maintained at a level
(4.4 J~(1+ d)ernvg over a wide range of intensities. Finally, at
S
The current);=l,envg (4.4) is found numerically as a func- very high intensities, when the turbulence fills the entire

tion of the parameter cone of angles up to the maximum,=43.6° (3.18, the
2 2 currentJ; (4.4) approaches saturation adgd (4.2) increases
= E— ﬂ-z_ezp(1+ 5), (4.5 in proportion toW (see Eq.(4.3)). In sum, the total current
ATNMuC wg J increases as in a laminar plasrt®a13), linearly with J

which has the significance of a dimensionless en¢iggn- & W, but the absolute magnitude of the current is many times

sity) of the high frequency electromagnetic field. Calcula-/0Wer than might be expected from the classical theory.

tions of the functiorl, are shown in Fig. 1 for three values of Similar behavior occurs for driven heat fluxes. In fact,

5=0, 3, and 6. If Cherenkov damping of sound on resonanfollowing the definition(2.12 and using Eqs(3.4), (3.1,

ions is negligible §=0), then as the intensity of the radia- 2nd(3.19, we have

tion increa_ses an_d the region of turbu_lence expands, the cur- Qr=0nmv2v=nmu2u(Q.+Qy), (4.6)

rent density J; increases monotonically from zero to

~1.9 v with anomalously highw. Similar dependences and

exist for the current density; (4.4) if § # 0. According to 25

Fig. 1 and Eq.(4.4), the largers is, the higher the current Qc=7 W1~ V1-X5(1+0.5¢5+0.6¢3) ], 4.7

density J; will be, but the current itself shows up at high

radiation fluxes. The current behaves this way because, @&hd

d increases, the threshol®.15 for excitation of the ion- 15 15 (1 3t

acoustic instability rises and the turbulent noise 6810, Q== \/1—x2+ — f

(3.19 decreases, so that there is less electron scattering ont ° 4 xg V1—t?

the ion-acoustic fluctuations in the charge density. 5
Let us compare the total driven current obtained taking x{ t2(5t2—3) + i t dx VXZ_Xo

the excitation of the ion-acoustic instability into account 37 Jxg J2—x2 1-X

(4.2) with the driven current in a laminar plasnia13. The 1

results of this comparison are shown in Fig. 2. The dashed

line I=J/envs=1.7W corresponds to EQ.2.13. The } ’

smooth curves are the current density in a turbulent plasma

with different amounts of Cherenkov damping of sound on (4.8

the ions =0, 3, 6). As can be seen from Fig. 2, when thewhere x, obeys Eg.(3.18. Numerically calculated heat

intensity of the radiation exceeds the level corresponding téluxes Q are plotted in Fig. 3 as functions of the intensity

the instability threshold, the linear current rise characteristioV of the electromagnetic radiation for two values®fLike

of laminar plasmas ceases. Furthermore, at low levels abowae driven current, the heat flux obeys EJ.14), which is

threshold, when the turbulent noise is concentrated in a nacharacteristic of laminar plasmas, at radiation intensities be-

[5t%+ 8(10t2—3)]

, xX2—x3
X | X2(20x2+ 10x§— 9) + I

— (4x%+6x5—3)
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Isomorphic description of the two-phase region of near-critical binary mixtures
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The paper presents a general approach based on the hypothesis of field mixing designed to
describe properties of binary mixtures around critical points, including the region of two-phase
states. The efficacy of the technique is illustrated by derivation of an analytic equation for
boundary curves of a binary mixture. The shapes of these curves are largely determined by the
critical linesT.(x) andP(x). Given the shapes of these curves, one can easily estimate

the maximum pressure at which two-phase equilibrium is possible, and the width of the retrograde
condensation region. €997 American Institute of Physids$1063-776(97)00801-9

In this reported work, the equations of curves for binary  Given this choice of variables, the thermodynamic po-
mixtures(cross-sections of the two-phase region at constantential density is the pressure
concentratioh have been obtained analytically on the basis
of a previously developed approdch in particular, a rela- P=PS(hy,hy)+P"(q,T, 1), 2
tionship has been found between the shapes of these curves

and the critical pargmeters of the mixtures. By taking a\NhereP5=pc(M)RTC(M)I35, po(u) is the critical densityP’
methane—ethane mixture as an example, we have demog— the regular part of the pressure, aRtlis the aforemen-

strated that the resulting equation provides a qualitativelyﬁoned known universal function of the scaling fiekigand
accurate description of the published experimental data.

In accordance with the general concept of the universal- 2
ity of critical phenomen4,we assume that the singular part ~. S A
of the thermodynamic potential of any system near a phase PS(hy1,hp) = h3lhy| ~*[fo(2) +|ho|*f1(2)]. 3)
transition of the second kind is a universal function of two
scaling fields, namely the ordering fieid and temperature- Herez=h,/h5"?, @=0.11, 8=0.325,y=1.24, andA=0.51
like field h,, which are thermodynamically conjugate to the are universal critical exponertandR is the molar gas con-
parametersp;, with the scaling dimension of the order pa- stant. The second term in the expression for the singular part
rameter, andp,, with the scaling dimension of the energy. In of pressure is the first correction to the asymptotic expression
the proposed approach, this function is assumed to btor this value. The “densities” conjugate to the scaling fields
known. h,; andh, are

In real liquids, the scaling fieldg; and h, are linear

combinations of real fields.In a two-component mixture, ps aps

these fields are the deviation of the solvent’'s chemical po- ¢1=|——1| , @=|——| . (4)
. L dhy dhy

tential u, and temperatur& from their critical valuegu;.(u) hy hy

and T.(w), which are determined by the difference between
the chemical potentials of the componepts w,—u;: The densities of other thermodynamic parameters can be eas-
ily derived from the relation

oh, oh,
h]_: — A,U/1+ ﬁ AT:alAM1+a2AT,
T.n

Ipeq g dP=s dT+pd u;+px du, (5)
(1) . . . .
dh, dh, wheres is the entropy density ardis the molar fraction of
h,= (W) Apgt (ﬁ) AT=DbyApy+bsAT, the second component. We then obtain the following expres-
Y M sions for the mixture molar densigyand its concentratio:
where Auy = —py(pw) and AT=T—T(w). Earliet3 we ;
; Co ; : P P
proved that, if the gas—liquid critical curve is continugus, p=|—| =pp)oi+ , (6)
the parametera; andb; can be taken equal toRT.(x) and Iy T Iy T

1/T.(w). The parameteb, is responsible for the asymmetry

of the coexistence curve, and is usually small. Its presence in IP gP\ 1

our equations is not essential, and for simplicity we will omit X=( ) (—)
T,;Ll

it in our calculations. M1

u T
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The latter equation determines the mixture concentration as a
function of T and u. If the concentratiorx is fixed, Eq.(7)
determinesu as a function ofT and x. Note that similar
expressions can be obtained for any thermodynamic param-
eters as functions o, and ¢, that have a certain scaling
dimension.

Since the points of the boundary curve belong simulta-
neously to corresponding points of the liquid—gas co- T
existence curve, the field;{Au,(x),AT(x)} vanishes at
these points. Hence the field&u,(x) and AT(w) are
related on this curve by the linear equatiofu;
= (Ip1/9T)p,~0AT(u), and the fielch,> AT (). With due
account of this relation, we obtain the following equation for find it more convenient to isolate the derivatigd./du ex-
the scaling densities in the two-phase region: plicity. Since the coefficientb,, which is equal to

1=+ Bo| (1) F(1+ By ()|Y), Efg)zlriﬁég,sltsdsgilbézi.derlvat|veRTc(ah2/a,u)T in Eq.

Ay ®) Equation (10) describes both the coexistence curve of
P2=1 ()| ()|, the binary mixturéand the boundary curve. The equation for
the latter curve describes the relationship between the pres-
whereA; is the amplitude of the singular part of the isoch- sure and temperature on the curve that bounds the region of
oric heat capacity in the two-phase regionuatconst** B, two-phase states at a given average concentration.
and B; are the amplitudes which determine the principal In the phase diagraniFig. 1), the critical pointC is
term and Wegner’s correction for the coexistence curve, andetermined by the critical value of the chemical potenial

FIG. 1. Typical dew-bubble curve of a binary mixture.

(W) =T/T(p) 1. and the critical concentratior.(u.), which is equal to the
Let us express the regular parts of the derivatives in Edaverage concentrationin the mixture. At the same time, the
(7) as chemical potential differs at different points of the bound-
op" ary curve.
Pc(#)l( ) =1+d;r(w), Let us determine the relationship between the pressure at
! T an arbitrary point of the boundary curve, whose chemical
Ip' 9 potential is u (point A in Fig. 1), and the pressure
Pc(M)_l(—) =X(u)+dyr( ), P.(ue) =P:(X.). Above all, we take into account that the
I Toug contribution of the singular part to the pressué, is always

small (it vanishes at the critical point gs(u)[> ) in com-
parison to the linear terms of the regular part. In other words,
to a first approximation, the pressure at the boundary curve is

whered; andd, are parameters, and substitute them into Eq
(7). Thus we obtain

ahq ah, determined only byP". Expanding the regular part of the
x=|RT; o —Xc|p1tRTe m ®2 pressure in terms Ak T=T—T.(u.) and Au=pu—u,, with
ny T py T due account of the conditiom,=0, we obtain
+Xe(p) +D(p), (10)

AP=P—P _(%P)° AT—K dT"A 12
__c(ﬂc)_ﬁ Ko, w. (12

whereD=d,—x.d; . If pure components are considered, this o
17 Ve

coefficient should vanish. The expressioRT.(u)
X(ohy/dp),, T — X reduces to- pg Y(aP/du)s, 7. The
value of this derivative calculated along the line on which
the fieldh, is zero atu=const at the critical point is

This equation relates the pressure, temperature, and
chemical potential at the boundary curve. It is obvious that in
order to obtain the equation of the boundary curve, we need

P\ ¢ dP, [dP\° dT, dT, an additional equation relating these three variables to each
M ) —OT: dp \aT o WE_KO du other. Thi; can be derived from the condition of constant
1= 17 PHe concentration at the boundary curve. By substituting

1D x=x (1) on the left-hand side of Eq10) and expanding
Previously the thermodynamic derivative on the left- the variablesr{u) andx,(u) in terms ofAu nearu=pu,, we
hand side of Eq(11) was denoted b¥;. In this work we  obtain
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(%_Rﬂ AM+DT(M )+&ﬂ¢

du Tcdu 7 pe du TF

—Rﬂzpzzo. 13
du

Here the densitieg; and ¢, are defined by Eq8) with

1 dT, 1 dP,

T(M):T(MC)_T_C d/-L A/‘L: dTC

TCKO

(AP— AT).
(14
Equations(8), (12), and(13) determine the relationship

between the pressure and temperature at the boundary curve. 1

Equation (13 is, in effect, a parametric equation of that-
curve. The resulting solution is two-valugsee Eq(8)]: the
left branch of the dew-bubble cury&C branch in Fig. 1
corresponds to the plus sign in E&), and the right branch

260 300

T.K

180 220

FIG. 2. Cross sections of the phase diagram of the methane—ethane mixture
at different concentration® (mole fraction of ethane Solid lines show

to the minus sign. In what follows, we will assume that calculations by Eq(13). The values of fitting parametei®; and D at

dx/du.=x(1—x)/RT,(x) on the whole line of critical
points® Note, thatk ;=0 atx=x, corresponds to the azeo-
tropic point! =3 It follows from Eq. (13) that in this case the
boundary curve degenerates into the curve defined by

P—Po(Xa) = (9PIIT)5 o, [T=To(xa)],

corresponding concentrations are given in bra@®sx=0.0743.25-0.77;

(2) x=0.151.99-1.22; (3) x=0.30{1.01~1.95; (4) x=0.5{0.47~2.31};

(5) x=0.700.02-2.09; (6) x=0.850.16,-1.60; (7) x=0.950.51,-1.15.
The measuremeritare plotted with different symbols. The critical points of
mixtures and pure components are shown as asterisks.

i.e., an azeotropic mixture behaves in this sense like a pure Ag(CH“):S_l, A6(02H6)=6.5.

fluid.

Thus, boundary curves of binary mixtures are deter-

mined by the following set of physical parameters:

1) the derivatived T,/dx, dP./dx, and the related de-
rivative dP,/dT,;

2) the amplitudes of asymptoti®,) and Wegener'sB,)
terms in the equation of the mixture coexistence curve;

3) the derivative (JP/aT)ﬁl:O’MC or the parameteK,

[Eq. (11) indicates thaK is not an independent parameter,

but a function of the above variables

4) the amplitudeA, of the specific heat;

5) the coefficient of the liquid—gas asymmetry,
D=d,—xd;.

The derivativesdT./dx and dP./dx can be measured

directly. The other parameters are, strictly speaking, adjus
able parameters. Only in the simplest cases, in which th

amplitudes By, B;, and A, and the derivatives

(aP/aT)ﬁ1:0 = (aP/é?T);:pC in pure components are close,

can they be determined fairly accurately using additivity

t-

In calculating the corresponding parameters of the mix-
ture, we used the simplest mixing rules:

ap Cc aP C(CH4) &P C(C2H6)
ﬁ X

hy=0,u¢ T p=p T P=p¢

=(1—X)(

Bo=(1—x)By " +xB{2"

Ay =(1—x)A, W4 xa (2 (15)

The parameter® andB; were varied to fit the curve to
experimental data and were found to be smooth functions of
the concentration. As expected, the fadiotends to zero for
pure components. The values Bf andD are given in the
Caption to Fig. 2. One can see in Fig. 2 that EG®) and
(13) satisfactorily describe the available experimental data
on this mixture.

For many technical applications it is sufficient to know

rules without additional fitting parameters. This situation iSthe maximum pressure,,,, and temperaturd ,,, at which
directly related to the example of the methane—ethane mixg,e two-phase equilibrium is possible. In the lowest-order

ture discussed below.
Figure 2 shows fits of Eq$12) and(13) to experimental

approximation, the distance between these singular points of
the boundary curve and the critical point in EG3) is esti-

data for the methane—ethane mixture. In order to plot the,5ieq by retaining only terms linear XiT andA P, and also
boundary curves, we used the data on the lines of the criticahe term proportional tdr(x)|. In this case the values

points T.(x) and P.(x), coexistence curves, and specific AP, =P ro—Po(X) and AT, 0= Trma—T(X) can be cal-

heats of pure componerit$’ The derivatives 4PIaT); -,
for pure methane and ethane were taken from Ref. 11:

aP)C<CH4> 1 (aP

sl
= =1.72, =
pcR\ T p=ps pcR\ AT p—p

c(CyHg)
=1.81,;

Bl =152, B\?"=161;
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culated analytically:

Ap 1B dP\ ¢ D dP, ] A1-#
ma= g M| =7 T dx
hy=0,¢
BBox(1—x) Ko dT, dP ]¥1~A) 16
T2 pcR dx dx (19
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Effect of a random crystalline field on the Curie temperature of an anisotropic
crystalline ferromagnet
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We examine how substitution of nonmagnetic atoms of one species by another that leads to the
emergence of a random crystalline field affects the Curie temperatucd an anisotropic

crystalline ferromagnet. We study the case of low concentrations, in which individual substitutional
impurities create isolated clusters of perturbed magnetic ions with additional easy- or hard-
magnetization axes. Finally, we analyze the various sign relations among the pardinatedsl

of regular and impurity second-order anisotropies with Kramérs (1) and non-Kramers

(J = 3/2) angular momenta, and show that usually the effects of a random crystalline field lower
the Curie temperature as the concentration of the nonmagnetic impurity atoms increases.

© 1997 American Institute of PhysidS1063-776097)00901-3

1. INTRODUCTION crystalline field. Here, to initially estimate the tendencies in
the concentration behavior of the Curie point, we limit our

Magnetic compounds of the RNiype, where R stands discussion to low concentrations of the impurity sources of

of rare-earth ions, and the Ni atoms have no localized magthe random crystalline field. This makes it possible to as-

netic moments, are convenient objects for studying magnetisume that the regions in which the random crystalline field

anisotropy effects, since in such substances the energy atts on magnetic atoms do not overlap, and that each atom

magnetocrystalline anisotropy is at least comparable to thfom such a region experiences the action of only one impu-

exchange-interaction energyRecently a number of solid rity electric charge.

RNis_,Cu, solutions (R=Pr, Nd, Th, and Br have been

studied. The research established that in such substances,

with ‘the exc_ept!on of th? special _case of RyNCu,, 2. THE HAMILTONIAN OF IMPURITY SINGLE-ION

gradual substitution of Cu ions for Ni ions lowers spontane-,\i1soTrRoPY

ous magnetization and, at the same time, elevates the Curie

temperatureT. as the concentration of copper increases We assume that the magnetic atoms in an anisotropic

(with T passing through its maximum at a certain concenferromagnet form a single magnetic sublattice, and that the

tration). crystalline field at the magnetic ions is generated by the Cou-
There can be two reasons why the Curie temperaturéomb potential of the nonmagnetic ions at the interstitial sites

increases as one type of nonmagnetic ion is replaced by af the magnetic sublattice. Let the impurity nonmagnetic at-

other. First, the effect can be explained by the assumptiooms substitute for the host nonmagnetic atoms, and let their

that the number of conduction electrons and, accordingly, thehargee -nffp differ from the effective charge of the host

Fermi wave vectokg , which enters into the expression for atoms,eZ . Then the appearance of a nonmagnetic substi-

the Ruderman—Kittel indirect-exchange integral, changetutional impurity in the vicinity of a magnetic ion can be

Obviously, under certain conditions the changekincan  modeled by the appearance of an additional charge the

lead to an increase in the ferromagnetic exchange interactioposition of the nonmagnetic ion,

Second, the increase in the Curie temperafligecan be

attributed to symmetry breaking in the local crystal neigh- q=e(Zﬁpr— Zﬁ‘;fs , (D)

bors and the appearance of additional random sources of

crystalline field acting on the nearest magnetic atoms. Foagainst the background of the existing symmetric distribution

some of the magnetic atoms, which are already characterizeaf chargese Z2™ responsible for the single-ion anisotropy of

by regular directions of easy or hard magnetization, extrahe initial regular crystal.

anisotropy directions emerge that additionally restrict the  For the origin we select the point occupied by the mag-

mobility of magnetic ions caused by thermal fluctuations anchetic ion with an additional charggin its vicinity. Then, if

in this way elevate the Curie temperature. the radius vectoR=(R sin #cosy, R sin#siny, R coso)
Since much remains to be done in studying the simultaspecifies the position of charggin the laboratory system of

neous effect of regular and random magnetic anisotropies ocoordinates X,Y,Z) andr; is the radius vector of théth

the concentration dependence of the Curie temperature @lectron in the unfilled shell of the magnetic ion, the electric

crystalline ferromagnets, in the present paper we attempt tpotential V(r;) for a point chargeg can be expanded in a

establish the nature of the variation Ty due to a random power series ir;/R (see Ref. %
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anglesé and ¢ in the Hamiltonian(3). Finally, note tha{3)
does not contain the higher-order terms in powers of the ratio
(r¢)/R. Such terms lead to fourth- and sixth-order invariants
in the projectionsJ, of the angular momentum operator,
with a=X,Y,Z.

Y 3. THE RANDOM-MOLECULAR-FIELD APPROXIMATION

----- dl We assume that additional charggdead only to the
appearance of additional terng3) in the single-ion anisot-
ropy of some of the magnetic ions in the crystal, and do not
appreciably change the exchange interaction between the
magnetic moments. We also assume that the crystal symme-
FIG. 1. The local system of coordinat¥sY’Z’ used in diagonalizing the try of th? Imtlal compound a||0W§ for the cqemstence of
single-ion anisotropy Hamiltonian. regular single-ion second-order anisotropy, which we choose
to be of the simplest possible formDJ2, with D either
positive or negative. We introduce the random-molecular-
field approximation for such a system.

