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Abstract—The structure, electrical resistivity, thermopower, and magnetic susceptibility of titanium diselenide
intercalated with nickel (NxTiSe2) are studied systematically in the nickel concentration range x = 0–0.5. In
accordance with a model proposed earlier, strong hybridization of the Ni3d/Ti3d states is observed, giving rise
to suppression of the magnetic moment because of delocalization of the nickel d electrons. It is shown that the
strain caused by the Ni3d/Ti3d hybridization does not change the local coordination of a titanium atom. © 2004
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It was shown in [1, 2] that intercalation of titanium
diselenide with transition and noble metals brings
about the formation of an impurity band of hybridized
M3d/Ti3d states (M is an intercalated metal). This situ-
ation differs radically from the well-studied case of
intercalation with alkali metals, where the electrons
introduced with an intercalant remain free (metal with
a variable Fermi level) [3, 4]. It has been established
that this difference is due to the difference in the ioniza-
tion potential of intercalated impurities. Hybridization
of the valence states of an impurity with the 3d states of
titanium occurs in all cases; however, if the ionization
potential of an impurity is lower than a critical value,
the hybridized states are significantly higher than the
Fermi level and have no effect on the properties of the
material [5]. If the ionization potential of an impurity
exceeds the critical value, the crystal lattice undergoes
compression along the normal to the plane of basal
TiSe2 layers [5], the density of free charge carriers
decreases or vanishes [1], the magnetic moment of the
impurity is suppressed [6], etc. These experimental
observations can be explained in terms of Ti–M–Ti
covalent centers, which act as free-electron traps and
cause deformation of the host lattice [5]. It has been
found that the degree of localization of conduction
electrons on these centers and the degree of lattice
deformation are proportional to each other and deter-
mined by the position of the impurity band with respect
to the Fermi level [1].

The NixTiSe2 system was first synthesized in the
1970s [7]. The concentration dependences of the unit
cell parameters presented in [7] show that the compres-
sion strain along the normal to the TiSe2 layer plane is
the highest among all transition-metal compounds stud-
ied to date. Therefore, one might expect that this mate-
1063-7834/04/4607- $26.00 © 21183
rial will exhibit all properties characteristic of interca-
lation compounds with an impurity band lying below
the Fermi level. However, the electrical and magnetic
properties of NixTiSe2 and its fine structural features
(the Ni atom position, the effect of intercalation on the
positions of host atoms, etc.) remain poorly studied. In
this work, we performed a detailed study of the atomic
structure, resistivity, thermopower, and magnetic sus-
ceptibility of NixTiSe2.

2. EXPERIMENTAL

NixTiSe2 samples (0 < x < 0.5) were obtained from
the following elements using the conventional method
of synthesis in an ampoule: titanium (purified by iodide
distillation) of 99.99% purity (Aldrich 30.581-2),
OSCh-19-5-grade selenium of 99.999% purity, and
electrolytic nickel of 99.95% purity. First, titanium dis-
elenide was sintered at 900°C over one week. Then, the
material obtained was ground and, after mixing with
the corresponding amount of powdered nickel, was
pressed and again annealed at 800°C over one week.
The sintering temperature was taken lower than the
temperature of synthesis of the host compound in order
to prevent the substitution of nickel for titanium. Since
the material obtained after this annealing was inhomo-
geneous, it was again ground, pressed, and subjected to
annealing. After this procedure, the material generally
became sufficiently homogeneous. In [7], it was shown
that several different superstructures can form in the
material; however, the thermal history of the samples
was not detailed. In order to prevent the influence of the
ordering of nickel on the physical properties of the
material, the samples were quenched from the temper-
ature of the last homogenizing annealing (800°C).
004 MAIK “Nauka/Interperiodica”
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X-ray diffraction studies were performed on powder
samples using a DRON-4-13 diffractometer (plane
graphite monochromator, CoKα radiation, step 0.01°,
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Fig. 1. Concentration dependences of the unit cell parame-
ters a0 and c0 of NixTiSe2. Filled symbols are data from this
work, and open symbols, crosses, and asterisks are data
from [7], where the results obtained at two different labora-
tories are summarized. (The differences between the results
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Fig. 3. Dependences of (1) the van der Waals gap width and
(2) the Se–Ti–Se layer width on the nickel content in
NixTiSe2.
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angle range 14°–80°). The structural characteristics of
NixTiSe2 were calculated using the method of full-pro-
file refinement of x-ray diffraction patterns (the GSAS
software package [8]). The lattice parameters calcu-
lated by us agree with the available literature data [7],
which indicates the high quality of the material studied
by us. The magnetic susceptibility was measured with
a SQUID magnetometer (Quantum Design, USA). The
resistivity was measured on pressed samples using the
conventional four-probe method.

3. RESULTS AND DISCUSSION

The results of full-profile refinement show that the
material has the same structure (CdI2) and belongs to

the same space group ( ) as the original host lat-
tice up to the intercalant content x = 0.33 without nickel
ordering. The coordinates of the unit cell basis are
Ti (0, 0, 0), Se (1/3, 2/3, z), and Ni (0, 0, 1/2). The best
fit to the experimental data is obtained in the case where
the intercalated Ni atoms are assumed to be in the octa-
hedral positions in the van der Waals gap.

As seen from Fig. 1, nickel intercalation decreases
the lattice parameter along the normal to the basal plane
(c0) up to the intercalant concentration x = 0.25. This
behavior is typical of titanium chalcogenides interca-
lated with transition metals [1] and is commonly
explained by the formation of covalent Ti–Ni–Ti
bridges, which pull the host lattice layers closer
together. These centers also act as free-carrier traps and
can be considered covalent polarons [9]. ARPES stud-
ies of the analogous Ni1/3TiSe2 system have shown that
the formation of such centers is accompanied by the
appearance of a dispersionless band approximately
1 eV below the Fermi level [10]. According to [11], an
impurity polaron band has similar properties. Since this
band is oriented along the M–Γ direction in the Bril-
louin zone, it was concluded in [10] that this band is
formed by the Ni3dzz/Ti3dzz hybridized states.

As shown in [5], the amount of strain caused by the
formation of the centers mentioned above is determined
(for a given host lattice) by the ionization potential of
the intercalant. The dimension of the deformed Ti–Ni–
Ti cluster along the normal to the basal plane as calcu-
lated from the c0(x) dependence is characterized by the
lattice parameter c0 = 5.631 Å, which is close to the
value c0 = 5.611 Å calculated in [5] from the ionization
potential of the Ni2+ ion. This discrepancy can be due to
the screening effect not being fully taken into account.

The significant changes in the lattice parameters of
TiSe2 caused by nickel intercalation (a decrease in c0
and a simultaneous increase in a0) lead to a change in
the ratio c0/a0, which characterizes the distortion of the
chalcogen octahedron surrounding a titanium atom [12]
(Fig. 2). From the concentration dependences of the
Se–Ti–Se layer thickness rL and the van der Waals gap
width rG shown in Fig. 3, it follows, however, that the
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lattice deformation along the normal to the basal plane
is due solely to a decrease in the width of the van der
Waals gap. If the deformation is of polaron nature, this
behavior is quite natural and also indicates that the geo-
metric characteristics of the local surrounding of a Ti
atom remain unchanged. The latter fact is very impor-
tant, because the shape of the chalcogen octahedron
determines the mutual arrangement of the Ti3d bands
[13]. If the octahedron is regular in shape, the Ti3dzz,
Ti3dyy, and Ti3dxx – yy orbitals forming the conduction
band bottom are degenerate in energy. Extension of the
octahedron along the c axis causes the Ti3dzz orbital to
be lower in energy than the orbitals lying in the (x, y)
plane, and compression of the octahedron along the c
axis has the opposite effect. The decrease in c0 and
increase in a0 suggest that the chalcogen octahedron is
compressed along the c axis and that the Ti3dzz/Ni3dzz

hybridization becomes weaker, thereby causing
polarons to disappear gradually. On the other hand, the
constancy of the coordination of Se atoms to titanium
indicates that the interaction between the Ti and Ni sub-
lattices does not change in character over the entire
concentration range studied. Therefore, an increase in
the nickel content causes the polaron concentration to
increase but does not change the polaron charac-
teristics.

The conductivity of NixTiSe2 is close in magnitude
to that observed in the original TiSe2 but is different
from that of other materials in which polarons form.
The temperature dependence of resistivity is metallic in
character for all compositions studied (Fig. 4); i.e., the
mobility of charge carriers is fairly high. This result
contradicts the conclusion (drawn from the x-ray data)
that the conduction band is associated with polarons.
For such strong deformation of the lattice, a much
higher degree of localization of charge carriers could be
expected. It is likely that the conduction band is formed
not only by the dzz orbital but also by other Ni orbitals
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Fig. 4. Temperature dependences of the resistivity of
NixTiSe2 for different values of x: (1) 0.1, (2) 0.2, (3) 0.25,
(4) 0.33, and (5) 0.5.
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hybridized with Ti and Se orbitals. In this case, the elec-
trons are less localized and have a higher mobility.

As seen from Fig. 4, the resistivity is maximal for
Ni0.25TiSe2. It should be noted that, in contrast to other
intercalation compounds MxTiSe2 (M = Fe, Co, Cr, Mn,
Ag), the conductivity does not increase with the inter-
calant content in the case of intercalation with nickel.
Therefore, the effect of nickel on the conductivity
reduces to a change in the mobility of carriers rather
than in their density. As shown in [5], the composition
with x = 0.25 corresponds to the percolation threshold
over titanium atoms coordinated to the impurity (site
percolation problem for a triangular lattice with nearest
neighbor interaction). This result correlates with the
discontinuity in slope observed in the concentration
dependence of c0 at nickel content x = 0.25 (Fig. 1). It
is likely that at x < 0.25 the conductivity is associated
with the sublattice of sites whose nearest environment
does not contain nickel atoms, whereas at x > 0.25 it is
associated with the sublattice of titanium atoms coordi-
nated to nickel. The point x = 0.25 corresponds to the
minimum connectivity of both sublattices.

For samples with different intercalant content, the
thermopower changes sign as a function of temperature
(Fig. 5), which indicates a changeover from p-type to
n-type conductivity with heating. The temperature at
which this changeover occurs increases monotonically
with the nickel content. Therefore, an increase in the
intercalant content causes a monotonic change in the
ratio between the electron and hole densities, whereas
the anomaly observed in the concentration dependence
of conductivity is associated with their mobilities. The
increase in the contribution from holes to charge trans-
port with increasing intercalant concentration can be
due to the increasing localization of electrons in the
Ti3dzz/Ni3d hybridized band.

The magnetic susceptibility χ of NixTiSe2 (Fig. 6) is
significantly lower than that of analogous compounds
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Fig. 5. Temperature dependences of the thermopower of
NixTiSe2 for different values of x: (1) 0.2, (2) 0.25, (3) 0.33,
and (4) 0.5.
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with Cr, Mn, Fe, and Co [14], and its temperature
dependence is very weak and cannot be described by
the commonly used expression

(1)

where the first term (χ0) is the temperature-independent
diamagnetic contribution from the ionic cores and the
Pauli paramagnetic contribution from the conduction
electrons and the second term is the Curie–Weiss con-
tribution from localized magnetic moments. Above
80 K, the magnetic susceptibility is observed to
increase with heating. Since the Curie–Weiss contribu-
tion does not exhibit such behavior, the main contribu-
tion can be due only to the conduction electrons. The
temperature dependence of this contribution to the
magnetic susceptibility is described by [15]

(2)
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Fig. 6. Temperature dependences of the magnetic suscepti-
bility of NixTiSe2 for different values of x: (1) 0.1, (2) 0.25,
(3) 0.33, and (4) 0.5.

Table 1.  Parameters for calculating the magnetic suscepti-
bility from Eqs. (1) and (2)

Parameter
x

0.1 0.25 0.33 0.5

χ0 × 10–7, emu/g Oe 1.134 0.285 –0.2015 1.935

C × 10–6, emu K/g Oe 5.852 3.789 6.759 7.184

P × 10–12, emu/g Oe K2 0.487 1.168 1.281 0.978

χP × 10–7, emu/g Oe 6.134 5.285 4.799 6.935

µeff, µB 0.31 0.17 0.19 0.16

Note: , χP = χ0 + χD,

χD = –5 × 10–7 emu/g Oe.

P µB
2

g EF( ) g'
g
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where g, g', and g'' are the density of states at the Fermi
level and its first and second derivatives with respect to
energy, respectively. However, numerical calculation
showed that Eq. (2) likewise cannot describe the tem-
perature dependence of χ. We succeeded in describing
this dependence with the sum of Eqs. (1) and (2). The
corresponding parameters are listed in Table 1. It is
interesting that the effective Ni magnetic moments are
small, which agrees with the available data for x = 0.1
and 0.2 [16]. Such suppression of the magnetic moment
was also observed in the CoxTiSe2 and CrxTiSe2 sys-
tems [6]. Among all analogous intercalated materials,
NixTiSe2 undergoes the maximum compression along
the c axis and, accordingly, shows the maximum differ-
ence between the experimentally observed magnetic
moment and the magnetic moment of the free ion.
Another specific feature is the large negative quadratic
contribution, which comes either from the strong tem-
perature dependence of the Fermi level position or from
the strong energy dependence of the density of states at
the Fermi level. This feature is observed over a wide
concentration range; therefore, it is unlikely that the
significant change in the electron density produced by
the intercalant does not cause the Fermi level to leave
the region of the strong energy dependence of the den-
sity of states. It follows that the quadratic contribution
to the temperature dependence of χ is due to the strong
temperature dependence of the Fermi level. Such a
strong dependence is likely if the charge carriers are
polarons. Indeed, a change in temperature causes a
change in the carrier polarization in this case, thereby
varying the density of states at the Fermi level and the
position of the Fermi level [11].

It should be noted that Ni0.5TiSe2 differs in terms of
its properties from other NixTiSe2 compounds. In con-
trast to compositions with x < 0.5, this compound
belongs to the monoclinic crystal system and is charac-
terized by the I2/m space group, Z = 4, and the diver-
gence factor Rw = 6% (Table 2), which is the result of

the  × a0 × 2c0 ordering of nickel in van der Waals
gaps. The nickel content x = 0.5 corresponds to the per-
colation threshold in the impurity sublattice. This cir-
cumstance, as well as the pure topological ordering of
the impurity in the van der Waals gaps, can be the rea-
son for the monoclinic distortions. The change in the
symmetry of the unit cell causes an increase in the mag-
netic susceptibility and conductivity, but the conductiv-
ity remains p-type in the entire temperature range cov-
ered. This conclusion is supported by the fact that the
thermopower does not change sign as the nickel content
reaches x = 0.5 and that the magnetic susceptibility is
virtually independent of temperature.

Thus, the coincidence of the percolation threshold in
the sublattice of titanium atoms coordinated to nickel
with the position of the anomaly in the concentration
dependences of the resistivity and lattice parameters
and the coincidence of the nickel ordering point with
the percolation threshold in the impurity atom sublat-
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Table 2.  Structural parameters of the Ni0.5TiSe2 compound

Ni0.5TiSe2 (CuKα) x y z U, Å2

a0, Å 6.161 (1) Ni (2/m) 0 0 0 0.12 (1)

b0, Å 3.567 (1) Ti (m) 0.0092 (2) 0 0.2504 (4) 0.05 (2)

c0, Å 11.836 (2) Se1 (m) 0.1643 (6) 1/2 –0.1218 (2) 0.07 (5)

β, deg 90.293 (3) Se2 (m) 0.3322 (6) 0 0.1184 (1) 0.02 (3)

Note: Thermal parameters U are calculated in the isotropic approximation.
tice suggest that the charge carriers are localized. This
conclusion correlates well with the observed suppres-
sion of the nickel magnetic moment. However, the car-
rier localization appears to be significantly different in
character from that observed in titanium diselenide
intercalated with other transition metals. This differ-
ence is likely due to the fact that the hybridized states
in which the conduction electrons are localized involve
many Ni3d orbitals.

ACKNOWLEDGMENTS

This study was supported by the Russian Founda-
tion for Basic Research (project nos. 01-03-32620, 01-
03-96502) and the federal program “Universities of
Russia” (project no. UR.01.01.005).

REFERENCES

1. A. Titov, S. Titova, M. Neumann, V. Pleschev, Yu. Yar-
moshenko, L. Krasavin, A. Dolgoshein, and A. Kuranov,
Mol. Cryst. Liq. Cryst. 311, 161 (1998).

2. A. A. Titov and A. V. Dolgoshein, Fiz. Tverd. Tela
(St. Petersburg) 40 (7), 1187 (1998) [Phys. Solid State
40, 1081 (1998)].

3. P. C. Klipstein, C. M. Pereira, and R. H. Friend, Philos.
Mag. B 56 (5), 531 (1987).

4. P. C. Klipstein and R. H. Friend, J. Phys. C: Solid State
Phys. 20 (26), 4169 (1987).

5. A. A. Titov, A. V. Dolgoshein, I. K. Bdikin, and
S. G. Titova, Fiz. Tverd. Tela (St. Petersburg) 42 (9),
1567 (2000) [Phys. Solid State 42, 1610 (2000)].
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
6. A. M. Titov, A. V. Kuranov, V. G. Pleschev, Yu. M. Yar-
moshenko, M. V. Yablonskikh, A. V. Postnikov, S. Plog-
mann, M. Neumann, A. V. Ezhov, and E. Z. Kurmaev,
Phys. Rev. B 63, 035106 (2001).

7. Y. Arnaud, M. Chevreton, A. Ahouanjiou, M. Danot, and
J. Rouxel, J. Solid State Chem. 18, 9 (1976).

8. A. C. Larson and R. B. von Dreele, LANSCE.MS-H805
(Los Alamos National Laboratory, Los Alamos, 1986),
NM 87545.

9. N. F. Mott and E. A. Davis, Electron Processes in Non-
Crystalline Materials, 2nd ed. (Clarendon, Oxford,
1979; Mir, Moscow, 1982).

10. T. Matsushita, S. Suga, and A. Kimura, Phys. Rev. B 60
(3), 1678 (1999).

11. A. S. Alexandrov and N. Mott, Polarons and Bipolarons
(World Sci., Singapore, 1995).

12. T. Hibma, Structural Aspects of Monovalent Cation
Intercalates of Layered Dichalcogenides (Academic,
London, 1982), p. 285.

13. W. V. Liang, in Proceedings of the NATO Advanced
Study Institute Physics and Chemistry of Electrons and
Ions in Condensed Matter, Cambridge, UK (Reidel, Dor-
drecht, 1984), p. 459.

14. A. V. Kuranov, V. G. Pleschev, A. N. Titov, N. V. Bara-
nov, and L. S. Krasavin, Fiz. Tverd. Tela (St. Petersburg)
42 (11), 2029 (2000) [Phys. Solid State 42, 2089
(2000)].

15. S. V. Vonsovskiœ, Magnetism (Nauka, Moscow, 1971;
Wiley, New York, 1974).

16. Y. Tazuke and T. Takeyama, J. Phys. Soc. Jpn. 66 (3), 827
(1997).

Translated by Yu. Epifanov



  

Physics of the Solid State, Vol. 46, No. 7, 2004, pp. 1188–1194. Translated from Fizika Tverdogo Tela, Vol. 46, No. 7, 2004, pp. 1158–1164.
Original Russian Text Copyright © 2004 by Isaev, Likhtenshtein, Vekilov, Smirnova.

                                                  

METALS 
AND SUPERCONDUCTORS

                     
Phonon Spectra of L12 Ni3Al and B2 NiAl: 
Ab Initio Calculations

É. I. Isaev*, A. I. Likhtenshtein**, Yu. Kh. Vekilov*, and E. A. Smirnova*
* Moscow State Institute of Steel and Alloys (Technological University), Leninskiœ pr. 4, Moscow, 119049 Russia

** Nijmegen Science Research Institute of Matter, University of Nijmegen, Nijmegen, 6525 ED Netherlands
Received September 5, 2003; in final form, November 21, 2003

Abstract—Phonon spectra and phonon density of states of intermetallic compounds Ni3Al and NiAl are stud-
ied using the ab initio linear-response method. The calculated phonon dispersion curves agree well with the
inelastic neutron scattering data available for the crystals under study. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nickel alloys have numerous applications in engi-
neering. For example, they are utilized as Invar (Fe–Ni)
alloys [1], shape-memory (Ti–Ni) alloys [2], and struc-
tural (Ni–Al) alloys [3]. Ni–Al alloys are also widely
used in the aircraft industry. Therefore, a lot of studies
have been performed on the mechanical [4] and ther-
modynamic [5] properties of Ni–Al alloys, including
ab initio studies of the influence of intrinsic point
defects on the thermodynamic properties of B2 NiAl
[6].

