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Abstract—The images of magnetic and nonmagnetic nanoparticles obtained by scanning near-field micros-
copy in the photon collection mode are numerically simulated. A theoretical approach that uses tensor electro-
dynamic Green’s functions to find the optical near field in a given observation scheme is considered. Typical
images of nanoparticles with various shapes are obtained by numerical simulation. Subject to boundary condi-
tions, the plane of polarization is shown to change at topographic features (edges and angles) of objects studied.
This makes the observation of the magnetic structure of a nanoparticle with a magnetooptic method difficult.
The near-field study of the magnetization distribution in homogeneous thin films appears to be more effective,
since the rotation of plane of polarization is associated primarily with the magnetic properties of the sample in
this case. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Nowadays, there is great interest in the study of the
magnetic and magnetooptic properties of low-dimen-
sion systems and nanostructures. Magnetic nanostruc-
tures are viewed as a promising material for ultra-high-
density (up to 1 Tbit/cm2) data recording. Note that
such a giant record density approaches the superpara-
magnetic limit (10 Tbit/cm2) [1], which seems to be the
ultimate value of the surface record density (today’s
value is 30 Gbit/cm2 [2]). The typical size of a one-
domain magnetic particle in structured nanomedia is
estimated at 5–100 nm.

Therefore, a number of magnetooptic techniques for
studying nanostructures with a subwave resolution that
are lumped together as scanning near-field optical
microscopy (SNOM) are attracting considerable atten-
tion [3]. SNOM combines the rich capabilities of opti-
cal methods with the high resolution of scanning probe
microscopy. In SNOM, a probe scans the specimen, the
distance between them being smaller than the wave-
length from its surface. Two SNOM operating modes
are distinguished: the illumination mode and the pho-
ton collection mode [4, 5]. In both modes, the resolu-
tion depends on the aperture size and probe–specimen
spacing rather than on the wavelength. In the illumina-
tion mode, the probe acts as an optical near-field gener-
ator, which illuminates the specimen. Changes in the
far-field radiation are related to those in the near field
due to optical inhomogeneities. Among SNOM modifi-
cations operating in the collection mode, photon scan-
ning tunnel microscopy, where light is incident at the
angle of total internal reflection (Fig. 1), has found the
widest application. The optical near field localized in
1063-7842/03/4801- $24.00 © 20001
the neighborhood of the specimen surface is detected
with a near-field probe. This scheme is used in this
work.

While near-field microscopy has been extensively
applied in recent years for studying the domain struc-
ture of magnetic materials both experimentally and the-
oretically [6–12], its outlook for examining magnetic
microparticles applied on a nonmagnetic surface still
remains unclear.

In addition, the interpretation of SNOM images is dif-
ficult both under magnetooptic observation and in the case
of nonmagnetic particles. A natural approach to this prob-
lem is the computer simulation of near-field images
with some a priori model of the object with the subse-
quent comparison of simulated and observed images.

This work is concerned with the physical problems
of magnetooptic SNOM and is aimed at developing a
method of numerical simulation as applied to SNOM
images of nanoparticles.
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Fig. 1. Scheme of the near-field observation of a nanoparti-
cle: (1) detector, (2) near-field probe, (3) nanoobject, and
(4) transparent plate.
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CALCULATION TECHNIQUE

We consider the passive probe model [12], which
ignores the effect of the probe on the SNOM image and
assumes that the signal detected is proportional to the
near-field intensity at the nanostructure surface in the
absence of the probe. In the observation geometry
depicted in Fig. 1, such a model is valid and allows one
to obtain images similar to those observed experimen-
tally [12, 13]. This is because the inducing radiation
decays exponentially near the probe.

The near field is calculated with tensor electrody-
namic Green’s functions. This approach proved to be
valid in solving problems of light reflection and trans-
mission in rough-surface media [14, 15], as well as in
investigating nonlinear surface magnetooptic effects
[16, 17].

Let us consider a semi-infinite medium with a nano-
particle on the surface (Fig. 1). The medium is illumi-
nated by an optical wave E(i)(r, t) = E(i)exp(–i(k0r –
ωt)) at an angle exceeding the critical angle of internal
reflection.

From the Maxwell equations, we have

Passing to the field complex amplitudes

in view of the material equation

one obtains the equation for E(r)

(1)

where P(r) is the polarization induced in the particle by
the external field and ε(r) = ε (if z < 0) or 1 (if z > 0).

In the case considered, one can consider the right-
hand side of Eq. (1) as a small perturbation (P ! ε0E(i))
and solve this equation in the Born first approximation,
where the field is analytically representable as the sum
of two terms:

Here, E(0)(r) is the field without the particle, which sat-
isfies the homogeneous equation

(2)

and E(1)(r) is the field scattered by the particle, which
satisfies the inhomogeneous equation

(3)
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where P(0)(r) is the E(0)(r)-induced part of the particle
polarization.

Solutions to Eq. (2) are known as Fresnel formulas,
which yield the decaying wave E(0)(r) =

E(i)(r)exp  at z > 0, where kx =

k0sinΘ and Θ is an angle exceeding the angle of
total internal reflection.

Equation (3) is inhomogeneous and can be solved
by using the Green’s functions Dµν(r, r'), which are
introduced by means of the equation [14]

(4)

where δλν is the Kronecker symbol.

The solution to Eq. (3) can be written as

(5)

where the subscripts µ and ν take the values of x, y, and z.
Repeating subscripts imply summation.

Space integration requires a large body of computa-
tion. The computation time can be cut in the Fourier
space. By introducing the Fourier representations for
the Green’s functions

where r|| = (x, y, 0),  = (x', y', 0), and k|| = (kx , ky , 0),
we can rewrite formula (5) in terms of the Fourier trans-
forms:

(6)

Note that the Fourier transforms dµν(k||, z, z') of the
Green’s functions are found by solving ordinary differ-
ential equations. The associated procedure is described
in [14].

The scattered radiation field can be found with
inverse Fourier transformation

(7)

The domain of integration {k||} specifies the spatial
resolution of simulated image. For example, a resolu-
tion of 10 nm (λ = 0.5 µm), which is typical of SNOM,
can be achieved if all spatial harmonics with kx, y ∈
(−25k0, 25k0) are integrated.
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Fig. 2. Simulated images of a nonmagnetic square particle under various illumination and observation conditions. The spatial res-
olution is 10 nm. A, analyzer; P, polarizer.
RESULTS OF NUMERICAL SIMULATION 
FOR NONMAGNETIC PARTICLES

The simulation was carried out for a semi-infinite
medium with a refractive index n = 1.5 and an angle of
incidence Θ = 70° (at n = 1.5, the angle of total internal
reflection is 42°). The polarization of a particle on the

right of (3) is represented as  = , where the
susceptibility χ = –15.9 + i1.1; in other words, we are
dealing with an isotropic Ag particle with a complex

refractive index n1 =  =  = 0.14 + i4.0 [18].
Two basic illumination geometries were considered: s-
polarized incident radiation (the field is normal to the
plane of incidence) and p-polarized incident radiation
(polarization in the plane of incidence). The field was
calculated at a distance from the specimen surface (the
so-called scan height).

(1) Images of a square particle. Figure 2 shows the
simulated images of a 100-nm-square particle of height
h = 10 nm (the scan height z = 11 nm) that are obtained
for four arrangements of the incident radiation and ana-
lyzer. Dashed lines are the boundaries of the particle.

For s-polarized incident light with a parallel polar-
izer and analyzer (Fig. 2a), the intensity markedly dif-
fers from the background (the decaying field of illumi-
nation) at those edges of the particle normal to the
inducing field. With a crossed polarizer and analyzer
and s-polarized incident light, the intensity exceeds the
background only near the corners where the plane of

Pi
0( ) ε0χEi

0( )

ε1 1 χ+
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polarization rotates (Fig. 2b). Figure 2c demonstrates
the image obtained in p-polarized incident light with a
crossed polarizer and analyzer. The intensity is other
than zero only at the edges parallel to the plane of inci-
dence, the z component of the incident field (which is
absent in Fig. 2b) making a major contribution to the
formation of the image. At these edges, the z compo-
nent transforms into the y component, which passes
through the analyzer. Because of the z component in the
p-polarized incident wave, the images in Figs. 2b and
2c differ. Figure 2d shows the image in p-polarized
incident light for a parallel polarizer and analyzer. As in
Fig. 2a, the contrast is enhanced at the edges of the par-
ticle.

The simulation of images for the same geometries
but with larger scan heights demonstrates that the
images become more asymmetric and the spatial reso-
lution drops; i.e., the boundaries diffuse. This is
because the number of harmonics being detected
decreases with increasing scan height, since harmonics
with high spatial frequencies decay before they reach
the probe.

(2) Images of a circular particle. Figure 3 shows
the simulated images of a circular particle of diameter
100 nm (h = 10 nm, z = 11 nm) for four arrangements
of incident light polarization and analyzer. Dashed lines
are the boundaries of the particle.

As in the case of a square particle (Fig. 2), with a
crossed polarizer and analyzer (Figs. 3a, 3d), the con-
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Fig. 3. The same as in Fig. 2 for a circular particle.
trast is enhanced at the edges normal to the incident
field, since the boundary conditions favor the occur-
rence of the fields near arcs perpendicular to the inci-
dent field.

With a crossed polarizer and analyzer, the plane of
polarization rotates at the edges of the particle (Fig. 3b,
3c). Here, arcs making an angle ϕ = 45° with the plane
of polarization of the incident radiation (Fig. 3b) play
the role of the corners of a square particle (Fig. 2b). The
explanation for this fact is simple. Indeed, if an incident
wave is s-polarized, the field strength at the side surface
of the particle is proportional to E(i)cosϕ (Fig. 4)
because of the boundary conditions; then, in view of
Malus’s law, the transmitted intensity varies as
(E(i)sinϕcosϕ)2 (Fig. 4). This function is maximal at
ϕ = 45°, 135°, etc.
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x

Fig. 4. Explanation of a simulated image of a circular nano-
particle in crossed polarizers for s-polarized incident radia-
tion (Fig. 3b). (1) Circular nanoparticle (top view) and
(2) plane of the analyzer.
The presence of the field at the edges parallel to the
radiation (Fig. 3c) is explained, as for the case in
Fig. 2c, by the rotation of the z component of the elec-
tric field at the edges of the particle.

It should be noted that the simulated images in
Figs. 3a and 3b are in good agreement with the images
of submicron metal rings observed under similar condi-
tions [6].

DISCUSSION OF MAGNETOOPTIC 
IMAGES

As follows from the results of simulation, the plane
of polarization rotates at the particle edges. This fact
should be taken into account in the interpretation of
magnetooptic images, since magnetooptic observation
exploits the property of a magnetized material to rotate
the plane of polarization of a wave. This property fol-
lows from the form of the permittivity tensor for a mag-
netic medium, which contains off-diagonal elements
proportional to the magnetization [19, 20]:

where (mx , my , mz) = M/M is the magnetization unit
vector and Q is the magnetooptic parameter linearly
dependent on the magnetization M.

ε1 n1
2

1 imzQ– imyQ

imzQ 1 imxQ–

imyQ– imxQ 1 
 
 
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Fig. 5. Simulated images of a 30-nm magnetic region embedded in a 10-nm-thick film under various illumination and observation
conditions. The images of the nanoregion magnetized along the (a) x, (b) y, and (c) z axis are shown. The scan height is 11 nm, and
the spatial resolution is 5 nm. A, analyzer; P, polarizer.
Taking into account that Q is on the order of several
hundredths (Q = –0.034 + 0.003i for iron [18]), one can
infer that a magnetic particle is difficult to observe
because of the unavoidable nongyrotropic rotation of
the plane of polarization at its edges.

The magnetooptic contribution can be directly
detected only at sites where the nonmagnetic contribu-
tion to the image approaches zero. Specifically, for a
circular particle magnetized along the surface parallel
to the plane of light incidence (m = (mx, 0, 0)), the mag-
netooptic contribution becomes noticeable in crossed
polarizers (the exponentially decaying background
field is eliminated) at the edges parallel to the incident
light. Note the nonmagnetic contribution is several hun-
dreds of times higher than the magnetooptic compo-
nent.

From the aforesaid, it follows that nonmagnetic
inhomogeneities of nanoobjects (nanoparticle edges,
lattice defects, etc.) make magnetooptic observations
with SNOM difficult.

Therefore, the near-field observation of magnetic
structures may prove to be much more efficient in
investigating objects where the gyrotropic part of the
permittivity tensor is coordinate dependent. Such are,
for example, domain walls, vertical Bloch lines [21],
and magnetic nanoregions. These regions have recently
been fabricated by laser interference lithography
[22, 23]. In particular, nanoregions 20 to 200 nm in size
that offer ferromagnetic properties were fabricated in
thin (several tens of nanometers thick) homogeneous
nonmagnetic Co–C films [22]. Such nanoregions have
a fairly smooth surface and are virtually free of any
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
nonmagnetic inclusions; therefore, they can be success-
fully observed by SNOM.

Figure 5 shows the simulated images of 30-nm cir-
cular magnetic regions embedded in a 10-nm-thick
nonmagnetic homogeneous layer.

Upon simulation, it was assumed that the additional
susceptibility χi, j due to the magnetic region is given by
the tensor

where n1 = 2.4 + i3.5 and Q = –0.034 + 0.003i [18].
The simulation was carried out for different direc-

tions of the object magnetization. It follows from Fig. 5
that one can judge the magnetization direction in the
magnetic nanoregion, varying the orientation of the
incident light polarization.

CONCLUSION

Using tensor electrodynamic Green’s functions to
solve the Maxwell equation, we simulated electromag-
netic fields near nonmagnetic and magnetic nanometer
particles. This can be viewed as the first approximation
to the problem of the numerical simulation of images in
scanning near-field optical microscopy. Various images
simulated under different illumination and observation
conditions (s- and p-polarized incident light in crossed
and parallel polarizers) are demonstrated.

χ i j, n1
2

0 imzQ– imyQ

imzQ 0 imxQ–
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In the near field, the rotation of the plane of polar-
ization at topographical features of the specimen is
shown to have a significant effect. This may make the
interpretation of SNOM images difficult. However,
these difficulties are greatly reduced when near-field
microscopy is applied to imaging magnetic nanostruc-
tures prepared by modifying homogeneous ultrathin
films by laser radiation. This is because, in this case,
nonmagnetic inclusions, which are obstacles to magne-
tooptic investigation, are virtually absent.
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Abstract—The conductivity of a macroscopically disordered graphite–paraffin system as a function of the
graphite content and temperature is studied. It is shown that the properties of the heterosystem differ essentially
from those of its components. Experimental data obtained are explained in terms of the percolation theory and
concepts of fractal-structure objects. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Electrical conduction in binary systems has been
studied for a variety of constituents [1–4]. After certain
requirements following from the percolation theory had
been realized in experiments, there appeared the possi-
bility of invoking the percolation theory and fractal
conceptions to explain the phenomena observed. Most
of the results within the percolation theory have been
obtained with numerical methods, and only in rare
cases were model experiments carried out [1–4].

In this paper, we study the resistivity (ρ) of a binary
conductor–insulator macrosystem as a function of the
volume content of the conductor (x) and temperature
(T). Our model experiment sheds new light on electrical
conductivity in binary macroscopically disordered sys-
tems.

EXPERIMENTAL

The system components were chosen from the fol-
lowing considerations.

(i) The resistivity of the conducting and insulating
phases must be minimal and maximal, respectively.

(ii) The contact resistance of conducting particles
must be minimal. For instance, the particles must be
free of oxide film.

(iii) The number of particles must be large enough
to provide the desired accuracy of the experiment, since
the rms deviation of the percolation threshold (xc) is
inversely proportional to the number of particles in a
system [3].

(iv) Chemical interactions causing new components
to appear are absent at all stages of the experiment.

(v) The technique for preparing the binary system
and measuring cell must be as simple as possible and
1063-7842/03/4801- $24.00 © 20100
provide the adequate mixing of the components and
sample consolidation.

As for contact resistance minimization, the use of
graphite as a conducting component has several advan-
tages over metals [4]. Carbon oxides are gases; there-
fore, the problem of an oxide film present on the parti-
cles is eliminated irrespective of the graphite chemical
origin. Moreover, carbon does not react with most insu-
lators in a wide temperature range [5]. On using, e.g.,
aluminum oxide as an insulator, one should actually
consider a three-component conductor–insulator–air
system, which has several features making it difficult to
study (air humidity, etc.). The application of a low-
melting insulator seems to be more reasonable, since it
provides the consolidation of the conductor–insulator
sample. In our opinion, the use of ceresin and paraffin
is the most appropriate. Ceresin and paraffin are nonpo-
lar thermoplastic crystalline saturated hydrocarbons of
the general formula CnH2n + 2 (n = 39–53 for ceresin and
10–36 for paraffin). Ceresin molecules have heavily
branched chains of carbon atoms unlike nearly straight
weakly branched chains in paraffin molecules. The
melting points of ceresin and paraffin are 75 and 52°C,
respectively [5]. Based on the above considerations and
assuming that the simplicity of sample preparation has
priority, we selected S-1 pyrolytic graphite (dry colloi-
dal preparation, specs. 113-08-48-63-90) with a main
particle size of 4 × 10–6 m and P2 solid oil paraffin
(State Standard 23683-89).

Since paraffin is a saturated hydrocarbon and the
sample preparation temperature does not exceed 55°C,
intermediates in the system are absent. It was found that
lower paraffins are oxidized with difficulty. The oxida-
tion of higher paraffins is carried out at a temperature of
about 150°C in the presence of catalysts (e.g., manga-
nese compounds). Carbon is chemically inactive under
003 MAIK “Nauka/Interperiodica”
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the conditions considered in this study [5]. The exami-
nation of the sample surface with an optical microscope
showed the presence of homogeneous carbon inclu-
sions in the paraffin. Thus, we assumed that the carbon–
paraffin system is a macroscopically inhomogeneous
system.

The resistivity was measured by the standard two-
probe technique. Electrolytic copper was used as an
electrode material. The electrodes were covered by a
liquid mixture of the system components and were
placed inside the sample. Only a small contact area was
left outside.

RESULTS

The dependence of the resistivity of the system on
the graphite volume content is shown in Fig. 1.

The plot of the function  = f(x), where x is the
graphite volume content in the sample, has a kink at
xc = 0.16, as follows from the procedure presented in
Fig. 1. In terms of the percolation theory, this value is
the percolation threshold [1–3]. At xc = 16%, a conduct-
ing cluster appears, which has been reported in numer-
ous theoretical studies [1, 3]. Our resistivity values for
the graphite and paraffin are close to those obtained by
other authors [6].

Figure 1 also presents the curve  = f(x) calcu-
lated with the well-known formula for the electrical
conductivity [2, 3]

where xc is the percolation threshold (the best agree-
ment between the theoretical and experimental curves
was observed for ν = 0.7), σ3 is the conductivity of the
carbon network at x = 1, and ν = 0.7.

Considering a particle as a cube, one can estimate
the number of particles in the system, which turns out
to be N ≥ 1.4 × 109. It is known [2, 3] that the notion of
a well-defined percolation threshold is valid only for an
infinite system. In real finite systems, the percolation
threshold cannot be clearly defined: here, there is only
the so-called critical region δ(N), where δ(N) is the rms
deviation. The value of xc obtained in most of the exper-
iments falls into this region.

Using the value N = 1.4 × 109 and the computational
procedure suggested in [3], one can estimate the rms
deviation of xc as δ(N) ≤ 7.64 × 10–4 and the width of
the percolation threshold region as ∆N ≤ 18 × 10–4 [4].

The fact that the correlation radius index is equal to
0.7 deserves attention. In many of the papers [1–3], the
electrical conductivity indices for a three-dimensional
system were reported to be t = 1.5–2.0. Assuming t = 2ν
for the three-dimensional case [3], we can argue that
the obtained values of the correlation radius index and
conductivity index are near the lower limit of the above
interval.

ρlog

ρlog

σ σ3 x xc–( )2ν,=
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In most problems treated in terms of the percolation
theory, the resistivity of a system is assumed to be infi-
nite at x < xc. However, this is not the case in real mate-
rials. The portion of the experimental curve from x = 0
to x = 0.11 is well approximated by the relationship ρ =
10α(x), where α(x) = 12–87.5x, while the portion from
x = 0.11 to x = 0.16 can be approximated by the func-
tion ρ = 10α(x), where α(x) = 5 – 14.3x. That is, in both
portions of the curve, the resistivity depends exponen-
tially on the graphite content in the sample, and the kink
is observed at x = 0.11. Similar results were obtained in
[2], where the tentative theoretical dependence of the
conductivity on the maximal values of the resistance
exponents was studied.

The temperature dependence of the resistivity of the
graphite–paraffin composition was investigated in a
thermostat with the current leads outside the tempera-
ture zone. The maximal heating temperature was deter-
mined from the onset of plastic deformation in the sam-
ple and hot spots appearing near the electrodes. The
associated results for a number of x are presented in
Fig. 2. The temperature resistance coefficient (TRC) αR

was defined as

Three types of the  = f(T) curves can be distin-
guished depending on the x range.

α R
1
ρ
---dρ

dT
------.=

ρlog
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Fig. 1. Resistivity of the graphite–paraffin system as a func-
tion of the graphite volume content (the semilogarithmic
scale): h, experiment; ×, theory.
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(1) 0 ≤ x ≤ 0.06. The curves decrease monotonically
and almost linearly. In molecular-lattice substances,
including paraffin, the conductivity is low and depends
mainly on the impurity content [5]. The decrease in the
resistivity at low temperature can be explained by the
presence of ionized impurities. The curves  = f(T)
do not have kinks up to the melting point, which sug-
gests that the conductivity in the temperature range
considered is not intrinsic.

At 0.42 ≤ x ≤ 1, the curves are similar to those con-
sidered above (0 ≤ x ≤ 0.06) with the TRC close to that
of pyrolytic graphite.
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Fig. 2. Resistivity of the graphite–paraffin system as a func-
tion of temperature. The figures by the symbols indicate the
values of x (%).
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Fig. 3. Temperature resistance coefficient of the graphite–
paraffin system as a function of the graphite volume content
at T = 313 K.
(2) 0.06 ≤ x < 0.29. The curves  = f(T) increase
monotonically. Such a behavior cannot be explained by
the properties of the system constituents, paraffin and
graphite. As was indicated above, the curve  =
f(T) for pure paraffin is decreasing. The TRC of graph-
ite is equal to –2 × 10–4 K–1 [7], whereas αR ≈ +3 ×
10−2 K–1 at a graphite content in the mixture of x =
0.287, i.e., at x > xc, when the conducting carbon frame-
work has already formed. Such a great difference can
be explained only by the formation dynamics of con-
ducting graphite regions, as well as by taking into
account the difference in the linear expansion coeffi-
cients of graphite (7 × 10–6 K–1) and paraffin (130 ×
10−6 K–1) [7]. For 0.06 ≤ x ≤ 0.16, the curves have a kink
at T = 304–307 K, whereas in the region 0.06 ≤ x < 0.29,
they are almost linear. It might be expected that at x ≈ xc

the temperature dependence of the resistivity of the
composite is the most pronounced, since in this case the
first conducting chain of graphite particles forms [1–3]
and the difference in the linear expansion coefficients
of graphite and paraffin is the most essential. However,
the dependence  = f(T) is most clearly defined at
x ≈ 0.108, i.e., near the second kink of the curve in the
range 0.06 ≤ x < 0.16 (Fig. 1).

(3) 0.29 ≤ x ≤ 0.42. The curves have two character-
istic segments where they increase and decrease; i.e.,
they have a kink at T = 297–328 K.

The x dependence of the TRC (excluding the range
0.3 < x < 1, where the TRC changes sign) is shown in
Fig. 3. The anomalously high values of αR (up to 2.6 K–1)
at T = 313 K, as well as the wide range of αR variation
(from –4 × 10–2 to 2.6 K–1) at relatively low temperature
variations (∆T = 25 K), are worth noting.

DISCUSSION

The results obtained can be considered within the
theory of fractal-structure objects [8–10]. In terms of
the concept of fractal clusters, the particles in the sys-
tem conglomerate as the number of carbon particles in
the melt grows. We do not know the laws which the for-
mation of DLA, RLA, or intermediate clusters obeys
[9]. However, it can be assumed that the fastest pro-
cesses, which are responsible for the formation of clus-
ters with a minimal binding energy, i.e., those processes
corresponding to the overcoming of barriers that have a
minimal height Qαβ, occur first [8]. Then, clusters with
a higher formation energy arise. The latter contain more
particles than those formed at the previous energy
stage. As the graphite content increases, this process
may go up to x = 1. We can separate the clusters by their
structure (number of particles and their arrangement)
and by their binding energy or assign them a particular
level. Such levels can be classified by both cluster con-
figuration and formation energy. This classification
may cover not only individual clusters but the paraffin–
graphite system as a whole.

ρlog

ρlog

ρlog
TECHNICAL PHYSICS      Vol. 48      No. 1      2003



ELECTRICAL CONDUCTION IN BINARY MACROSYSTEMS 103
Thus, we arrive at a multilevel system that is similar,
for example, to a Cayley tree [8]. It is a hierarchical
subordinate system. The subordination in the system is
in the fact that clusters of a following level cannot arise
until those with a lower binding energy form.

Clearly, clusters of some of the levels will possess
physical properties that differ from the properties of
clusters belonging to previous or following levels if
only because of their different sizes [9]. This distinction
may show up in electrical, thermodynamic, and other
properties of the system. Specifically, when the clusters
geometrically overlap, a conducting chain, which
changes the conductivity type in the whole graphite–
paraffin system, forms. If the levels take into account
the electrophysical properties of our composition, at
least six levels can be predicted: 0 ≤ x < 0.06, 0.06 ≤ x <
0.11, 0.11 ≤ x < 0.16, 0.16 ≤ x < 0.29, 0.29 ≤ x < 0.42,
and 0.42 ≤ x ≤ 1.

For each of the levels, the physical properties
depend on the cluster type (or types) that dominates,
since the hierarchical level is unknown. In the range
0.29 ≤ x < 0.42, the dependence αR = f(T) is governed
by the interaction between the clusters as the tempera-
ture rises. Individual fractals are connected cool
(“blue”) end to cool end, producing a monofractal
largely with hot (“red”) bonds, and the properties of the
entire system are defined only by the carbon frame-
work, whose properties approach those of pyrolytic
graphite.

CONCLUSIONS
(1) The dependence of the resistivity on the graphite

volume content and temperature in the graphite–paraf-
fin system is considered.

(2) The numerical values of the percolation thresh-
old xc = 0.16, correlation radius index ν = 0.7, and con-
ductivity index t ≈ 1.4 are obtained.

(3) Within the theory of fractal-structure objects, a
model of a hierarchical subordinate system is proposed.
The levels in this system correspond to the following
ranges of graphite volume content: 0 ≤ x < 0.06, 0.06 ≤
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
x < 0.11, 0.11 ≤ x < 0.16, 0.16 ≤ x < 0.287, 0.287 ≤ x <
0.417, 0.417 ≤ x ≤ 1.

(4) The possibility of preparing a binary system
whose electrophysical properties differ radically from
those of its constituents is demonstrated experimen-
tally. In particular, it is shown that one can obtain sam-
ples with an anomalously high temperature resistance
coefficient varying over a wide range.
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Abstract—The earlier developed original experimental technique for measuring and analyzing the parameters
of low-frequency fluctuations of the field-emission current in metal film systems is used to measure the sput-
tering yield Yf of carbon films (with a coverage Θ ranging from 1 to 4) applied on Fe, Nb, Ta, and U substrates.
The value of Yf is calculated by an expression derived within a theoretical model developed. The sputtering
ratios were measured for the case when the carbon films are sputtered by H+ and He+ ions with an energy Ei
between 2 and 10 keV. With Θ fixed, the energy dependences of Yf are obtained for each of the ions. In addition,
for each of the ions, the Θ dependences of Yf are found for several values of Ei. In all the cases, the measured
values of Yf far exceed those for pure carbon. With another original technique that combines field-ion micros-
copy (FIM) and precise measurement of current and/or luminous properties of local regions in FIM images, the
energy thresholds Eth of sputtering carbon films applied on the metal surfaces are found. The energy distributions
of Yf in the near-threshold energy range for various Θ are obtained. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is known that the sensitivity and accuracy of con-
ventional techniques for measuring the yield Y of sput-
tering surface atoms by various particles [1, 2] decrease
noticeably in going to the low-energy range. Available
methods for theoretically estimating Y also give contra-
dictory and unreliable values [3, 4]. Therefore, there is
a great need to elaborate precise methods for measuring
Y when particles bombarding the material surface have
a subthreshold or near-threshold energy. In this work,
we performed precise measurements of the sputtering
yield Y for subatomic carbon films (with the coverage
ranging from 1 to 4) covering the Fe, Nb, Ta, and U sin-
gle-crystal surface. The sputtering particles were H+

and He+ ions with energies between 2 and 10 keV.
Another aim was to find the energy threshold Eth of
sputtering these films as a function of Θ. When choos-
ing a film material, we proceeded from its importance
as a structural material for various devices and instru-
ments. The choice of the substrate material was associ-
ated largely with the specific feature of our original
technique for calculating Yf from experimentally mea-
sured parameters of low-frequency field-emission cur-
rent fluctuations (LFFECFs) in metal film systems
[5, 6].

Along with the our method of analyzing the
LFFECF parameters, we also used another method
developed by the authors, which combines FIM analy-
sis with precise measurement of current and/or lumi-
nous properties of FIM images [7, 8]. With the latter,
1063-7842/03/4801- $24.00 © 20104
we determined the energy thresholds Eth of sputtering
carbon films on the surfaces of the substrates selected
and also measured the Yf vs. energy for various Θ in the
subthreshold energy range.

SPUTTERING OF CARBON FILMS BY H+ 
AND He+ IONS WITH ENERGIES OF 2–10 keV

As was already noted in the Introduction, the values
of Yf in this energy range were measured with an origi-
nal technique for measuring the LFFECF parameters in
metal film systems where the emitting surface is sub-
jected to ion bombardment. In this work, this technique
was implemented with an original device, a field-emis-
sion analyzing microscope [9]. The essence of the
method is as follows. The surface of a metal tip was
smoothed and cleaned (thermally or by the action of a
field) and then covered by a thin film of a material for
which the condition ϕf > ϕs is met (ϕf is the work func-
tion of the film, ϕs is that of the substrate). Next, a neg-
ative potential V0 that is sufficient for emitting electrons
was applied to the tip (the electric field strength at the
tip surface is on the order of 1010 V/m; V0 equals several
kilovolts). By placing a fluorescent screen (indicator)
into the tip–electron detector gap opposite the detector,
we set the desired crystallographic face (hkl) of the tip
surface. Then, the screen is removed, a beam of bom-
barding ions is directed to the sample at a certain angle,
and the continuous recording of the LFFECF parame-
ters (a set of amplitudes ∆In(hkl)) is accomplished.
003 MAIK “Nauka/Interperiodica”
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To explain: if a single impact of the ion cleans the
selected area of the crystallographic face being ana-
lyzed, the field-emission current from this area grows
sharply by a value of ∆In, which is the greater, the larger
the difference is between ϕf and ϕs. Such an approach
is by no means unique; others are discussed in [10].

In order for impact-cleaned tip areas to be covered
again (to provide multiple measurements of ∆In, i.e., to
improve statistics), complementary operations are
used. First, the tip is maintained at a temperature that is
sufficient for the effective surface migration of the film
material; second, if possible, the additional evaporation
of the film material from an external source is carried
out ensuring that the coverage Θ remains invariable.

In the final calculation of Yf, it is assumed that the
areas of the metal surface that are cleaned by a single
striking ion are circular with a radius ri. Then, the vol-

ume removed is  and the number of atoms
removed (the “intermediate” value of the sputtering

yield) is  = , where raf is the atomic radius
of the film material and c' is a dimensional factor. Using
the Fowler–Nordheim equation for field electron emis-
sion [11], we get

(1)

where R0, loc is the local radius of tip curvature in the
area of the crystallographic face (hkl) being analyzed,
ϕs(hkl) is the work function of the face (hkl) of the pure
metal substrate, ϕf (hkl) is the work function of the same
face covered by the film, c1 and c2 are dimensional con-
stants, and β is a geometrical factor (β = 2–5).

Then, summing over all n measurements, we even-
tually obtain

(2)

Note that such an approach to measuring Yf offers
not only a much higher sensitivity but also opens up a
qualitatively new possibility of finding Yf in those cases
when the film thickness is no more than several atomic
layers (subatomic films).
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It should be emphasized that the sputtering yield Yf
thus determined is somewhat overestimated: Yf =
(Yf )max. This is because Yf, in the above procedure, is
calculated based on those ion–substrate interaction
events causing the cleaning of local substrate areas and
generating anomalously high field-emission current
fluctuations. If the number of such events per unit time

is designated as  (i.e.,  = n) and the total number

of ion impacts on the same area is , the experimen-
tal value of Yf calculated by (2) is related to the actual

value of  as

(3)

where the factor α' allows for substrate sputtering with-
out cleaning (α' < 1).

In this work, the value of  was calculated from
the irradiation parameters measured experimentally
according to the ideas put forward in [12].

Table 1 lists the values of ϕs (taken from [13] and
measured in this work) for four substrate materials and
a carbon film. Note that the data for uranium were
obtained by the authors in both cases [14]. The
LFFECF parameters were measured in the central parts
of the tips. Therefore, when estimating Yf with (2), we
employed data for ∆In found in this work for single
crystals oriented in accordance with the (known) tex-
ture of wires used for tip preparation (see Table 1).

Carbon films were deposited on tips made of the
four substrate materials by the in vacuo evaporation of
a carbon target under the action of laser pulses. After
each pulse, the total field-emission current Ife from the
tip was measured at a fixed tip potential. As the film sur-
face coverage grows (Θ < 1), the value of Ife decreases.
The saturation of Ife was taken as an indication of the
deposition of one monoatomic carbon layer (Θ = 1).
The doubling of the number of laser pulses corre-
sponded to Θ = 2, etc.

The irradiation of the tips by H+ and He+ ions was
carried out directly in the field-emission analyzing
microscope with a special source. The ions were inci-
dent on the tip surface at nearly a right angle.

Some of the experimental data obtained in this work
are illustrated in Figs. 1–6. Figures 1 and 2 demonstrate
the energy dependences of the sputtering yield Yf for H+

bombarding ions; Figs. 3–6 show the same for He+

ions. The values of Yf were calculated by Eq. (2) with
regard for α' (i.e., the final calculation was performed
with Eq. (3)).

Prior to discussing the results obtained, several
points need to be made. First, we call attention once
again to the fact that the values of Yf found with the
above procedure are to some extent conventional. Sec-
ond, it should be emphasized that such a procedure for

ξn* ξn*

ξn**

Y f*

Y f* Y f ξn*ξn**( ) a'Y f ,= =

ξn**
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Table 1.  Work functions ϕ of the substrate and film materials for polycrystals and single crystals (published data and our
measurements)

Substrate
material

Published values
of ϕ for single

crystals, eV [13]

Published values
of ϕ for polycrys-
tals measured by 
the field-emission 
method, eV [13]

Published values
of ϕ for variously 

oriented single 
crystals (hkl), eV 

[13]

Values of ϕ
for polycrystals 

determined in this 
work, eV

Values of ϕ
for single crystals 
determined in this 

work, eV

Fe 4.31 4.85 4.31–4.81 (111) 4.20 4.50 (111)

Nb 3.99 No 4.09–4.80 (110) 3.90 4.10 (110)

Ta 4.12 4.12 4.95 (110) 4.20 4.50 (110)

U 3.30 3.50 [14] 3.40 [14] (100) 3.50 3.40 (100)

C 4.70 No 4.70–4.80 (100) 4.80 4.80 (100)
calculating Yf is valid only if a bombarding ion pene-
trates the film, i.e., cleans some substrate area. In other
words, starting from a certain value of Θ ≈ Θ* + 1,
LFFECFs disappear and Yf cannot be measured.
Finally, the shape of a crater made by a bombarding ion
(at Θ ≥ 2) may be other than cylindrical (the numbers
of atoms knocked out of the upper and lower layers of
the film differ). Therefore, the value of Yf determined
from Eq. (2) turns out to be underestimated. Neverthe-
less, Yf obtained with this technique reflect major trends
in sputtering subatomic films by atoms of various
energy.

Let us discuss our results. As follows from Figs. 1–
6, with the ion energies chosen, both H+ and He+ ions
clean certain areas of the substrates at Θ = 1. However,
even at Θ = 2, H+ ions with an energy of 2 keV almost
do not clean the Nb, Ta, and U substrates; for Θ = 3, this
is true for ion energies of 2 and 4 keV. For H+ ions, the
coverage Θ = Θ* = 3 is limiting for substrate cleaning
in this energy range; for He+ ions, the limiting value is
Θ* = 4.
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2

6
Yf, 102 atoms/ion

E, keV

1

2

Fig. 1. Energy dependence of the sputtering yield Yf for car-
bon films on the (o) iron and (d) uranium surfaces in the
case of H+ bombardment. Θ = 1 in both cases.
From Figs. 1–6, it also follows that when the carbon
films are sputtered by H+ ions, Yf is roughly one order
of magnitude higher than Y for pure carbon; for He+

ions, this difference is less significant [2]. Our data also
indicate that the difference in Yf when the films are
sputtered by H+ and He+ ions of the same energy is
smaller than the difference observed upon sputtering
pure carbon. Finally, there is a distinct tendency toward
increasing the values of Yf from Nb and Ta to U and Fe
(under the same experimental conditions). Presumably,
the conditions for carbon film deposition on the differ-
ent substrates differ. However, the formation of car-
bides seems to be unlikely in any of the cases.

CARBON FILM SPUTTERING BY H+ AND He+ 
IONS IN THE NEAR-THRESHOLD ENERGY 

RANGE

As was mentioned in the Introduction, our original
technique allows for the determination of energy
thresholds Eth for sputtering subatomic carbon films of
various thickness applied on metal surfaces. Also, it
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Fig. 2. Energy dependence of the sputtering yield Yf for car-
bon films on the uranium surface in the case of H+ bombard-
ment. Figures by the curves indicate the values of Θ.
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makes it possible to take the energy dependences of Yf

at near-threshold energies. The essence of the technique
and its implementation are detailed in [8, 15]. Briefly,
the idea is as follows. In an ion-field microscope, the
variation of the imaging ion current to the microchan-
nel plate and the variation of the FIM image contrast on
the screen are measured. The microchannel plate, as is
usually done in FIM, enhances the luminance of the
images. The ion current and luminance (more exactly,
the luminous flux from either the entire fluorescent
screen of the microscope or a local area) of the images
were measured each time after the surface had been
exposed to imaging ion (H+ or He+) pulses. The number
of atoms removed from the surface (i.e., Yf) was calcu-
lated by estimating the imaging ion current per atom
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Fig. 3. Energy dependence of the sputtering yield Yf for car-
bon films on the iron surface in the case of He+ bombard-
ment. Θ = 1.

Fig. 5. Energy dependence of the sputtering yield Yf for car-
bon films on the tantalum surface in the case of He+ bom-
bardment. Figures by the curves indicate the values of Θ.
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and luminous flux from the associated image. As a
result, we succeeded in obtaining the sputtering yield Yf

even for materials that do not give atomic-resolution
FIM images. Carboniferous materials are known to be
among them [16, 17]. It should be noted that the tech-
nique was tested and refined with tungsten. The values
of Y thus obtained were corrected by comparing with
the values found by the direct calculation of the number
of surface vacancies on the tungsten images resolved on
an atomic level [7, 8].

We used an all-metal field-emission microscope
described in [18]. Pulses between the tip (cathode) and
microchannel plate (anode) were generated using the
grid of a metal-ceramic cathodic unit. The unit was
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Fig. 4. Energy dependence of the sputtering yield Yf for car-
bon films on the niobium surface in the case of He+ bom-
bardment. Figures by the curves indicate the values of Θ.

Fig. 6. Energy dependence of the sputtering yield Yf for car-
bon films on the uranium surface in the case of He+ bom-
bardment. Figures by the curves indicate the values of Θ.
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placed between the sample and screen only during the
generation of individual irradiation pulses.

The samples were irradiated by an original tech-
nique of pulsed two-step change of the high voltage
polarity. The bombarding (and simultaneously imag-
ing) gas was ionized by electronic impact at the instant
a short high-voltage pulse of reverse (negative) polarity
was applied and electrons were generated by the tip.
The duration of such ion-producing pulses was no
longer than 0.1 µs, and their amplitude was equal to
5 kV. Along with the high-voltage pulse, a low-voltage
negative pulse was applied to the sample. Its duration
was ∆τ ≥ 10 µs, and its amplitude ∆V, which provided
the desired energy of bombarding ions, was varied from
10 to 500 V in 10 V intervals. In the course of this work,
many control experiments using the diode and triode
schemes with various sequences and parameters of
pulses were performed (in the latter scheme, the grid of
the cathodic unit mentioned above was employed).

An important stage in evaluating the sputtering yield
Yf is the determination of the irradiation fluence. It

10 100 1000
0.0001

0.001

0.01

0.1

E, eV

Yf, atoms/ion

1

3
2

Fig. 7. Energy dependence of the sputtering yield Yf for car-
bon films on the uranium surface in the case of H+ bombard-
ment with near-threshold energies. Figures by the curves
indicate the values of Θ.

Table 2.  Experimental threshold energies Eth (eV) of sput-
tering carbon films applied on various substrates

Bombarding 
ions Θ

Substrate material

Fe Nb Ta U

H+ 1 30 50 40 30

2 30 50 40 40

3 30 40 40 40

He+ 1 20 40 30 30

2 30 40 40 30

3 30 40 40 30
should be stressed that this problem is by no means
simple. It is this problem (and also the estimation of the
bombarding ion energy and the number of irradiation-
induced single surface vacancies) that makes the values
of Yf obtained by the technique described somewhat
unreliable. As was indicated above, the irradiation flu-
ence in this work was estimated from the irradiation
parameters measured experimentally [12].

Some of the experimental results obtained in this
work with the technique described above are illustrated
in Figs. 7 and 8. Table 2 summarizes experimentally
found threshold energies Eth of sputtering carbon atoms
by H+ and He+ ions for all the substrates and various
coverages Θ.

As follows from the data tabulated, the values of Eth
roughly correlate with Yf determined from the LFFECF
parameters: they decline from Nb and Ta to Fe and U.
If these values of Eth are compared with those obtained
by the same technique for pure carbon [15], one can
conclude that the film values of Eth are lower. Moreover,
it is seen that the values of Yf at near-threshold energies
differ markedly for Θ = 1 and Θ = 2 but are very close
for Θ = 2 and Θ = 3; that is, the effect of the substrates
is substantially reduced as Θ increases.

CONCLUSIONS

The conclusions drawn from the results of this work
are the following.

The original techniques for measuring the sputter-
ing yield in metal film systems and pure conducting
materials make it possible to study the sputtering pro-
cess on subatomic films (Θ ≥ 1) at low (including sub-
threshold and near-threshold) energies of bombarding
particles. These techniques offer a high sensitivity but

Yf, atoms/ion

E, eV

1

2
3

10 100 1000
0.001

0.01

0.1

1

Fig. 8. The same as in Fig. 7 in the case of He+ bombard-
ment.
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sometimes lack quantitative reliability. However, they
are undoubtedly promising, and call for further refine-
ment.

In the energy range 2–10 keV of bombarding ions,
the film thickness Θ = Θ* = 3 is limiting for surface
cleaning by H+ ions; for He+ ions, the limiting value is
Θ* = 4.

The sputtering yield measured upon H+ ion bom-
bardment of the carbon films is roughly one order of
magnitude higher than for pure carbon. For He+ ions,
this difference is smaller. The difference in Yf when the
carbon films are exposed to H+ and He+ ions of the same
energy is smaller than the corresponding difference for
pure carbon.

With all other things being equal, the sputtering
yield Yf grows from Nb and Ta to U and Fe.

At near-threshold energies of the ions, the energy
dependences of Yf for the carbon films differ noticeably
at Θ ≈ 1 and Θ ≥ 2 for both H+ and He+ ions.

The energy thresholds Eth of sputtering the carbon
films by H+ and He+ ions decrease from Nb and Ta to Fe
and U. For metal film systems, they are lower than for
pure carbon in all cases.

The energy thresholds at Θ ≈ 1 and Θ ≥ 2 differ, the
difference being greater in the case of He+ ions.
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Abstract—New complex field-ion microscopic data for the formation of radiation-induced defects in VChV
ultrapure tungsten, VA-3 commercial-grade tungsten, and four slightly diluted tungsten-based alloys (W–Hf–
C, P39A; W–1.5% ThO2, VT-15; W–5% Re, VR-5; and W–2% Fe, VZh-2) are reported. Samples were irradi-
ated in an external unit by Ar+ and Ni+ ions of energy 35 keV. In the experiments, the ion current is kept at j =
2.0 µA and the irradiation fluence equals Φt = 5 × 1014 ions/cm2. The clustering of single vacancies in samples
irradiated is studied in relation to the impurity concentration and type. The distribution of vacancy clusters over
the number of aggregated single vacancies is studied. These distributions are found to differ noticeably inside
and outside the depletion zones. The mean lengths of focused substitutional atomic collision chains in samples
with different impurity concentrations and types are measured indirectly. From these data, the efficiency of
trapping intrinsic interstitials by various impurities in tungsten is estimated. © 2003 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION
The potentialities of field-ion microscopy (FIM) as

a tool for studying various radiation-induced defects in
conducting materials have by no means been exhausted
in spite of the huge body of available data [1, 2]. This
method provides a unique possibility of directly
observing individual point defects; identifying the
atomic structure of other lattice defects; analyzing the
distribution of the defects in the volume; and, finally,
performing (using an atomic probe [3]) elemental
mass-spectrometric analysis of single particles (atoms
and molecules) and their complexes both observed
directly and selected on micrographs.

The purpose of this work is to elucidate how a num-
ber of impurities influence the radiation resistance of
tungsten upon cascade-forming irradiation. This work
is a logical elaboration of early studies carried out by
the authors [4–6].

EXPERIMENTAL
The objects studied were VChV ultrapure single-

crystal (100)W (its properties were described in [7]),
VA-3 commercial-grade tungsten, and four slightly
diluted tungsten based alloys (W–1.5% ThO2, VT-15;
W–5% Re, VR-5; W–2% Fe, VZh-2; and W–HfC–
W2C, P39A). The last-listed alloy was prepared by the
powder metallurgy method where carbon served as a
1063-7842/03/4801- $24.00 © 20110
deoxidizer: it was added to remove oxygen and form
tungsten carbide. The chemical composition of all the
samples was analyzed with a SuperProbe-733 electron
probe instrument (JEOL, Japan). In all the samples, the
basic impurities (other than those given in specifica-
tions) were Ni (<0.02%), Al (0.02–0.06%), Mo
(<0.05%), Fe (<0.02%), Si (0.02–0.03%), Nb (<0.05%;
absent in VA-3 commercial-grade tungsten), Mn
(<0.02%), Ti (<0.02%), Cu (<0.02%), Mg (<0.02%),
and V (<0.05%).

All the samples were tips prepared by the conven-
tional electrochemical etching of wires (except for the
samples of ultrapure tungsten; they were made of small
rectangular bars). They were preexamined in a field-ion
microscope and then transferred in air to the irradia-
tor—an ILU-4 ion-beam setup designed in the Institute
of Nuclear Fusion at the Russian Scientific Centre Kur-
chatov Institute. The samples were irradiated by
35-keV Ar+ and Ni+ ions. The ion current and the irra-
diation fluence were j ≈ 2.0 µA and Φt ≈ 5 ×
1014 ions/cm2 in all the cases. The ion beam was
directed normally to the tip axis. The experiments were
carried out at room temperature.