Y

V()= q = d First we note that although formally the localized mag-
=Rl JR?+r?=2(r;-R) netic moments at all magnetic sites correspond to the same
s 2 angular momentum operatdr the thermodynamic averages
3. a(ri-R) sl [3(” R)” r_'} T (2)  of the projections of angular momentuiy may differ con-
R R 2| R R siderably for the sites surrounding a nonmagnetic impurity

Summing the action of this potential on all the electrons inSite (we call such sites cluster sifeand for the sites that are
the unfilled shell and going over to the equivalent Steeven&0t the nearest neighbors of the additional impurity charge
Hamiltonian® we find that the emergence of an additional (W€ call such sites matrix sitesThis difference can be re-
chargeq leads to the appearance in the neighboring magnetil?ted primarily to the dramatic difference in the crystalline

ions of additional contributions to the single-ion anisotropyfi€lds for ensembles of the sites of the corresponding type,
Hamiltonian. of the form while the difference resulting from variations in the random

magnetic fields can be considered less significant.
The single-site Hamiltonian of the molecular field for an

AH@ = const 2”: nst . . .
o =const-dJz,=const-d arbitrary matrix sitem is then

1
53 cog 9—1)J2

+ % sin 20({J, , Jz}e +{J_ I e'?) Hp(m)=Hp ex(m) +Hp o(m)
= —J(m)hy(m)—DJIZ(m), (5)
: €)

1 . )
T e 2 —i2¢ 2 2y
* 4 sir o(Jie +JZe) and for a cluster sita it is

Here const(1/6)(3 cog #—1)J(J+1)d, and in the model of
a point charge acting on the shells of théns, the param-
eterd of impurity single-ion anisotropy is given by = _J(n)hcl(n)_DJ%(n)_dJ;,(n)_ (6)
d= 3lelgasy(rf)

-~ 4R®

Hg(n)= Hcl,ex(n)+HcI,0(n)

(4) By writing the exchange contribution as a scalar product, we
allow for the fact that after additional local anisotropy axes
Sinceay; is positive for Sm, Er, Tm, and Yb, and negative have appeared, the equilibrium orientations of the magnetic
for Pr, Nd, Tb, Dy, and HG,the parameted can be either moments at different sites can lose their collinearity.
positive or negative, depending on the magnetic-ion species Furthermore, if for the sake of simplicity we use the
and the sign of the additional charge nearest-neighbor approximation for the exchange interaction,
The expression foAH(()z) is written both in terms of the then in writing the molecular fields for the matrix and cluster
projections of the total angular momentuhon theX, Y, Z sites, hy(m) and h(n), we must allow for the principal
axes of the laboratory system of coordinates, and in terms dfifference between our system and disordered magnetic al-
the projections on th&” axis of the local system of coordi- loys: whereas for matrix sites the nearest magnetic neighbors
nates, in which this axis is directed from the magnetic ion toare of a random natunghere is a certain probability that the
the additional chargeg (Fig. 1). Moreover, since the addi- nearest magnetic neighbors are either matrix sites or cluster
tional chargeq acts not on a single magnetic ion but on asite9, the nearest magnetic neighbors of a cluster site consist
whole cluster of magnetic ions surrounding the interstitialof a fixed number of matrix and cluster sites.
site with a nonmagnetic impurity, for each magnetic ion of  For instance, Fig. 2 is a rough sketch of a crystal lattice
this cluster we must introduce the appropriate coordinatén which the magnetic ions form a simple orthorhombic crys-
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The factor 1/2 allows for the fact that only half of ttzg
interstitial sites near the sitm+ & can be filled by nonmag-
netic impurities, while the other half of the interstitial sites
are common sites for the and m+ 6 sites and their filling
by impurity atoms transforms sit@ also into a cluster site

//' (instead of a matrix sibe
X For the molecular field of a cluster sitewe can write
q /‘ "
Y

w
N
L

N

Zc|

Zh
ha(m=1| 2 (Ja(n+8))+ 2 (In(n+ 5h)>}
Pt fyet]

. cl=

-

[
8 5 wherez., andz, are the number of nearest neighbors of the

.y o _ _ cluster and matrix type, respectively, with
FIG. 2. Equilibrium orientations of the magnetic moments of cluster sites on

a pseudocubic lattice fob>0 (a ferromagnet of the easy-axis type with Zat+zp=2 12
magnetization along th& axis) and d>0 (additional easy-magnetization
axes along the principal diagonals of the cLibe To study the concentration behavior of the temperature

of the transition from a magnetically ordered state to a para-
|magnetic state, we use Eq&) and (6) to obtain self-
consistent linear equations f@,(n)) and(J,(m)). To this
end we interpret the molecular exchange term&jrand (6)

tal sublattice, in which the difference between the crysta
lattice parametera+ b+ c is so small that the lattice is es-
sentially cubic. If an impurity charge is placed at one of the L HE X ; : X
interstitial sites of the magnetic sublattice, its nearest mag2S @ Perturbation in relation to the single-ion anisotropy
netic neighbors form a cluster of eight magnetic atoms occut’@milionians.  Then, using thermodynamic perturbation
pying the vertices of a pseudocube. Here each cluster Sittgeory techniques, we arrive at the following expression for
always has three cluster sites and three matrix sites as itg«(9)) (nerea=X,Y,Z, and the labels| andh are dropped
nearest magnetic neighbors. for the time being at siteg:

Taking all this into account, we can write the following
expression for the molecular field of a matrix site <~]a(9)>22y Xo0,(9)h,(9), (13

z
hh(m)=|;l {[1—pa(m+ ) (In(m+6)) where the components of the tensor of local magnetic sus-
- ceptibility at siteg are(see, e.g., Ref.)5
+pei(M+ 8){Je(m+9))}. (7

O _ 71 . . - .
Herel is the exchange integral involving the nearest neigh-  Xay(9)=Q ﬂczi: (IRB(@[i)iI(a)]i)
bors, the sum oveb runs through the nearegt magnetic

neighbors, the projection operatpg (m+ &) can be written xexil — BE{”(9)]
1 if site m+6 is a cluster site, ; ;
Pe(MTO)=10 if site m+6 is a matrix site, ® +> (a@IN1,(Q)]T)

= E%9-E{(g)

and the label& andcl are introduced to distinguish between

trzigzsgr\?eoljynamlc averagés-) at matrix and cluster sites, « (eXr{—ﬁcEfo)(g)]—eXF[—,BcEi(O)(g)]) ’
Let ¢ be the probability that the site+ & is a cluster

site, provided thaim is a matrix site. Then averaging the

projection operators over concentrations yields

(14

‘m+6) Q=3 ex{-BEY Q)] Be-— (15)
pC|(m+ 5) =Cq¢l- (9) 7 cHi ’ c TC
For a specific type of lattice we can always establish Hour definition of the magnetic susceptibility tensor differs

relationship between the conditional probabiliy and the  from the standard one in that our tensor does not contain the
overall concentration of magnetic atoms of the cluster typesgcior @s128)).

¢, and the concentration of nonmagnetic impurity atoms Calculating (14) requires knowing the eigenvalues
For instance, in the pseudocubic-lattice mo¢féh. 2), the E((g) and eigenfunctiondi)=|"¥,) of the unperturbed
overall concentration of atoms of the cluster typeisz; X, single-ion anisotropy Hamiltonians,

since each nonmagnetic atom is surroundedpgnagnetic

atoms. Since near each magnetic site there are inziu8 Ho(@)|T)=E(q)|[T)), |T)=li), (16)
interstitial sites and the probability of occupying each inter- ) . )
stitial site isx. we obtain which are different for matrix and cluster sites. It turns out
that for matrix sites the best way to diagonalize the single-
— 1 1 ion anisotropy Hamiltonian is to use the angular-momentum
+8)=cy =7 z;X= = C. . X . . X
Pei(M+0)=Ca 2 aaX 2 ¢ (10 basis functions in the laboratory system of coordinates, while
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for cluster sites it is more convenient to introduce a newThe Hamiltonian(24) can easily be diagonalized analytically
local system of coordinates’,Y’,Z’, which makes it pos- for J=1, 3/2, 2 if for the basis functions we take the angular-
sible to easily diagonalize the single-ion anisotropy Hamil-momentum function$J,J;/)=|J,’) with projections of an-
tonian and calculate the components of the magnetic suscegular momentum on the local’ axis.

tibility tensor x2,(n) (\,y=X',Y’,Z’). In the final step, one

must go back to the components of the tensor in the labora-

tory system of coordinates.

4. DIAGONALIZING THE SINGLE-ION ANISOTROPY
HAMILTONIAN IN THE CASE OF TWO SECOND-ORDER
AXES

Let us examine the single-ion anisotropy Hamiltonian
for a cluster site,

2
DJ5-dJs,,

Ho— -

17

with the direction of theZ” axis in relation to the laboratory
system of coordinates specified by a polar angland an
azimuthal angley. We introduce a new system @brimed
coordinates in such a way that t@é axis is perpendicular to
the plane containing thg andZ” axes(see Fig. 1L Then the
new X' andY'’ axes also lie in this plane, witf the angle
between theZ and X’ axes.

We expressl; andJ,» in terms of the projections of the
operatorJ in the new system of coordinates:

‘]Z:‘JX’ COS(D_Jyr sin (I),
‘]Z”:‘]X' COE{ 0_(I))+‘]Y/ S|n( 0_CD) (18)

After plugging (18) into (17) and going over to the circular
projectionsJ..r=Jy' *Jys, we arrive at the following ex-
pression for the single-ion anisotropy Hamiltonian:

D+d D+
Ho=———J(J+1)+

2
T JZ’

1, |
—2€”*[D+de 27 J%,

1 .
— Ze’z"D[DereZ' 3%, . (19)
Introducing the new variables
D+d 1
€e=——, Azz\/D +d?+2Dd cos ¥ (20
and the auxiliary anglep,
_D+d cos ¥ i _dsin20 21
COS(p—T, Slntp—T, (21
and dropping the unimportant constant terf2(D
+d)J(J+1), instead 0f(19) we get
Ho=€d3, —A[€ P97+ 1200?17, (22)

We see that it is convenient to impose a constraint on the

angle®,
¢
since it reduce$2?) to the simple form
Ho=€d2, —A[J%,+0° 1. (24)
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4.1. The case J=1

For J=1, the eigenvalue spectrui&® and the eigen-
vectors|¥;) have the form

EY’=0, [¥1)=[0),

EY) =e+2A, [W)=(|1)—|-1)/V2,

EQ=e—2A, |[W3)=(]1)+|-1))/V2. (29

Thus, the appearance of a second anisotropy axis splits
the doublet level that exists dt=1 in the case of uniaxial
anisotropy.

The tensor of zero magnetic susceptibility has only di-
agonal elementgthe upper signs refer to thé'X’ compo-
nent and the lower signs to th€ Y’ component

. ~ 2{1—exd — B.(e¥2A)]}
XXX Y'Y T (¢35 2A)[1+ 2 exp — B.€)cosi28.A)]

0o _ exp(— Bce)sini(28:A)
X2'2' 7 AT1+ 2 exf — Boe)cosh2B.A) ]

(26)

In the limit d—0 (for which ® is either zero or 1/2,
depending on the sign d)), after appropriately relabeling
the coordinates axes, we obtain an expression for the suscep-
tibility tensor for matrix sites in the laboratory system of
coordinates:

o o _21-exg—pD)]
XXX“ XYY" D2+ exp(— D)’

2B¢

0 _
X227 5 ex

N—BD)" @7

In the limit d—o, for which ®=1/2¢=6 and theX' axis
points to the impurity chargg, Egs.(26) yield

X?(,X,(d—mo):Ztan?‘(% sir? 0)(D sir? 9) 7!
Be. Bc|Dlsir? <1,
=\ 2/D|sirt0=28.1B,D|sir? 6<B;, B D|sirto>1,
Xyryr(d—20)=x3,7,(d—) =0, (28)

M. V. Medvedev and E. V. Rozenfel'd 73



while for d——= we have Xy (d—=—0)=x2,_,(d——o)= 8,
X?(rxr(d—>—00)=X$,Y;(d—>—30)=)(g,z,(d—>—OO):O_ 0 1
(29 Xyry/(d—=®)=7 Bc. (36)

4.2. The case J=3/2 For J=2 the Hamiltonian(24) can be diagonalized in a

For J=3/2, the appearance of a second anisotropy axisimilar manner.

does not lift the degeneracy of doublet levels: The matrix elements of susceptibility obtained in this
way in the local systems of coordinates of the cluster sites
E(o>:§ e— \/m E(o>:§ e+ e+ 12A2. must by transformed into the matrix elements in the labora-
1274 T34 g 30 tory system of coordinates via the following relations:
30
ing ei i i 0 =co2 Y| X%y S 2130, cog £
The corresponding eigenfunctions can be written as Xxx=COS | xx1xr S 5 T Xyryr co 5
3 1 1 3 0 .
=al; -3 =b|5 — = + X717 SN 4,
|‘I’1> a2>+b 2>, |‘I’2> b‘2>+a 2>, Xz17 4
3 1 1 3 Xyy=Ssir? w( Xy SIP §+X$,Y, cog g)
|\I'3>—b5 —a _E , |‘If4>——a§ +b —5 ,
(31 + X9 COSY,
where the coefficienta andb are o o e e
X37= X%y COS >+ Xyry sir? >
a \/1 €
—\/Z | 1F—. (32) (37)
[b} 2 Ve +124 X3v=Xvyx=SiN ¢ COS ¢
The components of the magnetic susceptibility tensor in
the local coordinate s X x%0r SI? £ 430 2l 0
ystem are Xxrx ST 5+ Xyryr COS' 5= X717/,
0 B €2+ 6eA+24A% €+ 6A 1 o o
erxr‘yryr_ﬁc 2(62+ 1m2) + IBC 2 ’7—26 T12A X())(Z:XQXZE COS(ﬂ sin (’D(XX’X’_XY’Y’)’
3(e¥2A)? o o L1 _ 0 0
NS EIGE (2112207 tanh B.\/e?+ 1247), Xvz=Xzy=7 SIn W SiN @(Xyrxr = Xyryr)-

For each magnetic ion in a cluster iyfions surrounding
= the additional chargeg, one must use the proper anglgs
X v 1
z'z © 4(e’+12A%) and ¢, but with the lattice symmetry specified, relations be-
. 1202 B_e( 2+ 12A2) tween the angles can be established, which means one can

tanh Bo\e2+ 12A2), find the symmetry relations that link the matrix elemefﬁ§
V(€?+12A%)3 ¢ of different cluster sites.

(33

and for matrix sites of the crystal, after passing to the limits. THE EQUATION FOR T, IN THE MODEL OF AN
d—0 and transforming the coordinate axes into the laboraaNISOTROPIC FERROMAGNET WITH A PSEUDOCUBIC
tory axes, we get LATTICE

0 5e2+ 12A2

1 1

o 0 3 Deriving an equation for the Curie temperature requires
XXX= XYY~ 5 Bet > ﬁ_ﬁc

tani(B.D), averaging the infinite system of linear equatiqi8) over
the concentration disorder, with allowance, first, for the dif-

0 0 ference between matrix and cluster sites and, second, for the
Xzz=7 Bt B tanh(B.D). (34 ifference in the orientations of the magnetic moments at
different sites of a magnetic cluster. To do this we must
specify the shape of the crystal lattice of the initial regular

In the limit d—«~ we have

9 crystal and the signs of the parameters of regular and impu-
0 _ . . .
Xxrx (d—) = 2 B, rity anisotropiespD andd.
As an example we take the above-mentioned pseudocu-
0 0 . . o . . .
Xy (d—2)=x2,,(d—x)=0, (35  bic lattice of magnetic ions, in which small concentrations of
substitutional impurities occupying the positions of nonmag-
and in the limitd— —oo, netic atoms create only one type of magnetic cluster. We
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start with the case in which bofh andd are positive, i.e., in  there act(a) the extremely strong impurity crystalline field
which there is anisotropy of the easy-axis type and an addi--d directed at an angle to the crystal's magnetization, and
tional easy-magnetization axis for each cluster site. Since ifb) the exchange field generated by theearest magnetic

a regular crystal and, accordingly, far from a perturbingmoments, where/2 of these moments are of the cluster type
charge, the magnetic moments are aligned alond’theis, and strongly disoriented in relation to the direction long-
the magnetic moments of the cluster sites tend to align imange ferromagnetic order. At the same time, even on the
equilibrium directions between thé axis and the principal matrix magnetic moment nearest to the cluster thergiact

diagonals of the cubésee Fig. 2 the regular crystalline field-D aligned with the direction of
Averaging(13) over the ensemble of all matrix sites, we long-range ferromagnetic order, afid) the exchange field
get generated by the nearest neighbors, of which only(aneur
0o— o mode) is a neighbor of the cluster type, and for that reason is
2= Xz20zh= X72(A)1Z sure to be strongly disoriented. Obviously, the noncollinear-
1 8 ity of the magnetic moments of even the nearest magnetic
X|(1—cg)ozt+ce — > m5(i)], (38  neighbors in the matrix is much weaker than the noncol-
Z1c= linearity of the magnetic moments of the clustait the more

where the bar stands for averaging over configurational disso for second matrix neighbgrsHence for the simplest ap-
order. Herar, = m and we have allowed for the fact Proximation we take the one in which the following condi-
that the magnetic susceptibility tensg,(A) is diagonal in ~ tions hold for finding then, ,(i):

the laboratory system of coordinatéey A we denote sites of

the matrix type and by sites of the cluster typeFurther- (Jzn(i+6h) =0z, (42)
more, in averaging the molecular field at a matrix site, : :
hz n(m), one must bear in mind that if the nearest neighbor (Ixn(i+6p))=(Jyn(i+8,))=0. (43

of the matrix site is a cluster sitgvith probability c.,), then
the magnetic moment of an arbitrary cluster site will be ori-
ented as at site 1 in Fig. @uith probability c./z;) or as at
site 2, etc. In view of this one must distinguish between th
average values,(i) = (J,(i)) of the projections of the
magnetic moments at the different sités=1,...,8 of the
magnetic cluster.

Averaging (13) for all sites of type 1 in the magnetic
clusters, we can write the following equation:

This means that we ignore the contributions of the noncol-
linearity of the nearest matrix sites, which has the form of a
falloff in short-range order, but fully allow for the noncol-
qlnearlty of the magnetic moments of a cluster.
Of course, with a more accurate approximation one can
attempt to build linearized equations for the projections of
the magnetic moments at the nearest neighbors of the matrix
(with respect to the clusteand allow for the fact that the
averageX- and Y-projections of the magnetic moments on
_— these atoms are nonzero, but at the same ignore the noncol-
o(1)=(aa(1)) E Xav(B)hy a(1), (39 linearity of the magnetic moments at second neighbors, etc.
Such an approach, however, leads to a sharp increase in the
where we have allowed for the fact that the magnetIC Suscemumber of parameters |n the prob'em and the number of

tibility tensor x?,(B) of cluster sites is nondiagonal in the coupled equations. We will leave this problem for a future
laboratory system of coordinates. Here the averaging of thgaper.

projection of the molecular field at cluster sites of type 1 5o as not to build similar equations forr (i)

yields = (J,.c(i)) for the other cluster sités=2,....,8, we bring into

D=1[r)(2)+ 1 (A +7,(5)], y=X,Y, (40 the picture the symmetry of the orientation of the magnetic
moments in the cluster of the given tyfsee Fig. 2 Clearly,

hz (1) =1[72(2)+ 72(4) + 72(5) + 30]. (41  this approach yields the following relations between the pro-

jections of the average magnetic moments of the different

sites in the cluster:

ycl

Note that according td¢11), all the projections of the
random magnetic fielth, (i) for the cluster sites=1,...,8
contain magnetizing contributions from the magnetic mo- r=1,(), i=1,..8,
ments(J,, x(i + &,)) of the nearest magnetic sites, since near
a n(_)ncol_llngar magnetic <_:Iuster there emerges acertain non- =gy (1)=—74(2)=— 14(3) = 7¢(4) = — 74(5)
collinearity in the magnetic structure of the matrix due to the
exchange interaction between cluster and matrix. =7x(6)=7x(7)=—7x(8),

However, it becomes immediately apparent that the clus-
ter magnetic moments and the magnetic moments of the 7= (1) =7v(2)= = 7v(3) =~ 7v(4)=—7v(5)
magnetic si_tes nearggt to the cIu;ter are subject to quite dif- = — r(B)=7(7)=7(8)
ferent physical conditions. If, for instance, we take the case
of a strong impurity easy-axis anisotropg>D>1z, where =Ty (44)
the magnetic moments of the cluster are essentially aligned
along the impurity easy-magnetization axes and the noncol we also bear in mind that in the lattice considered here the
linearity of the magnetic structure of the cluster is at itsazimuthal angle for site 1 igq=5n/4 and sing;,=cosy,
maximum, then on each magnetic moment in the clusteEgs.(37) yield
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FIG. 4. Equilibrium orientations of the magnetic moments of cluster sites
for D>0 (an easy-axis ferromagnetand d<0 (additional easy-
FIG. 3. Equilibrium orientations of the magnetic momentsBox0 (a fer- magnetization planes perpendicular to the principal diagonals of the.cube
romagnet of the easy-plane type with the direction of spontaneous magnéor clarity, the easy-magnetization plane near site 1 is depicted by an oval.
tization along theX axis) andd>0. For clarity, the planes that pass through

the principal diagonals of the cube and the diagonals of the upper and lower

faces are hatched near sites2, 5 and6.

