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This paper discusses how an electromagnetic field consisting of a superposition of a constant
magnetic field and a field of laser type can affect nuclear beta decay. In general it is
not assumed that the intensities of the two types of fields are small compared to the characteristic
field Hcr* 5b1Hcr , whereHcr5m2c3/e\ and the quantityb1 depends on the energy
liberated in the decay and the configuration of the electromagnetic field. For nonrelativistic
decays the quantityb1 is found to be of the same order as the maximum kinetic energy of an
electron referenced to its rest energyb1;I!1. It is assumed that the frequency of the
wave field satisfies\v/mc2<I . The behavior of the probability for the process is studied over a
wide range of the fundamental parameters that characterize the fields. Corresponding
asymptotic expressions are derived in the ‘‘weak’’- and ‘‘strong’’-field regimes. Also discussed
are so-called interference corrections to the unperturbed decay probability, which cannot
in principle be studied by the methods of perturbation theory. It is shown that the times and
distances that are important in generating these contributions exceed the parameters of
the unperturbed processes, just as in the case of a plane-wave field previously investigated in
detail by Nikishov and Ritus. However, in contrast to the case of a pure wave field,
when a system is simultaneously subjected to a constant magnetic field and a wave field, the
degree to which these characteristic regions are enlarged can depend not only on the
intensities of the electromagnetic fields but also on their rates of change, even in the limit in
which the wave field is slowly varying. ©1997 American Institute of Physics.
@S1063-7761~97!00101-7#
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Considerable attention has been focused on the stud
the excitation and decay of nuclei under the action of inte
electromagnetic fields. A large number of papers~see the
review article Ref. 1! have been written about the possibili
of using both constant magnetic fields and focused lase
diation to affect nuclear beta decay. In another group of
pers, the authors discuss how intense plane-wave ele
magnetic fields affect such decays~see Refs. 2, 3 and th
papers cited therein!.

Interest in this problem dates back to the 1920’s, wh
Einstein first discussed the possibility that radioactivity co
be induced by the action of optical quanta.4 Recently, re-
newed interest in this possibility has arisen, reinforced b
by new data from studies of processes observed in the v
ity of pulsars, where magnetic fields with gigantic intensit
are well known to exist, and by the development of n
experimental techniques.

The first studies of the beta decay of a neutron in
intense electromagnetic field were carried out by Korov
et al.5 and Ternovet al.6 In these studies the effect of a stat
magnetic field on the process was included. A compreh
sive investigation of weak-interaction decays in a pla
wave field can be found in Ref. 7, which also contains
detailed analysis of the analytic properties of the probabi
with respect to charge. A description of the important ch
acteristics of neutron decay under the combined action
magnetic field and a wave field was presented in Ref. 8.
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authors have noted that the external fields can give ris
fundamentally new physical effects when the intensities
the electric and magnetic components are comparable to
quantityHcr* 5b1Hcr , whereHcr5m2/e is a characteristic
field magnitude that measures the importance of fundame
quantum electrodynamic phenomena~here e, m are the
charge and mass of an electron; the value of the charact
tic field is written in a system of units where\5c51, which
is also used in what follows!. In this case the coefficien
b1 depends both on the energy liberated in the decay,

«05
Mx2My

m
, ~1!

whereMx , My are the masses of the mother and daugh
nuclei respectively, and on the specific type of electrom
netic field configuration acting on the nuclei. Thus, e.g.,
nonrelativistic decay («0215I!1) in a constant magnetic
field8,9

b152I , ~2!

while for a wave field that varies sufficiently slowly, or i
the case of the so-called constant crossed field2,3,7–14

(E5H, E'H!,

b15~2I !3/2. ~3!

It is noteworthy that results analogous to~2!, ~3! apply to
a variety of situations in which processes that occur in

1$10.00 © 1997 American Institute of Physics



absence of an electromagnetic field are subject to such fields,
th

in
e
ou
n
a
ic
th
e
ou
tu
i

s
o
ti

d
re
f
on
en
it
it.
e
n
ef
an
ld
n
he
a
s
d
s

,
u
io

h
om
i
to
de
f

ll
m
i

ge
er
ld
e

th
on
ag

netic field and the field of a plane electromagnetic wave with

tro-
he

e

si-
m-

of
b-
nd
tiv-
te-
not
for

Red-
f
u-
of
re-
te
nd
m-
re-
alo-

ime.

e
of
ed-
eta
an
tion
the
in
in
e
lity
in
both static magnetic fields and fields of laser type, when
wave frequency is sufficiently low.1,5,16

Although the presence of electromagnetic fields with
tensitiesH!Hcr* can be felt only through corrections to th
total decay probability in the absence of the field, it turns
that even in this range, nontrivial behavior of field depe
dences can be observed. In particular, a few papers h
noted that there are external fields of a special type for wh
the decay probability contains nonanalytic terms when
fields are turned off, which cannot in principle be reproduc
by the methods of perturbation theory. It must be pointed
that the basis for studying such effects was laid by V. I. Ri
in Ref. 7, who concluded that at the time the external field
turned off, the probability has an essential singularity a
function of the external field. The emergence of this type
behavior in the decay probability when a static magne
field is present was discussed in Refs. 1, 15.

Although each of these examples has been studie
considerable detail in isolation, it is fair to say that we a
still far from constructing any sort of definitive theory o
beta decay in external fields. Among other things, this c
clusion follows from the limitations that characterize ess
tially all studies in this area, namely those connected w
having to treat the interaction in the nonrelativistic lim
However, there is also a lack of studies of interference
fects arising from the simultaneous application of differe
kinds of electromagnetic fields. Although predicting such
fects is usually difficult even at the qualitative level, we c
distinguish, for example, the possibility that the total fie
might act resonantly on the charged particles of a reactio

It is this latter situation, i.e., nuclear beta decay in t
presence of a superposition of electromagnetic fields that
mit the possibility of resonant behavior, that excites intere
It should be noted that although a general approach base
the use of exact solutions of relativistic quantum equation
motion of charged particles in an external field~the Furry
representation! has been known for a relatively long time
inclusion of external fields of a specific type requires form
lation and development of special methods of investigat
~see, e.g., Refs. 1–3, 9, 16!.

The fundamental difficulty in studying how fields wit
compound structure affect the course of a decay is the c
plexity of the equations involved and their analysis, which
typical of multiparameter processes. This difficulty can
some extent be avoided if the superposition of fields un
study consists of a static magnetic field and the field o
plane electromagnetic wave propagating along it.

This combination of electromagnetic fields is we
known to have the property that the relativistic quantu
equations of motion of a charged particle interacting with
can be solved exactly. This enables us to develop and
eralize methods based on exact inclusion of the charact
tics of the external field to the case of electromagnetic fie
with compound structure. We note that these solutions w
first obtained by Redmond;17 hence, in what follows we will
refer to this superposition of electromagnetic fields as
Redmond configuration, with the understanding that it c
sists of the following components: a constant uniform m
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circular polarization and with frequency and amplitudev
andE, respectively.

In this paper we discuss the effect of an intense elec
magnetic field with the Redmond configuration on t
nuclear beta decay process X→Y1e1 n̄. We assume that the
massesMx andMy of the initial and final nuclei are so larg
compared to the electron massm and the energy yield in the
decaym«0 that we can neglect effects of orderm/M and
m«0 /M . In this case, however, we assume that the inten
ties of both the constant and time-varying fields can be co
parable tob1Hcr or even exceed that value.

The fundamental result of this paper is the derivation
a relatively compact analytic expression for the total pro
ability of beta decay in an external field with the Redmo
configuration and its detailed analysis in both the nonrela
istic and relativistic limits. Let me emphasize that the in
gral representations given here, to my knowledge, have
been presented anywhere in the literature before, even
those special cases where one of the components of the
mond configuration is missing. The nonrelativistic limit o
the decay probability in a field with the Redmond config
ration is investigated here using an expression in the form
a single integral, which in special cases agrees with the
sults of Refs. 1–3, 5–15. Another topic we will investiga
in detail is interference effects for a field with the Redmo
configuration over a wide range of the fundamental para
eters, including the region of cyclotron resonance. The
sults obtained here generalize well-known studies of an
gous effects in a plane-wave field7,11–13to the case in which
a constant magnetic field affects the decay at the same t

2. PROBABILITY OF NUCLEAR BETA-DECAY IN AN
ELECTROMAGNETIC FIELD WITH THE REDMOND
CONFIGURATION

In Ref. 8, Ternovet al. investigated effects related to th
polarization of particles that participate in the beta- decay
a neutron in an intense electromagnetic field with the R
mond configuration. In obtaining expressions for the b
decay probability that took into account the influence of
external field, they used exact solutions of the Dirac equa
that describe the motion of an electron. If we repeat all
fundamental steps of their calculation, which is described
detail in Ref. 8, but generalize their results to the case
which the energy«0 released in the decay is arbitrary, w
can write the final expression for the total decay probabi
of nucleus X within the allowed-transition approximation
the form ~analogous to Eq.~6! of Ref. 8!

Wi5G0m(
n,n8

` E
0

`

daE
0

`

dt t2F id~ f i !, ~4!

where i51, 2, W5W11W2 , G05Gv
2m5(113a0

2)/4p3,
Gv is the weak interaction constant,a0 is the ratio of the
axial vector and the vector contributions, and

F15aI n8,n21
2

~z!, ~5!

F25a1I n821,n
2

~z!1j1
2aI n821,n21

2
~z!

2V. N. Rodionov



12j1A2mnIn821,n~z!I n821,n21~z!. ~6!
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Here we also introduce the notation:

a5
p02p3
m

, a15
p01p3
m

, j5
eE

mv
, j15

jv

d1
,

m5
H

Hcr
, vH5mm, d15av2vH ,

p0 andp3 are the energy and longitudinal component~with
respect to the direction of the magnetic field! of the electron
momentum,t is the neutrino energy, andI n8,n(z) is the La-
guerre function, which is related to the degenerate Ga
hypergeometric function:

I n8,n~z!5
An!/n8!

~n2n8!!
expS 2

z

2D z~n2n8!/2

3F~2n8,n2n811,z!,

wherez5j1
2m/(2l2), l5v/m.

In Eq. ~4! we have averaged over the polarization sta
of the nucleus X and summed over the states of Y. T
contributionsF i essentially correspond to the different o
entations of the electron spin. The special property of
electron in the quantum staten50 ~where n is a Landau
level!, i.e., that its spin can only be oriented opposite to
magnetic field, leads to two different conservation law
which are determined by the differentd-function arguments
that correspond to orientations of the electron spin along
opposite to the direction of the magnetic field:

f 1,252S012bmh~n2n871!22mn

1j2bh/~12bh!, ~7!

where S05122a(«02t)1a2, h5gv/vH , g5Mx /m,
gb5a.

Note in comparing with Eq.~6! of Ref. 8 that in~4! the
variable of integration has been changed:

dq3
q0*

52
da

a
,

the expression has been integrated over the angle of fligh
the neutrino, and a new summation indexn85n1 l71 has
been introduced. Hereq0* is the average energy of an ele
tron in a field with the Redmond configuration, andq3 is the
longitudinal component of its quasimomentum~see Ref. 8!.

By exchanging the orders of integration and summat
in ~4! and using the properties of the Laguerre functions,
can obtain a representation for the total probability of nucl
beta decay in the form

Wk52
iG0

2p E
2`

`

dxE
0

`

daE
0

`

dtt2 exp~ iS7 ix !Fk , ~8!

wherek51,2,W5W11W2 ,

F15
a

2 sin x
,

F25
«02t2a/2

sin x
2
iU

g
,
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sin~xbh!sin~xD!

hD G ,
S52

xS0
m

1
xj2hb

Dm
2

j2

mD2

sin~xbh!sin~xD!

sin x
,

D512bh.

The procedure for obtaining this result will be demonstra
for the example of contribution~5!. For this we can use the
integral representation of thed-function and the explicit
form of the dependence of its arguments on summation
dex:

f 15An1Bn81C, ~9!

where

A522m12mhb, B522mhb,

C5j2hbD212S022mhb,

and apply the formula for summation of bilinear combin
tions of Laguerre functions~see Ref. 16!

(
n850

`

I n,n8
2

~z!exp~2 in8w!

5exp@2 i ~nw1z sin w!#I n,n~u!.

After summation over the indexn8, the expression

F1*5a (
n,n850

`

I n,n8
2

~z!d~ f 1!

takes the form

F1*5
a

2p E
2`

`

dt exp~ iCt ! (
n50

`

exp@2 i ~nw1z sin w

2tAn!#I n,n~u!, ~10!

whereu54z sin2(w/2), andw52tB, z5j2/(2mD2) is the
argument of the Laguerre function in Eqs.~5!, ~6!.

The remaining sum overn can be expressed in terms o
elementary functions. For this it is necessary to use yet
other formula for the summation ofI n,n(z), which can also
be obtained from the properties of the Laguerre function

(
n50

`

exp~ inw1!I n,n~u!5
i exp~2 iw1/2!

2 sin~w1/2!

3expS 2
iu

2
cot

w1

2 D , ~11!

wherew15t(A1B)522mt.
After these transformations we can obtain

F1*52
ia

4p E
2`

`

dt
exp@ i ~S12w1/2!#

sin~w1/2!
, ~12!

where

3V. N. Rodionov



S 5Ct22z
sin~w/2!sin~w2/2!

,

w
f t
eu

n-

a

en
ar
n

e
et
th

a

a
n
ry
a
th

then it is easy to obtain from~16!

on-

is
bu-

rs
-

r

off.
its
inte-
s
ion.
e

ry
time

e
re-
e

1 sin~w1/2!
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Introducing the new variable of integrationx5mt and
shifting the index of summationn by unity, we finally obtain
for the contributionF1

(
n,n850

`

F1d~ f 1!52
ia

4pm E
2`

` dx

sin x
exp@ i ~S2x!#.

~13!

By making analogous transformations forF2 , we obtain
the result~4! given above. Note that in these expressions
must pass the contours under the real-axis singularities o
function being integrated. Before integrating over the n
trino factort, we may regard expression~4! as the differen-
tial probability distribution with respect to the neutrino e
ergy.

The integration over the neutrino spectrum is easily c
ried out using the expression

E
0

`

tl exp~2 ixt !dt52 i expS i p

2
l D G~11l!

~x2 i0!11l ,

~14!

lÞ21,22,...,

which we must regard as an integral transformation of g
eralized functions. After this the total probability for nucle
beta decay in an electromagnetic field with the Redmo
configuration reduces to the form

W5
G0m

2p E
0

` da

a E
2`

` dr

r3 F S «01
3i

r D ~cot x1 i !2 i S a

1
U exp~ ix !

g D Gexp~ iS* !, ~15!

wherex5mr/(2a), S* (r,a)5S(r,a,t)1rt no longer de-
pends ont.

Equation~15! enables us to obtain rather easily a numb
of new representations for the probability of nuclear b
decay when the Redmond configuration is lacking one or
other of its components.

Thus, for example, if we reduce the parameter that ch
acterizes the wave intensityj to zero, we have from Eq.~15!

W5
G0m

2p E
0

` du

u E
2`

` dr

r3
cotS mur

2 D
3S «01

3i

r DexpF ir«02
ir

2 S u1
1

uD G , ~16!

whereu51/a.
Equation~16! defines an integral representation that h

not been presented previously in the literature. It correspo
to the total probability for nuclear beta decay with arbitra
energy release in the presence of a constant uniform m
netic fieldH. If we assume that the energy released in
decay is small, i.e.,

«0215I!1,
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W5
G0m

A2p
expS 2 i

p

4 D •E
2`

` cot~mr/2!

r7/2
exp~ irI !dr.

~17!

In the weak-field limit (m!I ) it follows that

W5W0H 11 (
n51

`
G~9/2!22nB2n

~2n!!G~9/222n! S m

2I D 2n
1
7

2 S m

I D 7/2zS 2
5

2
,v D J , ~18!

wherev5a2@a#, a5I /m, 0,v,1, @a# is the integer part
of the numbera, and

W05
4

105
G0~2I !

7/2 ~19!

is the decay probability in the absence of a field in the n
relativistic limit.

Note that the asymptotic expansion~18! can be obtained
by expanding cotx in ~17! about zero

cot x5 (
n50

`
~21!n22n

~2n!!
B2nx

2n21,

whereB2n are the Bernoulli numbers. If we integrate th
series term by term, also taking into account the contri
tions to the integral~17! from nonvanishing poles of the
cotangentr52np/m, wheren561, 62, . . . , we findthat
the generalized Riemann zeta functionz(a,v) appears.

Substituting in the values of the Bernoulli numbe
B251/6, B45 2 1/30,B651/42 and using the Hurwitz rep
resentation forz(25/2,v), we can write Eq.~18! in the form

W5W0H 11
35

12 S m

2I D
2

2
7

48 S m

2I D
4

1
1

96 S m

2I D
6

2
105

8p3 S m

2I D
7/2FsinS 2pI

m
2

p

4 D1
1

27/2
sinS 4pI

m

2
p

4 D G1...J . ~20!

The appearance in the field dependence~20! of ‘‘mono-
tonic’’ and ‘‘oscillating’’ components is unremarkable fo
processes in an external field~see Refs. 1–3, 7, 11–15!. Both
of these contributions disappear when the field is turned
However, in contrast to the monotonic term, which owes
appearance to our expanding the expression under the
gration sign in~17! about zero, the oscillatory contribution i
determined by a broader range of the variable of integrat
Since this integral~17! is essentially a so-called proper-tim
representation of the probability of the process,18 we can
argue physically that the time for creation of the oscillato
corrections can considerably exceed the characteristic
for creation of the monotonic terms. Thus, from Eqs.~17!–
~20! it follows that whereas the time for generation of th
monotonic corrections is determined only by the energy
leased in the decay,r;I21, as in a free process, for th
oscillatory corrections we haver;m21. Inasmuch as

4V. N. Rodionov
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formation of the decay in a field exceed the time and reg
of the unperturbed process by a factor ofI /m. The specific
form of the dependence of the oscillatory contributions
field is determined by the characteristics of the process it
and the field configuration~see Refs. 7, 11–13, 15!; how-
ever, a common feature for both is nonanalyticity when
field is turned off. The need to include a broader region
generation of the oscillatory terms than the region arou
zero implies that the form of these terms cannot be rep
duced by the methods of perturbation theory, but rather
quires the use of other, more powerful, methods of inve
gation.

In the strong-field limit (m.I ) in ~17!, taking into ac-
count the rule for avoiding poles and approximating the
tangent in the upper half-plane of the complex varia
x5mr/2 ~for uxu@1, cotx;2i!, we have

W5
7m

4I
W0 . ~21!

From ~21! it follows directly that in this strong-field limit,
the beta decay probability increases linearly with fieldH,
which first noted in Ref. 5.

Also of no small interest is the fact that if we use t
representation of the functionz(s,a) for large values of the
argumenta5I /m.1, in place of~18! we can obtain a more
general result:

W5W0H 74 a211
7

2
a27/2FzS 2

5

2
,v D2zS 2

5

2
,aD G J .

~22!

In a strong field wherem.I , it follows in particular
from ~22! that @a#50, and hence thata5v, which again
leads to Eq.~21!. Equation~22! clearly demonstrates that th
total probability for beta decay ceases to oscillate when
parameterm reaches values at least equal toI . Note that
Nikishov et al. predicted similar behavior for the total prob
abilities of certain processes in the field of an electrom
netic wave in Ref. 13.

In the other limiting case, where there is no const
magnetic field in the Redmond configuration (m→0), we
obtain from~15! another new representation for the nucle
beta decay probability in the field of an electromagne
wave with arbitrary release of energy:

W5
G0

p E
0

` du

u2 E
2`

` dr

r4
exp~ iS2* !

3H «02j2u sin2S lr

2 D1
3i

r J , ~23!

where

S2*5r«02
r

2u
2

ru

2 H 11j2S 12
sin2~lr/2!

~lr/2!2 D J ,
l5

v

m
. ~24!

Note that Eqs.~23!, ~24! follow from ~15! after we ex-
pand the cotangent about zero, and evaluate the functio
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the limitsm→0 andh→`. Note also that in obtaining~23!,
~24! we have discarded terms due to wave polarizati
However, this contribution is easy to recover if we inclu
terms of higher order in 1/h in these processes, assuming
this case thatxbh;1. In particular, in this approximation

Ueixdx

g
5

j2

a S 2 i
sin2 f

f
2
sin f cos f

f
1
sin2 f

f 2 Dd f ,
~25!

where f5bhx; the exponent in the same variables reduc
to the expression

S252Af1B
sin2 f

f
,

where

A52
2

l F«02 1

2 S u1
1

uD2
j2u

2
2tG , B5

j2u

l

and the dependence on neutrino energy is recovered.
From~24!, ~25! we obtain the well-known representatio

for the probability of beta decay in a wave field in the for
of a sum of bilinear combinations of Bessel functions. No
that to do this, we transform the integrals

I ~A,B!5E
2`

` d f

f
exp~2 iA f !expH iB sin2 f

f J ,
by representing the second exponential factor in series
trigonometric functions in the numerator by exponentials,
the form

I l ,k~A!5E
2`

` dx

xl11 exp@ ix~2l22k2A!#. ~26!

Recalling that in~26!, as before, the singularity at ‘‘zero’’ is
shifted into the upper half-plane, after integration overx we
have

I l ,k~A!52p
i l11

l !
~2l22k2A! l ,

where 2l22k2A>0, whereupon

k<kmax5F l2 A

2G , l> lmin5FA2G .
Thus,I (A,B) represented in the form of a sum,

I ~A,B!52p i (
l5 lmin

`

(
k50

kmax Bl~2l !! ~21!k

~ l ! !222l~2l2k!!k!

3~2l22k2A! l .

Changing the order of summation and introducing a n
summation indexn5 l2k, we obtain

(
l5 lmin

`

(
k50

k5 l2 lmin

...5 (
k50

`

(
l5k1 lmin

`

...5 (
k50

`

(
n5nmin

`

...

while for I (A,B) we have

I ~A,B!52p i (
n5nmin

`

(
k50

`
~21!k~z/2!2n12kG~2n12k11!

k!G2~n1k11!G~2n1k11!
,

5V. N. Rodionov
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It is easy to see that the sum overk reduces to the well-
known representation for the square of Bessel functions:

I ~A,B!52p i (
n5nmin

`

Jn
2~z!.

The contribution

I 1~A,B!5E
2`

` d f

f
sin2 f exp~2 iA f !expH iB sin2 f

f J
can be reduced to the form

I 1~A,B!52
1

4z

d

dz Fz d

dz
I ~A,B!G ,

which in turn gives

I 1~A,B!52
p i

2 (
n5nmin

`

~Jn11
2 1Jn21

2 22Jn
2!.

In a completely analogous way, we obtain for the
maining terms in~25!

I 2~A,B!52
i

2 E
2`

` d f

f
sin~2 f !

3 exp~2 iA f !expH iB sin2 f

f J
522p i (

n5nmin

`
n

z
Jn~z!Jn8~z!,

I 3~A,B!5 i E
2`

` d f

f 2
sin2 f exp~2 iA f !expH iB sin2 f

f J
52p i

z

B (
n5nmin

`

Jn~z!Jn8~z!.

Substituting these expressions into the original integral,
obtain an expression for the probability in the field of
electromagnetic wave which agrees with the results obta
previously in investigations of beta decay in a las
field.1,3,8,10,12

The integral representation~23! makes it possible to
write the probability in an electromagnetic wave field in t
form of a single integral, while including the relativisti
character of the interaction. For this, note that the integ
over the energy variableu can be written in the form

E
0

` du

u2
expH 2 i

r

2 S uA11 1

uD J 52pAA1H1
~2!~rAA1!,

whereH1
(2)(z) is a Hankel function, and

A1511j2S 12
sin2 f

f D .
In a completely analogous way, we also calculate the rem
ing integrals entering into~23!. Substituting these expres
sions, we have
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0
2` r4 0 1H S 0 r D 1

2j2 sin2S lr

2 DH0
~2!J . ~27!

These results, which are single integrals overH0
(2) and

H1
(2) , correspond as before to a proper-time representatio

the distribution function for a light, charged particle in th
field of an electromagnetic wave. This assertion becom
obvious if we note that the total probability of the proce
can be calculated by starting with the optical theorem a
identifying this probability as the imaginary part of the ela
tic scattering amplitude integrated over all final states, le
ing the integration with respect to time to the final stage
the calculation. Note that an analogous result was use
Refs. 13, 14, and 19 in investigating processes in an exte
field. As the wave field turns off (j→0) it is easy to obtain
an analogous representation from~27!, expressed in terms o
the free-particle distribution function.20 For this, using the
integral

W05
G0

p E
0

` du

u2 E
2`

`

drS «0
r4

1
3i

r5Dexp~ iS0r!

and the replacement described above, we have

W052G0E
2`

`

drH1
~2!~r!S «0

r4
1
3i

r5Dexp~ i«0r!.

This last expression furnishes an explicit form for the dep
dence of the decay probability on the energy release«0 if we
take into account that

E
2`

` exp~ ir«0!

r
H1

~2!~r!524iA«0
221,

and use the analytic dependence of the right-hand side on
parameter«0 . In the special case of a nonrelativistic dec
(I!1), which provides the main contribution to the integr
coming from valuesuru@1, after approximating the Hanke
functions for large values of the argument

H1
~2!~r!5A 2

pr
expS i 34 p Dexp~2 ir!,

it follows that

W05
4

105
G0~2I !

7/2,

which is found to be in agreement with Eq.~19!.

3. ASYMPTOTIC EXPRESSION FOR THE BETA DECAY
PROBABILITY IN A FIELD WITH THE REDMOND
CONFIGURATION

We now discuss in more detail the case in which bo
the influence of the constant magnetic field and that of
electromagnetic wave field in the Redmond configuration
not assumed to be small. Let us assume thatm!1. In this
approximation the dominant term in the integral~15! comes
from the regionx!1. Let us expand the integrand abo
zero. Then the exponent reduces to the form

6V. N. Rodionov
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Therefore, settingx*@1, we must close the integration con-

vi-
s
ase

ter
te-
the
where

y5S jl

u D 2/3r, z5S ux D 2/3S0 , f5S ux D 2/3 yl

u
,

jl5x,

and the preexponential factor is given by

iUeix

g
dx5j2u f d f5S x

uD 2/3uydy.
Thus, in this limit, the beta decay probability can

written in the form

W5
G0

8p
x2E

2`

` dy

y5 E
0

` du

u
expS 2 iyz2 i

y3

3 D
3H «0y2uS x

uD 2/3S y32 3

2
i D J . ~28!

This expression coincides with the analogous expres
for the probability in a constant crossed field taking in
account the relativistic character of the interaction, written
terms of Airy functions.8 It generalizes previous results for
nonrelativistic integral representation,13,14and also allows us
to analyze this process without appealing to the propertie
the Airy functions, which were widely used previously.

In particular, in the nonrelativistic limit (I!1), we can
obtain from ~28! an expression in the form of a Mellin–
Barnes-type integral:

W5
G0

Ap
x7/3R~x!, ~29!

where

R~x!5
325/6

105

1

2p i Eg2 i`

g1 i`

GS s31
1

6DG~2s!

3S 13D
2s/3

usF~u,s!cos
p

3
~2s11!ds, ~30!

21/2,g,0,

F~u,s!54u41u$1812s14s~s21!%1
15

u2
s~s21!,

u52I /x2/3.

The singularities of the integrand in~30! are determined by
the poles of the gamma function; The integration cont
contains the vertical straight line Res5g, which separates a
left-hand and a right-hand series of poles. Hence, by clos
the contour of integration respectively ‘‘on the right’’ or ‘‘o
the left,’’ we can obtain asymptotic expansions from~30! for
different values of the field parameterx. It should be noted
that in the present case, i.e., the nonrelativistic limit w
respect to energy released in the decay, the actual expan
parameter is

x*5
x

~2I !3/2
.
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tour on the right. Then from~30! we obtain a series in in-
verse powers ofx* :

W5W0~3x* !7/3
5G2~2/3!

12•62/3pG~5/6! (
n50

`
un22

n!

3GS n31
1

6D3n/3cosp

3
~2n11!

3H n~n21!1
4

15
u61

2

15
u3~92n12n2!J .

Hereu5x
*
22/3.

Using the latter relation, we obtain

W5W0~3x* !7/3
5G2~2/3!

24p22/3 H 11
6

5

G~1/6!

G~5/6!
~3x* !22/3

2
8G~1/2!

G~5/6!
~3x* !24/31...J . ~31!

Note that the first term of our expansion was derived pre
ously ~see Refs. 3, 11, 13! in a discussion of the analogou
process in a constant crossed field in the low energy rele
limit.

In the opposite limiting case, where the parame
x*!1, the asymptotic series is obtained by closing the in
gration contour on the left, because the singularities of
gamma function fors,0 lie there:

W5W0~R11R2!,

where

R15 (
n50

`
G~3n11/2!

n!G~1/2! S 2
x
*
2

3 D nH 11
x
*
2

2
~18n219n

110!1
15

16
x
*
4 ~36n2124n13!J , ~32!

R25
1

2 (
n50

` S 2
4

9D
nH g22n sin gF2

dn
g2 S 11

5

3g2D
1

2

3g2
~a2n1bn!G1g22n21 cosgF2

14

9
a2n1S f n

2
hn
g2D S 11

5

3g2D1
2

3

cn
g2G J . ~33!

Here

g5
2

3x*
, bn5

2

3
a2n112S 2n1

1

3Da2n ,
cn5

4

3
a2n11S n1

2

3D ,
dn52cn12bn~2n11!,

f n52bn24na2n2
2

3
a2n11 ,

hn54cn~n11!,
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G0x ` d% 3i
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am5 (
k50

2m
~2k21!!!

32m2k~2m2k!! ~2k!!!

G~3m2k11/2!

G~1/2!
.

Expressions~32!, ~33! determine the monotonic (R1)
and oscillating (R2) contributions in this weak-field approxi
mationx*!1. Calculation of the coefficients that determin
the oscillatory field corrections in general leads to somew
more complicated expressions than for the case of a con
magnetic field~see~18!, ~20!!; however, the first of these ca
be easily calculated by using the values

a051, a15
5

12
, a25

205

2532
, a35

5•7•11•59

27•34
,

which finally yields

W5W0H 11
35

8
x
*
2 1

35

128
x
*
4 2S 3532D

2

x
*
6

1
105

16
x
*
4 sinS 2

3x*
D1...J . ~34!

The first corrections~up tox
*
4 ! coincide with analogous

results of calculations given previously~see Refs. 1, 7, 10–
14!. It is also quite noteworthy that despite the formal pre
ence in the expansion~33! of terms of all orders ing, the
oscillatory part vanishes asx→0 like x

*
4 .

Finally, it is also of interest to obtain the asymptot
dependence of the probability when the parameterx turns
out to be large, while at the same time taking the relativis
character of the interaction into account. In this limit we u
Eq. ~28! and discuss the situation in which the parametex
takes on valuesx@«0.1. Introducing a new variable o
integration

u5
u1

A11a2r1
2
,

where

a5
x

A12
, r15

2

u S ux D 2/3y, x5jl5
E

Hcr
,

the expression for the probability can be written in the fo

W5
G0

p E
2`

` dr1
r1
4 E

0

` du1
u1
2 A11a2r1

2

3H «01
3i

r1
2

x2r1
2

4

u1

A11a2r1
2 J

3expF ir1«02 i
r1
2

A11a2r1
2S u11 1

u1
D G . ~35!

Using Hankel functions, from here it is not difficult t
obtain once again a representation for the beta decay p
ability in the form of a single integration:
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W52
A12p H E

0 %3 Fexp~ i%«0!F S «01 % DH1 ~z!

2 iA3

4
x%H0

~2!~z!G1exp~2 i%«0!F S «02
3i

% D
3H1

~1!~z!2 iA3

4
x%H0

~1!~z!G G J , ~36!

wherez5%A11x2%2/12.
In this approximationx can be regarded as the large

parameter; hence, it is not difficult to see that the domin
contribution to the integral~36! in this case will come from
the regionz@1. Using the asymptotic form of the function
H (1,2)(z) for large values of the argument, we have from~36!

W5
2G0A1

p H E
0

` d%

%5 sinS a%21
p

4 D
2

x

A12
E
0

` d%

%3 cosS a%21
p

4 D J , ~37!

A15
3A2p

121/4
x1/2.

Recall that we avoid the singularities in the integral~37!
by detouring below them, as before. In this case the calc
tion can make use of tabulated integrals:21

E
0

` sin t

tn11 dt5
~21!n

n! H p

2
cosS n p

2 D2C~n

11!sinS n p

2 D J ,
E
0

` cos t

tn11 dt5
~21!n

n! H C~n11!cosS n p

2 D
1

p

2
sinS n p

2 D J ,
where

C~n11!511
1

2
1
1

3
1...1

1

n

is theg-logarithmic derivative of the gamma function. Su
stituting these values into~37!, we finally obtain

W5
3

4Ap
G0S x

2)
D 5/2~11p22g!, ~38!

from which it follows that in this approximation the prob
ability is independent of the energy released in the decay
increases with increasing field asx5/2. Note that in the non-
relativistic limit, the leading term of the asymptotic expa
sion of the decay probability asx*@1 is also independent o
I ,3,11,13which is clearly indicated by Eq.~32! in particular.
The explanation is that in these limits, the region of form
tion of the decay is determined exclusively by the field; ho
ever, the field dependence turns out to be different when
take the relativistic structure of the interaction into accou

8V. N. Rodionov



4. NONRELATIVISTIC LIMIT OF THE BETA DECAY
PROBABILITY IN A FIELD WITH THE REDMOND
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CONFIGURATION

The least-studied situation is the one in which both
magnetic field and a wave field are retained in the Redm
configuration; that is, neither of these is regarded as sm
Expression~15! can give a complete picture in this case,
we take the relativistic character of the interaction into
count. However, the double integration eliminates the po
bility of a thorough analysis. In the nonrelativistic lim
(I!1), one of the integrations in~15! can be carried out
after which the total probability for nuclear beta decay b
comes

W5
mG0

A2p
expS 2 i

p

4 D E
2`

` cot~mr/2!

r7/2
exp~ iS!dr, ~39!

where

S5j2
2I

ld H xS d

j2
21D1

12d

d

sin x sin~xd!

sin@x~12d!# J ,
x5

rl

2
, d512

m

l
, l5

v

m
, m5

H

Hcr
, ~40!

and the characteristic parameter for the wave intensity in
nonrelativistic limit has the form

j5
eE

mvA2I
.

Expressions~39!, ~40! provide information about the
process over a wide range of the fundamental paramete
the problem. Representing the exponent in the form

S5QC~x!, Q5
2I

l

j2

d
,

C~x!5S d

j2
21D x1

12d

d

sin x sin~xd!

sin@~12d!x#

and finding the derivatives of the functionC(x),

C85
d

j2
212

12d

d

sin2~xd!2d sin2 x

sin2@x~12d!#
,

C95
12d

d H 2 cos@~11d!x#

sin@~12d!x#
22~12d!

sin~2x!

sin2@~12d!x#

12~12d!2
sin2 x cos@~12d!x#

sin3@~12d!x# J , ~41!

we can use the conditionC8(x)50 to find the stationary
points in the integral~39!, which leads to the equation

dS d

j2
21D5~12d!H ~12d!

sin2 x

sin2@~12d!x#

2
sin@~11d!x#

sin@~12d!x# J . ~42!

Note thatd can take on values2`,d<1. Depending
on where the value of field intensityj lies within the range
of d, the left side of Eq.~42! reduces to zero either at
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single point or at two points.~A plot of the left-hand side of
~42! is shown in Fig. 1.! Thus, whenj,1, this occurs at
d50 andd5j2. Whenj.1, the left-hand side of the equa
tion can vanish only atd50. At j51, the root for the left-
hand side merges with the endpoint value of the param
d51. It is easy to see thatd51 corresponds to eliminating
the constant magnetic field from the Redmond configurat
(m→0). In this limit the left- and right-hand sides of Eq
~42! reduce to

FL5
1

j2
21,

FR~x!52
sin~2x!

x
1
sin2 x

x2
,

and the stationary points are determined in the same ma
as for an electromagnetic wave field, which was discusse
detail in Ref. 13. In particular, it was shown in Ref. 13 th
only asj approaches unity does the series of saddle po
become infinite.

In an electromagnetic field with the Redmond config
ration this situation is much more complex. Thus, e.g., wh
d51/2, which corresponds tov52vH , we have from~41!
that

C~x!5S 1

2j2
21D x1sin x, ~43!

C8~x!5
1

2j2
211cosx, ~44!

C9~x!52sin x. ~45!

The stationary points in this case are roots of the equatio

12
1

2j2
5cosx, ~46!

from which it follows that for 1/2<j,` the series of saddle
points is unbounded. Forj@1 the roots of Eq.~46! reduce to
the form

xn52pn61/j, n50,61,62,... .

By virtue of the evenness of the functionC8(x), the
saddle points appear in pairs; the first pair is6x1561/j,
which yields

FIG. 1.
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Substituting these values into the original integral

W5
G0

A2p
expS 2 i

p

4 D
3S l

2D 7/2E
2`

` cot~x/2!

x7/2
expH i 4Il j2C~x!J dx,

which is determined by the saddle-point method, leads to
probability in a slowly varying field~see~32!, ~33!!, but with
a frequency dependence that differs from the dependenc
a pure wave field~see Refs. 3, 13!:

W5W0H 11
35

8
x
*
2 2

7

128

x
*
4

j2
1

7

64

x
*
3

j2 FcosS 2

3x*
D

2
x*
12

sinS 2

3x*
D G1...J .

By taking the limitd→0 in ~39!, which physically cor-
responds to equating the frequency of the wavev and the
cyclotron frequencyvH , we can reduce the integral~39! to
the form

W5
G0l

7/2

8Ap
expS 2 i

p

4 D E
2`

` cot x

x7/2
expH i 2Il j2

3F S 1j221D x1x2 cot xG J dx, ~47!

from which it once again follows that forj@1, the probabil-
ity ~39! will have a form characteristic of that of the consta
crossed field case, preserving the overall structure of~32!,
~33!, but with modified frequency dependences of both
monotonic and oscillatory contributions:

W5W0H 11
35

8
x
*
2 1

7

96

x
*
4

j2
2

7

48

x
*
3

j2 FcosS 2

3x*
D

2
x

12
sin S 2

3x*
D G1...J .

In order to estimate the integral~47! by the saddle-point
method, we must determine the stationary points from
equation

12
1

j2
52x cot x2

x2

sin2 x
. ~48!

A plot of the right-hand side of Eq.~48!, FR(x), is shown in
Fig. 2. Depending on the value ofj, Eq. ~48! can have dif-
ferent numbers of roots. Maxima of the even functi
FR(x) for x>0 occur atx50, 4.29, 7.60, . . . . Values of the
function at these points are respectively 1,218.3,
257.7, . . . Theleft-hand side of Eq.~48! reaches these sam
values atj5`, 0.23, 0.13, . . .

Thus, for 0.23,j,` there is only one pair of stationar
points. Asj decreases, the number of saddle points gro
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without bound. In the regionj@1, as we have already veri
fied, the probability~47! becomes the probability of a slowl
varying field.

Let us estimate the probability forj!1. It is easy to
show that the first pair of roots of Eq.~48! then takes the
form

6x156p~12j!.

Moreover, by estimating the quantitiesQC(x1)52Ip/l and
C9(x1)52/pj3, we obtain for the decay probability

W5W0H 11
35

8
x
*
2 2

105

8p4 S l

2I D 4
3

1

A2j
sinS 2pI

l
2

p

4 D J . ~49!

Note that in Eq.~49! the dependence of the oscillatory co
tribution on the field parameters is appreciably changed
this case the oscillation frequency is determined not by
wave field intensity, but by its frequency. Note also that t
formal presence of the small parameterj in the denominator
of this expression increases the importance of the oscilla
contributions in the resonance case; however, it can
shown that asj→0 its inclusion requires special conside
ation, due to overlap of the regions of influence of the sad
points ~which in this case become larger and larger!.

Equation~39! can also be greatly simplified by discus
ing the limit udu@1. Physically this situation implies an in
crease in the importance of the constant magnetic field,
though here we must still formally take the relationsh
betweenudu andj into account. In this case the characteris
integral in ~39! reduces to the form

R~j,l,m,I !5E
2`

` cot~ udux!

x7/2
expH i 2I j2ludu

3F S udu
j2

11D x2sin xG J dx. ~50!

Whenj2!udu, ~39!, ~50! lead to a result that coincides wit
the constant magnetic field case~see~17!–~19!!. In the other

FIG. 2.
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the same as for slowly varying field; however, the expans
parameter then turns out to be different:

x15
x*

A2udu
. ~51!

Note that in the regionudu@1 the effect of the field, as mea
sured by the quantum parameterx* , is thus weakened by
the increase in the classical parameterudu.

5. CONCLUSION

An electromagnetic field with complex configuration c
affect nuclear beta decay by giving rise to corrections to
total probability for an unperturbed decay. The identificati
of so-called monotonic and oscillatory contributions to the
corrections makes it plausible that their origins are sign
cantly different. Whereas the monotonic contribution com
from the work that the field does over distances of the or
of the de Broglie wavelength of an electron, i.e., in regio
where the free particle is created, for the oscillatory con
bution considerably larger scales are involved. The supe
sition of two electromagnetic fields, one a constant magn
field and the other the field of an electromagnetic pla
wave, possesses a number of special features.

In particular, our investigation of the influence of th
magnetic field leads us to conclude that in a weak fi
m!1, the time and spatial region over which oscillato
contributions form increase by a factor of 2Im21 as com-
pared to the unperturbed process. An analogous study of
cesses in the wave field, which was carried out in Refs. 3
13, shows that the increase is proportional to (2I )3/2Hcr /E.

However, when the magnetic field and the wave field
simultaneously, a situation can arise (v5vH) in which the
coefficient that determines the scale of enhancement of
role of the electromagnetic field is determined not only
the field intensity but also by its rate of change 2Imv21,
which forv!mI also leads to a considerable increase of
time within which the field acts on the process, even un
conditions in which its intensity is bounded.

Thus, whereas for an electromagnetic wave field o
purely magnetic field we deal only with effects caused
interference of waves generated by the electron at diffe
points within the region where the decay takes place, w
these are superimposed we must include interference by
electromagnetic fields themselves, which changes the pa
eter that determines the scale of increase of the characte
regions.

When the frequency difference is considerable, the w
the compound field influences the decay is also determ
by the relationship between the parametersudu andj. When
udu@1 and j2!udu, the magnetic field is decisive. Othe
wise, if

j2@udu@1,

the effect of the field on the decay process reduces to
case of a slowly varying plane wave field; the characteri
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plies a weaker role for the quantum field effects due to
increase in the classical parameterudu@1.

Finally, in the region whereudu→1, the problem of find-
ing the decay transition probability reduces to the case o
plane wave field with expansion parameterx* .

3,7–14

Intermediate ranges of the parameterd require a separate
investigation of the decay probability; however, we can
sert in this case that whenj@1, we are dealing with a
slowly varying plane wave, although the frequency dep
dence of both the monotonic and oscillatory contributio
may change.

The asymptotic forms we have found for the probabil
in strong fields also suggest that in these cases the exte
field can completely determine the course of the decay
both the nonrelativistic and in the relativistic limits. Not
however, that inclusion of the relativistic structure of th
interaction leads to an appreciable change in the charact
the field dependence.

To summarize, we can say that the approach develo
here, which is based on a generalization of well-kno
methods that exactly solve for the motion of an electron
electromagnetic fields of complex structure, enables us
study interference effects that arise when a beta decay
cess is simultaneously subjected to a static magnetic fi
and a wave field. Remarkably, there are a number of si
tions in which the decay probability in the combined fiel
reduces to the probability in a plane wave field,3,7,13 with a
relabeling of the effective parameters. However, there
also conditions in which the magnetic field and the wa
field act together to produce behavior that differs sign
cantly from the plane wave limit, in particular for resona
fields.
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Parametric excitation of spin waves in ferromagnets by longitudinal pumping localized

le-
in space
Yu. V. Gulyaev, P. E. Zil’berman, and A. V. Lugovsko 

Institute of Radio engineering and Electronics, Russian Academy of Sciences, 141120 Fryazino,
Moscow Region, Russia
~Submitted 31 May 1996!
Zh. Éksp. Teor. Fiz.111, 199–219~January 1997!

The equations of motion for the slowly varying complex amplitudes of spin waves parametrically
excited by a localized pumping magnetic field have been derived. A solution of these
equations satisfying given boundary and initial conditions has been obtained. The energy dissipated
by spin waves decreases with the pumping intensity beyond a certain pumping power,
which can be termed the regeneration threshold. The losses vanish and change sign at the
instability threshold. Both thresholds depend heavily on the linear dimensionL of the pumping
zone, increasing with decreasingL. Owing to the regeneration process, the dissipation
length of spin waves increases without bound as the pumping power approaches the instability
threshold. Consequently, perturbations of a uniform state due to the boundary penetrate
throughout the pumping zone, regardless of the dimensionL. As a result, the full pattern of
parametric instability is strongly affected by the zone boundary: 1! the spatial distribution of wave
amplitudes becomes nonuniform everywhere inside the zone; 2! the amplitude growth rate
in the unstable regime decreases at all points when perturbations due to the boundary reach these
points; 3! the instability threshold is independent of the spin-wave frequency offset from the
parametric resonance frequency. The calculated minimum instability threshold as a function of the
bias magnetic field~the ‘‘butterfly’’ curve! changes shape withL, in agreement with the
available experimental data. ©1997 American Institute of Physics.@S1063-7761~97!01301-2#
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The parametric instability of spin waves which was in
tially discovered and investigated in ferromagnets in
1950s and 60s,1–8 has remained a subject of research to t
day. In a recent review article,9 it was noted that this researc
can be divided into two stages. In the first, the theoret
description did not take into consideration the boundaries
a sample or pumping zone.4,8 This approach was probabl
based on the seemingly obvious assumption that insid
large enough system with uniform parameters, the am
tudes of parametrically generated waves should be inde
dent of the coordinates. In our discussion we will term t
approach the uniform model. Theoretical results of the u
form model are in good agreement with experiments of th
times.

The second stage of research,9 was stimulated by
progress in technology that led to fabrication of high-qua
spherical samples of yttrium–iron garnets~YIG!. Jantz and
Schneider10 were the first to record the fine structure of t
subsidiary absorption spectrum due to the effect of
spherical boundary, i.e., the reflection of parametrically
cited spin waves from this boundary and standing wa
established in the sample. The boundary effect on the s
trum of parametric absorption was also detected in exp
ments with antiferromagnets.11 A similar effect in ferrite
films was later investigated both theoretically a
experimentally.12–14

If, following Patton,9 we classify the experiments o
parametric instability and take recent research into acco
the onset of the third stage becomes apparent. This la
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crystal films by liquid-phase epitaxy. Owing to this progre
experimenters’ attention was switched, starting with t
1970s, to traveling spin waves generated in YIG films
local sources—conductors carrying microwave currents,
electric resonant cavities, etc.

A typical experimental configuration is shown in Fig.
It has the following features: 1! a magnetic microwave field
generating spin waves is localized near the source in a re
of linear sizeL, and 2! the resulting spin waves can prop
gate beyond this localization region. At high enough amp
tude of the pumping magnetic field, parametric instabil
can occur in the localization region. Thus we have a n
situation in which the sample size in some direction can
infinite, but the size of the pumping field localization zone
this direction is limited.1!

Parametric instability was studied experimentally in th
new configuration by Melkov and Sholom19 and Zilberman
et al.,20 who used slightly different techniques for generati
the localized pumping field and detecting parametric ins
bility. Their basic conclusions, however, were identical: t
instability threshold depended on the dimensionL of the
field localization zone and, as a rule, the threshold increa
with decreasingL. This effect was interpreted19,20in terms of
the theory developed earlier.21 According to that theory, the
instability threshold increases because the propagating w
can carry the energy away from the pumping zone.

Some fundamental problems of the theory, howev
have yet to be discussed. For example, 1! how the ampli-
tudes of parametrically excited spin waves depend on p
tion and time; 2! how these amplitudes behave asL→`; 3!

109$10.00 © 1997 American Institute of Physics
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how the instability threshold depends on the difference
tween the spin-wave frequency and the parametric-reson
frequencyvp/2; 4! the behavior of the minimal instability
threshold as a function of the bias magnetic field~‘‘butter-
fly’’ curve! at finite L. The aim of our work was to ge
answers to these questions.

In addition, there is a general problem which we wish
discuss. This problem emerged in the theory of parame
instability of plasma waves,22 but has not been solved. Th
point is that the theory22 indicates that the parametric inst
bility threshold, is a complicated function ofL, that may not
converge to a unique value asL→`. What is the physical
reason for it? In this paper we will try to demonstrate th
this effect is a direct consequence of parametric instabi
In an unstable system, perturbations due to the bound
cannot be confined near the boundary, but instead efficie
penetrate the entire system. For this reason, the boun
should affect the entire pattern of parametric instability,
gardless of the sizeL.

2. SYSTEM UNDER STUDY, BASIC EQUATIONS AND
APPROXIMATIONS

In this paper, the typical experimental configurati
~Fig. 1! is somewhat simplified. Instead of a ferrite film wit
large dimensions, we consider a ferromagnet infinite in
directions. We expect that this model should yield the m
faithful description of the experiment when the bounda
conditions on the film surface lead to either total absorpt
of incident waves or diffuse scattering.

We assume, in addition, that the ferromagnet is in a u
form saturating bias fieldH0 and in the pumping field
hp~r ,t!, which is a function of both timet and radius vector
r . Let the pumping field be confined in a layer whose bou
aries are perpendicular to a vectorL ~‘‘localization vector’’
with uL u5L!.

The mutual orientation of the vectorsH0, hp , andL is
quite important. The following configurations were impl
mented in experiments19,20: 1! H0 i hp'L and 2! H0 i hp i L .
Thus the pumping was always longitudinal, but the region
the pumping field could be either longitudinal or transve

FIG. 1. Typical experimental setup for excitation of traveling spin waves
pumping localized in space:1! YIG film; 2! localized source of spin waves
L! approximate size of the pumping zone. Arrows in film1 show the direc-
tion of spin wave propagation. The lower part of the figure shows t
orientations of the bias fieldH0 and longitudinal pumping fieldhp with
respect to the pumping zone:~a! transversely localized pumping;~b! longi-
tudinally localized pumping.
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figuration with a longitudinal confinement region will be di
cussed at the end of the paper.

We now proceed to the equations of motion and n
that we are essentially dealing with spin-wave turbulence
an inhomogeneous medium. The equations of motion w
derived in general form from the Hamiltonian by Zakhar
and L’vov,23 and L’voc and Rubenchik.24 According to their
calculations, if the inhomogeneities are sufficiently smoo
and the lengths of excited waves are short,2! the dynamical
equations for statistical averages of wave amplitudes, wh
can be derived from the Landau and Lifshitz standard eq
tions for precession and the magnetostatics equations,
valid. Therefore our calculation will be based on the lat
equations.

Let us neglect for simplicity the effect of ferromagnet
anisotropy and express the total magnetic fieldH~r ,t! and
magnetizationM ~r ,t! as sums, i.e.,

H~r ,t !5H01hp~r ,t !1dH~r ,t !,

M ~r ,t !5M01dM ~r ,t !, ~1!

where the static values areH052H0ez and M052M0ez ,
H0.0 andM0.0, ez is the unit vector aligned with the
z-axis, andd H~r ,t! and d M ~r ,t! are variable component
due to the pumping field. Assuming that the deviations fro
the equilibrium values and the pumping field are small,
that

ud Hu,ud M u!uhpu!M0 , ~2!

we write the linearized system of equations of motion~pre-
cession and magnetostatics! in the form

1

g

]dM

]t
1@M0 ,dHeff#1@dM ,~H01hp!#50,

d Heff5d H1ADd M2
vd

~gM0!
2

]dM

]t
,

~3!
@¹,d H#50, ¹~d H14pd M !50,

whereg.0 is the gyromagnetic ratio,A is the nonuniform
exchange constant, andvd is the relaxation frequency.

25 The
latter is assumed to be small:

«d[
vd

gM0
!1. ~4!

The pumping field, which oscillates with frequencyvp ,
can be expressed as

hp~r ,t !5
1

2
@h~r !e2 ivpt1h* ~r !eivpt#ez , ~5!

and we seek a solution of Eq.~3! in Bloch functions,

dM ~r ,t !5ei ~qr2vt ! (
n50

`

dMn~r ,t !e
2 invpt,

~6!

dH~r ,t !5ei ~qr2vt ! (
n50

`

dHn~r ,t !e
2 invpt,

y
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where the frequencyv and wave vectorq satisfy the disper-
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sion relation for spin waves. We assume that the pump
amplitudeh~r ! is a sufficiently smooth function of coordi
nates that

«L[
u¹hu
quhu

!1. ~7!

Then, since the interaction with the pumping field is re
tively weak @see Eq.~2!#,

«h[
uhu
M0

!1, ~8!

the complex amplitudes of the harmonics ofd Mn~r ,t! and
d Hn~r ,t! must also be slowly-varying functions ofr and t.

Without loss of generality, we can assume that the co
plex amplitude of the pumping fieldh(y) is a function only
of the coordinatey, and that the vectorq is in theyz-plane,
i.e., q5qyey1qzez andqy/qz5tanu ~the localization vector
L i ey!. Given these conditions, by substituting Eqs.~5! and
~6! into Eq. ~3! and equating coefficients of identical powe
to zero, we obtain the following equations ford Mn and
d Hn :

andMnx1bdMny2dHny5
1

gM0

]dMnx

]t
12iAqy

]dMny

]y

1 i«ndMny1
h~y!

2M0
dMn21,y

1
h* ~y!

2M0
dMn11,y ,

bdMnx2andMny5
1

gM0

]dMny

]t
12iAqy

]dMnx

]y

1 i«ndMnx1
h~y!

2M0
dMn21,x

1
h* ~y!

2M0
dMn11,x ,

~9!

iqydHnz2 iqzdHny5
]dHnz

]y
, dMnz50, dHnx50,

iqy~dHny14pdMny!1 iqzdHnz52
]~dHny14pdMny!

]y
,

where we have introduced the notations

an5
i ~v1nvp!

gM0
, b5

H0

M0
1Aq2,

«dn5
vd~v1nvd!

~gM0!
2 !1. ~10!

In ~9!, the harmonics with indexn are coupled, owing to the
pumping field, to harmonics with indicesn11 and n21.
Therefore all harmonics are in principle coupled to ea
other, but this coupling is weak because the paramete«h
@Eq. ~8!# is small.

On the right-hand side of Eq.~9! the terms of first order
in «h @Eq. ~8!#, «L @Eq. ~7!#, and«d @Eq. ~4!# are collected. If
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obtain a set of noninteracting harmonics. The parameterq at
fixed v is derived by requiring that the determinant of~9!
vanish whenn50. This harmonic can then always be treat
as an eigenstate, andq andv as parameters coupled by th
dispersion relation for this wave:

v25~vH1Ãq2vm!~vH1Ãq2vm1vm sin2 u!, ~11!

where vH5gH0 , vm54pgM0 , and Ã5A/4p. We next
find v by requiring that another determinant for a harmon
with nÞ0 vanish. Thus, harmonic numbern also becomes an
eigenstate. This condition is satisfied at the frequency
parametric resonancev52nvp/2. Only two harmonics of
those in Eq.~6! can describe eigenstates at the same tim

The two characteristic harmonics~numbers 0 andn! are
coupled by the pumping field, generally speaking, via a
of driven harmonics with intermediate numbers ranging
tween61 and6~unu21!. This coupling is of the order of the
parameters«h

unu, «L
unu, and«d

unu. The coupling is the strongest a
n561. In what follows, we limit our study to the case o
strong coupling between the characteristic harmonics w
numbers 0 and21 at frequencies close tovp/2.

To first order in«h , «L , and«d , terms with amplitudes
dM1x anddM1y of the ~11!st harmonic in the equations fo
the zeroth harmonic can be omitted, and in the equations
the ~21!st harmonic, terms with amplitudesdM22x and
dM22y of the ~22!nd harmonic can be dropped. We the
have a closed system of eight partial differential equatio
with eight unknown functions.

3. DERIVATION OF EQUATIONS FOR THE AMPLITUDES OF
PARAMETRICALLY COUPLED SPIN WAVES

Even after these simplifications, the system~9! is too
cumbersome. This is not surprising, since these equat
contain nearly all information about spectra of spin wav
whereas in zeroth-order perturbation theory in«h , «L , and
«d, the structure of spin waves is known.26 Two questions
must be answered, namely how the amplitudes of spin wa
change in space and time owing to the pumping field, a
what the small corrections are to the spin wave struct
caused by the pumping field. In order to answer in the c
text of second quantization, it suffices to obtain only equ
tions for the amplitudes.

The standard technique for deriving such equations
based on introducing amplitudes through the Holstei
Primakoff transforms.23,24 There is, in principle, a differen
and simpler approach, which can be reduced to direct tra
formations of Eq.~9!. We will use the latter for subsequen
analysis.

Let us write the equations for the amplitudes of the z
roth and~21!st harmonics derived from Eq.~9! as

111Gulyaev et al.



V̂
]eW

1Q̂
]eW

1R̂eW1ÊeW5 P̂fW ,

-

low
t
-
av
t
of
-
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-

w

-
i-

ra-
ffi-

ds
to

o

o

ves
c-
f

]t ]y
~12!

V̂
] fW

]t
1Q̂

] fW

]y
2R̂fW1F̂ fW5 P̂* eW ,

where the unknown functionseW and fW are column vectors
with four components:

eW5I dM0x

dM0y

dH0y

dH0z

I , fW5I dM21x

dM21y

dH21y

dH21z

I , ~13!

and the coefficients in Eq.~12! are 434 matrices:

Ê5I a0b0
0

b
a0
0

4p iqy

21
0

2 iqz
iqy

0
0
iqy
iqz

I ,
F̂5I a21

b
0
0

b
2a21

0
4p iqy

21
0

2 iqz
iqy

0
0
iqy
iqz

I ,
V̂5

1

gM0
Â, Q̂522iAqyB̂, R̂52 i«d0B̂,

P̂5
h

2M0
B̂, ~14!

Â5I 21
0
0
0

0
1
0
0

0
0
0
0

0
0
0
0
I , B̂5I 010

0

1
0
0
0

0
0
0
0

0
0
0
0
I .

The frequencyv can be offset from parametric reso
nance, i.e.,v5@vp/21Dv#, where Dv/vp;«h ,«L ,«d . In
this case,F̂5F̂01dF̂, where

F̂0[F̂~v!uv5vp/2
, dF̂52

iDv

gM0
Â. ~15!

We now seek a solution of Eq.~12! in the form

eW5CeW01deW , fW5DfW01d fW , ~16!

whereeW0 and f
W
0 are solutions of the unperturbed problem

ÊeW050, F̂0fW050, ~17!

C andD are the amplitudes of spin waves described by s
functions of r and t, which are, generally speaking, no
small, anddeW and d fW are small and slowly-varying correc
tions to the solution describing the changes in spin-w
‘‘structure’’ due to the pumping field. Since the determinan
of the matricesÊ and F̂0 vanish, we set one component
each of the vectorseW0 and f

W
0 to unity for definiteness. More

over, we set one of the components ofdeW andd fW to zero in
order to maintain a fixed number of unknown functions. A
ter substituting Eq.~16! into ~12!, terms of zeroth order van
ish by virtue of Eq.~17!. If only terms of first order in«h ,
«L , and «d are retained, the derivatives of small and slo
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functionsdeW andd fW can be omitted. Eliminating these func
tions from Eq.~12!, we obtain two equations for the ampl
tudesC andD,

]C

]t
1V1

]C

]y
1g1C5g1~y!D1g1C0 ,

~18!
]D

]t
1V2

]D

]y
1g2D5g2~y!C1g2D0 ,

where the parametersV1,2, g1,2, and g1,2 connote the
y-components of the group velocity, dissipation, and pa
metric coupling of waves, respectively. For these coe
cients, we obtain

V152V2[V,

V52k
vm sin u

q F Ãq21 cos2 u

2kS k1
vm

vp
sin2 u D G ,

g15gDHk, y25gDHk22iDv, ~19!

g1~y!52 igh~y!
sin2 u

2

vm

vp
,

g2~y!5g1* ~y!, k5A11S vm

vp
sin2 u D 2,

DH5
vdvp

2g2M0
.

In order to take into account an initial~noise! amplitude
of spin waves at zero pumping field, additional summan
g1C0 andg2D0 describing ‘‘sources’’ of noise are added
the right-hand side of Eq.~18!. Then at zero pumping field
the wave amplitudes areC5C0 and D5D0 . We demand
that the following condition be satisfied att50, when the
pump is turned on:

C~y,t50!5C0 , D~y,t50!5D0 . ~20!

The pumping field h(y) is confined to the region
0,y,L ~Fig. 2!. At the edges of this interval it drops to zer
over a distanceDL!L defined by

DLU]C]yU!uCu, DLU]D]y U!uDu. ~21!

Within this interval the pumping field is constant ath0. Note
that the condition~7! introduced previously is equivalent t
qDL@1. Thus the lengthDL is bounded in our model both
above and below. We next take into account that the wa
enter the region of the pumping field from opposite dire
tions, sinceV152V2 @Eq. ~19!#. Therefore the amplitude o

FIG. 2. Profile of the pumping-field amplitude.
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the incident wave at the region boundary is determined by
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e
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1
a
sinh

b~L2y!
exp 2

g12g2 y
. ~28!
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ll,

,
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.

n-
-

the noise, since boundary conditions similar to those d
cussed in Ref. 22 must be satisfied:

C~y50,t !5C0 , D~y5L,y!5D0 . ~22!

If we limit our discussion to the uniform model, w
should substitute into Eq.~18! ]C/]y[]D/]y[0. Then the
solution of Eq.~18! would be a linear combination of th
functions exp(p1t) and exp(p2t), where the arguments of th
exponentials are

p1,252
g11g2

2
6AS g12g2

2 D 21g1g2, ~23!

and the coupling parametersg1 andg2 are taken within the
pumping region. The instability condition for such a sol
tion, Rep1.0, can be written with due account of Eq.~19!
as

Ag1g2.A~Reg1!
21~Dv!2. ~24!

Now let us assume that Reg1ÞReg2. According to Eq.~19!,
this condition cannot be satisfied. But in more complex s
tems it can be satisfied. For example, it holds in parame
generation of plasma waves or in generation of a pair
waves of different natures~spin and acoustic! in a ferromag-
net. By assuming this condition formally, we obtain the fo
lowing instability condition atDv50:

Ag1g2.AReg1 Reg2. ~25!

It will be useful to compare Eq.~24! and ~25! to instability
conditions described below and derived from the nonunifo
model, i.e., for solutions of Eq.~18! with boundary condi-
tions ~22!.

4. SOLUTIONS OF WAVE-AMPLITUDE EQUATIONS.
INSTABILITY CONDITIONS

Using the Laplace transform with respect tot and with
due account of Eq.~20!, let us rewrite Eq.~18! in the form of
ordinary differential equations for the transformed functio
C(y,p) andD(y,p). The solution of these equations with th
boundary conditions~22! is

C~y,p!5
U~y,p!

p~p2p1!~p2p2!D~p!
, ~26!

where

D~p!5cosh
bL

V
1

a

b
sinh

bL

V
, ~27!

wherea 5 p1 (g11 g2)/2, b 5Aa22g1g2, and

U~y,p!5@g1D01~p1g1!C0#H ~p1g2!D~p!

2
g1g2

b
sinh

by

V
expFg12g2

2

L2y

V G J
2g1@g2C01~p1g2!D0#Fcoshb~L2y!

V
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The expression forD(y,p) can be derived from Eqs.~26!–
~28! by substitutingg1→g2, C0→D0 , g1→g2 , and y→L
2y.

In order to calculate the inverse transforms, one m
investigate the analytic properties of the functionsC(y,p)
andD(y,p) in the complex plane of the Laplacian variab
p. This topic has been discussed in the literature.22,27 Some
details, however, call for further investigation. Above a
note that at the pointsp5p1,2 @Eq. ~23!# the transformed
functionsC(y,p) andD(y,p) have no singularities at all
even at arbitrarily large lengthsL. This can be tested by
performing a straightforward, albeit cumbersome, transf
mation of Eq.~28! with a view to proving that the function
U(y,p) is regular in the complex planep and can be
expressed near the pointsp5p1,2 as U(y,p)
5(p2p1,2)U8(y,p), where uU8(y,p1,2)u,` at all L. Thus
the transformed functionsC(y,p) andD(y,p) can have sin-
gularities only atp50 and at the roots of the equation

D~p!50. ~29!

In order to calculate solutions of Eq.~29!, let us intro-
duce, following Gorbunov,22 a new variablew instead ofp:

coshw5
a

Ag1g2
, sinhw5

b

Ag1g2
, ~30!

wherew5u1 i (v1pn), u andv are real, andn is an integer.
Then we obtain the following equations for derivingu andv
from Eq. ~30!:

u1l~21!n sinhu cosv50,
~31!

v1l~21!n coshu sin v50,

where the parameterl is defined asAg1g2L/V. It will suffice
to find only solutions (u,v) with u>0 andv>0. Then the
rest of the solutions can be expressed as~2u,v!, (u,2v),
and (2u,2v). The nonnegative solutions of Eq.~31! as
functions ofl are shown in Fig. 3. It is convenient to numb
branches of the solutions by the indexn : un~l! and vn~l!.
Then the desired rootsp5pn(l) of Eq. ~29! are

pn~l!52
g11g2

2
1~21!nAg1g2 cosh@un~l!

1 ivn~l!#, n53, 4, 5,... ~32!

Let us proceed to analyzing the roots of Eq.~32!. Sup-
pose thatuÞ0. Then Eq.~32! can be transformed using Eq
~31! to the equivalent form

pn~l!52
g11g2

2
2
1

l
Ag1g2S u

tanhu
1 iv tanhuD ,

which clearly indicates that always Repn,0. Thus all the
roots withuÞ0 describe stable, i.e., decaying with time, co
tributions toC(y,t) andD(y,t). This conclusion is in agree
ment with Ref. 22. Now let us consider the roots withu50.
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The first line of Eq.~31! is an identity in this case. By elimi
natingv from the second line of Eq.~31! and from Eq.~32!,
we obtain

Im pn~l!52
1

2
~ Im g11Im g2!,

~33!

Re pn~l!5
1

2
~Reg11Reg2!Gn~l!,

with the dimensionless increment

Gn~l!5211
zn~l!

uzn~l!u
h

A11zn
2~l!

, ~34!

wherezn~l! are real roots of the equation

l5
A11zn

2~l!

uzn~l!u @p~n23!2arctanzn~l!#, ~35!

n53, 4, 5..., uarctanzn~l!u<p/2, and the dimensionles
pumping powerh52Ag1g2(Reg11Reg2)

21. It is also con-
venient to introduce a dimensionless pumping field ran
j5L~Reg11Reg2!/2V, hence the parameterl5jh.

It follows from Eq.~34! that instability can occur only if
there are roots for whichzn~l!.0. For such roots a set o
curves separating the regions of stability and instability c
be drawn in the plane of the system parameters~j,h!. If
Gn~l!50 in Eq.~34!, which should occur on the boundary o
instability, we obtainzn(l)5Ah221 . 0. By substituting
this expression into Eq.~35!, we obtain the following equa
tions for the above-mentioned set of curves:

FIG. 3. Numerical solutions of Eq.~31!. Curves1, 2, and 3 show the
function vn~l! at n53, 4 and 5, respectively, wherev3~l![0 atl,l3, and
the functionvn~l! bifurcates at the pointsl5ln with n>4. Curves4,5,...,10
show the functionun~l! at n53,4,...,9, respectively, whereun~l![0 at
l.ln .
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j5
p~n23!2arctanAh221

Ah221
, n54, 5,... ~36!

Shapes of the curves defined by Eq.~36! are shown in
Fig. 4. Since the curve withn54 is below all other curves, it
presents a special case and defines the instability thresh
At n54, Eq. ~36! yields a quantitative relation between th
threshold pumping power and its degree of localization. A
cording to Eq.~36! and Fig. 4, the threshold pumping in
creases with localization~with decreasingj!. This conclu-
sion is in agreement with earlier publications.19–21 At the
same time, it is noteworthy that asj→`, the threshold
pumping powerh→1, so that the instability condition at a
admissible offsetsDv and decrements Reg1 and Reg2 takes
the form

Ag1g2.
1

2
~Reg11Reg2!. ~37!

This condition is different from Eqs.~24! and ~25! in two
respects: 1! the threshold is independent of the offset, whi
contradicts Eq.~24!, and 2! at Reg1ÞReg2 andDv50, the
threshold equals the arithmetic mean of the dissipation
tors, but not the geometric mean, as in Eq.~25!. In Fig. 4 the
threshold defined by Eq.~37! is shown by the horizontal line
h51, and the threshold defined by Eq.~25! by the line
h5h0<1. Thus, even in the limitL→`, the expression for
the threshold pumping may be different from that deriv
from the uniform model. The reason for this discrepancy h
not been discussed in literature, and we will try to explain
in the next section.

To conclude this section, let us discuss in detail the
crement as a function of the pumping power,G4~h!, working
from Eqs. ~34! and ~35!. A set of such curves at differen
localization lengths is given in Fig. 5. It is remarkable th
parametric regeneration of the system, i.e., partial comp

FIG. 4. Plane of pumping powerh and localization lengthj: curves1, 2,
and 3 are plots of Eq.~36! at n54, 5, and 6, respectively; curve4 is the
hyperbolajh5p/2; curve5 is the hyperboaljh5l at l55p; curve6 is a
plot of h5h0[2AReg1Reg2/(Reg11Reg2) at arbitrary ratio Reg1/Reg2.
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sation for the dissipative loss due to pumping, has a thre
old if j is finite.G4521, at the regeneration threshold and
grows withh. According to Eq.~34!, this corresponds to the
parameterl5p/2, for which there is a positive rootz45`.
Let us plot the curvejh5p/2 ~Fig. 4!. This curve essentially
shows the regeneration threshold as a function of the lo
ization length. Note that at the regeneration threshold,
increment grows with pumping faster than in the unifo
model illustrated by curve1 in Fig. 5, which has a derivative
dG/dy51 at G521, whereas the other curves2, 3, and4
have equal derivativesdG4/dy5l5p/2.1 atG4521. Thus,
although the initial slopes ofG4~h! are independent of the
localization, they are obviously different from that calculat
by the uniform model. Only at high pumping powers do
the functionG4~h! asymptotically approach that calculated
the uniform model. The smaller the localization length~the
smallerj!, the higher the pumping powerh required to bring
the curveG4~h! closer toG~h!.

5. WAVE AMPLITUDES AS FUNCTIONS OF COORDINATES
AND TIME. DISCUSSION

The transformed functionsC(y,p) and D(y,p) @Eqs.
~26!–~28!# have no singularities in thep-plane except the
poles at the pointsp50 andp5pn~l! @Eq. ~32!#. Therefore
we could use the residue theorem in calculating the inve
Laplace transforms ofC(y,t) andD(y,t). In this calculation
we took into account that second-order poles occur at~1!
p50 if Dv50 and one of the rootspn~l! is at the instability
threshold, and~2! p5pn~l! if the parameterl corresponds to
a bifurcation point in Fig. 3. Otherwise the poles are simp
At small t too many poles should be included in the sum
residues. Then it is more convenient to calculate numeric
the integrals expressing the amplitudes.

Figure 6 shows such calculations of amplitudes. Cal
lations for four points of types I, II, III, and IV shown in Fig

FIG. 5. Increments as functions of the pumping power:1! increment calcu-
lated by the uniform model using Eq.~23! at Reg15Reg2 andDv50, i.e.,
G~h!5Rep1/Reg15211h; 2, 3 and 4! incrementsG4~h! calculated for
systems with boundaries using Eqs.~34! and~35! at j5p/4,p/12, andp/20,
respectively.
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4 are plotted. In the first stage of the calculations we assum
for simplicity that Reg15Reg2, and the offset was assume
to be zero, i.e.,Dv50.

The feature of type I is that the point is below both t
instability and regeneration thresholds, i.e., below the cur
1 and4 in Fig. 4, respectively. The curves for points of typ
I in Fig. 6 indicate that a steady-state distribution of amp
tude in space is achieved at timest.L/V. This distribution is
identical to that obtained in the uniform model througho
almost the entire pumping range except the boundary
tions, whose length is of the order of the ‘‘dissipatio
length’’ Ld52V/~Reg11Reg2!. Thus we can see that th
uniform model yields a faithful description at the points
type I if L@Ld .

The points of type II are above the regeneration thre
old ~curve4 in Fig. 4!, but below the instability threshold in
both the real system with boundaries~curve1 in Fig. 4! and
the uniform model~curve6 in Fig. 4!. The curves for points
of type II in Fig. 6 indicate that the effect of boundarie
penetrates into the excitation zone through a much lar
distance than for points of type I. This is naturally accoun

FIG. 6. Modulus of the relative amplitudeuC/C0u as a function of the di-
mensionless coordinatey/L at different moments of time for characteristi
points I, II, III, and IV in Fig. 4. The following values of the paramete
were taken for different points: I! j53p, h50.16,Vt/L50 ~curve1!, and
Vt/L5` ~curves2 and3!; II ! j55.5p, h50.9091,Vt/L50 ~curve1!, Vt/L
50.6 ~curves 2 and 3!, and Vt/L5` ~curves 4 and 5!; III ! j54.95p,
h51.0101,Vt/L50 ~curve 1!, Vt/L51.4 ~curves2 and 3!, andVt/L5`
~curve4!; IV ! j54.75p, h51.0526,Vt/L50 ~curve1!, Vt/L52 ~curve2!,
and Vt/L55 ~curve 3!. In all the graphsDv50, g15g2, g1,25g1,2* , and
C05D0 . The horizontal lines show for comparison absolute values of re
tive amplitudes calculated by the uniform model.
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e,
FIG. 7. Modulus of the relative amplitudeuC/C0u
as a function of dimensionless timeVt/L at the
center of the pumping zone,y5L/2, for a point
~a! of type II, j55.5p, h50.9091;~b! of type III,
j54.95p, h51.0101; ~c! of type IV, j54.75p,
h51.0526. For all the curvesDv50, g15g2,
g1,25 g1,2* andC05D0 . Solid lines show calcula-
tions by the model of a bounded pumping zon
dashed lines correspond to the uniform model.
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respective increase in the effective dissipation length. I
remarkable that in this case the steady-state distributio
markedly nonuniform throughout the excitation zone and
viates at all points from that of the uniform model.

The difference between points of type III and type II
that they are above curve6 in Fig. 4. At these points a
steady-state distribution is not achieved in the unifo
model, but it is achieved in the model with boundaries~curve
3!.

Finally, the point of type IV is above the instabilit
threshold. According to Fig. 6, the amplitude distribution
the point of type IV is nonuniform, and no steady-state d
tribution is achieved. Note that for all points under discu
sion, the maximum ofuC/C0u is shifted to the right of the
excitation zone center. The maximum of the amplitu
uD/D0u is shifted to the left.

Now let us discuss the wave amplitude as a function
time at a fixed point in space. It is convenient to consider
excitation zone center, i.e., the pointy5L/2. Figure 7 shows
calculations for points of types II, III, and IV in the plane o
parameters of Fig. 4. There is a time interval 0<t<L/2V in
which the amplitude versus time is identical to that calc
lated in the uniform model, since the dashed and solid li
in Fig. 7 coincide. This takes place because of the fin
velocity V at which perturbations propagate in the syste
As a result, there is a section around the central pointy5L/2
within which the boundary is irrelevant, and which narrow
with time. At t.L/2V and with a sufficient degree of regen
eration in the system for propagating waves not to be atte
ated in the zone, the boundaries affect the entire zone
gardless of its lengthL. In Fig. 7, this shows up as
separation between the dashed and solid curves. At a poi
type II, both curves tend to different steady-state levels. A
point of type III, a steady-state level is achieved owing to
effect of the boundaries. At a point of type IV, there is
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Thus, the boundaries of the pumping zone have a c
siderable effect on the development of parametric instab
at all L, evenL→`. But the instability threshold for spin
waves atL→` coincides with that calculated in the uniform
model only if Dv50. In fact, according to Eq.~18!,
Reg15Reg2 for spin waves, so the linesh51 andh5h0
coincide in Fig. 4. Since the threshold level is the parame
most often measured in experiments, it is clear that m
features of the underlying phenomena are not detected
would be interesting to understand why the threshold lev
can coincide despite radical differences in the patterns
instability development in space and time. The reason
their coincidence is illustrated by Fig. 8.

If the pumping localization length is not too large, as
Figs. 8a and 8c, the distributions of the moduli and phase
the amplitudesC andD are different, but they are symmetri
about the central pointy5L/2. At any point inside the pump
ing zone, at least one of the two inequalitie
]C/]yÞ0 or ]D/]yÞ0, holds. As the lengthL increases, the
amplitude distributions are deformed in the directions sho
by arrows in Figs. 8a and 8c. As a result, at sufficiently lar
L ~Figs. 8b and 8d!, the distributions of the amplitudesC and
D coincide, and a flat section, where]C/]y50 and
]D/]y50 simultaneously, is formed about the center of t
zone. This flat section is due to the symmetry of wave
rameters and the fact that the amplitude distribution beco
independent of the direction of wave propagation asL→`.
The coordinate derivatives in Eq.~18! can be omitted inside
the flat section, and the resulting equations directly yield
instability threshold equal to that obtained in the unifor
model.

We must stress once again that the above conclu
holds only in the symmetric configuration, for whic
Reg15Reg2 and Dv50. If DvÞ0, the symmetry of the
wave parameters is broken, sinceg1Þg2 @Eq. ~19!#. Our cal-
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culations indicate that in this case the amplitude distribut
is also asymmetric, even whenL→`, and the derivatives
]C/]y and ]D/]y in Eq. ~18! cannot be neglected at an
point. As a result, the instability condition can be deriv
from Eq. ~37!, assuming Reg15Reg2. Thus, in contrast to
the uniform model, the threshold is independent ofDv in a
system with boundaries,—this, of course, within plausi
constraints onDv ~recall thatDv/v;«h ,«L ,«d!1!.

6. FEATURES OF LONGITUDINAL LOCALIZATION

As was noted in Sec. 2, in experiments with localiz
pumping19,20 two configurations were studied, namely tran
verse localization withL'H0, and longitudinal localization
with L iH0. To this point, we have limited our discussion
transverse localization. Now let us consider some feature
longitudinal localization.

The procedure of constructing the theory described
the previous sections is almost the same. By following t
procedure, we obtain equations for the wave amplitudes
Eq. ~18! with the following substitutions:

V1

]C

]y
→V18

]C

]z
, V2

]D

]y
→V28

]D

]z
,

whereV18 andV28 are z-projections of the group velocities
and the fieldH0 is still aligned with thez-axis. Equations
~19! defining the coefficients are still valid, but the new
introduced velocities satisfy the relationV1852V28[V8,
where

FIG. 8. Steady-state curves of complex wave amplitudes versus coord
atDv50, g15g2, g1,25g1,2* , andC05D0 . Curves1 and2 showuC/C0u and
uD/D0u, respectively, at~a! j50.7p, h51.43 and~b! j514.98p, h51.001.
Curves3 and4 are plots of arg~C/C0! and arg~D/D0!, respectively, at~c!
j50.7p, h51.43 and~d! j514.98p, h51.001.
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q F 2k~k1 vm sin2 u/vp!
G

~38!

Equation ~38! demonstrates thatV850 at u5p/2. Ac-
cording to the dispersion relation~11!, waves withu5p/2
propagating in the direction normal to the fieldH0 really
exist at sufficiently smallH0—specifically, when

H0,H0c5
vp

2g
~k2Ak221!. ~39!

At these fields, the wave vectorsq of such waves are non
zero and may be fairly large.3! Therefore the instability
threshold for these waves can be estimated using the
tions of the previous sections. The dimensionless localiza
parameter j introduced in Sec. 4 is in this cas
j[Lg1/2V85`, sinceV1850. According to Eq.~36! and
Fig. 4, the instability threshold is a minimum~h5h051! at
j5`, and coincides with the result of the uniform model.

Our conclusion is based on Eq.~38!, which determines
the velocity, and applies only to longitudinal localization.
fact, in the case of transverse localization, the velocity is z
only atu50 @Eq. ~19!#. Waves withu50 propagate along the
field vectorH0, so they do not interact with the pumpin
field.8 This statement also follows from Eq.~19!: at u50 the
parametric coupling factorg150. Therefore the pumping
field cannot generate waves that do not transport energy
side the pumping zone in the case of strictly transvers
localized pumping. In the case of strictly longitudinal loca
ization, such waves can be generated, and they determin
minimum instability threshold.

The proposed interpretation of the minimum threshold
in good agreement with experimental data20 obtained under
the condition of almost longitudinal localization. The me
sured threshold was an oscillating function of the fieldH0,

20

and the minima corresponded to zero projection of the gr
velocity onto the film plane. Such waves did not leave t
pumping zone and therefore did not carry off any energy

7. ‘‘BUTTERFLY’’ CURVE

In this section we discuss the curve of the minimu
parametric instability threshold versus the fieldH0 ~the ‘‘but-
terfly’’ curve28!. It is interesting to determine how the boun
aries of the pumping zone affect this curve. As was noted
Sec. 6, the boundaries exert an influence over a wider ra
of fieldsH0 in the case of transverse localization. Therefo
we will discuss this type of localization.

Our calculation is based on Eq.~36!, which determines
the instability threshold atn54. In this equation the param
etersj andh can be expressed, with due account of Eq.~19!,
as

ate
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Ak221F2Ãq21 cos2 u

k~k1Ak221!
G ,

h5
uh0u
2DH

Ak221

k
. ~40!

The parameters can thus be expressed as functions ofq and
u. The wave numberq can be expressed in terms ofu using
Eq. ~11!, with v5vp/2. It turns out that the basic equatio
~36! determines the modulus of the threshold fielduh0u as a
function of angleu at givenM0, DH, vp , L, andH0. The
following values correspond to actual experimen
conditions19: 4pM051750 G,vp52p39.373109 s21. The
values ofu corresponding to the minimum of the thresho
field uh0u at givenH0 can be numerically derived from Eq
~36!. It turns out that ifH0c is determined by Eq.~39!, there
is only one optimum value ofu at H0,H0c, namely
uopt5p/2. At H0.H0c the angleuopt tends to zero at large
H0. The valueu5uopt is substituted into Eq.~36!, and the
minimal threshold field, minuh0u, as a function ofH0 is cal-
culated.

The family of resulting curves calculated at variousL is
given in Fig. 9. These demonstrate that the threshold
creases with decreasingL at all H0. Absolute variations in
the threshold atH0,H0c, however, are slightly smaller tha
at H0.H0c.

It is interesting to compare the curves of Fig. 9 to me
surements of a normally magnetized YIG film.19 The experi-
mental geometry19 was identical to that shown in Fig. 1, an
the field alignment was close to that of Fig. 1a. Thus
localization was almost transverse. One can see tha
L50.25–0.87 mm, the theoretical and experimental cur
for H0.H0c are in fair agreement. AtH0,H0c the mini-

FIG. 9. Calculations of minimum instability threshold, minuh0u, versus ap-
plied fieldH0 expressed in decibels with respect to the threshold at the
fieldH05H0c . The pumping fieldhp is localized longitudinally~hpiH0! and
transversely~L iH0!. The calculations were performed at different dime
sions of the pumping zoneL: ~1! 3.5 mm;~2! 2 mm; ~3! 1 mm. The system
parameters are 4pM051750 Oe,vp52p39.373109 s21, 2DH50.4 Oe.
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of L, whereas Fig. 9 demonstrates such a dependence.
We assume that this discrepancy is partly due to

difference between the theoretical model and real experim
tal conditions,19 since the film surface was smooth, rath
than rough with diffuse reflection of spin waves. Anoth
reason for the discrepancy may be the dependence betw
the line width 2DH and the wave numberq, which is not
reflected in the theoretical model. The importance of t
dependence has been pointed out in the literature.8,25 At the
smallestL, comparable to the dissipation lengthLd or even
smaller, the threshold is almost independent ofDH, and is
determined only by the outflow of spin-wave energy fro
the pumping zone. Under these conditions, the increas
DH with q cannot have a notable effect on the shape of
‘‘butterfly’’ curve at H0,H0c. At larger L this effect is
stronger. As a result, the ‘‘butterfly’’ curve moves upwar
owing to an increase inDH with q. Hence the lower curves
of Fig. 9 should approach the upper curve atH0,H0c, and
the agreement with the experimental data should improv

8. CONCLUSIONS

The parametric instability of spin waves generated
localized pumping field is interesting from the viewpoints
both fundamental and applied research. It is interesting
principle, to determine the effect of boundaries on syst
instability, which was done in our work, but only in th
linearized model, the interaction among spin waves be
ignored. The role of boundaries in the nonlinear stage of
instability is an interesting line of further theoretical r
search.

From the viewpoint of applications, the instability und
the conditions of localized pumping is interesting becaus
controls the admissible power fed to linear devices. Fr
this point of view, the effects of the following factors shou
be investigated: 1! boundaries of ferrite films, which often
reflect, but do not absorb or scatter incident spin waves!
parametric generation of not only purely exchange, but a
dipole spin waves, if the frequencyvp/2 is within the dipole
spectrum; 3! the actual configuration of the localized pum
ing field.

This work was supported by the International Scien
Foundation~Grant MSZ000! and the Russian Fund for Fun
damental Research~Grant No. 94-0204928a!. We are grate-
ful to S. A. Nikitov, A. G. Temiryazev, and M. P
Tikhomirova for helpful discussions.

1!In this connection, the following comment is relevant. A conductor with
microwave-frequency current pressed to a film surface can generat
principle, dipole or dipole-exchange spin waves of fairly large waveleng
in the linear mode at the current frequencyvp . These waves propagate fa
along the surface and can go far beyond the generator near-field zone
can then act as a driving force, generating a parametric instability at
quencies close tovp/2. Such processes have been investigated b
experimentally15 and theoretically.16–18But in this paper, we only mean the
near-field instability when considering the parametric instability in t
zone of localized pumping field. This instability is in some cases the o
one possible—for example, if the pumping magnetic fieldhp is parallel to
the bias magnetic fieldH0 ~longitudinal pumping!, or if the frequencyvp is
far beyond the boundary of the dipole spectrum of the film.

2!The applicability condition is formally equivalent to Eq.~7!.
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3!Recall that the theory, in accordance with Eq.~7! and the condition
L@DL, applies atqL@qDL@1.

18G. A. Melkov, Fiz. Tverd. Tela~Leningrad! 30, 2533~1988! @Sov. Phys.
Solid State30, 1458~1988!#.

cs
1R. W. Damon, Rev. Mod. Phys.25, 239 ~1953!.
2N. Bloembergen and S. Wang, Phys. Rev.93, 72 ~1954!.
3H. J. Suhl, J. Phys. Chem. Sol.1, 209 ~1957!.
4H. J. Suhl, J. Appl. Phys.29, 416 ~1958!.
5E. R. Morgenthaler, J. Appl. Phys.31, 95S~1960!.
6E. Schloemann, J. J. Green, and U. Milano, J. Appl. Phys.31, 386~1960!.
7E. Schloemann, J. Appl. Phys.31, 1647~1960!.
8E. Schloemann and R. J. Joseph, J. Appl. Phys.32, 1006~1961!.
9Carl E. Patton, Phys. Rep.103, 251 ~1984!.
10W. Jantz and J. Schneider, Sol. St. Commun.9, 69 ~1971!.
11V. Ya. Kotyuzhanskii and L. A. Prozorova, Zh. E´ksp. Teor. Fiz.81, 1913

~1981! @Sov. Phys. JETP54, 1013~1981!#.
12I. L. Berezin, B. A. Kalinikos, N. G. Kovshikovet al., Fiz. Tverd. Tela

~Leningrad! 20, 2101~1978! @Sov. Phys. Solid State20, 1214~1978!#.
13G. Wiese, Z. Phys. B91, 57 ~1993!.
14G. Wiese, P. Kabos, and C. E. Patton, Phys. Rev. B51, 15085~1995!.
15O. A. Chivileva, A. G. Gurevich, A. N. Anisimovet al., Fiz. Tverd. Tela

~Leningrad! 29, 1774~1987! @Sov. Phys. Solid State29, 1020~1987!#.
16B. A. Kalinikos, Pis’ma Zh. Tekh. Fiz.9, 811 ~1983! @Sov. Tech. Phys.
Lett. 9, 349 ~1983!#.

17B. A. Kalinikos and A. N. Slavin, IEEE Trans. Magn.27, 5444~1991!.
119 JETP 84 (1), January 1997
19G. A. Melkov and S. V. Sholom, Fiz. Tverd. Tela~Leningrad! 29, 3257
~1987! @Sov. Phys. Solid State29, 1870~1987!#.

20P. E. Zil’berman, N. S. Golubev, and A. G. Temiryazev, Zh. E´ksp. Teor.
Fiz. 97, 634 ~1990! @Sov. Phys. JETP70, 353 ~1990!#.

21V. S. L’vov and A. M. Rubenchik, Preprint IAE´ SO AN SSSR No. 31@in
Russian#, Moscow~1976!.

22L. M. Gorbunov, Zh. E´ksp. Teor. Fiz.67, 1386~1974! @Sov. Phys. JETP
40, 689 ~1975!#.

23V. E. Zakharov and V. S. L’vov, Fiz. Tverd. Tela~Leningrad! 14, 2913
~1972! @Sov. Phys. Solid State14, 2513~1972!#.

24V. S. L’vov and A. M. Rubenchik, Zh. E´ksp. Teor. Fiz.72, 127 ~1977!
@Sov. Phys. JETP45, 67 ~1977!#.

25A. G. Gurevich,Magnetic Resonance in Ferrite and Antiferromagneti
@in Russian#, Nauka, Moscow~1973!.

26A. I. Akhiezer, B. G. Bar’yakhtar, and S. V. Peletminskii,Spin Waves@in
Russian#, Nauka, Moscow~1967!.

27D. L. Bobroff and H. A. Haus, J. Appl. Phys.38, 390 ~1967!.
28Ya. A. Monosov, Nonlinear Ferromagnetic Resonance@in Russian#,
Nauka, Moscow~1971!.

Translation was provided by the Russian Editorial office.
119Gulyaev et al.



Density of states near an Anderson transition in a four-dimensional space.

Renormalizable models

I. M. Suslov

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
~Submitted 6 June 1996!
Zh. Éksp. Teor. Fiz.111, 220–249~January 1997!

Asymptotically accurate results are obtained for the average Green function and density of states
of a disordered system for a renormalizable class of models~as opposed to the lattice
model examined previously@I. M. Suslov, Zh. Éksp. Teor. Fiz.106, 560 ~1994!#. ForN;1
~whereN is the order of perturbation theory!, only the parquet terms corresponding to the higher
powers of large logarithms are taken into account. For largeN, this approximation is
inadequate because of the higher rate of increase with respect toN of the coefficients for the
lower powers of the logarithms. The latter coefficients are determined from the
renormalization condition for the theory expressed in the form of a Callan–Symanzik equation
using the Lipatov asymptote as boundary conditions. For calculating the self-energy at
finite momentum, a modification of the parquet approximation, is used that allows the calculations
to be done in an arbitrary finite logarithmic approximation, including the principal
asymptote inN of the expansion coefficients. It is shown that the phase transition point moves in
the complex plane, thereby ensuring regularity of the density of states for all energies and
avoiding the ‘‘false’’ pole in such a way that the effective interaction remains logarithmically
weak. © 1997 American Institute of Physics.@S1063-7761~97!01401-7#

1. INTRODUCTION whereS(E,R);W22@1. The total probabilityP(E) of the
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The problem of calculating the average Green funct
that determines the density of states for the Schro¨dinger
equation with a gaussian random potential is mathematic
equivalent to the problem of a second-order phase trans
with an n-component order parameterw5(w1 ,w2 , . . . ,wn)
in the limit n→0;1,2 the coefficients in the Ginzburg–Landa
Hamiltonian

H$w%5E ddxH 12 cu¹wu21
1

2
k0
2uwu21

1

4
g0uwu4J ~1!

are related to the parameters of a disordered system by
equations

c51/2m, k0
252E, g052W2a0

d/2, ~2!

whered is the dimensionality of the space,m is the particle
mass,E is the energy relative to the lower boundary of t
seed spectrum,W is the amplitude of the random potentia
and a0 is the lattice constant.~In the following c51 and
a051.! The ‘‘wrong’’ sign on the coefficient ofuwu4 leads to
the ‘‘false’’ pole problem3 and for a long time it was doubte
that an«-expansion could be constructed near a spatial
mensionality ofd54.4 Encouraging results in this area ha
been obtained recently by the author.5,6

It has been shown6 that there are two fundamentally di
ferent classes of models which show up in estimates ba
on the optimal fluctuation method.7,8 The probability
P(E,R) of the appearance of an energy levelE,0 owing to
a fluctuation in a potential with characteristic sizeR has the
form

P~E,R!;exp$2S~E,R!%, ~3!
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resulting levelE, which determines the density of state
n(E), is obtained by integrating Eq.~3! with respect toR,
which in the approximation of the saddle-point method
duces to replacingR by R0 , the minimum point for
S(E,R). For d,4 and d.4 we haveR0;uEu21/2 and
R0;a0 , respectively.5,6 For d54 ~Fig. 1!, the function
S(E,R)5const5S0, and the situation is close to degenerac
for largeR the degeneracy is removed owing to the finitene
of E andS(E,R)2S0;E2Rd, while for smallR the devia-
tion of the spectrum«(k) from quadratic is large. If
«(k)5k21bk4, then for b.0 the functionS(E,R) lies
above S0 , ensuring the appearance of a minimum
R0;uEu21/4, while for b,0 it lies below and the minimum
is attained atR0;a0 ;

6 thus, models withb.0 andb,0
yield a different asymptote for the fluctuation tail a
E→2}. For small negativeE the boundary between th
two types of models shifts and is no longer sharp, so t
integrating Eq.~3! with respect toR results in a competition
between the contributions from the minimumS1 and the
higher lying plateauS(E,R)5S0 , whose width increases
without bound asuEu is reduced:

P~E!;n~E!;e2S11S J

uEu D
a

e2S0, ~4!

whereJ;1/ma0
2;1. AsS1 is increased the second term~the

contribution of the plateau! becomes dominant beforeS1 ap-
proachesS0 . Direct integration of Eq.~3! with respect toR
yields an exponenta51/2,6 which cannot be taken seri
ously, since the accuracy of the method does not allow fo
estimate of the coefficient of the second exponential. T
exact value ofa is 1/3 ~see below!.

120$10.00 © 1997 American Institute of Physics
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method, the dampingG, defined by the imaginary part of th
self-energyS(p,k) for p50 ~k is the renormalized value o
k0), is proportional to the density of statesn(E) and, when
the dimensionality is taken into account, can be estimate

G;JH e2S11S J

uEu D
1/3

e2S0J . ~5!

The energy always enters in the combinationE1 iG, and in
the neighborhood of an Anderson transitionuEu can be re-
placed byG. It is easily verified that the first term in bracke
is dominant whenS1,3S0/4, and the second when the in
equality is reversed. SinceS(E,R);W22,6 in the limit of
weak disorder a sharp boundarySc53s0/4 appears betwee
the two types of models: forS1,Sc the optimum fluctuation
is determined by the atomic scale length and the discrete
of the lattice is of fundamental importance, by analogy w
the cased.4. ForS1.Sc fluctuations with a large radius ar
important and the analysis can be carried out in a continu
model with a quadratic spectrum; the situation is analog
to that for the lowest dimensionalities.

The above classification of models is directly related
the renormalizability of the theory. TheNth-order graph for
the self-energyS has momentum dimensionalitykr , where
r521(d24)N. For d.4 the degree of divergence at hig
momenta increases with the graph order, and the theor
unrenormalizable;9 a cutoff parameterL must be introduced
explicitly as an indication of the significance of the structu
of the Hamiltonian on an atomic scale. Ford,4 we have
r,2 at allN: when its value is deducted from each graph
p5k50 the index r is reduced by 2 and the differenc
S(p,k)2S(0,0) contains no divergences, which are a
sorbed byS(0,0), and leads only to a shift in the energ
origin. For d54 the differenceS(p,k)2S(0,0) contains
logarithmic divergences which are removed by renorma
ing the charge and Green function;9,10 however, it is neces-
sary to keep in mind that in the standard proofs of renorm
izability only distances greater thanL21 are considered. O
course, scale lengths shorter thanL21 do not make the
d-function contributions that are so important forL→`.
The above estimate shows that this is not always so:
renormalizable contribution from large distances~the contri-
bution of the plateau! is dominant only forS1.Sc ; other-
wise, it is small compared to the unrenormalizable contri
tion from small distances.

Therefore, there are four fundamentally different typ
of theory: ~1! an unrenormalizable theory ford.4; ~b! un-
renormalizable theories under logarithmic conditions~d54,
S1,Sc!; ~c! renormalizable theories under logarithmic co
ditions ~d54, S1.Sc!; and ~d! theories that are renormaliz
able with a single subtraction~superrenormalizable! for
d,4. Cases~a! and~b! have been examined in Refs. 5 and
respectively. In this paper we examine case~c!, the zeroth
approximation for the 42« theory, which belongs to type
~d!.

The exponenta in Eq. ~4! can be determined from th
renormalization condition for the plateau contribution. T
contribution of the latter to the dampingG, which depends
onL and the bare values fork0 andg0 , becomes a function
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quantities. From dimensional considerationsG5k f (g),
where the functionf (g) is determined mainly by the expo
nential exp(21/ag) owing to the need to agree with the re
sult from the optimal fluctuation method asE→2`, in
which g'g0 . Given the relationship between the renorm
ized and bare charges,11

g5
g0

11W2g0 ln~L/k!
, W25K4~n18! ~6!

~K45(8p2)21 is the area of a unit sphere in fou
dimensional space, divided by (2p)4!, we have

G;k2 expH 2
1

ag0
2
W2

a
ln

L

k J
;L2S L2

k2 D 2W2/2a21

expS 2
1

ag0
D , ~7!

which, given thatJ;L2, k25uEu,1! anda523/8p2, repro-
duces the second term of Eq.~5!. This value ofa is obtained
by a method3,12,13employing the standard instanton solutio
for d54.14

The need to correctly account for the factorial dive
gence of a number of perturbation theories examined
Lipatov’s method,14 according to which subsequent coef
cients in the expansion ing0 are determined by saddle-poin
configurations, i.e., instantons, of the corresponding fu
tional integrals, has been clarified previously.5,6 An instanton
in the Lipatov method satisfies the same equation as a typ
wave function in the field of an optimal fluctuation~see
Chapter IV of Ref. 8!. In this way, the model classificatio
given above shows up in yet another fundamental guise–
divergence of a number of perturbation theories. Unlike
lattice models ford>4,6 the continuum models ford,4,15

and the renormalizable massless theories,14,16 applying the
Lipatov method to studies of four-dimensional models~1!
with kÞ0 requires that certain difficulties associated w
the absence of ‘‘true’’ instantons~Sec. 7! be overcome.