The field-ion microscopic analysis of the samples
involved two standard steps: (1) cleaning and polishing
the tip surface by field desorption and evaporation and
(2) imaging and digitization of the images from several
successive surface atomic layers. Then, the samples
003 MAIK “Nauka/Interperiodica”
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were removed from the microscope, mounted in a spe-
cial cooled support, and placed into the irradiator. The
irradiated samples were placed into the microscope
again, and no less than one hundred atomic layers were
imaged sequentially under the condition of controllable
field evaporation. In all the cases, the image gas was
helium at a pressure of 10–2 Pa. The sample temperature
was 77 K.

RESULTS AND DISCUSSION

In all the samples irradiated, the primary defects
were single vacancies and their clusters of low multi-
plicity, as well as depletion zones, which arise because
of atomic displacement cascades in the crystal lattice.
The defects were observed on the side of ion beam inci-
dence within a depth of ≈20 nm. In many cases, the
high quality of the FIM images (see, e.g., Fig. 1) made
it possible to determine the depletion zone parameters
(the number of constituent vacancies, vacancy concen-
tration, and volume occupied by vacancies) with a
fairly good accuracy (±5–10%). We sometimes suc-
ceeded in determining these parameters even when the
samples failed under the action of ponderomotive
forces of the electric field during the layer evaporation
(Fig. 2). Note that the fraction of failed samples was
about 10% and the decrease in the mechanical strength
of irradiated samples in comparison with nonirradiated
ones was estimated at 15–20%. The mean values of the
depletion zone parameters for all the materials studied
are listed in Table 1. It should be emphasized that the
quantity ν* can be called the cascade function only
conventionally; strictly speaking, it corresponds to the
total number of vacancies that “survived” at the site of
cascade development. In other words, the true value ν
of the cascade function is always less than ν*. Note also
that the values listed in Table 1 are averaged for the two
types of bombarding ions. This is largely due to the fact
that, for the ions used in the experiments, we did not
reveal an appreciable spread in the depletion zone
parameters measured. Moreover, the maximal trans-
ferred energies were rather close (20.53 and 25.68 keV
for Ar+ and Ni+ ions, respectively). Finally, it should be
noted that the field evaporation sometimes removed the
material from the depletion zones, turning them into
artefact pores. Such cases were rejected from the anal-
ysis of the depletion zone parameters.

As follows from Table 1, the depletion zone param-
eters (hence, the associated parameters of atomic dis-
placement cascades) are close for VChV ultrapure
tungsten, VA-3 commercial-grade tungsten, and VR-5
alloy. For the other alloys, they differ substantially.
These differences can be explained in large measure
within the concept according to which focused substi-
tutional displacement cascade chains appear in the
crystal lattice [8]. In this work, following the method
first suggested in [9], we measured the mean lengths 
of the chains in two basic crystallographic directions,

lch
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
〈110〉  and 〈111〉 . This length was also determined from
the spacing between an interstitial and the nearest
vacancy irrespective of the crystallographic direction.
The associated results are summarized in Table 2.
Because of the specific features of the measurements
(the distance from each of the identified vacancies to
the nearest interstitial atom–impurity atom complex
was determined from many FIM images both along the
two crystallographic directions and in any direction),
the chain lengths in the ultrapure tungsten were not
found. In other words, the lengths were estimated for
chains interrupted by impurities, because only dumb-

2

1

1

3

Fig. 1. FIM image from the surface of VA-3 commercial-
grade tungsten irradiated by Ni+ ions of energy 35 keV.
(1) Single vacancies, (2) trivacancy, and (3) depleted zone
etched by field evaporation.

3

1

1
2

2 1

5

5

2 4

Fig. 2. FIM image from the surface of W–5% Re (VR-5)
alloy irradiated by Ni+ ions of energy 35 keV and deformed
(partial failure) by the ponderomotive forces of the electric
field. (1) Single vacancies, (2) vacancy clusters of small
multiplicity, (3) dislocations, (4) large craters, and (5) triple
boundary between grains.
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Table 1

Material VChV VA-3 VR-5 VT-15 VZh-2 P39A

Cascade function ν* 180 160 150 130 120 140

Vacancy concentration Cv, % >20 20 20 <15 <15 20

Zone volume, Ω a 900 800 750 870 800 700

Table 2

Material VA-3 VR-5 VT-15 VZh-2 P39A

Mean chain length  along the 〈110〉  direction, nm 4.0 4.0 2.5 2.3 3.6

Mean chain length  along the 〈111〉  direction, nm 3.8 3.7 2.2 2.0 3.4

Mean chain length  calculated from measured 
interstitial atom–nearest vacancy spacing, nm

3.0 3.2 1.9 1.9 2.5

lch

lch

lch
bell-like complexes consisting of an intrinsic interstitial
and impurity atom could be observed in FIM images
[10].

As follows from Table 2, the values of lch for VA-3
and VR-5 alloys are close, exceed noticeably that for
P39A alloy, and are much greater than for VT-15 and
VZh-2 alloys. It is quite natural to suppose that, if the
chains are short, the probability of recombination
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Distance to the nearest vacancy, 10–10 m
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Fig. 3. Distributions of focused substitutional atomic colli-
sions over chain length lch in W–HfC–C (P39A) alloy irra-
diated by 35-keV Ar+ or Ni+ ions along the (a) 〈110〉 and
(b) 〈111〉 directions (FIM data). (c) Calculation from the
measured distances between an interstitial and the nearest
vacancy.
between vacancies and nearest complexes greatly
increases both inside and outside cascade regions. The
first effect may reduce the vacancy concentration inside
a depletion zone (near its edges); the second may shrink
the depletion zone volume (size). Since these consider-
ations are to a great extent speculative, it seems to be
reasonable to make a quantitative estimation by means
of computer simulation [11]. Of great interest also is
bringing to end the measurement of the length lch of
focused substitutional displacement chains in tungsten
and its alloys, i.e., the construction of the statistical
chain length distributions along the basic crystallo-
graphic directions. Note that much of such a task has
already been solved in the course of this work. Figures 3
and 4 illustrate the statistical distributions of lch for
P39A and VZh-2 alloy, respectively. It is also clear that
direct measurements of spacings between single vacan-
cies and interstitials in the case when the irradiation and
study of the samples are carried out at temperatures
below the migration temperature of far interstitials
(≈28 K for tungsten) would be of much higher value
[12].

In addition, Table 2 suggests that, among the impu-
rities, Fe atoms (the shortest chains) have the highest
efficiency of trapping (terminating) chains of focused
substitutional collisions in the tungsten alloys under
study. Next in order of efficiency are Th, Hf, and Re
atoms (or complexes). Alkali metal atoms in commer-
cial-grade tungsten appear to have the lowest efficiency.
All the interstitial atom–impurity atom complexes are
stable at room temperature and start to disintegrate (or
move remaining intact [13]) at temperatures of several
hundreds of degrees centigrade.

In [14, 15], the idea of measuring the binding energy

 between intrinsic interstitial atoms and impurity

atoms, as well as the migration energy  of such
complexes, was put forward. The procedure consists in
constructing and theoretically processing the tempera-

Eio
b

Eio
m
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ture dependence of the number of the complexes
observed on the surface of an FIM specimen during iso-

chronous step annealing. Such measurements of 

and  as applied to the objects studied in this work
appear to be a very fruitful approach, which will be
used in further investigation.

Finally, it should be stressed that the distribution of
vacancy clusters over their multiplicity nv in relation to
the impurity type and concentration and to the deple-
tion zone parameters might help to illuminate the for-
mation and evolution of defects both inside and outside
atomic displacement cascade regions [16]. The initial
attempt to gain such information (for irradiated speci-
mens of commercial-grade tungsten) was made in [5].
In this work, we obtained the cluster multiplicity distri-
bution in irradiated samples of VChV ultrapure tung-
sten, VA-3 commercial-grade tungsten (fresh data), and
P39A and VT-15 alloys (Fig. 5). The difference
between the distributions inside and outside the deple-
tion zones stands out. It follows from these distribu-
tions that they correlate distinctly with the lengths of
focused atomic collision chains in the depletion zone

(Table 2). As  shortens, the fraction of vacancy clus-
ters in the depletion zone markedly increases, while
that of single vacancies and divacancies substantially
drops. At the same time, away from the depletion
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m

lch

15

10

5

0
15

10

5

0
15

10

5

0
12015 30 45 60 75 90 105

(c)

(b)

(a)

19

23

20

Distance to the nearest vacancy, 10–10 m

Number of interstitials

Fig. 4. The same as in Fig. 3 for W–2% Fe (VZh-2) alloy.
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zones, the distribution of vacancy clusters over the mul-
tiplicity nv are very similar for all the materials.

As was mentioned above, the termination of focused
substitutional collision chains by impurities (or, more
generally, the very existence of the chains and their
finite length) markedly affects the parameters of the
depletion zones, which are formed at the sites where
atomic displacement cascades develop. The influence is
twofold. On the one hand, the farther an interstitial is
from a vacancy when a Frenkel pair forms (i.e., the
larger  is), the lower the probability of its returning
to this vacancy (i.e., the lower the probability of point
defect annihilation in the depletion zone). Note how-
ever that this in no way means an increase in the
vacancy concentration in the depletion zone when
interstitial atom–impurity atom stable complexes form,
because these complexes may coexist with vacancies in
the depletion zones. In pure metals, this is impossible:
because of the high mobility of interstitials even at
cryogenic temperatures, single vacancies and their
clusters of various multiplicity are only present in the
depletion zone. On the other hand, the larger  is, the
farther from the depletion zone edges forms a “coat” of
impurity-stabilized intrinsic interstitials, i.e., the lower
the probability that this coat will absorb the depletion
zone edges (the probability of this absorption is respon-
sible for a decrease in the cascade function ν* and
depletion zone volume Vz in the case of short chains).

lch
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Fig. 5. Distributions of vacancy clusters over the multiplic-
ity nv in (a) VChV ultrapure tungsten, (b) VA-3 commercial-
grade tungsten, (c) W–HfC–C (P39A) alloy, and (d) W–2%
Fe (VZh-2) alloy. (d) Distribution in the entire sample vol-
ume and (o) distribution in the depletion zone volume.
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It is seen that Tables 1 and 2 support the above con-
siderations indirectly. Moreover, analyzing the distribu-
tions in Fig. 5 from these standpoints, one can conclude
that, as the chains shorten (  decreases), largely single
vacancies annihilate in the depletion zone: their frac-
tion in the cluster multiplicity distributions diminishes.
Therefore, the construction of the vacancy distributions
over clusters as a function of the irradiation temperature
and post-irradiation annealing temperature seems to be
a very important problem.

CONCLUSION
This work reports the second part of results obtained

in the course of our complex investigations. Data pre-
sented here suggest a correlation between the parame-
ters of depletion zones (including vacancy distributions
over clusters in them), which form at the sites where
atomic displacement cascades develop, and the length
of focused substitutional collision chains (which is a
somewhat conventional parameter in the context of this
paper). In addition, our data illustrate the efficiency of
terminating the chains by specific impurities present in
tungsten, i.e., allow one to estimate the effect of impu-
rities on the depletion zone parameters and, in the gen-
eral case, on the parameters of defect structures in
slightly diluted metal alloys.
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Abstract—The formation of holographic diffraction gratings based on As2S3 layers is investigated. The varia-
tion of the groove profiles with exposure is studied by atomic force microscopy. The spectral curves of the dif-
fraction efficiency are taken, and a relationship between these curves and grating surface relief is analyzed. ©
2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Inorganic photoresists (e.g., amorphous layers of a
chalcogenide glass (ChG)) are widely used in the pro-
duction of holographic diffraction gratings (HDGs) [1].
Typical ChGs are arsenic sulfide (As2S3) and selenide
(As2Se3). The use of ChGs as high-resolution inorganic
resists is based on the photostimulated variation of the
solubility of ChG films prepared by vacuum evapora-
tion in selective etchants [2]. In [3–6], HDGs were
made of As2Se3 layers, which offer a reasonably high
sensitivity in a wide spectral interval including the UV,
visible, and IR ranges. The HDG formation in As2S3
layers is as yet little understood [7]. However, these
layers continue to be of interest because of their advan-
tages, for example, in HDG recording by a helium–cad-
mium (He–Cd) laser. The quality of the postexposure
selective etching of a ChG substantially influences the
formation of the HDG relief. Earlier, the authors devel-
oped a selective nonaqueous organic etchant for the
precision etching of negative inorganic As2S3-based
resists [8]. The purpose of this work was to investigate
the HDG formation in As2S3 layers using the etchant
developed. In particular, we studied the exposure
dependence of the diffraction efficiency (DE) and HDG
groove profile. The results obtained enable the optimi-
zation of the exposure regime for As2S3 layers
when manufacturing high-efficiency sinusoidal-groove
HDGs.

EXPERIMENTAL

A test specimen for HDG recording was prepared by
the sequential vacuum evaporation (at a residual pres-
sure of 2 × 10–3 Pa) of Cr and As2S3 layers with thick-
nesses of 80 and 1000 nm, respectively, onto an opti-
cally finished glass substrate. The As2S3 layer was
1063-7842/03/4801- $24.00 © 20115
exposed in a holographic setup employing the method
of light-wave amplitude division. An interference pat-
tern with a spatial frequency of 1200 mm–1 was
obtained by using a He–Cd laser with a wavelength λ =
0.441 µm. For various areas of the photoresist layer, the
exposure H was 20, 40, 80, 150, and 300 mJ/cm2. After
the exposure, we performed chemical processing in the
nonaqueous organic etchant [8], providing the selective
dissolution of unexposed As2S3 areas (negative etch-
ing). Such a processing forms a phase grating whose
surface profile depends on the exposure distribution in
the photoresist. By varying the exposure, one can make
symmetric gratings with various modulation depths h/d
(here, h is the relief depth and d is the grating period).
The groove profile can be sinusoidal, near-sinusoidal,
or cycloidal. The reflectivity of the gratings was
increased by applying a 100-nm-thick aluminum
coating.

The spectral dependences of the HDG diffraction
efficiency η(λ) were taken with a scheme similar to the
Littrow scheme: the angle between the incident and dif-
fracted beams was about 10°. The measurements were
performed in the spectral interval between 400 and
800 nm for S-polarized light (the electric field vector of
the incident wave is orthogonal to the grooves).

A Dimension 3000 Scanning Probe Microscope
(Digital Instruments) was used to measure the surface
topography and groove profiles.

RESULTS AND DISCUSSION

Figure 1 shows the spectral dependences of the dif-
fraction efficiency η(λ) for holographic gratings
recorded on the As2S3 layer at exposures H = 20, 40, 80,
150, and 300 mJ/cm2 (curves 1–5, respectively). The
anomalous behavior of the curves in the spectral inter-
val 625–650 nm is related to the energy redistribution
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Spectral curves of the diffraction efficiency η(λ) for holographic gratings recorded on the As2S3 layer.
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Fig. 2. Exposure dependence of the HDG diffraction efficiency (data are taken from Fig. 1).
between diffraction orders. As the wavelength
decreases, η increases and reaches a maximum at λ =
520–530 nm. Another anomaly is observed at λ =
475 nm. Then, η grows slightly to 30–35%. Note
curve 4 (H = 150 mJ/cm2), which is characterized by
the achromatism of the diffraction efficiency (η = 40–
45%) in a relatively wide spectral range (λ = 520–
760 nm). It is seen that the highest efficiencies (η ≈ 80%)
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FABRICATION OF HOLOGRAPHIC DIFFRACTION GRATINGS 117

                                                               
are reached at wavelengths between 675 and 800 nm
for exposures of 80 and 300 mJ/cm2 (curves 3 and 5,
respectively).

The data from Fig. 1 were used in Fig. 2, which plots
the exposure dependences of the HDG diffraction effi-
ciency at 400, 440, 500, 600, 700, and 800 nm (curves 1–
6, respectively). For wavelengths of 600, 700, and
800 nm, the diffraction efficiency is the highest at H =
80–85 mJ/cm2. The further increase in the exposure
minimized η at H = 175–220 mJ/cm2. Then, the effi-
ciency starts growing again. Of interest is the first max-
imum of the diffraction efficiency, where η amounts to
70–80%. It is seen from Fig. 2 that the optimal expo-
sures belong to the interval H = 75–100 mJ/cm2, which
also follows from the data shown in Fig. 1 (see curve 3).
Figure 3 shows the SPM images of the groove topogra-
phy and profiles, enabling one to contrast the optical
characteristics of the gratings with various groove pro-
files. Let us compare the extreme cases corresponding
to exposures of 20 and 300 mJ/cm2 (Figs. 3a and 3c,
respectively). At the lower exposure, the grooves are
relatively shallow, the widths of peaks and valleys dif-
fer insignificantly, and the profile is close to sinusoidal.
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Fig. 3. HDG topography and groove profiles at H = (a) 20,
(b) 80, and (c) 300 mJ/cm2.
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Because of this, the grating recorded at H = 20 mJ/cm2

exhibits a low efficiency throughout the spectral range
studied. At the higher exposure (H = 300 mJ/cm2), the
groove profile changes to cycloidal. The peaks become
flat and wide; the valleys, deep and narrow. At interme-
diate exposures, the tendency is the same with an
increase in the exposure: the peaks flatten and the val-
leys become narrower and deeper. Therefore, the opti-
mal exposure for recording high-efficiency sinusoidal-
groove HDGs on an As2S3 layer is H = 80 mJ/cm2. At
300 mJ/cm2 (Fig. 1, curve 5), diffraction efficiencies
are high but such exposure conditions are too power-
consuming. In addition, cycloidal-groove HDGs are
unsuitable for copying, since master grating and its rep-
lica are impossible to be identical in this case.

CONCLUSION
The basic results of this work can be summarized as

follows.
(i) High-efficiency HDGs can be formed on As2Se3-

based inorganic photoresists with a He–Cd laser at
exposures of 50–100 mJ/cm2. The diffraction efficiency
of such gratings in the wavelength interval λ = 675–
800 nm is η > 70%.

(ii) The groove profile varies with exposure from
sinusoidal (H = 20 mJ/cm2) or near-sinusoidal (H = 50–
100 mJ/cm2) to cycloidal (H = 150–300 mJ/cm2).
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Abstract—The temperature distribution in a microstrip bridge made of a high-temperature superconductor
(HTSC) as a result of nonuniform heating by a microwave current is analyzed. Differential equations of heat
conduction are solved in the one- and two-dimensional approximations. The size of a localized normal region
is estimated. Comparative analysis of the results is performed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In the development and use of microwave devices
based on high-temperature superconducting films,
especially those operating at elevated powers, one
encounters an important problem associated with local
overheating of a superconducting film by a microwave
current with subsequent destruction of a superconduct-
ing state and spontaneous transition of the film in to a
normal state (S/N-transition) [1–3]. The microwave
current in an HTSC film causes Joule heating that may
give rise to the formation of a region with normal con-
ductivity (normal zone or domain) in it, which is, as a
whole, in the superconducting state. The cause of this
phenomenon consists in nonuniform heating of the film
due to the presence of structural inhomogeneities.
Under certain conditions, the normal region can expand
and even occupy the entire film, thereby transferring it
into a normal state. The existence of the normal zone
significantly affects the value of microwave losses and
results in undesirable nonlinear effects that are respon-
sible for changing the operational characteristics and
the abnormal operation of devices. Thus, a microwave
power providing a possibility for the coexistence of
normal and superconducting regions can be considered
as a threshold for arising thermal nonlinearity. In this
connection, the modeling of temperature distributions
in a superconducting film during the flow of a micro-
wave current under given conditions of heat removal is
a topical problem. The microwave power and the corre-
sponding microwave current density that determine the
threshold for thermal nonlinearity in devices based on
HTSC films, as well as the simulation of thermal fields
in HTSC films deposited on dielectric substrates, can
be found by solving the differential equation of heat
conduction.

In this paper, we perform one- and two-dimensional
simulations of thermal fields in a film and a substrate,
making it possible to obtain the corresponding temper-
1063-7842/03/4801- $24.00 © 20118
ature distribution in a superconducting film. The results
under different conditions are compared.

CHARACTERISTIC CURRENT DENSITY

Consider a microwave microstrip bridge [2] in the
geometry shown in Fig. 1. As a rule, the width of a
microbridge is much smaller than both its length and
the substrate thickness.

To describe the thermal processes in the one-dimen-
sional approximation, we use the heat conduction equa-
tion for an infinitely long sample in the form

(1)

where q(T) and w(T) are the power densities of the
Joule heat release and the heat removal, respectively;
Kf is the thermal conductivity of the film; T0 is the tem-
perature of the thermostat; and cf (T) is the thermal
capacity of the film.

K f
∂2

T

∂x
2

--------- q T( ) w T( )–+ c f T( )∂T
∂t
------,=

T ∞±( ) T0,
∂T
∂x
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∞±
0,= =
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z

yb
L

j

h

d

Fig. 1. Model of an HTSC microstrip bridge.
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The power density q(T) is determined by the follow-
ing expression:

(2)

where jsur is the surface current density and Rsur(T) is the
surface resistance of the film.

The surface resistance is determined by the phe-
nomenological model [4] as a function of the operating
frequency f and current temperature T. This model pro-
vides an adequate quantitative description of Rsur(T) in
the temperature regions both below the critical temper-
ature Tc and at T > Tc. The critical temperature is a key
parameter of the given model of surface resistance.

The critical current density jc depends on the tem-
perature and can be described by the following approx-
imation [5]:

(3)

where jc(0) is the critical current density at T = 0 and
γ is a phenomenological parameter.

The power density of the heat removal is

(4)

where Ks is the heat conduction of the substrate mate-
rial, which is assumed to be isotropic and temperature-
independent in the problem under consideration.

In view of the small contributions of the other kinds
of heat removal, we suppose that the heat dissipates
only into the substrate. If the film width b is much
smaller than the substrate thickness h, a rod with diam-
eter b can be considered as a heat source, provided that
the heat flow into the semi-infinite substrate is cylindri-
cally symmetric and the temperature varies linearly in a
layer with a thickness of deff [3]:

(5)

In general, both an HTSC film and a substrate can
contain structural inhomogeneities. In the problem
under consideration, this results in the appearance of a
coordinate dependence of the power densities of heat
release q(T, x) and/or heat removal w(T, x) in expres-
sions (1)–(4). An inhomogeneity may represent both an
inclusion of a nonsuperconducting defect [1] and a
local variation in the parameters of a superconducting
film.

A typical value of the surface density jp of a micro-
wave current, which determines the possibility of coex-
istence of normal and superconducting regions, can be
found by the procedure described in [6]. The value of jp

corresponds to a minimum surface current density of
the S–N-interface propagation. At j < jp, the stable exist-
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ence of the finite-size regions of the normal phase in the
superconducting sample becomes impossible. At j > jp,
finite-size superconducting regions cannot exist in a
normal phase. The values of jp and corresponding max-
imum temperature Tm within the normal region are
defined by the system of equations

(6)

The dependence of jp(x) thus obtained makes it pos-
sible to estimate [6] the size of a normal region for a
given surface current density j. In what follows, we
assume that the inhomogeneity is symmetrically
located with respect to the origin of coordinates at the
center of a microstrip bridge and is caused by a varia-
tion in the film parameters.

Let us represent the inhomogeneity in our model as
follows. The critical temperature is assumed to vary
smoothly along the longitudinal coordinate. The model
representation of distribution along the microstrip
bridge length that is used in this study (Fig. 2) meets the
aforementioned requirement. The distribution jp(x),
which is the solution of the system of equations (6) for
the inhomogeneity, is also shown in Fig. 2. The corre-
sponding sizes of the normal region D arising at the
inhomogeneity at different current densities are shown
in Fig. 3.

Simulations were performed for the following char-
acteristic parameters of the model and the geometry of
the microstrip bridge: h = 0.5 mm, d = 0.2 µm, b =
25 µm, L = 100 µm, T0 = 77 K, Ks = 18.5 W/(m K) (lan-
thanum aluminate), Kf = 30 W/(m K) (YBaCuO), f =
10 GHz, and jc(0) = 1.5 × 107 A/cm2 (at Tc = 90 K).
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Fig. 2. Distributions of the critical temperature Tc (dashed
line) and the typical current density (solid line) in the
microstrip bridge along the longitudinal coordinate x.
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The modeling of a stationary temperature field in the
microstrip bridge is based on solving the stationary
equation of heat conduction. For a linear variation in
temperature across the substrate thickness, the one-
dimensional approximation is valid. In this case, the
stationary equation of heat conduction has the form

(7)

To find the temperature field in the microstrip
bridge, this equation is solved by the finite difference
method using the following difference approximation
of the initial differential equation:

(8)

where lx is the region involving the microstrip bridge, as
well as the parts of the leads with a length of deff.

The heat release in the leads can be neglected, since
the current density in them is smaller compared to that
in the bridge. The solution to (8) can be found in differ-
ent ways, for example, by the iteration method using
the scheme
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Fig. 3. The size of a normal region (thermal domain) for dif-
ferent current densities: the solid curve is the theoretical
curve calculated by the system of equations (6); open and
filled circles correspond to the one- and two-dimensional
approximations of the thermal fields, respectively.
(9)

For a more accurate description of the temperature
field, the two-dimensional character of the problem
should be taken into account. In this case, the tempera-
ture distribution is characterized by the two-dimen-
sional equation

(10)

with the boundary conditions

(11)

As well as in the one-dimensional case, the solution
is found by the finite difference method with a differ-
ence scheme similar to that of (8) and (9). The simula-
tion results are shown in Fig. 4. The curves obtained
make it possible to estimate the size of the normal
region D localized at the inhomogeneity. The desired
sizes are determined at a level of 0.5(Tmax – T(0.5L)),
where Tmax is the maximum temperature in the distribu-
tion. A comparison of these estimates and those
obtained in the one-dimensional approximation for the
infinitely long sample is shown in Fig. 4.

DISCUSSION

In this study, after solving the differential equation
of heat conduction, we found the values of the micro-
wave current density that determine the possibility of
coexisting normal and superconducting regions. In
addition, we simulated the stationary thermal fields in
HTSC nonhomogeneous films.

These thermal field distributions make it possible to
estimate the size of a normal region localized at an
inhomogeneity for various values of the current density.
A comparison of the results derived in the one- and
two-dimensional approximations indicates acceptable
agreement of the calculation results with each other and
with those obtained for the infinite sample. The maxi-
mum deviation does not exceed 10%, which is tolerable
for our discretization step of ±1. Thus, the model of an
infinite sample can be used to determine the threshold
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Fig. 4. Temperature distributions in the microstrip bridge for various current densities; (a) and (b) correspond to the one- and two-
dimensional simulations of the thermal fields, respectively; j = 3.0 × 109 (1), 4.0 × 109 (2), 5.0 × 109 (3), 6.0 × 109 (4), and 7.0 ×
109 A/m2 (5).
of thermal nonlinearity and estimate the size of a nor-
mal region.

The difference in the temperature distributions for
the microstrip bridge that were obtained in the one- and
two-dimensional approximations is explained by the
nonuniform heating of the substrate. This results in
deviation of the model of heat removal from the linear
one and, consequently, in a decrease in the power den-
sity of the heat removal. Thus, despite coincidence in
the estimates for the sizes of a normal region, which
were obtained in the one- and two-dimensional approx-
imations, the latter case is preferable, since it allows for
the influence of a substrate more correctly. The temper-
ature distributions obtained can also be used in calcu-
lating operational characteristics of devices made
of HTSC films in view of the effect of thermal nonlin-
earity.
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
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Despite the seemingly obvious fact that gravity
influences the deformation properties of massive bod-
ies (such as planets), the variation of the components of
the object displacement vector with distance in the
gravitational field has not yet been explored. Anyhow,
in publications hitherto known to us (see, for example,
[1–16] and Refs. therein), this problem has not been
dealt with, although it is not only of purely scientific
(satisfaction of our inquisitiveness) but also of practical
interest.

It is also important that the elucidation of the rela-
tion between the gravitational potential ϕ and deforma-
tion parameters of the planet would make it possible to
put forward one more concept of, and shed additional
light upon, natural cataclysms such as earthquakes and
volcanic eruptions.

Our approach is phenomenological; yet, using a sin-
gle adjustable parameter (see below), one can predict
and describe a number of intriguing features of the
behavior of intraplanetary deformation displacements
that are unnoticeable on the Earth’s surface but are
undoubtedly very important in considering fine gravita-
tional effects like the experimental detection of gravity
waves [17, 18].

When considering the effect of gravitational poten-
tial ϕ on the deformation displacement u of the
medium, we will use the well-proven and thus reliable
variational method [19, 20]. Within the framework of
our problem, it is reduced merely to finding an extre-
mum of the system’s Hamiltonian (because of the
absence of the time dependence of the parameters u
and ϕ).

It should be noted that such a method of describing
the dynamic development of linear and nonlinear
Hamiltonian systems can be successfully applied to
various physical phenomena (such as the evolution of
the combustion front [21] or the crystallization dynam-
ics of composites [22] in some phase space of angular
momenta and angles) typical of synergistic systems
[23].
1063-7842/03/4801- $24.00 © 0122
In our case, the Hamiltonian of the system can be
represented in the invariant form

(1)

where G is the gravitational constant; ρ is the planet
density; and K and µ are the compression and shear
moduli, respectively. They are related to the Poisson’s
ratio σ and Young’s modulus E as

(2)

In (1), the constant ω0 has the dimension of fre-
quency and represents a phenomenological parameter
of interaction between the Newtonian (nonrelativistic)
potential ϕ and displacement vector u of the medium
(the last term in (1)), uik = (1/2)(∂ui/∂xk + ∂uk/∂xi) is the
symmetric strain tensor, and δk is the Kronecker
symbol.

Consider Hamiltonian (1). The first two terms lead
to the well-known Poisson equation for the distribution
of the nonrelativistic gravitational potential ϕ. The next
pair of terms represents the purely elastic deformation
part of the Hamiltonian. They lead to the static equa-
tions of the elasticity theory [24]. Finally, the last term
characterizes the desired interaction between the gravi-
tational potential and displacement vector. The dimen-

sional factor  is chosen so as to minimize the
number of uncertain constants. It is shown below that
even one constant that has the dimension of frequency
will suffice.

By varying the parameters u and ϕ of the functional
H{ϕ, u}, we arrive at the system of linear differential
equations

(3)

H u ϕ,{ } 0.5 ∇ϕ( )2
4πGρϕ+[ ] ρ /ω0

2( ){∫=

+ 0.5K div u( )2 µ uik 1/3δik div u–( )2
+[ ]

+ ω0
2
/G( )u∇ϕ } d

3
x,

K E/3 1 2σ–( ), µ E/2 1 σ+( ).= =

ρ/ω0
2

∆ϕ 4πρG β' div u,–=

∆u σ/ 1 2σ–( )[ ] graddiv u+ β 1 σ+( )/E[ ]∇ϕ ,=
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where β' = ( )β, β = , and ∆ is Laplacian.

From the first equation, we immediately obtain

(4)

It is easy to check that for a spherical body,

(5)

Substituting this solution into the second equation
of system (3) written in the spherical coordinate system
yields

After simple rearrangements, we find

(6)

where γ = ββ'(1 – 2σ)/(1 + σ)ρ.

Making Eq. (6) dimensionless with the substitutions
x = r/r0 and u = u0y (where r0 = (2/γ)1/2 and u0 =

4πρβG(1 – 2σ) /3E(1 + σ)) and making two other
substitutions, ξ = x2 and y = W(ξ)ξk, where k satisfies
the equation k2 – σ/2(1 + σ) = 0 (here, only the positive
root has a physical meaning, because at x = 0 the strain
must be finite), we come to equation

(7)

This equation is nothing but an equation of a degen-
erate hypergeometric function. Then, its solution is W =
F(k + 2, 1 + 2k, –ξ/2). Eventually, the desired deforma-
tion displacement can be written as

(8)

It is seen that at small x (x  0), the solution u 
u0x2k. At large x (x @ 1), we find, using the asymptotics
of a hypergeometric function, that

(9)

ω0
2
/ρ ω0

2
/G

ϕ r( ) –G
ρ r'( )d

3r'
r r'–

---------------------∫ β'
4π
------ div u r'( )d

3r'
r r'–

------------------------------.∫+=

ϕ r( ) 2πρG/3( ) r
2

R
2

+( )=

+ β' 1/r'( ) ∂/r'( ) r'
2
ur r'( )( ) r'.d

r

R

∫

1/r( ) rui( )'' σ/ 1 2σ–( )[ ] 1/r
2( ) r

2
ur( )'[ ] '+

=  4πρβG 1 σ+( )r/E β'β 1 σ+( )/Eρ[ ] 1/r r
2
ur( )'[ ] '.–

ur'' ur' rγ 2/r+( ) 2ur γ σ/ 1 σ+( )r
2

–[ ]+ +

=  4πρβG 1 2σ–( )r/3E 1 σ+( ),

r0
3

ξW '' 2k 1 0.5ξ+ +( )W ' 1 0.5k+( )W+ + 0.=

ur u0x
2k

F k 2 1 2k x
2
/2–,+,+( ).=

uk u0
2

k12Γ k 2+( )
Γ k 1–( )x

4
------------------------------





≈

+
Γ k 2+( ) x

2
/2–{ } x

2
exp

Γ 1 2k+( )
-------------------------------------------------------- 0.5–( )1 k–





.
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Since k < 1, the first term in (9) vanishes and finally
the correct solution takes the form

Thus, at a distance of r0 or larger, the deformation
displacement decays exponentially towards the Earth’s
surface, which physically is a reasonable result in our
opinion.

This critical radial distance (measured from the
planet center) can be estimated by the formula

(10)

To estimate r0, we take the Young’s modulus E =
1011 J/m3, Earth’s density ρ = 10 kg/m3, Poisson’s ratio
σ = 1/3, and gravitational constant G = 6.672 ×
10−11 m3/(kg s2). The interaction constant measured in
units of inverse time is taken as equal to ω0 = 10–3 s–1.
Note in passing that if ω0 is other than 10–3, the result
will be somewhat unrealistic. It turns out that r0 =
134 km.

This estimate indicates the decay of strains due to
the interaction between the gravitational field of the
planet and deformation displacements occurring in any
massive body under its own gravity force. Characteris-
tic distances are estimated as several hundreds of kilo-
meters from the center. Basically, this is quite obvious,
because the relationship between the displacement u
and potential ϕ was shown to be very strong and the
neglect of this interaction would lead to a meaningless
solution. Indeed, it is easy to verify that solving the
equation g = –gr/R with ∆ϕ = 4πρG (which follows
from the Poisson equation ∆u + [σ/(1 – 2σ)]graddivu =
–ρg at r < R, where R is the Earth’s radius) would yield
a displacement on the order of 160 km at a distance of
about 2000 km from the center. Such a value could still
be recognized as more or less adequate; however, one
encounters the greatest problems when calculating the
displacement on the Earth’s surface, which turns out to
be about 1600 km.

The above value merely indicates that it is necessary
to take into account the nonlinear terms describing the
interaction between the gravitational and deformation
potentials. To stress this need was the aim of the present
study. The results obtained are more than realistic. They
suggest the absence of displacements on the Earth’s
surface despite considerable displacements near the
core.
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Abstract—Restructuring in metals due to elastoplastic deformation produced by submicrosecond impulsive
shock loading is studied experimentally. Tests are performed on 0.3ZhR iron and N1 nickel specimens with var-
ious structures. Structure modifications after shock tests are studied with acoustooptic spectroscopy. The fre-
quency dependences of the longitudinal acoustic velocity and attenuation coefficient make it possible to esti-
mate both the characteristic scales of restructuring in relation to the initial structure and the sensitivity of the
acoustooptic method to restructuring in various materials. © 2003 MAIK “Nauka/Interperiodica”.
The interrelation between the plastic deformation of
materials and modifications in their structure is well
known [1–4]. However, information on characteristic
structure levels responsible for deformation when load-
ing conditions and initial material structures vary is
very scarce. This is because the techniques for studying
restructuring under deformation are not sufficiently
advanced and few complex experimental investigations
of this phenomenon (especially after shock tests) have
been carried out.

Upon studying elastoplastic deformation in metals
due to submicrosecond shock impulses, it was found
[5] that the grain size dependence of hardening differs
much from the Hall–Petch relationship. It was assumed
that this is associated with a change in the scale levels
of restructuring that are responsible for plastic defor-
mation in materials with various initial structures.

To reveal the scales of modifications, we studied
0.3ZhR iron and N1 nickel specimens with various ini-
tial structures before and after shock loading. The load-
ing was accomplished by pressure impulses of ampli-
tude ≈1.0 GPa and duration ≈8 × 10–8 s [5]. The initial
structure of the specimens was modified by vacuum
annealing for 1 h at a given temperature. After the
annealing, the specimens were cooled in the furnace.

To obtain the frequency dependence of the attenua-
tion and acoustic velocity over a wide spectral range,
we applied the pulsed acoustooptic method [6–8] using
a 1.06-µm laser with a pulse width of 25 ns and a pulse
energy of ≤30 mJ.

Acoustic pulses were recorded with a piezoelectric
detector made of a 30-µm-thick polyvinyldiphenyl film
placed on the surface of an acoustooptic cell made of
fused quartz. The cell served as an optical path and
1063-7842/03/4801- $24.00 © 20125
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Fig. 1. (a) Waveforms of the (1) first and (2) second acoustic
pulses in iron (annealed at 100°C), (b) pulses are imposed
on each other, and (c') phase and (c") magnitude of the Fou-
rier spectra of the first and second acoustic pulses.
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Fig. 2. Frequency dependences of the acoustic velocity ∆c(ω)/c0 and attenuation α(ω). Annealing at (a) 1000°C (d ≈ 20 µm),
(b) 700°C (d ≈ 20 µm), and (c) 100°C (d ≈ 220 µm). Dashed line, before the shock; solid line, after the shock.
acoustic waveguide [9]. The passband of the detector
was about 150 MHz.

Figure 1 shows the typical waveforms of the (1) first
and (2) second acoustic echo pulses in the iron speci-
men (annealed at 100°C) and the first and second pulses
imposed on each other, as well as the magnitudes and
phases of their Fourier transforms.

In the experiments, we measured the velocity c0 of
acoustic pulse propagation, as well as determined (by
analyzing the spectra of the pulses) the frequency (ω)
dependence of the velocity (c(ω)) and attenuation
(α(ω)) from the relationships [8]

where c(ω) ≈ c0 + ∆c(ω), ∆x is the specimen thickness,
and A1, 2 and B1, 2 are the coefficients before the real and
imaginary parts of the Fourier spectrum for the first and
second acoustic pulses.

Figure 2 demonstrates the thus-obtained frequency
dependences of the acoustic velocity and attenuation
before and after shock loading the iron specimens
annealed at 1000, 700, and 100°C. From the variation
of these curves, one can estimate the scales of restruc-
turing due to shock loading.

∆c ω( )
c0

ω∆x
-----------

B1

A1
------arctan

B2

A2
------arctan– ,=

α ω( ) 1
2∆x
----------

A1
2 B1

2+

A2
2 B2

2+
------------------,ln=
For the specimens with a grain size d ≈ 220 µm and
low dislocation density that were annealed at 1000°C,
the curves ∆c(ω)/c0 before and after the shock are
almost the same throughout the frequency range. The
acoustic velocity also remains unchanged, c0 = 5948 ±
5 m/s. The attenuation coefficients do not differ up to a
frequency of ≤25 MHz. However, in the high-frequency
part of the spectrum, the attenuation after the shock
increases significantly because of the high concentra-
tion of linear defects (dislocations and twins) generated
by plastic deformation. The characteristic size (scale)
of such structure imperfections (modifications) is on
the order of ≈10–7–10–6 m [1–4]. It appears that the
strain hardening of the specimens with such an initial
structure was the highest for precisely this reason [5].

In the specimens with a structure modified by
annealing at 700°C (d ≈ 20 µm), the shock loading is
followed by an appreciable increase in the spread in the
velocity ∆c(ω)/c0 and attenuation α(ω) throughout the
frequency range. In the shock-loaded specimens, the
acoustic velocity grows from 5956 to 5974 m/s. This
difference exceeds the measurement accuracy threefold
and is associated with the change in the crystallo-
graphic orientation of entire grains or their fragments
that have a characteristic size of 10–6–10–5 m. This
change is due to the rotational mechanism of plastic
deformation [2–4]. Accordingly, the attenuation grows
at frequencies ≤25 MHz because acoustic waves scatter
by fragment or grain boundaries. The increase in the
attenuation after the shock in the high-frequency part of
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
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the spectrum is due to a higher concentration of the lin-
ear defects, as before. Thus, both the rotational mecha-
nism and defect structure modifications are responsible
for the plastic deformation of the iron specimen whose
initial structure was obtained by annealing at 700°C.

In the specimens annealed at 100°C in which the
grain size was the same as before (d ≈ 20 µm) but the
starting defect density was higher, ∆c(ω)/c0 and α(ω)
grow markedly after the loading only at frequencies
≤25 MHz. In the shock-loaded specimens, the acoustic
velocity increases by 24 m/s from c0 = 5966 ± 5 to
5990 ± 5 m/s. In the high-frequency part, the velocity
spreads and attenuation coefficients before and after the
tests differ only slightly. A possible reason for such
behavior of ∆c(ω)/c0 and α(ω) is that the rotational
mechanism of plastic yield causing restructuring on a
scale comparable to the grain size becomes prevailing
in the specimens with the initial structure described
above.

The data for the N1 nickel specimens qualitatively
agree with those for the iron specimens shown in Fig. 2.

Thus, in the case of a submicrosecond shock, the
rotational mechanism governs plastic deformation in
polycrystals with a grain size on the order of the shock
loading front (≈10–5 m). According to [5], the strain
hardening in such specimens is the lowest.

Our results combined with those in [5] also indicate
that the violation of the Hall–Petch relationship (a rise
in the hardening with grain size) is explained by the
decisive role of the intragranular defect structure mod-
ification (an increase in the concentration of disloca-
tions and twins) in the strain hardening. For a submi-
crosecond shock loading, this effect is most pro-
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
nounced in coarse-grained specimens and apparently in
single crystals.

To conclude, we note that the method of acoustoop-
tic spectroscopy shows promise for studying restructur-
ing in metals. With this method, one can gain informa-
tion on restructuring on a scale of 10–7–10–6 m.
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Abstract—As was shown earlier [1], in a permanent-magnet mass spectrometer, one can record mass spectra
in a considerably wide range of mass numbers by using several specially arranged collectors. This scheme is
easy to implement in magnetic mass analyzers with an angle of rotation other than 180°. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In permanent-magnet mass analyzers, the fast
recording of mass spectra in a wide range of masses can
be accomplished in two ways: with the use of position-
sensitive detectors (PSDs) and by sweeping the accel-
erating voltage in a system with several collectors.
PSDs offer a high rate of recording and a high sensitiv-
ity. However, they have a complex design and are also
expensive and difficult to maintain. The latter variant is
structurally simpler and offers a sufficiently high stabil-
ity and reliability. The sensitivity of a multicollector
system is somewhat lower, but it records a wider mass
spectrum than the PSD of the same mass analyzer.
Moreover, it will be shown that the recording time in a
multicollector system is small.

TRAJECTORY EQUATION

The motion of an ion in a magnetic field can be
described in terms of its deviation from the central tra-
jectory [2]:

(1)

where δ/r0 is the deviation of the ion moving along the
paraxial trajectory; r0 is the central trajectory radius;
and x1(r0), …, xn(r0) are parameters describing the ana-
lyzer geometry and deviation from the initial conditions
for ions moving along the paraxial trajectory.

In a uniform magnetic field, the radius of ion rota-
tion is given by [2]

(2)

where B is the magnetic field induction, U is the ion-
accelerating voltage, and q is the charge of an ion.

δ
r0
---- f r0 x1 r0( ) … xn r0( ), , ,( ),=

r
1
B
--- 2MU

q
-------------,=
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Let us introduce the dimensionless parameter (tra-
jectory index)

(3)

where M is the mass of ions moving along an arbitrary
trajectory and M0 is the mass of ions moving along the
central trajectory.

Using the concept of the trajectory index, we
express the radius of an arbitrary trajectory through the
radius of the central trajectory,

(4)

and rewrite relationship (1) as

(5)

Thus, we arrived at the equation for an arbitrary tra-
jectory in a given mass range. This approach was used
by the authors in [3].

SIMULATION OF SWEEPING

Using the trajectory index, we will simulate the pro-
cess of electrostatic sweeping. According to formula (2),
the radius of the central trajectory is given by

(6)

where U0 is the initial accelerating voltage.

During sweeping, ions passing along the central tra-
jectory have various masses. At the end of sweeping,
ions passing along the central trajectory will have an

γ
M M0–

M0
------------------,=

r
1
B
---

2M0 1 γ+( )U
q

-------------------------------- r0 1 γ+ ,= =

δ γ( )
r0

----------- 1 γ+ f̃ r0 γ x1 r0 γ,( ) … xn r0 γ,( ), , , ,( ).=

r0
1
B
---

2M0U0

q
-----------------,=
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index . The radius of their trajectory is

(7)

where β = (∆U)/U0 is the relative change in the accel-
erating voltage during sweeping.

In view of the fact that radius (7) at the end of
sweeping coincides with the central trajectory radius
(r = r0),

(8)

we determine the relative shift of the spectrum due to
the change in the accelerating voltage:

(9)

Since the change in the accelerating voltage is the
same for all ions irrespective of their masses, the rela-
tive shift of the spectrum is the same for any trajectory
in a given mass range. From this condition, it is easy to
draw up the rule for collector arrangement. We have

(10)

At the same time, according to (3),

(11)

Equating the right-hand sides of the last equation in
(10) and of Eq. (11), we come to the rule for collector
arrangement:

(12)

From the last equation in (10), we can find the
desired number of collectors:

(13)

Taking the logarithm of both sides yields

(14)

Then, with the limits of a specified mass range
(M0 = Mmin and Mn = Mmax), we have

(15)

and take the integer part of N.
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Figure 1 shows mass spectra at the beginning and
end of electrostatic sweeping. When simulating, we
used the program described in [3].

For a mass spectrum to be reliable, each line must be
within the range of an appropriate collector for a time
τ. The time τ corresponds to the time constant of an
electrometer and/or integration time of an analog-to-
digital converter. Using our model, we choose ∆γ such
that peaks with the indices γ and γ + ∆γ do not fall into
one collector simultaneously (Fig. 2); then, the equality

(16)

is valid, where ∆x is the center spacing of the peaks
with the indices γ and γ + ∆γ, ∆w is the width of the
peak, and s2 is the slit width of the collector.

In formula (16), all the parameters are expressed
through the central trajectory radius.

Thus, ∆γ is the maximal shift of a mass spectrum
with which reliable recording is provided. For the set of
collectors at hand, we take the shift ∆γ with the least
magnitude. According to (8), the value of ∆γmin can be
found by measuring the maximal change in the acceler-
ating voltage βmax.

Electrostatic sweeping is most easily accomplished
by a discharge of an additional capacitor inserted in the
lens voltage divider of the source (Fig. 3). According to
the similarity principle for ion–optical systems, the
voltages of the source lenses will vary in proportion and
beam focusing will be completely retained. In this case,
the voltage across a resistor is known to vary by the
law [4]

(17)

where U0 is the voltage across the capacitor before the
discharge, C is the capacitor value, R is the resistance

∆x ∆w– s2=

U t( ) U0
1

RC
--------t– 

  ,exp=
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Fig. 1. Mass spectra at the (rhombus) beginning and (trian-
gles) end of electrostatic sweeping. The curves were
obtained for a symmetric mass analyzer. ϕm = 130°, rm =
60 mm, entrance angle 52°, U0 = 2240 V, and ∆U = –0.1U0.
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of the lens voltage divider between points A and B, and
t is the time from the beginning of the discharge.