[1-1Z(1—ce) xxx(A) Jox—1ZCox%x(A) Tx =0,
=3l xox(B)ox+[1— 3l xxx(B) 1 7x+ | x%y(B) 7y
+1x%(B)7,=0,
— 3l x3v(B)ox— 3l x%y(B) ¢+ [1+ 1 x%x(B)] 7y
+1x34(B) =0,

=31 x32(B)oyx— 31 x37(B) 7x+ 1 x%(B) 7y

Xox(Bi1)=x2y(B;1)=x2x(B),

Xxx(Bi1) = xJy(B;1)=x3x(B). (45)

Therefore, instead of Eq$§38)—(41) we can finally write

[1-1z(1—Co) x22(A) oz —1ZCyx34(A) =0,

0 0 0 —
—3Ixzz(B)oz+[1—-3lx7(B)] 72+ 21 xzx(B) 7% =0, +[1+1x2,(B)]7z=0. (48)
_3|X§)(z(B)0'Z_3|X9<z(B)TZ Now we turn to the case in whicB>0 andd<O0 (the
0 o regular crystal exhibits ferromagnetism of the easy-axis type,
{1+ 1 xxx(B) + xxv(B) ]} 7x=0. (46)  and additional hard-magnetization axes emerge at the cluster

siteg. Equilibrium orientation of the magnetic moments of
the cluster emerges because of a compromise between the
gc’endency of the moments to align with the direction of the

, e(frystal’s magnetization along theaxis and the tendency to

ox = Jxn(m) # 0. The magnetic moments of a separate Clusyig i, planes perpendicular to the principal diagonals of the
ter tend to align(see Fig. 3 along equilibrium directions cube. This yields the symmetry relatiot&ig. 4)

between theX axis (the direction of magnetization of the

matrix) and the principal diagonals of the pseudocigtie T7=17(1), 1=1,...8,

directions of the additional local-anisotropy axeEhen for _ _ _ _ _ _
=—1y(1)=14(2)= =—1y(4)= =—

the average values of the projections of the angular momen-"X x(D=7(2)=7x(3) ™X(H)=7x(5) 7x(6)

tum operator of different sites in the cluster we have the =—74(7)=74(8),

following symmetry relations:
v=—"7y(1)=—7v(2) = 7v(3) = 7y(4) = 7¢(5) = 7v(6)

The next case i©D<0 and d>0. The regular crystal
exhibits ferromagnetism of the easy-plane type, and the lon

TXETx(|), |:1,...,8, :_Ty(7):_7'y(8),
Tv="Ty(1)=—7v(2) = 7v(3) = — 7y(4) = 1y(5) Y= Ty (49)
=—1y(6)=1y(7)=—1v(8), and an equation for finding:
0 0 _
TZE Tz(l) = — 72(2) = — 72(3) = 72(4) = — Tz(5) [l_ Iz(l_ CC|)XZZ(A)]O-Z_ IZCC|XZZ(A) 777 01
— 7(8)=1(7)= — 74(8), —31x32(B)oz+[1- 31 x32(B) 172~ 21 x32(B) 7x=0,
Ty, 47) 31 X32(B) oz + 31 x%2(B) 77
0 0 _
i.e., describing the magnetization of clusters involves using LA O6x(B) + xx(B) J7x=0. (50)
three order parameters. Finally, we consider the case in whiéh<<O andd<0
With allowance for(45), this yields four coupled equa- (the existence of two directions of hard magnetization for the
tions for T: cluster sites and, at the same time, alignment of the sponta-
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neous magnetization of the matrix along tKeaxis). We
have four coupled equations for determining:

[1—12(1— o)) x3x(A) oy — 1ZCe X Ix(A) 7% =0,

=3l x3x(B)ox+[1=31 x3x(B)]7x— | xxv(B) 7y
—1x%4(B) =0,

31 X%v(B)ox+ 3l xy(B) Ty +[ 1+ 1 xx(B) ] 7y
+1x%7(B)7,=0,

31 x%2(B)ox+ 31 x32(B) 7x+ 1 x32(B) 7y

+[1+1x5,(B)]7,=0. (51)

6. CURIE TEMPERATURE T, IN THE LIMIT OF INFINITELY
STRONG IMPURITY ANISOTROPY

The systems of equatiort46), (48), (50), and(51) in T

— e

0 1 1 i . 1

(=]
PN
=<}
©

1DV

FIG. 5. The dependence of the Curie temperatirelimensionless units of
Tc/1) of an easy-axi§D>0) and an easy-plang <0) ferromagnet on the
regular anisotropy parametd|/1 in the initial crystalgdashed curvesand
in crystals with a finite concentration of cluster sites;=0.05 for d—o.

can be SOIV_ed for_different numerical ratios Of the parametergne conditional probabilityc,,=0.05 for a pseudocubic lattice corresponds
D andd. It is obvious, however, that magnetic clusters haveto a cluster-site concentratiars=0.10 or a nonmagnetic-impurity concentra-

the greatest effect ol when the parametéd| of the im-
purity crystalline field is at its maximum in relation {®|.

tion x=0.0125.

Therefore, to grasp the effect that clusters have on the tem-
perature of magnetic ordering, we examine the limiting case® —0, the susceptibility of the cluster sites along the labora-

in which d—c andd— —o at cluster sites.
For J=1 andd— —<c and allowing for(29), we have

1-12(1-Co)x%(A) =0, (52)

wherea=Z for D>0 anda=X for D<0. Hence in the limit

tory Z axis, x2,(B)=(1/3)8., proves to be lower than the
susceptibility of the matrix site$y2,(A)=(2/3)8. in the
limit D—0), with the result that cluster sites only reduce the
contribution of exchange interaction to the stiffness of the
magnetic system in the direction of spontaneous magnetiza-

d——oo, the cluster ions act as a nonmagnetic diluent of theion.

regular ferromagnetic matrix, since they effectively weaken

the exchange interactiohz—1z(1—c,), and this can only
lower T¢.

For J=1 andd—wx, allowing for (28) and the fact that

A more interesting case is ferromagnetism of the easy-
plane type in the host matrix, since with the anisotropy being
fairly strong, |D|>0, compared to the exchange coupling
parametel, the Curie temperatur&: in the matrix experi-

sir? =2/3, in the laboratory system of coordinates we havesnces a sharp drop and there can be even a transition to the

1 1 .D
X?ly(B): § X?(’X’(Bvd—ﬂjo): 5 tan.‘(ﬁT) EXO(B)
(53

for all @, y=X, Y, Z. As a result, from(46) and (48) we
obtain
3Ixo(B) |
1-cgtcg T I xo(B) XaaA)=0,
wherea=Z for D>0 anda=X for D<O0.
For a ferromagnet of the easy-axis ty(@>0), in the
case of weak anisotropy of the matri/lz~D B.<1, Eq.
(54) can be solved analytically:

D

+ 3 (55

1-1z (54)

Te~al| 1- — ¢

11

nonmagnetic statéat J=1 this happens dD|/1=12). One
should therefore expect that near the threshold of the transi-
tion to the singlet state, clusters drifg up.

However, Eqs.(28) show that an increase ifD|/I is
accompanied by a decrease in the susceptibility of the cluster
magnetic moments&x,(d—m), and, accordingly, by a de-
crease inyy(B), with the behavior of the magnetic moment
departing from the Ising behavior in an ever more pro-
nounced way. As a resull,c only decreases in comparison
to the Curie point of the initial crystal. This outcome is cor-
roborated by numerical calculations of E&4), whose re-
sults are depicted in Fig. 5. Clearly, for all ratid3|/1, both
in the case of an easy-plane ferromagiizt.0) and an easy-
axis ferromagnetD >0) with a fixed concentration of cluster
sites, the value of - of the impurity crystal is below that of
the initial regular anisotropic ferromagnet.

Thus, even under the most favorable conditions, when a  The lack of a rise iff ¢ for J=1 is due to the splitting of
highly-anisotropic has the greatest effect on the transitiothe ground-state doublét-1) that results from the regular
temperature, only a decreaseTg is observed. We believe anisotropy of the crystdthe parameteD). It is obvious that
the physical reason for this is that in the cluster model confor moments withJ>1, where ford— the double{*J) is
sidered here, the greatest role is played by the geometric#ite principal doublet, second-order regular anisotropy is un-
factor, i.e., the large polar anglé between the easy- able to split the doublet. Then in the limit—o, we have
magnetization axiZ and a principal diagonal of the cube. Xi,x,(d—mc) = J?B., and for integer angular momenta

This leads to a situation in which even in the lirdit= and
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larger than that of the matrix sites near the threshold of th@etic matrix is simply diluted with diamagnetic atoms. For
transition to the singlet state. This allows for the possibilityinstance, forD <0 andd— —« we have
of T, rising because of the appearance of clusters with

strong impurity anisotropy, but detailed analysis of such a 15 66 2 D|
near-threshold situation requires a more detailed approach — 11— —=5cq|+=|D|, —<1,
. . . . 2 113 5 I
than that of the molecular-field approximation, since the ac- Te= ) (61)
curacy of the latter is of order . 6l ( 1— E1(: )+27|— u>1
For a Kramers ion with)=3/2, the maximum possible 337 ID[” 1 '

impurity anisotropy of cluster sites is

3 i.e., the concentration factor has the formAc,, , instead of
Xgﬁ(B,dHoo)= 2 Be for a,B=X.Y,Z (56) Hl)enfactor t-c,, corresponding to simple diamagnetic dilu-

for d—o, and
Xx(B,d— =) = X3 (B,d— %) = x5(B,d — =) - CONCLUSION
3 In the above calculations we employed a regular crystal
=7 Be, lattice in which the angle between the regular anisotropy
axis Z and the random anisotropy ax®’ is quite large
(~55°). Since even the maximum possible impurity anisot-

0 _ .0 _ .0
Xxv(B,d— =)= xy7(B,d— =) =xy,(B,d— — =) ropy of the easy-axis typ@—) drives the susceptibility of
1 the cluster sitegin the local system of coordinatesp only
== Be (57)  to a certain limit, when we go over to the laboratory system

of coordinates the large-angle geometrical factor comes into
play, and this lowers the susceptibility of the cluster mag-
netic ions in comparison to that of the host ions. Hence the
temperatureT -, corresponding to the onset of spontaneous
magnetization along one of the laboratory axes of coordi-

for d——o. This leads to the following equations for the
transition temperature:

1-lz| 1-cq+ 4?'7/?; cc,) Xoa(A)=0 (58)  nates, drops. o _

c Thus, we can probably expect a rise in the Curie tem-

peratureT due to the emergence of additional anisotropy

for d—z, and axes, with the local symmetry being broken only when addi-

31 8(3+18,) tion_al impurity charges produce new dir.ectic.ms of easy mag-

1-1z|1—cg ¢ c CCJXO (A)=0 netization at moderate angles to the direction of easy mag-

4=T71B:—3(18c) o netization of the initial crystal.
(59 In the latter case, the rise i due to additional impu-

rity easy-axis contributions becomes similar to the effect of
the crystalline field on the magnetic ordering temperaiiye
in regular ferromagnets. Regular single-ion second-order an-
isotropy of the easy-axis type is known to lead to a rise in
T, In comparison to th@ - of an isotropic ferromagnet. For
a magnetic moment witd=1, this result has been obtained
both in various modifications of the method of two-time tem-
perature Green’s functionsee, e.g., Refs. 6 and @nd in
the diagrammatic technig€, while for magnetic moments
with J from 1 to 7/2, it has been obtained in the so-called
15 2 2 ID| : . . . .
= ( 1—= Ccl) +=|D|, ——<1, molecular-field correlation theotY(a detailed review of this
2 3 S (60) problem for regular ferromagnets can be found in the mono-
- 4 . )+27£ u>1 graph by Zvezdiret al®).
7 ¢ D] 1 ' The situation described in this paper differs from that of
a regular ferromagnet in only one respect: crystalline-field
The reason is obvious: even in the linit— —o with impurity sources of the easy-axis type in our case increase
J=3/2, the susceptibility of matrix sites does not drop belowthe local magnetic susceptibilifyn the laboratory system of
x¥x(A)= 8., while, for instance, the susceptibility of cluster coordinatesonly atNc cluster sites of the magnetic lattice,
sitesxgﬁ(B) does not excee(B/4) 3. . with the result that the increase in the Curie temperature,
Furthermore, since fod— —o and J=3/2 cluster sites AT, is proportional to the concentratianof cluster sites.
do not become nonmagnetic, although their susceptibility = Two concluding remarks are in order. First, the appear-
does decrease, the decreasd inwith concentration in the ance of additional local anisotropy axes and the disorienta-
entire sample occurs more slowly than when the ferromagtion of magnetic moments near the impurity sources of a

for d——«, where a=Z for an easy-axis ferromagnet
(D>0), anda=X for an easy-plane ferromagn <0).

When ¢ <1, Egs.(58) and (59) can easily be solved
analytically in the limits of weak(|D|/I<1) and strong
(ID|/1>1) anisotropies, and for all four relations between the
signs of the paramete® and d, these equations vyield a
decrease inl: as c; grows. For instance, fob<0 and
d—o we have

TC:
6l
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Unified picture of the distribution of electric field gradients at Cu, O, and Tm sites in
ReBa,Cu;0;_;

M. V. Eremin and O. V. Lavizina

Kazan State University, 420008 Kazan, Russia
(Submitted 27 March 1996
Zh. Eksp. Teor. Fiz111, 144-157(January 199y

An abundant set of published experimental NMR/NQR data on electric field gradients in
ReBaCuO;_ 5 high temperature conductors, where=Réand Tm, is used as a test for the
singlet-correlated band theory. Because of the unusual spectral Wé&gptcity”) of this band, it

has been possible to match the number of holes per lattice site to photoemission data on the
energy spectrum and the location of the Fermi level. In the framework of a unified picture of the
distribution of holeqchargeg it has been possible for the first time to explain satisfactorily

the observed electric field gradients at thq QuCu(2), O(1), O(2), O(3), and G4) sites, as well

as NMR and inelastic neutron scattering data on the crystal electric field at the Tm ions.

© 1997 American Institute of Physids$1063-776(97)01001-9

1. INTRODUCTION enon and of the change in spectral wei(jltapacity” of the
There are quite a few papers devoted to studies of thganSv\éwg:igf?pl(;]egsg;tt)zea&:guprls r(])?Sc.har e carrier motion in
internal electric field gradients at different sites of the y a8 €ap 9
1-5 6 the CuQ plane in an improvedover Refs. 15 and léde-
YReBgCu0;_ 5. Recently, Yurevaet al’ have pub- ) . . 17 19
) ) . et . coupling variant of the equations of motiéf.!° As shown
lished a review article on the hyperfine fields®3€u nuclei. : 18 . ) .
eviously,® the new decoupling variant is better than

Two different approaches are used to analyze the nature g ubbard 1" and duplicates the Hubbard model dispersion

the electric field gradients. One of them is based on numeri- - : . )
: i . relation obtained by numerical cluster calculations on mod-
cal calculations (ab initio) of the multielectron band

structure’~° as for ordinary metals, while the other proceedsern sypgrcomputefﬁ’. Th'? band plcturg ENSUres a proper
. . description of the dielectric—metal transition and gives a sys-
from a picture of almost localized electron shells, as for

dielectrics’®-12 The first approach has an obvious defect, astematlc procedure for' calculatlrjg the effective charges at the

it cannot describe the dielectric—metal transition that takeS°PPE" an_d oxygen _5|tes. SeCt'OnS 3 4, and 5 are de_vo'Fed o

place in the YBaCu;Os, 5 System when the doping index an analysis of the different contributions to the electric field
6+ 5 .

S is raised, or explain photoemission data on the energgradlents at the Q@), Cu2), (1), 02), 03), and Q4)

spectrum of the cuprates. As noted previously in a review ites for YBaCuzO,. Furthermore, we have included inelas-
P P ) P y ' tic neutron scattering data for the crystal field potential at the

the unsoundness of the ordinary band structure calculations’ .. ) :
) . . - unfilled 4f-shell of the Tm ion and nuclear magnetic reso-
is a direct consequence of an improper description of the 2 .
: o hance data““in our analysis.
strong electron correlations intrinsic to the cuprates. Here i
is not surprising that the calculated electric field gradiehts
at the Cu nuclei are roughly half the experimentally mea-
sured values, and this indicates that the model is unable t& BAND STRUCTURE AND CALCULATION OF THE
provide a correct description of the state of the copper. Thi&FFECTIVE CHARGES OF Cu AND O
defect of the modér® and of the entire approach as a whole _
Pp The effective charges at the @)y and the @2) and Q33)

is fundamental in nature, since the copper states play an im-

portant role in the formation of a band near the Fermi surSIt€S in the dielectric YBAU;,Oq are roughly +2|e| and

face —2|e|, respectively. We are interested now in how these

On the other hand, the picture of almost completely Io_magnitudes will change when the crystal is doped with holes,

calized electronic shel& 2accounts well for the correlation 2 @ result of which it becomes a condudteBa,Cu;07).

among the copper electrons, but does not provide any sys- EE?G Hamiltonian for a single CuOplane has the

tematic procedure for calculating the dispersion relation o

the quasiparticles for metal samples of ¥BayO;_s and T= T+ T, D
the effective charges at the copper and oxygen sites for dif-

ferent doping levels. The purpose of our paper is to construc“f’here
a more general model that retains the best aspects of the g,0g od,pd
above approaches. Here we show that a proposed ftddel ]”Ozed% e +Vpd% v @)

of singlet-correlated bands with hole tunnelling between the

Cu0, planes offers an entirely suitable basis for doing this. Itis the Hamiltonian for a single site. Her# @'“? and

has been shownthat this model provides a good description %P are Hubbard operators, arg andV,4 are the ener-

of the photoemission data on the energy spectrum of bilayegies of the copper and oxygen singlet-correlated holes, re-
cuprates. It has been foulidthat it also gives a good de- spectively. The second term in E@) describes intraplanar
scription of the dielectric—metal phase transition phenomjumps and can be written in the fotfn
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TABLE |. Jump intervals(in meV).

~7/ab (1)+t (ab) \prd ”d\If”d ,pd
Number of 1#]
neighboring site 1 2 3 4 5 6
t 59.83 233 7.33 204 079  3.00 + > 2wy 2;"1
t® 51.84 438 530 213 089 233 1#]
{12 -56.99 —-3.79 -6.28 -2.19 -0.89 -2.68

_'_;J ¢! 12)( 1)1/2—0d(\1,pd Ud\PO"d

+,\I,0'd O\P(rd .pd +z (t ti(jab)),\l,pd Ud\l}”’d ,pd

€]

1_% t(l)‘I’pd (rd‘I’(rd pd_l_;&l t(z)\I’:rdO O<rd

O'do O(Td
+I2¢J tIJ 0i 0]

+2 t(lZ)( 1)1/2—ad(\1,ipd,?d,\1,;),u'd

+E t12>( 1 1/2—ad(q,pd ‘Td\PO‘Td

+\Ifi”d’0\If]f’d’pd). ) 7]

Here t”, t{?, andt{" are the jump integrals for holes +W e O\Ifgjd pd) (8)
between copper snes in the plane. The relative magnitudes of
the jump integrals between the first, second, third, etc. neigh"d can easily be diagonalized. Clearly, we obtain four qua-
bors are determined by the Wannier construction and aréParticle bands: two “odd,”
given in Ref. 16. Their absolute values were found by fitting 1
the calculated dispersion curves to published photoemission 81k=— (OfP+ Odd)wL [(OPP—0g%)2+40pP%¢P12,
date® and are listed in Table I.
Since YBaCu;O; has two Cu@ planes, as befotewe
have assumed an interplanar coupling effect. The complete 82k:_ (OfP+ Odd)— > [(ORP—0Og%)2+ 40P 0¢P1 22

Hamiltonian of a bilayer of planea andb has the forrn® 9)
'JKab:'jﬁa_"']/b"_*}gtum (4) and two “even,”

where .7,,, describes jumps of singlet-correlated oxygen 1 1
holes between plan@sandb. In the Hubbard operator rep-  &§,=5 (ERP+ ES + > L(ERP- EdN2+4EPELP)YZ,
resentation it looks like
1 1
Hrun= 2 QSR SR St SEE NN ) e5=>5 (ERP+ERY) — 5 [(ERP—ER)>+4ERUERPIM
(10)

Swhen using the procedure to decouple the equations for the
Green functions, as in Refs. 17-19, the quantities in(EQ).
2P =40 mev, t{”=16.48 meV, are defined by the expressions

~ %% ) (2)

The t{*” were estimated from photoemission data and th
equations of Ref. 16 to be

(ab) _ _ (ab) _
t5 7.39 meV, t3"'=3.93 meV, Edd— g+ >

t{3P=—0.97 meV.

X ik- (R —R;
We now introduce even and odd combinations of the explik-(Ri—Ry)},

operators with respect to the reflection plane between neigh- 1+ 5
boring planes in a unit cell of YBEWO;: ERP=Vi4— 8d+2 1+5 (SS)
,0, 0 Ng 1 b : _
pPdoa_ 5 (WPIoa_ g Pdoe) X (D +t@ ))exp[lk-(Ri R},
1+6
g, g, T Edp: ( S ) (12)
\I,mdo ‘/_ (\I] do ‘Pbidyo)’ (6) k g 2 1+5 <Si >
xexpik-(Ri—R))}, (11
pd,ogq__ pd,o, pd,o
e = V2 (Uo7, and
1 1- 6, 2
gq.0__ 74,0 74,0 pd_ - 1\ | +(12)
V0= o (Ve v, (7) E ; ( >+ 1_5e<SiS,>)t.,
Then the Hamiltoniari4) can be represented in the form xXexpik-(Ri—R))},
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1+68, 2 <
2 T1v5, (SS

oﬁp=vgd—sd+i2j

XtV —t2)explik- (Ri— R))}. (12)

The formulas forOg?, 0P, and OP are analogous. The
spin—spin correlation functioh$(S;S;) were taken to be to
—0.047, 0.028, and 0.031 for the first, second, and third
neighbors, respectively.

The chemical potential is a function of temperature and
doping. It can be calculated self-consistently using the equa-

Density of states

P

0.9

1.0 I.1 1.2 1.3
Energy, eV

tions

1 g, g [0y 0,
2+ 5+ 8= 2 (WP 7a Py (g Taly 0y )
l pd,()’d (Td,pd
+N2k (WEhTag Ja Pl

+(WIOPITE ), (13)

FIG. 1. Density of states of the “even(smooth curviand “odd” (dashed
bands. The vertical line denotes the chemical potential.