In order to obtain asymptotically accurate~in the limit of
weak disorder! results in four-dimensional lattice models,6 in
the expansion

S~0,k!2S~0,0!5k2 (
N51

`

g0
N (

K50

N

AN
KS ln L

k D K ~8!

it is necessary to include:~a! the parquet coefficientsAN
N

corresponding to the principal logarithmic approximatio
and ~b! for N>N0@1, the coefficientsAN

0 andAN
1 , which

have the maximum growth rate with respect toN and domi-
nate the higher orders of perturbation theory. They yield
nonperturbative contribution, which is related to the dive
gence of the series and does not depend on the choic
N0 . The qualitative result consists of a shift in the transiti
point from the real axis into the complex plane, which lea
to regularity ofn(E) in the neighborhood of an Anderso
transition and elimination of the false pole. This approxim
tion ‘‘deteriorates’’ asS1 approachesSc :

6 ~a! the equation
for G(E) has physically meaningless solutions wh
S1.Sc ; ~b! the contribution from the approximations fo
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lowing the principal logarithmic approximation, which a
determined by coefficientsAN

N2K with K;1, increases rap
idly asS1→Sc ; and,~c! the plateau~Fig. 1! makes a contri-
bution whose strong energy dependence indicates a gro
role for the coefficientsAN

K with K Þ 0 ~in the lattice models
the weak dependence ofS1 onE makes the zero-logarithmi
contribution predominate! that becomes important fo
S1'Sc . Thus, if the ‘‘highest’’ and ‘‘lowest’’-order loga-
rithms are dominant in the lattice models, then, in general
going to the renormalizable models the contributions fr
all K become important in the sum~8!.

In the latter case we arrive at the following statement
the problem: let us choose an integerN0 that is large com-
pared to 1, but small compared to the large parameters o
theory. ForN,N0 we retain only the parquet coefficien
AN
N , which are distinguished by large logarithms, in Eq.~8!.

For N>N0 , in general, all the terms are important in th
sum overK, but the conditionN@1 allows us to calculate
the coefficientsAN

K in the principal asymptotic dependenc
onN. The latter problem is solved in the following way: th
renormalizability of the theory, expressed in the form of t
Callan–Symanzik equation~Sec. 2!, leads to a system o
equations for theAN

K that determines the coefficients wit
K Þ 0 in terms of specifiedAN

0 On the other hand, the Lipa
tov method reproduces the coefficientsAN

K with small K
well, so that they can be used as boundary conditions for
system of equations. In this way it is possible to determ
all AN

K with N@1 ~Sec. 3!, which for smallg0 enables us to
find the sum in Eq.~8! and determine the energy dependen
of the dampingG ~Sec. 4!.

For calculating the density of states~Sec. 6! it is neces-
sary to find the self-energyS(p,k) for finite momenta,
which requires solving of the parquet equations in the p
cipal logarithmic approximation.6 In the present theory
S(p,k) is the sum of a nonperturbative contribution, main
determined by the Lipatov asymptote, and a quasi-parq
contribution corresponding to a logarithmic approximati
of arbitrary finite order, which allows only for the principa
asymptote behavior inN. The calculations in the next orde
can be carried out with the aid of a curious modification
the parquet approximation~Sec. 5!.

FIG. 1. The dependence ofS(E,R) on R for E5const whend54.
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2. SYSTEM OF EQUATIONS FOR THE COEFFICIENTS AN
K

In the following we shall only be interested in logarith
mic divergences, assuming the quadratic to be eliminated
the renormalizationk. The Callan–Symanzik equations ca
be derived in the usual way,10 but we need them in a some
what nontraditional form. Dimensional considerations imp
that a vertexG (L,N) with N free ends andL two-line loops
~Fig. 2! can be written in the form10

G~L,N!~pi ;k,g0 ,L!5kd2N~d22!/222L

3G̃~L,N!~pi /k;g0 ,L/k!, ~9!

which allows us to proceed to examiningG̃L,N ~we omit the
tilde in the following!. Assuming that the bare chargeg0 is a
function of L and introducing the renormalized chargegm

applicable to a scalem@k, in view of the multiplicative
renormalizability ofGL,N,10 we have

GR
~L,N!S pik

;gm ,
m

k D5ZN/2S Z2Z D LG~L,N!S pik
;g0 ,

L

k D , ~10!

whereZ andZ2 are functions ofg0 andL/m. SinceGR
(L,N) is

independent ofL, we have

dGR
~L,N!/d ln L50,

which after substitution of Eq.~10! gives the Callan–
Symanzik equation:

F ]

] ln L
1W~g0!

]

]g0
1S L2

N

2 Dh~g0!

2Lh2~g0!GG~L,N!S pik
;g0 ,

L

k D50. ~11!

The Gell-Mann–Low functionW(g0) and the scaling
functions10 h(g0) andh2(g0) are defined by the equations

W~g0!5
dg0

d ln L
, h~g0!52

d ln Z

d ln L
,

h2~g0!52
d ln Z2
d ln L

~12!

FIG. 2. The vertexG (L,N) with N free ends andL closed two-line loops
studied in the renormalization theory of Ref. 10.
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Eqs.~11! for differentL andN, expressingW, h, andh2 in
terms ofG (L,N), and noting that the latter functions are ind
pendent of the arbitrary parameterm, it is easy to confirm
that the first of them are independent ofL/m.

In order to find the renormalization law for the se
energy we use the Ward identity for the Green funct
G(p,k):

]G21~0,k!

]k0
2 5

]k2

]k0
2 5G~1,2!~k!, ~13!

which, when integrated, yields

k0
22kc

25k2YS g0 , L

k D[E
0

k2

dk2@G~1,2!~k!#21, ~14!

where G (1,2)(k)[G (1,2)(pi50, g0 , L/k) and kc
25S(0,0).

The functionY satisfies the equation

F ]

] ln L
1W~g0!

]

]g0
1V~g0!GYS g0 , L

k D50 ~15!

with V(g0)[h2(g0), which is easily confirmed by applying
the operator in square brackets to Eq.~14! and using Eq.
~11!. Given thatk0

25k21S(0,k), Eq. ~14! can be rewritten
in the form

k21S~k,0!2S~0,0!5k2Y~g0 ,L/k! ~16!

and a comparison with Eq.~8! yields the following logarith-
mic expansion forY:

YS g0 , L

k D5 (
N50

`

g0
N(
K50

N

AN
KS ln L

k D K, ~17!

with A0
051. Expanding the functionsW andV in the series

W~g0!5 (
N52

`

WNg0
N , V~g0!5 (

N51

`

VNg0
N , ~18!

whose leading coefficients10 are2!

W25K4~n18!, W352K4
2~9n142!,

V152K4~n12!, V253K4
2~n12!, ~19!

substituting Eqs.~17! and ~18! into Eq. ~15!, and collecting
terms with the same powers ofg0 and the logarithms, we
obtain a system of equations for the coefficientsAN

K :

2KAN
K5 (

M51

N2K11

@WM11~N2M !1VM#AN2M
K21 ,

K51,2,...,N. ~20!

3. A STUDY OF THE COEFFICIENTS AN
K

Equation~20! is a recurrence relation that determines t
AN
K in terms of specifiedAN21

K21 , AN22
K21 , . . . , AK21

K21 and can
be used to express all theAN

K in terms of a single sequenc
AN
0 . The coefficientsWN andVN can be determined from Eq

~20! if we specify two sequencesAN
1 andAN

2 in addition to
AN
0 . Thus, the renormalizability of the theory sharply r

duces the arbitrariness in the choice of coefficients in Eq.~8!.
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obtained by the Lipatov method. According to Sec. 7, t
Nth order contribution toS(0,k) has the form

k2g0
Nc2G~N1b!aN~ ln N!2g expS s ln

L

k D , ~21!

where

b5
n18

3
, a523K4 , g5

n12

6
, s5

n18

3
. ~22!

Comparing this with the expansion~8!, we obtain

AN
K5

sK

K!
AN
0 , AN

05c2G~N1b!aN~ ln N!2g. ~23!

Whereas in the lattice models6 the Lipatov asymptote only
reproduces the zero-logarithmic and first-logarithmic con
butions, here it yields some ‘‘extra’’ logarithms. Formally,
Eq. ~23! K50,1, . . . ,`, while in Eq.~8! K<N. The reason
for this is the rapid drop inAN

K with increasingK and the
limited accuracy (;1/N) of the leading asymptote. The re
sult ~23! can be believed only for smallK, but this is enough
to use it as a boundary condition for the system of Eqs.~20!.

Writing out Eq.~20! for smallK,

21•AN
15@W2~N21!1V1#AN21

0 1@W3~N22!

1V2#AN22
0 1...1@WN•11VN21#A1

01VNA0
0,

22•AN
25@W2~N21!1V1#AN21

1 1@W3~N22!

1V2#AN22
1 1...1@WN•11VN21#A1

1 ~24!

. . . . . . . .

and assuming that Eq.~23! is valid for AN
0 , it is easy to

confirm the factorial growth inN for all AN
K with K;1. Re-

taining only the first terms in leading order inN on the
right-hand sides of Eqs.~24!, we obtain

AN
K5

N!
K! ~N2K !! ~2W2!

KAN2K
0 ——→

K!N 1
K!

3 S 2
W2

a DKAN
0 , ~25!

which, given thats52W2 /a ~see Eqs.~19! and ~22!!, re-
produces the result~23! for K Þ 0 and establishes its domai
of applicability,K!N. Retaining only the first terms on th
right of Eqs.~24! is justified whenWN andVN increase more
slowly thanAN

0 ,3! which may regarded as a consequence
the validity of Eq.~23! for K50, 1, 2.

For K close to N and assuming thatxN5AN
N and

yN5AN
N21 , . . . , weobtain a system of difference equation

from Eq. ~20!,

2NxN5@W2~N21!1V1#xN21 ,

2~N21!yN5@W2~N21!1V1#yN211@W3~N22!

1V2#xN22 , ~26!

. . . . . . . . .
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which can be solved by the method of variation of constants
N N21

n

a

ha
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where the coefficientsBN
K are given by the sum of theCN

K

ob-

l
m-

n

and used to successively determineAN ,AN , . . . . For the
parquet coefficients we have

AN
N5~2W2!

N
G~N2b!

G~N11!G~2b!
, b52

V1

W2
5
n12

n18
~27!

in agreement with Ginzburg11 ~see Ref. 6!. For AN
N2K with

K;1 it is easy to identify the leading asymptote inN and
prove the following result by induction:

AN
N2K5

1

K! S 2
W3

W2
2 N ln ND KAN

N . ~28!

In order to study theAN
K with arbitrary K we use the

estimateAN21
K /AN

K&1/N, which is valid for Eqs.~23! and
~28! and is confirmed by the result for allK. Retaining the
two leading terms inN on the right of Eq.~20!, we have

2KAN
K5@W2~N21!1V1#AN21

K211W3NAN22
K21,

K51,2,...,N. ~29!

The principal term inN is not sufficient, since the calculatio
of arbitrary AN

K from known AN
0 requires;N iterations,

which for an accuracy;1/N in each iteration leads to
buildup of errors. The last terms in Eq.~24!, which contain
WN and VN , generally give corrections;1/N, but are
present only in the equations withK51, 2 and do not lead to
an accumulation of errors. We assume by definition t
AN
N1150, which accounts for the absence of the latter te

in the equation withK5N. Making the substitution

AN
K5~2W2!

K
G~N2b!

G~K11!G~N2K2b!
AN2K
0 XN,N2K

~30!

and noting thatXN11,M-XN,M;1/N, we arrive at the equa
tion

XN,M5XN21,M1
f ~M !

N
XN21,M21 ~31!

with the boundary conditions

XNN51, XN051, ~32!

where the functionf (M ) is defined by

f ~M !5
W3

W2
~M212b!

AM21
0

AM
0 . ~33!

Equation~31! is convenient for studying a problem with in
tial conditions

X0,M5fM , where fM50 for M521,22,...,
~34!

wherefM can be chosen so as to satisfy the boundary c
ditions ~32!. Iteration of Eq.~31! yields

XNM5fM1BN
1 f ~M !fM211BN

2 f ~M ! f ~M21!fM22

1...1BN
Nf ~M ! f ~M21!...f ~M2N11!fM2N ,

~35!
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terms,

BN
K5(

$pi %

1

~11p1!~11p2!...~11pK!
, ~36!

while p1 ,p2 , . . . ,pK is a selection without replacement from
the sequence 0,1, . . . , N21. ForK!N, sampling with and
without replacement are essentiallly equivalent, and we
tain

BN
K'

~ ln N!K

K!
, K<N. ~37!

In fact, for largeN, the sum in~35! is always dominated by
K!N, and noting thatfM50 for M,0, we obtain

XNM5 (
K50

M
~ ln N!K

K!

3 f ~M ! f ~M21!...f ~M2K11!fM2K . ~38!

For the product in~38! we have

f ~M ! f ~M21!...f ~M2K11!

5SW3

W2
D K AM2K

0

AM
0

G~M2b!

G~M2K2b!
——→
M@K

~ f `!K, ~39!

where

f `5 lim
M→`

f ~M !5
W3

aW2
5 3n114

n18
. ~40!

ForM50 the boundary condition~32! givesf051 and for
M5N@1 the sum in Eq.~38! is replaced by an integra
which is calculated by the saddle-point method and, on co
parison with the boundary conditions~32!, determinesfM

for M@1:

fM5 H 1,
M2 f`,

M50
M@1. ~41!

Substituting Eq. ~41! in Eq. ~38! leads to the results
(M05 f ` ln N)

XNM5
~ ln N!M

M ! SW3

W2
DM G~M2b!

G~2b!AM
0 for M! ln N,

~42!

XNM5
~ ln M !g

Mb1b

eM0

A2pM0
E
0

`

dx expS 2
~M2M02x!2

2M0
D

3~ ln x!2gxb1b2 f`

for M02M!M0 or M.M0 ~43!

for M02M!M0 or M.M0 . ~In the first case the sum in
Eq. ~38! is determined by the term withK5M and in the
second, it is replaced by an integral.! Substituting Eq.~42! in
Eq. ~30! reproduces the result~28! and establishes its domai
of applicability, K! ln N. In the region M;(M02M ),
which is not described by Eqs.~42! and~43!, the magnitude
of XN,M is determined by the values offM for M;1, which,
in turn, are determined by the coefficientsAN

0 with N;1.
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The latter can be determined to within a few percent
matching the first orders of perturbation theory with t
Lipatov asymptote~see the examples in Refs. 14 and 15!.

4. SUMMING THE SERIES FOR S(0,k)

The above information on the coefficientsAN
K can be

used to identify the regions in the (N,K) plane which make
significant contributions to the sum~8!. Region1 of Fig. 3 is
a nonuniversality region in which the behavior of theAN

K

depends substantially on the specific values ofAN
0 with

N;1. Above and below region 1, the universal asympto
~42! and ~43!, determined by the trivial coefficientA0

051
and the Lipatov asymptote forAN

0 , respectively, are valid
The dashed line2 denotes the saddle-point values ofK for
N5const assumingug0u!1 andg0 ln(L/k);1. WhenN is
reduced the saddle point vanishes and the parquet co
cientsAN

N on the principal diagonal become dominant. A
important contribution to the sum~8! comes from regions3
and4 which are adjacent to the dotted saddle-point line.

Region3 gives a quasiparquet contribution, determin
by coefficientsAN

N2K with K;1, for which Eq.~28! is valid:

FYS g0 , L

k D G
quasiparq

5FD1
W3

W2
g0 ln D Gb

,

D511W2g0 ln
L

k
. ~44!

To within logarithmic accuracy the quantityD in the loga-
rithm can be replaced by its minimum valueD̃;ug0u lnug0u
~see below!, since forD@D̃ the logarithmic term is unimpor
tant and Eq.~44! can be rewritten in the form

FYS g0 , L

k D G
quasiparq

'F11W2g1 ln
L

k Gb

, ~45!

FIG. 3. Regions in the (N,K) plane that are of importance in studying th
sum ~8!: ~1! the nonuniversality region in which information of the coef
cientsAN

0 with N;1 is important; the universal asymptotes~42! and ~43!
are valid above and below this region;~2! the saddle-point values ofK for
N5const; for smallN the parquet coefficients lying on the principal dia
onal are dominant;~3! the region which makes a quasiparquet contribut
to the sum~8!; and~4! the region which makes a nonperturbative contrib
tion to the sum~8! ~N0 may be chosen arbitrarily large!.
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ffi-

1 0Y S W2
0 D

'g0Y S 11
W3

W2
g0 lnug0u D ,

which differs from the parquet form6 only in replacingg0 by
g1 .

Region4 makes a nonperturbative contribution that h
been discussed in detail in Refs. 5 and 6. It is obtained
substituting Eqs.~30! and ~43! in Eq. ~8!, summing overK
by the saddle-point method, and summing overN with the
aid of the formula

Im (
N5N0

`

G~N1b!aN~g02 i0!Nf ~N!5
p

~ag0!
b

3expS 2
1

ag0
D f S 1

ag0
D , ~46!

ag0.0, N0@1,

which is valid for slowly varying functionsf (N). It is ob-
tained by expandingf (N) in a Fourier integral, using Eq
~90! of Ref. 6, and including only the long wavelength Fo
rier components. The arbitrariness in determiningf (N) for
N,N0 makes it possible to satisfy the condition of slo
variation for any functionf (N) which does not vary more
rapidly exponentially. The unusual phenomenon associa
with the divergence of the series is that the sum in Eq.~46! is
determined by arbitrarily largeN ~so the result is indepen
dent of N0!, but the value off (N) for a finite N51/ag0
appears in the result. Thus, the correction factor which d
tinguishes the exactAN

K from the Lipatov asymptote~23!, is
determined by Eqs.~30! and ~43!, and is negligible for
N→`, will lead to a substantial difference between the co
plete nonperturbative contribution and that calculated fr
the Lipatov asymptote~see Eq.~133! of Sec. 7.7 forM51
below!:

@S~0,k!#nonpert[ iG0~k2!5@S~0,k!#nonpert
Lipatov 1

Ap
S ln 1

ug0u
D g

3S abg0x02 D b1b2 f`

I S 11W2g1 ln~L/k!

abg1x0/2
D ,

@S~0,k!#nonpert
Lipatov5 ipc2

1

~ag0!
b S ln 1

ug0u
D 2g

3expS 2
1

ag0
Dk2 expS s ln

L

k D ,
x05S 8 f `

b2
ln

1

ag0
D 1/2,

I ~y!5E
0

`

dzS ln bx0
2

zD 2g

zb1b2 f` exp$2~y2z!2%,

~47!

where c2'3.44•1022 for n50. The conditionM.M0 in
Eq. ~43! corresponds to positive values of the argume
I (y), which happens in this range of parameters.
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Approximating the series~17! by the sum of the contri-
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butions~45! and ~47! and substituting in Eq.~14!, we have

k0
22kc

25k2F11W2g1 ln
L

k G1/41 iG0~k2!,

k252E2 iG, ~48!

which is solved similarly to Eq.~93! of Ref. 6 and deter-
mines the relationship between the dampingG and the renor-
malized energyE with bare energyEB52k0

2 in the para-
metric form:

G5Gce
x sin w, E52Gce

x cosw,

2EB1Ec5Gce
x~4K4ug1ux!1/4$cos~w1w/4x!

2tan~w/3!sin~w1w/4x!%, ~49!

whereEc is given by Eq.~108! of Ref. 6,

Gc5L2 expH 2
1

4K4ug1u
J , ~50!

andx(w) is a unique function in the interval 0,wp analo-
gous to that shown in Fig. 2 of Ref. 6 and given by~cf. Eq.
~100! of Ref. 6!

sinS w1
w

4xD5B cosS w

3 D e24x/3

x1/4
I S xx0D , ~51!

in which the constantB is equal to

B5Apc2S 34D
1/4S D̃

3K4ug0u
D 7/4S 43 x0D 7/6;S ln 1

ug0u
D 7/3.

~52!

The minimum values ofD andx are attained simultaneousl
and, to logarithmic accuracy, are

Dmin[D̃'
21

4
K4ug0u ln

1

ug0u
, xmin'

7

4
ln ln

1

ug0u
. ~53!

The minimum distance to the false pole3 is of order
ug0u ln ln(1/ug0u) and the ‘‘effective interaction’’ turns out to
be logarithmically weak for smallk.

5. THE QUASIPARQUET APPROXIMATION

Calculating the density of states requires knowledge
the self energyS(p,k) for finite momenta.6 As when
p50, this quantity consists of nonperturbative and quasip
quet contributions. The nonperturbative contribution will
important only at large negativeE, where it is determined
directly by the Lipatov asymptote and is given by Eq.~132!
of Sec. 7.7 withM51, n50, andp152p25p. Forp below
somep0 , @S(p,k)#nonpert is independent ofp, while for
p*p0 it falls off rapidly with increasingp. Given the loga-
rithmic accuracy of the subsequent calculations~Sec. 8, Ref.
6!, the following result is adequate:

@S~p,k!#nonpert'@S~0,k!#nonpertQ~p02p!,

p0;kS 1

ug0u
ln

1

ug0u
D 1/2. ~54!
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contribution toS(p,k), which corresponds to a logarithmi
approximation of arbitrary finite order including the princip
asymptote inN of the expansion coefficients. The princip
logarithmic approximation for calculatingS(p,k) requires
knowledge of the four-tail vertexG (0,4)(p,k,q), which de-
pends on three substantially different momen
p@k@q@k.6 The method used above allows us to find t
quasiparquet contribution toG (0,4) for p;k;q@k. Writing
an expansion of the type~8!,

G~0,4!~p,p,p!5 (
N51

`

g0
N (

K50

N21

AN
KS ln L

p D K ~55!

~with different coefficientsAN
K! and noting thatG (0,4) satisfies

an equation like~15! with V(g0)[22h(g0), in place of Eq.
~20! we obtain

2KAN
K5 (

M51

N2K

@WM11~N2M !1VM#AN2M
K21 ,

K51,...,N21, ~56!

which, given thatV150,10 gives the following instead of
Eqs.~27! and ~28!:

AN
N2K522~2W2!

N
1

~K21!!

3
~2W3!

K21

~2W2!
2K21 ~N ln N!K21, K;1. ~57!

The quasiparquet contribution to the sum~55!, which is de-
termined by the coefficients~57!, has the form

@G~0,4!~p,p,p!#quasiparq

522g0Y S D1
W3

W2
g0 ln D D U

D511W2g0 ln~L/p!

'
22g1

11W2g1 ln~L/p!
. ~58!

In the principal logarithmic approximation, calculatin
G (0,4)(p,k,q) requires summation of the parquet graphs~Fig.
4a! obtained by successive splitting of simple vertices in
two parts joined by two lines. When the order of the graph
increased by unity, the smallness;g0 associated with the
additional vertex is compensated by the large logarithm
sociated with the additional pair of lines.18 It is possible to
approach the parquet approximation from the standpoint
general structural analysis of the graphs:18,19 the complete
vertex G (0,4) is represented in the form of three ‘‘bricks
Fi j ,kl and an irreducible four-tail vertexR0 ~Fig. 4b!. Each
brick is the sum of the graphs introduced along the pair
lines in the corresponding channel and obtained by repea
a ‘‘crossed out’’ vertexR ~Fig. 4c!, which in turn is the sum
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FIG. 4. ~a! A parquet sequence of graphs forG (0,4) ~ob-
tained by successive splitting of simple vertices into tw
parts joined by a pair of lines!; ~b–d! the system of equa-
tions for the complete vertexG (0,4), three ‘‘bricks’’ Fi j ,kl ,
three ‘‘crossed out’’ verticesRi j ,kl , and an irreducible ver-
texR0. The approximationR0522g0 corresponds to sum-
ming the sequence of diagramsa.
of two bricks and an irreducible four-tailed vertex~Fig. 4d!.
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Setting up the equations of typec andd for the two other
bricks, we obtain a system of 7 equations for 8 variable19

All the variables are uniquely determined by specifying t
vertexR0, so that

G~0,4!~p,k,q!5F$R0~p,k,q!%, ~59!

whereF$ . . . % is a functional. The parquet approximatio
corresponds to replacing the irreducible four-tail vertex w
a simple vertexR0(p,k,q)522g0 , so that the systemb-d
then corresponds to the sum of the graphsa.

In Appendix 2 it is shown that the vertexR0 depends
only on the maximum momentum and Eq.~59! takes the
form

G~0,4!~p,k,q!5F$R0~p,p,p!%. ~60!

Taking k5q5p and reverting Eq.~60!, we can obtain an
approximation forR0 that corresponds to the result~58!, af-
ter which Eq.~60! solves the problem in principle.

The functionF$ . . . % is determined by the system o
equationsb-d ~Fig. 4!, which is very complicated and ha
never been solved. Usually the approximation technique
Sudakov20 as refined by Polyakov21 is used. This method
does not assume any specific approximation forR0, but is
based on logarithmic calculations of the type

E
0

L k3dk

~k21k2!2
5E

;k

L k3dk

k4
5 ln

L

k
1O~1!. ~61!

The lower limit in the second integral is determined only
order of magnitude, but this uncertainty does not affect
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At first glance, this method of calculation is justified only
the principal logarithmic approximation; in fact, the subs
tution k→ck in the principal logarithms~8! yields

AN
NS ln L

k D N→AN
NS ln L

k
2 ln cD N, ~62!

which leads to a change in the coefficients for the low
order logarithms,

AN
N2K→AN

N2K1
~2 ln c!K

K!
NKAN

N , K;1. ~63!

According to Eq.~28!, however,AN
N2K;AN

N(N ln N)K and
the principal asymptote inN is ‘‘insensitive’’ to the substi-
tution k→ck. Thus, in the principal order inN, logarithmic
calculations are permissible in an arbitrary finite logarithm
approximation. This makes it possible fully to employ th
parquet scheme for calculating the quasiparquet contribu
to G (0,4).

Substituting Eq.~58! in the parquet equation
19,21,11

G~0,4!~x,x,x!5R0~x,x,x!1
1

2
K4~n18!

3E
0

x

dt@G~0,4!~ t,t,t !#2, ~64!
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where x5 ln(L/p), we obtain R0(x,x,x)522g1 and
6,11
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7. CALCULATING THE LIPATOV ASYMPTOTE
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@S(p,k)#quasiparq is determined by the parquet formulas
with g0 replaced byg1 . The final result forS(p,k) has the
form

S~p,k!2S~0,k!5k2H 12
3

2 F t~x!

t~x`!G
21/4

1
1

2 F t~x!

t~x`!G
23/4J

2 iG0~k2!Q~p2p0! ~65!

~cf. Eq. ~116! of Ref. 6!, where

t~x!5118K4g1x, x5 ln~L/p!, x`5 ln~L/k!. ~66!

6. THE DENSITY OF STATES

Calculations analogous to Sec. 8 of Ref. 6 yield the
sult

n~E!5
Gce

x

4pug1u
~4K4ug1ux!1/4H 12 sinS w1

w

4xD @1

14K4ug1ux24K4ug1u lnug1u#

2~4K4ug1ux!1/2 sinS w1
3w

4x D J , ~67!

which, together with Eqs.~49! and ~51!, determinen(E) in
parametric form. ForuEu@G we have the asymptote

n~E!5
1

2
K4ES 124K4ug1u ln

L2

E D 21/4

, E@G,

n~E!5
G0~E!

4pug1u
H 122K4ug1u ln

L2

uEu
22K4ug1u lnug1u

2S 124K4ug1u ln
L2

uEu D
1/2J , 2E@G, ~68!

whereG0(E)[G0(uku2). For large positiveE the function
n(E) becomes the density of state of an ideal lattice, and
large negativeE we have the result

n~E!5
K4

2p
G0~E!ln

1

ug0u

5
K4

2
c2S 1

3K4ug0u
D 8/3S ln 1

ug0u
D 2/3

3expS 2
1

3K4ug0u
DL2S L2

uEu D
1/3

, ~69!

which corresponds to the asymptotic behavior of a fluct
tion tail obtained in the traditional forms of the instanto
method.3,12,13 It can be obtained by summing the outlyin
terms of the series forG(p,k) ~see Eq.~113!!. For a qua-
dratic spectrum, Eq.~69! is only valid in the region
uEu&L2. In fact, deviations from a quadratic spectrum sh
up much earlier and lead to an exponential decrease
n(E).6
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The plateau contribution~Sec. 1! plays a fundamenta
role in the renormalizable models and an analysis can
carried out in the continuum limit, assuming the spectru
«(k) to be quadratic. On the whole, the calculations follo
the scheme described in Ref. 6, with«(k)→k2 and
Sx→*d4x. The differences are connected with the high
symmetry of the four-dimensional continuum model, whi
makes it possible to reduce the calculations ‘‘to a numbe
but lead to a number of technical difficulties along the wa

7.1. Four-dimensional continuum model

The standard procedure6 reduces to the following condi
tions on the saddle point in the functional integral:

Ngc
2152

1

4 E d4xwc~x!4, ~70!

2Dwc~x!1gcwc~x!31k2wc~x!50. ~71!

In the ‘‘massless’’ theory (k50) the solution of Eq.~71!, an
instanton, has the form

wc~x!5~2gc!
21/2fc~x!, fc~x!5

2A2R
x21R2 , ~72!

where the parameterR, the radius of the instanton, is arb
trary, consistent with the presence of a plateau in the opti
fluctuation method~Sec. 1!. The deviations from the saddl
point are expanded in terms of the eigenfunctionses

T and
es
T , which obey the equations

M̂Les
L~x!5ls

Les
L~x!, M̂Tes

T~x!5ls
Tes

T~x! ~73!

for the operators

M̂L52D13gcwc
2~x!, M̂T52D1gcwc

2~x!, ~74!

which, as usual, have zero modes:3 the operatorM̂L the
translation modes

lm
L50, em

L ~x!5F E d4xS ]fc

]xm
D 2G21/2 ]fc~x!

]xm
,

m51, 2, 3, 4, ~75!

and the operatorM̂T the rotational mode

l0
T50, e0

T~x!5F E d4xfc~x!2G21/2

fc~x!. ~76!

The arbitrariness of the parameterR in Eq. ~72! leads to the
existence of yet another zero mode forM̂L , the dilatation
mode14,16

l0
L50, e0

L~x!5F E d4xS ]fc

]R D 2G21/2 ]fc~x!

]R
. ~77!

Its existence makes Eq.~71! insoluble for finitek ~a rigorous
proof is given elsewhere22!. Takingk2 into account through
perturbation theory leads to the equatio
M̂Ldf52k2fc(x), whose right-hand side is nonorthogon
to e0

L(x). The significance of this insolubility is made clear
by the optimal fluctuation method~Sec. 1!: for E,0, d54,
and «(k)5k2 the functionS(E,R) increases monotonically
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with increasingR, so that the derivative ofS(E,R) with
on
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e

in

3 E d4xuw~x!u4
5

w
x12x0

...w
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by

e

ic

re-
respect toR does not go to zero; thus, in the instant
method the variation of the Hamiltonian~1! with respect to
w, which leads to Eq.~71!, does not vanish.

This difficulty can be overcome by minimizingH$w% for
a fixed instanton radiusR followed by an essentially non
Gaussian integration with respect toR.

7.2. Expansion near an ‘‘anomalous’’ instanton

For the (N21)th coefficient of the expansion of th
M -point Green function~see Eqs.~29! and~58! of Ref. 6! we
have

@GM~x1 ,a1 ,...,xM ,aM !#N21

5Z0~k!21E dg

2p i E Dwwa1
~x1!...waM

~xM !

3exp$2H$k,g,w%2N ln g%, ~78!

where the HamiltonianH$k,g,w% is given by Eq.~1! and

Z0~k!5E Dw exp@2H$k,0,w%#5S )
s

2p

ls
01k2D n/2

~79!

~thels
0 are the eigenvalues of the operatorp̂2!. Let us intro-

duce three expansions of unity under the integral of Eq.~78!,

15S E d4xuw~x!u4D 4E d4x0

3 )
m51

4

dS 2E d4xuw~x!u4~x2x0!m D ,
15E d4xuw~x!u4E

0

`

d ln R2

3dS 2E d4xuw~x!u4 lnS x2x0
R D 2D . ~80!

15E dnud~u2v$w%!,

where the unit vectorv is fixed by the condition

v$w%i E d4xuw~x!u lw~x!, l.1. ~81!

Making the change of variables

x2x05Rx̃, wa~x01Rx̃!5R21w̃a~ x̃! ~82!

and changing the order of integration, we have, on dropp
the tildes,

@GM#N215E
0

`

d ln R2Z0~kR!21E d4x0E dnuR2M24

3E dg

2p i E Dw )
m51

4

dS 2E d4xuw~x!u4xmD
3dS 2E d4xuw~x!u4 ln x2D d~u2v!
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g

S D a1S R D aM

3S xM2x0
R Dexp$2H$kR ,g,w%2N ln g%, ~83!

where

kR[kR. ~84!

The substitution~82! was made as in Eq.~79! and cancels
the factor arising from the transformationDw. The transfor-
mations~80!–~83! introduce integrations with respect to a
bitrary parameters of the instanton: the locationx0 of its
center, its ‘‘orientation’’u, and radiusr . In the integral of
Eq. ~83! the choice of these parameters is already fixed
the d-functions: the center is at the pointx50, the orienta-
tion is along the vectoru, and the radius is determined by th
condition

E d4xwc~x!4 ln x250, ~85!

or R51 in the function~72!.
Let us make the expansion in Eq.~83! neargc deter-

mined by Eq.~70! and an arbitrary spherically symmetr
functionwc(x) which falls off at infinity, assuming that

g5gc1dg, wa~x!5@wc~x!1dwL~x!#ua1dwa
T~x!,

dwT'u ~86!

and limiting ourselves to second order terms in the inc
ments. Introducing the coefficientsCs

L andCs
T,a of the ex-

pansions in terms of the eigenfunctions of the operators~74!,

dwL~x!5(
s
Cs
Les

L~x!, dwa
T~x!5(

s
Cs
T,aes

T~x!, ~87!

we obtain

@GM#N215S E d4xwc~x!4D 5E
0

`

d ln R2Z0~kR!21E d4x0

3E dnud~ uuu21!ua1
...uaM

R242M

3S E d4xwc~x! l11D n21

wcS x12x0
R D

...wcS xM2x0
R D exp$2N ln gc

2H$xR ,gc ,wc%%E dg

2p i E DCLE DCT

3 )
m50

4

dS (
s

gs
mCs

LD )
a50

n21

dS (
s
Cs
TabsD

3expH 12 NS dg

gc
D 22 dg

gc
(
s
Cs
Lvs2(

s
Cs
Lss
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1 L 2 L 2
1 T 2 T,a 2

r-

on
-

o

Eq. ~71! means that the coefficientsss cannot be taken equal

les
ke

n

re
2
2 (

s
~ls1kR!~Cs ! 2

2 (
s

(
a

~ls1kR!~Cs ! J ,
where

vs5gcE d4xwc
3~x!es

L~x!,

ss5E d4xes
L~x!@2Dwc~x!1kR

2wc~x!1gcwc~x!3#,

gs
054E d4xwc

3~x!es
L~x!ln x2,

gs
m54E d4xwc

3~x!es
L~x!xm , m51, 2, 3, 4,

bs5E d4xwc
l ~x!es

T~x!. ~89!

Transforming thed-functions in the exponent using the fo
mula

d~x!5
1

2p E
2`

`

dtei tx ~90!

and reducing the expression in the exponent to a sum
squares, for the integral with respect tog, CL, andCT in Eq.
~88! we obtain the result

gc
~2p!~n15!/2 S )

s

2p

ls
L1kR

2 D 1/2S )
s

2p

ls
T1kR

2 D ~n21!/2

3~^b2&T!2~n21!/2S )
m51

4

^gmgm& D 21/2

@N^g0g0&1^v2&

3^g0g0&2^vg0&2#21/2 expH 2N ln gc2H$kR ,gc ,wc%

1
1

2
^s2&2

1

2

^sv&2

N1^v2&

2
1

2

@^sg0&~N1^v2&!2^sv&^vg0&#2

~N1^v2&!@^g0g0&~N1^v2&!2^vg0&2# J , ~91!

where the following notation has been introduced:

^ f g&5(
s

f sgs
ls
L1kR

2 , ^ f g&T5(
s

f sgs
ls
T1kR

2 . ~92!

The averagêf g& is expressed in terms of the Green functi
of the operatorM̂L1kR

2 , which, given the obvious symme
try, can be used to prove that~as already used in Eq.~91!!
the following quantities vanish:

^sgm&5^vgm&50, mÞ0; ^gmgm8&50, mÞm8,
~93!

For a ‘‘regular’’ instanton that satisfies Eq.~71! with
k→kR , the coefficientsss[0 and the exponent of Eq.~88!
contains no terms linear in the deviations. The insolubility
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~88!

of

f

to zero. For a correct transition from Eq.~83! to Eq. ~91!
they must be sufficiently small that the shifts in the variab
Cs
L during diagonalization of the quadratic form do not ta

the expansion~88! beyond its limits of applicability. The
question arises as to how to choosewc so as to ensure the
required smallness ofss . When the instanton is chosen i
accordance with Section 7.3, the sumSsssCs

L turns out to be
proportional to the sumSsgs

0Cs
L , whose magnitude is fixed

at zero owing to the presence in Eq.~88! of an appropriate
d-function. In that way, terms linear in the deviations a
eliminated exactly from the exponent of Eq.~88!.

7.3. Choice of instanton

We choose the functionwc(x) by minimizing
H$kR ,gc ,w% with the additional condition~85! fixing the
instanton radius. This yields

2Dwc~x!1kR
2wc~x!1gcwc

3~x!1mwc
3~x! ln x250

~94!

~m is a Lagrange multiplier23! with which it is easy to show
that

ss52
m

4
gs
0, 2vs2

m

4
gs
05~ls

L1kR
2 !

3E d4xwc~x!es
L~x!, H$kR ,gc ,wc%5N, ~95!

from which we have

^s2&5S m

4 D 2^g0g0&, ^sv&52
m

4
^vg0&,

^sg0&52
m

4
^g0g0&, ^v2&522N1

m

8
^vg0&,

^vg0&5
m

8
^g0g0&, ~96!

with which Eq.~91! is greatly simplified and Eq.~88! takes
the form

@GM#N215S E d4xwc~x!4D 5E d4x0E
0

`

d ln R2

3E dnud~ uuu21!ua1
...uaM

R242M

3S E d4xwc
l11~x! D n21

wcS x12x0
R D

...wcS xM2x0
R D SD0

DT
D ~n21!/2

S 2
D0

DL
D 1/2gc~2p!2~n15!/2N21/2

3 )
m50

4

^gmgm&21/2~^b2&T!2~n21!/2

3exp~2N2N ln gc!, ~97!
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where the following notation for the determinants has been

:
of

u

in

-
s

f ~x!5
2&

11
1

k2x2 lnuxu

fi-

ss

nts

he
introduced:

DL5)
s

~ls
L1kR

2 !, DT5)
s

~ls
T1kR

2 !,

D05)
s

~ls
01kR

2 !. ~98!

7.4. Explicit form of the instanton

The substitutionm5(2gc)m0 and the transition to the
function fc(x) in accordance with the first of Eqs.~72!
eliminates gc from Eq. ~94!. For small kR , when
m0;kR

2 ln kR ~see below!, Eq. ~94! shares two scale lengths
a lengthuxu;1 which determines the localization radius
the instanton ‘‘core’’ and a lengthuxu;kR

21 to which the
instanton ‘‘tail’’ extends. This makes it possible to carry o
the analysis in two overlapping regions,uxu!kR

21 and
uxu@1, and match the solutions.

The regionuxu!kR
21 . ForkR50 andm50, Eq.~94! has

the exact solution~92! in which the solution~85! fixes the
choiceR51. Treating the terms containingkR

2 andm as a
perturbation, we have

fc~x!5
2&

z11 F11
12z

11z
v~z!G

z5x2
,

v~z!5
kR
2

4 E
0

z

dz
~11z!4

~12z!2z2 F2 ln~11z!1
z12z2

~11z!2G
1m0

z

z21 F2 ln z2
z

6
1
3

2G . ~99!

Calculating the asymptotev(z) for z@1 and including only
the terms that increase withz, for the region 1!uxu!kR

21

we have

fc~x!5
2&

x2 H 11
1

2
kR
2x2 lnuxu1F16 m02

3

4
kR
2 Gx2

13kR
2 ln2uxu1F2m02

11

2
kR
2 G lnuxu2

1

x2 J .
~100!

The regionuxu@1. When the terms that are nonlinear
fc(x) are neglected, Eq. ~94! has the solution
Buxu21K1(kRuxu), whereK1(x) is the modified Bessel func
tion of the second kind. Treating the neglected terms a
perturbation, we have

fc~x!5Buxu21K1~kRuxu!

3H 12B2E
uxu

` dy

yK1
2~kRy!

E
y

`

z21K1
4~kRz!dzJ ,

~101!

which for the appropriate choice ofB leads to the following
result in the regionuxu!kR

21 :
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t

a

c x2 H 2 R

1
2C2112 ln~kR/2!

4
kR
2x213kR

2 ln2uxu

1kR
2 S 6C1

1

2
16 lnS kR

2 D D lnuxu2
1

x2 J , ~102!

whereC is Euler’s constant. Equations~100! and ~102! co-
incide when

m053kR
2~ ln kR1C112 ln 2!. ~103!

Using Eq.~99! for calculating the integral in Eq.~70!, which
is determined by the regionuxu&1, we have

N ln gc5N lnS 2
I 4
4ND1Nf~kR!,

f ~x![3x2S ln 22C2
1

2
2 ln xD , ~104!

Here we have introduced the notation

I p5E d4xfc
p~x! ~105!

for the integrals in the massless theory~i.e., forfc(x) of the
form ~72! with R51!.

7.5. Transformation of the coefficient of the exponential Eq.
(97)

Substituting Eq. ~104! in Eq. ~97! shows that the
exponential limits the integral with respect toR to the region
kR
2 ln kR&N21 and thereby allows us to calculate the coef

cient of the exponential in the limitkR→0. Then the solution
of Eq. ~94! transforms into the instanton of the massle
theory ~72! with R51. Because the operatorsM̂L and M̂T

have the zero modes~75!–~77!, the averages in Eq.~97!
contain the divergences

^gmgm&'
~gm

m!2

lm
L1kR

2 , ^b2&T'
b0
2

l0
T1kR

2 , ~106!

which cancel the corresponding factors in the determina
DL andDT . According to Brezin and Parisi

15 ~see details in
Ref. 6!, it is convenient to express the latter in terms of t
function

D~z!5detF12
3zfc

2~x!

p̂21kR
2 G5)

s
S 12

z

ms
D , ~107!

where thems are the eigenvalues of the problem

@ p̂21kR
223msfc

2~x!#cs~x!50. ~108!

Constructing a perturbation theory nearz51 andz51/3, it
is easy to show that

DL

D0
5F3E d4xfc

2~x!e0
L2~x!G21F 4I 6 E d4xS ]fc

]xm
D 2G4D̄~1!

3 )
m50

4

~lm
L1kR

2 !,
DT

D0
5
I 2
I 4
D̄S 13D ~lT

01kR
2 !, ~109!
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where the bar denotes elimination of the zero cofactors from

by

n

ed

di
b

I 54&S , I 5
16

S , I 5
64

S ,

n

ri-

-

ge-

n-
r-

.
n in
the product~107! for z51 andz51/3.
The product~107! contains divergences determined

the divergence of the sumsSsms
21 andSsms

22 . The first is
eliminated by renormalizingk,15 while the second satisfies

(
s

1

ms
2 59E

0

LR d4k

~2p!4

3E
0

LR d4q

~2p!4
^fc

2&q^fc
2&2q

~k21kR
2 !@~k1q!21kR

2 #
,

^ f &q[E d4x f~x!eiqx, ~110!

which is obtained by calculating lnD(z) orderz2 using per-
turbation theory. ForkR50 we have

(
s

1

ms
2 59K4I 4F ln LR2 ln 21C1

1

3G . ~111!

The divergence forL→` in Eq. ~111! can be eliminated by
renormalizing the charge;4! however, we are interested in a
expansion like~8! which contains a bare chargeg0 and ex-
plicit logarithmic divergences. Introducing the renormaliz
function

DR~z!5)
s

S 12
z

ms
DexpS z

ms
1

z2

2ms
2D , ~112!

substituting Eqs.~106!, ~109!, and ~111! in Eq. ~97!, and
using the relationships among the integrals obtained by
ferentiating with respect to the parameters and integrating
parts, we obtain

@GM~x1 ,a1 ,...,xM ,aM !#N

5c~21!NS 4I 4D
N1M /215/2

GSN1
M1n14

2 D
3E dnud~ uuu21!ua1

...uaM
E
0

`

d ln R2

3E d4x0R
242MfcS x12x0

R D •••S xM2x0
R D

3expH n18

3
ln~LR!2Nf~kR!J , ~113!

where

c5
2n2231/2

~2p!31n/2 S I 64 D 2J1/2 expH 2
3~n14!

4
1
n18

3

3@2 ln 21C11/3#J S 2D̄R~1!D̄R
n21S 13D D

21/2

,

~114!

J5E d4xfc
2~x!S ]fc~x!

]R D 2U
R51

. ~115!

The values of the integrals which we require are
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f-
y

3 4 4 3 4 6 5 4

J5
16

15
S4 ; S452p2. ~116!

7.6. Calculating the determinants

An expression for thed-dimensional Laplace operator i
spherical coordinates (r ,w1 , . . . ,wd21) is obtained through
the standard procedure~Section 3 of Vladimirov24! by induc-
tion with respect to the number of dimensions:

D5
]2

]r 2
1
d21

r

]

]r
2
l̂ 2

r 2
, ~117!

wherel̂ 2 is a differential operator acting on the angular va
ables. The spherical functionYl of l th order is a homoge-
neous harmonic polynomialul(x) of degreel on the unit
sphereuxu51.24 Substitutingul(x)5r lYl(s) ands5x/uxu in
the Laplace equation, we obtain an eigenvalue problem

l̂ 2Yl~s!5 l ~ l1d22!Yl~s!, ~118!

which is soluble only for integrall , since the Laplace equa
tion has no solutions that are not polynomials.24 A homoge-
neous polynomial of degreel in d variables hasCl1d21

l

coefficients~the number of combinations ofd different ob-
jects chosenl at a time with repetitions allowed25!. Acted on
by the Laplace operator, it is transformed into a homo
neous polynomial of degree (l22), which, when set equal to
zero, yieldsCl1d23

l22 conditions. Thus, the degree of dege
eracyNl of the l -th eigenvalue is determined by the diffe
enceCl2 l1d212Cl1d23

l22 , i.e.,

Nl5
~ l1d23!!

~d22!! l !
~d12l22!. ~119!

Separation of variables in Eq.~108! for kR50 leads to

F ]2

]r 2
1
3

r

]

]r
1

24m

~r 211!2
2
l ~ l12!

r 2 Gc~r !50 ~120!

for the radial equationc(r ). Settingm5s(s11)/6 and mak-
ing the substitutionsc5y cosh2s t and t5 ln r, we obtain

F$y%[cosht ytt9 1@2 cosht22s sinh t#yt8

1$@s22 l ~ l12!#cosht22s sinh t%y50. ~121!

The functionalF$y% acting on the exponentialekt yields a
linear combination ofe(k11)t and e(k21)t. It is easy to see
that the nontrivial solution of Eq.~121! is a superposition of
n exponentials with exponents that differ by 2t and coeffi-
cients chosen so as to satisfy Eq.~121!. For the eigenvalues
and eigenfunctions of Eq.~120! we obtain

cnl~r !5S r

r 211D
n1 l

@A1r
2n1A2r

2n121...1Anr
n22#,

mnl5~n1 l !~n1 l11!/6, n51,2,3,... l50,1,2,...,
~122!

where n is the radial andl the orbital quantum number
There is an obvious accidental degeneracy like that see
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the hydrogen atom. The substantially differentms cover the
y

s

t

n

@G~0,2M !~p 50,k!# 5c ~ ln N!2gG N1
n18

tex

-

he
by
range of valuess(s11)/6 with a degree of degenerac
s(s11)(2s11)/6 (s51,2, . . . ). For the determinants in
Eq. ~114! we obtain

2D̄R~1!52 expH 152 1(
s53

`
s~s11!~2s11!

6

3F lnS 12
6

s~s11!D 1
6

s~s11!

1
18

s2~s11!2G J '578,

D̄RS 13D 5expH (
s52

`
s~s11!~2s11!

6 F lnS 12
2

s~s11!D
1

2

s~s11!
1

2

s2~s11!2G J '0.872. ~123!

7.7. Vertex part and nonperturbative contribution

For the integral overdnu in Eq. ~113! we have16

E dnud~ uuu21!ua1
...ua2M

5
2pn/2

2MG~M1n/2!
I a1 ...a2M

,

~124!

where I a1 , . . . ,a2M
represents the sum of the term

da1a i
. . .aa jak

obtained by all possible pairings~in the fol-
lowing we excludeI a1 , . . . ,a2M

from the definition ofG2M!.
Using the algebra of factorial series6 it is easy to show tha
the transition to the vertex part ofG (0,M ) proceeds according
to the formula

@G~0,M !~p1 ,...,pM !#N5@GM~p1 ,...,pM !#N

3~p1
21k2!...~pM

2 1k2!. ~125!

Taking the Fourier transform of Eq.~113! and using the re-
lation

^fc&p5
^fc

3&p2m0^fc
3 ln x2&p

p21kR
2 '

^fc
3&p

p21kR
2 ~126!

for the Fourier components, which follows from the insta
ton equation~94!, we have

@G~0,2M !~p1 ,...,p2M !#N

5c
2pn/2

2MG~M1n/2! S 4I 4D
M15/2S 2

4

I 4
D N

3GSN1
2M1n14

2 D E
0

`

d ln R2R2412M

3^fc
3&Rp1

...^fc
3&Rp2M

3expH n18

3
ln~LR!2Nf~kR!J . ~127!

Calculating the integral to logarithmic accuracy, forpi50
we obtain
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-

i N 2M S 3 D
3S 2

4

I 4
D Nk422M expS n18

3
ln

L

k D ,
c2M5cS 4I 4D

M15/2S 23D
g

~ I 3!
2M

2pn/2G~g!

2MG~M1n/2!
,

g5M1
n24

6
. ~128!

For k50 andpi5p, and noting that

^fc
3&p58&p2pK1~p!, ~129!

we have

@G~0,2M !~p!#N5 c̃2MGSN1
n12M14

2 D
3S 2

4

I 4
D Np422M expS n18

3
ln

L

p D ,
c̃2M5c

4pn/2~8p2!2M

G~M1n/2! S 4I 4D
M15/2

3E
0

`

dy y4M251~n18!/3K1~y!2M. ~130!

We define the nonperturbative contribution to the ver
G (0,2M ) as

@G~0,2M !#nonpert5 (
N5N0

`

@G~0,2M !#N~g02 i0!N, N0@1.

~131!

The imaginary addition tog0 originates in the need for ana
lytic continuation from positiveg0 to negative,2 which for
Im k2,0 extends through the lower half plane. We obtain t
nonperturbative contribution for the Lipatov asymptote
substituting Eq.~127! in Eq. ~131!, eliminating the imaginary
part of k from the sum overN by making the substitution
b→beiw, and summing in accordance with Eq.~90! of Ref.
6:

@G~0,2M !~p1 ,...,p2M !#nonpert
Lipatov

5 ipc
2pn/2

2MG~M1n/2! S 4I 4D
M15/2S I 4

4ug0u
DM1~n14!/2

3expS 2
I 4

4ug0u
D E

0

`

d ln R2R2412M^fc
3&Rp1

...

3^fc
3&Rp2M

expH n18

3
ln~LR!2

I 4
4ug0u

f ~kR!J .
~132!

For pi50 this yields
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FIG. 5. Examples of skeleton~a,b! and nonskeleton~c!
diagrams for a vertexR0. The arrangement of the inter
nal momenta in graphsa and c corresponds to zero
internal momentum.
~0,2M ! Lipatov I 4
~n18!/3

s.

an
w

In
o

na

e

rg

e

ficientsBN are defined by Eq.~130! with p5m andM52,

the

ons

on

that

e-

to
@G ~pi50,k!#nonpert5 ipc2MS 4ug0u
D

3expS 2
I 4

4ug0u
D S ln 1

ug0u
D 2g

k422M

3expS n18

3
ln

L

k D . ~133!

The vertexG (0,2) coincides with the self energy and Eq
~128! and ~133! imply Eqs. ~21! and ~47!. Equation~130!
with M52 can be used to recover the results of Refs. 14
16 for the expansion coefficients for the Gell-Mann–Lo
function ~see Appendix 1!.
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APPENDIX 1

Interrelation of the various normalizations

The definitions of the Gell-Mann–Low functions for th
L- andm-renormalizations are10

W~L!~g0!5
]g0

] ln LU
gm ,m5const

,

W~m!~gm!5
]gm

] ln mU
g0 ,L5const

, ~A1!

and the relation between the renormalized and bare cha
is determined by logarithmic expansions like~54!,

gm5 (
N51

`

BNg0
N5 (

N51

`

g0
N (

K50

N21

AN
KS ln L

m D K, ~A2!

g05 (
N51

`

B̃Ngm
N5 (

N51

`

gm
N (

K50

N21

ÃN
KS ln m

L D K, ~A3!

where B15B̃151. The functiongm(g0 ,L/m) satisfies an
equation like~15! with V(g0)[0, and the coefficientsAN

K in
Eq. ~A2! satisfy Eqs.~55! with WM[WM

(L) and VM[0.
WN

(m) and ÃN
K are related in the same way. By finding th

relationship betweenÃN
K andAN

K for small N, it is easy to
confirm that the coefficientsWN

(L) and WN
(m) coincide for

N52,3 but differ in the higher orders. For largeN the coef-
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d

-
f

-

es

since by definition22gm5GR
(0,4)(m)5Z2G (0,4)(m) ~the co-

efficient22 is introduced because of the conditionB151!
and aZ factor does not have to be included for largeN
because of the slower rise in its coefficients. Reversion of
factorial series~A2! yields

B̃N'2 (
M50,1,2,...

BN2M

~NB̃2!
M

M !
'2BN expS 2

B2

a D ,
~A4!

for largeN and this makes it possible to determine theÃN
K .

Given thatA2
152K4(n18), from Eq.~55! we have

WN
~m!'2ÃN

12W2
~m!NÃN21

0

.
n18

6
c̃4GSN1

n18

2 DaN expS 2
A2
0

a D , ~A5!

and the substitutionA2
052(n18)K4K4(12 ln(4/3))/2 re-

produces the results of Ref. 14 and 16, where the definiti
of gm andg0 differ by a factor of 3!

APPENDIX 2

Properties of the irreducible vertex R0

Let us introduce the three-momentum notati
R0(p,k,q) for the irreducible vertexR0(p1 ,p2 ,p3 ,p4) with
k50, where

2p5p42p3 , 2k5p12p2 , q5p11p252p32p4 ,
~A6!

and the numbers of the ends are chosen so
p>k>q>0. In general, whenp@k@q the following loga-
rithmic expansion is valid forR0,

R0~p,k,q!5 (
N51

`

g0
N (

K,L,M ,
K1L1M<N21

AN
K,L,MS ln L

p D K

3S ln L

k D LS ln L

q DM ~A7!

and in order to prove that the vertexR0 depends on only the
maximum momentum, it is sufficient to establish its finit
ness fork5q50 and p Þ 0. Thenp45p, p352p, and
p15p250 and it can be said that the momentump
‘‘passes’’ from vertex 4 to vertex 3.

The proof is based on the fact that it is necessary
distinguish skeleton graphs of typea and b ~Fig. 5! from
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replacing the simple vertices by four-tail blocks. For the ca
of the contribution of grapha,

R~a!
0 ~pi50!;g0

4E d4k1E d4k2E d4k3

3Gk1
Gk2

Gk3
Gk11k2

Gk11k3
Gk11k21k3

, ~A8!

it is easy to see that the skeleton graphs for the zero exte
momenta contain only singly logarithmic divergences ori
nating from the region of integration where all the intern
momenta are of the same order of magnitude and are sm
The absence of other divergence is related to the imposs
ity of finding a single momentumki that determines the ar
guments of the twoG-functions, two momentaki andkj that
determine the arguments of the fourG-functions, etc. When
momentump passes through any pair of vertices, the sin
logarithmic divergences are cut off at momentump, since it
enters the argument of at least oneG-function. In this way,
the graph is finite fork5q50. The divergences of nonske
eton graphs are cut off just as are the divergences of
skeleton graphs from which they are obtained.

We proceed to formalize the remarks. A graph withE
external lines in theNth order of perturbation theory ha
I52N5E/2 internal lines andL5N2E/211 independent
integrations~loops!, and diverges ford24 at large momenta
ask42E.10 In the following we are concerned with four-ta
graphs (E54) with L loops, 2L internal lines, andL11
logarithmically divergent vertices.

Definition.A graph is a skeleton graph if it is impossib
to chooseL8 independent integrations in it such thatL8,L
and the integration momentak1 ,k2 , . . . ,kL8 fully determine
the arguments of the 2L8 or more Green functions.

Lemma 1.A skeleton graph contains only singly loga
rithmic divergences, which are removed when the mom
tum p passes through any pair of vertices.

The proof is evident from the definition and explanatio
given after Eq.~A8!.

Lemma 2.In a skeleton graph it is impossible to isolate
subdiagram with the form of a four-tail block.

Assume, on the contrary, that this is possible. In
isolated block there will beM,L independent integration
with respect to the momentak1 ,k2 , . . . ,kM which will enter
only in the 2M Green functions corresponding to the intern
lines of the block. The remainingL85L2M integration mo-
menta will fully determine the arguments of th
2L22M52L8 Green functions, which contradicts the de
nition of a skeleton diagram.

Lemma 3.In a graph which is not a skeleton diagram
is always possible to isolate a subgraph in the form o
four-tail block.

In a nonskeleton graph there areL8 integration momenta
which completely determine the arguments of the 2L8 Green
functions. The remainingM5L2L8 integration momenta
enter only in 2L22L852M Green functions. The corre
sponding 2M internal lines will, in general, lie in separat
clusters. Let us isolate one such cluster~the i -th! containing
Ni vertices,Li loops, andI i lines and remove it from the
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Li5Ni2Ei /21 , so that

I i22Li5Ei /222. ~A9!

Obviously, all theEi are even. The casesEi50 andEi52
correspond to disconnected diagrams and self-energy in
and are assumed to be excluded. ThenEi>4 and, in view of
Eq. ~A9!, we have

I i22Li>0. ~A10!

Summing over all i and noting that S i I i52M and
S iL i5M , we see that the equality holds in Eq.~A10!, so that
~see Eq.~A9!! Ei54 and all the removed clusters are fou
tailed. Since at least one cluster exists, the assertion
proven.

Lemma 4.A nonskeleton graph can be obtained fro
some skeleton graph by replacing all or part of the sim
vertices with four-tail blocks.

By successively isolating the four-tail blocks in a no
skeleton graph and replacing them with simple vertices,
ultimately arrive at a skeleton graph. Following this proc
dure in opposite order, we obtain a proof of the assertion

Lemma 5.A nonskeleton graph of orderN obtained from
a skeleton graph of orderM contains a logarithmic diver-
gence of order no greater thanN2M11, which is cut off by
passage of momentumP through any pair of vertices.

Let us write down as an example the contribution of t
graphc ~Fig. 5! obtained from grapha:

R~B!
0 ~pi50!;E d4k1E d4k2E d4k3Gk1

Gk2
Gk3

Gk11k2

3Gk11k3
Gk11k21k3

G1~0,2k1 ,2k2 ,k11k2!

3G2~0,k1 ,k3 ,2k12k3!G3~0,k11k3 ,k2 ,2k12k2

2k3!G4~0,2k12k2 ,2k3 ,k11k21k3!.

The divergence originates from the regionki;k, for which
arguments of all the vertices are;k:

R~B!
0 ~pi50!;E dk

k
G1~k!G2~k!G3~k!G4~k!.

The blockG i containingNi simple vertices has a maximum
divergence;(ln L/k)Ni21 if it is included in the parquet se
quence of Fig. 4a. SinceS iNi5N, a graph withM blocks
diverges no more rapidly than (lnL/k)N2M11, so the diver-
gence is eliminated when momentump passes through an
pair of vertices. There are no other divergences. If not all
momenta are small (;k), then a graph diverges expone
tially ask→0 and suppresses the logarithmic divergences
the blocks.

Thus, all the graphs are finite fork5q50 andp Þ 0, and
R0(p,k,q) depends only on the maximum momentump.

1!The renormalized energyE enters into expressions of the type~5!.13
2!The functionsW andh2 are calculated in Ref. 10 form-renormalization
and differ from theL-renormalization used here, but have the same le
ing coefficients~see Appendix 1!; the definitions of charge and the Gel
Mann–Low function differ in Ref. 10 by a factor of 6K4 .

3!In Refs. 14 and 16 the coefficientsWN have been calculated in a
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m-renormalization, for which this assumption is not correct~see Appendix
1!.
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Semiclassical approach to resonance-optics polarization effects in coherent

ical
and squeezed fields
A. M. Basharov

Moscow State Institute of Engineering Physics, 115409 Moscow, Russia
~Submitted 15 May 1996!
Zh. Éksp. Teor. Fiz.111, 25–43~January 1997!

Equations are derived for the atomic density matrix and relaxation operator for a broadband
squeezed field in an arbitrary polarization state and resonance atomic energy levels with an
arbitrary degree of degeneracy. It is shown that suppression of the relaxation of the
quadrature component of the atomic polarization depends strongly on the type of resonance
transition and the polarization state of the squeezed and coherent perturbing fields. When the
resonance levels are strongly degenerate, the relaxation of the quadrature component of the
atomic polarization under conditions of maximum suppression is nonexponential in character. The
mathematical apparatus developed here makes it possible to calculate polarization-related
aspects of the multifrequency optical behavior of atomic and molecular systems resonantly excited
both by coherent light and by broadband squeezed fields. ©1997 American Institute of
Physics.@S1063-7761~97!00201-1#
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Recently there has been increased interest in nonlin
optics phenomena arising from the combined action of e
tromagnetic fields that are in both coherent and squee
states. In his groundbreaking paper,1 Gardiner showed that in
a squeezed vacuum, the real and imaginary parts of
atomic polarization are attenuated with different decay c
stants. References 2–8 were devoted to investigating th
fluence of this effect on various optical phenomena. In R
2–4 the authors considered spectral features of the abs
tion of a weak signal by a two-level system in a squee
vacuum which simultaneously interacted with an intense
herent wave. In Ref. 5, Parkinset al.discussed photon echo
formed by pulses of coherent and squeezed fields that w
separated in time. References 6, 7 discuss the optical b
bility that accompanies the interaction of a coherent wa
with an optical resonator filled with resonant atoms simu
neous illuminated by an electromagnetic wave in a squee
state. The authors of Ref. 8 analyzed optical bistability o
thin film of resonant atoms in a squeezed vacuum.

A distinctive feature of Refs. 1–8 is their authors’ use
the semiclassical approach to describe the observed ef
and to take into account the quantum properties of the e
tromagnetic pumping; this approach is grounded in the c
sical Maxwell equations for an intense electric field and
corresponding treatment9–11 of the generalized quantum me
chanical equations for the atomic density matrix. By doi
so, these authors elucidated the important manifestation
the ‘‘squeezed’’ nature of the pump light. Moreover, th
also demonstrated that the standard semiclassical approa
nonlinear optics problems~see, e.g., Refs. 12–14!, which has
been used with great success in laser physics, can af
suitable generalization be applied to a wide class of proble
that involve an intense broadband optical field in a squee
state as well. In this latter case, as Gardiner and his
authors showed,9–11 the nonclassical properties of the pum
are ‘‘hidden’’ in the relaxation part of the quantum mecha
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properties of the induced light are not considered.
In this article, the semiclassical approach of Refs. 9–

is generalized to include degeneracy of the atomic ene
levels with respect to the projection of the total angular m
mentum and the polarization state of the squeezed field.
generacy of the atomic levels with respect to angular m
mentum projection must be taken into account if t
polarization properties of the optical phenomena are to
treated properly. Moreover, real states of atoms and m
ecules are degenerate with respect to the direction of the
angular momentum. In order to obtain equations for
atomic density matrix, a quantum stochastic Ito equation
derived that takes into account the degeneracy of the le
and states of polarization of the quantized fields. Since
formalism of Refs. 9–11, 15 is not of interest here, a deri
tion of the Ito equation is given that is simpler than that us
in Ref. 9, despite the complications introduced by the Z
man structure of the atomic levels and polarization of
photons. In addition, a relaxation operator is obtained wh
structure clearly reveals that the state of polarization of
electromagnetic wave determines both the relaxation ma
for optical coherence and the Zeeman sublevels in a sig
cant way, and that squeezing of the electromagnetic w
changes the character of the former. This latter change~when
the matrix for optical coherence is excited coherently! in turn
affects the distribution of atomic level populations with r
spect to the direction of the angular momentum.

The example of an atomic transition between levels w
values of the angular momentum 0 and 1 shows that
contrast to the nondegenerate case,1,9–11for an arbitrary state
of the polarization of the squeezed field the Zeeman struc
will in general increase the minimum possible relaxati
constant for the quadrature components of the atomic po
ization. The physical reason for this is that two alternat
paths are available for a transition from a Zeeman subleve
one energy level to another with participation of differen
polarized photons. The case of an atomic transition betw

13$10.00 © 1997 American Institute of Physics
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2. INITIAL EQUATIONS
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momentum is exceptional, since the system splits into
independent subsystems, each of which interacts only w
left- or right-circularly-polarized photons, and thus mat
ematically the problem separates into two independent p
lems which are equivalent to the nondegenerate case in
tigated previously.1,9–11 It is established that maximum
suppression of the relaxation must be expected fo
squeezed field consisting of photons with the same circ
polarization, for any degree of degeneracy of the resona
levels.

For large values of the angular momenta of the re
nance levels, the relaxation operator reduces to the sim
form corresponding to a quasiclassical description of the
tal angular momentum. In this paper we discuss the distr
tion of level occupation numbers with respect to the direct
of the total angular momentum when the atomic system
teracts with polarized coherent radiation. The presence
squeezed field leads to narrow angular structures in th
distributions, and these depend both on the type of ato
transition and on the state of polarization of the coherent
squeezed fields. It is established that strong degenerac
the resonance levels modifies the exponential character o
relaxation of atomic polarizations. For the case of maxim
suppression of the relaxation and a resonant transition
tween levels with the same values of the total angular m
mentum, the relaxation rate is further decreased, wherea
transitions where the angular momentum changes, the re
ation rate increases~compared to the nondegenerate case!.

The equations obtained here provide a basis for a se
classical approach to the polarization properties of~nonlin-
ear! optical phenomena created by polarization-coherent
squeezed fields interacting with atomic systems that are
generate with respect to projection of the total angular m
mentum.

In the next section the initial equations are formulate
Then in Secs. 3 and 4 the Ito equation is derived, as is
equation for the atomic density matrix, which contains a
laxation operator that takes into account degeneracy of
resonance levels and the polarization state of the sque
field. In Sec. 5 matrix elements of the relaxation operator
derived for small values of the angular momenta of the re
nance levels, and those polarization states of the sque
field are analyzed that correspond to the maximum supp
sion of the atomic relaxation. In Sec. 6 a representation is
obtained for the relaxation operator using the quasiclass
description of the angular momentum. Sections 7 and 8
cuss the distribution of population differences of the lev
with respect to various orientations of the total angular m
mentum and the decay law for the atomic polarization un
conditions of maximum suppression of the relaxation. In
Conclusion it is emphasized that in order to observe the
fects of squeezing experimentally in atomic relaxation,1 the
absorption spectra of a probe signal,2–4 or in optical
bistability,6–8 it is necessary to choose the polarization pro
erties of both the coherent excitation signal and the squee
field for each specific transition.
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We describe the system, which consists of an ensem
of noninteracting atoms and a classical electromagnetic fi
with intensityE, using the ordinary semiclassical approa
in the electric-dipole approximation by means of the Ham
tonian

Hsys5(
pa

SEa1
\2p2

2M Dapa
1 apa

2
1

V (
pqaa8

E~q,t !daa8apa
1 ap2qa8 ~1!

and the Maxwell equation

S ¹22
1

c2
]2

]t2DE~r ,t !5
4p

c2
]2

]t2
P. ~2!

Here apa is an operator that annihilates an atom with m
mentum\p and massM in the quantum stateua&; V is the
system volume. The labelsa, a8 enumerate eigenstates o
the HamiltonianH0 of an isolated atom at rest:

H0ua&5Eaua&, ^aua8&5daa8 , (
a

ua&^au51.

For an atomic~molecular! gas, these states are distinguish
from one another by their energyEa , and total angular mo-
mentumj a and~or! its projectionma onto the axis of quan-
tization; the energy levels are degenerate with respect to
ferent orientations of the total angular momentum. W
denote bydaa8 the matrix elements of the dipole mome
operator of an atom, and write the matrix elements of a giv
atomic operatorA, in the following equivalent forms:

^auAua8&5^Ea , j a ,mauAuEa8 , j a8 ,ma8&

5Aaa85Amama8
.

The quantityE(q,t) is the spatial Fourier component of th
electric field intensity:

E~q,t !5E E~r ,t !e2 iq–rdr .

The polarizationP of the atomic medium is defined in th
usual way:

P5NE Tr~rd!dv, ~3!

wherer is the density matrix of atoms moving with veloc
ties in the range fromv to v1dv, andN is the density of
two-level atoms.

We derive equations for the atomic density matrixr for
the case in which the atoms also interact with a quanti
one-dimensional electromagnetic field propagating along
z axis. For simplicity we neglect depletion during th
absorption/emission of a photon, Raman effects with the p
ticipation of the classical and quantum fields,16 and Stark
shifts of the levels. We first obtain an equation for the de
sity matrix of a single atom at rest, which we then general
to an ensemble of atoms. In this case we treat the atom
two-level system with quantum numbersEa , j a , m and
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Eb , j b , m, which characterize the upper and lower levels
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respectively. The total Hamiltonian of this problem has t
form

H5Hs1Hb1Vb ,

Hs5(
m

Eaam
1am1(

m
Ebam

1am

2(
mm

E~r ,t !–~dmmam
1am1dmmam

1am!,

Hb5(
l
E dv\vblv

1 blv ,

Vb52 i\ (
lmm

E dvK~v!~elv–dmm!am
1amblv1H.c.

~4!

Hereblv
1 andblv are creation and annihilation operators

a photon of frequencyv with a polarization unit vector
elv , andK(v) is the coupling constant. In deriving the op
eratorVb for the interaction of an atom with a quantum fiel
we use the rotating-wave approximation.

3. QUANTUM ITO EQUATION

We assume that the quantized electromagnetic field
resents ideal squeezed white noise, which implies that

^bl
1~ t !bl8~ t8!&5Nphtll8d~ t2t8!,

^bl8~ t !bl
1~ t8!&5~dll81Nphtll8!d~ t2t8!,

^bl~ t !bl8~ t8!&5Mphhll8d~ t2t8!,

^bl8
1

~ t8!bl
1~ t !&5Mph* hll8

* d~ t2t8!, ~5!

where

bl~ t !5
1

A2p
E dv exp@2 iv~ t2t0!#blv~ t0!, ~6!

the angle brackets imply averaging over the squeezed ph
nic heat bath, the matricestll85tl8l

* andhll85hl8l char-
acterize the polarization state of the squeezed field, the
rameter uMphu represents the degree of compression, a
Nph represents the intensity of this field. We also assume
Mph5uMphuexp(22ivGt), where the center frequency of th
squeezed heat bath is denoted byvG . For a squeezed field
prepared in an ideally degenerate parametric amplifier,
quantityvG is the center frequency of the amplifier.1 Gener-
ally speaking, the center frequencyvG can be separated int
right- and left-circularly-polarized photons. All such featur
are taken into account by the phases of the quantitieshll8
and the off-diagonal elementstll8 . The annihilation opera-
tor for photonsblv(t0) is referenced to a certain initial tim
t0 .

We write the Heisenberg equation of motion for a giv
atomic operatorA:

Ȧ52
i

\
@A,Hs#1(

lq
E dvK~v!@A,R1

q #elv
q blv

2 (
l8q8

E dvK~v!@A,R2
q8#el8v

q8* bl8v
1 . ~7!

Here we have introduced the operators
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The labelsq, q8, etc., specify the spherical components o
vector. We next adopt the following definitions. For an ar
trary vectord, the spherical componentsdq, q50,61 are

d05dz , d6157
1

&

~dx6 idy!.

Heredx , dy , anddz are projections ofd on Cartesian axes
the z axis is taken as the axis of quantization. The mat
elements for the dipole momentd are related to the reduce
dipole momentdba of an atomic transitionj b→ j a by

dmm
q 5~21! j b2mdbaS j b 1 j a

2m q mD ,
dmm
q 5~21! j b2mdba* S j a 1 j b

2m q m D .
The definition of the 3j symbols is standard.17

We assume that there is no feedback of the atoms to
photonic heat bath, so that the Heisenberg operators for
nihilation of photons in~7! are given by the expression fo
free evolution

blv5blv~ t0!exp@2 iv~ t2t0!#,

and that the operatorblv commutes with the atomic opera
tors referenced to the same instant of time.

Following Ref. 9, we assume that the coupling const
K(v) does not depend on frequencyv, which corresponds
to the Markov approximation:

K~v!5Ak/2p.

Moreover, we assume that the polarization vectorelv also
does not depend on the frequencyv: elv5el . Then the
quantum Langevin equation follows from Eq.~7!:

Ȧ52
1

\
@A,Hs#1Ak(

lq
@A,R1

q #el
qbl~ t !

2Ak (
l8q8

@A,R2
q8#el8

q8* bl8
1

~ t !. ~8!

We introduce the quantum Wiener processesBl(t,t0) in
the following way:

Bl~ t,t0!5E
t0

t

dt8bl~ t8!,

where @Bl(t,t0),Bl8
1 (t,t0)#5(t2t0)dll8 . Defining the Ito

integral and differential in the standard way,9,10 we seek the
quantum Ito equation for the atomic operatorA in the form

dA52
i

\
@A,Hs#dt1Ak(

lq
@A,R1

q #el
qdBl~ t !

2Ak (
l8q8

@A,R2
q8#el8

q8* dBl8
1

~ t !1Idt, ~9!

where
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dBl
1~ t !dBl8~ t !5Nphtll8dt,

o

fo

-
d
fe
o

he
ar

1
k

~Rq @A,Rq8#1@Rq ,A#Rq8!T

ore,
dBl8~ t !dBl
1~ t !5~dll81Nphtll8!dt,

dBl~ t !dBl8~ t !5Mphhll8dt,

dBl8
1

~ t !dBl
1~ t !5Mph* hll8

* dt,

dtdt5dtdBl~ t !5dtdBl
1~ t !

5dBl~ t !dt5dBl
1~ t !dt50,

and the termIdt in Eq. ~9! is determined by satisfying the It
differentiation rule: for any atomic operatorsA1 andA2 ,

d~A1A2!5~dA1!A21A1dA21~dA1!~dA2!. ~10!

We seekI in the form

I5c1(
qq8

~R1
q @A,R2

q8#1@R1
q ,A#R2

q8!~dqq81Tq8q!

1c2(
qq8

~R2
q @A,R1

q8#1@R2
q ,A#R1

q8!Tqq8

1c3(
qq8

~R1
q @A,R1

q8#1@R1
q ,A#R1

q8!Mq8q

1c4(
qq8

~R2
q @A,R2

q8#1@R2
q ,A#R2

q8!Mq8q
* ), ~11!

where

Tq8q5Nph(
ll8

el
qel8

q8* tl8l5Tqq8
* ,

Mqq85Mph(
ll8

el
qhll8el8

q85Mq8q ,

and the parametersc1 , c2 , c3 , andc4 are defined by using
Eq. ~10!. The structure of Eq.~11! is prompted by the form
of the expression (dA1)(dA2) when I 15I 250, whereI 1dt
and I 2dt are the corresponding terms of the Ito equation
atomic operatorsA1 andA2 . It is not difficult to show that

c15c252c352c45k/2. ~12!

Thus, Eqs.~9!, ~11!, and ~12! are the Ito equations re
quired for this problem. Note that this method can be use
address the case in which degeneracy and polarization ef
are absent, in which case we obtain the Ito equation
Ref. 9.

4. EQUATIONS FOR THE ATOMIC DENSITY MATRIX

The transition from the Ito equation to equations for t
atomic density matrix is accomplished in the stand
way9–11: since the coefficients ofdBl(t) and dBl8

1 (t) are
unspecified functions, by averaging~9! we obtain

^dA&
dt

52 K i\ @A,Hs#L 1K k

2 (
qq8

~R1
q @A,R2

q8#

1@R1
q ,A#R2

q8!~dqq81Tq8q!L
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to
cts
f

d

K 2 (
qq8

2 1 2 1 qq8L
2K k

2 (
qq8

~R1
q @A,R1

q8#1@R1
q ,A#R1

q8!Mq8qL
2K k

2 (
qq8

~R2
q @A,R2

q8#1@R2
q ,A#R2

q8!Mq8q
* L .

On the other hand,

^A&5Tr$A~ t0!r~ t !%,
d^A&
dt

5TrHA~ t0!
dr~ t !

dt J .
Let us write^dA&/dt5d^A&/dt in the form

d^A&
dt

5TrHA~ t0!F i\ @r,Hs#1
k

2 (
qq8

~2R2
q8rR1

q

2rR1
q R2

q82R1
q R2

q8r!~dqq81Tq8q!

1
k

2 (
qq8

~2R1
q8rR2

q 2rR2
q R1

q82R2
q R1

q8r!Tqq8

2
k

2 (
qq8

~2R1
q8rR1

q 2rR1
q R1

q82R1
q R1

q8r!Mq8q

2
k

2 (
qq8

~2R2
q8rR2

q 2rR2
q R2

q8

2R2
q R2

q8r!Mq8q
* G J 5TrHA~ t0!

dr~ t !

dt J .
These equations are valid for any atomic operator; theref
we obtain the following equation for the density matrix:

dr

dt
1Ĝr5

i

\
@r,Hs#, ~13!

where we have introduced the relaxation operator

Ĝr52
k

2 (
qq8

~2R2
q8rR1

q 2rR1
q R2

q82R1
q R2

q8r!~dqq81Tq8q!

2
k

2 (
qq8

~2R1
q8rR2

q 2rR2
q R1

q82R2
q R1

q8r!Tqq8

1
k

2 (
qq8

~2R1
q8rR1

q 2rR1
q R1

q82R1
q R1

q8r!Mq8q

1
k

2 (
qq8

~2R2
q8rR2

q 2rR2
q R2

q82R2
q R2

q8r!Mq8q
* . ~14!

The matrix elements of the relaxation operator~14! have
the form
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operatorĜr does not contain terms withq50 if we do not
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tion

e
nt.

hat

the

tor

ed
the
mm8 2 (
m9mqq8

mm9 m9m mm8 qq8

1
k

2 (
m9mqq8

dmm
q dmm9

2q8rm9m8~21!qTqq8

2k (
mm8qq8

dmm
q8 rmm8dm8m8

2q
~21!q~dqq81Tq8q!,

~ Ĝr!mm85
k

2 (
mm9qq8

rmm9dm9m
2q dmm8

q8 ~21!q~dqq81Tq8q!

1
k

2 (
mm9qq8

dmm
2qdmm9

q8 rm9m8~21!q

3~dqq81Tq8q!2k (
mm8qq8

dmm
2q8rmm8dm8m8

q

~21!qTqq8 ,

~ Ĝr!mm5
k

2 (
m8m8qq8

dmm8
2q dm8m8

q8 rm8m~21!q~dqq81Tq8q!

1
k

2 (
m8m8qq8

rmm8dm8m8
q dm8m

2q8~21!qTqq8

2k (
m8m8qq8

dmm8
2q8rm8m8dm8m

2q
~21!qMq8q ,

~ Ĝr!mm5
k

2 (
m8m8qq8

rmm8dm8m8
2q dm8m

q8 ~21!q~dqq81Tq8q!

1
k

2 (
m8m8qq8

dmm8
q dm8m8

2q8 rm8m~21!qTqq8

2k (
m8m8qq8

dmm8
q8 rm8m8dm8m

q
~21!qMq8q

* . ~15!

When Tqq85Mqq850 and the summation with respe
to q includes the valueq50, the relaxation operator~15!
coincides with the relaxation operator for spontaneous ra
tive decay under conditions where the energy levelEa is the
ground state.13 If Mqq850 while Tqq8 Þ 0 andq Þ 0, then
~15! describes relaxation processes in the field of a no
light wave that is structured and polarized in a certain w
Interaction with such a wave alters the distribution of ato
with respect to the Zeeman sublevels from the case of sp
taneous radiative decay13 ~see Sec. 7 of the present article!.
Although squeezing of the electromagnetic wave directly
fects only the optical coherence matrix, which determin
transitions between Zeeman sublevels of different ene
levels, in the final analysis this also affects the equilibriu
distribution of atoms in the field of a coherent wave w
respect to Zeeman sublevels of both the upper and lo
energy levels~see Sec. 7!. Moreover, the rate of relaxation o
the real and imaginary parts of each optical coherence ma
element is explicitly changed, which in turn leads to differe
attenuation laws for the imaginary and real parts of e
projection of the atomic polarization~see the next section!.

It is important to emphasize that by virtue of the geo
etry of the quantized field we have chosen, the relaxa
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specifically require it to, and consequently does not take i
account the spontaneous decay of an atom with emission
photon perpendicular to the direction of propagation of
wave~5!. Such processes, and also other channels for re
ation and/or cases in which the lower energy levelEa is not
the ground state, can be described with the help of the s
plest generalization of Eq.~13!:

dr

dt
1Ĝr1Ĝ0r5

i

\
@r,Hs#, ~138!

where we have introduced a phenomenological relaxa
operatorĜ0r with the following matrix elements:

~ Ĝ0r!mm85garmm82Wmm8 ,

~ Ĝ0r!mm85gbrmm82Wmm8 ,

~ Ĝ0r!mm5g0rmm .

Here ga , gb , and g0 are relaxation constants, while th
termsWmm8 andWmm8 take pumping processes into accou
As usual, we assume for simplicity that

Wmm85
gaNadmm8
2 j a11

, Wmm85
gbNbdmm8
2 j b11

,

whereNa andNb are the steady-state densities of atoms t
populate the energy levelsEa and Eb . Here and in what
follows we assume the density matrix is normalized by
atomic density.

If the matrixr describes atoms~molecules! moving with
velocities lying in the interval fromv to v1Dv, then it is
necessary to replace12–14 the derivative dr/dt by
(]/]t1v¹)r in Eqs.~13! and~138!, and to make the follow-
ing replacement in the matrix elements of the opera
Ĝ0r: Na→NaF(v), Nb→NbF(v), whereF(v) is the distri-
bution function of the atoms with respect to velocity.

5. RELAXATION OPERATOR FOR SMALL VALUES OF THE
TOTAL ATOMIC ANGULAR MOMENTUM

The simplest form of the relaxation operator is obtain
for atomic transitions between levels with small values of
angular momentum:j a5 j b51/2 andj a505 j b21.

For a resonant atomic transition withj a5 j b51/2 we
have

Ĝr1/2 1/2
a 5

kudbau2

3
@r1/2 1/2

a T112r21/221/2
b ~11T11!#,

~16a!
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Ĝra 5
kudbau2

@ra T

l
n

in
u
u
d
he
If
-

We now discuss the relaxation of the amplitude

n

-
e
e

ith
e-
f the

ic

uc-
21/221/2 3 21/221/2 2121

2r1/2 1/2
b ~11T2121!#, ~16b!

Ĝr1/221/2
a 5

kudbau2

6
r1/221/2
a ~T111T2121!

2
kudbau2

3
r21/2 1/2
b T2121 , ~16c!

Ĝr1/2 1/2
b 5

kudbau2

3
@r1/2 1/2

b ~11T2121!

2r21/221/2
a T2121#, ~17a!

Ĝr21/221/2
b 5

kudbau2

3
@r21/221/2

b ~11T11!2r1/2 1/2
a T11#,

~17b!

Ĝr1/221/2
b 5

kudbau2

6
r1/221/2
b ~21T111T2121!

2
kudbau2

3
r21/2 1/2
a T121 , ~17c!

Ĝr1/221/2
ba 5

kudbau2

6
r1/221/2
ba ~112T2121!

1
kdba

2

3
r1/221/2
ba* M2121 , ~18a!

Ĝr21/2 1/2
ba 5

kudbau2

6
r21/2 1/2
ba ~112T11!

1
kdba

2

3
r21/2 1/2
ba* M1 1, ~18b!

Ĝr1/2 1/2
ba 5

kudbau2

6
r1/2 1/2
ba ~11T111T2121!

1
kdba

2

3
r21/221/2
ba* M21 1, ~18c!

Ĝr21/221/2
ba 5

kudbau2

6
r21/221/2
ba ~11T111T2121!

1
kdba

2

3
r1/2 1/2
ba* M121 . ~18d!

Here, the density matrices are furnished with appropriate
bels that describe atomic levelsb,a and transitions betwee
them for the sake of convenience.

When linearly polarized coherent light propagates
such a medium, interacting with the system of Zeeman s
levels of the resonant atomic levels, two independent s
systems separate out, one of which interacts with left-han
circularly-polarized photons of the coherent field only, t
other with right-handed circularly-polarized photons only.
the atomic medium is initially in thermodynamic equilib
rium, then only relaxation operators~16a!, ~16b!, ~17a!,
~17b!, and~18a!, ~18b! turn out to be important.
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pq5(
mm

rmmdmm
q exp~ ivGt ! ~19!

of the atomic polarization

P5(
mm

rmmdmm1c.c.

It is not difficult to show that the corresponding relaxatio
operators for the real (preal

q ) and imaginary (pim
q ) parts of the

polarization amplitude have the form

Ĝpreal
q 5

kudbau2

3
preal
q S Tqq1uMqqu1

1

2D ,
Ĝpim

q 5
kudbau2

3
pim
q S Tqq2uMqqu1

1

2D .
~repeated indices here do not imply summation!! Since
uMqqu<ATqq(Tqq11), whenTqq@1, and under certain con
ditions whereuMqqu'Tqq , it is clear that there is appreciabl
suppression of the relaxation ofpim

q and enhancement of th
attenuation rate ofpreal

q :

Ĝpim
q '

kudbau2

6

1

Tqq
pim
q '0,

Ĝpreal
q '

2kudbau2

3
Tqqpreal

q .

The picture we obtain of the density relaxation agrees w
the solution of the problem without taking into account d
generacy of the resonant levels and polarization states o
coherent and squeezed waves.1

Entirely different relaxation effects occur for the atom
transition j a505 j b21. We first write the following expres-
sions for the relaxation operator:

Ĝra5
kudbau2

3
ra(

q
Tqq2

kudbau2

3

3S (q rqq
b 1(

qq8
rqq8
b T2q2q8D ,

~ Ĝrb!mm85
kudbau2

3
rmm8
b

1
kudbau2

6 (
q

~rmq
b T2m82q

1rqm8
b T2q2m!2

kudbau2

3
raT2m82m ,

~ Ĝrba!m05
kudbau2

6
rm0
ba S 11(

q
TqqD

1
kudbau2

6 (
q

rq0
baT2q2m

1
kdba

2

3 (
q

r0q
abM2m2q . ~20!

For a squeezed field with the simplest polarization str
ture
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uMqu<ANq~Nq11!, ~21!

the relaxation operator for the transitionj a505 j b21 takes
the form

Ĝra5
kudbau2

3
ra~N211N1!2

kudbau2

3
@r2121

b ~11N1!

1r11
b ~11N21!#,

~ Ĝrb!mm85
kudbau2

3
rmm8
b

1
kudbau2

6
~rmm8

b N2m8

1rmm8
b N2m!2

kudbau2

3
radmm8N2m ,

~ Ĝrba!m05
kudbau2

6
rm0
ba~11N211N1!

1
kudbau2

6
rm0
baN2m1

kdba
2

3
r0m
abM2m . ~22!

From the last of Eqs.~22! we obtain the next term
which determines the attenuation of the real and imagin
parts of the spherical components of the atomic polariza
amplitude vector for the transitionj a505 j b21 ~when~21!
is satisfied and the phases of the quantitiesM21 andM1 are
equal!:

Ĝpreal
q 5

kudbau2

6
~11N11N211Nq12uMqu!preal

q ,

Ĝpim
q 5

kudbau2

6
~11N11N211Nq22uMqu!pim

q . ~23!

It is clear that the suppression of relaxation of the imagin
part of the polarization is maximized only when a squee
field is used, consisting of photons with the same circu
polarization. For example when N215M2150,
uM1u5AN1(N111), N21@1, we can say that

Ĝpim
q '

kudbau2

6

1

N1
pim
q '0

compared to

Ĝpreal
q '2

kudbau2

3
N1preal

q .

If the squeezed field contains both left- and right-hand po
ized photons, then because there are two possible transi
from level Ea to sublevels of levelEb with m51 andm5
2 1, the smallest possible relaxation is determined by
expression

Ĝpim
q 5

kudbau2

6 SNmin1
1

Nmax
D pimq ,

whereNmin5min$N1, N21%, Nmax5max$N1, N21%. Thus, we
may conclude that for an arbitrary polarization state of
squeezed field, the Zeeman structure of the resonance le
increases the smallest possible value for the relaxation~com-
pared to the nondegenerate case and the specific
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larization amplitude. Note that a definition different fro
~19! for the amplitude of the atomic polarization will chang
the form of the relaxation operatorsĜpreal

q and Ĝpim
q , but

will not affect quantities that characterize the limiting para
eters of the polarization relaxation in a squeezed field.

6. RELAXATION OPERATOR FOR THE ATOMIC ANGULAR
MOMENTUM: QUASICLASSICAL DESCRIPTION

Let us assume thatj a@1, j b@1. Then we can use the
semiclassical representation of the 3j symbol ~Ref. 17, par.
223, Eq. ~1!! and assume that the matrix elements of t
spherical components of the dipole moment operator
given by

dmm
q '

dba

A2 j
Dq jb2 j a

1 ~0,q,0!dm2mq ,

dmm
q '

dba*

A2 j
~21!qD2q jb2 j a

1 ~0,q,0!dmq1m ,

where j5( j a1 j b)/2, cosq'K/j, K5(m1m)/2, while
Dqq8

k ~a,b,g!D is the WignerD-function.17

Following Ref. 18, let us go to a new representation
the matrix elements of the atomic density matrix:

ra~q,w!5(
j

rK1j/2K2j/2
a e2 i jw, K5~m1m8!/2,

j5m2m8,

rb~q,w!5(
j

rK1j/2K2j/2
b e2 i jw, K5~m1m8!/2,

j5m2m8,

rba~q,w!5(
j

rK1j/2K2j/2
ba e2 i jw, K5~m1m!/2,

j5m2m, ~24!

with cosq'K/j, j5( j a1 j b)/2 everywhere. Let us assum
that the effective interval where the density matrix is nonz
with respect to the variablej is much smaller than the char
acteristic scale of variation of the density matrix with resp
to the variableK. Then the summation overj in Eq. ~24! can
be extended to infinity and

rK1j/2K2j/25
1

2p E
0

2p

ei jwr~q,w!dw.

Thus, the transformation~24! can be regarded as analogo
to the Wigner transformation for the incoming degrees
freedom. Assuming that quantities of typeK are the same
when in the same expression, we obtain semiclassical re
sentations of the relaxation operators:

Ĝra~q,w!5
kudbau2

2 j
ra~q,w!T s~q,w!

2
kudbau2

2 j
rb~q,w!@ts~q!1T s~q,w!#,
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Ĝr ~q,w!5
kudbau2

r ~q,w!@t ~q!1T ~q,w!#

al

re

it

y
n

S d 1gaD r a~q,w!5ga

Na
1
i uE u

@r * ~q,w!Ds~q,w!
b 2 j b s s

2
kudbau2

2 j
ra~q,w!T s~q,w!,

Ĝrba~q,w!5
kdba

2

4 j
rba~q,w!@ts~q!12T s~q,w!#

1
kdba

2

2 j
rba* ~q,w!F s~q,w!. ~25!

The anglesq and w characterize the direction of the tot
angular momentum, while the quantitys5 j b2 j a identifies
the type of resonant transition. The following functions a
introduced:

T 0~q,w!5
1

2
~T111T2121!sin

2 q

2
1

2
~e22iwT1211e2iwT211!sin

2 q,

T 61~q,w!5
1

4
~11cos2 q!~T111T2121!

7
1

2
~T112T2121!cosq

1
1

4
~e22iwT1211e2iwT211!sin

2 q,

F 0~q,w!5
1

2
~M11e

2iw1M2121e
22iw!sin2 q

2
1

2
~M1211M211!sin

2 q,

F 61~q,w!5
1

4
~11cos2 q!~M11e

2iw1M2121e
22iw!

7
1

2
~M11e

2iw2M2121e
22iw!cosq

1
1

4
~M1211M211!sin

2 q,

t0~q!5sin2 q, t61~q!5
1

2
~11cos2 q!.

7. DISTRIBUTION OF LEVEL POPULATIONS WITH RESPECT
TO ORIENTATION OF THE TOTAL ANGULAR
MOMENTUM FOR STATIONARY COHERENT AND
SQUEEZED FIELDS

Assume that an atom that interacts resonantly both w
the coherent field

E5« exp@ i ~kz2vt !#1c.c., ~26!

and with the squeezed field~5! is characterized by man
values of the angular momentum, so that in the resona
approximation Eq.~138! can be written in the form
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h

ce

dt 2 j \ ba

2r ba~q,w!Ds* ~q,w!#

2gr a~q,w!T s~q,w!

1gr b~q,w!@ts~q!1T s~q,w!#,

S ddt1gbD r b~q,w!5gb

Nb

2 j
2
i uE u
\

@r ba* ~q,w!Ds~q,w!

2r ba~q,w!Ds* ~q,w!#

2gr b~q,w!@ts~q!1T s~q,w!#

1gr a~q,w!T s~q,w!,

S ddt2 iD1g0D r ba~q,w!5
i

\

udbau2uE u
2 j

@r b~q,w!

2r a~q,w!#Ds~q,w!

2
g

2
r ba~q,w!@ts~q!

12T s~q,w!#

2gr ba* ~q,w! f s~q,w!. ~27!

Here the following notation has been used:

r a~q,w!5ra~q,w!, r b~q,w!5rb~q,w!,

r ba~q,w!5rba~q,w!
dba*

A2 j
exp@ i ~vt2kz!#,

D5v2v0 , g5
kudbau2

2 j
,

Ds~q,w!5(
q
D2qs

1 ~0,q,0!eiqwl q, l q5Eq/uE u;

the functionf a(q,w) differs from the functionF s(q,w) by
the substitution ofMqq85mqq8 exp@2i(kz2vt)# for mqq8 .
Depending on the relation between frequenciesv andvG ,
the quantitymqq8 can be an oscillatory function.

The steady-state solution~27! for the population differ-
ence in the simplest case~21!, where v5vG5v0 and
ga5gb5g i , can easily be written in the form

r a~q,w!2r b~q,w!

~Na2Nb!/2j

5H 11
2gT s~q,w!

g i

1L~@11~g/g0!T s~q,w!#uDs~q,w!u2

1~g/2g0!@ f s~q,w!Ds*
2~q,w!

1 f s* ~q,w!Ds
2~q,w!#!~@11~g/g0!T s~q,w!#2

2~g/g0!
2u f s~q,w!u2!21J 21

, ~28!
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FIG. 1. Plots of the distribution~28!
of population differences between
lower and upper resonance levels a
a function of the direction of the tota
angular momentum for resonant ex
citation by a noisy quantized field~5!
under conditions~21! for the transi-
tions j→ j , N15N252 (a) and
j11→ j with parameters
N15N252 (b), N152, N250 (c),
andN150,N252 (d). Other param-
eters areg5g i51, j@1; the transi-
tion is denoted by j b→ j a . The
ranges over which the angular orien
tation of the total angular momentum
varies are p<w<2p and
0<q<p.
whereL54uE u2udbau2/\2g0g i2 j is the ratio of the square of
ic
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the Rabi frequency to the product of the phenomenolog
relaxation constants.

In the absence of a quantized field~5!, i.e., wheng50,
the solution~28! coincides with the solution of Nasyrov an
Shalagin.18 In the absence of a coherent field, i.e., f
L50, Eq. ~28! describes steady-state atomic level popu
tion differences in the field of a resonant noisy polariz
wave described quantum mechanically by~5!. As in Ref. 18,
a striking dependence of the distribution~28! on the type of
resonance transition is observed. This is evident from
fact that for the transitionj→ j , molecules with angular mo
mentum directed along thez axis essentially fail to interac
with the field, whereas molecules whose angular momen
is close to the plane perpendicular to thez axis interact so
strongly with the field that their population differences r
duce to zero as the field strength increases. For the trans
j11↔ j , for which the field contains the same number
left- and right-hand circularly-polarized photons, the m
ecules interact with it in essentially the same way, indep
dent of the orientation of the total angular momentum a
the type of molecular transition~j11→ j or j→ j11!. How-
ever, this situation is considerably changed when the ligh
circularly polarized: although there is no narrow selectiv
with respect to orientation of the angular momentum as h
pens in the case of thej→ j transitions, the molecules tha
interact most strongly with the field are those whose ang
momentum points in the direction of propagation of the fie
or opposite to it, depending on the direction of rotation of t
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j→ j11! ~see Figs. 1c, 1d!. Examining thej11→ j transi-
tions instead of thej→ j11 transitions for the same circula
polarization of the field, we find that the molecules that
teract more intensely with the field rotate opposite to tho
which would interact strongly with the field for the othe
type of transition.

For these special cases, the distribution of populati
does not depend on the squeezing of the field. Introducin
coherent field does lead to such a dependence, but the ch
in the distribution of atomic level population differences

DN 5
r a~q,w!2r b~q,w!

~Na2Nb!/2j

2
r a~q,w!2r b~q,w!

~Na2Nb!/2j
U
M215M150

is numerically insignificant, as Fig. 2 illustrates. As befo
the change depends on the type of transition and polariza
state of both the squeezed and the coherent fields.

8. DECAY OF ATOMIC POLARIZATIONS IN A SQUEEZED
VACUUM

The polarization of an atom with degenerate energy l
els is made up of polarizations from each individual tran
tion between the Zeeman sublevels of the resonant le
~19!. Since each of these transitions is characterized by
own relaxation constant due to the different values of

21A. M. Basharov
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FIG. 2. Variation of the distribution
of population differencesDN plot-
ted as a function of the polarw and
azimuthalq orientation angles of the
total angular momentum of a reso
nant atom driven simultaneously a
resonance by a coherent and
squeezed electromagnetic field und
conditions ~21!. Figures~a! and ~c!
correspond to an induced transitio
when both the excitation fields are
linearly and circularly polarized;
Figs. ~b! and ~d! correspond to the
transitionj11→ j . The values of the
parameters are as follows: fo
~a!, ~b!, l5ex , N15N215M1

5M2152; for ~c!, ~d!,
l52(ex2 iey)/A2, N15M152,
N215M2150. The other param-
eters are: g5g i5g051, L55,
j@1. The ranges over which the ori
entation angles of the total angula
momentum vary are 0<q<p and
2p<w<p.
dipole moments of the Zeeman transitions, for large values
th
u
m
n

in
w
s
a
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th
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ity

g
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m,
of the total angular momentum the attenuation law for
total atomic polarization in the squeezed vacuum that res
from adding up all these partial polarizations will differ fro
the simple exponential law obtained for atomic transitio
between nondegenerate levels1–11 and levels with small val-
ues of the total angular momenta~see Sec. 5!.

In what follows we illustrate this fact for the case
which the atomic relaxation is maximally suppressed. As
established in Sec. 5, this occurs for a squeezed field con
ing of photons all of which have the same circular polariz
tion, for example

Tqq85dqq8Nq , Mqq85dqq8Mq , N215M2150.
~29!