However, the lattice dynamics of Ni3Al and NiAl
has not been sufficiently studied. Among the publica-
tions on this subject, we may mention the experimental
studies carried out by Stassis et al. [7] and Mostoller
et al. [8], where the force constants calculated within
the Born–von Karman model involving three and four
nearest neighbors were used to interpret experimental
inelastic neutron scattering data. The phonon density of
states and vibrational entropy of ordered and disordered
Ni3Al alloys have been studied experimentally by Fultz
et al. [9] and theoretically by Althoff et al. [10]. Also,
the phonon spectra of NixAl1 – x alloys were studied in
[11–14] to explore the influence of alloy composition
on vibrational spectrum anomalies and their relation to
the martensitic transformations occurring in B2 Ni–Al
alloys. Zhao and Harmon [15] studied (in the frame-
work of the Varma–Weber model [16]) the Kohn anom-
aly in the B2 NiAl phonon spectrum in the Σ direction
and attributed this anomaly to both strong electron–
phonon interactions and Fermi surface nesting. The
same conclusion concerning the importance of the
Fermi surface nesting and acoustic phonon mode soft-
ening in martensitic transformations of B2 NiAl alloys
was drawn in a recent paper [17] from calculations of
the generalized susceptibilitybased on the energy spec-
trum obtained by the ab initio LMTO method.

Theoretical studies (including ab initio calculations)
of the phonon spectra of these compounds are lacking.
1063-7834/04/4607- $26.00 © 21188
In the present work, we perform ab initio calculations
of the phonon spectra of Ni3Al and NiAl alloys using
the linear response method and ultrasoft pseudopoten-
tials. The calculated phonon spectra and phonon den-
sity of states are in good agreement with the inelastic
neutron scattering data.

2. CALCULATION TECHNIQUE

The phonon spectra are calculated using the linear
response method [18–20]. Let us briefly describe the
main points of the theory (details of the method and its
application can be found in [21]). It was shown in [22,
23] that, in the harmonic approximation, the force con-
stants of a crystal are determined by the static linear
response of the electron subsystem. Calculations of the
force constants are based on the Hellmann–Feynman
theorem, which states that the derivative of the total
energy of the ground state of a system with respect to
an external variable is determined by the well-known
expression

(1)

where Vλ(r) is an external potential that acts on the elec-
tron subsystem and is a continuous function of the
parameter λ and n(r) is the electron density.

Expanding the right-hand side of Eq. (1) to second
order, we get

(2)

∂E
∂λ
------ n r( )

∂Vλ r( )
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----------------- r,d∫=
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Fig. 1. Calculated phonon spectra of (a) Al and (b) Ni along symmetry directions in the Brillouin zone. Dots are experimental data
from [31, 32].
where all derivatives are taken at λ = 0. Integrating
Eq. (2) and taking the second derivative with respect to
variables λi and λj, we can find that the matrix of force
constants Cαi, βj(R – R') consists of two parts, electronic
and ionic. Here, α and β are polarization directions;
i and j specify the positions of atoms in the elementary
cell, and R and R' are the positions of elementary cells
in space. Assuming λ = uαi(R), we get

(3)

where Ci are determined by the second derivative of the
Ewald sum. The electronic contribution to the matrix of
force constants is determined by the linear response of
the charge density and of the ionic potential to atomic
displacements and also by the second derivative of the
electron–ion interaction energy with respect to the dis-
placements of two ion sites:

Cα i βj, R R'–( ) Cα i βj,
i

R R'–( ) Cα i βj,
e

R R'–( ),+=
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(4)

The external potential Vi(r) in Eq. (4) is defined as the
sum of bare ionic pseudopotentials acting on electrons:

(5)

where the sum is over all atomic positions τi in the ele-
mentary cell.

For pseudopotentials, we used the ultrasoft pseudo-
potentials introduced by Vanderbilt [24], which were
derived in the Bessel function basis [25].

Cα i βj,
e

R R'–( ) ∂n r( )
∂uα i R( )
----------------

∂Vi r( )
∂uβj R'( )
--------------------∫=

+ n0 r( )
∂2

Vi r( )
∂uα i R( )∂uβj R'( )
--------------------------------------- dr.

Vi r( ) v i r R– τ i–( ),
R i,
∑=
4
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Comparison of the theoretical and experimental phonon spectra Al and Ni at the X(100), L , X(100), and Σ

points (L and T denote longitudinal and transverse vibration modes, respectively; frequencies are measured in terahertz)

Al Ni

theory [34] [35] [36] experiment theory experiment 
[32]

L(100) 9.95 9.72 9.51 9.53 9.67**, 9.69*** 8.57 8.55

T(100) 6.33 5.77 5.83 5.83 5.81**, 5.78*** 6.34 6.24

L 9.98 9.88 9.84 9.9**, 9.69*** 8.88 8.88

T 4.55 4.36 4.33 4.19**, *** 4.42 4.24

L 7.57 7.25 7.08** 6.7 6.54

T 4.49 4.55 4.14** 4.6 4.49

L 7.87 7.63

T2 6.32 6.15

T1 4.54 4.36

    * Our results.
  ** Data from [31].
*** Data from [37].
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Exchange-correlation effects were taken into
account using the generalized gradient approximation
with correction suggested by Perdew et al. [26]. Plane
waves with a maximum energy of 30 Ry were used as
the basis functions for electrons. When calculating the
matrix elements of the Hamiltonian of the system, we
took into account the Fourier components of the charge
density n(G) with energy up to 400 Ry. When integrat-
ing over the Brillouin zone, we used k points generated
by the Monkhorst–Pack method [27] and summation
over energy bands was performed using Gauss–Her-
mite functions of the first order [28] with a width of
0.025 Ry. A set of 20 × 20 × 20 k points was used to
integrate over the Brillouin zone for Al and Ni, and a set
of 16 × 16 × 16 k points was used for Ni3Al and NiAl.
To calculate the matrix of force constants and take the
inverse Fourier transform, we used a set of 8 × 8 × 8 q
points for Al and a set of 4 × 4 × 4 q points for all other
crystals studied. Experimental values of the unit cell
parameters were used for all calculations. Spin-polar-
ization calculations were also carried out for Ni and
Ni3Al.

All calculations were performed using the PWSCF
software package [29], except for the phonon density of
P

states, which was computed using the tetrahedron
method [30].1 

3. RESULTS AND DISCUSSION

To begin with, we calculated the phonon spectra of
pure elements, Ni (a = 3.52 Å) and Al (a = 4.05 Å), and
compared them with the experimental data on inelastic
neutron scattering for these crystals. Dispersion curves
computed for Al and Ni are presented in Figs. 1a and
1b, respectively. As can be seen from Fig. 1, the theo-
retical spectra are in good agreement with the experi-
mental data [31–33]. The table lists the phonon spectra
for Al and Ni calculated at several high-symmetry
points using various methods (in [34], the frozen-
phonon method was used). Experimental values at the
same points are also presented in the table for compar-
ison. Note that the linear response method [19, 20, 36]
gives very close results despite the fact that different
versions of it were used (Quong and Klein [36]
expressed first-order corrections to the charge density
in terms of the static response function using pseudopo-
tentials, while Savrasov [20] used a linear MT orbital

1 We developed a special computer program to integrate over the
Brillouin zone by the tetrahedron method.
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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basis to calculate the charge density linear response).
The phonon spectra of Al and Ni have no pronounced
features, which is shown by the absence of anomalies in
the structural and physical properties of these metals.
The calculated phonon densities of states of Al and Ni
(Figs. 2a, 2b, respectively) reproduce all existing fea-
tures of the spectra. Since both metals have fcc lattices,
these features are similar for them (in contrast to [35],
where some differences in the shape of the density of
states take place for metals with fcc structure (Al, Cu,
Pb)). These features are also verified from experimental
data for Ni [32] and by calculations of the density of
states based on the force constants, which were calcu-
lated in the Born–von Karman approximation [31, 32].

Next, we calculated the phonon spectra of Ni3Al and
NiAl using the experimental values of the lattice
parameters (3.56 Å for Ni3Al, 2.887 Å for NiAl). For
Ni3Al (Fig. 3a), there is good agreement with the exper-
imental spectra along the ΓX and ΓM directions [X =

, M =  both for acoustic and optical

branches]. The situation is more complicated for the ΓR

direction, R = ; the theoretically calculated and

experimental spectra coincide over the entire ΓR seg-
ment for the transverse acoustic modes and approxi-
mately to the middle of this segment for the longitudi-
nal acoustic modes. For the low optical branches, the
agreement between the theoretical and experimental
data becomes progressively poorer as the R point is
approached (the agreement is good for the upper
branches). This discordance may be due to anharmo-
nicity, which is not taken into account in the harmonic
approximation. There are also other reasons for this dis-
crepancy.

(1) Numerical instability. We found that, at this
point of the Brillouin zone, the calculated spectrum is
sensitive to the prescribed calculation accuracy. An
increase in the convergence parameter up to 10–12 Ry in
computing the matrix of force constants improves the
agreement between the spectra at this point (Fig. 3b).

(2) The quality of the pseudopotential used for
nickel (because this part of the vibrational spectra is
determined by it). However, this reason is unlikely, as
the spectrum of the pure nickel was reproduced very
well.

For NiAl, the agreement between the ab initio cal-
culations and the experimental spectra [8] is good along
all directions for which there are inelastic neutron scat-
tering data (Fig. 4). Unlike Ni3Al, the phonon spectrum
of NiAl contains several features. Softening of the lon-

gitudinal acoustic branch is observed at ΓR and

ΓM. Furthermore, there is softening of the transverse
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acoustic mode TA1 along the [110] direction [11, 13].
We also note that the TA mode significantly deviates
from linearity along the [111] direction (starting from

ΓR) and becomes concave downward. It is remark-

able that no softening of the phonon spectrum was
found in [8], where the force constants were fitted using
the Born–von Karman method for three and four near-
est neighbors. Also, for both intermetallic compounds,
the optical branches of the phonon spectrum are sepa-
rated due to the difference in mass (MNi/MAl ≈ 2); anal-
ysis of the eigenvalues shows that the upper optical
branches are related to the lighter, aluminum atoms.

The calculated phonon densities of states for Ni3Al
and NiAl are shown in Figs. 5a and 5b, respectively.
Comparison with the results of previous studies [7–9]
shows good agreement. In particular, the density-of-
states peak structure is reproduced very well for both
intermetallic compounds. The energy gap between the
acoustic and optical branches of NiAl (in fact, between
the phonon branches of Ni and Al atoms) equals
≈1.55 THz and is in good agreement with the value of
1.84 THz obtained by Mostoller et al. [8]. The analo-
gous gap in the density of states of Ni3Al is signifi-
cantly smaller (0.38 THz) and is almost half the value
obtained in [7, 9] (about 0.7 THz). In [10], this gap was

1
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Fig. 2. Calculated phonon density of states of (a) Al and
(b) Ni. The density-of-states curves are seen to be almost
identical in shape.
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Fig. 3. Phonon spectrum of the intermetallic compound Ni3Al. Dots are experimental data from [7].
found to be 1 THz. The discrepancy between the data
from [7, 9] and [10] is probably due to the fact that dif-
ferent methods were used to obtain the phonon disper-
sion curves (the Born–von Karman model with the
force constants fitted to the experimental spectrum was
used in [7, 9], and the embedded-atom method, in [10])
and to integrate over the Brillouin zone. It should be
noted that the phonon spectrum gap for Ni3Al cited by
Stassis et al. [7] was calculated using the force con-
stants rather than measured experimentally. In [7], the
difference between the calculated and measured lower
P

optical spectrum at the R point around 8 THz was about
0.5 THz, which explains the discrepancy between the
data on the density-of-states gap obtained in [7, 9] and
in this study. As can be seen from Fig. 3a, there is excel-
lent agreement between the spectra calculated by us
and the experimental spectra around 8 THz at the R
point.

The largest difference in the frequency distribution
function for NiAl (Fig. 5b), in contrast to [8], is found
around 8 THz, where there is no pronounced peak; fur-
thermore, another, almost flat section arises near 4 THz.
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Fig. 4. Phonon spectrum of the intermetallic compound NiAl. Dots are experimental data from [8].
This discrepancy is related to the fact that in [8] the
beginning of the optical part of the spectrum in the ΓM
direction is less dispersive than follows from our calcu-
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Fig. 5. Calculated phonon density of states of (a) Ni3Al and
(b) NiAl.
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lations. The almost flat region is probably due to the
zone symmetry near the M point.

4. CONCLUSIONS

In summary, the phonon spectra of L12 Ni3Al and B2
NiAl calculated in the present work reproduce well all
features of the phonon spectra of these intermetallic
compounds. Softening of the TA1 mode along the ΓM
direction has been found in NiAl. The appreciable dif-
ference between the theoretical and experimental dis-
persion curves found near the R point of the Brillouin
zone in Ni3Al is probably due to anharmonic effects,
which are not accounted for in the harmonic approxi-
mation.
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Abstract—A relation is established between the transport current flowing through the entire S1IS2WS3 layered
structure and the velocity of a fast vortex. The fast vortex exists when the Swihart velocity in the waveguide is
significantly higher than that in the Josephson junction. It is demonstrated that the main contribution to the
Lorentz force that induces the vortex motion is due to the current flowing through the waveguide and skin layers
of the adjacent superconductors. © 2004 MAIK “Nauka/Interperiodica”.
In this paper, we study the forced motion of a single
Josephson vortex in an S1IS2WS3 layered structure (S1,
S2, S3 are superconductors; I, W are nonsuperconduct-
ing layers). All layers are assumed to be parallel to the
yz plane and to be infinite in their plane. The outermost
superconducting layers S1 and S3 are semi-infinite and
extend to x = –∞ and +∞, respectively. The layer I is
proposed to be thin enough for Cooper pairs to tunnel.
On the contrary, the layer W is assumed to be relatively
thick, so that Cooper pairs tunneling through it can be
neglected. Hence, the structure under study can be con-
sidered a Josephson junction coupled to a planar
waveguide with superconducting walls.

Induced motion of a vortex in a Josephson junction
magnetically coupled to a waveguide can be realized in
different ways. One way is to pass a transport current
through the Josephson junction only. This condition
can be satisfied in practice if the Josephson junction is
planar [1] and the terminals of a dc current source are
connected to the superconducting electrodes S1 and S2.
This method was considered theoretically in [2, 3]. It
was demonstrated in [3] that the relation between the
vortex velocity and a current is determined by the ratio
between the Swihart velocities in the Josephson junc-
tion Vs and in the waveguide Vsw. According to [3], if
Vsw < Vs, then, in the presence of the waveguide, vorti-
ces cannot move at speeds close to the Swihart velocity
in the waveguide Vsw. If Vsw > Vs, induced motion of
vortices in the S1IS2WS3 structure is possible not only at
v  < Vs but also at velocities close to Vsw. In the case of
Vsw @ Vs, the possible induced motion of fast vortices
was predicted at a speed close to Vsw.

Induced vortex motion can also occur if a transport
current flows through the entire structure, i.e., through
both the Josephson junction and the waveguide. In this
case, a current source should be connected to the outer-
most superconducting electrodes S1 and S3. This
method is generally used in experimental studies of
1063-7834/04/4607- $26.00 © 21195
vortices in structures with coupled Josephson junctions
(see, e.g., review [4] and papers [5–9]).

In this paper, we study induced motion of a fast vor-
tex in the case of a transport current flowing through
both the Josephson junction and the waveguide,
because this case is easy to realize experimentally and
is widely used in practice. Our main goal is to uncover
new patterns of the induced fast vortex motion and to
point out the best conditions for its observation.

In the following, the relation between a transport
current and the velocity of a single vortex is established
assuming relatively low dissipation both in the Joseph-
son junction and in the waveguide. For the case of
Vsw @ Vs, where a fast vortex is possible, a simple ana-
lytical relation between the current in the structure and
the fast vortex velocity is obtained. It is found that a sig-
nificantly lower current is necessary for the induced
motion of a fast vortex when the current is passed
through both the Josephson junction and the waveguide
as compared to the case where the current is passed
through the Josephson junction only. The decrease in
the current is determined by the product of the small
coupling constant between the Josephson junction and
the waveguide by the square of the small ratio of the
Swihart velocities in the Josephson junction and
waveguide. It is shown that the reduction in the current
necessary for inducing vortex motion is due to the large
additional contribution from the current that flows in
the waveguide and the adjacent skin depth of the super-
conducting electrodes to the Lorentz force acting on the
vortex. Due to this contribution, induced motion of a
vortex also occurs when the current is passed through
only the waveguide and adjacent superconducting elec-
trodes. Therefore, in addition to the existing methods
for exciting vortices, the vortex motion can also be
induced with no current passing through the Josephson
junction.
004 MAIK “Nauka/Interperiodica”
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Let us consider the case where a transport current of
density j flows through both the Josephson junction and
the waveguide (see figure). Assuming that the electro-
magnetic fields are independent of the coordinate y, we
can describe the layered structure under study by the set
of equations (cf. [5–11])

(1)

(2)

Here, ϕ(z, t) and ϕw(z, t) are the differences in the order
parameter phases of the superconducting electrodes at
the interfaces of the Josephson junction and the
waveguide, respectively. In Eqs. (1) and (2), we use the
following notation: jc is the critical Josephson current
density; φ0 is the magnetic flux quantum; ωj is the
Josephson frequency; 2dw and εw are the width and
dielectric constant of the nonsuperconducting layer W,
respectively; Vs and Vsw are the Swihart velocities in the
Josephson junction and the waveguide, respectively,
calculated with allowance for the coupling between
them [3]; S and Sw are the coupling constants of the
Josephson junction and the waveguide; and β and βw
are constants characterizing dissipation in the Joseph-
son junction and the waveguide due to the single-parti-
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density flowing though the entire structure; and v fv is the
fast vortex velocity.
P

cle current passing through the layers I and W, respec-
tively. Equations (1) and (2) are written in the so-called
local limit, where the characteristic scales of field vari-
ation along the z axis are large as compared to the Lon-
don penetration depths of the superconducting layers
S1, S2, and S3 [12, 13].

As follows from Eqs. (1) and (2), the steady vortex
motion at a fixed velocity v  is described by the equa-
tions

(3)

(4)

where ψ(ζ) ≡ ϕ(z, t), ψw(ζ) ≡ ϕw(z, t), and ζ ≡ z – v t.
If the current and dissipation are small, Eq. (4) can

be approximated as

Substituting this expression into Eq. (3), we obtain the
following equation for ψ(ζ):

(5)

where

From Eq. (5), we can find the relation between the
vortex velocity and the current density. For this pur-
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pose, we take advantage of the results from [14], where
the motion of a single Josephson vortex (2π kink) in an
isolated Josephson junction with Swihart velocity v s
was studied using the equation

, (6)

where kJJ(v ) ≡ ωj/ . It was shown in [14] that,
in the case of low losses, the induced motion of the vor-
tex is characterized by the following j(v ) dependence:

Since Eqs. (5) and (6) are similar in form, it follows that
the relation between the velocity of a 2π kink moving
in the S1IS2WS3 layered structure and the transport cur-
rent density has the form

(7)

This expression differs from the relation

(8)

obtained in [3] for the case of a transport current flow-
ing through the Josephson junction only, by the veloc-

ity-dependent factor [1 – Sw  – v 2)]–1. Expres-
sion (7) is valid in the limit of a relatively low current
and low dissipation, where Eq. (4) can be solved
approximately and the right-hand side of Eq. (5) is
small.

In the following, we assume that the coupling con-
stants of the Josephson junction and the waveguide are
small. Then, for a fast Josephson vortex whose speed
lies in the range [3]

we can approximate Eq. (7) as

(9)

In the case of relatively low losses in the Josephson
junction 

(10)
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Eq. (9) gives

(11)

At

(12)

transport current (11) reaches a minimum,

(13)

This lowest value of the current at which the induced
motion of a fast vortex takes place is

(8/3 )(Vsw/Vs)2 @ 1 times smaller than the mini-
mum transport current

(14)

for the case of a current flowing only through the
Josephson junction [3]. Note that Eq. (13), obtained
under the assumption of low dissipation, as well as

Eq. (14), is valid provided βw/ωj ! SSw .