1 d,o oq4,pd 1 04,0,7,.0,0
N kECFd <\P2,e d\I’o,da P Y N kzad <‘I’o,de qio,ed>k (16)
yield the number of copper and singlet-correlated oxygen
holes per Cu@site. Their variation during doping leads to a
shift in the values of the effective charges at the copper and

whereé= &+ &, connotes the number of holes per two cop-yygen sites. The equation for the chemical potential and the

per sites C(R). The thermodynamic averages are

o) dd
g1k~ Ok f(e0
0 __o (81k)
€1k~ €2k

o] dd
€2k Yk o
~ o __o f(ea)
€1k~ €2k
_ 0 _ opp
1 50{% of

(230
[9) [9) 1k
2 €1k~ €2k

1+ 6,
2

d,o oq,pd
(WHS Ty 7dPh, =

04,0,7,0,0,
(W, "=

5O o

Sgk_sgk )

1+ 6,
2

e dd

e Ex e

e _ _e f(slk)

€1k~ €2k
Sgk_EEd e

T~ e e flez)
€1k €2k

d,o o4 ,pd
(WESTap PG, =

1- 4,
2

ST
e e (glk)
€1k~ €2k

04,0,7,0,0,
(W "=

e _ pp

e~ Ek e
T e e f(eaw)

€1k~ €2k

: 14

where the Fermi function&(e3,) andf(e%,) for the “even”
and “odd” bands have the standard form:

number of holes was solved self-consistently. As a result, we
obtainedé,=0.0223 ands,=0.3277. The effective charges
at Cu?2) and 2), O(3) calculated in this way for the com-
pound YBaCu;O; are shown in Table II. Then, knowing the
effective charges at the(® and Q3) sites, we can find the
effective charges for @) and Q4) from the photoemission
data?* where the relative numbers of oxygen holes at differ-
ent oxygen sites were determined from polarized electron
loss spectra. The available experimental data on the disper-
sion relatiod® and the curves we have calculated are shown
in Fig. 2.

As noted previously? in contrast to a two-dimensional
band, the lower band, of a chain is patrtially filled. As a
consequence, we have a lower effective charge in @)Cu
than in a C(2) site. Finally, we estimate the effective charge
of Ba as+ 2.13e| from the electrical neutrality condition for
a unit cell, in agreement with photoemission dta.

Lattice atoms occupying sites without an inversion cen-
ter can be polarized. Effective dipole moments are induced at
these positions by the total electric field from point charges
(ES"), point dipoles E!'"), and quadrupolesE®). The
magnitudes of the point dipole moments at the lattice sites
were calculated from the following system of self-consistent
equations:

TABLE II. Calculated values of the effective point charg@s units of
le]) and dipole momentéin units of |e|A).

o egk— 73 -1 Site in Effective Dipole moment Dipole moment in
f(ep)=|1+ex KT ) unit cell charge in YBa,Cus0; TmBa,Cu;0;
. . cu(2) 1.9994 0.0211 0.0289
. Elk— M 0(2) -1.9122 —0.1423 -0.1342
flen)=|1+exp — 7 (19 o) ~1.9122 ~0.1768 ~0.1654
Cu(1) 1.7000 0 0
Here u is the chemical potential, which we have shifted by ©(1) *1-;8‘11‘25 000685 000828
10 meV below the saddle point of the singular pésde Fig. 21300 _00241 —00321
1) in accordance with the photoemission dat@bviously,  Re(y.Tm) 3.0000 0 0
the expressions
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Wave vector

FIG. 2. Calculated dispersiofsmooth curvi and photoemission déta
(pointg. The horizontal line denotes the chemical potential.

d;= o (ES"+ Ef'P+ EFY), (17)
where thea; are the polarizability parameters of the ions,
which  have been taken from published data:

a(CP*)=0.652" o(0?7)=1.717, anda(Ba®")=2.2428
The required lattice sums for formulating E4.7) were cal-

culated using the Ewald method. The dipole moments calcu-

lated in this way are listed in Table II.

3. ELECTRIC FIELD GRADIENTS AT THE OXYGEN NUCLEI
IN YBa,Cu;0;

The following sources contribute to the electric field gra-
dient at the oxygen sites:

1

2
1 3XjaXj s~ Rj dap
2

2
Rj

N,,Tysnj,j’zpwy . (19
Here Snj 1.2pas Snj 1 2pmy and Snj 1 2pm, are the overlap
integrals of thep,, py, andp, orbitals with then;l;-shells of
neighboring iongbarium, copper, yttriumin a local coordi-
nate system with itg axis directed along; . TheN; denote
the occupation numbers of the orbitals;=2 for a filled
orbital. The radial wave functions of thephell of G~
were taken from Clementi and McLedhwhile those of the
3s-, 3p-, and 3d-shells of copper, thest and 4p-shells of
yttrium, and the 4-, 4p-, 4d-, and 5-shells of barium were
taken from table$*? The calculated value ofl/r3),, was
3.272 a.u.

The effects of the covalent copper—oxygen bonds were
taken into account by perturbation theory. The corresponding
effective Hamiltonian for the quadrupole interaction in the
second quantization representation can be written in the fol-
lowing way:

1 ! +
]KZ_E z’ (777K+ 237]k)<k|hQ|k >’y7’/kra7]ra7]+H.C.,
n7

(20

wherehg, is the operator for the interaction of the quadrupole
moment of the nucleus with the copper electropg, is the
electron jump amplitude, an#,k’ and 7,»’ denote the
guantum numbers of thep2electrons of oxygen and the
3d-electrons of copper, respectively.

The operato(20) yields the following expression for the

(1) effective point charges, dipoles, and quadrupoles of!€ctric field gradient at oxygen:

the lattice sites;

(2) exchange charges, proportional to the overlap inte
grals of the oxygen @-shell with the surrounding Cu, Ba,
and Y shells;

(3) covalent charges resulting from the virtual transport

of electrons from oxygen [2shells to unfilled copper
3d-shells; and

(4) dipole holes that appear in thep2-states of oxygen
owing to doping.

(3)_3

Vii=z

1
|e|<r_3> 2 (Z_Nj<r) 'ynjlj,Zpo[ 7njlj,2pu—
2p

2
3XjaXjg— R dap

= @1

+2Sn,1, 290 :
The ground state of G@) is [x*~y?), so thatN;=1. The
wave function of the ground state of (i can be repre-

sented by the combination

The gradients of the electric fields from point charges

(q;), dipoles (;), and quadrupoles(;) were calculated
using the customary formula:

V== y) X o (—J o
1 SXJQXJ'B_RJ-Z
+5 Q" TR (18

Here and in the following is the index of a lattice site and
Xj, andx;z (Wherea,B=Xx,y,z) are the components of the
radius vector R;j. The Steinhamer antishielding factor
1- y,=12.287 was taken from Schmidt al2°

The effects owing to overlap of thep2orbitals of oxy-

gen with surrounding shells were taken into account using

the formula

<2>_E|e|

1 1
2 2
Vas=5 <r_3>2p§i: (Nj"S”i'i~2F’”_ 2 NimShji, 2om,
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C4|3Z2— 1)+ Cy|x2—y?).

Because of the difference in the @—0(4) and C1)—0(1)
distances, we have chosen the following coefficients:
C,=0.9068 andC,=0.4216.N; also equals unity, as does
Cu(2). The covalence parametegq o, Was taken in accor-
dance with double electron—nuclear resonance data for
MgO:Ni*", where (yagaps+ Sad 2ps)>= 0.0853°

In this analysis, the holes, which are distributed over the
oxygen sites, only occupy-orbitals. In particular, the elec-
tric field gradient owing to these holes is calculated as fol-
lows for chain oxygen Q):

4 1
V(xi)zg |e|<r_3>

where n, is the number of holes at one oxygen site. The
results of the calculations together with the available experi-
mental data are listed in Table IIl.

1 V4

5 Vix s (22

4) _ 4) _
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TABLE lIl. Electric field gradients at oxygen sites (H0V/m?).

Site in unit cell Vg v v v v SV,p Experimental dafa
Vi -2.615 0.949 —1.560 —3.796 —7.022 -5.1
0(1) Vyy 9.373 -2.375 3.120 7.592 17.710 17.2
\ —6.758 1.426 —1.560 —3.796 -10.688 12.1
Vi -1.821 1.915 -1.032 —2.491 —-3.429 -4.0
0(4) Vyy —-4.918 1.297 -1.032 -2.491 —7.144 -76
\ 6.739 -3.212 2.064 4.982 10.573 11.6
Vi 8.804 -2.041 3.036 2.234 12.033 10.5
0(2) Vyy —3.859 1.579 —-1.557 -1.117 —4.954 -6.3
\ —4.945 0.462 —-1.479 -1.117 -7.079 -4.2
Vi —-2.774 1.557 —-1.562 -1.117 —3.896 -6.3
0(3) Vyy 6.994 —2.155 3.039 2.234 10.112 10.2
\ —4.220 0.598 —-1.477 -1.117 —6.216 -39
4. ELECTRIC FIELD GRADIENTS AT THE Cu(1) AND Cu(2) Here y2, and y3, are the electron jump amplitudes for
SITES Cu(2)-0(2) and Cu2)—0O(3) pairs, respectively. Since the

. L. . ground state of QW) is the combination
The expressions for the electric field gradients at thecl|322—r2)+cz|x2—y2> the expressions for this contribu-

copper sites have almost the same form as those for the oxy- ;

gen sites. Some differences arise because thshells of tion change slightly to

copper are not completely filled and the matrix elements of (3)_2 1

the quadrupole electron—nuclear interaction are different. Vi 7 el e
The contribution from overlap of the innerd3shell of

copper and the 2-shell of oxygen in the C) site is given —(Cf—C%)[(Cﬁ—fSCZ)Zylg( vl,+2S1,)

by an expression of the form

{[(S12-4512)+4(S42+2542)]
3d

+4CTy4,(y4,+254,)]},
8 1
vg§>=—lel<—3> [(S12-S1%)-2(S42—s42)], w3 1 -
5 r 3p V;?()_Vglsy): — T |e|<r—3> 3dC1C2{[S4§+ (Cl
v ve- g L) (sizosr? 23 312
Vi = g el ) (oSt @3 V3271, (1, +251,)]-4[ 512

whereS1, andS1,, are the overlap integrals of tf&, 5, +Cy4,(v4,+284,)1}, (26)
andSgp, 2 States of C() and 1), while S4, andS4, are  \yhere

those for C@l) and Q4), respectively. For the GR) sites

the corresponding expressions have the form S42=(C2-2C2)S42, S12=[(C,+V3C,)2-2(C,

8 1
V(zr?:§|e|<r—3>

24 /1
V-V =% |e|<r—3>3 [(S22—s2%)—(S35-S3%)].
p

_ 2 2
[(S22-S22)+(S32-S82) ], 327181,
3p The valence contribution for the @) site is calculated us-

ing the customary formula

@ 4 1
(24) Vi =7|e| 3 (1-Rg)ny,
3d
HereS2,, . andS3,  are the overlap integrals of (@) with 1
0(2) and 3). V(4>:V(z?: i V;‘:() , (27)
The contribution owing to overlap of thed3shell with Y 2
the 2p-shell of oxygen and transfer of an electron from theang that for C(), using
2p- to the H-shell for a Cy2) site is given by
s 2, )1 s s s v<z?=—f(Ci—C§)lel<ia> (1= Rg)Ny,
ViY== lel( =3) {[(S23+4S2%)+(S3%+4S3%)] / "/ 54
e 8v3 1
+3[y3,(¥3,+2S3,)+ y3,(y3,+2S3,)1}, v;‘Q—v;‘y:T clcz|e|<r—3> 3d(1—RQ)nX, (28)
24 1
\/g(zx)_\/§/2y>:7 |e|<—3> (S22—522). (25)  whereRy is the antishielding factor(1/r3);,=82.725 a.u.
M/ aq and(1/r3);,=28.265 a.u. were calculated on the basis of the
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TABLE IV. Electric field gradients at copper sites ft0v/m?).

Site in unit cell Vg v v v Vi) DAV Experimental dafa

Vix 13.698 —1.488 9.413 —29.249 —7.626 —7.4
Cu(1) Vyy —4.287 5.084 -3.270 10.099 7.626 7.5

V,, —9.411 —3.596 —6.143 19.150 0.000 -0.1

Vyx —6.393 —1.754 —4.431 19.046 6.468 6.2
Cu(2) Vyy —4.774 —2.663 —4.431 19.046 7.112 6.2

Vs, 11.167 4.416 8.928 —38.092 —13.580 —-12.4

Hartree—Fock wave functions for €u° The electric field wherei=x,y,z. Here they,= y,(1+ «;) are the experimen-
gradients calculated with 1y,,=12.34 andRy=0.17 are tally measured effective gyromagnetic ratios for Tm nuclei
listed in Table IV. Experimental NQR data are also shownin the crystal andy, is the gyromagnetic ratio for a “free”
there in the last column. nucleus. For the van Vleck paramagnetic material
5. CRYSTAL ELECTRIC FIELD AT THE RARE EARTH ION TmB&gCu;0;, the parametery; in the singlet ground state

o ) ] _ can be calculated as follows:
The crystal electric field at the Re ion can be written in

the following standard form: _ 20;m8A; (gl 3| v)]?
ap= . (31)
'}/|ﬁ v EV_ Eg

w = q A q . . P :
A ceF kzq Bi(J|O«]3)Ok. 29 The energiek, can be found by diagonalizing the Hmilto-

. nian (29). HereE, and|v) are the energies and wave func-
where J is the total momentum of the ground state, tions of the excited states of the Tm ion. The symbol
(J[©,]J) are the Stevens factor§) are the equivalent op- genotes the singlet ground statg,the Lande factory the
erators, andy are the so-called crystal electric field param- gonr magneton, and, the hyperfine interaction constant for
eters. For HTSC materials they can be determined frompe free Tm ion. They, and the energy intervals are known
NMR and inelastic neutron scattering measurements. Thug,om experimental NME and inelastic neutron scattering
we have an additional possibility of verifying our picture of yata?! The results of our calculations of the crystal electric
the distribution of charges and dipoles in ReBaCuO. field parameters, the;, and the Stark splitting energies are

The crystal electric field parameters were calculated agisted in Table VI. As can be seen from the table, the calcu-

the sum of several contributions. Since the computationghteq values are in good agreement with the available experi-
procedure has been described elsewfitfewe omit the de-  hental data.

tails here and only present the results in_Tat_)Ie V. In this t_abl%_ CONCLUSION

BR(I1), BY(I), andB{(Ill) denote the contributions from point

charges, dipoles, and quadrupoles, respecti&jiV), the _ It can be seen fro_m Tables Il and IV that our _proposed

contribution from overlap of the #shell of thulium with the ~ Picture of the electronic structure of YBau;O; explains the

2p-shells of oxygenBg(V), the contribution arising from the available experimental data on the electric field gradients at

effects of exchange overlap and virtual transport of an electhe CUl), Cu2), O(1), O(2), O(3), and Q4) sites just as

tron from the -shell of O into the 4-shell of Tm, and Well as the nuclear magnetic resonance data and data on the

Bl(VI), the contribution owing to transport of an electron inelastic scattering of neutrons on Tm ions in

from the 2p-shell of O into the unfilled B-shell of Tm. TmB&Cu;0,. This supports the band structure model used
The NMR spectrum of the Tm ion, with a singlet ground here. The basis for the success in simultaneously explaining

state, can be described using a spin Hamiltonian of the typle entire set of NMR/NQR and photoemission data is the
unusual behavior of the spectral weightapacity”) of the

7/|:ﬁ2 yiH -1, (30) singlgt band. As can be seen from Fig. _1, in our model, the
i bonding band is roughly half full by the time there are 0.175

TABLE V. Parameters of crystal electric field in Tmu,0, (cm™?1).

Parameter BA(1) BA(II) BA(1IN) B(IV) B&(V) BA(VI) SBY

B2 208.69 -192.29 —6.00 -11.41 37.91 22.32 59.22
B2 110.84 59.15 1.97 -36.97 23.44 -0.83 157.62
BS —-87.82 -4.26 - 20.40 —-171.20 -2.23 —245.12
B 26.90 1.67 - -11.38 22.21 0.02 39.42
BA 477.38 155.94 - -93.70 786.53 10.32 1284.10
BS 2.85 1.43 - -2.29 30.09 - 32.07
BS -3.11 —-8.64 - 3.11 -7.90 - —16.54
BS 104.22 15.21 - —57.06 747.73 - 810.10
BS 1.42 1.15 - -2.32 6.04 - 6.31
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TABLE VI. /27 (in kHz/O8 and Stark splitting energigén cm™1). ment between the electric field gradients and the experimen-
tal data discussed above.

Parameter Calculated values Experimental déta
0 0 We thank Prof. M. A. Teplov and Dr. R. Markendorf for
115 106 useful comments. This work was carried out with the partial
127 127 support of the Russian Scientific-Technical Program in High
;ig "8 Temperature Superconductivitproject 94029and with the
280 | financial support of St. Petersburg, Grant 95-0-7.1-35.
E, 638 -
678 -
701 -
;gg - IM. Mali, D. Brinkmann, L. Pauliet al, Phys. Lett. A124 112 (1987).
) 2Y. Kitaoka, S. Hiramatsu, T. Kondo, and K. Asayama, J. Phys. Soc. Japan
729 - 57, 30 (1980.
767 3 3T. Shimizu, H. Yasuoka, T. Imaét al, J. Phys. Soc. Japabi7, 2494
vl 27 5.115 5.254 (1988.
yyl2m 6.136 6.593 4C. H. Pennington, D. J. Durand, D. B. Zax al., Phys. Rev. B37, 7944
Y2 2.409 2.254 (1988.
5M. Takigawa, P. C. Hammel, R. H. Heffnet al., Phys. Rev. Lett63,
1865(1989.

SE. I. Yureva, V. P. Zhukov, N. |. Medvedeva, and V. A. Gubanov, Phys.
. ) . ) _ Stat. Sol. A146, 557 (1994.
holes per copper site. It is precisely because of this that it'c. ambrosch-Draxl, P. Blaha, and K. Schwarz, J. Phys. Cond. Métter

was possible to match the distribution of charges and di- 4491(1989.

poles, needed to explain the NMR/NQR data, with the pho-"; Blafia, D. J. Singh. P. 1. Sorantin, and K. Schwarz, Phys. Ret6 B

toem|SS|on data' °J. Yu, A. J. Freeman, R. Podloucky al, Phys. Rev. B43, 532(1997).

The principal features of the proposed band structure ar®@a. yu. zavidonov, M. V. Eremin, O. N. Bakhareat al, SFKhT3, 1597
the following: in the dielectric YBsCu;Og the formal va- ll(1990_. _
lence of the copper ions is 2 for @) and 1 for C¢1). From - Shimizu, J. Phys. Soc. Jap&8, 772(1993.

. K. Hanzawa, J. Phys. Soc. Japé® 3302(1993.

the standpoint of the band structure, the lower Hubbard copr,,, Brenig, Phys. Report251, 153 (1995.
per bandkeq in a chain is empty, while the barig, in a plane  4m. v. Eremin, R. Markendorf, and S. V. Varlamov, Solid State Commun.
is completely filled. With doping, because of the strong ex- 88 15 (1993.
change interaction between copper and oxygen holes in the’iﬂés\/(i ggzm'”' S. G. Solov'yanov, S. V. Varlamat al, JETP Lett.60,
plane, a new Siﬂgl(—?t ban_dpdzvpd_ eq develops in th_e 1BM. V. Ererﬁin, S. G. Solovjanov, and S. V. Varlamov, J. Phys. Chem. Sol.
plane which is also filled with extra holes. At the same time, 56 1713(1995.
some of the extra holes begin to fill tkg band in the chain. ZL M. Roth, Phys. Rev184, 451 (1969.
As a result, the effective charge at a(Cuposition begins to ,J- Beenen and D. M. Edwards, Phys. Rev52 13636(1995.
. N. M. Plakida, R. Hayn, and J.-L. Richard, Phys. Rev.5B 16599
rise, but does not reach 2. (1995.