Furthermore, let us assume for simplicity that the atom
initially excited by an ultrashort coherent field pulse~26!
with the same polarization as the squeezed field in the t
interval 0<t<t1 . When the coherent field ceases to act,
atom remains in a squeezed field with parameters~29!. As a
result, for timest1<t and for a small-area excitation puls
we obtain the following expression for the atomic dens
matrix:

r ba~q,w!52
i udbau2

2 j
uE ut1

Na2Nb

2 j
D21s

1 ~0,q,0!

3eiw exp$2@g01Gs min~q!#~ t2t1!%,

where
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G0 min~q!5
2

~N12uM1u!sin q,

G61 min~q!5
g

4
~N12uM1u!~17cosq!2,

and we setv5vG5v0 .
In a semiclassical description of the angular momentu

the spherical component of the atomic polarizationpq ~19! is
given by the expression

pq52
j

2p E
0

2p

dwE
0

p

sin q

3dqD2qs
1 ~0,q,0!e2 iqwr ba~q,w!. ~30!

Then we can write the spherical componentp1(t) of the
atomic polarization in the form

p1~ t !5p1~t1! exp@2g0~ t2t1!#

3G~j~N12uM1u!~ t2t1!!,

where for the atomic transitionj→ j , j@1 we have

G~x!5
3

4 H 2
1

x
1

Ap~e2x12xe2x!Erf~Ax!

2x3/2 J ,
j5

g

2
,

while for the atomic transitionj11↔ j , j@1 we have

22A. M. Basharov
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observed in Ref. 1, i.e., suppression of the atomic relaxation,
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G~x!5
3

8 H 2
1

x
e24x1

ApErf~2Ax!

4x3/2 J , j5
g

4
.

Here Erf(z)5(2/Ap)*0
ze2x2dx is the error function,

Erf( ix)5 i Erf i (x).
For comparison recall that for an atomic transiti

1→0, the quantityG(x) is a simple exponential:

G~x!5e2x, j5
kudbau2

3
.

Spontaneous relaxation during the transition between r
nance levels is everywhere neglected.

Thus, for transitions withj→ j , j@1, relaxation in a
squeezed field for the case of maximum suppression
weaker effect than it is for the nondegenerate case~and/or
the transition 1→0!, whereas for the transitionj11↔ j ,
j@1 it is slightly enhanced~see Fig. 3!.

9. CONCLUSION

The results of this article show that in order to ensu
maximum suppression of the relaxation for one of t
quadrature components of the atomic polarization, it is n
essary to choose the polarization states of both the excita
coherent field and the squeezed field in a particular way.
any experiment involving a squeezed field where the ef

FIG. 3. Relaxation functionG(x) for the case of maximum suppression
the relaxation for transitionsj→ j , j@1 ~upper curve!, for a nondegenerate
transition ~middle curve—ordinary exponential!, and for the transition
j11→ j , j@1 ~lower curve!.
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o-

a

e

c-
on
or
ct

is manifested in some way, be it measurement of ato
polarization relaxation, the absorption spectrum of a pro
coherent signal, or observation of novel effects in opti
bistability, it is necessary that certain polarization conditio
be satisfied both for coherent and squeezed fields. These
ditions can be obtained if the effects are analyzed by us
the mathematical apparatus developed in this article.
specific constraints on the polarization state of the excita
fields explain the current lack of convincing experimen
studies of mechanisms for suppression of atomic relaxa
by a squeezed field.

The author is grateful to the organization ‘‘Russia
Gold’’ for material support in carrying out these investig
tions.
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Capabilities of a muon method for studying the diamagnetic domains accompanying

to
the de Haas–van Alphen effect
Yu. M. Belousov and V. P. Smilga

Moscow Physicotechnical Institute, 141700 Dolgoprudny�, Moscow Region, Russia
~Submitted 20 June 1996!
Zh. Éksp. Teor. Fiz.111, 250–261~January 1997!

This paper analyzes the capabilities of a muon~mSR! method for studying the de Haas–van
Alphen effect and the diamagnetic domain structure accompanying it. It is shown that, unlike the
NMR method, themSR method makes it possible to observe the formation of a diamagnetic
domain structure in all metals. It is not currently known what type of domain structure
accompanies the de Haas–van Alphen effect: one-dimensional~laminar! or two-
dimensional. It is shown that the line shape of the Fourier spectrum of the signal makes it
possible to determine both the character of the domain structure~two-dimensional or laminar! and
the magnetic field distribution in the domains. ©1997 American Institute of Physics.
@S1063-7761~97!01501-1#

1. The de Haas–van Alphen~dHvA! effect was discov-
1,2

noted6 that it was impracticable to use the NMR method
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ered in 1930. Using the classical Faraday–Curie metho
de Haas and van Alphen observed oscillations of the ma
scopic magnetic moment of a sample as they varied the
ternal magnetic field. A number of modifications of the me
surement scheme were later proposed that substan
improved the accuracy of the measurements~see, for ex-
ample, Ref. 3!, but until now they all fundamentally reduce
in essence to the measurement of the total magnetic mom
and the question of the structure of the magnetic field dis
bution in the sample during the dHvA effect has remain
open.

This situation is quite understandable if we recall th
until the muon~mSR! method appeared, there were no ma
netic microprobes capable of investigating the internal m
netic fields inside a metal. The region of application of EP
and NMR is limited to the depth of the skin layer. Althoug
it is true that Mössbauerg optics makes it possible to stud
samples with thicknesses of the order of several micro
ters, difficulties arise when resolving effects of the order
1024–1025 of the value of the external magnetic field an
when monitoring the implantation of the Mo¨ssbauer iso-
topes. It should also be pointed out that, when macrosc
measurements of the dHvA effect are made, consider
difficulties arise in processing the results.3

The muon method has no restrictions on the sam
thickness and makes it easy to directly measure the mag
field with an accuracy of 1025. In principle, it is simple to
obtain a measurement accuracy substantially greater
that of macroscopic methods. The limitations of the availa
methods are epitomized by the fact that, even though
existence of diamagnetic domains was theoretically p
dicted as long ago as 1962,4 until Ref. 5 distinctly observed
domain structure in Be by a muon method in 1995, there w
only a single experiment in which diamagnetic domains w
observed, in Ag.6 The measurements were made by the NM
method, and, accordingly, Condon and Walstedt studied o
a thin surface layer, where the laminar structure of the
mains is strongly distorted, and in fact only the ‘‘shadow
of the domains themselves were studied. Moreover, t
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study metals with nuclear spins ofI.1/2.
In 1979, Ref. 7 showed that the muon method make

possible to investigate diamagnetic domains, and obtai
the main formulas for analyzing the domain structure. W
should also note that, following the classic work of Land
and Lifshitz, everyone tacitly assumes that the domain str
ture accompanying the dHvA effect has a laminar charac
However, no one has proven that this structure is energ
cally more favorable than a two-dimensional domain latt
similar in its geometry to Abrikosov’s vortex lattice i
type-II superconductors. The muon method makes it poss
to give an experimental answer to this question. An analy
is carried out below of the use of the muon method to stu
the dHvA effect. In what follows, for simplicity, we shal
confine ourselves everywhere to the case in which
sample target is a thin plate and the external magnetic fie
perpendicular to the plane of the sample. The muon spi
parallel to the sample plane, and thus transverse polariza
is considered.

2. Transverse polarization of the muon spin in a meta
determined by the general formula~see, for example, Ref. 8!

P1~ t !5Px~ t !1 iPy~ t !5G~ t !exp~2 ivmt !P~0!, ~1!

wherevm5gmb, b is the local field at the muon, andG(t) is
a relaxation function. As is well known~see, for example,
Ref. 8!, functionG(t) is determined by the spins of the la
tice nuclei and is different for diffusing and nondiffusin
muons. For nondiffusing muons in metals, the relaxation
determined by the Gaussian exponential

G~ t !5exp~2s2t2!, ~2!

where the second moments is proportional tomh , the mag-
netic moment of the lattice nuclei. The picture is more co
plex for diffusing muons, but, in the case of rapid diffusio
~diffusion raten@s!, the relaxation function has the form

G~ t !5exp~2Lt !, ~3!

whereL } s2/n. In any case, for an ideal lattice, the dep
larization rate is determined by the magnetic moments of

137$10.00 © 1997 American Institute of Physics
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TABLE I. Nuclear spins and magnetic moments of the stable isotopes of
certain metals.

for
lattice nuclei. The simplest case corresponds toI51/2,
where there are no effects associated with quadrupole in
actions. The principal isotopes of a large number of me
have a spin ofI50 ~see the table in Ref. 9!.

The depolarization rate is small for most metals, wh
makes it possible to make precise measurements of the
cession frequency and to study small field inhomogeneit
This last point is essential, since inhomogeneities can
arise because of magnetic-susceptibility anisotropy effe
In this case, it is convenient to study the field inhomoge
ities from the appearance of weak damping of the longitu
nal polarization of the muon spin.

3. The most interesting case is that in which diamagne
domain structure appears in the sample. When this happ
two close-lying frequencies appear in the transverse polar
tion.

Let v1 andv2 be the relative volumes of the phases w
fieldsb1 andb2 , respectively:v11v251. We shall initially
assume that the thickness of the domain walls is negligi
Let P(0)ix andP(0)51; then the precession of the muo
spin polarization is determined by the formulas

Px~ t !5v1 cos~v1t !1v2 cos~v2t !,

Py~ t !52v1 sin~v1t !2v2 sin~v2t !, ~4!

where v1,25gmb1,2. We introduce the notation
(v11v2)/25v0 and (v12v2)/25Dv. Introducing com-
plex polarization, we can write Eq.~4! in compact form as

P1~ t !5G~ t !~v1e
2 iDvt1v2e

iDvt!e2 ivt. ~5!

Let v12v25Dv.0, and then Eq.~5! can be rewritten as

Element Atomic number Concentration, % I mh/mN

Mg 24, 26 89.89 0 0
25 10.11 5/2 20.85532

Ca 40 99.92 0 0
43 0.129 7/2 21.31720

Ti 46, 48, 50 86.74 0 0
47 7.75 5/2 20.788130
49 5.51 7/2 21.10377

Cr 50, 52, 54 90.45 0 0
53 9.55 3/2 20.74391

Fe 54, 56, 58 97.79 0 0
57 2.21 3/2 10.05

Ni 58, 60, 62, 64 98.75 0 0
61 1.25 3/2 20.74868

Zn 64, 66, 68, 70 95.89 0 0
67 4.11 5/2 10.87571

Sr 84, 86, 88 93.04 0 0
87 6.96 9/2 21.09302

Zr 90, 92, 93, 94 88.77 0 0
91 11.23 5/2 21.9

Mo 92, 94, 96, 98, 100 74.82 0 0
95 15.72 5/2 20.9327
97 9.46 5/2 20.9523

Pd 102, 104, 106, 108, 110 87.4 0 0
105 22.6 5/2 20.57

Tc all 0 0
Ce all 0 0
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P1~ t !5@cos~Dvt !1 iDv sin~Dvt !#e2 ivt. ~6!

As can be seen, the time dependence of the transverse p
ization forv15v2 experiences beats at frequencyDv. When
v1 Þ v2 , the time dependence does not reduce only to be

Let us now explicitly take into account the depolariz
tion effects associated with the magnetic moments in
nuclei of the metal. If the muon rapidly diffuses, we have

Px~ t !5@cos~Dvt !1 iDv sin~Dvt !#e2~L1 iv!t. ~7!

The presence of depolarization can make it difficult to o
serve two frequencies. Actually, the Fourier transform of
polarization componentPx(t) is

Px~v!5
Lv1

L21~v2v1!
2 1

Lv2
L21~v2v2!

2 . ~8!

Obviously, whenL;Dv, one line should be observed
However, as a rule, when diffusion is rapid,L<105 sec21

. It
is expected thatDv>105 sec21

, and therefore the two lines
can be well resolved. Figure 1 shows a typical Fourier sp
trum for a diffusing muon in the case of one-dimension
domain structure. In writing Eqs.~7! and ~8!, we neglected
the possibility that the muon might undergo a transition a
diffuses from one domain to another. This effect can be
glected for the usual size of the diamagnetic domains,
qualitatively it simply causes some broadening of the lines
Fig. 1.

If the muon does not diffuse, we have

Px~ t !5@v1 cos~v1t !1v2 cos~v2t !#exp~2s2t2!. ~9!

The Fourier transform of the polarization is

Px~v!5Re E
2`

`

@v1 exp$ i ~v2v1!t%

1v2 exp$ i ~v2v2!t%#exp~2s2t2!dt

5Ap

s H v1 expF2S v2v1

2s D 2G
1v2expF2S v2v2

2s D 2G J . ~10!

In this case, it is harder to resolve the two frequencies in
Fourier spectrum. Indeed, after simple transformations,
~10! takes the form

FIG. 1. Qualitative behavior of the Fourier spectrum of the polarization
a diffusing muon and a one-dimensional domain structure forv15v2 and
v1.v2 .
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3H v1 expF ~v2v0!Dv

2s2 G
1v2expF2

~v2v0!Dv

2s2 G J . ~11!

The Fourier transform has the simplest form wh
v15v251/2:

Px~v!

5Ap

s
expF2

~v2v0!
21Dv2

4s2 Gcosh~v2v0!Dv

2s2 .

~12!

The function Px(v) has two maxima relative to the di
v0 , at the points6Dv. If s;Dv, the two frequencies are
unresolvable. However, as noted above, one can ex
s,Dv for most metals.

4. Let us now take into account the finite width of th
domain walls. We first consider a one-dimensional lami
~layered! structure whose period isa. Obviously, the width
of domains of the first and second kinds is, respective
v1,2a. We shall neglect the depolarization caused by inter
tion with the nuclear magnetic moments. This is the case
will be of interest for the study of the field distribution in th
domain walls. As is well known, the Fourier transform of t
polarization makes it possible to directly study the magne
field distribution in the sample:

P1~ t !5E Pve
2 ivt

dv

2p
. ~13!

Let the field in the plate vary only along thex coordinate.
Since the spin polarization of each muon precesses wi
definite frequency, which depends on the position of
muon in the sample, the Fourier transform of the polarizat
of an ensemble of muons is determined by the obvious
mula

Pv5
2p

a E d~v2v~x!!dx

5
4p

a E
2v1a/2

v2a/2
d~v2v~x!!dx. ~14!

Accordingly,

P1~ t !5
2

a E
2da/2~11d!

a/2~11d!

exp@2 iv~x!t#dx, ~15!

whered5v1 /v2 .
The field inhomogeneity in the sample when the dH

effect occurs is small by comparison with the mean field
the sample, and the functionv(x) can be written as

v~x!5v01V f ~x!, ~16!

where v0 is defined above,V is the field-inhomogeneity
parameter (V'Dv), and f (x)→61 asx→6a/2. The po-
larization of Eq.~15! takes the form
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2d/2~11d!

~17!

5. Let us now estimate the period of a one-dimensio
laminar structure. A qualitative estimate of the period can
found in any reference~see, for example, Ref. 10!, but it is of
interest to obtain estimates containing the dependence
various parameters~temperature, magnetic field!. Until now,
there has been no good calculation of the field distribution
the domain walls. In a recently published work,11 calcula-
tions were carried out of the magnetic field distribution a
the period of the domain structure, based on minimization
the total energy of a sample with an inhomogeneous m
netic field distribution. The magnetic field distribution in th
sample was determined on the basis of a standard functio
The calculations showed that the magnetic field distribut
in the domains strongly depends on the external magn
field and the temperature. However, as will be seen bel
Itskovy et al.11 wrote the boundary conditions for determin
ing the magnetization incorrectly, and this led to a nonphy
cal result: a discontinuity of the magnetization gradient at
center of the domains. Thus, we shall obtain the magn
field distribution in the thin-wall limit, where it is possible t
use Kittel’s model,12 which is quite satisfactory in our case
For simplicity, let us consider the situation in which th
phase volumes are identical:v15v2 . The magnetization of
the paramagnetic phase~‘‘I’’ ! equals1M0 , while that of the
diamagnetic phase equals2M0 . We shall expand the mag
netization of the sample, which depends only on coordin
x on the surfacez50, in a Fourier series:

M ~x!5 (
n50

`

cn sin
2p~2n11!x

a
, ~18!

wherecn54M0 /p(2n11).
Since¹3B50 in our problem, we can introduce a sc

lar potential:B52¹c, ¹2c50. In a problem with laminar
structure, potentialc is independent of they coordinate, and
therefore

]2c

]x2
1

]2c

]z2
50 ~19!

with the boundary condition

2
]c

]zU
z510

1
]c

]zU
z520

54pM ~x!. ~20!

A solution of Eq.~19! is sought in the form of a series:

c~x,z!5 (
n50

`

bn sin
2p~2n11!x

a

3expF2
2p~2n11!z

a G . ~21!

From the boundary condition given by Eq.~20!, we get

bn5
a

2n11
cn5

4aM0

p~2n11!
. ~22!
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In addition to the magnetic field energy, a nonuniformly
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magnetized sample creates an energy of

dU15
1

2 R wM•df. ~23!

SinceM iBiz, integration over the entire surface reduces
integration over the surfacesz50 andz52Lz , whereLz is
the thickness of the sample. The energy density per cm2 of
sample surface is

dU15
1

a E
2a/2

a/2

M ~x!w~x!dx5
4aM0

2

p2

3(
n

1

~2n11!3
5
7M0

2a

2p2 z~3!. ~24!

Along with the field-output energy, an additional contrib
tion will be introduced by the energy associated with t
inhomogeneous field distribution in the finite although th
transitional region between domains of different kinds. A
though this region is called a domain wall, it is essentia
different in its properties from a domain wall of a ferroma
netic substance: here the field does not change its direc
but only negligibly varies in magnitude. To estimate the
homogeneity energy, we shall use the simplest represe
tion, in which the magnetization oscillates with a single fr
quency. In other words, there is only one extremal cr
section of the Fermi surface for a given field direction.
this case, taking into account the inhomogeneity, the addi
to the thermodynamic potential has the form3,13

Ṽ5E H 2pM21A~T!cosF2pF

H0
2 ~h14pM !G

1
a

2
~¹M !2J dV, ~25!

where

A~T!5
1

2&~p\!3
S e\

c
BD 5/2U]2S]pz

2U21/2

3
1

m*
2p2T/\v

sinh~2p2T/\v!
,

m* is the cyclotron mass,Sm is the area of the extremal cros
section of the Fermi surface, andu]2S/]pz

2u;1. The oscilla-
tion frequency of the magnetization isF5cSm/2pe\; H0 is
the field for which the phase is a multiple of 2p;
F/H05n, wheren is a natural number. The phenomenolog
cal parametera>r L

2 , wherer L;cpF /eB is the Larmor ra-
dius. In Refs. 14–17, as a result of microscopic calculatio
for the parameter a we obtain values
a'2pFA(T)r L

2/4H0
2 . The field in the sample~the plate! is

B5H14pM .
For the valueH5H0 , the volumes of the phases a

identical,v15v2 ; therefore,^B&5H0 for thin walls. Since
M!H0 , it is possible to haveB'H0 everywhere. In the
general case,H5H01h.
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equation for magnetization, and, for a homogeneous dom
structure,

a
d2M

dx2
24pM1

2pF

H0
2 A~T!sinS 8p2F

H0
2 M D 50. ~26!

The inhomogeneity energy is determined from the last te
in the functional of Eq.~25!. In order to compute it, it is
necessary, first of all, to solve Eq.~26!. The nonlinear Eq.
~26! can be solved in quadratures, but it has no simple a
lytic solution, and therefore we seekM (x) in the limit of a
thin transitional layer whose thickness isd!a. We put the
coordinate originx50 atM (0)50, and thenM (x),0 for
2a/2,x,0, andM (x).0 for 0,x,a/2.

We introduce the dimensionless variables3

2pF

H0
2 5k ~k@1!, 4pkM5m, k2A5A, ~27!

and then Eq.~26! takes the form

ãm92m1A sinm50, ~28!

whereã5a/4p.
As can be seen from this equation, whenA.1, the

solution ism5const and, consequently, there is no homo
neous state. Boundary conditions must be set for Eq.~28!.
Obviously, the magnetization has an extremum at the ce
of the domains, and therefore

dm

dxU
x56a/4

50S dMdx U
x56a/4

50D ~29!

and, accordingly,

M ~6a/4!56M0 . ~30!

The first integral of Eq.~28!, with the boundary conditions o
Eqs.~29! and ~30!, can be found in the standard form:

@m8~x!#25
1

ã
@A~cosm02cosm!1~m22m0

2!#. ~31!

We carry out the subsequent integration in the approxima
of small values ofm!1. This is the case ifA>1 but can
fail to hold whenA@1. Unfortunately, this case, which i
simplest to investigate, cannot be considered the gen
case. The most general case is that for whichm;1, for
which as has been pointed out, there is no simple anal
solution, even though Eq.~28! can be solved in quadrature
in the general case. We shall obtain an analytic solution
special case that includes the dependence on all the ne
sary parameters.

Equation~31! can be solved foruxu!a by using the ex-
pansion cosm'12m2/2. We get

m822
A22

2ã
~m0

22m2!50. ~32!

From the simplified Eq.~32!, we immediately find the solu-
tion

m5m0 sinS xAA22

2ã D , ~33!
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which is valid in the region where the argument of the sine is

ld
r
f

en
t
-

n

a
el

e

ra
t-
e
.

ld
is

n

e is

ion
re

rm
of
ind

c-
u-
ri-
ic

-

nit

a

al
small. The solution given by Eq.~33! differs substantially
from the standard form of a domain wall. However, it shou
be emphasized that even when the equation externally
sembles that for the magnetization in the domain wall o
ferromagnetic substance~see Ref. 18!, they describe quite
different behavior of the magnetization and have differ
boundary conditions. Sincea2/ã@1, we obtain a constrain
for which the solution of Eq.~33! describes the field inho
mogeneity in the transitional layer:

x<
p

2
x0 , x05A 2ã

A22
. ~34!

Let us now compute the field inhomogeneity energy per u
area:

dU25
Lz
a E

2px/2

px/2 a

2 S dMdx D 2dx5
Lz
a

pa

4x0
M0

2. ~35!

To find the period of the domain structure, one must,
usual, minimize the total energy associated with the fi
distribution,

U5dU11dU25
7M0

2a

2p2 z~3!1
Lz
a

pa

4x0
M0

2, ~36!

in terms of parametera. For the period of the structure, w
get

a5A p2Lza

7x0z~3!
5pA Lz

7z~3!
Aa~A22!

2
. ~37!

In the limitA@1, we find

a'
p

H0
ApLzF

7z~3!
A2aA~T!. ~38!

The resulting estimate gives the same dependence on pa
etersLz anda as follows from the simple qualitative trea
ment of Ref. 10, but also contains a dependence on fi
H0 that is not obtained from the qualitative considerations
is interesting that the domain sizea } H0

21 and increases with
decreasing field, but it is precisely at relatively weak fie
that the condition for the formation of domain structure
also satisfied.

6. Let us now consider the behavior of the polarizatio
taking into account the field distribution of Eq.~33!. Then
we have in Eq.~16!

f ~x!5sinAA22

2ã
x, V54pgmM0 . ~39!

Furthermore, it should be taken into account that Eq.~39! is
valid for x<px0/2!a/2, whereas the integration in Eq.~16!
is carried out over the intervaluxu<a/2. Therefore, Eq.~16!
should transform to

P1~ t !5S 122
x0
a D @exp~2 iv1t !1exp~2 iv2t !#

1exp~2 iv0t !E
21

1

exp~2 iVt sin w!dw
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5exp~2 iv0t !H S 12
2x0
a D cos~Dvt !1pJ0~Vt !J .

~40!

As can be seen, another oscillating term decreasing in tim
added to the two-frequency picture~to the beats!. Accord-
ingly, the Fourier spectrum is described by

Pv5
p

a H d~v2v1!1d~v2v2!

1
2x0

aAV22~v2v0!
2 J . ~41!

7.We now consider the features of the spin-polarizat
behavior of the muon if a two-dimensional periodic structu
is formed~see Fig. 2!.

In this case, the magnetic field distribution has a fo
similar to Abrikosov’s vortex structure in the mixed state
type-II superconductors. However, it should be kept in m
that bmax2bmin5b12b2!B in our case. As is well known
~see, for example, Ref. 19!, the character of the Fourier spe
trum is determined by the Van Hove singularities. The Fo
rier spectrum of the spin polarization of the muon in Ab
kosov’s two-dimensional vortex structure has a logarithm
divergence~see, for example, Ref. 20!. In our case, the cor-
responding Eqs.~16! and ~17! for a one-dimensional struc
ture should be rewritten in the form

Pv5
2p

S E d~v2v~x,y!!dxdy,

P1~ t !5
1

S E exp@2 iv~x,y!t#dx dy, ~42!

where the integration is carried out over the area of a u
cell.

When integrating the first of Eqs.~42!, it is convenient to
transform, as usual~see, for example, Ref. 19!, to curvilinear
coordinates:

v~x,y!5v~ l ,h!, v~ l !5v5const, ~43!

so thatdS5dldh, and accordingly, in the neighborhood of
line of constant frequency,

FIG. 2. Qualitative diagram of the field distribution in a two-dimension
domain structure~a square lattice!.
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v~ l ,h!5v~ l !1
]v

h. ~44!
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]h

Here]v/]h5u¹vu. For the Fourier amplitude we get

Pv5
2p

S E d~ u¹vuh!dl dh5
2p

S E dl

u¹vuv~ l !5v
.

~45!

Consider the isotropic case, in which a triangular
square lattice is formed. We emphasize that elucidating
conditions for forming a one-dimensional or two
dimensional structure is a special, separate problem. Her
explain how to distinguish a one-dimensional from a tw
dimensional structure experimentally. Taking into consid
ation the equal-areas rule when forming the domain struc
~see, for example, Refs. 3 and 10!, we arrive at the conclu-
sion thatbmax andbmin remain constant as the external fie
varies. Accordingly, a singularity corresponding to a sad
point will lie halfway between v15gmbmax and
v25gmbmin if the volumes of the phases are identical, a
will shift toward the field in the stable phase ifv1 Þ v2 . Let
us consider the possible picture for the Fourier spectrum
more detail.

The expansion in Eq.~44! is invalid close to the extrema
since¹v50, and one must write~we assumevxx Þ 0 and
vyyÞ0!

v~x,y!u1,25v1,21
1

2 S ]2v

]x2
x21

]2v

]y2
y2D . ~46!

Herevxx andvyy,0 in a paramagnetic domain, andvxx and
vyy.0 in a diamagnetic domain.

For the Fourier component, we have

Pv→v1,2
5
4p2

S

1

Avxxvyy
U
1,2

. ~47!

When the volumes occupied by the fieldsb.bS (v1) and
b,bS (v2) are identical, the Fourier amplitudes a
Pv1

5Pv2
. If v2.v1 , then

vxxvyyu2,vxxvyyu1 ,

and we getPv1
,Pv2

. Correspondingly, ifv2,v1 , we get
Pv1

.Pv2
.

Now let us consider the neighborhood of the sad
point at the origin in Fig. 2. At this point, we have the e
pansion

v5vS1
1

2

]2v

]x2
x21

1

2

]2v

]y2
y2

5vS2
1

2
uvxxux21

1

2
uvyyuy2. ~48!

For the Fourier spectrum in the neighborhood ofvS , loga-
rithmic divergence is observed, with

Pv,vS
;

1

Auvxxvyyu
ln

vS2v

uvyyu
, ~49!

142 JETP 84 (1), January 1997
r
e

we
-
-
re

e

in

e

Pv.vS
;

1

Auvxxvyyu
ln

v2vS

uvxxu
. ~50!

The qualitative behavior of the Fourier spectrum of the p
larization is shown in Fig. 3.

As can be seen, the Fourier spectrum makes it poss
to unambiguously identify whether a one-dimensional
two-dimensional structure was formed. The behavior ofPv

close to the singularities makes it possible to test the valid
of the equal-areas rule for both one-dimensional and tw
dimensional structures. In the experiment of Ref. 5, the F
rier spectrumPv has two characteristic maxima, the pos
tions of which are independent of the external field with
one period of the dHvA oscillations. This supports the a
sumption that, under the experimental conditions of Ref. 5
one-dimensional laminar structure was observed and
equal-areas rule was satisfied.

8. There is currently no reliable calculation of the fie
distribution in the domains. Obviously, at (Tc2T)/Tc!1,
relatively large magnetic field fluctuations (;Db) should be
observed, and the domain-wall thickness can be expecte
be comparable to the period of the domain structure. Mo
over, rather than a domain structure, a structure with a p
odically inhomogeneous magnetic field distribution can
established in the sample.13 It is these cases that are of sig
nificant interest, since themSR method is probably the onl
instrument for identifying such structures. It is therefore e
tremely crucial to do experiments for different magne
fields, temperatures, and sample sizes.
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15M. Ya. Azbel’, Zh. Éksp. Teor. Fiz.53, 2131~1967! @Sov. Phys. JETP26,
1203 ~1968!#.
143 JETP 84 (1), January 1997
18L. D. Landau and E. M. Lifshitz,Electrodynamics of Continuous Medi
Nauka, Moscow~1982!; @Pergamon Press, Oxford, 1960#.

19L. D. Landau and E. M. Lifshitz,Statistical Physics, Nauka, Moscow,
~1976!; @Pergamon Press, Oxford, 1980#.

20Yu. M. Belousov, V. N. Gorbunov, V. P. Smilga, and V. I. Fesenko, Us
Fiz. Nauk160, No. 11, 55~1990! @Sov. Phys. Usp.33, 911 ~1990!#.

Translated by W. J. Manthey
143Yu. M. Belousov and V. P. Smilga



Energy spectrum and phase transitions in C 70 fullerite crystals at high pressure
K. P. Meletov, A. A. Maksimov, and I. I. Tartakovski 

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region,
Russia
~Submitted 10 July 1996!
Zh. Éksp. Teor. Fiz.111, 262–273~January 1997!

Measurements have been made of the Raman, optical absorption, and luminescence spectra of
single crystals and pellets of the fullerite C70 at T5300 K and at pressures up to 12
GPa. The baric shiftdv/dP and the Gru¨neisen parameters of the Raman-active intramolecular
phonon modes have been determined. It has been established that thedv/dP value for
certain phonon modes abruptly changes at pressures ofP1'2 GPa andP2'5.5 GPa, as do the
half-widths of the Raman lines. These features in the Raman spectrum are associated with
phase transitions at high pressure. The baric shifts of the absorption and luminescence edges of
C70 crystals have been determined and are20.12 eV/GPa and20.11 eV/GPa, respectively,
for absorption and luminescence. The baric shift of the absorption edge decreases significantly with
increasing pressure and is20.03 eV/GPa at 10 GPa. These data have been used to
determine the deformation potential of the fullerite C70, which is about 2.160.1 eV. © 1997
American Institute of Physics.@S1063-7761~97!01601-6#
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The discovery of the family of multiatomic carbon mo
ecules known as the fullerites has resulted in intensive st
of the physical properties both of the molecules and crys
themselves and of various compounds based on them.1,2 The
fact that most of the attention in this case has been dev
to the fullerite C60 is mainly associated with the discovery
superconductivity at relatively high temperatures in co
pounds of C60 with the alkali metals.

3,4 A definite role in this
is played by the circumstance that the method developed
synthesizing the fullerenes preferentially yields C60 and that
it is more available than the other representatives of the f
ily, in particular C70.

5

Nevertheless, a fairly great amount of attention has b
paid to the study of the properties of the fullerene C70. This
is associated both with the high intensity of the studies
many-atom carbon clusters as a whole and with the succe
in obtaining fairly pure starting material and single-crys
samples of C70. Unlike C60, the C70 molecule has the shap
of a rugby ball and consists of twelve pentagons and twe
five hexagons.6 The molecule belongs to theD5h point
group, and the C70 crystal has hcp structure with paramete
a051.01 nm andc051.68 nm and belongs to the spa
group P63

/mmc.7 Annealing crystals with the hexagon

structure in high vacuum causes it to be altered, and it
comes predominantly cubic, with a small concentration
the hexagonal phase.8 It should be pointed out that mos
C70 single crystals grown from the vapor phase have a cu
structure, although about 10% of the crystals are obtai
with a hexagonal structure.9

Much interest and attention have been devoted to
molecular dynamics and the phonon spectrum of C70 crys-
tals, which have been studied in a number of theoretical
experimental papers.10–14 According to theoretical calcula
tions of the molecular dynamics, the C70 spectrum contains
fifty-three Raman-active vibrations, classified in theD5h
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contains four molecules per unit cell, the number of act
modes increases significantly because of lowering of
symmetry and Davydov splitting. The first detailed measu
ments of the Raman and IR absorption spectra in C70 films
made it possible to determine the frequencies of the intra
lecular vibrations active in Raman scattering and IR abso
tion and to compare them with the results of numeri
calculations.14 Measurements of the temperature depende
of the Raman spectra of C70 single crystals made it possibl
to determine the frequencies of the intermolecular phon
modes and the critical variations of the Raman spectra a
ciated with the orientational-ordering phase transition
T5276 K.10,15 The structural aspects of the orientationa
ordering phase transitions were studied by x-ray and elec
diffraction.9 Detailed studies of the thermodynamics of the
transitions were carried out by differential thermal analysis16

In our opinion, there is special interest in studying t
energy spectrum and the phase transitions in C70 crystals at
high pressure. They are a source of additional information
the intermolecular interaction and are needed for qualita
numerical calculations of the band structure and the ene
spectrum of C70. The first measurements of the Raman sp
trum at high pressure were made on a powdered mixtur
C60/C70 fullerenes.

17 Measurements of the Raman spectra
C70 single crystals at high pressure made it possible to es
lish the features in the baric dependence of the phonon
quencies associated with phase transitions of the orie
tional ordering of the molecules in the crystal.18

Measurements of the IR absorption spectra of C70 at high
pressure made it possible to determine the baric shift co
cients and the Gru¨neisen parameters of the IR activ
modes.19 The baric shift of the fundamental absorption ed
was studied in Ref. 20.

This paper presents the results of detailed measurem
of the Raman spectra and the optical absorption and lu
nescence spectra of single crystals of the fullerite C70 at high
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pressure. The b

TABLE I.
vi ,
cm21

dv i /dP,
cm21/GPa
P,2.0

dv i /dP,
cm21/GPa
2.0,P,5.5

dv i /dP,
cm21/GPa
P.5.5 gi

vi ,
cm21

~Ref. 14!

vi ,
cm21

~Ref. 15!

dv i /dP,
cm21/GPa
~Ref. 17!

256 3.2 3.2 3.2 0.226 261 257 1.65
412 0.1 0.1 0.1 0.004 411 410 -
509 - 1.0 1.0 0.036 501 506 0.38
570 20.3 20.3 20.3 20.01 573 570 20.06
708 20.3 20.3 20.3 20.008 704 710 -
737 0.9 0.9 0.9 0.022 739 738 0.12
776 0.8 0.8 0.8 0.019 770 768 -
1061 3.7 5.4 1.5 0.063 1062 1062 1.1
1181 7.1 9.4 3.5 0.109 1186 1184 4
1228 5.3 6.3 3.1 0.078 1231 1229 3.2
1254 7.8 7.5 0.9 0.113 1260 1258 -
1367 6.3 8.2 5.3 0.083 1370 1369 1.1
1432 5.2 4.5 3.0 0.066 - 1438 -
1445 6.0 7.6 3.6 0.075 1448 1448 -
1468 6.0 6.3 5.0 0.074 1471 1469 -
1511 3.8 7.8 2.2 0.046 1517 1517 4.5
1565 4.2 5.9 3.3 0.049 1569 1566 2.73
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determined for a large number of intramolecular phon
modes. The baric shift of the fundamental absorption a
luminescence edge is determined, as well as the deforma
potential of crystalline C70. Characteristic singularities
caused by phase transitions are revealed in the baric de
dence of the phonon frequencies at pressures of about 2
and about 5.5 GPa.

2. EXPERIMENT

Single crystals of the fullerene C70 were grown from
solution in toluene. The starting C70 material was obtained
by the method described in Ref. 5, and, according to the d
of a mass-spectrometric analysis, its purity was at le
98.5%. The Raman and luminescence spectra were mea
on single-crystal samples of C70 with a size of
100380320mm3. The optical absorption spectra were me
sured on thin polycrystalline pellets of C70, fabricated from
separate crystallites of the starting material. The pellets w
fabricated in a high-pressure chamber with diamond an
whose working areas are parallel to within arc minutes.
do this, a crystallite placed between the parallel work
areas was squeezed with no gasket in a sequential loa
cycle until its coloration in the unloaded state became c
red. Measurements show that pellets with a uniform thi
ness from 1 to 5mm are obtained in this case.

The optical measurements at high pressure were m
by means of a high-pressure chamber with diamond anvil
Merill–Basset type.21 The working area of the anvils wa
600mm across, the diameter of the working opening of t
stainless steel gasket was 250mm, and the thickness of th
gasket after preliminary compression was 80mm. A 4:1
methanol–ethanol mixture was used as a medium to tran
the pressure. The pressure in the working volume of
chamber was determined with an accuracy of 0.05 GPa f
the shift of theR1 luminescence line of ruby microcrystals.

22
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means of a Dilor-XY triple spectrometer with an optical mu
tichannel recording system. An argon laser~l5488 nm! and
a He–Ne laser~l5632.8 nm! were used as radiation
sources. The radiation power directly in front of the hig
pressure chamber was&0.5 mW, and the excitation spo
diameter, allowing for defocusing by the diamond anvi
equalled about 10mm. The absorption spectra were me
sured on an MDR-23 monochromator by the technique
scribed in Ref. 20.

3. RESULTS AND DISCUSSION

In the Raman spectra of C70 single crystals at norma
pressure and room temperature, seventeen vibrational m
were observed, whose frequenciesv i are given in the first
column of Table I. These frequencies are essentially ident
with the data of Refs. 14 and 15 for C70 films, shown in the
right-hand part of the table. They are also very close to
phonon frequencies in the Raman spectra of C70 crystals of
hexagonal modification, measured atT523 K and normal
pressure.10 Some of the frequency difference of the separ
modes is possibly associated with the presence of stress
the C70 films and with heating of the crystals by the argo
laser radiation atl5488 nm, in the strong-absorption regio
of the C70. The presence of stresses in the C70 films in-
creases the phonon frequencies somewhat, whereas he
the crystals has the opposite effect. It should be pointed
that a reversible decrease of the phonon frequencies in
Raman spectra of fullerite as the laser radiation power
creases was observed earlier in C60 crystals.

23 It was associ-
ated with the formation of a large number of excited trip
states; however, in our opinion, it is not impossible that
can be associated with significant local heating of the crys
We observed a similar effect in C70 crystals. To explain it, it
is necessary to specially investigate the value of the lo
heating in the laser excitation spot and its effect on the
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man spectra. In this paper, we strove to set the laser pow
the minimum possible level in order to reduce the effect
laser heating.

All the observed Raman modes relate to intramolecu
modes; the intermolecular, rotational, and vibrational mo
are located in the 10–60-cm21 frequency interval10 and were
not considered in this work. Figure 1 shows segments of
Raman spectra of C70 crystals in the 200–800-cm21 and
1000–1650-cm21 frequency regions at several pressures.
spectra were recorded in the 800–1000-cm21 region, since
there are no Raman-active phonon modes of C70 in this re-
gion. The region close tov'1332 cm21 has also been
eliminated from the Raman spectrum, since a very str
diamond vibration is located in this region, and the contrib
tion to the Raman spectrum from the diamond anvils
dominant. The experiments were done at room tempera
but, as indicated above, some local heating of the crysta
the laser-excitation spot is not excluded. The phonon mo
of C70 observed in experiment at all pressures are noted
the upper spectrum of Fig. 1 by dashes. The frequencie
the overwhelming majority of the phonons increase with
creasing pressure. The two phonon modes at 570 and
cm21 are exceptions, since their frequencies decrease
increasing pressure. A relative redistribution of the intens
of the phonon modes with increasing pressure is also
served in the Raman spectra and is associated with a ch
in the resonance conditions of the excitation because
significant baric shift of the optical absorption spectrum20

Most importantly, a significant strengthening of the low
frequency part of the Raman spectrum should be noted
similar effect was also observed in the Raman spectra
C60 crystals. Changing the excitation wavelength fro
l5488 nm tol5632.8 nm in these spectra atP*3.4 GPa
partially cancels the negative baric shift of the absorpt
spectrum and at first causes a partial reconstruction of

FIG. 1. Raman spectra of C70 single crystals at various pressures,T5300 K.
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initial intensity distribution. However, increasing the pre
sure further again changes the resonance conditions of
excitation and alters the intensity of the lines in the Ram
spectrum.

The baric dependence of the phonon frequencies
shown in Figs. 2–4, corresponding to three different ene
intervals. The vertical dashed lines in these figures indic
the pressures of 2.0 and 5.5 GPa, at which the slope of
baric dependence of virtually all the phonon modes abrup
changes. WhenP'2.0 GPa, new phonon modes also app
in the spectrum and are indicated in Figs. 3 and 4 by bl
dots. The solid straight lines are linear approximations of
experimental baric dependences of the phonon frequen

FIG. 2. Baric dependence of frequencies of the phonon modes of C70 single
crystals in the interval 1350–1650 cm21

.

FIG. 3. Baric dependence of frequencies of the phonon modes of C70 single
crystals in the interval 1050–1300 cm21

.
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drawn independently in three pressure ranges:P,2.0 GPa,
2.0,P,5.5 GPa, andP.5.5 GPa. For some phono
modes, these lines are shown by a dashed line, which refl
inadequate statistics of the experimental data.

Figure 5 shows the pressure dependence of the widt
the most intense line, for the 1565-cm21 phonon. It clearly
shows the abrupt increases in the line width at the bounda
of the three pressure regions, whereas the dependence
scribed by a virtually identical linear function in the interm
diate regions. These data are unambiguous evidence
there are two phase transitions in the C70 crystal in the
P152.060.2 GPa andP255.560.5 GPa regions. It should
be pointed out that the measurements at high pressure
made in two loading cycles with direct application of pre
sure. In the first loading cycle, measurements were made
pressures of 0.55 and 4.1 GPa~the black dots in Fig. 5!; then
the pressure was dropped to zero and a second loading

FIG. 4. Baric dependence of frequencies of the phonon modes of C70 single
crystals in the interval 200–800 cm21

.

FIG. 5. Raman line width for the phonon with frequency 1565 cm21 vs.
pressure.
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data obtained for the position and half-width of the line
the two loading cycles indicates that the phase transition
the P52.060.2 GPa region, at least, is reversible with r
spect to pressure.

The Raman data from the C70 crystals at high pressur
do not make it possible to unambiguously determine the
ture of the observed phase transitions. As is well know
orientational-ordering phase transitions that occur in t
stages take place in C70 crystals, as in C60 crystals. In a C60
crystal at normal pressure, the first stage of the orientatio
ordering phase transition occurs atT'260 K and corre-
sponds to freezing out of the random rotations of t
molecule.24 After this, the molecules occupy two energe
cally equivalent orientational positions, between which th
can jump. These jumps completely freeze out atT'85 K,
which corresponds to the second stage of the orientatio
ordering phase transition.25 The orientational phase trans
tions at high pressure andT5300 K also occur in two stages
at P1'0.4 GPa andP2'2.4 GPa, with the baric shift coef
ficient of the phase-transition temperature being equa
about 100 K/GPa for both stages.26–30 According to x-ray
and electron diffraction data, the orientational ordering
C70 crystals at normal pressure also occurs in two stag
which presumably correspond to freezing out of the rotatio
of the molecule along the short and long axes atT1'335 K
andT2'276 K, respectively.9

It is tempting to associate the phase transitions that
observed at high pressure with orientational ordering of
molecules. However, to do this, it must be assumed that
laser radiation heats the crystal to a fairly high temperatu
the value of which we estimated earlier as about 100 K.18 In
this case, an estimate of the baric shift coefficient of
phase-transition temperature gives a value significa
lower than in the C60 crystal. The observed data do not ru
out the possibility that both phase transitions that we
served at high pressure are associated with orientationa
dering, but additional studies, using other methods,
needed to reliably explain their nature.

The baric shift coefficientsdv i /dP of the phonon
modes are given in Table I for three pressure intervals. Th
values varied between20.3 and 9.4 cm21/GPa for various
modes and pressure intervals. The Gru¨neisen parametersg i

of the intramolecular phonon modes are determined fr
these data:

g i52
]v i /v i

]V/V
5
B0

v i
0

]v i

]P
. ~1!

It was assumed in this case that the equation of state
crystalline C70 is described by a Murnaghan-type depe
dence:

P5
B0

B08
F S V0

V
D B0821G ~2!

~whereV0 /V is the relative variation of the volume of th
crystal! with a bulk modulus ofB0518.161.8 GPa and that
B085dB0 /dP55.760.6 is the same as in the case of cry
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31 The values of the Gru¨neisen parameters for th

intramolecular phonon modes of C70, determined for the ini-
tial pressure region, are given in Table I.

Figure 6 shows the dependence of the Gru¨neisen param-
eters of fullerite crystals on the frequency of the intramole
lar phonon modes. The open dots show the data of this pa
the black dots show the data from IR absorption in C70

films,19 and the squares show the data from Raman scatte
in C60 crystals.

32 As can be seen from the figure, a distin
correlation is observed between the results of the work us
Raman scattering and the IR absorption in C70 crystals. This
dependence, on which three characteristic regions can be
tinguished, also agrees well with the data from Raman s
tering in C60 crystals. The vibrations are stiffest in the initi
region of phonon frequencies, from 200 to 350 cm21

, and
correspond to the maximum values of the Gru¨neisen param-
eters. Several vibrations in which the Gru¨neisen parameter
are close to zero occur in the frequency region close to
cm21

. Next, another group of vibrations, in which the Gru¨n-
eisen parameters again assume rather large values, occ
the 450–600-cm21 region. A large group of the highes
frequency vibrations, in the region from 1100 to 16
cm21

, has approximately the same parameters. Finally
group of vibrations with negative Gru¨neisen parameters oc
curs in the frequency region from 700 to 800 cm21

, whose
values for C60 are higher in absolute value than the cor
sponding values for C70.

Negative values of the Gru¨neisen parameters for cryst
phonon modes are evidence of structural instability of
crystal and closeness of the phase transition. In the cas
intramolecular modes, they can be evidence of change
the conformation and instability of the molecule. Negati
Grüneisen parameters in the C60 molecule characterize th
Hg(3) andHg(4) modes, which correspond to flattening
the molecules~the squashing mode!.12 From this viewpoint,
it is not especially surprising that the absolute value of
negative values of the Gru¨neisen parameters is significant
greater in C60 crystals than in C70. This is possibly associ
ated with the initially higher symmetry of the C60 molecule

FIG. 6. Grüneisen parametersg i of various intramolecular phonon modes
the fullerites C60 and C70 .
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and the stronger influence of weak variations of the conf
mation of the molecule on the spectrum of intramolecu
vibrations.

Figure 7 shows the initial sections of the luminescen
spectra of C70 crystals atT5300 K and various pressures
Curve a corresponds to normal pressure, and curves b, c
d correspond to pressures 0.44, 0.82, and 1.6 GPa, res
tively. The luminescence spectrum is very extensive, and
low-frequency edge lies beyond the limits of spectral sen
tivity of the optical multichannel analyzer. C60 crystals are
likewise characterized by photoluminescence spectra tha
tend to 1 eV in the low-frequency region. The spectra w
measured at constant laser-excitation power density and w
corrected for the spectral sensitivity of the recording appa
tus. Thus, the intensity distribution in the luminescence sp
tra reflects the true picture, and its scale is identical for
pressures. This makes it possible to determine the positio
the edge of the spectrum accurately at any pressure.

The luminescence spectrum shifts toward the red
pressure increases, while its shape changes little. Howe
we are mainly interested in the baric shift of the lumine
cence edge. It was determined as follows: the initial sect
of the spectrum was approximated by a parabola, and
part adjacent to it in the higher-energy region was appro
mated by a straight line parallel to thex axis. The intersec-
tion of these two curves was taken as the point from wh
the luminescence edge was measured for each pressure
spectral edge is at about 1.94 eV at normal pressure, an
shifts toward lower energies as pressure increases. The
shift of the luminescence spectrum is thus negative, whic
characteristic of molecular crystals, whose molecules in
electron ground state possess a center of inversion and
dipole moment. The baric dependence of the position of
luminescence edge, determined by the method indica
above, is shown in the inset to Fig. 7. The straight line in

FIG. 7. Initial sections of the luminescence spectra of a C70 crystal at vari-
ous pressures, GPa:a! 0, b! 0.44,c! 0.82,d! 1.6. The inset shows the bari
dependence of the position of the luminescence edge.
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inset is the tangent to the initial region of this dependen
and its slope defines the baric shift of the spectrum, wh
value is about20.11 eV/GPa.

Figure 8 shows absorption spectra of the fullerite C70 at
T5300 K and various pressures. Curve a corresponds to
absorption of a solution of C70 in toluene and is given for
comparison with the absorption spectrum of a thin pellet
C70 ~curve b!, obtained by the method explained above~in
the section on experimental technique!. As can be seen from
the figure, these two spectra have identical structure, wh
reflects the rather low level of mechanical stresses in
pellet that unavoidably arise in the process of fabricating
Curves c, d, e, and f correspond to the absorption of a thin
pellet at pressures of 0.2, 1.4, 4.4, and 8.0 GPa, respecti
The position of the absorption edge, determined by the s
method as for the luminescence spectrum, is about 1.8 eV
normal pressure. This value is about 1.84 eV, however,
the solution of C70 in toluene, and the difference of;0.04
eV between them determines the so-called crystal shift of
electron terms in molecular crystals.20 The difference be-
tween the position of the absorption edge and the beginn
of the luminescence spectrum, corresponding to 0.14 eV,
be a consequence of the chosen method of determining
spectral edge. It is also not impossible that it has a w
defined physical meaning. We cannot assert that the ch
procedure of determining the position of the spectral edg
sufficiently accurate when the spectra have no clearcut e
structure. All the same, there is no doubt that it can be u
to accurately determine the baric shift of the spectrum, wh
is our main goal.

The absorption spectrum of crystalline C70, like the lu-

FIG. 8. Absorption spectra of the fullerite C70 at various pressures. Curve
shows the absorption of a solution of C70 in toluene; curve b shows the
absorption of a thin pellet of C70 at normal pressure. Curves c, d, e, and
show the absorption of a thin pellet of C70 at pressures of 0.2, 1.4, 4.7, an
8.0 GPa, respectively. The inset shows the baric dependence of the po
of the absorption edge.
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sure increases. The baric dependence of the position o
absorption edge is shown in the inset of Fig. 8, where
straight line is the tangent to this dependence at the be
ning region of pressures, and its slope defines the baric s
of the spectrum. This value equals about20.12 eV/GPa and
agrees fairly well with the baric shift of the luminescen
spectrum. The baric shift of the absorption spectrum stron
decreases with increasing pressure and is about20.03 eV/
GPa atP510 GPa. The same behavior is characteristic
C60 crystals, as it is for molecular crystals as a whole.33

As is well known, molecular crystals of the fullerite
C60 and C70 are semiconductors with a rather large band g
Its value can be determined by the position of the opti
absorption edge and by the beginning of the luminesce
spectrum of the crystal. Our data on the baric shift of t
absorption edge and the beginning of the luminescence s
trum essentially determine the pressure dependence o
band gap of the C70 crystal. They make it possible to dete
mine the deformation potential of the fullerite C70:

D5
]Eg

] ln~V0 /V!
52B0

dEg
dP

. ~3!

Its value, determined from Eq.~3! with parameters
B0518.161.8 GPa anddEg /dP520.11560.005 eV/GPa,
is D52.160.1 eV.

This value of the deformation potential is somewhat le
than the valueD'1.3 eV determined in Ref. 32 for C60.
Unlike C60, for which there are theoretical band structu
calculations at normal and high pressures, and the defor
tion potential has been determined both numerically and
perimentally, there are no such data for the C70 crystal. For
this reason, it is not currently possible to compare exp
mental results for the baric dependence of the electron
phonon spectrum of the C70 crystal with the results of othe
papers. Nevertheless, we assume that our results can be
ful for further development of theoretical and experimen
studies of the energy spectrum of C70.
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Dielectric enhancement of excitons in semiconducting quantum wires

E. A. Mulyarov and S. G. Tikhodeev

Institute of General Physics, Russian Academy of Sciences, 117942 Moscow, Russia
~Submitted 5 May 1996!
Zh. Éksp. Teor. Fiz.111, 274–282~January 1997!

The energy of the exciton ground state in a semiconducting cylindrical quantum wire surrounded
by a dielectric has been calculated using a variational technique accounting for the effect of
dielectric enhancement. The effect of dielectric enhancement in such a system has been clearly
demonstrated. Exciton parameters have been calculated for an intercalated leadiodide-based
quasi-one-dimensional semiconductor and GaAs wires in asbestos nanotubes. ©1997 American
Institute of Physics.@S1063-7761~97!01701-0#

1. INTRODUCTION 2. EXCITONS IN A THIN DIELECTRIC WIRE.
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The binding energy of excitons in semiconducting film
and semiconductor/insulator quantum wells is considera
higher than that of three-dimensional excitons in bulk se
conductors. In addition to dimensional quantization effec
which make an exciton quasi-two-dimensional, image pot
tials due to the large difference between dielectric consta
of the semiconductor and dielectric~or vacuum in case of a
semiconducting film! also play an important role. They no
tably intensify the attraction between the electron and h
hence the strengthening of excitons~so-called dielectric con-
finement or dielectric enhancement!.1,2

In a semiconducting quantum wire surrounded by a
electric, an electron and a hole are bound even more tigh
The dielectric environment in case of a quantum wire
more important than around a quantum well, since a lar
fraction of electric field is contained in the dielectric, thus t
attraction between the electron and hole is intensified.
concerns the effect of dimensional quantization, it is kno
that the binding energy in a one-dimensional Coulomb
tential is infinite,3 therefore we expect a larger binding e
ergy of a quasi-one-dimensional exciton. The effect of ex
ton enhancement in wires was previously stud
theoretically by Babichenkoet al.4 They obtained an asymp
totic ~with a logarithmic accuracy! expression for the exciton
binding energy in the limit of a quantum wire of a sma
radius. This expression yields an estimate of the exciton
hancement within an order of magnitude, but cannot be u
in calculating binding energies of real systems.

In the present paper we have developed a variatio
technique for calculating the binding energy and dimens
of a quasi-one-dimensional exciton confined in a thin se
conducting wire inside a bulk dielectric. The calculation h
been applied to two systems which can be studied exp
mentally, namely~1! intercalated lead iodide-based com
pound C5H10NH2PbI3,

5 in which PbI3 semiconducting wires
are surrounded by a bulk organic dielectric, and~2! GaAs
wires inside asbestos nanotubes.6
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VARIATIONAL CALCULATION OF THE BINDING
ENERGY

Consider a thin semiconducting wire shaped as a cy
der with a radiusR and surrounded by a dielectric. We a
sume that charge carriers are confined in the semicondu
In order to determine the ground state of the Wannier–M
exciton, we will vary the energy functional

H$C%5
\2

2 E E dredrhH 1

mie
U ]

]ze
CU2

1
1

m'e
U“re

CU21 1

mih
U ]

]zh
CU2

1
1

m'h
U“rh

C2%1E E dredrhV~re ,rh!uCu2,

~1!

wheremie,h are the electron and hole effective masses in
direction of thez-axis aligned with the wire,m'e,h are the
masses in the perpendicular direction,V~re ,rh! is the poten-
tial of the electron–hole interaction,r5~r,z!, ze and zh are
the electron and hole coordinates along thez-axis,re andrh
are radius vectors of the electron and hole in thexy-plane.
The trial function of the exciton ground state in the th
semiconducting wire surrounded by the dielectric is selec
in the form

C~re ,rh!5A1

L

a

Ap
expF2

1

2
a2~ze2zh!

2G
3Re~re!Rh~rh!, ~2!

whereL is the wire length,a is the variational parameter
Re,h(re,h) are normalized one-particle wave functions of t
electron and hole ground states in the two-dimensional c
fining potential of the wire. The choice of the trial functio
in this form will be justified below.

The most important assumption in our reasoning is t
the length of the quasi-one-dimensional exciton is mu
larger than the wire radius,1! i.e.,

151$10.00 © 1997 American Institute of Physics
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Another necessary condition is that the radiusR has to be
sufficiently small so that the energy distance between dim
sionally quantized levels is much larger than the exci
binding energy. This condition allows us to separate the v
ablesr andz in the wave function defined by Eq.~2!. On the
other hand, we assume that the wire is sufficiently thick
that the macroscopic dielectric constant of the semicondu
can be used. Below we will see that the result weakly
pends on the shapes of the functionsRe,h~r! if the confining
potential is sufficiently strong~which is the case in a
semiconductor/dielectric structure! so that the wave func
tions decay rapidly beyond the interface. Finally, it follow
from the shape of the trial function~2!, in which the vari-
ablesz andr are separated, that the second and fourth te
in the braces in the energy functional@Eq. ~1!#, i.e., the com-
ponents describing the kinetic energy and not containing
rivatives with respect toze,h , are independent ofa and can
be omitted.

The potential of the electron–hole interaction has
form

V~re ,rh!52ew~re ,rh!, ~4!

wherew~r ,r0! is the electrostatic potential atr of a chargee
placed atr0. Using the axial symmetry of the system an
performing Fourier transform with respect toz, along which
the structure is uniform, we can express the potential as

w~r ,r0!5E
2`

`

dkeik~z2z0! (
n52`

`

einqFn~k,r,r0!, ~5!

whereq is the angle between the vectorsr andr0, and the
expressions for the functionsFn are given in Appendix.

After averaging the potential energy~4! over the wave
function, Eq. ~2!, only the zeroth harmonic in the Fourie
series in Eq.~5! remains, since the wave functions of th
electron and hole ground states are axially symmetric
independent of the angle. Thus the potential energy a
function ofa takes the form

V~a!5^CuV~re ,rh!uC&52eE
2`

`

dk expS 2
k2

4a2DF0~k!,

~6!

where

F0~k!5~2p!2E
0

`E
0

`

F0~k,re ,rh!

3Re~re!Rh~rh!rerhdredrh . ~7!

We can see that onlyk<a is important in the integral in Eq
~6!. Given that

1

h
~aR!2u ln~aR!u!1, ~8!

we can use the expansion~A.7! in the limit of smallk. After
averaging over the dimensionally quantized wave functio
we have
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whereC is Euler’s constant. In this caseh5«b/«w , where«b
and«w are the dielectric constants of the dielectric and se
conductor, respectively,

ln
R*

R
5hs~R!1s~`!2s~R!, ~10!

s~x!5~2p!2E
0

x

rdr ln
r

R E
0

r

r8dr8$Re
2~r!Rh

2~r8!

1Re
2~r8!Rh

2~r!%. ~11!

The function defined by Eq.~9! is none other than the
Fourier transform of the potential in the range of smallk ~or
large z!. We can see that, with due account of the fin
exciton dimension in the quantization plane, the Coulo
potential is smooth over intervals ofz;R* . This potential is
finite around the pointz50, and its variation is proportiona
to z2, irrespective of the shape of the trial function. Ther
fore, we select the function in Eq.~2! in the shape of the
quantum harmonic oscillator wave function, rather than
Coulomb function. As concerns the contribution of the ima
potentials, it is equivalent to a renormalization of th
electron–hole interaction constant and the effective wire
diusR* .

After calculating the integral in Eq.~6! and the average
kinetic energy, we obtain the exciton ground-state energ

E~a!5
\2

4m
a21

2e2

«b

a

Ap
H ln aR

2
1
1

2
C1hs~R!

1s~`!2s~R!J , ~12!

wherem215mie
211mih

21 andm is the exciton reduced mass
The exciton binding energy depends primarily on the diel
tric constant of the environment because the electrostatic
teraction energy between two charged particles confine
the narrow wire is concentrated mostly in the dielectric.

The functionsRe andRh may be very different. This is
essential, for example, for the oscillator strength of the ex
tonic transition. In this paper, however, we calculate only
ground-state energy. Owing to its weak dependence on
shapes of the functionsRe andRh , these functions can be
expressed in the simplest form and considered identical.
tually, since the functionsRe,h~r! vanish rapidly outside the
quantum wire, the differences~`!2s(R) in Eq. ~10! can be
neglected. Irrespective of the shapes of the functio
Re,h~r!, the parameters(R) is of the order of unity, there-
fore, given the condition~3!, the functionhs(R) is smaller
than ln(aR). It follows from Eq. ~3! and Eq.~12! that the
exciton energy should depend weakly on the shapes of
functions Re,h~r!. Therefore we assume hereafter the
functions is the simplest form:

Re~r!5Rh~r!5H 1

ApR
, r<R,

0, r>R,

~13!
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ergy as a function of the variational parameter finally tak
the form

E~a!5
\2

4m
a21

2e2

«b

a

Ap
H ln aR

2
1
1

2
C2

h

4 J . ~14!

In the next section we will use Eq.~14! to calculate the
exciton binding energy in specific semiconducting structur
By using the expansion of the electrostatic potential at sm
k @Eq. ~A.7!#, we can, however, estimate the exciton bindi
energy with the logarithmic accuracy, regardless of the sh
of the trial function f ~aj!, where a is the dimensionless
variational parameter,j 5 z/aB* , andaB* 5 \2«b /me

2.
Let the trial function be normalized so that

E
2`

`

f 2~j!djE
2`

`

f 82~j!dj5 f 4~0!.

Then the exciton ground-state energy can be expressed

E~a!

Ry*
5a2

E
2`

`

f 82~j!dj

E
2`

`

f 2~j!dj

14a
f 2~0!

E
2`

`

f 2~j!dj

lnS a
R

aB*
v D , ~15!

where Ry*5me4/2\2«b
2,

ln v5C1
1

2
h1 f22~0!E

2`

`

Fk@ f
2# lnukudk, ~16!

andFk[ f
2] is the Fourier transform of the functionf 2~j!. The

exciton binding energy can be estimated with the logarithm
accuracy:

Eex'4Ry* ln2
R

aB*
. ~17!

Equation~17! is identical to the formula obtained in Ref.
for a thin quantum wire.

Excitons in the quasi-one-dimensional lead iodide-based
compound and in GaAs wires in asbestos nanotubes

In C5H10NH2PbI3 compound, abbreviated aspp-PbI3,
which is produced by intercalating piperidinium organ
molecules into a PbI2 semiconducting substrate, exciton
with a very large binding energy estimated by experimen
at about 700 meV were observed.5

The structure ofpp-PbI3 is a superlattice of Pb-I semi
conducting chains with an ordered dielectric medium
C5H10NH2 molecules among them.7 Iodine atoms are clus
tered around lead atoms to form octahedra, which have c
mon sides and thus are united in one-dimensional arrays.
distance between a lead atom and closest iodine atoms i
Å on an average, therefore the geometrical radius of
chain~the distance between anI atom and the chain axis! is
R0'2 Å. The superlattice has a rectangular unit cell with tw
semiconducting wires. Its dimensions aredx58.69 Å and
dy518.36 Å, so that the wire radius is much smaller than
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exciton parameters can be calculated in a fairly good
proximation by taking an isolated semiconducting cylind
surrounded by the dielectric, instead of the periodic struct
of quantum wires. Moreover, the small parameter for
image potential due to other quantum wires is not the ra
R0/d, as in the case of a superlattice of plane quantum w
~i.e., the ratio of the well width to the lattice period!, but its
square. This statement has been confirmed by numerica
timates, which we do not give in this paper. It natura
follows, however, from a simple consideration, namely, th
the contribution to the image potential due to other quant
wells or wires is proportional to the fraction of the volum
where the electric field is significantly redistributed, i.e., t
fraction of the volume occupied by the semiconductor.

The radiusR of the semiconducting wire, however, ca
differ from its geometrical radiusR0 by a value of the order
of the iodine ionic radiusRI , i.e.,R5R01RI , andRI can be
considered as a fitting parameter in the model. It canno
larger than the iodine ionic radius, which is approximate
2.2 Å.

In order to obtain a reasonable agreement between
calculations and the experimentally determined exciton bi
ing energy inpp-PbI3, we set the iodine radius at 2 Å, i.e
R54 Å. The dielectric constant of the quantum barrier,«b , is
taken equal to the high-frequency dielectric constant of p
piperidinium8: «b52.1.

The crystal structure of semiconducting wires is ve
similar to the trigonal structure of PbI2, which is used, by the
way, as a starting material for fabricating intercalated co
pounds. PbI2 is a very anisotropic material because it is co
posed of one-dimensional arrays of iodine and lead ato
united by common iodine atoms in planar layers, and
anisotropy axis is perpendicular to these layers.9 In the pro-
cess of intercalation, the chains are separated and the s
between them is filled with piperidinium molecules to for
pp-PbI3. This similarity between the two structures allow
us to assume that the parameters of PbI2 and of semiconduct-
ing wires in pp-PbI3 should be close. Therefore, we tak
«w56.1.10

As concerns the exciton reduced mass in the plane
PbI2 layers, the experimental data on the electron and h
masses vary over a wide range,9,11,12and the reduced mass
in the range of~0.120.5!m0, wherem0 is the free-electron
mass.

Figure 1 shows the binding energy and averaged len
of the exciton in quasi-one-dimensionalpp-PbI3 as a func-
tion of the exciton reduced massm calculated by varyinga to
minimize the energy, Eq.~14!. The exciton binding energy is
up to 900 meV at a reduced mass ofm50.1m0, which is in
reasonable agreement with the experimental data5 ~taking
into account that the exciton luminescence line width is qu
large, of the order of 230 meV!. Note that in the range o
largem, the condition~3! does not hold. The potential energ
in this case is notably larger than the kinetic energy, and
selected wave function given by Eq.~2! is no longer appro-
priate.

Figure 1 also shows parameters of the exciton calcula
without the image potential, i.e., when«b5«w ~dashed
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lines!. These curves demonstrate that the dielectric enhance-semiconducting quantum wire embedded in a bulk dielec

FIG. 1. Variational calculations of
~a! the binding energy and~b! mean
length 23/4/a of the exciton, as func-
tions of the exciton reduced massm
in pp-PbI3 quasi-one-dimensiona
semiconductor, allowing for image
potentials ~solid lines! and without
them ~dashed lines!.
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ment effect of the exciton in a semiconducting wire is ess
tial.

In recent years GaAs quantum wires filling cylindric
pores in asbestos nanotubes have been fabricated.6,13 The
diameter of the channel filled with the semiconductor var
between 20 and 100 Å in different samples. Owing to
effect of dielectric enhancement of quasi-one-dimensio
excitons, the binding energy may be dozens of times hig
than in bulk GaAs. No direct measurements of the bind
energy are available, therefore it is interesting to obtai
numerical estimate.

Figure 2 shows the exciton binding energy as a funct
of the semiconducting-wire radius calculated variationally
different dielectric constants«b of the barrier~dielectric! la-
beling the corresponding curves. The semiconductor die
tric constant«w and the exciton reduced mass are taken eq
to those of bulk GaAs, namely«w513 and m50.038m0
3~me50.067m0 and mlh50.087m0

14!, respectively. The
curve for«b513 corresponds to the case in which the ima
charges are ignored. Thus the exciton binding energy

FIG. 2. Variational calculations of the exciton binding energy in a Ga
wire as a function of the wire radiusR at several dielectric constants of th
barrier.
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can be increased by the dielectric enhancement effect to
meV when the wire radius is 20 Å and«b52 ~compare with
24 meV in the wire without accounting for the image pote
tial and 4 meV in bulk GaAs!.

Thus the dielectric enhancement effect of excitons
quantum wires is quite evident. The variational approach
veloped for this model allows one to calculate exciton p
rameters in quasi-one-dimensional dielectric structures. C
culations have been performed for specific examples of
C5H10NH2PbI3 intercalated semiconductor and GaAs wir
in asbestos nanotubes.
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V. V. Poborchi�, A. M. Prokhorov, and A. P. Silin. This
work was supported by the Russian Fund for Fundame
Research~Grant No. 095-02-06062a!, the Nanostructures
program financed by the Ministry of Science and Techn
logical Policy ~Grant No. 1-041!, and INTAS ~Grant No.
94-2112!.

APPENDIX

Electrostatic potential

In a cylindrical configuration, the solutionw~r ,r0! of the
Poisson equation for an electrostatic potential generate
the pointr by a point charge at the pointr0 can be expressed
as

w~r ,r0!5E
2`

`

dkeik~z2z0! (
n52`

`

einqFn~k,r,r0!, ~A1!

whereq is the angle between the vectorsr and r0. If the
charge is inside the cylinder,r0<R, then

Fn5~21!ngFmnI n~kr0!I n~kr!

1H I n~kr!Kn~kr0!, r<r0 ,

I n~kr0!Kn~kr!, r>r0 ,
G , r<R,

Fn5~21!nglnI n~kr0!Kn~kr!, r>R, ~A2!
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where

re

F ~k,r,r !52
e

ln
ukuR

1C 2
e

ln
max~r,r0!

-

nd
mn5
~12h!Kn~kR!Kn8~kR!

hI n~kR!Kn8~kR!2I n8~kR!Kn~kR!
,

ln5
I n~kR!Kn8~kR!2I n8~kR!Kn~kR!

hI n~kR!Kn8~kR!2I n8~kR!Kn~kR!
, ~A3!

g5
e

p«w
, h5

«b
«w

. ~A4!

I n andKn are the modified Bessel function,«w and«b are the
dielectric constants of the semiconductor and dielectric,
spectively. If the charge is outside the cylinder,r0>R, then

Fn5~21!nglnI n~kr!Kn~kr0!, r<R,

Fn5~21!n
g

h FnnKn~kr0!Kn~kr!

1H I n~kr!Kn~kr0!, r<r0 ,

I n~kr0!Kn~kr!, r>r0 ,
G , r>R, ~A5!

where

nn5mn

I n~kR!I n8~kR!

Kn~kR!Kn8~kR!
. ~A6!

At kR!1 andn50, Eqs.~A.2!–~A.6! take the form
155 JETP 84 (1), January 1997
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0 0 p«b
S 2 D p« R

1OS 1h ~kR!2 ln~ ukuR! D , ~A7!

where«5«w ~if r, r0<R! and «5«b in the outside region,
andC is Euler’s constant.

1!The condition on the exciton size is even more strict, see Eq.~8! below.
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Field-induced phase transitions in magnetooptical films with a small positive anisotropy

ely
constant
F. V. Lisovski , E. G. Mansvetova, and Ch. M. Pak

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 141120 Fryazino, Moscow
Region, Russia
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We study phase transitions induced by a static magnetic field in magnetically uniaxial films with
a small positive anisotropy constant. The phase diagram of these objects is determined in
theH i2H' plane, whereH i andH' are, respectively, the components of the magnetizing field
along and perpendicular to the surface normal. The stability boundary is located for all of
the main types of domain configurations observed: a simple stripe domain structure, a stripe
domain structure with periodic bending by surface distortions in the profile of the domain
walls, and hexagonal lattices of cylindrical magnetic bubbles. ©1997 American Institute of
Physics.@S1063-7761~97!01801-5#
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The results of the investigations described in this pa
pertain to magnetically uniaxial films with an anisotrop
constantbu.0 and an easy axis parallel to the surface n
mal. Among the enormous number of magnetically uniax
thin film samples available to experimentalists at the pres
time, the favorites are epitaxial films of magnetic garne
This choice is dictated by the following considerations. Fir
the parameters of the epitaxial films of mixed rare-earth i
garnets can readily be varied by the appropriate choice
composition and growth conditions, and therefore they
exhibit nearly all possible types of domain structures t
exist in any uniaxial ferromagnet. Second, the change in
state of these films in phase transitions can be observed
rectly by ordinary polarization microscopy, since all the g
nets have a rather large specific Faraday rotation in the
ible and near infrared.

A thermodynamic equilibrium distribution of the magn
tization vectorM corresponds to the absolute minimum
the free energy, which for the present case is equal to

W52pM2E
V
dv@a~¹•m!22bu~m–n!222~m–h!

2~m–hM !# ~1!

with the standard boundary conditions on the film surfa
z56L/2, whereL is the film thickness (ezin), M is the
magnetization vector,m5M /M ; a is the inhomogeneous ex
change interaction constant, h5H/4pM and
hM5HM /4pM are the normalized external field streng
and the magnetostatic field, respectively.1! In the general
case, variation of expression~1! yields an equation that can
not be solved analytically; approximation methods are ba
on the Ritz variational principle with trial functions chose
on the basis of experimental data.

For bu@1, a good approximation over a wide range
the variables (hi ,h'), where hi5H i /(4pM ) and
h'5H' /(4pM ), are the normalized components of th
magnetizing field parallel and perpendicular to the surf
normal, is the approximation of structureless~geometric! do-
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thin and to have a constant surface energy den
sw5const that depends only on the angle between the m
netization vector in adjacent domains.1,2 It is also assumed
that the effective domain wall width isDw!d, whered is
the period of the domain structure. The models of dom
structures with ‘‘geometric’’ domain walls have been wide
used in the physics of magnetic phenomena in the early s
ies of inhomogeneous magnetic states, and interest in t
models has not waned to the present time~a review of the
present-day state of the problem can be found in Ref. 3!. One
must, however, bear in mind that the domain walls in ma
netically uniaxial films are not simply planar interface su
faces between neighboring domains, but are in fact thr
dimensional objects supporting a highly nonuniform vortic
distribution of theM vector ~so-called ‘‘twisted’’ domain
walls; see Refs. 4 and 5!. Two types of domain walls are
possible: those with the same polarity and those with
opposite polarity of the domain boundaries~the vectorM in
the centers of adjacent domain walls are parallel and anti
allel to one another, respectively!. Structures with opposite
polarity domain structures in thin films with infinite latera
dimensions are metastable.

In the problem we are considering, the model of geom
ric domain walls, even withbu@1, is inapplicable over the
range of values (hi ,h')'(0,bu), corresponding to the
neighborhood of lines of second-order phase transitions~or
first-order phase transitions close to second-order! from the
uniformly magnetized state to the state with the stripe
main structure. The latter in the present case is a frozen
soft mode,6–11 i.e., the distribution of the magnetization ve
tor in the film can be described by simple harmonic fun
tions, and the partition of the magnet into domains and
main walls is no longer meaningful. We note that t
functionM ~r ! undergoes no qualitative changes due to
increase in the magnetic fieldh' near the line of phase tran
sitions, but the vortices, which in zero field were localized
the narrow domain walls, are broadened to the point of be
comparable in size to the period of the domain structure
similar situation has also been observed in the demagnet

156$10.00 © 1997 American Institute of Physics
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state with a lowered anisotropy constantbu . A most con-
vincing demonstration of this statement was recently
tained by Antonov and coworkers in computer calculatio
of the equilibrium distribution ofM ~r ! for a class of singly
periodic functions by the method of dynamic iteration.12,13

By way of example, Fig. 1, borrowed from Antonovet al.,
shows the distribution of the transverse~to the domain wall
surfaces! components of the vectorM in films with different
anisotropy constants and the same thicknessL520l w , where
l w is the so-called characteristic length of the material, eq
to

l w5
sw

~B!

2pM2 52pAabu.

Heresw
(B)54p2M2Aabu is the surface energy density of

simple 180° Bloch domain wall.
Figure 1 shows that the subdivision of a magnet in

domains and domain walls is entirely meaningless
bu<1. Moreover, when the anisotropy constant decrea
those regions that, forbu.1, belong to a domain wall, be
come considerably wider than the regions that were initia
regarded as domains~compare Figs. 1a, 1c!, and the distri-
bution of the magnetization vector throughout the volume
the film is highly nonuniform. For these reasons the use
the Ritz variation principle for solving this micromagnet

FIG. 1. Distribution of the magnetization in domains and domain walls
magnetically uniaxial films of thicknessL520l w with bu51.5 ~a!, 1.1 ~b!,
and 0.7~c!
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successful, despite the many attempts to choose a trial f
tion adequate to describe the distribution ofM over a wide
range of film parameters.2! The use of inadequate trial func
tions frequently leads to absurd conclusions, for example,
existence of a phase transition for a valuebu51.23 For bipe-
riodic domain structures, which under certain conditions a
exist in magnetic uniaxial films with a positive anisotrop
constant~see below!, no success has been had in calculat
the distribution profile of the magnetization even by co
puter simulation.

Unlike films with strong anisotropy~b@1!, for which
the phase diagram in the (hi ,h') plane has been studied i
great detail both experimentally and theoretically~see, e.g.,
Ref. 10 and the literature cited therein!, the analogous prob
lem for films with weak anisotropy is essentially unsolve
although their domain structures have been intensely stu
experimentally over a period of decades. The majority of
experiments were carried out on metal films~iron, nickel,
cobalt, Permalloy, and other alloys!, on single-crystal wafers
of magnetoplumbite and barium ferrites, and epitaxial film
of spinel ferrites~the references to the corresponding origin
papers can be found in Refs. 13–18, 20 and 22!. The iron
garnets have been studied in only a few publications24–26;
and the special features of domain structures in garnet fi
with weak uniaxial anisotropy have also been discussed
monograph.27

It has been established that in magnetically uniax
films with a small value ofbu with no applied magnetizing
field, the following types of ordered distributions of the ve
tor M can exist ~see Fig. 2!: I—a uniformly magnetized
state, which corresponds to the absolute minimum in
thermodynamic potential only in sufficiently thin film
(L,Lcr1); II—a stripe domain structure with vertical strip
domain walls, which occurs forLcr1,L,Lcr1* ; III—a stripe
domain structure with in-phase harmonic surface distorti
of the domain wall profile (Lcr1* ,L,Lcr2); IV—a complex
domain structure with stripe domains penetrating the fi
alternating with conical domains that do not penetrate; t
occurs only for thick films (L.Lcr2). Experiments carried
out with wafers of magnetoplumbite have shown28 that when
the thickness is changed, the transformation of a dom
structure of type III to one of type II proceeds as a seco
order phase transition~the amplitude of the harmonic distor
tions of the domain wall profile goes to zero a
L→Lcr1* 10), while the transformation of a domain structu
of type III into type IV proceeds as a first-order pha
transition.3! The phase transitions between the various
main configurations when the orientation and the strength
the magnetizing field are changed have scarcely been stu
at all ~with few exceptions!.

2. EXPERIMENTAL CONDITIONS

To study the field-induced phase transitions between
various domain structures, we selected as samples epit
films of magnetic garnets with the compositio
~BiLu!3Fe5O12, in which, with single-crystal wafers o
gadolinium–gallium garnet Gd3Ga5O12 used as the sub

f
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FIG. 2. Main types of ordered domain structures in magnetica
uniaxial films forH50.
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induced uniaxial anisotropy constant. In addition, these fi
have a low optical absorption coefficienta and a high spe-
cific Faraday rotationuF at visible wavelengths~a520 cm21

and uF51.53104 deg/cm atl50.63 mm!, which makes it
possible to monitor visually in real time the changes in
form of the domain structure during phase transitions.

The films of the lutetium–bismuth system used in o
experiments, with a thickness 1mm,L,30 mm, were
grown by isothermal liquid-phase epitaxy on~111!-oriented
gadolinium–gallium garnet, with zero film–substrate latti
mismatch obtained at the composition Lu2.1Bi0.9Fe5O12. To
prepare the films we used two fluxes of garnet-forming
ides: Bi2O3 ~type I film! and PbO–Bi2O3 ~type II film!. For
the growth of the type I films we added a small amount
magnesium oxide MgO to the charge, in addition to t
Lu2O3 and Fe2O3, to reduce the optical absorption of th
film. The synthesis temperature for the type I films was v
ied between 780 and 790 °C, and for the type II films b
tween 720 and 730 °C, and the substrate was rotated in
melt at'100 rpm, with the direction of rotation of the ro
changed every 10 rotations. The growth time was dictated
the required thickness of the film and was from 15 s to
min, with the upper limit corresponding to a film thickness
about 30mm. We were not able to grow thicker films b
extending the growth time.
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the Curie temperatureTC was 560 K, and the specific Fara
day rotationuF , which varied only slightly with film thick-
ness, was in the range~1–1.5!3104 deg/cm at a wavelength
l50.6328mm. When the samples were magnetized by
field along the normal and by a field perpendicular to it
field H i*5~1500–1750! Oe andH'

*5(24–200! Oe, respec-
tively, were required to erase the domain structure in the t
I films, while in type II films these fields were, respectivel
~1600–1750! Oe and~300–500! Oe, where the saturation
magnetization of the films, as a rule, increased with incre
ing film thickness. For a preliminary estimate of the uniax
anisotropy constant we used the relationbu5H'

* /H i* . The
film thickness was determined from a transverse cleave
means of a microscope with a micrometer ocular, and
geometrical parameters of the domain structures were m
sured either by the same means or from the diffraction p
terns. The absolute error in determining the parameters c
acterizing the periodicity of the magnetization vector was
higher than 0.05mm in the two cases.

The investigations of the magnetic phase transitions
the films were carried out at room temperature by a mag
tooptical method like that described in Ref. 10. The lig
from the source~an incandescent lamp or a laser! was sent
though a polarizer and focused by a lens on the surface o

158Lisovski  et al.
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FIG. 3. Geometric parameters of do
main structures~d—j, L—s as
functions of the thickness of a
Lu2.1Bi0.9Fe5O12 film, with the thick-
ness varied by growth~a! and by me-
chanical polishing~b!.
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the first group of experiments we grew a series of films of

ss

. 3a
ss
tor-

nd

th
e-
dif-

ll
d
54.
sur-
of
re
use
po-

e-

m-
hat

in

n-
xity
nt
rotated relative to the optical axes of the system by an a
trary anglefH . The image of the domain structure in th
films was examined by a polarization microscope with
objective placed within the mount containing the samp
while the analyzer and the ocular were placed independe
on the optical bench. To generate the magnetic field we u
an electromagnet with two pairs of orthogonal coils, w
which, by varying the operating current, we could change
angleuH between the direction of the magnetic field and t
film surface and select the necessary relation between
projections ofH on the normal and on the film surface. Th
maximum field strengthsH i andH' in the working gap were
10 kOe and 2 kOe, respectively. To measure the magn
fields we used a sensitive transducer, which in its opera
range gave an absolute error of less than 0.1 Oe; howe
the nonuniformity of the film and the resultant diffuseness
the phase transition reduced the accuracy in determining
position of the lines on the phase diagram, especially for
first-order phase transitions. A statistical analysis of the
sults of a sampling of experiments showed that for
second-order phase transitions, the error in the critical fie
was no more than 1 Oe, while for first-order phase transiti
over the range 200–2000 Oe of the magnetic field, it w
2–20 Oe.

3. EXPERIMENTAL RESULTS

In the absence of a magnetic field the ground state
these films corresponded to a non-labyrinthine domain st
ture with randomly oriented domain walls, as in the film
with bu>1, and an ordered two-dimensional lattice of stri
domains with modulated or unmodulated domain walls~de-
pending on the thickness!. The reason for this result is th
large projection of theM vector on the film surface, which
prevents kinking of the domain walls. Structures with ad
tional closure domains were not observed, since the thic
films that could be grown by the liquid-phase epitaxy meth
were still thinner thanLcr2 .

To study how the periodd of the stripe domain structur
and the periodL of the wave-like distortions in the domai
walls on the sample surface depended on the thicknessL, we
carried out two groups of experiments on type II films. F
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different thicknesses~1–30mm!, while in the second group
of experiments we used a single film with an initial thickne
of 20 mm, which then was reduced in stages to 1.5mm by
mechanical polishing. The results ford(L) andL(L) for the
first and second groups of experiments are shown in Figs
and 3b, respectively, on a log–log plot. The critical thickne
Lcr1* , corresponding to the onset of harmonic surface dis
tions in the domain wall profile, was about 6mm in both
cases.

Approximatingd(L) andL(L) by power laws,d } Lad

andL } LaL and using the method of least squares, we fi
that for L,Lcr1* the exponentad is equal to 0.64 for the
films with thicknesses determined by varying the grow
time, and 0.68 for films whose thickness was varied by m
chanical polishing. In both cases these values are quite
ferent from that predicted by the theory of Kittel,ad50.5.
For films with a wave-like distortion of the domain wa
profile (L.Lcr1* ), the value ofad in the first case increase
slightly ~to 0.68! and in the second case it decreased to 0.
This difference can be accounted for by the presence of
face layers formed in the epitaxial films at the final stage
growth,29 which in the second group of experiments we
removed in the first mechanical polishing. This same ca
presumably explains the substantial difference in the ex
nentsaL in the functionL(L) for the experiments with the
first and second groups~see Fig. 3!.

Although the experimental data in Fig. 3 are well repr
sented by a straight line~on the log–log plot!, we cannot rule
out the possibility that the functionsd(L) andL(L) might
not be described by a simple power law, but by more co
plicated functions. We can state with confidence only t
the nature of the functional dependenced(L) changes when
the harmonic distortions of the domain wall profile appear
the simple stripe domain structure.

The form of the phase diagram on theH i 2 H' plane for
films with a small uniaxial anisotropy constantbu depends
on the thicknessL and becomes more complicated with i
creased thickness. An example of the increased comple
of the diagram for a type I film having an anisotropy consta
bu.0.08, a thicknessLcr1* ,L510 mm,Lcr2, and a com-
position Lu2.1Bi0.9Fe4.96Mg0.04O12 ~designated No. 1! is
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shown in Fig. 4 with the following notation: U is the uniform
state, S is the stripe domain structure with planar~unmodu-
lated! domain walls, SM is the stripe domain structure w
modulated domain walls, andL1 and L2 are the opposite-
polarity lattices of magnetic bubbles; the arrows on
curves show the direction of variation of the field. The orig
of the coordinate system is at the center of symmetry of
diagram; therefore the stability boundary of the various
main structures are not shown for negative values ofH i .

In the demagnetized state the film, No. 1 contains a
riodic stripe domain structure (d53.9mm! with a modulated
domain wall (L51.7mm!, which maintains its stability even
over a certain range of the external fieldH. The wavelike
surface distortions in the profile of the domain boundar
have disappeared from the line SM→S and the domain struc
ture has become a simple stripe structure. The subseq
evolution of the collection of domains as the magnetic fi
is increased depended on the direction of the field: for sm
anglesuH we observed a transition into the uniformly ma
netized state~on the curves S→U!, and for large angles, a
transition to a hexagonal lattice of magnetic bubbles~on the
curves S→L1 and S→L2).

If we start with a uniformly magnetized state and redu
the magnetic field, then the type of nucleating domain str
ture also depends on the direction ofH: for H near the sur-
face normal, a lattice of magnetic bubbles is formed~curves
U→L1 and U→L2), while for small anglesuH, a stripe do-
main structure is formed~curve U→S!. The period of the
nucleating magnetic bubble lattice is maximum at the po
E on the diagram~11.3mm!, and decreases monotonical
~to 2.5mm! as the region of nucleation of the stripe doma
structure is approached. The change in the type of nuclea
domain structure occurs smoothly, and over a certain ra
of magnetic field strength and orientation a mixed config
ration exists: alternating blocks of stripe domains and m
netic bubbles.

The locations of all the lines in the phase diagram c

FIG. 4. Phase diagram of a film of Lu2.1Bi0.9Fe4.94Mg0.04O12 with
bu'0.08 andL510 mm ~designated film No. 1! for fH530 deg.
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tures of various kinds were determined visually by observ
the development of the magnetic state of a sm
(.1003100 mm2! region of the film.4! The first and sim-
plest step is to locate the curve of loss of stability of t
uniformly magnetized state~the curve with the arrows
U→L1 , U→L2 , and U→S! and to identify the type of
nucleating domain structure. Then we must find the bou
aries L1 and L2 of the region of stability of the hexagona
magnetic bubble lattice. To do this, we first establish
saturation magnetic field in this direction in order that t
angleuH correspond to the nucleation of a lattice of ma
netic bubbles with the maximum domain density~for ex-
ample, pointsF1,2 on the diagram in Fig. 4 for the lattice
L1), and then make the transition from the uniformly magn
tized state to the magnetic bubble lattice by a small reduc
in the fieldH i . Then by a coordinated variation in the field
H i andH', we move to a point with other coordinates
such a way that the trajectory of the points on the diagr
are as close as possible to the curve U→L1 ~or U→L2). In
this way we ensured the maximum ordering of the magn
bubbles without excess change in the density of bubb
~over the equilibrium value! by way of collapse and withou
transformation of the round magnetic bubbles into elliptic
ones.

After a close-packed lattice of magnetic bubbles is o
tained, it is necessary at each point of the diagram to incre
the magnetizing field smoothly until the bubbles collap
~this corresponds to the points on the curve L1→U ~or
L2→U!, while maintaining the angleuH in such a way that
the image of the point on the diagram moves approxima
on the curve U→L1 or U→L2 . To obtain the next point on
the curve L1→U or L2→U, all the operations describe
above must be repeated, and so on. A similar procedur
multiply repeated operations to create the close-packed e
librium lattice of magnetic bubbles is also used to determ
the other stability boundary corresponding to the transition
the stripe domain structure, i.e., the development of an e
tical instability. The only difference is that this transitio
occurs by reducing the magnetizing field.

The region of existence of a stripe domain structure
determined in a similar way. In zero fieldH i, a stripe domain
structure is nucleated with a period close to the minim
possible, and then a transition is made close to the curv
→S to any other desired point. Then by an increase in
field strength we obtain either a transition to the uniform
magnetized state~the point on the curve S→U! or to the
hexagonal magnetic bubble lattice~the point on the curve S
→L1,2). The direction of the field must correspond to th
normal to the desired curve, since that ensures the gre
accuracy in the measurements. When the field is reduced
point determined is on the curve S→SM corresponding to
the suppression of surface modulation of the domain w
profile in a simple stripe domain structure. The procedure
determining the location of the curve SM→S does not re-
quire explanation; we merely note that the initial step in t
procedure is the nucleation of a modulated stripe dom
structure in zero magnetizing field.

WhenH50, one frequently observes some preferred
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rections along which the stripe domain walls are orient
This preferred orientation is due to a cubic and, possib
orthorhombic anisotropy. For a sufficiently large compon
H' not coinciding with the orientation of the naturally pr
ferred directions, the domain walls become reoriented. W
the magnetic field is varied over ranges corresponding to
inner regions of the phase diagram, the period of the st
domain structure and of the two-dimensional lattices is re
ganized by the generation, annihilation, and motion of m
netic defects such as dislocations and disclinations. In s
cases, multiple clustering of magnetic dislocations occur
the form of dislocation walls. Various instabilities of strip
domain structures also occur with the formation of penet
ing sinusoidal or sawtooth distortions in the domain bou
aries. The transformation of hexagonal lattices into str
domain structures takes place via the development of an
liptical instability in round magnetic bubbles. In summar
we note that all these processes are similar to those obse
in films with bu@1.10,30,31 An important difference, how-
ever, is that in the films with a lowbu, global amorphization
of the ordered stripe domain structure does not occur in
vicinity of the phase transition~but is typical of films with a
dominant uniaxial anisotropy32!, since the effective stiffnes
of the system is high.

Figure 5 gives an idea of the modification of the geom
ric parameters of stripe domain structures as the fi
strengthH' is varied; this figure also showsd(H') and
L(H') for film No. 1 for H i50. It can be seen that th
period of the domain structure depends strongly on the fi
strength5! and falls off with increasing field, whereas the p
riod of the wave-like distortions of the domain walls reac
only weakly to the change in the magnetic field and increa
with increasingH' .

The dips in the curves S→L1 and L1→S near the hori-
zontal axis~the point G and the apex of the curve L2→SM in
Fig. 4! may be due to the following causes. First, this reg
of the diagram corresponds to symmetric stripe dom
structures (d15d25d/2, whered1 andd2 are the widths of
the domains with different directions of the projectio
Mz); here is where the greatest difficulty is encountered
the generation and annihilation of magnetic dislocatio

FIG. 5. Dependence of the geometrical parameters (d—h,L—s of the
domain structure on the fieldH' for film No. 1.
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through which occur transitions between the stripe dom
structure and the lattice of magnetic bubbles. Second, th
the region of the diagram where polarization reversal of
domain walls occurs with a change in the direction of t
field H' .

The transitions SM→L1 and SM→L2 are not observed
since out-of-phase distortions are required to nucleate m
netic bubbles from a stripe domain structure. The reve
transformation, nonetheless, does take place, since harm
distortions of the profile of the closed domain walls are n
forbidden. The phase transitions U→S and S→U are close to
second order, and the others are close to first order. Un
tunately, there is no sufficiently precise experimental cri
rion for the identification of first-order phase transitions
films with bu<1, unlike the case withbu@1, where an in-
herent attribute of these transformations is the formation
the so-called ‘‘mixed state’’ in the nucleation of the doma
structure, which is characterized by the coexistence of blo
of opposite-polarity magnetic bubbles and patches of st
domains.10,33 Nevertheless, other very good criteria can
used, including the fact that, first, the second-order ph
transitions occur with essentially no hysteresis~within the
accuracy of the measurements!, and second, they are chara

FIG. 6. Position of the pointE on the phase diagram for film No. 1 versu
the orientation of the fieldH' .

FIG. 7. Position of the pointsA(d), B~1!, C~o! andD~* ! as functions of
the thickness of a film of composition Lu2.1Bi0.9Fe5O12 .
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FIG. 8. Schematic plot of the theoreti
cal phase diagram~for bu@1! in the
neighborhood of a tricritical point~a!
and the analogous part of the exper
mental phase diagram for film No. 1
~b!.
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formation of the domain structure over the area of the fi
and a relative insensitivity to microscopic defects.

The vertical axis is not a symmetry axis in the diagra
because of the effect of the crystallographic~cubic! and in-
duced orthorhombic anisotropy. The change in the posi
of the film relative to the fieldH' , which can be character
ized by the azimuthal rotation anglefH from a reference
direction, does not result in any qualitative changes in
form of the phase diagram. The entire diagram is topolo
cally similar, for various values of the anglefH, and the
only change is in the position of the characteristic points
the diagram~the pointsA–G in Fig. 4!. By way of example,
Fig. 6 shows a plot of the coordinate of the pointE ~the
vertex of the diagram with the vertical tangent! versus the
anglefH ; the points that are shown are experimental d
and the solid curves are the approximating Fourier ser
which for H' contain only even harmonics, while forH i
they contain only odd harmonics. For films with a lar
uniaxial anisotropy constant, similar curves for the points
uniform domain structure nucleation corresponding to
second-order phase transition from a uniformly magneti
state into a nonuniformly magnetized state are used to de
mine the anisotropy constant, and the orthorhombic and
bic anisotropies are determined by comparison with the
sults of a calculation.10,33 In the present case this cannot
done because of the lack of an analytic theory.

As the film thickness is steadily reduced, the only qua
tative change in the phase diagram is the disappearanc
the region of existence of a stripe domain structure w
modulated domain walls in the range of thickness
L,Lcr1* ; the positions of the other points on the diagra
depend only slightly on the thickness~Fig. 7!.

4. CONCLUSIONS

A comparison of the form of the phase diagram for film
with bu,1 ~Fig. 4! with that forb@1 ~Fig. 2! of Ref. 10 for
a field-induced phase transition shows that they are topol
cally similar. This cannot be regarded as unexpected
cause, as mentioned in the Introduction, the distribution
magnetization in the films does not undergo any qualita
changes whenbu passes through unity. Moreover, in film
with weak uniaxial anisotropy, one can see ‘‘fine structur
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anisotropic uniaxial films. We now discuss this problem
greater detail.

The phenomenological theory of orientational pha
transitions in films that has been developed forbu@1
shows7,10 that the direct nucleation of hexagonal lattices
magnetic bubbles from the uniformly magnetized state
possible only forbu→`, and forhi Þ 0 the transformation
occurs as a first-order phase transition. The point with co
dinateshi50 and h''bu corresponds to a second-ord
phase transition and is multicritical, since the line of pha
transitions between the uniformly magnetized state and
stripe domain structure terminates there. For finite values
bu, the line of stability loss of the uniformly magnetize
state relative to a transition to a lattice of magnetic bubb
~the U→L1,2 line in the notation of Fig. 4! splits into a line of
a second-order phase transitions between the uniform s
and the stripe domain structure~the U↔S line! and a line of
stability loss of the latter relative to a transition into a ma
netic bubble lattice~the line S→L1,2) , while the multicritical
point divides into two tricritical pointsR1 andR2 located on
the curve U↔S symmetrically about theh' axis, where all
the effects described here occur more intensely, the lower
value ofbu . Finally, the phase diagram near the tricritic
point assumes the form shown in Fig. 8a.6! If we now exam-
ine in detail the structure of the phase diagram for film No
in the neighborhood of, for example, theF1 point ~Fig. 8b!
then it becomes obvious that the main conclusions of
theory developed for highly anisotropic uniaxial films pr
vide a qualitative explanation of the properties of the ph
diagram for films with a low value ofbu .

This work was carried out with the financial support
the Russian Fund for Fundamental Research~Project No.
96-02-16082-a! and Korean Science and Engineering Fou
dation, under the auspices of the Korea–Russia Joint
search Program. The authors are grateful to L. I. Antonov
sharing with us his results on the calculation of the mag
tization distribution and for valuable discussions.

Certain results of this work were published in abridg
form in Ref. 34.

1!By magnetostatic we mean the field satisfying the equations of magn
statics that is induced by the desired magnetization vector, and that c
cides with the demagnetizing field inside the sample and the fringing fi
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outside the sample. This explanation is required, since in the Russian scien-
tific literature~unlike the foreign literature! this terminology is not standard-

ore

rre

ct
t b
rab

o
of
tio

th
er

el
do
an

a
t

te

10I. E. Dikshte�n, F. V. Lisovski�, E. G. Mansvetovaet al., Zh. Éksp. Teor.
Fiz. 86, 1473~1984! @Sov. Phys. JETP59, 863 ~1984!#.
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2!The list of original publications on this subject is very long, and theref
we mention only the monographs11,14,15and articles13,16–22where a com-
plete bibliography can be found.

3!Attempts have been made to calculate the critical thicknessesLcr1 , Lcr1*
and Lcr2 ~see Refs. 13–22 and the references cited therein!; however,
reliable estimates were obtained only for the first critical thickness, co
sponding to a second-order phase transition.

4!Limiting the area of visual observation is necessary to reduce the effe
local inhomogeneities in the film on the measurement results. It mus
noted, however, that the films of the chosen composition have conside
more uniform parameters than do films withbu@1, for which results have
been published in Ref. 10. The reason is that in a film withbu<1, the
magnetic sublattice formed by the iron ions are not diluted by gallium
aluminum ions; specifically, fluctuations in the distribution function
these ions are the main cause of the nonuniformity in the magnetiza
and the effective induced anisotropy field.

5!The curve shown in Fig. 5 refers to domain walls oriented parallel to
vectorH' , which is always the case in strong enough fields. If the exp
ment is carried out so that the direction of the fieldH' does not initially
coincide with the orientation of the domain walls, then increasing the fi
causes nucleation of blocks of stripe domains within the initial stripe
main structure, with domain walls along the field, which then expand
displace the previous structure.

6!The diagram also qualitatively reflects the fact that when the fieldH' is
reduced, the phase transition between the uniformly magnetized state
the stripe domain structure becomes a first-order phase transition a
point K ~Ref. 9!.
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Anisotropic structure of the gap in high- Tc superconductors: competition between s -

lec-
and d -type symmetry

É. A. Pashitski  and V. I. Pentegov

Institute of Physics, Ukrainian National Academy of Sciences, 252650 Kiev, Ukraine
~Submitted 28 May 1996; resubmitted 1 August 1996!
Zh. Éksp. Teor. Fiz.111, 298–317~January 1997!