As follows from the reliable recording rule,

(18)

Then, the value of the parameter RC is found from

∆U τ( ) U τ( ) U0– βmaxU0.= =

∆x

∆w ∆w

s2

Fig. 2.

4

5
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C

A

1

2

3

Fig. 3. Typical lens voltage divider in an electron-impact
source. (1) Accelerating voltage, (2) focusing voltage,
(3) extraction voltage, (4) ionization voltage, and
(5) applied voltage.
the formula

(19)

Knowing the parameter RC and total change in the
accelerating voltage during sweeping, we find the time
taken to record the entire spectrum:

(20)

In our example, for an integration time of the ana-
log-to-digital converter τ = 25 ms and a collector slit
width s2 = 400 µm, the time required to record the entire
spectrum is T ≈ 1.9 s.

CONCLUSION
The sweep rate is a very important parameter for

portable mass spectrometers with a chromatographic
interface. With this parameter known, requirements for
the gas-delivery and pumping systems of a mass spec-
trometer can be worked out. Moreover, using the
approach suggested in this paper, along with the pro-
gram used in [3], one can find all the parameters needed
to design multicollector recording systems.

Our approach makes it possible to determine the
maximum allowable sweep rate for a mass spectrum.
Reliable recording is provided if the RC value is taken
5–10% greater than the calculated one.
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Abstract—Accelerated degradation testing of long-wavelength (>1.25 µm) quantum-dot lasers made on GaAs
substrates is carried out at a fixed current of 1.7 A, initial optical output of about 0.3 W, and a heat sink temper-
ature of 60°C. No signs of degradation are revealed after testing for 450 h. The test bed is not sealed, inert gas
purging is not performed, and the laser faces are not passivated. © 2003 MAIK “Nauka/Interperiodica”.
Since the first demonstration of lasing through the
ground state of quantum dots produced by self-organi-
zation [1], quantum-dot lasers have attracted much
attention throughout the world [2, 3]. An advantage of
quantum-dot lasers is the suppression of carrier trans-
port in the lateral direction towards defects, disloca-
tions, and the laser faces owing to the strong localiza-
tion of electrons and holes within the dots. This may
improve the operating stability and radiation resistance
of quantum-dot lasers in comparison with those of
quantum-well lasers. Recently, Ribbat et al. [4] demon-
strated that quantum-dot lasers are much less sensitive
to irradiation by a proton beam than quantum-well
lasers. Note that quantum dots make it possible to lase
at a wavelength of 1.3 µm in structures grown on a
GaAs substrate [2, 3, 5, 6]. The maximum cw output of
such lasers is 2.7 W [7, 8]. Surface-emitting lasers built
around a vertical microcavity with InAs/GaAs quantum
dots grown on a GaAs substrate have been shown to
lase in the wavelength interval 1.295–1.305 µm with an
internal differential efficiency of 64% and external effi-
ciency of 20% [6].

In this work, we study the stability of a long-wave-
length quantum-dot laser and demonstrate that this
laser is more stable than a quantum-well laser fabri-
cated in the same MBE equipment and tested under the
same conditions.

The object studied was an MBE-grown double-het-
erostructure laser with separate confinement of the
electrons and the light wave. The lasing area was sand-
wiched in 1.5-µm-thick AlxGa1 – xAs emitting layers
with an effective aluminum content of 75%. The emit-
ters were doped by Si and Be to reach the concentra-
tions of electrons and holes at a level of 5 × 1017 cm–3.
1063-7842/03/4801- $24.00 © 20131
The lasing area consisted of three quantum-dot lay-
ers separated by GaAs spacers with a thickness of
33 nm. Quantum dots in the lasing area were made by
the activated decomposition of the solid solution. Initial
islands formed by the deposition of 2.7 InAs monolay-
ers were covered by an In0.15Ga0.85As layer with a mean
thickness of 5 nm. Indium atoms of the overlayer dif-
fuse toward the islands, whose lattice parameter is close
to that of bulk InAs, whereas Ga atoms diffuse toward
the areas between the islands, where the lattice param-
eter is close to that of bulk GaAs. This process leads to
the activated decomposition of InGaAs, increases the
effective volume of the islands, and causes the red shift
of the photoluminescence band. The quantum dots cov-
ered become embedded in an InGaAs quantum well,
which also contributes to the red shift of the photolumi-
nescence band because of the stress field redistribution
in the dots and the narrowing of the matrix band gap.
The density of dots measured by transmission electron
microscopy was found to be 4 × 1010 cm–2.

The lasers had a stripe geometry with a stripe width
of 100 µm (shallow mesa) and a stripe length of 2000
µm. The cleaved faces were neither passivated nor cov-
ered by an insulating coating. The lasers were soldered
onto copper heat sinks with an indium solder. We did
not use inert gas purging; that is, the degradation char-
acteristics were studied under room conditions. In deg-
radation tests, the laser current in the cw mode was sta-
bilized.

The differential efficiency of the quantum-dot lasers
near the lasing threshold is typically about 42% in a
temperature range of 15–60°C. The quantum efficiency
and the internal losses determined from the dependence
of the inverse differential efficiency on the stripe length
were 95 ± 5% and 7 cm–1, respectively. The threshold
003 MAIK “Nauka/Interperiodica”
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current density equaled 150 and 340 A/cm2 at heat sink
temperatures of 15 and 60°C, respectively. The acceler-
ated degradation test was performed at a temperature of
60°C and current of 1.7 A, which corresponds to a laser
output of 0.28 W at the beginning of testing. Figure 1
shows a typical time dependence of the quantum-dot
laser output for the current 1.7 A. After testing for
450 h, we took the spectral characteristics of the lasers.
Figure 2 demonstrates the electroluminescence spectra
in the cw lasing mode at two values of the current for
15°C. Any variations in the laser wavelength after the
degradation tests were not observed.

We also applied degradation tests to conventional
GaAs/AlGaAs quantum-well lasers fabricated in the
same MBE equipment. The output power decreases by
more than 10% after the 100-h tests in this case presum-

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0

P, W

Cw 1.7 A, 60°C

15°C

60°C

1.4

1.0

0.6

0.2

0

P, W

1 2 3 4

100 200 300 400 500

I, A

t, h

Fig. 1. Cw quantum-dot laser output versus time at 60°C.
During the test, the laser current was stabilized. The inset
shows the watt–ampere characteristics at heat sink temper-
atures of 15 and 60°C. Stripe length and width are 2000 and
100 µm, respectively.
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Fig. 2. Lasing spectra of the quantum-dot laser for two cur-
rents. The heat sink temperature is 15°C.
ably because of the degradation of the unprotected
cleaved faces of the laser diodes. The higher reliability
of the quantum-dot lasers is explained by the weak dif-
fusion of the carriers toward the cleaved faces. Indeed,
the lateral diffusion of electrons and holes in quantum
dots is strongly suppressed owing to their severe con-
finement in three dimensions. This decreases sharply
the overheat of the laser faces and inhibits chemical
reactions on them stimulated by the recombination of
free carriers.

At present, we are planning to apply degradation
tests to quantum-dot lasers with mirror coatings on
their faces and use inert gas purging of the test bed.
Note, however, that even the early results of the accel-
erated degradation tests presented suggest a high stabil-
ity of quantum-dot lasers.

CONCLUSION

Long-wavelength (>1.25 µm) quantum-dot lasers
produced by the activated decomposition of the solid
solution are shown to be highly stable. Our results are
in agreement with the high radiation resistance of quan-
tum-dot lasers exposed to high-energy protons.
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Abstract—The problem of a nonstationary source of heat or particles in a polyatomic gas is solved analytically.
The temperature and concentration distributions vs. distance to the source are constructed. It is shown
that a nonstationary heat source may generate acoustic vibration. The solution obtained can be helpful in study-
ing acoustic wave propagation, temperature and concentration fields produced by heat or particle sources of
various configuration (in particular, by a laser beam in an absorbing media), etc. © 2003 MAIK “Nauka/Inter-
periodica”.
Interest in transfer phenomena in molecular gases
has increased over the past few years [1]. However, ana-
lytical solutions have been derived only for stationary
problems [2–6] and the nonstationary kinetic equation
has been solved with regard only for the translational
motion of gas molecules [7–9].

In this work, a nonstationary kinetic equation for a
polyatomic gas is considered for the first time.

The contribution of internal degrees of freedom is
known (see, e.g., [10]) to depend on their energy spec-
trum. The energy spacing between rotational degrees of
freedom is defined by the ratio "2/2J (J is the moment
of inertia of a molecule) and is comparable to the
energy of thermal motion kT only for the lightest gases.
Specifically, for hydrogen molecules, "2/2Jk = 85.4 K.
For polyatomic gases, this value is much lower. There-
fore, one can ignore the discreteness of the rotational
motion energy and consider rotational degrees of free-
dom in the classical approximation. As for vibrational
degrees of freedom, they are excited at temperatures
near 1000 K and so can be considered to be completely
frozen.

Following [11], we start with the solution of the one-
dimensional equation

Here, f is the distribution function, V is the intrinsic
translational velocity of gas molecules, and Jcol is the
integral collision operator.

Leaving only linear effects, we represent the solu-
tion to this equation in the form

∂f
∂t
----- Vx

∂f
∂x
------+ Jcol f[ ] .=

f f 0 1 ϕ+( ),=
1063-7842/03/4801- $24.00 © 20015
where ϕ is a correction to the equilibrium (Maxwell)
distribution function f0. For a polyatomic gas, this func-
tion is given by

where

m, Ji, and ωi are the mass, principal moments of inertia,
and related components of the angular velocity of mol-
ecules; k is the Boltzmann constant; and T0 and n0 are
the undisturbed temperature and concentration values.

Since reliable data for the nature of intermolecular
interaction in molecular gases are lacking, we will
restrict our analysis to an analogue of the Bhatnagar–
Gross–Krook model of collision integral [3]. Since the
relaxation times for translational and rotational motions
differ insignificantly for most gases under normal con-
ditions, we will assume them to be the same.

Let x and t be measured in terms of

where l and τ are the mean free path and time of gas
molecules. Then,

(1)

Here,

f 0 n0
m

2πkT0
--------------- 

  3/2 Ji

2πkT0
--------------- 

 
1/2

–C2 γ2–( ),exp
i 1=

3

∏=

C V
m

2kT0
------------ 

  1/2

, γ
Jiωi

2

2kT0
------------

i 1=

3

∑ 
 
 

1/2

,= =

l χ 2m
kT
------- and τ χm

kT
-------,= =

∂ϕ
∂t
------ Cx

∂ϕ
∂x
------+ PiMi ϕ .–

i 1=

3

∑=

Mi π 3– Piϕ –C2 γ2–( )d3γd3C,exp∫=
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and χ is the thermal diffusivity of the gas.
Putting Cx = µ, we represent ϕ in the form

where

(2)

As a result, (1) is reduced to an integro-differential

equation for the vector Y = :

Separating variables, we represent a solution to this
equation in the from

The components of the vector F are found from a set
of characteristic equations

(3)

(4)

P1 1, P2
1

3
------- C2 γ2 3–+( ), P3 2Cx,= = =

ϕ e1Y1 t x µ, ,( ) e2Y2 t x µ, ,( ),+=

e1 1, e2
1
ν
--- C2 µ2– γ2 ν2–+( ), ν 5/2.= = =

Y1

Y2

∂
∂t
----- µ ∂

∂x
------ 1+ + 

  Y t x µ, ,( )

=  π 1/2– K µ µ1,( )Y t x µ1, ,( ) µ1
2–( )exp µ1,d

∞–

+∞

∫

K µ µ1,( ) = 
1 2µµ1

1
3
--- µ2 1

2
---– 

  µ1
2 1

2
---– 

 + +
ν
3
--- µ2 1

2
---– 

 

ν
3
--- µ1

2 1
2
---– 

  ν2

3
-----

.

Y t x µ, ,( ) σt σ 1+( )x/η–( )F σ η µ, ,( ).exp=

π1/2 1 µ
η
---– 

  σ 1+( )F1 N1
0 2µN1

1+=

+
2µ2 1–

12
----------------- 2N1

2 N1
0– 2νN2

0+( ),

π1/2 1 µ
η
---– 

  σ 1+( )F2
ν
6
--- 2N1

2 N1
0– 2νN2

0+( ),=

Ni
α Fiµ

α µ2–( )exp µ.d

∞–

∞

∫=
According to [12], we express the higher order
moments of the function F1 that enter into (3) and (4)

through . To this end, we multiply (3) by exp(–µ2)
and (4) by µexp(–µ2) and integrate over the range of µ.
Solving the resulting set of equation yields

Thus, Eqs. (3) and (4) can also be represented in
vector form:

(5)

(6)

(7)

Equality (7) can be viewed as the normalization
condition for the function F.

If η is not a real number, we find from (5)

(8)

The values of η corresponding to this solution are
found from condition (7). Then,

or (in the equivalent form)

(9)

Here,

N1
0

N1
α N1

0 ησ
σ 1+
------------ 

 
α
.=

π1/2ηF σ 1+( ) η µ–( )∆ N,⋅=

∆ =
1 2

µση
σ 1+
------------ +

2µ2 1–
6

----------------- ση
σ 1+
------------ 

 
2 1

2
---– 

 +  
ν
6
--- 2µ2 1–( )

ν
3
--- ση

σ 1+
------------ 

 
2 1

2
---– 

  ν2

3
-----

,

N
N1

0

N2
0

µ2–( )Fexp µ.d

∞–

+∞

∫= =

F
π1/2η

η µ–( ) σ 1+( )
-----------------------------------∆ N.⋅=

N
π 1/2– η
σ 1+
-------------- ∆

η µ–
------------- µ2–( )exp µd N⋅

∞–

+∞

∫=

detΛ σ η,( ) 0.=

Λ σ η,( ) σ 1+( )E π 1/2– η ∆
η µ–
------------- µ2–( )exp µd

∞–

+∞

∫–=
(10)

= 
σ 1 λ c η( ) 2η2σ

σ 1+
------------ λ c η( ) 1+( ) λ1l+ + + + νλ 1

ν
3
---λ c η( )l σ 1

5
6
---λ c η( )+ +

,

λ1

λ c η( ) 2η2 1–( ) 2η2+
6

----------------------------------------------------, l
ση

σ 1+
------------ 

 
2 1

2
---,–= =
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and E is the unit matrix.
The normalizing vector N can be determined accu-

rate to an arbitrary constant:

(11)

To solve dispersion relation (9), we turn to the the-
ory of boundary-value problems for functions of com-
plex variable (see, e.g., [13]). Note that the function
D(z) = detΛ(σ, z) is an even piecewise analytic function
in the complex plane with a cut along the real axis. Let
us designate the restrictions of this function on the
upper and lower half-planes as D+ and D–, respectively,
and consider the Riemann homogeneous boundary-
value problem

(12)

with the coefficient G(x) = D+(x)/D–(x), where D±(x) =
(x + iy).

By virtue of the Liouville generalized theorem, the
general solution to problem (12) is given by

where

Thus, to find ηα, it is sufficient to calculate D± and
X± for (κ + 1) arbitrary values of z and solve the result-
ing set of equations for these quantities and constant A.
The values of ±ηα thus found are the desired roots of
Eq. (9).

In view of (11), a discrete solution spectrum can be
represented in the form

(13)

where Λij and ∆ij are the components of matrices (10)
and (6) taken at η = ηα.

λ c z( ) π 1/2– z µ2–( ) µd
µ z–
-----------,exp

∞–

+∞

∫=

N const
Λ22

Λ21–
.=

X+ x( ) G x( )X– x( ), x R∈=

D
y 0±→
lim

D± z( ) A z i+( ) 2κ– X± z( ) ηα
2 z2–( ),

α 1=

κ

∏=

X± z( ) z i+
z i±
---------- 

 
2κ

Γ z( )( ),exp=

Γ z( ) 1
2πi
-------- µ i+

µ i–
----------- 

 
2κ

G µ( ) 
  µd

µ z–
-----------,ln

∞–

+∞

∫=

κ 1
2
---indG x( ) 1

2π
------ G x( )arg[ ] R+

, R+ 0 ∞,( ).∈= =

F σ ηα µ, ,( ) = 
π 1/2– ηα

ηα µ–( ) σ 1+( )
--------------------------------------

Λ22∆11 Λ21∆12–

Λ22∆21 Λ21∆22–
,
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If the values of η are real, solutions to Eqs. (5) and
(7) are the functions

(14)

which constitute a continuous solution spectrum. All
integrals of function (14) should be taken in the sense
of the principal value of the Cauchy integral.

Because of the arbitrariness of the normalizing vec-
tor N, solutions (14) can be represented as the superpo-
sition of two independent functions

where

One can prove (see, e.g., [11]) that the set of solu-
tions obtained is a complete set of orthogonal functions
satisfying the following conditions:

(15)

Φ σ η µ, ,( ) π 1/2– η
η µ–
-------------∆
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---+ η2( )Λδ η µ–( )exp 
 N

σ 1+
------------,
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λp η( ) η2 1

2
---– 

  η2+

3
ν
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,exp

Φ2 π 1/2– η
η µ–
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1 2µησ
σ 1+
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0

= η2( )δ η µ–( )exp+

×
σ 1 λp η( ) 2 λp η( ) 1+( ) η2σ
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,

λp η( ) 2η η 2–( ) µ2( )exp µ.d

0

η

∫exp–=

F σ ηα µ, ,( )F σ ηβ µ, ,( ) µ2–( )µexp µd
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∫ δαβ Nα ,=

F σ ηα µ, ,( )Φβ σ η µ, ,( ) µ2–( )µexp µd
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+∞

∫ 0,=
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∫
=  δαβδ η η'–( )N0,



18 SAVKOV et al.
where

The values of Nα are more convenient to calculate by
numerical integration because the associated expres-
sions are extremely awkward.

As an application of the solution found, let us con-
sider an infinite planar heat source of power W(t) =
exp(σt) placed in the plane x = 0.

In this case, the distribution function can be repre-
sented as

where

(16)

Here, summation in the first term should be performed
only over those α for which Re((σ + 1)/ηα) > 0.

The coefficients A and B are found from the step
condition

X1 N11Φ1 N12Φ2, X2– N22Φ2 N12Φ1,–= =
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Y t x µ, ,( ) Y± σ x µ, ,( ) σt( ), for x± 0,>exp=
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0
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∫
β 0=

2

∑

µ Y+ Y––( ) S at x 0.= =
Hence, by virtue of condition (15), we find

(17)

In our case,

Accordingly,

(18)

For relative drops in temperature

and gas molecule concentration

we have

Aα
± F σ ηα± µ, ,( )S µ2–( )exp µ,d

∞–

+∞

∫=

Bβ XβS µ2–( )exp µ.d
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S Sh
1
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If the translational and vibrational degrees of free-
dom,

are excited separately, the vectors F and Xβ should be
written in the expanded form

Also, relationships (17) should be supplemented by
integration over the remaining velocity projections:

Of certain interest are the temperature distributions
over translational and vibrational degrees of freedom:

For completeness, we should also consider a particle
source of type

For relative temperature and concentration drops,
we have in this case

(19)

Hereafter, superscript m specifies the distribution
function moment as follows: m = 1, ∆T; m = 2, ∆T v;
m = 3, ∆T ω; and m = 4, ∆N. Superscript s specifies the

∆Nh π 1/2– σt( )
aα

h aα
p

Nα
----------- σ 1+( )x/ηα+−( )exp

α
∑±





exp=

– σ 1+( )2 N12

N0
-------- σ 1+( )x/η–( )exp ηd

0

∞±

∫ 



.

Sv
2
3
---C2 1 and Sω–

2
3
---γ2 1–= =

F e1F1 e2F2, Xβ+ e1X1β e2X2β.+= =

Aα
± π 5/2– e1F1 σ ηα± µ, ,( ) e2F2 σ ηα± µ, ,( )+( )∫=

× S –C2 γ2–( )d3γd3C,exp

Bβ π 5/2– e1X1β e2X2β+( )S –C2 γ2–( )d3γd3C.exp∫=

∆Tv 2
3
---π 3– C2 3

2
---– 

  ϕ –C2 γ2–( )d3γd3C,exp∫=

∆Tω 2
3
---π 3– γ2 3

2
---– 
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1

0
.=

Ms
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s aα
m

Nα
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α
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× σt σ 1+( )x/ηα+−( )exp π 1/2– σ 1+( )2+

×
N11b1

s b1
m N22b2

s b2
m N12 b1

s b2
m b2

s b1
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N0
-----------------------------------------------------------------------------------------------

0
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∫
× σt σ 1+( )x/η–( )dη .exp
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source type: s = 1, Sh; s = 2, Sv; s = 3, Sω; and s = 4, Sp.
Also,

The coefficients , , and  are found from rela-
tionship (18).

Note in passing that the moments listed above are
symmetric with respect to index permutation. In other
words, the relative drop, e.g., of concentration in the

vicinity of the heat source, ∆Nh = , coincides with
the temperature distribution near the particle source,

∆Tp = .

Clearly, a planar source can be considered as a set of
isotropic point sources. Hence, the distribution of any
scalar quantity ρpl from a planar source can be
expressed through the distribution of this quantity from
a point source, ρpt:

where r is the distance between a surface element dσ
and a selected point in space.

Hence, it follows that

Thus, for an isotropic point source,

(20)

Let us analyze the solution obtained.
Figure 1 shows the regions C1, C2, and C3 of the

parameter σ where the dispersion relation has, respec-
tively, two, four, and six roots. For the negative half-
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space Imσ, the pattern is symmetric about the real axis.
It was shown numerically that as σ approaches the
boundary of these regions from the inside, the imagi-
nary part of one pair of the roots tends to zero and the
associated solutions turn to the solutions of the contin-
uous spectrum, with the general solution (the sum of
the discrete and continuous spectra) remaining a con-
tinuous function of σ.

If σ is small, the solutions of the continuous spec-
trum pass to the related solutions of the stationary equa-
tion and the eigenvalues of the discrete spectrum ηα can
be found in explicit form. Indeed, substituting the obvi-
ous asymptotic representation

into dispersion relation (9) yields (up to first nonvanish-
ing terms in z)

Hence,

Accordingly,

λ c z( ) 2n 1–( )!!
2nz2n

------------------------
n 0=

∞

∑–=

1

3η4
--------- 2σ

3η4
--------- σ3+– 0.=

η 1± 2/3σ 1– , η 2±± 2σ( ) 1/2–± .= =

N 1± πη 1±
4

81σ
---------, N 2± πη 2±

1
9
---,= =

a 1±
1 1/18, a 1±

4 a 2±
4 a 2±

1– 1/6,= = = =

a 1±
2 2/72, a 2±

2 7/24,–= =

–1.4 –1.0 –0.6 –0.2 0.2 0.6 1.0
Reσ

Imσ

1.8

0.2

0.4
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0.8

C1
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Fig. 1. Ranges of σ where the dispersion relation has two
(C1), four (C2), and six (C3) roots of the discrete spectrum.
Thus, in the limit σ  0, we have

(21)

where 

The first terms in expressions (21) are defined by
that solution of the discrete spectrum to which the
eigenvalue η2 corresponds. Here, the functions

describe the temperature and concentration distribu-
tions of gas molecules that are produced by the station-
ary point heat source at a sufficiently large distance
from it and are independent of the way the energy is
excited, and

are the asymptotic temperature and concentration dis-
tributions of gas molecules that are produced by the sta-
tionary heat source.

For an arbitrary time dependence of the source
power, the power can be represented by the Fourier

a 1±
3 1/72, a 2±

3 1/24.–= =

∆Th ∆Th
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∆Th
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Fig. 2. Relative temperature and density distributions in the gas for fixed values of σ = iω.
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Then, owing to the linearity of the problem, one can

consider the distribution  as a distribution of the
related quantities that are produced by individual har-
monics:

Ms
m

Ms
m t r,( ) WωMs

m t iω r, ,( ) iωt( )exp t.d

∞–

+∞

∫=
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Fig. 2. (Contd.)
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This fact emphasizes the special importance of con-

sidering the distribution  for pure imaginary values
σ = iω represented in Fig. 2.

As follows from the plots in Fig. 2, the solutions of
the continuous spectrum make a major contribution to
expression (20) in the neighborhood of the source (r !
|σ + 1|). In this case, the integrals depend on small
parameters η, for which

Accordingly,

Ms
m

λp 0, N11
11
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3
5
--- σ 1+( )2, N22

18
5
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5
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∞

∫  = 
1

r σ 1+( )
-------------------.

∆Th
11

72π3/2r2
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ω ∆Tω
1

6π3/2r2
----------------,= = =
Thus, in the neighborhood of the source, the distri-
bution of most of the moments is independent of σ and
depends only on its instantaneous power. The only

exception is ∆  = ∆Nω. In the limit considered, their
values are defined by the next terms of the expansion in
η, whose contribution to the distribution of these
moments varies as 1/r.

Away from the source, the second term in expres-
sion (20) decays faster than the first one. Therefore, in

the limit r  ∞, the distribution  depends on the
solutions (if any) of the discrete spectrum. The rate of
decay of these solutions depends on ηα. Then, the solu-
tion making a greater contribution to the distribution of
macroscopic parameters in the neighborhood of the
source decays faster. Depending on a specific value of

∆Nh ∆T p
1

12π3/2r2
-------------------,–= =
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ω= = =
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Fig. 3. Relative pressure distribution (solid curve) for ω = (a) 0.1, (b) 0.2, (c) 0.671, (d) 0.672, and (e) 1.991.
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ω, the solutions indicated make inphase or opposite-

phase contributions to the distribution , which spec-
ifies the presence or absence of an inflection in the
plots.

Ms
m

TECHNICAL PHYSICS      Vol. 48      No. 1      2003
Of independent interest is the relative pressure drop
of the gas

∆P
P P0–

P0
--------------- ∆T ∆N .+= =
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Table 1.  Parameters of the wave corresponding to η1

ω η1 A k d δ0

0.001 1.42886 – 816.497i 0.00079 0.00122 0.00000 0.49936π
0.01 1.42875 – 81.6499i 0.00785 0.01225 0.00009 0.49364π
0.1 1.41851 – 8.16438i 0.07627 0.12096 0.00877 0.43976π
0.2 1.39647 – 4.06906i 0.14367 0.23495 0.03148 0.39308π
0.3 1.37388 – 2.68515i 0.20329 0.34046 0.06247 0.35883π
0.4 1.35441 – 1.97676i 0.25846 0.43861 0.09817 0.33254π
0.5 1.33832 – 1.53905i 0.31135 0.53085 0.13674 0.31128π
0.6 1.32505 – 1.23764i 0.36320 0.61830 0.17718 0.29340π
0.671 1.31699 – 1.07345i 0.39978 0.67797 0.20670 0.28221π
0.672 1.31689 – 1.07136i 0.40029 0.67880 0.20712 0.28205π
0.7 1.31398 – 1.01497i 0.41471 0.70184 0.21892 0.27793π
0.8 1.30461 – 0.84221i 0.46628 0.78210 0.26162 0.26427π
0.9 1.29658 – 0.70324i 0.51818 0.85958 0.30504 0.25204π
1.0 1.28961 – 0.58834i 0.57056 0.93466 0.34902 0.24097π
1.1 1.28348 – 0.49125i 0.62352 1.00764 0.39346 0.23084π
1.2 1.27803 – 0.40777i 0.67714 1.07877 0.43826 0.22151π
1.3 1.27316 – 0.33495i 0.73147 0.14825 0.48336 0.21287π
1.4 1.26875 – 0.27067i 0.78653 0.21624 0.52871 0.20483π
1.5 1.26475 – 0.21334i 0.84234 1.28288 0.57427 0.19730π
1.6 1.26108 – 0.16177i 0.89893 1.34829 0.62001 0.19023π
1.7 1.25771 – 0.11503i 0.95630 0.41257 0.66591 0.18357π
1.8 1.25459 – 0.07238i 1.01446 1.47581 0.71194 0.17728π
1.9 1.25168 – 0.03324i 1.07340 1.53809 0.75808 0.17131π
1.991 1.24921 – 0.00028i 1.12772 1.59398 0.80015 0.16615π

Table 2.  Parameters of the wave corresponding to η2

ω η2 A k d δ0

0.001 15.8399 – 15.7837i 0.00079 0.03160 0.03165 –0.49992π
0.01 5.08528 – 4.91060i 0.00786 0.09928 0.10078 –0.49918π
0.1 1.78961 – 1.28682i 0.07783 0.30169 0.34185 –0.48830π
0.2 1.35997 – 0.71992i 0.15012 0.41892 0.51355 –0.48294π
0.3 1.17165 – 0.44780i 0.21788 0.50804 0.65933 –0.48483π
0.4 1.06031 – 0.27551i 0.28358 0.58295 0.79165 –0.48990π
0.5 0.98479 – 0.15189i 0.34862 0.64890 0.91536 –0.49622π
0.6 0.92928 – 0.05661i 0.41375 0.70858 1.03294 –0.50291π
0.671 0.89773 – 0.00048i 0.46029 0.74803 1.11352 –0.50767π
By virtue of (21), the pressure distribution in the
limit ω  0 depends on the solutions of the continu-
ous spectrum. As the frequency increases, the contribu-
tion from the discrete spectrum grows, the solution cor-
responding to η1 decaying much more slowly. There-
fore, at distances exceeding several free paths of gas
molecules, the pressure is given by

This expression can be viewed as the equation for a

∆Ps
iω 1+

2π3/2r
---------------

a1
s a1

1 a1
4+( )

η1N1
-------------------------- iωt

iω 1+
η1

---------------r– 
  .exp=
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spherical acoustic wave,

with an amplitude A = π–1/2|(iω + 1) (  +

)/(η1N1)|, wavenumber k = Im((iω + 1)/η1), damping
constant d = Re((iω + 1)/η1), and initial phase δ0 =

(iω + 1) (  + )/(η1N1)).

For a source S = Sh (s = 1), the above values are listed
in Table 1. For comparison, Table 2 shows the parame-
ters of the wave corresponding to η = η2. Figure 3 dem-
onstrates the pressure distribution curves. Continuous
ones correspond to the values 2π3/2r|∆Ph|. The contribu-
tions from the continuous and discrete spectra are
depicted by dashed and dash-and-dot curves, respec-
tively.

A similar pattern is observed for sources of other
types.

As follows from the tables and figures, the ampli-
tude and the rate of damping of each of the waves
increase with frequency. As ω approaches the boundary
of the region C1, the damping of the acoustic wave
tends to that of the solutions of the continuous spec-
trum. Thus, pure acoustic vibrations can be separated in
the vicinity of ω = 2.

∆P
A

2πr
--------- i ωt kr–( ) dr– δ0+( )exp=

a1
s a1

1

a1
4

(arg a1
s a1

1 a1
4
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Abstract—Optically confined (j = 1, j = 2)-Bose gas is studied. The spin Hamiltonian and the ground state of
a set of particles with spins j = 1 and j = 2 are obtained. Nonlinear magnetic phenomena in the set of particles
with j = 1 are considered. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The observation and description of quantum atomic
systems with internal degrees of freedom have recently
become the mainstream in the study of Bose–Einstein
condensate. Optical traps used for the confinement of
such a system do not break the degree of freedom that
is due to the atomic spin. This enables the observation
of macroscopic quantum phenomena related to spin co-
orientation in a cooled quantum gas experiencing inter-
action. Basically, only atoms in the lowest multiplet
state are confined, while others are rejected from traps
due to spin-flip scattering. Hyperfine multiplets (j = 2
and j = 1) of 23Na and 87Rb are normal in the sense that
the larger spin has a higher energy. Therefore, spin-2
Bose gas in 23Na is difficult to obtain. At the same time,
much weaker spin-flip effects in 87Rb make it promis-
ing in the production of optically confined spin-2 Bose
condensate. The lowest multiplet in 85Rb has the spin
j = 2; therefore, this system of atoms may also serve as
the basis for the j = 2-condensate [1].

Systems with nonzero atomic spin are of interest in
that, when in the state of Bose condensate, they may
have several, rather than one, ground states. The so-
called fragmentation of the ground state occurs. For j =
1-systems, the ground state is singlet, although mag-
netic fluctuations resulting in the appearance of the so-
called magnetic, or cyclic, phase are very strong [2].
The aforesaid was supported experimentally in [3]. As
for systems with j = 2, their ground state is ferromag-
netic [4].

The theoretical description of the ground states in
the above systems is based on the point interaction
approximation, where the general form of the interac-
tion operator is given by

V r1 r2–( ) δ r1 r2–( ) g jP j,
j 0=

2γ

∑=
1063-7842/03/4801- $24.00 © 20026
where gj = 4π"2aj/M, M is the mass of an atom, aj is the
amplitude of scattering in the s wave in a channel with
the total spin j, and Pj is the projector of a pair of atoms
onto a state with a particular spin j.

A system of bosons interacting pairwise is described
by a model Hamiltonian one term of which depends on
the total spin of the system in the form

where j1 and j2 are the atomic spins and the parentheses
mean the scalar product.

This term accounts for nonlinear phenomena due to
the magnetic fluctuation of the ground state in a system
of atoms.

In this study, we are interested mainly in magnetic
phenomena that may arise in pure form in exotic spin
systems with an integer spin without regard for the spe-
cific features of the Bose condensate state. Wave prop-
erties of atoms at low temperatures are taken into con-
sideration upon the construction of the symmetric wave
function, which is used to calculate the constant of
interatomic exchange interaction in the system. Then,
from first principles, we derive the spin Hamiltonian for
a system of interacting (j = 1, j = 2)-spin atoms that is
similar to the Heisenberg Hamiltonian for particles
with s = 1/2. The interaction constant is calculated by
the perturbation theory with allowance for the nonlocal
character of atomic interaction but without using the
point approximation. The Hamiltonian thus obtained

includes high powers of the product n(  · )n. The
presence of such nonlinear terms may give rise to non-
linear spin waves in atomic systems with the spin j = 1
and, in particular, to a soliton. The soliton is stable if the
nonpoint potential varies slowly within the soliton
length. Atomic systems with the spin j = 2 are charac-

Cn ĵ1 ĵ2⋅( )n
,

n

∑

ĵ1 ĵ2
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terized by fourth-order nonlinearity and have a truly
ferromagnetic ground state.

EXCHANGE INTERACTION BETWEEN TWO 
ATOMS WITH j = 1

To begin with, let us consider a pair of interacting
atoms that are bosons with the spin j = 1. The first-order
energy correction for atomic interaction calculated
within the exchange theory of perturbations (ETP),
which takes into consideration the indistinguishability
of particles, has the form [5]

(1)

where K and A are the direct and exchange contribu-
tions to the interaction energy, respectively.

The coefficients ±1 in (1) correspond to the symmet-
ric (+1) or antisymmetric (–1) coordinate part of the
wave function. The full wave function of a two-boson
system, which is the product of the coordinate and spin
parts, must be totally symmetric under permutations;
i.e., the coordinate and spin parts must be symmetric or
antisymmetric functions simultaneously:

(2)

Here, the indices “s” and “a” denote symmetric and
antisymmetric linear combinations and Ψ(r1, r2) and
ϒ(ξ1, ξ2) are the coordinate and spin parts of the wave
function, respectively.

The coordinate part of the two-particle function
written in the center-of-mass system appears as

(3)

where R = r1 – r2 is the radius vector connecting the
centers of the atoms, k is the wave vector, f(Θ) is the
scattering amplitude, and N is the normalizing factor.
At low temperatures, f(Θ) = const(Θ) (s-scattering).

In a more compact form,

(4)

Then, taking the interaction potential in the Suser-

land model in the form  = c/R6 if R > r0 or  = ∞ if
R < r0 (c is the van der Waals constant, and r0 is the hard
sphere radius characterizing the maximum possible
approach of atoms), we come to

For the detailed calculation of the interaction con-
stants, see [6].

E 1( ) K A,±=

Ψ 1 2,( ) Ψa
s r1 r2,( )ϒa

s ξ1 ξ2,( ).=

Ψa
s R( ) e

ikzz f Θ( )eikR

R
---------------------+ 

 =

± e ikz– f π Θ–( )eikR

R
-------------------------------+ 

  N ,

Ψa
s R( )| 〉 Φ R( )| 〉 Φ R( )| 〉 .±=

V̂ V̂

K Φ V̂ Φ( ); A Φ| V̂ Φ( ).= =
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SPIN HAMILTONIAN

The spin part of the two-particle function of bosons
with the spin j = 1 is structured as follows: linear com-
binations that are symmetric under permutations corre-
spond to states with an even total spin of a pair of atoms
(σ = 2 and σ = 0; see Appendix), and antisymmetric
functions describe the state with the total spin σ = 1. For
these three spin numbers, the eigenvalues of the scalar

product operator  ·  are known:

Taking into consideration the symmetry properties
of the above states, we construct the projection operator

 so that it has eigenvalues of +1 and –1 when acting
on the symmetric and antisymmetric spin function of a
pair of bosons, respectively. Such an operator has the
form

(5)

The substitution of this operator into Eq. (1) for ±1
yields the energy correction for interaction in the form
of an operator acting on the spin variable:

(6)

To include the effect of an applied magnetic field h,
Eq. (6) should be completed with the term

where µ0 is the Bohr magneton.

Now the spin Hamiltonian for a system of N Bose
particles with j = 1 interacting in pairs can readily be
obtained:

(7)

The interaction of atoms with an external magnetic
field adds to the energy operator the quantity

This spin Hamiltonian includes the quadratic term,
which is responsible for nonlinear phenomena in the
spin system.

ĵ1 ĵ2

ĵ1 ĵ2⋅ 1
2
--- σ̂2 ĵ1

2
– ĵ2

2
–( ),=

ĵ1 ĵ2⋅ 1
2
--- σ σ 1+( ) 2 j j 1+( )–( ),=

σ 2, ĵ1 ĵ2⋅ 1; σ 1, ĵ1 ĵ2⋅ 1;–= = = =

σ 0, ĵ1 ĵ2⋅ 2.–= =

P̂

P̂11 ĵ1 ĵ2⋅ ĵ1 ĵ2⋅( )2
1.–+=

Ĥ int K A ĵ1 ĵ2⋅ ĵ1 ĵ2⋅( )2
1–+( ).+=

Ĥ0 2µ0h ĵz1
ĵz2

+( ),=

Ĥ int = K A–( )N N 1–( )
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i j<
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Ĥ0 2µ0h ĵzi
.
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GROUND STATE OF A SPIN SYSTEM

Let us derive the energy eigenvalues for a many-par-
ticle spin system.

The second sum in Eq. (7) can be expressed in terms

of the operator  of the total spin squared:

(8)

The quadratic term can be rewritten through the

operator  of the paired spin of the system squared:

(9)

where 〈σ, σz| j1 j2 〉 are the Clebsch–Gordan coeffi-
cients.

Acting on the |J, Jz〉  state with the total spin J and its
projection Jz, operator (8) takes the eigenvalue

(10)

The eigenvalue of operator (9) has the form

(11)

Then, the eigenvalue of energy operator (7) is

(12)

For j = 1, the interaction energy becomes

(13)

It is evident that, at A > 0, the ground state corre-
sponding to the minimal energy is that with J = 0; i.e.,

(14)

which is totally symmetric.
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HAMILTONIAN OF BOSONS WITH j = 2

For a system of two bosons with the spin j = 2, the
symmetry of the terms is as follows: even states with
the spins of a pair of atoms σ = 4, 2, and 0 are symmet-
ric and odd states with the spins σ = 3 and 1 are anti-

symmetric. All eigenvalues of the operator  ·  of
the scalar product of the spins are presented below:

(15)

Let us also construct an operator  taking into
account the symmetry properties of the spin function of
a pair of atoms in such a way that its action on a sym-
metric or antisymmetric state yields an eigenvalue of
+1 and –1, respectively. Such an operator has the form

(16)

Replacing ±1 in Eq. (1) by this operator yields the
Hamiltonian for a system of N bosons with j = 2:

(17)

It is clearly seen that, in a Bose gas with j = 2, one
may expect still more pronounced nonlinear effects due
to fluctuations of a macroscopic magnetic field.

GROUND STATE OF BOSONS WITH j = 2

The calculation of the eigenvalues of the operators
involved in (17) in view of the Clebsch–Gordan coeffi-
cients gives

(18)

ĵ1 ĵ2
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σ 1, ĵ1 ĵ2⋅ –5 (antisymmetric),= =
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Then, the interaction energy can be written as

(19)

Equation (19) suggests that if A > 0, the ground state
of the system is ferromagnetic with the maximal total
spin J = 2N.

The wave function of the ground state is evidently
expressed as

It seems that there is the following regularity in the
realization of the ground state: odd-spin particles are
condensed mostly into the antiferromagnetic state,
whereas the ground state of a Bose gas consisting of
even-spin particles is ferromagnetic.

SPIN DARK–BRIGHT SOLITON 
IN A HOMOGENEOUS BOSE GAS

Let us consider a system of cooled spin-1 atoms in
an optical trap that preserves antiferromagnetic ground
state (14) of this system. The Hamiltonian of the system
that takes into account only exchange interaction is
taken in the form of (7):

(20)

The ground state of this system is antiferromagnetic.
Then, assuming that the interaction takes place with the
nearest neighbors, we can set the spin of a pair of atoms
to be equal to σ = 0 and the eigenvalue of the operator

, to  = –2.

If a spin k in a chain of atoms is flipped, the operator
of the excitation energy can be written in the form

(21)

where (considering the flip of a single spin)  =

−A(2  – 2 ).

In the semiclassical continuous approximation of
magnetic moment eigenvalues, the magnetic moment
of an atom may be represented by a function that
smoothly varies with distance. Then, the spin k ± 1 can
be expanded as
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where a is the mean atomic spacing. After the substitu-
tion of the above expansion into (21), the excitation
energy becomes

(22)

On the other hand, in the approximation of an effec-
tive field H* produced by all spins of the system, the
excitation energy of the system can be defined as the
energy of interaction of each of the spins with this field:

(23)

Then, each of the spins precesses (in accordance
with the Bloch theorem) in the effective magnetic field

(24)

(25)

Applying (24) to the components of the magnetic
moment vector m = jµ0 and assuming mz @ mx, my, one
can rewrite Eq. (24) in the cyclic coordinate system:

(26)

where

The equation obtained is similar to that for a dark–
bright soliton [7, 8]. Following [7], we represent a solu-
tion in the form
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Here, 1/k is the soliton length, mz = m0,

is the precession frequency with regard to the shift, and

is the soliton coordinate.
Such integrable systems in which the free energy is

conserved are known as Manakov equations [9]. The
higher the velocity of a soliton, the lower the free
energy of system [9]; therefore, the soliton is formally
unstable (it is accelerated). However, the effect of other
excitations (solitary or ordinary spin waves), which is
disregarded here, does not cause dissipation [9]. With
an additional inhomogeneous potential added to (26),
the system becomes nonintegrable, allowing for the
nontrivial interaction of a soliton with the environment.
Nevertheless, if the interaction potential varies slowly
within the scale of the soliton length k–1, the variations
(propagations) in the soliton and potential correlate and
the free energy can be treated as an adiabatic invariant
in this case [8].

Thus, for the spin system considered above, we will
arrive at the pattern of nonlinear magnetic vortices that
transform into macroscopic vortices of a magnetic field
in a Bose condensate system. It is important to note that
we analyzed the case when only one spin was flipped.
Considering the flip of two, three, etc. spins, we will
generate a set of solitons with different frequencies Ω1,
Ω2, …, Ωn that differ in the exchange interaction con-
stants Ω1 ~ A, Ω2 ~ 2A, …, Ωn = nA.
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APPENDIX

For particles with the spin j = 1, two-particle spin
functions are as follows (the one-particle states of a kth
particle are denoted as | j, jz〉k.

k
1
a
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--------- αcos
2 m0

2
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Symmetric spin states are given by

Antisymmetric spin states have the form
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Abstract—Dynamic and heat-transfer processes accompanying the free vibrations of a gas bubble immersed
in a viscous conductive liquid exposed to a uniform magnetic field are considered. Solutions to a set of equa-
tions describing bubble relaxation are obtained by numerical methods. It is shown that the magnetic field causes
the fast damping of the vibration due to Joule dissipation. At the stage of vibration, the energy dissipates mainly
through the Joule mechanism. At the final stage, thermal dissipation prevails. © 2003 MAIK “Nauka/Interpe-
riodica”.
INTRODUCTION

The dynamics of gas and vapor bubbles and heat
transfer between them are of interest in many branches
of technology [1]. In particular, in a liquid-metal mag-
netohydrodynamic (MHD) compressor [2, 3], gas com-
pression is accompanied by the dissipation of the
energy of vibrating bubbles in a viscous conductive liq-
uid exposed to a magnetic field.

Along with the well-studied mechanisms of viscous
and thermal dissipations accompanying gas bubble
vibration [4], the long-range mechanism of Joule dissi-
pation is also observed in the channel of an MHD com-
pressor. It may influence dynamic and thermal pro-
cesses in a vibrating bubble, causing the fast damping
of vibration. The study of these processes is aimed at
improving the MHD compressor design.

Let a spherical bubble of perfect gas be placed at the
center of the spherical coordinate system (r, Θ, ϕ). The
bubble is in mechanical and thermal equilibrium with
an ambient viscous incompressible conductive liquid.
An external magnetic system produces a uniform mag-
netic field B = {0, 0, –B} (B = const) in the Cartesian
system.

Under the action of a step pressure pulse excited at
infinity, the bubble is disturbed from equilibrium and
the relaxation process brings it into a new equilibrium
state.

To describe this transient process, we will use the
continuity, momentum, and energy (or heat transfer)
equations; the Ohm and Joule laws; and the thermal
equation of state of gas, assuming that the damping of
gas bubble vibration takes place at small magnetic Rey-
nolds numbers. The equations have the form

(1)divv1 0,=
1063-7842/03/4801- $24.00 © 20031
(2)

(3)

(4)

(5)

(6)

(7)

(8)

Hereafter, parameters with the subscript 1 refer to
the liquid phase and those with the subscript 2, to the
gaseous phase. In Eqs. (1)–(8), vi, pi, Ti, qi, ci, and λi

are, respectively, the velocity, pressure, temperature,
heat flux density vector, mass specific heat at constant
volume, and thermal conductivity of an ith phase; pt is

the surface tension tensor; ρ1 and  are the true densi-
ties of the liquid and gas, respectively; u2 is the mass
specific internal energy; R2 is the specific gas constant;
Φ is the dissipative function; qv is the volume density of
heat release due to Joule dissipation; µ and ν are the
dynamic and kinematic viscosity coefficients of the liq-
uid, respectively; and σ is the conductivity of the liquid.

The presence of the uniform magnetic field disturbs
the spherically symmetric pattern of dynamic and ther-
mal processes around the bubble. In fact, in the case of
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a radial liquid flow with a velocity v1 = {w1, 0, 0} in a
magnetic field B = –BcosΘir + BsinΘiΘ, an electric
current j = σw1BsinΘiϕ is induced around the bubble.
The interaction of this current with the magnetic field
causes an electromagnetic force

where ir, iΘ, and iϕ are the unit vectors of the physical
basis in the spherical coordinate system.

The nonpotential component fΘ of the electromag-
netic force results in a meridional flow of the liquid
around the bubble with a velocity wΘ, which disturbs
the purely radial flow.