Let us make numerical estimates of the minimum
current for the following parameters of the layered
structure: S = Sw = 0.4, Vsw = 3Vs, and βw/ωj = 10–3. For
this case, the minimum value of the transport current
that must be passed through the Josephson junction to
excite a fast vortex is found from Eq. (14) to be about
.0.2jc. In the case where the current is passed through
the entire structure, Eq. (13) gives jmin . 6 × 10–3jc.
Therefore, in the latter case, the minimum current is
about 35 times smaller.

Thus, the induced motion of a fast vortex is possible
at a much lower current density in the case where the
transport current is passed through both the Josephson
junction and the waveguide as compared to the case
where the transport current is passed through the
Josephson junction only.

To understand the reason behind this effect, let us
analyze the forces with which the transport current acts
on a vortex in both cases. If the current flows through
the entire structure, the total Lorentz force FL (per unit
length along the y axis) affecting a vortex is the sum of
the contributions from the interactions between the cur-
rent and the magnetic field of the vortex in the Joseph-
son junction, the waveguide, and the skin layers of all
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superconductors. The force FL is proportional to the
current density and equals

If the current flows only through the Josephson junction
and the two adjacent superconducting electrodes S1 and
S2, the contributions to the Lorentz force arise from the
interaction between the current and the field in the
Josephson junction and in the skin layers of supercon-
ductors S1 and S2. The sum of these contributions is

For a fast vortex, we have the approximation

At v  = vmin, it follows that FL . (2 )FLJJ.
Hence, when the current flows through the entire struc-
ture, the Lorentz force FL is greater than in the case
where the current passes only through the Josephson
junction. The noticeable increase in FL is due to the
interaction between the current and the field in the
waveguide and in the skin layers of the superconduct-
ing electrodes S2 and S3. It is in these parts of the lay-
ered structure that the magnetic field of the fast vortex
is concentrated.

Uniform motion of a vortex takes place when the
Lorentz force is balanced by the friction force Fdiss due
to dissipation in the Josephson junction and the
waveguide. Since Fdiss is independent of the way in
which the transport current is passed through the struc-
ture in the low-dissipation limit and since FL @ FLJJ for
a fast vortex, the minimum current required to sustain
the motion of a fast vortex is lower when the transport
current flows through the entire layered structure.

Let us briefly consider the case where the transport
current is passed through the waveguide only. In this
case, the vortex motion is described by the set of equa-
tions (3) and (4), with the transport current j kept only
in Eq. (4). Solving them, as before, under the assump-
tion of low dissipation, we find the following relation
between the current and the vortex velocity:

(15)

For a fast vortex moving at a speed (12) close to the
Swihart velocity of the waveguide Vsw, expression (15)
approximately coincides with Eq. (11) if the losses in the
Josephson junction are low and satisfy condition (10).
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Therefore, the minimum current density required to
sustain the induced fast vortex motion is approximately
the same in the cases of the current being passed
through the entire structure and through the waveguide
only.

This result can be easily understood in terms of the
above analysis of the forces acting on a fast vortex.
Since the magnetic field of the fast vortex is concen-
trated mainly in the waveguide and the skin layers of
the adjacent superconductors, the main contribution to
the Lorentz force comes from the current flowing
through these regions. The current flowing through the
other regions of the S1IS2WS3 structure (where the mag-
netic field of the vortex is small) makes a small contri-
bution to FL and, therefore, has only a marginal effect
on the character of the function j(v ).

To summarize, a much lower current is required to
sustain the induced motion of a fast vortex when the
current is passed simultaneously through the Josephson
junction and the waveguide (or through the waveguide
only) than in the case where the current is passed
through the Josephson junction only. This new phe-
nomenon is due to the relative increase in the Lorentz
force exerted on the vortex by the current when the cur-
rent is passed through the region where the magnetic
field of the fast vortex is mainly concentrated. Based on
this result, the following general prediction from the
theory of induced vortex motion can be formulated,
which also applies to more complicated structures: in
order to sustain vortex motion, the current must be
passed through those regions of the structure where the
magnetic field of the vortex is mainly concentrated.
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Abstract—The pressure dependences of the second-order elastic constants Cij and the velocity of sound in
3C-SiC and 2H-SiC crystals are calculated in the framework of the Keating model. The third-order elastic con-
stants Cijk for 3C-SiC are determined from the dependences of the second-order elastic constants Cij on the pres-
sure p. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Elastic properties of different polytypes of silicon
carbide SiC are of great research interest due to the
widespread practical use of SiC-based materials. In the
absence of external hydrostatic pressure (p = 0), the
second-order elastic moduli Cij and velocities of sound

v i(q) =  (where Ci(q) is a specific combina-
tion of elastic moduli Cij, which corresponds to propa-
gation of an acoustic wave with polarization ni in the
direction q, and ρ is the density of the crystal) can be
calculated in the harmonic approximation. In the case
when p ≠ 0, the anharmonicity of the system should be
taken into account [1, 2], which provides a means for
revising the interatomic potential.

Prikhodko et al. [3] carried out density-functional
theory calculations of the elastic moduli Cij, derivatives
dCij/dp, and velocities of sound v i(q) for the cubic
modification of silicon carbide. The purpose of the
present work was to analyze the results of these calcu-
lations within the Keating model of force constants [4],
which was used to advantage in describing the elastic
properties of ANB8 – N crystals in [5].

2. 3C-SiC: PRESSURE DEPENDENCE 
OF THE SECOND-ORDER

ELASTIC CONSTANTS

According to the Keating model, tetrahedral crystals
can be characterized by two force constants, namely,
the constant α, which describes the central interaction
of the nearest neighbors, i.e., the response to a variation
in the bond length, and the constant β, which corre-
sponds to the noncentral interaction of the next-to-near-
est neighbors, i.e., the response of the tetrahedron to a
variation in the angle between |sp3〉  orbitals. The sec-
ond-order elastic constants have the form

(1)

Ci q( )/ρ

C11 = 
α 3β+

4a0
----------------, C12 = 

α β–
4a0

-------------, C44 = 
αβ

a0 α β+( )
-----------------------.
1063-7834/04/4607- $26.00 © 21200
Here, 4a0 is the lattice constant of the unstrained crystal
and the second-order elastic constants obey the identity

(2)

where CS = (1/2)(C11 – C12) is the shear modulus. It
should be noted that relationships (1) and (2) are
derived for purely covalent crystals of Group IV ele-
ments (homopolar bond). Silicon carbide belongs to
crystals with a heteropolar bond and, strictly speaking,
can be adequately described in terms of the model pro-
posed by Martin [6], who extended the Keating model
to ionic–covalent crystals. In this case, the theory treats
the effective ion charges and the Coulomb contribu-
tions to the elastic constants. Moreover, instead of one
noncentral constant β, there appear two constants (β1,
β2), which describe the response to a variation in the
tetrahedral angles between the |sp3〉  orbitals centered at
the silicon and carbon atoms. However, it can be shown
that the ionicity of the silicon–carbon bond is relatively
small; hence, the Coulomb contributions can be
ignored without a loss of accuracy. Indeed, in the
framework of the Harrison method of bonding orbitals
[7], the covalence of the silicon–carbon bond is deter-
mined to be αc = 0.97 (see, for example, [8]), which

corresponds to the ionicity fi = 1 –  ≈ 0.09 according
to Phillips [9]. Then, setting β = (1/2)(β1 + β2), we come
to the Keating model.

After substituting the elastic moduli C11 = 385,
C12 = 135, and C44 = 257 GPa (determined in [3]) into
expression (2), we obtain R ≈ 1.35. This value already
casts some doubt on the reliability of the experimental
data, because, for diamond and silicon crystals, rela-
tionship (2) is accurate to within 1% [4]. It is worth not-
ing that the experimental elastic constants C11 = 410.5,
C12 = 164, and C44 = 194 GPa for C-SiC crystals, which
are presented in the monograph by Nikanorov and Kar-
dashev [5], satisfy relationship (2) to very high accu-
racy. A comparison of the results of calculations per-

R
C44 C11 C12+( )
CS C11 3C12+( )
-------------------------------------≡ 1,=

α c
3

004 MAIK “Nauka/Interperiodica”
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formed in [3] and the aforementioned experimental val-
ues shows that the discrepancy in the elastic moduli
increases in the sequence C11  C12  C44: the
ratios Cij (taken from [3])/Cij (taken from [5]) are equal
to 0.94, 0.82, and 1.32 respectively. However, it should
be noted that, unlike the calculated and experimental
values of the elastic modulus C44, the values of the sec-
ond shear modulus CS = (1/2)(C11 – C12) determined
only by the constant β almost coincide: CS = 125 [3]
and 123 GPa [5]. The bulk moduli B = (1/3)(C11 + 2C12)
are also in reasonable agreement: B = 218 [3] and
246 GPa [5]. In our calculations, we started from the
experimental data presented in [5], which gave the
force constants α = 98 N/m and β = 27 N/m. The Klein-
man parameter in terms of the Keating model is deter-
mined as ζ = (α – β)/(α + β) ≈ 0.57, which exceeds the
value ζ = 0.41 obtained in [5]. Let us now assume (as
was done in our earlier calculations of the elastic prop-
erties of Group V semimetals [10]) that, under pressure,
the force constants vary as follows: α   = α + ap

and β   = β + bp, where the constants a and b have
dimensions of length. Under the above assumption, the
elastic constants can be represented in the form

(3)

Hereinafter, all quantities that are dependent on pres-
sure are marked by the tilde sign. In order to determine
the constants a and b, we used the following derivatives

 obtained in [3]:  = 3.49 and

 = 4.06.1 As a result, we obtained the constants
a = 17.08 Å and b = –0.62 Å. Note that the constant b

was determined from the derivative .

The calculated dependences of the elastic constants

 on the pressure p for the 3C-SiC crystal are pre-
sented in Fig. 1. A comparison with the corresponding
dependences obtained in [3] shows that only the curves

(p) differ significantly. According to [3], an
increase in the pressure is accompanied by an insignif-

icant monotonic increase in the shear modulus . In
our case, as the pressure increases, the shear modulus

 first increases from (0) = 194 GPa, passes
through a maximum value of 198 GPa at a pressure
pm = 21.5 GPa, and then smoothly decreases to 178 GPa

1 Unfortunately, we are not aware of any experimental pressure
dependences of the second-order elastic constants of silicon car-
bide.
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----------- p,+= =

C̃44
αβ α b aβ+( )p ab p

2
+ +
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C̃44 C̃44
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at p = 100 GPa. The value of pm can be found from the

condition  = 0, which leads to the equation

(4)

3. 3C-SiC: PRESSURE DEPENDENCE
OF THE VELOCITY OF SOUND

In order to calculate the velocity of sound v i(q) =

, it is necessary to derive the appropriate

combinations of elastic constants  required to deter-
mine the quantities Ci(q). These combinations have the
following form (see, for example, [3]):

(5)

Here, the first three combinations correspond to longi-
tudinal acoustic waves (LA) and the last three combina-
tions, to transverse acoustic waves (TA). Moreover, we
should take into account that the density  of the crys-
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tal also depends on pressure. The pressure can be
written in the form

(6)

where ρ = 3.21 g/cm3 [11]. According to the data obtained

in [3], we have the derivative  = 3.87, which
agrees well with the experimental value of 3.57 [12].

The calculated pressure dependences of the velocity
of sound in the 3C-SiC crystal are shown in Fig. 2. It
can be seen that the velocity of propagation of longitu-
dinal modes increases with increasing pressure,
whereas the velocity of propagation of transversal
modes decreases. The only qualitative difference
between our results and the data obtained in [3] is asso-
ciated with the pressure dependence of the velocity
v [001]([110]) = v [010]([100]) = v [001]([100]). As the pres-
sure p increases, the velocity smoothly decreases in our
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Fig. 2. Pressure dependences of the velocity of sound in the
3C-SiC crystal: (1) vLA([111]), (2) vLA([110]), (3)
vLA([100]), (4) vTA([100]) = vTA([110]), (5) vTA([111]),
and (6) vTA([110]).

Table 1.  Derivatives (dv i(q)/dp)p → 0 (in km/s GPa)

No. Acoustic 
mode q = [100] q = [110] q = [111]

1 L 0.024 0.026 0.027

2 T –0.007 –0.019 –0.015

3 T –0.007 –0.009 –0.015

4 L 0.025 0.036 0.040

5 T 0.007 –0.021 –0.009

6 T 0.007 0.007 –0.009

Note: Rows 1–3 present the results obtained in this work, and
rows 4–6 present data taken from [3].
P

case, whereas the function vTA(p) has a maximum at p ≈
50 GPa in [3]. The derivatives (dv i(q)/dp)p → 0 obtained
in this work and in [3] are listed in Table 1. The main
discrepancy (i.e., the opposite signs of the slopes) is
observed for the modes determined by the shear modu-

lus  [see the fourth combination in formulas (5)].

Now, we can calculate the Grüneisen parameters
γi(q) defined by the relationship

(7)

The results of the calculation are presented in Table 2.
Again, the main discrepancy is observed for the modes
v [001]([110]) = v [010]([100]) = v [001]([100]).

4. 2H-SiC: PRESSURE DEPENDENCE 
OF THE SECOND-ORDER 

ELASTIC CONSTANTS

As was shown by Martin [13], the second-order
elastic constants for a wurtzite structure can be deter-

mined from the elastic constants  known for a
sphalerite structure. Earlier [14, 15], we extended the
approach developed by Martin to polytypes with an
arbitrary ratio of the sphalerite and wurtzite structures.
Consequently, expressions for the elastic constants Cij

of silicon carbide 2H-SiC with a hexagonal structure
can be derived using formulas (1), as was done in our
previous work [16]. After substituting the force con-
stants α and β, which were determined above, we
obtained the following second-order elastic constants at
a pressure p = 0 (in GPa): C11 = 476, C33 = 507, C44 =
142, C12 = 147, C13 = 116, and C66 = (1/2)(C11 – C12) =
164.5. Note that the elastic constants found here exceed
those obtained in our earlier work [17] in the frame-
work of the Keating–Harrison model and correlate bet-
ter with the experimental data taken from handbook
[11] (in GPa): C11 = 500, C33 = 564, C44 = 168, C12 = 92,
and C66 = 204 (data on the elastic modulus C13 are not
available in [11]).

Figure 3 shows the pressure dependences of the

elastic constants  for the 2H-SiC crystal. As is
clearly seen from Fig. 3, the elastic moduli as functions
of pressure can be separated into three groups, each

including close values of both  and : (i) 

and , (ii)  and , and (iii)  and . As the
pressure increases, the elastic moduli of the first two
groups increase, whereas the elastic moduli of the third
group decrease. Unfortunately, we are not aware of any
experimental data on the elastic moduli of 2H-SiC crys-
tals.

C̃44

γi q( ) 1
v i q( )
-------------

dv i q( )
dp

-----------------B.=

C̃ij

C̃ij

C̃ij dC̃ij/dp C̃11

C̃33 C̃12 C̃13 C̃44 C̃66
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It is of interest to note that, at an arbitrary ratio of the
wurtzite and sphalerite phases (trigonal crystal system,
class 32 [18]), some combinations of elastic constants

 (the asterisk refers to the trigonal structure) are
invariant [14]:

(8)

In these expressions, the right-hand sides involve the
elastic constants for a cubic crystal. Hence, it follows in
particular that the velocity of a longitudinal acoustic
wave vLA([111]), which is determined by the elastic

constant , is also invariant with respect to the struc-
ture of a mixed wurtzite–sphalerite crystal.

With knowledge of the dependences of the elastic

constants  on the pressure p, it is possible to deter-
mine the corresponding pressure dependences of the
velocity of sound. In [3], the dependence v h(p) was cal-
culated for a transverse acoustic wave propagating in

the direction (x + y)/ , where x coincides with the
direction of the hexagonal c axis and y lies in the basal
plane perpendicular to the c axis.2 It was assumed that

v h(p) =  =  and  = (1/6)(  –  +

4 ), where the upper indices denote the hexagonal
(h) or cubic (c) modification. However, Martin [13]

proved that  =  – ∆2/ , where  =

(1/3)(  –  + ) and ∆ = (  –  –

2 )/  (see corrections in [14, 15]). Figure 4
depicts the dependence v h(p), which we calculated in
the framework of the theory proposed by Martin [13].
As follows from our calculations, δv h ≈ 1 km/s). This
value differs from the data obtained in [3], according to
which the change in the velocity δv h in the pressure
range from 0 to 100 GPa is equal to 0.35 km/s.

5. 3C-SiC: THIRD-ORDER ELASTIC CONSTANTS

A force-field model for calculating the third-order

elastic constants of cubic crystals was proposed by

2 This direction of propagation of the acoustic wave is interesting
above all in that the orthorhombic shear stain leads to a transition
from the wurtzite structure to the NaCl structure [3].
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Keating [19]. In the framework of this model, we have

(9)

Here, γ is the anharmonic force constant describing the
central interaction of the nearest neighbors, δ and ε are
the anharmonic force constants accounting for the non-
central interaction of the next-to-nearest neighbors, and
ζ is the Kleinman parameter.3 In order to determine
these force constants, we use the results obtained by
Birch [20], who derived the following relationships
between the elastic constants Cij and Cijk and the deriv-

atives :

(10)

It should be emphasized that these relationships are
valid only in the approximation that is linear with
respect to pressure. Relationships (10) make it possible
to determine the anharmonic force constants γ, δ, and ε,

3 As in the case of second-order elastic constants, we disregard the
Coulomb contributions and assume that δ = (1/2)(δ1 + δ2) and ε =
(1/2)(ε1 + ε2), where subscripts 1 and 2 refer to silicon and car-
bon atoms, respectively.

C111 γ δ– 9ε,+=

C112 γ δ– ε,+=

C123 γ 3δ 3ε,–+=

C144 γ 1 ζ–( )2 δ 1 ζ+( )2
+=

+ ε 1 ζ+( ) 3ζ 1–( ) C12ζ
2
,+

C166 γ 1 ζ–( )2 δ 1 ζ+( )2
–=

+ ε 1 ζ+( ) 3 ζ–( ) C12ζ
2
,+

C456 γ 1 ζ–( )3
.=

dC̃ij/dp

dC̃11

dp
----------- –1

C11 C111 2C112+ +
3B

-------------------------------------------,–=

dC̃12

dp
----------- 1

C12 C123 2C112+ +
3B

-------------------------------------------,–=

dC̃14

dp
----------- –1

C44 C144 2C166+ +
3B

-------------------------------------------.–=

Table 2.  Grüneisen parameters γi(q)

No. Acoustic 
mode q = [100] q = [110] q = [111]

1 L 0.52 0.52 0.53

2 T –0.22 –0.76 –0.55

3 T –0.22 –0.22 –0.55

4 L 0.49 0.63 0.66

5 T 0.17 –0.74 –0.28

6 T 0.17 0.17 –0.28

Note: Rows 1–3 present the results obtained in this work, and
rows 4–6 present data taken from [3].
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provided the values of  are known. Since the

value of the derivative  is in doubt, we simplify
the problem and assume that ε = –δ. This equality is
completely satisfied for silicon [19]; however, in the
case of other semiconductor crystals also, the anhar-
monic force constants δ and ε are of the same order of
magnitude and opposite in sign (see, for example, [21,
22] and references therein). Moreover, the force con-
stant γ is approximately one order of magnitude greater
than the force constants δ and |ε|; therefore, the above
simplification does not introduce large error into the
calculation.
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Fig. 4. Pressure dependence of the velocity of sound vh in
the 2H-SiC crystal.

20
Pressure, GPa

40 60 80 1000

2H-SiC 2

200

E
la

st
ic

 c
on

st
an

ts
, G

Pa

400

600

800

1000

1

4

5

6

3

Fig. 3. Pressure dependences of the elastic constants of the

2H-SiC crystal: (1) , (2) , (3) , (4) , (5) ,

and (6) .