We show that the anisotropic structure, observed in angle-resolved photoemission spectroscopy
experiments, of the gap in high-Tc superconductors based on layered cuprate metal-oxide
compounds is the result of the strong anisotropy of the electronic spectrum in the plane of the
layers, an anisotropy caused by the hybridization between the overlapping broad and
anomalously narrow bands. Depending on the values of the electron–phonon coupling constants
and the Coulomb repulsion, which in certain conditions is balanced almost perfectly by the
attraction caused by the electron–plasmon interaction, either thedx22y2 or thesxy symmetry is
realized in the superconducting order parameter. When the initialCv4 symmetry of the
band spectrum of the Bi~2212! single crystal with a superlattice or the Y~123! single crystal with
one-dimensional chains is broken, an anomalous temperature dependence of the anisotropic-
gap width D is observed, and this dependence differs dramatically from the standardD(T)
dependence of the BCS theory. ©1997 American Institute of Physics.
@S1063-7761~97!01901-X#
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Recently experiments in angle-resolved photoemiss
spectroscopy~the ARPES method!1–6 involving single crys-
tals of layered cuprate metal-oxide compounds of
Bi2Sr2CaCuO21O81x and YBa2Cu3O72d type have revealed
a strong anisotropy in the electronic spectrum and the su
conducting gap in the plane of the CuO2 layers. In particular,
Shenet al.1 and Dessauet al.6 used the ARPES method t
study cuprate metal-oxide compounds with hole conduc
ity, YBa2Cu3O72d ~123!, YBa2Cu4O82d ~124!,
Bi2Sr2CuO61x~2201!, and Bi2Sr2CaCu2O81x~2212!, and
found near the Fermi level what became known as ‘‘fla
~nondispersive! bands narrower than 45 meV in the vicini
of the symmetricY- and M -points near the edges of th
Brillouin zone.1! More accurate measurements by Kin
et al.7 and Gofronet al.,8 who used polarized beams of sy
chrotron radiation with high energy resolution~better than 3
meV!, revealed that these bands are saddles with an infi
effective mass in theG2M direction for bismuth crystals an
in theG2M direction for yttrium crystals, and with a quas
one-dimensional electronic spectrum with a positive eff
tive mass in the perpendicular directions. According to Ab
kosovet al.,9,10 these quasi-one-dimensional sections of
spectrum and the related Van Hove root singularities in
electron density of states are the reason for the highTc of the
superconductivity transition,Tc>100 K, due to ordinary
Cooper pairing caused by electron–phonon interact
However, the width of the saddle sections observed by K
et al.7 and Gofronet al.8 below the Fermi level, a width cor
responding to the Fermi energyEF1'20230 meV, is com-
parable in order of magnitude to the width of the superc
ducting gap in high-Tc superconductors~D0>20 meV as
T→0!, and is much smaller than the characteristic energy
high-frequency optical phonons corresponding to vibratio
of oxygen ions~ṽph>50 meV! in cuprate metal-oxide com
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trons in the given case is not weakened, in comparison to
electron–phonon interaction, by the large Bogolyubo
Tolmachev logarithm ln(EF1/ṽph), as it is in common
superconductors,11 and the effective coupling constantl is
equal tolph2mC , wherelph is the dimensionless electron
phonon coupling constant, andmC is the Coulomb repulsion
constant. Since the screening of the Coulomb repulsion
weak and there is no contribution from transfer processe
the electron–phonon interaction due to the small value of
Fermi momentum (kF1,p/a), it is difficult to expect a high
value forTc , which with allowance for the root singularity in
the density of states is given by the relationshipTc'E1l

2

~see Ref. 9!, without any additional attraction mechanism
which to a great extent would balance the large value ofmC .
In particular, the retarded electron–plasmon interaction,12–14

with low-frequency collective excitations of the electro
density~excited by acoustic plasmons! and an acoustic dis
persion law, could produce such attraction.15

In their photoemission experiments with high angu
resolution, Dinget al.16 studied a Bi~2212! single crystal and
discovered anisotropic structure in the superconducting
in the plane of the~a2b! layers with maxima of different
sizes in the directionsG2M , G2X, and G2Y and deep
minima ~almost reaching zero! in certain intermediate direc
tions. As noted in Refs. 17 and 18, such aD vs. u depen-
dence does not agree with the model ofd-wave Cooper pair-
ing of current carriers because of their interaction with sp
density fluctuations,19–21 a model that predicts the existenc
of maxima in the gap size in theG2M direction and zero
values forD in theG2X andG2Y directions.

Ferenbacher and Norman17 have analyzed the aniso
tropic structure of the superconducting gapD~u! in
Bi2Sr2CaCu2O81x single crystals, observed by Dinget al.,16

on the basis of a phenomenological BCS model with

164$10.00 © 1997 American Institute of Physics
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which reflects the symmetry properties of the crystal latt
and can be written as a linear combination of separable
tentials, V~k,k8!5(i Ṽih i~k!hi~k8!, where the functions
hi~k! form the basis of an irreducible representation of
symmetry group Cv4. As Ferenbacher and Norma
showed,17 the best agreement with the experimental data
Ding et al.16 is achieved in the case of singletsxy wave pair-
ing, with the gap parameterD~k!;coskx cosky , although
such an approximation cannot describe the asymmetry
D~u! in different quadrants of the Brillouin zone, an asym
metry related to the superlattice in theG2Y direction with a
wave vectorQ'0.21(p/a,p/a), wherea is the lattice con-
stant in the plane of the layers.2! Normanet al.18 arrived at
the same conclusion as a result of a detailed analysis of v
ous types of Cooper pairing, includingdx22y2-wave pairing
with an anisotropic gapD~k!;coskx2cosky in the field of a
periodic superlattice potential and with allowance for lay
to-layer anisotropic s* pairing, for which
D~k!;coskx1cosky .

However, recent publications23,24 reported an error in
setting up the ARPES experiment of Refs. 16–18 and in
subsequent interpretation of the experimental data. Meas
ments of the superconducting gap in theX-quadrant of the
Brillouin zone were made with the synchrotron radiation p
larized in theG2X direction, while the selection rules for th
matrix elements forbid the photoemission of electrons in
G2X direction for such polarization. Hence the gap ma
mum observed in this direction by Dinget al.16 is an artifact,
caused by parasitic reflexes~‘‘ghosts’’! that are related to the
transfer processes on the periodic distortions of the cry
~superlattice! in theG2Y direction.

More accurate measurements by Dinget al.24 of the gap
in theX- andY-quadrants of the Brillouin zone with the ligh
polarized in theG2Y andG2X directions, respectively, hav
shown that there is no superconducting gap along the dia
nals of the Brillouin zone, which suggestsdx22y2 symmetry
in the order parameter. An independent argument in favo
thed-wave type of Cooper pairing in high-Tc superconduct-
ors is the result of interference tunneling experiments in
serving a spontaneous Josephson current in systems o
SQUID type25–27 and in generating half-integral magneti
flux quanta in rings with an odd number of weak bonds.28,29

Note, however, that thedx22y2 symmetry in the super
conducting order parameter is not a firm indication of a s
cific mechanism of Cooper pairing of current carriers and
particular, cannot serve as proof of the validity of the mec
nism of high-Tc superconductivity suggested in Refs. 19–2
in which superconductivity is caused by the exchange
virtual quanta of spin-density excitations~paramagnons! in
an almost totally antiferromagnetic Fermi liquid.

In the present paper we show that the extended sad
like anomalies observed near the edges of the Brillouin z
in the Bi~2212! and Y~123! single crystals7–9may be caused
by hybridization between overlapping wide and narrow 2D-
bands near the Fermi level. This leads to strong anisotrop
the cylindrical Fermi surface, which tentatively can be se
rated into ‘‘electron’’ and ‘‘hole’’ sections with positive an
negative curvature~effective mass!. As a result of competi-
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tion between electron–electron attraction~caused by the
electron–phonon and electron–plasmon interactions! and
Coulomb repulsion, both symmetries of the gap, thedx22y2

symmetry and thesxy symmetry~or thes* symmetry! can be
realized, and because of the dependence of the coupling
stants on the carrier concentration, a transition from one t
of symmetry to the other is possible as doping increases.
also show that when theCv4 symmetry of the electronic
spectrum is broken because of the emergence of a supe
tice in Bi~2212! or because of formation of ordered on
dimensional (1D) chains in Y~123!, the temperature depen
dence of the gap size may become anomalous, diffe
dramatically from the standard dependence ofDT in the
BCS theory.11

2. THE STRUCTURE OF Bi(2212) AND Y(124) SINGLE
CRYSTALS

We start our investigation by showing that the sadd
like sections observed in photoemission experiments7–9 near
theM - andY-points of the Brillouin zone in the electroni
spectrum of Bi~2212! and Y~123! single crystals within an
extremely narrow energy range~less than 20 meV! can be
the result of hybridization between the overlapping wide a
anomalously narrow 2D-bands. Indeed, let us assume th
near the Fermi level, in addition to a fairly wide conductio
band~wider than 1eV! caused by the overlap of, and hybrid
ization between, thedx22y2 orbitals of the copper ions an
thepx,y orbitals of the oxygen ions in the plane of the CuO2
layers30 and characterized by the following dispersion la
~Fig. 1!:

E1~kx ,ky!52t1~coskxa1coskyb22!

1 t̃1~coskxa coskyb21!, ~1!

with a andb the lattice constants in the plane of the laye
there exists a much narrower band~narrower than 0.1 eV!
caused, for instance, by the slight overlap of thed3z22r2

orbitals of the copper ions Cu21 with a similar dispersion law

E2~kx ,ky!52t2~coskxa1coskyb22!

1 t̃2~coskxa coskyb21!1E0 , ~2!

FIG. 1. Dispersion of the wide 2D-bandE1(kx ,ky) in cuprate layers of
CuO2 at t151 eV andt̃150.8 eV.
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FIG. 2. ~a! Dispersion of the lower
hybrid branchE2(kx ,ky) at t151
eV, t̃150.8 eV, E050.3 eV,
t250.016 eV, t̃250.032 eV, and
uVhu50.025 eV.~b! Dispersion of the
lower branch along the three princi
pal directions in the Brillouin zone.
where t2!t1 , t̃2! t̃1 , and E0 is the distance between the
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minima of the overlapping bands~E0.0!. Then the elec-
tronic spectrum that emerges as a result of hybridization
tween bands~1! and~2! is given by the following expression

E6~kx ,ky!5
1

2
@E1~kx ,ky!1E2~kx ,ky!#

6A1

4
@E1~kx ,ky!2E2~kx ,ky!#

21uVhu2,

~3!

whereVh is the matrix element of the interaction~repulsion!
of crossed branches.

Figure 2~a! depicts the dependence of the energy onkx
andky for the lower branch,E2(kx ,ky), of the hybrid spec-
trum ~3!, and Fig. 2~b! the dispersion relation of this branc
along the three principal directions of the Brillouin zone w
parameter values ensuring the best agreement~within the
given model! with the experimental data of Kinget al.7 and
Gofron et al.8 The upper hybrid branchE1(kx ,ky) lies
above the Fermi level and hence does not show up in p
toemission spectra~it can only be observed in inverse
photoemission spectra!.

As Figs. 2a and b show, the electronic spectrum conta
two saddle-like structures that sketch in theG2M directions
and have an infinitely large effective mass near theM -points
and a finite positive effective mass in the transverse dir
tions X2M2Y if the Fermi level lies fairly close to the
bottom of the saddle. At the same time, in theG2X and
G2Y directions the curvature of the branchE2(kx ,ky) and,
correspondingly, the effective quasiparticle mass are ne
tive. This agrees with Kubo’s conclusion,31 which follows
from an analysis of numerical band calculations, states
the sign of the transport mass of the current carriers may
different for different sections of the Fermi surface~with the
sign of their cyclotron mass remaining unchanged!, and ex-
plains the negative sign of the thermoelectromotive fo
with a positive~hole! sign of the Hall constant in cuprat
metal-oxide compounds.32,33Thus, the anisotropic Fermi sur
face determined by the conditionsE2(kx ,ky)5EF is divided
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hybridization between different orbitals of the Cu21 and O22

ions in the plane of the CuO2 layers.
By selecting the parameters in a certain way the mo

spectrum~3! with ~1! and ~2! can be made to agree bot
quantitatively and quantitatively with the experiment
data7–9 for Bi~2212! near theM -points and for Y~123! near
theY-points of the Brillouin zone. Note that for a spectru
with a single wide 2D-band~see Fig. 1! there can be no fla
~to within 1023 eV! extended saddle-like sections~observed
by King et al.7 and Gofronet al.8! in the spectrum for fairly
broad regions of the Brillouin zone. These saddle-li
anomalies emerge only in the case of crossing and hyb
ization between a wide band and an anomalously nar
2D-band whose relative position depends on ma
parameters—in particular, on the electrostatic interaction
the negatively charged ion clusters~CuO2!

22 clusters and the
positively charged ions Ca21 ~or Y31!, and on the Coulomb
respulsion energy of the electrons at a single site, and th
parameters may change with doping~because the extent t
which the ions of the crystal lattice are screened chan
with the level of doping!.

In Y~123! or Y~124! single crystals with CuO chain
aligned with the axisbiy, near theX-points of the Brillouin
zone there emerges additional hybridization between theD-
bands and a narrow 1D-band with a spectrum
E1D(ky)5W1 cos kyb, so that the hybrid spectrum for th
lower branch in~3! assumes the form

Ẽ6~kx ,ky!5
1

2
@E1D~ky!1E2~kx ,ky!#

6A1

4
@E1D~ky!2E2~kx ,ky!#

21uṼhu2.

~4!

This implies that in the vicinity of theX-points of the Bril-
louin zone there are no saddle-like anomalies near the Fe
level, but the extent to which the spectrum becomes o
dimensional grows in theG2Y direction. The saddle-like
structures in the vicinity of theY-points of the Brillouin zone
are retained ~see Ref. 8!. Note that Combescot an
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1D-bandE1D and a wide 2D-band with a spectrum of type
~1!, but the existence of the narrow 2D-band~2!, which leads
to saddle-like anomalies in the spectrum, was not taken
account.

3. THE SYSTEM OF EQUATIONS FOR A MULTICOMPONENT
GAP PARAMETER

When the electronic spectrum is highly anisotropic, o
cannot use the standard E´ liashberg equation35 for a gap size
that depends only on the energyv to describe the supercon
ducting state. On the other hand, when the electron–elec
interaction is strong~l>1!, one cannot use the BCS mode
which correspond to the loose-binding approximation~l!1!.
Furthermore, the BCS theory11 lacks the rigorous macro
scopic justification for using a separable potent
V~k,k8!5V̄h~k!h~k8! or a combination of such potentials17

in describing an anisotropic gapD~k!.
In view of this, we believe it is advisable to employ th

model of a multiband~multivalley! superconductor36–38with
a multicomponent order parameterDi j , which is defined as a
set of gaps in different parts of an anisotropic~multiply-
connected! cylindrical Fermi surface:

D i j ~k,v!5T(
v8

E d2k8

~2p!2 (
l ,m

Wi j ,lm~k,k8,v

2v8!Flm~k8,v8!, ~5!

wherev andv8 are discrete Matsubara frequencies,Wij ,lm
are the matrix elements of the retarded electron–electron
teraction calculated with electronic wave functions belon
ing to different bands, andFlm are the anomalous Green
functions. Of course such an approach cannot yield an
plicit angular dependence of the anisotropic gap size,D~u!,
and takes into account only the average values ofuDu and the
gap sign in different sections of the Fermi surface as a fu
tion of the coupling constants~see below!.

If we ignore the ‘‘crossed’’ Cooper pairing of electron
from different sections of the anisotropic Fermi surface a
setDi j50 for iÞ j , the system of equations~5! for the gap
sizesD i5D i i after averaging over the momenta~within each
section of the Fermi surface! assumes the form

D i~v!52T(
v8

E dj(
j

n j~j!W̃i j ~v2v8!F j j ~j,v8!,

~6!

wherej is the electron energy measured from the comm
Fermi level, andnj andW̃i j are the density of states and th
matrix elementsWii , j j averaged over the area of thej th sec-
tion of the Fermi surface~the matrix elements describe bo
the retarded electron–electron attraction near the Fermi
face caused by electron–phonon interaction and scree
Coulomb repulsion!. HereW̃i j for iÞ j determine the prob-
ability of virtual two-particle transitions between the diffe
ent sections of the Fermi surface.

Note that ‘‘crossed’’ Cooper pairing withDi jÞ0 (iÞ j )
can be ignored, since for sections of the Fermi surface w
different curvatures, such pairing leads to the formation
pairs with finite momentumq;p/a whose binding energy is
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equations~6! is valid only for extremely pure superconduc
ors, where the scattering of current carriers by imperfecti
in the crystal lattice and impurities with a characteristic tim
t does not mix electronic states belonging to different s
tions of the Fermi surface in the process of Cooper pairi
i.e., t.Di

21. In the case of ‘‘impure’’ superconductors
tDi<1, we must allow for the gap becoming isotropic in th
plane of layers~a2b! because of electron relaxation, i.e., th
existence of finite off-diagonal components in the order
rameter. In what follows we examine the case of a p
superconductor~tDi i@1!.

The retarded electron–electron interaction in Eqs.~6! in
different sections of the Fermi surface, with allowance
electron–phonon interaction and Coulomb repulsion, can
written as

W̃i j ~v!5^ug̃ph~k,k8!u2Dph~k2k8,v!1G̃ee~k

2k8,v!& i j , ~7!

whereg̃ph andDph are the matrix element of the electron
phonon interaction and the phonon Green’s function~for
nonpolar phonons!, G̃ee is the vertex part~a four-prong dia-
gram! of the screened electron–electron Coulomb interact
in the multicomponent Fermi liquid of multiband metals,36

and angle bracketŝ•••&i j stand for averaging overk in the i th
section of the Fermi surface and overk8 in the j th section.

Because of the low concentration of degenerate cur
carriers in 2D-layers of CuO2 in cuprate metal-oxide com
pounds, and hence the relatively low values of the Fe
momentumkF,p/a, for virtual phonons participating in the
Cooper pairing of current carriers, transfer processes are
important, since the momentum transferq<2kF lies within
the first Brillouin zone, in contrast to the case of ordina
polyvalent metals withkF@p/a ~in the extended-band
scheme!. Hence, in ionic crystals of metal-oxide compound
all phonon branches are either polar~dipole-active! or non-
polar ~both acoustic and optical!, and polar optical phonons
~in particular, high-frequency oxygen vibrational modes! can
be incorporated into the dispersion of the effective dielec
constant of the ionic crystal, as is the case with multival
semiconductors.39–41.

Furthermore, as shown in Refs. 42 and 43, when a l
ered crystal contains an anomalously narrow 2D-band near
the Fermi level, partially filled by ‘‘heavy’’ (h) charge car-
riers that are almost totally localized at lattice sites, the en
Brillouin zone contains a slowly decaying branch of acous
plasmons that hybridizes with longitudinal optical phonon
The electron–electron attraction caused by the exchang
virtual quanta of hybrid phonon–plasma vibrations to a gr
extent balances the Coulomb repulsion near the Fermi
face in ionic crystals with a large DC dielectric consta
Indeed, in view of the Kramers–Kronig relation for the r
ciprocal dielectric constant of a crystal,«̃ 21(q,v), the
electron–plasmon coupling constant is given by43

lpl52
2

p
n~0!E

0

` dv

v
^VC~q!Im «̃ 21~q,v!&

5mC
`2mC

0 , ~8!
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~momentum transfer!, VC(q) is the matrix element of
the unscreened Coulomb interaction, a
mC

`5n(0)^VC(q)/«`(q)& andmC
05n(0)^VC(q)/«0(q)& are

the dimensionless Coulomb repulsion constants at h
~v→`! and low ~v→0! frequencies, with«`(q) and «0(q)
the high- and low-frequency lattice dielectric constants.
~8! implies, when«0@«`~0!, i.e., whenmC

0!mC
`, the coupling

constantlpl is approximately equal tomC
`, i.e., the combina-

tion of the electron–plasmon interaction and the po
electron–phonon interaction balances Coulomb repulsion
most perfectly.

On the other hand, one must bear in mind that in
‘‘electron’’ and ‘‘hole’’ sections of the anisotropic Ferm
surface with different signs of the effective mass, the Blo
wave functions of the band states,Ck j~r !5uk j~r !e

ikr , are de-
termined by the overlap of, and hybridization between, d
ferent orbitals of the Cu21 and O22 ions in the CuO2 layers,
so that the off-diagonal matrix elementsW̃i , j ( iÞ j ) must
contain the matrix elements of the electron–phonon
electron–plasmon interactions and of unscreened Coul
repulsion, calculated using different~and almost orthogonal!
wave functions:

g̃i j
ph~k,k8!5(

n
E drCki* ~r !~ek2k8

n ¹Ṽei~r !!Ck8 j~r !,

~9!

g̃i j
pl~k,k8!5E drCki* ~r !S Ṽei

C ~r !

ZiAṼC~q!
D Ck8 j~r !, ~10!

Vi j
C~k2k8!5E drE dr 8Cki* ~r !Ck8 j

* ~r 8!
e2

ur2r 8u

3Ck8 j~r 8!Cki~r !, ~11!

whereeq
n is the polarization vector of thenth phonon branch,

Ṽei~r ! and Ṽei
C ~r ! are the screened pseudopotential of

electron–ion interaction and its Coulomb part,Zi is the av-
erage charge~valence! of an ion, andṼC(q) is the matrix
element of screened Coulomb repulsion~see Appendix!.

Because the nonpolar electron–phonon interaction is
cal and the wave functions in the electron and hole sect
of the Fermi surface are practically orthogonal, the o
diagonal matrix elements~19! can be assumed negligible, s
that the matrix elements of the non-local~long-range! Cou-
lomb interaction, Eq.~11!, and of the electron–plasmon in
teraction, Eq.~10!, remain finite.

Thus, on the Fermi surface the dimensionless coup
constants can be written as

l̃i i[2n i W̃ii ~0!5l i i
ph1l i i

pl2m i i ,

l̃i j[2n j W̃i j ~0!5l i j
pl2m i j , ~12!

where l i i
ph5n i^ugii

phu2& are the nonpolar electron–phono
coupling constants,l i j

pl5n j^ugi j
plu2& are the electron–plasmo

and polar electron–phonon coupling constants~which allow
for hybridization between acoustic plasmons and dipo
active optical phonons!, and m i j5n j^Vi j

C& are the corre-
sponding Coulomb repulsion constants at high energ
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negative, whileli i can be either positive or negative depen
ing on the values of the nonpolar electron–phonon coup
constantl i i

pb and the static screened Coulomb repulsion c
stantm i i

0[m i i2l i i
pl.0.

4. SYMMETRY OF THE MULTICOMPONENT ORDER
PARAMETER IN A Bi(2212) SINGLE CRYSTAL

As noted earlier~see also Ref. 44!, because of strong
hybridization between the overlapping wide and anom
lously narrow 2D-bands, the electronic spectrum of a la
ered crystal of the Bi~2212! type contains extended saddl
like structures in theG2M directions. These structures hav
been observed in ARPES experiments7–9 with high energy
resolution. As a result of this, at a certain level of dopin
when the Fermi level lies above the bottom of the saddle-
structure~Fig. 2!, the anisotropic cylindrical Fermi surfac
can be divided into four pairs of quasi-one-dimension
‘‘electron’’ sections and four ‘‘hole’’ sections with, respec
tively, positive and negative curvature~effective mass!. Here
the density of states in the quasi-one-dimensional ‘‘electro
sections near theM -point of the Brillouin zone has a Van
Hove root singularity, which strengthens the electro
electron interaction and drives the superconducting transi
temperatureTc up.

9,10

If we ignore the breaking of theCv4-symmetry of the
initial spectrum and Fermi surface caused by the appeara
of a superlattice in theG2Y direction,1 the system of equa
tions ~6! allows for four types of solution:

~1! the gaps in the mutually perpendicular ‘‘electron
sections of the Fermi surface are equal in absolute value
have opposite signs, while the gaps in the ‘‘hole’’ sectio
~along the diagonals of the Brillouin zone! vanish; such a
solution corresponds to thedx22y2-wave type of Cooper pair-
ing;

~2! the gapsD1 in all the ‘‘electron’’ sections of the
Fermi surface are equal in absolute value and have the s
sign, while the gapsD2 in the ‘‘hole’’ sections are nonzero
and have a sign~a phase shift byp! opposite to that ofD1;
such a solution corresponds to thesxy- ~or s* -! type of sym-
metry in the superconducting order parameter;

~3! the gaps in all sections of the Fermi surface are of
same sign~say D1.0 andD2.0! but differ in magnitude
~D1ÞD2! because of a difference in the densities of stat
this corresponds to a quasi-isotropic solution of thes-type;
and

~4! the solution with thedxy-type of symmetry of the
gap:D(k);sinkx sinky .

The last solution is probably possible only if the Ferm
level is near the bottom of the saddle-like sections, wh
these sections of the band spectrum contribute little to
effective coupling constant, irrespective of the high dens
of states.

In the case ofdx22y2 symmetry~Fig. 3a! the system of
equations~6! in the loose-binding approximation leads to
simple equation for the absolute value of the gap sizeD1:

15~l1122l118 1l119 !L1 , ~13!

where
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tropic superconducting gap for a
dx22y2-symmetric order parameter an
the constant-energy lines of the lowe
hybrid branch of the spectrum
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surface indicate the ‘‘electron’’ sec-
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‘‘hole’’ sections. ~b! The structure of
the anisotropic superconducting ga
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or
L1~ uD1u!5
2 E

2EF1 Aj21uD1u2
A

j1EF1

3tanh
Aj21uD1u2

2T
, ~14!

EF1 and l11 are the Fermi energy and the dimensionle
coupling constant in the quasi-one-dimensional ‘‘electro
section of the Fermi surface with a root singularity in t
density of states,9,10 andl118 andl119 are the constants of th
interaction between electrons in different saddle-like secti
of the Fermi surface near theM -points of the Brillouin zone
separated by the wave vectors~p/a, p/a! and ~0,2p/a!, re-
spectively.

Note that the case where all coupling constants are n
tive ~l11,0,l118 , 0, andl119 , 0! corresponds to themagno
mechanism of Cooper pairing in an almost totally antifer
magnetic Fermi liquid,11–13so that a superconducting trans
tion is possible, as Eq.~13! implies, only when the interac
tion is highly anisotropic, when the absolute value of t
coupling constantl118 along a diagonal of the Brillouin zon
satisfies theconditionul118 u . (1/2)(ul11u 1 ul119 u).

On the other hand, when near the Fermi level
electron–electron attraction caused by the electron–pho
and electron–plasmon interactions is predominant in eac
the ‘‘electron’’ sections of the Fermi surface
l115l11

ph2m11
0 .0, but there is also Coulomb repulsion b

tween electrons in neighboring sections~l118 , 0 andl119
, 0!, and Cooperd-pairing is possible, according to~13!, if

Ld5l1112ul118 u2ul119 u.0.

In ~14!, we have allowed here for the fact that when t
Fermi level is close to the bottom of the saddle-like stru
tures, the Fermi energyEF1 is much lower than the averag
phonon energyṽph>50 meV and, what is more, it is muc
lower than the energy of the bound~hybrid! phonon–plasma
vibrationsṼ>0.1 eV ~see Ref. 43!, so that with allowance
for the root singularity in the density of states andd-pairing
the superconducting transition temperature is, in order
magnitude, equal toTc

d'EF1Ld
2 ~see Ref. 9!.
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eter, the system of equations~6! for the gapsD1 and D2
assumes the form

D15D1~l1112l118 1l119 !L112D2~l121l128 !L2 , ~15!

D25D2~l2212l228 1l229 !L212D1~L211l218 !L1 , ~16!

where

L2~ uD2u!5E
0

Ṽ dj

Aj21uD2u2
tanh

Aj21uD2u2

2T
, ~17!

with Ṽ the interaction-energy cutoff in the ‘‘hole’’ section o
the Fermi surface. Here we assume that the Fermi energ
the ‘‘hole’’ sections,EF2, is higher thanṼ, so that in addi-
tion to allowing for the electron–phonon and electron
plasmon interactions the constantsl22, l228 , andl229 allow
for the Coulomb pseudopotential~see Ref. 11!,

m22* 5m22F11m22 ln
EF2

Ṽ
G21

, ~18!

while the constantsl11, l118 , andl119 contain the unrenor-
malized Coulomb repulsion constantm11, sinceEF1,Ṽ.

An analysis of the system of equations~15! and ~16!
shows that for negative values of the cross constants,li j,0
andl i j8 , 0 for iÞ j ~i , j51,2!, which means that Coulomb
repulsion between the ‘‘electron’’ and ‘‘hole’’ sections of th
Fermi surface is predominant, the solution that is energ
cally favored and has the highest superconducting transi
temperatureTc

s is the one with gapsD1 andD2 of opposite
sign ~say,D1.0 andD2,0!, which is equivalent to the eight
lobe sxy-type of symmetry in the superconducting order p
rameter~Fig. 3b!. Whenli j.0 andl i j8 . 0 ~attraction!, the
favored solution is the one in whichD1 andD2 are of the
same sign, which corresponds to quasi-isotropics pairing.

If for the sake of simplicity we ignore the root singula
ity in the density of states in~14! and assume tha
L15L25ln(1.134Ṽ/Tc

s) as T→Tc
s, then the condition that

the system of equations~15! and ~16! linearized forD1,2→0
has a solution yields the following exponential formula f
Tc
s of the BCS type:
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FIG. 4. ~a! The surface that separates
the regions ofd ands pairing in the
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space of parametersl̃11[ l111 l119 ,
l̃22 [ l22 1 2l228 1 l229 , andl118 at
l̃1250.1. Under the surfaceTc

d.Tc
s,

and above the surfaceTc
s.Tc

d except
for a shaded area above whichs pair-
ing is impossible in the given model
~b! The curves representing the de
pendence ofTc

s and Tc
d on l118 at

l̃2250.5l̃11 and l̃1250.1 for l̃1151
~curve1!, l̃1150.5 ~curve2!, l̃1150
~curve 3!, l̃11520.5 ~curve 4!, and
l̃11521 ~curve 5!. The dashed sec-
tions are the continuations of curve
1 and 2 into the regions where the
corresponding values ofTc

s and Tc
d

are smaller than the maximum valu
of Tc .
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Tc51.134V expF2
Ls

G , ~19!

where

Ls5
2~l11L222l̃12

2 !

~L111L22!6A~L112L22!
214l̃12

2
, ~20!

L i i5l i i12l i i8 1l i i9 , i51,2,

l12
2 5~l121l128 !~l211l218 !. ~21!

In ~20! we must select the larger of the two solutions, whi
corresponds to the maximum value ofTc

s.
A comparison of the superconducting transition tempe

turesTc
d andTc

s calculated on the basis of Eqs.~13! and~14!,
on the one hand, and on the basis of Eqs.~15!–~17!, on the
other, makes it possible to find the range of parameter
which the gap is eitherd-symmetric ors-symmetric.

Figure 4a depicts the surface that separates the reg
of d- ands-pairing in the space of the parametersl̃11 [ l11

1 l119 , l̃22[L22, andl118 for a value of the constant of cros
interaction between the ‘‘electron’’ and ‘‘hole’’ sections o
the Fermi surface,l̃12, equal to 0.1. Under this surface lie
the region ofd pairing, whereTc

s,Tc
d, and above it the re-

gion of s pairing, whereTc
s.Tc

d. ~Note that within a certain
range ofl118 , above the shaded section of the surface th
lies a region where there is neithers nor d pairing.!

We see thatd pairing is possible only for negative va
ues of the constantl118 , which describes the interaction be
tween the neighboring ‘‘electron’’ sections of the Fermi su
face with a momentum transferq'p&/a. The smallness of
l̃12 is due to the smallness of the matrix elementug12

phu
caused, on the one hand, by the local nature of the electr
phonon interaction and the orthogonality of the electro
wave functions in different sections of the Fermi surface a
on the other, by the almost perfect balance between
weakly screened Coulomb repulsion and the retar
electron–plasmon interaction~see Eq. ~8!!.3! As l̃12 in-
creases, the boundary between the regions withs andd pair-
ing shifts in the direction of larger absolute values of t
negative coupling constantl118 .
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the same quasi-one-dimensional~saddle-like! section of the
Fermi surface produced by the electron–phonon a
electron–plasmon interactions, i.e.,l̃11.0, even a weak
Coulomb repulsion between the electrons in different s
tions of the Fermi surface, whenl118 , 0 andl119 , 0 ~but
ul119 u , l11 andl̃11.0!, is sufficient ford pairing to emerge.
Such repulsion can be the result of either the electro
magnon interaction or incomplete balance between scree
Coulomb repulsion and the attraction caused by electro
phonon and electron–plasmon interactions.

On the other hand, Fig. 4a shows that when repulsion
the saddle-like sections is predominant~l̃11,0!, d pairing is
possible only for large absolute values of the negative c
pling constantl118 , which corresponds to an anisotropic in
teraction of current carriers and paramagnons.19–21

Figure 4b presentsTc
s andTc

d as functions ofl118 . The
functions were calculating using the linearized equatio
~13!, ~15!, and~16! for different values ofl̃11 at l̃2250.5l̃11
andl̃1250.1. Clearly, whenl̃11,0, there is a range of value
of l118 within which bothTc

s andTc
d vanish~curves4 and5!.

At the same time, attraction in the ‘‘electron’’ sections of th
Fermi surface~l̃11.0!, even against the background of r
pulsion, which forms thed symmetry of the gap (l118 , 0),
drives Tc up in comparison to the effect produced by t
electron–magnon interaction~l̃11,0!.

Thus, the competition between attraction~caused by the
electron–phonon and electron–plasmon interactions! and
Coulomb repulsion, combined with the high anisotropy
the electron spectrum, may lead either to ad-symmetric or
an s-symmetric superconducting gap, depending on the v
ues of the various parameters. Note that the values of
coupling constant may change considerably as a resul
variation of the level of doping~by holes or electrons!, as
suggested by the strong concentration dependence ofTc in
cuprate metal-oxide compounds~see, e.g., Ref. 47!. This
means that in high-Tc superconductors, such as Bi~2212!
single crystals, the order parameter may change symm
under a changing dopant concentration.
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5. BREAKING OF THE SYMMETRY OF THE SPECTRUM
AND THE TEMPERATURE DEPENDENCE OF THE
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GAP WIDTH IN Bi(2212) AND Y(123) SINGLE CRYSTALS

As shown in Refs. 16 and 22, Bi~2212! single crystals
contain a long-wave superlattice aligned with one of the
agonals of the Brillouin zone~in the G2Y direction!. This
superlattice breaks theCv4 symmetry of the electronic spec
trum in the plane of the layers. In the case ofd pairing, this
should not greatly affect the symmetry of the supercondu
ing order parameterDd(k);coskxa2coskya, which van-
ishes in theG2X andG2Y directions.

However, in the case ofsxy pairing, the presence of
superlattice may lead to symmetry breaking in the spect
and the superconducting gap~for instance, to different value
of the gap size in theG2X andG2Y directions!. Such sym-
metry of the spectrum and gap has been observed in AR
experiments.3–5 In this case, within the model of an aniso
tropic superconductor with a multicomponent ord
parameter36–38 the system of equations~6! can be written as
follows ~i , j51,2,3!:

D1~12l̃11L1!5D2l̃12* L21D3l̃13* L3 , ~22!

D2~12l̃22* L2!5D1l̃21L11D3l̃23* L3 , ~23!

D3~12l̃33* L3!5D1l̃31L11D2l32* L2 , ~24!

whereD2 andD3 are the gaps in the nonequivalent ‘‘hole
sections of the Fermi surface~in the G2X andG2Y direc-
tions!, L3 is defined in~17! with uD2u replaced byuD3u, and the
parametersl̃ i j* differ from the constantsl̃ i j in that the Cou-
lomb constantsmi j are replaced by the pseudopotentialm i j*
5 m i j @1 1 m i j ln(EFj /Ṽ)#

21. Here the diagonal coupling
constantsl̃11, l̃22* , andl̃33* are positive because of the stron
electron–phonon and electron–plasmon interactions, w
the off-diagonal coupling constantsl̃21 and l̃31 are negative
because of suppression of the electron–phonon interac
caused by the dominant nature of Coulomb repulsion~see
Eq. ~12!!. The constantsl̃i j* at iÞ j ~j52,3! can be either
negative or positive thanks to the weakening of repulsion
the factor@11mj j ln(EFj /Ṽ)#, although in the given case th
Bogolyubov–Tolmachev logarithm is much smaller than
common superconductors.11

Equations~22!–~24! imply that for l̃11.0 andl̃i i* . 0
~i52,3! but l̃21,0 andl̃31,0 ~with l̃i j* of arbitrary sign! the
absolute values ofD1, D2, andD3 attain their maxima when
the signs ofD2 andD3 are opposite to the sign ofD1 ~say,
D2,0 andD3,0 for D1.0!, which corresponds to the break
ing ~D2ÞD3! of the symmetry of thesxy-type in the super-
conducting order parameter~Fig. 5a!.

Note that such a many-lobed gap structure, with
‘‘lobes’’ in the G2M andG2X(Y) directions having differ-
ent signs~opposite phases!, can, at least in principle, lead t
generation of spontaneous magnetic fluxes in supercond
ing Bi~2212! rings for certain patterns of the weak~Joseph-
son! bonds.29 On the other hand, because the signs of the
‘‘lobes’’ in the G2M directions in the case ofsxy symmetry
are the same, no spontaneous Josephson current shou
pear in interference experiments with tunneling junctions
the mutually perpendicular faces of a layered Bi~2212! single
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tunneling junctions is aligned with a diagonal of the Br
louin zone~say,G2X!, then in such a circuit there should,
least in principle, be a phase shift byp because the sign
~phases! of the ‘‘lobes’’ of the order parameter in theG2M
andG2X directions are opposite~see Fig. 5a!. Such tunnel-
ing experiments should resolve the problem of the type
symmetry of the superconducting order parameter
Bi~2212! for different doping levels.

In Y~123! and Y~124! single crystals the quartic symme
try Cv4 is broken because of the 1D-chains of CuO forming
along the axisbiy when oxygen content is at its maximum
Here to approximately describe the structure of the an
tropic superconducting gap we can use the system of e
tions ~22!–~24!, provided thatD1, andD2 are interpreted as
the gap sizes in the cylindrical sections of the Fermi surf
that are coupled with the 2D-layers of CuO2 by the Cooper
pairing of the electrons on, respectively, the ‘‘banks’’ of th
quasi-one-dimensional extended saddle-like structures in
vicinity of the Y-points of the Brillouin band and in the
region of strong hybridization between the 1D- and 2D-
bands in the vicinity of theX-points of the Brillouin zone,
andD3 is interpreted as the gap size in the flat sheets of
Fermi surface that are coupled to the 1D-chains of CuO.
Allowing for the Van Hove root singularity in the density o
states of the wide 1D-band, we can write the integralL3 as

L35
1

2 E
2Ṽ

Ṽ dj

Aj21D3
2
A EF3

j1EF3
tanhAj21D3

2

2T
, ~25!

whereEF3 is the Fermi energy of the electrons in the 1D-
chains (EF3@Ṽ). Combescot and Leyronas34 found thatD1
andD2 have opposite signs~D1.0 andD2,0!, and the sign
of the principal ‘‘lobe’’ of D3 in the G2Y direction ~along
the 1D-chains! coincides with the sign ofD2. The corre-
sponding structure of a gap with opposite signs in theG2X
andG2Y directions is shown in Fig. 5b.

Note that the possibility that such a gap structure ex
in Y~123! and imitates thed-wave type of symmetry in the
superconducting order parameter in the tunneling exp
ments of Wollmanet al.,25 Iguchi and Wan,26 and Browner
and Ott27 was pointed out independently in Refs. 48 and 4

To determine the temperature dependence of the par
etersD1,0, D2,0, andD3,0, we solved the system of non
linear equations~22!–~24! numerically. Figure 6 depicts the
results of calculations obtained withl̃21,0, l̃31,0, andl̃i j*
, 0 ~for iÞ j ! but l̃11.0 andl̃i i* . 0 ~i52,3!. Clearly, in this
case the temperature behavior of the negative gapsD2 andD3
differs dramatically from the behavior predicted by BC
theory. In particular, a ‘‘step’’ dependence ofD2 onT, which
qualitatively agrees with the experimental data of Ref.
can be achieved by proper selection of the values of
parameters in the problem. Figure 6 shows that the ani
ropy of the absolute value ofD~u! is temperature-dependen
and increases asTc is approached.

6. CONCLUSIONS

Using the model of a superconductor with a multicom
ponent order parameter, we found that the anisotropic st
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FIG. 5. ~a! The structure of the gap in
Bi~2212! with brokensxy symmetry of
the ‘‘butterfly’’ type.48 ~b! The struc-
ture of the anisotropic gap in Y~123!
imitating d pairing.
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experiments with high-Tc superconductors based on cupra
metal-oxide compounds, is a consequence of the strong
isotropy of the electronic spectrum in the plane of the laye
Such anisotropy may be the result, on the one hand, of
bridization between overlapping wide and narrow bands a
on the other, of competition between effective attract
caused by electron–phonon and electron–plasmon inte
tions and Coulomb repulsion. Depending on the values of
coupling constants, the superconducting gap is eit
d-symmetric ors-symmetric. Furthermore, since the co
pling constants and the characteristic interaction energies~in
particular, the Fermi energyEF1 in the saddle-like section
of the Fermi surface, and the energy of acoustic plasm
hybridizing with optical phonons! depend on the carrier con
centration, a fact revealed by a strong concentration dep
dence ofTc for cuprate metal-oxide compounds,47 it be-
comes possible, at least in principle, to initiate a transit
from one type of symmetry to the other by varying the do
ing level. According to a recent report,51 a change in the
symmetry of the order parameter in Tl~2201! and Bi~2212!
occurs under variations of oxygen content.

FIG. 6. The temperature curves of the positive~D1! and negative~D2 and
D3! parameters of the superconducting gap for the following values of
coupling constants:l̃1150.58,l̃22* 5 0.45,l̃33* 5 0.42,l̃12* 5 20.01,l̃13* 5

2 0.0,l̃21520.0015,l̃23* 5 20.021,l̃31520.001, andl̃32* 5 20.001; here
EF1/Ṽ50.7.
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in Y~123! single crystals with ordered 1D-chains the initial
Cv4 symmetry of the band spectrum in the plane of the lay
is broken, one may observe asymmetric structures in the
isotropic superconducting gap and an anomalous tempera
behavior of the gap size differing dramatically from the sta
dard temperature behavior ofD in the BCS theory.

APPENDIX

In the case of ‘‘heavy’’ (h) charge carriers in the anoma
lously narrow band, which are almost totally localized
crystal lattice sites, the matrix element of electron–plasm
coupling can be calculated by using the Hamiltonian of
electron–ion interaction,

Hint
~ei!5(

n
FdRn¹Ṽei~r2Rn

0!

1
dZi~r2Rn

0!

Zi
Ṽei
C ~r2Rn

0!G , ~A1!

where Ṽei and Ṽel
C is the screened electron–ion interactio

pseudopotential and its Coulomb part,dRn is a small dis-
placement of an ion from its equilibrium positionRn

0, and
dZi is the deviation of the charge of an ion with a varyin
~fluctuating! valence from its average valueZi at thenth site
caused by the longitudinal fieldw~r ! of the collective vibra-
tions of the number density of theh-carriers. The first term
on the right-hand side of Eq.~A1! describes the ordinary
electron–phonon interaction with acoustic and opti
phonons in the harmonic approximation with matrix e
ments ~12!. The second term corresponds to the adiaba
electron–plasmon interaction and, with allowance for t
Poisson equation

Dw~r !524pe(
n

dZi~r2Rn
0!

in the Fourier representation, by analogy with~12! assumes
the form

e
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~A2!

where wq is the Fourier transform of the potentialw~r !,
which is related to the Fourier transform of the perturbat
dZi~q! of the ion charge density by the formu
q2wq54pedZi~q!.

On the other hand, the field operators of the collect
excitations of the charge density are defined asŵq

1 [ wq* cq
1

andŵq[wqĉq , wherewq* 5 w2q , andĉq
1 andĉq are the cre-

ation and annihilation Bose operators, which are related
the electron density operatorsr̂q 5 Sâk1q,s

1 âk,s by

r̂q5
q2

4pe
ŵq5

q2wq

4pe
ĉq , r̂2q5

q2

4pe
ŵq

15
q2wq*

4pe
ĉq

1 .

~A3!

In view of this, the Coulomb Hamiltonian

HC5
1

2 (
q
VC~q!r̂qr̂2q ~A4!

in the self-consistent field approximation, with allowance
adiabatic screening of low-frequency perturbations of
charge density ofh-carriers by almost free ‘‘light’’ (l ) cur-
rent carriers within a broad conduction band, can be writ
to high accuracy in a form similar to the Fro¨hlich Hamil-
tonian:

H̃C> (
q,k,s

q2

4pe
wqṼC~q!~ âk1q,s

1 âk,sĉq
11H.c!,

ṼC~q!5
4pe2

q21k l
2 , ~A5!

with kl the reciprocal radius of screening by thel -carriers.
At the same time, the vertex part~a four-prong diagram!

of the retarded screened Coulomb interaction in the reg
where there are slowly decaying acoustic plasm
(qvFh!v!qvFl) has the form13,43

Gee~q,v![
4pe2

q2«~q,v!
>ṼC~q!

v2

v22vpl
2 ~q!

, ~A6!

wherevpl(q) ' qVh /Aq21k l
2, with Vh the plasma fre-

quency of theh-carriers.
By analogy with the electron–phonon interaction, w

can introduce the plasma Green’s function

Dpl~q,v!5
vpl~q!

2 F 1

v2vpl~q!1 id

2
1

v1vpl~q!2 idG , ~A7!

so that Eq.~A6! assumes the form

Gee~q,v!5ṼC~q!@Dpl~q,v!11#. ~A8!

The first term on the right-hand side corresponds to the
tarded electron–electron interaction caused by the excha
of virtual acoustic plasmons, and the corresponding effec
electron–plasmon interaction Hamiltonian can be written
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pl k1q,s k,s q 2q

where gpl
2 ~q!5ṼC~q!. Comparing~A9! and ~A5!, we find

that

q2wq

4pe
5
gpl~q!

ṼC~q!
5

1

AṼC~q!
, ~A10!

from which Eq.~13! follows. Note that because of the sin
gularity of the Coulomb part of the pseudopotential,Ṽei

C ~r !,
at the pointr50, in the electronic wave functionsCk,i(r ) we
can replace the smooth Bloch factorsuk,i(r ) by uk,i(0) and
take the latter outside the integral with respect tor . If we
also bear in mind that the Fourier transform ofṼei

C ~r ! is

Ṽei
C ~q!5

4pe2Zi
q21k l

2 ,

we can write the matrix element of the electron–plasm
interaction in a partially factorized form,

g̃i j
pl~k,k8!>uk,i* ~0!uk, j~0!gpl~k2k8!, ~A11!

which reflects the anisotropy of the band spectrum in sin
crystals of cuprate metal-oxide compounds.
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there are no ‘‘flat’’ bands near the Fermi level.1

2!Note that Witherset al.22 were the first to point out the existence of
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3!Earlier in the double-band superconductor model it was assumed45,46 that
the off-diagonal band-to-band coupling constant is at its maximum.
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Anisotropy of the magnetic properties of the cuprates Dy 2BaCuO5 and Ho 2BaCuO5 :

-

magnetic and spectroscopic investigations
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The magnetization of single crystals of the cuprates Dy2BaCuO5 and Ho2BaCuO5 along different
crystallographic directions is measured using a SQUID magnetometer in fields up to
54 kOe. Spectroscopic investigations of the exchange splitting of the levels of Er31 probe ions
in these cuprates are also performed. It is shown that the cuprates investigated are highly
anisotropic antiferromagnets, which display quasi-Ising behavior in a magnetic field. The nature
of the two spontaneous magnetic phase transitions detected in Dy2BaCuO5 and
Ho2BaCuO5 is analyzed. It is shown that the low-temperature transition is due to an increase in
rare-earth–copper exchange. ©1997 American Institute of Physics.@S1063-7761~97!02001-5#
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Rare-earth cuprates having the general form
R2BaCuO5 with R5La, Nd–Gd, Dy–Lu, and Y are known
as attendant components in 1-2-3 high-Tc superconductors
The compounds with La and Nd~the so-called ‘‘brown
phase’’! are tetragonal and belong to theP4/mbm space
group.1 The compounds with the smaller rare-earth io
~Sm–Gd, Dy–Lu, and Y!, which have been termed th
‘‘green phase,’’ crystallize in the orthorhombic system w
thePbnmspace group.2,3

The crystal structure of the green phase of R2BaCuO5
can be described as a three-dimensional framework of R7

polyhedrons~monocapped triangular prisms! joined by com-
mon faces and edges, whose cavities are occupied by C21

and Ba21 ions. The Cu21 ions are located in isolated CuO5
tetragonal pyramids, and the Ba21 ions are found in BaO11
polyhedrons. All the cations occupy fourfold sites withCs

symmetry, there being two inequivalent sites R1 and R2
the rare earth. The cations are located at thez51/4, and 3/4
levels,1! through which mirror symmetry planes of the loc
Cs symmetry point group of the cation site pass. The
oxygen ions are found in these planes.

The oxygen coordination polyhedrons for the rare-ea
ions in the two sites differ only slightly; however, their loc
environments differ significantly. The rare-earth ion in t
first site is bonded by means of oxygen ions to six nea
copper ions, five of the sixR–O–Cubond angles being clos
to 180°, while the ion in the other site is bonded to on
three copper ions at bond angles close to 90°.

Figure 1 shows the two inequivalent rare-earth ions
and R2 together with their local environments projected o
the z51/4 plane in the case of Dy2BaCuO5.

The presence of two magnetic subsystems formed by
Cu21 and R31 ions is responsible for the complicated ma
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erty of most of these compounds with magnetic rare ear
particularly Dy2BaCuO5 and Ho2BaCuO5, which were in-
vestigated in the present work, is that they have two m
netic ordering temperatures or Ne´el points TN1 and TN2
~Refs. 4–11!. The high-temperature transition atTN1 is a
second-order phase transition, while the transition at
lower temperatureTN2 occurs abruptly and is apparently
first-order phase transition.

According to the results of different investigations~mea-
surements of the magnetization, magnetic susceptibility, s
cific heat, and Young’s modulus, as well as spectrosco
measurements!,4–11 TN1518–20 K, andTN259–11 K for
Dy2BaCuO5, while TN1517 K, and TN257–8 K for
Ho2BaCuO5. According to the spectroscopic data, the lo
temperature transition splits into two in the dysprosiu
cuprate.7

It was presumed in the early studies4,5 that the high-
temperature transition atTN1 is caused by antiferromagneti
ordering of the copper subsystem, while antiferromagne
ordering of the rare-earth subsystem occurs atTN2 . How-
ever, neutron diffraction3 and spectroscopic7 investigations
showed that the low-temperature transition is accompan
not only by an increase in the degree of magnetic order in
rare-earth subsystem, but also by a change in the typ
antiferromagnetic ordering. For example, in dysprosium
prate the wave vector~the propagation vector! of the mag-
netic structure, which equalsk5@0,0,1/2# in the temperature
rangeTN1.T.TN2 ~the magnetic unit cell is doubled in
comparison with the crystallographic unit cell along thec
axis!, transforms into the wave vectork5@0,0,0# below
TN2 ~the magnetic unit cell coincides with the crystall
graphic unit cell!. In addition, the directions of the magnet
moments also change atTN2 . Above TN2 the copper mag-

175$10.00 © 1997 American Institute of Physics
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netic moments, like the Dy1 magnetic moment, are collin
with theb axis of the crystal, and the Dy2 magnetic mome
lies in thebc plane. Below that temperature the copper ma
netic moments are collinear with thea axis, while the Dy1
and Dy2 magnetic moments are preferentially oriented al
thea andb axis, respectively~there are small components o
the magnetic moment along theb axis for Dy1 and along the
a axis for Dy2!. The magnetic structures of Dy2BaCuO5
above and belowTN2 are shown in Figs. 1a and 1b.

The magnetic structure of Ho2BaCuO5 has been studied
less thoroughly. It has been reported3 that aboveTN2 the
wave vectork5@0,0,1/2# and that below this temperatur
there are two wave vectors:k15@0,0,1/2# andk25@0,0,0#.
Assuming that the copper magnetic moments are ordered
as in Dy2BaCuO5 and that the wave vectorsk1 and k2 de-
scribe different components of the magnetic moments i
single magnetic phase, Golosovski� et al.3 found that below
TN2 the holmium magnetic moments in the two structu
sites differ strongly in magnitude and that, in contrast
Dy2BaCuO5, there is a projection of the Ho2 magnetic m
ment onto thec axis.

We note that all the studies enumerated above were
formed on polycrystalline samples, and we do not know
any research in which the magnetic properties
R2BaCuO5 single crystals were investigated. Neverthele
the low crystal symmetry of these cuprates, as well as
results of neutron diffraction investigations of their magne
structure3 and investigations employing rare-earth spect
scopic probes,7,10 suggest that the anisotropy of the magne
properties should be significant.

For this reason, we undertook an investigation of
magnetic properties of Dy2BaCuO5 and Ho2BaCuO5 single
crystals. Measurements of the spectra of Er31 ions intro-

FIG. 1. Fragment of the structure of Dy2BaCuO5 together with the direc-
tions of the magnetic moments in the high-temperature~a! and low-
temperature~b! phases~according to the data in Ref. 3! projected onto the
z51/4 plane. The atoms lying in this plane~Dy1, Dy2, O3, Cu4, and Cu
48! are denoted by unfilled circles. Each blackened circle corresponds
pair of copper atoms positioned over one another~in the z53/4 and
z521/4 planes!; each gray circle corresponds to a pair of oxygen ato
arranged symmetrically above and below thez51/4 plane. The cross in the
left-hand drawing corresponds to the presence of thez projection of the Dy2
magnetic moment. A primed number refers to the respective copper site
neighboring cell. The Dy–O–Cu bonds are depicted by lines. The bon
angles calculated from the structural data in Ref. 3 are indicated.
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performed.

2. SAMPLES AND EXPERIMENTAL METHODS

Single crystals of R2BaCuO5 ~R5Dy and Ho! of length
3–4 mm and transverse dimensions 0.1–0.2 mm were gr
from nonstoichiometric melts of the R2O3–BaO–CuO sys-
tems by cooling the melts from 1200–1300 °C at the rate
2 °C per hour in aluminum oxide crucibles. According
Ref. 12, the long axis of the crystals is parallel to thec axis
of the unit cell. On the lateral facets of the crystals there
$110% and$010% faces, so that the cross section of each cr
tal is an irregular hexagon. In determining the demagnetiz
factor, we regarded the cross section of the sample a
circle.

An analysis of the magnetic neutron diffraction data,3 as
well as preliminary measurements of the magnetizati
showed that there is considerable anisotropy of the magn
properties in theab plane. We determined thea andb axes
of the crystals from their habit. The orientation of the ax
was verified by the symmetry of the magnetic properties
the ab plane, and, as can be seen from Fig. 2, the vari
directions in this plane could be determined quite accura
~to within 3–4 °!.

The magnetization measurements were performed
fields up to 54 kOe over the temperature range 2–100
using a SQUID magnetometer. The error in the measurem
of the absolute value of the magnetization was 5–10%. S
low accuracy is attributable mainly to the small mass a
dimensions of the sample~the error in the measurement o
the absolute value of the magnetic moment of a sample u
a SQUID magnetometer did not exceed 0.1%!.

The magnetic susceptibility was determined from ma
netization measurements in fields up to 1 kOe.

Polycrystalline samples of Dy1.98Er0.02BaCuO5 and
Ho1.98Er0.02BaCuO5 obtained from the oxides by solid-phas
synthesis at 1030 °C, and which were phase-pure to x-r
were used for the spectroscopic measurements.

The diffuse transmission spectra were recorded in
region of the intense4I 15/2→4I 13/2 magnetic-dipole allowed
optical transition of the free Er31 ion ~near 6500 cm21! us-
ing a Bomem DA3.002 FT spectrometer with a spectral re
lution to 0.1 cm21

. The samples were immersed in heliu
vapor at temperatures from 2.1 to 100 K.

3. EXPERIMENTAL RESULTS

3.1. Magnetic susceptibility

Figure 3 presents the temperature dependence of
magnetic susceptibility of Dy2BaCuO5 and Ho2BaCuO5
single crystals along thea, b, andc axes of the crystals. The
arrows in these figures show the temperatures for antife
magnetic ordering of the copper subsystem (TN1) and the
rare-earth subsystem (TN2) determined in Ref. 8 via specific
heat measurements. It is seen that the transition of the co
subsystem to the antiferromagnetic state is barely noticea
it is accompanied only by slight variation of the slope of t
x versusT curve along thea axis of the crystal. As we first
noted in Ref. 4, this is because the contribution of the cop

a

s

a

176Baran et al.



e

t

FIG. 2. Angular dependence of th
magnetization of Dy2BaCuO5 ~a!
and Ho2BaCuO5 ~b! single crystals
in various external magnetic fields a
5 K.
subsystem to the total magnetic susceptibility is small. The
a
an

.

m

the two compounds studied:CDy575.5•mB
2/kB ~nDy52,

te,
the
ma-
of
d of

re-
he
g

contribution of thei th magnetic subsystem to the total par
magnetic susceptibility is determined by the Curie const
of that subsystem:

Ci5nigi
2Ji~Ji11!mB

2/3kB , ~1!

whereni is the number of ions of typei in a formula unit,
gi is theg factor,kB is Boltzmann’s constant,Ji is the total
angular momentum of the ion, andmB is the Bohr magneton
For the copper subsystem~nCu51, gCu52, JCu51/2! we
have CCu51mB

2/kB , which is two orders of magnitude
smaller than the Curie constant of the rare-earth subsyste
-
t

in

gDy54/3, JDy515/2!, CHo575mB
2/kB ~nHo52, gHo55/4,

JHo58!. Although the values just presented are approxima
since the magnetic moments in a crystal can differ from
magnetic moments of the free ions, it is seen that the ano
lous susceptibility associated with the magnetic ordering
the copper subsystem is negligible against the backgroun
the large susceptibility of the rare-earth subsystem.

The transition to the antiferromagnetic state of the ra
earth subsystem atTN2 is accompanied by a decrease in t
susceptibility. In Dy2BaCuO5 this decrease is observed alon
of
FIG. 3. Temperature dependence
the magnetic susceptibility of
Dy2BaCuO5 ~a! and Ho2BaCuO5 ~b!
along thea ~1!, b ~2!, andc ~3! axes.
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FIG. 4. Field dependence of the
magnetization of a Dy2BaCuO5
single crystal at 5 K~a! and 9 K ~b!
along thea ~1!, b ~2!, andc ~3! axes,
the ^110& direction ~4!, and at a 45°
angle to thea axis ~5!.
the a andb axes and is very abrupt, while in Ho2BaCuO5
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Ho2BaCuO5. Figure 6a presents plots ofM (H) at 5 K
ng
ic
the
are

ak

ey
and

ansi-
only the magnetic susceptibility along thea axis exhibits an
anomaly atTN2 , and the transition to the antiferromagne
state of the Ho subsystem is more diffuse.

For both compounds the susceptibility along thec axis is
considerably smaller than the susceptibility in theab plane
and depends weakly on the temperature in the tempera
range investigated.

3.2. Magnetization

Dy2BaCuO5. Figure 4a presents the dependence of
magnetization on the field in different directions at 5 K. It
seen that in the range of fields investigated, the magne
tion along thec axis of the crystal is small and nearly lin
early dependent on the field. At the same time, the magn
zation in theab plane undergoes a metamagnetic transit
in all the directions investigated. The critical fields for th
metamagnetic transitions are approximately the same
field directions along thea andb axes of the crystal, and ar
somewhat greater when the field is oriented along inter
diate directions. In these directions the magnetization un
goes one more diffuse metamagnetic transition in stron
fields. The appreciable anisotropy of the magnetization
strong magnetic fields greater than the fields of the metam
netic transitions is noteworthy~see also Fig. 2!.

As the temperature rises, the character of the magne
tion curves does not vary significantly except for the fact t
the metamagnetic transition in a field oriented along theb
axis of the crystal also bifurcates~Fig. 4b!. At the same time,
the second metamagnetic transition in the^110& direction
quickly becomes diffuse and then negligible as the temp
ture rises.

The temperature dependence of the critical fields of
metamagnetic transitions in different directions is shown
Fig. 5. It is noteworthy that the values of the critical fiel
decrease as the temperature rises, and that they tend to
as the Ne´el point TN2 of the low-temperature transition i
approached. Metamagnetism vanishes above that temp
ture.
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for various directions. It is seen that the magnetization alo
the a axis and in thê 110& direction has a metamagnet
character, there being two metamagnetic transitions in
latter case. At the same time, no metamagnetic transitions
observed in the plot ofM versusH along theb axis. There is
also strong anisotropy of the magnetization in theab plane
in strong magnetic fields~see also Fig. 2!.

The magnetization along thec axis ~perpendicular to the
ab plane! is considerably weaker than that in theab plane
and depends almost linearly on the field, exhibiting a we
tendency to saturate in strong fields.

The metamagnetic transitions are diffuse by 5 K. Th
rapidly become more diffuse as the temperature rises,
metamagnetic behavior is not observed aboveTN2 , as is
clearly seen from Fig. 6b, which shows plots ofM versus
H in different directions at 8 K.

FIG. 5. Temperature dependence of the fields for the metamagnetic tr
tions of Dy2BaCuO5 along thea (l) andb (s,!) axes and in thê110&
direction (n).
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31

FIG. 6. Field dependence of the mag
netization of a Ho2BaCuO5 single
crystal at 5 K~a! and 8 K~b! along the
a ~1!, b ~2!, and c ~3! axes and the
^110& direction ~4!.
3.3. Optical spectra of Er probe ions
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The low-symmetry crystal field in the compound
R2BaCuO5 completely removes the degeneracy, except
the Kramers degeneracy, of the levels of Er31 probe ions
replacing R1 and R2 ions. In the magnetically ordered st
the Kramers doublets split because of magnetic interacti
and, as a result, each spectral line splits into a maximum
four components~see the scheme in the upper part of Fig.!.
The experimental data show that these splittings are de

FIG. 7. Two lines of the spectrum of Er31 in Dy2BaCuO5 :Er~1%! and
Ho2BaCuO5 :Er~1%! corresponding to two inequivalent sites of the ra
earth at different temperatures. The scheme in the upper part of the fi
elucidates the splitting of the spectral lines observed upon magnetic o
ing. The labels of the transitions in one of the structural sites are underli
and those for the other site are not.
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Er–R interactions are insignificant, and that the Er–Cu
change is highly anisotropic.13–15Therefore, the spectrum o
the probe ions depends on the orientation of the copper m
netic moments closest to them.

Figure 7 shows how the two spectral lines at 6532 a
6540 cm21 ~see the spectra at 80 K in the paramagne
phase!, which correspond to the two inequivalent structu
sites of the erbium probe ions in the dysprosium and h
mium cuprates, split as the temperature is lowered.

In the temperature rangeTN2,T,TN1 the spectra for
both compounds are essentially identical~see the spectra a
14 K!, in agreement with the conclusions in Ref. 3 regard
the identical magnetic structures of the copper subsystem
this temperature range.

At TN2 the spectral lines for both Dy2BaCuO5 and
Ho2BaCuO5 narrow sharply as a consequence of the ord
ing of the rare-earth subsystem. However, the form of
spectrum of the erbium probe ions atT,TN2 is significantly
different for the dysprosium and holmium compounds~see
the spectra at 6.5 and 2.1 K!. While the picture for
Dy2BaCuO5 is faithfully described by a simple scheme wi
one set of splittings of the Er31 levels for each structural site
~at 2.1 KD50.5 cm21 andDA51.8 cm21 for the structural
site corresponding to the line at 6532 cm21

; D51.3 cm21

and DA53.7 cm21 for the other site corresponding to th
line at 6540 cm21!, there are at least two such sets f
Ho2BaCuO5, and each of them differs significantly from th
set just described for Dy2BaCuO5.

The appearance of inequivalent spectroscopic sites
erbium probe ions in Ho2BaCuO5 at T,TN2 can be associ-
ated either with the establishment of a complicated magn
structure in the copper subsystem or with the appearanc
two different magnetic phases. The analysis of the magn
structure of Ho2BaCuO5 proposed in Ref. 3 gives one spe
troscopic site for an Er31 probe ion in each of two structur
ally inequivalent sites. Golosovski� et al.,3 however, point
out that because of the weakness of the magnetic reflect
from copper, inaccuracies are possible in the determina
of the magnetic structure of the copper subsystem, and

re
er-
d,
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Ho2BaCuO5 belonging to two different magnetic phases h
not been ruled out. It should also be borne in mind that
experimental data from the powder neutron diffraction
polyatomic compounds can usually be described equally w
by several different magnetic structures.16,17

Thus, the spectroscopic data are consistent with the m
netic structure of Dy2BaCuO5 proposed in Ref. 3 and are no
consistent with the low-temperature magnetic structure
Ho2BaCuO5 from the same report. The magnetic structure
Ho2BaCuO5 is more complicated than that of Dy2BaCuO5
and is in need of refinement.

4. DISCUSSION

Some general features that are characteristic of the m
netic behavior of both cuprates investigated here can
noted.

First, these compounds exhibit two spontaneous m
netic transitions atTN1 andTN2 .

Second, there are no~or very small! anomalies of the
magnetic susceptibility at the high-temperature Ne´el point
TN1 , and a considerable decrease in the magnetic susc
bility is observed upon the low-temperature phase transi
at TN2 .

Third, there is distinct anisotropy of the magnetic pro
erties: the magnetization and the magnetic susceptibility
considerably greater in theab plane than along thec axis.

Fourth, metamagnetic transitions are observed when
samples are magnetized in theab plane at low temperature
~belowTN2!.

As follows from the data presented, the susceptibi
along thec axis of the Dy2BaCuO5 and Ho2BaCuO5 crystals
is considerably smaller than the susceptibility in theab plane
~except for the case of very low temperatures
Dy2BaCuO5, at which the susceptibilities along thea and
c axes are comparable!. In weakly anisotropic antiferromag
nets this finding would indicate that the antiferromagneti
vector is collinear with thec axis. However, the neutron
diffraction data3 show that the magnetic moments lie prefe
entially in the ab plane of the crystal, and, therefore, th
transverse magnetic susceptibility is measured when
magnetic field is oriented along thec axis of the crystal.

Thus, it can be concluded from the experimental m
netic susceptibility data that the anisotropic magnetic in
actions leading to preferential orientation of the magne
moments in theab plane significantly exceed the isotrop
exchange interactions in the cuprates investigated.

The cuprates studied, however, cannot be regarde
easy-plane antiferromagnets, since the occurrence of m
magnetic transitions atT,TN2 when the samples are mag
netized in theab plane is evidence that at low temperatur
the anisotropic interactions in this plane are comparable
magnitude to the isotropic exchange interactions.

The structure of the dysprosium subsystem atT,TN2 in
zero magnetic field indicated by the data from the neut
diffraction studies in Ref. 3 is shown in Fig. 8a. In the sim
plest Ising model, the metamagnetic transitions obser
along thea andb axes of the crystal can be represented
shown in Figs. 8b and 8c, i.e., the magnetic moments wh
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form an obtuse angle with the field are reoriented by 18
during these transitions. Such a simple model also allows
to attribute the presence of the two metamagnetic transit
observed in some cases in Dy2BaCuO5 to the fact that reori-
entation of the magnetic moments in the two inequival
positions does not occur simultaneously. In addition, suc
model qualitatively explains why the saturation magneti
tion is greater along thea axis than along theb axis of the
crystal. The magnitude of the saturation magnetic mom
along the other directions in the crystal is also consist
with the model under consideration~from our experimental
data we haveMa :Mb :M45°51:0.875:1.3, and from Ref. 3
it follows that this ratio is 1:0.93:1.37 in the Ising mode!.
The strength of the critical transition field when the field
oriented at a 45° angle relative to thea andb axes is also
explained in the Ising model: according to this model t
strength of this field at 5 K should be 16.6 kOe, while the
experimental value equals 17 kOe.

The qualitative arguments presented above can prob
be applied to the description of the magnetic behavior of
holmium cuprate. However, in this case the situation is m
complicated, since the low-temperature antiferromagn
structure of Ho2BaCuO5 is presumably described, as w

FIG. 8. Magnetic structure of the dysprosium subsystem in Dy2BaCuO5 at
T,TN2 : a! 0<H,Hc ; b! H.Hc , Hia; c! H.Hc , Hib.
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magnetic moments of the rare-earth ion and the copper ions
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k15@0,0,1/2# and k25@0,0,0# and, in contrast to
Dy2BaCuO5, in the holmium cuprate there is a projection
the holmium magnetic moment onto thec axis of the crystal
at low temperatures. In addition, the spectroscopic data
we obtained cannot be described within the magnetic st
ture proposed in Ref. 3, and additional research is need

It should be stressed that the simple Ising model con
ered above is very approximate, since the copper subsy
is neglected and the relationship between the copper
rare-earth subsystems is not considered in it. At the sa
time, the available experimental data show that the ra
earth–copper exchange interaction has a significant influe
on the properties of the cuprates in the low-temperat
phase. This follows, first, from the fact that as our magne
and spectroscopic investigations of the isomorphous c
pounds R2BaZnO5 showed, the rare-earth–rare-earth e
change interaction is weak~no magnetic ordering was ob
served in these compounds in the temperature ra
investigated,T>2.1 K! and cannot account for the values
TN2 observed in the dysprosium and holmium cuprates. S
ond, as was shown above, it follows from the results of
spectroscopic7 and neutron diffraction3 investigations that
the magnetic ordering of the rare-earth subsystem atTN2 is
accompanied by alteration of the magnetic structure not o
in the rare-earth subsystem, but also in the copper subsys

Thus, the rare-earth–copper exchange interaction a
with the magnetic anisotropy specifies the behavior of
rare-earth subsystem. It would seem that belowTN1 , at
which an antiferromagnetic structure with the wave vec
k5@0,0,1/2# appears in the copper subsystem, the cop
subsystem interacts weakly with the rare-earth subsys
only partially polarizing it. Upon further cooling toTN2 a
change occurs in the type of magnetic ordering in the cop
subsystem under the influence of the isotropic and an
tropic interactions between the copper and rare-earth
systems, which in turn leads to enhancement of the r
earth–copper exchange interaction and a sharp increase~by
means of a first-order phase transition! in the degree of mag
netic order in the rare-earth subsystem.

Qualitatively, the change in the strength of th
dysprosium–copper exchange interaction in response to
change in the magnetic structure of the copper subsyste
the Néel point TN2 of the low-temperature phase transitio
can be understood by analyzing Fig. 1, which depicts
environments of the two inequivalent dysprosium ions a
shows the orientations of the dysprosium and copper m
netic moments in the high-temperature and low-tempera
magnetic phases on the basis of the data in Ref. 3.

As we have already pointed out, the environment of D
is such that the angles of most of the Dy–O–Cubonds are
close to 180°. This generally promotes symmetric exchan
i.e., leads to large values of the exchange integralsI i j in the
expression for the symmetric part of the exchange inte
tion:

Eex
sym5(

i j
I i j M imi j , ~2!

wherei5x, y, z, andMi andmi j are the components of th
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closest to it, which are labeled by the subscriptj .
Above TN2 , at which the wave vector of the magnet

structure k5@0,0,1/2#, the copper magnetic moments
neighboring cells along thec axis are oppositely directed
~see Fig. 1a!, and the exchange interaction of Dy1 with ea
of the Cu3–Cu38 and Cu2–Cu28 pairs vanishes. In this tem
perature range the main contribution to the ordering of
Dy1 magnetic moments probably comes from the antifer
magnetic Dy1–Cu48 exchange interaction.

Below TN2 we havek5@0,0,0#, and the spins in the
Cu3–Cu38 and Cu2–Cu28 pairs are parallel. Thus, a
T,TN2 the strength of the Dy1–Cu exchange increases w
a resultant increase in the degree of magnetic order in
dysprosium subsystem.

Note that the decisive factor influencing the orientati
of the dysprosium magnetic moments at temperatures be
TN2 is probably the anisotropy caused by the crystal fie
This is evinced by the fact that in this temperature range
magnetic moments of dysprosium in each of its inequival
sites have approximately the same orientation with respec
the corresponding DyO7 coordination polyhedron.

We note that belowTN2 the dysprosium magnetic mo
ments in one of the sites~Dy1! are almost collinear with the
copper magnetic moments, while the magnetic moment
the other site~Dy2! are almost perpendicular to them. Hen
it follows that at low temperatures the symmetric part of t
exchange interaction involving the Dy2 site is small. In a
dition, it follows from Fig. 1 that the Dy2–Cu symmetri
exchange constants must be small because of the nearly
Dy–O–Cubond angles, i.e., the symmetric exchange app
ently does not have a significant influence on the ordering
the Dy2 magnetic moments. However, it follows from th
experimental data in Ref. 3 that values of the Dy1 and D
magnetic moments above and belowTN2 are approximately
the same, i.e., approximately equal to the molecular fie
from the copper subsystem that act on the dysprosium m
netic moments in these positions. For Dy2 the decisive in
action is probably the Dzyaloshinskii–Moriya antisymmet
exchange interaction, which can be represented in the fo

Eex
antisym5(

j
Dj•@M3mj # , ~3!

where the antisymmetric exchange parameterDj can be ex-
pressed~see, for example, Ref. 18! as

Dj5dj@r0 j3r j #. ~4!

Herer0 j andr j are vectors that join the intermediate oxyg
ion to the Dy2 and Cuj ions, respectively, anddj is a con-
stant.

As follows from Eq. ~4!, the nearly 90° bond angle
promote the large value of the Dy2–Cu antisymmetric e
change parameter, and it is seen from Eq.~3! that antisym-
metric exchange orients the dysprosium and copper magn
moments perpendicularly to one another, as is observed
the Dy2 site~Fig. 1!.2!

Also, as can easily be seen from Fig. 1, aboveTN2 the
antisymmetric exchange interaction of the Dy2 ion with t
Cu48 ion is equal to zero, and the interaction with th
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Cu3–Cu38 pair fails to vanish only because this ion has a
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1!From here on we use the notation of the axes in thePbnmconfiguration.
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projection onto thec axis. Below this temperature all th
nearby copper ions make comparable contributions to
antisymmetric exchange, and, therefore the molecular fi
from the nearby copper ions that acts on Dy2 also increa
in the low-temperature phase.

Summarizing the foregoing discussion, we briefly fo
mulate what is, in our opinion, the nature of the two ma
netic phase transitions in Dy2BaCuO5 and Ho2BaCuO5. In
R2BaCuO5 cuprates the exchange interaction within the co
per subsystem is dominant, the rare-earth–copper interac
is considerably weaker, and the rare-earth–rare-earth inte
tion can be neglected. Because each copper atom is iso
and there are no direct Cu–O–Cubonds through a single
oxygen ion, the different Cu–O–O–Cu and
Cu–O–R–O–Cubonds cause the two magnetic structures
the copper subsystem with the wave vectorsk5@0,0,1/2#
andk5@0,0,0# and copper magnetic moments directed alo
the a andb axis, respectively, to have similar energies.
TN1, ordering occurs in the structure withk5@0,0,1/2# under
the influence of the copper–copper interaction in the cop
subsystem, and the copper magnetic moment is paralle
the b axis. The rare earth is weakly polarized. When t
temperature is lowered, the role of the single-ion anisotro
caused by the crystal field increases, leading to a defi
orientation of the rare-earth magnetic moments in the
inequivalent positions relative to the coordination polyh
dron. At TN2, reorientation to the structure withk5@0,0,0#
occurs under the influence of the copper–rare-earth exch
interactions in the copper subsystem, and the copper m
netic moment is parallel to thea axis. The energy loss in th
copper subsystem relative to the energy of the hi
temperature phase is offset by the gain due to enhance
of the copper–rare-earth exchange interaction.

This work was partially supported by the Russian Fu
for Fundamental Research~Grant 96-02-19474a and 95-02
03796-a!, as well as by the State Committee for Institutes
Higher Education of the Russian Federation~Grant 95-0-74-
157!.
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Other configurations, in which the order of the axes is different, are used
some publications.

2!The small component of the Dy2 magnetic moment that is collinear with
the copper magnetic moments is clearly due to weak symmetric antiferr
magnetic exchange.
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Field dependence of spin–lattice relaxation of Nd 31 ions in Y 3Al5O12 crystals
L. K. Aminov, I. N. Kurkin, S. P. Kurzin, D. A. Lukoyanov, I. Kh. Salikhov,
and R. M. Rakhmatullin

Kazan’ State University, 420008 Kazan’, Russia
~Submitted 29 May 1996!
Zh. Éksp. Teor. Fiz.111, 332–343~January 1997!

Our studies involve measuring spin–lattice relaxation times for Nd31 ions in yttrium–aluminum
garnets over the temperature range 4–50 K at 9.25 and 36.4 GHz for different orientations
of the external magnetic field in relation to the crystallographic axes. The temperature dependence
of the relaxation rate is described byT1

215ATn1b exp(2D/kT), wheren varies from
sample to sample, withn51 for ‘‘perfect’’ samples~i.e., with the longest relaxation times!. Here
D is approximately 130 cm21, which is the energy of the excited Kramers doublet of the
neodymium ion closest to the ground state, and this makes it possible to interpret the second term
in T1

21 as the contribution of two-stage relaxation proceeding through the intermediate level
D. A strong field dependence of these processes has been discovered: when the frequency was
increased fourfold, the relaxation rate increased by a factor of 10. The effect is a specific
manifestation of the degeneracy of the excited level, breaking of the symmetry of the crystalline
field due to lattice defects, and the prevalence of deformations of a certain type in the
spin–lattice interaction. ©1997 American Institute of Physics.@S1063-7761~97!02101-X#

1. INTRODUCTION T1
21534T14.531010 exp~27531.44/T!@s21#.
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Y3Al5O12 crystals~yttrium–aluminum garnets, or YAG!
have found wide application as active media in lasers an
other devices of radio electronics and engineering. S
physical properties of YAG crystals as a wide transpare
range, high thermal conductivity, hardness, and resistanc
laser light make it possible to use this material as a ma
for building solid-state lasers with unique characteristi
Among trivalent rare-earth ions, Nd31 ensure the most effec
tive lasing in YAG crystals. YAG:Nd lasers have low lasin
thresholds and high outputs. Hence the literature devote
the study of the optical properties of these crystal is vast~see
Kaminski�’s monograph1 and the literature cited therein!.

In investigating the physical properties of impurity par
magnetic crystals, attention must be focused on EPR spe
and the processes of spin–lattice relaxation of the lower
ergy levels of the paramagnetic ions. However, there
only a few papers devoted to the study of the spin–lat
relaxation of rare-earth ions in garnets, and the results
inconsistent.

Svare and Seidel2 studied the spin–lattice relaxation o
some rare-earth ions~Er31, Dy31, Yb31, and Nd31! whose
concentration in various insulator garnet crystals~Y3Al5O12,
Lu3Al5O12, Y3Ga5O12, and Lu3Ga5O12! was 1%. For the re-
laxation rate of Nd31 in Y3Ga5O12 they found that

T1
21517T19.031010 exp~28531.44/T!@s21#,

but they observed systematic deviations that exceeded
range of experimental errors in measuringT1 ~the YAG:Nd
system was not examined!.

Huang3 studied the spin–lattice relaxation of Nd31 in
Y3Al5O12 by the method of pulsed saturation at 8.9 GHz in
magnetic fieldH51900 Oe directed along the@110# crystal-
lographic axis. The temperature dependence of the sp
lattice relaxation rate was:
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The presence of the second term on the right-hand
can be explained by relaxation processes resulting from
tical lattice vibrations with an energyD575 cm21. Note,
however, that studies of IR and Raman spectra have reve
no vibrations with such energies in YAG.1,4–6 Huang3 also
studied Yb31 ions. The spin–lattice relaxation of these io
at high temperatures was found to result from Raman p
cesses:T1

21}T9.
Bagdasarovet al.7 studied the relaxation of Nd31 in

Y3Al5O12 using a device with an operating frequency
9.34 GHz and an operating temperature in the liquid-heli
range. Measurements on a single line in a magnetic fi
H53875 Oe revealed a complicated temperature depend
of the relaxation rate, which varied with concentration. T
effect was attributed to cross-relaxation among the levels
Nd31 and the excited levels of foreign impurity ions that h
landed in the crystal during the growth process.

To establish the precise relaxation mechanisms of ra
earth ions in garnets, we carried out a detailed study of
temperature dependence of the spin–lattice relaxation
for a specific YAG:Nd system. The measurements w
made over a broad temperature range on samples~prepared
by different techniques! at different frequencies, with differ-
ent EPR lines, and in different external fields. By the tim
the first measurements were complete, we had discover
strong field dependence of the contribution of two-stage
laxation processes, and we specifically studied this dep
dence at a fixed temperature of 11.4 K. In Sec. 2 we pres
data on the samples used in the measurements, the ex
mental conditions, and the results of relaxation-time m
surements. In Sec. 3 we discuss experimental results and
possibility of describing the field dependence of the rela
ation rate in terms of existing theories. Finally, in Sec. 4
draw conclusions concerning our study.
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Y3Al5O12 single crystals exhibit the cubic symmet
Oh
10. The unit cell contains eight molecules, and rare-ea

ions ~R31! are activated at the positions of Y31. The nearest
neighbors of the yttrium ions are eight O22 ions, forming a
distorted cube~the local symmetryD2!. The yttrium ions can
occupy six magnetically inequivalent positions, and for
arbitrary orientation of an external magnetic field in relati
to the crystal, the EPR spectrum of an R31 ion consists of six
lines. If the magnetic field is directed along the@100# axis,
the EPR spectrum consists of only two lines. Since in
work we studied the spin–lattice relaxation of Nd31 ions in
Y3Al5O12, we list the gyromagnetic ratio for this ion: accor
ing to Ref. 8,gx51.743,gy51.160, andgz53.908.

The measurements were made via the pulsed satura
method in theX-band ~using an IRE´S-1003 relaxometer a
9.25 GHz! andQ band ~at 36.4 GHz! in the 4–15 K tem-
perature range, primarily with the magnetic fieldHi@100#.
For this orientation of the magnetic field, the resonant m
netic field at 9.25 GHz isH51685 Oe~double line! and
H54480 Oe~quadruple line!. At 36.4 GHz, measurement
of spin–lattice relaxation were made only on the double l
with H56660 Oe. The magnetization restoration kinetics
most cases~always at high temperatures! was strictly single-
exponential. Errors in measuring the spin–lattice relaxat
rate by this method did not exceed 10%. AtT.20 K, the
EPR lines of Nd31 begin to broaden considerably because
rapid spin–lattice relaxation, and disappear above 50 K.
temperature dependence of the linewidth (DHpp) makes it
possible to estimate the spin–lattice relaxation times in
25–50 K range.

The method of determining these times is as follow
The formula

DHpp
2 5DHppHpp8 1~DHpp

0 !2 ~1!

relates the observed linewidthDHpp , the part of the line-
width DHpp8 due to spin–lattice relaxation~Lorentzian line-
shape!, andDHpp

0 , which is the temperature-independent~at
T,20 K! linewidth ~Gaussian profile!.9 Using ~1!, we find
DHpp8 and then determineT1

10

T1
215

)gb

2\
DHpp8 . ~2!

For our samplesDHpp
0 515–20 Oe, and the values atT;50

K exceedDHpp
0 by a factor of approximately 20. The accu

racy of the spin–lattice relaxation rate in this case was
worst 20%. The YAG samples used to measure the sp
lattice relaxation times were prepared by different te
niques: sample A was grown at the Institute of Crystallog
phy of the Russian Academy of Sciences by the method
horizontal oriented crystallization, and samples B and8
were grown by the Czochralski method at the ‘‘Polyu
company.

The results of measuringT1 are presented in Figs. 1–4
Figure 1 shows the results of measuringT1 for samples

A and B at 1685 Oe~the double line corresponding to thegz
component! and 4480 Oe~quadruple line! at 9.25 GHz. The
results will be discussed later. Here we give only the fu
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tional dependences of the spin–lattice relaxation rates
temperature, which are in good agreement with the exp
mental data.

Sample A:

H51685 Oe, T1
215@2.7T2.115.231010

3exp~212831.44/T!# s21, ~3!

H54480 Oe, T1
215@0.3T413.131011

3exp~212831.44/T!# s21. ~4!

Sample B:

H51685 Oe, T1
215@0.38T15.231010

3exp~212831.44/T!# s21, ~5!

H54480 Oe, T1
215@1.5T13.131011

3exp~212831.44/T!# s21. ~6!

Figure 2 depicts the results of measuringT1 at different fre-

FIG. 1. Temperature dependence of the spin–lattice relaxation rate for N31

ions in single-crystal samples of Y3Al5O12 of type A and B. The magnetic
field was directed along@100#. The solid curves represent calculations wi
Eqs.~3!–~6!.

FIG. 2. Temperature dependence of the spin–lattice relaxation rate for N31

ions in Y3Al5O12. The measurements were made for the weak-field EPR
with H i @100#. The solid curves represent calculations using Eqs.~5! and
~7!.

184Aminov et al.
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the
quencies~9.25 and 36.4 GHz! for the same orientation of th
magnetic field~namelygz! and, naturally, in different mag
netic fields~1685 and 6660 Oe, respectively! for samples B
and B8. The observed temperature dependence at 9.25
is given in Eq.~5!, and at 36.4 GHz it is:

T1
215@1.33T14.631011 exp~212831.44/T!# s21.

~7!

Figure 3 depicts the results of measuring the spin–lat
relaxation rate for sample B at 9.25 GHz both in the we
field and strong-field EPR lines, obtained by using the pul
saturation method~4–12 K!, and from the temperatur
broadening of the lines~25–50 K!. The solid curve corre-
sponds
to ~6!.

Clearly, in the high-temperature range~where processe
exponentially dependent on the reciprocal temperature do
nate!, there is a strong dependence of spin–lattice relaxa
on the magnitude of the external magnetic field, both in m
surements at different frequencies for the same orientatio
the magnetic field and in measurements at a single freque
but on lines in different fields. For a detailed study of th
dependence we measuredT1 at 9.25 GHz withT>11.4 K for
arbitrary orientations of the field in relation to crystall
graphic axes in EPR lines corresponding to different fi
strengths~Fig. 4!. Note that when the EPR lines coincide
no jumps in the relaxation rates were observed. Figure 4
depicts the result obtained at 36.4 GHz and 6660 Oe.

Let us discuss the results.

3. THEORY AND DISCUSSION

The temperature range over which the measurem
were made can be tentatively divided into two regions:
high-temperature~T.8 K!, in which relaxation processe
with rates exponentially depending on the reciprocal te
perature dominant, and the low-temperature~T,8 K!, where
T1

21}ATn. For ‘‘perfect’’ samples B with the longest relax
ation times we haven51; a linear dependence of rate o
temperature usually indicates the presence of direct re

FIG. 3. Spin–lattice relaxation rate for Nd31 ions in Y3Al5O12. The mea-
surements were made for weak-field and strong-filed EPR lines
H i @100# at 9.25 GHz. The solid curve represents the results of calculat
using Eq.~6!.
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ation processes involving a single phonon with a freque
equal to the EPR frequency.11 This assumption is in qualita
tive agreement with the increase in the coefficientA with
field strength, although such an increase is not as rapid
might be expected from the Kronig–Van Vleck mechanis
(A}H4). This can probably be explained by the fact that
impurity ion concentrations of about 1%, two-particle rela
ation mechanisms of the Waller type begin to operate.

For samples A we haven.1, which qualitatively makes
this situation resemble low-temperature relaxation of imp
rity rare-earth ions in KY3F10 single crystals.12 Possibly, in
imperfect garnet crystals, rapidly relaxing centers like tho
in two-level systems in glasses are formed. The interac
of rare-earth ions with these centers can explain, at leas
principle, the complicated temperature dependence of re
ation times. Ashurovet al.13 studied the possible types o
disorder in garnet crystals doped with rare-earth eleme
They found that in crystals synthesized from the melt at h
temperatures, additional impurity centers may appear
fraction of the rare-earth ions occupy the positions of Al31

ions and generate internal stresses, which reduces the qu
of the crystal.

Unfortunately, in the case considered here, as in Ref.
the ‘‘anomalous’’ temperature behavior of the relaxation r
is observed only over a narrow temperature range, with te
peratures differing by roughly one order of magnitud
Within this range one can establish fairly good agreem
with the experimental data by approximating the measu
rateT1

21 by a sum of several exponential terms. Bagdasa
et al.7 reasoned along approximately these lines and use
sum consisting of a term linear in temperature and an ex
nential term. They explained the presence of the second t
as an effect of foreign impurity ions. Here we can mere
state that the ‘‘anomalous’’ behavior of the rate at low te
peratures is due to the imperfect nature of the crystal, and
not provide a concrete mechanism that would explain s
behavior.

Now let us examine the high-temperature range. H

h
s
FIG. 4. Field dependence of the spin–lattice relaxation rate for Nd31 ions in
Y3Al5O12. The magnetic field was oriented arbitrarily in a plane with@100#,
and the temperature was roughly 11.4 K. The solid curve represents
results of calculations using Eqs.~11! and ~19! with g5231011 s21.

185Aminov et al.
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observation are essentially identical, i.e., the difference in
quality of the samples has little effect on the spin–latt
relaxation of the impurity ion. The relaxation rate can
written T1

215B exp~2D/T!, with the coefficientB strongly
dependent on the magnetic field strength: for the same lin
the EPR spectrum~the weak-field line, corresponding togz!
the rate at 36.4 GHz is approximately eight times the rat
9.25 GHz~see Fig. 2!. Of the same nature is the dependen
in sample B on the magnetic field strength when we go fr
the weak-field~double! line to the strong-field~quadruple!
line at the same frequency of 9.25 GHz~see Fig. 1!, so that
we can expect to obtain detailed data on the field depend
of the relaxation rate by changing the orientation of the m
netic field in relation to the crystallographic axes and m
suring the rate at a fixed frequency on EPR lines in differ
fields~the results of such measurements are shown in Fig!.

The value of the parameterD, determined in spin–lattice
relaxation studies, is close to the interval of 130 cm21 sepa-
rating the closest excited doublet from the principal doub
of Nd31 in YAG,1,14 which indicates the presence of a tw
stage relaxation process of the resonance-fluorescence
through this excited level. We also note that studies of the
spectrum of YAG have revealed the presence of vibrati
with an energy of approximately 120 cm21 ~see Refs. 4–6!.
Hence, one cannot ignore the possibility that Nd31 ions may
relax by an ordinary Raman process involving optic
phonons with an energy that might also lead to an expon
tial dependence of the spin–lattice relaxation rate on the
ciprocal temperature, with the dispersion of this branch
lattice vibrations being small. We see that there can be
mechanisms of spin–lattice relaxation of the Nd31 ion in
YAG at high temperatures.

The literature suggests a field dependence of the sp
lattice relaxation rate due to distinctive lattice vibrations w
a narrow frequency spectrum nearD. A quadratic field de-
pendence of the relaxation rate,T1

21}H2 exp~2D/T! was
discovered in studies of the spin–lattice relaxation of Yb31

ions in BaY2F8 ~see Ref. 15!. Calculations demonstrated th
one of the prerequisites for such a dependence is the p
imity of the two excited levels of Yb31. The second excited
level of Nd31 in YAG is separated from the ground level b
199 cm21, which is rather far from the first, i.e., the cond
tion is not met. A field dependence of the relaxation rate
the formT1

21}H22 exp~2D/T! was discovered in studies o
spin–lattice relaxation of Tb31 ions in CaWO4 ~see Ref. 16!,
and this was attributed to crystal lattice vibrations with
extremely narrow spectrum~of the order of EPR frequen
cies!. This field dependence is the opposite of the one
served in YAG:Nd.

These facts lead one to doubt the effectiveness of
second relaxation mechanism, which assumes a strong
between the impurity Nd31 ion in YAG and the branch of
optical vibrations, which has a sharp maximum of the dis
bution densityr~v! atD;120 cm21. If this mechanism were
effective for YAG:Nd31, it would show up in other rare
earth ions. For instance, in KY3F10 the high-temperature re
laxation rate for all three studied ions of Ce, Nd, and
follows the patternT1

215B exp~2D/T! with D587.5 cm21,
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due to the interaction of the ions and optical vibrations w
energyD ~see Ref. 12!. On the other hand, in garnets th
relaxation of Yb31 obeys aT1

21}T 9 law, as noted earlier
We conclude that the optical vibrations of a garnet lattice
frequencies of approximately 120 cm21 either do not
strongly interact with the impurity ions, or their spectrum
extremely blurred. In both cases, the specific way in wh
they show up in spin–lattice relaxation is lost in comparis
to acoustic vibrations: they only slightly modify the fre
quency distribution density of the vibrations,r~v!}v2, char-
acteristic of acoustic branches. Thus, the most probable
laxation process in YAG:Nd31 at high temperatures is a two
stage process through an intermediate level with
excitation energy of 130 cm21. These assumptions also agr
with our estimates of the relaxation rate based on the
proximate Orbach–Jeffries scheme~see Ref. 17!.

In calculating the spin–lattice relaxation rates, we us
the values of the crystalline-field parameters f
Y3Al5O12:Nd

31 obtained by Morrisonet al.:18

B2052208 cm21, B2252306 cm21,

B4052339 cm21, B4252410 cm21,

B4451065 cm21, B60570 cm21,

B625197 cm21, B6451116 cm21,

B66541 cm21.

Calculations were carried out for the case in which the m
netic field was parallel to the@100# crystallographic axis for
the weak- and strong-field lines. In both cases we arrived
the following temperature dependence for the relaxation r

T1
2151.1131011 exp~213031.44/T!.

Note that the calculations do not reflect the dependenc
the spin–lattice relaxation rate on the magnetic field stren
that we established experimentally. Obviously, this is due
the approximate nature of the formulas used in the Orba
Jeffries method. However, such an approximation w
thought of as being quite satisfactory, because the exis
experimental data did not suggest any appreciable field
pendence of the relaxation times due to two-stage proces

Allowance for the effect of variations in the magnet
field strength onD, a quantity contained in the exponent
the expression forT1

21 and in the pre-exponential factorB
~through the distribution densityr~D!!, leads to corrections
to the rate of the order of (mBH/kT)

2 and ~mBH/D!2 ~here
mB is the Bohr magneton!; both are unimportant at high tem
peratures and values ofD of order 100 cm21. More important
corrections emerge when one allows for the specific featu
of the Kramers degeneracy of the Stark levels of rare-e
ions.19–22The authors of these papers have demonstrated
in relatively weak magnetic fields~the splitting of an excited
doublet,Dv, is comparable to the doublet’s widthg resulting
from the finiteness of the respective lifetime!, the rateT1

21

consists of terms with and without the factors~Dv/g!2, and
sinceDv } H, a field dependence of the rate may emer
We illustrate this dependence by using a simple approac

186Aminov et al.
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modifying the expression for the probability of two-phono
Raman processes~cf. Refs. 11 and 22!.

Let us write that part of the probability of a Raman tra
sition between the statesn andn8 of the principal doublet of
a paramagnetic ion that without allowance for the width
the intermediate level~gm! would be represented by a dive
gent integral:

wnn85
1

72p3\2d5v10 (i j qiqj E v6nv~nv11!

3U(
m

^nuVi um&^muVj un8&
v2vmn1 igm/2

U2dv. ~8!

Hered is the crystal density,v is the average speed of soun
qi and qj are numerical factors of order 1, an
nv5@exp~\v/kT!21#21 is the average number of phonons
frequencyv. The expression~8! was written by using the
Debye model of crystal vibrations, and the spin–latt
Hamiltonian is

HSL5(
i
Viei , ~9!

where theei are the components of the displacement ten
ẽ5]u/]r , which transforms as real-valued spherical harm
ics ~e1;exx1eyy1ezz, e2;exx1eyy22ezz, e3;exx2eyy ,
e4;eyz1ezy , e7;eyz2ezy , etc.!, with u~r ! the displace-
ment at the pointr of the crystal lattice under a deformatio
We allow only for the level closest to the ground level, t
m,m8 doublet with excitation energyD. For Kramers-
conjugate statesm and m8, the ‘‘widths’’ are almost the
same, gm5gm85g, but the matrix elements
ui j5^nuVi um&^muVj un8& andv i j5^nuVi um8&^m8uVj un8& are
not necessarily equal; for instance,uii52v i i . We retain
only the contribution of the ‘‘resonant’’ part of the integr
in ~8!, associated with frequenciesv;D. Here it is important
to allow for the splitting of the statesm andm8 by the mag-
netic field:Dv5vmn2vm8n. Direct calculations of this con-
tribution yield

wnn8'
D6nD~nD11!

36p2\2d2v10g (
i j

qiqj$uv i j u21uui j u2

1
2

Dv21g2 @g2 Re~ui jv i j* !1gDv Im~ui jv i j* !#%,

~10!

where* stands for complex conjugation. The usual expr
sion for the probability of a two-stage process can be
tained in the approximation~g /Dv!→0 by dropping the
terms in braces that containg. Bearing in mind thatkT!D,
we can write the following formula for the relaxation ra
due to two-stage processes:

T1
215wnn81wn8n5

D6

18p2\2d2v10g

3SB11B2

Dv2

Dv21g2DexpS 2
D

kTD . ~11!
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wheregm5gmxnx1gmyny1gmznz is the effective gyromag-
netic ratio of the excited doublet of the Nd31 ion, with the
field orientation determined by the direction cosinesna . For
a fixed line in the EPR spectrum and a given orientation
the field, the splittingDv is proportional to the magnetic
field strength or the resonance frequencyv0. For a fixed
frequencyv0 and different components of the spectrum, o
fixed component but different field orientations, the value
the effective ratiogm changes, as well.

The coefficientsB1 andB2 in ~11! also depend on the
orientation of the field. For localD2 symmetry they can be
expressed in terms of the four parametersA1,2,3,4as follows:

B15(
iÞ j

AiAj2
2

g2
@~A1A21A3A4!gz

2nz
2

1~A1A31A2A4!gx
2nx

21~A1A41A2A3!gy
2ny

2#, ~12!

2~B21B1!5~A11A21A31A4!
2

2
1

g2gm
2 @~A11A22A32A4!gzgmznz

2

1~A11A32A22A4!gxgmxnx
2

1~A11A42A22A3!gygmyny
2#2. ~13!

The parametersAi are combinations of the matrix elemen
of the operatorsVi in ~9! between the states (N,N8) and
(M ,M 8) of the principal and excited doublets, respective
the states being selected in such a way that they diagon
the componentJz of the angular momentum operator. Th
functionsuN8& and uM 8& are the result of time reversal of th
functionsuN& anduM &, respectively, so that under a rotatio
of 180° about thez axis,uN& anduM & are multiplied byi and
uN8& and uM 8& by 2i . Then

A15q1uU1u21q2uU2u21q3uU3u2,

A25q6uU6u21q9uU9u2,

A35q4uW4u21q7uW7u2, A45q5uW5u21q8uW8u2,
~14!

where

Ui5^NuVi uM &, Wi5^NuVi uM 8&. ~15!

If the parametersAi are approximately equal in magnitud
the relaxation rates contain essentially no orientational
pendence. This dependence can show up quite clearly if
parameter is much larger than the others, i.e., if the param
netic ion is effectively related to a definite type of deform
tion.

The fact that magnetic ions are firmly related to a de
nite type of deformation is a characteristic feature of ma
phenomena in crystals. We note, for instance, that magn
striction in LiTmF4 in a magnetic field parallel to a crysta
lographic axis~Hic! resulting from the totally symmetric de
formationsezz andexx1eyy , is weaker by a factor of 1000
than magnetostriction in a magnetic fieldH'c, due to defor-
mationsexx2eyy andexy ~see Ref. 23!. Hence we can make

187Aminov et al.



an assumption that makes it possible to describe the orienta-
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tional dependence of the relaxation rate observed in exp
ments:

A15na, A25A35A45a, n'103. ~16!