When averaged over a sphere of radius r, the merid-
ional component of the electromagnetic force is equal
to zero in the case of a radial flow, and the average value
of the radial component is

In the frame of the one-dimensional description of
the velocity field in a viscous liquid, we neglect the
meridional flow and replace the component fr by its
average value 〈 fr〉 . We also average the Joule heat

release: 〈qv 〉  = (2/3)σ B2.

Under these assumptions, from Eq. (1) follows an
expression for the liquid velocity: w1(r, t) = wint(t)a2/r2,
where wint is the interface velocity and a(t) is the bubble
radius. Using this law, momentum equation (2), and the
equilibrium condition for the interface, one can derive
the equation for bubble dynamics

where Σ is the surface tension and p∞ is the liquid pres-
sure at infinity.

This equation contains two unknown functions: the
bubble radius a(t) and the gas pressure p2int(t) at the
interface.

Equation (3), which describes the heat release in the
liquid phase for a given velocity w1(r, t), in view of
Fourier’s law for heat conduction qi = –λi∇ Ti, averaged
value of qv, and calculated dissipative function Φ can be

f j B× σw1B2 Θirsin
2

–= =

– σw1B2 Θ ΘiΘsincos f rir f ΘiΘ,+=

f r〈 〉 1

4πr2
----------- f rr

2 Θsin Θd ϕd

0

2π

∫
0

π

∫ 2
3
---σw1B2.–= =

w1
2

a
d2a

dt2
-------- 3

2
--- da

dt
------ 

 
2 2

3
---σB2

ρ1
---------a

da
dt
------+ +

+ 4ν1
a
---da

dt
------ 2

Σ
a
---+

p2int t( ) p∞–
ρ1

-----------------------------,=
written in the form

Assuming that the gas pressure p2 in the bubble is
uniform, one can reduce Eqs. (4)–(6) subject to (7) to
the equation for the gas velocity in the bubble [4]

where γ is the adiabatic exponent; the equation for the
gas pressure in the bubble

where 

is the heat flux density at the interface; and the equation
for the heat release in the gas phase

To numerically investigate the above set of equa-
tions, we will represent it in a more convenient form by
introducing the following characteristic quantities: the
initial bubble radius a0 as a length scale; the character-

istic velocity v 0 = , where p0 is the initial gas
pressure in the bubble; the characteristic time t0 = a0/v 0;
and the initial temperature T0, K as a characteristic tem-
perature.

Let us pass from the Euler coordinates (r, t) to the
movable system of dimensionless coordinates η =
r/a(t) and t∗  = t/t0.

Using the introduced scales of the physical parame-
ters and the transformation formulas [4]

we rearrange the above equations to the following set:
the equation of bubble dynamics (Rayleigh equation)

(9)
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the equation of heat release in the liquid

(10)

the equation for gas pressure in the bubble

(11)

the equation for gas velocity in the bubble

(12)

and the equation of heat release in the gas phase

(13)

In these equations, a∗  = a(t)/a0 is the reduced bubble
radius; p∗  = p(t)/p0 is the reduced pressure; w2∗  = w2/v 0

is the reduced gas velocity in the bubble, Θ1 = T1/T0 and
Θ2 = T2/T0 are the reduced temperatures in the liquid
and gas, respectively; and k is the parameter of gas dis-
turbance, which is from the equality δp∞ = kp0.

Boundary conditions for the set of Eqs. (9)–(13) are
defined as follows:

(14)

Similarity criteria and numbers for this set of equa-

tions are as follows: Hartmann number Ha = a0B ,
Reynolds number Re1 = a0v 0/ν, Weber number We1 =

ρ1 /(Σ/a0), Eckert numbers Ec1 = /(c1(T0 – 273))

and Ec2 = /(c2p(T0 – 273)), Peclet numbers Pe1 =

a0v 0/(λ1/(ρ1c1)) and Pe2 = a0v 0/(λ2/( c2p)), and

reduced density ρ∗  = /ρ1 (where  is the initial
density of the gas).
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A solution to the set of Eqs. (9)–(13) that satisfies
boundary conditions (14) was sought by numerical
methods. The integration of the ordinary differential
equations of the set was performed with the fourth-
order Runge–Kutta method. When integrating the
equation for heat release, we used an explicit finite-dif-
ference scheme. Over the spatial closed interval 0 ≤ η ≤
L, where L is an infinitely remote point, we introduced
an integration step δη = L/M, so that the current coordi-
nate was ηj = jδη, where j = 0, 1, …, M. Over the tem-
poral interval 0 ≤ t∗  < τ, we introduced a time step δt =
τ/N; thus, t∗ i = iδt, where i = 0, 1, …, N. The infinitely
remote point corresponded to L = 2, and the time inter-
val τ was taken to be coincident with the duration of the
oscillatory stage of the process. The grid parameters M
and N were selected so as to provide reliability of the
computational results and still minimize the computer
time. Sometimes, the calculations were compared with
those obtained on a grid with the doubled parameter M.
Most of the calculations were performed on a grid with
N = 5000 and M = 50.

During the integration of the dynamic equation and
heat release equation, the program generated data for
the heat flux density on the bubble surface and the solu-
tions at the interface were joined together in accordance
with the boundary conditions of the fourth kind.

Below, we present the results of the numerical inves-
tigation into the dynamic and thermal processes accom-
panying gas bubble vibrations under various condi-
tions.

The calculations were carried out for liquid gallium
as a liquid phase and air as a disperse phase. The ther-
mophysical properties were taken at 100°C. In all the
cases, unless otherwise stated, the bubble radius was
equal to a0 = 1 mm and the initial pressure inside the
bubble, p0 = 100 kPa. The pressure disturbance param-
eter was k = 0.5, which corresponded to a final pressure
of 150 kPa in the system. For these parameters, the
characteristic time was t0 = 2.5 × 10–4 s and the charac-
teristic velocity, v 0 = 4.05 m/s. The similarity numbers
were Re1 = 13 000, Pe1 = 3787 and Pe2 = 131, We1 =
205, and Ec1 = 1.2 × 10–4 and Ec2 = 1.54 × 10–4. The
magnetic field induction was varied from 0 to 1.5 T.

Figure 1 shows the variation of the bubble radius a∗
with time t∗  for Hartmann numbers Ha (1) 22.5,
(2) 45.1, and (3) 67.7. The curves demonstrate the
strong effect of the magnetic field on the duration of the
vibration damping, that is, on the vibratory stage of the
process. The same is confirmed by the time depen-
dences of the reduced gas pressure p∗  inside the bubble
that are shown in Fig. 2 for different magnetic fields.

The heat exchange between the bubble and ambient
liquid is characterized by the derivative ∂Θ2/∂η at η = 1.
Its time dependences at different magnetic fields are
presented in Fig. 3, which shows that the magnetic field
affects the heat exchange between the gas bubble and
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Fig. 1. Reduced radius a∗  of the bubble vs. reduced time t∗
for damped bubble oscillations in liquid gallium. Magnetic
induction B = (1) 0.5, (2) 1.0, and (3) 1.5 T. Curve 1 is
shifted down by –0.5, and curve 3 is shifted up by 0.5.
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Fig. 2. Reduced pressure p∗  as a function of the reduced
time t∗  at B = (1) 0.5, (2) 1.0, and (3) 1.5 T. Curve 2 is
shifted up by 2 and curve 3, by 4.
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Fig. 3. Derivative of the temperature with respect to the
radius on the bubble surface at different time instants t∗ .
B = (1) 0, (2) 0.5, (3) 1.0, and (4) 1.5 T. Curve 2 is shifted
up by 2; curve 3, by 4; and curve 4, by 6.
the ambient liquid. Without the magnetic field
(curve 1), the derivative of the temperature with respect
to the radius on the bubble surface (conventional heat
flux density) is an alternating-sign function; however,
its average value is negative. With time, this derivative
tends to zero, remaining negative on average. A nega-
tive value of the derivative means that the heat is
removed from the bubble to the ambient liquid, while a
positive value of the derivative indicates heat absorp-
tion by the bubble.

Curve 1 in Fig. 3 shows that the bubble cools down,
periodically giving up the heat to the ambient liquid (in
the compression phase) and absorbing the heat from the
liquid (in the expansion phase). As the magnetic field
grows (curves 3, 4), the derivative of the temperature
with respect to the radius becomes negative everywhere
and asymptotically tends to zero; that is, the heat flux is
constantly directed from the bubble to the ambient liq-
uid. Thus, the magnetic field shortens the vibratory
phase of the process and thus prevents the inverse heat
transfer from the liquid to the bubble, increasing the
external pressure.

Figure 4 displays the temperature at the center and
on the surface of the bubble vs. time at different mag-
netic fields. The curves suggest that the temperatures in
the different parts of the gas bubble vary synchro-
nously. At the initial stage of the process, the tempera-
ture at the center of the bubble (curves a) oscillates with
a larger amplitude than on its surface (curves b),
remaining greater than unity; in other words, the gas
temperature inside the bubble is higher than before the
perturbation. Under weak fields, the temperature at the
surface may be both higher and lower than unity. As the
magnetic induction increases, the overcooling of the
bubble surface becomes weaker and disappears.

The overcooling of the near-interface gas in the bub-
ble under weak magnetic fields (curves 1, 2) is due to
the bubble expansion, causing the temperature to
decrease. As the bubble expands, the heat-releasing sur-
face grows, the temperature gradient diminishes, and
the total amount of the heat acquired by the bubble from
the liquid during the expansion phase is less than the
heat given up by the bubble in the compression phase.
The magnetic field, on the one hand, decreases the
number of oscillations, thus cutting the time for heat
transfer from the bubble to the ambient liquid, and, on
the other hand, decreases the spread of the interface
surface area, making it difficult to transfer the heat to
the bubble in the expansion phase (curves 3, 4).

Another effect of the magnetic field during the gas
bubble relaxation is the separation of mechanical and
thermophysical processes. In the absence of the field,
the dynamic and thermal processes are interrelated
throughout the relaxation time (Fig. 4, curve 1). The
magnetic field suppresses the oscillation of the
dynamic parameters, and the vibratory phase of the
process shortens. Under such conditions, the system
has no time to come to equilibrium and the second
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phase, the phase of regular heat exchange, starts, after
which the bubble passes into a new state of thermody-
namic equilibrium (curve 4 in Fig. 4).

In Fig. 5, the liquid temperature at various distances
from the bubble surface is shown. Here, the magnetic
induction is 1.5 T.

The curves in Fig. 5 demonstrate that liquid layers
adjacent to the interface experience temperature oscil-
lations and the farther the layer from the bubble surface,
the weaker the effect of the gas temperature.

Generally, the liquid around the bubble weakly
heats up, accumulating the heat of the gas.

The temperature distributions along the bubble
radius for various time instants at B = 1.5 T are pre-
sented in Fig. 6. Here, η = 0 corresponds to the bubble
center; η = 1, to its surface; and η = L, to an infinitely
remote point. Curves 1 and 5 correspond to two cases
when the bubble is the most compressed in the first
cycle, that is, to (1) t = 0 and (5) T = 2π/ω (ω is the nat-
ural angular frequency of the damped oscillations).
Curve 2 corresponds to t = T/4; curve 3, to t = T/2; and
curve 4, to t = 3T/2. In the central part of the bubble, the
gas temperature field remains uniform almost up to the
surface. Temperature gradients appear near the bubble
surface, and their sign depends on the process phase
(compression or expansion). The expansion of the bub-
ble is the greatest when the temperature of the gas is the
lowest.

Of interest are partial contributions of viscous, ther-
mal, and Joule mechanisms to the energy dissipation.

The kinetic energy of a vibrating bubble converted
to the heat by viscous forces by a time t from the onset
of vibration is given by

where

is the dissipative integral of viscous forces.
The kinetic energy of a vibrating bubble converted

to the heat through the mechanism of Joule dissipation
by a time t is
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The energy dissipated due to nonequilibrium heat
transfer to (and heat removal from) the bubble through
its surface is given by the integral

where
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Fig. 4. Reduced temperatures Θ (a) at the center and (b) on
the surface of the bubble as a function of the reduced time
t∗ . B = (1) 0, (2) 0.5, (3) 1.0, and (4) 1.5 T. Curve 2 is shifted
up by 1; curve 3, by 2; and curve 4, by 3.
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Fig. 7. Energy dissipation vs. time t∗ . (1) Qµ × 108, (2) Qj ×
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Fig. 8. Dependence of the Nusselt number Nu on the
reduced time t∗  at the stage of bubble damped vibrations.
B = 0.5 T, a0 = 3 mm.
is the thermal dissipative integral.
Figure 7 shows the dependences of the energies Qµ,

Qj, and Qλ on the process time. The saturation of the
curve (plateau) indicates that a given mechanism of
energy dissipation is terminated. At the vibratory stage
of the process, all the three curves rise, the dependence
Qλ(t) oscillating because of the alternating direction of
the heat flux early in the process. After this stage has
been completed, the curves Qµ and Qj saturate. The
Joule dissipation of the energy is three orders of magni-
tude higher than the viscous one. The latter depends on
the viscosity, which is low for liquid gallium. The ther-
mal dissipation of the energy is comparable to the Joule
dissipation by an order of magnitude at the vibratory
stage but exceeds the latter at the final stage of the pro-
cess. However, at the first stage, the energy dissipated
by the Joule mechanism is several times greater than by
the thermal one. The rise of the curve Qλ throughout the
time interval is an indication of the incompleteness of
the thermal processes.

Thermal processes in a gas bubble surrounded by a
liquid are also characterized by the Nusselt number

where α is the heat transfer coefficient and 〈T2〉 is the
bulk temperature of the gas in the bubble.

Figure 8 shows the variation of the Nusselt number
with the reduced time t* at the vibratory stage of the

process for the induction B = 0.5 T.
At the initial stage of the process, the Nusselt num-

ber is an alternating function because of the heating and
cooling of the bubble. At the instants of the greatest
compression of the bubble, the Nusselt number reaches
a maximum. At the instants of the greatest expansion, it
is minimal. Positive Nusselt numbers correspond to
heat removal from the bubble, which takes place under
compression, when the bubble temperature is greater
than that of the liquid. Negative Nusselt numbers corre-
spond to heat absorption by the bubble, which is
observed when the bubble expands and its temperature
lowers. As the process comes to an end, the Nusselt
number asymptotically tends to two.

CONCLUSIONS

Let us note the basic features of the damping of free
vibrations in the volume of a gas bubble immersed in a
conductive liquid and exposed to a magnetic field.

(1) To the well-known mechanisms of viscous and
thermal dissipation [4], the highly effective mechanism
of Joule dissipation is added.

(2) The magnetic field “subdivides” the relaxation
process into vibratory and regular (inertialess) stages.
The former is characterized by the oscillation of all the
dynamic and thermodynamic parameters. At this stage,
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the kinetic energy of the liquid is dissipated mainly by
the Joule mechanism. At the end of this stage, mechan-
ical equilibrium is established, the oscillation of the
parameters disappears, but thermodynamic equilibrium
is absent. At the latter stage, the mechanisms of viscous
and Joule dissipation “switch off” and energy dissipa-
tion and the transition of the bubble to the equilibrium
state take place through heat exchange with the ambient
liquid. At the end of this stage, complete thermody-
namic equilibrium in terms of all bubble parameters is
established.

(3) At the vibratory stage, the dominant mechanism
of energy dissipation is Joule heat release; at the regular
stage, thermal dissipation. In low-viscous liquids like
water, the kinetic energy converted to heat by viscous
forces is three orders of magnitude less as compared
with the ohmic dissipation.

(4) As the magnetic induction increases, the vibra-
tory stage of the bubble relaxation shortens. At high
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
magnetic fields (large Hartmann numbers), damped
harmonic oscillations become aperiodic.

(5) Eddy currents due to the radial vibration of the
bubble heat liquid layers near the bubble, affecting the
bubble–liquid heat exchange by preventing heat trans-
fer from the liquid to the bubble at the expansion phase.
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Abstract—The electron energy distribution function (EEDF) in a hollow-cathode glow discharge in mixtures
of nitrogen with electronegative gases is investigated. It is shown that small admixtures of SF6 or CCl4 to nitro-
gen significantly increase the number of electrons in the energy range 2–6 eV, which corresponds to the inverse
part of the EEDF. In nitrogen with small admixtures of F2 or NF3, the EEDF differ slightly from that calculated
for pure nitrogen. The EEDF in these mixtures substantially depends on electron attachment to electronegative
gas molecules. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The possibility of the formation of an inverse elec-
tron energy distribution function (EEDF) in a low-tem-
perature plasma has been repeatedly studied both
experimentally and theoretically (see, e.g., [1–12] and
the literature cited therein). Media with inverse distri-
bution functions are of great interest because they can
be used to create the inverse population of the elec-
tronic levels of the admixture atoms and molecules.

In [1–3], the feasibility of an inverse EEDF at low
energies in the relaxing plasma of heavy noble gases
was predicted theoretically and confirmed experimen-
tally. A necessary condition for the formation of an
inverse EEDF is the presence of a Ramsauer minimum
in the cross section for the elastic scattering of electrons
by the working gas atoms. In a weakly ionized noble
gas, elastic scattering is the main mechanism for elec-
tron energy losses at low energies. Hence, the electrons,
which were initially distributed uniformly in energy
space, rapidly leave the regions of intense scattering
and are accumulated near the Ramsauer minimum. The
arising inversion exists for a time on the order of the
plasma thermalization time.

The conditions for the formation of a steady-state
inverse EEDF were considered in [4–7]. A mixture of a
noble gas with an electronegative gas was ionized with
a fast electron beam or X-rays. It was observed that the
thermal electrons were generated rather evenly over a
broad energy range. The EEDF inversion is related to
the loss of low-energy electrons due to their attachment
to the electronegative gas molecules and accumulation
near the Ramsauer minimum.

In both cases, the EEDF inversion occurs in the
energy range 0–2 eV, i.e., at energies that are much
lower than the characteristic threshold energies for
1063-7842/03/4801- $24.00 © 20038
electronic excitation. For this reason, such media can-
not be used to create the inverse population of the elec-
tronic levels of atoms and molecules.

Low EEDF inversion near an energy of 5 eV in an
nitrogen afterglow plasma was obtained in [8–11]. A
characteristic feature of the EEDF formation under
those conditions is that the electron gas is heated due to
superelastic electron collisions with vibrationally and
electronically excited molecules. A local maximum in
the EEDF, which occurs for a time interval of ~10–4 s,
is related to superelastic electron collisions with nitro-
gen molecules in a metastable electronic state.

In [12], the feasibility of the formation of a steady-
state inverse EEDF in a hollow-cathode glow discharge
in nitrogen in the energy range 2–6 eV was demon-
strated both experimentally and theoretically. In this
case, the inversion is related to the following factors.
On the one hand, the electrons with energies of 4–7 eV
do not undergo any inelastic collisions with nitrogen
molecules. In elastic scattering, the energy is trans-
ferred to molecules rather slowly and electrons are
accumulated in the above energy range. On the other
hand, in the energy range 2–4 eV, the electrons rapidly
lose their energy when exciting the vibrational levels of
nitrogen molecules; as a result, a dip in the EEDF is
formed. An important condition for the inversion for-
mation is that the electric field be sufficiently low,
which is the case of a hollow-cathode glow discharge.
The EEDF inversion occurs in the energy range 2–6 eV.
However, the number of electrons in this range is low.
Most of the electrons have energies lower than 2 eV,
which decreases the efficiency of producing the inverse
population of the electronic levels.

The aim of this study is to find conditions under
which the relative number of the electrons with ener-
003 MAIK “Nauka/Interperiodica”
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gies corresponding to the inverse part of the EEDF
increases. It is proposed to use nitrogen with a small
admixture of an electronegative gas. The admixture,
which has a large attachment cross section in the low-
energy range, increases the loss of low-energy electrons
from the discharge; as a result, the EEDF in the inver-
sion region increases.

The EEDF was numerically simulated for mixtures
of nitrogen with SF6, F2, NF3, and CCl4. It is shown
that small admixtures of SF6 or CCl4 to nitrogen
increases the EEDF in the inversion region. In mixtures
of nitrogen with F2 or NF3, this effect is absent.

NUMERICAL SIMULATIONS

To find the EEDF, we solved the Boltzmann equa-
tion in the two-term approximation [13]. Numerical
simulations were carried out with allowance for elastic
and inelastic collisions between electrons and neutrals,
electron–electron scattering, and the external ionization
of the gas mixture with a fast electron beam. The form
of the equation and the solution technique were
described in detail in [5].

The EEDF in mixtures of nitrogen with an elec-
tronegative gas at a total pressure of 0.1 torr was calcu-
lated for different mixture compositions. The interac-
tion processes between electrons and nitrogen mole-
cules that were taken into account when calculating
EEDF are listed in the table; the corresponding cross
sections are presented in [14]. The cross sections for the
interaction of electrons with electronegative gas mole-
cules are taken from [15–21].

Calculations were performed for the parameters of
the experimental facility used in [12] to measure the
EEDF in a hollow-cathode glow discharge in pure
nitrogen. In this discharge, the applied voltage almost
entirely drops across a narrow cathode sheath. The
electric field in the main part of the discharge is low
(~0.1 V/cm). The gas was ionized and the electrons
were heated by the beam of 400-eV electrons escaping
from the cathode sheath. In calculations, the electron
density was set at ~1010 cm–3, which corresponded to
that measured in [12]. To evaluate the effect of the elec-
tric field and the electron density on the form of the
EEDF, we calculated EEDFs in the same mixtures but
at E = 1 V/cm and ne = 1011 cm–3.

(i) N2 : SF6 mixture. When calculating the EEDF in
an N2 : SF6 mixture, the cross sections for the interac-
tion between electrons and SF6 molecules were taken
from [15] (see inset in Fig. 1). It is seen from Fig. 1 that,
at low energies, the most important process is electron
attachment.

When SF6 is added to nitrogen (in the proportion
1 : 100), the EEDF in the inversion region increases
significantly (Fig. 1). This effect is caused by the
intense attachment of low-energy electrons to SF6 mol-
ecules, i.e., the loss of these electrons from the dis-
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
charge. As a result, the fraction of low-energy electrons
decreases, whereas the fraction of electrons in the
inversion region increases. Thus, the change in the
EEDF reflects its rearrangement when the number of
low-energy electrons changes.

The increase in the electronegative gas concentra-
tion in the mixture leads to a competition between two
processes. On the one hand, the electron attachment in
the low-energy range promotes a further increase in the
EEDF in the inversion region. On the other hand, the
increasing vibrational excitation of SF6 molecules
gradually decreases the inversion itself: involving the
electrons with energies 4–7 eV in this process impedes
their accumulation in this energy range, i.e., formation
of an EEDF peak.

Table

Reaction Threshold energy, eV

N2 + e  N2(v ) + e, v  = 1–8 1.5

N2 + e  N2( ) + e 7.63

N2 + e  N2(B3Πg) + e 8.54

N2 + e  N2(W3∆u) + e 9.11

N2 + e  N2( ) + e 9.83

N2 + e  N2(a1Πg) + e 9.89

N2 + e   + e + e 15.6

N2 + e  N + N + e 9.76

A3Σu
+

B3Σu
–

N2
+
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Fig. 1. EEDF in nitrogen and N2 : SF6 mixtures at a total
pressure of p = 0.1 torr: N2 : SF6 = (1) 1 : 0, (2) 1 : 0.01,
(3) 1 : 0.1, and (4) 1 : 1. The inset shows the cross sections
for electron interaction with SF6 [15]: qm is the transport
cross section; qv  is the vibrational excitation cross section;
qe is the electronic excitation cross section; qi is the ioniza-
tion cross section; and qa1 and qa2 are the cross sections for
electron attachment with the production of SF6 and SF5,
respectively.
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The calculations show that, in the N2 : SF6 = 10 : 1
mixture, the dominant process is electron attachment,
which increases the EEDF in the inversion region even
higher. However, at SF6 concentrations higher than 0.5,
vibrational excitation becomes predominant and the
distribution function becomes almost monotonic
(Fig. 1).
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Fig. 2. EEDF in nitrogen and N2 : CCl4 mixtures at a total
pressure of p = 0.1 torr: N2 : CCl4 = (1) 1 : 0, (2) 1 : 0.01,
(3) 1 : 0.1, and (4) 1 : 1. The inset shows the cross sections
for electron interaction with CCl4 [17, 18]: qm is the trans-
port cross section; qe is the electronic excitation cross sec-
tion; qi is the ionization cross section; qa is the electron
attachment cross section; and qv1, qv2, qv3, and qv4 are the
vibrational excitation cross sections.
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Fig. 3. EEDF in nitrogen and N2 : F2 mixtures at a total
pressure of p = 0.1 torr: N2 : F2 = (1) 1 : 0, (2) 1 : 0.01,
(3) 1 : 0.1, and (4) 1 : 1. The inset shows the cross sections
for electron interaction with F2 [19]: qm is the transport
cross section; qv  is the vibrational excitation cross section;
qi is the ionization cross section; qa is the electron attach-
ment cross section; and qe1 and qe2 are the cross sections for
electron excitation of the a3Πu and A1Πu levels, respec-
tively.

q, cm2
The electronic excitation and ionization of SF6 mol-
ecules only slightly affect the form of the EEDF
because the threshold energies for these processes are
fairly high (~10 eV). When the set of the cross sections
for the electron interaction with SF6 from [16] is used
in calculations, the EEDF also does not change signifi-
cantly.

(ii) N2 : CCl4 mixture. The electron attachment to
CCl4 molecules is very intense [17] (see inset in Fig. 2).
Thus, in this mixture, the effect under study is very pro-
nounced. A small admixture of CCl4 to nitrogen results
in a significant decrease in the number of low-energy
electrons; as a result, the maximum of the EEDF in the
inversion region is nearly the same in magnitude as the
EEDF maximum in the low-energy range (Fig. 2).

The increase in the electronegative gas concentra-
tion leads to a smoothing of the inversion region of the
EEDF. As with the previous mixture, this effect is
related to the increasing influence of the vibrational
excitation of the admixture molecules. However, in the
N2 : CCl4 = 10 : 1 mixture, the dominant process is elec-
tron attachment and the number of electrons in the
inversion region is higher than at low energies. As the
CCl4 concentration increases further, the inversion in
the discussed energy range vanishes (Fig. 2).

(iii) N2 : F2 mixture. The calculated EEDF in nitro-
gen with a small fluorine admixture differs only slightly
from that in pure nitrogen (Fig. 3). Hence, the attach-
ment rate of low-energy electrons to fluorine molecules
[19] is insufficiently high to significantly affect the
number of these electrons. Calculations performed with
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Fig. 4. EEDF in nitrogen and N2 : NF3 mixtures at a total
pressure of p = 0.1 torr: N2 : NF3 = (1) 1 : 0, (2) 1 : 0.01,
(3) 1 : 0.1, and (4) 1 : 1. The inset shows the cross sections
for electron interaction with NF3 [20, 21]: qm is the trans-
port cross section, qv  is the vibrational excitation cross sec-
tion, qe is the electronic excitation cross section, qi is the
ionization cross section, and qa is the electron attachment
cross section.
TECHNICAL PHYSICS      Vol. 48      No. 1      2003



ELECTRON ENERGY DISTRIBUTION FUNCTION 41
larger electron attachment cross sections result in a sig-
nificant increase in the EEDF in the inversion region.

A further increase in the fluorine content reduces the
EEDF inversion. This is mainly due to the electronic
excitation of the admixture gas. The excitation thresh-
olds for the low-lying electronic levels of fluorine are
3.16 and 4 eV (see inset in Fig. 3). Therefore, electrons
with energies higher than the threshold energies
intensely interact with F2 molecules. This process
impedes the accumulation of electrons in the energy
range 4–7 eV and, accordingly, the formation of an
EEDF peak. Moreover, having transferred their energy
to the molecules, the electrons most probably occur in
the range 2–4 eV, which corresponds to the dip in the
EEDF in pure nitrogen. At equal amounts of nitrogen
and fluorine in the mixture, the inversion region van-
ishes almost completely (Fig. 3).

(iv) N2 : NF3 mixture. When calculating the EEDF
in an N2 : NF3 mixture, we used the cross sections for
elastic scattering and the electronic excitation of NF3
from [20] and the cross sections for electron attachment
and vibrational excitation from [21] (see inset in
Fig. 4).

The cross section for electron attachment to NF3
molecules is relatively small. Hence, as with the previ-
ous mixture, a small admixture of this gas to nitrogen
only slightly affects the EEDF (Fig. 4).

The higher the NF3 concentration, the higher the
role of inelastic electron collisions with NF3 molecules.
Since the threshold energy for electronic excitation is
fairly high, this process only slightly affects the EEDF.
In contrast, the excitation of the vibrational levels sig-
nificantly affects the EEDF. This is because the thresh-
old energy for the excitation of the vibrational levels is
low and the quantum energy of the NF3 vibrational
excitation is fairly large (1 eV as compared with 0.1 eV
in F2 and SF6). Consequently, the electrons lose their
energy much more rapidly than in the above mixtures
and are efficiently transferred in the low-energy region.
As a result, the increase in the NF3 concentration leads
to the vanishing of the EEDF inversion, because almost
all the electrons have energies lower than the threshold
energy for the vibrational excitation of NF3 (Fig. 4).

The EEDF was also calculated at an elevated elec-
tric field and elevated electron density. In all the mix-
tures, there was a tendency toward a smoothing of the
EEDF in the inversion region. These effects reflect the
Maxwellianization influence of the electric field and
electron–electron scattering, as was previously noted
in [22].

CONCLUSION

The numerical simulations of the EEDF in a hollow-
cathode glow discharge in mixtures of nitrogen with
electronegative gases have shown that adding SF6 or
CCl4 to nitrogen can significantly increase the number
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
of electrons in the inversion region. This effect is
related to the intense attachment of low-energy elec-
trons to the electronegative gas molecules. The change
in the EEDF is caused by its renormalization as the
number of the low-energy electrons decreases. No
increase in the inversion region of the EEDF in N2 : F2
and N2 : NF3 mixtures has been observed because the
rate of electron attachment to these gas molecules is
insufficiently high to significantly affect the EEDF.

When a small admixture of an electronegative gas is
added to nitrogen, the change in the EEDF is deter-
mined by the cross section for electron attachment to
the admixture molecules. The other inelastic interac-
tions between the electrons and the admixture mole-
cules only slightly affect the EEDF. The higher the
admixture concentration, the higher the role of the elec-
tronic and vibrational excitation of the admixture mol-
ecules. For each of the discussed mixtures, these pro-
cesses lead to the smoothing of the EEDF in the inver-
sion region and the formation of a monotonic EEDF.

The largest increase in the EEDF in the inversion
region was achieved in the N2 : SF6 = 10 : 1 and
N2 : CCl4 = 10 : 1 mixtures.
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Abstract—Free-localized pulsed microwave discharge in atmospheric air in the focus of an open two-mirror
high-Q resonator excited by linearly polarized electromagnetic radiation with a wavelength of 4.3 cm is
described. This discharge is analogous to the previously studied streamer resonance microwave discharge
ignited under similar conditions but with an electromagnetic radiation wavelength of 8.9 cm. Starting from a
certain overcritical electric field, the discharge plasma channel has a high-temperature core. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

In 1967, a scientific team (in which one of the
authors participated) headed by R.F. Avramenko and
G.M. Batanov observed pulsed microwave discharges
in atmospheric air in the standing wave of a linearly
polarized electric field [1]. The discharge was ignited in
the central (focal) region of an open high-Q resonator
formed by two coaxial spherically concave mirrors and
operating at a wavelength of λ ≈ 10 cm. The discharge
stayed a few tens of centimeters apart from the nearest
construction elements. It had a shape of a plasma chan-
nel with a diameter of 2a ≈ 0.1 cm and length of 2l ≈
λ/2. The channel was stretched along the vector of the
electric component E of the electromagnetic (EM)
field. In the center of the channel, there was a core,
whose glow intensity was significantly higher than that
of the main discharge channel. A significant fraction of
the energy stored in the resonator by the instant of
breakdown was absorbed in the core plasma.

In 1975 [2], freely localized microwave discharges
were observed in a similar experimental facility but
with λ = 0.81 cm. The electrodeless breakdown of air in
the focus of a two-mirror high-Q resonator was accom-
plished at a pressure of p ≤ 400 torr. The discharge
ignited at the maximum p values also had a shape of a
plasma channel stretched along E but without a central
core.

Since 1990, further detailed studies of this type of
discharge have been carried out in the experimental
facility with λ = 8.9 cm [3–5]. It was shown that the dis-
charge develops from a single “free” electron. Initially,
a small spherically symmetric plasmoid appears, which
then stretches along E in both sides from the point of
origin in the form of a microwave streamer channel.
When the channel becomes as long as about λ/2, it
begins to manifest its resonance properties. As a result,
the current amplitude in the central region of the
1063-7842/03/4801- $24.00 © 20043
streamer significantly increases. It was supposed that,
in the final stage of the discharge development, the dis-
charge is pinched, which results in the formation of a
high-temperature core. In experiments, this stage has a
threshold with respect to the gas pressure. Thus, in air,
it occurs only at p ≥ 540 torr.

The fact that there is a small region in the discharge
in which the electromagnetic (EM) energy is efficiently
and rapidly accumulated opens up possibilities for
practical applications of these discharges (see, e.g., [6])
and stimulates their further study. On the other hand,
these studies are limited by the fact that the experimen-
tal facility used in [3–5] is basically the only one in
which such studies have been carried out. This facility
allows one to vary the resonator configuration, gas spe-
cies, and gas pressure but operates at a fixed EM field
wavelength.

This paper presents the experimental results
obtained in the facility described in [7], with a micro-
wave source operating at λ = 4.3 cm. Its energy charac-
teristics and the possibility of controlling the radiation
frequency allow one to study the electrodeless micro-
wave breakdown in atmospheric air in the focus of a
two-mirror open resonator at this λ value and obtain a
freely localized streamer resonance microwave dis-
charge with a cumulative core.

EXPERIMENTAL SETUP

A schematic of the experimental facility is shown in
Fig. 1. The facility incorporates a vertical transmitting
antenna array with a 2.7 × 2.7-m rectangular aperture.
The antenna array consists of rectangular horns placed
in six rows with six horns in a row, all of them located
on a spherical surface with a radius of curvature of
2.7 m. Each horn is fed by an amplifying microwave
klystron oscillator. A signal from a single master oscil-
003 MAIK “Nauka/Interperiodica”
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lator is applied to the inputs of all the klystrons. The
phase shifters in the klystron input circuits and the
metal-plate lenses at the horn outlets form an even
phase front over the aperture of the spherical antenna
array. As a result, a linearly polarized TEM microwave
beam focused in the near-field zone is formed. The
beam axis is horizontal and is perpendicular to the
plane of the antenna mouth. In the focal region, the field
vector Efoc is vertical. The beam focusing angle is α ≈
60°, and the FWHM beam diameter in the focal plane
is 2rfoc ≈ λ. The total diameter (the distance between the
field zeros) of the main lobe, which contains nearly
88% of the total power emitted by the antenna, is
approximately twice as high [8].

The central frequency of the microwave field is f0 =
7005 MHz (λ = 4.283 cm). At this frequency, each array
element can emit microwave pulses with a duration of
up to tpul = 800 µs and an average power of P1 = 30 kW;
i.e., the maximum total microwave power is Pgen ≈
1 MW. The radiation power can be decreased by nearly
one order of magnitude. When the field frequency is
shifted from the central frequency f0 by ±2.5 MHz, the
amplitude of the emitted wave decreases by a factor of
2. During a microwave pulse, the master oscillator
allows the facility to operate in the frequency modula-
tion regime with a constant sweep rate v sw. The pulse
repetition rate can be varied from a single-pulse mode
to 1 Hz.

The facility also incorporates a quasi-optical open
resonator formed by two round coaxial spherical mir-
rors with a radius of curvature Rmir = 17.5 cm and diam-
eter of 2rmir = 34 cm. The maximum distance between
the mirrors along the axis is 2h = 29.6 cm. This distance
can be smoothly varied within 29.6 ± 0.5 cm. The mir-
rors are made from a 0.2-cm-thick copper sheet. The
resonator is oriented horizontally and is coaxial with
the axis of the microwave beam emitted by the antenna
array. It is placed apart from the antenna at a distance
that ensures approximate coincidence between the cur-
vature of the beam phase front and the curvature of the

~

~

~

~

~

~

~

E

1

2
3

4 5

6

Fig. 1. Schematic of the experimental facility: (1) master
oscillator, (2) amplifying klystrons, (3) emitting horns,
(4) microwave beam, (5) open resonator, and (6) measuring
circuit.
outer spherically convex surface of the nearest mirror.
The central part of the mirror with a diameter of 2rcon ≈
15 cm is perforated with round 0.63-cm-diameter
holes, which are positioned at the nodes of a quadratic
mesh with a 2 × 2-cm cell size. One cell side is parallel
to the vector E of the microwave radiation incident onto
the mirror, whereas the other side is perpendicular to
this vector. These holes serve to excite the resonator
with EM radiation; i.e., it provides the coupling with
the microwave oscillator. The 2rcon value is about the
characteristic transverse dimension of the microwave
beam (at the mirror position) exciting the resonator.

According to [9], for the above resonator dimen-
sions and λ = 4.3 cm, the simplest azimuthally symmet-
ric mode with a transverse Gaussian profile and a stand-
ing-wave field distribution along the resonator axis is
excited in the resonator. The distance from the resona-
tor axis at which the field decreases e-fold is r = 3 cm
in the central focal plane and rcar = 7.3 cm on the mirror
surface. There are q = 13 variations in the field ampli-
tude along the resonator axis; i.e., the field is maximum
in the center of the resonator.

In estimates, the copper conductivity σ is usually
assumed to be 5.8 × 107 Ω–1 m–1. Hence, at f0 = 7 GHz,
the ratio of the microwave power absorbed by a copper
surface to the microwave power incident on it is [10]

ασ =  = 2.3 × 10–4, where ε0 = 10–8/(36π) F/m
and ω = 2πf. Under the assumption that the microwave
diffraction loss from the resonator can be neglected,
this ασ value results in the intrinsic resonator Q-factor
Q0 = πq/ασ = 1.8 × 105. Indeed, the diffraction loss
coefficient is αdif = exp[–2(rmir/rcar)2] = 2.6 × 10–5 ! ασ.
The Q-factor of a loaded resonator Q also depends on
the coupling factor αcon between the resonator and
oscillator. In our case, αcon is the ratio of the microwave
power passed through the perforated mirror hole sys-
tem to the microwave power incident onto the mirror. In
the steady-state operation mode and for the optimum
coupling, when αcon = 2ασ, all the energy of the exciting
wave enters the resonator and is absorbed by the mir-
rors; in this case, Q = Q0/2 = 9 × 104. At this Q value,
the full width of the resonance curve at the level of

 with respect to the mechanical detuning of the
resonator length 2∆h = 2h/Q amounts to only 3 µm,
whereas that with respect to the frequency detuning is
2∆f = f0/Q = 70 kHz.

In the exact resonance, the maximum field in the
resonator focus can be estimated by the formula [11]

(1)

where Z0 = 120π Ω and η is the power utilization factor
(the fraction of Pgen that is actually spent on the excita-
tion).

In the experiments, the field in the resonator focus
was monitored with a waveguide horn that received the

2ε0ω/σ

1/ 2

Emax 4/ πr( )[ ] QηPgenZ0/q,=
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Fig. 2. Configuration of the focal region of a microwave beam exciting the resonator.

(‡) (b)

160 mm

67 mm
microwave signal emitted from the resonator due to dif-
fraction. The microwave signal from this horn was fed
to a linear detector and a storage oscilloscope. The
absolute calibration of this measuring circuit will be
described below.

EXPERIMENT

In our experiments, the facility operated not at the
maximum power Pgen, but mainly in the regime with
single microwave pulses with tpul = 350 µs and v sw =
2 kHz/µs.

In the preliminary experiments, the configuration of
the microwave beam in the focal region was refined and
the Pgen value was estimated. In so doing, the resonator
was removed.

To refine the beam configuration, a 0.3-cm-thick
textolite plate 40 × 40 cm in size was placed in the focal
region. One side of the plate was covered with a paint
whose color changes with temperature. After a certain
number of the microwave pulses, the plate, having
absorbed microwave energy, was substantially heated;
thus, the changed paint color visualized the beam
geometry. Figure 2a shows a photo of the plate oriented
along the beam axis and perpendicular to the field vec-
tor E. The beam propagates from top to bottom. The
beam focusing angle measured by this photo is α ≈ 60°.
Figure 2b shows the plate located in the beam focal
plane perpendicular to the beam propagation direction.
As was expected, the focal spot diameter measured by
the photo is between λ and 2λ.

To measure Pgen, cylindrical metal microwave vibra-
tors with a resonance length of 2lvib = 2.15 cm, spheri-
ICAL PHYSICS      Vol. 48      No. 1      2003
cally rounded ends, and different diameters 2avib were
set one after another in the beam focus parallel to the
field vector. In the experiments, the initial (unper-
turbed) field amplitude Efoc in the beam focus was sig-
nificantly lower than the critical breakdown amplitude
for atmospheric air, Ecr = 32 kV/cm [12]. However, at
the vibrator ends, the field was amplified, and, for the
given λ, its value [13]

(2)

(where 2avib is in cm) could be higher than Ecr. The
measured maximum diameter of the vibrator at which
air breakdown still occurred (i.e., Epol ≈ Ecr) was 2avib =
0.17 cm. This corresponds to Efoc ≈ 1.5 kV/cm; i.e., the

microwave intensity is Πfoc = /(2Z0) = 3 ×
103 W/cm2 and Pgen ≈ Πfoc × 2λ2 = 120 kW.

According to Eq. (1), at this beam power and for Q =
9 × 104 and η = 1, the maximum field in the focus of the
tuned resonator is expected to be Emax = 240 kV/cm >
Ecr; hence, air breakdown in the resonator can occur.
Indeed, in the main series of experiments, nearly every
microwave pulse was accompanied by air breakdown in
the resonator focus.

Figure 3 presents the oscillogram obtained in the
absence of a discharge. The time scale is 50 µs/div.
Actually, the measuring circuit monitors the interfer-
ence signal from the microwave beam exciting the res-
onator and the scattered signal, which reflects the E0(t)
dependence. At the input of the measuring circuit, these
signals are summed with certain phases. As a result, in
Fig. 3, the interference signal with a duration of tpul =

Epol 3.6Efoc/ 2avib( )=

Efoc
2
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350 µs is drawn upward from the zero line, whereas the
superimposed resonance curve is drawn downward.

The width of the resonance curve 2∆f at a level of 
is approximately 70 µs. In this case, the amplitude of

the resonance curve and the  level are counted
from the upper right end of the oscilloscope trace. The
measured 2∆f value corresponds to Q = 105 and αcon =
2ασ.

After breakdown, in full accordance with the exper-
iments of [3], the time behavior of the field in the reso-
nator changes significantly. In this case, the oscillo-
gram reproduces only the initial portion of the reso-

1/ 2

1/ 2

Fig. 3. Oscillogram of the control signal; time scale is
50 µs/div.

Fig. 4. Freely localized streamer microwave discharge in
atmospheric air.
nance curve up to the breakdown level Ebr; then, for a
time shorter than 1 µs, the oscilloscope trace sharply
ascends to the level corresponding to the interference
signal from the microwave beam exciting the resonator.
This upper right horizontal part of the oscilloscope
trace in Fig. 3 will be considered a zero level of the res-
onator field, and the field E0 in the focus will be counted
downward from this level.

In the experiments, the field E0 = Ebr in the succes-
sive pulses differed by several times. In most pulses, the
field Ebr was much higher than Ecr, and breakdown
occurred on both the descending and ascending seg-
ments of the resonance curve. This statistical scatter is
related to the random character of the free-electron ori-
gin (which can cause an electron avalanche [4]) in air
under natural conditions. Moreover, in some pulses,
over a time interval in which E > Ecr in the focal region
of the resonator, such electrons may not even occur at
all. In this case, there is no discharge during the micro-
wave pulse, and the oscillogram shows the complete
resonance curve.

It is natural to associate the minimum increase in the
signal in the oscillogram before breakdown (averaged
over a large series of pulses) with E0 = Ecr [4]. This
allows us to relate the vertical scale in the oscillogram
to the absolute value of the field in the resonator focus.
In our experiments, the minimum increase in the signal
was five to six times smaller than the maximum of the
resonance curve, which gives Emax = (5–6)Ecr = 150–
190 kV/cm; hence, the power utilization factor η is in
the range 0.4–0.6.

Fig. 5. Freely localized streamer microwave discharge with
a high-temperature core in atmospheric air.
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In the experiments, different Ebr values corre-
sponded to different types of discharges. As an exam-
ple, Fig. 4 presents the integral photo of a discharge
obtained at an exposure time that is significantly longer
than the duration of the discharge glow and at Ebr only
slightly exceeding Ecr. It is seen that the discharge has
the form of a plasma channel directed along E. In dif-
ferent pulses, the channel length 2l varied from 1.3 to
1.65 cm, whereas the diameter was 2a ≈ 0.1 cm. No
cumulative core is seen in this discharge. Figure 5
shows a discharge at Ebr close to Emax. It is seen that the
discharge has a central core, although the discharge
length and diameter remain almost the same.

In the experiments, the high-temperature core was
observed only at E0 ≥ 2Ebr.

DISCUSSION

The results obtained agree with the concept of a
streamer resonance cumulative microwave discharge
described in [5]. The possibility of discharge pinching,
which, in our opinion, causes the appearance of a
cumulative core in the central region of the streamer,
substantially depends on the ratio of the current through
this streamer region to its radius, I0/a. It was shown
experimentally that the decrease in λ from 8.9 to 4.3 cm
only slightly affects the streamer radius a. At the same
time, the current I0 = Ebrheff /RΣ depends on the effective
streamer length heff, which is proportional to λ. Here,
RΣ is the wave impedance of the streamer, which is con-
sidered to be a microwave vibrator. The RΣ value
depends on the 2l/(λ/2) ratio, which changes only
slightly with decreasing λ. In contrast, as the wave-
length decreases to λ = 4.3 cm, the heff value decreases
by a factor of 2 and, at Ebr = Ecr, the current I0 also
decreases about two times. As a result, at Ebr ≈ Ecr, the
conditions necessary for discharge pinching may not be
satisfied. However, in some pulses, this decrease in heff
can be balanced by an increase in Ebr. That is why, at
Ebr ≥ 2Ecr, the discharge has a cumulative core.

CONCLUSION

Thus, the electrodeless breakdown was ignited in
atmospheric air in the standing wave of a linearly polar-
ized microwave field with a wavelength of λ = 4.3 cm.
In the experiments, we used a quasi-optical beam tech-
nique to feed an open two-mirror high-Q resonator and
the dynamic regime for tuning it to the resonance by
sweeping the frequency of the exciting field.