This picture of the band structure answers our questioroN. ulut, D. J. Scalapino, and S. R. White, Phys. ReG(B7215(1994);
regarding the symmetry of the extra holes. In fact, why d021Phys. Rev. Lett73, 748(1994.
the oxygen holes in the copper planes have-aharacter? P. Allenspach, U. Staub, J. Messtt al,, Progress Report, LNS 154, Labor

L . .. flr Neutronenstreuung, ETH Zich (Januar-Dezember 198(p. 22, 23.
This is hard to understand from the conventional standpointz, ', Egorov, H. Luetgemeier, U. Poppe, and R. HojczyKExt. Abstr. of

since their Coulomb repulsion from neighboring copper the xxviith Amp. CongKazan, Aug. 2128, 1994, p. 953.
holes is much stronger than from-holes. Nevertheless, *K. Gofron, J. C. Campuzano, H. Dingt al, J. Phys. Chem. Soll54,
photoemissioff and NMR data showed that the holes are 24&?\‘3’[](;'?;% pellegrin, P. Schweiss al, Phys. Rev. E5L, 8520(1965
mainly in .‘T'qrbltals' And only in this Case_ can we describe M. V. Eremin, R. Markendorf, and S. G. Solovjanov, Z. Naturforsch9a
the electric field gradient at the oxygen sites. Our comment 379 (1994.
on this is the following: among the oxygefb_states the V. V. Nemoshkalenko, V. Kh. Kasiyanenko, L. I. Nikolaev al,, SVKhT
-orbi i -orbi 3, 851(1990.
™ ?I’glta|sl aCt}:Jalg “g lt)elow ther OrblgaB{ aSthhaS beﬁn 27p_ C. Schmidt, A. Weiss, and T. P. Das, Phys. Rel985525(1979.
noted ¢ sg\_/v ere. but, as opposed 1o he earlier »g p pmahan, Solid State Commu83, 797 (1980.
discussior’® in our case the ordinary oxygen band is empty,?°p. C. Schmidt, K. D. Sen, T. P. Das, and A. Weiss, Phys. Re&2,B167
while extra holes fill the newly createt},q band, which lies 30(198?- . A (1964
; . Clementi and A. D. McLean, Phys. Rel33 419 (1964).
below the OXygen band. This band appears because of Stro@é. Clementi and C. Roetti, Atomic Data and Nuclear Data Tabled 77
electr.on correlatlc_)ns. _ _ _ (1974.
Finally, we wish to mention the importance of interpla- 3?A. D. McLean and R. S. McLean, Atomic Data and Nuclear Data Tables
nar tunnelling. If we neglect it, then the number of holes_ 26 197(29833- A
arriving at a single site of the unit cell increases by roughly34,\P/|'. Ceé?emfn Pogf.' sapéli?o(;?s?éeso (1890, [Opt, SpectrosqUSSR
a factor of two, since in this case there are two degenerategg 502(1990].
bands from two planes, each of which must be filled to the®0. V. Lavizina, Fiz. Tverd. Tels7, 2247 (1995 [Phys. Sol. Stat&7,
saddle point of the singular peak in the density of states%izéggggg]- s 4 Sei. TechBops (199
However, the distribution of charges and dipoles obtained for > B- G0cdenough, Supercond. Sci. Techpi26 (1990.

this distribution of holes cannot produce reasonable agreewanslated by D. H. McNeill

86 JETP 84 (1), January 1997 M. V. Eremin and O. V. Lavizina 86



Theory of retardation of magnetic domain walls in rhombic magnetic materials
E. G. Galkina, B. A. lvanov, and K. A. Safaryan

Institute of Magnetism, Ukrainian National Academy of Sciences, 252680 Kiev, Ukraine
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Zh. Eksp. Teor. Fiz111, 158—-173(January 1997

We calculate the retardation of a magnetic soliton describing a magnetic domain wall by using
the generalized phenomenological theory of relaxation. We show that in this theory,

based on the real dynamical symmetry of magnetic materials, the dissipation function has a
different structure for high and low wall velocities. Finally, we calculate the viscous force of the
wall in the Walker model and show that certain features, not discussed in the literature,

emerge even when the generalized theory is applied to this simple model. In particular, the
dependence of the viscous friction force on the wall velocity may be highly nonlinear and regions
of unstable motion may appear. €97 American Institute of Physics.

[S1063-776(197)01101-3

1. The problem of the dynamics of topological solitons Hereg is the gyromagnetic ratio, the vectbrrepresents the
that describe magnetic domain walls occupies an importargffective field of the ferromagne{F=—4W/SM, with
place among the nonlinear problems of the physics of magW=W{M} the ferromagnet’s energy written as a functional
netism(see the reviews in Refs. 1%4An important param- of the magnetization vectir\, is the exchange relaxation
eter in describing the dynamics of solitons is the viscousonstant, and\ is the tensor of relativistic relaxation con-
friction force f that is exerted on a soliton moving with a stants(see below and Ref.)6 We base our reasoning on
velocity v, i.e.,f=—n(v)v. Calculations of the viscous fric- expressions of the type
tion coefficientn(v) for a magnetic domain wall based on
the Lant_jau—Lifshitz equation With t_he usgal relaxatior_l term W{M}:f dr[ f(M2)+ @ (V-M)2+wy(M) |, )
of the Hilbert type lead to contradictions with the experimen- 2

tal data(see a discussion of this aspect in Refs. 2 and 3YVherea is the inhomogeneous exchange constitil2)

) 6 ; ;
Bar'yakhtar® suggested a generalized phenomenological ; . : ; ) L
y gges 9 P o9 describes the isotropic exchange interaction determining the
theory of relaxation in ferromagnets based on allowing for o .
. i . . absolute value of magnetization, ang(M) is the energy of
the real dynamical symmetry of magnetic materials. He in-

troduced relaxation terms of different origiaxchange and relativistic interactions, which incorporates the anisotropy

L . . . energy and the energy of the demagnetizing field. With al-

relativistic), which resulted in correct expressions for the de- ? - .
. lowance for(2), we arrive at the following expression for the
pendence of the magnon damping constant on the wave vec,, ~ ."~ )
. ; . . effective fieldF:

tor and made it possible to describe several experiments in
the dynamics of magnetic inhomogeneities. Bokeival.! df AW,
noted that this theory allows for a quantitative description of F=— am m+aV2M — M’
the results of their measurements of the dependence of the
viscosity coefficient of a magnetic domain wall on the where m=M/M. Clearly, F has a longitudinal part and a
strength of a magnetic field perpendicular to the easy @«is transverse part:
specific calculation can be found in Ref. &xchange relax-
ation, considered in Ref. 9, made it possible to explain the F=Fm+F,, (m-F;)=0. (4)
results of the experimerifson retardation of a Bloch point.
These facts suggest that the generalized theory can provide a

()

The expression foF, can be reduced to

guantitative description of nontrivial relaxation phenomena. 5 5 W, df
We calculate the viscous force of a magnetic domain ~ Fi=— gyt eV'"M—a(V-m*™M—{m—&|=— -
wall in the Walker model and show that certain features, not
discussed in the literature, emerge even when the generalized 9 Iw
theory® is applied to this simple model. In particular, we FaViM = M’ ®
find that the dependence of the viscous friction force of the ] i
wall velocity may be highly nonlinear and regions of un- Where we have introduced the quantity
stable motion may appear. o
2. In accordance with Bar'yakhtar's resufté we write w= = M23(V-m)2+wy(M). (6)
the Landau-Lifshitz equation for the magnetization vector 2
M of a ferromagnet as This is an expression for the energy of a ferromagnet and is

important when one writes the Landau-Lifshitz equation
without allowing for variations in the length of the magneti-

oM
_— - 2 2
9[MXF]+gMo[AXF]—Aa"gMoV7F. (1) zation vector.

ot
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Let us discuss the structure of the relativistic relaxatiorwherex(m)=(m-Am). For the case wheng, = &, the con-
term. Since here we consider ferromagnets whose symmettyibution of relativistic relaxation to the right-hand side of
is no lower than rhombic, the tensak can be chosen in Eq. (10) is nil.
diagonal form,A=diag(\«,Ay,\;), with thex,y,z axes di- Note that no approximations have been introduced with
rected pointing along the principal axes of the ferromagnetthe exception of formul&9) for F, . The only requirements

For a uniaxial ferromagnet,=\,=X\ and, if we allow only
for intrinsic relaxation processes,=0, in view of conser-
vation of thez-projection of the total magnetizatiérBut if
impurity relaxation(say, on rare-earth ions for which the

are <1 and\(a/A)?<1 (whereA is the characteristic in-
homogeneity scaje which are met by almost all magnetic
materials.

If only these inequalities are taken into accoumt,is

nearest-neighbor symmetry is lower than the uniaxial but théound by solving an inhomogeneous linear differential equa-

different nonequivalent ion positions are distributed with
equal probability is taken into account, the properties Af
are different. For instances, the symmetry of the terséor
ferrite garnets is cubic, i.eN,=\,=\, (see Ref. 11 For
this reason we select the tenstrin the form

A=\ diag1,1¢), (7)

with the value of the constantspecified later. Equatiofi)
makes it possible to write the dissipation function of a ferro-
magnet as a functional of the effective fidid

Q= % gMj dr{\iFiF+Xea%(V-F)2}. (8)
Equation(8) is not very suitable for analyzing the retar-
dation of a magnetic domain wall since the dissipation func
tion Q is defined in terms of the effective fieE rather than
in terms of the time derivative of magnetization. To calculat
the rate of dissipation of the domain-wall energhyg/dt=
—2Q, we must expresk in terms ofm and its derivatives.
In view of (4), F can be written as the sum of two terms

corresponding to the transverse and longitudinal magnetiza-
tions. Calculating the transverse component in the principal
approximation in the relaxation constant only requires using

the nondissipative variant @fl), with the result that®

1
FJ_:§

om
mXxX—

p 9

The longitudinal component df is related to variations in
the length of the magnetization vectdd, so that the
Landau—Lifshitz equation without dissipation is of no help.
The point is that while in the nondissipative approximation
Eqg. (1) has the integral of motiok?>=M3=const and can be
written as an equation for the unit vector, with a dissipa-
tion term of general form one must also allow for variations
in [M|. As noted in Refs. 8, 9, 12-14 and as demonstrate

(S)

tion whose right-hand side is determined not only by the
nature of the solution for the unit vectar, but also by the
variation in the length of the magnetization vector. For the
majority of solitons without singularities there is an addi-
tional small parameter, the variation of magnetization in
magnitude,u=M — My<<M, (actually the small parameter
is the longitudinal susceptibility). Taking all this into ac-
count, we can writeyM/dt in general form in terms of the
function w introduced by Eq.6). To simply matters, we

write the energy of homogeneous exchange interaction as
1 d?f(Mg)
2 d’m,

f(M)—f(Mo)= (M—Mg)?

1 2
a(M_Mo) , (11)

where we have allowed for the fact thatf/dM=0 at
M =M, and introduced the longitudinal susceptibility p&
ferromagnet under homogeneous magnetization.

Using Eq.(5) and assuming thag>1 and aVZu<uly,
we can writeF in terms of u and gw/JdM as follows:
Mo oW
X oM’

Substituting(12) into Eq. (10) yields the desired equa-
tion for finding F;, at M~Mg:
oM o} i <m~A )
am

|
e

Here we can seM =M, in all the parts of the equation.
Thus, solving the equation fdf, and calculating the contri-

@2V 2F +[A(m)+\ea%(V-m)?]F,
oW

1

g

om
mXx—
at

T gMg at

Aed?

(13

Bution of F, to the dissipation function is equivalent to al-

below, the calculation o constitutes the main problem in lowing for the variations ifM|

analyzing the dissipation of solitons within the generalized

phenomenological approach.
3. The equation fofF; can be obtained by multiplying
into Eqg. (1) and using the explicit form o, . The result is

2¢2 2 2 1 M
—\aaVv F”+[)\(m)+)\ea (V-m) ]Fuz_MW
+1 A x&m A all V2 Xam
g | m A mxZEl | e o | m v mx |
(10
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The same equation for the case in whigh= 8M?2 and
Ax=Ny=\, has been derived in Refs. 14 and 15. Generally,
when

a
W=§M2(V-m)2+2 Wo(M) (14)
n
(w,(M) is the nth-order anisotropy, withw,(M)xM"), we
have

1
. 2 —
M aM(V-m) +M En nw,(Mm).

(15
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Let us now examine Eq13), which is central to the ) am om

subsequent discussion. As we proceeded from(Edor M q=A(M)Fi+ — mxﬁ A mXW
: . . . g
to Eq. (13), the problem acquired not only spatial dispersion
but also temporal dispersion. Indeed, as we show beffgw, 2F, am
changes dramatically as we go from low soliton velocities, e m-Almx—-
v<wv., to high velocitiesp>uv, with v, the characteristic
i i ionshi Jm

value of the velocity defined by the relationship ~ N2 m- V2 mxﬁ )]

Pe T maxA\(M)Fy, hea®(V-m)F, 1
gMo ¢ +)\ea2((VF”)2+F,2(V-m)2+?
Ne@?V2F ).

e H} am 2

The value ofv for a magnetic domain wall in a ferromagnet x| V- mxﬁ ' (19)

will be specified later.

Bearing in mind the equation fd¥,, we can now for- The dissipation function density contains terms quadratic
mulate a complete approach to describing the dynamics and F; or dm/dt and terms bilinear ik and dm/t.
relaxation of magnetization perturbations to first order in the ~ To analyze the relaxation of an arbitrary soliton of the
small parameters and y. The approach is based on writing simple-wave type by using Eq€l3) and(16), we must first

the equation for the unit magnetization vector which in
view of Eq. (1) has the form

om

p —g[mMXF]+gMo{AF—m(m- AF)}

+gMg\ a?{m(m- V2F)— V2F}, (16)

where in the dissipation terms

1

g

and F, is determined by Eq(13). Actually, the system of
equationg13) and(16) contains three independent equations
for three quantities, for which we can seldgt and m or,
more preciselyF, and the angular variables of vector, the
anglesé and ¢:

om
mXx—

F ot

+mF,

m,=cos#, my=sinf cose, my=siné sine.

17

establish its structurm=mg(§), with £&=r —vt, as a solution
of the Landau-Lifshitz equatiof16) for the unit vectom at
A=0 and\.=0. Then, using the explicit form ahy(&), we
must build Eq.(13) for F,. Solving this equation, we can
write the explicit form of the dissipation function solely in
terms of my(&) and dmgy(&€)/d¢. After this we can use the
formulaf=—(2Q/v?)v to calculate the friction force acting
on the wall.

Equation(13) is a linear partial differential equation with
a right-hand side, and its solution can always be written as
the sum of the general solution of the corresponding homo-
geneous equation and a particular solution of the inhomoge-
neous equation. Clearly, the general solution of the homoge-
neous equation contributes nothing to the dissipation
function, so that any particular solution of Ed.3) will do.
But finding such a solution in the general case is a difficult
problem. Various approximate solutions of this problem
have been discussed in Refs. 8, 9, 12—-14. The problem sim-
plifies considerably if the exchange relaxation constant is
small in a certain sense, i.e.,

Using this system of equations, we can analyze the dis-

sipation of arbitrary nonlinear magnetization waves.
Bar'yakhtaret al!* examined two-parameter solitons of the

bion type and non-one-dimensional solitons, including topo-
logical solitons. But since we are interested only in simple

traveling-wave solutiondV =M (r —vt), where v=const is
the wave velocity, calculating the friction force requires only
writing the formula for the dissipation function. The quantity
Q determines the energy dissipation rate, and for simpl
traveling-wave solitons the friction force is

2
—n)v, n(v)= U—?

f

(18)

Employing(9), we can write the formula for the dissipa-
tion function in terms of, m, anddm/dt as

_ gMg
Q_T f qdr,

where the dissipation function densityis given by a rather
cumbersome formula:

89 JETP 84 (1), January 1997

Ne@2(V-m)2,  Na%(VF))?FZ<\. (20)
Such an approximation reflects the actual situation for
arious ferromagnets: weakly anisotropic yttrium iron gar-
nets, and epitaxial films of ferrite garnets in magnetic-bubble
devices. The physical reasons for the smallness are different

for these cases: for yttrium iron garnets it is the smallness of

V

éhe magnetization gradients in the magnetic domain wall,

and for materials with magnetic bubbles it is the large value
of the constanh (see Refs. 8, 12, and 13

If the conditions(20) are met, Eq(13) for F, simplifies
and becomes first order in time:

X &FH_H\ o X J | ow +1 A
gM ot T MNMFEgNe Gt o Tg || M A
om
_ — 2 . 2
X P ) Al m-V [m
om 21
it (21)
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If the soliton’s velocity is low,y <v., and the charac- Note that this result, which is important for describing relax-

teristic value ofv, is given by the formula ation of spin waves in ferromagnets with continuous degen-
eracy(ferromagnets of the easy-plane typean only be ob-
gMAA : . . ) .
V= , (22)  tained ifF is consistently taken into account. If we use the
X formula N [mX(am/at)];-[mX(dm/at)],, the term with
whereA is the characteristic soliton width, we can drop the (d¢/dt) is present inQ, , for instance, in the cone phase of
term with 9F /3t are write the solution explicitly: an easy-plane ferromagrfetyhich leads to incorrect resuits

for the spin-wave damping constant.

Fi=— 1 X 9w M mxa_m The exchange dissipation functi@), written in terms of
Nigkmimy | gMg dt | dMg o] angular variables can be found in Ref. 14, and we do not
write it here. We merely note that in the limit of weakly
om excited states of an easy-plane ferromagnédien 6— /2
—_ 2 . 2 _
Ne@”| M-V mx 0 )} (23 andvVg—0),
Then the formula for the dissipation function in the case of M, dg]\2
slow variations of the magnetizatigsay, when the domain Qe—>5 f d (V 3 ) ,

wall velocity v is lower thanuv) can be written in terms of

?nly ngn(_j its (rj]envatlves,.Wltr}oulFHh. Pc'j‘%gg'”gﬂ ”]] the o Q. has the same structure as the dissipation funegign
orm (23) into the expression for the dissipation function ;"0\ G o o

density and performing straightforward but cumbersome

transformations, we get aul\2
Mg g am am Qe'ocj dr V{E ) ’
Q—E r{ Nik mXE .' mXE
! k with u being the medium’s displacement vect®ialperin
1 aml \? and Hohenberjd selected this form of dissipation function
- m A mxa_t for a hydrodynamic description of spin waves in easy-plane
e k magnetic materials.
1 x o[ ow]\2 Finally, if we allow for (23), the third term inQ can be
P v, SR .
N | My 7t | Mg ) written as
M 2 d
am __0 X —_ 2
+\ea%| m-V? mx—- ] (24) Qu 29 Jdr{ \ si? 6+, cof GJ{ at | 2V O
. . . 1 2
Here we have_kep_t only the dlrgct contribution of the ex- +a Si? O(Ve)2+|— 2 nwy(6,9)|| , 27
change relaxation, i.e., we have ignored terms that are small Mg/ n

due to (20). Thus, when magnetization varies slowly, the
dissipation function consists of three terms: wherew,(6,¢) describesith-order anisotropy. This term de-
. termines the contribution of variations in the length of the
Q=Qr+QetQy, (25 magnetization vector to the soliton dissipation. Bar'yakhtar
each of which allows for a simple physical interpretation.et all® were the first to examine this contribution, which is
The quantityQ, is determined by the first two terms on the nonzero only if the longitudinal susceptibilify of the ferro-
right-hand side of Eq(24), is proportional to the first power magnet is finite. In this terny’/\ acts as the “effective re-
of the relativistic constank, and can be interpreted as the laxation constant.”
direct contribution of relativistic relaxation. Note, however, Note that the same combination emerges in the descrip-
thatQ, is not equal tov; F  ;F  (the first term in(24)) and  tion of longitudinal or slow relaxation in magnetic materials
contains contributions frorf; (the second term i§24)). If with rare-earth ions both for linear excitations, or magntns,
we express the magnetization vector in terms of angular variand for mobile magnetic domain walls.

ables and select the tensarin the form diad\,\,\,), then With all the difference in the physical processes in these
Q, can be reduced to problems, there is a lot in common. In both cases relaxation
M 96\2 occurs because the dynamical variafthee normalized mag-
QrZ—O dr()x(—) netizationm in our case and the iron-sublattice magnetiza-
29 at tion Mg in Ref. 1] takes the variable with pure relaxation

A, Sir? 6 9p\2 dynamics(the IengthM of the.ma'gnetization vectq_r apd the
+ NS 0+ x. cod 0 ( ) ] (26 rare—earth—sublgtthe magr!etl'zatlfhmR)' out of eqwllbrlum
z Here the contribution to dissipation increases both with the
At A=\, when\; =\, the expression in braces is corresponding susceptibility and with a decrease in the
M(061at)>+sir? 6(aplat)?), and this expression can be re- value of the relaxation constant The effective relaxation
duced to the dissipation function in Hilbert form. But if constant inQ, is proportional to the square of the small
\,=0, Q, contains no term withide/dt)? for all values ofé. parametely, but it also contains the small paramexein the

at
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denominator. Hence this contribution to the retardation of the ~ With p—0 we can ignore the variations in the thickness
magnetic domain wall in ferromagnets with low dissipationof the magnetic domain wall during the wall's motion and
can become significant. assume thad = \/a/B. But if p>1, under a change in the
4. Now let us calculate the friction force acting on a wall velocity the wall thickness changes considerably, from
moving topological soliton, the magnetic domain wall in aA = Ja/Bat v=0 to Ay = JalB' =AlJp<Aatv=v,.
ferromagnet. In the simplest model of a ferromagnet, which  Let us calculate the friction force acting on a magnetic
allows for an exact solution in the nondissipative approxima-domain wall of type29) whenv<v., i.e., when we can use
tion, we examine the relaxation of the magnetic domain wallhe dissipation function in the forif24)—(27). The contribu-
at low and high velocities and show the effect of temporaltion of relativistic relaxation for this solution is completely
dispersion on the soliton relaxation in the process. independent of the relationship between the parameters
Studying the dynamics of a magnetic domain wall that isand X\, in the tensor of dissipation constants, since at
moving with a considerable velocity is a fairly complicated ¢=constQ, is given by the same expression as in the stan-
problem for an arbitrary model of a ferromagnet, and thedard theory with the relaxation term in the Landau—Lifshitz
general solution to this problem is unknown. The only modelor Hilbert form:
for which there is a known exact solution describing a mag- INM
netic domain wall that moves with any velocity lower than n(v)= r’o
what is known as the limit velocity is described by an an- 9A(v)

isotropy energyw, that is a quadratic form in the magneti- Here and in what follows we use the notation
zation components? We use the expression characteristic of A(v) =A[@y(v)], Where go(v) is defined in Eq.(30). For

(32)

a rhombic ferromagnet: exchange relaxation the same result can be obtained by using

1 M2 Egs.(41) and(43) of Bar'yakhtar's papelr’,in which case the
Wo=— (BM>2<+ﬁ'M§)= —0,8 Sir? 6(1+p sir? o). thicknessA of the magnetic domain wall must be replaced

2 2 by A(v):

(28)
, o 2\ ea’Mg
Let us send the axis along the easy-magnetization axis ne(v)= 392%0) (33
v

and they axis along the hard-magnetization axis, so that

B'>p>0. The angular variables are chosen in the ordinary  The termQ, given by(27) can be written in the form

manner(see Eq.(17)). In writing formula (28) for w, in 64M > 5

angular variables we have=(8'—p)/8. Note that(28) is fo=p(0)v, 7(0)= —0&,

also used for uniaxial ferromagnets if the energy of the de- ¥ ¥ X 159A(v) (\)

magneyzmg flel_ds is Faken into account in the Io@Ajnter) 7do Sin® 6 co2 ¢

approximation, in which casp=4m/B8=1/q, whereq is the (\)y=— i i —,

quality factor introduced for materials with magnetic bubbles Jgdé[sin® 6 coS F][\ sir? §+\, cos’ 6]

(see, e.g., Refs. 2 and.4 (34)
As shown by Walker(see the reviews in Refs. 114 with (\)=\ at A=\, and(\)=12\/5 at \,=0.

with the energy given by28) the Landau-Lifshitz equation The quantitiesz, (v), 7.(v), and 7,(v) can be inter-
has an exact solution of the forg=g@,=const andd=6(¢),  preted as the nonlinear viscous-friction coefficients for the
with é&=x—wvt, where magnetic domain wall. Fg#<1, a condition characteristic of

standard materials with magnetic bubbles, Ahes.v depen-

cos = - tanh 3 L A(po)= A . ' dence is weak, and 'in the principal approximatiorpiboth
A(¢o) V1+p sir? ¢ 7.(v) and 5,(v) are independent af.