For estimates we also used the calculated values of
components of tensorgm obtained by using the paramete
~given above! of the crystalline field with allowance for al
the j -multiplets of the ground state term4I of the Nd31 ion:

gmx50.765, gmy50.609, gmz54.355. ~17!

Note that the calculated values of the gyromagnetic ratio
the principal doublet,

gx521.249, gy51.83, gz523.973 ~18!

obtained in a similar manner agree fairly well with the e
perimental data given at the beginning of Sec. 2. For
width of the intermediate level we takeg5231011 s21 ~the
average pre-exponential factor in Eqs.~3!–~7!! and examine
the dependence of the relaxation rate on the orientation
the external field in the~100! plane of the crystal~this plane
contains thez axis and the bisectrix of the angle between t
local x andy axes, i.e.,nx5ny!.

In this case

B154~n11!a2,

B250.5~n21!2a2$12g22gm
22~17.1 cos2 u20.08!2%,

Dv25v0
2gm

2 g22,

g2513.1 cos2 u12.19, gm
2 518.49 cos2 u10.48,

~19!

whereu is the angle between thez axis and the field, andv0
is the fixed frequency of the variable field~2p39.25 GHz!.
By adjusting the parametera in such a way that for the
z-orientation the calculated relaxation rate coincides with
experimental value, and plotting the relaxation rate for e
orientation as a function of the corresponding value of
external magnetic field strength, we were able to adequa
represent the pattern of the experimental points in Fig. 4~the
solid curve depicts the result of relaxation rate calculation!.

When the field is oriented along the principal axes of
g-tensor, the coefficientB2 vanishes, and, according to ou
theory, in perfect crystals there should be no field dep
dence of the relaxation rate for such orientations~cf. Refs. 19
and 21!. One can expect, however, that the crystal contain
number of positions of impurity centers of lower symmet
and that there is a noticeable deviation of the axes of
g-tensors from the crystallographic axes. Already atB2'B1
the relaxation of such centers is strongly dependent onuHu.
The reason for such distortions may be the imperfection
the crystals discussed above and the paramagnetic impu
proper, whose concentration~'1%! is fairly high. For such a
concentration, the spins are strongly coupled and relax
single system, which imposes the overall field dependenc
the relaxation rate. To verify this point it would be desirab
to study the concentration dependence of the relaxation
especially at extremely low concentrations.
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dependence of the relaxation rate on the magnetic fi
strength: the proximity of the optical phonon frequencies
the frequencyD of the transition of an impurity ion into the
excited state. If the edge of the phonon band is close toD,
the extent to which optical phonons participate in two-sta
relaxation processes is determined by the overlap of
band and the profile of the line of excitation of the ion. A
the magnetic field strength increases, this line, whose w
is g, moves inside a small interval of 2–3 cm21, but this can
be sufficient for an appreciable increase in the abo
mentioned overlap and, accordingly, for an increase in
rate of relaxation with participation of optical phonons. Pe
haps this mechanism is an addition to the one mentio
earlier, and facilitates a more clearcut manifestation of
field dependence of the spin–lattice relaxation rate.

Thus, the field dependence of the spin–lattice relaxat
rate of Nd31 ions in YAG discovered in the high-temperatu
range can probably be interpreted as a specific manifesta
of the degeneracy of the excited level participating in t
two-stage relaxation process. This is also in full agreem
with the fact that the temperature-dependent part of the E
linewidth does not depend on the field strength, since i
determined by the probability of direct transitions from t
ground states to the excited and, therefore, does not de
on whether the latter are degenerate or not. For the s
reason, the estimates of relaxation times done by using
linewidth is in better agreement with the pulsed measu
ments ofT1

21 at large values of the magnetic field strengt
According to Eq.~11!, several conditions must be me

for the field dependence of the spin–lattice relaxation time
show up: the lifetime of the intermediate level must be s
ficiently short~g>v0!, and the coefficientB2 must be large
(B2.B1). The quantityg is proportional to the phonon dis
tribution densityr~D!, and an increase in the Debye value
the density due to optical vibrations at a frequency close
the energyD of ion excitation may also play a role in that th
YAG:Nd system proves to be a convenient object for obse
ing this dependence.

4. CONCLUSION

We now summarize the main results of our investigat
of the spin–lattice relaxation of the impurity Nd31 ions in
YAG.

1. Low-temperature relaxation is determined to a gr
extent by the method of sample preparation. In the m
‘‘perfect’’ crystals, relaxation results from direct energ
transfer to the phonon system. The existence of defe
markedly increases the relaxation rate.

2. At high temperatures, the difference in relaxation ra
for different samples becomes smaller. The transfer of
energy to the lattice is a two-stage process through an in
mediate level with excitation energyD;130 cm21. We
found that here relaxation strongly depends on the exte
magnetic field. We know of no reports of such a depende
in experiments involving various systems.

3. The probable reason for such a dependence is
quasidegeneracy of the excited doublet level of the ion,
which the doublet splitting is comparable to the recipro
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lifetime of the state. The presence in the YAG lattice of

st
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10Gh. Cristea, T. L. Bohan, and H. J. Stapleton, Phys. Rev. B4, 2081
~1971!.

e

optical vibrations with frequencies close toD probably re-
duces this lifetime, and results in a more clearcut manife
tion of the field dependence of the relaxation rate.

The authors are grateful to B. Z. Malkin for discussio
and data on gyromagnetic ratio calculations, and to G.
Ermakov and E. V. Antonov for providing the single crysta
for the experiments.
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Instability of single-electron memory at low temperatures in Al/AlO x/Al structures

rrier
V. A. Krupenin, S. V. Lotkhov, and D. E. Presnov

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 4 July 1996!
Zh. Éksp. Teor. Fiz.111, 344–357~January 1997!

A nanostructure based on a uniform one-dimensional array of ultrasmall tunnel junctions~a single-
electron trap! characterized by an ability to maintain an excess charge of several electrons
in an island is fabricated and investigated. Changes in the state of the trap are detected by a single-
electron transistor. At the working temperatureT535 mK the storage time of a charge state
is more than 8 h~which is the duration of the experiment!. It is demonstrated that the possible
factors limiting the lifetime of a state at temperatures below the typical temperatures for
thermal activation include the influence of the random distribution and drift of the effective
background charges of the metal islands, as well as the reverse influence discovered
here of the transistor on the trap. As the current passing through the transistor increases, the
hysteresis loop in the dependence of the charge in the trap on the control voltage narrows. It is
noted that an increase in the current from 5 to 300 nA is equivalent to raising the working
temperature to 250 mK. ©1997 American Institute of Physics.@S1063-7761~97!02201-4#
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The development of nanolithographic methods has m
it possible to fabricate single-electron systems of submic
tunnel junctions, whose behavior is based on the Coulo
blockade. In order for the charge effects to predominate o
the background of thermal fluctuations and the quant
spreading of the energy levels, the parameters of the st
ture must satisfy the following conditions:1

C!e2/2kT, R@Rq , ~1!

whereC andR are the characteristic capacitance and tun
resistance of the junctions,k is Boltzmann’s constant,T is
the temperature of the sample,e is the electron charge,h is
Planck’s constant, andRq5h/4e2'6.5 kV is the quantum
resistance. Remarkably, the conditions~1! do not lead to
fundamental restrictions on the minimum topological dime
sions of single-electron structures. This makes sing
electron structures promising for further miniaturization
the basic cells of microelectronic structures.2

The present research is devoted to an experimenta
vestigation of a prototype single-electron memory cell
stated differently, a single-electron trap. The simplest fo
of a single-electron trap is depicted schematically in Fig.

The metal islandA, which is under the electrostatic in
fluence of a control electrode~gate!, is connected to a
grounded electrode by a uniform one-dimensional array
N tunnel junctions with capacitanceCt . In energy terms the
presence of this array is represented by the presence o
electrostatic barrier controlled by the gate voltageVg

~Fig. 2!:

DEi5e2/2CS
i 2eVi~Vg!, ~2!

whereCS
i is the total capacitance of thei th intermediate

island in the array (0, i < N), defined to be the charge of th
island produced by unit potential when all external ele
trodes are grounded, andVi(Vg) is the contribution to the
potential of thei th island from the field created by the vol
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is capable of isolating an excess chargene in the island,
where n is an integer in a certain range of value
nmin(Vg),n,nmax(Vg). The discrete number of stable charg
statesM in the trap as a function of the gate voltageVg is

3

M5FNCS

Ct
21G1

1

2
6
1

2
, ~3!

whereCS is the total capacitance of the islandA. By asym-
metrizing ~‘‘tilting’’ ! the barrier by means of one of the in
crements (DVg) in or (DVg)out we can cause the tunneling o
an electron into or out of the island, respectively, with t
resultant changen→n61. For the reverse transition
n61→n to occur, the direction of the asymmetrizatio
~‘‘tilting’’ ! of the barrier must be reversed by an oppos
change inVg . Thus, the dependence of the island charge
Vg has a hysteretic character~see Fig. 6 in Sec. 3.2!. The
width of the hysteresis loop depends on the height of
barrier, the temperature, theVg sweep rate, and the influenc
of external excitations. The state in which the system
found at the current time is determined by the history of
variation ofVg , i.e., the system has memory. A pair of a
jacent states withn andn11 electrons in the island can b
assigned to logical 0 and 1~or low and high!, and such a
single-electron trap can be used to store a single bit of dig
information.

Unfortunately, there are several mechanisms that lea
undesirable switching between the charge states of the
and thereby reduce the accuracy of stored digital inform
tion. They include the thermal activation of tunneling~the
influence of this effect on a single-electron trap was th
oughly examined in Ref. 4!, macroscopic quantum
tunneling,5 and tunneling due to photon excitation.6 The be-
havior of the experimental structure is also influenced s
nificantly by the random drift of the background effectiv
charges of the islands in the structure, on which we sh
dwell in detail in this paper.

190$10.00 © 1997 American Institute of Physics
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FIG. 1. Equivalent circuits of a very simple single-electron trap~a! and of
the experimental structure investigated~b!.

FIG. 2. Dependence of the free energyDEi on the position of the electrode
in the array for various values of the self-capacitance of the intermed
islands:1! Cs50, 2! Cs510 aF,3! Cs515 aF,4! Cs520 aF. The data were
obtained numerically, using Eq.~2!, Ct5200 aF, CS5240 aF, and
Vg5e/2Cg51.14 mV.
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electrometer used to detect the tunnel events on the ch
dynamics of the trap. It was discovered that the width of
hysteresis loop in the dependence of the trap island ch
on the gate voltage decreases as the constant current sup
to the single-electron transistor is increased, shortening
lifetime of the states.

2. EXPERIMENTAL METHOD

The equivalent circuit of the experimental structure
depicted in Fig. 1b. The structure includes an additio
similar one-dimensional array of tunnel junctions connec
to the trap island, making it possible for current to flow alo
two one-dimensional series arrays. For this reason, the p
cipal electrical parameters can be determined in this cir
directly from measurements without enlisting topologic
calculations of the capacitances. It is known7 that the
current–voltage characteristic of a one-dimensional array
tunnel junctions has a Coulomb-blockade segment at v
ages less than a certain threshold (V,Vth) and that it tends
to a linear asymptote atV@Vth . Thus, by supplying a bias
voltage several times the threshold voltage of the Coulo
blockade of each array or, in other words, by selecting
nearly asymptotic regime, we can neglect the nonlinearity
the current–voltage characteristic of each array in eva
tions and calculate the voltage on the central island us
Ohm’s law. This permits the direct determination of both t
ratio between the asymptotic resistances of the arrays and
mutual capacitanceCint of the central islands of the transisto
and the trap from measurements. KnowingCint , we can
evaluate the total capacitance of the trap islandCS , which is
needed to calculate the height of the electrostatic barrier

In our experiment, variations in the state of the island
the single-electron trap were detected because of the ca
tive coupling of the trap island to the single-electron trans
tor alongside it.8 The need to compensate for the influence
the background charge called for the introduction of ad
tional tuning gatesT1 andT2 for the arrays.

A system of small-area~80380 nm2! Al/AlO x/Al tunnel
junctions was fabricated on a silicon substrate with an in
lating Al2O3 coating of thickness 200 nm by the two-shado
deposition of Al through a two-layer electron-beam lith
graphic mask with suspended segments and intermediain
situ oxidation~see, for example, Ref. 9!. A photomicrograph
of the experimental structure is presented in Fig. 3.

The measurements of the electrical characteristics w
performed in a dilution refrigerator at temperatures from
to 200 mK. The parts of the cryostat and the measuring
cuit that are at higher temperatures, the electromagn
background in the laboratory, and the ‘‘noisy’’ power su
plies of the measuring instruments can be sources of elec
magnetic excitations capable of provoking a tunnel eve
External noise is capable of reaching the single-elect
structure both along the electrical conductors and thro
leaks in the shielding of the sample. To protect the sam
from noise, it was enclosed in a hermetically sealed me
capsule, and the electrical connecting lines from the sam
to the measuring instruments were interrupted by coa
cable microwave filters,10 which were located in the sam

te
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capsule with the sample in direct proximity to it and were
the same temperature. Special low-noise measuring ins
ments were used in the experiment. The power sources o
control circuits and preamplifiers were storage batteries.
typical noise level of the measuring instruments w
Vrms;30 nV/Hz1/2 at a frequency of 10 Hz.

3. EXPERIMENTAL RESULTS

3.1. Determination of the parameters of the structure

1. To determine the resistance ratio, the arrays mus
brought into a conducting~unblocked! state by applying a
potential differenceV12V2 several~;10! times greater than
the blockade voltage to their ends. In this case the poten
of the central island in the trap is determined by the ra
between the total resistances of the arraysR1 /R2 and the
applied voltagesV1 andV2 at the ends. We record the sign
from the electrometer and supply a small positive volta
incrementDV1 to one end of the structure. The amplitude
the signal from the electrometer varies. By applying a ne
tive voltage incrementDV2 to the other end of the structure
we can restore the original ‘‘reading’’ of the electrometer.
is clear that

R1 /R25uDV1 /DV2u. ~4!

The ratio between the resistances of the arr
R1 /R250.88 justifies considering them to be the same
within the accuracy of our evaluations~approximately 20%!.

2. The periodDVtr of the modulation characteristi
Vtr(Vgt) of the transistor is determined by the mutual capa
tance between the island of the transistor and the modula
electrode Cgt and is equal to 21 mV, whenc
Cgt5e/DVtr57.6 aF. The capacitancesCt of the tunnel
junctions evaluated from the offset voltageVoff5e/Csum of
the current–voltage characteristic of the transistor~under the
assumption thatCsum'2Ct , whereCsum is the total capaci-
tance of the transistor island! are approximately equal to 20
aF.

3. When the mutual capacitances of the islands in
arrays with the island of the transistor are neglected~modu-
lating the conductivity of the transistor by the gatesT1 and
T2 to the arrays, we estimated that together they amoun

FIG. 3. Photomicrograph of the experimental structure.
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about 20% ofCint!, it can be assumed that the electrome
‘‘senses’’ only the potential of the trap island. Applyin
identical incrementsDV15DV2 to the voltages at the end
of the arrays, which have been shifted into the conduct
state by the fixed potential differenceV12V2 , we find the
mutual capacitanceCint of the transistor island and the tra
island from the period of the plot ofVtr(V1).

4. If the effective electrostatic influence of the trap ga
on the transistor island is balanced by applying a correspo
ing voltage to the ‘‘transistor’s’’ gate, the modulation of th
transistor will be stepwise~Fig. 4! and will occur exclusively
as a result of electron tunneling events from its island to
trap island. This permits evaluation of the total capacitan
of the trap islandCS ~which is defined in analogy toCS

i , see
the Introduction!.

The passage of one modulation period corresponds
variation of the trap island charge byme, wherem is the
number of electrons that entered the island. The chang
the trap island potential not balanced by the ‘‘electro
eter’s’’ gate equals

DV05me/CS . ~5!

On the other hand, this voltage change led to variation of
effective charge of the transistor island bye; therefore,

CintDV05e. ~6!

Comparing~5! and ~6!, we obtain

CS5mCint . ~7!

5. The increment of the voltageVg between two succes
sive jumps in Fig. 4 equalse/Cg ~see, for example, Ref. 3!,
whence we can easily determineCg , i.e., the mutual capaci
tance of the island and the gate.

6. Let us define the total nontunnel capacitance of
intermediate island in an arrayCs as the sum of the self
capacitance~the ‘‘capacitance to ground’’! of the island and
the mutual capacitances of the island to all the electro
surrounding it, except those separated from it by tunnel b
riers. Starting with the assumption that the structure un
consideration is one-dimensional and linear~see Fig. 3! and
taking into account that the length of the central island of
trap is 10 times the effective length of an intermediate isla

FIG. 4. Period of the modulation characteristicVtr(Vg) of the electrometer
by the trap gate in the ‘‘compensated’’ regime. There arem524 tunnel
events in one modulation period.
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TABLE I. Numerical values of the parameters of the experimental structure.
Parameter R11R2 R1/R2

Capacitance, aF

Cgt Cg Cint Ct CS C Cs

Value 2 MV 0.88 7.6 70 10 200 240 45 15
in an array, we haveCnt>10Cs , whereCnt is the total non-
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tunnel capacitance of the trap island, which is defined
analogy toCs . Using the obvious relation

CS52C1Cnt'2C110Cs ~8!

whereC is the capacitance of one array of junctions, whi
is numerically equal to the charge of the right-hand end
the array induced by unit potential when the left-hand end
grounded, and takingC;Ct /N'22 aF as a zeroth approx
mation, we obtain the rough estimateCs;20 aF.

For a more accurate determination ofC with consider-
ation of the finite values ofCs we consider a ‘‘semi-infinite’’
array of metal islands with a total nontunnel capacitan
Cs , which are separated by tunnel barriers with a capa
tanceCt . The capacitanceCx of the ‘‘semi-infinite’’ array,
being equal to the capacitance of any semi-infinite segm
thereof, satisfies the equation

~Cx!
215~Ct!

211~Cs1Cx!
21. ~9!

The potentialVi of the i th island from the end of the array i
related to the potential of the end of the arrayV0 by the
expression

Vi5Vi21

Cx

Cx1Cs
5Vi22S Cx

Cx1Cs
D 25 . . .

5V0S Cx

Cx1Cs
D i . ~10!

EliminatingCx by plugging the solution of Eq.~9! into ~10!
and taking into account thatCt /Cs@1, we obtain

Vi'V0 exp~2 i /l!, ~11!

wherel5ACt /Cs is the characteristic electrostatic shieldin
length in the array. The physical meaning of Eq.~11! is7 that
the electrostatic field in the array is localized within a s
quence ofl junctions counted from the voltage source. T
remaining tunnel junctions are scarcely polarized and are
der the influence of a nearly zero potential. The estimate
Ct and Cs presented above givel;3–4 for a ‘‘semi-
infinite’’ array with the parameters of the structure that w
investigated. The field damping coefficient forN59 equals
exp(2N/l)'0.06. Clearly, grounding theNth island of the
array, which transforms it from a ‘‘semi-infinite’’ array into
a real array, does not lead to significant redistribution of
potential and the polarized charges in the array, and to wi
VN /V0'exp(2N/l) Eq. ~9! is also applicable to the dete
mination of the capacitance of a finite arrayC:

~C!215~Ct!
211~Cs1C!21. ~12!

Solving the system of equations~8! and~12!, we find the
valuesCs'15 aF andC'45 aF.
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our experimental structure are presented in Table I.

3.2. Lifetime of a charge state

The height of the energy barrier and therefore the nu
ber of stable states and their lifetimes are greatly depen
on the electrostatic influence of the distribution of the u
compensated charge in the substrate and the space surr
ing the structure, i.e., on the electrostatic environment. T
can be seen indirectly after taking into account that
height of the energy barrierDE also specifies the value o
the threshold voltage of the Coulomb blockade in an array
tunnel junctions: (V12V2)T;DE/e. Figure 5 presents an
experimental plot of the dependence of the voltage at a sm
current through the array, which is thus close
(V1–V2)T , on the voltage on the gateT1 for zero voltages
on the remaining gates.

As is seen from Fig. 5, the maximum threshold volta
and, therefore, the maximum barrier height are achieved
nonzero value of the compensating voltage onT1 . More-
over, the form of the dependence varies with the passag
time, demonstrating the drift of the distribution of the effe
tive background chargesQ0i , wherei labels the islands. In
the ideal case, complete compensation of the drift phen
ena requires the inclusion ofN21 tuning gates in the struc
ture ~in accordance with the number of intermediate island!,
which is not feasible in complicated applied systems. F
this reason, the search for methods of overcoming the ba
ground charge in single-electron structures takes on spe
urgency.

Figure 6 shows twoVtr(Vg) hysteresis loops, which wer
recorded by the electrometer with a time interval for optim

FIG. 5. Dependence of the voltage at the small currentI55 pA through an
array as a function of the voltage on the tuning gateT2 . The time interval
between the measurements of the plots depicted by the dotted line an
solid line was 70 h.
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tuning of the gatesT1 andT2 and are actually diagrams o
the charge states of the island. The number of stable s
can be determined from the number of steps in the diag
of states intersected by the single vertical straight l
Vg5Vg0 . When the temperature, sweep rate, operating c
ditions of the electrometer, and voltages on the tuning ga
were fixed, gradual narrowing of the hysteresis loop with
decrease in the number of states from 4~curve1 in Fig. 6! to
3 ~curve2! was observed with the passage of time, attest
to lowering of the electrostatic barrier, which is, in all like
lihood, due to the redistribution of theQ0i .

For the two neighboring states 0 and 1 corresponding
the hysteresis loopABCD ~Fig. 6!, the ratio between the
mean lifetimest0 andt1 depends on the choice ofVg in the
rangeVCD,Vg,VAB . The temperatureT was fixed in the
range 150–200 mK, in which the characteristic lifetimes
convenient for measurement~Fig. 7!. It is clear that
t0@t1'0 at the pointVg5VAB and thatt1@t0'0 at the
pointVg5VCD . Therefore, there is an intermediate value
Vg for which t15t0 .

If the lifetime of a state is governed by the therm
mechanism for activating electron tunneling, we have4

FIG. 6. Narrowing of the hysteresis loop with the passage of time~I55
pA!. Pair of curves2, which were obtained 2 h after curves1, is displaced
downward along the vertical axis by 150mV for the sake of clarity.

FIG. 7. Alternating random switching of the charge states of a sin
electron trap recorded on a background of noise using an electrometer
a current in the transistorI55 pA.
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^t&}exp~DE/kT!, ~13!

whereDE is the height of the energy barrier. In other word
the tunneling rate is proportional to the probability of th
thermal excitation of an electron to a level exceeding
height of the electrostatic barrier. The barrier height at wh
t15t05t, as determined from the slope of the semilog p
of t(1/T) in Fig. 8, is 0.1960.3 meV.

The estimate of the lifetime of the state at 35 mK, o
tained by extrapolating the data in Fig. 8, is exp 53'1023 s,
which is much greater than the experimental observa
time.

Macroscopic quantum tunneling of a charge~cotunnel-
ing! is also known to be one of the channels for the decay
a state. The time constanttcot of the cotunneling process in
an array ofN tunnel junctions can be estimated~13! to be

tcot52RtCt@~N21!! #2N22N~2N21!!

3S p2Rt

Rq
D N21SEC

eVD
2N21

, ~14!

whereEC5e2/2Ct is the characteristic Coulomb energy an
V is the potential difference across the array of tunnel ju
tions.

According to ~14!, the cotunneling rate drops signifi
cantly under the conditionEC /eV@1. The inequality
EC /eV.3, at least, holds for a symmetrized (t5t15t0)
barrier, giving the estimatetcot.1020 s.

To demonstrate the memory effect, we stored an elec
for more than 8 h. After this time, the voltageVtr varied
significantly ~by more than the height of a step! due to the
drift of the effective background charge of the electrome
island. Therefore, in order to demonstrate the constanc
the state, we took a ‘‘reading’’ of the trapped electron af
raising the value ofVg aboveVAB , which caused a jump in
Vtr .

As we have already stated, the hysteresis loopDVloop in
the dependence of the trap island charge on the gate vo
can narrow under the influence of external excitations t
are capable of provoking a random tunnel event. We disc
ered that the single-electron electrometer used to de
events in the trap is one of the sources of such excitatio
the width of the hysteresis loop~Fig. 9! decreases as th
currentI el through the electrometer increases~Fig. 10!. At a

-
ith

FIG. 8. Temperature dependence of the mean lifetime of a charge st
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working temperature of 35 mK, an increase in current from
to 300 pA narrows the loop to the value characteristic of 2
mK. Thus, even at low temperatures, the transistor itself
still be one of the factors limiting the storage time of a tr
state. In our opinion, the increase in the absolute value of
derivativeud(DVloop)/d(I el)u of the dependence presented
Fig. 10 at low current is a significant feature of the effect
distinguishes the current dependence of the loop width fr
the temperature dependence, which is characterized by
tening at small values ofT, thereby setting it apart from a
number of temperature-induced effects. As a working
pothesis to explain the effect, we suggest that the activa
of the trap by the transistor is associated with broadb
noise in the voltage of the transistor island due to the in
ence of tunnel events on the spectrum of states of the
island.

On the other hand, the estimates of the warming of
trap DT by the transistor current@Ref. 11, Eq.~3.1!# at the
helium bath temperatureT0535 mK and an electric powe
P5200 nA31 mV as a function of the effective heat diss
pation areaS

S, mm2 3003300 20320 232

DT, mK 0.6 40 190

FIG. 9. Hysteresis curves corresponding to different current values~labeling
the curves!. The curves have been displaced in the vertical direction wit
spacing of 120mV for clarity.

FIG. 10. Dependence of the width of the hysteresis loop on the cur
passing through the electrometer.
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At the present time additional experiments are being

up, and a model which describes the phenomenon is b
developed.

4. DISCUSSION

The lifetime of the charge state of the trap depends
the maximum height of the electrostatic barrier. When
intrinsic capacitances of the intermediate islands in the a
are neglected, the maximum barrier heightDE in the sym-
metric case of equal heights of the barriers to the entry
departure of an electron, i.e.,DEin5DEout, is determined3

by the capacitanceCt of the tunnel junctions, how many
there are in the arrayN, and the total capacitance of th
islandCS :

DE5
e2

8CS

NCS

Ct
21. ~15!

Substituting the values ofCS and Ct obtained above into
~15!, we haveDE'0.8 meV forN59.

Consideration of the intrinsic capacitances of the int
mediate islands~Fig. 2! leads to an increase in the capac
tance C of the array and lowering of the barrier. Fo
Ct>200 aF andCs>15 aF the barrier is lowered by one
third, i.e. to approximately 0.5 meV, which is still almo
twice the experimental value.

In our opinion, one possible reason for the decrease
barrier height is the nonzero effective background char
Q0i of the intermediate islands. For a simple estimate of
magnitude of this effect, we place a negative cha
q52e/20 on one of the intermediate small islands in t
array. This charge fully characterizes the actual scale of
drifting of the background charges of the islands in the str
ture and, in particular, can be determined from the drift
the working point of the electrometer. WhenCS@C, the
contribution of the electrostatic field of the chargeq

DEq'eq/4C'20.1DE ~16!

amounts to 10% of the height of the idealized barrier. Tak
into account the total number of intermediate islands in
array and the possible correlation between theQ0i ~Ref. 12!,
we can estimate the overall effect to be several tenths o
meV.

At low temperatures~below 50 mK!, where thermal ac-
tivation is suppressed, one of the factors restricting the l
time and number of states is excitation of the trap by
transistor. The data in Fig. 10 suggest that even a small
rent passing through the transistor is capable of significa
narrowing the hysteresis loop and thereby shortening
storage time of a state.

Estimates of the time constants of the processes lea
to the decay of states as a result of cotunneling and ther
activation yield values significantly exceeding the obser
tion times accessible in the experiment. The drift variatio
of the characteristics were recorded experimentally. We
sume that they are related to the redistribution of uncomp
sated charge in the local electromagnetic environme

a
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mainly in the substrate, which alters the effective back-
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ground chargesQ0i of the metal islands~including the cen-
tral islands of the trap and the electrometer! in the single-
electron structure. This results, first, in the lower ene
barrier mentioned above, second, in displacement of the
timum working point of the trap with respect to the contr
voltageVg , and third, in instability of the ‘‘output’’ voltage
of the single-electron sensing transistor. Despite the fact
the overall effect of the drifts did not result in switchin
during the 8 h ofexperimental storage of a charge state,
assume that random switching of the states is possible du
the significantly longer time interval needed for practical a
plications of the single-electron memory effect.

In our opinion, there are three principal ways to addr
the negative influence of drift phenomena.

1. Develop a topology that provides for electrosta
shielding of the islands in the single-electron structure
electrodes at fixed potentials. An example of such a solu
is the fabrication of an array of tunnel junctions in the for
of a vertical multilayered~Al/AlO x/AO/AlOx/ . . . ! column
located on an external power-supply electrode with an a
considerably greater than the area of the base of the colu

2. Search for substrate materials with a minimum nu
ber of structural features in the surface layers, on which
formation of charge traps that participate in the chao
movement of the charge carriers and create fluctuation
the electromagnetic environment is possible. Here atten
can be focused on substrates with a single-crystal struct

3. Increase the height of the energy barrier by dimini
ing the capacitances of the junctions and the islands in
array by fabricating structures with small characteris
dimensions—for example, end-surface tunnel junctions.

5. CONCLUSIONS

The device described in this paper is a single-elect
trap. Having multiple-valued charge states, it is a prototy
of a single-electron memory cell. To demonstrate
memory effect we observed the storage of an electron in
trap island for more than 8 h.

It has been demonstrated that the drift of the distribut
of the effective background charges of the islands can be
196 JETP 84 (1), January 1997
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peratures~at which the thermal activation mechanism is su
pressed!.

Another factor influencing the activation of tunneling
the trap is the reverse influence discovered here of the s
ing electrometer on the trap. With respect to its influence
charge hysteresis, an increase in the current supplied to
transistor is similar to an increase in temperature, althoug
is possibly not associated with direct heating of the struct
by the current flowing through the transistor.
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Nonequilibrium noise-induced phase transitions in simple systems

of
P. S. Landa and A. A. Zaikin

M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 19 April 1996; resubmitted 3 June 1996!
Zh. Éksp. Teor. Fiz.111, 358–378~January 1997!

The theory and the results of an investigation of nonequilibrium noise-induced phase transitions
in the simple example of a physical pendulum with a randomly oscillating pivot are
presented. It is shown that such transitions lead to the appearance of a more ordered state of the
system. The possibility of a difference between noise-induced oscillations and chaotic
oscillations of dynamic origin is discussed. ©1997 American Institute of Physics.
@S1063-7761~97!02301-9#
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Noise-induced phase transitions similar to those d
cussed below were considered theoretically by Van
Broeck et al.1,2 for systems described by finite-differenc
models of partial differential equations of a certain for
Noise-induced two-dimensional structures, which can be
garded as a distinctive form of turbulence, were discove
numerically in Ref. 3. This indirectly confirmed the opinio
previously advanced by one of us4,5 that the turbulence in
open flows is not the result of self-induced oscillations, bu
induced by noise.

The transitions that we are speaking about here di
fundamentally from those considered by other investiga
~see, for example, Refs. 6 and 7!, who used this term for the
appearance of additional maxima in a probability distribut
due to multiplicative noise, mainly in systems having t
property of multistability. We note that this fact was al
mentioned in Refs. 1 and 2.

It is very interesting that the noise-induced phase tra
tions under consideration are possible in very simple s
tems, for example, in a physical pendulum with a random
oscillating pivot. Investigating just such simple systems
convenient, because, on the one hand, it is possible to
form an approximate analytic treatment, and, on the ot
hand, a pendulum is a perfectly real physical object, wh
offers the possibility, in principle, of performing an expe
ment.

2. THEORETICAL TREATMENT OF PENDULUM
OSCILLATIONS CAUSED BY RANDOM OSCILLATIONS OF
THE PIVOT

The possibility of exciting an oscillator under a rando
parametric influence was first demonstrated analytically
Stratonovich and Romanovski�.8,9 The same problem wa
subsequently solved by Dimentberg.10 To obtain a constrain
on the amplitude of the oscillations excited, those investi
tors took into account nonlinear friction. However, as will
shown below, the inclusion of nonlinear friction is n
obligatory, since the amplitude can be constrained by me
of a nonlinear restoring force. On the other hand, its inc
sion is convenient, since nonlinear friction of sufficient
large magnitude makes it possible to eliminate random
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2p. Such full turns complicate the analysis of the resu
obtained.

When nonlinear friction is taken into account, the equ
tion of motion of a pendulum with a randomly oscillatin
pivot can be written in the form

ẅ52b~11aẇ2!ẇ1v0
2~11j~ t !!sin w50, ~1!

wherew is the angular deviation of the pendulum relative
the equilibrium position,v05Ambg/J is the frequency of
small natural oscillations of the pendulum,J andm are, re-
spectively, the moment of inertia and the mass of the pen
lum, b is the distance from the center of mass to the piv
g is the acceleration of gravity,b5H/2J is the damping
coefficient of the oscillations,Hẇ is the frictional tongue in
the linear approximation,a is the coefficient of nonlinear
friction, andgj(t) is the acceleration of the pivot, which is
comparatively broadband random process with nonz
spectral density at the frequency 2v0 . We assume that the
intensity of the oscillations of the pivot is small enough th
sinw can be represented in the form

sin w'~12gw2!w, ~2!

whereg51/6.
An approximate analytic solution of the problem of in

terest to us can be obtained, if it is assumed thatb/v0;e
andgw2;e, wheree is a certain provisional small param
eter, which can be set equal to unity in the final expressio
Now it is convenient to rewrite Eq.~1! with consideration of
~2! in the following form:

ẅ1v0
2w5e~22b~11aẇ2!ẇ1v0

2gw3!

2Aej~ t !~12egw2!w. ~3!

HereAe in front of the noise term has the same meaning
on p. 346 of the Russian edition of Stratonovich’s boo9

This way of writing the term is useful, because the spec
density of the noise, which appears in the final expressio
is of ordere.

We solve Eq.~3! by the Krylov–Bogolyubov method to
the accuracy of a second approximation with respect to
small parameter e. For this purpose we se
w5A cosc1eu11e2u21 . . . , wherec5v0t1f,

197$10.00 © 1997 American Institute of Physics



Ȧ5e f 11e2f 21 . . . ,
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ḟ5eF11e2F21 . . . . ~4!

andu1 ,u2 , . . . , f 1 , f 2 , . . . , andF1 ,F2 , . . . are unknown
functions. Using the Krylov–Bogolyubov procedure for st
chastic equations~see Refs. 9 and 11!, we can easily find
expressions for the unknown functionsf 1 , f 2 , andF1 ~F2

introduces only small corrections toF1 and is therefore no
of interest!. Leaving only the nonlinear term inf 2 and sub-
stituting the expressions found into Eq.~4!, we obtain

Ȧ5S 2bS 11
3

4
~av0

21g!A2D1
v0

2
j sin 2c DA, ~5!

ḟ52
3

8
v0gA

21v0j cos2 c, ~6!

where the line over an expression denotes averaging
respect to time. As was shown in Ref. 9, in Eq.~5!

j sin 2c5^j sin 2c&1z1~ t !, ~7!

where the angle brackets denote averaging over a statis
ensemble, andz1(t) is a random process, which can be r
garded as white noise with zero mean and intensityK1 equal
to

K15
1

2
k~2v0!. ~8!

In ~8!

k~2v0!5E
2`

`

^j~ t !j~ t1t!&cos 2v0t dt

is the spectral density of the processj(t) at the frequency
2v0 . Because there is a correlation betweenj andf, the
quantity ^j sin 2c& in Eq. ~7! is nonzero and equal to

^j sin 2c&5
v0

4
k~2v0!5

v0

2
K1 . ~9!

Similarly, in Eq. ~6!

j cos2 c5^j cos2 c&1z2~ t !, ~10!

where

^j cos2 c&5
v0

4 E
2`

0

^j~ t !j~ t1t!&sin 2v0t dt[M ,

~11!

z2(t), as in ~7!, can be regarded as white noise with ze
mean and intensityK2 equal to

K25
1

4 S k~0!1
1

2
k~2v0! D . ~12!

The value ofM depends on the character of the rando
processj(t): if j(t) is white noise, thenM50; if, on the
other hand,j(t) has a finite correlation time, as, for examp
when its spectral density is

k~v!5
a2k~2v0!

~v22v0!
21a2 ,

then
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M52
av0

2k~2v0!

4~16v0
21a2!

.

Taking into account~7!–~12!, we rewrite Eqs.~5! and
~6! in the form

Ȧ5S 2b2
3

4
bg̃A21

v0
2

4
K1DA1

v0

2
Az1~ t !, ~13!

ḟ52
3

8
v0gA

21v0M1v0z2~ t !,

whereg̃5g1av0
2.

The following Fokker–Planck equation corresponds
Eqs.~13!:

]w~A,f!

]t
52

]

]A S S v0
2K1

4
h2

3

4
bg̃A2DAw~A,f! D

2v0S 38 gA22M D ]w~A,f!

]f

1
K1v0

2

8

]2

]A2 ~A2w~A,f!!

1
K2v0

2

2

]2w~A,f!

]f2 , ~14!

where

h512
4b

v0
2K1

.

The stationary solution of Eq.~14! satisfying the condi-
tion that the probability flux equal zero does not depend
f. It is convenient to write it in the form

w~A,f!5
C

2pA2 expH E
1

A 2h

A
dA2E

0

A 6bg̃

v0
2K1

A dAJ .
~15!

The constantC is determined from the normalization cond
tion

E
0

2pE
0

`

w~A,f!A dA df51.

FIG. 1. Spectral density of the noisej(t).
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After integrating~15! overf and calculating the integral in
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3. NUMERICAL SIMULATION OF THE EQUATION
DESCRIBING THE OSCILLATIONS OF A PENDULUM WITH
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the exponential, we find the expression for the density dis
bution of the oscillation amplitudes:

w~A!5CA2h21 expH 2
3bg̃

v0
2K1

A2J . ~16!

From the normalization condition we find

C52H S v0
2K1

3bg̃ D 2h 1

G~h!
for h.

0 for h<0

and, therefore,

w~A!525 S v0
2K1

3bg̃ D 2h 1

G~h!
A2h21

3expH 2
3bg̃

v0
2K1

A2J for h.0

d~A! for h<0

.

~17!

The distribution density of the amplitudes turned out to
delta-shaped whenh < 0 because we did not take into a
count additive noise.1!

Using ~17!, we can find̂ A& and ^A2&:

^A&5HAv0
2K1

3bg̃

G~h11/2!

G~h11!
h for h.0

0 for h<0

,

^A2&5H v0
2K1

3bg̃
h for h.0

0 for h<0

. ~18!

Hence, it is clear that parametric excitation of pendulum
cillations due to the noise influence occurs whenh.0. This
is manifested by the fact that the average values of the
plitude and the square of the amplitude become nonzer
such oscillations are observed and their cause is not kno
it can be concluded that they are chaotic self-induced os
lations. This naturally raises the question of whether the p
cess observed can be distinguished from such oscillati
This question is the subject of Sec. 4.
i-

e

-

-
If
n,
il-
-
s.

AN OSCILLATING PIVOT

Since the theoretical results obtained, first, do not m
it possible to find the form of the noise-induced oscillatio
of the pendulum and, second, are approximate, we num
cally investigated the solution of the equation

ẅ10.2~11aẇ2!ẇ1~11j~ t !!sin w50, ~19!

wherej(t) is sufficiently broad-band noise, whose spect
density is shown in Fig. 1.

A term describing nonlinear friction was included in E
~19! in order to avoid rotation of the pendulum at noise i
tensities significantly exceeding the critical value. The inv
tigation showed that, as the noise intensity increases ab
the critical value@kcr(2)50.8#, the average values of th
instantaneous amplitude of the pendulum oscillations ca
lated using a Hilbert transform~see, for example, Refs. 1
and 13! and of its square become nonzero and then incre
as follows from the theory. The corresponding dependen
are shown in Fig. 2. We see that their initial segments co
cide quite well with the theoretical dependences specified
Eq. ~18!, which we calculated under the assumption that
noise intensity is close to the critical value.

In the immediate vicinity of the threshold, the oscilla
tions excited are very reminiscent of the chaotic self-induc
oscillations that result from loss of stability of the equilib
rium state due to merging, for example, with an unsta
limit cycle, and therefore exhibit intermittency.14 The form
of such oscillations and the projections of their phase port
in the w(t),ẇ(t) plane are shown in Fig. 3. We note th
turbulence in a region of transitional Reynolds numbers a
exhibits intermittency.15–17 It is no accident that the first de
tailed analyses of these phenomena were published spe
cally by specialists in turbulence.18

If nonlinear friction is not introduced, the pendulum b
gins to undergo full turns through angles that are multiples
2p from time to time when the noise intensity deviates on
very slightly from the critical value~see Fig. 3b!. In order to
avoid this unacceptable phenomenon, we performed the
culations at these noise intensities allowing for nonline
friction. As the deviation from the critical value increase
the duration of the segments during which the pendul
oscillates near the equilibrium position gradually decreas
-
g

FIG. 2. Dependence of̂A& ~a! and
^A2& ~b! on the spectral density of
the noisek(2) ~points!. The solid
curves show the corresponding theo
retical dependences calculated usin
Eq. ~18!.
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FIG. 3. Plots ofw(t) and ẇ(t) for
a50 when k(2)/kcr(2)51.01 ~a!
andk(2)/kcr(2)51.06 ~b!, and pro-
jections of the corresponding phas
portraits in thew(t),ẇ(t) plane~c!.
and when the noise intensity is sufficiently greater, these
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segments vanish. This is illustrated in Fig. 4.
Since the observed oscillations of the pendulum

caused exclusively by noise influences, it might have b
expected that they should exhibit the infinitely high dime
sion of the corresponding set constructed in some infin
dimensional space. However, our calculations of the corr
tion dimension both in an ordinary Takens space and us
the well-fit basis technique19 showed that the dimension i
finite. This is evidenced by saturation of the correlation
mension as the dimension of the embedding space incre
An example of such saturation is shown in Fig. 5. As t
noise intensity increases, the dimension increases slig
but remains finite@see Fig. 6, which presents the depende
of the correlation dimensionn on the relative spectral densit
of the noisek(2)/kcr(2)#.

Thus, as our investigation showed, the dimension d
not make it possible to distinguish noise-induced oscillatio
from chaotic oscillations of dynamical origin, for which th
dimension should be finite. An example of such oscillatio
is considered below. We stress that this result contrad
some widely accepted theories, according to which the
mension, in particular, can be used to distinguish cha
oscillations in dynamical systems from random nois
induced oscillations~see Ref. 14!. Granted that several pa
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21!, in which it was shown that noise signals with a 1/f a

spectrum can have a finite correlation dimension~at least for
1 < a < 3!. However, as we shall see below, the spectrum
the observed noise-induced oscillations does not always h
the 1/f a form; nevertheless, their dimension was alwa
found to be finite.

Because the dimension corresponding to the no
induced oscillations of a pendulum is finite, it can be asser
that an attractor is induced in a certain phase space cha
terizing the motion of the pendulum, for example, in a Ta
ens space, under the influence of noise.

For comparison, we consider the chaotic oscillations o
pendulum caused by sufficiently large periodic oscillatio
of the pivot. When nonlinear friction is taken into accoun
these oscillations are described by the equation

ẅ12~11aẇ2!bẇ1~11B cos 2t !sin w50, ~20!

whereB is the relative amplitude of the oscillations in th
acceleration of the pivot. The behavior of the solution of E
~20! for a50 and varyingB was studied in detail in Ref. 22
by numerical simulation. We repeated the calculations p
formed in that work for several values ofB, at which the
oscillations of the pendulum are chaotic. An example of su
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FIG. 4. Plots ofw(t) and ẇ(t) for
a5100 whenk(2)/kcr(2)51.25 ~a!
and k(2)/kcr(2)514 ~b!, and pro-
jections of the corresponding phas
portraits in thew(t),ẇ(t) plane~c!.
oscillations is presented in Fig. 7. It can be seen from the
ei
n
fi-
pe
u

es

chaotic oscillations equals 2.5160.05, and whenB53.5 and
n-

on-
lum
on,
ec-
to
figure that the pendulum performs irregular rotations in
ther direction, which result in slow drifting of the rotatio
anglew. The presence of nonlinear friction, if it has suf
cient magnitude, causes the rotation to vanish, and the
dulum executes only chaotic oscillations relative to the eq
librium position ~Fig. 8!. When B53 and a50, the
correlation dimension of the attractor corresponding to th

FIG. 5. Dependence of the correlation dimensionn on the dimension of the
embedding spacen for k(2)/kcr(2)514 anda5100.
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n-
i-

e

a52, it equals 2.0960.03. We see that the presence of no
linear friction significantly reduces the dimension.

The spectra of the oscillations excited are also of c
siderable interest. In the case of excitation of the pendu
by a harmonic influence in the absence of nonlinear fricti
in which the pendulum performs irregular rotations, the sp
trum of its oscillations contains a low-frequency part due

FIG. 6. Dependence of the correlation dimensionn on the relative spectral
density of the noisek(2)/kcr(2) for a5100 ~diamonds!. The solid line is a
linear approximation of this dependence.
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FIG. 7. Solution of Eq.~20! and projection of
the phase portraits onto thew,ẇ plane for
B53 anda50.
these slow rotations, the spectral density decreasing with in-
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-
, is

ed
of
.

nal
dic

ity
be

ad-
nite
sed
be
ical
ta-
ore
creasing frequency, but not monotonically~see Fig. 9a!.
When nonlinear friction is present, the low-frequency p
tion of the spectrum is significantly smaller, and the sp
trum contains pronounced maxima at frequencies which
multiples of the natural frequencies~Fig. 9b!.

In the case of a pendulum excited by noise, the osci
tion spectrum calculated without allowing for nonlinear fri
tion has a maximum at a frequency close to the natural va
when the noise intensity is close to the critical value~Fig.
10a!. As the noise intensity increases, this maximum
creases and ultimately vanishes~Fig. 10b!. As a result, the
spectrum takes on a monotonically decreasing form sim
to a flicker noise spectrum. At high noise intensities the sp
trum can be approximated by a 1/f n power function, in
which we obtainedn512 for k(2)/kcr(2)522 ~Fig. 10c!.
When nonlinear friction is present, the behavior of the sp
trum remains qualitatively unchanged~see Figs. 9d, 9e, an
9f!. Only when the noise intensity is sufficiently large a
the spectrum takes on a monotonically decreasing form ca
be approximated by two linear segments on a semiloga
mic scale~Fig. 10g!. The correlation functions of the signa
for the parameters corresponding to Figs. 10d and 10f
presented in Fig. 11. We see that the correlation time of
signals determined from the width of the correlation at ha
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that noise signals with a 1/f a spectrum have a finite dimen
sion, because the correlation time for them is very small
in need of refinement in our case.

4. THE RYTOV–DIMENTBERG CRITERION

Let us now turn to the question of whether noise-induc
oscillations can be distinguished from chaotic oscillations
dynamical origin. A similar question was posed by S. M
Rytov12 and subsequently by M. F. Dimentberg23,10 in refer-
ence to the problem of distinguishing between a noise sig
passed through a linear narrow-band filter and perio
noise-contaminated self-induced oscillations.2! It was shown
in their work that in the latter case, the probability dens
for the square of the instantaneous amplitude, which can
determined using a Hilbert transform in the case of a bro
band process, should have a maximum at a certain fi
value of the amplitude, while in the case of noise that pas
through a filter it should decrease monotonically. It can
expected that in the case of chaotic oscillations of dynam
origin, the probability density for the square of the instan
neous amplitude should also have a maximum at one or m
finite values of the amplitude.
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FIG. 8. Solution of Eq.~20! and projection of the
phase portraits onto thew,ẇ plane forB53.5 and
a52.
Such a result was, in fact, obtained by us for the chaotic
o
hi
he
sin
is
e

ec
s
ty

distribution for x5g̃A2 is w̃(x)5w(Ax/g̃)/2Ag̃x, where

ally
de
he
rical

his
ity
na-
pendulum oscillations resulting from periodic oscillations
the pivot that we considered above. Figure 12 shows a
togram of the probability distribution of the square of t
instantaneous amplitude of the oscillations determined u
a Hilbert transform. It is clear that the probability density
not a monotonically decreasing function and that it has s
eral weak maxima.

As follows from the theoretical results presented in S
2, in the case of the excitation of pendulum oscillations a
result of random oscillations of the pivot, the probabili
f
s-

g

v-

.
a

w(Ax/g̃) is specified by Eq.~17!. A plot of w̃(x) for
h50.2 is presented in Fig. 13a. We see that the analytic
calculated probability density for the square of the amplitu
decreases monotonically with increasing amplitude. T
same result was also obtained as a result of the nume
simulation of Eq.~19! ~Figs. 13b and 13c!.

Dimentberg also proposed another version of
criterion,10 which is based on the notion that the probabil
densityx(t) for the process under investigation can be a
-
FIG. 9. Spectral densities of the so
lution of Eq. ~20! on a logarithmic
scale forB53 anda50 ~a! and for
B53.5 anda52 ~b!.
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FIG. 10. Spectral densities of the solution o
Eq. ~19! on a logarithmic scale fora50
when k(2)/kcr(2)51.06 ~a! and
k(2)/kcr(2)522 ~b! and for a5100 when
k(2)/kcr(2)51.25 ~d!, k(2)/kcr(2)54.6
~e!, andk(2)/kcr(2)514 ~f!; approximation
of the logarithm of the spectral density fo
a50 andk(2)/kcr(2)522 by the function
90212log f ~c!; approximation of the loga-
rithm of the spectral density fora5100 and
k(2)/kcr(2)514 by segments of two
straight lines: 1082170f for f < 0.06 and
101260f for f > 0.06~g!.
lyzed instead of the probability density for the square of the
ul
o
es
ty

for x.0 decreases monotonically, no unequivocal answer
s
elf-
ion
of
instantaneous amplitude. Dimentberg showed in a partic
example that if the probability density for positive values
x is not a monotonically decreasing function, the proc
x(t) is auto-oscillatory. However, if the probability densi
ar
f
s

can be given: the processx(t) can be either noise that ha
passed through the filter or strongly noise-contaminated s
induced oscillations. Although the authors make no ment
of this fact, it should be noted that the use of either form
FIG. 11. Correlation functions for
the solutions of Eq.~19! for a5100
when k(2)/kcr(2)51.25 ~a! and
k(2)/kcr(2)514 ~b!.
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this criterion is likely to be possible only if the probabilit
density forx is an even function.

We tested the second form of Dimentberg’s criterion
both noise-induced pendulum oscillations and chaotic os
lations caused by a harmonic parametric influence. Des
the ambiguity and the incomplete symmetry of the distrib
tions indicated by the author, it was found that this form
the criterion also gives correct results. This is illustrated
Fig. 14, which shows the probability distributions for th
rotation anglew of the pendulum in the two cases indicat
above.

Thus, despite the essentially nonlinear transformation
the noise, the Rytov–Dimentberg criterion is valid in t
examples that we considered. Of course, the question o
validity of this criterion in the general case and the possi
ity of using it when the probability distribution for the pro
cess under consideration is not an even function calls fo
more detailed investigation.

5. EXCITATION OF OSCILLATIONS OF A PENDULUM WITH
A RANDOMLY OSCILLATING PIVOT AS A NOISE-
INDUCED PHASE TRANSITION. KLIMONTOVICH CRITERION
FOR ORDERED MOTION

The excitation of pendulum oscillations as a result o
parametric noise influence can be interpreted as the ons
a nonequilibrium second-order phase transition in the sys
under consideration whenh50. Either ^A& or ^A2& can be
taken as the order parameter characterizing this transition
follows from ~18! and Fig. 2, under such a choice of th
order parameter the critical index equals 1.

To demonstrate that the motion in the system becom
more ordered following the transition under considerati
we utilize the criterion proposed by Klimontovich,24,25 the
essence of which can be described as follows. Two st
corresponding to different values of a certain control para
etera are selected in the system under investigation. On
these states, which corresponds toa5a0, is provisionally
taken as the state of physical chaos. The probability den
for the set of variablesX describing the state of the system
denoted byw(X,a). We representw(X,a0)[w0(X) in the
form of a canonical Gibbs distribution

FIG. 12. Probability distribution of the square of the instantaneous osc
tion amplitude fora52 andB53.5.
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w0~X!5expH F0~D0!2H~X,a0!

D0
J , ~21!

whereF0 is the free energy,H(X,a0) is the Hamiltonian
function, andD0 is the temperature, which can be set equ
to unity. We introduce the notation

F0~1!2H~X,a0!52Heff ,

and we takeHeff as the effective Hamiltonian, which doe
not depend ona. Clearly, the mean value of the effectiv
Hamiltonian, which is equal to the effective energy, depen
on a in the general case. Klimontovich proposed renorm
izing the initial probability distribution in such a manner th
the effective energies in the initial state~when a5a0! and

-

FIG. 13. Dependence ofw̃(x)5(2g̃h/C)w(x) for h50.2 ~a! and probabil-
ity distribution for aA2 obtained by numerically solving Eq.~19! for
k(2)/kcr(2)51.25 ~b! andk(2)/kcr(2)514 ~c!.
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FIG. 14. Probability density of the angle
w @W(w)# in the case of noise-induced osci
lations of a pendulum fork(2)/kcr(2)514
~a! and chaotic oscillations induced by a ha
monic parametric influence~b!.
final state~whena5a01Da!coincide. For this purpose, the
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renormalized probability densityw̃0(X,a,Da), which satis-
fies the condition

E Heffw̃0~X,a,Da!dX5E Heffw~X,a01Da!dX, ~22!

is introduced. In Eq. ~22! the probability density
w̃0(X,a,Da), like w0(X), can be represented in the form
a canonical Gibbs distribution:

w̃0~X,a,Da!5expH F~D !2Heff

D J , ~23!

whereF(D) is the effective free energy, andD is the effec-
tive temperature, which depends onDa. The unknown func-
tion F(D) is determined from the normalization condition

E w̃0~X,a,Da!dX51, ~24!

and the dependence ofD on Da is found from Eq.~22!.
Comparing ~21! and ~23!, we see thatD(0)51 and
F(1)50.

Klimontovich claimed that if the value ofD(Da) thus
found is greater than unity, the state of the system w
a5a01Da will be more ordered than the state wi
a5a0 , i.e., in this case we correctly took the latter as t
state of physical chaos.3! After the state of physical chaos
determined~we shall assume that it corresponds to a value
a equal toa0!, Klimontovich proposes introducing the dif
ference between the entropies

S̃052E w̃0~X,a,Da!ln w̃0~X,a,Da!dX

and

S52E w~X,a01Da!ln w~X,a01Da!dX

as a quantitative measure of the degree of ordering of
motion whena varies froma0 to a01Da. It follows from
the normalization conditions and Eq.~22! that

DS5S̃02S5E w ln
w

w̃0
dX. ~25!

We note thatDS, which is defined by~25!, cannot be nega
tive, even if we incorrectly chose the state of physical cha
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characterize the degree of ordering of the motion. Thus
we have already stated, the criterion for a transition to a m
ordered state isD(Da).1 and notDS.0.

Let us now turn to our problem and take the state cor
sponding toh5h0 as physical chaos and the state cor
sponding toh.h0 as the state whose degree of order
wish to determine. Assuming thath,h0!1 and performing
all the calculations indicated above, we find th
D5112(h2h0)(112h13h21 . . . ), i.e., we correctly
selected the state of physical chaos.4! The calculation of the
entropy differencedS is fairly cumbersome, but it can b
shown thatdS;h2(h2h0). The expressions found are als
valid for h050.

Thus, we have found that upon the phase transition c
sidered above, the motion becomes more ordered from
standpoint of Klimontovich’s criterion, although the degr
of ordering varies only slightly. From the standpoint of pu
common sense this result seems paradoxical~as does Klim-
ontovich’s well-known finding that the transition from lam
nar to turbulent flow is accompanied by an increase in
degree of ordering of the motion!. For this reason, Klimon-
tovich’s criterion has aroused and still arouses strenuous
sistance among many investigators, especially those
deal exclusively with dynamical systems and do not consi
fluctuations. However, in our opinion, Klimontovich’s crite
rion contains a rational core when it is applied to systems
which fluctuations play a decisive role.

Klimontovich interpreted his results with respect to tu
bulence in the following manner. When turbulence develo
an increasingly larger part of the energy of the chaotic m
tion of the molecules is transformed into the energy of
considerably more ordered, large-scale motion of eddies,
the fraction of the energy in the small-scale chaotic mot
decreases. Therefore, the degree of ordering of the motio
a whole increases. It is difficult not to agree with this inte
pretation. A similar interpretation can be given for the nois
induced phase transition in a pendulum considered here.
question both the feasibility and utility of applying Klimon
tovich’s criterion to systems in which the presence of flu
tuations is not fundamental, for example, self-excited os
lators.
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6. STABILIZATION OF THE UPPER EQUILIBRIUM POSITION
OF A PENDULUM WITH A RANDOMLY OSCILLATING

m
m

x

o
r

ai
s
e

io

d
tio

ic

ue
e

2exp~2p2t!!] ^j~ t !j~ t1t!&dt. ~33!
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PIVOT

It is widely known that when the pivot of a pendulu
undergoes rapid periodic oscillations, its upper equilibriu
position can become stable under certain conditions~see, for
example, Refs. 26–29!. This phenomenon was observed e
perimentally by P. L. Kapitsa.30,31 It will be shown below
that a similar phenomenon occurs when the pivot underg
sufficiently high-frequency random oscillations. For this pu
pose we consider the equation

ẅ12bẇ1~11j~ t !!sin w50. ~26!

If the spectrum of the random processj(t) is concentrated in
a sufficiently high-frequency region and does not cont
components in zones of parametric resonance, fluctuation
the variablew due to random oscillations of the pivot will b
small. Settingw5^w&1dw, where dw!^w&, in ~26!, we
obtain

^ẅ&12b^ẇ!1sin̂ w&1coŝ w&^j~ t !dw&50,

dẅ12bdẇ1coŝ w&dw1j~ t !sin̂ w&50. ~27!

One of the stationary solutions of Eqs.~27! has the form

^w&5p, dw50. ~28!

This solution corresponds to the upper equilibrium posit
of the pendulum, in whose stability we are interested.

To investigate this stability, we can write linearize
equations for small deviations from the steady-state solu
~28!. Setting^w&5p1c, from ~27! we obtain the following
linearized equations forc anddw:

dc̈12bċ2c2^j~ t !dw&50, ~29!

dẅ12bdẇ2dw2j~ t !c50. ~30!

Under steady-state conditions the solution of Eq.~30! has the
form

dw~ t !5
1

2A11b2 E2`

t

@exp~p1~ t2t8!!

2exp~p2~ t2t8!!#j~ t8!c~ t8!dt8, ~31!

wherep1,252b6A11b2 are the roots of the characterist
equationp212bp2150. Hence we find

^j~ t !dw&5
1

2A11b2 E2`

t

@exp~p1~ t2t8!!

2exp~p2~ t2t8!!#^j~ t !j~ t8!&c~ t8!dt8.

~32!

Settingt82t5t in this expression and noting that the val
of c does not vary significantly during the correlation tim
of the random processj(t), we rewrite~32! in the following
form:

^j~ t !dw&52
1

2A11b2
c~ t !E

0

`

@exp~2p1t!
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To calculate the integral in this expression, we specify
correlation function of the processj(t) in the form

^j~ t !j~ t1t!&5s2e2at cosvt,

wheres25ak(v)/2 is the variance of the random proce
j(t), k(v) is the value of the spectral density of this proce
at its center frequency, anda is the half-width of the spec-
trum of the processj(t). From ~33! we find

^j~ t !dw&52
s2~v22~p11a!~p21a!!

~v21~p11a!2!~v21~p21a!2!
c~ t !.

~34!

Under the conditionv@1,b,a we thus obtain

^j~ t !dw&'2
s2

v2 c~ t !. ~35!

Substituting~35! into ~29!, we obtain the approximate
equation

c̈12bċ1v0
2c50, ~36!

wherev05As2/v221 is the natural frequency of small os
cillations of the pendulum about the upper equilibrium po
tion whenb50. It follows from Eq.~36! that the mean de-
viation of the pendulum from the upper equilibrium positio
will decay, i.e., the equilibrium position will be stable, if th
frequencyv0 is real.

The transition to a regime with stabilization of the upp
equilibrium position of the pendulum due to either period
or random high-frequency vibration of the pivot can be
garded as the creation of an averaged system@the deviation
of the upper equilibrium position for this system is describ
by Eq. ~36!# of some new attractor induced by the hig
frequency vibration in phase space. In some sense we
forget about the high-frequency vibration and consider a n
dynamical system with two stable equilibrium states. J
such an approach was developed by I. I. Blekhman.29 A pro-
cedure for obtaining equations that describe this new sys
was also given in his monograph. On the other hand,
process of stabilizing the upper equilibrium position of
pendulum by means of high-frequency random vibration
the pivot, as well as the process of exciting vibrations co
sidered above, can be interpreted as a noise-induced sec
order phase transition, in which the parameters2 plays the
role of the ‘‘temperature,’’ and the real part of the frequen
v0 plays the role of the order parameter. It follows from t
expression forv0 that the corresponding critical index equa
1/2.

7. CONCLUSIONS

We have thus shown that nonequilibrium second-or
phase transitions, which lead to the appearance of an indu
attractor of finite dimension, are possible even in such
simple system as a physical pendulum under the influenc
multiplicative noise. The investigation of such transitions
other, more complicated systems will undoubtedly be
great physical interest.
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1!It was, however, taken into account by Dimentberg.10

2!The noise source leading to noise contamination of the self-induced o
lations can be either additive or multiplicative.

3!All this is true if the value ofD following the reverse transition froma to
a2Da is less than unity; otherwise, the situation is more complicated.
follows from the results obtained below, the former simple situation ex
in the case under consideration.

4!It follows from this expression that if we seth,h0, the value ofD will be
less than unity. Thus, the simple situation referred to above does in
come to pass.
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ERRATA
Erratum: Logarithmic radiative corrections to the dipole matrix elements in the
hydrogen atom [JETP 82, 656–663 (1996)]

V. G. Ivanov

Main Astronomical Observatory, Russian Academy of Sciences, 196140 Pulkovo, Russia

S. G. Karshenbo m

D. I. Mendeleev Scientific-Research Institute of Metrology, 198005 St. Petersburg, Russia

@S1063-7761~97!02401-3#

The following corrections were reported by the authors:

1. Table I should read as follows:

2. Equation~10! should read as follows:

ddzn8n52
2A~Za!m2

p
dzn8nF (

n9Þn

1

n93
1

1/n221/n92
Dn9n8
Dnn8

1E
0

` dt

t3~1/n211/t2!

1

12e22pt

D tn8
Dnn8

G . ~10!

3. Equation~21! should read as follows:

Ḡn~En ;0,r !52
Zam2

2pr

e2zn/2

n! (
s50

n
~2zn!

n2s

s! F n!

~n2s!! G
2H ~n2s!F ~c~n11!22c~n2s11!!

2
2~n2s!132zn

2n
1 ln znG11J . ~21!

4. The second equation in Appendix C~Section A!, p. 662, should be numbered as ‘‘~C1!.’’

TABLE I. Analytic and numerical values ofSn8n.
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5. The first equation in Appendix C~Section B!, p. 662, should read as follows:

2

Qnn85j n
4 (

t50

n822
~21! tjn

t

t!

G~n821!

G~n8211t !

G~4!

G~ t14!(s50

n
~21!s~n2s!hn

n2s

s!

G~n11!G~n2s141t !

@G~n112s!#2
.

6. Table IV on p. 661 should read as follows:
TABLE IV. Corrections to the line intensities and partial and total line widths
corresponding to transitions in the lower levels, in units ofA(Za)m2/p.
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Vacuum splitting of the energy levels of a system consisting of an atom and a dielectric

in
microsphere
V. V. Klimov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117294 Moscow, Russia

V. S. Letokhov

Institute of Spectroscopy, Russian Academy of Sciences, 142092 Troitsk, Moscow Region, Russia
~Submitted 13 June 1996!
Zh. Éksp. Teor. Fiz.111, 44–51~Janaury 1997!

Expressions are found for the vacuum splitting of the energy levels of a system consisting of a two-
level atom and a dielectric microsphere. These expressions coincide with those obtained
from a purely classical approach. ©1997 American Institute of Physics.
@S1063-7761~97!00301-6#
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Contemporary technology has progressed to the p
where various structures~microspheres, sharp points1! can be
fabricated with characteristic dimensions in the hundreds
even tens of nanometers. For this reason, there has
more and more interest in the investigation of optical p
nomena near such nanostructures.

Nanostructure optics is a very specialized area of op
and spectroscopy, because it involves optics over dimens
that are comparable to or even smaller than a wavelen
This implies that many of the concepts of ordinary optics a
spectroscopy are subject to considerable modification.

One of the most interesting directions of inquiry in th
area is the investigation of how the spectroscopic charac
istics of an atom change near a nanostructure. In this c
the formal quantum mechanical problem can be solved if
limit ourselves to first order in perturbation theory, yieldin
both the level shift2 and the change in linewidth.3 In Ref. 4
this problem was discussed and applied to an atom ne
dielectric microsphere, and the shift in frequency and cha
in linewidth were found.

A more interesting case is that of strong electromagn
coupling, where perturbation theory cannot be applied.
this case a situation can arise where the radiation of an a
is absorbed by the resonator and the radiation of the res
tor is absorbed by the atom, i.e., the case of Rabi splitt
Although this effect has been discussed in a number of
pers~see, e.g., Refs. 3 and 5! from a general point of view, in
specific situations its treatment is a complicated problem
Ref. 6, Duttaet al. discussed vacuum Rabi splitting in
model problem where the interaction of an atom with
sphere was approximated by distributing a dielectric perm
tivity with resonance properties uniformly over the latter; t
coupling strength of the atom to the sphere was controlled
varying the resonant part of the dielectric constant.

In Refs. 4 and 7, Klimovet al. discussed the classica
problem of the resonant effect of a dielectric microsphere
the radiative properties of an oscillator located near its s
face. In this paper we discuss this problem from a quan
mechanical point of view for a two-level atom interactin
with the resonant modes of a dielectric microsphe
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Fig. 1.

2. QUANTIZATION OF THE ELECTROMAGNETIC FIELD IN
THE PRESENCE OF A MICROSPHERE

In order to solve this problem we must first quantize t
electromagnetic field properly. For the most part, this pro
dure is well understood; however, a special approach is
quired for each specific case. In our problem, we choose
the quantization volume a perfectly conducting sphere w
large but finite radiusL→` ~see Fig. 1!. The classical ex-
pansion of the electromagnetic field and its vector poten
over a complete set of eigenstates can be written in the f

E5(
s

as2as
1
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e~s,r !, B5(

s

as1as
1

&

b~s,r !,

A52
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(
s

as1as
1

&

e~s,r !,

FIG. 1. Geometry of the problem.
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Hereas , as
1 are the photon annihilation and creation ope

tors for the corresponding modes with the usual commu
tion relations;vs are the frequencies of these modes.

For the case of interest to us, i.e.,TM modes, it is easy
to obtain expressions fore(s,r ) andb(s,r ) ~see, e.g., Ref. 8!
in terms of spherical harmonicsY and spherical Hankel func
tionsh:9

b~n,m,n!5@aTM,n
~1! hn

~1!~kr !1aTM,n
~2! hn

~2!~kr !#

3L̂Ynm~q,w!, r.a,

e~n,m,n!52
1

k
@“3b~n,m,n!#. ~2!

Here k5vs /c is the wave vector outside the sphere, a
s5$n,m,n%, wheren is the orbital quantum number,m is
the azimuthal quantum number, andn is the radial quantum
number;L52 i r 3 “ is the angular momentum operator, a
a is the radius of the microsphere. Within the microsph
analogous representations apply with the spherical funct
hn replaced by spherical Bessel functionsj n, andaTM,n

(1,2) re-
placed bybTM,n .

The coefficientsaTM,n
(1,2) and bTM,n can be found in the

usual way from the continuity conditions on the tangen
components of the field at the boundary of the sphere,
normalization of the wave functions in a sphere with rad
L to one photon per mode:

aTM,n
~1! 5F« d

dz2
@z2hn

~2!~z2!# j n~z1!

2
d

dz1
@z1 j n~z1!#hn

~2!~z2!G iz2bTM,n

2«
,

aTM,n
~2! 52F« d

dz2
@z2hn

~1!~z2!# j n~z1!

2
d

dz1
@z1 j n~z1!#hn

~1!~z2!G iz2bTM,n

2«
,

uaTM,n
~1! u25uaTM,n

~2! u25
2p\c

L

k3

n~n11!
. ~3!

In ~3! and in what followsz15A«ka, z25ka, and« is the
dielectric constant of the microsphere. Note that the con
bution to the normalization of the wave function from th
region within the dielectric microsphere is negligible com
pared to the contribution from the region withr;L.

In order to find the effective mode amplitudes it is al
necessary to know the density of final states. The requ
ment that the tangential components of the electric field v
ish on the interior surface of this sphere leads to the tr
scendental equation

d

dr
~rZ !U

r5L

50,
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which has the asymptotic solution

vs5S n1
n11

2 D pc

L
1... ~5!

From this it follows that the density of final states will b
given by the simple expression

rTM~v!5
L

p\c
. ~6!

3. CALCULATION OF THE EFFECTIVE ELECTRIC FIELD
AMPLITUDE OF A RESONANT MODE AND THE EFFECTIVE
RABI FREQUENCY

In the most interesting case of resonant interaction of
atom with one of the long-lived modes of the electroma
netic field in the microsphere~the so-called whispering gal
lery modes10!, the effective Hamiltonian for the dipole inter
action of the atom and the radiation11 can be written in the
form

H5HA1HF1HI , ~7!

where the Hamiltonians of the atomHA , the fieldHF, and
the interactionHI have the following forms for a two-leve
atom:

HA5
\vA

2
s3 , HF5\v resFa1a1

1

2G ,
HI52d̂•Ê52e•ds3

a2a1

i&
5\VRs I i ~a2a1!. ~8!

Herea1 anda are the usual creation and annihilation ope
tors for photons with frequencyv res in the resonant mode o
the microsphere,e is the amplitude of the resonant mode,d
is the matrix element for the dipole moment, ands1 , s3 are
Pauli matrices:

s35F1 0

0 21G , s15F0 1

1 0G . ~9!

The Rabi frequencyVR in ~8! can be determined in the
usual way in terms of the transition dipole momentd and the
amplitude of the electric field in the resonant mode:

VR5
d•e

&\
. ~10!

The frequency of the resonant modev res and the magnitude
of the transition dipole momentd must be set equal to thei
values for no interaction. As for the atomic transition fr
quencyvA , it seems logical to include in it the shift cause
by the pure electrostatic interaction with the microsphere4,7

vA
25v0

22dv0
2, dv0

25
3

8

«21

«11

g0v0

@k0~r2a!#3
. ~11!

In ~11!, v0 , g0 are the frequency and linewidth of the tra
sition for the case where no microsphere is present,
k05v0 /c.
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In ~8! the interaction energy is expressed in terms of
amplitude of the resonant mode. However, the width of
resonance line is finite, and it is necessary to take into
count the contribution of all profile discrete modesvs lying
under the resonance profile~see Fig. 2!, including modes that
are degenerate with respect to azimuthal angle. In this p
all modes are included by mean square averaging. The
sults obtained confirm the correctness of this approach.

If we consider as a specific example the case in wh
the element of the transition dipole moment is oriented alo
the radius, then it can only interact withTM modes of the
dielectric microsphere, and consequently the quantity to
amine is the mean square of the radial component of
electric field in theTM mode.

The radial component of thesth TM mode, which is of
interest to us, can be easily found from Eq.~2!

er~n,m,n!52
in~n11!

kr
@aTM,n

~1! hn
~1!~kr !

1aTM,n
~2! hn

~2!~kr !#Ynm~q,w!. ~12!

Summing the squares of the modulus~12! over the azimuthal
quantum numberm with the help of the familiar relation

(
m

Ynm
2 5

2n11

4p
,

we obtain the following expression for the mean square
the electric field due to all degenerateTM modes:

Er ,
2
TM5n~n11!~2n11!

2k\c

Lr 2
u j n~kr !2qnhn

~1!~kr !u2,

~13!

where theqn are the Mie coefficients:

qn5
1

2 S 12
aTM,n

~1!

aTM,n
~2! D

FIG. 2. Distribution of quantized frequencies over the resonance line sh
The spacing between discrete lines is\Dv51/r(v)5p\c/L.
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5

F« d

dz2
@z2 j n~z2!# j n~z1!2

d

dz1
@z1 j n~z1!# j n~z2!G

F« d

dz2
@z2hn

~1!~z2!# j n~z1!2
d

dz1
@z1 j n~z1!#hn

~1!~z2!G .
~14!

Under the assumption of resonant interaction of the at
with the microsphere, the expression for the Mie coefficie
can be written in the form

qn'2 i
Im Qres

v2V res
, ~15!

whereV res is the complex frequency that characterizes
resonant mode:V res5v res2 iG res

(n) /2, while G res
(n) character-

izes the width of the resonance mode.
Using elementary relations, Eq.~13! is easily reduced to

the form

Er ,
2
TM5n~n11!~2n11!

2k\c

Lr 2
@ j n

2~kr !

2Re~qn~hn
~1!!2~kr !2!]. ~16!

This expression involves only the degenerate modes of
of the discrete frequenciesvs ~see~5! in Fig. 2!. In order to
obtain the effective value of the electric field associated w
the mode, it is necessary to sumEr ,

2
TM over all frequencies

within the mode under discussion, i.e., the final express
for the square of the effective value of the mode amplitu
must be written in the form

Ev
2
ac5E

vres2Dv

vres1Dv

Er ,
2
TM~v!r~v!dv, ~17!

whereDv;G res
(n) determines the averaging interval. The e

fective Rabi frequency will accordingly be given by

VR5
dĒvac

&\
. ~18!

e.

FIG. 3. Dependence of the effective electric field on radius~TM mode,
n59, «56, kresa55.548731!.
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After substituting~15! into ~16!, the integration in the

th

nd

al

we can set the term withJn
2 to zero identically, as a result of

pli-

ode
tom

the
second term of~16! can be extended to the interval2` to
`, as a result of which we obtain the final expression for
mean square of the electric field:

Ev
2
ac5n~n11!~2n11!

\G res
~n!

2r 3 FYn11/2
2 ~kresr !

1Jn11/2
2 ~kresr !S 4Dv

pG res
~n! 21D G , ~19!

whereJn , Yn are Bessel functions of the first and seco
kind respectively,9 andkres5v res /c. For long-lived modes,
the value ofn is large and the term withJn

2 is small com-
pared to the termYn

2 . Furthermore, by choosing the interv
of frequency averaging to be

Dv5
pG res

~n!

4
, ~20!
e
which the expression for the effective mean-square am
tude of the resonant mode takes the form

Ev
2
ac5n~n11!~2n11!

\G res
~n!

2r 3
Yn11/2
2 ~kresr !. ~21!

Figure 3 shows the dependence of the effective m
amplitude on the distance from the microsphere to the a
for aTM resonance withn59, « 5 6, andkresa55.5487.

4. DETERMINING THE ENERGY LEVEL SPLITTING;
DISCUSSION OF RESULTS

Once we have found the effective Rabi frequency,
problem reduces to diagonalizing the Hamiltonian~8!, which
in the occupation number representation has the form
H/\53
v res1vA

2
0 0 iVR 0 ...

0
v res2vA

2
iVR 0 ... 0

0 0
3v res1vA

2
... 0 iAn11VR

0 2 iVR ...
~2n11!v res2vA

2
iAn11VR 0

2 iVR ... 0 2 iAn11VR

~2n13!v res1vA

2
0

... 0 2 iAn11VR 0 0 ...

4 . ~22!

In the rotating-wave approximation, which is valid for small values of the Rabi frequency, we have instead of~22! the
matrix

H/\53
v res1vA

2
0 0 iVR 0 ...

0
v res2vA

2
0 0 ... 0

0 0
3v res1vA

2
... 0 iAn11VR

0 0 ...
~2n11!v res2vA

2
0 0

2 iVR ... 0 0
~2n13!v res1vA

2
0

... 0 2 iAn11VR 0 0 ...

4 , ~23!
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whose diagonalization is elementary. As a result, the st
ture of the energy spectrum of the system under study has
form

Eg052
\

2
~vA2v res!, E6,n5~n11!\v res

6
\

2
A~vA2v res!

214VR
2~n11!, n50,1,...

~24!

Equation~24!, together with the expressions for the effecti
Rabi frequency~18! and effective field amplitude~21!, is a
complete solution for the energy spectrum of a system c
sisting of a two-level atom and a dielectric microsphere.

It is easy to obtain from~24! an expression for the
vacuum Rabi splitting of the transition frequency from t
first excited state to the ground state:

v65
vA1v res

2
6A~vA2v res!

2

4
1VR

2. ~25!

In order to determine the physical meaning of these frequ

FIG. 4. Dependence of the relative shift in frequency on the position of
radially oscillating atom~for k0a55.548733,v0 /g05107! for a dielectric
sphere with«56, n59, kresa55.548731.
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c-
he

n-
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atom and the sphere decreases (r→`), one of the solutions
reduces to the frequency of the atomic transition in fr
space (v1→v0), while the other reduces to the resona
frequency in the microsphere (v2→v res).

A clear illustration of these results is shown in Fig.
where the dependence of the frequency splitting on the
tance to the microsphere is plotted.

A remarkable feature of Eq.~25! is the fact that it coin-
cides up to negligibly small terms with the expression o
tained from purely classical relations4,7 by the usual replace
ment dquantum

2 ;d̄class
2 /2. Thus, all the analysis of the Rab

splitting of the energy spectrum carried out in~4! and~7! can
be taken over without change to the quantum mechan
case. On the other hand, this agreement verifies the cor
ness of the procedure we have used for finding the effec
mode amplitudes.

The dissipative characteristics of this system can be
termined with the help of the density matrix.3
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Photon splitting in an ultrastrong magnetic field

V. N. Ba er, A. I. Mil’shte n, and R. Zh. Sha sultanov

G. I. Budker Institute of Nuclear Physics, Siberian Branch of the Russian Academy of Sciences, 630090
Novosibirsk, Russia
~Submitted 20 June 1996!
Zh. Éksp. Teor. Fiz.111, 52–62~January 1997!

We analyze the splitting of a photon with energyv below thee1e2 pair-production threshold in
an ultrastrong magnetic field. We use the amplitudes found by employing the operator
diagrammatic technique. In a field considerably above the critical values the process amplitudes
become independent of the field strength. A study of the polarization operator of a photon
in an external field of arbitrary strength in the energy range considered in the present investigation
shows that there is only one set of polarizations of the initial and final photons for which
the splitting amplitude is nonzero. ©1997 American Institute of Physics.
@S1063-7761~97!00401-0#

1. INTRODUCTION energy range that is most interesting for applications.
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The creation and annihilation of virtual electron
positron pairs induces nonlinear self-action of the elec
magnetic field. The splitting of a photon in an external fie
is a process of nonlinear QED, and observing it is stil
challenge for the experimenter.

Theoretical studies of photon splitting in an extern
field have a long history. In the early 1970s, the process
photon splitting in a uniform, constant magnetic field w
studied in Refs. 1–4, where one can also find reference
earlier work that proved erroneous. In Refs. 1 and 3
process was examined as a possible mechanism for the
duction of linearly polarized photons in the strong magne
fields of neutron stars. For low-energy photons~v !m, with
m the electron mass; in what follows we use a system
units in whichc5\51!, the splitting process can be exam
ined by introducing the effective Heisenberg–Euler Lagra
ian ~see, e.g., Ref. 5!. In the limit of weak fieldsH!H0

~H05m2/e54.4131013Oe is the critical magnetic field, an
e is the electron charge!, the effective Lagrangian can b
expanded in a power series, with only the first term in
expansion, which is represented by hexagonal diagrams,
tributing to the amplitude of the process~see Refs. 1 and 2!.

What is important here is the selection rules in pho
polarizations, including those that emerge when one allo
for the dispersion of photons in the magnetic field. The
were examined by Adleret al.1 ~see also Ref. 5, Secs. 12
and 130!, who gave a detailed study of the process w
v!m andH!H0. A thorough analysis of the problem wa
done in Ref. 3, where a formula was derived for the pho
splitting amplitude by using the complete expression for
effective Heisenberg–Euler Lagrangian. Naturally, the f
mula was valid forv!m, but the magnetic field strength ca
be arbitrary.

For astrophysical applications, one must know the a
plitude in the general case of arbitrary photon energies
external magnetic field strengths. Such a calculation was
done in Ref. 3, where the amplitude of the transition allow
by selection rules was found forv,2m. This is the
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At higher photon energies, electron–positron pair p
duction by a photon in an external magnetic field becom
important, a process that effectively leads to photon abso
tion. The probability of this process in a strong enough fie
exceeds that of photon splitting by many orders of mag
tude.

Adler3 used the Green’s function of an electron in
external magnetic field in Schwinger’s proper-time repres
tation. The expression for the amplitude obtained in t
manner proved extremely cumbersome, which hinders
ther use. Nevertheless, numerical results were obtained
this amplitude atv5m and v!m over a broad range o
magnetic field strengthsH<H0.

Papanyan and Ritus4 also used the electron Green
function in the proper-time representation to study pho
splitting in crossed fieldsE'H, E5H. Stoneham6 used a
different representation for the electron Green’s function a
obtained a different representation for the photon splitt
amplitude.

Later, photon splitting in a uniform, constant electr
magnetic field for arbitrary values of the two field invarian
F andG , with F 5~E–H! andG5~E22H2!/2, was exam-
ined in Ref. 7. The paper employed the operator diagra
matic technique developed by Katkov, Strakhovenko, a
one of the present authors~V.N.B.! in Ref. 8. As a result we
were able to considerably simplify this intricate problem
The amplitudes obtained for the special case of zero elec
~or magnetic! field have a form that is more compact than t
one in Ref. 3. In the limiting cases wherev!m and/or
H!H0, the amplitudes found in Ref. 7 agree with tho
found in Refs. 1–3. While in Ref. 3 the numerical calcul
tions were done for photon energies below the electro
position pair production threshold, in Ref. 7 the casev@m
was examined. We were interested in the possibility of o
serving photon splitting in strong electric fields of orient
single crystals at high energies.9 All the research cited so fa
used Lorentz-covariant and gauge-invariant formulations
QED.

Lately the process of photon splitting has been on
more investigated in Ref. 10. The motivation for this r

29$10.00 © 1997 American Institute of Physics



search was the new discoveries in x-ray astronomy. The cal-
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culations of Mentzelet al. were done within the framework
of noncovariant perturbation theory and the Landau gau
Their results strikingly contradict all those of previous r
search. Nevertheless, attempts have been made to use
in astrophysics.11 The results of Refs. 10 and 11 have be
severely criticized by Adler.12

Since the process may have important astrophysical
plications ~see, e.g., Ref. 13!, we conducted numerical ca
culations and analyzed the photon splitting amplitude, bas
our reasoning on the results of analytic calculations don
Ref. 7. Here we consider the most interesting energy ra
v,2m and an arbitrary magnetic field strengthH.

The results of the present work were briefly reported
Ref. 14. Two papers appeared after that publication, Refs
and 16. Adler and Schubert15 suggested another way of de
riving the expression for the amplitude obtained in Ref.
They also pointed out that in the expressions for the am
tude given in Refs. 3, 6, and 14, which are similar integ
representations, the integrands coincide numerically. W
and Wunner16 acknowledged an error in Ref. 10, with th
new results agreeing with those of Ref. 14.

2. POLARIZATION OPERATOR IN A MAGNETIC FIELD

Concerning the propagation of electromagnetic wav
we can say that a region of space occupied by a magn
field can be interpreted as a medium with a refractive ind
that differs from unity. The value of the refractive index
crucial to the selection rules in the polarizations of the init
and final photons in the splitting process. Forv!m and
H!H0 this has been analyzed in Ref. 1~see also Ref. 5!.
Here we are interested in the selection rules for an arbit
value of the magnetic field and a photon energyv,2m. The
refractive index is found from the photon polarization ope
tor. The contribution to the polarization operatorPmn(k) of
the electron loop in an external uniform, constant elect
magnetic field was found in Refs. 3, 8 and 17.

We consider the case whereE50 andk250. The polar-
ization operatorPmn(k) has four mutually orthogonal eigen
vectorsbi

n defined by the equation

Pmn~k!bi
n5k ibim , i51, 2, 3, 4. ~2.1!

The eigenvalueski act as the square of the mass of a pho
in the field in the corresponding mode. The solution of t
equation in the special case considered here is8

b1
m5b4

m5km, b2
m5~Bk!m, b3

m~Ck!m, ~2.2!

with the tensorsB andC introduced in Ref. 18~see Eqs.
~A2!, ~A3!, and~A8! in Ref. 18!. At E50 we have

Cmn5
Fmn*

H
, Bmn5

Fmn

H
, ~2.3!

whereFmn is the electromagnetic field-strength tensor,Fmn* is
the dual field-strength tensor, andH is the magnetic field
strength.

The eigenvalueski have the form~see Ref. 8!
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~2.4!

R2,35E
21

1

dvE
0

` dx

sinh x
a2,3 exp~2c!,

wherea5e251/137,s25k'
2/v25sin2 q, with q the angle be-

tween the direction of the magnetic field and that of t
photon’s wave vectork,

a15cosh~xv !2v coth x sinh~xv !,

a2522
coshx2cosh~xv !

sinh2 x
1a1 ,

a35~12v2!coshx2a1 ,
~2.5!

c5
H0

H F2r coshx2cosh~xv !

sinh x
1x~12r ~12v2!!G ,

andr5v2s2/4m2. In ~2.4! and~2.5! we allowed for the fact
that below the electron–positron pair-production thresh
~r,1!, the contour of integration with respect tox in the
integrals determining the functionsR2 andR3 in Ref. 8 can
be rotated:x→2 ix. As a result the resulting representatio
for R2 andR3 are real, which is convenient for numeric
calculations, since the integrands contain no oscillating fu
tions. Note that these functions depend only onk'5vs.

The photon splitting amplitude is nonzero only ifs Þ 0
~k'Þ0!. In view of gauge invariance, the modes 1 and
contribute nothing to the amplitude. For mode 2 the zer
componentb2

0 is zero, and the vectorb2/v5e2 is perpendicu-
lar to the plane containing the vectorsH andk. For mode 3
the zeroth componentb3

0 is nonzero, andb3iH. In calculating
the photon splitting amplitude, one can employ the gau
invariance property, and subtract from the vectorb3

m a vector
proportional tokm so that the zeroth component of the vect
difference vanishes. After this, the spatial component of
resulting vector lies in the above-mentioned plane and
perpendicular tok. As noted earlier, the region occupied b
a magnetic field can be considered a medium whose ref
tive index is a function ofki . For modes 2 and 3 we have

n2,3
2 512

k2,3

v2 511
a

4p
s2R2,3. ~2.6!

Let us analyze the behavior of the functionsR2 andR3 in
the limiting cases. WhenH!H0, the main contribution to
the integrals determining these functions is provided by
region x!1. Expanding the hyperbolic functions in powe
series and calculating the integrals, we obtain

n2511
2a

45p S HH0
D 2s2, n3511

7a

90p S HH0
D 2s2.

~2.7!

Whenk'!m(r!1), the exponentc in the exponential
function in ~2.4! tends toH0x/H, the integrals with respec
to v can easily be evaluated, and we get

R252E
0

` dx

x2 sinh3 x
expS 2

x

bD
3@coshx~sinh2 x22x2!1x sinh x#,
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R35E
0

` dx

3x2 sinh2 x
expS 2

x

bD
3@sinh 2x~2x223!16x#, ~2.8!

whereb5H/H0. Plugging ~2.8! into ~2.6! yields formulas
for the refractive indices coinciding with those that follo
from the effective Heisenberg–Euler Lagrangian, which c
be used at low frequencies and arbitrary external fields.

In the two limiting cases the integrals in~2.8! can be
evaluated exactly:

b!1: R25
16b2

45
, R35

28b2

45
,

~2.9!

b@1: R25
4

3
, R35

4b

3
.

The asymptotic behavior ofR2 andR3 in the limit b!1 has
been thoroughly discussed~see Refs. 3 and 5!, and it agrees
with ~2.7!. We see that while forb!1, the functionsR2 and
R3 differ only by a numerical factor, butb@1 the situation is
different: R2 is field-independent, butR3 increases linearly
with field strength. Our results are valid whenn2,321!1,
which is equivalent to

a

3p

H

H0
!1.

For arbitrary values of the parametersb5H/H0 and r ,
the functionsR2 andR3 were calculated numerically. Figur
1 illustrates the dependence ofR3/b onw5k'/m for differ-
ent values of the parameterb. Clearly, near the pair-
production threshold this function rapidly increases at h
field strengths. Forw,0.5 and any value ofb, the function
R3/b is essentially independent ofw, and its values for dif-
ferentb’s coincide with those obtained by using the effecti
Heisenberg–Euler Lagrangian.

As for R2, its dependence onw is extremely weak. This
is especially evident if one looks at Figure 2, which depi
the dependence ofR2 on b for valuesw50.1 andw51.9. At
intermediate values of the parameterw, the curves lie in the
region between the two curves in Fig. 2. Figure 3 depictsR2
andR3 as functions ofb for different values ofw, with R2
taken atw51.9. Clearly,R3.R2 for all values ofw, i.e.,
n3.n2 .

FIG. 1. R3/b vsw5vs/m for different values of the parameterb5H/H0:
0.1 ~curve1!, 1 ~curve2!, and 30~curve3!.
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3. PHOTON SPLITTING IN A MAGNETIC FIELD

Now let us examine the splitting of a photon with ener
v into two photons with energiesv1 andv2. In the collinear
approximation~see, e.g., Ref. 5!, the photon splitting rate
~probability per unit time! below the pair-production thresh
old is expressed in terms of the splitting amplitude as f
lows:

dW5
1

32p
uTu2

dv1

v2 u~v1n~1!
2 1v2v~2!

2 2vn2!, ~3.1!

wheren~1!, n~2!, andn are the polarization-dependent refra
tive indices for the energiesv1, v2, andv. Theu-function in
~3.1! is a reflection ofCP-invariance and the selection rule
in photon polarizations~see Ref. 3!. Below, as in Ref. 7, we
denoted mode 2 byB and mode 3 byC.

The CP-allowed transitions areB→CC, C→BC, and
B→BB. The formulas and figures of Sec. 2 imply that for
magnetic field of arbitrary strength, the refractive index ofB
is smaller than the refractive index ofC at any frequency
ratio. From this, it follows that for all theCP-allowed tran-
sitions the argument of theu-function is positive only for the
B→CC transition. This rule was obtained in Ref. 1 for field
H!H0 and photon energiesv!m.

The amplitudeT of photon splitting in a magnetic field
for the allowed transition can be found from the general

FIG. 2. R2 vs.b5H/H0 for different values ofw5vs/m: 0.1 ~curve1! and
1.9 ~curve2!.

FIG. 3. R2 vs.b5H/H0 atw51.9 ~curve1!, andR3 vs.b5H/H0 atw50.1
~curve2!, w51 ~curve3!, andw51.9 ~curve4!.
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FIG. 4. The photon splitting ampli-
tude as a function of the energy o
one of the final photons~z15v1/v! at
H5H0/2 ~a! andH5H0 ~b! for dif-
ferent initial-photon energies:v/m
50.1 ~curve1!, v/m51.5 ~curve2!,
andv/m51.9 ~curve 3!. The ampli-
tude T is normalized to the ampli-
tudeT0 given by ~3.4!.
pression~Eqs.~2.16!–~2.18!in Ref.7! by substitutingE50: where
T5
~4pa!3/2vs

2p2 E
0

`

dx
exp~2H0x/H !

x sinh2 x E
0

x

dt2

3F E
0

t2
dt1G exp~cF!1sinh2 t2 exp~cF0!G , ~3.2!
~3.2! we rotated the contour of integration with respect to

e

n
s
-

y
o
i

-

s

c5
H0

H S vs

m D 2,
F05

t2~x2t2!

x
2
coshx2cosh~2t22x!

2 sinhx
,

F5
z1z2~ t12t2!~ t12t21x!2z1t1~ t12x!2z2t2~ t22x!

x

2
~12z1z2!coshx2z1 cosh~2t12x!2z2 cosh~2t22x!1z1z2 cosh~x12t122t2!

2 sinhx
,

~3.3!

G5
12@z1 cosh~2t12x!1z2 cosh~2t22x!#coshx

x
12cz1z2 sinh

2~ t22t1!@z1 sinh
2 t11z2 sinh

2~ t22x!#.

Herez1,25v1,2 /v, ands was introduced in~2.4!. To obtain integrals with respect tot1 and t2. The result coincides with

the photon splitting amplitude found by using the effective

-

cy

n-

ni-
each variable:x→2 ix andt1,2→2 i t 1,2. This transformation
is applicable ifv,2m. As a result, the integrand in~3.2!
contains no oscillating trigonometric functions, which prov
convenient in numerical calculations.

Let us discuss the properties ofT. Clearly, the amplitude
T is symmetric under interchange of the final photo
~v1↔v2!. To prove this we must introduce new variable
t15x2t2 and t25x2t1, and interchange the order of inte
gration with respect tot1 and t2. In view of gauge invari-
ance, asv→0 the amplitudeT } vv1v2, and alsoT→0 as
v1→0 for all values ofv. This means that there is ver
strong cancellation in~3.2!, a fact that must be taken int
account in numerical integration. The calculations simplify
subtractions are performed in the integrand in~3.2!:
exp(cF)→exp(cF)21 for the first term inG ~proportional
to 1/x!, and exp~cF0!→exp~cF0!21. Direct calculations
show that the sum of the subtracted terms is zero.

Forv!m, the main contribution to the amplitude is pro
vided by the range of variables wherecF!1 andcF0!1.
By expanding the corresponding exponentials in power
ries and retaining the terms linear inc, we can evaluate the
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Heisenberg–Euler Lagrangian~Eq. ~22! in Ref. 3. Atv;m,
the integration in~3.2! was done numerically. Since the en
ergyv and the parameters enter intoT only as the combi-
nationvs, we can sets51 without loss of generality.

Figure 4 depicts the dependence ofT/T0 on the final-
photon energy atH5H0/2 ~Fig. 4a! andH5H0 ~Fig. 4b! for
different initial-photon energies, where

T05
13

315

~4pa!3/2

p2

v3

m2 S HH0
D 3. ~3.4!

At v/m50.1 the result agrees, to extremely high accura
~better than one part in a thousand!, with that obtained by
using the effective Heisenberg–Euler Lagrangian.

Figure 5 depicts the total probability of the allowed tra
sitionW, expressed in units ofW0, as a function ofw5v/m.
Here

W05
T0
2

960pv
50.116S v

mD 5S HH0
D 6cm21. ~3.5!

Curve1 corresponds toH/H051, and curve2 to H/H051/2.
Although the probability changes by many orders of mag
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tude within the parameter range considered here, the m
part of its variation is related toW0, which is simply the
contribution of hexagonal diagrams to the photon splitt
probability forv!m. Consequently, Fig. 5 demonstrates t
difference between the probability calculated exactly in
parametersv/m andH/H0 and the probability calculated t
lowest order in these parameters. The probabilityWHE , ob-
tained by using the effective Heisenberg–Euler Lagrang
is also proportional to~v/m!5. Hence the points of intersec
tion of the curves and the vertical axis yield the probabil
WHE .

Figure 5 shows that atH;H0 the probabilitiesW and
WHE are much lower thanW0. At the same time,W/WHE

increases appreciably asv→2m. Hence we must take into
account the exact dependence on the photon energy.
numerical results agree~to within several percent! with those
of Adler,3 where the numerical values were given forv5m.

Figure 6 depicts the total probability of the allowed tra
sition W, expressed in units ofW1, as a function of the
magnetic field strength~in units ofH0! for different initial-
photon energies. Here

W15W0SH0

H D 650.116S v

mD 5cm21. ~3.6!

FIG. 5. The total photon-splitting probabilityW ~expressed in terms of the
probabilityW0 given by~3.5!! as a function of the photon energy (w5v/m)
at H5H0 ~curve1! andH5H0/2 ~curve2!.

FIG. 6. The total photon-splitting probabilityW ~expressed in terms of the
probabilityW1 given by ~3.6!! as a function of the magnetic field streng
~expressed in units ofH0! at different initial-photon energies:w5v/m50.1
~curve1; this curve coincides, to high accuracy, with the probability fou
by using the effective Heisenberg–Euler Lagrangian!, w51.1 ~curve 2!,
w51.5 ~curve3!, andw51.9 ~curve4!.
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Figure 6 shows that in strong fields the growth in probabil
slows down considerably. In view of this, the study of t
behavior of the amplitudeT in very strong magnetic fields
H@H0 is interesting from the theoretical angle.

WhenH@H0, the main contribution to the double inte
gral in ~3.2! is provided by the regions wherex;H/H0 and
x2t2;1. In the triple integral in~3.2! there are two regions
that provide the main contribution:x;H/H0, t1;H/H0 ,
andx2t2;1; andx;H/H0 , t1;1, andt2;H/H0 . After ap-
propriate expansions the integrals can be evaluated, with
result that

T~H@H0!5T1
24m4

v3 F v1

v2A4m22v2
2
arctanS v2

A4m22v2
2D

1
v2

v1A4m22v1
2
arctanS v1

A4m22v1
2D 2

v

4m2G , ~3.7!

where

T15
~4pa!3/2

12p2

v3

m2 . ~3.8!

We see that forH@H0, the amplitudeT is independent of
the magnetic field strength. The amplitude calculated by
ing the effective Heisenberg–Euler Lagrangian forH@H0 is

FIG. 7. The amplitudeT as function of the final-photon energy forH@H0

at different initial-photon energies:v/m50.1 ~curve1!, v/m51.5 ~curve2!,
andv/m51.99 ~curve3!.

FIG. 8. Was[W(H@H0) vs. the initial-photon energy (w5v/m).
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HE 1 v2

The dependence ofT on the final-photon energy~z15v1/v!
in this limit is shown in Fig. 7 for different initial-photon
energies. When the field is strong andv→2m, both Fig. 4
and Fig. 7 display a plateau at the center of the distribut
The probabilityWas[W(H@H0) is depicted in Fig. 8.

Note that atv52m the amplitude and probability of th
process are finite for all magnetic field strengths.

Thus, we have calculated the photon splitting amplitu
by using the exact formula applicable for an arbitrary ma
netic field strengthH andv,2m. The diagrams demonstrat
a dependence of the amplitude and probability on the m
netic field strength and photon energy in their range.
v!m our results agree with the amplitude obtained by us
the effective Heisenberg–Euler Lagrangian. We found t
in an ultrastrong fieldH@H0 the amplitude is independent o
the magnetic field strength. Since there is only one allow
transitionB→CC, a photon cascade develops only if th
magnetic field changes sign~over distances much larger tha
the length at which the splitting process develops!.
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Magnetization of optically polarized gas atoms by an optical pulse train

ncy
A. I. Alekseev

Moscow State Engineering Physics Institute, 115409 Moscow, Russia
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Zh. Éksp. Teor. Fiz.111, 63–92~January 1997!