The experiments showed that the streamer micro-
wave discharge at a wavelength λ = 4.3 cm develops
qualitatively in the same manner as that at λ = 8.9 cm,
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
but with a natural quantitative difference at the reso-
nance stage of its development. Thus, at a breakdown
field Ebr approximately equal to the critical breakdown
field Ecr, which corresponds to air at atmospheric pres-
sure, the discharge streamer does not have a cumulative
core. At λ = 4.3 cm, a freely localized streamer reso-
nance microwave discharge with a high-temperature
core can occur only at Ebr ≥ 2Ecr. This discharge is sim-
ilar to the previously studied discharge of this type
ignited in atmospheric air at λ = 8.9 cm and Ebr = Ecr.
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Abstract—The duration of the discharge channel formation is calculated for 0.01- to 0.5-mm-thick insulators
in terms of the avalanche–streamer theory. At this stage of breakdown development, the statistical delay is
assumed to be the time from the instant the testing voltage becomes equal to the breakdown value to the instant
of streamer origination and that the formation time is the interval between the instant of streamer origination
and the instant the electrodes close through the discharge channel. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A new approach to the description of electrical
breakdown in solid insulators has been recently pro-
posed in [1]. This approach uses new definitions of the
first and second breakdown stages. In earlier theories,
the first stage, i.e., the formation of the discharge chan-
nel, is most completely described in terms of the ava-
lanche–streamer mechanism, where the duration of this
stage is assumed to be the total discharge time

(1)

Here, tst is the statistical discharge delay, which is the
interval between the instant the testing voltage Ut, st
becomes equal to the breakdown value Ubr and the
instant the first effective electron appears, and tf is the
discharge formation time defined as the interval
between the appearance of the first effective electron
and the instant the electrodes close through the con-
ducting channel [2, 3].

By an effective electron is meant an electron that is
capable of triggering an electron avalanche whose size
is sufficient for creating a streamer. The formation time
is defined as

(2)

where d is the thickness of the solid insulator and vav is
the discharge average velocity. The statistical delay
time is given by

(3)

where  is the average number of electrons in an ava-
lanche, n0 is the minimal number of electrons in the
avalanche that cause a streamer, ν is the number of ini-
tial free electrons generated in the insulator per second,

tdis tst tf .+=
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d

v av
-------,=

tst
1

ν n0( )
-------------

1
ν
---

n0

n
-----,exp= =

n

1063-7842/03/4801- $24.00 © 20048
and ν(n0) is the number of avalanches of size exceeding
n0 that are generated per second.

STATEMENT OF THE PROBLEM

The procedure of calculating tst by formula (3) [2,
p. 759] is rather tedious; therefore, this technique has
not found wide application. However, the value of tst
contributes significantly to the discharge formation
time in specimens 20–30 µm thick and must therefore
be evaluated. Below, we propose new formulas for tst
and tf that can be conveniently applied in practice to
evaluate, for instance, the parameters of insulators less
than 0.01 mm thick.

BASIC REASONING AND EVALUATION 
OF THE INITIAL DISCHARGE STAGE 

DURATION

Let a testing voltage be applied to a solid insulator
(Fig. 1) with a ramp of 5–10 kV/s, which corresponds
to a breakdown at the leading edge of an oblique wave.
Let the instant when Ut, st = Ubr be t = 0. By this instant,
the insulator already contains free electrons in the dis-
charge gap. These electrons, which are capable of initi-
ating impact ionization, are emitted mostly from
microasperities on the cathode. In the situation illus-
trated in Fig. 1a, there are three such electrons, but only
electron no. 1 will be effective, because only this elec-
tron travels a distance d1, which is sufficient for initiat-
ing an avalanche with the number of electrons n0 to pro-
vide a cathode streamer. In Fig. 1b, the thickness d2 of
the insulator is greater than d1; hence, the number of
electrons causing ionization is also greater (say four).
All except electron no. 4 are effective, but the avalanche
duration is specified by electron no. 3, which is d1 dis-
tant from the anode.
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Let the velocity of the electron avalanche moving to
the anode and that of the cathode streamer be the same
and equal to vav [2, 3]. Then, the formation time of the
discharge channel will be tf, a = 2d1/vav in the case of
Fig. 1a and tf, b = d1/vav + d2/vav in the case of Fig. 1b.

Both these values are greater than tf given by (2) and
seemingly must increase tdis calculated from (1); this
may however be avoided by using other definitions for
tst and tf.

We propose to count the discharge channel forma-
tion time from the instant the streamer is initiated rather
than from the instant the first effective electron appears,
since the latter instant is difficult to determine exactly
in solids. As for the duration of the first electron ava-
lanche that produces n0 electrons over the distance d1
and initiates the streamer, it is more logical to regard it
as a component of the statistical discharge delay. The
same conclusion follows, for example, from the exper-
imental time dependences of the discharge channel
length in rock salt, where the statistical delay time lasts
until the discharge channel appears [3, Fig. 36]. In [4],
a similar time dependence of the discharge channel
length was observed for propylene and it was also noted
that all processes preceding the appearance of the dis-
charge channel in insulators should be viewed as con-
tributing to the statistical delay.

Thus, within the avalanche–streamer theory, it is
proposed to consider tf as the time from the instant the
discharge channel appears to the instant the electrodes
close up through the conducting channel and to define
this time by formula (2).

As for the time tst, note that, when the insulator
thickness increases, the number n of electrons in for-
mula (3) grows while n0 remains constant. Therefore,
according to (3), tst goes down [2, 3]. The same conclu-
sion also follows from Fig. 1. The distance d1 between
the first effective electron and anode remains
unchanged with increasing d2; consequently, the time
of travel for the first intense avalanche is thickness
dependent. Then, if d @ d1, this time can be neglected
in comparison with tf just as tst in the form of (3) is
ignored when the material is thick. With decreasing d2

and then d1,  decreases and tst goes up, becoming
greater than tf. In this case, it is necessary to apply for-
mula (1). The thickness d1 in Fig. 1 is the critical thick-
ness dcrit, because, with d < dcrit, none of the free elec-
trons in the insulator can trigger an avalanche that is
sufficient to initiate a cathode streamer.

An increase in tst by the time it takes for the ava-
lanche to travel the distance d1 = dcrit is taken into
account by an additional term in (3):

(4)

n
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1
ν
---
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n
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Formula (4) shows that the statistical breakdown
delay is the time from the instant Ut , st becomes equal to
Ubr to the instant the discharge channel arises, i.e., the
streamer is initiated.

The critical thickness of the insulator can be found
from a formula for the breakdown field Ebr. In terms of
the avalanche–streamer breakdown mechanism, it is
given by [3]

(5)

e = 1.6 × 10–19 C is the electron charge, ncrit is the criti-
cal number of electrons in the avalanche at the critical
thickness of the insulator, λfp, expt is the experimentally
found mean free path of electrons between two ioniza-
tion events, ε0 = 8.86 × 10–12 is the permittivity of free
space, ε is the relative permittivity of the insulator, and
k = 0.1–1 is the ratio Ebr/E at the head of the streamer at
the instant it is initiated.

Since the electron avalanche is produced by impact
ionization,

Then,

(6)

where ncrit is calculated from (5) for a particular insula-
tor.

The table summarizes ncrit and dcrit calculated for
several solid insulators whose dielectric strength is
higher than 1 MV/cm. It is commonly thought that such
fields can support the processes of impact ionization. In
our calculations, k = 0.5; ε = 2.2 for polyethylene, 2.0
for Teflon, and 3 for poly(ethylene terephthalate)
(PETF) films; and vav = 104 m/s. The experimental
mean free paths λfp, expt were evaluated from the curve
shown in Fig. 2. This curve averages λfp, expt vs. electric
field dependences obtained experimentally by different
authors [2, 3, 5]. Since the statistic delay is difficult to
calculate from (4) because of the term given by expres-
sion (3), formula (4) was replaced by

(7)
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Fig. 1. Discharge gap at the onset of breakdown.
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Characteristics of solid insulators at the stage of discharge channel formation

Material d, µ E, MV/cm ncrit × 10–5 dcrit , µ tst , ns tf, ns

Polyethylene 500 6.5 [5] 0.8 6.5 0.65 50

" 500 3.5 [6] 1.31 11.9 1.19 50

" 50 6.5 0.8 6.5 0.65 5

" 50 3.5 1.31 11.9 1.19 5

" 10 4.0 1.14 10.2 1.02 1

PETF 50 1.6 6.67 38.7 3.87 5

PETF 10 1.7 5.74 34.4 3.44 1

Teflon 20 1.2 [6] 20.8 105 10.5 2

" 10 1.2 20.8 105 10.5 1

" 10 1.3 [6] 11.1 70 7 1
The error in (7) is much less than in (4) and can be
neglected, because the presence of prebreakdown cur-
rents in the insulator [3, 5] a fortiori means that at least
one electron capable of generating an intense electron
avalanche at the critical thickness of the insulator is
present in the discharge gap. Also, formula (7) uses the
so-called cathode discharge velocity v dis,c instead of the
avalanche velocity vav. It is known that the discharge
velocity under electrical breakdown conditions grows
with overvoltage (an excess of the pulsed testing volt-
age over the dc testing voltage) and increases during the
action of the testing voltage [3]. The interval tst is the
beginning of the electrical breakdown process; there-
fore, the velocity within this interval must be minimal.
From the physical understanding of electrical break-
down, the variation of the discharge velocity can be
attributed to the difference in the electric field structure
at different breakdown stages. Up to the instant tst, elec-
trons are injected into the insulator from microasperi-
ties on the cathode (in the thickness range considered,
the role of these peaks is substantial) and the field in the
insulator can therefore be viewed as the field in a nega-
tive tip–plane gap. After the instant tst, the positive
space charge starts growing near the anode. This charge
enhances the electric field intensity in the insulator, and

10

5
3

1

0.5
0.3

0.1

λfp, expt × 10–4, cm

0 1 2 3 4 5 6
E, MV/cm

Fig. 2. Mean free path of electrons versus field intensity.
the field transforms into that of the positive tip–plane
type. In the latter field, charged particles always move
faster than in the former.

Such a pattern agrees with the difference in the cath-
ode, v dis, c and anode, v dis, a discharge velocities
observed experimentally [7]. The motion of electrons
from the cathode to the anode for the time tst can be
regarded as an anode discharge propagating with a
velocity lower than the velocity of sound in a solid insu-
lator [7]. The motion of the cathode streamer can be
treated as a discharge propagating from the anode with
the velocity v dis, a = vav, v dis, a being higher than the
velocity of sound. In [7], an exact formula for v dis, c was
not derived; therefore, in the calculations by formula (7),
we used the maximum possible value of v dis, c, which is
equal to the velocity of sound in a particular dielectric.
According to [8], the velocity of sound is 2.48 × 103 m/s
in polyethylene and 1.34 × 103 m/s in Teflon. No data
are available for PETF; therefore, we used the value of
2.48 × 103 m/s.

The data summarized in the table show that (i) the
general variation of all quantities with d and dcrit is con-
sistent with the physical concepts of electrical break-
down in solid insulators; i.e., the validity of the notions
of ncrit and dcrit and of estimating the statistical delay by
formula (7) is corroborated; (ii) the theoretical value of
dcrit subdivides insulators into “thick” (d > dcrit) and
“thin” (d < dcrit), the boundary thickness falling approx-
imately into the range observed in experiments [3];
(iii) the rapid increase in tdis given by (1) in 10- to
20-µm-thick insulators owing to tst agrees with experi-
mental data reported in [2, 3] and means, at the limit, a
microsecond time of breakdown development in insu-
lating films [9]; (iv) tdis decreases with increasing
breakdown field strength when d < dcrit, which is
observed in insulating films [9]; and (v) the quantitative
relationship between tst and tf observed is in good
agreement with the qualitative relationships considered
above.
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
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It should also be noted that the error introduced into
dcrit by the uncertainty in the coefficient k in (5) is no
more than 14% at k = 0.1 and 5% at k = 1 for dcrit given
in the table.

The new relationships for tst and tf provide a novel
approach to calculating the breakdown formation time
in thin solid insulators, where d < dcrit. In [3], electrical
breakdown in such materials is described in terms of
the multiavalanche–streamer mechanism, which relates
the initiation of a streamer near the anode to the accu-
mulation of a great amount of positive space charge
from many electron avalanches. This approach also
uses the notion of the critical thickness of an insulator,
which is introduced only qualitatively without deriving
an analytical expression. The formula for the discharge
time is given instead:

(8)

where m is the number of electron avalanches necessary
for generating the streamer, λfp is the mean free path of
electrons, and ν0 is the number of electrons picked up
by the field from the unit area of the cathode per
second.

However, calculations by formula (8) face consider-
able problems, because it is difficult to determine m and
ν0. It has also been shown [10] that the breakdown cur-
rent calculated based on the multiavalanche–streamer
mechanism decays with time, which is unrealistic.
Therefore, the formulas for electrical breakdown in
solid insulators presented in [3] prove to be inapplica-
ble when d < dcrit. At the same time, it is of interest that
the technique for calculating tdis from formulas (1), (2),
and (7) at d < dcrit also implies the multiavalanche–
streamer mechanism of developing electrical break-
down. Indeed, if d < dcrit, this means that the critical
number ncrit of electrons is generated by several, rather
than one, avalanches. There is no need to exactly deter-
mine the number of these avalanches. Instead, one can
use dcrit, which in this case is a hypothetical thickness,
and formula (7) to calculate the time over which ncrit
electrons will arrive at the anode, i.e., to calculate the
statistical component of the breakdown development
time. By adding tf given by (2) to this time, we obtain
the discharge time. This procedure is much simpler
than the calculation of tdis from formula (8).

The novel formulas for tst and tf can be used in other
theories of electrical breakdown in solid insulators (see,
e.g., [1]).

tdis
m

ν0λ fp
2

------------,=
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CONCLUSIONS

(1) To simplify calculations based on the avalanche–
streamer theory of electrical breakdown in solid insula-
tors, it is proposed to assume that the statistical break-
down delay is the interval between the instant the test-
ing voltage becomes equal to the breakdown voltage
and the instant a streamer is initiated and that the dis-
charge formation time is the interval from the instant
the streamer is initiated to the instant the electrodes
close up through the discharge channel.

(2) The definition of the critical thickness dcrit of a
solid insulator, i.e., the thickness allowing an electron
moving to the anode to trigger an avalanche with the
number of electrons sufficient for initiating a streamer,
is refined. An expression that relates dcrit to the insulat-
ing material and its dielectric strength is obtained. The
critical thickness divides solid insulators into thick and
thin.

(3) An expression for the statistical delay of electri-
cal breakdown in solid insulators in terms of critical
thickness is derived. It has a simpler form than the con-
ventional expression.

(4) When calculating the delay, it is suggested that
an electron velocity smaller than that at the discharge
formation stage be used.
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Abstract—Instability arising in a superconducting composite when the current is injected with an ultimately
low rate is analyzed. Under these conditions, the nonuniformity of the temperature and electric field distribu-
tions over the composite cross section is negligibly small. Equations that allow one to estimate the effect of the
magnetic flux creep on the maximum current and temperature of the superconductor before the onset of insta-
bility are derived. It is shown that the allowable overheat of the composite depends on conditions of its thermal
stabilization especially near the steady-state stabilization range. It is noted that conditions for the existence of
stable current states may differ when the magnetic flux creep is described by power and exponential I–V char-
acteristics. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One basic current-carrying property of a supercon-
ducting composite is the (limiting) current that can be
applied to the superconductor with an extremely low
rate without turning into the normal state. In each spe-
cific case, this current corresponds to the maximal cur-
rent load of a current-carrying element in a supercon-
ducting magnetic system. The presence of the limiting
current is the direct consequence of magnetic flux
creep. Namely, when the current is applied to the super-
conductor, a finite electrical voltage (hence, continuous
heat release) appears long before the onset of instabil-
ity. Under certain conditions, equilibrium between the
heat being released and the heat removed by a coolant
is disturbed. As a result, the electric field distribution
inside the composite becomes unstable and the material
turns into the normal state.

The concept of limiting current was first put forward
in [1]. In [2, 3], the formation of current states preced-
ing the onset of the limiting current state was discussed.
In particular, it was concluded that, if the rate of current
injection into the material is low, instability arises
because of a very small allowable overheat of the com-
posite regardless of cooling conditions (and, in general,
of conditions for thermal stabilization of a supercon-
ducting composite). This overheat is called the temper-
ature parameter of rise of the I–V characteristic of the
superconductor. However, the balance between the heat
being released and the heat being removed is disturbed
when the heat transfer coefficient changes. Hence, the
balance conditions must depend on the conditions for
thermal stabilization of a composite superconductor. In
this work, we study the thermal states of a supercon-
ducting composite and associated limiting current val-
ues in relation to the conditions of its thermal stabiliza-
tion and shape of its I–V characteristics, which are
1063-7842/03/4801- $24.00 © 20052
widely used for phenomenologically describing mag-
netic flux creep.

PHENOMENOLOGICAL MODELS 
OF SUPERCONDUCTOR CURRENT–VOLTAGE 

CHARACTERISTICS

The dependence of the electric field on the current
induced inside a superconductor by a varying current
can be divided into two ranges. First, the electric field
grows nonlinearly with current. Then, starting from
some value of the induced current, the field strength
increases linearly.

The nonlinear portion of the I–V characteristic is
due to various factors. The major factor is the depen-
dence of the energy of activation on the current passing
through the superconductor [4, 5]. Therefore, using the
equation for the potential barrier, one can easily obtain
the associated I–V characteristic. However, such a der-
ivation does not necessarily involve all mechanisms
responsible for the current-carrying capacity of a super-
conductor because of their diversity and complexity.
Therefore, the use of I–V phenomenological models
constructed from many experiments is often more
appropriate.

Today, power and exponential models are widely
used for the phenomenological description of the I–V
characteristics of both low- and high temperature
superconductors. In the simplest cases, they have the
form [6, 7]

(1)

(2)

E EC
J
JC
----- 

  n

,=

E EC

J JC–
Jδ

-------------- 
  .exp=
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Here, JC is the current density determined at a given
electric field strength EC, n is the exponent of the I–V
curve, and Jδ is a constant defining the curve steepness.
For the I–V curve given by (1), when the flux creep is
due to various spatial defects in the superconductor lat-
tice, the current dependence of the potential barrier is
logarithmic. The I–V characteristic approximated by
(2) is based on the Anderson–Kim model [4, 5], which
assumes a linear dependence of the potential barrier on
the current. Such I–V curves are typical of supercon-
ductors with point lattice defects. There also are macro-
scopic reasons for the exponential rise of the I–V
curves. Specifically, the rise may result from the non-
uniformity of the superconductor physical parameters
in the volume; namely, the normal-to-superconducting
transition takes place at different values of the temper-
ature, magnetic induction, and current density in differ-
ent regions of the volume. Along with volume nonuni-
formity of superconductor critical parameters, it may
also exhibit longitudinal nonuniformity of supercon-
ducting properties. In this case, the exponent in (2)
becomes quadratic rather than linear. However, the I–V
curves of such superconducting materials is also fairly
well approximated with Eq. (1).

Although the above expressions do not exhaust the
variety of superconductor I–V curves, they fit a wide
spectrum of experimental data with a reasonable accu-
racy. The convenience of these formulas for the I–V
curves is that they allow for the limiting transition to the
model of the critical state [8] at n  ∞ and Jδ  0.
Moreover, power and exponential equations written in
forms (1) and (2) allow for the approximation of almost
any dependence E(J) found experimentally by properly
varying the initial parameters of the I–V curve.

RESULTS AND DISCUSSION

Consider the injection of current into a cooled com-
posite consisting of a superconductor exhibiting the I–
V curve in form (1) or (2) that is uniformly distributed
in a stabilizing normal-metal matrix. We will assume
that the time of current injection is sufficiently large
and, hence, the field and temperature nonuniformities
over the cross section are negligibly small. Formally,
this means that the current is injected with an infinitely
low rate. Within such a model, the thermal state of the
superconducting composite can be described with the
simplified heat balance equation 

where h is the heat transfer coefficient, p is the cooled
perimeter of the composite, S is the cross-sectional
area, T0 is the coolant temperature, and J is the total cur-
rent density in the composite. The current density J is
the sum of the current densities in the superconductor,

EJ
hp
S

------ T T0–( ),=
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Js, and in the matrix, Jm:

The current-induced electric field strength is found
from the equality of the voltage drops across the super-
conductor and across the matrix. For a superconducting
composite with a power I–V curve, this condition is
written as

for a superconducting composite with an exponential
I−V curve,

To simplify subsequent analysis, we will assume
that the current density JC is a linear function only of
temperature [6, 7]:

Here, JC0 and TC are given constants. Let us introduce
the dimensionless variables

Eliminating temperature from these equations, one
can easily derive the associated dimensionless depen-
dences of the electric field on the current:

where α is the thermal stability parameter [6, 7]:

The process of current injection becomes unstable
when the balance between the Joule heat release and
heat transfer from the surface into a coolant breaks
down. The instability arises in the limit ∂e/∂i  ∞ [1].
From this condition, it is easy to find the limiting cur-
rent and also the related voltage and overheat. For
superconductors with the power I–V curve, these

J η Js 1 η–( )Jm.+=

E EC

Js

JC
----- 

 
n

Jmρm;= =

E EC
Js JC–

Jδ
----------------exp Jmρm.= =

JC JC0

TC T–
TC T0–
------------------.=

i
J

η JC0
------------, e

E 1 η–( )
ηρmJC0
---------------------, eC

EC 1 η–( )
ηρmJC0

------------------------,= = =

Θ
T T0–
TC T0–
------------------, δ

Jδ

JC0
--------.= =

e
eC
-----

i e–
1 αei–
----------------- 

 
1/n

i e– 1– αei+
δ

----------------------------------,exp








=

α
η2

JC0
2 ρmS

hp 1 η–( ) TC T0–( )
-----------------------------------------------.=



54 ROMANOVSKIŒ
parameters are given by

for superconductors with the exponential I–V curve,

From these expressions, one can estimate the limit-
ing current and the overheat preceding the breakdown
of the superconductivity with regard for flux creep
given by Eqs. (1) and (2).

Figures 1 and 2 show the limiting current and allow-
able overheat vs. thermal stability parameter, i.e., vs.
the amount and properties of the stabilizing normal
metal and heat removal conditions. The initial parame-
ters were taken to be JC0 = 3.5 × 109 A/m2, EC =
0.6522 × 10–2 V/m, Jδ = 4 × 107 A/m2, n = 87.5, T0 =
4.2 K, TC = 9 K, ρm = 2 × 10–10 Ω m, η = 0.5, and α =
5 × 10–4 m. The value of Jδ was selected such that the
conditions n = JC0/Jδ is fulfilled. In this case, the I–V
curves calculated by (1) and (2) in the isothermal
approximation (T = 4.2 K) touch each other at a given
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Fig. 1. Limiting current vs. thermal stability parameter.
Dashed curve, I–V curve (1); continuous curve, I–V curve (2).
point {JC0, EC} (Fig. 3). The above parameter values
refer to Nb–Ti semiconductor in the copper matrix.

The results obtained demonstrate that there exists a
range of the stability parameter where it greatly affects
the allowable overheat and limiting current. This is true
for α < 10, i.e., near the steady-state stabilization range,
where a superconducting composite has the highest
current-carrying capacity. As is known, in this α range,
special precautions are taken to insure the thermal sta-
bilization of current-carrying elements and, hence, to
provide trouble-free operation of large superconducting
magnetic systems. In general, as α increases (for exam-
ple, the heat transfer coefficient decreases), the limiting
current and allowable overheat decrease monotonically,
asymptotically approaching the minimal values.
According to the formulas written above, with α 
∞, iq  0 and Θq  1/(η + 1) for the power I–V
curve and iq  0 and Θq  δ for the exponential I–
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Fig. 2. Allowable overheat vs. thermal stability parameter.
The curves stand for the same as in Fig. 1.
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Fig. 3. Isothermal I–V curves for Nb–Ti superconductor cal-
culated by different equations. The curves stand for the
same as in Fig. 1.
TECHNICAL PHYSICS      Vol. 48      No. 1      2003



ALLOWABLE OVERHEAT AND LIMITING CURRENT 55
V curve. Thus, the conclusion that the allowable over-
heat does not depend on the conditions for the thermal
stabilization of a composite superconductor [2, 3] can-
not be applied to the entire range of the stability param-
eter α. This should be taken into account in order to
reliably elucidate the physical reasons for stable near-
critical (i  1) limiting currents, which can be
achieved even in spite of magnetic flux creep.

Figures 4 and 5 demonstrate the limiting current and
allowable overheat plotted against the form and nonlin-
earity of the I–V curve. The plots suggest that the cur-
rent-carrying capacity of composite superconductors
decreases and the allowable overheat (preceding the
onset of instability) increases nearly linearly with the
nonlinearity of the I–V curve. Therefore, the degrada-
tion of the limiting current will inevitably grow with the
“smearing” of the I–V curve of the superconductor.

From the aforesaid, it also follows that power and
exponential I–V curves, strictly speaking, do not give
the same values of the parameters responsible for stable
current states in superconductors. The parameters coin-
cide only at high heat transfer coefficients and within
sharply ascending portions of the I–V curves with the
nonlinearity characterized by small 1/n and δ. There-
fore, for low-temperature superconductors, which
retain superconductivity at liquid helium temperatures,
creep models (1) and (2) differ insignificantly. For
high-temperature superconductors, however, the calcu-
lated results for the thermal and electrodynamic states
will heavily depend on whether I–V curve (1) or (2) is
used. This should be taken into account upon process-
ing experimental data for the I–V curve of high-temper-
ature superconductors.

Thus, we analyzed stable superconducting states in
the presence of flux creep up to the onset of current-
induced instability. It is found that the allowable over-
heat of a composite superconductor depends on the
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Fig. 4. Limiting current vs. parameters of rise of I–V curve.
The curves stand for the same as in Fig. 1.
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thermal stabilization conditions. As a result, the com-
posite temperature and allowable current below which
the composite retains the superconductivity and cur-
rent-carrying capacity are related in a nontrivial man-
ner. It is also revealed that the states of a superconduc-
tor with flux creep described by phenomenological
power and exponential I–V curves are generally nonequiv-
alent. With the current injected being stable, the equiva-
lence breaks down with increasing δ and 1/n, which define
the smearing of the superconductor I–V curve.
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Abstract—The structure of the core of a 1/6〈 〉 superpartial dislocation in the prism plane of the D019
superlattice is studied by computer simulation. Atomic interaction potentials for Ti3Al are derived with the
embedded atom method. The core of the superpartial dislocation is found to have three different configurations

(of I', I, and II types) in nonequivalent prism planes { }. For screw and edge dislocations, the core is planar
in type-I' prism planes and nonplanar in prism planes of type I and II. Results of simulation are compared with
experimental data for the superdislocation mobility in Ti3Al. © 2003 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Plastic deformation of intermetallic compounds
with different lattice structures proceeds in relation to
the superdislocation core structure. It is well known
that the Burgers vector of a dislocation and, hence, its
elastic energy grows upon ordering. A variety of planar
defects (antiphase boundaries, APBs; superlattice
intrinsic stacking faults, SISFs; and complex stacking
faults, CSFs) and different relationships between their
energies are the reason for splitting superdislocations
into various types of partial superdislocations with con-
figurations intimately related to the configuration of the
γ surface. This surface is constructed by mentally cut-
ting a model crystallite along a given crystallographic
plane and subsequently displacing the upper part rela-
tive to the lower one by a vector f parallel to the cut
plane. The energy difference per unit surface area
between a crystallite with a defect and an ideal one is
the energy corresponding to the vector f selected (gen-
eralized stacking fault). In alloys with the D019 super-
lattice, local minima on the γ surface are lacking for a
number of planes; therefore, not only the width of split-
ting superpartial dislocations into partial dislocations
(and often the number of the latter) but also their Burg-
ers vector will change. In this situation, computer sim-
ulation is the only way to gain detailed knowledge of
the dislocation core structure and compare dislocation
energies in different configurations.

In Ti3Al, the most close-packed planes are prism

planes { }, because c/a < 1.633. In Ti3Al single
crystals oriented for prismatic slip, the yield stress

σy{ } ≈ 150 MPa and the plastic strain reaches
≈20% [1, 2]. The yield stress shows the usual tempera-
ture dependence, i.e., slightly declines with tempera-
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ture. The same temperature dependence is also
observed upon basal slip; however, the plastic strain at
room temperature is much less in this case. Analysis of
the slip geometry indicates that, in both cases (pris-
matic and basal slips), deformation is due to the motion
of a superdislocations with the Burgers vector

1/3〈 〉 . Electron microscopy studies [3] showed
that an a dislocation is split into two superpartial dislo-

cations 1/6〈 〉 in prism and basal planes and that
these superpartial dislocations join together by the
antiphase boundary. Attempts to understand the fine
structure of the superpartial dislocation core have
failed.

This study is a continuation of research using com-
puter simulation of the structure and energy properties
of planar defects and dislocations in the Ti3Al interme-
tallic compound. In [4, 5], planar defects in (0001),

{ }, { }, and { } planes were consid-

ered; in [6, 7], the core structure of the 1/6〈 〉
superpartial dislocation in the basal plane was studied.

As follows from calculations, in the basal plane, the
γ surface, which specifies the dependence of the surface
defect energy on the displacement vector, has three
local minima. They are related to the antiphase bound-

ary (the displacement vector 1/6〈 〉 , the CSF (the

displacement vector 1/6〈 〉 ), and the SISF (the dis-

placement vector 1/3〈 〉 ). In the computer simula-
tion of the core structure of the a superdislocation in the
basal plane, these minima governed dislocation split-
ting in the initial configuration. For the superpartial dis-

location with the Burgers vector 1/6〈 〉 , which bor-
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ders the antiphase boundary, the final configuration
resulting after the relaxation procedure did not change.
For the screw superpartial dislocation, as well as for the

60° dislocation with the Burgers vector 1/3〈 〉 ,
which borders the SISF, the core structure was found to
be nonplanar. It is shown that relative displacements
near the core of these dislocations are uniformly dis-
tributed in the prism and in several basal planes simul-
taneously. Such a core reconfiguring during the com-
puter simulation is explained by the fact that the split
width of these superpartial dislocations in the initial
configuration was on the order of the core radius.

A feature of the D019 superstructure is the presence
of several nonequivalent sections in the set of planes

{ }, which differ in atom arrangement and, hence,
in surface defect energies. It was found [4] that γ sur-

faces in { } planes have a single low-energy min-
imum, which corresponds to the displacement of the
antiphase boundary. This fact is responsible for the split
of the a superdislocation with the Burgers vector

1/3〈 〉  in the prism plane into two superpartial dis-
locations bordering the antiphase boundary. The eluci-

dation of the core structure of the 1/6〈 〉  superpar-
tial dislocation in the prism plane and its energy prop-
erties is the aim of this work.

SIMULATION METHOD

The computer simulation of the 1/6〈 〉 super-
partial dislocation in the prism planes was performed
with the molecular dynamics method using N-atom
interaction potentials for Ti3Al found by the embedded
atom method [4]. Elastic modula and planar defect
energies (in the basal and prism planes) found through
these potentials agree with experimental data. With the
same potentials, we simulated planar defects in (0001),

{ }, { }, and { } planes [4] and the

1/3〈 〉  superdislocation in the basal plane [5].

Upon simulating a screw dislocation, one microc-

rystallite edge was aligned with the 〈 〉  axis of the
dislocation; for an edge dislocation, with the [0001]
axis. Along these directions, periodic boundary condi-
tions were imposed on atomic displacements. In other
directions, the atoms were fixed in positions corre-
sponding to the split dislocations. One of the superpar-
tial dislocations was placed at the crystallite center. The
other was outside the crystallite at a distance calculated
within the elasticity theory for the antiphase boundary
energy in the prism planes that corresponds to the
atomic interaction potential selected, and it influenced
the crystallite through its displacement fields. In the ini-
tial configuration, crystallite atoms were assigned dis-
placements induced by the split superdislocation. The
computer simulation allowed us to find the atom posi-
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tions in the lattice that meet the energy minimum for
the crystallite with the dislocation. The range of relative
displacements of the nearest atoms that corresponds to
the dislocation core was determined by the method of
differential displacements. In the figures, the displace-
ment component does not exceed 0.05a.

SELECTION OF THE INITIAL 
CONFIGURATION

The computer simulation of the dislocation core in
various structures shows that the results may depend on
the initial configuration. This dependence is due to spe-
cific features of the γ surface. If the γ surface has a deep
local minimum corresponding to a low-energy stacking
fault, the Burgers vector, as a rule, coincides with the
displacement vector specifying this stacking fault. If
local minima are absent, one should consider several
initial configurations with different axis directions,
numbers of partial dislocations, and their Burgers vec-
tors. Such a consideration is necessary for finding (after
relaxation) the core structure with the minimal energy.

The superlattice D019 can be obtained by translating
four atomic planes (II, I, I', and I) in the direction

〈 〉 . These planes differ in arrangement of atoms of
two sorts and in spacing between these planes (Fig. 1).
In [4], the energy ζ of the antiphase boundary in prism
plane II (section II in Fig. 1) was found to be
318 mJ/m2; for prism plane I (sections I and I' in Fig. 1),
it was found to be 6 mJ/m2. For the three sections I, I',
and I in Fig. 1, the antiphase energy is the same but the
shape of the γ surface and, accordingly, the surface
defect energies for sections I and I' differ. The γ sur-
faces for prism planes I and II are depicted in [4]; those
for prism planes I', in Fig. 2. The point A in Fig. 2 cor-
responds to the perfect lattice; point B, to the displace-
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(II) (I) (I') (I) (II) (I) (I') (I)

[2110]
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a

Fig. 1. Projection of the unit cell of the superlattice D019
onto the basal plane (d, Ti; s, Al). Sections I, I', and II of

prism planes { } are shown.0110
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ment 1/6〈 〉  responsible for the antiphase bound-
ary. It was shown [4] that low energies of surface
defects on the γ surface in prism plane I correlate with

displacements along the direction [ ] from the
point A to the point B. When displacements occur in
other directions, resulting surface defects have much
higher energies. For prism plane II [4], the height of
peaks on the γ surface is much lower because of differ-
ent interplanar spacings in these sections. The general
view of the contour maps for prism planes I and II is the
same, since the spacings between these planes are the
same (Fig. 1). However, the presence of atoms of two
sorts in the superlattice D019 makes these planes non-
equivalent; therefore, for prism plane I', the energies of
the surface defects are appreciably lower. The stacking
fault energy is the lowest for displacement vectors in

the [ ] direction, as well as for those from the point
E to the point F (Fig. 2). In the latter case, the displace-

ment vector is 1/12[ ] = 1/12[ ] +
x/12[0001]. In this direction, the stacking fault energy
varies slowly, reaching the maximum ζ = 650 mJ/m2 at
x = 1.038 for prism plane I' and ζ = 910 mJ/m2 at x =
1.45 for prism plane II.

Since the Burgers vector of the superpartial disloca-

tion 1/6〈 〉  is large, one might expect its elastic
energy to be significantly reduced when it splits into
two partial dislocations. However, the mechanism of
splitting of superpartial dislocations in prism planes
remains uncertain, since local minima on the γ surface
are absent. Yet the splitting into partial dislocations
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Fig. 2. γ surface of prism plane I' in Ti3Al.
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joined by an unstable stacking fault is discovered both
when the dislocation core structure is treated within the
elasticity theory [8] and by computer simulation [9].

Analysis of the γ surface in prism plane I shows that
the stacking fault energy is the lowest for the displace-

ment along the [ ] direction. Hence, the Burgers
vector bn of the partial dislocations must have a screw
component that is a multiple of the Burgers vector of

the superpartial dislocation: bn = (1/6〈 〉 )/n. Since
for other directions of the displacement vectors the
stacking fault energy is much higher, the edge compo-
nent of the Burgers vector of partial dislocations can be
set equal to zero. The number n of partial dislocations
was varied from two to ten. For any n, the total split
width D of the superpartial dislocation was taken to be
equal to D ≈ 5a/2, while for n = 10, the spacing between
two neighboring partial dislocations is d ≈ a/4 (a =
0.5765 nm is the lattice parameter for Ti3Al). Then, d ≈
r0, where r0 is the dislocation core radius. Thus, the
case of splitting into n = 10 partial dislocations is equiv-
alent to the continuous distribution of the Burgers vec-
tor density.

Since for prism planes I' and II there exists a domain
of displacement vectors (Fig. 2) where the surface
defect energy is relatively low, we considered two vari-

ants of splitting the edge (or screw) 1/6〈 〉  super-
partial dislocation in these planes. The first variant,
splitting into n screw (or edge) partial dislocations with
the same Burgers vectors, is akin to that considered for
prism plane I. The other implies splitting into two
groups of partial dislocations. The total Burgers vector
of the first group is equal to the displacement vector AF,
which is associated with the local minimum along the
line EF on the γ surface (Fig. 2); the total Burgers vec-
tor of the second group of the partial dislocations equals
the displacement vector FB. Either group has the same
number of partial dislocations with the same Burgers
vectors. Thus, partial dislocations in both groups have
the same screw (or edge) components of the Burgers
vector, while the edge (or screw) components of the
Burgers vector are equal in magnitude but opposite in
sign.

SCREW AND EDGE DISLOCATIONS 
IN PRISM PLANE I

Figure 3 shows the energy gain when an edge super-
partial dislocation splits into n partial dislocations as a
result of relaxation. Curve 1 in Fig. 3 corresponds to the
edge dislocation in prism plane I. It is seen that the
energy is higher at n = 2. At n > 3, the energy of the dis-
location configuration after relaxation only slightly
depends on the number of partial dislocations in the ini-
tial configuration. It turns out that the distributions of
the displacement edge components near the superpar-
tial edge dislocation core for n = 2–10 are similar. In
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2110
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fact, the core region 1/6〈 〉  of the dislocation
extends in the prism plane by ≈4.5a for n = 2 and by
≈5.0a for n = 10. Along the direction that is normal to
the prism plane, the core region is distributed in three
neighboring prism planes. The sizes of the core region
suggest that the region is planar. However, the maximal
displacements for the edge dislocation are localized in
type-I prism planes other than the plane where the ini-
tial superdislocation was split. Instead, the displace-
ments were maximal in two neighboring prism planes
of type I' and II. As follows from the distribution of the
displacement edge component near the core of the

1/6〈 〉  edge superpartial dislocation in the prism
plane (both for n = 2 and n = 10), the region where the

relative displacements along the [ ] plane are max-
imal is asymmetric. The asymmetry of the core is likely
to reflect the discreteness of the distribution of the
Burgers vector density, as in the case of spitting into
two partial dislocations in the prism plane.

From the distribution of the displacement screw
component near the core of a screw superpartial dislo-
cation for n = 10, it follows that the core of the

1/6〈 〉  superpartial dislocation is extended along

the prism plane [ ] by a distance of ≈3.2a and
along the basal plane (0001) by ≈1.7a. Although in the
former case, the displacement region is almost half as
much as in the latter, the dislocation core cannot be
viewed as planar, since appreciable displacements are
observed in eight planes that are parallel to the prism
plane with the antiphase boundary. For a screw super-
partial dislocation at n = 2, the displacement distribu-
tion is similar to the case n = 10. In the former case,
however, the displacements are distributed along prism
planes more nonuniformly, as in the case of splitting
into two partial dislocations.

SCREW AND EDGE DISLOCATIONS 
IN PRISM PLANE I'

Curve 2 in Fig. 3 shows the energy gain when a

1/6〈 〉  edge superpartial dislocation splits into n
partial edge dislocations in prism plane I'. The energy
gain is slightly dependent on the number of partial dis-
locations in the initial configuration. The same depen-

dence is observed when a 1/6〈 〉  dislocation splits
into n partial mixed dislocations.

Figure 4 shows the core structure of a 1/6〈 〉
edge dislocation split into (a) two and (b) ten partial dis-
locations (the displacement edge component is shown).
In both cases, the core can be considered as planar. How-
ever, for n = 10 the maximal displacements are localized
only in the prism plane with the antiphase boundary,
while as n decreases, displacements in parallel prism
planes appear (Fig. 4a). For mixed partial dislocations,
the displacement field near the core is similar.
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Figure 4c shows the core structure of a screw super-
dislocation for n = 10 (the displacement screw compo-
nent is shown). The maximal sizes of the core region in

the directions [0001] and [ ] are ≈3a and ≈1.1a,
respectively. Such a core can be considered as planar.
For n = 2, the core is asymmetric, which indicates the
discrete distribution of the Burgers vector density when
the superdislocation splits into two partial dislocations

in prism plane I'. If a 1/6〈 〉 screw dislocation
splits into mixed partial dislocations, both the energy
and the core structure change insignificantly.

SCREW AND EDGE DISLOCATIONS 
IN PRISM PLANE II

Curves 3 and 4 in Fig. 3 show the energy gain when

an edge 1/6〈 〉 superpartial dislocation in prism
plane II splits into n partial edge (curve 3) and mixed
(curve 4) dislocations. The energy gain ∆E decreases
with increasing number n of dislocations in the initial
configuration. The core region of the edge dislocation
for n = 10 is shown in Fig. 5a. The core sizes are nearly

the same for n = 2–10 in both [ ] and [ ]
directions. From the distribution of the displacement
edge component, it follows that the core is planar
although appreciable relative displacements are distrib-
uted in neighboring prism planes of type I' that are par-
allel to the prism plane with the antiphase boundary.

For prism plane II, we calculated the energy and
structure of the core of an edge superpartial dislocation
split into n mixed partial dislocations. Curve 4 in Fig. 3
is the energy gain due to dislocation splitting for this
case. The displacement distribution is similar to that
depicted in Fig. 5a.

From Fig. 3, it follows that for prism plane II the
energy gain due to the splitting of an edge superdislo-
cation is very low. Moreover, the splitting of a screw
superdislocation was found to be energetically unfavor-
able. After the relaxation, the energy of the unsplit dis-
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Fig. 4. Core structure of (a, b) edge and (c) screw 1/6〈 〉 superpartial dislocations in prism plane I'. n = (a) 2 and (b, c) 10.2110
location was found to be less than the energy of the n
partial dislocations. Figure 5b shows the core structure
after the relaxation of the screw dislocation obtained
from the initial configuration of the unsplit superdislo-
cation. For this configuration, the regions where the rel-

ative displacements in the [ ] and [0001] direc-
tions are maximal extend to ≈2.5a and ≈2.4a, respec-
tively. Thus, the core is not planar.

RESULTS AND DISCUSSION

The core structure of dislocations in prism planes
was studied in hcp metals with the potentials for Mg,
Ti, and Be [10], as well as in a model ordered alloy with
a D019 superlattice [11]. The results of computer simu-
lation showed that, in both hcp metals and the D019
superlattice, the core of an a superdislocation has a pla-
nar configuration. In both cases, only one configuration
corresponding to prism plane I' (in terms of this work)
was studied.

Our computer simulation of the core of a 1/6〈 〉
superpartial dislocation bordering the antiphase bound-
ary in the prism plane showed that the energy of the
split configuration of both edge and screw superdislo-
cation in prism plane I' (ζ ≈ 6 mJ/m2) is much lower
than in prism planes I (ζ ≈ 6 mJ/m2) and II (ζ ≈
318 mJ/m2). This relationship remains valid for any n.
Obviously, the lower value of the antiphase boundary

0110

2110
energy and of the energy of the generalized stacking
fault in prism plane I' means a lower dislocation energy.
The analysis of the structure of edge and screw super-
partial dislocations in this plane suggests that the core
is planar. In other words, the region where the displace-
ments are maximal is localized near prism plane I',
which contains the antiphase boundary. This implies
that the Peierls–Nabarro stress, under which the super-
dislocation starts moving, is low and, hence, the super-
dislocation has a high mobility in prism plane I'. A high
mobility of a dislocations explains the experimentally
observed low stress yield in this plane in Ti3Al.

An energy gain upon splitting an edge superpartial
dislocation in planes I and II was found to be lower,
while for a screw superpartial dislocation in prism
plane II, the unsplit configuration turned out to be ener-
getically more favorable. The core structures of these
dislocations differ significantly. Both edge and screw
superpartial dislocations in these prism planes have a
nonplanar core (Fig. 5). The nonplanar core of screw
dislocations was also discovered in fcc metals [12], bcc
metals [9], ordered alloys with a L12 superlattice [12],
and hcp crystals [10]. Splitting of such a type is
observed when the stacking fault energy in the slip
plane of a dislocation is high and, therefore, the repeat
splitting of the dislocation in several planes passing
through the dislocation line becomes energetically
favorable.
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
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Fig. 5. Core structure of (a) edge (n = 10) and (b) unsplit 1/6〈 〉 screw superpartial dislocations in prism plane II.2110
Usually, nonscrew dislocations are planar. In Ti3Al,
edge dislocations were also found to be nonplanar in
prism planes I and II. Such a splitting of an edge dislo-
cation is associated with the features of the γ surface in
adjacent parallel prism planes. For example, in prism
plane I, the antiphase boundary energy is low (ζ ≈
6 mJ/m2); therefore, the splitting of a 1/3〈 〉  super-
dislocation into two superpartial dislocations is ener-
getically favorable. The stacking fault energy in this
plane is very high, specifically, much higher than in
neighboring prism planes I' and II; therefore, a

1/6〈 〉  superpartial dislocation splits not in prism
plane I but in neighboring planes I' and II. For prism
plane II, the reconfiguring of the a dislocation core is
also energetically favorable. In this case, the reconfig-
uring is accompanied by the redistribution of displace-
ments into the nearest parallel plane of type I' that has
a lower energy of the generalized stacking fault.

The analysis of displacements near the core of an
edge superpartial dislocation in prism planes I, I', and II
(Figs. 4, 5a) shows that for any number n of partial dis-
locations, the distribution of the displacements over the
prism planes is nonuniform and can be characterized as
splitting into two partial dislocations. Experimentally,

the splitting of a 1/6〈 〉  superpartial dislocation
into two partial dislocations in prism planes was
observed in [3].

The fact that the core of a superpartial dislocation in
planes I and II is nonplanar implies their low mobility.
Thus, the computer simulation shows that both glissile
and sessile superdislocations with a Burgers vector

1/3〈 〉  can be present in prism planes { }. In
situ experiments [2] confirm the presence of a disloca-
tions with various mobilities in prism planes. Accord-
ing to calculations, mobile dislocations can be identi-
fied as dislocation configurations in prism plane I',
while sessile dislocations can be identified as disloca-
tions in prism planes I and/or II. For nonplanar-core
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dislocations to move, the displacements must be redis-
tributed into the core region, which eventually causes
the jerky motion of dislocations. Therefore, in situ
observations of the jerky motion in experiments indi-
cate the nonplanar structure of the core. The jerky
motion was observed [2] in Ti3Al and several other
materials, e.g., bcc metals, as well as upon the low-tem-
perature motion of a screw dislocation with a Burgers
vector 1/2〈111〉  [9].

Thus, our computer simulation showed that pris-

matic slip is associated with the motion of 1/3〈 〉
superdislocations in prism plane I'. The energy of non-
planar configurations in prism planes I and II is higher;
therefore, the conditions necessary for a glissile dislo-
cation to be reconfigured into a sessile dislocation are
absent. The fact that a glissile a superdislocation in
prism plane I' has the lowest energy and also that its
reconfiguring into a sessile structure is energetically
unfavorable explains the weak temperature dependence
of the yield stress, which is observed in experiments on
prismatic slip in Ti3Al [1].

CONCLUSIONS

In this work, we studied the core structure of a

superdislocation with a Burgers vector 1/3〈 〉 in

prism planes { }.

(1) The computer simulation revealed three core
configurations of a superpartial dislocation in non-
equivalent prism planes (of type I, I', and II).

(2) In prism plane I', the core of both screw and edge
dislocations is planar. The energy of such configura-
tions is the lowest.