C̃11 C̃33 C̃44 C̃12 C̃13

C̃66

6.0
P

Then, making allowance for the first two relation-
ships (9) and using the data taken from [3], we deter-
mine the anharmonic force constants γ = –862 GPa and
δ = 82 GPa.

Finally, we obtain the following third-order elastic
constants (in GPa): C111 = –1680, C112 = –1026, C123 =
–371, C144 = 3, C166 = –621, and C456 = –69.5. Although
we are unaware of any experimental values of the third-
order elastic constants of silicon carbide, a comparison
of the results of our calculations and the elastic con-
stants Cijk for Si, Ge, InSb, and GaAs crystals [19, 21]
shows that our values are quite reasonable. Indeed, for
all these crystals, only the elastic constant C144 is posi-
tive and, moreover, is one to two orders of magnitude
smaller than the elastic constant |C111|. It is worth noth-
ing that the aforementioned elastic constants obey the
following inequalities: |C111| > |C112 | > |C166 | > |C123 |
and |C456 | > C144. In our calculations, we obtained the
same relationships.

Let us calculate the derivative . For this
purpose, we use the last formula (9) and the anhar-
monic force constants determined above. As a result,

we obtain  = –1.08. According to the calcula-

tion data presented in Section 2, the derivative 
averaged over the pressure range from 0 to 100 GPa is
approximately equal to –0.18, which coincides, at least
in sign, with the above result. However, in [3], this

quantity was determined to be  = 1.58, which,
in our opinion, leads to a false inference regarding a
nonmonotonic pressure dependence of the velocity of
propagation of transverse acoustic waves vTA(p) (see
Section 3).

In our calculations, we determined the force con-
stants γ and δ with the use of formulas (10) for the

derivatives  and  taken from [3].
However, representing these derivatives in the form
(a + 3b)/4a0 and (a – b)/4a0, respectively, we can check
the values of constants a and b determined above. As a
result, we found that a = 17.14 Å and b = –0.59 Å,
which is in excellent agreement with the values
a = 17.08 Å and b = –0.62 Å determined in Section 2.
The good agreement between the force constants
obtained by different methods is a consequence of the

weak nonlinearity of the dependence (p).

Now, we calculate the Grüneisen integrated param-
eter , which is defined by the following formula [22]:

(11)

In this case, we once again assume that ε = –δ. Then, we
obtain  = 0.98, which almost coincides with the Grü-
neisen parameter γLA calculated by Karch et al. [23] for
longitudinal acoustic waves.

dC̃44/dp

dC̃44/dp

dC̃44/dp

dC̃44/dp

dC̃11/dp dC̃12/dp

C̃44

γ

γ
5α β– 4a0 3γ δ– ε+( )+
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γ
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In conclusion, we note that the investigation of the
effect of pressure on tetrahedral crystals is of interest
primarily due to the occurrence of a phase transition
from the sphalerite or wurtzite structure to the rock-salt
structure under high pressure (see, for example, [24–
26] and references therein). In the framework of the
Keating–Martin model, the ratio of the force constants
β/α decreases with an increase in the ionicity fi of the
bond, i.e., upon transition from purely covalent semi-
conductor crystals of Group IV elements to tetrahedral
compounds A1B7, which, on the scale of ionicities fi, are
adjacent to crystals with a NaCl structure [5, 6, 9, 21,

24]. Figure 5 presents the ratio  as a function of the
pressure p. It follows from this figure that, compared to
the central forces, the effect of the noncentral forces
decreases with increasing pressure, which is character-
istic of ionic crystals.

Thus, we demonstrated that the simple Keating
model can compete advantageously with first principles
calculations and offers a more adequate description of a
number of elastic characteristics of tetrahedral crystals.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research (project no. 03-02-16054), the
International Association of Assistance for the promo-
tion of cooperation with scientists from the New Inde-
pendent States of the Former Soviet Union (project
no. INTAS 01-0603), and the “Science for Peace”
NATO program (grant no. SfP 978011).

β̃/α̃

20
Pressure, GPa

40 60 80 1000

0.10

0.05

0.15

0.20

0.25

0.30

β/
α

~
~

Fig. 5. Pressure dependence of the ratio of the force con-

stants of the noncentral and central interactions .β̃/α̃
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
REFERENCES
1. G. Leibfried, Gittertheorie der Mechanischen und Ther-

mischen Eigenschaft der Kristalle: Handbuch der
Physik (Springer, Berlin, 1955; GIFML, Moscow, 1963).

2. H. Bottger, Principles of the Theory of Lattice Dynamics
(Physik, Weinheim, 1983; Mir, Moscow, 1986).

3. M. Prikhodko, M. S. Miao, and W. R. L. Lambrecht,
Phys. Rev. B 66, 125201 (2002).

4. P. N. Keating, Phys. Rev. 145 (2), 637 (1966).
5. S. P. Nikanorov and B. K. Kardashev, Elasticity and Dis-

location Inelasticity of Crystals (Nauka, Moscow, 1985).
6. R. M. Martin, Phys. Rev. B 1 (11), 4005 (1970).
7. W. A. Harrison, Electronic Structure and the Properties

of Solids: The Physics of the Chemical Bond (Freeman,
San Francisco, 1980; Mir, Moscow, 1983), Vol. 1.

8. S. Yu. Davydov and S. K. Tikhonov, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 32 (9), 1057 (1998) [Semiconduc-
tors 32, 947 (1998)].

9. J. C. Phillips, Rev. Mod. Phys. 42 (3), 317 (1970).
10. V. M. Grabov, S. Yu. Davydov, Yu. P. Mironov, and

A. M. Dzhumigo, Fiz. Tverd. Tela (Leningrad) 27 (7),
2017 (1985) [Sov. Phys. Solid State 27, 1210 (1985)].

11. Physical Quantities: A Handbook, Ed. by I. S. Grigor’ev
and E. Z. Meœlikhov (Énergoatomizdat, Moscow, 1991).

12. I. V. Aleksandrov, A. F. Goncharenko, S. M. Stishov, and
E. V. Yakovenko, Pis’ma Zh. Éksp. Teor. Fiz. 50 (3), 116
(1989) [JETP Lett. 50, 127 (1989)].

13. R. M. Martin, Phys. Rev. B 6 (12), 4546 (1972).
14. A. I. Gubanov and S. Yu. Davydov, Fiz. Tverd. Tela

(Leningrad) 17 (5), 1463 (1975) [Sov. Phys. Solid State
17, 945 (1975)].

15. S. Yu. Davydov and S. K. Tikhonov, Fiz. Tverd. Tela
(St. Petersburg) 37 (7), 2221 (1995) [Phys. Solid State
37, 1212 (1995)].

16. S. Yu. Davydov and A. V. Solomonov, Pis’ma Zh. Tekh.
Fiz. 25 (15), 23 (1999) [Tech. Phys. Lett. 25, 601
(1999)].

17. S. Yu. Davydov and S. K. Tikhonov, Fiz. Tekh. Polupro-
vodn. (St. Petersburg) 30 (7), 1300 (1996) [Semiconduc-
tors 30, 683 (1996)].

18. J. F. Nye, Physical Properties of Crystals: Their Repre-
sentation by Tensors and Matrices, 2nd ed. (Clarendon
Press, Oxford, 1964; Mir, Moscow, 1967).

19. P. N. Keating, Phys. Rev. 149 (2), 674 (1966).
20. P. Birch, Phys. Rev. 71 (5), 809 (1947).
21. S. Yu. Davydov, Candidate’s Dissertation (Physicotech-

nical Inst., Leningrad, 1974).
22. M. I. Bell, Phys. Status Solidi B 53 (3), 675 (1972).
23. K. Karch, P. Pavone, W. Windl, O. Schutt, and

D. Strauch, Phys. Rev. B 50 (24), 17054 (1994).
24. J. C. Phillips, Bonds and Bands in Semiconductors (Aca-

demic, New York, 1960).
25. J. A. Majewski and P. Vogl, Phys. Rev. B 35 (18), 9666

(1987).
26. A. J. Skinner and J. P. LaFemia, Phys. Rev. B 45 (7),

3557 (1992).

Translated by O. Moskalev



  

Physics of the Solid State, Vol. 46, No. 7, 2004, pp. 1206–1212. Translated from Fizika Tverdogo Tela, Vol. 46, No. 7, 2004, pp. 1174–1179.
Original Russian Text Copyright © 2004 by Voronkov, Batunina, Voronkova, Mil’vidski

 

œ

 

.

                                            

SEMICONDUCTORS 
AND DIELECTRICS

                                         
Generation of Shallow Nitrogen–Oxygen Donors as a Method 
for Studying Nitrogen Diffusion in Silicon

V. V. Voronkov*, A. V. Batunina*, G. I. Voronkova*, and M. G. Mil’vidskiœ**
* Giredmet State Research Institute for the Rare-Metals Industry, Moscow, 109017 Russia

e-mail: icpm@mail.girmet.ru
** Institute for Chemical Problems of Microelectronics, Bol’shoœ Tolmachevskiœ per. 5, Moscow, 109017 Russia

Received November 25, 2003

Abstract—The nitrogen concentration distribution C(z) obtained after diffusion of nitrogen from the bulk of a
sample toward the surface is determined with a high accuracy through subsequent heat treatment at moderate
temperatures (for example, at 650°C). This process leads to the formation of shallow thermal donors (nitrogen–
oxygen complexes) with a concentration distribution over the depth z of the sample that corresponds to the
nitrogen concentration profile C(z) and, therefore, makes it possible to calculate this profile. The proposed
method is used to determine the nitrogen concentration profiles C(z) after homogenizing annealing at 950,
1000, and 1050°C. At high oxygen concentrations, the nitrogen transport is promoted by high-rate dissociation
of nitrogen dimers. On the other hand, the nitrogen transport is slightly hindered by partial oxidation of nitrogen
monomers. The results obtained indicate that the latter effect is not very strong, because the dimeric nitrogen
species predominate over the monomeric nitrogen species in the sample and the diffusion profile is determined
by the product D1K1/2, where D1 is the diffusion coefficient of nitrogen monomers and K is the dissociation con-
stant. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Diffusion of nitrogen impurities in silicon is a tech-
nologically important process. Moreover, investigation
into the diffusion of nitrogen impurities in silicon pro-
vides valuable information on the properties of nitro-
gen, primarily, on the ratio of dimeric species N2

(which are predominant at sufficiently low tempera-
tures) to monomeric species N1. An analysis of the data
available in the literature on the diffusion of nitrogen in
silicon crystals was performed in our previous work
[1]. It has been established that, in silicon crystals with
a low oxygen content, the dimeric (virtually immobile)
nitrogen species predominate at doping levels of the
order of 1015 cm–3 and at diffusion temperatures of
1100°C and below [1]. However, the fraction of mobile
monomeric nitrogen species is rather large (of the order
of 10% at 1000°C). At temperatures close to the melt-
ing point, the monomeric nitrogen species become pre-
dominant.

The nitrogen transport occurs through the dissocia-
tion of immobile interstitial N2 dimers into mobile
interstitial N1 monomers that diffuse and form new N2

dimers. For a low-oxygen material, which can be pre-
pared, for example, using the float zone (FZ) technique,
the analysis of the nitrogen transport is complicated by
the uncertainty in the time required for an N2 dimer to
dissociate into two N1 atoms [1]: according to different
approaches, the dissociation time of N2 dimers either is
very short or can be as long as 5 min (at 1000°C).
1063-7834/04/4607- $26.00 © 21206
This uncertainty is absent in the case when the oxy-
gen content is relatively high (for example, in a material
prepared using the Czochralski method), because oxy-
gen produces a very strong catalytic promoting effect
on the dissociation of nitrogen dimers [1]. On the other
hand, oxygen can hinder nitrogen transport due to the
formation of nitrogen–oxygen complexes. The oxida-
tion number of nitrogen dimers is small at temperatures
T > 800°C [1], but the oxidation number of nitrogen
monomers can, in principle, be large enough for the
nitrogen monomers to have an effect on the nitrogen
diffusion. In this respect, investigation into the diffu-
sion of nitrogen in Czochralski silicon can provide new
interesting information on the diffusion characteristics
of nitrogen species and on the possible interaction of
nitrogen with oxygen.

For the purpose of studying the nitrogen diffusion in
silicon crystals, we developed and successfully
employed a new highly sensitive technique for deter-
mining the profile of nitrogen diffusion in a material
containing impurities of two types, namely, nitrogen
and oxygen impurities. It is known that heat treatment
of such a material at moderate temperatures (from 600
to 700°C) brings about the formation of specific shal-
low thermal donors (nitrogen–oxygen complexes) [2–
6]. In our earlier works [5, 6], we analyzed the depen-
dence of the concentration of shallow thermal donors
on the total nitrogen concentration and demonstrated
that these donors are N1Om complexes formed by one
N1 atom and m oxygen atoms (on average, m = 3). With
knowledge of the depth profile of shallow thermal
004 MAIK “Nauka/Interperiodica”
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donors, which is determined, for example, using the
spreading resistance method, it is possible to recon-
struct the corresponding diffusion profile of nitrogen.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

Samples of Czochralski silicon (12 × 4 × 1 mm in
size) were cut from a silicon plate 150 mm in diameter.
The crystal was doped with nitrogen from a melt. The
nitrogen concentration C increased along the length of
the crystal. This concentration was calculated from the
known coefficient of nitrogen distribution [7] and was
then controlled using secondary ion mass spectrometry
[5]. The nitrogen concentration C in the plate used for
preparing the samples was approximately equal to 2 ×
1015 cm–3. In order to calculate the nitrogen concentra-
tion C from the coefficient of the nitrogen distribution
more exactly, it should be taken into account that,
although the monomeric nitrogen species predominate
at the crystallization temperature, the sample also con-
tains dimeric nitrogen species in small amounts [1].
However, this correction only slightly changes the cal-
ibration curve relating the nitrogen concentration C and
the concentration of shallow thermal donors.

The homogenizing annealing of the samples was
carried out at temperatures of 950, 1000, and 1050°C in
air. The annealing time (from 5 to 50 min) was chosen
so that the size of the surface region in which the nitro-
gen concentration C(z) considerably decreased as a
result of diffusion of nitrogen toward the surface of the
sample was convenient for subsequent measurements
(several tens of microns). Upon annealing, the samples
were quenched on a massive silicon slab.

After homogenizing annealing, shallow thermal
donors were generated using standard heat treatment at
a temperature of 650°C for 3 h. Under these conditions,
the concentration of shallow thermal donors reaches
saturation, which corresponds to an equilibrium
between nitrogen, oxygen, and the products of their
interaction, including N1Om complexes (shallow ther-
mal donors). The equilibrium ratio between the concen-
tration Ns of shallow thermal donors and the total con-
centration C of dissolved nitrogen (predominantly, in
the form of unoxidized dimers, oxidized dimers, and
shallow thermal donors) can be obtained from the mass
action law for the corresponding reactions [5, 6]:

(1)

The equilibrium constant R depends on the temper-
ature T and the oxygen concentration Cox (in our sam-
ples, the oxygen concentration Cox was maintained con-
stant at approximately 6.7 × 1017 cm–3 with the use of a
calibration optical factor of 2.45 × 1017 cm–2). In this
case, the equilibrium constant R was close to 2.85 ×
1013 cm–3. Relationship (1) holds true over a wide range
of nitrogen concentrations C (from 1014 to 2 × 1015 cm–3).

Ns
2
/ C Ns–( ) R.=
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In order to convert the measured concentration Ns of
shallow thermal donors into the required total nitrogen
concentration C, relationship (1) is conveniently rewrit-
ten in the form

(2)

Although relationship (1) and the equilibrium con-
stant R were obtained for samples with a uniform dis-
tribution of the nitrogen concentration over the sample
depth, they are applicable to any point of the diffusion
profile C(z), because the diffusion redistribution of
nitrogen between different regions of the sample is
insignificant at a relatively low temperature of genera-
tion of shallow thermal donors (650°C). Therefore,
knowing the measured concentration profile Ns(z) of
shallow thermal donors, we can calculate the nitrogen
diffusion profile C(z) from expression (2). The concen-
tration Ns(z) is maximum in the bulk of the sample
(where the loss of nitrogen due to diffusion is small)
and negligible in the immediate vicinity of the surface
of the sample (where the nitrogen concentration C dras-
tically decreases as a result of nitrogen diffusion toward
the surface).

After homogenizing annealing [which leads to the
formation of the concentration profile C(z)] and subse-
quent activation annealing [which results in the forma-
tion of the concentration profile Ns(z)], the spreading
resistance was measured on a cleavage or a surface pre-
pared by grinding. Our samples were lightly doped
with boron (acceptor impurity) at a concentration Na =
4 × 1014 cm–3, which varied within ±5% from sample to
sample. The maximum concentration Ns(z) observed
far from the surface did not exceed 2 × 1014 cm–3.
Therefore, p-type conductivity was retained throughout
the depth of the sample and the measured profile of the
spreading resistance was immediately converted into
the hole concentration profile p(z). Since the hole con-
centration profile satisfies the relationship p(z) = Na –
Ns(z), the concentration profile of shallow thermal
donors under consideration can be expressed through
the hole concentration:

(3)

The nitrogen diffusion profile was determined as
follows: (i) the spreading resistance profile was mea-
sured and converted into the hole concentration profile
p(z), (ii) the concentration profile of shallow thermal
donors was calculated from formula (3), and (iii) the
concentration profile Ns(z) was converted into the nitro-
gen diffusion profile C(z) with the use of relationship (2).

In order to determine the nitrogen diffusion profile
reliably, the nitrogen concentration (in the bulk of the
sample) should be high enough for generated shallow
thermal donors to bring about a noticeable decrease in
the hole concentration. To put it differently, the concen-
tration Ns of shallow thermal donors should be compa-

C Ns 1 Ns/R+( ).=

Ns z( ) Na p z( ).–=
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rable to the boron concentration Na (or, at least, not be
too low as compared to the boron concentration Na).
Therefore, the sensitivity of the proposed method sub-
stantially depends on the boron concentration in the
material. At a low doping level (for example, at Na =
1013 cm–3), this method is applicable when the bulk
concentration of nitrogen impurities is relatively low
(of the order of 1013 cm–3). For comparison, the stan-
dard method of secondary ion mass spectrometry can
be applied only in the case when the nitrogen concen-
tration is appreciably higher than 2 × 1015 cm–3.

3. RESULTS AND DISCUSSION

The predicted hole concentration profile p(z) = Na –
Ns(z) is a monotonically decreasing function of the
depth z. Moreover, the hole concentration p(0) in the
immediate vicinity of the surface should coincide with
the boron concentration Na, because the nitrogen con-
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Fig. 1. Distributions of (a) the hole concentration, (b) the
concentration of shallow thermal donors, and (c) the calcu-
lated total concentration of dissolved nitrogen (normalized
to the bulk concentration Cb) over the depth z of the sample
upon homogenizing annealing at 1000°C for 15 min.
P

centration at this point is too low to initiate the genera-
tion of shallow thermal donors. In a number of cases,
the measured hole concentration profile p(z) corre-
sponds to the predicted profile. However, in other cases,
the concentration profile p(z) exhibits an anomalous
behavior, which will be discussed below.

It should be noted that the nitrogen diffusion toward
the surface in the course of homogenizing annealing
can be accompanied by the precipitation of nitrogen.
The subsequent generation of shallow thermal donors is
controlled only by the nitrogen dissolved in the crystal.
In the proposed method, the possible (partial) loss of
dissolved nitrogen due to the precipitation manifests
itself in a decrease in the bulk concentration of shallow
thermal donors. Correspondingly, the bulk nitrogen
concentration C calculated from formula (2) should be
less than the known total nitrogen concentration (2 ×
1015 cm–3 in our samples). In other words, the method
used for determining the nitrogen diffusion profile pro-
vides a means for controlling the possible loss of dis-
solved nitrogen due to the precipitation. It was found
that the precipitation of nitrogen becomes noticeable at
sufficiently prolonged homogenizing annealings (for
example, for 30 min at 1000°C). For shorter times of
annealing, the loss of nitrogen through precipitation is
insignificant: the calculated bulk concentration C of
dissolved nitrogen almost coincides with the initial
total nitrogen concentration.