The properties of the density matrix and the multipole moments arising in oriented and aligned
atoms with zero nuclear spin through the interaction with strong resonant ultrashort pulses
with wave vectork0 and circular or linear polarization have been found. Calculations have been
made for the time-dependent light-induced magnetizationm(t8) of a gas of pre-oriented
and prealigned atoms following the passage of a weak resonant elliptically polarized pulse with
frequencyv and wave vectork collinear withk0 . It is shown that for oriented atoms,
m(t8) is an even function of the detuning from resonance,v2vba , and can be split into two
terms whose directions are a consequence of symmetry and are determined by the
vectorsk0 andk as well as by the direction of rotation of the electric fields corresponding to the
pulses. For aligned atoms the vectorm(t8) is collinear withk, and the first term is an even
function of v2vba . However, the second term is an odd function ofv2vba and reverses
direction when the sign ofv2vba changes, as well as when the orientation of the axes of
the polarization ellipse is changed. It is shown that if a series of weak linearly polarized pulses pass
through the gas, the light-induced magnetization of the oriented and aligned gas atoms can
be decomposed into three factors: the first determines the direction and is a consequence of the
symmetry; the second~with the dimensions of magnetic moment! depends on the
characteristics of the resonant transitions; and the third is a universal function oft8 andv2vba

that does not depend on the underlying characteristics of the resonant transition. These
vector factors and the universal functions are in principle different for oriented and aligned atoms.
© 1997 American Institute of Physics.@S1063-7761~97!00501-5#
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The experiments of Badalyanet al.1,2 demonstrated the
light-induced magnetization of potassium and rubidium
por atoms resulting from the sequential passage of line
polarized pulses in the presence of a static magnetic fi
H and in zero field (H50). If we bear in mind that for
H50 the magnetization of an isotropic atomic gas by
passage of a single linearly polarized pulse of light viola
symmetry~see, e.g., Ref. 3!, we see that the magnetization
rubidium and potassium gas in Refs. 1 and 2 by the sequ
tial passage of linearly polarized pulses forH50 is an ex-
traordinary phenomenon.

The magnetization of an isotropic atomic gas by a cir
larly polarized pulse with wave vectork0 and polarization
vector lk0s ~wheres561! for H50 is consistent with sym-
metry, since in this case there exists a real pseudove
i @ lk0s1k0s

* #, which determines the direction of the induce

magnetic momentmat of the atom.
In this connection a fundamental question arises: w

should the direction of the pseudovectormat be if it is in-
duced by a train of linearly polarized pulses withH50? In
Ref. 4 the conditions were determined for an atom in a st
magnetic field for which a linearly polarized pulse induce
magnetic momentmat collinear withH. The magnetization
of an atomic gas by a sequence of linearly polarized li
pulses withH50 observed in the experiments of Refs. 1 a
2 is in need of theoretical explanation.

In this paper we study theoretically the magnetization
a gas of atoms with zero nuclear spin by the passage
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ground and the excited states of the atom. In order to ex
ine the problem of the magnetization of the atoms by linea
polarized pulses, we must first solve the problem of the
tical polarization of the atoms by the passage of a stro
ultrashort pulse with frequencyv0 , wave vectork0 , and
durationt0 under conditions where atomic collisions can
neglected and the relaxation is determined only by the sp
taneous emission probabilityg of atoms in the excited stat
~energyEb! for t0,t. For long times,g21!t, after the pas-
sage of an intense short circularly polarized pulse with
larization vectorlk0s (s561), oriented atoms are produce
in the gas in the steady state, and in the case of a str
linearly polarized pulse with polarization vectorl0 , aligned
atoms are produced. If then a weak elliptically polariz
pulse with wave vectork collinear with k0 and with fre-
quency v and polarization vectorlkl (l561) passes
through the gas, then because of symmetry the induced t
dependent magnetic moment will have the form

mat
~0!~ t8!5 i @ lkllkl* #C~0!~ t8!1 i @ lk0slk0s

* #D ~0!~ t8!

for a pre-oriented atom and

mat
~2!~ t8!5 i @ lkllkl* #C~2!~ t8!1~k/k!lkl

2 sin~2wk!D
~2!~ t8!

for a prealigned atom, where the anglewk (w2k52wk),
defines the orientation of the axes of the polarization ellip
relative to the vectorl0 . The quantitiesC(q)(t8) and
D (q)(t8) with q50, 2 depend on the timet8 with retardation

35$10.00 © 1997 American Institute of Physics
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E05 lk0sR0~ t2t08!exp@ i ~k0•r2v0t2a0!#1c.c., ~1!
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resonance,v2vba , the characteristics of the atom, and
velocity v. These formulas imply the fundamental statem
that the light pulse magnetizes pre-oriented and prealig
atoms differently.

Analysis of the magnetization of an atom by a stro
pulse with fixed frequencyv0 and a subsequent weak pul
with arbitrary frequencyv and elliptical polarization serve
as the basis of solving the more complex problem of
magnetization of an atom by means of a series of w
pulses with parallel wave vectors and identical polarizat
and amplitude, but different frequenciesv near the transition
frequencyvba .

The results format
(0)(t8) andmat

(2)(t8) make it possible to
allow for the Maxwellian distributionf (v) of atomic veloc-
ity v in the calculation of the magnetic moment per u
volume of the gas, which is the light-induced magnetizat
m(t8). For each successive passage of a weak linearly po
ized pulse with wave vectork, the light-induced magnetiza
tion at a given point in the gas can be described by the s
formula, in which the initial timet850 is taken to be the
time of arrival of this particular pulse; that is,

mq~ t8!52Lq@VqXaq~ t8,v2vba!1WqXbq~ t8,v2vba!

3exp~2gt8!#, q50, 2,

where

L05~k0 /k0!sb, L25~k/k!sin~2wk!.

Here the quantities with the subscriptq50 and q52
refer, respectively, to pre-oriented atoms, with 1<2Ja , and
prealigned atoms, with 1<Ja , with angular momentumJa in
the ground state, andb is the unit pseudoscalar. The quan
ties Xaq(t8,v2vba) and Xbq(t8,v2vba) are universal
functions that are even inv2vba for q50 and odd in
v2vba for q52. They depend ong and the amplitude of
the weak pulse in relative units, and on the atomic m
mat and the temperatureT of the gas, which enters by way o
the most probable velocity of the Maxwellian distributio
f (v). The angular momentaJa andJb , theg-factorsga and
gb , the reduced dipole momentdba , and the atom numbe
densityN are subsumed by the constantsVq andWq , which
have dimensions of magnetic moment, and determine
order of magnitude ofmq(t8). The vectorsL0 andL2 yield
the direction of the light-induced magnetization in the ca
of successive linearly polarized pulse trains withH50.

The fundamental properties found for the light-induc
magnetization are a consequence of symmetry. They ca
observed experimentally by making relative measureme
of the light-induced magnetization. The most important ch
acteristics of the resonant transition, such asJa , Jb , ga ,
gb , anddba will not have any effect on these measuremen
which is an attractive feature for experimental investigatio
of light-induced magnetization.

2. OPTICAL POLARIZATION OF AN ATOM IN THE
PASSAGE OF A STRONG CIRCULARLY POLARIZED PULSE

Let us assume that a circularly polarized pulse of ar
trary intensity and a rotating electric field vector

36 JETP 84 (1), January 1997
t
d

e
k
n

t
n
r-

e

s

e

e

be
ts
r-

,
s

i-

propagates through a gas of identical atoms, where

s561, t085t01k0•~r2r0!/v0 ,

andlk0s is the unit complex polarization vector, orthogonal
the wave vectork0 . The real amplitudeR0(t2t0) is a func-
tion that varies slowly compared to exp@i(kr2v0t)#. The
frequency v0 is close to the transition frequencyvba

5 (Eb2Ea)\
21, and the phase shifta0 is a constant. The

energy levelsEa andEb belong to the ground state and th
excited state of the atom, respectively. The leading edge
the circularly polarized pulse passes through the bound
point r0 of the volume of gas at timet0 and arrives at an
arbitrary pointr inside this volume at timet with allowance
for retardationk(r2r0)/v0 . The vectorlk0s , regardless of
the choice of right-handed or left-handed coordinates, can
written as

lk0s5221/2~slk0
~1!1 i lk0

~2!!, ~2!

where for right-handed and left-handed circular polarizat
we have,s51 and s521, respectively. The unit vector
lk0
(1) and lk0

(2) on the right-hand side of Eq.~2! satisfy the

necessary conditions

k0• lk0
~1!5k0• lk0

~2!5 lk0
~1!
• lk0

~2!50, l2k0
~1! 5 lk0

~1! ,

l2k0
~2! 52 lk0

~2! , @ lk0
~1!lk0

~2!#5k0 /k0 .

With the replacementk0→2k0 the vector Eq.~2! can be
transformed,

lk0s→2 lk0 ,2s , ~3!

because of the properties of the unit vectorslk0
(1) andlk0

(2) . We

shall also consider inversion,x→2x, y→2y, and
z→2z, which transforms the vector~2! differently:

lk0s→ lk0 ,2s . ~4!

The states of the atom are characterized not only by
energiesEa andEb , but also by the quantum numbersJa
andJb , the angular momentaJa andJb , and the projections
Ma andMb of these angular momenta on the axis of qua
tization. Therefore the interaction of an individual gas ato
with the field, Eq.~1!, can be conveniently described by th
quantum mechanical equations for the components of
density matrixr in the JM representation,

S ]

]t
1v•¹1 ivba1

g

2D rMbMa

5
i

\
~E0•dMbMa8

rM
a8Ma

2rMbMb8
E0•dM

b8Ma
!, ~5!

S ]

]t
1v•¹1g D rMbMb8

5
i

\
~E0•dMbMa

rMaMb8
2rMbMa

E0•dMaMb8
!, ~6!
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for a two-level atom without degenerate levels, and in Ref. 8
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S ]t D MaMa8

5
i

\
~E0•dMaMb

rMbMa8
2rMaMb

E0•dMbMa8
!

1
g~2Jb11!

udbau2
dMaMb

rMbMb8
•dM

b8Ma8
, ~7!

where

g5
4udbau2vba

3

3\c3~2Jb11!
,

where dMbMa
is the matrix element of the electric dipo

moment operatord of the atom,dba is the reduced dipole
moment,5,6 g is the probability of spontaneous emission o
photon\vba by an isolated atom,v is the thermal velocity of
an atom, andc is the speed of light in vacuum. The term o
the right-hand side of Eq.~7! with the factorg describes the
transition of an atom in the ground levelEa to the excited
state with energyEb , as induced by the spontaneous em
sion of a photon\vba. In each matrix product repeated in
dices imply summation.

Equations~5!–~7! will be solved in the resonance ap
proximation using the inequalityuv02vbau!v0 . The den-
sity matrix r5r(t2t08 ,s) is a function of t2t08 , and de-
pends on the parameters. The components of the densit
matrix at timet5t08 satisfy the initial condition

rMbMb8
~0,s!5rMbMa

~0,s!50,

rMaMa8
~0,s!5

dMaMa8

2Ja11
. ~8!

In writing down Eqs.~5!–~8! we have assumed that th
gas is sufficiently tenuous so that atomic collisions contr
ute negligibly to the level broadening, compared to the
diative width\g. Therefore the normalization of the densi
matrix, Tr r51, does not vary with time~a closed resonan
transition!. If atomic collisions are responsible for the wid
\ga of the ground levelEa , then Eqs.~5!–~7! and the sub-
sequent discussion are valid over the period of ti
0,t2t08!ga

21 with the conditionga!g.
We assume that the circularly polarized pulse~1! has

durationt0 and is ultrashort

gt0!1, ~9!

whereg21 is the radiative lifetime of the excited state. B
cause of inequality~9!, it is possible to neglect relaxation i
Eqs. ~5!–~7! in the time interval 0,t2t08<t0 , and set
g50. In order to solve these equations withg50 we use a
right-handed Cartesian coordinate systemxyz, and take the
z axis ~the axis of quantization! collinear withk0 , with the
x axis parallel tolk0

(1) . Then the vector~2! becomes

lk0s5221/2~slx1 is0ly!,

wherelk0
(1) 5 lx ands05(k0lz)/k0 . Herelx , ly , andlz are the

unit vectors of the Cartesian axesx, y, and z. Now Eqs.
~5!–~7! can be solved by the methods worked out in Ref
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for the case of degeneracy in the projection of the angu
momentum. The final solution of Eqs.~5!–~7! for g 5 0 in
the time interval 0<t2t08<t0 , with the use of the initial
conditions Eq.~8! can be written as

rMaMa8
~ t2t08 ,s!

5
1

2Ja11
$12@BMa1s

~s! ~ t2t08!#2%dMaMa8
, ~10!

rMbMb8
~ t2t08 ,s!5

1

2Ja11
@BMb

~s! ~ t2t08!#2dMbMb8
, ~11!

where

BM
~s!~ t2t08!5sinFLM

~s!E
0

t2t08R0~j!djG ,
LM

~s!5~21!Jb2M1sS Jb Ja 1

M s2M 2sD udbau
\

,

M5Ma1s,Mb . ~12!

Here the 3j symbol (d
a

e
b

h
c) is defined in Refs. 5 and 6. Th

calculation of the quantities Eqs.~10!–~12! used the fact that
the detuning from resonanceD05v02vba and the velocity
v satisfy the inequalityuD02k0vut0!1.

After the ultrashort pulse, Eq.~1!, has passed it is nec
essary in the regiont081t0,t to take into account relaxation
in Eqs.~5! and~7!, and the components of the density matr
can be written

rMaMa8
~ t2t08 ,s!

5rMaMa8
~t0 ,s!1

2Jb11

udbau2
dMaMb

rMbMb8
~t0 ,s!

3dM
b8Ma8

$12exp@2g~ t2t082t0!#%, ~13!

rMbMb8
~ t2t08 ,s!5rMbMb8

~t0 ,s!exp@2g~ t2t082t0!#.

~14!

The solution, Eqs.~10!–~14!, does not contain the opti
cal coherence matrixrMbMa

(t2t08 ,s), since it is damped in a

time proportional to exp@2g(t2t082t0)/2#, and therefore will
not be used in explicit form in subsequent calculations.

If the ultrashort pulse Eq.~1! has a rectangular amplitud
profile with constant amplitudeR0 over the time interval
0<t2t8<t0 , then for any detuning from resonanceD0 and
arbitrary velocityv, in formulas~10!–~14! one must use

BM
~s!~ t2t08!5

R0LM
~s!

VM
~s! sin@VM

~s!~ t2t08!#,

VM
~s!5F14 ~D02k0v!21R0

2~LM
~s!!2G1/2, ~15!

instead of expression~12!, while in the regiont081t0,t the
quantity Eq. ~15! remains constant with the argume
t2t085t0 .

After a long time

g21!t2t082t0 , ~16!
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emission, and the density matrixr(t2t08 ,s) takes on a con-
stant valuer(`,s) with the following components

rMaMa8
~`,s!5rMa

~s!dMaMa8
, ~17!

rMbMb8
~`,s!5rMbMa

~`,s!50, ~18!

where

rMa
~s!5

1

2Ja11 H 12@BMa1s
~s! ~t0!#

22~2Jb11!

3 (
kMb

~21!k2Ma2Mb~2k11!

3S Ja Ja k

Ma 2Ma 0D S Jb Jb k

Mb 2Mb 0D
3H Ja k Ja

Jb 1 Jb
J @BMb

~s! ~t0!#
2J , ~19!

and the 6j symbol$d
a

e
b

h
c% is defined in Refs. 5 and 6.

The density matrix~17! describes the stationary state
the atom in the ground levelEa , and has the following fun-
damental property:

r2Ma ,2M
a8
~`,s!5rMaMa8

~`,2s!. ~20!

According to~3!, the sign of the parameters in formula
~19! is reversed by the replacementk0→2k0 and therefore
the density matrix~17! is changed. However, with the simu
taneous replacementk0→2k0 and s→2s it remains the
same. Upon inversion the matrix indices change si
Ma5 lzJa→2Ma and Ma8→2Ma8 . Also, the parameters
changes sign with the replacement~4!. Therefore, according
to Eq. ~20!, this matrix element does not change sign up
inversion. However, after inversion the density matrix~17!,
by virtue of the replacement~4!, describes the stationar
state of the atom produced by a circularly polarized pu
with polarization vectorlk0 ,2s , whereas before inversion th
other polarizationlk0s was involved.

The optical polarization of an atom is characterized
the equality~20!. To describe the optical polarization of a
atom one can also use the polarization multipole mome
rq

k(Ja ,s), which figure in the expansion of the density m
trix ~17! in a series in the 3j symbols according to the for
mulas

rMaMa8
~`,s!5~21!Ja2Ma8(

kq

2k11

A2Ja11

3S Ja Ja k

Ma 2Ma8 qD rq
~k!~Ja ,s!, ~21!

rq
~k!~Ja ,s!5A2Ja11 (

MaMa8
~21!Ja2Ma8

3S Ja Ja k

Ma 2Ma8 qD rMaMa8
~`,s!, ~22!
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of rankk50,1,2 describe the population, the orientation, a
the alignment of an atom in the ground levelEa , respec-
tively. The property~20! of the density matrix is reflected in
the behavior of the multipole moments as

rq
~k!~Ja ,2s!5~21!kr2q

~k!~Ja ,s!, q50. ~23!

Because of the equality~23!, the behavior of the multi-
pole moments of arbitrary rankk under separate transforma
tions k0→2k, s→2s and inversion can be described wi
the use of the two equalitIes

rq
~k!~Ja ,s!5s0sbr0

~k!~Ja,1!d0q for s561, k odd,
~24!

rq
~k!~Ja ,s!5r0

~k!~Ja,1!d0q for s561,

k even andk50, ~25!

where the replacementsk0→2k0 ands→2s and inversion
can be used separately or conjointly. Hereb51 in a right-
handed coordinate system andb521 in a left-handed coor-
dinate system.

From Eqs.~17! and~22! we obtain an explicit expressio
for the multipole moments of the atom in the ground stat

rq
~k!~Ja ,s!

5d0qd0k2
d0q

A2Ja11
H(
Ma

~21!Ja2MaS Ja Ja k

Ma 2Ma 0D
3@BMa1s

~s! ~t0!#
21~2Jb11!~21!Ja1Jb1k

3H Ja k Ja

Jb 0 Jb
J (
Mb

~21!Jb2MbS Jb Jb k

Mb 2Mb 0D
3@BMb

~s! ~t0!#
2J , ~26!

where the sum of all terms in curly brackets vanishes
k50, and therefore the population in the ground state, a
the unperturbed atom, isr0

(0)(Ja ,s)51 ~a closed resonan
transition!.

The optical polarization of an atom as described by f
mulas~20! and~23!–~26! is a consequence of the symmet
in the interaction with a circularly polarized pulse when t
quantization axis is collinear withk0 . It is characterized by a
single axis of axial symmetry and two opposite directio
along this axis corresponding tos51 ands521. This axis
is the axis of quantization in the calculation of the dens
matrix ~17! and the multipole moments~26!. If we take into
account the rotation of the electric fieldE0 about the wave
vectork0 , then the optical polarization of the atom produc
by the circularly polarized pulse is described by a rig
handed screw fors51 and a left-handed screw fors521.
This optical polarization is characteristic of an oriented at
in the state withr0

(1)(Ja ,s).

38A. I. Alekseev



3. ALIGNMENT OF AN ATOM BY MEANS OF A STRONG
LINEARLY POLARIZED PULSE
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The electric field vectorE0 of a linearly polarized pulse
of durationt0 is given by

E05 l0R0~ t2t08!exp@ i ~k0•r2v0t2a0!#1c.c., ~27!

where the unit real vectorl0 satisfies the equalitie
l05 lk0

(1)5 l2k0
(1) and is not changed by the replaceme

k0→2k0 . The other quantities in Eq.~27! are the same a
those used in Eq.~1!. Formula~27! and these properties o
the vectorl0 do not depend on the choice of left- or righ
handed coordinate system.

Besides the right-handedxyz coordinate system chose
in Sec. 2, we shall consider another right-handed coordin
systemx̄ ȳ z̄ with the z̄ axis ~the axis of quantization! along
the vectorl0 and theȳ axis parallel to they axis. Since the
vector l0 is unchanged by the replacementk0→2k0 , the
direction of the axis of quantization~the z̄ axis! remains the
same when the direction ofk0 is reversed. Moreover, it is
assumed that the lengtht0 of the linearly polarized pulse
~27! satisfies the inequality~9!. Then for such a pulse we
apply the calculation method of Refs. 7 and 8 in thex̄ ȳ z̄
coordinate system, and the solution of equations~5!–~7! with
the initial condition~8! is the density matrixr̄5 r̄(t2t08 ,0)
with the components~10!–~14! in which we have made the
replacements

r→ r̄, Ma→M̄a , Mb→M̄b , s→0, ~28!

where M̄a and M̄b are the projections of the angular m
menta on thez̄ axis and the density matrixr̄ has the indices
from the setM̄a , M̄b , M̄a8 andM̄b8 . If we make the replace
ments~28! in formulas~17! and ~18! we obtain the compo-
nents of the constant density matrixr̄(`,0) in the x̄ ȳ z̄ co-
ordinate system for long times~expression~16!! after the
passage of the ultrashort linearly polarized pulse~27!.

The optical polarization of an atom in the field~27! must
be described in the right-handedxyz system of coordinates
with the z axis ~the axis of quantization! collinear with k0
and thex axis along the vectorl0 . In this case thex andz
axes coincide with the two orthogonal directions in spa
defined by the linearly polarized pulses independently of
replacementk0→2k0 . The transformation from thex̄ ȳ z̄
coordinate system to thexyz system is carried out via thre
successive rotations by the Euler anglesa, b, andg, as in
Ref. 6. For this purpose we first carry out the rotation ab
the z̄ axis by the anglea50 with the transformation to the
new coordinate systemx1y1z1 . Then follows the rotation
about the newy1 axis by the angleb52p/2 with the trans-
formation to the new coordinate systemx2y2z2 . Then the
rotation is carried out about thez2 axis by the angleg50,
with the transformation to the newxyzcoordinate system. If
we take into account the density matrixr̄(`,0) calculated in
the x̄ ȳ z̄ coordinate system, and use the law for the trans
mation of density matrices under rotations of the Cartes
coordinate system by Euler anglesa, b, andg ~Ref. 6!, then
we can find the components of the density matrix of the at
in the stationary state at long times~16! in the xyz coordi-
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ear withk0 and thex axis along thel0 direction:

rMaMa8
5(

M̄a

r̄ M̄a
~0!(

kq
~2k11!~21!Ja2M̄a

3S Ja Ja k

M̄a 2M̄a 0D ~21!Ja2Ma8

3S Ja Ja k

Ma 2Ma8 qD d0qk S 2
p

2 D , ~29!

rMbMb8
5rMbMa

50, ~30!

wherer̄ M̄a
(0) is given by formula~19! with the replacement

~28!, while d0q
k (2p/2) is a special case of the real fact

dMM8
J (b) in the WignerD function

DMM8
J

~a,b,g!5e2 iMadMM8
J

~b!e2 iM 8g.

The density matrix~29! describes the stationary state
an atom in the ground levelEa a long time~16! after the
passage of the linearly polarized pulse~27!, and has the
property

r2Ma ,2M
a8
5rMaMa8

. ~31!

By analogy with Eqs.~21! and~22!, we expand the den
sity matrix ~29! in a series

rMaMa8
5~21!Ja2Ma8(

kq

2k11

A2Ja11

3S Ja Ja k

Ma 2Ma8 qD rq
~k!~Ja!, ~32!

where, because of the equality~29!, the only nonvanishing
polarization multipole momentsrq

k(Ja) are those of even
rank k, including k50. These multipole moments describ
the optical polarization of the atom, and according to E
~29! and ~32! take the form

rq
~k!~Ja!5d0kd0q2

1

A2Ja11
H(
Ma

~21!Ja2Ma

3S Ja Ja k

Ma 2Ma 0D @BMa

~0!~t0!#
21~2Jb11!

3~21!Ja1Jb1kH Ja k Ja

Jb 1 Jb
J (
Mb

~21!Jb2Mb

3S Jb Jb k

Mb 2Mb 0D @BMb

~0!~t0!#
2J d0qk S 2

p

2 D ,
~33!

where k52n with n50,1,2, . . . . The upper bound o
variation ofk in the first and second sums is determined
the inequalitiesk<2Ja andk<2Ja ,2Jb , respectively. The
quantity BM

(0)(t0) with M5Ma ,Mb is given by formulas
~12! and ~15! with s50.
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the replacementk0→2k0 . On the other hand, the replac
ment l0→2 l0 reverses the direction of thez̄ axis according
to the calculations~29! and ~33!. This results in a change in
sign of the angle of rotationb, which for Eqs.~29! and~33!
means the replacement2p/2→p/2. After this replacemen
the quantities~29! and~33! will be referred to thexyz coor-
dinate system with the samez axis collinear withk0 and the
x axis antiparallel tol0 . Inversion is accompanied by th
replacementsMa→2Ma , k0→2k0 and l0→2 l0 and a re-
versal of the direction of thez̄ axis. If we take the property
~31! into account, then we see that after inversion, the d
sity matrix does not change form.

The optical polarization which we have found is a co
sequence of symmetry. It is characterized by two orthogo
axes, the first of which points in thel0 direction, while the
second is collinear withk0 . These axes are the axes of qua
tization in the x̄ ȳ z̄ and xyz coordinate systems when th
quantities~29! and~33! are calculated. The optical polariza
tion generated in an atom by a linearly polarized pulse
characteristic of an aligned atom.

4. LIGHT-INDUCED MAGNETIZATION OF GAS OF PRE-
ORIENTED ATOMS

We now study the magnetization of a gas of pre-orien
atoms during the passage of an elliptically polarized puls

E5 lkla~ t8!exp@ i ~kr2vt !#1c.c. , ~34!

where

l561, t85t2 t̃ 08 , t̃ 85 t̃01k~r2r0!/v.

a(t8) is the complex amplitude, which is a function th
varies slowly compared to exp@i(kr2vt)#, andt̃0 is the time
of arrival of the pulse~34! in the gas at the boundary poin
r0 . The wave vectork is collinear withk0 . The electric field
vectorE executes right-handed rotation forl51 and left-
handed rotation forl521. The elliptical polarization vecto
lkl in the case of right-handed polarization,l51, can be
written as

lk15 lk
~1! cosc1 i lk

~2! sin c, ~35!

while for left-handed polarization,l521, can be written

lk,2152 lk
~1! sin c1 i lk

~2! cosc. ~36!

In Eqs. ~35! and ~36! the argumentc takes values
0<c<p/2. The ratio of the lengths of the polarization e
lipse axes is cosc /sin c and sinc /cosc, respectively, in
Eqs. ~35! and ~36!. If c5p/4, the polarization ellipse be
comes a circle, and formulas~35! and ~36! describe right-
circular polarization and left-circular polarization. If we s
l51 andc50 or l521 andc5p/2, formulas~34!–~35!
describe linearly polarized pulses. The unit vectors in exp
sions~34! and ~36! satisfy the equalities

kl k
~1!5kl k

~2!5 lk
~1!lk

~2!50, l2k
~1!5 lk

~1! , l2k
~2!52 lk

~2! , ~37!

@ lk
~1!lk

~2!#5k/k, ~38!

l2kl5 lkl* , lkllkl8
* 5dll8 , l,l8561. ~39!
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investigated without knowing the rules for transformation
the polarization vectors~35! and~36! under the replacemen
k→2k and inversion. In order to find these rules we us
the fact that the equalities~35!–~39! are satisfied regardles
of the choice of right-handed or left-handed coordinat
This, together with the equality~37!, enables us to determin
the transformation of the polarization vectors with the
placementk→2k in the form

lkl→2 lk,2l8 ,

where for the new polarization vectorlk,l with l51 and
l521 we have introduced the notation

lk18 5 lk
~1! cosc81 i lk

~2! sin c8,

lk,218 52 lk
~1! sin c81 i lk

~2! cosc8, ~40!

with the new parameterc8 defined by the formulas

c85p/22c, 0<c8<p/2,

and by the new ratios of the axes of the polarization ellip
cosc8/sin c85sin c /cosc and sinc8/cosc85cosc /sin c,
respectively, for right-handed (l51) and left-handed
(l521) polarization. These ratios of the lengths of the p
larization ellipse axes forl51 andl521 are interchanged
relative to the initial polarization vectors~35! and ~36!,
which were specified up to the replacementk→2k. If we
use the equality~38!, then upon the replacementk→2k we
can also find the transformation of the vector product

i @ lkllkl* #5~k/k!l sin~2c!→ i @ lk,2l8 l k,2l8* #

52~k/k!l sin~2c8!52~k/k!l sin~2c!.

~41!

Moreover, by virtue of~37! and ~38!, the polarization
vector transforms under inversion according to another r

lkl→ lk,2l8 , ~42!

whereas according to Eq.~41! the vector producti @ lkllkl* #
transforms under inversion in the same way as under
replacementk→2k. This important result enables us t
write this vector product as

i @ lkllkl* #5~k/k!lb sin~2c!, ~43!

whereb is the unit pseudovector, which in right-handed a
left-handed coordinate systems is equal tob51 and
b521, respectively. Formula~43! takes into account the
replacementsk→2k andl→2l and inversion, which can
be carried out individually or in various combinations wi
one another. According to Eq.~43!, the factor in Eq.~24! that
takes into account circularly polarized pulses can be writ
in a different manner:

s0sb5 i @ lk0slk0s
* # lz ,

where lz is the unit vector in the direction of the axis o
quantization.

The state of the atom in the field, Eq.~34!, is described
by the density matrixr(t8), which satisfies Eqs.~5!–~7! with
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E0→E. Its components, which are not diagonal in the en-
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rMbMb8
~ t8!#dv, ~48!
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ergy, have the following characteristic form in the resonan
approximation,uv2vbau!v:

rMbMa
~ t8!5r MbMa

~ t8!exp@ i ~kr2vt !#,

where t5t82 t̃ 08 , so that they are functions oft8. In addi-
tion, the componentsr MbMa

(t8), rMaMa
(t8), and rMbMb

(t8)

vary slowly compared to exp@i(kr2vt)# and satisfy the
equations

S ]

]t
1v¹ D r MbMa

~ t8!5S 12
kv

v D d

dt8
r MbMa

~ t8!

5
d

dt8
r MbMa

~ t8!,

S ]

]t
1v¹ D rMM8~ t8!5

d

dt8
rMM8~ t8!, M5Ma ,Mb8 .

where we have omitted small terms of orderv/c.
In light of this discussion, we can transform Eqs.~5!–~7!

in the field ~34! into the simpler equations

S d

dt8
2 iD1

g

2D r MbMa
5
ia~ t8!

\
@ lkldMbMa8

rM
a8Ma

2rMbMb8
lkldM

b8Ma
#, ~44!

S d

dt8
1g D rMbMb8

5
i

\
@ lkldMbMa

r MaMb8
a~ t8!

2a* ~ t8!r MbMa
lkl* dMaMb8

#, ~45!

d

dt8
rMaMa8

5
i

\
@ lkl* dMaMb

r MbMa8
a* ~ t8!

2a~ t8!r MaMb
lkldMbMa8

#

1
g~2Jb11!

udbau2
dMaMb

rMbMb8
dM

b8Ma8
,

D5v2vba2kv. ~46!

Equations~44!–~46! and their initial conditions can be
conveniently analyzed in the right-handedxyz coordinate
system withz axis ~the axis of quantization! collinear with
k0 and x axis along the vectorlk0

(1) , since the optical pre-

polarization of the atom was calculated in those coordina
The initial conditions att850 then assume the simplest for

r MbMa
~0!50, rMbMb8

~0!50,

rMaMa8
~0!5rMaMa8

~`,s!, ~47!

where the right-hand sides of the equalities coincide with
components of the density matrices~17! and~18! of the pre-
oriented atom.

The light-induced magnetization of an atomic gas is r
resented by a magnetic moment per unit volume, given

m~ t8!52mBNE f ~v !@gaJM
a8Ma

rMaMa8
~ t8!
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where

mB5ueu\/2mc,

f ~v !5~Apu!23 expS 2
v2

u2D , u5S 2kBT

mat
D 1/2,

mB is the Bohr magneton,e andm are the electron charg
and mass,ga and gb are the gyromagnetic ratios~the
g-factors!, N is the concentration of the gas atoms,f (v) is
the Maxwell distribution,T is the gas temperature,kB is the
Boltzmann constant,mat is the mass of the atom, an
JMaMa8

and JMbMb8
are the matrix elements of the angul

momentum operatorsJa andJb , respectively.
The density matrices in Eq.~48! must be calculated by

solving Eqs.~44!–~46! by perturbation theory if the ellipti-
cally polarized pulse, Eq.~34!, has durationt and low inten-
sity. Then the condition on the range of applicability of tim
dependent perturbation theory for a rectangular pulse,
~34!, of constant amplitudea can be conveniently written a

t!tpum, ~49!

wheretpum is the time of optical pumping,

tpum52@~v2vba2ku!21g2/4#~ f 2g!21,

and f5udbaau\21 is the Rabi frequency.
According to the method of successive approximatio

in perturbation theory, the density matrix for the first a
proximation in the field~34! is the solution of Eq.~44! in
which the components~47! are used on the right-hand sid
without taking the field~34! into account. The density matrix
elementsrMaMa8

(2)
(t8) and rMbMb8

(2)
(t8) of second order in the

field ~34! are the respective solutions of Eqs.~45! and~46! in
which the right-hand sides retain the terms quadratic in
field ~34!. The solution of these latter equations with th
initial conditions~47! can be written in the short form

rMaMa8
~ t8!5rMaMa8

~`,s!1rMaMa8
~2!

~ t8!,

rMbMb8
~ t8!5rMbMb8

~2!
~ t8!. ~50!

The termrMaMa8
(`,s) in Eq. ~50! describes the stead

state of an atom in the ground state before the passage o
pulse~34!. This term, along with formulas~17!, ~21!, ~24!,
and ~48!, enables us to find the constant light-induced ma
netization

ma52~k0 /k0!sbmBNgaAJa~Ja11!E f ~v !r0
~1!

3~Ja,1!dv,

where the multipole momentr0
(1)(Ja ,1) is defined in Eq.

~26! for k51 and s51. The light-induced magnetizatio
ma is produced by the preceding strong pulse~1!, and if there
are no depolarizing collisions it is retained during the tim
that the following weak pulse~34! passes.

To study the light-induced magnetization in the expe
ments of Refs. 1 and 2 the light pulses were passed thro
a cell containing the atomic gas and situated inside
pickup coil. The time-dependent light-induced magnetizat
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of the atomic gas induced an electric current in the windings

la

t

ed
ly
ve

-
e

e
s

w

where the vectorslq with q50,61 are the contravariant unit
6

ct-
of the pickup coil, producing a potential differenceV(t8)
between the ends, as described by the well-known formu

V~ t8!52Cn
dm~ t8!

dt8
, ~51!

where the unit vectorn is collinear withk and the constan
C depends on the experimental arrangement. Heren defines
the fixed direction for which the magnetic flux is measur
andV(t8) is the emf of the pickup coil. The experimental
measured quantity, the projection of the derivati
dm(t8)/dt8 in the fixed directionn, provided information on
the properties of the time-dependent quantitym(t8).

According to Eq.~51! the constant light-induced magne
tization ma cannot be measured in experiments that us
pickup coil. Therefore, to study the behavior ofm(t8) as the
weak pulse~34! passes, it is necessary to calculate the tim
dependent light-induced magnetization due to the term
Eq. ~50! quadratic in the field~34!. After writing down these
terms in Eq.~48!, we obtain

m~ t8!5
mBN

\2 E dvf ~v !H gaI a~ t8!S2gbI
b~ t8!Q

2
ga~2Jb11!

udbau2
@ I a~ t8!2I b~ t8!#PJ 1c.c., ~52!

where

S5JM
a8Ma

~ lkl* dMaMb
!~ lkldMbMa9

!rM
a9Ma8

~`,s!, ~53!

Q5JM
b8Mb

~ lkldMbMa
!rMaMa8

~`,s!~ lkl* dMa8Mb8
!, ~54!

P5JM
a8Ma

~dMaMb
~ lkldMbM̃a

!r M̃aM̃a8
~`,s!

3~ lkl8 dM̃
a8Mb8

!dM
b8Ma8

!, ~55!

I a~ t8!5E
0

t8
dt2a* ~t2!exp@~2g/21 iD!t2#

3E
0

t2
dt1a~t1!exp@~g/22 iD!t1#, ~56!

I b~ t8!5exp~2gt8!E
0

t8
dt2a* ~t2!exp@~g/21 iD!t2#

3E
0

t2
dt1a~t1!exp@~g/22 iD!t1#. ~57!

To sum over the projections of the angular momenta
introduce the notation

A5 lkl , B5 lkl* ~58!

in Eqs.~53!–~55! and write the vectors in Eqs.~53!–~55! and
~58! as expansions in orthogonal unit vectors

A5(
q

Aql
q, B5(

q
Bql

q, ~59!

S5(
q̃
Sq̃l

q̃, Q5(
q̃
Qq̃l

q̃, P5(
q̃
Pq̃l

q̃, ~60!
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vectors:

l~21!5221/2~ lx1 i ly!, l~1!5221/2~2 lx1 i ly!, l~0!5 lz .

Using the Wigner–Eckart theorem, the rule for contra
ing 3j symbols,5,9 and Eqs.~58!–~60!, we obtain

Sq̃52d0 q̃
udbau2Jaa
A2Ja11

(
k

~2k11!r0
~k!~Ja ,s!

3(
q

~21!qA2qBqGa~q,k!, ~61!

Qq̃5d0 q̃
udbau2Jbb
A2Ja11

(
k

~2k11!r0
~k!~Ja ,s!

3(
q

~21!qA2qBqGb~q,k!, ~62!

Pq̃5
udbau2Jaa

Jbb
~21!Ja1JbH Ja 1 Ja

Jb 1 Jb
JQq̃ , ~63!

Ga~q,k!5(
k8

~2k811!~21!kS 1 1 k8

0 2q q D
3S 1 k k8

q 0 2qD H 1 1 k8

Ja Jb Ja
J

3H 1 k k8

Ja Jb Ja
J , ~64!

Gb~q,k!5(
k8

~2k811!S 1 1 k8

0 2q q D S 1 k k8

2q 0 q D
3H 1 1 k8

Jb Ja Jb
J H 1 k k8

Ja Jb Ja
J , ~65!

Jaa5@Ja~Ja11!~2Ja11!#1/2, Jbb5@Jb~Jb11!

3~2Jb11!#1/2.

The vectorsA andB, which are orthogonal to thez axis,
obey the equality

(
q

~21!qA2qBqGa~q,k!

5
1

2
$AB@Ga~1,k!1Ga~21,k!#1 i @AB#z@Ga~1,k!

2Ga~21,k!#%, ~66!

where, because of Eqs.~43! and ~58!, we can set

AB51, i @AB#z5~ lzk/k!lb sin~2c!.

Using the formula

Ga~2q,k!5~21!k11Ga~q,k!,

we find that the right-hand side of Eq.~66! is equal to
Ga(1,k) for oddk and

~ lzk/k!lb sin~2c!Ga~1,k! ~67!
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for evenk, includingk50. These equalities,~66! and ~67!
t
a

za
e
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are also valid forGb(q,k) with the change of subscrip
a→b. In addition, it is necessary to take into account th
according to Eqs.~24! and ~25! the multipole momentsr0

(k)

3(Ja ,s) have a different form for odd and evenk, including
k50. Finally, the time-dependent light-induced magneti
tion ~52! in the time interval 0<t8, regardless of the choic
of coordinate system, takes the form

m~ t8!52~k/k!lb sin~2c! (
k50,2

m~k!~ t8!

2~k0 /k0!sb (
k51,3

m~k!~ t8!, ~68!

where

m~k!~ t8!5gaDa
~k!Ma

~k!~ t8!1gbDb
~k!Mb

~k!~ t8!1gaDab
~k!

3@Ma
~k!~ t8!2Mb

~k!~ t8!#,

Da
~k!56~2k11!A2Ja11 JaaGa~1,k!,

Db
~k!56~2k11!A2Ja11JbbGb~1,k!,

Dab
~k!56~2k11!A2Ja11JaaGb~1,k!~21!Ja1Jb

3~2Jb11!H Ja 1 Ja

Jb 1 Jb
J ,

Ma
~k!~ t8!5

mBNudbau2

6~2Ja11!\2 E f ~v !r0
~k!~Ja,1!I 0

a~ t8!dv,

~69!

Mb
~k!~ t8!5

mBNudbau2

6~2Ja11!\2 E f ~v !r0
~k!~Ja,1!I 0

b~ t8!dv,

~70!

I 0
a~ t8!5I a~ t8!1I a* ~ t8!, I 0

b~ t8!5I b~ t8!1I b* ~ t8!.
~71!

Here the quantityI 0
a(t8) after the passage of the pulse~34!

retains the constant valueI 0
a(t), in accordance with Eq.~56!.

In addition,I 0
b(t8) because of relaxation falls off in Eq.~57!

as

I 0
b~ t8!5I 0

b~t!exp@2g~ t82t!#, t<t8. ~72!

For the ultrashort pulse~34! with gt!1 the criterion for
the applicability of perturbation theory is the inequality8

U\21dbaE
0

t

a~ t8!dt8U2!1. ~73!

Here the dependence ofm(t8) on the timet8 in the range
0<t8 is given by Eqs.~71!, which take the form

I 0
a~ t8!5I 0~ t8!, I 0

b~ t8!5I 0~ t8!exp~2gt8!, ~74!

where

I 0~ t8!5U E
0

t8
a~j!exp~2 iDj!djU2. ~75!

In formula ~68! the summation indexk coincides with
the rank of the multipole momentsr0

(k)(Ja ,s) characterizing
the initial state of the atom. This means thatm(t8) depends
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polarization of the atom produced by the preceding circula
polarized pulse~1!. Thus the first term in Eq.~68! with
k50 is related only to the populationr0

(0)(Ja ,s)51 of the
ground state and is equal to

mpop~ t8!

52~k/k!lb sin~2c!$gaQaMa
~0!~ t8!1gbQbMb

~0!

3~ t8!1gaQab@Ma
~0!~ t8!2Mb

~0!~ t8!#%. ~76!

where

Qa561/2Jaa~21!Ja1JbH 1 1 1

Ja Ja Jb
J ,

Qb5621/2Jbb~21!Ja1JbH 1 1 1

Jb Jb Ja
J ,

Qab561/2Jaa~2Jb11!H 1 1 1

Jb Jb Ja
J H Ja 1 Ja

Jb 1 Jb
J .

The value of expression~76! coincides with the light-
induced magnetization of an isotropic atomic gas result
from the passage of an elliptically polarized pulse~34! as
derived in Ref. 3 if we setNa5N, Nb5ga50, gb5g, and
gba5g/2.

The second term in Eq.~68! with k52 takes into ac-
count the optical pre-polarization of the atom, which is ch
acterized by one component of the multipole momentr0

(2)

3(Ja ,s). The state of the atom withr0
(2)(Ja ,s) has com-

plete rotational symmetry about thez axis, which is collinear
with k0 andk. According to Eq.~25! this state of the atom is
invariant under inversion or with the replacemen
k0→2k0 and s→2s. The state of the atom withr0

(0)

3(Ja ,s) also has these properties. Therefore the terms
~68! with k50,2 do not depend on the orientation of th
axes of the polarization ellipse of the pulse~34!. In accor-
dance with the symmetry of the atom in the states w
r0
(k)(Ja ,s) for k50,2 and the properties of the field~34!, the
first two terms in Eq.~68! with k50,2 are proportional to
the only pseudovector~43! that is invariant under the inter
changek0→k0 ands→2s and vanishes for linearly polar
ized pulses described by formulas~34! and ~35! with l51
and c50 or by formulas~34! and ~36! with l521 and
c5p/2.

The terms of greatest interest in Eq.~68! are those with
k51, 3. They take into account the optical pre-polarizati
of the atom by means of the multipole moments withr0

(k)

3(Ja ,s) with k51, 3. This optical polarization is characte
istic of the oriented atom. The states of the atomr0

(k)

3(Ja ,s) with k51, 3 have complete rotational symmetr
about thez axis, which is collinear withk0 andk. Therefore
these terms in Eq.~68! with k51, 3 do not depend on the
orientation of the axes of the polarization ellipse of the pu
~34!. However, according to Eq.~24! the quantity r0

(k)

3(Ja ,s) with k51, 3 changes sign under inversion an
whenk0→2k0 ands→2s. In this connection the terms in
Eq. ~68! with k51, 3 can be expressed in terms of the on
pseudovector
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i @ lk0slk0s
* #5~k0 /k0!sb, ~77!

that takes into account the change in the atomic states u
inversion and the separate replacementsk0→2k0 and
s→2s. It should be noted in particular that these terms
nonzero with the passage of a linearly polarized pulse~34!
with the polarization vector~35! andl51 andc50, or the
polarization vector~36! with l521 andc5p/2.

A distinguishing feature of the light-induced magnetiz
tion, Eq. ~68!, is also the characteristic dependence on
detuningv2vba from resonance when one uses the am
tude

a~ t8!5a0~ t8!exp~2 ia! ~78!

in Eq. ~34! with real a0(t8) and a, for which I 0
a(t8) and

I 0
b(t8) are even functions ofD. For the amplitude~78! the
light-induced magnetization~68! is an even function of
v2vba if the dependence onkv in Eqs.~71! is negligible or
if r0

(k)(Ja,1) is an even function ofv. The latter is the case
for example, at exact resonancev05vba for the previous
strong pulse. In this case, making the replacementv→2v
for the variable of integration in Eqs.~69! and~70! produces
the desired result.

5. LIGHT-INDUCED MAGNETIZATION OF A GAS
OF PREALIGNED ATOMS

In a gas of prealigned atoms there exist two prefer
orthogonal directions defined by the vectorsk0 and l0 .
Therefore when the pulse~34! propagates collinearly with
k0 it is necessary to set the orientation of the axes of
polarization ellipse by means of the formula

@ l0lk
~1!#5~k/k!sin wk , ~79!

where the anglewk is reckoned positive from the vectorl0 to
the vector lk

(1) in the clockwise direction looking alongk
~Fig. 1!. It can be seen thatwk is a pseudovector, which
transforms aswk→2wk under inversion. In addition, be
causel2k

(1)5 lk
(1) , the anglewk changes sign whenk→2k,

i.e., w2k52wk . The pseudovector~79! is of fundamental
importance in this problem, since it enables one to determ
the direction ofm(t8).

FIG. 1. Orientation of the axes of the polarization ellipse~lk
(1) and lk

(2)!
relative to the polarization vectorl0 in the plane perpendicular to the direc
tion of propagation of the light pulses. The unit vectorlk

(1) is also the polar-
ization vector for a linearly polarized pulse.
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l0 in Fig. 1 is independent of the choice of right- or lef
handed coordinates. However the calculation of the lig
induced magnetization Eq.~48! is more logically carried out
in the right-handedxyz coordinate system with thez axis
collinear with k0 and thex axis alongl0 , since this is the
system in which the alignment of the atom is given by fo
mulas~29! and ~33!. Then, according to Fig. 1, the orienta
tion of the axes of the polarization ellipse of the pulse~34!
can be written as

lk
~1!5 lx coswk1 lysk sin wk , ~80!

lk
~2!52 lx sin wk1 lysk coswk , ~81!

wheresk5( lzk)/k and the conditions~37!–~39! are satisfied.
Right- and left-handed polarization is described by the v
tors ~35! and ~36!, which after constructing the vectors~80!
and ~81! can be written

lk15 lx~coswk cosc2 i sin wk sin c!

1 lysk~sin wk cosc1 i coswk sin c!, ~82!

lk,2152 lx~coswk sin c1 i sin wk cosc!

2 lysk~sin wk sin c2 i coswk cosc!, ~83!

where the vectors~82! and ~83! form the unit polarization
vector lkl that describes right-handed (l51) and left-
handed (l521) polarization of the pulse~34! with the axes
of the polarization ellipse rotated by the anglewk .

In order to calculate the light-induced magnetization, E
~48!, of a gas of pre-aligned atoms by the propagation of
pulse~34! with polarization vectors~82! and ~83!, it is nec-
essary to solve equations~44!–~46! with initial conditions at
t850,

tMbMa
~0!50, rMbMb8

~0!50, rMaMa8
~0!5rMaMa8

,

~84!

where the right-hand sides of the equations coincide with
components of the density matrices~29! and~30! of the pre-
aligned atoms. For a weak pulse~34!, corresponding to the
inequality~49!, the solution of Eqs.~44!–~46! by successive
approximations and with the initial conditions~84! has the
form

rMaMa8
~ t8!5rMaMa8

1rMaMa8
~2!

~ t8!,

rMbMb8
~ t8!5rMbMb8

~2!
~ t8!, ~85!

where the termrMaMa8
, according to Eq.~29!, describes the

unperturbed state of the prealigned atom. This term does
contribute to the light-induced magnetization~48!, since the
series expansion of the density matrixrMaMa8

in the 3j sym-

bols ~Eq. 32! does not contain any term with a multipo
moment of the first rank. Thus, unlike a gas of pre-orien
atoms, a gas of prealigned atoms is not magnetized be
the weak pulse~34! arrives. Here the time-dependent ligh
induced magnetization~48! depends only on the terms in Eq
~85! that are quadratic in the field~34!. After summation
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over the projections of the angular momenta, and using the

s,

s

oriented atoms, and therefore the summations over the index

i-

p-

e

-

rd-
notation Eqs.~58!–~60!, we can write it in the following
way:

m~ t8!5
mBN

\2 E dvf ~v !(
kqq̃

lq̃H gaFq
~k!~ q̃!I a~ t8!

2gbHq
~k!~ q̃!I b~ t8!2

gaJaa
Jbb

Hq
~k!~ q̃!

3~21!Ja1Jb~2Jb11!H Ja 1 Ja

Jb 1 Jb
J @ I a~ t8!

2I b~ t8!#J 1c.c., ~86!

Fq
~k!~ q̃!5

udbau2Jaa
A2Ja11

~21!q1 q̃~2k11!

3rq
~k!~Ja! (

k8q8q9
~2k811!

3~21!q8Aq8Bq9S 1 1 k8

2q̃ q9 q1q8
D

3S 1 k k8

q8 q 2q2q8
D H 1 1 k8

Ja Jb Ja
J

3H 1 k k8

Ja Jb Ja
J , ~87!

Hq
~k!~ q̃!5

udbau2Jbb
A2Ja11

~21!q1 q̃~2k11!

3rq
~k!~Ja! (

k8q8q9
~2k811!

3~21!q9Aq8Bq9S 1 1 k8

2q̃ q8 q1q9
D

3S 1 k k8

2q9 2q q1q9
D H 1 1 k8

Jb Ja Jb
J

3H 1 k k8

Ja Jb Ja
J . ~88!

In Eq. ~86! the summation indexk coincides with the
rank of the multipole momentsr0

(k)(Ja) associated with the
initial state of the atom. Thereforek assumes even value
including k50. The range of summation overk andk8 in
Eqs. ~86!–~88! is dictated by the properties of the 3j and
6 j symbols, and is given by

0<k8<2, 0<k<2, k<2Ja ,

and byk<2Jb for the third term in Eq.~86!.
By virtue of the properties of the 3j symbols and the

orthogonality of the vectorsA andB to thez axis, the terms
in Eq. ~86! with q50 and k50, 2 are nonzero only for
q̃50. These terms can be calculated in the same way a
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k for the principal quantities in Eqs.~87! and~88! in the case
q50 have the form

(
k50,2

F0
~k!~ q̃!5Sq̃ , (

k50,2
H0

~k!~ q̃!5Qq̃ , ~89!

where Sq̃ and Qq̃ are given by~61! and ~62! with r0
(k)

3(Ja ,s)→r0
(k)(Ja), which denotes a transition from an or

ented atom to an aligned atom.
To calculate the remaining terms in Eq.~86! with q Þ 0

andk52, we use the equalities

r61
~2! ~Ja!50, r22

~2! ~Ja!5r2
~2!~Ja!,

which follow from the properties ofd0q
k (6p/2) with k52

andq561,62. In addition, we take advantage of the pro
erties of the 3j symbols, which lead to the constraints

q̃5q1q81q9, uq1q8u<k8, uq1q9u<k8,

k851, 2

in formulas ~87! and ~88! with k52. These constraints ar
satisfied for q8561 and q9561 only if q̃50,
q85q9561 andq522q8. Therefore the sums of the prin
cipal quantities in~87! and~88! with k52 andq Þ 0 become

(
q562

Fq
~2!~ q̃!5d0 q̃

5udbau2Jaa
A2Ja11

r2
~2!~Ja!

3~A21B212A1B1!F, ~90!

(
q562

Hq
~2!~ q̃!52d0 q̃

5udbau2Jbb
A2Ja11

r2
~2!~Ja!

3~A21B212A1B1!H, ~91!

where

F5(
k8

~2k811!S 1 1 k8

0 1 21D S 1 2 k8

1 22 1 D
3H 1 1 k8

Ja Jb Ja
J H 1 2 k8

Ja Jb Ja
J ,

H5(
k8

~2k811!S 1 1 k8

0 21 1 D S 1 2 k8

1 22 1 D
3H 1 1 k8

Jb Ja Jb
J H 1 2 k8

Ja Jb Ja
J .

Using the explicit form for the vectorsA andB when the
axes of the polarization ellipse are rotated, we find, acco
ing to Eqs.~82! and ~83!,

A21B212A1B15ı~AxBy1AyBx!

5 iskl cos~2c!sin~2wk!, ~92!

where

l cos~2c!5 lkl
2 , l561.

After multiplying by l(0)5 lz , we are able to use Eq.~92!
to resolve the issue regarding the direction ofm(t8) in this
problem. The appearance of the double angle 2wk , in con-
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aligned atom, only one of the two orthogonal symmetry a
is in this directionl0 . Any direction of the third axis that is
orthogonal to the other two is equally probable. Theref
the light-induced magnetizationm(t8) will remain the same
regardless of whetherlk

(1) is taken parallel or antiparallel to
the third axis. These two directions oflk

(1) correspond to
rotation by wk5p/2 and wk52p/2. The invariance of
m(t8) under these rotations is secured by the fac
sin(2wk). The results, Eqs.~89!–~92!, allow us to write the
light-induced magnetization~86! of a gas of pre-aligned at
oms in the following way:

m~ t8!52~k/k!lb sin~2c! (
k50,2

m0
~k!~ t8!

2~k/k!l cos~2c!sin~2wk!m2
~2!~ t8!, ~93!

where

m0
~k!~ t8!5gaDa

~k!Ma0
~k!~ t8!1gbDb

~k!Mb0
~k!~ t8!1gaDab

~k!

3@Ma0
~k!~ t8!2Mb0

~k!~ t8!#, k50, 2,

m2
~2!~ t8!5gaDaMa2

~2!~ t8!1gbDbMb2
~2!~ t8!1gaDab

3@Ma2
~2!~ t8!2Mb2

~2!~ t8!#,

Da530A2Ja11JaaF, Db530A2Ja11JbbH,

Dab530A2Ja11JaaH~21!Ja1Jb~2Jb11!

3H Ja 1 Ja

Jb 1 Jb
J ,

Maq
~k!~ t8!5

mBNudbau2

6~2Ja11!\2 E f ~v !rq
~k!~Ja!

3I q
a~ t8!dv, k,q50, 2,

Mbq
~k!~ t8!5

mBNudbau2

6~2Ja11!\2 E f ~v !rq
~k!~Ja!

3I q
b~ t8!dv, k, q50, 2,

I 2
a~ t8!5 i @ I a* ~ t8!2I a~ t8!#, I 2

b~ t8!5 i @ I b* ~ t8!

2I b~ t8!#. ~94!

The quantities~94! are defined in the region 0<t8, but
after the pulse~34! passes they assume the characteri
form

I 2
a~ t8!5I 2

a~t!, I 2
b~ t8!5I 2

b~t!exp@2g~ t82t!#,

t<t8.

In the case of an ultrashort pulse satisfying the inequ
ties gt!1 and ~73!, the following relation is true for the
quantities~94!:

I 2
a~ t8!5I 2~ t8!, I 2

b~ t8!5I 2~ t8!exp~2gt8!, 0<t8.
~95!

where

46 JETP 84 (1), January 1997
s

e

r

ic

i-

2 F
0

2 2

3exp~2 iDt2!E
0

t2
dt1a* ~t1!

3exp~ iDt1!2E
0

t8
dt2a* ~t2!

3exp~ iDt2!E
0

t2
dt1a~t1!exp~2 iDt1!G . ~96!

The final formula~93! retains the same form in the righ
handed and left-handed coordinate systems. It contains
multipole momentsrq

(k)(Ja) ~k50, 2 andq50, 62! of the
atomic initial state generated by a strong linearly polariz
pulse~27!. The atomic states withr0

(k)(Ja) for k50, 2 have
axial symmetry about thez axis, which is collinear withk0
and k. Therefore the terms in Eq.~93! with k50, 2 and
q50 do not depend on the orientation of the axes of
polarization ellipse. Moreover, the atomic states withr0

(k)

3(Ja) for k50, 2 are invariant under inversion and whe
k0→2k0 , and also with the replacementl0→2 l0 , by virtue
of the equalitiesd00

(0)(6p/2)51 and d00
(2)(6p/2)521/2.

From these properties of the initial states of an atom w
r0
(k)(Ja) for k50, 2 it follows that for a weak pulse~34!
there is only a single pseudovector~43! invariant under the
replacementk0→2k0 andl0→2 l0 . This pseudovector van
ishes for a linearly polarized pulse~34! with a polarization
vector ~35! for l51 and c50, or ~36! with l521 and
c5p/2. Here formula~76! and the related comments app
to the first term in Eq.~93! with r0

(k)(Ja)51.
The last term in Eq.~93! with r2

(2)(Ja) takes into account
pre-alignment of the atoms, which does not depend on
replacementsk0→2k0 andl0→2 l0 . Here the orientation of
the axes of the polarization ellipse is of fundamental imp
tance. With this symmetry there exists a pseudovec
(k/k)sin(2wk) that is invariant under the replacemen
k0→2k0 , k→2k, l0→2 l0 , andl→2l. For the ampli-
tude, Eq.~78!, the last term in Eq.~93! is an odd function of
v2vba if the dependence onkv in Eq. ~94! can be neglected
or if r2

(2)(Ja) is an even function of the velocityv. More-
over, it vanishes for a circularly polarized pulse wi
c5p/4 and is nonzero for linear polarization, which is cha
acterized by the vector~35! with l51 andc50 or ~36! with
l521 andc5p/2.

6. MAGNETIZATION OF A GAS BY AN OPTICAL PULSE
TRAIN

To study experimentally the dependence ofm(t8) on the
time t8 and the detuning from resonancev2vba with un-
changed initial conditions, it is necessary to pass through
gas a sequence of pulses with the same polarization and a
litude but with different frequenciesv near the transition
frequencyvba . Each successive pulse must pass through
gas under the same initial conditions, Eqs.~47! or ~84!. This
is possible only when the initial conditions are produced
an intense ultrashort pulse and subsequent pulses are w
The latter must be delayed by more thang21 in order to
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permit the excited state of the atom generated by the intense
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X ~ t8,v2v !52~ta !22E dvf ~v !E t8
djE j
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pulse to decay before the series of weak pulses arrive. T
each weak pulse will make an adjustment to the initial c
ditions for the density matrix that is proportional to th
square of the weak field.

These adjustments to the initial conditions within t
framework of perturbation theory can be neglected in
passage of a series of weak pulses with shifted frequen
v. Therefore, for each weak pulse, the light-induced mag
tization m(t8) at an arbitrary point in the gas will be de
scribed by the same formula,~68! or ~93!, with the initial
time t850 taken at the instant the pulse arrives. Moreover
order that the previous pulse not distort the time-depend
light-induced magnetization of the preceding pulse,
pulses must be separated by more thang21.

In this scheme, in which the frequencyv is scanned, the
weak pulse creates a residual static magnetization. Howe
this magnetization will not contribute to the emf in th
pickup coil, Eq.~51!, and therefore will not reflect on th
results of the experimental investigations of the tim
dependent light-induced magnetization created by an i
vidual weak pulse.

It follows from this discussion that for experimental in
vestigations it is advantageous to use a strong ultras
pulse with circular or linear polarization, frequencyv0 , and
pulse width t0 that satisfy the inequality
uv02vba2k0uut0!1, in order that the multipole moment
r0
(k)(Ja ,s) andrq

(k)(Ja) of the optically polarized atoms no
depend on the velocityv. In addition, it is convenient to us
a series of weak pulses with the pulse width~49! and ampli-
tude~78! ordinarily used in experiment. From a fundamen
point of view, the most interesting cases are those of a
early polarized pulse~34! with the polarization vector~35!,
l51 andc50, or ~36! with l521 andc5p/2, since for
these cases the symmetry dependence in this problem is
transparent. Under these conditions the time-dependent l
induced magnetizations, Eqs.~68! and ~93!, produced by a
linearly polarized pulse with polarization vectorlk

(1) ~see Fig.
1! for 0<t8 can be written as

m~ t8!52~k0 /k0!sb@V0Xa0~ t8,v2vba!1W0Xb0

3~ t8,v2vba!exp~2gt8!#, 1<2Ja , ~97!

for pre-oriented atoms and

m~ t8!52~k/k!sin~2wk!@V2Xa2~ t8,v2vba!

1W2Xb2~ t8,v2vba!exp~2gt8!#, 1<Ja ,

~98!

for prealigned atoms, where

Xa0~ t8,v2vba!52~ta0!
22E dvf ~v !E

0

t8
dj

3E
0

j

dha0~j!a0~h!

3exp@2g~j2h!/2#cos@D~j2h!#,

~99!
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3~j!a0~h!exp@g~j1h!#cos@D~j2h!#,

~100!

Xa2~ t8,v2vba!52~ta0!
22E dvf ~v !E

0

t8
djE

0

j

dha0

3~j!a0~h!exp@2g~j2h!/2#

3sin@D~j2h!#, ~101!

Xb2~ t8,v2vba!52~ta0!
22E dvf ~v !E

0

t8
djE

0

j

dha0

3~j!a0~h!exp@g~j1h!#sin@D~j2h!#,

~102!

V05gaM (
k51,3

r0
~k!~Ja,1!~Da

~k!1Dab
~k!!,

W05M (
k51,3

r0
~k!~Ja,1!~gbDb

~k!2gaDab
~k!!,

V25g2Mr2
~2!~Ja!~Da1Dab!,

W25Mr2
~2!~Ja!~gbDb2gbDab!,

M5
mBNudbau2~a0t!2

6~2Ja11!\2 .

Here a0 is the largest value of the amplitudea0(t8) in the
form of Eq.~78!, and the quantities~99!–~102! are universal
functions oft8 andv2vba .

It can be seen from Eqs.~97! and ~98! that for pre-
oriented atoms, Eq.~97!, m(t8) is an even function of
v2vba and reverses direction with the independent repla
mentsk0→2k0 and s→2s. However, for prealigned at
oms, Eq.~98!, m(t8) is an odd function ofv2vba, and
reverses direction when the sign ofv2vba changes and
when the anglewk passes through 0,6p/2, and6p, and
m(t8) is proportional to sin(2wk). This behavior is funda-
mental, since they result from symmetry; they establish
direction ofm(t8) when a series of linearly polarized pulse
pass through the gas.

The emf across the pickup coil, Eq.~51!, can also be
written in terms of universal functions:

U~ t8!5~nk0 /k0!sb$U0Ya0~ t8,v2vba!

1Ũ0@Yb0~ t8,v2vba!2gtXb0~ t8,v2vba!#

3exp~2gt8!%, 1<2Ja , ~103!

for pre-oriented atoms and

U~ t8!5~nk/k!sin~2wk!$U2Ya2~ t8,v2vba!

1Ũ2@Yb2~ t8,v2vba!2gtXb2~ t8,v2vba!#

3exp~2gt8!%, 1<Ja , ~104!

for prealigned atoms, where
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Yaq~ t8,v2vba!5tdXaq~ t8,v2vba!/dt8, ~105!
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Ybq~ t8,v2vba!1tdXbq~ t8,v2vba!/dt8, ~106!

Uq5CVqt
21, Ũq5CWqt

21, q50, 2.

If the amplitude goes to zero att85t, a0(t)50, then
the universal functions~105! and ~106! for t<t8 are also
zero, while the other functions~99!–~102! for t<t8 remain
constant aftert85t. In this case the emfs given by Eq
~103! and ~104! at t<t8 can be written in relative units as

U~ t8!/Ũ052~nk0 /k0!sbgtXb0~t,v2vba!

3exp~2gt8!, ~107!

U~ t8!/Ũ252~nk/k!sin~2wk!gtXb2~t,v2vba!

3exp~2gt8!. ~108!

In the other possible case,a0(t) Þ 0 anda0(t8)50 at
t,t8, the universal functions~105! and ~106! are discon-
tinuous at t85t. Then ~107! and ~108! are valid when
t,t8, without the isolated valuet85t. In both of these
cases, Doppler broadening of the resonant transition cha
the value ofXbq(t8,v2vba) for q50, 2, but does not affec
the exponential decay, exp(2gt8), at t,t8. Therefore the
experimental determination ofg using of Eqs.~107! and
~108! is an alternate method of Doppler-free spectroscop10

thanks to the high sensitivity of the experimental meth
using a pickup coil.

For small-area ultrashort pulses~Eq. ~73!!, the strong
inequalitygt!1 dictates that

Xaq~ t8,v2vba!5Xbq~ t8,v2vba!5Xq~ t8,v2vba!,
~109!

Yaq~ t8,v2vba!5Ybq~ t8,v2vba!1Yq~ t8,v2vba!
~110!

at 0<t8<t, where the universal functionsXq(t8,v2vba)
andYq(t8,v2vba) with q50, 2 are given by~99!–~102!,
~105!, and ~106! in the absence of relaxation,g50. They
satisfy the inequality

Yq~ t8,v2vba!@gtXq~ t8,v2vba!, q50, 2,

which can violate only neart85t. Therefore, for ultrashor
pulses, the dependence of the emf, Eqs.~103! and ~104!, on
the timet8 andv2vba at 0<t8,t takes the form

U~ t8!/~U01Ũ0!5~nk0 /k0!sbY0~ t8,v2vba!, ~111!

U~ t8!/~U21Ũ2!5~nk/k!sin~2wk!Y2~ t8,v2vba!.
~112!

However, over the entire range 0<t8, the emf can be calcu
lated by means of~103! and ~104!, noting thatgt!1.

The light-induced time-dependent magnetizationm(t8)
at the initial time t850 is equal to zero,m(0)50, and at
remote timesg21!t8 it becomes constant (m(`)). Using
this information and integrating both sides of Eq.~51!, we
find

E
0

`

U~ t8!dt852Cnm~`!. ~113!
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a function of t8 for an individual weak pulse of frequenc
v permits us to find, by numerical integration, the univer
functions~99! and ~101! at frequencyv and t85t :

nk0
k0

sbXa0~t,v2vba!5
1

U0t
E
0

`

U~ t8!dt8, 1<2Ja ,

~114!

nk

k
sin~2wk!Xa2~t,v2vba!5

1

U2t
E
0

`

U~ t8!dt8,

1<Ja , ~115!

where the left-hand sides of Eqs.~114! and~115! are related
to the light-induced magnetization atg21!t8 by means of
Eq. ~113!.

Formulas~107!–~115! are suitable for experimental in
vestigations of the vector properties of the light-induc
magnetization and its dependence ont8, v2vba , mat , and
N, since they relate the experimentally observed quantitie
relative units to the universal functions and the facto
(nk0 /k0)sb and (nk/k)sin(2wk), which are a result of sym-
metry. The universal functions oft8 andv2vba depend also
on the relaxation constantg, the amplitudea0(t8) in relative
units, the atomic massmat , and the gas temperatureT. How-
ever, they do not depend on the angular momentaJa or
Jb , the g-factors ga or gb , the reduced dipole momen
dba , or the atomic densityN. Those latter factors enter int
the constantsUq and Ũq with q50, 2, which serve as a
scale for the experimental measurements of the emf in r
tive units.

In experiments with inhomogeneously broadened tran
tions, g!k0u, it is possible to realize the condition
g!1/t0!k0u, under whichr0

(k)(Ja,1) andr0
(k)(Ja) depend

on the velocityv. Then to preserve the form of~107!–~112!,
~114!, and~115!, which contain the emf in relative units, it i
necessary to use weak ultrashort pulses whose widtht satis-
fiesg!ku!1/t in order that the Doppler shift in Eqs.~99!–
~102!, ~109!, and~110! may be neglected. As a result, we ca
set* f (v)dv51, and make the replacement

r0
~k!~Ja,1!→E f ~v !r0

~k!~Ja,1!dv,

r2
~2!~Ja!→E f ~v !r2

~2!~Ja!dv.

in all the universal functions, and in the constantsUq and
Ũq with q50, 2. Then, with the aid of Eqs.~107!–~115! we
can study experimentally the vector properties of the lig
induced magnetization and its dependence ont8, v2vba ,
and g. Other physical quantities enter into the consta
Uq and Ūq with q50, 2.

In order to get an idea of how the light-induced magn
tization and emf vary, we examine the universal functio
~109! and~110! for an ultrashort pulse (gt!1) with a rect-
angular amplitude profile

a0~ t8!5a0 for 0<t8<t,

a0~ t8!50 for t8,0 and t,t8, ~116!
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FIG. 2. Universal function
Xq(t8,v2vba) for t85t as a
function ofv2vba for a rectangu-
lar amplitude profile~Eq. ~116!!.
The solid curve includes the influ-
ence of the Doppler effect with
t510tD . The dashed curves cor
respond to 10t5tD , where the
Doppler effect can be neglected. a!
q50; b! q52.
and with a Gaussian amplitude profile

ns

with «50 for a rectangular amplitude profile, Eqs.~116!,
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a0~ t8!5a0 exp@2~ t82t/2!2/~2tp!
2#, 0<t8<t,

~117!

wherea0(t8)50 outside of the interval 0<t8<t. Herea0
and tp (4tp,t) are constants. The characteristic timetp
enters into the spectral widthDv5A2 ln 2tp

21 of the Gauss-
ian pulse if the inequality 4tp,t is sufficiently strong~for
example, 8tp<t!. In these examples the universal functio
~109! with q50, 2 have the form

X0~ t8,v2vba!52E
0

t8/t
djE

0

j

dh cos@d~j2h!#

3exp$2«@~j21/2!21~h21/2!2#

2~t/2tD!2~j2h!2%, ~118!

X2~ t8,v2vba!52E
0

t8/t
djE

0

j

dh sin@d~j2h!#

3exp$2«@~j21/2!21~h21/2!2#

2~t/2tD!2~j2h!2%, ~119!

d5~v2vba!t, tD51/ku,
and«5(t/2tp)
2 for a Gaussian profile, Eq.~117!. HeretD is

the Doppler relaxation time. The two other universal fun
tions ~110! with q50, 2 can be obtained by differentiatin
~118! and ~119! with respect tot8, according to Eqs.~105!
and ~106!.

In the case of an inhomogeneously broadened transit
g!ku, Fig. 2 shows the behavior of the universal functi
Xq(t,v2vba) with q50, 2 as a function of the offset from
resonancev2vba for the rectangular amplitude profil
~116!. For an even functionX0(t,v2vba), the Doppler ef-
fect lowers and broadens the main bell-shaped maximum
these curves. The maximum of the odd functi
X2(t,v2vba) in the absence of the Doppler effe
(10t5tD) occurs forv2vba53.2/t, whereas with a strong
Doppler effect (t510tD) we havev2vba59.8/t. Away
from resonance the quantityX2(t,v2vba) goes to zero
more slowly thanX0(t,v2vba).

To demonstrate the effect of the shape of the amplitu
profile, Fig. 3 shows the behavior of the universal functi
Yq(t8,v2vba) with q50, 2 as a function ofv2vba for
t85t/2 and the Gaussian amplitude profile,~117! with
t58tp («516). The fixed timet85t/2 was selected arbi
d

FIG. 3. Universal function
Yq(t8,v2vba) for t85t/2 as a
function ofv2vba for a Gaussian
amplitude profile~Eq. ~117!! with
t58tp («516). The physical
meaning of the solid and dashe
curves is the same as in Fig. 2. a!
q50, b! q52.
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as
FIG. 4. Universal function
Yq(t8,v2vba) as a function oft8
for a fixed offset from resonance
v2vba , and a Gaussian ampli
tude profile witht58tp («516).
The physical meaning of the solid
and dashed curves is the same
in Fig. 2. a! q50 and
v2vba50; b! q52 and
v2vba511.83/t ~solid curve!
and 7.45/t ~dashed curve!.
trarily. Here the Doppler effect affects the even functions
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with q50 and the odd functions withq52 identically, as in
Fig. 2. The maximum ofYq(t/2,v2vba) as an odd function
of v2vba is obtained in the absence of the Doppler effe
(10t5tD) atv2vba57.45/t, and when the Doppler effec
is strong (t510tD) the maximum is atv2vba511.83/t.

Figure 4 shows the dependence of the universal func
Yq(t8,v2vba) on the timet8 for q50, 2 and the Gaussia
amplitude profile,~117! with t58tp («516). Forq50 we
assume exact resonance (v5vba), corresponding to the op
timum condition forYq(t8,v2vba) as an even function o
v2vba . For q52, fixed offsets from resonance were s
lected, corresponding to the maximum ofY2 ~t/2,v2vba)
as an odd function ofv2vba, as in Fig. 3. For a Gaussia
amplitude profile symmetric aboutt85t/2 the behavior of
the universal functions is shown by asymmetric curves t
undergo a Doppler effect.

7. DISCUSSION

If the first and second pulses in the train are strong, t
the dependence ont8 and on v2vba in ~68! and ~93!
changes. Nevertheless, the symmetry-related propertie
light-induced magnetization are preserved. For example,
a strong linearly polarized second pulse, Eq.~68! retains the
term in (k0 /k0)sb and the even dependence onv2vba ,
while Eq. ~93! retains the term with (k/k)sin(2wk) and the
odd dependence onv2vba , although these dependences
v2vba will be described by more complicated function
The solution of the problem with three strong pulses is qu
complex, since the initial conditions for the third puls
change.

In atoms with nonzero nuclear spinI , light-induced
magnetization assumes a more complicated form due to
existence of hyperfine levels, and because of optical pu
ing to nonresonant sublevels of the ground state hyper
structure.11,12Despite these complications, the rules impos
by symmetry are preserved. Moreover, if the component
the hyperfine structure in the ground levelEa and excited
level Eb are far enough apart, and if only two subleve
EFa

andEFb
with total angular momentumFa andFb are in

resonance, then after the replacements

vba→~EFb
2EFa

!\21, Ja→Fa , Jb→Fb ,
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the formulas derived in Sections 4–6 are valid over a ti
interval for which the depletion of the sublevelEF by optical
pumping is negligible. HeredFbFa is the reduced dipole mo
ment of the transitionFa→Fb .

In Ref. 1, Badalyanet al. published an experimenta
curve of the emf as a function of offset from resonance
rubidium vapor, with nuclear spinI55/2 for the resonant
transitions 52S1/2→52P1/2

0 and 52S1/2
0 →52P3/2

0 , using fairly
weak linearly polarized pulses in the absence of a magn
field, under the conditionsgt'1 andg!ku. According to
the published curve, light-induced magnetization of the
bidium vapor in the vicinity of each resonant frequency
the transition is an even function ofv2vba with a maxi-
mum atv5vba , which agrees with the magnetization o
oriented rubidium atoms interacting with linearly polarize
pulses. Additional experimental data are required for a m
detailed analysis.
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Anomalies in resonant absorption line profiles of atoms with large hyperfine splitting

A. I. Parkhomenko, S. P. Pod’yachev, T. I. Privalov, and A. M. Shalagin

Institute of Automation and Electrometry, Siberian Branch of the Russian Academy of Sciences,
630090 Novosibirsk, Russia
~Submitted 28 June 1996!
Zh. Éksp. Teor. Fiz.111, 93–106~January 1997!

We examine a monochromatic absorption line in the velocity-nonselective excitation of atoms
when the components of the hyperfine stricture of the electronic ground states are optically
pumped. We show that the absorption lines possess unusual substructures for some values of the
hyperfine splitting of the ground state~which exceed the Doppler absorption linewidth
severalfold!. These substructures in the absorption spectrum are most apparent if the hyperfine
structure of the excited electronic state is taken into account. We calculate the absorption
spectra of monochromatic light near theD1 andD2 lines of atomic rubidium

85,87Rb. With real
hyperfine splitting taken into account, theD1 andD2 lines are modeled by 4- and 6-level
diagrams, respectively. Finally, we show that atomic rubidium vapor can be successfully used to
observe the spectral features experimentally. ©1997 American Institute of Physics.
@S1063-7761~97!00601-X#

1. INTRODUCTION propagation are employed~see, e.g., Refs. 2–5!.
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Even in such simple atoms as those of alkali eleme
the electronic ground state consists of a set of sublevels
are hyperfine components and magnetic sublevels. If the
bital angular momentum of the electrons in the ground s
is zero~the s state!, these sublevels are exceptionally lon
lived: collisions with the particles of a nonmagnetic buff
gas and even with the walls~provided that the walls are
specially treated! almost never lead to mixing of the popula
tions of these sublevels. Because of this, for instance,
so-called effects of optical orientation and optical pump
are apparent in atoms of alkali metals~see, e.g., Ref. 1!. The
essence of such effects lies in the fact that even weak op
radiation in resonance with the transition to the closest
cited electronic state of the atoms can create a pronoun
and long-lived nonequilibrium distribution of population
over the sublevels of the ground state. In particular, s
radiation can pump practically all the atoms~with which
there is effective interaction! to a single component of th
hyperfine structure. In a situation in which optical pumpi
is a minor effect~for example, the radiation intensity is s
low that no pumping between the levels of the hyperfi
structure occurs in the time it takes an atom to traverse
light beam!, the monochromatic absorption line consists
separate lines corresponding to intra-atomic transitions.
der conditions of optical pumping and when other nonlin
effects are present, the absorption line profile can unde
considerable alteration.

Many theoretical and experimental investigations ha
been conducted in the laser spectroscopy of resonant tr
tions of atoms initiated by optical pumping within the hype
fine structure of the ground state. A characteristic feature
all such investigations is the velocity-selective excitation
absorbing atoms and, as a rule, hyperfine splitting tha
moderate compared to Doppler broadening. Under such
ditions, the absorption spectra consist of Doppler-broade
lines with nonlinear resonances, which emerge when
fields of different frequencies or different directions
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Atoms of alkali metals have served as the objects of s
experiments. When only one monochromatic traveling wa
is employed, optical pumping leads to formation of a sing
smooth absorption line occupying a position between
resonant transition frequencies associated with the com
nents of the hyperfine structure~see, e.g., Refs. 3, 6, and 7!.
As hyperfine splitting grows, the line profile remains smoo
and its width is approximately equal to the size of the hyp
fine splitting. The greater the hyperfine splitting in compa
son to the Doppler linewidth, the stronger the pumping fro
one hyperfine component of the ground state to another
this regard, Cs and Rb are the most typical of the alk
atoms, with hyperfine splitting exceeding Doppler widths
a factor close to 20.

This, briefly, is the picture of the absorption line profi
~particularly for a monochromatic line! that the experimente
observes today in the presence of optical pumping betw
the levels of the hyperfine structure of the electronic grou
states of atoms.

In the present investigation, we analyze what we b
lieved to be a simple situation, the absorption of a monoch
matic traveling wave by atoms with large hyperfine splitti
of the ground state under conditions in which the atom
radiation interaction is velocity-nonselective. We arrived a
curious result: for certain ratios of the homogeneous a
Doppler widths and within a certain range of hyperfine sp
tings~which are large compared to the Doppler width, so th
Voigt profiles cannot be approximated by Doppler profile!,
the absorption line profile ceases to be smooth and acqu
substructure which, in general, is related to no real tran
tions in the atom. This substructure is even more devi
when the hyperfine splitting of an excited electronic state
taken into account: the hyperfine splitting of an excited st
adds to the deformation of the absorption line. As a res
the absorption line can acquire really strange shapes. Wh
characteristic is that strong deformations of the absorp
line profile occur over a rather narrow range of values of

51$10.00 © 1997 American Institute of Physics
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.
-
the

ly
nal
ys

ing

f

tion
blev-
nce
parameters of the problem. Outside this range, the absorp
line behaves in full agreement with the picture describ
earlier. We also show that atomic rubidium vapor provid
an appropriate medium in which to observe the predic
spectral anomalies.

The aim of the present work is to demonstrate the ex
ence of anomalies in the absorption line profile of a mo
chromatic traveling wave under conditions of optical pum
ing and in velocity-nonselective excitation of the absorb
atoms, and to provide a physical interpretation of the
anomalies.

2. THREE-LEVEL SYSTEM

We start our analysis with the simplest situation,
which the hyperfine splitting of the excited state can be
nored ~three-level system; Fig. 1!. Level m is the excited
electronic state, and levelsn andl are the components of th
hyperfine structure of the ground state. From levelm a par-
ticle radiatively relaxes only to levelsn and l with constants
Gmn andGml , respectively. Additional simplifications, whic
we use below, consist in the following. Magnetic structu
~level degeneracy! is taken into account by introducing sta
tistical weightsgm , gl , andgn . Such an approach is justifie
because even the presence of a weak laboratory mag
field leads to precession of the magnetic moments and m
the populations among the magnetic sublevels. We ass
that the radiation represented by a traveling wave with
quencyv close to the frequencies of optical transitions,vml

andvmn , is so weak that saturation of the optical transitio
can be ignored. The probability of absorption per unit tim
per atom,p, is described by the well-known simple formu

p5 (
j5n,l

pj5I (
j5n,l

BE Yj~v!r j~v!dv, ~1!

B5
p2c2

\v3

gm
gl1gn

Gm ,

Yj~v!5
1

p

G

G21~v2vmj2k–v!2
.

Here I andk are the intensity and wave vector of the rad
tion,Gm5Gmn1Gml is the rate of spontaneous decay of st
m, G is the homogeneous halfwidth of the absorption lin
rj ~v! is the velocity distribution of the population of leve
j ( j5n,l ), andB is Einstein’s second coefficient~here we
have allowed for the fact thatGmn/Gml5gn/gl in the selected
three-level model8!.

FIG. 1. Level diagrams for the three- and four-level models.
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probability p:

a5
\vNp

I
, ~2!

whereN is the number density of the absorbing particles
The velocity distribution of the populations for the hy

perfine sublevels of the ground state is assumed to be
equilibrium Maxwellian one:

r j~v!5wjW~v!, j5n, l , ~3!

wherewj is the probability of finding the particle in levelj .
The assumption~3! is valid at least in the presence of a fair
small amount of buffer gas, which ensures rapid collisio
Maxwellization in comparison to the time that the atom sta
inside the light beam.

With allowance for~3!, the partial absorption probability
assumes the simple form

pj5g
gm

gn1gl
wj f ~xj !, ~4!

f ~xj !5
1

p E
2`

` y exp~2t2!dt

y21~xj2t !2
, g5

p2c2

\v3

Gm

Apkv̄
I ,

xj5
v2vmj

kv̄
, y5

G

kv̄
, v̄5A2kBT

M
.

Here f (xj ) is the well-known Voigt profile,xj is the fre-
quency offset of the radiation from that of the correspond
atomic transition, normalized to the Doppler parameterkv̄,
and v̄ is the most likely velocity~kB is the Boltzmann con-
stant,T is the temperature, andM is the mass of the atom!.

In Eq. ~4!, not only doesf depend on the frequency o
the radiation, so does the probabilitywj . This constitutes the
essence of optical pumping: as the frequency of the radia
changes, the atoms become redistributed among the su
els of the hyperfine structure of the ground state. The bala
equations forwj have the form

S ddt1GmDwm5pl1pn ,

d

dt
wl5Gmlwm2pl ,

~5!
d

dt
wn5Gmnwm2pn , wm1wn1wl51.

In the adopted approximation~wm!1 andwl1wn'1!
under steady-state conditions, Eqs.~4! and ~5! yield

wl5
f ~xn!/gn

f ~xn!/gn1 f ~xl !/gl
, wn512wl . ~6!

The total absorption probabilityp5pl1pn ~over the transi-
tions! is given by the well-known expression~see, e.g.,
Ref. 9!

p5ggmF gl
f ~xl !

1
gn
f ~xn!

G21

. ~7!
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FIG. 2. Absorption probabilityp(x)
~in arbitrary units! given by Eq.~7!
for a three-level absorbing particle a
~a! D54, ~b! 6, ~c! 8, and ~d! 12,
with x the dimensionless relative off-
set, andy50.01. The solid curves
represent calculations that used th
Voigt profile f (x), and the dashed
curves calculations that used the a
proximation ~8!. The vertical lines
mark the positions of the transitions
A formula similar to ~7! for Doppler profiles~f (x) is ap-

b

-

in
a

ab

ll
h
d.
a
fi
ar

u

t

y5Apx0
2 exp~2x0

2!, ~9!

he

s

he
m

f

proximated by exp~2x2!! has been derived by Elbelet al.3

Let us examine the absorption line profile described
the given formula in the special casey5G/(kv̄)50.01~large
Doppler broadening! andgn5gl ~symmetric three-level sys
tem!. Figure 2 depictsp(x), with

x5
xl1xn
2

5S v2
vml1vmn

2 D 1

kv̄
,

for several characteristic values of the hyperfine splitt
D5v ln/(kv̄). At D54 and smaller, the absorption line has
smooth symmetric profile with a peak atx50 ~the average
value of the atomic transition frequencies!. However, begin-
ning withD56, substructure unexpectedly appears in the
sorption line profile. It first shows up as a narrow dip atx50,
and then~asD increases! two symmetrically disposed sma
‘‘bumps’’ emerge. AsD increases, the distance between t
bumps grows and they become less and less pronounce
D.10, the profile essentially becomes smooth. What is ch
acteristic here is that the special features of the line pro
are not related to actual intra-atomic transitions—they
due entirely to the spectral features of the Voigt profilef (x).

When Doppler broadening is large,f (x) has a clearcut
double structure~Fig. 3!: a rapidly abating~Gaussian!central
part, and smoothly abating Lorentzian wings. Indeed, let
roughly approximate the Voigt profile with the function

f ~x!.H exp~2x2!, uxu<x0~y!,

y/Apx2, uxu.x0~y!,
~8!

where the exponential function describes the central par
the Voigt profile ~x&1! for y!1, and the functiony/Apx2

the asymptotic behavior off (x). The matching pointx0(y) is
determined by the condition
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where of the two values ofx0, we naturally select the one
that is greater than unity. Figure 3 clearly shows that t
transition from the central~Gaussian! part of the Voigt pro-
file to the Lorentzian wings takes place right nearx5x0.
What is characteristic here is that the function rapidly grow
as we move fromx0 to the center of the line~it doubles as a
result of displacement fromx0 by a distance much smaller
thankv̄!, and slowly decreases as we move away from t
center~by a factor of two as a result of a displacement fro
x0 by a much greater distance!.

The dashed curves in Fig. 2 depict the line profiles~7!
with the approximation~8!. In this case the substructure o

FIG. 3. Illustration of Eq.~8!; y50.01.
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FIG. 4. Absorption probabilityp(x)
~in arbitrary units! given by Eq.~12!
for a four-level absorbing particle
with wl the probability of finding the
particle at levell ~Eq. ~14!!. The po-
sitions of the transitions are show
by vertical lines from left to right on
the horizontal axis~dimensionless
offset x!: ~a! l→1, 2 andn→1; and
~b! l→1,2 andn→2.
the absorption line is especially obvious, the frequencies of
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the spectral features are essentially the same as for the a
profile, and the interpretation of these features is transpa

If

D.2x0~y!, ~10!

there are two characteristic spectral regions that lie wit
the absorption line: 1! closer to the line cente
(uxu,D/22x0) the radiation interacts with both transition
due to the Lorentzian wings of the Voigt profile, and!
farther from the line center (uxu.D/22x0) the radiation in-
teracts with one of the transitions~the closer one! via the
Gaussian central part of the Voigt profile, and with the oth
via a Lorentzian wing. The indicated spectral features oc
at the point of transition from one spectral region to anoth
The distance from these points to the closest atomic tra
tion frequencies is close tox0. Sincey50.01 in the example
of Fig. 2, we havex0.2.65. Hence, the absorption line fe
tures can only show up whenD.5.3.

If in Eq. ~7! we formally replace the Voigt profile by th
Lorentzian profiley/Ap~x21y2! ~with the halfwidth at half-
heighty 5 Aln 2!, the absorption line spectral features co
pletely disappear.

Note that in an asymmetric three-level system (glÞgn),
with the absorption line shifted toward the transition with t
greater statistical weight in the lower level, the aforeme
tioned features are qualitatively retained, as is their f
quency, but their amplitudes become asymmetric.

3. FOUR-LEVEL SYSTEM

It turns out that if the hyperfine splitting of the excite
electronic state is taken into account, then under certain c
ditions the spectral features in question are considerably
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sorption line profile, due to a different physical cause.
In this connection we examine the four-level model sy

tem represented by Fig. 4. The components of the hyper
structure of the excited statem are labeled byi , which as-
sumes the valuesi51, 2. We keep the previous notation fo
the hyperfine structure of the ground state:j5 l , n. The ab-
sorption probabilitypji for the j→ i transition has the fol-
lowing form ~as in Sec. 3, we ignore nonlinear effects
optical transitions and assume that the velocity distribut
of the ground-state hyperfine components is close to M
wellian!:

pji5gj j i f ~xi j !wj , ~11!

j j i5
gi
gj

G i j

Gm
, xi j5

v2v i j

kv̄
,

Gm5(
j

G i j , j5n, l , i51, 2.

Here Gi j is the spontaneous decay rate~the first Einstein
coefficient! for the transitioni→ j , and the formulas forg
and jj i follow from the expression for the second Einste
coefficient for the transitionj→ i .8 The total absorption prob
ability is

p5(
i j

pi j5g (
i51,2

(
j5 l ,n

j j i f ~xi j !wj . ~12!

Under steady-state conditions the balance equations
responding to~5! for the probabilitieswi andwj of finding
the particle in levelsi and j are
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j5 l ,n

ji

~13!

(
i51,2

G i j wi5 (
i51,2

pji , j5 l , n.

Combining these equations with the approximate n
malization conditionwl1wn'1, we obtain

wl5
G1ljn1f ~x1n!1G2ljn2f ~x2n!

G1ljn1f ~x1n!1G2ljn2f ~x2n!1G1nj l1f ~x1l !1G2nj l2f ~x2l !
,

wn512wl . ~14!

The ratesGi j of spontaneous decay of the excited statei via
the channeli→ j and the parametersji j in Eqs.~13! and~14!
obey the relationships

G in1G i l5Gm , i51, 2,
~15!

j j11j j25
g11g2
gl1gn

, j5 l , n.

The first relationship in~15! reflects the well-known fact8

that the total rateGm of spontaneous decay of an excite
hyperfine subleveli is the same for all hyperfine sublevelsi
of the excited statem. The second relationship follows from
an analysis of the actual decay channels for the hyper
componentsi : if the particle distribution over the hyperfin
components of the excited state is an equilibrium one, sp
taneous decay will also lead to an equilibrium population
the particles among the hyperfine components of the lo
state.

In the special case in which the channels for the deca
levels 1 and 2 into levelsl andn are proportional, i.e.,

G1l

G1n
5

G2l

G2n
, ~16!

the formula for the absorption probability acquires the f
lowing simple form as a natural generalization of Eq.~7!:

p5
g~g11g2!

gl@g1f ~x1l !1g2f ~x2l !#
211gn@g1f ~x1n!1g2f ~x2n!#

21 . ~17!

The absorption spectrum described by this formula c
tains features similar to those of the three-level syste
There are twice as many because the number of optical t
sitions doubles, but their contrast remains about the sa
The physical reason for the emergence of these feature
the same, and derives from the properties of the Voigt p
file. Replacing the Voigt functions by Lorentzians of th
same characteristic width washes out these spectral s
tures and smoothes out the absorption line.

It turns out that if condition~16! is not met, i.e., levels 1
and 2 do not decay to levelsn and l in the same proportion
the spectral features will be more pronounced. Their cont
becomes higher as the asymmetry of the decay channel
levels 1 and 2 increases. To clarify matters, we now exam
instances in which one channel is completely forbidden.

a) G2n50,
G2l

Gm
51,

G1l

Gm
5
1

3
,

G1n

Gm
5
2

3
.
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by x1l and xn by x1n, i.e., the probability of finding the
particle in levelsn and l is totally insensitive to the existen
ceof level 2. The situation is straightforward since the act
of the radiation on the transition 2→l can have no effect on
optical pumping; level 2 decays and becomes populated
the same channel.

An absorption line meeting all these requirements
shown in Fig. 4a~solid curve! for

D5
v ln

kv̄
511, d5

v12

kv̄
51, y5

G

kv̄
50.01.

The substructure is clearly present, especially a narrow h
peak. The maximum of this peak is shifted to the right of t
lines of the transitions 1→l and 2→l .

b) G1n50,
G1l

Gm
51,

G2l

Gm
5
1

3
,

G2n

Gm
5
2

3
.

Here levelsl andn are populated via the action of the radi
tion on the transitionsl→2 andn→2, while level 1 has no
effect on the process. The absorption line in Fig. 4b~solid
curve! also has a pronounced narrow peak shifted to the
of the frequencies of the transitions 1→l and 2→l .

If we replace the Voigt functionsf by Lorentzians of the
same width, the sharp spectral peaks are washed out bo
case~a! and case~b!. However, certain spectral irregularitie
near the 1→l and 2→l transitions still remain~dashed curves
in Figs. 4a and b!. The easiest way to understand why spe
tral features emerge is to examine the distribution of po
lations over sublevelsn andl simultaneously as functions o
the radiation frequency~Figs. 4a and b!. Typically, because
of the special properties of the Voigt functionf , level l be-
comes severely depleted~wl→0 andwn→1! within a sizable
spectral interval near the frequency of the transitionn→1
~case~a!! or n→2 ~case~b!!. The population of leveln be-
haves similarly~wn→0, wl→1! when the frequency of the
radiation is in the vicinity of the frequency of the transitio
n→1 ~case~a!! or n→2 ~case~b!!. The limits of this interval
are determined precisely byx0 of Eqs.~8! and~9!, i.e., by the
offset from resonance at which the Voigt function drastica
changes its behavior.

The presence of an additional absorption channel
changes nothing in the behavior of the populations of lev
n and l has the following consequences. In case~a!, the
additional channel~the transitionl→2! is to the right of the
transition l→1 on the frequency scale. Hence, as the rad
tion frequency moves from right to left, the additional cha
nel affects absorption sooner. When the radiation freque
approaches to withinx0 of the frequency of the transition
l→2, the Voigt function f (x2l) increases sharply. At this
point the levell is still largely populated. The result is
sharp rise in the absorption probability~specifically, in the
l→2 channel!. As the frequency becomes shifted still farth
to the left, we land in a frequency interval where the level
is depleted, with the result that absorption drops once m
All this leads to a sharp peak in absorption, which is
flected by Fig. 4a~solid curve!. Our reasoning suggests th
the peak lies in the frequency rangev2l1x0kv̄
.v.v1l1x0kv̄, i.e., its position depends on the ratio b

55Parkhomenko et al.
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tweenG andkv̄ and is in no way related to actual transitio
in the atom. The same explanation holds for the peak in
absorption line in case~b!, only now the peak is to the left o
the frequencies of thel→1 and l→2 transitions, i.e., in the
frequency rangev2l2x0kv̄.v.v1l2x0kv̄.

If the Voigt profiles are replaced by Lorentzians of t
same width, levelsn and l become severely depleted only
the immediate vicinity of the corresponding transition fr
quencies. The spectral features then become less
nounced, and are more closely linked to the atomic transi
frequencies: the additional absorption channel~l→2 in case
~a! and l→1 in case~b!! leads to an abrupt change in th
absorption probability near the frequency of the ‘‘prope
transition, which is quite natural.

4. ABSORPTION LINES OF RUBIDIUM ISOTOPES

Atomic rubidium vapor serves as a striking example
the experimental realization of the spectral features just
cussed. The hyperfine splitting of the ground state of
bidium atoms is 6835 MHz for87Rb and 3036 MHz for85Rb,

FIG. 5. The transition diagrams for theD1- andD2-lines of
85,87Rb; hereF

is the total angular momentum of the atom,DE ~MHz! is the distance
between the sublevels of the hyperfine splitting, andg designates the statis
tical weights. The notation for the transitions used in the text is given in
‘‘not’’ column.
e

ro-
n

f
s-
-

provides the parameters of the transitions in Rb needed
for calculations.10 The four-level model considered in Sec.
~Eqs. ~12! and ~14!! is valid for calculating the absorption
spectra of theD1 lines. For theD2 lines one must allow for
the four sublevels of the hyperfine structure of the exci
state, of which only two~levels 1 and 2 in the notation o
Fig. 5! affect optical pumping~by virtue of the selection
rules!. Hence, the populations of levelsl andn are still de-
scribed by Eq.~14! of the four-level model. The total prob
ability of absorption in theD2 lines is given by

p5(
i j

pi j5gFwl (
i51,2,3

j l i f ~xil !1wn (
i50,1,2

jni f ~xin!G ,
~18!

where the parameters were defined earlier. Below we g
the ratios of the spontaneous decay constants of the hype
sublevels of the excited states in different channels:

85RbH D1 line:
G1l

Gm
5
7

9
,
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51, G0l50, G3n50. ~19!

For Gm we took the valueGm.5.6 MHz from Ref. 10. At
room temperature the Doppler parameterkv̄ for rubidium is
roughly 300 MHz, so that the minimum value ofy[G/(kv̄)
is Gm/(2kv̄).0.01. The absorption spectra for monochr
matic light in the resonant transitions of rubidium for th
given values ofkv̄ andy are depicted in Figs. 6 and 7~solid

e

FIG. 6. The absorption probabilityp(x) ~in
arbitrary units! for ~a! theD1 line and~b! the
D2 line of

85Rb, with x the dimensionless off-
set ~in units of kv̄!. The positions of the tran-
sitions are shown by vertical lines from left to
right along thex axis: ~a! l→1,2 andn→1,2;
and ~b! l→1,2,3 andn→0,1,2.
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FIG. 7. The same as Fig. 6 for87Rb. The no-
tation is also the same.
curves!, where the spectral features are readily apparent. The
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Hamel et al.6 and Streateret al.7 failed to detect a single
in-
o
um.
ents
gly
is

the
orp-
an-
be-

he
the
fec-
One
the
gas.
up
all,
gs.
e-
ne
r is
ight
ow-
we
out
lls
m

to
.
rk
number of features proved to be even greater than in
above model. The reason is that in the actual experim
four absorption channels affect the populations of level
andn, rather than two. One should therefore expect the sp
tral features to be present near all frequenciesv i l6x0kv̄ and
v in6x0kv̄ ~i51,2!.quency scale.

Collisions with buffer-gas particles, even at low pre
sures, lead to significant washing out~smoothing! of the
spectral features. Even inert buffer gases initiate efficient
change within the hyperfine structure of the excited state.
describe this process, instead of Eqs.~13! we take the fol-
lowing equations~which model equilibrium mixing over the
components of the hyperfine structure!:

~Gm1nm!wi5 (
j5 l ,n

pji1nm
gi
gm

wm ,

(
i

G i j wi5(
i
pj i , wm5(

i
wi , gm5(

i
gi . ~20!