But if we examine the case in whigi®>1 (which corre-

_ \F sponds to an easy-plane ferromagnet with a weakly aniso-
A= E (29 tropic plane of soft magnetization and can by used to de-
scribe yttrium iron garnels 7. (v), »7,(v), and especially
7.(v) are velocity-dependent due to thevs.v dependence,
and the values of;, and 7, atv =v,y are much higher than at

The value ofg, is determined by the velocity:

v p Sin ¢ cos ¢ 30 o:
= . v=0:
gMoVaB  V1+psi? ¢
; . . . nr,X(UW) 12 77e(Uw) _ap
Equation(30) has a solution only ib <v,, wherev,y is W—p  Tp0)
the Walker limit valuethe Walker limi), which vanishes in bX _ € . .
the limit p—0 (i.e., for a purely uniaxial ferromagneand ‘For the velocityv of forced motion of a magnetic do-
reaches its maximunfwhich coincides with the minimum main wall in a driving fieldH parallel to thez axis we can
phase velocity of magnopsvhen p>1: write
vw=gMovVaB(V1+p—1) vn(v)=2MgH,.
, — , By solving this equation we can easily build the desired
=gM (B'12B)Nap, B <P, (31) dependences=v(H) for various relationships among the
0 vapB', B<pB'. constantg, \, and\ ,(a/A)? Clearly, forp<1 thev vs.(H,)
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6
47 BMg sin { cos{

0
it

exchange and relativistic relaxations are indistinguishable.
But whenp>1, thev vs. H, dependences, with one of the
contributions(exchange or relativistjcbeing dominant, dif- 0 diyr (i)
fer considerably(Fig. 1). Note that for this nonlinearity to X{ F{L sin ¢
affect Eqs.(32)—(34), which were obtained foo<v, the

dependence is essentially linear, and the contributions of the ) f
F(0)=—

following inequalities must be satisfied simultaneously: This solution can be shown to satisfy the conditions
F,(0)=0 andF(m)=0, i.e.,F, vanishes far from the domain
p>1 and vy<uc. wall. However, the asymptotic behavior Bf(¢) asé— is

not the same as that @——oc. This is obvious, since Eq.
(36) and its solution possess a certain symmetry under the
substitution of —¢ for ¢ only in two limiting cases:
Fi(§)=—Fy(—¢& for v=0, A#0, and 1k=0; and

5. Now let us examine the case in which the velocities
are not lowy=v. . Here the expressiof23) for F, and Egs.
(25—(27) for the dissipation function are inapplicable, and

one is forced to solve Eq21) and calculate the dissipation F\(£)=F,(— &) for v+0, \=0, andx=0. Using the formula

f_unc'_uon _by using the _genere_ll expres_sn(drﬁ)). As noted ear- for F(6), we can calculat® as a function of the domain wall
lier, in this case the dissipation function cannot even be rep-

. . velocity over the entire velocity range froo= =Uw-
resented by a sum of three terms liRe, Q,, andQ,, since eloc ty 0 © the entire velocity range from=0 tov =uvy, .
Lo . ) <X . It is impossible, however, to express the result by a single
the dissipation function densifit9) contains terms quadratic . . . . ;
. o : analytic formula, so we limit our discussion to analyzing the
in F, or gm/gt and terms bilinear irfF; and dm/ot. asvmptotic behavior in velocit
If we use the Walker solutiogp=const andd¢/dé=0 ymp Y

and select the tensor of relativistic dissipation constants in Clearly, what is important here is the value of the pa-
the form A=\ diag1,1¢), all terms in(19) that are bilinear rameter k=gMo\Afuy, which can be represented by the

: . ratio of the domain wall velocity to a certain characteristic
in F; and dm/édt vanish. Indeed, ) . L :
velocity v, (derived above from qualitative estimates

om
mXx—
ot

)zi—f()\—)\z)cose sir? 6. (35) K:%, UC:gMo?\A. 37)

X
The fact that the term corresponding to exchange relaxation, |f v<v., We can write the solution as a series expansion
(m- V{mx(am/dt)]), vanishes for the Walker solution has in powers ofv/v, . In the linear approximation we easily find
been noted in Ref. 15. The same is true of B@): all terms  that
on the right-hand side vanish except {t)[ dw/dM]. With
allowance for these simplifications, we can again write the _ vx :
dissipation function as the sum of three terms of the type " gMoA(v)N(O) 4Mof sir? 6 cos 6,
(25, Q=Q;+Q+Q, . FurthermoreQ, and Q. have the
same form as when<v,.

Note that the above is true only for a specific Walker
solution, since the coefficient ¢¢/dt)? in Q, can be shown
to have different forms for high and low velocities.

The expressions fo, atv<wv. andv=v, differ con-
siderably. Allowing for the specific form of the Walker so-
lution, we can write Eq(21) for F as follows:

ma

which coincides with the result that follows fro(@23). Plug-
ging this expression into the formula fQr, , we find that the
friction forcef, is proportional to the domain wall velocity
and can be written in the forr{84).

Whenv>v., there is another way of simplifying Eq.
(36). If we drop the small factorkF,, we can write
Fi(8)=—-2B8Mg sir? 6, from which we find that the dissipa-
tion functionQ, is given by

_2X |:'+)\(¢9)|::&[2,8M si? 6]’ (36) 9" 2 i
- T 0 : Q=3 | M0)4B MoA(v)sin® 6 dé.
where\(6)=\(sin §+¢ cos 6), and the prime stands for the In this caseQ, is velocity-independent, except for the
first derivative with respect tg. dependence originating frol(v). Hence the friction force

If we assume here that—0, we can use the simple f for >y _ is proportional to -
formula (23). However, the Walker solution makes it pos- X
sible to do a thorough analysis of the problem for all veloci- % vi * 1682x*MoA(v)
tiesv<wv,y. Indeed, if we proceed from differentiation with X" T e T T 5gA
respect to¢ to differentiation with respect t@ via the for-
mula A(d#/d¢) =sin 6, we can write the above equation as:

(4N+Ny). (38

At v=~uv, the values specified b§4) and(38) coincide
in order of magnitude. Thus, if the limiting domain-wall ve-

dF, «(6) _ locity v\w>v,, the contribution to the force of friction of the
a0 sine —4BMg sin 6 cos 6, domain wall due to variations in the length of the magneti-
zation vector exhibits an anomalo(tsy comparison withf,
wherex(6)=gM\(0)Alvx . andf.) dependence on the domain wall velocity. This depen-

This provides us with the explicit dependenceFobn #  dence cannot be reduced to replacix(@) by A in the for-
in the form of integrals. The solution of E¢36) has the mulas obtained fov —0 and is determined by different for-
form mulas forv=v. and forv<wv.:
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vlv v g 77;

i f=v(n+7ne)+ : (42)
1.0 v
| r e
08} Thus, whervy>v., we have two linear sections in the
f vs.v dependence;<v, andv.<v<vyy,, which are char-
] acterized by different slopes.
0.6 . .
] These effects lead to special features in the dependence
04l of the velocity of forced motion of the domain wall on an
’ external driving fieldH, . If we assume that the driving field
| is directed along the axis, the velocity of the wall's stable
02 motion is determined by the equality of the external force
(the magnetic pressure MH,) and the friction force
0 1 2 3 H, f(v)=fe+.fr+fx. Thewv vs. HZ. dependt_ance is determined
by the ratio of the characteristic velocitieg, andv...
FIG. 1. Domain wall velocity as a function of the driving fietd, (in For vw<uv, thev vs H, dependence is always mono-
relative unit3 when either relativistic or exchange relaxation is dominant tonic, and forp<<l it is close to linear. But ifp>1, there
(the labelsr ande) for p=3. appear nonlinearities in this dependence associated with the
=A vs.v dependence, and as-uy, the most rapid increase
is observed in the contribution of exchange relaxatisee
; o€y Fig. ).
f= 277)(' e (39 Forv>v. the nonlinearity makes itself felt differently.
X vcﬂ;/v, V>Ue. Forv<v. andvy>v>v, thev vs. (H,) dependence is lin-

Such retardation behavior of the domain wall for v, ﬁ%rr’] o;tnh deufz rILLTot/IvZ tzgg c?t:Jetst:e ;gcr)bg'g‘:* 'fh(:ffsg?gé fc())rf
" [

can be described as “turning off” the corresponding contri-" =" . . .
bution (Fig. 2), and is a manifestation of temporal dispersion.* —dv/de IS _greater_t.h.an that far<wv, (see Fig. 3 W.'th
Ehe difference in mobilities fov <v. and forv>wv being

The effect emerges because two fundamentally differenI in the int diat tive diff tial
modes of motion can be distinguished in the motion of the2r9e, In the intermediale range~v. hegative ditterentia

magnetizatioM =M m: the weakly dissipative dynamics of tthb"t'ty é‘* :dlt)./dHme'“;ISttbde apparentl,l gnd because gkflh's
m, and the diffusion ofu=M — M. In studying a nonlinear € steady motion of a flat domain wall becomes unstable.

wave of a domain-wall type with obvious localization of 7. Our analysis has thus shown that in contrast to the

magnetization over distancasc ~ m two characteristic standarq dissipation theory., based on the _H|Ibert term, the
times are clearly distinguishable: the “dynamical” time generalized phenomenological theory predicts complex be-

Tayn=AX/v, and the characteristic diffusion time of perturba- havior of the friction force exerted on a domain wall as a

3
0

A(v)

A A
- o) _~—
A(v)%”e [A@)

tion variation, 7= /gMo\. Clearly, a comparison of these function of the driving field_. Whgt behavior is actually rea!— '
times leads to the estimate of described above. The non- ized depends on the relationship between the charactensnc
linearity in thef, vs.v dependence affects the dependence OP?ratmfte)\rs, pn(;n;zr;)l\w\_,\r,hand lfc’ an? t’;}he relaxat|ont con-
the velocity of forced motion of the wall on the fieldl, (Fig. Stants, Ae, an - 1he vajles of these parameters are
3). usually unknown ar_ld can vary S|gn|f|<_:qntly from crystal to
6. Let US now summarize the results of calculating th crystal. Here experiments play a decisive role. Let us now
. g the™. L .

. . . . discuss the possibilities of observing these effects.
retardation of a magnetic domain wall in the Walker model. Weak ferromagnets of the orthoferrite type serve as ex-
Forvyw<wv, the full friction force can be written as . . . :

cellent objects for dynamical experiments. Exhaustive data
B ) on domain-wall dynamics at velocities up to the limiting
f=vin ., (40 yajue (about 20 km %) in these materials have been ob-
tained by the Chetkin groufsee the review in Ref.)3Ef-
with 7Y the viscosity coefficients at=0, and its velocity fects of the type described above were observed in weak
dependence is described only by thevs. v dependence. ferromagnets at velocities much lower than the limit velocity
This dependence is important wher1 (see Eqs(29) and  (the “turning off” of a relaxation mechanism at velocities of
(30), but it is negligible whenp<1. In the latter case orger 200 m 5! and 500 m st in yttrium orthoferrite YFeQ
(magnetic-bubble materiglswe can write A(v) = Ao  and iron borate FeBS) respectively®). However, our theory
=\alpB. cannot be applied directly to weak ferromagnets. Further-
But whenvy>v. (in real magnetic materials both in- more, preliminary calculations show that a contribution of
equalities may hold for v<v, the f vs. v dependence is type y?/\ to the retardation of a domain wall is much smaller
described by the same expressions, in which we(ut)  for orthoferrites than for ferromagnets. A detailed anafysis
= W- Thus, whery>v. andv<v,, thef vs.v depen-  indicates that for weak ferromagnets of the orthoferrite type
dence is linear: the entire body of the data on thesijynamics of a domain wall
_ 0, (0, (0 moving with velocities from 1 km's" to the limiting veloci
P=olm™+ e+ my ] “D can bg described by a simple relaxation term g\’/vith a ts)i/ngle
Forvw>v>uv., however,y, is “turned off” and relaxation constant. For this reason we turn to ferromagnets.
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FIG. 2. The friction forcef, as a function of the domain wall velocity
(schematically for various limiting cases: curvg, p<1 andvy<uv. (linear FIG. 3. Domain wall velocity as a function of the driving field, (sche-
dependende curve2, p>1 andvy<uv. (nonlinear growth due to the factor matically) at p<1 andvy>uv. for weak (curve 1) and strong(curve 2)

1/A(v) is the same as fof,); and curve3, vy>v, (contribution off, is nonlinearities in thef vs. v dependence, which corresponds to a small or

“turned off” for v=wv,). large contribution off, (v) in comparison to that of, or f, respectively.
The section in curve corresponding to unstable motion is depicted by a
dashed line.

The Walker model is convenient because an exact solu-
tion exists that describes a domain wall moving at considervs. H, dependence described above should play an important
able velocity. The problem in describing experiments on theole. Unfortunately, the experiment described in Ref. 20 was
basis of this model is that most such experiments have beetone only for the linear mode of motion of the domain wall.
conducted for thin films of magnetic-bubble materiéis There are also two classes of epitaxial films of ferromag-
which twisted domain walls are realized.e., even at rest nets with magnetic bubbles in which the maximum velocity
the domain wall is not one-dimensiorfaln this case the of the domain wall is close t@,,. These are films with
considerations leading up to the limiting velocity differ quite strong anisotropy in the basis plane and films with a large
significantly from those in the Walker solution, with the lim- gyromagnetic ratiolg>6), i.e., close to the compensation
iting velocity being much lower than,,. Hence the objects point (see Ref. 2, p. 177, and the original work by Loginov
to which our theory might be applied are primarily magneticet al??. But usually in such materials the damping is domi-
materials in which the domain walls are one-dimensionalnated by impurity process.

and to which the Walker solution is applicaltfer instance, A highly promising approach to building a one-
the maximum velocity of a domain wall should coincide with dimensional domain wall is to use an external magnetic field
vw)- H, directed at right angles to the easy-magnetization axis of

For the described effects to show up, one more criteriorthe ferromagnet. The valublf at which twisting is sup-
must be satisfied. Relaxation must be determined primarilpressed can be determined from the termination of the sharp
by intrinsic processes rather than by impurity processes, fononlinear increase in the domain-wall mobilip(H,); for
which the f(v) and v(H,) functions are different’ This  H, > H} this dependence is linear and the rate with which
criterion corresponds to the smallness of the effective relaxmobility grows is smaller. Usuallfif is close to 47M (see
ation constanh. It is difficult to specify the exact criterion. Refs. 7, 21, and 24 For values oH, that are not small, the
We merely note that a film with=0.38 exhibited> a typical ~ solution describing a domain wall moving at moderate ve-
Walker dependence af on H, characteristic of the simplest locity is not known, and a detailed discussion of this case lies
relaxation model, while for epitaxial films of a magnetic- outside the scope of the present wdgee Refs. 8 and 25
bubble ferromagnet with=0.01 and\=0.004 the contribu- We note, however, that if the field} is weaker than the
tion of the term withy?/\ reached, respectively, 90¢Ref. 7) anisotropy field in the basis plankgl,, then forH < H,
and 40%(Ref. 21, with a fairly small exchange contribu- < H, one can use the Walker solution to describe the struc-
tion. Let us discuss the feasibility of meeting these criteria. ture of the domain wall, with the result that here our theory is

There should probably be no twisting of domain walls in valid. Logunovet al?* studied the nonlinear dynamics of a
materials consisting of yttrium iron garnet wafers, wheredomain wall with a field in the plane and observed a nonlin-
one-dimensional domain walls can be prepared by speciaar dependence of on H, for both low and high values of
methods® According to Refs. 12 and 13, for yttrium iron H,.
garnets the contribution of non-Hilbert terms to domain-wall It will not be easy to observe the predicted effects. We
relaxation reached 90%, and the nonlinearity effect intthe do not know of any observations of the above-mentioned
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Nonlinear laser-induced regime of surface-electromagnetic-wave generation and
submicron periodic relief during liquid-phase photochemical etching of
n-111-V semiconductors
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Scientific Research Center for Technological Lasers, Russian Academy of Sciences, 142092 Troitsk,
Moscow Region, Russia

(Submitted 7 May 1996

Zh. Eksp. Teor. Fiz111, 174-198(January 199y

This paper is devoted to an experimental study of the physical processes underlying the
phenomenon of laser-induced generation of periodic relief on the surface-1ib&V
semiconductors during liquid-phase photochemical or photoelectrochemical etching accompanying
the resonance interaction of surface electromagnetic W@E¥/9. The increments of the
exponentially increasing amplitudes of the dominant Fourier harmonics of the relief have been
measured at the initiglinear stage of the time evolution of the surface profile. It is

proven by comparing the theoretical and experimental results that the mechanism for forming
periodic structures that we have proposed is adequate. Ways of monochromatizing the
generated relief and controlling the line shape of the surface grating are studied. It is
experimentally detected for the first time that the nonlinear stage of the time evolution of the relief
is characterized, in accordance with the predictions of the theory developed by the authors,

by amplitude and phase oscillations of the first and second Fourier harmonics of the surface profile.
It is shown to be possible to generate relief that suppresses specular reflection from the

surface. A new nonmasked laser method is developed for forming high-quality submicron relief
diffraction gratings, combining a holographic method and a method involving laser-

induced relief generation during resonance excitation of SEWSs. Diffraction gratings with a period
of d=0.24-0.54um and a depth oh=0.1-0.2um over an area of 061 cm have been

created on am-InP surface. ©1997 American Institute of Physids$1063-776(97)01201-§

1. INTRODUCTION the action of one laser beam. A periodically inhomogeneous
intensity distribution appears on the sample surface because
Relief diffraction gratings are widely used in scientific of |aser-induced generation of surface electromagnetic waves
researCh, integratEd OptiCS, and fiberoptic Communication%L|G_SEV\/) and because these waves interfere with the inci-
Diffraction gratings have been used as a basis for systems f@fant wave. The phenomenon whereby periodic structures
injecting and extracting radiation from planar and fiber opti-fqm during LIG-SEW has a fairly universal character. It has
cal waveguides; ® semiconductor and fiber lasers with dis- peen observed during laser-stimulated pyrolytic etching and
tributed feedback and with distributed Bragg reflectorst? deposition of films(see Panchenket al’s review?? and the
optical filters, ****couplers and equipower laser-beam split- ;j;tions thereip during the laser generation of acoustic

:_erﬁ,, mdlu?mg iﬁf}?if"; s;f/Pghronlzmg: the {_ad|at|on Oftmm'waves on solid surfaces, and during the laser melting and
ichannel 1asers, Igh-etficiency polarization Converters vaporization of metals, semiconductors, and insulateeg

of Igser radiation for t%(if;nologmallcomplexes for the IaserRef. 23 and the citations thergirlt has been theoretically
cutting of metals® selective  detectors and

photodiodes®2?! etc. There are currently several methodsand'experimentally ;hov%ﬁ“‘”that the geqeration of rglief
for fabricating relief diffraction gratings on semiconductor gratings accompanying LIG-SEW can be induced during the

surfaces: electron-beam and ion-beam lithography, a photd[gwd—p.hase etching oh-lll-v semponductors.[The. re-
graphic method, etc. These methods assume the use ofViews listed as Refs. 22 and 23 mainly reflect studies con-

mask and are therefore complex and have many steps. Uﬁgrning the linear(initial) stage of relief formation. Refer-
like this conventional method for fabricating gratings. the€Nce 26 gives an exhaustive list of works concerning the

laser holographic etching of semiconductors is a maskles@onlinear stage, which i.s cha.racterized by the interaction of

method. Periodic relief is formed on a semiconductor surfacéhe generated harmonics with each othet. should be

by direct spatially inhomogeneous photochemical and pho»[opointed out that the LIG-SEW method is insensitive to vibra-

electrochemical etchinésee Sec. Rcaused by the interfer- tions. Nevertheless, we know of no work in which this

ence intensity distribution created by having two laser beamg1ethod could have been used to fabricate diffraction gratings

converge on the substrate surface. One of the main drawtomparable in quality with gratings formed by the holo-

backs of the method is that it is highly sensitive to vibrationgraphic method.

of the optical elements. This paper is devoted to an experimental study of the
Besides the holographic method, there is another methophysical processes underlying a new maskless method that

for the maskless formation of surface periodic relief undemwe have proposed for the laser-stimulated formation of high-
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quality submicron relief diffraction gratings on the surface of

the semiconductors-InP andn-GaAs during liquid-phase semiconductor ’/@ E,
photochemical or photoelectrochemical etching. This method electrolyte
(the modified LIG-SEW methgdis a combination of the  _ ___ _ _ ___ _ ____4__] E
holographic method and the LIG-SEW method and combines
the advantages of both methods. To provide a basis for the E,
method, we have studied both the linear and the nonlinear
stage of the time evolution of the relief during LIG-SEW. N b

Section 2 explains the photochemical etching mecha- <

nism of n-1ll-V semiconductors. Section 3 discusses fea-

tures of the formation of relief gratings on the surface ofFIG. 1. Diagram illustrating the bending of the valence band and the con-

n-InP andn-GaAs by the holographic method. The inﬂuenceduc_tion band c_Iose to an-type semiconductor—etchgnt interface, where
- . . E; is the Fermi level. The arrows show the separation of photogenerated

of laser-beam polarization on the depth of high-quality grat-gjectron_nole pairs.

ings is studied. The main advantages and disadvantages of

the holographic method are formulated.