(3) In prism planes I and II, the core of both screw
and edge dislocations is nonplanar.
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Abstract—A memory element based on a Si/CaF2 periodic nanostructure is proposed. In this element, infor-
mation is recorded through charge capture by trap states in a CaF2 dielectric. The high and low signal levels
correspond to the current in the maximum and minimum of the negative differential resistance region, which
forms as a result of the resonant tunnel distribution of charge carriers over trap levels in the dielectric. The speed
of such logical elements depends on the rate of activation carrier trapping and the rate of tunnel carrier transfer
from one state to another. It is shown that both Si/CaF2-based logical elements and memory elements proposed
operate at temperatures from 77 to 300 K, have a switching time of 10–12–10–10 s, and are compatible with sil-
icon IC technology. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Multiple-quantum-well periodic nanostructures
have been of interest for several decades, because they
provide a basis for designing devices with negative-dif-
ferential-resistance I–V characteristics [1, 2]. In this
respect, III–V semiconductors have been studied most
extensively and good results have been achieved when
resonant tunnel transfer of charge carriers was used [3].
The low operating temperatures and poor compatibility
of III–V semiconductors with matured silicon IC tech-
nology have stimulated the search for new ways of
designing electron devices with negative differential
resistance (NDR).

The advances in silicon technology have made it
possible to obtain silicon layers of nanometer thickness
and, hence, to produce periodic silicon/insulator nano-
structures. Along with intense luminescence, which is
typical of nanodimensional silicon, these structures
also exhibit hysteretic I–V characteristics, zero-current
shift, and NDR shift at room temperature [4, 5]. Further
investigations have shown that these effects are associ-
ated with charge carrier transfer via discrete trap levels
in the insulator, resulting in charge accumulation in it.

Our previous works [6–8] showed that if the energy
of charge carriers in a potential well coincides with the
energy level of traps in the insulator, the resonant tunnel
transfer of charge carries via this level can be observed.
This effect was corroborated by experimental results
[9–11], which demonstrated the resonant nature of
charge carrier transfer in a number of silicon/insulator
periodic structures in the temperature range 77–300 K.

The aim of this paper is to develop a memory ele-
ment based on Si/CaF2 periodic nanostructures and to
analyze its operation.
1063-7842/03/4801- $24.00 © 20063
THE EQUIVALENT CIRCUIT OF A Si/CaF2 
PERIODIC STRUCTURE

The representation of the basic device structure
through its equivalent circuit suitable for standard cir-
cuit-mechanical simulation programs is an important
step in simulating the characteristics of elements incor-
porated into an IC.

In [6–8], we considered in detail charge carrier
transfer in silicon/insulator periodic nanostructures,
taking into account the elastic tunneling of charge car-
riers through a potential barrier formed by the insulator
and carrier transfer via traps in the insulator. The latter
process involves the activation capture of carriers by
trap states and subsequent carrier transfer from trap to
trap by tunneling through the insulator. The maximum
rate of carrier transfer through the structure is achieved
when the carrier energy in a well coincides with the trap
level, i.e., when resonant tunnel transfer via traps dom-
inates. The identity of trap levels in the insulator
implies the conservation of energy and momentum of
the carriers thus transferred [8]. This results in the
appearance of the NDR region in the I–V curves. An
increase in the trap level energy or a decrease in the
empty trap concentration violates the condition for res-
onant transfer. The simulation of resonant tunnel trans-
fer of charge carriers in Si/CaF2 periodic structures
showed [8] that a decrease in the temperature lowers the
probability of carrier trapping. As a result, the current
in the NDR region decreases, the NDR maximum shifts
toward higher bias voltages, and the elastic tunneling
mechanism of carrier transfer becomes more pro-
nounced. However, up to a temperature of 77 K, the
ratio of the currents in the NDR maximum and mini-
mum changes slightly for trap levels in the insulator
003 MAIK “Nauka/Interperiodica”
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that are located near the conduction band of silicon.
Below 77 K, the NDR decreases and disappears,
because elastic tunneling, which slightly depends on
temperature, starts dominating.

The presence of the NDR region, which is caused by
resonant carrier transfer in silicon/insulator periodic
nanostructures, offers possibilities for designing logic
devices with two stable states in the minimum and max-
imum of the NDR current. In this case, critical param-
eters are the ratio of the currents in the NDR maximum
and minimum and the rate of system switching from
one state to the other as the bias changes. The simula-
tion of resonant tunnel transfer of charge carriers in sil-
icon/insulator periodic structures [8] showed that the
above ratio grows with decreasing number of periods
and is maximal in a two-period Si/CaF2 structure. In
Si/SiO2 structures, this ratio is smaller, because the
lower barrier favors carrier transfer by the competing
mechanism of elastic tunneling.

Charge transfer via traps leads to charge accumula-
tion in the insulator. The amount of the charge accumu-
lated depends on the ratio of the times during which the
traps are filled and emptied [6–8]. The charge is redis-
tributed and polarized by the bias voltage. As a result,
an internal field arises, which reduces the current
through the structure. This field also shifts the zero cur-
rent relative to the zero potential and makes the I–V
characteristic hysteretic [4, 5].

The resonant nature of charge carrier transfer and
the accumulation of the trapped charge, which is
responsible for the capacitive properties of the struc-
ture, allow one to describe a two-period Si/GaF2 struc-
ture with the equivalent circuit shown in Fig. 1. Here,
Vbias is the bias voltage source; I(V) is the voltage-con-
trolled current source, which represents the active area
of the structure; C is the capacitance of the two-period
structure; and R is the load resistance. This device
structure can be viewed as an analogue of resonant-tun-
neling devices based on III–V semiconductors [3].

To simulate the current passing in the structure, we
make the following assumptions. First, carrier transfer
by the elastic tunneling mechanism, which was taken
into account in the model developed in [8], is neglected.
Then, we consider transfer via two traps: one of them,

RVbias C

i

I(V)

+ –

n-Si/CaF2/Si/CaF2/p-Si

Fig. 1. Equivalent circuit of a two-period Si/CaF2 structure.
Et1 = +0.08 eV (relative to the conduction band bot-
tom), is responsible for resonant tunnel transfer, and the
second, Et2 = +0.5 eV, specifies the current through the
structure when the first trap is filled. The voltage drop
across a period of the silicon/insulator structure is V =
Vbias /N, where N is the number of insulating layers.

Based on these assumptions, we derived an expres-
sion for the electron current density in the structure:

(1)

Here, dins is the insulator thickness, a = dins /m is the trap
spacing (m is the number of traps over the charge car-
rier path), and U(n(h)) is the potential barrier height for
electrons (holes),

(2)

(3)

(4)

In (2)–(4), S is the cross section of carrier capture by
a trap; vT is the thermal velocity of charge carriers in a
potential well [8]; n0 and pN are the concentrations of
electrons and holes at the opposite injecting contacts,
respectively; Nt is the trap density in the insulator; kB is
the Boltzmann constant; T is temperature; q is the elec-
tron charge; and pm is the probability that m traps lie
along the charge carrier path in the insulator [12, 13].
An equation for the hole current density is similar to
Eq. (1).

The I–V characteristic of the two-period Si/CaF2
structure was carried out using the parameters listed in
the table. The simulation of the current source I(V) in
the equivalent circuit (Fig. 1) is in good agreement with
the carrier transfer simulation according to the kinetic
model [8] for the steady-state regime (Fig. 2).

The charge and discharge times of the capacitance C
are those parameters of the equivalent circuit governing
the transient process. These times are responsible for
the speed of the device when a signal is applied to the
input. As such signals for digital circuits, we used ide-
alized rectangular pulses (with zero rise and fall times)
with duration t1 and spacing t2. Then, the current
through capacitance C as a function of t1(2) is given by

(5)

Jn V( )/Jn0 U n( ) Et1– Va/d ins–( ) 0.5m–
=

× E1
1

W V( ) 1–
E1+

------------------------------ 1
1 W V( )E1+
-----------------------------

+ E2
1
E1
-----

W V( ) 1–
E1+

W V( ) 1–
E2+

------------------------------
U n( ) Et2– Va/d ins–
U n( ) Et1– Va/d ins–
---------------------------------------------

0.5m–

.

E1 2( ) qEt1 2( )/kBT–( ),exp=

W V( ) qV
kBT
--------- 

  ,exp=

J0 Jn0 J p0+ Sv TN tqd ins pm n0 pN+( ).= =

iC t( ) VplC t/τ–( ) t.dexp

0

t

∫=
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Here, τ is the time constant characterizing the charge
(discharge) of traps in the insulator and t = t1 (t2) when
capacitance C is charged (discharged).

In the frame of the model for charge carrier transfer
through a silicon/insulator periodic structure [8], the
charge time of capacitance C depends on the rate of
activation carrier trapping in the insulator, while the
discharge time is defined by the rate of resonant tunnel
transfer of charge carriers via traps. Since the time con-
stant τ was determined from the rate of carrier trapping
and transfer (via traps) (Eq. (4)), it corresponds to the
total resistance of the structure. The charge and dis-
charge of capacitance C in a two-period Si/CaF2 struc-
ture were simulated based on the above assumptions
[8]. In the charge regime, the pulse amplitude was
determined from the current in the NDR peak and was
taken to be equal to 0.5 V (Fig. 3). The results of simu-
lation of transients in the structure with two trap levels
(Et1 = 0.08 eV and Et2 = 0.05 eV above the conduction
band bottom in silicon) are shown in Fig. 3. The time of
charge accumulation in capacitance C, which depends
on the trap energy in the insulator relative to the quan-
tum well bottom, is 10–10 and 10–8 s for the first and sec-
ond levels, respectively. The time of capacitance dis-
charge and charge is about 10–10 s for both traps. The
fact that traps with different energy levels are dis-
charged for the same time indicates that the rate of car-
rier tunneling from trap to trap depends on the potential
barrier width only slightly when the barrier width is
comparable to the material lattice constant [8].

As the reactance of the circuit increases when
capacitance C is charged, the current through the circuit
decreases. As follows from the results of simulation,
the current decreases nearly 20-fold for a pulsed signal
duration of 10–10 s, which causes the ratio of the cur-

–0.5 0 0.5 Vbias, V

1
2

10–5

10–4

10–3

10–2

10–1
J(V), A/m2

Fig. 2. I–V characteristic of a two-period Si/CaF2 structure:
(1) calculation by the model [8] and (2) simulation using the
equivalent circuit.
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rents in the NDR maximum and minimum to diminish.
As the signal duration increases, the current saturates
because the first trap in the insulator, Et1 = 0.08 eV, is
filled.

Thus, a two-period Si/CaF2 nanostructure with the
asymmetric I–V characteristic (Fig. 2), which is defined
by external bias polarity, can form the basis for logic
devices where two stable states of the current in the
NDR maximum and minimum are used as the high and
low signal levels. The equivalent circuit of the two-
period Si/CaF2 structure (Fig. 1) is suitable for the cir-
cuit simulation of this structure as a part of an IC.

0 0.2

1

2

10–4

10–3

10–2

10–1

Q/Qmax

0.4 0.6
t1(2) × 10–10, s

0.8 1.0

3

100

Fig. 3. Filling rate and discharge of trap states vs. duration
of the pulse Vpl = 0.5 V. Qmax is the maximum charge den-
sity that can be trapped by the structure. (1, 2) Charge of
traps with the energies Et1 = 0.08 eV and Et2 = 0.5 eV,
respectively, and (3) discharge of the traps.

Parameters used for the simulation of the equivalent circuit
of a two-period Si/CaF2 structure

Parameter Value

Thickness of insulating and silicon 
layers

1.4 nm

Trap density in insulator 1024 m–3

Electron concentration n0 at electron 
contact

1025 m–3

Hole concentration pN at hole contact 1025 m–3

 Cross section of carrier capture by trap 
state

10–23 m2

Barrier height for electrons and holes 3.3, 7.6 eV [14]

Number of traps lying along the carrier 
path in insulator

2

Position of the first and second trap 
levels in insulator relative to potential 
well bottom

0.08, 0.5 eV [5, 9]

Temperature 300 K
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A MEMORY CELL USING THE CHARGE 
PROPERTIES OF Si/CaF2 PERIODIC 

STRUCTURES

In this paper, we describe a dynamic storage cell
based on the charge properties of Si/CaF2 structures. In
such a cell, the charge of insulating layers is described
by capacitance C and serves as a data bit. The presence
of a charge in the layers corresponds to binary one,
while the absence of a charge means binary zero. It is
proposed to perform logical operations and store infor-
mation in a single structure. This, however, requires
certain conditions to be met for the reliable operation of
the dynamic memory cell. In particular, the charge den-
sity in the cell should be increased and the charge accu-
mulated in switching elements should be reduced.
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20

60
∆V, V
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Fig. 4. Ratio of the currents in the NDR maximum and min-
imum and the potential ∆V as a function of the insulator
thickness under the assumption that the external potential
drop across insulating layers is the same.
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Fig. 5. Equivalent circuit of the memory cell.
The charge accumulated in an insulating layer
depends on the density of traps, which are responsible
for the maximum possible density Qmax of the charge
trapped in the layer. Therefore, for the entire structure,
this density is defined as NQmax provided that the poten-
tial drop across an insulating layer remains unchanged.
As the number of structure periods increases, so does
the density of the stored charge. However, this gener-
ates a need to increase the bias applied to the structure.
One way of removing this drawback is the parallel con-
nection of two-period Si/CaF2 structures. In this case,
the power consumption of the memory cell does not
increase.

For carrier transfer via traps in the insulator, the
polarization of the trapped charge by an applied poten-
tial produces an internal field in the structure. With
decreasing potential, this field governs transfer pro-
cesses. Data recording into our memory cell utilizes
this feature. The potential due to the internal field in the
structure is expressed as

(6)

Here, we and wh are the thicknesses of insulating layers
where trapped electrons and holes are accumulated;
εins is the relative permittivity of the insulator; and Ne

and Nh are the concentrations of electrons and holes,
respectively, trapped in the insulator. These concentra-
tions, as well as we and wh, saturate when the carrier
energy in a well exceeds the trap level in the insulator.
The value of ∆V is maximum when trap states are partly
filled, i.e., when we = dins /2 (Eq. (6)).

As follows from the experimental results, the value
of ∆V increases with increasing thickness of the insulat-
ing layer [4]. On the other hand, a decrease in the insu-
lator thickness accelerates the resonant tunnel transfer
of charge carriers via traps and increases the ratio of the
currents Jmax/Jmin in the NDR maximum and minimum
[8]. The simulated dependences of Jmax/Jmin and poten-
tial drop ∆V (Eq. (6)) on the insulator thickness are
shown in Fig. 4. The results were obtained for a two-
period Si/CaF2 structure with Eqs. (1)–(4) and (6) and
the model [8].

Based on the results of simulation, we suggest the
equivalent circuit of a memory cell based on a two-
period resonant tunnel Si/CaF2 structure (Fig. 5). The
dependences of Jmax/Jmin and ∆V on the insulator thick-
ness (Fig. 4) allow us to choose the thicknesses of insu-
lating layers in the elements that provide data storage
and perform logical operations. The thickness of the
insulating layer in switching diodes D1–D4 is taken to

be equal to 0.5–1.0 nm; in elements  providing
data storage, it is 2 nm. The value of k, which specifies

the number of diodes  necessary to record binary
one, is three or four for the structure parameters
selected. Note that the area of these diodes is not a crit-

∆V  = 
Q
C
---- = 
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εins
------- Newe d ins we–( ) Nhwh d ins wh–( )+[ ] .

Dk
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ical parameter and may be as small as desired (down to
several square nanometers), because the potential ∆V
depends only on the insulating layer thickness.

Under the recording conditions (Fig. 5), a pulse Vpl
with an amplitude of 1 V is applied to the address line
(AL), while opposite pulses of about 1 and 0.2 V (cor-
responding to binary one and zero) are applied to the bit
lines (BL1, 0). When the signal level on the bit line BL1
corresponds to binary one, the switching diode D4 is off

and the charge is accumulated in ; i.e., binary one

is recorded. At the same time, the diode D3 is on, 
remains uncharged, and binary zero is recorded. When
information is read out from the memory cell, a signal
of 0.2 V is applied to the address line and the switching
diode D4 is “on” in the presence of a potential drop

∆V = 0.6–0.8 V across ; hence, binary one is
applied to the bit line BL1 and binary zero, to BL0
(Fig. 5).

The simulation shows (Fig. 3) that the transition
(switching) time in two-period Si/CaF2 structures is
typically 10–12–10–10 s. This time can be reduced by
partially charging and discharging capacitance C. Such
an approach also allows one to read out recorded infor-
mation several times.

The high switching speed and nanometer sizes of
the memory cell make it promising for very-high-speed
IC technology.

CONCLUSION

Logical elements based on Si/CaF2 periodic struc-
tures where the resonant tunnel transfer of charge carri-
ers is accomplished via trap levels in the insulator are
suggested. The equivalent circuit for this structure is
developed, and the I–V characteristic of, and transients
in, the structure are simulated. The equivalent circuit
comprises a voltage-controlled current source and a
capacitor. The current source is used to describe the res-
onant tunnel transfer of charge carriers via traps, while
the capacitor takes into account charge accumulation in
the insulator. The charge and discharge times of the
capacitor are shown to lie in the range 10–12–10–10 s.

In the proposed equivalent circuit of the memory
cell, information is stored by means of the capacitance

Dk
S2

Dk
S1

Dk
S2
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
of resonant tunnel Si/CaF2 structures connected in par-
allel. Their number is found by calculating the internal
field produced by the charge trapped in the insulating
layer in each of the structures.

The advantages of the memory element are the oper-
ating temperature range 77–300 K, small switching
times (10–12–10–10 s), and compatibility with silicon IC
technology.
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Abstract—Thin transparent (for transmission electron microscopy, TEM) self-supported Si(001) films are irra-
diated on the (110) end face by low-energy (E = 17 keV) He+ ions at doses ranging from 5 × 1016 to 4.5 ×
1017 cm–2 at room temperature. The TEM study of the irradiated Si films along the ion range shows that an a-
Si layer forms in the most heavily damaged region and helium pores (bubbles) with a density of up to 3 ×
1017 cm–3 and 2–5 nm in diameter nucleate and grow across the entire width of this layer. The growth of nan-
opores in the a-Si layer is accompanied by their linear ordering into chains oriented along the ion tracks. The
absence of pores in the region that remains crystalline and has the maximal concentration of implanted helium
is explained by the desorption of helium atoms from the thin film during the irradiation. After annealing at
600°C, the volume of immobile pores in the remaining a-Si layer increases owing to the capture of helium atoms
from the amorphous matrix. Solid solution is shown to be the prevalent state of the helium implanted into the
amorphous silicon. Linear features with a diameter close to 1 nm and density of about 107 cm–1 discovered in the
helium-doped a-Si layer are identified as low-energy He+ ion tracks. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

In recent years, the behavior of helium in semicon-
ductors has been extensively studied for at least two
reasons. First, helium pores are extremely efficient for
gettering undesirable impurities, especially transition
metals [1]. Second, the method of gas cleavage [2, 3] is
used in the production of “silicon-on-insulator” struc-
tures. Moreover, there is the prospect of growing silicon
crystals with an extremely high density (about 1018 cm–3)
and narrow size distribution of nanopores [4]. In this
case, the resulting 3- to 5-nm-spacing between the pore
walls provides luminescence from silicon nanocrystals
[5]. This quantum-size phenomenon is rather attractive,
since it gives a key to the design of active optoelec-
tronic devices on silicon, which is the basic material of
present-day electronics.

However, the helium ion doses required for the for-
mation of porous structures in silicon are often above
1017 cm–2, which causes appreciable radiation-induced
damage. Under certain conditions, severe damage may
lead to amorphization [6, 7].

Although the possibility of helium pores arising in
amorphous silicon was discovered in [8], the behavior
of helium atoms implanted into a-Si has been poorly
understood. However, by analogy with crystalline sili-
con (c-Si), one may expect that helium atoms implanted
into a-Si agglomerate into bubbles and have an anoma-
lously high solubility as in c-Si [9, 10]. In our opinion,
the essential difference in the behavior of helium in
1063-7842/03/4801- $24.00 © 20068
amorphous and crystalline Si must be in the migration
activity of helium atoms.

In particular, it was shown by computer simulation
[11, 12] that helium atoms may be stabilized in tetrahe-
dral interstices of the Si lattice. The repulsion force act-
ing on the interstitial helium from single vacancies is
sufficient to overcome the barrier for diffusion activa-
tion (about 0.8 eV) [12]. This mechanism of diffusion
activation is likely to be impossible in amorphous sili-
con; therefore, a much lower mobility of helium dis-
solved in a-Si should be expected. In this context, the
formation of helium porosity in amorphous silicon is of
particular interest.

In this study, we consider the formation and thermal
stabilization of helium pores in amorphous layers pro-
duced in thin crystalline silicon specimens by low-
energy helium ion irradiation.

EXPERIMENTAL

The TEM study of structure modifications in silicon
along the path of bombarding helium ions was per-
formed by a specially elaborated longitudinal-section
technique [13, 14]. In contrast to the widely used trans-
verse-section method (XTEM), which implies succes-
sive stages of irradiation, object preparation for XTEM,
and TEM study, our technique is based on a radically
different sequence of stages, where the preparation of
an object by the longitudinal-section method precedes
irradiation. Note that, in our method, TEM study imme-
diately follows irradiation.
003 MAIK “Nauka/Interperiodica”
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Test specimens prepared by the longitudinal-section
method were thin self-supported Si(001) plates with the
end faces parallel to the (110) crystallographic plane
and a thickness t falling into the range of transparency
for electrons in a transmission electron microscope;
i.e., t was less than 350 nm (Fig. 1). The specimens
were prepared by the electrochemical jet thinning of
4 × 4 × 0.35-mm Si(001) chips with the subsequent for-
mation of the (110) end face. To control the thickness
of the specimen, we measured interference fringes of
equal thickness in an optical microscope. The surface
irradiated was the (110) end face of the self-supported
thin Si film. The upper and lower (001) surfaces of the
specimen remained intact owing to the strict collima-
tion of the beam. The scheme of ion irradiation and
TEM study by the longitudinal-section method is
shown in Fig. 1.

It is reasonable to assume that the ions striking the
surface of the specimen do not all stop in its bulk: many
of them will scatter out of the specimen through its lat-
eral surfaces. This circumstance should be taken into
account when determining the doping profile and the
profile of radiation-induced damage from the ion range
in the thin specimen. To do this, we used the TRIM-98
program supplemented by a specially devised program
that takes into consideration the elastic scattering of
ions and recoil atoms out of a thin film of a given thick-
ness.

Thin Si specimens were exposed to a mass-sepa-
rated beam of He+ ions with an energy E = 17 keV,
intensity of 2 × 1014 cm–2 s–1, and doses ranging from
1016 to 4.5 × 1017 cm–2. The angle between the ion beam
and the end face of the specimen bombarded was 90°,
65°, 45°, and 30°. The maximal temperature of the Si
surface during the irradiation was estimated as 40°C.

The samples were annealed by rapidly heating in a
dry nitrogen flow to 600°C at a rate of 10°C s–1 with
subsequent immediate cooling (without holding). This
heating rate was chosen with regard to the rate of ther-
mal desorption of helium from silicon [9] in order that
the helium implanted be completely left in the speci-
men.

RESULTS AND DISCUSSION
According to the TEM results, the structure modifi-

cations along the He+ ion tracks in the thin crystalline
silicon specimen that is end-face irradiated by a dose of
less than 5 × 1016 cm–2 are mainly clusters of radiation-
induced defects, including dislocation loops. The distri-
bution of the clusters along the ion track was found to
be nonuniform, peaking at a depth of about 170 nm.

As the irradiation dose increases to 1017 cm–2, the
damage in the crystal grows, causing the amorphization
of the region with the highest concentration of the clus-
ters (Fig. 2a). An amorphous silicon layer produced at
this stage contains pores of diameter 2 nm and concen-
tration 2 × 1017 cm–3 (Fig. 2b). It is worth noting that the
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
pores are linearly ordered along the direction of ion
motion rather than being randomly distributed in the a-
Si layer.

With a further increase in the radiation dose to 3 ×
1017 cm–2, the amorphous layer expands and embraces
the surface bombarded. For all the doses used in the
experiment, new pores nucleate in the amorphized Si
layer as it widens, remaining linearly ordered along the
ion beam. Both the diameter and concentration of the
pores grow with dose; no pores appear outside the a-Si
region.

Figure 3a shows a typical pattern of nanopores in the
amorphous silicon that are induced in the thin crystal
exposed to a dose of 4.5 × 1017 cm–2. The resulting a-Si
layer has a width of about 260 nm, which is comparable

Ions

e–

t

α

Si(001)

(110)

Fig. 1. Thin self-supported Si film irradiated by the longitu-
dinal-section technique (e– is the direction of the electron
beam in a TEM).

100 nm 50 nm

(a) (b)

Bombarded surface

Fig. 2. Amorphous layer in the thin Si film irradiated by He+

ions (E = 17 keV) with a dose of 1017 cm–2. (a) Dark-field
TEM image and (b) nanopores in the a-Si layer (bright
field).
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to the average projective range of He+ ions in silicon
(〈Rp〉 ≈ 230 nm at E = 17 keV). The nanopores are
observed throughout the a-Si layer, but their distribu-
tion across the layer is nonuniform.

The pores formed at the beginning and end of the
ion range (in the a-Si layer) are of roughly equal aver-
age size and concentration: 3 nm and 3 × 1017 cm–3,
respectively. It is clearly seen that the pores are aligned
to produce chains running perpendicularly to the sur-
face bombarded. The nanopores in the chains are dis-
tributed fairly uniformly with an average spacing of
about 2 nm. The density of the chains in Fig. 3 is close
to 2 × 106 cm–1.

In the part of the ion range corresponding to the ini-
tial formation of the amorphous layer (at a depth of
about 170 nm), nanopores with a maximal size of about
5 nm and a relative volume as high as 1.6% arise
(Fig. 3b). Because of the increased pore volume in this
region, their alignment is partly disturbed. It should be
noted that the region where the size and relative volume
of the pores are maximal does not coincide with that
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Fig. 3. (a) Ordered helium pores in the amorphous layer
after the irradiation of the 150-nm-thick Si film by a dose of
4.5 × 1017 cm–2, (b) the variation of the relative volume
∆V/V and diameter d of pores along the projective range Rp
of He+ ions in the a-Si layer (on the scale of the micro-
graph), and (c) the calculated helium concentration C (1) in
the thin Si film (with t = 150 nm) that is end-face irradiated
by a dose of 4.5 × 1017 cm–2 and (2) in nanopores.
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2

where the peak concentration of the implanted helium
is expected (Fig. 3c).

In order to elucidate the nature of the pores
observed, the specimen irradiated by a dose of 4.5 ×
1017 cm–2 was thermally annealed at 600°C with a heat-
ing rate of 15°C s–1.

After the post-irradiation annealing, the amorphous
Si layer still persists but its width decreases to 180 nm
because of the partial epitaxial recrystallization of the
layer (Fig. 4a). In the residual amorphous layer, the
pores grow, with their size varying with depth. The
average pore diameter ranges from 3 nm at the surface
to 15 nm near the amorphous layer, whereas their con-
centration changes only slightly within this region.
Consequently, the drastic increase in the pore volume
(from 0.5 to 12%) with depth is observed (Fig. 4b). In
the crystalline region, however, no pores appear within
the He+ ion range after the annealing.

It is well known that the volume of vacancy pores
decreases or at least remains unchanged after anneal-
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Fig. 4. (a) Pores in the amorphous silicon layer shown in
Fig. 3 after annealing at 600°C (the dashed arrow shows the
displacement of the front of a-Si epitaxial recrystallization),
(b) depth profile of the relative pore volume (on the scale of
the micrograph), and (c) comparison of (1) the depth profile
of the implanted helium with (2) the calculated concentra-
tion of the helium filling the pores.
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Fig. 5. Alignment of helium bubbles in the a-Si layer at different angles of incidence of the ion beam: (a) 65°, (b) 45°, and (c) 30°
(the arrows indicate the direction of the incident ion beam). (d) Tracks of 17-keV He+ ions in the helium-doped amorphous Si.
ing. In contrast, gas-filled pores (bubbles) grow and so
does their volume. Thus, the observed increase in the
total volume of the nanopores after the annealing indi-
cates that they are filled with the gas. The fact that the
pore concentration does not change implies that the
pores do not migrate during the annealing; hence, the
immobile pores grow by absorbing thermally generated
vacancies, helium atoms, or both.

However, the nonuniform pore size distribution
across the depth and, specifically, the constant pore size
and concentration near the surface bombarded excludes
the participation of thermally induced vacancies in this
process. This means that the pores grow only by captur-
ing He atoms from the amorphous matrix, clearly on
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
the condition that the helium is nonuniformly distrib-
uted across the depth.

In order to evaluate the amount of helium atoms fill-
ing the pores after irradiation (Fig. 3c), we used the
empirical isotherm for superdense helium at room tem-
perature [16] and also the condition for the mechanical
stability of a helium pore under plastic deformation of
the matrix: P = (2γ + Gb)/r [15], where P is the pressure
inside the pore, γ = 1400 dyn/cm is the surface free
energy, G = 40.5 GPa is the shear modulus, b = 0.35 nm
is the length of the Burgers vector of edge dislocations
in Si, and r is the pore radius. The concentration of
helium in nanopores thus estimated is essentially lower
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than the calculated concentration of helium in the spec-
imen after the implantation.

A similar estimation of the amount of helium in
pores after the annealing (Fig. 4c) using the equilibrium
condition P = 2γ/r for pores of diameter larger than
10 nm showed that, though the amount of helium in the
pores increased in the heavily doped region of the
amorphous layer, it did not reach the predicted concen-
tration of the implanted helium. It seems likely that, at
the initial stage of the irradiation, when the silicon is
still crystalline, helium atoms may be desorbed from
the thin specimen.

The above considerations suggest that, during the
irradiation, the helium in the amorphous Si may be
present both inside nanobubbles and as a solute.

In our opinion, the lack of pores in the thin crystal-
line silicon may be attributed to the desorption of the
helium during the irradiation, for example, through the
mechanism of radiation-induced migration [12]. Since
this mechanism in amorphous silicon fails, the helium
implanted into the a-Si layer is totally accumulated.

In order to check that the chains of helium bubbles
are aligned with the ion beam direction, we varied the
angle between the beam and the surface to be irradiated
(α = 65°, 45°, and 30°). The TEM images (Fig. 5a–5c)
confirm that the ordering of the bubbles does coincide
with the ion beam direction and, consequently, with the
preferential direction of ion motion in the specimen.
This supports the formation of helium bubbles along
the ion tracks.

Along with the chains of nanopores, the thorough
TEM study also revealed extended linear defects of an
other type. These defects with a diameter of about 1 nm
and a linear density close to 107 cm–1 were also oriented
in the direction of the He+ ion beam (Fig. 5d). The addi-
tional ion thinning of the specimen showed that they
originate in the bulk. The bright (absorption) contrast
from these defects suggests that the atomic density in
them is lower than in the surrounding amorphous
matrix. Taken together, these facts led us to conclude
that these linear defects formed along the He+ ion tracks
and are cylindrical channels that are presumably filled
with helium atoms.

Mechanisms underlying both the formation of the
tracklike features with an “ultrasmall” energy release in
the track of a slowing-down He+ ion (less than
60 eV/nm) and the alignment of nanobubbles as chains
still remain to be clarified. However, one may assume
that the ionization-induced breaking of covalent bonds
along the track of a charged particle may cause the
decomposition of the metastable solid solution of
helium in a-Si with a chain of gas bubbles arising along
the track.
CONCLUSIONS

Three important and unexpected findings are worth
noting.

(1) Helium nanopores in thin Si crystals form solely
in the amorphous layer. This is because the mobility of
helium atoms in amorphous silicon is considerably
lower than in the crystalline material under irradiation.

(2) Helium nanopores are aligned with the direction
of ion motion throughout the radiation-induced amor-
phous layer.

(3) Linear structure features with an average diame-
ter of 1 nm and a concentration close to 107 cm–1 are
observed along the He+ ion direction in helium-satu-
rated amorphous silicon. They are identified as the
tracks of low-energy helium ions.
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Abstract—A diffusion equation for a binary mixture and spinodal decomposition in the case of phase separa-
tion are considered. It is shown that, if the binding force between polymer chain links is weak, the diffusion
equation for a binary mixture allows for the reduction to the Burgers equation with “viscosity”; that is, the coex-
istence of rarefaction waves and shock density waves is a possibility. The effect of strong bonds between poly-
mer chain links on the spinodal decomposition dynamics is studied. It is demonstrated that strong bonding may
cause a multiflux wave system with alternate stability to arise when the viscosity varies. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Early mathematical models in the physics of poly-
mers were constructed for perfect multidimensional
chains (see, e.g., [1]). These chains were analyzed in
the self-consistent field approximation, i.e., without
considering the interaction constant, which is due to
monomer link bonding and/or adhesion between mac-
romolecules (although this constant was considered
phenomenologically). The aforesaid refers to the
Flory–Huggins model [1]. If strong correlation in poly-
mer systems results in small fluctuations of key param-
eters, one can use the medium field theory, i.e., the
Flory–Huggins model.

In a number of papers (see, e.g., [2, 3]), the exist-
ence of the intermediate spatial scale a ! D ! L (where
a is the spacing between adjacent monomer links, D =

a is the diameter of a perfect polymer chain, L is the
characteristic scale of density variation, and N is the
degree of polymerization) has been established. It has
been shown [2] that such a scale hierarchy makes it pos-
sible to perform, first, averaging on the microscale a <
R1 < D and then pass on to equations averaged on the
microscale D < R2 < L (this is valid for continuous
description, since models on a discrete grid [4] are also
available). With such a procedure, we may arrive at the
diffusion equation for a binary mixture [5].

Below we will show that the diffusion equation
allows for solutions of two types: rarefaction waves and
shock (compression) waves. It turns out that this equa-
tion can be reduced to the Burgers equation with “vis-
cosity,” where the parameter ε ∝  χ – χc depending on
the interaction constant in the vicinity of the spinodal
decomposition point χc(Tc) is responsible for viscosity.
Such a consideration is valid if the binding force
between polymer chain links is weak (see below). For

N

1063-7842/03/4801- $24.00 © 20007
the Burgers equation, conditions are set such that vis-
cosity can be neglected in the region of shock wave
“steeping,” i.e., in the region where the solution
becomes many-valued and turns into a rarefaction wave
(Figs. 1, 2). We will demonstrate that if the so-called
entropy conditions (convexities of the spinodal decom-
position curve) or Hugoniot conditions, which are well
known in fluid dynamics, are met in this region, where
fluctuations play a dominant role, fluctuations at the
rarefaction front can be neglected and one can apply the
medium field approximation. If the entropy conditions
are not satisfied, the applicability of the Flory–Huggins
approximation is open to question.

In what follows, we consider the classical problem
for the Burgers equation. In such a statement, at t = 0
the mixture is separated into two phases, ϕ1 and ϕ2, at
the critical temperature Tc, and the velocity of switch-
ing from the equilibrium state ϕ1 to the equilibrium
state ϕ2 (the switching wave velocity) in the vicinity of
the spinodal is found from formal results (see, e.g. [6–8]).
It should be noted that the reduction of the starting

x

t

Fig. 1. Undisturbed density values (shaded region) corre-
sponding to a rarefaction wave and a density wave propa-
gating with a finite velocity that is generated by initial phase
separation due to spinodal decomposition.
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equation to the Burgers equation is justified statisti-
cally. From [6, 7] it follows that if the structure evolu-
tion of the density of a binary polymer mixture is viewed
as a random process of the “Poisson clock” type [6] on a
grid with a step a such that transitions i  i + 1 are
allowed with a probability p and transitions i  i – 1
are allowed with a probability 1 – p, the mathematical
expectation 〈ni 〉  = ci = c(ri , t) [4] satisfies the diffusion
equation if p = 1/2 (which is proved in [6, 7]) and satis-
fies the Burgers equation if p ≠ 1/2. This is the thermo-
dynamic substantiation of the statistical problem of
averaging. In this sense, the well-known Hugoniot phe-
nomenological condition (see below) is exact.

Finally, if the binding force K(ϕ) between polymer
chain links is proportional to F(ϕ), K(ϕ) ∝  ∂F(ϕ)/∂ϕ,
where F(ϕ) is the system free energy, one can consider,
instead of the Burgers equation without viscosity, the
Burgers equation where the quantity ∝Λ (ϕ)∂2F/∂ϕ2

plays the role of viscosity (here, Λ(ϕ) is the diffusion
coefficient). This equation has solutions of shock wave
or rarefaction wave type (Figs. 1, 2).

The stability of solutions to the Burgers equations
was studied in [9–14]. With strong bonding between
chain links taken into account, the equation for a binary
mixture cannot be reduced to the Burgers equation in
the general case. However, using the numerical results
obtained in [8], we show that viscosity in a polymer
chain competes with the binding force between its
links. This may result in intriguing effects, such as the
existence of multiflux shock waves and rarefaction
waves. Nevertheless, there exists a situation when the
binding force is such that shock waves also occur (at a
certain viscosity) from the general equation for a binary
mixture provided that special conditions like g(ε, K) =
const are met, where the parameter K defines the bind-
ing force in the vicinity of the metastable state ϕ–(Tc),
which is the point of spinodal decomposition.

REDUCTION TO AN EQUATION 
WITH LOW VISCOSITY

Consider the set of equations for a binary mixture [5]

∂ϕ
∂t
------ ∇ I ϕ( )+ 0, I

Λ ϕ( )
kBT

------------∇ δF ϕ( )
δϕ

---------------.–= =

ϕ

ξ∆ξ

ϕ = ϕ1

ϕ = ϕ2

Fig. 2. Limit solution with viscosity where the interval ∆ξ
is given by formula (8).
This set can be conveniently written as

As was shown in [2], the following relationship
takes place:

(1)

where µ(ϕ) is the chemical potential and K(ϕ) is pro-
portional to the adhesive force between chain links [5].

If (a/L)2 ! 1, we can put ∇ (δF/δϕ) = ∇µ (ϕ) and
rearrange the diffusion equation to the form

where µ(ϕ) . ∂F(ϕ)/∂ϕ; that is, it is sufficient to con-
sider the equation

(2)

First let us assume that the sample is homogeneous
and has one unstable phase of density ϕ– [1, Fig. 4.2].
We will concentrate on the spinodal curve in the plane
(χ, ϕ). This part of the phase diagram covers those
states of the system where the local concentration ϕ
near the point ϕ–(Tc) undergoes severe fluctuations
according to the formula ∂2F(ϕ)/∂ϕ2 = TS–1(q = 0, ϕ)
[1, p. 119]. Here, S–1(q, ϕ) is the scattered power with a
given wavevector q or, more exactly, the Fourier trans-
form of the two-point density–density correlation func-
tion. It is known that S–1(q, t) ∝  aϕ(1 – ϕ)[χc(ϕ) – χ]–1/2

+ o(q), where χc(ϕ) corresponds to the spinodal and
o(q)  0 for q  0. Let ε(0, χ, χc) = TS–1(0). Then,
Eq. (2) can be written in the dimensionless variables as

(2')

where

Recall that the free energy is given by

Here, kB is the Boltzmann constant, T is temperature
(hereafter, T = Tc, where Tc is the critical temperature at
which the spinodal decomposition takes place under
cooling), and K(ϕ) = (36ϕ)–1 + χ(ϕ, Tc). This formula,
derived by de Gennes, is discussed in [15] (from the

kBT
∂ϕ
∂t
------ ∂Λ ϕ( )

∂ϕ
----------------∇ δF ϕ( )

δϕ
--------------- Λ ϕ( )∇ 2δF ϕ( )

δϕ
---------------.+=

∇ δF
δϕ
------ 

  ∇ µ ϕ( ) 2a2K ϕ( )∇ 2ϕ–[=

– a2K̇ϕ ϕ( ) ∇ϕ( )2 ] ,

kBT
∂ϕ
∂t
------ Λ̇ϕ ϕ( )µ̇ϕ ϕ( )∂ϕ

∂x
------ Λ ϕ( )µ̇ϕ ϕ( )∇ 2ϕ ,+=

kBT
∂ϕ
∂t
------ Λ̇ϕ ϕ( )µ̇ϕ ϕ( )∂ϕ

∂x
------ Λ ϕ( )∂

2F ϕ( )
∂ϕ2

------------------∂2ϕ
∂x2
---------.+=

∂ϕ
∂t
------ G ϕ( )∂ϕ

∂x
------+ εΛ ϕ( )∂

2ϕ
∂x2
---------,=

G ϕ T,( ) Λ̇ϕ ϕ( )
kBT

---------------µ̇ϕ ϕ( ).–=

F ϕ( )
kBT

------------ F0* ϕ( ) a2K ϕ( ) ∇ϕ( )2, F0*
F0

kBT
---------= .+=
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standpoint of the validity of using the hydrodynamic
approximation in [5]).

In fact, in a dilute solution, the diffusion density flux
can be described by the expression  = –Lii(T)∇ ,
where the temperature is assumed to be constant.

Next, it should be noted that  = (T) + kBTln  and

(–∇ ) ≡ fi, where  is a random diffusion flux with
regard for the number of molecules in sites i [16,
p. 315]. Averaging over all lattice sites and assuming
that the binding force between links in a polymer chain
(the first term in the expression for K(ϕ)) equals 〈 fi 〉 ,
one comes to the de Gennes formula. In the general
case, j ∝  ∇ 2µ ∝  ∂3F(ϕ)/∂ϕ3; hence, the binding force
includes irregular fluctuations appearing in the three-
particle interaction [1, p. 77]. Geometrically, this
means taking into account the curvature of the spinodal
curve when the positive-curvature function F(ϕ)
(entropy effects dominate, making mixing favorable)
changes to the negative-curvature function in passing
through the critical value χc [1, p. 113]. This observa-
tion will be used by us later; for the moment, we
assume that the inequalities

are fulfilled in the vicinity of the metastable point ϕ– of
phase separation. Then, from relationship (1), it follows
that within any (finite) time interval, the decomposition
dynamics along the spinodal is defined by solutions to
Eq. (2'), where ε(χ, χc) is a small parameter that may
change sign at χ = χc and characterizes density fluctua-
tions in the vicinity of the spinodal decomposition
curve (see below).

Recall that under our conditions, the correlation
function can be calculated by using the random phase
approximation in terms of the Debye function gD(N, q),
which describes scattering by a perfect chain of N
monomers. We can write

and since qD(N, q = 0) = N at q = 0, this relationship
turns into the equality

Hence, at NA, NB @ 1, we can assume that χ ! 1.
Phase separation becomes possible if χ > χc. Usually, it
is assumed that χc = 2/N [1, p. 114]; hence, we can put
χc = 0 on the spinodal.

Consider the separation of the system into two
phases, ϕ1 and ϕ2, with the statistical weights p1 and p2;
that is, ϕ = p1ϕ1 + p2ϕ2, p1 + p2 = 1. Let solutions to

jDi
µi

µi µi
0 ρi

jDi
jDi

a
L
--- 

 
2

K ϕ–( )  ! 1 and
a
L
--- 

 
2

K̇ϕ ϕ–( )  ! 1

S 1– q( ) 1
ϕgD NA q,( )
---------------------------- 1

1 ϕ–( )gD NB q,( )
----------------------------------------- 2χ ,–+=

0
∂2

∂ϕ2
--------- F

T
--- 

  1
NAϕ
----------- 1

NB 1 ϕ–( )
------------------------ 2χ .–+= =
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Eq. (2') satisfy the initial conditions

(3)

and boundary conditions

(4)

Conditions (4) correspond to a solution where the
phases are immiscible. In this state, the solution has the
density ϕ1 with a probability p1 = 1 and the density ϕ2
with a probability p2 = 0. Note that χc = χ(Tc), where Tc
is the critical cooling temperature of the solution.

STABILITY OF SOLUTIONS 
TO THE UNPERTURBED PROBLEM

Cauchy problem (2')–(4) is known as the problem of
arbitrary discontinuity decay [11]. A solution to this
problem is self-similar, ϕ = ϕ(x/t), and leaves unper-
turbed values of ϕ in the shaded regions in Fig. 1 (ϕ1 on
the left and ϕ2 on the right). It is conventional to assume
that a perturbation from a discontinuity propagates with
a finite velocity, which we will find below.

Let the value χ = χc correspond to the homogeneous
metastable state ϕc = ϕ–; then, phase separation
becomes possible if χ > χc [1, Fig. 4.4]. A perturbation
is introduced into Eq. (2') as linear viscosity; therefore,
at ε(χc) = 0, we can consider the divergent equation

(5)

where conditions along the discontinuity lines have the
form

(6)

Here, ϕ1 and ϕ2 are the values of ϕ at the discontinuity,
ν = dx(t)/dt is the discontinuity line slope, and G(ϕ) =
f '(ϕ).

Note that additional relationships between the
desired functions on the lines of discontinuity are the
laws of conservation of energy, momentum, and mass,
as well as the law of entropy increase. Note that a func-
tion ϕ(x, t) satisfies Eq. (6) if the equality derived in
[12] is valid for any smooth contour Γ lying in the half-
plane t > 0 and crossing the discontinuity lines of the
function ϕ(x, t) in a finite number of points.

If a solution ϕ(x, t) to Eq. (5) is smooth, the equality
from [12] is always fulfilled. Also, from the relation-
ship

ϕ ∞– 0 χ χ c<, ,( ) ϕ1 and=

ϕ ∞ t χ χc>, ,( ) ϕ2, t 0>=

ϕ x 0 χ, ,( )
ϕ1, χ χc for   x 0<<
ϕ2, χ χc for   x 0.>>




=

∂ϕ
∂t
------ ∂f ϕ( )

∂x
--------------+ 0,=

–ν ϕ 1 ϕ2–( ) f ϕ1( ) f ϕ2( )–+ 0.=

∂ϕ
∂t
------ ∂f ϕ( )

∂x
--------------+ 

  td xd

D

∫∫ A f( ),=
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where Γ is the boundary of the domain D, it follows that
a function ϕ(x, t) for which this relationship is satisfied
is a solution to Eq. (5) in those areas of the domain D
where this function is continuously differentiable
[12, p. 6].

As was shown in [13], a discontinuous solution to
Eq. (5) that satisfies conditions (6) is not necessarily
found as the limit of continuous solutions (at ε  0)
of perturbed equation (3).

Indeed, let us restrict the analysis to solutions of
form ϕ = ϕ(ξ), where ξ = x – νt. Then, Eq. (2') can be
written as

(5')

In the medium field approximation, we have Λ(ϕ) ≅
Def(1 – ϕ) provided that the diffusion coefficients of
polymers and holes equal each other [5] (Def is the coef-
ficient of self-diffusion of polymer chains). Generally
speaking, the nonlinearity of Λ(ϕ) causes the localiza-
tion of the solutions; however, since the coefficient
Λ(ϕ) is linear and conditions under which the effect of
fluctuations S–1(q) is significant only at q  0 are
looked for, we can put Λ(ϕ) ≡ Λ(ϕ–), where ϕ– is the
homogeneous state, which is separated into the states
ϕ1 and ϕ2 due to perturbations ε(χ, T). Since we are
interested only in the local process of spinodal decom-
position within a finite time interval, such an approach
is equivalent to using the method of coefficient freezing
(see, e.g., [14]).

Eventually, we arrive at the equation

(7)

where ε  εB(ϕ–).
Assume that ν, ϕ1, and ϕ2 satisfy relationships (6).

Let us find conditions under which Eq. (7) has a contin-
uous solution satisfying the boundary conditions
ϕ(ξ)  ϕ1 at ξ  +∞ and ϕ(ξ)  ϕ2 at ξ  –∞.
These relationships are caused by the initial conditions,
which can be matched to the boundary conditions “at
infinity.”