The labeli assumes two or four values in the case ofD1 or
D2 lines, respectively. Herenm is the frequency of collisions
that mix the sublevels of the hyperfine structure of the
cited state (m). However, it is assumed that collisions ha
no effect on the distribution of populations over the levell
andn, which is sure to be the case for collisions with atom
of inert gases.

The variation of the linewidthG and frequencynm of
mixing collisions with varying buffer-gas pressure is d
scribed by the characteristic parameter 9 MHz Torr21 ~see
Ref. 11!. The resulting transformation of the absorptio
spectrum is depicted in Figs. 6 and 7, which show that
P52 Torr, all spectral structures become almost entir
washed out, and the spectral line smoothes out. The m
reason for the blurring is collisional mixing of the hyperfin
components, while colllisional broadening has only a min
effect on this deformation. In becomes clear, therefore, w
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spectral feature discussed here. In their research, which
volved the study of light-induced drift in rubidium, they als
calculated the monochromatic-radiation absorption spectr
However, they assumed from the start that the compon
of the hyperfine structure of the excited states are stron
mixed, with the result that the absorption line profile
smooth and featureless.

5. CONCLUSION

We have shown that as a result of optically pumping
hyperfine components of the atomic ground state, the abs
tion spectrum for monochromatic radiation in resonant tr
sitions acquires unexpected sharp spectral features. This
comes especially evident if the hyperfine splitting of t
excited state is taken into account. Collisions, which mix
hyperfine components of the excited electronic state, ef
tively blur these structures and smooth out the spectrum.
of the most appropriate experimental substances in which
spectral features can be observed is atomic rubidium
One must bear in mind, however, that the features show
within a rather narrow range of parameter values. Above
there must be optical pumping, even in the absorption win
This imposes lower limits on the radiation intensity and lif
time in a specified sublevel of the ground state hyperfi
structure. If no special precautions are taken, the latte
restricted by the time that the atom spends inside the l
beam, and increases with buffer-gas pressure. We saw, h
ever, that the buffer gas disrupts the effect. Therefore,
cannot rule out the need to take radical steps in carrying
experiments of this type, for example, by covering the wa
of the cell with paraffin. In this case the lifetime of the ato
in a hyperfine sublevel increases dramatically.
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High density current drive by high frequency radiation

is
V. P. Silin and S. I. Uryupin

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117924 Moscow, Russia
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Zh. Éksp. Teor. Fiz.111, 107–119~January 1997!

A self-consistent theory is developed for current drive by intense radiation in the presence of the
ion-acoustic instability. The spectrum of ion-acoustic turbulent noise generated by the
driven current and concentrated in a limited cone of angles along the propagation direction of the
wave is found. Excitation of the instability is accompanied by the establishment of an
electron drift that is excited by the electromagnetic wave and has a velocity on the order of the
ion acoustic speed. This current drive regime is realized over a wide range of intensities,
as long as the region of turbulence in the angles of the acoustic wave vector is expanding. At yet
higher intensities, the driven current increases in proportion to the intensity of the
fundamental wave. Similar behavior is found for driven heat fluxes. ©1997 American Institute
of Physics.@S1063-7761~97!00701-4#
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The generation of quasistationary currents by high f
quency electromagnetic radiation is of interest in connec
with the development of diagnostic techniques for la
plasmas,1 as well as in connection with the problem of ge
erating megagauss magnetic fields.2 Many papers have bee
devoted to theories for the generation of possible quas
tionary currents in laminar plasmas, where the main mec
nism for electron scattering is on ions.3–10 Of the types of
currents discussed, current drive owing to the pressure
light on the electrons is of special interest. Numeric
estimates3 show that for the laser light intensities presen
available, current drive at high densities with a characteri
electron drift velocityud comparable to the electron therm
velocity vT is possible in laminar plasmas. At such hig
electron drift velocities, however, the plasma is unstable w
respect to the ion-acoustic instability. This means that
theory of high density current drive withud*vs , wherevs is
the ion acoustic speed, must, on one hand, take the pos
development of the ion-acoustic instability into account a
on the other, account for the reverse effect of turbulence
the formation of the driven current itself. A self-consiste
theory of this type for current drive in plasmas with io
acoustic turbulence is presented in this paper. The need
new theory arises for radiation intensities that satisfy
condition

I F Wcm2G.4•1014AZ

A
l22@mm#AT@eV#

100
,

whereZ is the degree of ionization of the ions,A is the mass
number,T ~eV! is the electron temperature, andl ~mm! is
the wavelength of the radiation. As shown in Sec. 2, here
driven current excites the ion-acoustic instability. It is al
shown there that along with the ion-acoustic instability t
intense radiation causes the Weibel instability to devel
The growth rate for the Weibel instability is found and t
conditions under which its effect on current drive can
neglected are formulated. In Sec. 3 a self-consistent theory i
presented for the spectrum of the ion-acoustic turbulence
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found for the density of wave numbersN(k) with respect to
wave numberk that develops as a result of the competiti
between Cherenkov acoustic emission by the driven curr
the absorption of sound during a Cherenkov interaction w
resonant ions, and stimulated scattering on thermal io
Here the same type of frequency distribution of the io
acoustic turbulence is established as in the theory of
anomalous resistance of current-carrying plasmas. The di
bution of the turbulent noise over the angles of the wa
vector, however, is new. It is unique because, even at h
levels above threshold, the turbulent noise region is conc
trated within a cone of angles smaller than a maximum
um.43.6°. This latter property is crucial to the behavior
the driven electron currents studied in Sec. 4. It is shown
the excitation of ion-acoustic turbulence leads to the es
lishment of a driven current with an electron drift veloci
ud;(11d)vs , where the parameterd characterizes the
Cherenkov damping of sound on hot resonant ions. Curre
at this level are maintained over a wide range of radiat
intensities until, as the excess above threshold increases
region of turbulence in the angles of the wave vector con
ues to expand. At still higher intensities, the driven curre
rises in proportion to the intensity of the laser light, but mu
more slowly than in a laminar plasma. Similar behavior
found for driven heat fluxes, which are generated much l
efficiently owing to the excitation of ion-acoustic turbulenc

2. KINETICS OF LAMINAR PLASMAS

Consider a circularly polarized electromagnetic wa
with frequencyv0 and wave vectork05(0,0,k0) in a fully
ionized plasma,

1

2
E exp~2 iv0t1 ik0•r !1c.c., ~2.1!

whereE5(E,iE,0)/& andE is the electric field strength
We shall assume that the wave frequencyv0 is much higher
than both the electron plasma frequencyvLe and their colli-
sion frequency. Under these conditions the phase and g
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velocities of the wave are close to the speed of light, i.e.,
ing
th
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1
j22

1
v2v

] n~v ! ] f 0
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e
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e
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g:
v0 /k0.c and the small change in the wave amplitude ow
to collisional absorption can be neglected. We assume
the amplitude of the velocity of the oscillations of an ele
tron in the wave field,

vE5uvEu5ueE/mv0u

~e andm are the electron charge and mass!, is less than the
electron thermal speedvT . Then the action of the wave o
the electrons can be described by a perturbation theory, w
ing the electron distribution function in the form of an e
pansion in terms of harmonics of the fundamental freque
that decrease with increasing harmonic number. We w
down a kinetic equation for the main part of the distributi
function f5f (v,t) averaged over the wave period in the for

]

]t
f1H 14 S vE• ]

]vDStF S vE* •] f]vD G1c.c.J 1H 14 S vE
3

]

]vDStF ~k0•v!

v0
S vE* •] f]vD G1c.c.J 1H 14 ~v•vE!S k0

3
]

]vD 1

v0
StS vE* •] f]vD1c.c.J 5St~ f !1St~ f , f !,

~2.2!

where St(f , f ) is the electron–electron collision integral an

St~ f !5
1

2
n~v !

]

]va
~v2dab2vavb!

]

]vb
f ~2.3!

is the electron–ion collision integral. In Eq.~2.3!

n~v !54pZe4nL/m2v3

is the electron–ion collision frequency,n is the electron den-
sity, andL is the Coulomb logarithm. In deriving Eq.~2.2!
we have neglected the effect of electron–electron collisi
on the high frequency first harmonic of the distribution fun
tion, which is justified forZ@1. In addition, Eq.~2.2! has
been written taking into account the smallness of the fie
induced anisotropy in the distribution functionf . The differ-
ence betweenf and the isotropic functionf 0 is small in view
of the smallness of the parametersvE

2/vT
2 and (k0•v)/v0 ,

i.e., f5 f 01d f , where

ud f u! f 05E dV f /4p,

anddV is the element of solid angle for the velocity vecto
The equation forf 0 is obtained by averaging over the dire
tions of the velocity in Eq.~2.2! and has the form11,12

]

]t
f 05

vE
2

6v2
]

]v Fn~v !v2
] f 0
]v G1St~ f 0 , f 0!. ~2.4!

In Eq. ~2.4! we have left out the small electron–ion collisio
integral St(f 0) which describes the slow exchange of ener
between the electrons and ions. Subtracting Eq.~2.4! from
Eq. ~2.2!, we obtain an equation for the quasistationary a
ally symmetric anisotropic correctiond f at times greater
than the electron momentum relaxation time,t@1/n(v),
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2j~12j2!

k0
v0

vE
2v2

]

]v Fn~v !

v
] f 0
]v G

2
3

2
j
k0
v0

vE
2n~v !

] f 0
]v

5
1

2
n~v !

]

]j
~12j2!

]

]j
d f , ~2.5!

wherej5cosu andu is the angle between the velocity ve
tor v andk0 . We seek a solution to Eq.~2.5! in the form of
the sumd f5d f11d f2 of evend f1 and oddd f2 functions
of the variablej. Then, given thatj221/3 is an eigenfunc-
tion of the electron collision operator, ford f1 we have

d f15
1

12 S 132j2D vE2 v
n~v !

]

]v Fn~v !

v
] f 0
]v G . ~2.6!

In turn, using the regularity condition for the derivativ
]d f2 /]j at j561, for the functiond f2 we obtain

]

]j
d f25

3

2

k0
v0

vE
2 ] f 0

]v

1~12j2!
k0vE

2

2v0

v2

n~v !

]

]v Fn~v !

v
] f 0
]v G . ~2.7!

Equations~2.6! and~2.7! contain the functionf 0, which is a
solution of Eq.~2.4!. We limit ourselves to examining Eq
~2.4! in the case of frequent electron–electron collisions,
which vT

2@ZvE
2 . Then it is possible to neglect the differenc

betweenf 0 and the Maxwellian distribution functionf m . In
addition, when Eqs.~2.6! and~2.7! are used, we shall assum
that the Coulomb logarithmL which enters into the defini-
tion of the frequencyn(v) is independent of the velocity.

The correctionsd f1 andd f2 determine various physica
phenomena. In particular, the functiond f1 can be used to
find the growth rate for the Weibel instability. Using th
general dispersion relation13 for electromagnetic perturba
tions of the form exp(gt1iqz), in the limit ugu!qvT we have
the following expression for the growth rate:

g52A2

p
qvTF 12n E dv~12j2!

3S v ]

]v
1
12j2

j

]

]j D d f11
q2c2

vLe
2 G . ~2.8!

Taking the explicit form~2.6! for d f1 , from Eq. ~2.8! we
find

g5gm

q

2qm
S 32

q2

qm
2 D , ~2.9!

and

gm5
vLe

27
A8

p

vE
3

cvT
2 , qm5

vE
3vT

vLe

c
. ~2.10!

According to Eq.~2.9!, the instability can develop if the
spatial scale length of the perturbations is sufficiently lon
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1/qm have the maximum growth rateg5gm . Chaotic helical
magnetic fields develop in the plasma owing to the Wei
instability. In the nonlinear state, when the level of lo
wavelength electromagnetic fluctuations attains a maxim
value, the intensity of the helical magnetic fields can be
timated using the formulaB2/4p;nmvE

2 . In the following
we restrict ourselves to conditions such that the influence
the magnetic fields on the electron kinetics can be neglec
This is clearly possible when the characteristic electron
clotron frequencyV5ueuB/mc is lower than the self-
collision rate of the thermal electrons withv;vT . The latter
condition together with the estimate for the magnetic fi
strength can be written in the formn(vT).vLevE /c.

Under the above conditions the electron charge and
fluxes are oriented in the direction of propagation of the el
tromagnetic wave and are determined by the functiond f2 .
By definition, the current densityJ and the electron heat flu
QT are

J5eE dvjvd f25epE
21

1

dj~12j2!E
0

`

dvv3
]

]j
d f2 ,

~2.11!

and

QT5
m

2 E dvjv3d f25
p

2
mE

21

1

dj~12j2!

3E
0

`

dvv5
]

]j
d f2 . ~2.12!

Using Eq.~2.7!, from these we finally have

J51.7en
k0
v0

vE
2, ~2.13!

and

QT5
25

4
nmvT

2 k0
v0

vE
2. ~2.14!

Equation~2.14! describes the heat flux driven by the hig
frequency electromagnetic wave and Eq.~2.13! gives the
current density of the driven current. The result~2.13! coin-
cides with that obtained in Ref. 10 and agrees with the p
diction of Ref. 3. In Ref. 3 it was stated that, based on
equation of type~2.13! and an increased intensity of the r
diation, it is possible to generate anomalously high curr
densities up toJ;envT . In a real laser plasma, however, th
situation is different. Before a current density;envT can be
achieved by raising the radiation intensity, the ion-acou
instability will be excited. This can be confirmed by calc
lating the growth rate of the ion-acoustic instability14

ge~k!5gsS vs

kvs
D 3H A8p

nvs
vT
3 cosukE

0

`

dv

3E
2sin uk

sin uk dj

Asin2 uk2j2
]

]j
d f22

vs

kvs
J , ~2.15!

where uk is the angle of the acoustic wave vecto
vs5vLi r De , vLi is the ion plasma frequency,r De is the
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vs5kvs /A11k rDe is the ion-acoustic frequency. Usin
Eq. ~2.7!, we obtain an explicit expression for the grow
rate of the ion-acoustic instability from Eq.~2.15!,

ge~k!5gsS vs

kvs
D 3H k0vE2v0vs

cosuk
5 cos2 uk21

4
2

vs

kvs
J .

~2.16!

Since vs /kvs<1, for uk50 Cerenkov generation of ion
acoustic waves is possible even whenvE

2.vsv0 /k05vsc.
At the instability threshold, whenvE

25vsv0 /k0 , the driven
current density~2.13! is 1.7envs , or much less thanenvT .
This means that a rigorous description of the generation
high current densities in the range fromenvs to envT will
require the development of a theory for current drive un
conditions where the ion-acoustic instability is excited. Th
problem is solved in the following sections.

3. THE SPECTRUM OF ION-ACOUSTIC TURBULENCE

The following assumption is important for a theory
the effect of intense high frequency waves on plasmas w
the ion-acoustic instability is present. If the frequencyv0 of
the radiation is much higher than the electron plasma
quency, then the effect of low frequency ion-acoustic flu
tuations in the charge density on the rapidly varying elect
motion at frequencies;v0 can be neglected.15,16 On the
contrary, when considering the slow movements descri
by Eq. ~2.2!, the latter must be supplemented by the qua
linear collision integral StQL( f ) which accounts for the
Cherenkov interaction of the electrons with ion-acous
waves. When describing the interaction of the circularly p
larized wave~2.1!, noting the axial symmetry of the excite
nonequilibrium electron distribution, we shall use a quasil
ear collision integral of the form14,17

StQL~ f !5
vT
3

v3
]

]j F ~12j2!n2~A12j2!
] f

]j

1A12j2n1~A12j2!vs
] f

]vG
1

1

v2
]

]v S vT3 vsv D Fn0~A12j2!vs
] f

]v

1A12j2n1~A12j2!
]

]j
f G , ~3.1!

where the turbulence frequenciesnn(A12j2), n50, 1, 2,
depend on the form of the distribution of the number dens
of the ion-acoustic waves with respect to wave numb
N(k)5N(k,cosuk):

nn~A12j2!5
e2

pm2vT
3vLi

2 E
kmin

kmax
dk kvs

3S vs

kvs
D 22n

3E
2A12j2

A12j2

dx
N~k,x!

A12j22x2
S x

A12j2
D n.

~3.2!
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In Eq. ~3.2!, x5cosuk andkmin andkmax are the boundaries
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of the turbulence region in the absolute value of the wa
number. In writing down Eq.~3.2! we have omitted smal
corrections of ordervs /kv. We shall regard the electron
electron collision frequencynee as high, such tha
nee@(vLi /vLe)

2nn(A12j2). Then the ion-acoustic turbu
lence does not cause a significant distortion of the elec
distribution from Maxwellian and the solution of Eq.~2.2!
combined with the collision integral~3.1!, as before for a
laminar plasma, can be sought in the for
f5 f m1d f11d f2 . Avoiding a discussion of the possibl
effect of ion-acoustic turbulence on the Weibel instabili
we shall not consider the equation ford f1 . We shall dwell
on the equation for the odd correctiond f2 to the distribu-
tion. Neglecting small terms of ordervs /vT!1, for d f2 we
have~cf. Eq. ~2.5!!

2
k0
v0

vE
2nH 32 j

] f m
]v

1j~12j2!v5
]

]v F 1v4 ] f m
]v G J 5

]

]j H ~1

2j2!Fn2~A12j2!1
n

2G ]

]j
d f2

1A12j2n1~A12j2!vs
] f m
]v J , ~3.3!

where n5n(vT). Integrating this equation subject to th
regularity condition for the function]d f2 /]j for j561, we
obtain

]

]j
d f25Fn2~A12j2!1

n

2G21H n
k0
v0

vE
2F34 ] f m

]v
1
1

4
~1

2j2!v5
]

]v S 1v4 ] f m
]v D G

2@n1~A12j2!/A12j2#vs
] f m
]v J . ~3.4!

Equation ~3.4! allows us to rewrite the expression for th
electron growth rate of the ion-acoustic instability~2.15! in
the form

ge~k!5gsS vs

kvs
D 3H 2

p
cosukE

0

sin uk dj

Asin2 uk2j2

3Fn2~A12j2!1
n

2G21F k0v0

n

vs
vE
2S 122

5

4
j2D

1
n1~A12j2!

A12j2
G2

vs

kvs
J . ~3.5!

In studies of quasistationary ion-acoustic turbulent noise
main mechanisms for stabilizing the instability are Cheren
damping of sound on hot resonant ions18,19 and stimulated
scattering on thermal ions.20,21 According to the self-
consistent theory of ion-acoustic turbulence,19 Cherenkov
damping on hot resonant ions has the growth rate

g i~k!5dgsS vs

kvs
D 3H 2

p
cosukE

0

sin uk dj

Asin2 uk2j2
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3
A12j2

Fn2~A12j !1
2G 2

kvs
J ,

~3.6!

whered5(nh /ni)(vLe /vLi)vs
3/vh

3 , nh is the hot ion density,
vh is their root mean square velocity,ni is the total ion
density, while the damping rate owing to stimulated scatt
ing is given by

gNL~k!5
k2vTi

2

4pnimivs
2 S kvsvs

D 3 ]

]k
k4S kvsvs

D 3

3E
21

1

dx8Q~x,x8!N~k,x8!, ~3.7!

where vTi is the ion thermal speed,mi is the ion mass,
x5cosuk , x85cosuk8 , Q(x,x8) is the nonlinear interaction
kernel given by

Q~x,x8!5E
0

2p dw

2p
~k•k8!2@k•k8#2~kk8!24, ~3.8!

andw is the azimuthal angle of the vectork. Here the spec-
trum of the ion-acoustic turbulence is found from the con
tion of balance for wave generation, their absorption a
repumping over the wave number spectrum,

ge~k!1g i~k!1gNL~k!50. ~3.9!

Using the accepted approximation, from the theory of io
acoustic turbulence, of the last term in the curly brackets
Eqs.~3.5! and ~3.6! by vs /kvs[1, we write the solution to
Eq. ~3.9! in the formN(k)5N(k)F(x). Then, as for ion-
acoustic turbulence generated by a conduction curren
thermal flux, in the range of wave numbers fro
kminr De!1 to kmaxr De@1 the frequency distribution has th
form

N~k!54pnimi~11d!gsS r Der Di
D 2k25S vs

kvs
D 3

3F lnS vLi

vs
D20.5S vs

kvs
D 220.25S vs

kvs
D 4G , ~3.10!

wherer Di is the ion Debye radius. Under the conditions co
responding to the distribution~3.10!, the turbulence frequen
ciesnn ~3.2! take the form

nn~A12j2!5nN~Ln /L̄!xn~A12j2!, ~3.11!

whereL̄50.5, L150.488,L250.497,

nN5
L̄

A8p
vLi~11d!

r De
2

r Di
2 , ~3.12!

and

xn~A12j2!5E
0

A12j2 dxF~x!

A12j22x2
S x

A12j2
D n. ~3.13!

We shall neglect the small difference ofl1 andL2 from L̄ in
the following. Noting Eqs.~3.10!–~3.13!, from Eq. ~3.9! we
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obtain an equation for determining the distribution of ion-
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acoustic turbulence with respect to the angle of the w
vector:

2

p
xE

0

A12x2 dj

A12x22j2
Fx2~A12j2!1

n

2nN
G21

3F np

nN
S 122

5

4
j2D 1

x1~A12j2!

A12j2
G

511E
21

1

dx8Q~x,x8!F~x8!, ~3.14!

wherenp5pn andp is the degree of excess above thresho
given by

p5
k0vE

2

v0vs~11d!
. ~3.15!

We shall study Eq.~3.14! in the limit p!nN /n, which is of
greatest interest for applications. Since for a hot transpa
plasma the frequencynN is orders of magnitude higher tha
the electron–ion collision frequencyn, in the limit
p!nN /n extremely high degrees of excess above thresh
are possible, i.e.,p@1. Forp!nN /n, the functionF(x) has
a sharp maximum atx51 (uk50), while far fromx51 it is
so small that the integral terms on the right of Eq.~3.14! are
much smaller than unity. This circumstance makes it p
sible to include the integral term in an approximate wa
only for ensuring regularization of the noise atx51, by re-
placing it with the small constant

«5E
21

1

dx8Q~x512,x8!F~x8!

5E
21

1

dx~x22x4!F~x!!1. ~3.16!

Taking the Abel transform of Eq.~3.14! and using Eq.
~3.16!, we find

np

4nN
~5t223!t21tx1~ t !5~11«!Fx2~ t !1

n

2nN
G . ~3.17!

Ion-acoustic turbulence is excited within a limited range
angles, for which 1>x>x0.0, wherex05cosu0 andu0 is
the limiting angle of the cone of angles within which th
turbulent noise is concentrated. Then, according to the d
nition ~3.13!, the functionsxn(t) go to zero fort<x0 . Given
this fact and dropping the correction«!1, from Eq.~3.17!
we find

x0
250.31A0.0910.4/p. ~3.18!

For p51 this implies x051 and for p@1, we have
x0.A0.6 or u05um.43.6°. Recall that in the case of ion
acoustic turbulence excited by a conduction current,
p@1 the noise was excited over angles from 0 to 90°. No
however, because of the different angular structure of
instability growth rate~see Eqs.~2.16! and~3.5!!, the waves
are excited in a narrow cone of angles. In the interval fr
x5x0 to x51, the solution of Eq.~3.17! has the form
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3pnNx dx
F 11«2x 0 G

~3.19!

Equations~3.10! and ~3.19! describe completely the spec
trum of the ion-acoustic turbulence excited by the driv
current produced by moderately intense high frequency
diation when the degree of excess above threshold va
over the range fromp>1 to p!nN /n. This kind of ion-
acoustic turbulence can be used to study the reverse effe
turbulence on high density current drive.

4. ELECTRON CURRENT DRIVE

We now turn to an analysis of electron current drive w
electron drift velocities greater than the sound speed. F
we consider the driven current. Following the definitio
~2.11! and using Eqs.~3.4! and~3.11!, after integration with
respect to the speed we obtain

J5
3

2
envsE

0

1 tdt

A12t2
Fx2~ t !1

n

2nN
G21

3F ~11d!
np

nN
S 2t42 3

4
t2D1tx1~ t !G . ~4.1!

Since the functionsxn(t), which determine the turbulenc
frequency are nonzero only fort>x0 , the total current~4.1!
is conveniently represented as the sum of two curre
J5Jc1Jt . The first currentJc is caused by electrons whos
velocities are oriented at small angles to the propagation
rection of the electromagnetic wave (sinu,cosu0). These
electrons are scattered only in collisions with ions and th
contribution to the current is

Jc5en
k0
v0

vE
2F17102 sin u0

20
~34117 cos2 u0

124 cos4 u0!G . ~4.2!

At the threshold for excitation of ion-acoustic turbulenc
when u05u , Eq. ~4.2! transforms to the formula for the
driven current in a laminar plasma. Far above threshold,
whenp@1 and the angleu0 approaches the maximum po
sible um , Eq. ~4.2! implies

Jc52.9•1022en
k0
v0

vE
2. ~4.3!

Thus, because of the narrowed range of angles with
which electron scattering is caused only by the ions, the
merical coefficient in Eq.~4.3! turns out to be almost 60
times smaller than in a laminar plasma.

The second currentJt is associated with electrons mov
ing at large angles to the vectorko (sinu .cosu0). These
electrons undergo intense scattering on turbulent fluctuat
in the charge density and their contribution to the driv
current is given by

Jt5
3

2
envsA12x0

21
3

2
envsE

x0

1 t3dt

A12t2
@3t21d~8t223!#
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3H t2~5t223!1
4

3p E
x0

t dx

At22x2

Ax22x0
2

12x

3Fx2~20x2110x0
229!1

x22x0
2

12x
~4x216x0

223!G J 21

.

~4.4!

The currentJt5I tenvs ~4.4! is found numerically as a func
tion of the parameter

W5
E2

4pnmvsc

vLe
2

v0
2 [p~11d!, ~4.5!

which has the significance of a dimensionless energy~inten-
sity! of the high frequency electromagnetic field. Calcu
tions of the functionI t are shown in Fig. 1 for three values o
d50, 3, and 6. If Cherenkov damping of sound on reson
ions is negligible (d50), then as the intensity of the radia
tion increases and the region of turbulence expands, the
rent density Jt increases monotonically from zero t
;1.9envs with anomalously highW. Similar dependence
exist for the current densityJt ~4.4! if d Þ 0. According to
Fig. 1 and Eq.~4.4!, the largerd is, the higher the curren
density Jt will be, but the current itself shows up at hig
radiation fluxes. The current behaves this way because
d increases, the threshold~3.15! for excitation of the ion-
acoustic instability rises and the turbulent noise level~3.10!,
~3.19! decreases, so that there is less electron scatterin
the ion-acoustic fluctuations in the charge density.

Let us compare the total driven current obtained tak
the excitation of the ion-acoustic instability into accou
~4.1! with the driven current in a laminar plasma~2.13!. The
results of this comparison are shown in Fig. 2. The das
line I5J/envs51.7W corresponds to Eq.~2.13!. The
smooth curves are the current density in a turbulent pla
with different amounts of Cherenkov damping of sound
the ions (d50, 3, 6). As can be seen from Fig. 2, when t
intensity of the radiation exceeds the level corresponding
the instability threshold, the linear current rise characteri
of laminar plasmas ceases. Furthermore, at low levels ab
threshold, when the turbulent noise is concentrated in a

FIG. 1. Contribution to current drive from electrons interacting with turb
lent noise as a function of radiation intensity. The dependence of the cu
on the amount of Cherenkov damping on ions is illustrated by the cu
corresponding to different values ofd.
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row cone of angles along the propagation direction of
wave, where the intensity is anomalously high~see Eq.
~3.19!!, the driven current density decreases slightly. W
increasing distance from the threshold, the turbulence reg
expands and this is accompanied by a rise in the turbu
part of the current,Jt ~4.4! and a fall in the classical par
Jc ~4.2!. The total drive current is maintained at a lev
J;(11d)envs over a wide range of intensities. Finally, a
very high intensities, when the turbulence fills the ent
cone of angles up to the maximumum.43.6° ~3.18!, the
currentJt ~4.4! approaches saturation andJc ~4.2! increases
in proportion toW ~see Eq.~4.3!!. In sum, the total curren
J increases as in a laminar plasma~2.13!, linearly with J
} W, but the absolute magnitude of the current is many tim
lower than might be expected from the classical theory.

Similar behavior occurs for driven heat fluxes. In fa
following the definition~2.12! and using Eqs.~3.4!, ~3.11!,
and ~3.19!, we have

QT5QnmvT
2vs5nmvT

2vs~Qc1Qt!, ~4.6!

and

Qc5
25

4
W@12A12x0

2~110.5x0
210.6x0

4!#, ~4.7!

and

Qt5
15

4
A12x0

21
15

4 E
x0

1 t3dt

A12t2
@5t21d~10t223!#

3H t2~5t223!1
4

3p E
x0

t dx

At22x2

Ax22x0
2

12x

3Fx2~20x2110x0
229!1

x22x0
2

12x
~4x216x0

223!G J 21

,

~4.8!

where x0 obeys Eq. ~3.18!. Numerically calculated hea
fluxesQ are plotted in Fig. 3 as functions of the intensi
W of the electromagnetic radiation for two values ofd. Like
the driven current, the heat flux obeys Eq.~2.14!, which is
characteristic of laminar plasmas, at radiation intensities

nt
s

FIG. 2. Driven current as a function of radiation intensity. The dashed
is the current in a laminar plasma. The smooth curves are the current de
in plasmas with ion-acoustic turbulence for three levels of Cherenkov da
ing of sound on the ions (d50,3,6).
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e

lin
low threshold. Beyond the threshold for excitation of t
ion-acoustic instability, over a wide range of intensities t
heat flux is strongly suppressed in absolute magnitude an
maintained at a level;(11d)nmvT

2vs . At very high inten-
sities, when the turbulent noise fills the entire region of
cessible anglesu&um , the driven heat flux rises; W, but
much more slowly than in a laminar plasma.

5. CONCLUSION

The above results show that, in general, the ion-acou
instability causes a substantial reduction in the efficiency
current drive by high frequency electromagnetic radiati
Because of the effect of ion-acoustic turbulence on the e
tron kinetics, radiation intensities two to three times high
than in laminar plasmas are required in order to drive h
current densities;envT . At the same time, it should b
noted that experimental verification of the new features
current drive and the spectrum of ion-acoustic turbule
presented above is possible at radiation intensities which
typical of modern laboratory experiments.

FIG. 3. Driven heat flux as a function of radiation intensity. The dashed
is the flux in a laminar plasma. The smooth curves corresponding tod50
andd53 are the flux in plasmas with ion-acoustic turbulence.
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Isomorphic description of the two-phase region of near-critical binary mixtures
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The paper presents a general approach based on the hypothesis of field mixing designed to
describe properties of binary mixtures around critical points, including the region of two-phase
states. The efficacy of the technique is illustrated by derivation of an analytic equation for
boundary curves of a binary mixture. The shapes of these curves are largely determined by the
critical linesTc(x) andPc(x). Given the shapes of these curves, one can easily estimate
the maximum pressure at which two-phase equilibrium is possible, and the width of the retrograde
condensation region. ©1997 American Institute of Physics.@S1063-7761~97!00801-9#

In this reported work, the equations of curves for binary Given this choice of variables, the thermodynamic p
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mixtures~cross-sections of the two-phase region at cons
concentration! have been obtained analytically on the ba
of a previously developed approach1–3; in particular, a rela-
tionship has been found between the shapes of these cu
and the critical parameters of the mixtures. By taking
methane–ethane mixture as an example, we have dem
strated that the resulting equation provides a qualitativ
accurate description of the published experimental data.

In accordance with the general concept of the univer
ity of critical phenomena,4 we assume that the singular pa
of the thermodynamic potential of any system near a ph
transition of the second kind is a universal function of tw
scaling fields, namely the ordering fieldh1 and temperature
like field h2, which are thermodynamically conjugate to th
parametersw1, with the scaling dimension of the order p
rameter, andw2, with the scaling dimension of the energy.
the proposed approach, this function is assumed to
known.

In real liquids, the scaling fieldsh1 and h2 are linear
combinations of real fields.4 In a two-component mixture
these fields are the deviation of the solvent’s chemical
tentialm1 and temperatureT from their critical valuesm1c~m!
andTc~m!, which are determined by the difference betwe
the chemical potentials of the componentsm5m22m1:

h15S ]h1
]m1

D
T,m

Dm11S ]h1
]T D

m1 ,m

DT5a1Dm11a2DT,

~1!

h25S ]h2
]m1

D
T,m

Dm11S ]h2
]T D

m1 ,m

DT5b2Dm11b1DT,

whereDm15m12m1c~m! andDT5T2Tc~m!. Earlier1–3 we
proved that, if the gas–liquid critical curve is continuou5

the parametersa1 andb1 can be taken equal to 1/RTc~m! and
1/Tc~m!. The parameterb2 is responsible for the asymmetr
of the coexistence curve, and is usually small. Its presenc
our equations is not essential, and for simplicity we will om
it in our calculations.
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tential density is the pressure

P5Ps~h1 ,h2!1Pr~m1 ,T,m!, ~2!

wherePs5rc(m)RTc(m) P̃
s, rc~m! is the critical density,Pr

is the regular part of the pressure, andP̃s is the aforemen-
tioned known universal function of the scaling fieldsh1 and
h2:

P̃s~h1 ,h2!5h2
2uh2u2a@ f 0~z!1uh2uD f 1~z!#. ~3!

Herez5h1/h2
b1g, a50.11,b50.325,g51.24, andD50.51

are universal critical exponents,6 andR is the molar gas con-
stant. The second term in the expression for the singular
of pressure is the first correction to the asymptotic express
for this value. The ‘‘densities’’ conjugate to the scaling fiel
h1 andh2 are

w15S ] P̃s

]h1
D
h2

, w25S ] P̃s

]h2
D
h1

. ~4!

The densities of other thermodynamic parameters can be
ily derived from the relation

dP5s dT1rd m11rx dm, ~5!

wheres is the entropy density andx is the molar fraction of
the second component. We then obtain the following expr
sions for the mixture molar densityr and its concentrationx:

r5S ]P

]m1
D
T,m

5rc~m!w11S ]Pr

]m1
D
T,m

, ~6!

x5S ]P

]m D
T,m1

S ]P

]m1
D
T,m

21
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cF S ]m D
m1 ,T

1 S ]m D
m1 ,T

2G c S ]m D
m1 ,T

w11rc
21S ]Pr

]m1
D
T,m

.

~7!

The latter equation determines the mixture concentration
function ofT andm. If the concentrationx is fixed, Eq.~7!
determinesm as a function ofT and x. Note that similar
expressions can be obtained for any thermodynamic par
eters as functions ofw1 andw2 that have a certain scalin
dimension.

Since the points of the boundary curve belong simu
neously to corresponding points of the liquid–gas c
existence curve, the fieldh1$Dm1(m),DT(m)% vanishes at
these points. Hence the fieldsDm1~m! and DT~m! are
related on this curve by the linear equationDm1

5 (]m1 /]T)h150DT(m), and the fieldh2}DT~m!. With due
account of this relation, we obtain the following equation f
the scaling densities in the two-phase region:

w156B0ut~m!ub~11B1ut~m!uD!,
~8!

w25
A0

2

12a
t~m!ut~m!u2a,

whereA0
– is the amplitude of the singular part of the isoc

oric heat capacity in the two-phase region atm5const;2,3 B0
and B1 are the amplitudes which determine the princip
term and Wegner’s correction for the coexistence curve,
t~m!5T/Tc~m!21.

Let us express the regular parts of the derivatives in
~7! as

rc~m!21S ]Pr

]m1
D
T,m

511d1t~m!,

~9!

rc~m!21S ]Pr

]m D
T,m1

5xc~m!1d2t~m!,

whered1 andd2 are parameters, and substitute them into
~7!. Thus we obtain

x.FRTcS ]h1
]m D

m1 ,T

2xcGw11RTcS ]h2
]m D

m1 ,T

w2

1xc~m!1Dt~m!, ~10!

whereD5d22xcd1 . If pure components are considered, th
coefficient should vanish. The expressionRTc(m)
3(]h1 /]m)m1 ,T

2 xc reduces to2 rc
21(]P/]m)h1 ,T . The

value of this derivative calculated along the line on whi
the fieldh1 is zero atm5const at the critical point is

S ]P

]m D
h150,T

c

5
dPc
dm

2S ]P

]T D
h150,mc

c dTc
dm

[2K0

dTc
dm

.

~11!

Previously2,3 the thermodynamic derivative on the lef
hand side of Eq.~11! was denoted byK1. In this work we
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find it more convenient to isolate the derivativedTc/dm ex-
plicitly. Since the coefficient b2, which is equal to
(]h2/]m1)T , is small, the derivativeRTc(]h2/]m)T in Eq.
~10! reduces toR(dTc/dm).

Equation ~10! describes both the coexistence curve
the binary mixture7 and the boundary curve. The equation f
the latter curve describes the relationship between the p
sure and temperature on the curve that bounds the regio
two-phase states at a given average concentration.

In the phase diagram~Fig. 1!, the critical pointC is
determined by the critical value of the chemical potentialmc

and the critical concentrationxc(mc), which is equal to the
average concentrationx in the mixture. At the same time, th
chemical potentialm differs at different points of the bound
ary curve.

Let us determine the relationship between the pressur
an arbitrary point of the boundary curve, whose chemi
potential is m ~point A in Fig. 1!, and the pressure
Pc(mc)5Pc(xc). Above all, we take into account that th
contribution of the singular part to the pressure,Ps, is always
small ~it vanishes at the critical point asut~m!u22a! in com-
parison to the linear terms of the regular part. In other wor
to a first approximation, the pressure at the boundary curv
determined only byPr . Expanding the regular part of th
pressure in terms ofDT5T2Tc(mc) andDm5m2mc, with
due account of the conditionh150, we obtain

DP5P2Pc~mc!5S ]P

]T D
h150,mc

c

DT2K0

dTc
dm

Dm. ~12!

This equation relates the pressure, temperature,
chemical potential at the boundary curve. It is obvious tha
order to obtain the equation of the boundary curve, we n
an additional equation relating these three variables to e
other. This can be derived from the condition of consta
concentration at the boundary curve. By substituti
x5xc(mc) on the left-hand side of Eq.~10! and expanding
the variablest~m! andxc~m! in terms ofDm nearm5mc , we
obtain

FIG. 1. Typical dew-bubble curve of a binary mixture.
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D dTc
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K0 dTc
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f

S dm Tc dm D c rc dm 1

2R
dTc
dm

w250. ~13!

Here the densitiesw1 andw2 are defined by Eq.~8! with

t~m!5t~mc!2
1

Tc

dTc
dm

Dm5
1

TcK0
S DP2

dPc
dTc

DTD .
~14!

Equations~8!, ~12!, and ~13! determine the relationship
between the pressure and temperature at the boundary c
Equation ~13! is, in effect, a parametric equation of tha
curve. The resulting solution is two-valued@see Eq.~8!#: the
left branch of the dew-bubble curve~AC branch in Fig. 1!
corresponds to the plus sign in Eq.~8!, and the right branch
to the minus sign. In what follows, we will assume th
dxc/dmc5x(12x)/RTc(x) on the whole line of critical
points.3 Note, thatK050 at x5xA corresponds to the azeo
tropic point.1–3 It follows from Eq. ~13! that in this case the
boundary curve degenerates into the curve defined by

P2Pc~xA!5~]P/]T!h150,mc

c @T2Tc~xA!#,

i.e., an azeotropic mixture behaves in this sense like a p
fluid.

Thus, boundary curves of binary mixtures are det
mined by the following set of physical parameters:

1! the derivativesdTc/dx, dPc/dx, and the related de
rivative dPc/dTc ;

2! the amplitudes of asymptotic~B0! and Wegener’s~B1!
terms in the equation of the mixture coexistence curve;

3! the derivative (]P/]T)h150,mc

c or the parameterK0

@Eq. ~11! indicates thatK0 is not an independent paramete
but a function of the above variables#;

4! the amplitudeA0
2 of the specific heat;

5! the coefficient of the liquid–gas asymmetr
D5d22xd1 .

The derivativesdTc/dx and dPc/dx can be measured
directly. The other parameters are, strictly speaking, adj
able parameters. Only in the simplest cases, in which
amplitudes B0, B1, and A0 and the derivatives
(]P/]T)h150

c 5 (]P/]T)r5rc

c in pure components are clos

can they be determined fairly accurately using additiv
rules without additional fitting parameters. This situation
directly related to the example of the methane–ethane m
ture discussed below.

Figure 2 shows fits of Eqs.~12! and~13! to experimental
data for the methane–ethane mixture. In order to plot
boundary curves, we used the data on the lines of the cri
points Tc(x) and Pc(x), coexistence curves, and speci
heats of pure components.9,10 The derivatives (]P/]T)r5rc

c

for pure methane and ethane were taken from Ref. 11:

1

rcR
S ]P

]T D
r5rc

c~CH4!

51.72,
1

rcR
S ]P

]T D
r5rc

c~C2H6!

51.81;

B0
~CH4!

51.52, B0
~C2H6!51.61;
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A0
2~CH4!

55.1, A0
2~C2H6!56.5.

In calculating the corresponding parameters of the m
ture, we used the simplest mixing rules:

S ]P

]T D
h150,mc

c

5~12x!S ]P

]T D
r5rc

c~CH4!

1xS ]P

]T D
r5rc

c~C2H6!

,

B05~12x!B0
~CH4!

1xB0
~C2H6! ,

A0
25~12x!A0

2~CH4!
1xA0

2~C2H6! . ~15!

The parametersD andB1 were varied to fit the curve to
experimental data and were found to be smooth functions
the concentration. As expected, the factorD tends to zero for
pure components. The values ofB1 andD are given in the
caption to Fig. 2. One can see in Fig. 2 that Eqs.~12! and
~13! satisfactorily describe the available experimental d
on this mixture.

For many technical applications it is sufficient to kno
the maximum pressurePmax and temperatureTmax at which
the two-phase equilibrium is possible. In the lowest-ord
approximation, the distance between these singular point
the boundary curve and the critical point in Eq.~13! is esti-
mated by retaining only terms linear inDT andDP, and also
the term proportional tout~m!ub. In this case the values
DPmax5Pmax2Pc(x) and DTmax5Tmax2Tc(x) can be cal-
culated analytically:

DPmax5
12b

b
Tc~x!F S ]P

]TD
h150,mc

c

2
D

Tc

dPc
dx G2b/~12b!

3FbB0x~12x!

Tc
2

K0

rcR

dTc
dx

dPc
dx G 1/~12b!

, ~16!

FIG. 2. Cross sections of the phase diagram of the methane–ethane mi
at different concentrationsx ~mole fraction of ethane!. Solid lines show
calculations by Eq.~13!. The values of fitting parametersB1 and D at
corresponding concentrations are given in braces.~1! x50.075$3.25,20.77%;
~2! x50.15$1.99,21.22%; ~3! x50.30$1.01,21.95%; ~4! x50.50$0.47,22.31%;
~5! x50.70$0.02,22.09%; ~6! x50.85$0.16,21.60%; ~7! x50.95$0.51,21.15%.
The measurements8 are plotted with different symbols. The critical points o
mixtures and pure components are shown as asterisks.
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DT 5T ~x!
12b
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D dTc
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max c b S Tc dx D
3FbB0x~12x!

K0

rcR
S 1Tc dTcdx D 2G1/~12b!

. ~17!

The valueDTmax determines the width of the temperatu
interval in which retrograde condensation is possible.5 It fol-
lows from Eq.~17! that the width of this region is largely
determined by the combination (K0/rcR)(Tc

21dTc/dx)
2. For

example, when there is no azeotropic point, the param
K0/rcR is usually of order unity, and the width of the retro
grade condensation region is largely controlled by the
rivative dTc/dx: the larger the derivative, the wider the r
gion.

The number of fitting parameters can be reduced if
valuesDT*5T(Pc)2Tc(x) and DP*5Pc(x)2P(Tc) are
measured. The first of them determines the ‘‘width’’ of th
boundary curve on the critical isobar, and the second on
critical isotherm.1! Thus by substituting into Eq.~13! DP50
and thenDT50 we obtain two equations from which th
factorsB1 andD can be derived in terms of other paramete
and experimental results. Hence, the number of fitting
rameters can be reduced to three.

In conclusion, note that Eq.~13! coincides in the lowest-
order approximation with that derived earlier by Rainwate12

using the Leung–Griffiths model.13 The relationship between
the more general approach used in this work and the Leu
Griffiths model was discussed previously.3
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Effect of a random crystalline field on the Curie temperature of an anisotropic

in
crystalline ferromagnet
M. V. Medvedev

Institute of Electrophysics, Ural Branch of the Russian Academy of Sciences, 620049 Ekaterinburg, Russia

E. V. Rozenfel’d

Institute of the Physics of Metals, Ural Branch of the Russian Academy of Sciences, 620219 Ekaterinburg,
Russia
~Submitted 17 November 1995!
Zh. Éksp. Teor. Fiz.111, 127–143~January 1997!

We examine how substitution of nonmagnetic atoms of one species by another that leads to the
emergence of a random crystalline field affects the Curie temperatureTC of an anisotropic
crystalline ferromagnet. We study the case of low concentrations, in which individual substitutional
impurities create isolated clusters of perturbed magnetic ions with additional easy- or hard-
magnetization axes. Finally, we analyze the various sign relations among the parametersD andd
of regular and impurity second-order anisotropies with Kramers (J 5 1) and non-Kramers
(J 5 3/2) angular momenta, and show that usually the effects of a random crystalline field lower
the Curie temperature as the concentration of the nonmagnetic impurity atoms increases.
© 1997 American Institute of Physics.@S1063-7761~97!00901-3#
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Magnetic compounds of the RNi5 type, where R stands
of rare-earth ions, and the Ni atoms have no localized m
netic moments, are convenient objects for studying magn
anisotropy effects, since in such substances the energ
magnetocrystalline anisotropy is at least comparable to
exchange-interaction energy.1 Recently a number of solid
RNi52xCux solutions ~R5Pr, Nd, Tb, and Er! have been
studied. The research established that in such substa
with the exception of the special case of PrNi52xCux ,
gradual substitution of Cu ions for Ni ions lowers spontan
ous magnetization and, at the same time, elevates the C
temperatureTC as the concentration of copper increas
~with TC passing through its maximum at a certain conc
tration!.

There can be two reasons why the Curie tempera
increases as one type of nonmagnetic ion is replaced by
other. First, the effect can be explained by the assump
that the number of conduction electrons and, accordingly,
Fermi wave vectorkF , which enters into the expression fo
the Ruderman–Kittel indirect-exchange integral, chan
Obviously, under certain conditions the change inkF can
lead to an increase in the ferromagnetic exchange interac
Second, the increase in the Curie temperatureTC can be
attributed to symmetry breaking in the local crystal neig
bors and the appearance of additional random source
crystalline field acting on the nearest magnetic atoms.
some of the magnetic atoms, which are already character
by regular directions of easy or hard magnetization, ex
anisotropy directions emerge that additionally restrict
mobility of magnetic ions caused by thermal fluctuations a
in this way elevate the Curie temperature.

Since much remains to be done in studying the simu
neous effect of regular and random magnetic anisotropie
the concentration dependence of the Curie temperatur
crystalline ferromagnets, in the present paper we attemp
establish the nature of the variation inTC due to a random
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the concentration behavior of the Curie point, we limit o
discussion to low concentrations of the impurity sources
the random crystalline field. This makes it possible to
sume that the regions in which the random crystalline fi
acts on magnetic atoms do not overlap, and that each a
from such a region experiences the action of only one im
rity electric charge.

2. THE HAMILTONIAN OF IMPURITY SINGLE-ION
ANISOTROPY

We assume that the magnetic atoms in an anisotro
ferromagnet form a single magnetic sublattice, and that
crystalline field at the magnetic ions is generated by the C
lomb potential of the nonmagnetic ions at the interstitial si
of the magnetic sublattice. Let the impurity nonmagnetic
oms substitute for the host nonmagnetic atoms, and let t
chargeeZimp

eff differ from the effective charge of the hos
atoms,eZhost

eff . Then the appearance of a nonmagnetic sub
tutional impurity in the vicinity of a magnetic ion can b
modeled by the appearance of an additional chargeq at the
position of the nonmagnetic ion,

q5e~Zimp
eff 2Zhost

eff !, ~1!

against the background of the existing symmetric distribut
of chargeseZhost

eff responsible for the single-ion anisotropy
the initial regular crystal.

For the origin we select the point occupied by the ma
netic ion with an additional chargeq in its vicinity. Then, if
the radius vectorR5~R sinu cosc, R sinu sinc, R cosu!
specifies the position of chargeq in the laboratory system o
coordinates (X,Y,Z) and r i is the radius vector of thei th
electron in the unfilled shell of the magnetic ion, the elect
potentialV(r i! for a point chargeq can be expanded in a
power series inr i /R ~see Ref. 4!:

70$10.00 © 1997 American Institute of Physics
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V~r i !5
q

ur i2Ru
5

q

AR21r i
222~r i•R!

.
q

R
1
q~r i•R!

R2 1
q

2 F3~r i•R!2

R5 2
r i
2

R3G1... . ~2!

Summing the action of this potential on all the electrons
the unfilled shell and going over to the equivalent Steev
Hamiltonian,4 we find that the emergence of an addition
chargeq leads to the appearance in the neighboring magn
ions of additional contributions to the single-ion anisotro
Hamiltonian, of the form

DH0
~2!5const2dJZ9

2
5const2dF12 ~3 cos2 u21!JZ

2

1
1

4
sin 2u~$J1 , JZ%e

2 ic1$J2 ,JZ%e
ic!

1
1

4
sin2 u~J1

2 e2 i2c1J2
2 ei2c!G . ~3!

Here const5~1/6!~3 cos2 u21!J(J11)d, and in the model of
a point charge acting on the shells of thef -ions, the param-
eterd of impurity single-ion anisotropy is given by

d5
3ueuqa2J^r f

2&
4R3 . ~4!

Sincea2J is positive for Sm, Er, Tm, and Yb, and negativ
for Pr, Nd, Tb, Dy, and Ho,5 the parameterd can be either
positive or negative, depending on the magnetic-ion spe
and the sign of the additional chargeq.

The expression forDH0
~2! is written both in terms of the

projections of the total angular momentumJ on theX, Y, Z
axes of the laboratory system of coordinates, and in term
the projections on theZ9 axis of the local system of coordi
nates, in which this axis is directed from the magnetic ion
the additional chargeq ~Fig. 1!. Moreover, since the addi
tional chargeq acts not on a single magnetic ion but on
whole cluster of magnetic ions surrounding the intersti
site with a nonmagnetic impurity, for each magnetic ion
this cluster we must introduce the appropriate coordin

FIG. 1. The local system of coordinatesX8Y8Z8 used in diagonalizing the
single-ion anisotropy Hamiltonian.
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does not contain the higher-order terms in powers of the r
^r f&/R. Such terms lead to fourth- and sixth-order invarian
in the projectionsJa of the angular momentum operato
with a5X,Y,Z.

3. THE RANDOM-MOLECULAR-FIELD APPROXIMATION

We assume that additional chargesq lead only to the
appearance of additional terms~3! in the single-ion anisot-
ropy of some of the magnetic ions in the crystal, and do
appreciably change the exchange interaction between
magnetic moments. We also assume that the crystal sym
try of the initial compound allows for the coexistence
regular single-ion second-order anisotropy, which we cho
to be of the simplest possible form2DJZ

2, with D either
positive or negative. We introduce the random-molecul
field approximation for such a system.

First we note that although formally the localized ma
netic moments at all magnetic sites correspond to the s
angular momentum operatorJ, the thermodynamic average
of the projections of angular momentumJa may differ con-
siderably for the sites surrounding a nonmagnetic impu
site ~we call such sites cluster sites! and for the sites that are
not the nearest neighbors of the additional impurity chargq
~we call such sites matrix sites!. This difference can be re
lated primarily to the dramatic difference in the crystallin
fields for ensembles of the sites of the corresponding ty
while the difference resulting from variations in the rando
magnetic fields can be considered less significant.

The single-site Hamiltonian of the molecular field for a
arbitrary matrix sitem is then

Hh~m!5Hh,ex~m!1Hh,0~m!

52J~m!hh~m!2DJZ
2~m!, ~5!

and for a cluster siten it is

Hcl~n!5Hcl,ex~n!1Hcl,0~n!

52J~n!hcl~n!2DJZ
2~n!2dJZ9

2
~n!. ~6!

By writing the exchange contribution as a scalar product,
allow for the fact that after additional local anisotropy ax
have appeared, the equilibrium orientations of the magn
moments at different sites can lose their collinearity.

Furthermore, if for the sake of simplicity we use th
nearest-neighbor approximation for the exchange interact
then in writing the molecular fields for the matrix and clust
sites, hh(m) and hcl(n), we must allow for the principal
difference between our system and disordered magnetic
loys: whereas for matrix sites the nearest magnetic neigh
are of a random nature~there is a certain probability that th
nearest magnetic neighbors are either matrix sites or clu
sites!, the nearest magnetic neighbors of a cluster site con
of a fixed number of matrix and cluster sites.

For instance, Fig. 2 is a rough sketch of a crystal latt
in which the magnetic ions form a simple orthorhombic cry
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tal sublattice, in which the difference between the crys
lattice parametersaÞbÞc is so small that the lattice is es
sentially cubic. If an impurity chargeq is placed at one of the
interstitial sites of the magnetic sublattice, its nearest m
netic neighbors form a cluster of eight magnetic atoms oc
pying the vertices of a pseudocube. Here each cluster
always has three cluster sites and three matrix sites a
nearest magnetic neighbors.

Taking all this into account, we can write the followin
expression for the molecular field of a matrix sitem:

hh~m!5I(
d51

z

$@12pcl~m1d!#^Jh~m1d!&

1pcl~m1d!^Jcl~m1d!&%. ~7!

Here I is the exchange integral involving the nearest nei
bors, the sum overd runs through the nearestz magnetic
neighbors, the projection operatorpcl(m1d) can be written

pcl~m1d!5 H1 if site m1d is a cluster site,
0 if site m1d is a matrix site, ~8!

and the labelsh andcl are introduced to distinguish betwee
the thermodynamic averages^•••& at matrix and cluster sites
respectively.

Let ccl be the probability that the sitem1d is a cluster
site, provided thatm is a matrix site. Then averaging th
projection operators over concentrations yields

pcl~m1d!5ccl . ~9!

For a specific type of lattice we can always establis
relationship between the conditional probabilityccl and the
overall concentration of magnetic atoms of the cluster ty
c, and the concentration of nonmagnetic impurity atomsx.
For instance, in the pseudocubic-lattice model~Fig. 2!, the
overall concentration of atoms of the cluster type isc5z1x,
since each nonmagnetic atom is surrounded byz1 magnetic
atoms. Since near each magnetic site there are in turnz158
interstitial sites and the probability of occupying each int
stitial site isx, we obtain

pcl~m1d![ccl5
1

2
z1x5

1

2
c. ~10!

FIG. 2. Equilibrium orientations of the magnetic moments of cluster sites
a pseudocubic lattice forD.0 ~a ferromagnet of the easy-axis type wit
magnetization along theZ axis! and d.0 ~additional easy-magnetization
axes along the principal diagonals of the cube!.
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interstitial sites near the sitem1d can be filled by nonmag-
netic impurities, while the other half of the interstitial site
are common sites for them andm1d sites and their filling
by impurity atoms transforms sitem also into a cluster site
~instead of a matrix site!.

For the molecular field of a cluster siten we can write

hcl~m!5I F (
Dcl51

zcl

^Jcl~n1dcl!&1 (
Dh51

zh

^Jh~n1dh!&G ,
~11!

wherezcl andzh are the number of nearest neighbors of t
cluster and matrix type, respectively, with

zcl1zh5z. ~12!

To study the concentration behavior of the temperat
of the transition from a magnetically ordered state to a pa
magnetic state, we use Eqs.~5! and ~6! to obtain self-
consistent linear equations for^Jcl(n)& and ^Jh(m)&. To this
end we interpret the molecular exchange terms in~5! and~6!
as a perturbation in relation to the single-ion anisotro
Hamiltonians. Then, using thermodynamic perturbat
theory techniques, we arrive at the following expression
^Ja(g)& ~herea5X,Y,Z, and the labelscl andh are dropped
for the time being! at siteg:

^Ja~g!&5(
g

xag
0 ~g!hg~g!, ~13!

where the components of the tensor of local magnetic s
ceptibility at siteg are ~see, e.g., Ref. 5!

xag
0 ~g!5Q21H bc(

i
^ i uJa~g!u i &^ i uJg~g!u i &

3exp@2bcEi
~0!~g!#

1(
iÞ l

^ i uJa~g!u l &^ l uJg~g!u i &
Ei

~0!~g!2El
~0!~g!

3~exp@2bcEl
~0!~g!#2exp@2bcEi

~0!~g!# !J ,
~14!

Q5(
i

exp@2bcEi
~0!~g!#, bc5

1

TC
~15!

~our definition of the magnetic susceptibility tensor diffe
from the standard one in that our tensor does not contain
factor (gJmB)

2!.
Calculating ~14! requires knowing the eigenvalue

Ei
(0)(g) and eigenfunctionsu i &[uC i& of the unperturbed

single-ion anisotropy Hamiltonians,

H0~g!uC i&5Ei
~0!~g!uC i&, uC i&[u i &, ~16!

which are different for matrix and cluster sites. It turns o
that for matrix sites the best way to diagonalize the sing
ion anisotropy Hamiltonian is to use the angular-moment
basis functions in the laboratory system of coordinates, w

n
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for cluster sites it is more convenient to introduce a new
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The Hamiltonian~24! can easily be diagonalized analytically
ar-

plits
l

di-

cep-
of
local system of coordinatesX8,Y8,Z8, which makes it pos-
sible to easily diagonalize the single-ion anisotropy Ham
tonian and calculate the components of the magnetic sus
tibility tensor xln

0 (n) ~l,n5X8,Y8,Z8!. In the final step, one
must go back to the components of the tensor in the lab
tory system of coordinates.

4. DIAGONALIZING THE SINGLE-ION ANISOTROPY
HAMILTONIAN IN THE CASE OF TWO SECOND-ORDER
AXES

Let us examine the single-ion anisotropy Hamiltoni
for a cluster site,

H052DJZ
22dJZ9

2 , ~17!

with the direction of theZ9 axis in relation to the laboratory
system of coordinates specified by a polar angleu and an
azimuthal anglec. We introduce a new system of~primed!
coordinates in such a way that theZ8 axis is perpendicular to
the plane containing theZ andZ9 axes~see Fig. 1!. Then the
newX8 andY8 axes also lie in this plane, withF the angle
between theZ andX8 axes.

We expressJZ andJZ9 in terms of the projections of the
operatorJ in the new system of coordinates:

JZ5JX8 cosF2JY8 sin F,

JZ95JX8 cos~u2F!1JY8 sin~u2F!. ~18!

After plugging ~18! into ~17! and going over to the circula
projectionsJ685JX86JY8, we arrive at the following ex-
pression for the single-ion anisotropy Hamiltonian:

H052
D1d

2
J~J11!1

D1d

2
JZ8
2

2
1

4
e2iF@D1de22iu# J18

2

2
1

4
e22iF@D1de2iu#J28

2 . ~19!

Introducing the new variables

e5
D1d

2
, D5

1

4
AD21d212Dd cos 2u ~20!

and the auxiliary anglew,

cosw5
D1d cos 2u

4D
, sin w5

d sin 2u

4D
, ~21!

and dropping the unimportant constant term21/2(D
1d)J(J11), instead of~19! we get

H05eJZ8
2

2D@ei ~2F2w!J18
2

1e2 i ~2F2w!J28
2

#. ~22!

We see that it is convenient to impose a constraint on
angleF,

F5
w

2
, ~23!

since it reduces~22! to the simple form

H05eJZ8
2

2D@J18
2

1J28
2

#. ~24!
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for J51, 3/2, 2 if for the basis functions we take the angul
momentum functionsuJ,JZ8&[uJZ8& with projections of an-
gular momentum on the localZ8 axis.

4.1. The case J51

For J51, the eigenvalue spectrumEi
(0) and the eigen-

vectorsuCi& have the form

E1
~0!50, uC1&5u0&,

E2
~0!5e12D, uC2&5~ u1&2u21&)/&,

E3
~0!5e22D, uC3&5~ u1&1u21&)/&. ~25!

Thus, the appearance of a second anisotropy axis s
the doublet level that exists atJ51 in the case of uniaxia
anisotropy.

The tensor of zero magnetic susceptibility has only
agonal elements~the upper signs refer to theX8X8 compo-
nent and the lower signs to theY8Y8 component!:

xX8X8,Y8Y8
0

5
2$12exp@2bc~e72D!#%

~e72D!@112 exp~2bce!cosh~2bcD!#
,

xZ8Z8
0

5
exp~2bce!sinh~2bcD!

D@112 exp~2bce!cosh~2bcD!#
. ~26!

In the limit d→0 ~for which F is either zero or 1/2p,
depending on the sign ofD!, after appropriately relabeling
the coordinates axes, we obtain an expression for the sus
tibility tensor for matrix sites in the laboratory system
coordinates:

xXX
0 2xYY

0 5
2@12exp~2bcD !#

D@21exp~2bcD !#
,

xZZ
0 5

2bc

21exp~2bcD !
. ~27!

In the limit d→`, for which F51/2w5u and theX8 axis
points to the impurity chargeq, Eqs.~26! yield

xX8X8
0

~d→`!52 tanhS bcD

2
sin2 u D ~D sin2 u!21

.Hbc ,
2/uDusin2u52bc /bcuDusin2 u!bc,

bcuDusin2 u!1,
bcuDusin2u@1,

xY8Y8
0

~d→`!5xZ8Z8
0

~d→`!50, ~28!
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while for d→2` we have
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xX8X8
0

~d→2`!5xZ8Z8
0

~d→2`!5bc ,
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xX8X8
0

~d→2`!5xY8Y8
0

~d→2`!5xZ8Z8
0

~d→2`!50.
~29!

4.2. The case J53/2

For J53/2, the appearance of a second anisotropy a
does not lift the degeneracy of doublet levels:

E1,2
~0!5

5

4
e2Ae2112D2, E3,4

~0!5
5

4
e1Ae2112D2.

~30!

The corresponding eigenfunctions can be written as

uC1&5aU32L 1bU2 1

2 L , uC2&5bU12L 1aU2 3

2L ,
uC3&5bU32L 2aU21

2L , uC4&52aU12L 1bU23

2L ,
~31!

where the coefficientsa andb are

H abJ 5A1

2 F17
e

Ae2112D2G . ~32!

The components of the magnetic susceptibility tenso
the local coordinate system are

xX8X8,Y8Y8
0

5bc

e266eD124D2

2~e2112D2!
1Fbc

e66D

2Ae2112D2

1
3~e72D!2

4A~e2112D2!3
G tanh~bcAe2112D2!,

xZ8Z8
0

5bc

5e2112D2

4~e2112D2!

1
12D22bce~e2112D2!

A~e2112D2!3
tanh~bcAe2112D2!,

~33!

and for matrix sites of the crystal, after passing to the lim
d→0 and transforming the coordinate axes into the labo
tory axes, we get

xXX
0 5xYY

0 5
1

2
bc1

1

2 S 3

2D
2bcD tanh~bcD !,

xZZ
0 5

5

4
bc1bc tanh~bcD !. ~34!

In the limit d→` we have

xX8X8
0

~d→`!5
9

4
bc ,

xY8Y8
0

~d→`!5xZ8Z8
0

~d→`!50, ~35!

and in the limitd→2`,
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xY8Y8
0

~d→2`!5
1

4
bc . ~36!

For J52 the Hamiltonian~24! can be diagonalized in a
similar manner.

The matrix elements of susceptibility obtained in th
way in the local systems of coordinates of the cluster s
must by transformed into the matrix elements in the labo
tory system of coordinates via the following relations:

xXX
0 5cos2 cS xX8X8

0 sin2
w

2
1xY8Y8

0 cos2
w

2 D
1xZ8Z8

0 sin2 c,

xYY
0 5sin2 cS xX8X8

0 sin2
w

2
1xY8Y8

0 cos2
w

2 D
1xZ8Z8

0 cos2c,

xZZ
0 5xX8X8

0 cos2
w

2
1xY8Y8

0 sin2
w

2
,

~37!
xXY
0 5xYX

0 5sin c cosc

3FxX8X8
0 sin2

w

2
1xY8Y8

0 cos2
w

2
2xZ8Z8

0 G ,
xXZ
0 5xZX

0 5
1

2
cosc sin w~xX8X8

0
2xY8Y8

0
!,

xYZ
0 5xZY

0 5
1

2
sin c sin w~xX8X8

0
2xY8Y8

0
!.

For each magnetic ion in a cluster ofz1 ions surrounding
the additional chargeq, one must use the proper anglesc
andw, but with the lattice symmetry specified, relations b
tween the angles can be established, which means one
find the symmetry relations that link the matrix elementsxag

0

of different cluster sites.

5. THE EQUATION FOR TC IN THE MODEL OF AN
ANISOTROPIC FERROMAGNET WITH A PSEUDOCUBIC
LATTICE

Deriving an equation for the Curie temperature requi
averaging the infinite system of linear equations~13! over
the concentration disorder, with allowance, first, for the d
ference between matrix and cluster sites and, second, fo
difference in the orientations of the magnetic moments
different sites of a magnetic cluster. To do this we mu
specify the shape of the crystal lattice of the initial regu
crystal and the signs of the parameters of regular and im
rity anisotropies,D andd.

As an example we take the above-mentioned pseudo
bic lattice of magnetic ions, in which small concentrations
substitutional impurities occupying the positions of nonma
netic atoms create only one type of magnetic cluster.
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start with the case in which bothD andd are positive, i.e., in
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which there is anisotropy of the easy-axis type and an a
tional easy-magnetization axis for each cluster site. Sinc
a regular crystal and, accordingly, far from a perturbi
charge, the magnetic moments are aligned along theZ axis,
the magnetic moments of the cluster sites tend to align
equilibrium directions between theZ axis and the principa
diagonals of the cube~see Fig. 2!.

Averaging~13! over the ensemble of all matrix sites, w
get

sZ5xZZ
0 hZ,h5xZZ

0 ~A!Iz

3F ~12ccl!sZ1ccl
1

z1
(
c51

8

tZ~ i !G , ~38!

where the bar stands for averaging over configurational
order. HeresZ [ ^JZ,h(m)&, and we have allowed for the fac
that the magnetic susceptibility tensorxag

0 (A) is diagonal in
the laboratory system of coordinates~by A we denote sites o
the matrix type and byB sites of the cluster type!. Further-
more, in averaging the molecular field at a matrix si
hZ,h(m), one must bear in mind that if the nearest neighb
of the matrix site is a cluster site~with probabilityccl!, then
the magnetic moment of an arbitrary cluster site will be o
ented as at site 1 in Fig. 2~with probability ccl/z1! or as at
site 2, etc. In view of this one must distinguish between
average valuesta( i ) [ ^Ja,cl( i )& of the projections of the
magnetic moments at the different sites~i51,...,8! of the
magnetic cluster.

Averaging ~13! for all sites of type 1 in the magneti
clusters, we can write the following equation:

ta~1![^Ja,cl~1!&5 (
g5X,Y,Z

xag
0 ~B!hg,cl~1!, ~39!

where we have allowed for the fact that the magnetic susc
tibility tensor xag

0 (B) of cluster sites is nondiagonal in th
laboratory system of coordinates. Here the averaging of
projection of the molecular field at cluster sites of type
yields

hg,cl~1!5I @tg~2!1tg~4!1tg~5!#, g5X, Y, ~40!

hZ,cl~1!5I @tZ~2!1tZ~4!1tZ~5!13sZ#. ~41!

Note that according to~11!, all the projections of the
random magnetic fieldhg,cl( i ) for the cluster sitesi51,...,8
contain magnetizing contributions from the magnetic m
ments^Jg,h( i1dh)& of the nearest magnetic sites, since ne
a noncollinear magnetic cluster there emerges a certain
collinearity in the magnetic structure of the matrix due to t
exchange interaction between cluster and matrix.

However, it becomes immediately apparent that the c
ter magnetic moments and the magnetic moments of
magnetic sites nearest to the cluster are subject to quite
ferent physical conditions. If, for instance, we take the c
of a strong impurity easy-axis anisotropyd@D@Iz, where
the magnetic moments of the cluster are essentially alig
along the impurity easy-magnetization axes and the non
linearity of the magnetic structure of the cluster is at
maximum, then on each magnetic moment in the clus
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;d directed at an angle to the crystal’s magnetization, a
~b! the exchange field generated by thez nearest magnetic
moments, wherez/2 of these moments are of the cluster ty
and strongly disoriented in relation to the direction lon
range ferromagnetic order. At the same time, even on
matrix magnetic moment nearest to the cluster there ac~i!
the regular crystalline field;D aligned with the direction of
long-range ferromagnetic order, and~ii ! the exchange field
generated by the nearest neighbors, of which only one~in our
model! is a neighbor of the cluster type, and for that reason
sure to be strongly disoriented. Obviously, the noncolline
ity of the magnetic moments of even the nearest magn
neighbors in the matrix is much weaker than the nonc
linearity of the magnetic moments of the cluster~all the more
so for second matrix neighbors!. Hence for the simplest ap
proximation we take the one in which the following cond
tions hold for finding thehg,cl( i ):

^JZ,h~ i1dh!&5sZ , ~42!

^JX,h~ i1dh!&5^JY,h~ i1dh!&50. ~43!

This means that we ignore the contributions of the nonc
linearity of the nearest matrix sites, which has the form o
falloff in short-range order, but fully allow for the nonco
linearity of the magnetic moments of a cluster.

Of course, with a more accurate approximation one c
attempt to build linearized equations for the projections
the magnetic moments at the nearest neighbors of the m
~with respect to the cluster! and allow for the fact that the
averageX- andY-projections of the magnetic moments o
these atoms are nonzero, but at the same ignore the no
linearity of the magnetic moments at second neighbors,
Such an approach, however, leads to a sharp increase i
number of parameters in the problem and the number
coupled equations. We will leave this problem for a futu
paper.

So as not to build similar equations forta( i )
5 ^Ja,cl( i )& for the other cluster sitesi52,...,8, we bring into
the picture the symmetry of the orientation of the magne
moments in the cluster of the given type~see Fig. 2!. Clearly,
this approach yields the following relations between the p
jections of the average magnetic moments of the differ
sites in the cluster:

tZ5tZ~ i !, i51,...,8,

tX[tX~1!52tX~2!52tX~3!5tX~4!52tX~5!

5tX~6!5tX~7!52tX~8!,

tY[tY~1!5tY~2!52tY~3!52tY~4!52tY~5!

52tY~6!5tY~7!5tY~8!,

tX5tY . ~44!

If we also bear in mind that in the lattice considered here
azimuthal angle for site 1 isc155p/4 and sinc15cosc1,
Eqs.~37! yield
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xZX
0 ~B;1!5xZY

0 ~B;1![xZX
0 ~B!,

xXX
0 ~B;1!5xYY

0 ~B;1![xXX
0 ~B!. ~45!

Therefore, instead of Eqs.~38!–~41! we can finally write

@12Iz~12ccl!xZZ
0 ~A!#sZ2IzcclxZZ

0 ~A!tZ50,

23IxZZ
0 ~B!sZ1@123IxZZ

0 ~B!#tZ12IxZX
0 ~B!tX50,

23IxXZ
0 ~B!sZ23IxXZ

0 ~B!tZ

1$11I @xXX
0 ~B!1xXY

0 ~B!#%tX50. ~46!

The next case isD,0 and d.0. The regular crysta
exhibits ferromagnetism of the easy-plane type, and the lo
range order in the matrix is described by an order param
sX 5 JX,h(m) Þ 0. Themagnetic moments of a separate cl
ter tend to align~see Fig. 3! along equilibrium directions
between theX axis ~the direction of magnetization of th
matrix! and the principal diagonals of the pseudocube~the
directions of the additional local-anisotropy axes!. Then for
the average values of the projections of the angular mom
tum operator of different sites in the cluster we have
following symmetry relations:

tX[tX~ i !, i51,...,8,

tY[tY~1!52tY~2!5tY~3!52tY~4!5tY~5!

52tY~6!5tY~7!52tY~8!,

tZ[tZ~1!52tZ~2!52tZ~3!5tZ~4!52tZ~5!

5tZ~6!5t~7!52tZ~8!,

tYÞtZ , ~47!

i.e., describing the magnetization of clusters involves us
three order parameters.

With allowance for~45!, this yields four coupled equa
tions forTC :

FIG. 3. Equilibrium orientations of the magnetic moments forD,0 ~a fer-
romagnet of the easy-plane type with the direction of spontaneous ma
tization along theX axis! andd.0. For clarity, the planes that pass throug
the principal diagonals of the cube and the diagonals of the upper and l
faces are hatched near sites1, 2, 5, and6.
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@12Iz~12ccl!xXX
0 ~A!#sX2IzcclxXX

0 ~A!tX50,

23IxXX
0 ~B!sX1@123IxXX

0 ~B!#tX1IxXY
0 ~B!tY

1IxXZ
0 ~B!tZ50,

23IxXY
0 ~B!sX23IxXY

0 ~B!tX1@11IxXX
0 ~B!#tY

1IxXZ
0 ~B!tZ50,

23IxXZ
0 ~B!sX23IxXZ

0 ~B!tX1IxXZ
0 ~B!tY

1@11IxZZ
0 ~B!#tZ50. ~48!

Now we turn to the case in whichD.0 andd,0 ~the
regular crystal exhibits ferromagnetism of the easy-axis ty
and additional hard-magnetization axes emerge at the clu
sites!. Equilibrium orientation of the magnetic moments
the cluster emerges because of a compromise between
tendency of the moments to align with the direction of t
crystal’s magnetization along theZ axis and the tendency to
lie in planes perpendicular to the principal diagonals of
cube. This yields the symmetry relations~Fig. 4!

tZ5tZ~ i !, i51,...,8,

tX[2tX~1!5tX~2!5tX~3!52tX~4!5tX~5!52tX~6!

52tX~7!5tX~8!,

tY[2tY~1!52tY~2!5tY~3!5tY~4!5tY~5!5tY~6!

52tY~7!52tY~8!,

tX5tY ~49!

and an equation for findingTC :

@12Iz~12ccl!xZZ
0 ~A!#sZ2IzcclxZZ

0 ~A!tZ50,

23IxZZ
0 ~B!sZ1@123IxZZ

0 ~B!#tZ22IxZZ
0 ~B!tX50,

3IxXZ
0 ~B!sZ13IxXZ

0 ~B!tZ

1@11I ~xXX
0 ~B!1xXY

0 ~B!!#tX50. ~50!

Finally, we consider the case in whichD,0 andd,0
~the existence of two directions of hard magnetization for
cluster sites and, at the same time, alignment of the spo

e-

er

FIG. 4. Equilibrium orientations of the magnetic moments of cluster s
for D.0 ~an easy-axis ferromagnet! and d,0 ~additional easy-
magnetization planes perpendicular to the principal diagonals of the cu!.
For clarity, the easy-magnetization plane near site 1 is depicted by an
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have four coupled equations for determiningTC :

@12Iz~12ccl!xXX
0 ~A!#sX2IzcclxXX

0 ~A!tX50,

23IxXX
0 ~B!sX1@123IxXX

0 ~B!#tX2IxXY
0 ~B!tY

2IxXZ
0 ~B!tZ50,

3IxXY
0 ~B!sX13IxXY

0 ~B!tX1@11IxXX
0 ~B!#tY

1IxXZ
0 ~B!tZ50,

3IxXZ
0 ~B!sX13IxXZ

0 ~B!tX1IxXZ
0 ~B!tY

1@11IxZZ
0 ~B!#tZ50. ~51!

6. CURIE TEMPERATURE TC IN THE LIMIT OF INFINITELY
STRONG IMPURITY ANISOTROPY

The systems of equations~46!, ~48!, ~50!, and~51! in TC
can be solved for different numerical ratios of the parame
D andd. It is obvious, however, that magnetic clusters ha
the greatest effect onTC when the parameterudu of the im-
purity crystalline field is at its maximum in relation touDu.
Therefore, to grasp the effect that clusters have on the t
perature of magnetic ordering, we examine the limiting ca
in which d→` andd→2` at cluster sites.

For J51 andd→2` and allowing for~29!, we have

12Iz~12ccl!xaa
0 ~A!50, ~52!

wherea5Z for D.0 anda5X for D,0. Hence in the limit
d→2`, the cluster ions act as a nonmagnetic diluent of
regular ferromagnetic matrix, since they effectively weak
the exchange interaction,Iz→Iz(12ccl), and this can only
lower TC .

For J51 andd→`, allowing for ~28! and the fact that
sin2 u52/3, in the laboratory system of coordinates we ha

xag
0 ~B!5

1

3
xX8X8
0

~B,d→`!5
1

D
tanhS bc D

3 D[x0~B!

~53!

for all a, g5X, Y, Z. As a result, from~46! and ~48! we
obtain

12IzF12ccl1ccl
3Ix0~B!

12Ix0~B!Gxaa
0 ~A!50, ~54!

wherea5Z for D.0 anda5X for D,0.
For a ferromagnet of the easy-axis type~D.0!, in the

case of weak anisotropy of the matrix,D/Iz;Dbc!1, Eq.
~54! can be solved analytically:

TC'4I S 12
8

11
cclD1

D

3
. ~55!

Thus, even under the most favorable conditions, whe
highly-anisotropic has the greatest effect on the transi
temperature, only a decrease inTC is observed. We believe
the physical reason for this is that in the cluster model c
sidered here, the greatest role is played by the geomet
factor, i.e., the large polar angleu between the easy
magnetization axisZ and a principal diagonal of the cube
This leads to a situation in which even in the limitd→` and
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D→0, the susceptibility of the cluster sites along the labo
tory Z axis, xZZ

0 (B)5(1/3)bc , proves to be lower than the
susceptibility of the matrix sites~xZZ

0 (A)5(2/3)bc in the
limit D→0!, with the result that cluster sites only reduce t
contribution of exchange interaction to the stiffness of t
magnetic system in the direction of spontaneous magne
tion.

A more interesting case is ferromagnetism of the ea
plane type in the host matrix, since with the anisotropy be
fairly strong, uDu.0, compared to the exchange couplin
parameterI , the Curie temperatureTC in the matrix experi-
ences a sharp drop and there can be even a transition t
nonmagnetic state~at J51 this happens atuDu/I512!. One
should therefore expect that near the threshold of the tra
tion to the singlet state, clusters driveTC up.

However, Eqs.~28! show that an increase inuDu/I is
accompanied by a decrease in the susceptibility of the clu
magnetic moments,xX8X8

0 (d→`), and, accordingly, by a de
crease inx0(B), with the behavior of the magnetic mome
departing from the Ising behavior in an ever more p
nounced way. As a result,TC only decreases in compariso
to the Curie point of the initial crystal. This outcome is co
roborated by numerical calculations of Eq.~54!, whose re-
sults are depicted in Fig. 5. Clearly, for all ratiosuDu/I , both
in the case of an easy-plane ferromagnet~D,0! and an easy-
axis ferromagnet~D.0! with a fixed concentration of cluste
sites, the value ofTC of the impurity crystal is below that o
the initial regular anisotropic ferromagnet.

The lack of a rise inTC for J51 is due to the splitting of
the ground-state doubletu61& that results from the regula
anisotropy of the crystal~the parameterD!. It is obvious that
for moments withJ.1, where ford→` the doubletu6J& is
the principal doublet, second-order regular anisotropy is
able to split the doublet. Then in the limitd→`, we have
xX8X8
0 (d→`) 5 J2bc , and for integer angular moment

J52, 4,..., the susceptibility of the cluster sites can beco

FIG. 5. The dependence of the Curie temperature~in dimensionless units of
TC/I ! of an easy-axis~D.0! and an easy-plane~D,0! ferromagnet on the
regular anisotropy parameteruDu/I in the initial crystals~dashed curves! and
in crystals with a finite concentration of cluster sites~ccl50.05! for d→`.
The conditional probabilityccl50.05 for a pseudocubic lattice correspon
to a cluster-site concentrationc50.10 or a nonmagnetic-impurity concentra
tion x50.0125.
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transition to the singlet state. This allows for the possibil
of TC rising because of the appearance of clusters w
strong impurity anisotropy, but detailed analysis of such
near-threshold situation requires a more detailed appro
than that of the molecular-field approximation, since the
curacy of the latter is of orderz21.

For a Kramers ion withJ53/2, the maximum possible
impurity anisotropy of cluster sites is

xab
0 ~B,d→`!5

3

4
bc for a,b5X,Y,Z ~56!

for d→`, and

xXX
0 ~B,d→2`!5xYY

0 ~B,d→2`!5xZZ
0 ~B,d→2`!

5
3

4
bc ,

xXY
0 ~B,d→2`!5xYZ

0 ~B,d→2`!5xXZ
0 ~B,d→2`!

52
1

4
bc ~57!

for d→2`. This leads to the following equations for th
transition temperature:

12IzS 12ccl1
9Ibc

423Ibc
cclDxaa

0 ~A!50 ~58!

for d→`, and

12IzF12ccl1
3Ibc~31Ibc!

427Ibc23~ Ibc!
2 cclGxaa

0 ~A!50

~59!

for d→2`, where a5Z for an easy-axis ferromagne
~D.0!, anda5X for an easy-plane ferromagnet~D,0!.

When ccl!1, Eqs. ~58! and ~59! can easily be solved
analytically in the limits of weak~uDu/I!1! and strong
~uDu/I@1! anisotropies, and for all four relations between t
signs of the parametersD and d, these equations yield
decrease inTC as ccl grows. For instance, forD,0 and
d→` we have

TC5H 15

2
I S 12

2

3
cclD1

2

5
uDu,

uDu
I

!1,

6I S 12
4

7
cclD127

I 2

uDu
,

uDu
I

@1.
~60!

The reason is obvious: even in the limitD→2` with
J53/2, the susceptibility of matrix sites does not drop bel
xXX
0 (A)5bc , while, for instance, the susceptibility of cluste

sitesxab
0 (B) does not exceed~3/4!bc .

Furthermore, since ford→2` and J53/2 cluster sites
do not become nonmagnetic, although their susceptib
does decrease, the decrease inTC with concentration in the
entire sample occurs more slowly than when the ferrom
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instance, forD,0 andd→2` we have

TC5H 15

2
I S 12

66

113
cclD1

2

5
uDu,

uDu
I

!1,

6I S 12
14

33
cclD127

I 2

uDu
,

uDu
I

@1,
~61!

i.e., the concentration factor has the form 12Accl , instead of
the factor 12ccl corresponding to simple diamagnetic dilu
tion.

7. CONCLUSION

In the above calculations we employed a regular crys
lattice in which the angleu between the regular anisotrop
axis Z and the random anisotropy axisZ9 is quite large
~;55°!. Since even the maximum possible impurity anis
ropy of the easy-axis type~d→`! drives the susceptibility of
the cluster sites~in the local system of coordinates! up only
to a certain limit, when we go over to the laboratory syste
of coordinates the large-angle geometrical factor comes
play, and this lowers the susceptibility of the cluster ma
netic ions in comparison to that of the host ions. Hence
temperatureTC , corresponding to the onset of spontaneo
magnetization along one of the laboratory axes of coo
nates, drops.

Thus, we can probably expect a rise in the Curie te
peratureTC due to the emergence of additional anisotro
axes, with the local symmetry being broken only when ad
tional impurity charges produce new directions of easy m
netization at moderate angles to the direction of easy m
netization of the initial crystal.

In the latter case, the rise inTC due to additional impu-
rity easy-axis contributions becomes similar to the effect
the crystalline field on the magnetic ordering temperatureTC
in regular ferromagnets. Regular single-ion second-order
isotropy of the easy-axis type is known to lead to a rise
TC, in comparison to theTC of an isotropic ferromagnet. Fo
a magnetic moment withJ51, this result has been obtaine
both in various modifications of the method of two-time tem
perature Green’s functions~see, e.g., Refs. 6 and 7! and in
the diagrammatic technique,8,9 while for magnetic moments
with J from 1 to 7/2, it has been obtained in the so-call
molecular-field correlation theory10 ~a detailed review of this
problem for regular ferromagnets can be found in the mo
graph by Zvezdinet al.5!.

The situation described in this paper differs from that
a regular ferromagnet in only one respect: crystalline-fi
impurity sources of the easy-axis type in our case incre
the local magnetic susceptibility~in the laboratory system o
coordinates! only atNc cluster sites of the magnetic lattice
with the result that the increase in the Curie temperatu
DTC , is proportional to the concentrationc of cluster sites.

Two concluding remarks are in order. First, the appe
ance of additional local anisotropy axes and the disorien
tion of magnetic moments near the impurity sources o
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crystalline field also lead to a drop in spontaneous magneti-

et
th
rm
a
t
en
c
y

G
re
u
rc
e

1W. E. Wallace,Rare Earth Intermetallics, Academic Press, New York
~1973!.

z.
-

.

p-
zation. This drop is sudden, even at low concentrationsx of
the nonmagnetic atoms, since it involves approximatelyz1x
magnetic ions. Second, at higher concentrationsx of the non-
magnetic atoms, random configurations of two, three,
impurity charges can form near each magnetic ion, while
finite clusters of perturbed magnetic ions overlap and fo
an infinite cluster. The situation resembles the model of
amorphous magnetic material with random anisotropy, bu
our case the additional random-anisotropy axes have a d
merable number of directions, and random anisotropy effe
emerge against the background of the regular anisotrop
the crystals.
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Unified picture of the distribution of electric field gradients at Cu, O, and Tm sites in

ReBa2Cu3O72d

M. V. Eremin and O. V. Lavizina

Kazan State University, 420008 Kazan, Russia
~Submitted 27 March 1996!
Zh. Éksp. Teor. Fiz.111, 144–157~January 1997!

An abundant set of published experimental NMR/NQR data on electric field gradients in
ReBa2Cu3O72d high temperature conductors, where Re5Y and Tm, is used as a test for the
singlet-correlated band theory. Because of the unusual spectral weight~‘‘capacity’’ ! of this band, it
has been possible to match the number of holes per lattice site to photoemission data on the
energy spectrum and the location of the Fermi level. In the framework of a unified picture of the
distribution of holes~charges! it has been possible for the first time to explain satisfactorily
the observed electric field gradients at the Cu~1!, Cu~2!, O~1!, O~2!, O~3!, and O~4! sites, as well
as NMR and inelastic neutron scattering data on the crystal electric field at the Tm ions.
© 1997 American Institute of Physics.@S1063-7761~97!01001-9#
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There are quite a few papers devoted to studies of
internal electric field gradients at different sites of t
YReBa2Cu3O72d .

1–5 Recently, Yurevaet al.6 have pub-
lished a review article on the hyperfine fields at63Cu nuclei.
Two different approaches are used to analyze the natur
the electric field gradients. One of them is based on num
cal calculations ~ab initio! of the multielectron band
structure,7–9 as for ordinary metals, while the other procee
from a picture of almost localized electron shells, as
dielectrics.10–12The first approach has an obvious defect,
it cannot describe the dielectric–metal transition that ta
place in the YBa2Cu3O61d system when the doping inde
d is raised, or explain photoemission data on the ene
spectrum of the cuprates. As noted previously in a review13

the unsoundness of the ordinary band structure calculat
is a direct consequence of an improper description of
strong electron correlations intrinsic to the cuprates. Her
is not surprising that the calculated electric field gradient7,8

at the Cu nuclei are roughly half the experimentally me
sured values, and this indicates that the model is unabl
provide a correct description of the state of the copper. T
defect of the model7–9 and of the entire approach as a who
is fundamental in nature, since the copper states play an
portant role in the formation of a band near the Fermi s
face.

On the other hand, the picture of almost completely
calized electronic shells10–12accounts well for the correlation
among the copper electrons, but does not provide any
tematic procedure for calculating the dispersion relation
the quasiparticles for metal samples of YBa2Cu3O72d and
the effective charges at the copper and oxygen sites for
ferent doping levels. The purpose of our paper is to const
a more general model that retains the best aspects of
above approaches. Here we show that a proposed mode14,15

of singlet-correlated bands with hole tunnelling between
CuO2 planes offers an entirely suitable basis for doing this
has been shown15 that this model provides a good descriptio
of the photoemission data on the energy spectrum of bila
cuprates. It has been found16 that it also gives a good de
scription of the dielectric–metal phase transition pheno
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band! with doping of the CuO2 planes.
We briefly describe a picture of charge carrier motion

the CuO2 plane in an improved~over Refs. 15 and 16! de-
coupling variant of the equations of motion.17–19 As shown
previously,18 the new decoupling variant is better tha
‘‘Hubbard I’’ and duplicates the Hubbard model dispersi
relation obtained by numerical cluster calculations on m
ern supercomputers.20 This band picture ensures a prop
description of the dielectric–metal transition and gives a s
tematic procedure for calculating the effective charges at
copper and oxygen sites. Sections 3, 4, and 5 are devote
an analysis of the different contributions to the electric fie
gradients at the Cu~1!, Cu~2!, O~1!, O~2!, O~3!, and O~4!
sites for YBa2Cu3O7. Furthermore, we have included inela
tic neutron scattering data for the crystal field potential at
unfilled 4f -shell of the Tm ion and nuclear magnetic res
nance data21,22 in our analysis.

2. BAND STRUCTURE AND CALCULATION OF THE
EFFECTIVE CHARGES OF Cu AND O

The effective charges at the Cu~2! and the O~2! and O~3!
sites in the dielectric YBa2Cu3O6 are roughly12ueu and
22ueu, respectively. We are interested now in how the
magnitudes will change when the crystal is doped with ho
as a result of which it becomes a conductor~YBa2Cu3O7).

The Hamiltonian for a single CuO2 plane has the
form14,16

H5H01H1 , ~1!

where

H05«d(
is

C i
sd ,sd1Vpd(

is
C i

pd,pd ~2!

is the Hamiltonian for a single site. HereC i
sd ,sd and

C i
pd,pd are Hubbard operators, and«d andVpd are the ener-

gies of the copper and oxygen singlet-correlated holes,
spectively. The second term in Eq.~1! describes intraplana
jumps and can be written in the form16

80$10.00 © 1997 American Institute of Physics
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TABLE I. Jump intervals~in meV!.

0
3

H15(
iÞ j

t i j
~1!C i

pd,s̄dC j
s̄d ,pd1(

iÞ j
t i j
~2!C i

sd,0C j
0,sd

1(
iÞ j

t i j
~12!~21!1/22sd~C i

pd,s̄dC j
0,sd

1C i
sd,0C j

s̄d ,pd!. ~3!

Here t i j
(1) , t i j

(2) , and t i j
(12) are the jump integrals for hole

between copper sites in the plane. The relative magnitude
the jump integrals between the first, second, third, etc. ne
bors are determined by the Wannier construction and
given in Ref. 16. Their absolute values were found by fitti
the calculated dispersion curves to published photoemis
data23 and are listed in Table I.

Since YBa2Cu3O7 has two CuO2 planes, as before
15 we

have assumed an interplanar coupling effect. The comp
Hamiltonian of a bilayer of planesa andb has the form15

Hab5Ha1Hb1H tun, ~4!

whereH tun describes jumps of singlet-correlated oxyg
holes between planesa andb. In the Hubbard operator rep
resentation it looks like

H tun5(
iÞ j

t i j
~ab!~Cai

pd,sdCb j
sd ,pd1Cbi

pd,sdCa j
sd ,pd!. ~5!

The t i j
(ab) were estimated from photoemission data and

equations of Ref. 16 to be

t0
~ab!540 meV, t1

~ab!516.48 meV,

t2
~ab!527.39 meV, t3

~ab!53.93 meV,

t4
~ab!520.97 meV.

We now introduce even and odd combinations of
operators with respect to the reflection plane between ne
boring planes in a unit cell of YBa2Cu3O7:

C0i
pd,sd5

1

&

~Cai
pd,sd2Cbi

pd,sd!,

C0i
sd,05

1

&

~Cai
sd,02Cbi

sd,0!, ~6!

Cei
pd,sd5

1

&

~Cai
pd,sd1Cbi

pd,sd!,

Cei
sd,05

1

&

~Cai
sd,01Cbi

sd,0!. ~7!

Then the Hamiltonian~4! can be represented in the form

Number of
neighboring site 1 2 3 4 5 6

t i j
(1) 59.83 2.33 7.33 2.04 0.79 3.0
t i j
(2) 51.84 4.38 5.30 2.13 0.89 2.3
t i j
(12) 256.99 23.79 26.28 22.19 20.89 22.68
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1(
iÞ j

t i j
~2!Cei

sd,0Ce j
0,sd

1(
iÞ j

t iJ
~12!~21!1/22sd~Cei

pd,s̄dCe j
0,sd

1Cei
sd,0Ce j

s̄d ,pd!1(
iÞ j

~ t i j
~1!2t i j

~ab!!C0i
pd,s̄dC0 j

s̄d ,pd

1(
iÞ j

t i j
~2!C0i

sd,0C0 j
0,sd

1(
iÞ j

t i j
~12!~21!1/22sd~C0i

pd,s̄dC0 j
0,sd

1C0i
sd,0C0 j

s̄d ,pd! ~8!

and can easily be diagonalized. Clearly, we obtain four q
siparticle bands: two ‘‘odd,’’

«1k
o 5

1

2
~Ok

pp1Ok
dd!1

1

2
@~Ok

pp2Ok
dd!214Ok

pdOk
dp#1/2,

«2k
o 5

1

2
~Ok

pp1Ok
dd!2

1

2
@~Ok

pp2Ok
dd!214Ok

pdOk
dp#1/2

~9!

and two ‘‘even,’’

«1k
e 5

1

2
~Ek

pp1Ek
dd!1

1

2
@~Ek

pp2Ek
dd!214Ek

pdEk
dp#1/2,

«2k
e 5

1

2
~Ek

pp1Ek
dd!2

1

2
@~Ek

pp2Ek
dd!214Ek

pdEk
dp#1/2.

~10!

When using the procedure to decouple the equations for
Green functions, as in Refs. 17–19, the quantities in Eq.~10!
are defined by the expressions

Ek
dd5«d1(

i j
S 12de

2
1

2

12de
^SiSj& D t i j~2!

3exp$ ik•~Ri2Rj !%,

Ek
pp5Vpd

e 2«d1(
i j

S 11de
2

1
2

11de
^SiSj& D

3~ t i j
~1!1t i j

~ab!!exp$ ik•~Ri2Rj !%,

Ek
dp5(

i j
S 11de

2
1

2

11de
^SiSj& D t i j~12!

3exp$ ik•~Ri2Rj !%, ~11!

and

Ek
pd5(

i j
S 12de

2
1

2

12de
^SiSj& D t i j~12!

3exp$ ik•~Ri2Rj !%,
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i j

S 2 11de
i j D

3~ t i j
~1!2t i j

~ab!!exp$ ik•~Ri2Rj !%. ~12!

The formulas forOk
dd , Ok

dp , andOk
pd are analogous. The

spin–spin correlation functions19 ^SiSj& were taken to be to
20.047, 0.028, and 0.031 for the first, second, and th
neighbors, respectively.

The chemical potential is a function of temperature a
doping. It can be calculated self-consistently using the eq
tions

21de1do5
1

N (
k

~^Co
pd,sdCo

sd ,pd&k1^Co
sd,0Co

0,sd&k!

1
1

N (
k

~^Ce
pd,sdCe

sd ,pd&k

1^Ce
sd,0Ce

0,sd&k!, ~13!

whered5de1do connotes the number of holes per two co
per sites Cu~2!. The thermodynamic averages are

^Co
pd,sdCo

sd ,pd&k5
11do
2 F«1k

o 2Ok
dd

«1k
o 2«2k

o f ~«1k
o !

2
«2k
o 2Ok

dd

«1k
o 2«2k

o f ~«2k
o !G ,

^Co
sd,0Co

0,sd&k5
12do
2 F«1k

o 2Ok
pp

«1k
o 2«2k

o f ~«1k
o !

2
«2k
o 2Ok

pp

«1k
o 2«2k

o f ~«2k
o !G ,

^Ce
pd,sdCe

sd ,pd&k5
11de
2 F«1k

e 2Ek
dd

«1k
e 2«2k

e f ~«1k
e !

2
«2k
e 2Ek

dd

«1k
e 2«2k

e f ~«2k
e !G ,

^Ce
sd,0Ce

0,sd&k5
12de
2 F«1k

e 2Ek
pp

«1k
e 2«2k

e f ~«1k
e !

2
«2k
e 2Ek

pp

«1k
e 2«2k

e f ~«2k
e !G , ~14!

where the Fermi functionsf («1k
o ) and f («1k

e ) for the ‘‘even’’
and ‘‘odd’’ bands have the standard form:

f ~«1k
o !5F11expS «1k

o 2m

kT D G21

,

f ~«1k
e !5F11expS «1k

e 2m

kT D G21

. ~15!

Herem is the chemical potential, which we have shifted
10 meV below the saddle point of the singular peak~see Fig.
1! in accordance with the photoemission data.23 Obviously,
the expressions
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k,sd

^Co,e
pd,sdCo,«

sd ,pd&k ,
1

N (
k,sd

^Co,e
sd,0Co,e

0,sd&k ~16!

yield the number of copper and singlet-correlated oxyg
holes per CuO2 site. Their variation during doping leads to
shift in the values of the effective charges at the copper
oxygen sites. The equation for the chemical potential and
number of holes was solved self-consistently. As a result,
obtainedde50.0223 anddo50.3277. The effective charge
at Cu~2! and O~2!, O~3! calculated in this way for the com
pound YBa2Cu3O7 are shown in Table II. Then, knowing th
effective charges at the O~2! and O~3! sites, we can find the
effective charges for O~1! and O~4! from the photoemission
data,24 where the relative numbers of oxygen holes at diff
ent oxygen sites were determined from polarized elect
loss spectra. The available experimental data on the dis
sion relation23 and the curves we have calculated are sho
in Fig. 2.

As noted previously,25 in contrast to a two-dimensiona
band, the lower band«d of a chain is partially filled. As a
consequence, we have a lower effective charge in a C~1!
than in a Cu~2! site. Finally, we estimate the effective charg
of Ba as12.13ueu from the electrical neutrality condition fo
a unit cell, in agreement with photoemission data.26

Lattice atoms occupying sites without an inversion ce
ter can be polarized. Effective dipole moments are induce
these positions by the total electric field from point charg
(Ej

ch), point dipoles (Ej
dip), and quadrupoles (Ej

qd). The
magnitudes of the point dipole moments at the lattice s
were calculated from the following system of self-consiste
equations:

FIG. 1. Density of states of the ‘‘even’’~smooth curve! and ‘‘odd’’ ~dashed!
bands. The vertical line denotes the chemical potential.

TABLE II. Calculated values of the effective point charges~in units of
ueu! and dipole moments~in units of ueuÅ!.

Site in
unit cell

Effective
charge

Dipole moment
in YBa2Cu3O7

Dipole moment in
TmBa2Cu3O7

Cu(2) 1.9994 0.0211 0.0289
O(2) 21.9122 20.1423 20.1342
O(3) 21.9122 20.1768 20.1654
Cu(1) 1.7000 0 0
O(1) 21.7016 0 0
O(4) 21.8042 20.0685 20.0828
Ba 2.1300 20.0241 20.0321
Re(Y,Tm) 3.0000 0 0
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where thea j are the polarizability parameters of the ion
which have been taken from published da
a(Cu21)50.65,27 a(O22)51.717, anda(Ba21)52.24.28

The required lattice sums for formulating Eq.~17! were cal-
culated using the Ewald method. The dipole moments ca
lated in this way are listed in Table II.