The nitrogen diffusion profile obtained with the use
of the above method upon annealing at a temperature of
1000°C for 15 min is depicted in Fig. 1. The hole con-
centration profile (Fig. 1a) was determined directly
from the measured profile of the spreading resistance.
The concentration profile of shallow thermal donors
(Fig. 1b) was calculated from formula (3). The concen-
tration profile of dissolved nitrogen (Fig. 1c) was
reconstructed according to relationship (2). The last
profile is represented in a normalized form that is con-
venient for analyzing the diffusion mechanism: the
concentration C(z) is normalized to the bulk nitrogen
concentration Cb. The solid lines in Fig. 1c represent the
results of the numerical simulation (discussed in the
next section).

Another example of reconstructed normalized pro-
files of nitrogen diffusion upon annealing at 1000°C for
10 min is shown in Fig. 2. It can be seen from Fig. 2 that
the nitrogen diffusion profile exhibits a specific feature
in the range 20–30 µm corresponding to the surface
region. This feature reflects an anomaly in the initial
hole concentration profile p(z): the surface concentra-
tion of holes is somewhat less than the predicted con-
centration equal to the boron concentration Na. The
possible reason for the observed anomaly is the diffu-
sion of donor impurities from the surface into the sam-
ple bulk. In this case, the surface portion of the profile
should be ignored in the theoretical description of nitro-
gen diffusion.
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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A similar (but more pronounced) surface anomaly
can be seen in the profiles obtained upon annealing at
1000°C for 30 min (Fig. 3). The donor concentration
profile calculated from formula (3) involves two por-
tions of different origins (Fig. 3a). It is evident that the
surface portion (to a depth of 20 µm) is associated with
the diffusion of donor impurities from the surface into
the bulk. The remaining portion of the concentration
profile can be attributed to shallow thermal donors.
Consequently, in the nitrogen diffusion profile (Fig. 3b)
formally calculated from expression (2), the portion
corresponding to a deeper region reflects the nitrogen
diffusion, whereas the surface portion is due to an arte-
fact caused by contamination of the surface. For con-
taminating donor impurities, the diffusion coefficient is
rather small: it is estimated at 3 × 10–10 cm2 s–1 (accord-
ing to the observed depth of penetration of these impu-
rities). For this reason, only the surface portion of the
nitrogen diffusion profile turns out to be distorted. The
remaining portion (for a deeper region) can be consid-
ered to be the true diffusion profile.

The bulk concentration of shallow thermal donors
(at a depth of more than 90 µm) is relatively low
(Fig. 3a). As a consequence, the calculated bulk con-
centration Cb of dissolved nitrogen is decreased and
estimated at about 1015 cm–3, which amounts to only
50% of the total nitrogen concentration. This implies
that, upon annealing at 1000°C for the longest time
(30 min), approximately half the initially dissolved
nitrogen appears to be lost; i.e., it transformed into pre-
cipitates (probably, silicon nitride particles).

4. SIMULATION OF THE PROFILES 
OF NITROGEN DIFFUSION

IN OXYGEN-CONTAINING SILICON

As was noted above, the dissociation of nitrogen
dimers N2 into monomers N1 (and, correspondingly, the
back reaction of dimerization) in a material with a high
oxygen content (Czochralski silicon) proceeds at a high
rate. The mechanism of fast dissociation involves the
preliminary formation of N2O complexes, followed by
their dissociation into N1O and N1 (in turn, the N1O
complexes rapidly dissociate into N1 and O). The high
rate of reactions suggests that the concentrations of all
reactants (such as unoxidized and oxidized nitrogen
dimers and unoxidized and oxidized nitrogen mono-
mers) are characterized by the equilibrium ratio. In par-
ticular, the concentration C2 of N2 dimers and the con-
centration C1 of N1 monomers are related by the mass
action law, that is,

(4)

where K is the equilibrium constant for the dissociation
of an N2 dimer into two N1 monomers. At a diffusion
temperature of approximately 1000°C, the equilibrium
constant K is estimated at 1014 cm–3 or less [1]. In addi-

C1
2
/C2 K ,=
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tion to N1 and N2 species, the oxygen-containing mate-
rial involves oxidized monomers N1Om with different
numbers m of oxygen atoms (the total concentration

) and oxidized dimers N2Om with different numbers

m of oxygen atoms (the total concentration ). The

contribution of the concentration  to the total nitro-
gen concentration is small, whereas the concentration

C1*

C2*

C2*
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Fig. 2. Calculated normalized profile of the nitrogen con-
centration upon homogenizing annealing at 1000°C for
10 min.
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Fig. 3. (a) Profile of the donor concentration and (b) the nor-
malized profile of the nitrogen concentration upon homog-
enizing annealing at 1000°C for 30 min.
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 can, in principle, make a significant contribution to
the total nitrogen concentration [1]. Therefore, the total
nitrogen concentration C can be determined from the
expression

(5)

Here, G = /C1 is the ratio of the concentrations of
oxidized and unoxidized monomers. This quantity is
constant and depends on the temperature and the oxy-
gen concentration Cox. In our samples, the oxygen con-
centration Cox is also constant.

The concentration profile C(z, t) varies with time
due to the diffusion of mobile N1 monomers (with the
diffusion coefficient D1) in accordance with the equa-
tion

(6)

For a low-oxygen material prepared by the float
zone technique (FZ material), when the contribution of
oxidized monomers is small, the system of equations
(5) and (6) can be reduced to one nonlinear equation,

(7)

If the contribution of oxidized monomers is large, it
is convenient to introduce the total concentration of
unoxidized and oxidized nitrogen monomers C1t = C1 +

. This concentration obeys the same equation (7)
but with the parameters K and D1 replaced by the effec-
tive constants, that is,

(8)

The effective diffusion coefficient D1e is equal to the
product of the diffusion coefficient D1 into the fraction
of mobile monomeric species N1 in unoxidized and oxi-
dized monomers:

(9)

The effective dissociation constant Ke relates the
total concentration C1t of unoxidized and oxidized

monomers to the concentration of dimers:  = Ke.
The effective constant Ke and the parameters K and G
are related by the expression

(10)

It should be noted that the effective dissociation
constant Ke determines whether the concentration C2 or
the concentration C1t predominantly contributes to the
total nitrogen concentration C = C1t + 2C2.

At Ke ! C, the dimeric nitrogen species predomi-
nate. The total concentration C is close to 2C2, whereas

C1*

C C1 2C2 C1*+ + C1 1 G 2C1/K+ +( ).= =

C1*

∂C/∂t D1∂
2
C1/∂z

2
.=

1 4C1/K+( )∂C1/∂t D1∂
2
C1/∂z

2
.=

C1*

1 4C1t/Ke+( )∂C1t/∂t D1e∂
2
C1t/∂z

2
.=

D1e D1/ 1 G+( ).=

C1t
2

/C2

Ke K 1 G+( )2
.=
P

the monomer concentration C1t is approximately equal
to (KeC/2)1/2. In this case, the diffusion equation (8)

contains only one product, , and two parame-
ters, D1e and Ke. It is important that this product is equal
to D1K1/2; i.e., it does not depend on the oxidation num-
ber of nitrogen monomers. The diffusion equation (8) is
nonlinear, and its solution substantially differs from the
solution of a linear diffusion equation when the diffu-
sion profile is described by an erf function. The nitro-
gen transport involves dissociation of dominant dimeric
nitrogen species, and this process can be described by
the dissociative diffusion mechanism.

At Ke @ C, monomeric nitrogen species (for the
most part, N1Om complexes) predominate. Conse-
quently, relationship (8) is reduced to the standard lin-
ear diffusion equation involving a sole parameter, i.e.,
the effective diffusion coefficient D1e of monomers.
The diffusion profile is described by the erf function.

Note that the criterion for dissociative diffusion
Ke ! C is satisfied for low-oxygen silicon. However,
the ratio between the quantities Ke and C for Czochral-
ski silicon is not known in advance; hence, it is neces-
sary to examine both limiting cases. Under the assump-
tion that Ke ! C, we choose the best dissociative diffu-
sion parameter D1K1/2 in such a way as to ensure the
minimum root-mean-square deviation of the theoretical
diffusion profile [calculated using relationship (8)]
from the experimental profile C(z). For the opposite
inequality Ke @ C, the best parameter D1e can be
obtained in a similar way. The best theoretical profiles
for these two cases are depicted by the solid lines in
Fig. 1c. For the dissociative diffusion (thick line), the
experimental points are rather well approximated for
the parameter D1K1/2 = 0.67 cm1/2 s–1. For the linear dif-
fusion (with a profile similar to the error (erf) function
shown by the thin line in Fig. 1c), the results of the the-
oretical calculations with the effective diffusion coeffi-
cient D1e = 1.4 × 10–8 cm2 s–1 are in worse agreement
with the experimental data.

Therefore, we can make the inference that the crite-
rion for dissociative diffusion Ke ! C is satisfied for the
Czochralski silicon samples. According to expression
(10), this means that the fraction of unoxidized mono-
mers C1/C1t = 1/(1 + G) is considerably larger than
(K/C)1/2, which is approximately equal to 20%. This
estimate does not rule out substantial oxidation of the

nitrogen monomers (when the ratio G = /C1 is of
the order of unity) but necessarily excludes very inten-
sive oxidation (G @ 1).

It is of interest to note that, for FZ silicon, the nitro-
gen diffusion profile measured by secondary ion mass
spectrometry after annealing under the same conditions
(at 1000°C for 15 min) is adequately described by the
standard erf function [8], even though the criterion for
dissipative diffusion (K ! C) obviously holds true. This

D1eKe
1/2

C1*
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004



GENERATION OF SHALLOW NITROGEN–OXYGEN DONORS 1211
apparent contradiction can stem from the fact that, in
FZ silicon (at a low oxygen concentration), nitrogen
dimers dissociate at a low rate with a characteristic time
τ comparable to the annealing time. In this case, the
nitrogen diffusion profile depends not only on the
parameter D1K1/2 but also on the dissociation time τ and
can be similar to the profile described by the erf func-
tion [1].

The other measured diffusion profiles are character-
ized by either a distortion of the surface portion (due to
the penetration of contaminating donor impurities) or a
considerable precipitation of nitrogen. In the former
case, the undistorted profile portion (corresponding to a
deeper region) is insufficient for deciding between the
aforementioned alternative models. With allowance
made for the above inference regarding the dissociative
mechanism of nitrogen transport (Ke ! C), the disso-
ciative diffusion parameter D1K1/2 was determined to be
1.5 cm1/2 s–1 for the profile obtained upon annealing at
1000°C for 10 min and 0.3 cm1/2 s–1 for the profile
obtained upon annealing at 950°C for 20 min. In the
case when the profiles characterized by a noticeable
precipitation of nitrogen were processed under the
assumption that the normalized profile C(z)/Cb is only
slightly distorted as a result of precipitation, we
obtained the following dissociative diffusion parame-
ters: 2.25 cm1/2 s–1 (annealing at 1050°C for 10 min),
0.8 cm1/2 s–1 (annealing at 1000°C for 30 min), and
0.8 cm1/2 s–1 (annealing at 950°C for 50 min).

The dissociative diffusion parameters determined in
this work are presented in Fig. 4 (closed triangles). The
corresponding parameters calculated in [1] for the dis-
sociative diffusion in layers of implanted nitrogen and
FZ silicon doped with nitrogen are indicated by open
symbols in Fig. 4 (triangles for Czochralski silicon, and
circles for FZ silicon). Despite the wide scatter in
points, it can be seen that these results are in qualitative
agreement. The temperature dependence of the disso-
ciative diffusion parameter (the straight line in Fig. 4)
is characterized by an activation energy of approxi-

10–1

10–2

0.75

D
1K

1/
2 , c

m
1/

2  s
–1

103/T, K–1
0.85 0.95

100

101

0

Fig. 4. Dissociative diffusion parameters D1K1/2 obtained in
this work (closed triangles) and calculated in [1] from other
data (open symbols).
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mately 2.5 eV. This energy is equal to the sum of the
migration energy of an N1 monomer and half the bond-
ing energy of an N2 dimer. According to [1], the bond-
ing energy of the dimer is equal to 2.2 eV or somewhat
higher. Consequently, the migration energy of the
monomer is approximately equal to 1.4 eV or some-
what lower.

5. CONCLUSIONS

Thus, the nitrogen diffusion profile for oxygen-con-
taining silicon can be determined by a new highly sen-
sitive method based on the generation of shallow ther-
mal donors with sufficiently prolonged heat treatment
at moderate temperatures (at 650°C in the present
work). In contrast to the standard method of secondary
ion mass spectrometry, the new method is applicable at
a relatively low nitrogen concentration, which is depen-
dent on the concentration of acceptor (or donor) impu-
rities in the material. The concentration profile of shal-
low thermal donors (nitrogen–oxygen complexes) is a
function of the total nitrogen concentration. The con-
centration profile of shallow thermal donors (obtained
from the measured spreading resistance) is converted
into the nitrogen diffusion profile.

The proposed method was used to demonstrate that
the nitrogen transport in Czochralski silicon (as in FZ
silicon) occurs through the dissociative mechanism.
Dominant (virtually immobile) nitrogen dimers N2 dis-
sociate into mobile nitrogen monomers N1 which pro-
vide transport of nitrogen impurities. In this case, the
diffusion equation is nonlinear and the nitrogen diffu-
sion profile differs substantially from the conventional
profile (described by the erf function). This important
result implies that the fraction of oxidized (immobile)
nitrogen monomers is not very large in Czochralski sil-
icon at diffusion temperatures (approximately 1000°C
in this work). Otherwise, oxidized nitrogen monomers
rather than nitrogen dimers would predominate in Czo-
chralski silicon and the nitrogen transport would corre-
spond to linear diffusion with an effective diffusion
coefficient.

The measured diffusion profiles were processed,
and the dissociative diffusion parameters D1K1/2 were
calculated. The results obtained are in agreement with
the data available in the literature. All these dissociative
diffusion parameters follow a pronounced temperature
dependence, even though there is a rather wide scatter
in points for different samples. The origin of this scatter
remains unclear. Evidently, it is necessary to investigate
a considerably larger number of samples in order to
obtain more reliable averaged dissociative diffusion
parameters.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-16053A.



1212 VORONKOV et al.
REFERENCES

1. V. V. Voronkov and R. Falster, in Proceedings of the
GADEST, 2003.

2. M. Suezawa, K. Sumino, H. Harada, and T. Abe, Jpn. J.
Appl. Phys., Part 1 25, L859 (1986).

3. D. Yang, R. Fan, L. Li, D. Que, and K. Sumino, Appl.
Phys. Lett. 68, 487 (1996).

4. A. Hara, M. Aoki, M. Koizuka, and T. Fukuda, J. Appl.
Phys. 75, 2929 (1994).

5. V. V. Voronkov, M. Porrini, P. Collareta, M. G. Pretto,
R. Scala, R. Falster, G. I. Voronkova, A. V. Batunina,
PH
V. N. Golovina, L. V. Arapkina, A. S. Guliaeva, and
M. G. Milvidski, J. Appl. Phys. 89, 4289 (2001).

6. V. V. Voronkov, A. V. Batunina, G. I. Voronkova,
V. N. Golovina, L. V. Arapkina, N. B. Tyurina, A. S. Gu-
lyaeva, and M. G. Mil’vidskiœ, Fiz. Tverd. Tela
(St. Petersburg) 44, 700 (2002) [Phys. Solid State 44,
727 (2002)].

7. Y. Yatsurugi, N. Akijama, Y. Endo, and T. Nozaki,
J. Electrochem. Soc. 120, 975 (1973).

8. T. Itoh and T. Abe, Appl. Phys. Lett. 53, 39 (1988).

Translated by O. Borovik-Romanova
YSICS OF THE SOLID STATE      Vol. 46      No. 7      2004



  

Physics of the Solid State, Vol. 46, No. 7, 2004, pp. 1213–1224. Translated from Fizika Tverdogo Tela, Vol. 46, No. 7, 2004, pp. 1180–1188.
Original Russian Text Copyright © 2004 by Evarestov, Smirnov.

        

SEMICONDUCTORS 
AND DIELECTRICS

       
Special Points for Calculating Integrals over the Primitive Cell 
of a Periodic System

R. A. Evarestov* and V. P. Smirnov**
*St. Petersburg State University, ul. Pervogo Maya 100, St. Petersburg, 198504 Russia

**Institute of Fine Mechanics and Optics, St. Petersburg, 197101 Russia
Received December 1, 2003

Abstract—A method is proposed for constructing appropriate sets of special points in the Brillouin zone in
which the extended unit cell method is used with a subsequent shift from the center of the reduced Brillouin
zone. The proposed method offers several advantages over the commonly used Monkhorst–Pack method. The
difference in the construction of sets of special points for the direct and reciprocal lattices is discussed for crys-
tals belonging to a nonsymmorphic space group. The cases of a planar square lattice and an fcc lattice are con-
sidered to illustrate general results. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Calculations of the electronic structure and proper-
ties of crystals, as a rule, are currently carried out in
terms of the density functional theory (DFT) in a plane-
wave basis, using the pseudopotential method to
describe the core electrons [1]. In this case, consider-
able computational effort is required to determine the
Fourier transform of the periodic potential in the direct
lattice in order to solve the one-electron Kohn–Sham
equations in a plane-wave basis. The Fourier coeffi-
cients are calculated by interpolating between a finite
number of points in a minimum cell of the direct lattice,
which, in turn, depends on the number of plane waves
involved in the basis used. The optimal choice of inter-
polation points determines, to a great extent, the effi-
ciency of the entire computation [2]. When the elec-
tronic structure of a crystal is calculated self-consis-
tently (both in a plane-wave basis [1] and in a localized
atomic-type function basis [3]), the electron density
matrix of the crystal is determined approximately by
interpolating between its values at a finite number of k
points in the Brillouin zone (BZ) in each iteration cycle
of the self-consistent procedure. These points are cho-
sen using the theory of BZ special points (SPs) devel-
oped in [4–6]. It was shown in [7] that, for the density
matrix of a crystal to remain idempotent, the summa-
tion over SPs should be performed by introducing the
so-called weighting function, which is equivalent to the
imposition of cyclic boundary conditions or consider-
ation of a cyclic cluster [8]. The difficulties that arise
when the SP theory is applied to metals are associated
with the power-law (rather than exponential) decay of
the off-diagonal elements of the density matrix and can
be surmounted by using the k · p method, which
enables one to significantly refine the interpolation
based on a finite number of SPs [9]. In this paper, we
1063-7834/04/4607- $26.00 © 21213
develop a unified approach to the construction of a set
of SPs for calculating integrals over minimal unit cells
of periodic systems (the Wigner–Seitz cell of a direct
lattice and the BZ of a reciprocal lattice). This method
is based on a scale transformation [going over to an
extended unit cell (EUC)] for a direct or a reciprocal
lattice; this transformation takes into account the space
symmetry of the crystal and makes it possible to choose
a set of SPs for which calculations become progres-
sively more accurate as the EUC is increased in size. By
extending the approach proposed in [6, 2], we develop
a method in which efficient sets of SPs in the BZ are
constructed by applying the EUC method and perform-
ing a shift from the center of the folded BZ (FBZ); this
method offers several advantages over the commonly
used Monkhorst–Pack method [5]. (In [6], EUC and
FBZ are referred to as LUC (large unit cell) and SBZ
(small Brillouin zone), respectively.) The difference in
the construction of sets of SPs for the direct and recip-
rocal lattices is discussed for crystals belonging to a
nonsymmorphic space group. The cases of a planar
square lattice and an fcc lattice are considered to illus-
trate general results.

In Section 2, we consider the EUC–FBZ method for
constructing a set of SPs in the BZ without and with
changing the crystal symmetry (symmetric and non-
symmetric extensions, respectively). The Fourier coef-
ficients of expansion in terms of symmetrized plane
waves are calculated for periodic functions defined over
a reciprocal lattice. The EUC–FBZ method with a shift
from the FBZ center is applied to construct SP sets for
planar square and fcc lattices.

In Section 3, the expansion in terms of symmetrized
plane waves is considered for periodic functions
defined over a direct lattice. Extended unit cells in the
reciprocal lattice and reduced Wigner–Seitz cells in the
004 MAIK “Nauka/Interperiodica”
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direct lattice are used. It is shown that, in contrast to
symmetrized plane waves in the reciprocal lattice, sym-
metrized combinations of plane waves in the direct lat-
tice are different for different space groups of the same
crystal class and of the same crystal system. This differ-
ence is illustrated for double-periodic symmetry groups
of the C4v crystal class, more specifically, the symmor-
phic P4mm and nonsymmorphic P4bm groups. In Sec-
tion 4, we discuss the application of the results of this
work for performing self-consistent calculations of the
electronic structure of crystals.