Section 4 is devoted to an experimental study of the timeghe oxidation and subsequent etching of the surface. During
evolution of the surface periodic relief formed under the ac-dark etching with no external electrical potential applied to
tion of one laser beam by the LIG-SEW method. Sectionghe sample, each surface point of the semiconductor is alter-
4.1-4.3 present the physical mechanism for the appearancately the cathode and the anode of the electrochemical re-
of positive feedback of LIG-SEW during photochemical action. This means that oxidation of the material and reduc-
etching and the main theoretical results of Refs. 22, 25 antlon of the etchant components occur simultaneously at any
26 for the linear and nonlinear regimes of the time evolutionsurface point.
of the surface relief. Section 4.4 for the first time presents the  Now let laser radiation whose photon energy is greater
results of our measurements of the gain factors of the expdhan the band gap of this material be incident on the surface
nentially increasing Fourier amplitudes of the dominant grat-of the semiconductor immersed in the etchant. If the semi-
ings at the lineaxinitial) stage. By comparing the experi- conductor isn type, the band boundaries at the surface are
mental and calculated increments, it is proven that the theorent upward, as shown in Fig. 1. Because of this, the laser-
developed in Refs. 22 and 25 is valid. The possibilities forinduced holes are attracted to the surface, while the photoin-
monochromatizing the relief are studied. An experimentaduced electrons are repelled from the surface of the semicon-
estimate of the quality of the diffraction gratings is given, ductor. As a result, an illuminated region becomes positively
and the advantages and disadvantages of the LIG-SEWharged with respect to unilluminated surface points. Ac-
method are explained. cording to Eq.(1), the etching rate in the illuminated region

Section 5 describes the main ideas of a modified LIG-increases in this case. We can thus write
SEW method that results in a substantial monochromatiza- Vo= v — vp=BN(X) = al (X) )
tion of the generated relief. The temporal dynamics of relief ' ° - P LA
formation accompanying LIG-SEW at the nonlinear stagewhere v and vy are the etching rates at illuminated and
are experimentally studied for the first time. It is shown that,unilluminated surface points, respectively, is the laser-
in accordance with theoretical predictiofsee Ref. 26 and induced change in the etching ratg(x) andn(x) are the
the citations therein the temporal evolution of the Fourier light-intensity distribution and the hole concentration on the
amplitudes of the surface relief has an oscillatory charactesurface, andv and 8 are constants.
and is accompanied by the laser-stimulated suppression of It follows from Eq. (2) that photochemical etching can
specular reflection. The possibilities of controlling the shapede used to produce relief with a given profile on a semicon-
of the surface profile of the generated relief are studied. Irfluctor surface if the corresponding spatially inhomogeneous
particular, it is shown that the modified LIG-SEW method intensity distribution is created on the surface by some
can be used to shape high-quality diffraction gratings noteans or other.
only with a symmetric line profile, as in the case of holo-
graphic etching, but also with an asymmetric line profile. 3. FEATURES OF THE FORMATION OF RELIEF

DIFFRACTION GRATINGS ON THE SURFACE OF n-InP
2. THE PHYSICAL MECHANISM OF LASER-INDUCED BY A HOLOGRAPHIC METHOD
VARIATION OF THE LIQUID-PHASE ETCHING RATE

The conventional maskless method of forming periodic
OF n-lll-V SEMICONDUCTORS

relief is a holographic method in which two laser beams

It is well known that the etching afi-type 1lI-V semi-  interfere to create a periodic intensity distribution on the
conductors is initiated by the formation of il and \#* sample surface. We carried out experiments on the laser for-
ions in accordance witf?° mation of diffraction gratings on n-InP  samples

HI=V + 6h(+) = 1113 1+ V3, n (n~5x 108 cm’3)_, using an HCEHNQ:H,0=4:1:70
etchant. The experimental layout is shown in Fig. 2. All the
where the symboh(+) denotes a hole. The subsequentequipment was mounted on a holographic table. To eliminate
chemical reaction of the positively charged ions of the semithe effect of vibrations of the etchant surface on the quality
conductor with negatively charged electrolyte ions results irof the resulting gratings, quartz winddwvas put in contact
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amplifier
recorder

FIG. 2. Layout of experimental apparatus for forming relief diffraction grat-
ings on semiconductor surfaces by the holographic method during photo-
electrochemical etchingl—sample, 2—etchant, 3—entrance window,
4—detector,5—He—Ne laserg—mechanical modulator7—optical filter,
8—stops,9—power meter.

FIG. 3. SEM micrographs of a diffraction grating with a period of 480 nm

ith th h Th diati f At ith and a depth of 180 nm, fabricated on m#inP surface by the holographic
with the etchant. e radiation of an Ataser with a wave- method. The grating lines are oriented parallel to the jOdatis of the

length of A =488 nm and a power of 100 mW was used t0¢rystal: U,=1.38 V, t=3 min, Ar* laser powerP=25 mW, p-polarized
record the gratings. The laser beam was split by a beamsplitaser beams.

ter into two s- or p-polarized beams 1.4 cm in diameter,

which then converged at an anghg onto the sample sur-

face. The time evolution of the grating amplitudét) was —\ para | s the intensity of the laser beams, ands the
monitored from the diffraction intensitly_;(t) ~ £2(t) of the exposure time

probe radiation of a He—Ne laser in the minus-first order. To Using the holographic method, we formed high-quality

prevent the probe radiation from affecting the etching pro- iffraction gratings with periods ad=0.24—0.54um on an
cess, the intensity of the He—Ne laser was a factor of 100 rea of about 1 ch To form gratings with periods of

less than that of the Arlaser. Thel _4(t) signal was fed to d=0.24 um, we used a prism instead of input wind@
a recorder. The InP semlcor'lductor is fairly stable with € The periods of these gratings and the initial stage of the time
spect to etching by the material. Therefore, to etch the InP, iLvolution are well described by Eq®) and (4)
is necessary to apply to the sample an external potential of Let us point out some features of the generation of relief
U,=0.8-1.5V, positive with respect to the electrolyte. by the holographic method

In accordance with the etching mechanism explained in (@) Figures 3 and 4 show micrographs of two gratings

Sec. 2, the spatially inhomogeneous intensity distributiony, o ynder virtually identical conditions but with different
along the sample surface, causgd bY the interference of trB':'rientations; of the crystallographic axes of the semiconduc-
tWO. laser beams, creates a spatially mhomog_enequs CONCEY; substrate relative to the grating lines. It can be seen that
tration of electron—hole pairs and causes spatially inhomogey, grating in Fig. 3 has a symmetric triangular surface pro-
neous etphing of thg sample. As a result, we can expect P&ile, while the grating in Fig. 4 has a symmetiishaped
riodic relief with reciprocal lattice vectag to be formed, profile. Gratings formed by holographic recording always
glki, g=2k=2kq sin 8y, d=\/2 sin b, (3)  have symmetric relief, but the specific form of the surface

. . . profile strongly depends on the crystal orientation.

where d=27/g is the grating periodko=w/c=27/X, ¢ (b) It has been found experimentally that, besides the
andw are the speed of light in vacuum and the frequency of : . : R

o - S crystallographic orientation of the substrate, the polarization
the incident laser radiation, and tkeare the projections of .

S of the recording laser beams strongly affects the shape and
the wave vector&, of the incident beams onto the sample . :
: : . . depth of the surface relief. It should be pointed out that when

surface. In this case, according to Eg), the time evolution

. ; g . highly dopedn-InP is etched photoelectrochemically, the ef-
gzrgggd':g;”er amplitude of the grating of Eq) is de- fective hole-diffusion length is very small, and the effect of

the blurring of the photoinduced charge carriers on the depth
&(t)=alt, (4) and shape of the grating profile can therefore be neglected in
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beams, the quality of gratings with such a period is substan-
tially worse. We assume that the stray gratings are formed by
a competing process of laser-induced relief generation,
caused by resonance excitation of SEWse Section 4)2

In concluding this section, we enumerate the main ad-
vantages and disadvantages of the holographic method of
recording gratings. The advantages are that the resulting
gratings are highly monochromatic and that they are homo-
geneous in amplitude and phase within the limits of the laser
beam. The disadvantages are that the shape of the surface
profile depends on the crystallographic orientation of the
substrate and that the method is highly sensitive to vibrations
of the optical elements.
FIG. 4. SEM micrograph of a diffraction grating with a period of 480 nm
and a depth of 200 nm, fabricated on a#inP surface by the holographic 4. | ASER-INDUCED GENERATION OF SURFACE
method. The grating lines are oriented parallel to tB&1) axis of the ELECTROMAGNETIC WAVES AND OF PERIODIC SURFACE
crystal; U,=1.1 V, t=3 min, Ar" laser powerP=25 mW, p-polarized RELIEE UNDER THE ACTION OF ONE LASER BEAM—
laser beams. THE LIG-SEW METHOD

In this section, the main results of the theory that we
our experiments. Therefore, to achieve the maximum deptaeveloped for the line%?° and nonline&® regimes of the
for the grating of Eqs(3), it would seem necessary, accord- jnguced generation of SEWs and of periodic relief during the
ing to Eq.(4), to provide a long exposure tinte However,  |iquid-phase etching of semiconductors are formulated. It is
as shown by experiment, when tinids greater than some experimentally proven that the theory of Refs. 22 and 25 is
limiting exposure time; , the Fourier amplitude of the grat- ygjid. The theoretically predicted possibilities of monochro-
ing of Egs.(3) decreases, and the generation of stray Fouriematizing the generated relief are studied, and the advantages

harmonics of the surface relief becomes appreciable. Figureg,g disadvantages of the LIG-SEW method are discussed.
5a and 5b show micrographs of two gratings obtained under

identical experimental conditions except for the polarization®:1- The physical mechanism of the induced generation

state of the laser beams. It can be seen from Fig. 5b that ; SEWSs and of periodic surface relief during the

grating with the parameters of Eq8) is made “noisy” by iquid-phase photochemical etching of semiconductors

a perpendicularly oriented quasi-periodic structure. With Let the surface of am-type semiconductor placed in a
polarization of the laser beams, as seen from Fig. 5a, thkquid-phase etcharisee Fig. & be illuminated by laser ra-
relief was formed with no loss of quality of the grating. This diation with a photon energy greater than the band gap of the
means that time,, or, what is the same thing, the limiting semiconductor\ =514 nn). Because of diffraction of the
depth of “quieted” gratings depends on the polarization ofincident plane electromagnetic wave by the ever-present
the incident laser beams. It was noted experimentally for theoughness of the surface, resonance SEWSs are excited. The
first time that, to attain the limiting depths of good-quality interference of these SEWs and the Fresnel wave refracted
gratings, it is best to usp-polarized laser beams at small into the medium results in a spatially inhomogeneous inten-
anglesé, ands-polarized laser beams at large anglgs In sity distribution of the electromagnetic field along the semi-
particular, we formed good-quality gratings with a period of conductor surface, which provides spatially inhomogeneous
d=0.24 um and a depth oh=0.1 um when we used electron—hole-pair generation. Since the photochemical etch-
s-polarized laser radiation. Witp polarization of the laser ing rate depends on the hole concentration close to the semi-

22,25

/ 4 /
.';. V,

F 4

1113

A ,r’/
’1
i M'//

FIG. 5. SEM micrograph of two diffraction gratings with a period of 400 nm, fabricated om-&xP surface by the holographic method with)
p-polarized laser beamgh) s-polarized laser beams, grating depth 60 nm.
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A=514 nm p-polarized E;;llk;), the two gratings whose periods and ori-

/4:: entations are described lfgompare Fig. 7b
P diEi, kg=ki=0, [kgl=kon®, cosge=+1,

d=M/(n*F&}?sing),

N

amplifier

recorder

n*’=go[ 1+ 8o(n+m)2/(n2+m?)?] (6)

are dominant in the class of resonance structures, where
lgl=2m/d; ko=2m/\; \ is the wavelength of the light in
vacuum;é is the angle of incidence of the exciting wave at
FIG. 6. Layout of the experimental apparatus:—n-GaAs sample, the etchant—semiconductor interfacg; and e =(n+im)?
2—etchant3—device to record the time dependence of diffraction intensity 4a the permittivities of the etchant and the semiconductor
| _4(t) of the probe radiatiot\ =458 nm) in the minus-first order. . . . . ’
respectively;p, is the angle between the propagation direc-
tion of the SEW and; ; andE;; andk; are the projections of
conductor surfacdsee Eq.(2)], spatially inhomogeneous the electric vector and the wave vector of the incident wave

. _ 1/2 o
surface etching occurs, and the Fourier amplitudes of th@nto the &,y) plane, with vectok, (|k{=Kkoeq* sin 6) be-
initial trigger roughness are altered. This in turn results in thd"d Parallel to they axis. The increments of these two domi-

time evolution(strengtheningof the diffraction of the light ~Nant gratings (cogs==1) are given by

and causes feedback, as a consequence of which the Fourier n2+m2

amplitudesé, of the surface relief exponentially increae 5" = voko T (n*F&3?sin ),

are dampedat the linear(initial) stage[compare with Eg. 0

@] vo=v —vp=al;, (7)
£g= &Y explygh), (5)  wherel, is the intensity of the incident radiation, and the

where 52,0) is the amplitude of the Fourier harmonic of the exact expression for the constantis given in Refs. 22 and

trigger roughness with reciprocal lattice vectprThe relief ~ 29- It was assumed in deriving E@7) that gL<1, where
becomes periodic because of the dominant grating, whick is the effective hole diffusion length close to the semicon-

possesses the maximum growth facigy. ductor surface. o _
If the incident radiation iss-polarized €;=E;;Lk;),

when  #<45°, the grating (see Fig. 7c,
4.2. Theoretical results for the linear stage of the generation COS(pS:&‘é/Z sin 9/n+) with parameters
of periodic surface relief

- +2_ ; 1/2 °
According to the theory developed in Refs. 22 and 25, 9IEit, d=M[n" —eo sin? 9]*%, 6=<45 ®
when laser radiation acts on the.y) surface of a semicon- s dominant in the class of resonance structures, whereas
ductor immersed in an etchant, a class of resonance gratingghen 9=45°, the two latticegfor which cose=0 in Fig.
is generatedwith vectorg) for which the ends of the wave 74 with periods
vectorsky=k;—g of the SEWs lie on a circle of radius

kon™ (see Fig. 7a In this case, if the incident radiation is d=N[n* +e, sir? 0]Y2  9=45° 9
E, 2
—n
x/ |¢
K,
¢ k-v ko E l [
” s
. > k, y
k, y L k, [ / y !
P, [ 4
3 ko,
L |
X
X X
a b ¢

FIG. 7. (a) Class of resonance gratingsaand resonance SEWs for Whi{dkb\ =kon*. (b) At the linear stage, the interference opgpolarized incident wave
k; with the resonance SEWg, andk_4 causes the induced generation of two dominant resonance gratingg=nithandg=g,. (c) At the linear stage,
the interference of as-polarized incident wave; with the resonance SEWs, and k_, causes the stimulated generation of the dominant resonance

grating g.
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have the greatest increment, wherk is defined in Eqs(6). X,

The expression for the increment of the grating of E&. 2 Xy
whenLg<1 has the form x
1
2 2
n“+m
’yg: Voko T [n+2_80 S|n2 0]1/2,
nn L 1020 30 40 50 T
vo=v —vp=al;. (10 oy
It should be pointed out that when E@S), (7), and(10) '3 /_\/\
are used for calculations, it is possible to obtain somewhat X \ ) .
overestimated values for the increments by comparison with 0 10 20 30 40 50 T
the experimental values. There are two reasons for this. First, Ry
when the inequalitf.g<<1 breaks down, charge-carrier dif- 1
fusion becomes substantial, and this reduggs Second,
Egs. (5), (7), and (10) are valid for nonpolishing etchants. 0 10 20 30 a0 0 z

If polishing electrolytes are used, the substitution

Yo Yo~ %y must be made in Ed5), Whel’Eag>O charac- FIG. 8. Time evolution of the normalized amplitudes of the first)(and

terizes the roughness-polishing rate whenO. second X,) spatial Fourier harmonics of the surface relief, the relative
Let us discuss the experimental results described in paraghaseg, and the normalized specular reflectafjgduring photochemical

graph(b) of section Il from the Viewpoint of the mechanism €tching of ann-GaAs surface, stir?/lzjlated by orsepolarized laser beam;

considered here for laser-induced surface instability. Whef =230 nMn=4.2,m=0.33, andsp"=1.35.

two s-polarized beams act on the surface, the holographic

grating of Egs.(3) and (4) is formed. However, under the o ) _
action of each of these laser beams, a continuum of resderence of the incident wave with the laser-induced con-

nance gratings should increase exponentifdlge Eq.(5)], tinuum 01_‘ SEWSs but also by the inte_rference of t_he different
dominated by the grating of Eqe8), the lines of which are SE_Ws with each other. _If one restricts onese_lf in the theo-
oriented perpendicular to the lines of the holographic grating€tical analysis to considering only the dominant gratings
(see Fig. 5h Actually, the experimentally measured periods@nd the resonance SEWs corresponding to théhe

of the perpendicularly oriented structures in Fig. 5b are indiscrete-mode modglit is easy to see from Fig. 7c that
good agreement with the theoretical estimates from Bjs. When the incident radiation &polarized, along with grating
and (8). Likewise, if the laser beams appolarized, a su- 9 0f EGs.(8), a grating with twice the spatial frequency 2
perposition of the holographic grating of Eq8) and the should_be generated at the Ilne_ar stage; this grating is cau_sed
resonance gratings of Eg&) should be generated. The ex- by the interference of the dom|r_1ant resonance SEWS, WhICh
perimental fact that an optimal polarization exists for holo-Nave wave vectori, andk 4, with each other. Likewise, if
graphic recording of deep gratings for small and large anglef’€ incident radiation ip-polarized, one should expect in-
0, [see Sec. 3, Paragrafih)] can be interpreted theoretically t€rconnected generation of gratingsandg, of Egs.(6) and

on the basis of a comparison of the values of the incrementgratings with a total spatial frequency g=g,+g, (see
given by Egs.(7) and (10). It follows from what has been Fig. 7@. The time evc_)Iu_tlon of the rellef_ in the case of
said that the competing process of LIG-SEW imposes a funS-polarized laser radiation, calculated in terms of the

damental limitation on the limiting depth of the holographic discrete-mode model on the basis of the analytical theory of
gratings of Egs(3). Ref. 26, is shown in Fig. 8, where

7-:2')/gt- gpgzlgpg|exq_i¢p)a ¢:2(Pl_()021
4.3. The oscillatory regime of the generation of spatial —1 2
Fourier harmonics at the nonlinear stage of the laser- p=1 4

induced formation of relief. Theory X1:9|§g|/,3n , Xo= 292|§2g|/(,8nk083/2),
The linear stage of the stimulated generation of relief,
characterized by a rise in the Fourier amplitudes of the reso-
nance gratings that is exponential in time, Ef), occurs Here Ry and Ry are the specular reflectances, respectively,
only for small {;, when the amplitudes of the resonancefrom the corrugated and the flat  surface,
SEWs areE(kg) <E; . In this case, according to perturbation Bn=s(1)’2n/(n2+ m?)<1, the incrementy, is determined
theory, E(kg) ~ &4, i.e., the generation of a continuum of from Eg. (10), and¢; and ¢, are the phases of the fir&d)
resonance gratings is accompanied by exponentially increaand the secon(®g) harmonics of the surface relief. It can be
ing amplitudes of the resonance SEWSs. As the exposure timgeen from Fig. 8 that the process of relief generation has the
increases, the dependence of the amplitudes of the resonara®aracter of out-of-phase oscillations of the moduli of the
SEWs onéy becomes nonlinear, while the amplitudes canamplitudes of the first and second harmonics of the surface
become comparable to that of the incident fiek profile and is accompanied by the temporal variation of the
[E(kg)~E;] and can even significantly exceed it phase differenced;— ;). It also follows from Fig. 8 that
[E(kg)>Ei].3° It is clear in this case that the dynamics of when Ry=0, such a profile of the surface relief is formed
the relief formation will be determined not only by the inter- that the specularly reflected radiation from the laser-induced

Ry=Rs/R;.
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FIG. 9. SEM micrographs of diffraction gratings formed on
n-GaAs samples by the LIG-SEW method. In all cases, the
grating lines are oriented perpendicular to the electric field vec-
tor Ej;; (@ p-polarized laser beam,#=38°, |;=100

I . " Vi (11 o || [ .
. > l s \ \ “II'_ 4
E ) \ \ _ ." \

1 mW/cn?, etchant HF:HO,:H,0=1:2:30; (b) #=0, ;=50
mW/cn?, etchant HF:HO, :H,0=1:2:60;(c) s-polarized laser
beam, #=38°, ;=50 mWicnt, etchant HF:HO,:
H,0=1:2:60, grating deptin=50 nm.