3. ELECTRIC FIELD GRADIENTS AT THE OXYGEN NUCLEI
IN YBa2Cu3O7

The following sources contribute to the electric field gr
dient at the oxygen sites:

~1! effective point charges, dipoles, and quadrupoles
the lattice sites;

~2! exchange charges, proportional to the overlap in
grals of the oxygen 2p-shell with the surrounding Cu, Ba
and Y shells;

~3! covalent charges resulting from the virtual transp
of electrons from oxygen 2p-shells to unfilled copper
3d-shells; and

~4! dipole holes that appear in the 2ps-states of oxygen
owing to doping.

The gradients of the electric fields from point charg
(qj ), dipoles (dj ), and quadrupoles (Qj ) were calculated
using the customary formula:

Vab
~1!5~12g`!(

j

]2

]xja]xjb
S qjRj

1
dj•Rj

Rj
3

1
1

6
Qj
lm
3xjaxjb2Rj

2

Rj
5 D . ~18!

Here and in the followingj is the index of a lattice site an
xja andxjb ~wherea,b5x,y,z! are the components of th
radius vector Rj . The Steinhamer antishielding facto
12g`512.287 was taken from Schmidtet al.29

The effects owing to overlap of the 2p-orbitals of oxy-
gen with surrounding shells were taken into account us
the formula

Vab
~2!5

2

5
ueu K 1r 3L

2p
(
j

SNjsSnj l j ,2ps
2 2

1

2
Njpx

Snj l j ,2ppx

2

FIG. 2. Calculated dispersion~smooth curve! and photoemission data23

~points!. The horizontal line denotes the chemical potential.
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Here Snj ,l j ,2ps , Snj ,l j ,2ppx
, and Snj ,l j ,2ppy

are the overlap
integrals of thepz , px , andpy orbitals with thenj l j -shells of
neighboring ions~barium, copper, yttrium! in a local coordi-
nate system with itsz axis directed alongRj . TheNj denote
the occupation numbers of the orbitals.Nj52 for a filled
orbital. The radial wave functions of the 2p-shell of O22

were taken from Clementi and McLean,30 while those of the
3s-, 3p-, and 3d-shells of copper, the 4s- and 4p-shells of
yttrium, and the 4s-, 4p-, 4d-, and 5p-shells of barium were
taken from tables.31,32 The calculated value of̂1/r 3&2p was
3.272 a.u.

The effects of the covalent copper–oxygen bonds w
taken into account by perturbation theory. The correspond
effective Hamiltonian for the quadrupole interaction in t
second quantization representation can be written in the
lowing way:

H52
1

2 (
hh8

~ghk12Shk!^kuhQuk8&gh8k8ah8ah
11H.c.,

~20!

wherehQ is the operator for the interaction of the quadrupo
moment of the nucleus with the copper electrons,ghk is the
electron jump amplitude, andk,k8 and h,h8 denote the
quantum numbers of the 2p-electrons of oxygen and th
3d-electrons of copper, respectively.

The operator~20! yields the following expression for the
electric field gradient at oxygen:

Vab
~3!5

2

5
ueu K 1r 3L

2p
(
j

~22Njs!gnj l j ,2ps@gnj l j ,2ps

12Snj l j ,2ps#
3xjaxjb2Rj

2dab

Rj
2 . ~21!

The ground state of Cu~2! is ux22y2&, so thatNj51. The
wave function of the ground state of Cu~1! can be repre-
sented by the combination

C1u3z22r 2&1C2ux22y2&.

Because of the difference in the Cu~1!–O~4! and Cu~1!–O~1!
distances, we have chosen the following coefficien
C150.9068 andC250.4216.Nj also equals unity, as doe
Cu~2!. The covalence parameterg3d,2ps was taken in accor-
dance with double electron–nuclear resonance data
MgO:Ni21

, where (g3d,2ps1S3d,2ps)
250.085.33

In this analysis, the holes, which are distributed over
oxygen sites, only occupys-orbitals. In particular, the elec
tric field gradient owing to these holes is calculated as f
lows for chain oxygen O~1!:

Vxx
~4!5

4

5
ueu K 1r 3L

2p

nx , Vyy
~4!5Vzz

~4!52
1

2
Vxx

~4! , ~22!

where nx is the number of holes at one oxygen site. T
results of the calculations together with the available exp
mental data are listed in Table III.
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TABLE III. Electric field gradients at oxygen sites (1021 V/m2).
Site in unit cell Vab Vab
(1) Vab

(2) Vab
(3) Vab

(4) (Vab Experimental data4

Vxx 22.615 0.949 21.560 23.796 27.022 25.1
O(1) Vyy 9.373 22.375 3.120 7.592 17.710 17.2

Vzz 26.758 1.426 21.560 23.796 210.688 12.1

Vxx 21.821 1.915 21.032 22.491 23.429 24.0
O(4) Vyy 24.918 1.297 21.032 22.491 27.144 27.6

Vzz 6.739 23.212 2.064 4.982 10.573 11.6

Vxx 8.804 22.041 3.036 2.234 12.033 10.5
O(2) Vyy 23.859 1.579 21.557 21.117 24.954 26.3

Vzz 24.945 0.462 21.479 21.117 27.079 24.2

Vxx 22.774 1.557 21.562 21.117 23.896 26.3
O(3) Vyy 6.994 22.155 3.039 2.234 10.112 10.2

Vzz 24.220 0.598 21.477 21.117 26.216 23.9
4. ELECTRIC FIELD GRADIENTS AT THE Cu(1) AND Cu(2)

th
ox

o
.

he

Here g2s and g3s are the electron jump amplitudes for
e

-

he
SITES

The expressions for the electric field gradients at
copper sites have almost the same form as those for the
gen sites. Some differences arise because the 3d-shells of
copper are not completely filled and the matrix elements
the quadrupole electron–nuclear interaction are different

The contribution from overlap of the inner 3d-shell of
copper and the 2p-shell of oxygen in the Cu~1! site is given
by an expression of the form

Vzz
~2!5

8

5
ueu K 1r 3L

3p

@~S1s
22S1p

2 !22~S4s
22S4p

2 !#,

Vxx
~2!2Vyy

~2!52
24

5
ueu K 1r 3L

3p

~S1s
22S1p

2 !, ~23!

whereS1s andS1p are the overlap integrals of theS3p,2ps

andS3p,2pp states of Cu~1! and O~1!, whileS4s andS4p are
those for Cu~1! and O~4!, respectively. For the Cu~2! sites
the corresponding expressions have the form

Vzz
~2!5

8

5
ueu K 1r 3L

3p

@~S2s
22S2p

2 !1~S3s
22S3p

2 !#,

Vxx
~2!2Vyy

~2!5
24

5
ueu K 1r 3L

3p

@~S2s
22S2p

2 !2~S3s
22S3p

2 !#.

~24!

HereS2s,p andS3s,p are the overlap integrals of Cu~2! with
O~2! and O~3!.

The contribution owing to overlap of the 3d-shell with
the 2p-shell of oxygen and transfer of an electron from t
2p- to the 3d-shell for a Cu~2! site is given by

Vzz
~3!52

2

7
ueu K 1r 3L

3d

$@~S2s
214S2p

2 !1~S3s
214S3p

2 !#

13@g3s~g3s12S3s!1g3s~g3s12S3s!#%,

Vxx
~2!2Vyy

~2!5
24

7
ueu K 1r 3L

3d

~S2s
22S2p

2 !. ~25!
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Cu~2!–O~2! and Cu~2!–O~3! pairs, respectively. Since th
ground state of Cu~1! is the combination
C1u3z22r 2&1C2ux22y2&, the expressions for this contribu
tion change slightly to

Vzz
~3!5

2

7
ueu K 1r 3L

3d

$@~ S̃1s
224S1p

2 !14~ S̃4s
212S4p

2 !#

2~C1
22C2

2!@~C11)C2!
2g1s~g1s12S1s!

14C1
2g4s~g4s12S4s!#%,

Vxx
~3!2Vyy

~3!52
4)

7
ueu K 1r 3L

3d

C1C2$@ S̃4s
21~C1

1)C2!
2g1s~g1s12S1s!#24@ S̃1s

2

1C1
2g4s~g4s12S4s!#%, ~26!

where

S̃4s
25~C1

222C2
2!S4s

2, S̃1s
25@~C11)C2!

222~C1

2)C2!
2#S1s

2.

The valence contribution for the Cu~2! site is calculated us-
ing the customary formula

Vzz
~4!5

4

7
ueu K 1r 3L

3d

~12RQ!nx ,

Vyy
~4!5Vzz

~4!52
1

2
Vxx

~4! , ~27!

and that for Cu~1!, using

Vzz
~4!52

4

7
~C1

22C2
2!ueu K 1r 3L

3d

~12RQ!nx ,

Vxx
~4!2Vyy

~4!5
8)

7
C1C2ueu K 1r 3L

3d

~12RQ!nx , ~28!

whereRQ is the antishielding factor.̂1/r 3&3p582.725 a.u.
and ^1/r 3&3d58.265 a.u. were calculated on the basis of t
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TABLE IV. Electric field gradients at copper sites (1021 V/m2).
Site in unit cell Vab Vab
(1) Vab

(2) Vab
(3) Vab

(4) (Vab Experimental data5

Vxx 13.698 21.488 9.413 229.249 27.626 27.4
Cu(1) Vyy 24.287 5.084 23.270 10.099 7.626 7.5

Vzz 29.411 23.596 26.143 19.150 0.000 20.1

Vxx 26.393 21.754 24.431 19.046 6.468 6.2
Cu(2) Vyy 24.774 22.663 24.431 19.046 7.112 6.2

Vzz 11.167 4.416 8.928 238.092 213.580 212.4
Hartree–Fock wave functions for Cu21
.
30 The electric field
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gradients calculated with 12g`512.34 andRQ50.17 are
listed in Table IV. Experimental NQR data are also sho
there in the last column.

5. CRYSTAL ELECTRIC FIELD AT THE RARE EARTH ION

The crystal electric field at the Re ion can be written
the following standard form:

HCEF5(
k,q

Bk
q^JiQkiJ&Ok

q , ~29!

where J is the total momentum of the ground stat
^JiQkiJ& are the Stevens factors,Ok

q are the equivalent op
erators, andBk

q are the so-called crystal electric field param
eters. For HTSC materials they can be determined fr
NMR and inelastic neutron scattering measurements. T
we have an additional possibility of verifying our picture
the distribution of charges and dipoles in ReBaCuO.

The crystal electric field parameters were calculated
the sum of several contributions. Since the computatio
procedure has been described elsewhere,34,35we omit the de-
tails here and only present the results in Table V. In this ta
Bk
q~I!, Bk

q~II !, andBk
q~III ! denote the contributions from poin

charges, dipoles, and quadrupoles, respectively,Bk
q~IV !, the

contribution from overlap of the 4f -shell of thulium with the
2p-shells of oxygen,Bk

q~V!, the contribution arising from the
effects of exchange overlap and virtual transport of an e
tron from the 2p-shell of O into the 4f -shell of Tm, and
Bk
q~VI !, the contribution owing to transport of an electro

from the 2p-shell of O into the unfilled 5d-shell of Tm.
The NMR spectrum of the Tm ion, with a singlet groun

state, can be described using a spin Hamiltonian of the t

H I5\(
i

g iH i•I i , ~30!

21
TABLE V. Parameters of crystal electric field in TmBa2Cu3O7 (cm ).
n

,

m
s,

s
al

le

c-

e

tally measured effective gyromagnetic ratios for Tm nuc
in the crystal andg I is the gyromagnetic ratio for a ‘‘free’’
nucleus. For the van Vleck paramagnetic mater
TmBa2Cu3O7, the parametera i in the singlet ground state
can be calculated as follows:

a i5
2gJmBAJ

g I\
(

n

u^guJi un&u2

En2Eg
. ~31!

The energiesEn can be found by diagonalizing the Hmilto
nian ~29!. HereEn and un& are the energies and wave fun
tions of the excited states of the Tm ion. The symbolg
denotes the singlet ground state,gJ the Lande factor,mB the
Bohr magneton, andAJ the hyperfine interaction constant fo
the free Tm ion. Theg i and the energy intervals are know
from experimental NMR22 and inelastic neutron scatterin
data.21 The results of our calculations of the crystal elect
field parameters, theg i , and the Stark splitting energies a
listed in Table VI. As can be seen from the table, the cal
lated values are in good agreement with the available exp
mental data.
6. CONCLUSION

It can be seen from Tables III and IV that our propos
picture of the electronic structure of YBa2Cu3O7 explains the
available experimental data on the electric field gradient
the Cu~1!, Cu~2!, O~1!, O~2!, O~3!, and O~4! sites just as
well as the nuclear magnetic resonance data and data o
inelastic scattering of neutrons on Tm ions
TmBa2Cu3O7. This supports the band structure model us
here. The basis for the success in simultaneously explain
the entire set of NMR/NQR and photoemission data is
unusual behavior of the spectral weight~‘‘capacity’’ ! of the
singlet band. As can be seen from Fig. 1, in our model,
bonding band is roughly half full by the time there are 0.1
Parameter Bq
k(I) Bq

k(II) Bq
k(III) Bq

k(IV) Bq
k(V) Bq

k(VI) (Bq
k

B0
2 208.69 2192.29 26.00 211.41 37.91 22.32 59.22

B2
2 110.84 59.15 1.97 236.97 23.44 20.83 157.62

B0
4 287.82 24.26 - 20.40 2171.20 22.23 2245.12

B2
4 26.90 1.67 - 211.38 22.21 0.02 39.42

B4
4 477.38 155.94 - 293.70 786.53 10.32 1284.10

B0
6 2.85 1.43 - 22.29 30.09 - 32.07

B2
6 23.11 28.64 - 3.11 27.90 - 216.54

B4
6 104.22 15.21 - 257.06 747.73 - 810.10

B6
6 1.42 1.15 - 22.32 6.04 - 6.31
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TABLE VI. g i /2p ~in kHz/Oe! and Stark splitting energies~in cm21!.
holes per copper site. It is precisely because of this tha
was possible to match the distribution of charges and
poles, needed to explain the NMR/NQR data, with the p
toemission data.

The principal features of the proposed band structure
the following: in the dielectric YBa2Cu3O6 the formal va-
lence of the copper ions is 2 for Cu~2! and 1 for Cu~1!. From
the standpoint of the band structure, the lower Hubbard c
per band«d in a chain is empty, while the band«d in a plane
is completely filled. With doping, because of the strong e
change interaction between copper and oxygen holes in
plane, a new singlet band«pd5Vpd2«d develops in the
plane which is also filled with extra holes. At the same tim
some of the extra holes begin to fill the«d band in the chain.
As a result, the effective charge at a Cu~1! position begins to
rise, but does not reach 2.

This picture of the band structure answers our ques
regarding the symmetry of the extra holes. In fact, why
the oxygen holes in the copper planes have as-character?
This is hard to understand from the conventional standpo
since their Coulomb repulsion from neighboring copp
holes is much stronger than fromp-holes. Nevertheless
photoemission24 and NMR data5 showed that the holes ar
mainly in s-orbitals. And only in this case can we descri
the electric field gradient at the oxygen sites. Our comm
on this is the following: among the oxygen«p-states the
p-orbitals actually lie below thes-orbitals, as has bee
noted elsewhere.36 But, as opposed to the earlie
discussion,36 in our case the ordinary oxygen band is emp
while extra holes fill the newly created«pd band, which lies
below the oxygen band. This band appears because of st
electron correlations.

Finally, we wish to mention the importance of interpl
nar tunnelling. If we neglect it, then the number of hol
arriving at a single site of the unit cell increases by roug
a factor of two, since in this case there are two degene
bands from two planes, each of which must be filled to
saddle point of the singular peak in the density of sta
However, the distribution of charges and dipoles obtained
this distribution of holes cannot produce reasonable ag

Parameter Calculated values Experimental data21,22

0 0
115 106
127 127
198 -
213 208
280 -

En 638 -
678 -
701 -
708 -
728 -
729 -
767 -

gx/2p 5.115 5.254
gy/2p 6.136 6.593
gz/2p 2.409 2.254
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tal data discussed above.
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Theory of retardation of magnetic domain walls in rhombic magnetic materials

E. G. Galkina, B. A. Ivanov, and K. A. Safaryan

Institute of Magnetism, Ukrainian National Academy of Sciences, 252680 Kiev, Ukraine
~Submitted 17 April 1996!
Zh. Éksp. Teor. Fiz.111, 158–173~January 1997!

We calculate the retardation of a magnetic soliton describing a magnetic domain wall by using
the generalized phenomenological theory of relaxation. We show that in this theory,
based on the real dynamical symmetry of magnetic materials, the dissipation function has a
different structure for high and low wall velocities. Finally, we calculate the viscous force of the
wall in the Walker model and show that certain features, not discussed in the literature,
emerge even when the generalized theory is applied to this simple model. In particular, the
dependence of the viscous friction force on the wall velocity may be highly nonlinear and regions
of unstable motion may appear. ©1997 American Institute of Physics.
@S1063-7761~97!01101-3#

1. The problem of the dynamics of topological solitons Hereg is the gyromagnetic ratio, the vectorF represents the
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that describe magnetic domain walls occupies an impor
place among the nonlinear problems of the physics of m
netism~see the reviews in Refs. 1–4!. An important param-
eter in describing the dynamics of solitons is the visco
friction force f that is exerted on a soliton moving with
velocity v, i.e., f52h (v)v. Calculations of the viscous fric
tion coefficienth (v) for a magnetic domain wall based o
the Landau–Lifshitz equation with the usual relaxation te
of the Hilbert type lead to contradictions with the experime
tal data~see a discussion of this aspect in Refs. 2 and!.
Bar’yakhtar5,6 suggested a generalized phenomenolog
theory of relaxation in ferromagnets based on allowing
the real dynamical symmetry of magnetic materials. He
troduced relaxation terms of different origin~exchange and
relativistic!, which resulted in correct expressions for the d
pendence of the magnon damping constant on the wave
tor and made it possible to describe several experiment
the dynamics of magnetic inhomogeneities. Bokovet al.7

noted that this theory allows for a quantitative description
the results of their measurements of the dependence o
viscosity coefficient of a magnetic domain wall on th
strength of a magnetic field perpendicular to the easy axi~a
specific calculation can be found in Ref. 8!. Exchange relax-
ation, considered in Ref. 9, made it possible to explain
results of the experiments10 on retardation of a Bloch point
These facts suggest that the generalized theory can prov
quantitative description of nontrivial relaxation phenomen

We calculate the viscous force of a magnetic dom
wall in the Walker model and show that certain features,
discussed in the literature, emerge even when the genera
theory5,6 is applied to this simple model. In particular, w
find that the dependence of the viscous friction force of
wall velocity may be highly nonlinear and regions of u
stable motion may appear.

2. In accordance with Bar’yakhtar’s results,5,6 we write
the Landau–Lifshitz equation for the magnetization vec
M of a ferromagnet as

]M

]t
52g@M3F#1gM0@L3F#2lea

2gM0¹
2F. ~1!

87 JETP 84 (1), January 1997 3-378/97/010087-
nt
g-

s

-

l
r
-

-
c-
in

f
he

e

e a
.
n
t
ed

e

r

effective field of the ferromagnet~F52dW/dM , with
W5W$M % the ferromagnet’s energy written as a function
of the magnetization vector!, le is the exchange relaxatio
constant, andL is the tensor of relativistic relaxation con
stants~see below and Ref. 6!. We base our reasoning o
expressions of the type

W$M%5E dr H f ~M2!1
a

2
~¹–M !21wa~M !J , ~2!

where a is the inhomogeneous exchange constant,f (M2)
describes the isotropic exchange interaction determining
absolute value of magnetization, andwa~M ! is the energy of
relativistic interactions, which incorporates the anisotro
energy and the energy of the demagnetizing field. With
lowance for~2!, we arrive at the following expression for th
effective fieldF:

F52
d f

dM
m1a¹2M2

]wa

]M
, ~3!

wherem5M /M . Clearly, F has a longitudinal part and
transverse part:

F5F im1F' , ~m•F'!50. ~4!

The expression forF i can be reduced to

F i52
d f

dM
1a¹2M2a~¹•m!2M2Sm ]wa

]M D52
d f

dM

1a¹2M2
]w

]M
, ~5!

where we have introduced the quantity

w5
a

2
M2~¹•m!21wa~M !. ~6!

This is an expression for the energy of a ferromagnet an
important when one writes the Landau–Lifshitz equati
without allowing for variations in the length of the magne
zation vector.

87$10.00 © 1997 American Institute of Physics



Let us discuss the structure of the relativistic relaxation
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term. Since here we consider ferromagnets whose symm
is no lower than rhombic, the tensorL can be chosen in
diagonal form,L5diag(lx ,ly ,lz), with the x,y,z axes di-
rected pointing along the principal axes of the ferromagn
For a uniaxial ferromagnetlx5ly5l and, if we allow only
for intrinsic relaxation processes,lz50, in view of conser-
vation of thez-projection of the total magnetization.6 But if
impurity relaxation~say, on rare-earth ions for which th
nearest-neighbor symmetry is lower than the uniaxial but
different nonequivalent ion positions are distributed w
equal probability! is taken into account, the properties ofL
are different. For instances, the symmetry of the tensorL for
ferrite garnets is cubic, i.e.,lx5ly5lz ~see Ref. 11!. For
this reason we select the tensorL in the form

L5l diag~1,1,«!, ~7!

with the value of the constant« specified later. Equation~1!
makes it possible to write the dissipation function of a fer
magnet as a functional of the effective fieldF:

Q5
1

2
gME dr$l ikFiFk1lea

2~¹•F!2%. ~8!

Equation~8! is not very suitable for analyzing the reta
dation of a magnetic domain wall since the dissipation fu
tion Q is defined in terms of the effective fieldF rather than
in terms of the time derivative of magnetization. To calcula
the rate of dissipation of the domain-wall energy,dE/dt5
22Q, we must expressF in terms ofm and its derivatives.
In view of ~4!, F can be written as the sum of two term
corresponding to the transverse and longitudinal magne
tions. Calculating the transverse component in the princ
approximation in the relaxation constant only requires us
the nondissipative variant of~1!, with the result that5,6

F'5
1

g Fm3
]m

]t G . ~9!

The longitudinal component ofF is related to variations in
the length of the magnetization vectorM , so that the
Landau—Lifshitz equation without dissipation is of no he
The point is that while in the nondissipative approximati
Eq. ~1! has the integral of motionM25M0

25const and can be
written as an equation for the unit vectorm, with a dissipa-
tion term of general form one must also allow for variatio
in uM u. As noted in Refs. 8, 9, 12–14 and as demonstra
below, the calculation ofF i constitutes the main problem i
analyzing the dissipation of solitons within the generaliz
phenomenological approach.

3. The equation forF i can be obtained by multiplyingm
into Eq. ~1! and using the explicit form ofF' . The result is

2lea
2¹2F i1@l~m!1lea

2~¹•m!2#F i52
1

gM0

]M

]t

1
1

g Sm•LFm3
]m

]t G D2le

a2

g Sm•¹2Fm3
]m

]t G D ,
~10!
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tribution of relativistic relaxation to the right-hand side
Eq. ~10! is nil.

Note that no approximations have been introduced w
the exception of formula~9! for F' . The only requirements
arel!1 andle(a/D)

2!1 ~whereD is the characteristic in-
homogeneity scale!, which are met by almost all magneti
materials.

If only these inequalities are taken into account,F i is
found by solving an inhomogeneous linear differential eq
tion whose right-hand side is determined not only by t
nature of the solution for the unit vectorm, but also by the
variation in the length of the magnetization vector. For t
majority of solitons without singularities there is an add
tional small parameter, the variation of magnetization
magnitude,m5M2M0!M0 ~actually the small paramete
is the longitudinal susceptibilityx!. Taking all this into ac-
count, we can write]M /]t in general form in terms of the
function w introduced by Eq.~6!. To simply matters, we
write the energy of homogeneous exchange interaction a

f ~M !2 f ~M0!5
1

2

d2f ~M0!

d2M0
~M2M0!

2

5
1

2x
~M2M0!

2, ~11!

where we have allowed for the fact thatd f /dM50 at
M5M0 and introduced the longitudinal susceptibility ofx a
ferromagnet under homogeneous magnetization.

Using Eq.~5! and assuming thatx@1 anda¹2m!m/x,
we can writeF i in terms ofm and]w/]M as follows:

F i52
m

x
2

]w

]M
. ~12!

Substituting~12! into Eq. ~10! yields the desired equa
tion for findingF i atM'M0 :

2
x

gM0

]F i

]t
2lea

2¹2F i1@l~m!1lea
2~¹•m!2#F i

5
x

gM0

]

]t F ]w

]M0
G1

1

g Sm•LFm3
]m

]t G D
2

lea
2

g Sm•¹2F]m]t G D . ~13!

Here we can setM5M0 in all the parts of the equation
Thus, solving the equation forF i and calculating the contri-
bution of F i to the dissipation function is equivalent to a
lowing for the variations inuM u.

The same equation for the case in whichwa5bMz
2 and

lx5ly5lz has been derived in Refs. 14 and 15. Genera
when

w5
a

2
M2~¹•m!21(

n
wn~M ! ~14!

~wn~M ! is the nth-order anisotropy, withwn~M !}Mn!, we
have

]w

]M
5aM ~¹•m!21

1

M (
n

nwn~Mm!. ~15!
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Let us now examine Eq.~13!, which is central to the
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subsequent discussion. As we proceeded from Eq.~1! for M
to Eq. ~13!, the problem acquired not only spatial dispersi
but also temporal dispersion. Indeed, as we show belowF i

changes dramatically as we go from low soliton velociti
v,vc , to high velocities,v.vc , with vc the characteristic
value of the velocity defined by the relationship

vc
gM0

]Fi

]j
'max$l~m!F i , lea

2~¹•m!2F i ,

lea
2¹2F i%.

The value ofvc for a magnetic domain wall in a ferromagn
will be specified later.

Bearing in mind the equation forF i , we can now for-
mulate a complete approach to describing the dynamics
relaxation of magnetization perturbations to first order in
small parametersl andx. The approach is based on writin
the equation for the unit magnetization vectorm, which in
view of Eq. ~1! has the form

]m

]t
52g@m3F#1gM0$LF2m~m•LF!%

1gM0lea
2$m~m•¹2F!2¹2F%, ~16!

where in the dissipation terms

F5
1

g Fm3
]m

]t G1mF i ,

and F i is determined by Eq.~13!. Actually, the system of
equations~13! and~16! contains three independent equatio
for three quantities, for which we can selectF i andm or,
more precisely,F i and the angular variables of vectorm, the
anglesu andw:

mz5cosu, mx5sin u cosw, my5sin u sin w.
~17!

Using this system of equations, we can analyze the
sipation of arbitrary nonlinear magnetization wave
Bar’yakhtaret al.14 examined two-parameter solitons of th
bion type and non-one-dimensional solitons, including to
logical solitons. But since we are interested only in sim
traveling-wave solutionsM5M ~r2vt!, where v5const is
the wave velocity, calculating the friction force requires on
writing the formula for the dissipation function. The quanti
Q determines the energy dissipation rate, and for sim
traveling-wave solitons the friction force is

f52h~v !v, h~v !5
2Q

v2
. ~18!

Employing~9!, we can write the formula for the dissipa
tion function in terms ofF i , m, and]m/]t as

Q5
gM0

2 E qdr ,

where the dissipation function densityq is given by a rather
cumbersome formula:
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i g2 S F ]t G F ]t G D
1
2F i

g H Sm•LFm3
]m

]t G D
2lea

2Sm•¹2Fm3
]m

]t G D J
1lea

2H ~¹F i!
21F i

2~¹•m!21
1

g2

3S ¹•Fm3
]m

]t G D 2J . ~19!

The dissipation function densityq contains terms quadrati
in F i or ]m/]t and terms bilinear inF i and]m/]t.

To analyze the relaxation of an arbitrary soliton of t
simple-wave type by using Eqs.~13! and~16!, we must first
establish its structurem5m0~j!, with j5r2vt, as a solution
of the Landau–Lifshitz equation~16! for the unit vectorm at
L50 andle50. Then, using the explicit form ofm0~j!, we
must build Eq.~13! for F i . Solving this equation, we can
write the explicit form of the dissipation function solely i
terms ofm0~j! and dm0~j!/dj. After this we can use the
formula f52(2Q/v2)v to calculate the friction force acting
on the wall.

Equation~13! is a linear partial differential equation with
a right-hand side, and its solution can always be written
the sum of the general solution of the corresponding hom
geneous equation and a particular solution of the inhomo
neous equation. Clearly, the general solution of the homo
neous equation contributes nothing to the dissipat
function, so that any particular solution of Eq.~13! will do.
But finding such a solution in the general case is a diffic
problem. Various approximate solutions of this proble
have been discussed in Refs. 8, 9, 12–14. The problem
plifies considerably if the exchange relaxation constan
small in a certain sense, i.e.,

lea
2~¹•m!2, lea

2~¹F i!
2/F i

2!l. ~20!

Such an approximation reflects the actual situation
various ferromagnets: weakly anisotropic yttrium iron ga
nets, and epitaxial films of ferrite garnets in magnetic-bub
devices. The physical reasons for the smallness are diffe
for these cases: for yttrium iron garnets it is the smallnes
the magnetization gradients in the magnetic domain w
and for materials with magnetic bubbles it is the large va
of the constantl ~see Refs. 8, 12, and 13!.

If the conditions~20! are met, Eq.~13! for F i simplifies
and becomes first order in time:

x

gM0

]F i

]t
1l~m!F i5

x

gM0

]

]t F ]w

]M0
G1

1

g H Sm•LFm
3

]m

]t G D2lea
2Sm•¹2Fm

3
]m

]t G D J . ~21!
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If the soliton’s velocity is low,v,vc , and the charac-
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teristic value ofvc is given by the formula

vc5
gMlD

x
, ~22!

whereD is the characteristic soliton width, we can drop t
term with ]F i/]t are write the solution explicitly:

F i52
1

l ikmimk
H x

gM0

]

]t F ]w

]M0
G1mil ikFm3

]m

]t G
k

2lea
2Sm•¹2Fm3

]m

]t G D J . ~23!

Then the formula for the dissipation function in the case
slow variations of the magnetization~say, when the domain
wall velocity v is lower thanvc! can be written in terms o
only m and its derivatives, withoutF i . PluggingF i in the
form ~23! into the expression for the dissipation functio
density and performing straightforward but cumberso
transformations, we get

Q5
M0

2g E dr H l ikFm3
]m

]t G
i

•Fm3
]m

]t G
k

2
1

l ikmimk
S l ikmiFm3

]m

]t G
k

D 2

1
1

l ikmimk
S x

M0

]

]t F ]w

]M0
G D 2

1lea
2Sm•¹2Fm3

]m

]t G D J . ~24!

Here we have kept only the direct contribution of the e
change relaxation, i.e., we have ignored terms that are s
due to ~20!. Thus, when magnetization varies slowly, th
dissipation function consists of three terms:

Q5Qr1Qe1Qx , ~25!

each of which allows for a simple physical interpretatio
The quantityQr is determined by the first two terms on th
right-hand side of Eq.~24!, is proportional to the first powe
of the relativistic constantl, and can be interpreted as th
direct contribution of relativistic relaxation. Note, howeve
thatQr is not equal tol ikF' iF'k ~the first term in~24!! and
contains contributions fromF i ~the second term in~24!!. If
we express the magnetization vector in terms of angular v
ables and select the tensorL in the form diag~l,l,lz!, then
Qr can be reduced to

Qr5
M0

2g E dr H lS ]u

]t D
2

1
llz sin

2 u

l sin2 u1lz cos
2 u S ]w

]t D
2J . ~26!

At l5lz , whenl ik5ld ik , the expression in braces
l$~]u/]t!21sin2 u~]w/]t!2%, and this expression can be r
duced to the dissipation function in Hilbert form. But
lz50, Qr contains no term with~]w/]t!2 for all values ofu.
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ation of spin waves in ferromagnets with continuous deg
eracy~ferromagnets of the easy-plane type!, can only be ob-
tained ifF i is consistently taken into account. If we use t
formula lik@m3~]m/]t!#i•@m3~]m/]t!#k , the term with
~]w/]t!2 is present inQr , for instance, in the cone phase
an easy-plane ferromagnet,6 which leads to incorrect result
for the spin-wave damping constant.

The exchange dissipation functionQe written in terms of
angular variables can be found in Ref. 14, and we do
write it here. We merely note that in the limit of weakl
excited states of an easy-plane ferromagnet~when u→p/2
and¹u→0!,

Qe→
M0

2g E dr S ¹F]w

]t G D
2

,

i.e.,Qe has the same structure as the dissipation functionQel

in elasticity theory,

Qel}E dr S ¹F]u]t G D
2

,

with u being the medium’s displacement vector.16 Halperin
and Hohenberg17 selected this form of dissipation functio
for a hydrodynamic description of spin waves in easy-pla
magnetic materials.

Finally, if we allow for ~23!, the third term inQ can be
written as

Qx5
M0

2g E dr H x2

l sin2 u1lz cos
2 u J H d

dt Fa~¹u!2

1a sin2 u~¹w!21S 1

M0
2D(

n
nwn~u,w!G J 2, ~27!

wherewn~u,w! describesnth-order anisotropy. This term de
termines the contribution of variations in the length of t
magnetization vector to the soliton dissipation. Bar’yakh
et al.13 were the first to examine this contribution, which
nonzero only if the longitudinal susceptibilityx of the ferro-
magnet is finite. In this termx2/l acts as the ‘‘effective re-
laxation constant.’’

Note that the same combination emerges in the desc
tion of longitudinal or slow relaxation in magnetic materia
with rare-earth ions both for linear excitations, or magnons18

and for mobile magnetic domain walls.11

With all the difference in the physical processes in the
problems, there is a lot in common. In both cases relaxa
occurs because the dynamical variable~the normalized mag-
netizationm in our case and the iron-sublattice magnetiz
tion MFe in Ref. 11! takes the variable with pure relaxatio
dynamics~the lengthM of the magnetization vector and th
rare-earth-sublattice magnetizationMR! out of equilibrium.
Here the contribution to dissipation increases both with
corresponding susceptibilityx and with a decrease in th
value of the relaxation constantl. The effective relaxation
constant inQx is proportional to the square of the sma
parameterx, but it also contains the small parameterl in the
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magnetic domain wall in ferromagnets with low dissipati
can become significant.

4. Now let us calculate the friction force acting on
moving topological soliton, the magnetic domain wall in
ferromagnet. In the simplest model of a ferromagnet, wh
allows for an exact solution in the nondissipative approxim
tion, we examine the relaxation of the magnetic domain w
at low and high velocities and show the effect of tempo
dispersion on the soliton relaxation in the process.

Studying the dynamics of a magnetic domain wall tha
moving with a considerable velocity is a fairly complicate
problem for an arbitrary model of a ferromagnet, and
general solution to this problem is unknown. The only mo
for which there is a known exact solution describing a m
netic domain wall that moves with any velocity lower tha
what is known as the limit velocity is described by an a
isotropy energywa that is a quadratic form in the magnet
zation components.1,4We use the expression characteristic
a rhombic ferromagnet:

wa5
1

2
~bMx

21b8My
2!5

M0
2

2
b sin2 u~11r sin2 w!.

~28!

Let us send thez axis along the easy-magnetization ax
and they axis along the hard-magnetization axis, so th
b8.b.0. The angular variables are chosen in the ordin
manner~see Eq.~17!!. In writing formula ~28! for wa in
angular variables we haver5~b82b!/b. Note that~28! is
also used for uniaxial ferromagnets if the energy of the
magnetizing fields is taken into account in the local~Winter!
approximation, in which caser54p/b51/q, whereq is the
quality factor introduced for materials with magnetic bubb
~see, e.g., Refs. 2 and 4!.

As shown by Walker~see the reviews in Refs. 1–4!,
with the energy given by~28! the Landau–Lifshitz equation
has an exact solution of the formw5w05const andu5u~j!,
with j5x2vt, where

cosu56tanh
j

D~w0!
, D~w0!5

D

A11r sin2 w0

,

D5Aa

b
. ~29!

The value ofw0 is determined by the velocityv:

v

gM0Aab
5

r sin w cosw

A11r sin2 w
. ~30!

Equation~30! has a solution only ifv,vW , wherevW is
the Walker limit value~the Walker limit!, which vanishes in
the limit r→0 ~i.e., for a purely uniaxial ferromagnet! and
reaches its maximum~which coincides with the minimum
phase velocity of magnons! whenr@1:

vW5gM0Aab~A11r21!

5gM0H ~b8/2b!Aab, b8!b,

Aab8, b!b8.
~31!
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of the magnetic domain wall during the wall’s motion an
assume thatD 5 Aa/b. But if r@1, under a change in the
wall velocity the wall thickness changes considerably, fro
D 5 Aa/b at v50 to DW5 Aa/b8 5 D/Ar ! D atv5vW .

Let us calculate the friction force acting on a magne
domain wall of type~29! whenv,vc , i.e., when we can use
the dissipation function in the form~24!–~27!. The contribu-
tion of relativistic relaxation for this solution is complete
independent of the relationship between the parametel
and lz in the tensor of dissipation constants, since
w5constQr is given by the same expression as in the st
dard theory with the relaxation term in the Landau–Lifsh
or Hilbert form:

h r~v !5
2l rM0

gD~v !
. ~32!

Here and in what follows we use the notatio
D(v)5D[w0(v)], wherew0(v) is defined in Eq.~30!. For
exchange relaxation the same result can be obtained by u
Eqs.~41! and~43! of Bar’yakhtar’s paper,5 in which case the
thicknessD of the magnetic domain wall must be replac
by D(v):

he~v !5
2lea

2M0

3gD3~v !
. ~33!

The termQx given by ~27! can be written in the form

f x5hx~v !v, hx~v !5
64M0

15gD~v !

x2b2

^l&
,

^l&5
*0

pdu sin3 u cos2 u

*0
pdu@sin3 u cos2 u#@l sin2 u1lz cos

2 u#21 ,

~34!

with ^l&5l at l5lz and ^l&512l/5 atlz50.
The quantitieshr(v), he(v), and hz(v) can be inter-

preted as the nonlinear viscous-friction coefficients for
magnetic domain wall. Forr!1, a condition characteristic o
standard materials with magnetic bubbles, theD vs.v depen-
dence is weak, and in the principal approximation inr both
hr(v) andhe(v) are independent ofv.

But if we examine the case in whichr@1 ~which corre-
sponds to an easy-plane ferromagnet with a weakly an
tropic plane of soft magnetization and can by used to
scribe yttrium iron garnets!, hr(v), hx(v), and especially
he(v) are velocity-dependent due to theD vs.v dependence,
and the values ofhr andhe atv5vW are much higher than a
v50:

h r ,x~vW!

h r ,x~0!
5r1/2,

he~vW!

he~0!
5r3/2.

For the velocityv of forced motion of a magnetic do
main wall in a driving fieldH parallel to thez axis we can
write

vh~v !52M0Hz .

By solving this equation we can easily build the desir
dependencev5v(H) for various relationships among th
constantsr, l, andle(a/D)

2. Clearly, forr!1 thev vs. ~Hz!
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exchange and relativistic relaxations are indistinguisha
But whenr@1, thev vs. Hz dependences, with one of th
contributions~exchange or relativistic! being dominant, dif-
fer considerably~Fig. 1!. Note that for this nonlinearity to
affect Eqs.~32!–~34!, which were obtained forv!vc , the
following inequalities must be satisfied simultaneously:

r@1 and vW!vc .

5. Now let us examine the case in which the velocit
are not low,v>vc . Here the expression~23! for F i and Eqs.
~25!–~27! for the dissipation function are inapplicable, an
one is forced to solve Eq.~21! and calculate the dissipatio
function by using the general expression~19!. As noted ear-
lier, in this case the dissipation function cannot even be r
resented by a sum of three terms likeQr , Qx , andQe , since
the dissipation function density~19! contains terms quadrati
in F i or ]m/]t and terms bilinear inF i and]m/]t.

If we use the Walker solutionw5const anddw/dj50
and select the tensor of relativistic dissipation constants
the formL5l diag~1,1,«!, all terms in~19! that are bilinear
in F i and]m/]t vanish. Indeed,

Sm•LFm3
]m

]t G D5
]w

]t
~l2lz!cosu sin2 u. ~35!

The fact that the term corresponding to exchange relaxat
~m• ¹2@m3~]m/]t!#!, vanishes for the Walker solution ha
been noted in Ref. 15. The same is true of Eq.~13!: all terms
on the right-hand side vanish except (]/]t)[ ]w/]M ]. With
allowance for these simplifications, we can again write
dissipation function as the sum of three terms of the ty
~25!, Q5Qr1Qe1Qx . Furthermore,Qr andQe have the
same form as whenv!vc .

Note that the above is true only for a specific Walk
solution, since the coefficient of~]w/]t!2 in Qr can be shown
to have different forms for high and low velocities.

The expressions forQx at v!vc andv>vc differ con-
siderably. Allowing for the specific form of the Walker so
lution, we can write Eq.~21! for F as follows:

2
vx

gM0
F81l~u!F5

vx

gM0
@2bM0 sin

2 u#8, ~36!

wherel~u!5l~sinu1« cos2 u!, and the prime stands for th
first derivative with respect toj.

If we assume here thatv→0, we can use the simpl
formula ~23!. However, the Walker solution makes it po
sible to do a thorough analysis of the problem for all velo
ties v,vW . Indeed, if we proceed from differentiation wit
respect toj to differentiation with respect tou via the for-
mulaD(du/dj)5sinu, we can write the above equation a

dFi

du
2

k~u!

sin u
F524bM0 sin u cosu,

wherek~u!5gM0l(u)D/vx .
This provides us with the explicit dependence ofF on u

in the form of integrals. The solution of Eq.~36! has the
form
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0
0

3H expF E
z

u dck~c!

sin c G J dz.

This solution can be shown to satisfy the conditio
F i~0!50 andF i~p!50, i.e.,F i vanishes far from the domain
wall. However, the asymptotic behavior ofF i~j! asj→` is
not the same as that ofj→2`. This is obvious, since Eq
~36! and its solution possess a certain symmetry under
substitution of 2j for j only in two limiting cases:
F i(j)52F i(2j) for v50, lÞ0, and 1/k50; and
F i(j)5F i(2j) for vÞ0, l50, andk50. Using the formula
for F~u!, we can calculateQ as a function of the domain wal
velocity over the entire velocity range fromv50 to v5vW .
It is impossible, however, to express the result by a sin
analytic formula, so we limit our discussion to analyzing t
asymptotic behavior in velocity.

Clearly, what is important here is the value of the p
rameterk5gM0lD/vx, which can be represented by th
ratio of the domain wall velocityv to a certain characteristic
velocity vc ~derived above from qualitative estimates!:

k5
vc
v
, vc5

gM0lD

x
. ~37!

If v!vc , we can write the solution as a series expans
in powers ofv/vc . In the linear approximation we easily fin
that

F i5
vx

gM0D~v !l~u!
4M0b sin2 u cosu,

which coincides with the result that follows from~23!. Plug-
ging this expression into the formula forQx , we find that the
friction force f x is proportional to the domain wall velocityv
and can be written in the form~34!.

When v@vc , there is another way of simplifying Eq
~36!. If we drop the small factorkF i , we can write
F i(u)522bM0 sin

2 u, from which we find that the dissipa
tion functionQx is given by

Qx5
g

2 E
0

p

l~u!4b2M0D~v !sin3 u du.

In this caseQx is velocity-independent, except for th
dependence originating fromD(v). Hence the friction force
f x for v@vc is proportional to 1/v:

f x5hx*
vc
2

v
, hx*5

16b2x2M0D~v !

15gD2 ~4l1lz!. ~38!

At v'vc the values specified by~34! and ~38! coincide
in order of magnitude. Thus, if the limiting domain-wall ve
locity vW@vc , the contribution to the force of friction of the
domain wall due to variations in the length of the magne
zation vector exhibits an anomalous~by comparison withf r
and f e! dependence on the domain wall velocity. This depe
dence cannot be reduced to replacingD(v) by D in the for-
mulas obtained forv→0 and is determined by different for
mulas forv>vc and forv<vc :
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f x5H vhx , v!vc ,

vc
2hx* /v, v@vc .

~39!

Such retardation behavior of the domain wall forv@vc
can be described as ‘‘turning off’’ the corresponding con
bution~Fig. 2!, and is a manifestation of temporal dispersio
The effect emerges because two fundamentally differ
modes of motion can be distinguished in the motion of
magnetizationM5Mm: the weakly dissipative dynamics o
m, and the diffusion ofm5M2M0. In studying a nonlinear
wave of a domain-wall type with obvious localization
magnetization over distancesDx ' Aa/b, two characteristic
times are clearly distinguishable: the ‘‘dynamical’’ tim
tdyn5Dx/v, and the characteristic diffusion time of perturb
tion variation,tdiff5x/gM0l. Clearly, a comparison of thes
times leads to the estimate ofvc described above. The non
linearity in thef x vs.v dependence affects the dependence
the velocity of forced motion of the wall on the fieldHz ~Fig.
3!.

6. Let us now summarize the results of calculating t
retardation of a magnetic domain wall in the Walker mod
For vW,vc the full friction force can be written as

f5vH h r
~0!F D

D~v !G1he
~0!F D

D~v !G
3

1hx
~0!F D

D~v !G J , ~40!

with ha
~0! the viscosity coefficients atv50, and its velocity

dependence is described only by theD vs. v dependence
This dependence is important whenr@1 ~see Eqs.~29! and
~30!!, but it is negligible whenr!1. In the latter case
~magnetic-bubble materials! we can write D(v) 5 D0

5Aa/b.
But whenvW@vc ~in real magnetic materials both in

equalities may hold!, for v,vc the f vs. v dependence is
described by the same expressions, in which we putD(v)
5 Aa/b. Thus, whenvW@vc andv!vc , the f vs.v depen-
dence is linear:

f5v@h r
~0!1he

~0!1hx
~0!#. ~41!

For vW.v@vc , however,hx is ‘‘turned off’’ and

FIG. 1. Domain wall velocity as a function of the driving fieldHz ~in
relative units! when either relativistic or exchange relaxation is domina
~the labelsr ande! for r53.
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Thus, whenvW@vc , we have two linear sections in th
f vs. v dependence,v!vc andvc,v!vW , which are char-
acterized by different slopes.

These effects lead to special features in the depende
of the velocity of forced motion of the domain wall on a
external driving fieldHz . If we assume that the driving field
is directed along thez axis, the velocity of the wall’s stable
motion is determined by the equality of the external for
~the magnetic pressure 2MHz! and the friction force
f (v)5 f e1 f r1 f x . The v vs. Hz dependence is determine
by the ratio of the characteristic velocitiesvW andvc .

For vW,vc the v vs Hz dependence is always mono
tonic, and forr!1 it is close to linear. But ifr@1, there
appear nonlinearities in this dependence associated with
5D vs.v dependence, and asv→uW the most rapid increase
is observed in the contribution of exchange relaxation~see
Fig. 1!.

For vW@vc the nonlinearity makes itself felt differently
For v!vc andvW.v@vc thev vs. (Hz! dependence is lin-
ear, of thev5m

*
Hz type, but the mobilitym*

is different for
high and for low velocitiesv: for v@vc the value of
m
*

5dv/dHz is greater than that forv!vc ~see Fig. 3!. With
the difference in mobilities forv!vc and for v@vc being
large, in the intermediate rangev;vc negative differential
mobility m

*
5dv/dHz must be apparent, and because of t

the steady motion of a flat domain wall becomes unstabl3

7. Our analysis has thus shown that in contrast to
standard dissipation theory, based on the Hilbert term,
generalized phenomenological theory predicts complex
havior of the friction force exerted on a domain wall as
function of the driving field. What behavior is actually rea
ized depends on the relationship between the character
parameters, primarilyvW and vc , and the relaxation con
stantsl, le , andx2/l. The values of these parameters a
usually unknown and can vary significantly from crystal
crystal. Here experiments play a decisive role. Let us n
discuss the possibilities of observing these effects.

Weak ferromagnets of the orthoferrite type serve as
cellent objects for dynamical experiments. Exhaustive d
on domain-wall dynamics at velocities up to the limitin
value ~about 20 km s21! in these materials have been o
tained by the Chetkin group~see the review in Ref. 3!. Ef-
fects of the type described above were observed in w
ferromagnets at velocities much lower than the limit veloc
~the ‘‘turning off’’ of a relaxation mechanism at velocities o
order 200 m s21 and 500 m s21 in yttrium orthoferrite YFeO3
and iron borate FeBO3, respectively

19!. However, our theory
cannot be applied directly to weak ferromagnets. Furth
more, preliminary calculations show that a contribution
typex2/l to the retardation of a domain wall is much small
for orthoferrites than for ferromagnets. A detailed analys3

indicates that for weak ferromagnets of the orthoferrite ty
the entire body of the data on the dynamics of a domain w
moving with velocities from 1 km s21 to the limiting velocity
can be described by a simple relaxation term with a sin
relaxation constant. For this reason we turn to ferromagn

t
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The Walker model is convenient because an exact s
tion exists that describes a domain wall moving at consid
able velocity. The problem in describing experiments on
basis of this model is that most such experiments have b
conducted for thin films of magnetic-bubble materials~in
which twisted domain walls are realized!, i.e., even at res
the domain wall is not one-dimensional.2 In this case the
considerations leading up to the limiting velocity differ qui
significantly from those in the Walker solution, with the lim
iting velocity being much lower thanvW . Hence the objects
to which our theory might be applied are primarily magne
materials in which the domain walls are one-dimension
and to which the Walker solution is applicable~for instance,
the maximum velocity of a domain wall should coincide wi
vW!.

For the described effects to show up, one more criter
must be satisfied. Relaxation must be determined prima
by intrinsic processes rather than by impurity processes,
which the f (v) and v(Hz) functions are different.11 This
criterion corresponds to the smallness of the effective re
ation constantl. It is difficult to specify the exact criterion
We merely note that a film withl50.38 exhibited23 a typical
Walker dependence ofv onHz characteristic of the simples
relaxation model, while for epitaxial films of a magneti
bubble ferromagnet withl50.01 andl50.004 the contribu-
tion of the term withx2/l reached, respectively, 90%~Ref. 7!
and 40%~Ref. 21!, with a fairly small exchange contribu
tion. Let us discuss the feasibility of meeting these criter

There should probably be no twisting of domain walls
materials consisting of yttrium iron garnet wafers, whe
one-dimensional domain walls can be prepared by spe
methods.20 According to Refs. 12 and 13, for yttrium iro
garnets the contribution of non-Hilbert terms to domain-w
relaxation reached 90%, and the nonlinearity effect in thv

FIG. 2. The friction forcef x as a function of the domain wall velocityv
~schematically! for various limiting cases: curve1, r!1 andvW!vc ~linear
dependence!; curve2, r@1 andvW!vc ~nonlinear growth due to the facto
1/D(v) is the same as forf r!; and curve3, vW@vc ~contribution of f x is
‘‘turned off’’ for v>vc!.
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vs.Hz dependence described above should play an impor
role. Unfortunately, the experiment described in Ref. 20 w
done only for the linear mode of motion of the domain wa

There are also two classes of epitaxial films of ferroma
nets with magnetic bubbles in which the maximum veloc
of the domain wall is close tovW . These are films with
strong anisotropy in the basis plane and films with a la
gyromagnetic ratio~g.6!, i.e., close to the compensatio
point ~see Ref. 2, p. 177, and the original work by Logino
et al.22!. But usually in such materials the damping is dom
nated by impurity process.

A highly promising approach to building a one
dimensional domain wall is to use an external magnetic fi
H i directed at right angles to the easy-magnetization axis
the ferromagnet. The valueH i* at which twisting is sup-
pressed can be determined from the termination of the sh
nonlinear increase in the domain-wall mobilitym~H i!; for
H i . H i* this dependence is linear and the rate with wh
mobility grows is smaller. UsuallyH i* is close to 4pM0 ~see
Refs. 7, 21, and 24!. For values ofH i that are not small, the
solution describing a domain wall moving at moderate v
locity is not known, and a detailed discussion of this case
outside the scope of the present work~see Refs. 8 and 25!.
We note, however, that if the fieldH i* is weaker than the
anisotropy field in the basis plane,Hp , then forH i* , H i

! Hp one can use the Walker solution to describe the str
ture of the domain wall, with the result that here our theory
valid. Logunovet al.24 studied the nonlinear dynamics of
domain wall with a field in the plane and observed a nonl
ear dependence ofv on Hz for both low and high values o
H i .

It will not be easy to observe the predicted effects. W
do not know of any observations of the above-mention

FIG. 3. Domain wall velocity as a function of the driving fieldHz ~sche-
matically! at r!1 and vW@vc for weak ~curve 1! and strong~curve 2!
nonlinearities in thef vs. v dependence, which corresponds to a small
large contribution off x(v) in comparison to that off r or f e , respectively.
The section in curve2 corresponding to unstable motion is depicted by
dashed line.
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anisotropy to which the Walker solution could be applie
but we believe that our theoretical investigation will stim
late further experimental studies of the relaxation of larg
nonlinear magnetization waves describing a magnetic
main wall.
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Nonlinear laser-induced regime of surface-electromagnetic-wave generation and

ous
submicron periodic relief during liquid-phase photochemical etching of
n -III–V semiconductors

V. N. Seminogov, V. Ya. Panchenko, and A. I. Khudobenko

Scientific Research Center for Technological Lasers, Russian Academy of Sciences, 142092 Troitsk,
Moscow Region, Russia
~Submitted 7 May 1996!
Zh. Éksp. Teor. Fiz.111, 174–198~January 1997!

This paper is devoted to an experimental study of the physical processes underlying the
phenomenon of laser-induced generation of periodic relief on the surface ofn-III–V
semiconductors during liquid-phase photochemical or photoelectrochemical etching accompanying
the resonance interaction of surface electromagnetic waves~SEWs!. The increments of the
exponentially increasing amplitudes of the dominant Fourier harmonics of the relief have been
measured at the initial~linear! stage of the time evolution of the surface profile. It is
proven by comparing the theoretical and experimental results that the mechanism for forming
periodic structures that we have proposed is adequate. Ways of monochromatizing the
generated relief and controlling the line shape of the surface grating are studied. It is
experimentally detected for the first time that the nonlinear stage of the time evolution of the relief
is characterized, in accordance with the predictions of the theory developed by the authors,
by amplitude and phase oscillations of the first and second Fourier harmonics of the surface profile.
It is shown to be possible to generate relief that suppresses specular reflection from the
surface. A new nonmasked laser method is developed for forming high-quality submicron relief
diffraction gratings, combining a holographic method and a method involving laser-
induced relief generation during resonance excitation of SEWs. Diffraction gratings with a period
of d50.24–0.54mm and a depth ofh50.1–0.2mm over an area of 0.531 cm have been
created on ann-InP surface. ©1997 American Institute of Physics.@S1063-7761~97!01201-8#
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Relief diffraction gratings are widely used in scientifi
research, integrated optics, and fiberoptic communicatio
Diffraction gratings have been used as a basis for system
injecting and extracting radiation from planar and fiber op
cal waveguides,1–6 semiconductor and fiber lasers with di
tributed feedback and with distributed Bragg reflectors,1,7–11

optical filters,1,12,13couplers and equipower laser-beam sp
ters, including those for synchronizing the radiation of m
tichannel lasers,14,15 high-efficiency polarization converter
of laser radiation for technological complexes for the la
cutting of metals,16,17 selective detectors an
photodiodes,18–21 etc. There are currently several metho
for fabricating relief diffraction gratings on semiconduct
surfaces: electron-beam and ion-beam lithography, a ph
graphic method, etc. These methods assume the use
mask and are therefore complex and have many steps.
like this conventional method for fabricating gratings. t
laser holographic etching of semiconductors is a mask
method. Periodic relief is formed on a semiconductor surf
by direct spatially inhomogeneous photochemical and ph
electrochemical etching~see Sec. 2! caused by the interfer
ence intensity distribution created by having two laser bea
converge on the substrate surface. One of the main dr
backs of the method is that it is highly sensitive to vibrati
of the optical elements.

Besides the holographic method, there is another met
for the maskless formation of surface periodic relief und
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intensity distribution appears on the sample surface beca
of laser-induced generation of surface electromagnetic wa
~LIG-SEW! and because these waves interfere with the in
dent wave. The phenomenon whereby periodic structu
form during LIG-SEW has a fairly universal character. It h
been observed during laser-stimulated pyrolytic etching
deposition of films~see Panchenkoet al.’s review22 and the
citations therein!, during the laser generation of acoust
waves on solid surfaces, and during the laser melting
vaporization of metals, semiconductors, and insulators~see
Ref. 23 and the citations therein!. It has been theoretically
and experimentally shown22,24–27that the generation of relie
gratings accompanying LIG-SEW can be induced during
liquid-phase etching ofn-III–V semiconductors.@The re-
views listed as Refs. 22 and 23 mainly reflect studies c
cerning the linear~initial! stage of relief formation. Refer
ence 26 gives an exhaustive list of works concerning
nonlinear stage, which is characterized by the interaction
the generated harmonics with each other.# It should be
pointed out that the LIG-SEW method is insensitive to vib
tions. Nevertheless, we know of no work in which th
method could have been used to fabricate diffraction grati
comparable in quality with gratings formed by the hol
graphic method.

This paper is devoted to an experimental study of
physical processes underlying a new maskless method
we have proposed for the laser-stimulated formation of hi

96$10.00 © 1997 American Institute of Physics
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the semiconductorsn-InP andn-GaAs during liquid-phase
photochemical or photoelectrochemical etching. This met
~the modified LIG-SEW method! is a combination of the
holographic method and the LIG-SEW method and combi
the advantages of both methods. To provide a basis for
method, we have studied both the linear and the nonlin
stage of the time evolution of the relief during LIG-SEW.

Section 2 explains the photochemical etching mec
nism of n-III–V semiconductors. Section 3 discusses fe
tures of the formation of relief gratings on the surface
n-InP andn-GaAs by the holographic method. The influen
of laser-beam polarization on the depth of high-quality gr
ings is studied. The main advantages and disadvantage
the holographic method are formulated.

Section 4 is devoted to an experimental study of the ti
evolution of the surface periodic relief formed under the
tion of one laser beam by the LIG-SEW method. Sectio
4.1–4.3 present the physical mechanism for the appear
of positive feedback of LIG-SEW during photochemic
etching and the main theoretical results of Refs. 22, 25
26 for the linear and nonlinear regimes of the time evolut
of the surface relief. Section 4.4 for the first time presents
results of our measurements of the gain factors of the ex
nentially increasing Fourier amplitudes of the dominant gr
ings at the linear~initial! stage. By comparing the exper
mental and calculated increments, it is proven that the the
developed in Refs. 22 and 25 is valid. The possibilities
monochromatizing the relief are studied. An experimen
estimate of the quality of the diffraction gratings is give
and the advantages and disadvantages of the LIG-S
method are explained.

Section 5 describes the main ideas of a modified L
SEW method that results in a substantial monochromat
tion of the generated relief. The temporal dynamics of re
formation accompanying LIG-SEW at the nonlinear sta
are experimentally studied for the first time. It is shown th
in accordance with theoretical predictions~see Ref. 26 and
the citations therein!, the temporal evolution of the Fourie
amplitudes of the surface relief has an oscillatory chara
and is accompanied by the laser-stimulated suppressio
specular reflection. The possibilities of controlling the sha
of the surface profile of the generated relief are studied
particular, it is shown that the modified LIG-SEW metho
can be used to shape high-quality diffraction gratings
only with a symmetric line profile, as in the case of hol
graphic etching, but also with an asymmetric line profile.

2. THE PHYSICAL MECHANISM OF LASER-INDUCED
VARIATION OF THE LIQUID-PHASE ETCHING RATE
OF n-III–V SEMICONDUCTORS

It is well known that the etching ofn-type III–V semi-
conductors is initiated by the formation of III31 and V31

ions in accordance with28,29

III–V16h~1 !5III 311V31, ~1!

where the symbolh(1) denotes a hole. The subseque
chemical reaction of the positively charged ions of the se
conductor with negatively charged electrolyte ions results
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the oxidation and subsequent etching of the surface. Du
dark etching with no external electrical potential applied
the sample, each surface point of the semiconductor is a
nately the cathode and the anode of the electrochemica
action. This means that oxidation of the material and red
tion of the etchant components occur simultaneously at
surface point.

Now let laser radiation whose photon energy is grea
than the band gap of this material be incident on the surf
of the semiconductor immersed in the etchant. If the se
conductor isn type, the band boundaries at the surface
bent upward, as shown in Fig. 1. Because of this, the la
induced holes are attracted to the surface, while the phot
duced electrons are repelled from the surface of the semi
ductor. As a result, an illuminated region becomes positiv
charged with respect to unilluminated surface points. A
cording to Eq.~1!, the etching rate in the illuminated regio
increases in this case. We can thus write

n05nL2nD5bn~x!5aI L~x!, ~2!

where nL and nD are the etching rates at illuminated an
unilluminated surface points, respectively,n0 is the laser-
induced change in the etching rate,I L(x) andn(x) are the
light-intensity distribution and the hole concentration on t
surface, anda andb are constants.

It follows from Eq. ~2! that photochemical etching ca
be used to produce relief with a given profile on a semic
ductor surface if the corresponding spatially inhomogene
intensity distribution is created on the surface by so
means or other.

3. FEATURES OF THE FORMATION OF RELIEF
DIFFRACTION GRATINGS ON THE SURFACE OF n-InP
BY A HOLOGRAPHIC METHOD

The conventional maskless method of forming perio
relief is a holographic method in which two laser beam
interfere to create a periodic intensity distribution on t
sample surface. We carried out experiments on the laser
mation of diffraction gratings on n-InP samples
(n'531018 cm23

), using an HCl:HNO3:H2O54:1:70
etchant. The experimental layout is shown in Fig. 2. All t
equipment was mounted on a holographic table. To elimin
the effect of vibrations of the etchant surface on the qua
of the resulting gratings, quartz window3 was put in contact

FIG. 1. Diagram illustrating the bending of the valence band and the c
duction band close to ann-type semiconductor–etchant interface, whe
Ef is the Fermi level. The arrows show the separation of photogener
electron–hole pairs.
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with the etchant. The radiation of an Ar1 laser with a wave-
length ofl5488 nm and a power of 100 mW was used
record the gratings. The laser beam was split by a beams
ter into two s- or p-polarized beams 1.4 cm in diamete
which then converged at an angleu0 onto the sample sur
face. The time evolution of the grating amplitudej(t) was
monitored from the diffraction intensityI21(t);j2(t) of the
probe radiation of a He–Ne laser in the minus-first order.
prevent the probe radiation from affecting the etching p
cess, the intensity of the He–Ne laser was a factor of 1
less than that of the Ar1 laser. TheI21(t) signal was fed to
a recorder. The InP semiconductor is fairly stable with
spect to etching by the material. Therefore, to etch the InP
is necessary to apply to the sample an external potentia
Ua50.8–1.5 V, positive with respect to the electrolyte.

In accordance with the etching mechanism explained
Sec. 2, the spatially inhomogeneous intensity distribut
along the sample surface, caused by the interference o
two laser beams, creates a spatially inhomogeneous con
tration of electron–hole pairs and causes spatially inhomo
neous etching of the sample. As a result, we can expect
riodic relief with reciprocal lattice vectorg to be formed,

gikt , g52kt52k0 sin u0 , d5l/2 sin u0 , ~3!

where d52p/g is the grating period,k05v/c52p/l, c
andv are the speed of light in vacuum and the frequency
the incident laser radiation, and thekt are the projections o
the wave vectorsk0 of the incident beams onto the samp
surface. In this case, according to Eq.~2!, the time evolution
of the Fourier amplitude of the grating of Eqs.~3! is de-
scribed by

j~ t !5aIt , ~4!

FIG. 2. Layout of experimental apparatus for forming relief diffraction gr
ings on semiconductor surfaces by the holographic method during ph
electrochemical etching:1—sample, 2—etchant, 3—entrance window,
4—detector,5—He–Ne laser,6—mechanical modulator,7—optical filter,
8—stops,9—power meter.
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where I is the intensity of the laser beams, andt is the
exposure time.

Using the holographic method, we formed high-qual
diffraction gratings with periods ofd50.24–0.54mm on an
area of about 1 cm2. To form gratings with periods of
d50.24 mm, we used a prism instead of input window3.
The periods of these gratings and the initial stage of the t
evolution are well described by Eqs.~3! and ~4!.

Let us point out some features of the generation of re
by the holographic method.

~a! Figures 3 and 4 show micrographs of two gratin
formed under virtually identical conditions but with differen
orientations of the crystallographic axes of the semicond
tor substrate relative to the grating lines. It can be seen
the grating in Fig. 3 has a symmetric triangular surface p
file, while the grating in Fig. 4 has a symmetricU-shaped
profile. Gratings formed by holographic recording alwa
have symmetric relief, but the specific form of the surfa
profile strongly depends on the crystal orientation.

~b! It has been found experimentally that, besides
crystallographic orientation of the substrate, the polarizat
of the recording laser beams strongly affects the shape
depth of the surface relief. It should be pointed out that wh
highly dopedn-InP is etched photoelectrochemically, the e
fective hole-diffusion length is very small, and the effect
the blurring of the photoinduced charge carriers on the de
and shape of the grating profile can therefore be neglecte

o-

FIG. 3. SEM micrographs of a diffraction grating with a period of 480 n
and a depth of 180 nm, fabricated on ann-InP surface by the holographic
method. The grating lines are oriented parallel to the (011)̄ axis of the
crystal;Ua51.38 V, t53 min, Ar1 laser powerP525 mW, p-polarized
laser beams.
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our experiments. Therefore, to achieve the maximum de
for the grating of Eqs.~3!, it would seem necessary, accor
ing to Eq.~4!, to provide a long exposure timet. However,
as shown by experiment, when timet is greater than some
limiting exposure timet l , the Fourier amplitude of the grat
ing of Eqs.~3! decreases, and the generation of stray Fou
harmonics of the surface relief becomes appreciable. Fig
5a and 5b show micrographs of two gratings obtained un
identical experimental conditions except for the polarizat
state of the laser beams. It can be seen from Fig. 5b th
grating with the parameters of Eqs.~3! is made ‘‘noisy’’ by
a perpendicularly oriented quasi-periodic structure. Withp
polarization of the laser beams, as seen from Fig. 5a,
relief was formed with no loss of quality of the grating. Th
means that timet l , or, what is the same thing, the limitin
depth of ‘‘quieted’’ gratings depends on the polarization
the incident laser beams. It was noted experimentally for
first time that, to attain the limiting depths of good-quali
gratings, it is best to usep-polarized laser beams at sma
anglesu0 ands-polarized laser beams at large anglesu0 . In
particular, we formed good-quality gratings with a period
d50.24 mm and a depth ofh50.1 mm when we used
s-polarized laser radiation. Withp polarization of the laser

FIG. 4. SEM micrograph of a diffraction grating with a period of 480 n
and a depth of 200 nm, fabricated on ann-InP surface by the holographic
method. The grating lines are oriented parallel to the~011! axis of the
crystal; Ua51.1 V, t53 min, Ar1 laser powerP525 mW, p-polarized
laser beams.
th
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tially worse. We assume that the stray gratings are formed
a competing process of laser-induced relief generat
caused by resonance excitation of SEWs~see Section 4.2!.

In concluding this section, we enumerate the main
vantages and disadvantages of the holographic metho
recording gratings. The advantages are that the resu
gratings are highly monochromatic and that they are hom
geneous in amplitude and phase within the limits of the la
beam. The disadvantages are that the shape of the su
profile depends on the crystallographic orientation of
substrate and that the method is highly sensitive to vibrati
of the optical elements.

4. LASER-INDUCED GENERATION OF SURFACE
ELECTROMAGNETIC WAVES AND OF PERIODIC SURFACE
RELIEF UNDER THE ACTION OF ONE LASER BEAM—
THE LIG-SEW METHOD

In this section, the main results of the theory that w
developed for the linear22,25 and nonlinear26 regimes of the
induced generation of SEWs and of periodic relief during
liquid-phase etching of semiconductors are formulated. I
experimentally proven that the theory of Refs. 22 and 25
valid. The theoretically predicted possibilities of monochr
matizing the generated relief are studied, and the advant
and disadvantages of the LIG-SEW method are discusse

4.1. The physical mechanism 22,25 of the induced generation
of SEWs and of periodic surface relief during the
liquid-phase photochemical etching of semiconductors

Let the surface of ann-type semiconductor placed in
liquid-phase etchant~see Fig. 6! be illuminated by laser ra-
diation with a photon energy greater than the band gap of
semiconductor~l5514 nm!. Because of diffraction of the
incident plane electromagnetic wave by the ever-pres
roughness of the surface, resonance SEWs are excited.
interference of these SEWs and the Fresnel wave refra
into the medium results in a spatially inhomogeneous int
sity distribution of the electromagnetic field along the sem
conductor surface, which provides spatially inhomogene
electron–hole-pair generation. Since the photochemical e
ing rate depends on the hole concentration close to the s
FIG. 5. SEM micrograph of two diffraction gratings with a period of 400 nm, fabricated on ann-InP surface by the holographic method with~a!
p-polarized laser beams,~b! s-polarized laser beams, grating depth 60 nm.
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conductor surface@see Eq.~2!#, spatially inhomogeneou
surface etching occurs, and the Fourier amplitudes of
initial trigger roughness are altered. This in turn results in
time evolution~strengthening! of the diffraction of the light
and causes feedback, as a consequence of which the Fo
amplitudesjg of the surface relief exponentially increase~or
are damped! at the linear~initial! stage@compare with Eq.
~4!#:

jg5jg
~0! exp~ggt !, ~5!

wherejg
(0) is the amplitude of the Fourier harmonic of th

trigger roughness with reciprocal lattice vectorg. The relief
becomes periodic because of the dominant grating, wh
possesses the maximum growth factorgg .

4.2. Theoretical results for the linear stage of the generation
of periodic surface relief

According to the theory developed in Refs. 22 and
when laser radiation acts on the (x,y) surface of a semicon
ductor immersed in an etchant, a class of resonance gra
is generated~with vectorg! for which the ends of the wave
vectors kg5kt2g of the SEWs lie on a circle of radiu
k0n

1 ~see Fig. 7a!. In this case, if the incident radiation i

FIG. 6. Layout of the experimental apparatus:1—n-GaAs sample,
2—etchant,3—device to record the time dependence of diffraction intens
I21(t) of the probe radiation~l5458 nm! in the minus-first order.
e
e

rier

h

,

gs

entations are described by~compare Fig. 7b!

giEi t , kg5kt2g, ukgu5k0n
1, cosws561,

d5l/~n17«0
1/2 sin u!,

n12
5«0@11«0~n1m!2/~n21m2!2# ~6!

are dominant in the class of resonance structures, wh
ugu52p/d; k052p/l; l is the wavelength of the light in
vacuum;u is the angle of incidence of the exciting wave
the etchant–semiconductor interface;«0 and «5(n1 im)2

are the permittivities of the etchant and the semiconduc
respectively;ws is the angle between the propagation dire
tion of the SEW andkt ; andEi t andkt are the projections of
the electric vector and the wave vector of the incident wa
onto the (x,y) plane, with vectorkt (uktu5k0«0

1/2 sinu) be-
ing parallel to they axis. The increments of these two dom
nant gratings (cosws561) are given by

gg
~7 !5n0k0

n21m2

2n«0
~n17«0

1/2 sin u!,

n05nL2nD5aI i , ~7!

where I i is the intensity of the incident radiation, and th
exact expression for the constanta is given in Refs. 22 and
25. It was assumed in deriving Eq.~7! that gL!1, where
L is the effective hole diffusion length close to the semico
ductor surface.

If the incident radiation iss-polarized (Ei5Ei t'kt),
when u<45°, the grating ~see Fig. 7c,
cosws5«0

1/2 sinu/n1! with parameters

giEi t , d5l/@n12
2«0 sin

2 u#1/2, u<45° ~8!

is dominant in the class of resonance structures, whe
when u>45°, the two lattices~for which cosws50 in Fig.
7a! with periods

d5l/@n12
1«0 sin

2 u#1/2, u>45° ~9!
nce
FIG. 7. ~a! Class of resonance gratingsg and resonance SEWs for whichukgu.k0n
1. ~b! At the linear stage, the interference of ap-polarized incident wave

kt with the resonance SEWskg andk2g causes the induced generation of two dominant resonance gratings withg5g1 andg5g2 . ~c! At the linear stage,
the interference of ans-polarized incident wavekt with the resonance SEWskg and k2g causes the stimulated generation of the dominant resona
gratingg.
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have the greatest increment, wheren1 is defined in Eqs.~6!.
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The expression for the increment of the grating of Eqs.~8!
whenLg!1 has the form

gg5n0k0
n21m2

nn12 @n12
2«0 sin

2 u#1/2,

n05nL2nD5aI i . ~10!

It should be pointed out that when Eqs.~5!, ~7!, and~10!
are used for calculations, it is possible to obtain somew
overestimated values for the increments by comparison w
the experimental values. There are two reasons for this. F
when the inequalityLg!1 breaks down, charge-carrier di
fusion becomes substantial, and this reducesgg . Second,
Eqs. ~5!, ~7!, and ~10! are valid for nonpolishing etchants
If polishing electrolytes are used, the substituti
gg→gg2ag must be made in Eq.~5!, whereag.0 charac-
terizes the roughness-polishing rate whenI i50.

Let us discuss the experimental results described in p
graph~b! of section III from the viewpoint of the mechanism
considered here for laser-induced surface instability. W
two s-polarized beams act on the surface, the holograp
grating of Eqs.~3! and ~4! is formed. However, under th
action of each of these laser beams, a continuum of re
nance gratings should increase exponentially@see Eq.~5!#,
dominated by the grating of Eqs.~8!, the lines of which are
oriented perpendicular to the lines of the holographic grat
~see Fig. 5b!. Actually, the experimentally measured perio
of the perpendicularly oriented structures in Fig. 5b are
good agreement with the theoretical estimates from Eqs.~3!
and ~8!. Likewise, if the laser beams arep-polarized, a su-
perposition of the holographic grating of Eqs.~3! and the
resonance gratings of Eqs.~6! should be generated. The e
perimental fact that an optimal polarization exists for ho
graphic recording of deep gratings for small and large ang
u0 @see Sec. 3, Paragraph~b!# can be interpreted theoreticall
on the basis of a comparison of the values of the increm
given by Eqs.~7! and ~10!. It follows from what has been
said that the competing process of LIG-SEW imposes a f
damental limitation on the limiting depth of the holograph
gratings of Eqs.~3!.

4.3. The oscillatory regime of the generation of spatial
Fourier harmonics at the nonlinear stage of the laser-
induced formation of relief. Theory

The linear stage of the stimulated generation of rel
characterized by a rise in the Fourier amplitudes of the re
nance gratings that is exponential in time, Eq.~5!, occurs
only for small jg , when the amplitudes of the resonan
SEWs areE(kg)!Ei . In this case, according to perturbatio
theory, E(kg);jg ; i.e., the generation of a continuum o
resonance gratings is accompanied by exponentially incr
ing amplitudes of the resonance SEWs. As the exposure
increases, the dependence of the amplitudes of the reson
SEWs onjg becomes nonlinear, while the amplitudes c
become comparable to that of the incident fieldEi

@E(kg)'Ei # and can even significantly exceed
@E(kg)@Ei #.

30 It is clear in this case that the dynamics
the relief formation will be determined not only by the inte
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ference of the incident wave with the laser-induced co
tinuum of SEWs but also by the interference of the differe
SEWs with each other. If one restricts oneself in the th
retical analysis to considering only the dominant gratin
and the resonance SEWs corresponding to them~the
discrete-mode model!, it is easy to see from Fig. 7c tha
when the incident radiation iss-polarized, along with grating
g of Eqs. ~8!, a grating with twice the spatial frequency 2g
should be generated at the linear stage; this grating is ca
by the interference of the dominant resonance SEWs, wh
have wave vectorskg andk2g , with each other. Likewise, if
the incident radiation isp-polarized, one should expect in
terconnected generation of gratingsg1 andg2 of Eqs.~6! and
gratings with a total spatial frequency ofg35g11g2 ~see
Fig. 7b!. The time evolution of the relief in the case o
s-polarized laser radiation, calculated in terms of t
discrete-mode model on the basis of the analytical theory
Ref. 26, is shown in Fig. 8, where

t52ggt, jpg5ujpguexp~2 iwp!, f52w12w2 ,

p51, 2,

x15gujgu/bn , x252g2uj2gu/~bnk0«0
1/2!,

RN5Rs /Rf .

HereRs andRf are the specular reflectances, respective
from the corrugated and the flat surfac
bn5«0

1/2n/(n21m2)!1, the incrementgg is determined
from Eq. ~10!, andw1 andw2 are the phases of the first~g!
and the second~2g! harmonics of the surface relief. It can b
seen from Fig. 8 that the process of relief generation has
character of out-of-phase oscillations of the moduli of t
amplitudes of the first and second harmonics of the surf
profile and is accompanied by the temporal variation of
phase difference (w12w2). It also follows from Fig. 8 that
whenRN50, such a profile of the surface relief is forme
that the specularly reflected radiation from the laser-indu

FIG. 8. Time evolution of the normalized amplitudes of the first (x1) and
second (x2) spatial Fourier harmonics of the surface relief, the relat
phasef, and the normalized specular reflectanceRN during photochemical
etching of ann-GaAs surface, stimulated by ones-polarized laser beam;
l5530 nm,n54.2,m50.33, and«0

1/251.35.
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FIG. 9. SEM micrographs of diffraction gratings formed o
n-GaAs samples by the LIG-SEW method. In all cases,
grating lines are oriented perpendicular to the electric field v
tor Ei t ; ~a! p-polarized laser beam,u538°, I i5100
mW/cm2, etchant HF:H2O2 :H2O51:2:30; ~b! u50, I i550
mW/cm2

, etchant HF:H2O2 :H2O51:2:60;~c! s-polarized laser
beam, u538°, I i550 mW/cm2, etchant HF:H2O2 :
H2O51:2:60, grating depthh550 nm.
surface is completely suppressed. An oscillatory regime of
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generation of the harmonics ofg1 , g2 , andg3 ~see Fig. 7b! in
the process of laser evaporation of the material is also
dicted in the case ofp-polarized laser radiation.31 Reference
32 showed that it is possible for an oscillatory regime
appear when light is normally incident, on the basis o
solution of the diffraction problem by a numerical meth
that does not use the Rayleigh hypothesis. However,
know of no work in which the existence of an oscillato
regime of the time evolution has been confirmed experim
tally.

4.4. Experimental study of the process of forming periodic
relief on the surface of n -GaAs by the LIG-SEW
method

The layout of the experimental apparatus is shown
Fig. 6. We studied the laser-induced generation of relief g
ings onn-GaAs substrates (n'231018 cm23) under the ac-
tion of s- andp-polarized radiation from an Ar1 laser with a
wavelength ofl5514 nm, an intensity of 5–100 mW/cm2,
and a cross-sectional diameter of the laser beam at
sample surface of 0.4 cm. The time evolution of the Fou
amplitude of the surface reliefjg(t) was monitored by mea
suring the intensityI21(t) @ I21;jg

2(t)# of the probe beam~
l5458 nm! in the minus-first order of diffraction. The de
e-

a

e

-

n
t-
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timated by measuring the divergence of the diffracted pro
beam.

According to the theory developed in Refs. 22 and 25
reduce the nonmonochromaticity of gratings generated
the LIG-SEW method, ans-polarized laser beam must b
used at angles of incidence of 0!u,45°. This fact has been
confirmed experimentally. Figures 9a, 9b, and 9c show S
micrographs of gratings obtained withp and s polarization
of the generating radiation and with normal incidence of
beam on the sample surface. The monochromaticity of
grating shown in Fig. 9c is significantly greater than for t
gratings shown in Figs. 9a and 9b. The measured periods
orientations of the gratings are in good agreement with
theoretical values computed from Eqs.~6! and ~8!, where
n54.3,m50.36, and«0

1/251.35 forl5514 nm.33 The crys-
tallographic orientation of the substrate had no substan
effect on the parameters of the resulting gratings.

Figure 10a shows the characteristic time dependenc
the probe-beam intensityI21;jg

2 in minus-first order of dif-
fraction, obtained during the growth of the grating of Eq
~8! under the action of ans-polarized laser beam. An in
crease in the signal is initially observed, then saturation, a
after reaching a maximum at timet5tm , a drop to a virtually
zero value ofI21 . In this case, despite the disappearance
the resonance grating of Eqs.~8!, the GaAs sample surface i
e

t

FIG. 10. Probe-signal intensity in the
minus-first order of diffraction vs. exposur
time t. The periodic relief@Eqs. ~8!# was
generated by ans-polarized beam incident a
an angle ofu518° in an etchant of HF:
H2O2 :H2O510:1:30; ~a! I i550 mW/cm2,
gg2ag52.25 min21

; ~b! I i530 mW/cm2,
gg2ag51.5 min21

.
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strongly undulating. Oscillations ofI21(t) corresponding to
Fig. 8 were not observed in any of the experiments. Fig
10b gives an experimental graph of ln(I21) vs t for a time
interval t!tm . The linear form of this dependence is ev
dence of the validity of the theoretical prediction@see Eq.
~5!# that the growth of the resonance grating of Eqs.~8! has
an exponential character at the initial stage of relief form
tion by the LIG-SEW method. The slope of the straight li
in Fig. 10b determines the increment 2(gg2ag).

Figure 11 shows the theoretical (gg) and experimenta
(gg2ag) dependences of the increments on the intensitI i
of incidents-polarized laser radiation withl5514 nm. The
theoreticalgg values were calculated from Eq.~10!. The val-
ues of the homogeneous etching raten0 needed for this were
found by experimentally measuring~using a Talystep pro-
filometer! the dependence of the depth of an etched pit on
etching time for given values ofI i and u. It was found, in
agreement with theory, that the dependence ofn0 on I i is
linear. In particular, when the etchant HF:H2O2:
H2O510:1:30 is used,u50, andI i5100 mW/cm2, the mea-
sured etching rate isn050.5 mm/min. It can be seen from
Fig. 11 that the measured (gg2ag) values are about a facto
of 4 less than the calculatedgg values. Nevertheless, th
agreement between the theoretical and experimental va
of the increments can be considered good, taking into
count the remarks made in the text after Eq.~10!.

Thus, the comparison of the theoretical and experime
results carried out in Sec. 4.4 is evidence that the mechan
that we have proposed~see Sec. 4.1! suffices to explain the
laser-induced surface instability, and that the theory de
oped in Refs. 22 and 25 for the linear stage of the re
formation accompanying LIG-SEW is valid~see Sec. 4.2!.

Let us consider the quality of the gratings formed by t
LIG-SEW method. The grating shown in Fig. 9c is only
small segment of the relief structure that has been form
An examination of larger areas of the surface by means
optical and electron microscopes showed that the la
stimulated relief structure is a set of islands within which t
gratings have the quality shown in Fig. 9c. The bounda
between the islands are characterized by an interruptio
the phase of the gratings—breaks and bends of the gra
lines. The degree of nonmonochromaticityDg of gratings
formed on a large area was estimated from the diverge

FIG. 11. Growth increment of the diffraction grating of Eqs.~8! vs. intensity
of s-polarized radiation incident at an angle ofu518° ~etchant HF:
H2O2 :H2O510:1:30!: 1—experimental curve of 1/(gg2ag);
2—theoretical curve of 1/gg , constructed from Eq.~10!.
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minus-first order:

k0 sin uprobe8 1g5k0 sin uprobe9 ,

Dg5k0 cosuprobe9 ~Duprobe9 !,

whereuprobe8 is the angle of incidence of the probe radiatio
at the air–etchant interface, anduprobe9 is the angle of reflec-
tion into the air of the probe laser beam diffracted in minu
first order. For the highest-quality gratings that we fabrica
by the LIG-SEW method, the measured divergence
Duprobe9 53°, and consequently, the experimental nonmo
chromaticity is (Dg)exp56.33103 cm21

. This means that the
mean linear sizeDx of the islands (DgDx.2p) is
Dx.10 mm. This estimate shows that the gratings form
by the LIG-SEW have rather low quality.

The physical nature of the nonmonochromaticity of t
generated relief consists of the following: the SEW
excitation resonance width Dkg is finite, with
Dkg5k0(2nm1n2)/(m21n2)2.18 This means that becaus
of the LIG-SEW mechanism, not only will a continuum o
resonance gratings for whichkt2g5kg , ukgu5k0n

1 ~see
Fig. 7! be generated, but also a continuum of qua
resonance gratings with a spectral width ofDg.Dkg , for
which the discrimination of the incrementsgg for different
g increases asDkg decreases. The resulting surface relief
the linear stage of the formation can be written, according
Eq. ~5!, as

z~ t !5E E jg
~0! exp~ggt2 ig•r !dg. ~11!

When the spectrum of the trigger roughnessesjg
(0) is wide

~statistical roughness!, the shape of the relief is determine
only by the discrimination of the increments, i.e., by t
resonance widthDkg of the SEWs. The Q of the SEW reso
nance in the case of GaAs andl5514 nm is small
(k0 /Dkg516, whereask0 /Dkg5100–140 for metals!; con-
sequently, the degree of nonmonochromaticity of the re
given by Eq.~11! is high.

We assume that this is why no oscillatory regime of t
laser-induced relief generation~see Section 4.3! appears in
our experiments, since the condition of discreteness of
modes assumed in the theory is not fulfilled.

Thus, the main drawback of the LIG-SEW method is t
high degree of nonmonochromaticity of the relief formed
the semiconductor surface. The advantages of the me
include ~a! weak dependence of the grating parameters
the crystallographic orientation of the substrate, and~b! in-
sensitivity of the method to vibrations. The reason for t
latter is that the phase difference of the incident laser w
and the excited SEW is constant as the sample is vib
tionally displaced in space.

The experimental studies described in this section ap
ently confirm the opinion that currently exists that the fo
mation of periodic relief by LIG-SEW is of interest onl
from a scientific viewpoint as a dramatic example of t
nonlinear optics of a surface, but that it is impossible
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FIG. 12. First technique of the modified LIG-SEW
method: ~a! geometry of the laser irradiation of the
etchant–semiconductor interface atz50; ~b! mutual
orientation of the wave vectorskt and (2kt) of the
incident waves, of the resonance SEWskg and k2g ,
and of the resulting gratingsg, 2g, and 3g. The radius
of the circle equalsk0n

1. Interference between the
waves withkt and (2kt) results in the formation of
holographic gratingg. As a result of the diffraction of
the incident waves on gratingg, resonance SEWs with
kg andk2g are excited. Deepening of gratingg occurs
because of the interference of wavekt with kg and of
wave k2t with k2g . Grating 2g is generated by the
interference of wavekt with k2g and of wavek2t with
kg . The formation of Fourier harmonic 3g is caused by
the interference of the resonance SEWs withkg and
k2g with each other.
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quality diffraction gratings. Is this so? The next section
devoted to an investigation of this question.

5. FORMING HIGH-QUALITY DIFFRACTION GRATINGS ON
SEMICONDUCTOR SURFACES BY A MODIFIED LIG-
SEW METHOD

5.1. The fundamental idea of the modified LIG-SEW method

We shall analyze the case@opposite to that considered i
Section 4.4 when discussing Eq.~11!# in which the spectral
width of the trigger relief is much less than the resonan
width Dkg of the SEWs. For clarity, we shall consider th
limiting case in which there is only one trigger resonan
grating jg

(0) Þ 0, while the amplitudes of the other Fourie
harmonics~with g8 Þ g! arejg

(0)50. It can be seen from Eqs
~5! and~11! that the relief will remain monochromatic at th
linear stage of the LIG-SEW, despite the large SE
excitation resonance width characteristic of semiconduct

Thus, to enhance the quality of the resulting grating
trigger relief with large amplitudejg

(0) and a high degree o
monochromaticity must first be created on the sample
face. This can be done by a holographic method, an
single-beam LIG-SEW method can be used to deepen
trigger structure. The holographic process and the LIG-S
process in some cases can be carried out simultaneousl

It can be expected that the discrete-mode model will
implemented~see Section 4.3! under these conditions. Ob
servation that the time evolution of the relief predicted
this model has an oscillatory character would serve as a g
check of the theory that has been developed, and also a
additional confirmation that the generated relief is high
monochromatic.

There are two possible techniques for implementing
modified LIG-SEW method.

~a! Two p-polarized laser beams with tangential comp
nentskt and (2kt) of the wave vectors~Fig. 12! form a
holographic grating with vectorg52kt , i.e., with period
d5l/2«0

1/2 sinu. On the other hand, each of the incide
beams generates gratings with periodd5l/2«0

1/2(16sinu)
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wheren1'«0
1/2#. If the periods of these gratings coincid

both the holographic mechanism and the LIG-SEW mec
nism participate in forming the relief. To realize this situ
tion, it is necessary thatu5uc5arcsin(1/3)'19.5°. In this
case, the grating period equals

d53l/2«0
1/2, g52kt5~2/3!k0«0

1/2, giEi t iy. ~12!

It is clear from Fig. 12 and its caption that one can expect
first ~g!, second~2g!, and third~3g! harmonics of the surface
relief to be generated simultaneously, with vectors 2kt ,
4kt , and 6kt .

The technique considered above possesses a subst
drawback: to vary the grating period, the wavelengthl of the
incident laser beams must be varied. The second techn
for a modified LIG-SEW method is free from this drawbac

~b! A trigger grating with periodd5l/2«0
1/2 sinu is

formed by twos- or p-polarized laser beamskt and (2kt)
by the holographic method~see Fig. 13!. Under the action of
a third s-polarized laser beamk3t incident at angleu3 , the
grating of Eqs.~8!, with a periodd5l/«0

1/2 cosu3, is gener-
ated by the LIG-SEW mechanism. When the periods of th
gratings coincide, i.e., when

d5l/«0
1/2 cosu3 , cosu352 sin u ~u,30°!,

giE3tix, ~13!

both the holographic mechanism and the LIG-SEW mec
nism are involved in the process of creating the grating
Eqs.~13!. It can be seen from Fig. 13 and its caption that o
can expect relief to be formed that is a superposition of
first ~g! and second~2g! Fourier harmonics. The period
of Eqs. ~13! can be varied in this case by varying th
angles of incidenceu and u3 according to the equation
cosu352 sinu.
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FIG. 13. Second technique of the modified metho
~a! geometry of the laser irradiation of the etchan
semiconductor interface atz50; ~b! the radius of
the circle equalsk0n

1. Interference of the laser
beams withkt and (2kt) results in the formation of
holographic gratingg. The diffraction of the third
incident laser beamk3t on gratingg results in the
excitation of two resonance SEWskg and k2g .
Deepening of gratingg occurs because of the inter
ference of wavekg with k3t and of wavek2g with
k3t . The second Fourier harmonic 2g is generated
by the interference of the resonance SEWs w
wave vectorskg andk2g with each other.
5.2. The time evolution of the depth and shape of the
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periodic relief formed by the modified LIG-SEW
method. Experiment

The experimental setup for studying the time evoluti
of the relief formed using the first technique of the modifi
LIG-SEW method is shown in Fig. 2. To implement th
second technique for this method, the apparatus was m
fied according to the geometry shown in Fig. 13a. The rad
tion of an Ar1 laser~power 30 mW, beam diameter 1.4 cm!
with a wavelength ofl5514 nm was used in the exper
ments to record gratings according to the first technique,
radiation with l5488 nm was used to form relief on th
basis of the second technique of the modified LIG-SE
method. Photoelectrochemical etching was done onn-InP
samples (n5531018 cm23

) usingUa'1.1 V and an elec-
trolyte of HNO3:HCl:H2O51:4:70. As before, the tempora
dynamics of the amplitude of the first Fourier harmonic
the relief were monitored from the intensityI21(t) of the
diffraction of the probe radiation in minus-first order.

Figure 14 shows the characteristic dependence ofI21 on
the time of formation of the relief in the geometry shown
Fig. 12. It follows from Fig. 14 that the temporal dynami
of the first Fourier harmonic of the relief of Eqs.~12! has an
oscillatory character, which is in complete agreement w
the predictions of the theory based on the discrete-m
model ~see Sec. 4.3!. According to this theory, surface pro
files of the relief with different ratios of the amplitudes an
phases of the first, second, and third Fourier harmonics
generated at different instantst1 andt2 ~Fig. 14!. This fact is
actually confirmed by the SEM micrographs of the gratin
in Fig. 15. It can be seen from Fig. 15b that, unlike t
holographic method, the modified LIG-SEW method mak
it possible to form gratings not only with a symmetric profi
but also with an asymmetric profile. Similar results we
obtained for laser-induced photochemical etching (Ua50)
of n-GaAs samples.

Figure 16 shows the dependence ofI21 on time t when
relief was formed on the surface ofn-InP using the second
technique of the modified LIG-SEW method, see Fig. 13.
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of 20 nm, was formed in a time of 20 sec by the holograp
method by twop-polarized laser beams (kt) and (2kt) of
equal intensity (I 15I 2 Þ 0). In this case, the intensity of th
third beam isI 350. Further evolution of the grating of Eqs
~13! was accomplished under the action of only o
s-polarized beamk3t , i.e., with I 3 Þ 0, I 15I 250, by the
LIG-SEW mechanism. We should point out that the expe
mental conditions correspond to the prerequisites impo
when constructing the theory of Ref. 26, see Sec. 4.3
Fig. 8. It can be seen from Fig. 16 that the amplitude of
first Fourier harmonic, given by Eqs.~13!, oscillates in time
during formation of the relief, as follows from the theory o
Ref. 26~see Fig. 8a!. Unfortunately, we were not able durin
the experiment to obtain the curve~analogous to that shown
in Fig. 16! that characterizes the time evolution of the a
plitude of the second Fourier harmonicj2g , since a shorter-
wavelength source of probe radiation is needed for the ra

FIG. 14. Intensity of the probe radiation diffracted in minus-first order
time when relief is formed using the first technique of the modified LI
SEW method.
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FIG. 15. SEM micrographs of diffraction gratings wit
period d5540 nm, formed onn-InP substrates. The
relief-formation process was halted at timet1 ~micro-
graph a! and at timet2 ~micrograph b!, see Fig. 14. The
different slope of the lines in micrographs b corre
sponds to micrographs of the transverse cleavage of
halves of the same sample.
tive first or minus-first orders of diffraction to appear in this
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harmonic. However, certain conclusions concerning the t
evolution of the amplitudej2g can be drawn on the basis o
the SEM micrographs~see Fig. 17! of the resulting gratings

Figure 17 shows SEM micrographs of the gratings fa
ricated when the etching process is halted at tim
ta ,tb , . . . ,t f , shown in Fig. 16 by points. It can be see
from these micrographs that a significant change in the de
and shape of the surface profile occurs in the time inte

FIG. 16. Diffraction probe signalI21 vs. time when relief is formed using
the second technique of the modified LIG-SEW method.
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intensity of the probe signalI21 is virtually constant over
this time interval. This is evidence that there is little chan
in the amplitudejg of the first Fourier harmonic of the relie
given by Eqs.~13!. From an analysis of the shape of th
surface profile of the gratings shown in Fig. 17, we ha
determined the following: first, the second harmonic 2g is
present in the Fourier spectrum of these gratings; secon
significant change of the amplitudej2g occurs over the time
interval ta–t f . Next, the virtually symmetric shape of th
relief on micrographsa–e is evidence that the phase diffe
ence of the first and second Fourier harmonics changes
over the time intervalta–te . A barely noticeable shape
asymmetry appears only at timet5t f : the left-hand slope of
the line is steeper than the right-hand slope. It is easy to
that the experimental results enumerated above are in g
agreement with the theoretical results shown in the upper
middle graphs of Fig. 8 if it is noted that the time interv
ta–t f in Fig. 16 corresponds to the normalized time interv
t58–12 in Fig. 8.

The surface profile of the fabricated gratings was a
studied by means of a scanning tunnelling microscope. As
example, Fig. 18 shows an image made with a scanning
nelling microscope of the diffraction grating shown in th
SEM micrograph in Fig. 17d.

In experiments to study the time evolution of the surfa
relief, we also visually traced the intensity of the specula
reflected beamI s(t)5Rs(t)I 3 , whereI 3 is the intensity of a
laser beam with wave vectork3 ~see Fig. 13!, andRs(t) is
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FIG. 17. SEM micrographs of cleaved diffraction gratings. The formation process was halted at timesta , tb , tc , td , te , andt f , shown in Fig. 16.
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the time evolution of the first Fourier harmonic, shown
Fig. 16, the intensityI s(t) decreased significantly, reached
minimum att5te , and then substantially increased; i.e., t
effect of laser-induced suppression of specular reflection30,34

during LIG-SEW was observed. This result also agrees w
the theoretical predictions~see the bottom graph of Fig. 8!.

Thus, we have experimentally shown that the time e
lution of the amplitudes and phases of the first and sec
Fourier harmonics of the surface profile during the format
of gratings based on the first and second techniques of
modified LIG-SEW method has an oscillatory character. T
patterns of the time evolution shown in Figs. 14 and 16
reproducible in this case. This means that the modified L
SEW method makes it possible to fabricate diffraction gr
ings with controllable line shape, where the profile can
varied by varying the grating-formation time. In particula
this method makes it possible to fabricate gratings not o
with a symmetric surface~as in the case of the holograph
method! but also with asymmetric surface relief.
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fraction gratings formed by the modified LIG-SEW metho
on an area of 0.531 cm by measuring the divergence of th
probe radiation in the minus-first order of diffraction. The
measurements showed that the quality of the gratings
fabricated is no worse than that of gratings formed by
holographic method. From this fact and the remarks abov
can be concluded that the modified LIG-SEW method co
bines the advantages of the holographic method~see Sec. 3!
and the LIG-SEW method~see Sec. 4.4!.

6. CONCLUSION

In this paper, a new maskless modified LIG-SE
method has been developed for forming submicron relief
fraction gratings in the process of liquid-phase photoche
cal or photoelectrochemical etching of the semiconduct
n-GaAs andn-InP. The modified LIG-SEW method is
combination of the holographic method and the LIG-SE
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method and combines the advantages of these methods:
quality of the resulting gratings, enhanced stability agai
vibrations, and the possibility of controlling the shape of t
periodic relief. Unlike the holographic method, this meth
makes it possible to form diffraction gratings not only wi
symmetric but also with asymmetric line profiles.

The physical processes underlying the method develo
here have been studied experimentally. The increment
the exponentially increasing amplitudes of the domin
Fourier harmonics have been measured at the linear stag
formation of the relief. By comparing them with the theore
cal values, it has been proven that the mechanism of la
induced generation of diffraction gratings that we have p
posed is adequate. Ways of monochromatizing the gener
relief have been studied.

It has been experimentally shown for the first time th
the time evolution of the laser-induced relief at the nonlin
stage has the character of out-of-phase amplitude and p
oscillations of the first and second Fourier harmonics of
surface profile. It has been proven that relief can be form
by laser-induced generation of surface structures in suc
way that significant suppression of specular reflection fr
the surface occurs. Good agreement has been demons
between the theoretical and experimental results.

Using the modified LIG-SEW method and the hol
graphic method, high-quality relief diffraction gratings ha
been formed with periods ofd50.38–0.54 mm and
d50.24–0.54 mm, respectively, with a depth o
h50.1–0.2mm on an area of 0.531 cm.

The authors are grateful to V. I. Panov, in whose lab
ratory the images of the grating surfaces were produced
ing a scanning tunneling microscope.

Our research was supported by the Russian Fund
Fundamental Research~Projects No. 95-02-05825, 96-02
18532!, the Russian State Scientific–Technical ‘‘Scienti
Technologies’’ Program, and International Program INTA
94-902.

FIG. 18. Image of the grating shown in Fig. 17d, made with a scann
tunneling microscope.
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