2. EXTENDED UNIT CELL IN THE DIRECT 
LATTICE AND SPECIAL POINTS

IN THE BRILLOUIN ZONE

Let us consider a triply periodic system (bulk crys-
tal) whose direct lattice is characterized by primitive
translation vectors ai (i = 1, 2, 3) possessing the prop-
erty (ai · bj) = 2πδi, j and whose reciprocal lattice is
characterized by primitive vectors bj (j = 1, 2, 3). The
transformations of the direct lattice considered in what
follows can also be applied to double- and single-peri-
odic systems. The basic translation vectors of an EUC
in the direct lattice can be expressed in terms of an inte-

ger matrix  as

(1)

The number of primitive cells in the EUC in the direct
lattice is equal to the determinant L of the transforma-
tion matrix in Eq. (1). As a primitive cell, we choose the
Wigner–Seitz cell. The primitive translation vectors of
the direct lattice can be expressed in terms of the basic
translation vectors of the EUC as

(2)

It is well known that the space group F(s) of a crystal
(where s specifies the space groups belonging to the
same crystal class F) contains the group T of transla-
tions through vectors an =  as an invariant sub-
group and that the crystal class F is isomorphic to the
factor group F(s)/T. Irrespective of whether the space
group F(s) of a crystal is symmorphic or nonsymmor-
phic, the space group of the corresponding reciprocal
lattice is symmorphic and belongs to the same crystal
class F. The type of reciprocal lattice involved can dif-
fer from that of the direct lattice; for example, a direct
fcc lattice has as its reciprocal a bcc lattice. Note that
the point group F either coincides with the lattice point
group Fl or is its subgroup, F ⊆  Fl. Under a symmetry
operation f ∈  F, translations an of the direct lattice
transform into integer combinations of the primitive

L̂

a j
L( )

L̂ jiai, L
i

∑ det L̂.≡=

ai L̂( )ij
1–
a j

L( )
.

i

∑=

niaii∑
PH
vectors. In particular, for the primitive translations, we
have

(3)

The translation vectors related by point symmetry
operations belong to the same star. Let us number the
coordination shells in the direct lattice by an index n in
increasing order of their radius Rn. A coordination shell
can contain a few stars of the direct-lattice vectors
related by symmetry operations f ∈  F. In this case, we
specify independent stars belonging to the same coor-
dination shell by the index ν. Summations over lattice
vectors an will be performed as follows: first, we sum
over the vectors belonging to the same star ν, then over
the stars ν belonging to the same coordination shell n,
and finally over the coordination shells n:

(4)

The translations through direct-lattice vectors 
form an infinite translation group T(L):

(5)

where  are integers.

The factor group  = T/T (L) is the finite group of
internal direct-lattice translations of the EUC. In this
group, the translations an are defined to within a vector

 ∈  T (L); therefore, this group is a group with trans-
lation addition modulo T (L).

Transformation (1) of the basic translation vectors is
termed symmetric if the point symmetry of the lattice
generated by the EUC coincides with the point symme-
try of the original lattice (the type of lattice generated
can be different, but it must belong to the same crystal
system). For a symmetric transformation characterized

by a matrix , the matrix  must be an integer
matrix. Indeed, under symmetry operations of the point

group of the crystal, the basic translation vectors 
of the EUC are transformed as

(6)

where we took into account Eqs. (1)–(3).
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If transformation (1) is not symmetric, then the
translation group T (L) is characterized by a lower point

symmetry F (L) ⊂  Fl. Translations  can also be bro-
ken down into coordination shells and stars with respect
to the point group F (L).

As an example, we consider a square lattice charac-
terized by primitive translation vectors a1 = (1, 0) and
a2 = (0, 1) (in units of the lattice parameter a). The cor-
responding reciprocal lattice is also a square lattice and
is characterized by primitive vectors b1 = (1, 0) and b2 =
(0, 1) (in units of 2π/a). Figure 1 shows the basic trans-

lation vectors for two symmetric ( ,  for L = 2

and ,  for L = 4) and two nonsymmetric

( ,  for L = 4 and ,  for L = 5) exten-
sions of the primitive cell of the direct lattice. The
matrices of the corresponding transformations of the
primitive vectors of the original lattice are shown in
Tables 1 and 2. For transformation (1) in the direct lat-
tice of the crystal, the corresponding transformation in
the reciprocal lattice is characterized by the inverse
matrix and has the form

(7)

Transformation (7) defines the FBZ, i.e., the Wigner–
Seitz cell in the reciprocal lattice corresponding to the
EUC in the direct lattice. The volume of the FBZ is L

times less than the BZ volume. Any point  in the FBZ
is equivalent to L points in the original BZ,

(8)

because it is joined with these points through transla-

tion vectors  of the new reciprocal lattice. The num-

bers  are such that the points  belong to the BZ.
Out of the equivalent points that are at the BZ boundary
and, therefore, are joined through reciprocal-lattice
vectors bm = , only one point is taken into
account. Figure 2a shows the points in the original BZ
that are equivalent to the center of the FBZ for four
EUC–FBZ transformations (described in Tables 1, 2).

The transformation corresponding to the transition
to an EUC in the direct lattice can be used to construct
sets of SPs for calculating the Fourier coefficients of a
function ϕ(k) and, in particular, for performing numer-
ical integration of the function over the BZ. The func-
tion ϕ(k) is assumed to be periodic in the reciprocal-lat-
tice space with periods bj (j = 1, 2, 3) and to be invariant
under the symmetry operations of the crystal class F of
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the space group F (s) of the crystal. The symmetry of the
function ϕ(k) is the same for crystals belonging to any
(symmorphic or nonsymmorphic) space group of the
crystal class F:

(9)

In order to interpolate the function ϕ(k), whose values
at a finite set of points are assumed to be known, we use
plane waves exp(ik · an) that are periodic in the recipro-
cal-lattice space with periods bj (j = 1, 2, 3). Since the
function ϕ(k) possesses the full symmetry of the crys-
tal, we use symmetrized combinations of plane waves:

(10)

where the subscript n numbers the coordination shells
of the vectors fan in increasing order of their radius Rn

and ν specifies the irreducible stars of vectors belong-
ing to the coordination shell of radius Rn (if there are
more than one such stars). Thus, a symmetrized plane
wave Pnν(k) corresponds to the νth star belonging to the
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Fig. 1. Primitive translation vectors and translation vectors

of two symmetric ,  for L = 2; ,  for

L = 4) and two nonsymmetric ( ,  for L = 4; ,

 for L = 5) extensions of the primitive cell of the direct

lattice.
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Table 1.  Parameters of SP sets for double-periodic crystals belonging to the C4v crystal class (square lattices)

n
Before shifting After shifting through 

L M N M/N RM Leff Meff Neff Meff/Neff

1 1 1 1 1.0 1 4 3 1 (3) 3.0 (1.0) 2

2 4 3 3 1.0 2 16 9 3 (6) 3.0 (1.5) 4

3 9 6 3 2.0 3 36 19 6 (10) 3.2 (1.9) 6

4 16 9 6 1.5 4 64 31 10 (15) 3.1 (2.1) 8

5 25 14 6 2.3 5 100 48 15 (21) 3.2 (2.3) 10

6 36 19 10 1.9 6 144 65 21 (28) 3.1 (2.3) 12

1 2 2 2 1.0 4 3 1 (3) 3.0 (1.0) 2

2 8 5 4 1.2 16 9 3 (6) 3.0 (1.5) 4

3 18 11 6 1.8 36 19 6 (10) 3.2 (1.9) 6

4 32 17 9 1.9 64 31 10 (15) 3.1 (2.1) 8

Note: The values of Neff and Meff/Neff that correspond to the SP set with L = Leff containing the Γ point (k = 0) are given in parentheses.

k̃

RMeff

L̂ n 1 0

0 1 
 
 

, L n2, k̃
1

4n
------ 1 1,( )= = =

L̂ n 1 1

1– 1 
 
 

, L 2n2, k̃
1

4n
------ 1 1,( )= = =

2

2 2

3 2

4 2
nth coordination shell of radius Rn in the direct lattice.
Nnν is the number of rays of the star nν.

The functions Pnν(k) form a complete orthonormal
set in the space of fully symmetric periodic functions
[4]:

(11)

We expand the function ϕ(k) in terms of the symme-
trized plane waves Pnν(k):

(12)

Using Eqs. (11), the Fourier coefficients of this expan-
sion can be found to be

(13)
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In particular, the zeroth Fourier coefficient

(14)

is related to the integral of the function ϕ(k) over the
BZ.

The translation group  contains a finite number

L of elements an. Irreducible representations of the 
group are one-dimensional, and their characters are

(an) = exp(–ikt · an) (t = 1, 2, …, L), where kt ≡ 
[see Eqs. (8)]. The so-called second orthogonality rela-
tion for the characters has the form

(15)

where an can be considered to be determined to within

EUC vectors  [see Eq. (5)]. We multiply Eq. (15) by
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Table 2.  SP sets for double-periodic crystals belonging to the C4v crystal class (square lattices)

No. L M N M/N RM wi SP

1 1 (0, 0) 1 1 1 1 1 (0, 0)

(1/4, 1/4) 3 1 3.0 2 1

2 2 (0, 0) 2 2 1.0 (0, 0), 

(1/4, 1/4) 3 1 3.0 2 1

3 4 (0, 0) 3 3 1.0 2 (0, 0), 

(1/4, 1/4) 3 1 3.0 2 1

(1/4, 0) 5 2 2.5

(1/8, 1/8) 9 3 3.0 4

4 5 (0, 0) 4 2 2.0 (0, 0), 

(1/10, 1/5) 7 3 2.3

5 8 (0, 0) 5 4 1.2 (0, 0), 

(1/4, 0) 5 2 2.5

(1/8, 1/8) 9 3 3.0 4

6 9 (0, 0) 6 3 2.0 3 (0, 0), 

7 16 (0, 0) 9 6 1.5 4 (0, 0), 

(1/8, 1/8) 9 3 3.0 4

Note:
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exp(  · (an – an')) and represent it in the form

(16)
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ñ

∑

(a)

(b)

b2
(2) 1/2b2 b2

(41) b1
(2)

b1
(5)b2

(42)

b2
(2) 1/2b2 b2

(41)

b2
(42)

b2
(5)

b1
(42)

b1
(5)

1/2b1

1/2b1

b2
(5)

b1
(41)

b1
(41)

b1
(42)

Fig. 2. Special points generated by two symmetric ( ,

 for L = 2; ,  for L = 4) and two nonsymmet-

ric ( ,  for L = 4; ,  for L = 5) extensions

of the primitive cell of the direct lattice (a) without shifting

(  = 0) and (b) with shifting through  ≠ 0.
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where summation is performed over the shifted set of
BZ points given by Eq. (8). Writing Eq. (16) for all vec-
tors fan and f 'an' ( f, f ' ∈  F), i.e., for stars nν and n'ν', and
then summing these equations and multiplying the

result by , we obtain

(17)

for symmetric and nonsymmetric transformations (1),
we thus obtain

(18)

respectively, where

(19)

and  and  are indices numbering the coordination

shells and stars of vectors  ∈  T (L). The sum over an''

in Eq. (19) does not involve all rays of the stars fan'',

only the rays that are vectors  of the coarser lattice.

Since Pnν(k) and their products are fully symmetric
functions, the summation in Eq. (18) over set (8) of
points in the BZ can be replaced by summation over
representatives of stars j of this set in an irreducible part
of the BZ. Let us denote the number of points defined
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ing factors  = /L. With this notation, Eq. (18)
can be rewritten as

(20)

where  is the number of points defined by Eq. (18)
in an irreducible part of the BZ.

Let the function ϕ(k) be represented by a truncated
Fourier series approximating Eq. (12),

(21)

The number of terms in this sum (M) is referred to as
the accuracy of approximation of the function ϕ(k) and
of various integrals involving this function.

The left-hand side of Eq. (20) is nonzero only for

irreducible stars fan containing vectors  of the
coarser lattice; i.e., it is zero, for example, for the stars
that belong to the coordination shells with radius Rs

lying in the range 0 < Rs < min|  ≠ 0 | ≡ RM. If  is

chosen so that Pn''ν''( ) = 0 [or ( ) = 0, for a non-
symmetric transformation defined by Eq. (1)] for the
first coordination shell (or the first several coordination
shells) in the coarser lattice, then the accuracy of calcu-
lation with a set of SPs can be increased to Meff > M,
corresponding to a coordination shell radius . In
this case, the number of SPs in the irreducible part of
the BZ can decrease or increase (see below). Thus, the
left-hand side of Eq. (20) will be nonzero for stars fan
belonging to coordination shells with a radius lying in
the range

(22)
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The coefficient Cnν (n < M) of expansion (21) can be
calculated from the values of the functions ϕ(k) and
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Pnν( ) at points (8) if RM + Rn ≤  (f ∈  F). Indeed,
we have

(23)

Using the set of SPs (8), the coefficient Cnν (n < M) is
calculated with an accuracy determined by the condi-
tion RM ≤ (  – Rn) and depending on the number n.
In particular, the accuracy of calculation is highest (M =
Meff) for the coefficient C0 (n = 0, Rn = 0) given by
Eq. (14), i.e., the integral of ϕ(k) over the BZ, and the
accuracy is the lowest for the coefficients CM – 1, ν, given
by integrals (13) with n = M – 1. In the latter case, the
accuracy M is determined by the inequality RM – 1 ≤

/2. The quantity  = Meff /  is called the effi-
ciency of a set of SPs in the BZ.

For a symmetric transformation (preserving the F

point symmetry), the sets of SPs (8) with  = 0 consist

of integer stars. Shifted sets of SPs (with  ≠ 0), as a
rule, and sets (8) obtained for nonsymmetric transfor-
mations do not possess this property. In any case, rela-
tion (23) should be applied to a fully symmetric func-
tion ϕ(k), i.e., after symmetrizing it with respect to the
point group of the system.

Among nonsymmetric transformations (1), the

transformations with  belonging to the same coor-
dination shell of radius RM in the original lattice are
most appropriate for cubic lattices. Such vectors will
form the first coordination shell of the new lattice if the
sum and difference of any two of them are no less in

magnitude than the vectors  themselves. Therefore,
the angles αjj ' between these vectors must meet the con-
dition π/3 ≤ αjj ' ≤ 2π/3, which can always be satisfied.
Thus, one can always construct a sequence of SP sets in
which the accuracy of sets increases successively by
unity. This sequence also contains SP sets correspond-
ing to symmetrical transformations (1).

Table 2 shows matrices  of transformations (1) in
the direct lattice and the corresponding SP sets (8) with

 = 0. For each of the sets, Table 2 lists the weights

 of their vectors , the accuracy of the set M for
integral (14), and the number of SPs in the set. The
accuracy of an SP set can be specified by the radius RM

of the coordination shell of the corresponding transla-
tion vectors (in units of the square-lattice constant a).
For nonsymmetric extensions of the primitive cell of
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the direct lattice, different choices of translation vectors
belonging to the same coordination shell can lead to SP
sets characterized by different accuracies. Figure 2a
shows the FBZ translation vectors corresponding to the
transition to the EUCs indicated in Fig. 1.

Using a square lattice as an example, we will show
that the efficiency of an SP set constructed by the EUC–
FBZ method can be increased by shifting all points in

the BZ simultaneously through a vector  ≠ 0 (Fig. 2b).
It follows from Table 1 that, for the EUC–FBZ transfor-

mation with matrix  =  and for  = (1/4,

1/4), the SP set has one point in the irreducible part of

the BZ (Fig. 2b) instead of two points obtained for  =

0. However, since the star of the vector  = (1/4, 1/4)
consists of four vectors, it turns out that the SP set for

L = 2 obtained by shifting through the vector  = (1/4,
1/4) corresponds to the SP set obtained using the matrix

 =  with L = 4 and shifting through the same

vector  = (1/4, 1/4). Therefore, with appropriate

choice of vector  in the FBZ, fairly efficient SP sets
can be constructed even for small extensions of the
primitive cell in the direct lattice. Table 2 lists the SP

sets with both  = 0 and various shifts  ≠ 0 obtained
by us for a square lattice with symmetry F = C4v. It can
be seen from Table 2 that, as regards the efficiency of
the SP set obtained, the EUC–FBZ transformation with
subsequent shifting is equivalent to the transformation
with a larger Leff and, therefore, is characterized by an
effectively higher accuracy Meff and a higher value of
Eeff = Meff /Neff.

Table 3 lists the parameters of various SP sets for an
fcc lattice (crystal class Oh) obtained using symmetric
extensions in the direct lattice with both a diagonal
transformation matrix (preserving the fcc Bravais lat-
tice) and off-diagonal matrices corresponding to transi-
tions to simple cubic and bcc lattices. The data from
Table 3 complement the results obtained in [2] and indi-
cate the specific EUC–FBZ transformations that lead to
the constructed SP sets.

The Monkhorst–Pack method [5] is a specific case
of the EUC–FBZ method proposed by us for construct-
ing SP sets in the BZ; this case corresponds to transfor-

mation (1) with a diagonal matrix (  = niδji; i, j = 1,

2, 3) and shifting  = (n1, n2, n3) for even values of

n1, n2, and n3 and without shifting (  = 0) for odd val-
ues. It can be seen from Table 3 that, for the fcc Bravais
lattice (n1 = n2 = n3 = n), the Monkhorst–Pack method
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PH
does not give a monotonically increasing accuracy M of
SP sets with increasing n. Indeed, for n = 3, 4, 5, 6, and
7, the Monkhorst–Pack sets of SPs correspond to accu-
racy M (Meff) = 9, 30, 24, 67, and 46, respectively. In the
EUC–FBZ method, the accuracy Meff of SP sets
increases monotonically with n.

Now, we briefly discuss the relation between the SP
sets and the cyclic-cluster model commonly used for
calculating defects in crystals [10–12]. In this model,
an infinite crystal is replaced by a finite crystal (coin-
ciding with an EUC in the direct lattice) and cyclic
boundary conditions are imposed; that is, all transla-
tions of the EUC as a whole are assumed to coincide
with zero translation. It was shown in [7] that an
approximate calculation of the one-electron density
matrix of an infinite crystal based on an SP set obtained
using the EUC–FBZ method leads to the cyclic-cluster
model with a cluster corresponding to the EUC chosen.

In this case, the SP sets obtained contain  = 0, because
the symmetry group of a cyclic cluster (for symmetric
extensions) has an identity representation correspond-
ing to the center of the BZ.

The shifting through vector  considered above
when constructing SP sets corresponds, in fact, to con-
sideration of a larger cyclic cluster, i.e., to an increased
accuracy of interpolation over the BZ when calculating
the density matrix. Note that, in the cyclic-cluster
model, it is expedient to use only symmetric extensions
in constructing EUCs, because only in this case is the
symmetry of the one-electron density matrix of a crys-
tal preserved. When SP sets are constructed, the infi-
nite-crystal model is considered and nonsymmetric
extensions are used only in order to ensure the proper
weights in the SP set and appropriate accuracy of the
set. As already mentioned above, if an SP set con-
structed through a nonsymmetric extension is used to
calculate the density matrix, summation should be per-
formed over the stars of the vectors in the irreducible
part of the BZ that enter the SP set. In the following sec-
tion, we consider the problem of integrating a fully
symmetric function (defined in direct space) over the
primitive cell of the direct lattice.

3. EXTENDED UNIT CELL IN THE RECIPROCAL 
LATTICE AND SPECIAL POINTS

IN THE WIGNER–SEITZ CELL

The EUC method for constructing an SP set in the
Wigner–Seitz cell is similar to the EUC method for
constructing an SP set in the BZ (see Section 2). In this
section, we dwell on distinctions between these
methods.