\ .

surface is completely suppressed. An oscillatory regime ofree of nonmonochromaticity of the generated relief was es-
generation of the harmonics gf, g,, andgs (see Fig. 7bin  timated by measuring the divergence of the diffracted probe
the process of laser evaporation of the material is also prdseam.
dicted in the case gb-polarized laser radiatioft. Reference According to the theory developed in Refs. 22 and 25, to
32 showed that it is possible for an oscillatory regime toreduce the nonmonochromaticity of gratings generated by
appear when light is normally incident, on the basis of athe LIG-SEW method, ars-polarized laser beam must be
solution of the diffraction problem by a numerical method used at angles of incidence of€¥<45°. This fact has been
that does not use the Rayleigh hypothesis. However, weonfirmed experimentally. Figures 9a, 9b, and 9¢c show SEM
know of no work in which the existence of an oscillatory micrographs of gratings obtained withands polarization
regime of the time evolution has been confirmed experimenef the generating radiation and with normal incidence of the
tally. beam on the sample surface. The monochromaticity of the
grating shown in Fig. 9c is significantly greater than for the
gratings shown in Figs. 9a and 9b. The measured periods and
4.4. Experimental study of the process of forming periodic orientations of the gratings are in good agreement with the
relief on the surface of n-GaAs by the LIG-SEW theoretical values computed from Ed$) and (8), where
method n=4.3,m=0.36, and:}*=1.35 for\ =514 nm* The crys-
The layout of the experimental apparatus is shown inallographic orientation of the substrate had no substantial
Fig. 6. We studied the laser-induced generation of relief grateffect on the parameters of the resulting gratings.
ings onn-GaAs substratesn= 2 x 108 cm™3) under the ac- Figure 10a shows the characteristic time dependence of
tion of s- andp-polarized radiation from an Arlaser with a  the probe-beam intensil)Lpgg in minus-first order of dif-
wavelength of\ =514 nm, an intensity of 5-100 mW/ém fraction, obtained during the growth of the grating of Egs.
and a cross-sectional diameter of the laser beam at th@) under the action of as-polarized laser beam. An in-
sample surface of 0.4 cm. The time evolution of the Fouriercrease in the signal is initially observed, then saturation, and,
amplitude of the surface reli€f;(t) was monitored by mea- after reaching a maximum at tinte=t,,, a drop to a virtually
suring the intensity _4(t) [ _1~§S(t)] of the probe beant  zero value ofl _;. In this case, despite the disappearance of
A=458 nnj in the minus-first order of diffraction. The de- the resonance grating of EdS), the GaAs sample surface is

1_;, rel. units Inl_,

FIG. 10. Probe-signal intensity in the
minus-first order of diffraction vs. exposure
time t. The periodic relief[Egs. (8)] was
2t 2t generated by as-polarized beam incident at
an angle of¢=18° in an etchant of HF:
H,0,:H,0=10:1:30; (a) ;=50 mWw/cnt,
Yo~ @g=2.25 mim % (b) ;=30 mwicnt,
Yo~ @g=1.5 min L.

0 1 2 3 £, min 0 0.5 1 1.5 ¢t min
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A 67,00 OF the probe radiatiorih =488 nm) diffracted in the
| minus-first order:
'c
_E_ ko sin ﬁérobeﬂ-g: ko sin egrobe,
§° L _ " 1"
| ! l Ag - kO cos eprobe(A aprobe)v
>~°
2 where 6, is the angle of incidence of the probe radiation
i Y I at the air—etchant interface, am,is the angle of reflec-
0 20 40 60 L, mW/em? tion into the air of the probe laser beam diffracted in minus-

first order. For the highest-quality gratings that we fabricated
FIG. 11. Growth increment of the diffraction grating of E®).vs. intensity by the LIG-SEW method, the measured divergence is
of g-r'JoIaOrize%. rf;\:;jia.tion incident_ at anI angle M=18‘]’( (etchant HF: Aegrobe:3°a and consequently, the experimental nonmono-
gz—t?léHoietic;I .ctrvoe. of 3:/-9 , iﬁ%esrtlrr:};ztjfromcgtﬁo). ° Hom ) Chromat.idty Is (A.g)exp=6.3>< 10° (.:mil' This means that.the
mean linear sizeAx of the islands AgAx=2w) is
Ax=10 um. This estimate shows that the gratings formed
strongly undulating. Oscillations df_;(t) corresponding to by the LIG-SEW have rather low quality.
Fig. 8 were not observed in any of the experiments. Figure  The physical nature of the nonmonochromaticity of the
10b gives an experimental graph oflin{) vst for a time  generated relief consists of the following: the SEW-
interval t<t;,. The linear form of this dependence is evi- excitation resonance width Aky is finite, with
dence of the validity of the theoretical predictipsee Eq.  AKky=ko(2nm+n?)/(m?+n?)2.*® This means that because
(5)] that the growth of the resonance grating of E@.has  of the LIG-SEW mechanism, not only will a continuum of
an exponential character at the initial stage of relief formatesonance gratings for whicky—g=kg, |kg=kon* (see
tion by the LIG-SEW method. The slope of the straight lineFig. 7) be generated, but also a continuum of quasi-
in Fig. 10b determines the incrementyg «ay). resonance gratings with a spectral width fo§=Ak,, for
Figure 11 shows the theoreticayf) and experimental which the discrimination of the incrementg for different
(vg— ag) dependences of the increments on the interisity g increases aaky decreases. The resulting surface relief at
of incidents-polarized laser radiation witk=514 nm. The the linear stage of the formation can be written, according to
theoreticaly, values were calculated from EQ.0). The val-  Eq. (5), as
ues of the homogeneous etching rageneeded for this were
found by experimentally measuringising a Talystep pro- .
filometen the dependence of the depth of an etched pit on the 2(t)= f J’ 5(90) expl gt —ig-r)dg. (1D
etching time for given values df and 6. It was found, in
agreement with theory, that the dependencevpion I; is  When the spectrum of the trigger roughnessg’% is wide
linear. In particular, when the etchant HR®}: (statistical roughnegsthe shape of the relief is determined
H,0=10:1:30 is usedd=0, andl;=100 mW/cn?, the mea- only by the discrimination of the increments, i.e., by the
sured etching rate is;=0.5 um/min. It can be seen from resonance widtidk, of the SEWs. The Q of the SEW reso-
Fig. 11 that the measured/— a,) values are about a factor nance in the case of GaAs and=514 nm is small
of 4 less than the calculategl; values. Nevertheless, the (k,/Aky=16, whereak,/Ak,=100-140 for meta)s con-
agreement between the theoretical and experimental valusgquently, the degree of nonmonochromaticity of the relief
of the increments can be considered good, taking into aagiven by Eq.(11) is high.
count the remarks made in the text after EL). We assume that this is why no oscillatory regime of the
Thus, the comparison of the theoretical and experimentdbser-induced relief generatidisee Section 4)3appears in
results carried out in Sec. 4.4 is evidence that the mechanisour experiments, since the condition of discreteness of the
that we have propose@ee Sec. 4)1suffices to explain the modes assumed in the theory is not fulfilled.
laser-induced surface instability, and that the theory devel- Thus, the main drawback of the LIG-SEW method is the
oped in Refs. 22 and 25 for the linear stage of the reliethigh degree of nonmonochromaticity of the relief formed on
formation accompanying LIG-SEW is validee Sec. 4)2 the semiconductor surface. The advantages of the method
Let us consider the quality of the gratings formed by theinclude (a) weak dependence of the grating parameters on
LIG-SEW method. The grating shown in Fig. 9c is only athe crystallographic orientation of the substrate, éndin-
small segment of the relief structure that has been formedensitivity of the method to vibrations. The reason for the
An examination of larger areas of the surface by means ofatter is that the phase difference of the incident laser wave
optical and electron microscopes showed that the laseand the excited SEW is constant as the sample is vibra-
stimulated relief structure is a set of islands within which thetionally displaced in space.
gratings have the quality shown in Fig. 9c. The boundaries The experimental studies described in this section appar-
between the islands are characterized by an interruption adntly confirm the opinion that currently exists that the for-
the phase of the gratings—breaks and bends of the gratingation of periodic relief by LIG-SEW is of interest only
lines. The degree of nonmonochromaticikyg of gratings from a scientific viewpoint as a dramatic example of the
formed on a large area was estimated from the divergenceonlinear optics of a surface, but that it is impossible to

103 JETP 84 (1), January 1997 Seminogov et al. 103



FIG. 12. First technique of the modified LIG-SEW
method: (a) geometry of the laser irradiation of the
etchant—semiconductor interface zt0; (b) mutual
orientation of the wave vectork;, and (—k,) of the
incident waves, of the resonance SEW[sandk_g,
and of the resulting gratingg 2g, and 3. The radius
y of the circle equalskyn*. Interference between the
waves withk; and (—k,) results in the formation of
holographic grating. As a result of the diffraction of
the incident waves on gratingy resonance SEWs with
kg andk_, are excited. Deepening of gratiggoccurs
because of the interference of wakgwith ky and of
wave k_; with k_4. Grating 2y is generated by the
interference of wavé, with k_,4 and of wavek _; with
kg . The formation of Fourier harmonicgds caused by
x 3g the interference of the resonance SEWs wkthand
k_g with each other.

4

develop a process based on this effect for fabricating highas a consequence of the LIG-SEW mecharfisee Eqs(6),

quality diffraction gratings. Is this so? The next section iswheren®~z2?]. If the periods of these gratings coincide,

devoted to an investigation of this question. both the holographic mechanism and the LIG-SEW mecha-
nism participate in forming the relief. To realize this situa-

5. FORMING HIGH-QUALITY DIFFRACTION GRATINGS ON tion, it is necessary thai= 6.= arcsin(1/3»19.5°. In this

SEMICONDUCTOR SURFACES BY A MODIFIED LIG- case, the grating period equals
SEW METHOD
5.1. The fundamental idea of the modified LIG-SEW method d= 3)\/28(1)/2, g=2k,=(2/3) kos(l)/z, glEqlly. (12

We shall analyze the ca$epposite to that considered in
Section 4.4 when discussing E3.1)] in which the spectral |t js clear from Fig. 12 and its caption that one can expect the
width of the trigger relief is much less than the resonancsirst (9), second2g), and third(3g) harmonics of the surface
width Akg of the SEWSs. For Clarity, we shall consider the relief to be generated Simu|tane0us|y, with VeCtOﬂQ,Z
limiting case in which there is only one trigger resonance4k, , and &, .
grating £ # 0, while the amplitudes of the other Fourier  The technique considered above possesses a substantial
harmonicgwith g" # g) are§éo)=0. It can be seen from Egs. drawback: to vary the grating period, the wavelengibf the
(5) and(11) that the relief will remain monochromatic at the incident laser beams must be varied. The second technique
linear stage of the LIG-SEW, despite the large SEW-for a modified LIG-SEW method is free from this drawback.
excitation resonance width characteristic of semiconductors. (b) A trigger grating with periodd=\/2s3? sin 6 is
Thus, to enhance the quality of the resulting grating, &ormed by twos- or p-polarized laser beamig and (—k;)
trigger relief with large amplitud@éo) and a high degree of by the holographic metho@ee Fig. 18 Under the action of
monochromaticity must first be created on the sample sura third s-polarized laser bearkg, incident at anglef;, the
face. This can be done by a holographic method, and grating of Eqs(8), with aperioddz)\/acl)’2 cos#s, is gener-
single-beam LIG-SEW method can be used to deepen theted by the LIG-SEW mechanism. When the periods of these
trigger structure. The holographic process and the LIG-SEWratings coincide, i.e., when
process in some cases can be carried out simultaneously.
It can be expected that the discrete-mode model will be 72 _ 3
implemented(see Section 4)3under these conditions. Ob- d=Mey~cosfz, cos#z=2sind (§<30°),
servation that the time evolution of the relief predicted by
this model has an oscillatory character would serve as a good
check of the theory that has been developed, and also as an
additional confirmation that the generated relief is highly
monochromatic. both the holographic mechanism and the LIG-SEW mecha-
There are two possible techniques for implementing thenism are involved in the process of creating the grating of
modified LIG-SEW method. Egs.(193). It can be seen from Fig. 13 and its caption that one
(a) Two p-polarized laser beams with tangential compo-can expect relief to be formed that is a superposition of the
nentsk, and (—k;) of the wave vectorgFig. 12 form a first (g) and second(2g) Fourier harmonics. The period
holographic grating with vectog=2k;, i.e., with period of Egs. (13) can be varied in this case by varying the
d=\/2:gsin6. On the other hand, each of the incidentangles of incidenced and 6; according to the equation
beams generates gratings with peride k/Zsé/Z(liSin 0) C0S ;=2 sin 6.

gIlEslIX, (13
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ed P 2 FIG. 13. Second technique of the modified method:
g (a) geometry of the laser irradiation of the etchant—
(i k semiconductor interface at=0; (b) the radius of

€ 3 the circle equalkgn™. Interference of the laser
“k, k y beams withk; and (—k;) results in the formation of
! holographic gratingg. The diffraction of the third
0:6 k, / £ incident laser bearks on gratingg results in the
excitation of two resonance SEWg, and k_g.
9 Deepening of grating occurs because of the inter-
k,, y ference of waveky with k3, and of wavek _ 4 with
_/ ks, . The second Fourier harmonig2s generated
k‘ by the interference of the resonance SEWs with
,/J wave vectorky andk 4 with each other.

b e i e e
"
]

A

5.2. The time evolution of the depth and shape of the the experiment, the trigger grating of Eq%3), with a depth
periodic relief formed by the modified LIG-SEW of 20 nm, was formed in a time of 20 sec by the holographic
method. Experiment method by twop-polarized laser beamsk) and (—k;) of

The experimental setup for studying the time evolution€qual intensity ;=1 # 0). In this case, the intensity of the
of the relief formed using the first technique of the modifiedthird beam isl ;=0. Further evolution of the grating of Egs.
LIG-SEW method is shown in Fig. 2. To implement the (13 was accomplished under the action of only one
second technique for this method, the apparatus was modf-Polarized beanks,, i.e., withls # 0, 1,=1,=0, by the
fied according to the geometry shown in Fig. 13a. The radial-/G-SEW mechanism. We should point out that the experi-
tion of an Ar* laser(power 30 mW, beam diameter 1.4 gm mental conditions correspond to the prerequisites imposed
with a wavelength of\ =514 nm was used in the experi- vvhen constructing the theory of Ref. 26, see Sec. 4.3 and
ments to record gratings according to the first technique, anfiig- 8- It can be seen from Fig. 16 that the amplitude of the
radiation with A =488 nm was used to form relief on the first Fourier harmonic, given by Eqél3), oscillates in time
basis of the second technique of the modified LIG-sEwduring formation of the relief, as follows from the theory of
method. Photoelectrochemical etching was donenenP ~ Ref. 26(see Fig. 8a Unfortunately, we were not able during
samples (=5x 10 cm™3) usingU,~1.1 V and an elec- the experiment to obtain the cur¢analogous to that shown
trolyte of HNO;:HCI:H,0=1:4:70. As before, the temporal N Fig. 16 that characterizes the time evolution of the am-
dynamics of the amplitude of the first Fourier harmonic ofPlitude of the second Fourier harmorgg,, since a shorter-
the relief were monitored from the intensity ;(t) of the wavelength source of probe radiation is needed for the radia-
diffraction of the probe radiation in minus-first order.

Figure 14 shows the characteristic dependende pon
the time of formation of the relief in the geometry shown in I rel units
Fig. 12. It follows from Fig. 14 that the temporal dynamics -
of the first Fourier harmonic of the relief of Eq4.2) has an
oscillatory character, which is in complete agreement with
the predictions of the theory based on the discrete-mode
model (see Sec. 4)3 According to this theory, surface pro-
files of the relief with different ratios of the amplitudes and
phases of the first, second, and third Fourier harmonics are
generated at different instarttsandt, (Fig. 14). This fact is
actually confirmed by the SEM micrographs of the gratings
in Fig. 15. It can be seen from Fig. 15b that, unlike the
holographic method, the modified LIG-SEW method makes
it possible to form gratings not only with a symmetric profile
but also with an asymmetric profile. Similar results were
obtained for laser-induced photochemical etchitd,€0) L2, L
of n-GaAs samples. 0 ! 2 $, min

. Figure 16 shows the dependencel of O_n timet when FIG. 14. Intensity of the probe radiation diffracted in minus-first order vs
relief was formed on the surface ofinP using the second (jme when relief is formed using the first technique of the modified LIG-
technique of the modified LIG-SEW method, see Fig. 13. INSEW method.
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FIG. 15. SEM micrographs of diffraction gratings with
period d=540 nm, formed om-InP substrates. The
relief-formation process was halted at tirhe(micro-
graph a and at timet, (micrograph b, see Fig. 14. The
different slope of the lines in micrographs b corre-
sponds to micrographs of the transverse cleavage of two
halves of the same sample.

100 nm

tive first or minus-first orders of diffraction to appear in this t,—t;. On the other hand, it follows from Fig. 16 that the
harmonic. However, certain conclusions concerning the timéntensity of the probe signdl_; is virtually constant over
evolution of the amplitudé,, can be drawn on the basis of this time interval. This is evidence that there is little change
the SEM micrographsésee Fig. 1Y of the resulting gratings. in the amplitudet of the first Fourier harmonic of the relief
Figure 17 shows SEM micrographs of the gratings fab-given by Egs.(13). From an analysis of the shape of the
ricated when the etching process is halted at timesurface profile of the gratings shown in Fig. 17, we have
ta,ty, ... tr, shown in Fig. 16 by points. It can be seen determined the following: first, the second harmonig i8
from these micrographs that a significant change in the deptpresent in the Fourier spectrum of these gratings; second, a
and shape of the surface profile occurs in the time intervaignificant change of the amplitudg, occurs over the time
interval t,—t;. Next, the virtually symmetric shape of the
relief on micrographs—e is evidence that the phase differ-
I_,. rel units ence of the first and second Fourier harmonics changes little
b e d over the time intervalt,—t,. A barely noticeable shape
asymmetry appears only at time t; : the left-hand slope of
the line is steeper than the right-hand slope. It is easy to see
“ f that the experimental results enumerated above are in good
agreement with the theoretical results shown in the upper and
middle graphs of Fig. 8 if it is noted that the time interval
t,—t; in Fig. 16 corresponds to the normalized time interval
7=8-12 in Fig. 8.

The surface profile of the fabricated gratings was also
studied by means of a scanning tunnelling microscope. As an
example, Fig. 18 shows an image made with a scanning tun-
nelling microscope of the diffraction grating shown in the
SEM micrograph in Fig. 17d.

0 5 (‘) i In experiments to study the time evolution of the surface
relief, we also visually traced the intensity of the specularly

FIG. 16. Diffraction probe signal_, vs. time when relief is formed using reflected bear!hs(t) =Rs(t)13, wherel; _is the intensity O.f a
the second technique of the modified LIG-SEW method. laser beam with wave vectde; (see Fig. 13 andR(t) is
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400 nm

FIG. 17. SEM micrographs of cleaved diffraction gratings. The formation process was halted at timgst., ty, to, andt;, shown in Fig. 16.

the specular reflectance from the grating at timeéduring We estimated the degree of monochromaticity of the dif-

the time evolution of the first Fourier harmonic, shown in fraction gratings formed by the modified LIG-SEW method

Fig. 16, the intensity4(t) decreased significantly, reached a on an area of 0.81 cm by measuring the divergence of the

minimum att=t., and then substantially increased; i.e., theprobe radiation in the minus-first order of diffraction. These

effect of laser-induced suppression of specular refleih measurements showed that the quality of the gratings thus

during LIG-SEW was observed. This result also agrees witHabricated is no worse than that of gratings formed by the

the theoretical prediction&ee the bottom graph of Fig).8  holographic method. From this fact and the remarks above, it
Thus, we have experimentally shown that the time evo<an be concluded that the modified LIG-SEW method com-

lution of the amplitudes and phases of the first and secontines the advantages of the holographic mettsed Sec. B

Fourier harmonics of the surface profile during the formationand the LIG-SEW metho(see Sec. 414

of gratings based on the first and second techniques of the

modified LIG-SEW method has an oscillatory character. The

patterns of the time evolution shown in Figs. 14 and 16 arg, ~oncLUSION

reproducible in this case. This means that the modified LIG-

SEW method makes it possible to fabricate diffraction grat- In this paper, a new maskless modified LIG-SEW

ings with controllable line shape, where the profile can bemethod has been developed for forming submicron relief dif-

varied by varying the grating-formation time. In particular, fraction gratings in the process of liquid-phase photochemi-

this method makes it possible to fabricate gratings not onlyal or photoelectrochemical etching of the semiconductors

with a symmetric surfacéas in the case of the holographic n-GaAs andn-InP. The modified LIG-SEW method is a

method but also with asymmetric surface relief. combination of the holographic method and the LIG-SEW
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