It was shown [11] that, if such a solution exists, it
passes (at ε  0) to a discontinuous solution to unper-
turbed equation (5'), which obviously has the form
ϕ(ξ) ≡ ϕ1 at ξ > 0 and ϕ(ξ) ≡ ϕ2 at ξ < 0. Consequently,
existence conditions for a continuous solution to the
unperturbed equation are admissibility conditions for a
discontinuous solution. For a single equation, these
conditions can be stated as follows: (1) for a disconti-
nuity ϕ1–ϕ2 to be admissible, it is necessary that ϕ1 and
ϕ2 be neighboring zeros of some function Φ(ϕ) and
(2) a discontinuity ϕ1–ϕ2 is admissible if the inequality
f '(ϕ1) < ν < f '(ϕ2) is met. These requirements must be
fulfilled simultaneously. The function Φ(ϕ) = –νϕ +
f(ϕ) + C is the integral of the equation εdϕ/dξ = –νϕ +

–νdϕ
dξ
------ df ϕ( )

dξ
--------------+ εΛ ϕ( )d2ϕ

dξ2
---------.=

–νdϕ
dξ
------ df ϕ( )

dξ
--------------+ εd2ϕ

dξ2
---------,=
f(ϕ) + C, which is derived from Eq. (7) by integration
over ξ with C(ϕ1) = C(ϕ2) = 0, so that Φ(ϕ1) = Φ(ϕ2) =
0 owing to the conditions at the discontinuity. Usually,
a continuous solution is called a rarefaction wave and a
discontinuity is called a shock wave.

In [11], it was also proved that solutions to Eq. (7)
satisfying condition (6) at a discontinuity are stable. To
establish the stability conditions, we consider the dis-
continuous solution ϕ(ξ) ≡ ϕ1 at x – νt > 0 and ϕ(ξ) ≡
ϕ2 at x – νt < 0 and, adding a small perturbation δϕ to
it, substitute ϕ + δϕ into Eq. (5). Rejecting terms on the
order of (δϕ)2, we arrive at the equation

with the piecewise constant coefficient f ' = f '(ϕ1) at x –
νt > 0 and f ' = f '(ϕ2) at x – νt < 0. The solution will be
stable if the perturbation δu tends to zero along the dis-
continuity line x – νt = 0 at t  ∞ and the inequality
f '(ϕ1) < ν < f '(ϕ2) is fulfilled.

The “smearing” of a discontinuity arising with the
introduction of viscosity was considered in [11] using
the equation

as an example, where b = (∂ϕ/∂x)α with α > 0 at ∂ϕ/∂x > 0
and b = 0 at ∂ϕ/∂x < 0.

The range of ϕ on the axis ξ turns out to be finite and
equal to

(8)

At α > 1, integral (8) converges (the solution is
shown in Fig. 2). For 0 < α ≤ 1, the integral diverges;
hence, the smearing domain is infinite: the solution
ϕ(ξ) tends to (ϕ1, ϕ2) only at ξ  0. However, as was
shown in [11], the limiting solution consists of two con-
stants ϕ1 and ϕ2 in both cases. From (8), it follows that
the lifetime of a shock-wave-type solution can be made
as long as desired (but finite) by decreasing ε.

We pursue the stability analysis. It is known [8] that
the scalar law of conservation ϕt + ( f(ϕ))x = 0 can be
written in the form G(ϕt) + F(ϕ)x = 0, where G and F
are related as F '(ϕ) = G '(ϕ)f '(ϕ). Let us apply this
observation to the equation ϕt + ( f(ϕ))x = εϕxx to tackle
the question of whether there exists a traveling wave
that couples the states ϕ– and ϕ+ such that ϕ+ < ϕ–. Let
ϕ+ > 0 for definiteness. Then, the solution ϕ(x – st) sat-
isfies the equation

(9)

Consider the function G ''(ϕ) > 0. We multiply
Eq. (9) by G '(ϕ) and integrate the product from –∞ to

∂ δϕ( )
∂t

--------------- f '
∂ δϕ( )

∂x
---------------+ 0=

∂ϕ
∂t
------ ∂f ϕ( )

∂x
--------------+ εdb

dx
------=

∆ξ ε
1
a
---

Φ
1
α
---–

u( ) u.d

ϕ1

ϕ2

∫=

–sϕ x f ϕ( )( )x+ εϕ xx.=
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SHOCK WAVE STABILITY UNDER THE SPINODAL DECOMPOSITION 11
+∞. Integration by parts yields

(10)

where [A] = A(∞) – A(–∞).
From Eq. (10), we have the inequality

which defines the limit of the propagation velocity s.
In the situation under study, it is sufficient to put

G '(ϕ) = 1, which gives the wave velocity s = ( f(ϕ–) –
f(ϕ+))/(ϕ– – ϕ+). According to [8], if the function f(ϕ)
has no more than one inflection point, to each centered
shock wave ϕ(x, t) = ϕ– at x < st and ϕ(x, t) = ϕ+ at x >
st, there corresponds the solution ϕ(x, t) = ϕLax((x – st),
ε) to equation with viscosity (2'). This solution satisfies
the condition ϕLax(±∞) = ϕ± and (±∞) = 0. The
velocity of such a wave meets the Lax entropy condi-
tions [8]. All waves of this kind are admissible in that
they are solutions to regularized equation (5) at ε  0.

For the Cauchy problem, the stability of solutions to
the regularized equation, i.e., the equation without vis-
cosity, against small variations of the initial function
was studied in [13]. For any ξ1 and ξ2 from the closed
interval [a, b], the inequality

yields the inequality

which is valid for any closed interval [x1, x2] of the
straight line t = t1. This closed interval belongs to the
domain bounded by the straight lines t = 0, x – a – At =
0, and x – b + At = 0, where A = max(| f(ϕ1) – f(ϕ2)|/|ϕ1 –
ϕ2|).

The example discussed in [14, p. 158] demonstrates
that for the Burgers equation, a solution can be taken in
the form ϕ = –c + a a(x + ct)/2ε), where a and c
are constants. Clearly, ϕ(x, t)  –c ± a at ξ  ±∞,
where ξ = a(x + ct)/2ε. Taking a = (ϕ1 – ϕ2)/2 and c =
−(ϕ1 + ϕ2)/2, we come to the convergence ϕ(x, t) 
(ϕ1, ϕ2) for ξ  ±∞. The initial function has the form
ϕ(x, 0, ε) ∝  ax/2ε); hence, at the point of discon-
tinuity x0 = 0 (but x ≠ 0), the discontinuity is more step-
wise, the smaller ε > 0 is. However, a substantial depen-
dence on the initial conditions is observed: for any
given ε > 0, the condition x  0 makes the solution
discontinuous at the point (x = 0, t = 0). Thus, in this
problem, the stability due to a decrease in viscosity
takes place only near the points of discontinuity (and
only within a finite time interval).

s G ϕ( ) F ϕ( )+[ ]– ε G'' ϕ( )ϕ x
2 x,d∫–=

s G ϕ( ) F ϕ( )+[ ]– 0,≤

ϕLax'

ϕ1 0 x,( ) ϕ2 0 x,( )–[ ] xd

ξ

ξ1

∫ ε≤

ϕ1 t1 x,( ) ϕ2 t1 x,( )–[ ] xd

x1

x2

∫ ε,≤

(tanh

(tanh
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THE BEHAVIOR OF SOLUTIONS 
TO THE GENERAL DIFFUSION EQUATION

Taking into account the possible phenomenological
representation of the coefficient K(ϕ), which, by defini-
tion, is proportional to the binding force between poly-

mer chain links, we put (ϕ) ∝  ϕ2 and (ϕ) (ϕ) =

ϕ2 – αϕ3. As Λ(ϕ) = Def(1 – φ), we find that (ϕ) ∝
ϕ2 – αϕ3. Then, assuming that ϕ = ϕ– = 0 (without loss
of generality), one can easily see that α ∝  χ – χc and the
plot of F(ϕ) changes the sign of curvature in passing
through χ = χc. As a result, the diffusion equation in the
general form (including the term with ((∇ϕ )2) can be
written as

(11)

where α, β, and ε > 0. Here, β ∝ α and the competition
between ε and β generates shock (or rarefaction) waves
(as in the Burgers equation) or additionally may cause
compression waves to appear (Fig. 3). According to [8],
if (ϕ∞ – b) is small, where ϕ∞ = ϕ1 and b = ϕ2 with b <
ϕ∞, the traveling wave is a compression wave in the
sense that the characteristics of the equation ϕt + (ϕ2 –
αϕ3)x = 0 “cross at the end of the wave” traveling with
a velocity λ(b) < s < λ(ϕ∞) [8, p. 432]. Here, λ(ϕ) =
2ϕ – 3ϕ2 is called the characteristic velocity.

Note at once that this phenomenon may cause den-
sity peaks to appear near the discontinuity front [8,
Fig. 8]. In the case of the general equation for a binary
mixture, they arise near the point ∂2f(ϕ)/∂ϕ2 = 0 [8,
Fig. 7]. This means that even if density fluctuations
near the point ϕ = ϕ– are small (ε ! 1), the binding
force between polymer chain links enhances density
fluctuations. In spite of this, it appears that there exist
conditions where fluctuations due to density diffusion
are compensated for by fluctuations due to bonds
between chain links. This, however, takes place only for
special initial distributions of the binary mixture den-
sity.

K̇ Λ̇ϕ µ̇ϕ

µ̇ϕ

ϕ t ϕ2 αϕ 3–( )x+ ε ϕ3ϕ x( )x β ϕ3ϕ xxx( )x,–=

b

ξ

ϕ

ϕ∞

Fig. 3. Solution to the equation for a binary mixture (1) at
β = 0 (no bonding between links) and (2) at |ε| ! 1 and β > 0
(incompressible wave).
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2
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If ϕ∞ increases, there appear several traveling waves
that approximate Lax shock waves. In this range of ϕ∞,
the equation ϕt + (ϕ2 – ϕ3)x = –(ϕ3ϕxxx)x has asymptoti-
cally stable solutions consisting of two waves traveling
with different velocities. The slower wave is a Lax
wave connecting (on the phase portrait [8]) ϕ∞ and the
point ϕuc > ϕ∞ (with ϕuc being independent of ϕ∞) in
such a way that the shock (compression) intensity
decreases with increasing ϕ∞. The faster wave is an
incompressible shock wave connecting the points ϕuc

and b. The other waves are incompressible in the sense
that the Lax entropy conditions are violated.

With diffusion taken into account in (2), one might
expect that the result will be the same at relatively small
ε > 0, since lower order perturbations modify the vector
field in a “soft” way (the shock wave corresponds to the
separatrix running from saddle to saddle).

When two waves appear (Fig. 3), the weaker com-
pressed one should have a lesser effect on fluctuations
(for ε @ 1) in comparison with the one compressed
more strongly. As was shown [8, Sect. 3.1], at ε  ∞,
incompressible waves (that is, those changing their pro-
file insignificantly) are absent [8, Fig. 3].

It is of interest to study the transition for a finite ε.
Preliminary calculations [8] show that for ε ! 1 and a
high density (the inclusion of the cubic term in the
functional F0), a low viscosity has a minor effect. Con-
versely, if the density is low (that is, the Burgers equa-
tion applies) and the viscosity is low, the quantity (ϕ∞ –
b) is small and, hence, a solution to the general equation
behaves in the same way as solutions to the equation
with diffusion, since the equation without diffusion (but
with the fourth derivative taken into account) yields rar-
efaction waves and shock waves under these condi-
tions. Thus, with low densities, the equation for a
binary mixture allows for strict reduction to the Burgers
equation. For ε  ∞ and high densities, one can
restrict the function analysis to considering the fourth-
order equation when studying a binary mixture that is
separated into phases near the spinodal curve.

A new result here is the possibility of switching
from a rarefaction wave to a shock (incompressible)
wave and vice versa in passing through the spinodal.
This necessitates studying the Burgers equation with
negative viscosity. For ε < 0 and ε  0, the results for
low densities are strict; for high densities, the effect of
fluctuations near the spinodal (ε < 0) has not been inves-
tigated even numerically. At the same time, for ε > 0 (the
region over the spinodal) in the case of the general
equation for a binary mixture, the effect of density fluc-
tuations is quite clear even for finite α > 0 and ε > 0, as
follows from numerical results [8] and the behavior of
solutions to the Burgers equation at a low viscosity
[10–14].
STABILITY OF SOLUTIONS TO THE INITIAL 
PROBLEM WITH VISCOSITY

Solutions to the Burgers equation with ε = 0 are dis-
tinctive in that the wave front steepens and then
reverses at the time instant t0 = (max[dν(x, t0)/dx])–1,
(dν(x, t0)/dx < 0), where ν(x) is the wave velocity. Actu-
ally, the steeping may generate multiflux motions with
subsequent wave front reversal [15, p. 188].

Solutions to the Burgers equation with ε > 0 show
how viscosity prevents the reversal. In fact, for t  t0,
the front steepness grows and so does the derivative
dν(x, t)/dx < 0. Eventually, the terms εϕxx and ϕϕx

become of the same order (even at low viscosities); in
other words, we are dealing with the competition of two
processes: steeping due to nonlinearity and decay
because of viscosity. Note that stationary motion may
also occur without competition if the Hugoniot condi-
tion (when characteristics along which the shock wave
front propagates do not intersect) is fulfilled in the
range of solution uncertainty.

Let us show that the solution branches ϕ1 and ϕ2 out-
side the range ∆ξ (Fig. 2) are Lyapunov stable against
perturbations that are as small as desired. The solutions

are sought in the form (x, t, ε) =  + hϕ(x, t), where
0 ≤ h ! 1 and ε is a given parameter (not necessarily
small). Then, the Burgers equation can be written in the
form

hence, the perturbations satisfy the equation

up to terms o(h2), which may also depend on viscosity.
We assume, however, that they are viscosity indepen-
dent. This equation can be conveniently represented as

Integration at k = 1 yields

where x1 is the left extreme of the interval ∆ξ = x2 – x1
of the rarefaction wave (Fig. 2) (for the shock wave, one
can put ∆ξ = 0).

Let the boundary conditions

and the additional requirement ϕ1 – ϕ2 > 0 be fulfilled

ϕ̃ ϕ1
ε

∂ϕ1
ε

∂t
--------- h

∂ϕ
∂t
------ ϕ1

ε hϕ+( )
∂ϕ1

ε

∂x
--------- h

∂ϕ
∂x
------+ 

 + +  = ε
∂2ϕ1

ε

∂x2
----------- εh

∂2ϕ
∂x2
---------;+

∂ϕ
∂t
------ ϕk

∂ϕ
∂x
------+ ε∂2ϕ

∂x2
--------- k 1 2,=( )=

1
2
---∂ϕ2

∂t
---------

1
2
---ϕk

∂ϕ2

∂x
---------+ εϕ∂2ϕ

∂x2
--------- k 1 2,=( ).=

1
2
--- ∂

∂t
----- ϕ2 xd

∞–

x1

∫ 1
2
---ϕ1ϕ

2
∞–

x1
+ εϕ∂ϕ

∂x
------

∞–

x1 ε ∂ϕ
∂x
------ 

 
2

x,d

∞–

x1

∫–=

∂ϕ
∂x
------

x ∞±=

0 and ϕ
ϕ1 for x ∞–

ϕ2 for x +∞



= =
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for the shock wave. Then, if the conditions

are satisfied outside the range ∆ξ, the inequality

and the same inequality within the interval (x2, +∞) are
obviously valid. Since the functional

takes only positive values and decreases (as a function
of t) for any function ϕ(x, t), the relationship

must be satisfied; hence,

according to the Du Bois-Reymond lemma (see, e.g.,
[16–18]). Here, inf is the exact lower limit of a func-
tion. Thus, perturbations decay with time.

If we require the Hugoniot condition

to be satisfied for any perturbations  and  at rela-
tively small h > 0 and each given ε (here, h = h(ε)) in

the vicinity of the stationary points  and , respec-
tively, the characteristics bounding the domain of defi-
nition of the rarefaction wave will shift parallel to the
initial ones. For the shock wave, the only discontinuity
front will shift parallel to the initial front. In this sense,
we can argue that the rarefaction wave is stable, while
outside the rarefaction region, it is asymptotically sta-
ble. If conditions of type ϕ1 – ϕ2 > 0 fail, perturbations
depend on viscosity. In the published data [10–13],
such a situation has not been considered (these condi-
tions are usually fulfilled, since they follow from the
Hugoniot entropy conditions, which have a clear phys-
ical meaning).

DETERMINATION OF THE SHOCK 
(RAREFACTION) WAVE VELOCITY

Let us recast Eq. (5) in the form

(5'')

ϕ2 x1( ) ϕ2 ∞–( ) and ϕ2 +∞( ) ϕ2 x2( )> >

1
2
--- ∂

∂t
----- ϕ2 s t,( ) sd

∞–

x

∫ 0<

F ϕ( ) ϕ2 sd

∞–

x1

∫=

infF ϕ x t,( )( )
t ∞→
lim 0 for ∞– x x1< <=

infϕ2 x t,( )
t ∞→
lim 0 for ∞– x x1< <=

ν ϕ h
+ ε( ) ϕh

– ε( )–[ ] f ϕh
+ ε( )( ) f ϕh

– ε( )( )–=

ϕh
+ ϕh

–

ϕ1
ε ϕ2

ε

∂ϕ
∂t
------ p

∂
∂x
------ S ϕ( )[ ]+ 0,=

ϕ x 0,( ) ϕ0 x( ).=
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Here, in the medium field approximation, p = Def/kBT
and S(ϕ) = µ(ϕ), where dF(ϕ)/dϕ = µ(ϕ) is the general-
ized chemical potential and F is the free energy.

The entropy condition is stated as follows: p > 0 
pµ(ϕ) convex function  inequality ϕ– < ϕ+ is ful-
filled. A similar condition can be written for p < 0.
Then, the solution to problem (5") takes the form [8]

(12)

Here, (µ')–1 is the function reciprocal to the function µ'.
Solution (12) is depicted in Fig. 4. It was found in [6–
8] with the entropy condition

(13)

fulfilled, where

Here, y ↓  x and y ↑  x means that y approaches the point
x from the right and left, respectively. The designation
c ∈  ϕ2 ∪  ϕ1 means that we approach the discontinuity
line “along” point c either from the right (of ϕ2) or from
the left (of ϕ1), while the designation c ∈  ϕ2 ∩ ϕ1
implies that point c may belong to the discontinuity
line. Here, F '(ϕ) = G(ϕ) as before.

Comparing entropy condition (13) with admissibil-
ity condition (6) (the latter, as is known, is derived from

ϕ x t,( ) = 

ϕ2 for ∞– x pµ' ϕ1( )t< <

µ'( ) 1– x
pt
----- for pµ' ϕ1( )t x pµ' ϕ2( )t≤ ≤

ϕ1 for pµ' ϕ2( )t x +∞.< <







F ϕ1( ) F ϕ2( )–
ϕ1 ϕ2–

-----------------------------------
F ϕ1( ) F c( )–

ϕ1 c–
--------------------------------

c ϕ1 ∩ ϕ2 ϕ2 ∪ ϕ 1,[ ]∈
max=

ϕ1 x t,( ) ϕ y t,( ) and ϕ2 x t,( )
y ↓ x
lim ϕ y t,( ).

y ↑ x
lim= =

1
ϕ1ϕ1 + ϕ2 = 1

ϕ(•, ∞) = ϕ0 p(1 – ϕ1  – ϕ2)t = 0, (p = Def/kBT)

ϕ2 = 1 – ϕ1

1

ϕ1ϕ1 + ϕ2 > 1

ϕ(•, ∞) = ϕ1 0 < p(1 – ϕ1  – ϕ2)t

ϕ2 
1 – ϕ1

1
ϕ1

ϕ1 + ϕ2 < 1

ϕ(•, ∞) = ϕ0 p(1 – ϕ1  – ϕ2)t < 0

1 – ϕ1

p < 0

Fig. 4. Possible limit density distributions vs. the relation-
ship between the stable phase (ϕ1 and ϕ2) amplitudes and
the lability parameter p = Def/kBT.
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the Hugoniot integral condition in the vicinity of the
discontinuity front), one can see that they coincide if

(14)

where ρ ∈  ∆ξ (i.e., ρ belongs to the set of points where
the function G(ϕ) is many valued).

A similar inequality must be fulfilled with ϕ1
changed to ϕ2 in relationship (14); hence, we come to
the area rule

(15)

with ρ  c. Then, from (6), (14), and (15), it follows
that, generally speaking, Hugoniot relationship (15)
does not take into account fluctuations in the range ∆ξ,
i.e., near the discontinuity front. This observation, in
particular, has led Kruzhkov to the elaboration of the
entropy theory for quasi-linear hyperbolic equations
(see, e.g., [9]). Relationship (15) represents, in essence,
the law of conservation of mass for the density distribu-
tion: a discontinuity of a steeping wave should be
placed at point c, where its artificial appearance does
not change the area between the plot of the wave ϕ(x, t)
and the x axis [19, p. 42].

Note that if the solutions in Figs. 1 and 4 are viewed
as the limits of the perturbed equation, the case p < 0 is
physically meaningful. In fact, let us consider Eq. (2')
for the case when the curve F(ϕ) has a negative-curva-
ture region δ2F/δϕ2 < 0 in the interval (ϕ1, ϕ2). Within
this interval, the system separates into two phases with
concentrations ϕ1 and ϕ2 [1, p. 113]. In this case, an
expression obtained by substituting –t for t in (1) and
proceeding to the limit in a small parameter will be the
limit relationship to Eq. (2'): we will arrive at Eq. (5)
with p < 0. This meets the situation considered in
[1, p. 112] and takes place when the interaction con-
stant χ exceeds some critical value χc that corresponds
to the negative-curvature region in the curve F(ϕ).

The aforesaid means that in the vicinity of the spin-
odal decomposition curve δ2F/δϕ2 < 0, there exists a
narrow region where fluctuations can be ignored.
Accordingly, spinodal decomposition can be simulated
by divergent equation (5), which has the form of the law
of conservation with p > 0 over the spinodal and p < 0
below the spinodal. However, the decomposition
changes qualitatively: strictly in going through the

ν dx
dt
------

G ϕ( ) ϕd

ρ

ϕ1

∫ G ϕ( ) ϕd

ρ

c

∫–

ϕ1 c–
-----------------------------------------------------,

c ϕ1 ∩ ϕ2 ϕ2 ∪ ϕ 1,[ ]∈
max= =

G ϕ( ) ϕd

ϕ1

c

∫ G ϕ( ) ϕd

c1

ϕ2

∫=
spinodal curve, the propagation of the shock wave
(Fig. 2) changes to the generation of the rarefaction
wave (Fig. 3).
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Abstract—Theoretical and experimental results on the limitation of pulsed radiation in the spectral range 3.8–
10.6 µm in vanadium dioxide films are presented. The effect of the film structure on the shape of the temperature
hysteresis loop is studied. The film thickness and the structure of an interferometer with a vanadium dioxide
film are optimized to improve the radiation limitation efficiency. The spatial dynamics of vanadium film
switching under the action of a radiation pulse is investigated. It is shown experimentally that the radiation
attenuation coefficient under the limitation conditions can be as high as 104 or more. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Nonlinear optical effects that attenuate the transmit-
ted radiation intensity as the incident intensity
increases are applied for controlling the shape and
amplitude of laser pulses, as well as for protecting eyes
and photodetectors against blinding and radiation-
induced failure, respectively. The latter field of applica-
tion is of great practical importance, since today’s
radars and pollution prevention systems use high-sensi-
tivity radiation detectors, the reliable operation of
which specifies the reliability of the system as a whole.
The field of application imposes specific requirements
for radiation limiters. These are minimal radiation
losses in the linear transmission range, low energy
threshold of limitation, attenuation coefficient exceed-
ing 1000 under the limitation conditions, high speed of
response, radiation resistance, and wide spectral range
of limiter operation.

In the visible and near-IR ranges, there exists a vari-
ety of materials and nonlinear optical effects that can be
used for radiation limitation. Among them are nonlin-
ear optical effects in semiconductors arising upon two-
and one-photon absorption [1, 2] resonance effects in
composites [3], effects associated with two-photon
absorption in liquid crystals [4], effects arising at sin-
glet–triplet transitions in fullerenes [5], and many oth-
ers. In the mid-IR range, the number of effects and
materials appropriate for radiation limitation decreases
sharply. Basically, this is due to the lack of materials
transparent in the mid-IR range. Another reason is that
the photon energy in this range is low and cannot excite
most nonlinear optical effects. However, for several
widely used lasers, such as chemical (HF, DF) lasers
and CO (CO2) lasers, lasing is observed in precisely
1063-7842/03/4801- $24.00 © 20073
this mid-IR range. Therefore, the development of radi-
ation limiters for this spectral range seems to be a topi-
cal problem.

Vanadium dioxide (VO2), which exhibits the revers-
ible semiconductor–metal phase transition (PT) [6, 7],
is a promising material for mid-IR radiation limiters
[8, 9]. This is largely because the variation of the VO2
optical constants is the greatest in the mid-IR range
when the PT takes place [10]. The aim of this work is
to elucidate factors governing the limitation of radia-
tion with λ = 3–11 µm in polycrystalline VO2 films and
to find ways of improving the limitation efficiency.

MECHANISMS BEHIND THE RADIATION-
INDUCED PHASE TRANSITION IN VO2 FILMS

In vanadium dioxide, the semiconductor–metal
phase transition of the first order takes place at tc =
67°C. Above tc, VO2 is a metal with the tetragonal lat-
tice; below tc, it is a semiconductor with the monoclinic
lattice and an energy gap Eg ≈ 0.7 eV [6].

According to the photon energy hν, the PT in VO2
may be initiated by either band-to-band electron transi-
tions at hν > Eg or thermal processes at hν < Eg. The
first case corresponds to the visible and near-IR ranges;
the latter, to the mid-IR range.

In the first mechanism of the semiconductor–metal
transition, an induced increase in the free carrier con-
centration causes the Coulomb screening of electron–
electron correlations, which reduces stepwise the corre-
lation energy in VO2 [11]. In this case, the total energy
of free carriers falls into the conduction band and VO2
acquires metallic conductivity. Simultaneously, the
003 MAIK “Nauka/Interperiodica”
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high-frequency permittivity, i.e., the optical constants
of the material, changes. Note that in VO2 the electronic
order parameter changes markedly starting from 6°C,
that is, 60°C below the PT point [12], while in other
materials, such a screening occurs near the PT temper-
ature.

Hence, absorbing a radiation pulse that generates
free carriers, the electronic subsystem passes into the
excited state. As the number of absorbed pulses
increases, the free carrier concentration rises and the
Mott electron PT starts. Then, the crystal lattice,
responding to the changes in the electronic subsystem,
also rearranges and the thermodynamic potential of the
crystal grows. These processes change the optical con-
stants. If, however, the absorbed energy is insufficient
to overcome the potential barrier between the semicon-
ducting and metallic phase, the crystal quickly returns
to the initial state, which corresponds to the minimal
thermodynamic potential of the semiconducting phase.
In this case, the complete PT, when both the electronic
and lattice subsystems are rearranged and the material
fixes the new (metallic) state, is not observed.

In other words, the early stage of the semiconduc-
tor–metal PT at hν > Eg involves the fast rearrangement
of the valence electron subsystem (an additional trans-
fer of the electron density to the ligand in terms of [11,
13]) because of a sharp increase in the free carrier con-
centration in the conduction band when an optical pulse
is absorbed. This may take place at temperatures much
lower (23°C) than the PT temperature (67°C) owing to
the temperature dependence of the electronic order
parameter of VO2 [12]. Because of the electronic nature
of the PT [15], it may be completed within a very short
time: from several picoseconds [16] to one hundred
femtoseconds [17].

The process described above is akin to ultra-high-
speed vibron PTs in Si, GaAs, or InSb semiconductors
arising under the action of a powerful optical pulse
[14, 18]. However, for the ultra-high-speed PT to occur,
the softening of the phonon spectrum is necessary. In
these semiconductors, the softening of the spectrum is
due to the sharply increased density of the free carrier
plasma. In our case, the phonon spectrum softens irre-
spective of the plasma density as the temperature
approaches the semiconductor–metal PT temperature
[12, 19]. The softening starts with a temperature of 6°C,
i.e., 60°C below the temperature of the transition.

Thus, a VO2 film may switch to the metallic state
within several fractions of a picosecond under the
action of an optical pulse from the visible or near-IR
range. However, since the semiconducting phase of
VO2 is highly absorbing and its optical constants vary
insignificantly in this spectral range, VO2 films can
hardly compete with other limiters that are more effec-
tive at λ < 2 µm.

When a VO2 film is exposed to a photon of energy
less than the energy gap of the VO2 semiconducting
phase and two-photon absorption is absent (which is
valid for the mid-IR range), the PT is initiated by VO2
heating due to radiation absorption.

For this type of radiation, the transition-initiating
mechanism can be described at length in terms of the
electron (Mott) semiconductor–metal PT in VO2 [15].

When exposed to mid-IR radiation, a VO2 film is
heated first as a result of radiation absorption by a free
carrier plasma [20], which heats up the crystal lattice
during the relaxation of the stored energy. Second, the
film is heated because of the direct absorption of the
radiation by the lattice, since the absorption of mid-IR
radiation by the VO2 semiconducting phase effectively
generates phonons [21].

The heating of the material by an optical pulse
increases the concentration of free carriers, which can
leap the energy gap of the VO2 semiconducting phase.
Because of the increase in the concentration, the Cou-
lomb screening of electron correlations at the same lat-
tice site appears, which is typical of the Mott transition
[13]. The screening partially reduces the electron corre-
lation energy [11], narrowing the Mott energy gap of
semiconducting VO2 [7]. In turn, the narrowing of the
energy gap favors the thermal transfer of carriers over
the energy gap, which narrows it still further. Thus, a
specific positive feedback mechanism that causes the
energy gap of the semiconducting phase to collapse and
the material to pass to the metallic state is triggered.
Simultaneously, the high-frequency permittivity (opti-
cal constants) of the material changes. Note once again
that the electronic order parameter can vary appreciably
starting from 6°C. This means that an optical pulse
heating the VO2 film may initiate the superconductor–
metal PT and carry the film to the high-absorptivity
state even at room temperature.

THE EFFECT OF POLYCRYSTALLINE VO2 FILM 
STRUCTURE ON THE PHASE TRANSITION 

PARAMETERS

The radiation limitation parameters of VO2 films
correlate appreciably with the temperature depen-
dences of the reflection, R, and transmission, T, coeffi-
cients. If the steepness of the associated curves is large,
the speed of the limiter rises; if the steepness is small,
the dynamic range of limitation expands. The time it
takes for the initial transmission to recover depends on
the steepnesses of the R(t) and T(t) curves, as well as on
the width of the temperature hysteresis loop.

Experiments show that the cooling and heating
curves for the VO2 physical parameters diverge, indi-
cating the temperature hysteresis of the material prop-
erties (Fig. 1). It is noteworthy here that the hysteresis
loop for the reflection coefficient of a VO2 film interfer-
ometer is several times wider than that for the same
parameter of VO2 single crystals (15°C vs. 2°C), has
extended (20–30°C along the temperature axis)
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branches, and is shifted toward low temperature by 10–
20°C (Fig. 1b).

The reason for such a difference is that the hystere-
sis loop of a polycrystalline VO2 film consists of ele-
mentary loops from individual grains [15]. The temper-
atures tci and the widths ∆ti of elementary loops differ
(i is the number of a group of grains with similar prop-
erties). Therefore, hysteresis effects in the film are
described by the grain temperature (tci) distribution and
by the grain distribution over the deviations ∆ti from tci

(this deviation is necessary for the PT to take place in a
given grain). Then, it follows that (1) the width of the
total loop for a VO2 film depends on the widths of the
elementary loops for the grains that are responsible for
the peak of the distribution of the elementary loops over
their widths ∆ti, (2) the temperature extent of the
branches of the total loop depends on the width of the
temperature (tci) distribution of the elementary loops,
and (3) the position of the total loop branches depends
on the position of the peak of this temperature distribu-
tion. It is assumed here that each grain has a single ele-
mentary loop and elementary loops are “vertical” rela-
tive to the temperature axis; that is, once the tempera-
ture of the transition (e.g., to the metallic state) has been
reached, a nucleus of the new metallic phase grows
through the semiconducting grain with the speed of
sound [15].

The PT temperature and the shape of the tempera-
ture hysteresis loop are affected by the presence of
impurities in VO2. They also depend on the film nons-
toichiometry (oxygen excess or deficiency) [6, 7]. For
example, the PT temperature in a tungsten-doped VO2
film can be reduced by 20–30°C in comparison with an
undoped film. The oxygen nonstoichiometry (both oxy-
gen excess and deficiency) extends the PT temperature
interval. Also, the absorption of the semiconducting
phase grows in this case.

From the aforesaid, it follows that a highly extended
and still narrow temperature hysteresis loop can be pro-
vided if the elementary loop distribution over widths ∆ti

is as narrow as possible and its peak is near small ∆ti

values. Simultaneously, the elementary loop distribu-
tion over their temperature positions tci must be as wide
as possible. If it is necessary to obtain a narrow total
hysteresis loop with short branches, the elementary
loop distribution over tci must also be narrow. Both
approaches are applied to designing optical limiters.

OPTICAL PROPERTIES OF LAYER SYSTEMS 
WITH A VO2 FILM

The semiconductor–metal PT in layer structures
with a VO2 film (VO2 mirrors) greatly changes the
reflection and transmission coefficients [10, 22]. The
optical properties of film coatings forming a VO2 mirror
define the parameters of radiation limiters such as the
linear transmission coefficient, spectral operating
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
range, attenuation coefficient under radiation limitation
conditions, and radiation resistance. The PT changes
the VO2 complex refractive index n* (n* = n – i – k)
from 3.1 – i0.002 to 4 – i6 for λ = 3.4 µm [22] and from
2.55 – i0.08 to 8 – i9 for λ = 10.6 µm [10]. Since after
the PT the absorption coefficient k of the film increases
100–3000 times, even a single 0.2- to 0.3-µm-thick
VO2 film applied on a transparent substrate can limit
mid-IR radiation. Yet the VO2 film thickness d should
be optimized to attain the maximal transmission of this
system at an operating wavelength of the limiter for
t < t0 (t0 is the temperature of the onset of the PT). Fig-
ure 2a shows the spectral dependence of the transmis-
sion coefficient for a VO2 film on a germanium sub-
strate at t < t0 and t > tc. At d = 1 µm and t < t0 (curve 1),
the dependence T(λ) has two peaks: at λ = 4 µm (T =
82%) and λ = 10.5 µm (T = 85%). The transmission
maxima are associated with the antireflection property
of the VO2 film, since its optical width (nd) equals
(3/4)λ and λ/4 for these wavelengths. When the film
passes to the metallic state, its transmission diminishes,
respectively, to 10–5 and 3 × 10–4%. Thus, prior to the
PT, a 1-µm-thick VO2 film provides a high transmission
(more than 80%) in the spectral ranges 4.0–4.5 and 8.0–
11.5 µm; after the PT, a high attenuation (more than
105) is observed in the range 3–12 µm. For comparison,
Fig. 2a shows the transmission spectrum for a VO2 film
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Fig. 1. Temperature dependences of the (1) reflection, R,
and (2) transmission, T, coefficients for 0.25-µm-thick VO2
films with (a) narrow and (b) wide grain size distribution.
λ = 10.6 µm.
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of thickness 0.3 µm. Since the optical thickness of this
film before the PT is λ/4 for a wavelength of ≈4 µm, it
offers a high transmission in the range 3.5–5.5 µm.
After the PT, the attenuation coefficient of this film
exceeds 103 for λ = 3–12 µm.

When limiters are used for protecting the photode-
tectors of laser radars, the phase distortions of the opti-
cal signal should be minimized in some cases. This is
necessary, for example, when the detector analyzes the
radiation wave front. Figure 2b demonstrates how the
thickness of the VO2 film on the germanium substrate
affects the phase shift ∆ϕ = δϕ1 – δϕ2 of the transmitted
radiation before and after the PT. Here, δϕ1 and δϕ2 are
the phase shifts of the transmitted radiation before and
after the PT, respectively. The dependence ∆ϕ(d) was
calculated for λ = 10.6 µm with the VO2 optical con-
stants given above. It follows from Fig. 2b that for d <
0.35 µm, the phase shift after the PT changes by no
more than π/5, while for d ≈ 0.17 µm, the phase shift
remains unchanged. Thus, a relatively thin film may
attenuate the radiation with the least phase distortion.
However, the other optical parameters are not optimal
in this case. For example, at d = 0.2 µm, the transmis-
sion coefficient of the film before and after the PT is 64
and 3%, respectively.
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Fig. 2. Transmission spectra for the VO2 film on the germa-
nium substrate. d = (1, 2) 1 and (1', 2') 0.3 µm; t = (1, 1') 20
and (2, 2') 70°C.
The reflection coefficient of a VO2 film thicker than
0.25 µm after the PT is about 80% for λ = 5–11 µm.
This means that such films absorb roughly 20% of the
incident radiation after the PT. If the film breaks down
by the thermal mechanism, the breakdown threshold
decreases with increasing fraction of the energy
absorbed by the metallic phase [23]. For a 0.3-µm-thick
VO2 film, the radiation-induced breakdown energy den-
sity at λ = 10.6 µm was found to be 6–7 J/cm2 for a
pulse duration of 20 µs. The breakdown threshold of
the limiter can be raised by increasing the reflection
coefficient of the VO2 mirror for t > tc. To this end, a
multilayer thin-film interferometer with a VO2 film as a
control element can be used. It was shown that in a
Ge(d = 0.66 µm)–ZnSe(1.1 µm)–VO2(0.25 µm)–
ZnS(1.0 µm)–Ge(substrate) four-layer interferometer,
the reflection coefficient for λ = 10.6 µm at t > tc is 95%.
Hence, for such a VO2 mirror, the fraction of the
absorbed energy at t > tc is four times lower than for a
single VO2 film. It was shown experimentally that VO2
mirrors with a reflection coefficient more than 95% (t >
tc) have a breakdown threshold of 20–25 J/cm2 [23]. For
an interferometer of such a design, the transmission
coefficient equals 0.22% at t > tc and 60% at t < t0. It
should also be noted that the above-mentioned optical
parameters of the interferometer are observed in the
narrow spectral range ∆λ ≈ 0.1 µm.

Multilayer structures can also be used to increase
the transmission of VO2 mirrors at t < t0. For example,
in a ZnS(1.1 µm)–VO2(0.4 µm)–Ge(substrate) two-
layer structure, the transmission coefficient at t < t0
equals 95%. However, the transmission and reflection
coefficients at t > tc equal, respectively, 1.4 and 38%,
which impairs the limitation efficiency and decreases
the breakdown threshold.

Thus, the use of a VO2 film in various interference
systems makes it possible to improve (in comparison
with a single VO2 film) one of the optical parameters of
radiation limiters, for example, the radiation resistance
or transmission in the linear mode. At the same time,
the other optical parameters of the limiters degrade.
Therefore, the design of a VO2 mirror should be chosen
according to specific requirements for a limiter.

SWITCHING OF A VO2 FILM 
UNDER THE ACTION OF A RADIATION PULSE

A feature of a VO2 film as a nonlinear optical ele-
ment is the relatively narrow temperature interval of
nonlinearity: from several degrees to several tens of
degrees. Both before and after the PT, the transmission
of the film does not depend on the radiation intensity
and the attenuation coefficient after the film has been
switched to the metallic state is 1/Tc, where Tc is the
transmission coefficient of the film after the PT. Such a
situation, however, takes place only if the VO2 mirror
surface is uniformly heated in the static approximation.
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Under real conditions, the switching of a VO2 film
under the action of a laser pulse gives rise to several
effects owing to which both the dynamic range of non-
linearity and the attenuation factor after the switching
differ substantially from those under static conditions.

First, recall that the limiter is considered reversible
if the initial transmission coefficient is recovered after
the action of a laser pulse. This condition is met when
the VO2 mirror substrate is kept at the temperature t =
t0 – ∆t, where ∆t is the width of the temperature hyster-
esis loop for a VO2 film (Fig. 1a). The presence of the
early linear portion in the characteristic of the limiter
causes a switching delay and decreases its integral
attenuation coefficient. The delay depends on the value
of ∆t, radiation intensity, and thermophysical properties
of the VO2 mirror. For an intensity of ≈1 MW/cm2, the
delay is several tens of nanoseconds.

Second, with a pure thermal mechanism of VO2
switching under the action of a laser pulse, the power of
a heat source in the film is defined by the instantaneous
incident intensity I0(r, τ) and instantaneous reflection
and transmission coefficients:

In turn, R(r, τ) and T(r, τ) depend on the profile of
the instantaneous film temperature t(r, τ). Because of
this, the rate of film switching dT/dτ varies during the
PT and attains a maximum in the middle of the heating
branch of the hysteresis loop [24]. If the VO2 film is
heated by a spatially nonuniform laser pulse, the
switching dynamics depends on both the time wave-
form and spatial profile of the pulse. Figure 3 shows the
calculated spatial distribution of the radiation transmit-
ted through the VO2 film when the incident radiation
(I0 = 0.5 MW/cm2) has a Gaussian profile. The laser
pulse has a rectangular front. The self-consistent ther-
mal problem was solved in the approximation of a thin
plate (VO2 film) that is in ideal thermal contact with a
semi-infinite body (germanium substrate). As follows
from Fig. 3, at τ = 30 ns, the limitation is absent because
of the delay of VO2 film switching. With increasing
pulse duration, the switching occurs in the central part
of the pulse, where the intensity is the highest. The
region of limitation expands with time from the center
to the periphery. At the edges of the distribution, the
limitation is absent because here the intensity is insuf-
ficient for the VO2 film to pass into the metallic state.

Thus, the spatially nonuniform distribution of the
incident radiation causes additional effects associated
with the spatial dynamics of VO2–radiation interaction.
While in the highest-intensity region the attenuation
coefficient is the highest (corresponding to static condi-
tions), the integral (over time and cross section) attenu-
ation coefficient may be several tens or even several
hundreds of times lower. Moreover, the spatial dynamic
processes occurring when the beam is spatially nonuni-

P r τ,( ) I0 r τ,( ) 1 R r τ,( ) T r τ,( )––[ ] .=
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form expand the energy range of VO2 film nonlinearity
and, thus, the dynamic range of limitation.

The time it takes for the transmission to recover
after the end of the pulse depends on the incident inten-
sity, which specifies the maximal temperature of the
VO2 film, the hysteresis loop width, and the thermal
conductivity of the substrate. For a VO2 film on a ger-
manium substrate, this time lies within 10–100 µs
according to the radiation intensity.

Experiments with a simple limiter consisting of a
0.3-µm-thick VO2 film on a germanium substrate were
carried out at a wavelength of 10.6 µm (TEA CO2 laser,
pulse duration τ0 = 2 µs) and in the spectral range 3.8–
4.2 µm (DF laser, τ0 = 0.25 µs). The substrate tempera-
ture was kept at 55°C. The energy threshold of radiation
limitation (the onset of nonlinear transmission) was
found to equal roughly 5 mJ/cm2 in both cases. Figure 4
shows the waveforms of the incident pulse and trans-
mitted radiation for λ = 10.6 µm at different incident
energy densities Q0. At Q0 = 400 mJ/cm2, the switching
delay is seen to be about 50 ns; that is, the limitation
occurs even at the front of the incidence radiation. The
fall time of the transmitted radiation is defined by the
spatial dynamic processes described above and equals
several hundreds of nanoseconds.

LIMITATION OF 10.6-µm RADIATION 
IN A THREE-PASS LIMITER

The energy threshold of limitation can be reduced
and the dynamic range of limitation can be extended
when a focused laser beam passes successively through
several VO2 films. However, the optimal design is that
where the focused radiation crosses the same VO2 film
many times [24]. The optical scheme of such a limiter
is shown in the inset to Fig. 5. The limiter consists of a
reflecting telescope with entrance (1) and exit (2) mir-
rors between which nonlinear optical element 3 (a VO2
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Fig. 3. Spatial distribution of the radiation passed through
the VO2 film under the limitation conditions. I0 =
0.5 MW/cm2. (1) Incident beam profile. τ = (2) 30, (3) 300,
(4) 600, and (5) 1000 ns.
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film on a germanium substrate with an antireflection
coating) is placed. The focal spots of the mirrors are
shifted relative to each other along the optical axis to
form a convergent beam at the exit of the limiter. The
thickness of the VO2 film is 0.75 µm. The transmission
of the nonlinear optical element per one pass is 80% for
λ = 10.6 µm at t = 20°C. The entrance and exit apertures
of the limiter are, respectively, 35 and 10 mm.

The incident radiation passes through the VO2 film
three times while simultaneously being focused. Under
the limitation conditions, the central part of the film
switches over first (third pass of the radiation). Then,
the regions corresponding to the second and first passes
switch over. After the second-pass region has been
switched, the radiation load on the central part of the
film is reduced, protecting it against radiation-induced
breakdown. Similarly, the switching-over of the first-
pass region reduces the load on the second- and third-
pass regions of the VO2 film. The integral attenuation
coefficient of the limiter equals the product of the par-
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Fig. 4. Waveform of the radiation pulse transmitted through
the VO2 film under the limitation conditions. λ = 10.6 µm.
(1) Incident pulse; Q0 = (2) 100 and (3) 400 mJ/cm2.
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Fig. 5. Output energy vs. input energy dependence. The
inset shows the optical scheme of the limiter. λ = 10.6 µm,
τ0 = 20 µs.
tial integral attenuation coefficients at each of the
passes.

The limitation experiments were carried out at a
wavelength of 10.6 µm for a laser pulse duration of
20 µs. The radiation source was an electroionization
CO2 laser. The temperature of the germanium substrate
supporting the VO2 film was kept at 55°C. Figure 5
shows the experimental dependence of the output
energy on the input energy. At Einp ≥ 0.8 mJ, the VO2
film switches over (the smooth portion of the limitation
curve). After the central part of the film has been com-
pletely switched to the metallic state, the dependence
Eout(Einp) becomes nearly linear. Then, at Einp ≥ 100 mJ,
the second and third switching stages arise, when the
edge regions of the film switch over. The energy thresh-
old of limitation is 0.8 mJ, or 0.08 mJ/cm2 in terms of
incident energy density. For an incident energy of
26.5 J, the integral attenuation coefficient is 1.5 × 104.
Analysis indicates that the attenuation coefficient may
be raised further by optimizing the limiter design.

CONCLUSION

Our results demonstrate that polycrystalline vana-
dium dioxide films are a promising material for mid-IR
radiation limiters. Good limitation characteristics can
be obtained by optimizing the film structure and its
interference properties. Under static conditions, the
switching contrast may exceed 106. However, under
dynamic conditions (pulse-induced switching-over),
the integral attenuation coefficient decreases apprecia-
bly due to dynamic effects. Yet, attenuation coefficient
as high as 104 can be achieved with a three-pass limiter.
The basic disadvantage of a limiter with a VO2 film is
the need for thermostatic control.