Let a function U(r) be fully symmetric with respect
to the space group F (s) of a crystal:

(24)

k̃

k̃

U r an+( ) U r( ) U f
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Table 3.  Parameters of SP sets for crystals belonging to the Oh crystal class (fcc lattices)

n
Before shifting After shifting through 

L M N M/N RM Leff Meff Neff Meff/Neff

2 8 4 3 1.3 32 8 2 (6) 4.0 (1.3) 2

3 27 9 4 2.2 108 17 6 (10) 2.8 (1.7) 4.5

4 64 15 8 1.9 256 30 10 (19) 3.0 (1.6) 4

5 125 24 10 2.4 500 47 19 2.5 12.5

6 216 34 16 2.1 864 67 28 2.4 18

7 343 46 20 2.3 1372 91 44 2.1 24.5

8 512 59 29 2.0 2048 118 60 2.0 32

9 729 75 35 2.1 2916 148 85 1.7 40.5

1 4 2 2 1.0 1 32 8 2 4.0 2

2 32 8 6 1.3 2 256 30 10 3.0 4

3 108 17 10 1.7 3 864 67 28 2.4 18

4 256 30 19 1.6 4 2048 118 60 2.0 32

1 16 6 3 2.0 32 8 2 4.0 2

2 128 23 11 2.1 256 30 10 3.0 4

3 432 51 22 2.3 864 67 28 2.4 18

4 1024 89 45 2.0 2048 118 60 2.0 32

Note: The values of Neff and Meff/Neff that correspond to the SP set with L = Leff containing the Γ point (k = 0) are given in parentheses.
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RMeff
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1

4n
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3

2 3

3 3

4 3
where  ≡ (  + an) ∈  F (s) are operations of the

symmetry group of the crystal and  are improper
translations that accompany orthogonal operations f of
the point group F of the crystal (for symmorphic space
groups, all improper translations can be considered to
be zero translation if the origin of the coordinates is
chosen properly). In contrast to fully symmetric func-

f
t f

s( )
n

f t f
s( )

t f
s( )
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tions ϕ(k) in reciprocal space, functions U(r) satisfying
Eq. (24) have different symmetry for space groups
belonging to the same crystal class and the same crystal
system because of the difference in the sets of improper

translations  that accompany operations f ∈  F.

By analogy with an irreducible part of the BZ in the
reciprocal lattice, we can define an irreducible part of

t f
s( )
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the Wigner–Seitz cell (IWS) in the direct lattice as a cell

containing one representative of each star  (f ∈  F).
It turns out that IWS cells for different groups of a crys-
tal class and of a crystal system are different (whereas
irreducible parts of the BZs of such groups are identi-
cal). As an example, we consider two layer groups with
a square lattice, P4mm and P4bm, belonging to the
crystal class C4v. The P4mm group is symmorphic,
whereas in the P4bm group all reflections in planes are
accompanied by improper translation (1/2, 1/2) through
the improper translation vector tσ = (a1 + a2)/2. Figure
3 shows irreducible parts of the Wigner–Seitz cell for
these groups.

In calculations of the electronic structure of crystals
performed in a plane-wave basis, this difference should
be taken into account when calculating integrals over
the Wigner–Seitz cell of the direct lattice (Fourier coef-
ficients). In this case, plane waves exp(ibm · r) symme-
trized with respect to space group F (s) [as in Eq. (10)]
are used:

(25)

The symmetrized wave (r) corresponds to the µth
star belonging to the mth coordination shell of radius
Km in the reciprocal lattice. In Eq. (25), Nmµ is the num-
ber of rays in the star mµ.

In contrast to the symmetrized combinations of
plane waves in reciprocal space in Eq. (10), the symme-

f t0
s( )r

Qmµ
s( ) r( )

Nmµ

nF

-------------- ibm f t f
s( )( )

1–
r⋅( )exp

f F∈
∑=

=  if bm r⋅( )exp
f F∈
∑ if bm– t f

s( )⋅( ).exp⋅

Qmν
s( )

IWS for P4mm

IWS for P4bm

1
2
--a2

1
2
--a

1

Fig. 3. Irreducible parts of the Wigner–Seitz cell (IWS) for
the P4mm and P4bm layer symmetry groups.
P

trized plane waves in the direct lattice defined by
Eq. (25) are different for different space groups of a
crystal class because of the presence of the factor

exp(−if bm · ). Table 4 lists symmetrized combina-

tions of plane waves (r) for the P4mm and P4bm
symmetry groups of crystalline layers belonging to the
same crystal class.

When integrals over the Wigner–Seitz cell are cal-
culated approximately, an expansion in terms of

(r) is used [as in Eq. (12)],

(26)

with subsequent truncation of the series [as in Eq. (21)].
Similarly to set (8), an SP set in the Wigner–Seitz

cell has the form

(27)

where vectors  define a folded Wigner–Seitz cell
[cf. Eq. (8)]. The numbers qtj are chosen such that the

points  lie in the Wigner–Seitz cell; furthermore,
out of the equivalent points that are at the boundary of
the Wigner–Seitz cell and, therefore, are joined by
direct-lattice vectors am, only one point is taken into
account.

By analogy with SP sets in the BZ, the accuracy

 of SP sets with  = 0 in the Wigner–Seitz of the
direct lattice is determined by the radius  ≥

min  > 0. The values of this radius for the first 14
coordination shells of the square lattice are listed in
Table 4. As in the theory of SPs in the BZ, integration
over the Wigner–Seitz cell can be performed using only
points in its irreducible part and the efficiency of an SP

set is characterized by the quantity  = Meff / ,
which is the ratio of the number of the coordination
shell of radius  in the reciprocal lattice to the num-

ber  of SPs in the IWS cell.

We do not consider specific SP sets in the Wigner–
Seitz cell, because they can easily be derived from SP
sets in the BZ. The coordinates of SPs are measured in
units of the primitive vectors of the direct lattice. When
choosing an SP set, it should be taken into account that
the type of reciprocal lattice involved can differ from
the type of the corresponding direct lattice. For exam-
ple, the data on SP sets listed in Table 3 for the direct
fcc lattice can be used to perform integration over the
Wigner–Seitz cell of a bcc lattice.

t f
s( )

Qmµ
s( )

Qmµ
s( )
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s( )
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∑=
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Table 4.  Symmetrized plane waves (r) in a square lattice for the P4mm and P4bm symmetry groups of crystalline layers.
Vectors Ks representing the stars of wave vectors and their lengths ds are given in units of 2π/a, and the coordinates x and y
are given in units of a (a is the lattice parameter)

m Ks ds

0 (0, 0) 0 1 1

1 (1, 0) 1 cos(2πx) + cos(2πy) 0

2 (1, 1) 2cos(2πx)cos(2πy) 2cos(2πx)cos(2πy)

3 (2, 0) 2 cos(4πx) + cos(4πy) cos(4πx) + cos(4πy)

4 (2, 1)

5 (2, 2) 2cos(4πx)cos(4πy) 2cos(4πx)cos(4πy)

6 (3, 0) 3 cos(6πx) + cos(6πy) 0

7 (3, 1)

8 (3, 2)

9 (4, 0) 4 cos(8πx) + cos(8πy) cos(8πx) + cos(8πy)

10 (4, 1)

11 (3, 3) 2cos(6πx)cos(6πy) 2cos(6πx)cos(6πy)

12 (4, 2)

13 (5, 0) 5 cos(10πx) + cos(10πy) 0

14 (4, 3) 5

Qmµ
s( )

P4mm C4v
1( ) P4bm C4v

2( )

2

5 2 2πx( ) 4πy( ) 4πx( ) 2πy( )coscos+coscos[ ] 2 2πx( ) 4πy( ) 4πx( ) 2πy( )sinsin–sinsin[ ]

2 2

10 2 6πx( ) 2πy( ) 2πx( ) 6πy( )coscos+coscos[ ] 2 6πx( )cos 2πy( ) 2πx( )cos 6πy( ) ]cos+cos[ ]

13 2 4πx( ) 6πy( ) 6πx( ) 4πy( )coscos+coscos[ ] 2 4πx( ) 6πy( ) 6πx( ) 4πy( )sinsin–sinsin[ ]

17 2 2πx( ) 8πy( ) 8πx( ) 2πy( )coscos+coscos[ ] 2 2πx( ) 8πy( ) 8πx( ) 2πy( )sinsin–sinsin[ ]

3 2

20 2 8πx( ) 4πy( ) 4πx( ) 8πy( )coscos+coscos[ ] 2 8πx( )cos 4πy( ) 4πx( )cos 8πy( ) ]cos+cos[ ]

2 6πx( ) 8πy( ) 8πx( ) 6πy( )coscos+cos[ ] 2 6πx( ) 8πy( ) 8πx( ) 6πy( )sinsin–sinsin[ ]
4. CONCLUSIONS

The data obtained in this paper on the optimal SP
sets for calculating the Fourier coefficients of periodic
functions in the direct and reciprocal lattices are of
importance in estimating the accuracy of calculation of
the electronic structure of crystals. When a plane-wave
basis is used, the accuracy of calculation depends on
the number of plane waves in the basis and on the SP
set in the Wigner–Seitz cell used to calculate the Fou-
rier coefficients of expansion of the density in terms of

symmetrized plane waves (r). The quality of the
basis used is characterized by the so-called truncation

energy, which is the kinetic energy  correspond-
ing to the plane wave with the maximum reciprocal-lat-
tice vector Kmax included in the plane-wave basis. The
quality of an SP set is characterized by the accuracy
Meff and depends on the radius . These character-
istics of the basis and SP set are often considered to be
independent, and the convergence of the results is
improved by increasing both the truncation energy
(which also depends on the pseudopotentials of the
specific atoms of the crystal) and the accuracy of the

Qmµ
s( )

Kmax
2

/2

RMeff
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SP set in the Wigner–Seitz cell. However, as shown in
Section 2, for the basis used (i.e., for a fixed Kmax), the
SP set should be chosen so that its quality Meff corre-
sponds to the quality of the basis.

When a basis of localized atomic-type functions is
used, all relevant integrals of the basis functions can be
calculated analytically (without numerical integration
over the Wigner–Seitz cell); however, the results of cal-
culations depend on the quality of the basis used. In this
case, the accuracy of summation over the BZ should
correspond to the size of the cyclic system for which
integrals involving basis functions are summed over the
direct lattice [7].
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Abstract—The specific features of the absorption, photoluminescence, x-ray luminescence, thermally stimu-
lated luminescence, and photostimulated luminescence spectra of CsBr : Eu2+ single crystals grown using the
Bridgman method are investigated in the temperature range 80–500 K at the highest possible dopant content
(0.1–0.4 mol % EuOBr in the batch) required for preparing perfect crystals. It is shown that an increase in the
dopant content leads to a broadening of the absorption and photoluminescence excitation bands with maxima
at wavelengths of 250 and 350 nm due to the interconfigurational transitions 4f 7(8S7/2)  4f 65d(eg, t2g) in
Eu2+ ions. The photoluminescence and photostimulated luminescence spectra of CsBr : EuOBr single crystals
(0.1–0.4 mol % EuOBr) contain a band at a wavelength of λmax = 450 nm and bands at wavelengths of λmax =
508–523 and 436 nm. The last two bands are assigned to Eu2+–VCs isolated dipole centers and Eu2+-containing
aggregate centers, respectively. It is revealed that the intensity of the luminescence associated with the aggre-
gate centers (λmax = 508–523 nm) is maximum at an EuOBr content of less than or equal to 0.1 mol % and
decreases with an increase in the dopant content. The possibility of forming CsEuBr3-type nanocrystals that are
responsible for the green luminescence observed at a wavelength λmax = 508–523 nm in CsBr : Eu crystals is
discussed. The intensity of photostimulated luminescence in the CsBr : EuOBr crystals irradiated with x-ray
photons is found to increase as the dopant content increases. It is demonstrated that CsBr : EuOBr crystals at a
dopant content in the range 0.3–0.4 mol % can be used as x-ray storage phosphors for visualizing x-ray images
with high spatial resolution. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, x-ray images are predominantly visual-
ized with the use of BaFBr : Eu materials as storage
phosphors [1]. As has been shown in a number of recent
works [2–6], alkali halide crystals doped by ruthenium-
like or rare-earth ions with 4f–5d transitions (in partic-
ular, CsBr : Eu2+) exhibit better performance character-
istics as compared to BaFBr : Eu2+ compounds. How-
ever, the luminescence properties of CsBr : Eu crystals
have been adequately investigated only at low activator
contents (0.01–0.1 mol %) [7, 9]. An important feature
of the incorporation of Eu2+ impurities into the CsBr
compound is the formation of Eu2+–VCs dipoles (VCs is
a cation vacancy), which, under specific conditions, can
form both associates of dipole centers [9] and nanoc-
rystals or precipitates of other phases [6, 10, 11]. In
turn, the formation of these dipoles can bring about sub-
stantial changes in the characteristics of storage phos-
phors [5, 6, 10]. Moreover, it has remained unclear how
the optical and luminescence properties of CsBr : Eu
crystals are affected by oxygen impurities acting as a
compensator (an alternative to the VCs vacancies) for an
excess charge of Eu2+ ions in these crystals [10, 12].

The purpose of the present work was to investigate
the specific features revealed in the optical spectra of
CsBr crystals doped with EuOBr at the highest possible
content (0.1–0.4 mol % EuOBr in the batch) required
for preparing single-phase materials and to determine
1063-7834/04/4607- $26.00 © 21225
the appropriate conditions for these phosphor crystals
to be used to visualize x-ray images.

2. SAMPLE PREPARATION
AND EXPERIMENTAL TECHNIQUE

The absorption and luminescence spectra of
CsBr : EuOBr crystals upon excitations of different
types were investigated as a function of the EuOBr
dopant content. The crystals were grown using the
Bridgman method from a cesium bromide salt (reagent
grade) in evacuated silica tubes at a residual pressure of
1.3 Pa.

The EuOBr compound was synthesized from the
crystal hydrate EuBr3 · 6H2O upon heat treatment at
high temperatures [13]. The EuOBr dopant thus pre-
pared was introduced into the batch at a content varying
in the range 0.1–0.4 mol %. At higher dopant contents,
the crystals grown contained inclusions of other phases.

The absorption spectra were recorded on a Specord
M40 spectrophotometer at a temperature of 300 K. The
photoluminescence, x-ray luminescence, thermally
stimulated luminescence (TSL), and photostimulated
luminescence (PSL) spectra in the temperature range
80–500 K were measured on a photometric setup
(SF-4A monochromator) equipped with an FÉU-51
photomultiplier. The photoluminescence was excited
with radiation from an LGI-21 nitrogen laser (wave-
004 MAIK “Nauka/Interperiodica”
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length λ = 337.1 nm; pulse duration, 8 ns). The crystals
were irradiated with x-ray photons from a URS instru-
ment (CrKα radiation, Ua = 30 kV, I = 12 µA). The pho-
tostimulated luminescence of the CsBr : EuOBr crys-
tals irradiated by x-ray photons with a dose of up to 2 R
at a temperature of 300 K was measured either under
excitation with light at a wavelength in the range 550–
750 nm or under radiation from a He–Ne laser (λ =
633 nm). The emission of the samples was observed
through a filter with maximum transmission at a wave-
length of 440 nm.

The experiments were carried out using samples
stored at room temperature for three months.

3. RESULTS AND DISCUSSION

The absorption spectra of the CsBr : EuOBr crystals
measured at a temperature of 300 K (Fig. 1a) exhibit
two broad bands with maxima at wavelengths of 250
and 350 nm. As can be seen from Fig. 1a, these bands
have a complex vibrational structure. An increase in the
dopant content in the crystal leads to an increase in the
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Fig. 1. (a) Absorption spectra of 1-mm-thick CsBr single
crystals doped with EuOBr at different contents (NEuOBr]):
(1) 0, (2) 0.1, (3) 0.2, and (4) 0.4 mol %. T = 300 K. The
inset shows the difference absorption spectra of CsBr single
crystals at EuOBr contents of (1) 0.1, (2) 0.2, and
(3) 0.4 mol %. (b) Photoluminescence excitation spectra of
CsBr : 0.1 mol % EuOBr single crystals measured at wave-
lengths of (1) 520 and (2) 440 nm. T = 80 K.

1

2

P

intensity of absorption in these bands, their overlap-
ping, and a shift in the long-wavelength edge from 400
to 450 nm. In general, the absorption spectra and the
location of the absorption bands of the CsBr : EuOBr
crystals are in agreement with those of alkali halide
crystals activated by europium in the form of

Eu3+  [3, 7–9, 12]. The absorption bands observed
at wavelengths of 250 and 350 nm are due to the
allowed interconfigurational transitions between the
8S7/2 ground electron terms of the 4f 7 shell and the
terms of the 4f 65d (eg, t2g) shell, which are split by a
crystal field with C2v symmetry. It should be noted
that the energies of the electron terms of the 4f 65d
configuration of Eu2+ ions are less than those of the 6Pj

electron terms of the 4f 7 configuration. Consequently,
the absorption and emission of the CsBr : EuOBr
crystals are not accompanied by 4f 7–4f 7 transitions
and the spectra do not exhibit characteristic line struc-
ture. The fine structure of the absorption spectra is
predominantly associated with the electrostatic inter-
action between d and f electrons and the spin–orbit
interaction.

Apart from the Eu2+–VCs single dipole centers,
which were identified using EPR spectroscopy in [5, 9],
the CsBr : Eu2+ crystals contain more complex aggre-
gate centers that can be formed as a result of thermal
annealing [6, 10]. According to the data obtained by
Savel’ev et al. [9], aggregation occurs even at room
temperature. Therefore, the formation of these centers
can be responsible for the shift observed in the long-
wavelength absorption edge in the range 400–450 nm
for CsBr : EuOBr crystals (at a dopant content ranging
from 0.1 to 0.4 mol %) as compared to the location of
this edge for the crystals at a lower dopant content
(~0.01 at. %) [8]. It is characteristic that, upon quench-
ing of the CsBr : EuOBr crystals from 500 to 290 K, the
long-wavelength edge of the absorption band at 350 nm
is shifted to 400 nm. Apparently, this shift is caused by
the dominant contribution of the Eu2+–VCs isolated
dipole centers to the absorption of the crystal. However,
long-term storage (over the course of three months) of
the samples at 295 K leads to an opposite shift in the
long-wavelength absorption edge of this band, which is
most likely associated with the aggregation processes.
It should be noted that these processes are also respon-
sible for the complex dependence of the luminescence
spectra of the CsBr : EuOBr crystals on the activator
content (Fig. 2).

The luminescence of Eu2+ ions in CsBr : Eu crystals
is observed upon the allowed interconfigurational transi-
tions between the eg (t2g) electron terms of the 4f 65d shell
and the 8S7/2 ground electron terms of the 4f 7 shell [7, 8].
The photoluminescence spectra of the CsBr : EuOBr
single crystals (0.1–0.4 mol % EuOBr) measured upon
excitation into the long-wavelength absorption band of
Eu2+ ions with the use of N2 laser radiation at wave-

Hal3
–
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length λ = 337.1 nm (Fig. 2a) contain not only the well-
known luminescence band due to the presence of Eu2+–
VCs isolated dipole centers [5, 9] in the blue spectral range
435–450 nm but also a luminescence band (not described
earlier in the literature) in the green spectral range. The
photoluminescence of the CsBr : EuOBr crystals
depends on the activator content in a complex manner.
For an EuOBr content of 0.1 mol %, the luminescence
band with a maximum at a wavelength of 508 nm is
dominant in the spectrum of the CsBr : 0.1 mol %
EuOBr single crystal (Fig. 2a, curve 2). An increase in
the activator content to 0.2–0.4 mol % leads to an
increase in the intensity of the luminescence associated
with the Eu2+–VCs isolated dipole centers in the range
400–500 nm and a decrease in the intensity of lumines-
cence in the range 500–600 nm to the point where it dis-
appears completely (Fig. 2a, curves 3, 4). As the EuOBr
content increases from 0.1 to 0.2 and 0.4 mol %, the
maximum of the green luminescence band shifts to the
long-wavelength range from 508 to 523 and 550 nm,
respectively. The maxima of the blue luminescence
band for CsBr : Eu crystals at the aforementioned
EuOBr contents are located at wavelengths of 436, 440,
and 450 nm, respectively. It is evident that such a non-
trivial dependence of the intensity of the luminescence
bands on the EuOBr content in the CsBr : EuOBr crys-
tals is not a result of their overlapping but is a manifes-
tation of the formation of luminescence centers that are
more complex than the Eu2+–VCs isolated dipole centers.