Radiation limiters based on the reversible semicon-
ductor–metal PT in a VO2 film can be used for protect-
ing mid-IR photodetectors against blinding and radia-
tion-induced breakdown.
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Abstract—A wide-aperture plasma source of low-energy electron beams on the basis of an electrically asym-
metric reflex discharge is studied experimentally. The characteristic features of the generation of electron beams
are investigated, and the boundaries of the generation regime are determined. The influence of the dimensions
and shape of the discharge electrodes on the source characteristics is examined. A method for efficiently con-
trolling the electron-beam current is proposed. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At present, large-diameter electron beams are
widely used for annealing metals and semiconductors
[1] and for pumping electroionization lasers. They also
find wide application in radiation and electron-beam
technologies, plasma chemistry, and other fields [2]. In
most cases, when generating large-diameter electron
beams, it is expedient to use plasma electron sources
(PESs), because they are capable of producing electron
beams with a wide range of parameters. The main
requirements for these sources are the following: the
production of a nonuniform plasma with an increased
density in the emission region, a low flux of working-
gas neutrals into the acceleration gap, efficient control
over the electron-beam current, minimum power
expenditure for plasma production, and a fairly high
operational resource. PESs based on reflex discharges
with cold cathodes meet these requirements in many
respects. Sources of this kind can efficiently operate
with chemically active working gases under conditions
of strong ion bombardment and periodic contacts with
the atmosphere, guarantee stable source operation at
small discharge currents, operate at low gas flow rates,
have a simple design, and are reliable in operation.

In most of the existing PESs based on reflex dis-
charges with cold cathodes, electrons are extracted
from the discharge plasma by applying a high voltage
between the plasma and the extracting electrode. In
these sources, electrons are emitted from the discharge
into the accelerating gap through a small aperture,
which hampers the use of these sources for the produc-
tion of large-diameter beams. However, at certain
parameters of a discharge of this kind, the ejection of
“anomalous” electrons in the axial direction can occur
when the negative space charge is dominant in the dis-
charge gap [3, 4]. In this case, electrons can be emitted
without using an extracting electrode only due to
energy they acquire when interacting with RF oscilla-
1063-7842/03/4801- $24.00 © 20080
tions excited in the anode layer. In the absence of an
extracting electrode, it is possible to extract low-energy
electron beams and increase the emission aperture to
the anode diameter. However, such regimes of a reflec-
tive discharge still remain poorly investigated.

In this paper, we present the results of experimental
studies of the influence of the external discharge param-
eters on the generation of low-energy electron beams
from a wide-aperture plasma electron source based on
an electrically asymmetric reflex discharge.

EXPERIMENTAL TECHNIQUE

The experiments were carried out with two configu-
rations of Penning electrodes (Fig. 1), which were
imbedded in a uniform magnetic field directed along
the system axis. The first electrode configuration
(Fig. 1a) consisted of a cylindrical anode and two reflex
electrodes, one of which was plane (1) and the second
was cylindrical (3). In the second configuration
(Fig. 1b), all the electrodes were cylindrical. The cylin-
drical electrodes were made from stainless steel,
whereas the plane electrode was made from aluminum.

In experiments, we used discharge electrodes with
diameters d = 18, 30, and 80 mm. The following condi-
tion was always satisfied: the distance between the
cathode and anode and the length of the cylindrical
cathode were equal to the electrode radius, and the
anode length was equal to the electrode diameter. The
experiments were carried out with steady-state dis-
charges. The discharge electrodes were supplied
through either an electrically symmetric or electrically
asymmetric circuit. In the former case, cathodes 1 and
3 were grounded, whereas anode 2 was at the positive
potential. In the latter case, cathode 3 was grounded,
and the voltage ∆U between cathodes 1 and 3 was var-
ied in the range from –500 to +500 V.
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic of an electron plasma source: (a) electrode configuration with a plane cathode and (b) electrode configuration
with cylindrical cathodes.
The working gas was hydrogen or air at a pressure
of P = 0.01–1 × 10–3 torr, the magnetic field was B =
0.01–0.1 T, the anode voltage was Ua = 0.5–3.5 kV, and
the discharge current was Ip = 0.1–100 mA. The plasma
density ne ~ (0.1–2) × 1010 cm–3 and the electron tem-
perature Te = 5–20 eV were measured by probes. The
residual pressure in the vacuum chamber was no higher
than 4 × 10–6 torr.

The electron beam was extracted from the side of
cathode 3 in the axial direction. The radial current-den-
sity profile of the ejected electron beam and the longi-
tudinal energy of the beam electrons were measured
with the help of a movable multigrid electrostatic
energy analyzer 4.

Wave processes in the plasma were investigated
with the use of single shielded cylindrical probes at the
floating potential; the load was a capacitive divider with
a high impedance in this frequency range.

EXPERIMENTAL RESULTS

The existence of different discharge regimes signif-
icantly affects not only the reflex discharge parameters,
but also the properties of the plasma that emits elec-
trons [2]. The positions of the boundaries separating the
discharge regimes depend on the anode voltage, the
magnitude of the external magnetic field, the sort and
pressure of the working gas, and the geometric param-
eters of discharge [5]. For this reason, we experimen-
tally studied the interrelation between different dis-
charge regimes, the discharge geometry, and the
regimes of electron-beam generation. The domains of
the external discharge parameters (the anode voltage Ua

and the working gas pressure P) corresponding to these
regimes are shown in Fig. 2. In all cases, the generation
of electron beams was observed only in the high-volt-
age discharge regime. When we used a lighter working
gas (hydrogen instead of air) or decreased the diameter
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
of the discharge electrodes, the boundary of the regime
of electron-beam generation extended toward higher
working-gas pressures and anode voltages. Similar
dependences were also observed when the reflex elec-
trodes were supplied through an electrically asymmet-
ric circuit at negative values of ∆U. For electrode con-
figurations with a plane electrode and an electrode
diameter of 18 mm, the generation of electron beams
was observed for both sorts of the working gas in the
entire domain of the high-voltage discharge regime
(Figs. 2e, 2f).

The studies of radial potential and plasma-density
profiles in the regime with electron-beam generation
showed that this regime is characterized by a sharp
decrease in the plasma potential (Fig. 3a, curves 1–3)
and a simultaneous increase in the plasma density
(Fig. 3b, curves 1–3) in the central region of the dis-
charge as compared to the regime without electron-
beam generation (Fig. 3, curves 4, 5). When the reflex
electrodes were supplied through an asymmetric circuit
(∆U = –500 V), the plasma potential was lower (Fig. 3a,
curve 2) and the plasma density was higher (Fig. 3b,
curve 2) than in the case with a symmetric circuit.
When air was used as a working gas, the plasma poten-
tial was higher (Fig. 3a, curve 3) and the plasma density
was lower (Fig. 3b, curve 3) than in the case with
hydrogen. In the regime with electron-beam genera-
tion, intense high-frequency drift oscillations in the fre-
quency range f ~ 10–55 MHz were observed in the
anode sheath. The oscillation frequency depended on
both the external discharge parameters and the sort of
the working gas. The smaller the diameter of the dis-
charge electrodes or the molecular mass of the working
gas, the lower the oscillation frequency.

For all of the electrode systems, the ejected elec-
trode beam was radially nonuniform. The beam current
density was maximum at a certain distance from the
system axis (Fig. 4). The position and intensity of this
maximum depended on the magnitude of the external
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Fig. 2. Regimes of discharge operation and electron-beam generation: (I) high-voltage regime, (II) electron-beam generation
regime, and (III) high-current regime. Shown are the boundary of the domain of the existence of a discharge (d), the boundary of
the electron-beam generation regime (s), and the boundary of the high-current discharge regime (⊗ ) for (a, b) cylindrical electrodes
80 mm in diameter, (c, d) cylindrical electrodes 18 mm in diameter, and (e, f) an electrode configuration with a plane cathode
18 mm in diameter. (a, c, e) The working gas is air, (b, d, f) the working gas is hydrogen, (a, b, d, e, f) B = 0.06 T and ∆U = 0, and
(c) B = 0.06 T and ∆U = –500 V.
magnetic field H, the anode voltage Ua, the voltage
between the cathodes ∆U, the pressure P, the sort of the
working gas, and the shape and diameters of the dis-
charge electrodes. The electron beam was closer to uni-
form when we used plane cathodes or electrodes with
smaller diameters (Fig. 4b). The electron-beam current
density increased and the maximum shifted toward the
system axis when the lighter working gas (hydrogen)
(Fig. 4b, curves 1, 2) was used instead of air (Fig. 4b,
curve 3). The use of an electrically asymmetric circuit
(∆U = –500 V) allowed as to obtain even higher elec-
tron-beam current densities. In this case, at optimum
values of the external discharge parameters, an elec-
tron-beam current density of J = 30–40 mA/cm2 was
attained. The energy of the beam electrons was E = 5–
10 eV, the energy efficiency of the source was h = 0.3–
0.6 mA/W, and the electron extraction efficiency was
α = 70–90%.

We note that the plasma potential in the central
region of the discharge decreases with increasing elec-
tron-beam current density. This circumstance evidences
that the ejection (or more likely efflux) of electrons in
the axial direction is also of electrostatic nature.

In all cases, the electron-beam current was modu-
lated by high-frequency drift oscillations.

The most probable electron energy in the beam was
5–80 eV, depending on the geometry of the discharge
electrodes and the sort of the working gas. This energy
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
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Fig. 3. Radial profiles of (a) the potential and (b) plasma density on the side of cathode 3 for cylindrical electrodes 80 mm in diam-
eter: (1) the working gas is hydrogen, P = 9 × 10–5 torr, B = 0.06 T, Ua = 1.5 kV, and ∆U = 0; (2) the working gas is hydrogen, P =
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Fig. 4. Radial profiles of the electron-beam current density behind cathode 3 (see Fig. 1) for (a) cylindrical electrodes 80 mm in
diameter, P = 9 × 10–5 torr, B = 0.06 T, and Ua = 1.5 kV and (b) an electrode configuration with a plane cathode 18 mm in diameter,

P = 9 × 10–5 torr, B = 0.08 T, and Ua = 1.5 kV at ∆U = (1, 3) 0 and (2) –500. (1, 2) The working gas is hydrogen, and (3) the working
gas is air.
was lower for hydrogen (5–10 eV) than for air (40–
80 eV). When plane cathodes were used, electrons with
energies corresponding to the potential difference
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
between the cathodes ∆U were observed in the energy
spectra. Their fraction in the energy spectrum
decreased with decreasing electrode diameter.
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diameter and (b) a plane and a cylindrical electrode 18 mm in diameter. The working gas is air.
We also investigated how the asymmetry of the elec-
tric circuit affected the current densities of the electrons
and ions ejected simultaneously from the discharge. As
can be seen from Fig. 5, the electron-current density in
the range of negative ∆U values substantially exceeds
the ion-current density. Varying the value of ∆U, we
could efficiently control the electron-beam current. In
this case, the discharge current for systems with cylin-
drical electrodes depended only slightly on the voltage
∆U between the cathodes (Fig. 5a), whereas for a con-
figuration with plane electrodes, this dependence was
observed in the range ∆U = –100 to 500 V (Fig. 5b).
Such behavior was typical of all the electrode systems
and all the working gases.

As can be seen from Fig. 5, at certain positive values
of ∆U, we observed the current compensation of the ion
beam ejected simultaneously with the electron beam.
The position of the current compensation region in the
longitudinal direction depends on the value of ∆U. The
larger the value of ∆U, the larger the distance between
the compensation region and the emission aperture.

CONCLUSION

Regimes of the generation of electron beams from
Penning plasma sources have been investigated for dif-
ferent geometries of the discharge electrodes. The influ-
ence of geometric factors (such as the shape and diam-
eters of the discharge electrodes), the sort of the work-
ing gas, and the asymmetry of the electric circuit on the
boundaries of the regime of electron-beam generation
has been examined. It has been shown that electron-
beam generation is observed only in the high-voltage
discharge regime. The electron-beam generation
regime is characterized by lower plasma potential and
higher plasma density in the central region of the dis-
charge as compared to the regimes without electron-
beam generation. As the diameters of the discharge
electrodes decrease or when a lighter working gas is
used, the boundaries of the electron-beam generation
regime extend to higher working gas pressures and
higher anode voltages. It has been proposed that the
electron-beam current be controlled by varying the
voltage between the cathodes. Electron beams with cur-
rent densities of J = 30–40 mA/cm2 and electron ener-
gies of 5–10 eV have been obtained. An energy effi-
ciency of the source of h = 0.3–0.6 mA/W and an elec-
tron extraction efficiency of α = 70–90% have been
achieved.
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Abstract—Electron cooling is used for improving the parameters of ion beams. The cooling efficiency depends
drastically on the space charge fluctuation intensity in the beam. The fluctuations present in the cooling region
cause the stochastic heating of the ions, which adversely affects the cooling efficiency and may even annihilate
the ion beam. The space charge fluctuation intensity as a function of various operating parameters of a cooler
is studied experimentally. A mechanism of fluctuation generation is suggested, and the effect of fluctuations on
the ion beam parameters is estimated. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Electron cooling is used to improve the parameters
of ion beams in a storage ring [1]. In this method, a cool
electron beam and ion beam copropagate in a rectilin-
ear section of the trajectory, the electron velocity being
equal to the mean velocity of the ions. Because of elec-
tron–ion collisions, the energy of the chaotic motion of
the ions is lost. A relatively short cooling time is pro-
vided if the electron beam is sufficiently intense (with
currents of several amperes and voltages from several
keV [2] to several MeV [3]). As a rule, such beams are
formed in energy-recuperation systems, where the
beam is first accelerated to the maximal energy and
then the electron energy is given up to the source in the
decelerating structure. The slowing-down is accom-
plished to the least possible value (1–5 keV), which
depends on the space charge of the beam. The effi-
ciency of electron beam capture by the collector is usu-
ally high; however, a small fraction of the electron
beam may reflect from the collector to the cooling
region. In this case, the space charge field may break
into oscillation with the subsequent heating of the ion
beam. If the oscillation (noise) is sufficiently intense,
the electron beam may cause heating (instead of cool-
ing) and the loss of a number of ions. In this work, we
study space charge oscillation generated in a setup with
a rectilinear magnetic field. The experiment was carried
out on the bench for testing the gun and collector that
are used in electron cooling equipment in the Institute
of Modern Physics (Lanzhou, China).

EXPERIMENTAL SETUP AND MEASURING 
TECHNIQUE

The setup is schematically shown in Fig. 1. An elec-
tron beam is formed by an electron gun (1–4) [4] placed
in a magnetic field of 700–1000 G and is transported
1063-7842/03/4801- $24.00 © 20085
along the field to the electron collector (4–6). The
diameter of the beam was varied between 2 and 3 cm.

The noise characteristics were measured with two
schemes. One of them is passive. Noise due to the beam
space charge is measured by a spectrum analyzer or rf
oscilloscope through a special loop that is placed near
the beam and has a capacitance of 1.5 pF relative to the
beam. The other scheme is active. Oscillation in the
beam is initiated by applying an ac voltage to the con-
trol electrode (the signal and beam copropagate) or to
the near-collector electrode (the signal and beam coun-
terpropagate) with the subsequent recording of the sig-
nal from the collector and frame, which was used as a
pickup.

Figure 2 shows the electrical potential profile with
regard for the space charge with Ucoll = 3 kV, Usup =
0.5 kV, Ucath = 7 kV, Uan = 3.5 kV, Ucont = +0.6 V, and
Je = 900 mA. The cathode voltage Ucath is measured rel-
ative to the ground potential; the collector (Ucoll) and
anode (Uan) potentials, relative to the cathode potential.
The suppressor potential Usup is set by a voltage divider
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Fig. 1. Schematic representation of the setup for studying
space charge oscillation. 1, cathode; 2, control electrode;
3, anode; 4, vacuum chamber; 5, near-collector electrode;
6, suppressor; 7, collector; and 8, probe.
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inserted between the collector and cathode. The posi-
tion 0 (1) of the divider corresponds to the case when
the suppressor voltage equals the cathode (collector)
voltage. The simulation was performed with the SAM
software suite.

The potential profile in Fig. 2 makes possible the
accumulation of secondary electrons in the collector–
anode spacing. They may fall into this spacing by
reflecting from the collector or as a result of residual
gas ionization. Elastically or inelastically scattered
electrons fall into the central region, where they accu-
mulate. As the space charge exceeds a certain (critical)
value, instability develops and the secondary electrons
diffuse.

INSTABILITY

The experimental results on instability development
are as follows.

(1) The “explosive” character of instability devel-
opment. Figure 3 shows the instability waveform

7
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Fig. 2. Longitudinal profile of the potential along the setup
axis with due account for the influence of the space charge.
recorded in the open-collector mode, where Ucoll = Usup.
The signal was applied to the high-resistivity input of
an oscilloscope series-connected to a 1000-pF capaci-
tor. A burst of instability 20 µs wide (between 70 and
95 µs, curve 2) is seen. Curve 1 depicts the signal aris-
ing when a current pulse of amplitude 1 A and duration
280 µs passes through the loop. At the end of the burst
(t = 100 µs, curve 2), the signal decreases by 30% rela-
tive to the initial level (t = 50 µs, curve 2) of the basic
beam (curve 1). This indicates that, during the burst of
instability, some of secondary electrons bearing a
charge of up to 30% of the basic beam charge were
removed from the central region. The lower part of
Fig. 3 demonstrates the development of instability
when the signal was picked up from a load resistance of
50 Ω . In this case, the signal varies in proportion to
dn/dt; therefore, charge accumulation is not observed
but oscillation due to instability is clearly seen. The
instability rise time is ≈5 µs, and the quasi-stationary
range, during which the excessive space charge is
removed from the central region, lasts ≈10 µs. The fun-
damental frequency is 70–100 mHz.

The burst mean repetition rate is 100–1000 Hz;
hence, the mean current of the accumulated charge in
this mode varies within 30–300 nA.

(2) Beam current threshold of instability. Figu-
re 4 shows the space charge oscillation spectra vs. beam
current at a suppressor voltage of –600 V relative to the
collector. The spectra were taken with an SK4-59 spec-
trum analyzer.

It is seen that natural oscillations in the beam are
absent up to 300 mA; at higher currents, instability
develops very rapidly. When the current exceeds the
threshold insignificantly, individual peaks of harmonics
0.6
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Fig. 3. Variation of the space charge n and dn/dt near the loop when the instability develops.
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are distinct. Subsequently, the number of peaks
increases substantially and the spectrum becomes
noisy. As the current grows further, both the amplitude
and number of the peaks decrease and eventually the
instability virtually disappears. The change in the mag-
netic field from 700 to 1050 G changes the instability
threshold from 270 to 420 mA, without affecting the
threshold behavior.

(3) The effect of the collector parameters on
instability. The instability is most sensitive to the sup-
pressor voltage. When this voltage equals the collector
voltage (open-collector regime), the oscillation inten-
sity is the highest and exceeds the intensity observed in
other regimes by more than ten times. However, a low
(about 30 V) electron-blocking voltage applied to the
suppressor radically improves the situation. A further
rise in the blocking voltage (up to Ucath = Usup) has prac-
tically no influence on the instability. In the open-col-
lector regime, the oscillation cannot be suppressed by
decreasing the beam current either. Space charge oscil-
lation in the beam is observed even at a current of
50 mA. Moreover, the situation does not change when
the magnetic field, cathode voltage, and collector volt-
age vary. The open-collector regime was found to be
the most noisy, all other things being equal.

The secondary electron flow can be affected by
appropriately selecting the collector operating mode
(Fig. 5). By decreasing the collector voltage to the level
close to the virtual cathode formation, one can block
most of the reflected fast electrons because of a high
space charge.

(4) Induced oscillations. Intriguing data were
obtained upon observing induced oscillations in the
near-threshold range of instability. The exciting field
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
was applied to near-collector electrode 5 (Fig. 1). The
induced signal was picked up from the probe. We
recorded the propagation of the external signal in the
direction opposite to that of the basic beam. In the fre-
quency interval 75–100 MHz (Fig. 6), the response due
to secondary electrons from the collector is seen. In the
low-frequency range near the threshold, the induced
excitation of the natural oscillations of a secondary
electron column is observed. In the vicinity of the
threshold, the amplitude of the peaks grows.

CHARGE ACCUMULATION MECHANISM

Thus, it can be supposed that true secondary elec-
trons with an energy inside the collector of ≈10 eV play
a dominant role in space charge oscillation in the open-
collector mode. Having been born in the collector, they
pass over the collector surface, fall into the central
region, and there accumulate. When the density of sec-
ondary electrons exceeds a certain threshold, instability
arises and the secondary electrons are ejected from the
central region. A low negative (relative to the collector)
voltage applied to the suppressor blocks most of the
secondary electrons. Owing to the electrode geometry,
it is precisely near the processor the potential changes
most significantly. Its effect on the beam center is much
weaker. A further rise in the blocking voltage applied to
the suppressor does not influence the flow of true sec-
ondary electrons, and elastically and inelastically
reflected fast (>50 eV) electrons make a major contri-
bution to the particle flow from the collector.

The contribution of electrons due to ionization
seems to be weak (it is estimated at ≈50 nA in our
experiment). A twofold variation of the pressure in the
vacuum chamber changes the oscillation intensity and
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spectrum to a minor extent. The possibility of decreas-
ing the oscillation intensity by appropriately choosing
the collector voltage also indicates that the collector is
the basic source of electrons falling into the central
region. An increase in the space charge density in the
collector influences the reflected electron flow but does
not affect the flow of ionization electrons.

As an instability model, the instability of trapped
particles in the beam can be considered. When the fre-
quency of the space charge wave in the beam, ω = kv 0,
approaches the natural frequency of trapped electrons
(i.e., ω = nω0), growing oscillations may appear. Here,
ω0 = 4πL/v 0, L is the size of the electrostatic well, v0 is
the oscillation frequency of trapped electrons, and n is an
arbitrary integer (a set of harmonics appears when the
equation of steady motion for an electron moving
between electrostatic mirrors is expanded in harmonic
functions). Solving the dispersion relation for this model,
one finds unstable solutions for given values of the wave
vector. The resulting instability increment grows linearly
with mode number n. Its typical value under our experi-
mental conditions is Imω = 4 × 10–5 s–1 (n = 1).

COOLED APERTURE

The cooling time for an ion oscillating in the storage
ring is given by [5]

(1)τ 1– a( )
2π Je/q( )reriLncη

β4γ5 a2 aeff
2+ /β⊥( )

3
-------------------------------------------------

1/ πae
2( ) a ae<

1/ πa2( ) a ae.>



=
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Here, Je is the electron beam current, q is the charge of
an electron, re and ri are the respective classical electron
and ion radii, Lnc is the Coulomb logarithm, η is the
ratio of the cooling region length to the ion path length,
β and γ are beam parameters, aeff is the effective ampli-
tude (ions with a lesser amplitude cool down for the
minimal time), ae is the electron beam radius, β⊥  is the
value of the β function within the cooling region, and
f0 is the rotation frequency in the storage ring.

In the simplest model, where the electron beam
noise is associated with current fluctuations (note that
the fluctuations are random during each ion rotation),
the rate of amplitude growth can be written in the form

(2)

where 〈Je〉  is the rms fluctuation of the electron beam
current or the related change in the beam space charge.

From (1), it follows that the cooling time increases
rapidly with the oscillation amplitude (outside the
beam, it increases as a5); hence, the cooling power
(a2/τ(a)) drops more quickly than the power of beam-

da2

dt
-------- f 0

2 Je〈 〉 rilcoolβ⊥

qβ3γ3c
---------------------------------

2 a2/ae
4 a ae<

1/a
2

a ae,>



=
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Fig. 7. Cooling and heating powers (vertical axis, cm2/s) for
electron current fluctuations ∆Je/Je = 2, 1, 0.5, and 0.25%.
On the abscissa axis is plotted the ion oscillation amplitude
(cantimeters). The thick continuous curve stands for cool-
ing.
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noise-induced heating. Starting from a certain critical
amplitude, the cooling no longer compensates for the
heating and the amplitude of the ions will grow infi-
nitely until the ions are lost on the walls of the vacuum
chamber. By way of example, Fig. 7 compares (on the
logarithmic scale) the cooling and heating powers for
the parameters of the cooler similar to that described
in [4].

Figure 7 demonstrates that, even if electron beam
fluctuations are as low as 2%, only ions with ampli-
tudes less than 3 mm will be cooled; other ions will be
heated and lost. Normal operation of the cooler is pro-
vided if the electron beam noise is no higher than 0.1%;
in this case, the critical amplitude exceeds 10 cm.

The effect of space charge fluctuations on the cool-
ing efficiency was estimated from the measured rms
fluctuations of the space charge density. To use estima-
tor (2), the rms fluctuation were converted to the equiv-
alent fluctuation of the beam total current (δJe =
eV0δnS). For a suppressor value of 0.8, the relative cur-
rent fluctuation was 〈δJe〉/Je ≈ 3 × 10–4; for a suppressor
value of 1.0 (open collector), 〈δJe〉/Je ≈ 2 × 10–2. This
corresponds to an ion beam lifetime of 104 s with the
blocking voltage on the suppressor and 10 s in the case
of an open collector. The latter value is clearly inappro-
priate for the operation of electron cooling equipment.
Thus, under unfavorable conditions, space charge oscil-
lation may cause high losses of the ion beam.
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Abstract—The separation characteristics of a planar collector system placed in the weak magnetic field region
of a facility that separates isotopes of stable metals by the ion-cyclotron-resonance method are calculated. An
increase in the gyroradius of the accelerated ions in the weak field allows the designer to increase the collector
plate spacing and decrease undesired screen losses. It is theoretically shown that placing the collector in the
week field increases the degree of separation. Also, the transverse-to-longitudinal ion energy conversion makes
it possible to extend the product deposition area on the collector plates and, thus, to reduce the thermal load on
the collector and facilitate the long-term production of the target material in large amounts. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

As is known, stable isotopes are presently produced
by the electromagnetic method [1] or with the help of
gas centrifuge cascades [2]. The latter are only capable
of separating ions of elements whose gaseous com-
pounds have a sufficiently high vapor pressure at room
temperature. There are about 20 such elements in the
periodic table. The electromagnetic method, though
well developed, is only used to produce relatively small
amounts of the target product when the element has no
gaseous compounds under normal conditions. A high
ion current in an electromagnetic separator is difficult
to generate, because the ion beam density is limited by
the repulsion of like-charged particles. The neutraliza-
tion of the space charge by the residual gas has limita-
tions of its own. In this respect, the plasma method,
which is based on the selective ion cyclotron resonance
(ICR) heating of ions of the target component [3–6],
has advantages over the electromagnetic method in sep-
arating metal isotopes, because here limitations on the
ion fluxes are virtually absent. The ICR method, which
is today in the development stage, is expected to reduce
energy consumption and improve significantly the
yield of a single module.

SEPARATION CHARACTERISTICS 
OF THE ION COLLECTOR

At present, the ICR method of isotope separation in
a plasma is the most promising for industrial use, spe-
cifically, for producing large amounts (tens of kilo-
grams or more) of the elements that can now be sepa-
rated only in electromagnetic separators. This method
relies on the selective heating of target component ions
in a weakly collisional plasma. An ICR device is sche-
1063-7842/03/4801- $24.00 © 20090
matically shown in Fig. 1. A steady plasma stream is
directed to the region of a uniform magnetic field pro-
duced by solenoid 1. This region contains RF antenna
2, which generates a heating field. The heating region is
followed by a product collection system, consisting of
equispaced plates 3 (which collect hot ions 7 and are
protected by screens 4) and plate 5, placed perpendicu-
larly to the stream and intended for depositing cold ion
component 6 of the plasma. A positive potential U,
which repulses the cold ions, can be applied to the
plates to improve the separation of the isotope mixture.
Figure 2 illustrates a fragment of the hot fraction collec-
tor. The fragment shows a screen (its full width in the
direction perpendicular to the plate is denoted 2a),
which protects the collector plate from the cold plasma
stream. The condition for the selective heating of the
target component is given by

(1)∆ω1/2 ! 
∆m
m

--------ωc,

1

2

3

4

5

6

7

Plasma

Vz

To RF
generator

stream

Fig. 1. ICR device.
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where ∆ω1/2 is the half-width of the resonant ion energy
curve and ωc is the cyclotron frequency, which varies in
proportion to the intensity Bz of the longitudinal mag-
netic field.

It is clear from this formula that the mass resolution
increases in high magnetic fields, which may decrease
the gyroradius of the target ions below the critical value
(even if their energy prevents material scattering at the
collector) specified by the design and manufacturing
requirements. It is known that the screen and plates
must be cooled and cannot be too small or too thin. At
the same time, the optimal plate spacing d, which
equals about two gyroradii Rg of hot ions (Fig. 2),
decreases with increasing magnetic field intensity. That
is why the screen losses of the material grow at strong
magnetic fields. Also, in high magnetic fields, the pitch
L of the helical ion trajectory becomes small (as follows
from Fig. 2, L ≈ VzTc, where Vz is the average longitu-
dinal ion velocity and Tc is the cyclotron gyration
period, which is inversely proportional to the magnetic
field intensity) and the associated decrease in the longi-
tudinal size of the deposition area may cause local ther-
mal overloads and rapid accumulation of the material
on the front edge of the collector plate. This will
adversely affect the collection process.

To reduce the above effects and thus improve the
device efficiency, it has been proposed that the collector
be placed near the end face of the ICR device, where the
magnetic field is weaker [7, 8]. In this case, electromag-
netic forces appearing in the intermediate region of the
decaying field convert the transverse energy of the ions
into longitudinal energy and the gyroradius of the par-
ticles increases, tending to conserve the adiabatic
invariant. Because of this effect, the plate spacing and
the screen size can be increased, thereby making it pos-
sible to produce cooled collector plates and front
screens of optimal size.

Target ions, which are accelerated in the transverse
direction, acquire a much higher energy in this process
than the weakly heated component. The pitch of the
helical trajectory of the hot ions becomes significantly
larger than for the cold ion trajectory, causing the non-
target component to deposit largely on the front part of
the collector plate and the hot component, over a much
wider area. This additionally improves the longitudinal
separation on the collector plate. Moreover, in this case,
the material deposits more uniformly along the collec-
tor; as a result, the deposition cycle can last for a longer
time without interrupting the separation process.

Consider a magnetic field varying in only two direc-
tions (refer to Fig. 2, where z is the direction along the
plasma stream and the y coordinate is perpendicular to
the plates). Let the collector flat plates be placed in the
region of the weak uniform field immediately behind
the region where the field declines. Unlike [7, 8], we
will study the effect of the front screen and repulsive
collector potential, as well as the axial variation of the
plasma density. Since the magnetic field is assumed to
TECHNICAL PHYSICS      Vol. 48      No. 1      2003
be constant over the collector, we can use the early
technique for simulating the separation of lithium iso-
topes [9–11] when the collector is placed as usual. In
this technique, the isotope fluxes are calculated by inte-
grating the flux density over the admissible range of
transverse and longitudinal ion velocities (V⊥ , Vz) and
over admissible coordinates of their guiding centers y0
before the collector plate with regard to the known
velocity distribution function f(V⊥ , Vz) (for details, see
[10, 11]):

(2)

We will apply such an approach to the case of sepa-
rating a 6Li–7Li isotope mixture. Let the collector be
placed in the region of the weak uniform field with a
magnetic induction B1. To create such a magnetic field
configuration at the end of the magnetic system, special
magnetic coils must be used. We introduce the field
attenuation coefficient R = B0/B1, where B0 is the mag-
netic induction in the heating zone. If this parameter is
close to unity, the implementation of the magnetic sys-
tem is rather easy. As the initial parameters of the 6Li–
7Li isotope mixture, we take the transverse and longitu-
dinal energies of ions of the sixth and seventh isotopes
after passage through the region of selective accelera-
tion of the target isotope 6Li: 6W⊥ 0 = 40 eV, 6W||0 =
10 eV, 7W⊥ 0 = 5 eV, and 7W||0 = 10 eV [11].

Due to the conservation of the adiabatic invariant
[12], the final ion energies can be calculated as

Let R = 1.2. Then, the ion energies in the region of
the weak magnetic field are 6W⊥  ≅  33 eV, 6W|| ≅  17 eV,
7W⊥  ≅  4 eV, and 7W|| ≅  11 eV.

In what follows, these quantities will be referred to
as the effective temperatures of the components.

j f ωcV ⊥ V ⊥ Vz y0.ddd∫=

W6
⊥ W6

⊥ 0/R, W6
|| W6

⊥ 0 W6
||0+( ) W6

⊥ ,–= =

W7
⊥ W7

⊥ 0/R, W7
|| W7

⊥ 0 W7
||0+( ) W7

⊥ .–= =

U

d ~ 2Rg

z

y

2a

L ~ VzTc

1 2

Vz, Bz

Fig. 2. Scaled-up fragment of the collector: (1) front screen
and (2) deposition area (a is the screen height and Rg is the
gyroradius of hot ions).
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First, let us evaluate the ion fluxes onto a collector
plate and the concentration of the target isotope (6Li) as
a function of the longitudinal coordinate for the zero
repulsive potential. Following [9], we ignore electro-
static field distortions caused in the plasma by ion col-
lection. Let the ion transverse velocity distributions be
Maxwellian with different effective temperatures T⊥ 6
and T⊥ 7 for the sixth and seventh lithium isotopes,
respectively. Assume first that the longitudinal veloci-
ties are described by the shifted semi-Maxwellian dis-
tribution. In this case, there are no particles moving in
the backward direction toward the plasma source and
we obtain the following normalized complete distribu-
tion function for particles of any sort K:

where Vz ≥ V0K, nK is the particle density, mK is the par-
ticle mass, and V0K is the addition to the longitudinal
velocity due to the transverse-to-longitudinal energy
conversion.

The longitudinal velocity distribution function can
then be written as

(3)

Let us define the concentration of the component of
the first sort as the ratio of its density n1 to the total den-
sity (n1 + n2) of the mixture. Then, the concentration C
of the material deposited on the collector can be deter-
mined from the relationship

(4)

where Cf is the concentration in the stream in front of
the collector, JK = jK/j0 are the dimensionless transverse
ion fluxes toward the collector, and j0 =
2nK(2kT⊥ K/mK)1/2π–3/2.

In the formula for j0, nK are the component densities
in the region before the collector. They may differ from
the corresponding values nK0 before the region of mag-
netic field attenuation. Let us take into account that the
total longitudinal particle flux is constant along the axis
of the system. The ion density behind the acceleration
region must then decrease both because the cross sec-
tion of the plasma filament increases (because of the
decrease in the magnetic induction) and because the

FK 2nK mK/2πkT ⊥ K( ) mK/2πkT ||K( )1/2
=

×
mK

2k
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V ⊥
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,=
average longitudinal stream velocity grows. The varia-
tion in the ion density is then expressed as

(5)

where

The concentration Cf of the target isotope in the
stream before the collector is

where C0 is the concentration in the starting product.
According to [10], the expression for JK takes the

form

(6)

where

a is the height of the front screen, ωcK is the cyclotron
frequency of ions of the Kth sort, z is the longitudinal
coordinate (measured in millimeters), and X0K = a0K – 1.
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Using formulas (3)–(6) and numerically integrating
over all allowable velocities and coordinates of the par-
ticle’s guiding center near the front screen, we arrive at
the concentration of the target isotope as a function of
the z coordinate (in millimeters). The coordinate is
reckoned from the front edge of the collector plate. Fig-
ure 3 (curves 1–4) plots the concentration C of the 6Li
isotope versus z coordinate for the front screen heights
a = 0, 1, 2, and 3 mm, respectively. The dashed line
shows the z dependence of the concentration at R =
B0/B1 = 1 and a = 0. As follows from these results, with
the collector placed in the region of the weak magnetic
field, the degree of separation increases significantly. It
is also seen that the ion energy conversion greatly
extends the product deposition area on the collector
plates. This must reduce the thermal load on the collec-
tor and decrease the growth rate of the thickness of the
product deposited on the front part of the collector
plate.

Let us evaluate the separation power per unit area of
the collector plate [7]:

(7)

where τ0 is the flux per unit area of the collector plate
and

is the coefficient of mixture separation with respect to
the initial composition.

Solid lines 1–4 in Fig. 4 plot the dimensionless sep-
aration power

(8)

versus z coordinate for the front screen height of a =
(1) 0, (2) 1, (3) 2, and (4) 3 mm. The dashed lines show
the separation power as a function of z at R = B0/B1 = 1
and a = 0. The significant increase in the separation
power that is associated with the use of the weak field
region is observed. Note that an increase in the height
of the screen lowers the separation power for all z.

Now we evaluate the effect of the additional accel-
eration of ions when a positive repulsive potential U is
applied to the collector plate. In this case, the expres-
sion for the flux JK in the absence of the front screen
takes the form

(9)
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where αK = bKz/X,  = eU/kT⊥ K, and A1 and A2, unlike
formula (6), are defined as

Figure 5 shows the concentration of the product
deposited on the plate versus longitudinal coordinate
for different repulsive potentials U. The degree of sep-
aration increases fairly rapidly with the repulsive

+ X Y
2

UK*–( )1/2
Y αK/2( )cos+[ ] YT X Y,( ) Y ,d
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∞
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Fig. 3. Mole concentration C(z) of 6Li along the z coordi-
nate for the shifted semi-Maxwellian distribution of the lon-
gitudinal velocity.
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Fig. 4. Nondimensional separation power along the coordi-
nate z for front screen half-heights a = (1) 0, (2) 1, (3) 2, and
(4) 3 mm.
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potential and the longitudinal coordinate z. Figure 6
shows the concentration averaged over a distance of
30 mm, , versus repulsive potential U = 30 V.

Finally, let us evaluate the effect of the shape of the
distribution function on the separation characteristics
of the hot particle collector for the zero repulsive poten-
tial. Above, we assumed that the transverse velocity
distribution is a shifted Maxwell function (Eq. (3)).
Below, we assume that the transverse velocity distribu-
tion has the model form

(10)

C

f K* Vz( ) m
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mVz
2
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-------------- 
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Fig. 5. Deposit concentration on the plate along the z coor-
dinate at repulsive potentials U = 5, 10, and 20 V.
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Fig. 7. Dimensionless flux of 6Li ions, j/j0, toward the col-
lector plate versus longitudinal coordinate z for different
transverse ion velocity distributions at R = 1 and 1.2 with
a = 0.
A characteristic feature of this function is that,
unlike function (3), it allows for the presence of parti-
cles with low longitudinal velocities. In this case, the
expression for JK becomes

JK πX X 2aK* bKz/X( )DKYT X Y,( ) Ydcot
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Fig. 6. Concentration averaged over a distance of 30 mm,
, versus effective potential U.C
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Fig. 8. Concentration of 6Li versus coordinate z at a = (1) 0,
(2) 1, (3) 2, and (4) 3 mm for the model longitudinal veloc-
ity distribution f *(Vz). The dashed line refers to the distri-
bution function f (Vz) given by (3).
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Figure 7 plots the dimensionless flux of 6Li ions
onto the collector plates versus z coordinate for the field
attenuation coefficient R = 1 and 1.2 without the screen
(solid curves). The dashed line shows the same depen-
dence for distribution function (3). First, as could be
expected, the presence of the acceleration region
extends the deposition area in the longitudinal direc-
tion. Second, distribution function (10), which assumes
the presence of slow particles in the plasma stream, pro-
vides a more favorable distribution of the deposit along
the collector plate length.

In Fig. 8, the solid lines depict the concentration C
of the 6Li isotope as a function of the longitudinal coor-
dinate for different heights a of the front screen at R =
1.2. The dashed line shows the same dependence for
distribution function (3) at a = 3 mm. Unlike distribu-
tion (3), at short distances z from the plate’s edge, the
concentration increases with the screen height. This is
explained by the decrease in the transverse flux of the
target component onto the collector plate near the
screen in the case of model distribution (10).

CONCLUSION
The separation characteristics of the hot ion collec-

tor placed in the region of the weak magnetic field in an
ICR device are calculated. It is shown that the longitu-
dinal acceleration of transversely heated particles in the
region of the nonuniform magnetic field must increase
both the degree of separation and separation power and
also expand the product deposition area on the collector
plates. The latter effect reduces the thermal load on the
collector and decreases the growth rate of the deposit
thickness on the front part of the collector plate, thus
extending the operating time without replacing the col-
lector.

The concentration of the deposit on the plate is stud-
ied as a function of the longitudinal coordinate at differ-
ent repulsive potentials. The use of a repulsive potential
is efficient when it is necessary to obtain the high con-

+ πX X Y aK*– aK* bKz/X( )DKcot+[ ]YT X Y,( ) Y .d

A2

∞

∫d

XK
*

2XK
*

∫
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centration of the target isotope. The effect of different
longitudinal particle velocity distributions on the sepa-
ration properties of the collector is estimated.
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Abstract—A general condition providing the unambiguous reconstruction of an azimuthal muon track, which
is necessary in the design of both temporal and amplitude detectors, is found analytically. Two designs of tem-
poral Cerenkov detectors that allow one (unlike conventional strings of detectors) to recover all the parameters
of the muon track and admit the partition of the obtained set of equations into two independent sets of lower
dimensions are proposed. Optimal algorithms for calculating the muon track parameters are found with this
approach. One of the designs proposed allows for an analytical solution to the set of equations. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

As has been shown in [1], the use of time differences
between Cerenkov radiation signals coming from dif-
ferent modules of a string of detectors improves the
accuracy of determination of the muon track parame-
ters by an order of magnitude compared with that pro-
vided by the amplitude analysis method [2, 3]. How-
ever, such a vertical string of detector modules does not
allow one to reconstruct the muon track [1, 2]. The two
designs of Cerenkov detectors that are proposed in this
paper are free of this disadvantage. The more symmet-
ric design (design A) consists of twelve modules placed
in the vertices of four identical equilateral triangles that
have parallel planes and sides and are spaced vertically
at the same distance H. This design allows for an ana-
lytical solution to the set of equations for the track
parameters obtained in this work. The less symmetric
design B requires the use of numerical methods to solve
this set of equations.

A general condition providing the unambiguous
reconstruction of an azimuthal muon track that is vital
for designing both temporal and amplitude detectors
was found. It turned out that the projections of at least
three detector modules onto the horizontal plane must
not belong to the same straight line.

As in the case of a string [1], the problem of recov-
ering the coordinates of a relativistic muon from its
Cerenkov radiation with the detectors under consider-
ation is solved under the following assumptions: in the
region where the Cerenkov radiation is detected, the
muon track is a straight line; the time resolution of the
detectors is independent of the signal amplitudes; and
the detector modules are considered as mathematical
points.
1063-7842/03/4801- $24.00 © 20096
A SET OF EQUATIONS
FOR THE DETERMINATION OF THE MUON 

TRACK PARAMETERS

Let us place the coordinate origin at the center of the
top triangle of the detector modules and direct the z axis
vertically. A muon track can be described by four inde-
pendent parameters: θ and φ are, respectively, the
zenith and azimuth angles of the directing vector a of
the track and x1 and y1, the two coordinates of the point
of intersection between the muon track and the plane
z = 0. Then, the shortest distance from the track to an ith
detector is given by

(1)

Here, , , and  are the Cartesian coordinates of

the radius vector  specifying the position of an ith
photoelectric multiplier (PEM). It is worth noting that
expression (1) is nonlinear with respect to the desired
parameters θ, φ, x1, and y1. Note also that the substitu-

tion φ  kπ +  ± (φ – ) does not change li (here,

k = 0, 1 and  is the polar angle of the vector with the

Cartesian coordinates (x1 –  and y1 – )). This
means that such tracks are fundamentally indistinguish-
able in both temporal and amplitude detectors, since the
parameter recovery algorithm in an amplitude detector
is also based on expression (1). From this symmetry, it
follows that, in order to unambiguously recover the
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parameter φ of a muon track, any detector must have at

least three modules whose projections onto the plane 
= 0 do not satisfy two equations of a straight line (or
one equation with an arbitrary angular coefficient)

(2)

The symmetry noted in [3] is a particular case of the

general symmetry found here: k = 0 and  = π/4.

The symmetry φ  π – φ of the solutions to the
equations for a muon track found in [1] for a string is
also a particular case at k = 0.

As is easily seen, the time of arrival of the Cerenkov
radiation from the track at an ith PEM is

(3)

where

(4)

(5)

c is the velocity of light in a vacuum, and n is the refrac-
tive index of the medium.

Correspondingly, the difference between the time
instants the Cerenkov radiation arrives at ith and jth
detectors is

(6)

where the vectors in the parentheses mean the scalar
product.

The variables tij are measurable and depend on the
muon track parameters θ, φ, x1, and y1. Since the track
equation has four independent parameters, they can be
determined with at least four measured time shifts, i.e.,
the detector has to incorporate at least five PEMs. It is
convenient to rearrange (6) into the form

(7)

where
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ANALYTICAL DETERMINATION OF THE MUON 
TRACK PARAMETERS FOR DESIGN A

In this case, the Cartesian coordinates of modules
have the form

(13)

where D is the detector diameter and INT(C), the inte-
ger part of the argument C.

Linearly combining Eqs. (7), one can eliminate the
variables x1 and y1 and form a set of two equations in
the parameters θ and φ alone:

(14)

where

(15)

(16)

(17)

(18)

(19)

and  involves the following terms:

(20)

In order to analytically determine the angle θ, it is
convenient to use one of the three strings in our con-
struction. For example, for the second string at t11, 2 ≠
3t52, we have from (7)
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where

(22)

(23)

(24)

(25)

If t11, 2 = 3t52,

(26)

The multiple-valuedness of cosθ found from
Eqs. (21) and (26) is easily eliminated by finding two
other values of cosθ with another string and choosing
two coinciding values. When θ is determined, set (14)
will turn into a set of two linear equations in two
unknown variables, cosφ and sinφ. This makes it possi-
ble to calculate these variables by the Cramer formula.
Thus, the angle φ can be found uniquely.

Then, in order to determine the parameters x1 and y1
of the muon track, we choose any four equations from
(7). For instance, we take i(j) = 2(3) and 4(10) and pair-
wise eliminate l1 from these equations. Eventually, we
arrive at the set of two linear equations in x1 and y1

(27)

where

(28)

(29)

DETERMINATION OF THE MUON TRACK 
PARAMETERS FOR DESIGN B

Design B is less symmetric; nevertheless, the
parameters x1 and y1 can be eliminated from Eq. (7) in
this case too. The coordinates of the detector modules
are

(30)

The desired set of equations in parameters θ and φ
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somewhat differs from set (14):

(31)

Here, T j, P j, Rtj, , and  have the same defini-
tions (14)–(18) and

(32)

(33)

(34)

(35)

however, in (15)–(19) and (32)–(35),  means

(36)

Note that this set of equations is valid only if

(37)

is satisfied.
Since design B does not involve a string, the set of

equations in the parameters θ and φ should be solved
numerically [4]. This requires a considerably higher
computational resource than in the case of design A.
The multiple-valuedness of the sign of cosφ is easily
eliminated by calculating all the differences between
the times of arrival of the Cerenkov radiation with (6).
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With θ and φ determined, the parameters x1 and y1 of the
muon track can be found in the same way as for design A.

CONCLUSION

It is found analytically that, in order to uniquely
determine the azimuthal angle of the muon track, the

coordinates  and  of at least three detector mod-
ules must not satisfy Eqs. (2) of straight lines. This
statement is valid for both temporal and amplitude
detectors.

As is shown, detectors of both types are designed in
such a way that the set of equations in parameters θ, φ,
x1, and y1 can be divided into two independent lower
dimension systems. One is used to find θ and φ; the
other, to find x1 and y1. In this sense, these designs are
optimal for determining the parameters of the muon
track. Note that, in contrast to a conventional string, the
detector designs proposed make it possible to uniquely
recover all the parameters of the muon track. The more
symmetric design A seems to be preferable from the
computational standpoint, since it allows for an analyt-
ical solution to the obtained set of equations.

xi
0 yi

0
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As for the stability of the solution to the equations
found here against temporal fluctuations of the Ceren-
kov radiation (the relevant analysis was conducted in
[1] by the standard technique), from general consider-
ations it follows that the solution for a three-dimen-
sional structure of detectors is more stable than that for
a one-dimensional string.
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