Important information regarding these centers can
be obtained from a detailed analysis of the lumines-
cence excitation spectra (Fig. 1b), especially for the
bands observed in the green (Fig. 1b, curve 1) and blue
(Fig. 1b, curve 2) spectral ranges. It can be seen from
Fig. 1b that, for the CsBr : EuOBr single crystal
(0.1 mol % EuOBr), the luminescence excitation spec-
trum measured at a wavelength of 520 nm (curve 1) is
slightly broadened. This broadening can be judged
from a comparison of the positions of the peaks
observed in the short-wavelength wing of the excitation
band at 250 nm and the positions of the peaks in the
long-wavelength wing of the excitation band at 350 nm
with those of the corresponding excitation bands in the
luminescence excitation spectrum of the CsBr : EuOBr
single crystal (0.1 mol % EuOBr) measured at 440 nm
(curve 2). As follows from the estimated shift (0.21 eV)
between the corresponding bands in the ranges 202–
208 and 370–375 nm, the crystal field strength respon-
sible for the spectral characteristics of Eu2+ ions in cen-
ters of green luminescence is 9% greater than the crys-
tal field strength for centers of blue luminescence asso-
ciated with the Eu2+–VCs isolated dipole centers.

Figure 2b depicts the x-ray luminescence spectra of
pure (curve 1) and europium-activated (0.2–0.4 mol %
EuOBr) (curves 3, 4) CsBr crystals. For pure CsBr
crystals, the luminescence with a maximum in the
wavelength range 490–500 nm at room temperature is
associated with the α centers [14], whereas the lumi-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
nescence observed at 80 K is assigned to self-trapped π
excitons at a wavelength λmax = 330 nm [12, 14]. As the
activator content increases, the maximum of the x-ray
luminescence band shifts toward the blue spectral
range. This shift can be explained by the increase in the
rate of recombination through Eu2+ centers. The mech-
anism of this process involves intermediate trapping of
holes by Eu2+–VCs centers or their associates, followed
by recombination with electrons and a transfer of
energy to Eu2+ ions.

The thermally stimulated luminescence spectra of
the CsBr : EuOBr single crystals irradiated with x-ray
photons at a temperature of 80 K and then heated to
300 K (Fig. 3a, curves 2–4) exhibit peaks at 105, 137,
152, 162, and 186 K. The thermally stimulated lumi-
nescence spectra of the CsBr : EuOBr single crystals
(0.4 mol % EuOBr) irradiated at a temperature of 300 K
and heated to 500 K (Fig. 3b) contain peaks at 335 and
420 K. A comparison of the thermally stimulated lumi-
nescence spectra of the CsBr single crystals activated
with EuOBr (curves 2–4) and the spectra of pure CsBr
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Fig. 2. (a) Photoluminescence spectra upon excitation with
nitrogen (N2) laser radiation (λ = 337.1 nm) and (b) x-ray
luminescence spectra of CsBr single crystals at different
EuOBr contents: (1) 0, (2) 0.1, (3) 0.2, and (4) 0.4 mol %.
T = 300 K. The spectra are normalized to the maximum
intensity.
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single crystals (curve 1) shows that the peaks observed
at 152, 162, 186, 335, and 425 K are associated with the
introduction of Eu2+ impurities into the pure crystal.
The spectral composition of the thermally stimulated
luminescence of the CsBr : EuOBr single crystals
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Fig. 3. Thermally stimulated luminescence spectra of
(1) pure CsBr and (2–4) CsBr : Eu2+ single crystals at dif-
ferent activator contents in the temperature ranges (a) 80–
225 and (b) 290–450 K. Activator content: (1) 0, (2) 0.1,
(3) 0.2, and (4) 0.4 mol %.
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CsBr single crystals at different EuOBr activator contents:
(1) 0, (2) 0.1, (3) 0.2, and (4) 0.4 mol %. T = 300 K.
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(0.4 mol % EuOBr) in the range of the most intense
peaks revealed at temperatures of 162 and 420 K corre-
sponds to the luminescence band with a maximum in
the wavelength range 440–450 nm. On this basis, we
can argue that thermal depletion of trapping centers
results in excitation of Eu2+ centers through the recom-
bination of electrons and holes localized at Eu2+–VCs
dipoles or at their associates. Therefore, by analogy
with the inferences made in [15], the high-temperature
peaks observed at 335 and 420 K in the thermally stim-
ulated luminescence spectra can be attributed to ther-
mal depletion of F centers (VCs cation vacancies) and Fz

centers (F centers stabilized by the nearest neighbor
Eu2+–VCs dipoles). It seems likely that the thermally
stimulated luminescence peaks in the range 150–190 K
can be associated with the formation of F– centers (i.e.,
F centers with an additionally localized electron). Note
that the generation of these centers in KI : Eu2+ crystals
at temperatures in the range 123–173 K was observed
by Novosad and Streletska [12]. Under the above
assumption, the thermally stimulated luminescence

peaks observed at 152 and 162 K can be assigned to 
centers with different coordinations of Eu2+–VCs
dipoles, whereas the peak at 186 K can be attributed to
F– single centers.

In the case when the crystals subjected to prelimi-
nary irradiation with x-ray photons at 300 K are then
excited with light in the wavelength range 550–750 nm
(Fig. 4), there appears an intense photostimulated lumi-
nescence band in the blue spectral range. This band
exhibits a maximum in the wavelength range 650–
675 nm in the photostimulated luminescence excitation
spectrum and corresponds to the absorption of F and Fz

centers [3, 6, 12]. The spectral composition of the pho-
tostimulated luminescence, as a whole, corresponds to
the photoluminescence spectra (Fig. 2) and is governed
by the recombination of electrons (photoionized in
F-like centers) with holes trapped by Eu2+–VCs dipoles
and their associates. An increase in the activator content
leads to an increase in the intensity of photostimulated
luminescence with a dominant contribution from the
luminescence of Eu2+–VCs isolated dipole centers in the
wavelength range 440–450 nm.

An analysis of the experimental results obtained
revealed that the CsBr : EuOBr single crystals accumu-
late the energy from x-ray photons. For the same irradi-
ation dose, the higher the dopant content, the greater the
light sum accumulated by the crystals. It should be
noted that an EuOBr dopant content in the range 0.3–
0.4 mol % is optimum for preparing high-quality crys-
tals used as storage phosphors for visualizing x-ray
images with high spatial resolution. The luminescence
band of the CsBr : EuOBr single crystal (0.4 mol %
EuOBr) with a maximum at a wavelength of 450 nm
virtually coincides with the luminescence band of CsBr
crystals doped with EuBr3 [6] and lies well away from

Fz
–
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the photostimulated luminescence excitation band.
This condition is necessary for practical application of
the CsBr : EuOBr single crystal (0.4 mol % EuOBr) as
a storage phosphor, in particular, for screens with a high
spatial resolution. For optical reading of information
recorded with these crystals, it is expedient to use radi-
ation from a He–Ne laser at wavelength λ = 633 nm.
However, in this case, the He–Ne laser radiation and
photostimulated luminescence excitation spectrum
need to be matched more closely (Fig. 4).

Another way to improve the properties of phosphors
based on CsBr : Eu2+ crystals with the aim of increasing
the photostimulated luminescence intensity is to pro-
duce photosensitive centers in the form of Eu2+-con-
taining nanocrystals or precipitates of other phases that
are characterized by a greater carrier-capture cross sec-
tion than that for Eu2+–VCs isolated dipole centers [6, 7].
Analysis of the possible types of such structures in
CsBr crystals presents considerable difficulties,
because the phase diagram of the Cs–Br–Eu system is
not yet known. Nonetheless, some conclusions can be
drawn on the basis of the luminescence characteristics
of CsBr crystals doped with EuOBr at different concen-
trations. In particular, we can state that, apart from the
Eu2+–VCs isolated dipole centers, which are character-
ized by the photoluminescence and photostimulated
luminescence bands at a wavelength of 450 nm
(Fig. 2a, curve 4), the CsBr : EuOBr single crystals
(0.1–0.4 mol % EuOBr) contain several types of centers
responsible for the photoluminescence and photostim-
ulated luminescence bands observed at wavelengths of
508–523 and 436 nm (Fig. 2a, curve 2).

The spectral composition of the photoluminescence
and photostimulated luminescence bands of aggregate
centers in CsBr crystals and the photoluminescence
excitation spectra suggest that the centers of green and
blue luminescence are associated with the Eu2+ ions
located at lattice sites with different symmetries. This is
confirmed by the fact that the crystal field strength for
centers of green luminescence exceeds the crystal field
strength for centers of blue luminescence by 9% and
that the photoluminescence and photostimulated lumi-
nescence spectra for the former centers are substan-
tially shifted (by 70 nm) toward the long-wavelength
range as compared to those for centers of blue lumines-
cence, which are characteristic of Eu2+ ions in the crys-
tal field with C2v symmetry. It is worth noting that,
among the large variety of materials characterized by
Eu2+ luminescence [16], only crystals with a perovs-
kite-type structure (in particular, EuAlO3 crystals)
exhibit luminescence in the green spectral range (510–
520 nm).

In [18, 19], it was found that annealing of CsCl–
PbCl2 and CsBr–CdBr2 solid solutions containing 0.5–
1.0 mol % Pb2+ (or Cd2+) at temperatures T = 160–
200°C leads to the formation of CsPbCl3 and CsCdBr3
nanocrystals with a perovskite-type structure and sizes
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
equal to 250–300 lattice constants of these materials.
Nikl et al. [18] proposed a mechanism of formation of
such nanocrystals. By analogy with this mechanism, we
can assume that similar nanocrystals of the CsEuBr3 type
are formed in EuOBr-doped CsBr single crystals with a
CsCl structure at a dopant content of 0.1–0.2 mol %.
This assumption is supported by the results obtained in
[6, 7], according to which the considerable changes in
the intensity of photostimulated luminescence in
CsBr : EuBr3 (0.01–5.00 mol % EuBr3) powders
annealed in the temperature range 160–220°C are asso-
ciated with the formation of CsEuBr3 and Cs4EuBr6
nanocrystals. In [6, 7], the above inference regarding
the formation of these nanocrystals was made from a
comparison of the shape and positions of individual
lines in the x-ray diffraction patterns with those of the
corresponding lines for the CsPbBr3 and Cs4PbBr6
phases [20].

In our opinion, it is these nanocrystals that serve as
centers of green luminescence in CsBr : Eu crystals,
whereas the EuBr2-type precipitates play the role of
aggregate centers responsible for the photolumines-
cence and photostimulated luminescence in the wave-
length range 436–443 nm. Note that the luminescence
of EuBr2-type precipitates in ABr : Eu (A = Na, K, Rb)
crystals was observed in this spectral range by Medrano
et al. [11].

Novosad and Streletska [12] proposed an alternative
model for the aforementioned aggregate centers of
luminescence. According to their model, Eu2+–O2– pair
centers with oxygen impurities compensating for the
excess charge of Eu2+ ions are formed in CsBr : Eu
crystals. However, this model allows neither for the
complex dependences of the photoluminescence and
photostimulated luminescence spectra on the activator
content nor the formation of different types of aggre-
gate centers of luminescence in CsBr : Eu crystals.
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Abstract—This paper reports on the results of investigations into the internal microscopic dissipative phenom-
ena occurring in crystalline dielectrics in which the interaction of all subsystems with a thermostat plays a dom-
inant role. It is shown that, in realistic physical situations where allowance is made not only for the coupling
between interacting phonon subsystems of a dielectric but also for the interaction with a thermostat, the
umklapp processes proceeding in samples with a size smaller than the critical value L0 play an insignificant role.
For these situations, it is proved that the phonon gas superflows through the volume without retardation and
comes to rest only due to the interaction with immobile surface phonons of the thermostat. Numerical calcula-
tions demonstrate that the umklapp processes manifest themselves solely at high temperatures T (exceeding a
temperature approximately equal to ΘD/4, where ΘD is the Debye temperature) and for samples with a size L >
L0, which, according to our estimates, should be of the order of 10 cm. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is known, the dissipative processes associated
with the attainment of an internal thermal equilibrium
in relaxing subsystems are of fundamental importance
in constructing the theory of thermal conductivity of
crystals.

It is generally believed that the final stage in attain-
ing equilibrium in dielectrics proceeds through the
umklapp mechanism [so-called umklapp processes
(see, for example, the monographs by Akhiezer et al.
[1] and Gurevich [2])] responsible for the relaxation of
the momentum of the phonon system. This mechanism
was first proposed by R. Peierls in 1929. The umklapp
processes are actually of utmost importance but only
for bulk samples. Indeed, we can easily imagine a situ-
ation in which the sample has a relatively small size L
and the time τ0 of the phonon mean free path between
the sample boundaries is equal to L/cs, where cs is the
mean acoustic velocity (the so-called Knudsen case).
Since the relaxation time associated with the umklapp
process is exponentially long [1, 2], we can state with
assurance that there can frequently occur a situation
where the inequality τu < L/cs is violated and becomes
reverse beginning from sizes L < τucs. Qualitatively, this
means that the phonons have no time to be retarded by
the umklapp processes and gain the very interesting
capacity to superflow. The final retardation should be
accomplished only through the interaction with a ther-
mostat, because, in actual conditions, the sample (as a
rule) should be in contact with a heat reservoir at a con-
stant temperature T0. This implies that, in a layer δ, the
1063-7834/04/4607- $26.00 © 21231
bulk nonequilibrium superflowing phonons interact
with surface equilibrium immobile phonons (being in
direct contact with the heat reservoir) and, hence, will
be retarded by them. As a result, the momentum relax-
ation will cease. It is this case that will be considered in
the present work.

2. THEORY AND NUMERICAL
CALCULATIONS

Let us assume that an external action (an acoustic
wave or pulsed laser radiation) disturbs an internal
phonon subsystem of a dielectric from equilibrium.
Then, the dielectric is instantaneously placed in a ther-
mostat at a temperature T0. We seek to describe the
attainment of an internal relaxation with allowance
made for the interaction of all phonon subsystems with
the thermostat in a surface layer δ.

Owing to contact between the surface of the dielec-
tric and a heat reservoir (Fig. 1), the system of surface
(but three-dimensional) phonons in the region δ for a
time τmin = δ/cl (here, cl is the longitudinal acoustic
velocity, which is always higher than the transverse
acoustic velocity ct) reaches an equilibrium Bose distri-

bution:  = [exp("ωt, k/T0) – 1]–1, where ωt, l = ct, lk is
the phonon dispersion and k is the wave vector. In what
follows, the Boltzmann constant kB will be taken equal
to unity. It is necessary to stress that we are dealing here
with not very low temperatures, which should at least
be higher than the liquid-helium temperature. The
description of the attainment of thermodynamic equi-
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Fig. 1. Schematic drawing of the region δ involved in the
interaction responsible for the attainment of equilibrium in
the system of bulk nonequilibrium phonons for a sample
with size L < L0 (for explanation of the parameter L0, see
text).
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umklapp processes involving longitudinal phonons.
P

librium at temperatures close to absolute zero is a spe-
cial problem.

The interaction between the bulk and surface
phonons leads to equalization of the nonequilibrium
parameters (T  T0, µl  0, Vt  0) and complete
thermalization of the internal subsystems. Running a
little ahead, it should be noted that this situation
becomes obvious after comparing the inverse relax-
ation times with the inverse time of the umklapp pro-
cess, which is illustrated clearly in Fig. 2 with the
results of numerical calculations. It can be seen from
Fig. 2 that, at temperatures below the Debye tempera-
ture ΘD, the umklapp processes are suppressed and
become ineffective; consequently, the phonon gas
superflows toward the sample boundaries. In some
sense, this situation is similar to a ballistic flow of elec-
trons in metals under conditions of their weak interac-
tion with phonons.

In bulk samples (their size estimates are given
below), the umklapp processes play a dominant role
and the nonequilibrium phonon gas is retarded before it
reaches the boundaries of the dielectric.

In our model, we assume that the time τmax = δ/cl is
shorter than any one of the possible relaxation times in
the systems under consideration (τmax < τrel). This con-
dition imposes a specific restriction on the size δ of the
region of the surface contact. For example, at a temper-
ature T ≅  100 K, we have τrel = τllt = 5 × 10–9 s (Fig. 2)
and the condition δ < 10–2 cm is satisfied at a longitudi-
nal acoustic velocity cl = 1.8 × 106 cm/s (taken for dia-
mond).

As the temperature increases, the relaxation times
τrel become shorter and, hence, the quantity δ should
also decrease. In this case, phonons in the immediate
vicinity of the surface become completely two-dimen-
sional. The interaction between the surface and bulk
phonons results in thermalization of bulk phonons.
Note that the temperature dependence of the relaxation
time radically changes if the interaction with two-
dimensional phonons is taken into account.

When analyzing the internal thermal equilibrium in
the dielectric, we considered the following four sub-
systems: (i) the subsystem of longitudinal (l) phonons,
(ii) the subsystem of transverse (t) phonons, (iii) the
subsystem of optical (o) phonons, and (iv) the thermo-
stat (T) with a temperature T0 = const.

Reasoning from the principles developed, for exam-
ple, in monograph [2] (see also [3, 4]), we can make the
inference that three-particle scattering in the subsystem
of transverse phonons is characterized by a shortest
relaxation time τttt. Next in the hierarchical chain of
relaxation times is the time τllt corresponding to the

interaction , where (blk) is the operator of
creation (annihilation) of a longitudinal phonon with

wave vector k and (btk) is the operator of creation

blk
+

blk1
btk2

+
blk

+

btk
+
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(annihilation) of a transverse phonon with wave vector
k. The process competing with this interaction is impu-
rity scattering of a longitudinal phonon, followed by its
transformation into a transverse phonon. The relaxation
time of this process is designated as τimplt. The time τlll

required to attain a quasi-equilibrium distribution of
longitudinal phonons appears to be the longest among
the aforementioned relaxation times; however, it is
shorter than the time of longitudinal phonon relaxation

due to the process  with the participation of
optical phonons. This time is denoted as τloo. The last
process in the above hierarchical chain is the slowest
relaxation process, namely, the umklapp process with a
characteristic time τu. However, the results of the
numerical analysis indicate that, in the T–L plane, there
exists a region inside which the umklapp processes play
a dominant role (Fig. 3) (we do not deal with this case
in the present study). Therefore, all the aforementioned
relaxation times satisfy the following inequalities: τttt !
τllt ≤ τimplt < τlll ! τloo < τu. Under the assumption that
these inequalities hold true, it is easy to elucidate qual-
itatively how all the subsystems reach thermodynamic
equilibrium.

Making allowance for the interaction with the ther-
mostat (which is important for our problem), we can
write the following inequalities: τTTT < τttt ≤  !

 and  ! τu, where the subscript T indicates
the interaction with the thermostat. As was noted above,
the role of a thermostat is played by immobile surface
phonons in the contact region δ (see scheme in Fig. 1).
The approximate relationships for the relaxation times
can be represented in the form

(1)

Now, it is easy to write a kinetic equation that, in the
τ approximation, turns out to be quite sufficient for our
purposes. By linearizing this equation with respect to
the independent parameters Vt, µl, and δT = Tt – T0
(where µl is the chemical potential of longitudinal
phonons), we obtain the equations describing the relax-
ation of these parameters:

(2)

blk
+

bok1

+
bok2

τ ttTt

τ lTlt
τ imp lTt

τ ttTt

L
2δ
------ 

  τ ttt,=

τ lTlt
L

2δ
------ 

  τ llt,=

τ imp lTt

L
2δ
------ 

  τ imp lt.=

δṪ
1
τ1
----δT ,–=

µ̇l
1
τ2
----µl,–=

V̇t
1
τ3
---- 1

τu

----+ 
  Vt.–=
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Here, the inverse relaxation times are defined by the
formulas

(3)

(4)

(5)

The system of equations (2) is determined in the fol-
lowing way. The first equation representing the law of
conservation of energy is derived by multiplying both
sides of the kinetic equation into "ωlk, followed by inte-
gration over d3k. The second equation describes the law
of conservation of the number of longitudinal phonons
and is deduced through integration of both sides of the
kinetic equation. Finally, the third equation (for the
evolution of the drag velocity Vt) represents the law of
conservation of momentum of quasiparticles and is
obtained by multiplying the kinetic equation into k, fol-
lowed by integration. As should be expected, this equa-
tion includes the relaxation time associated with the
thermostat and the characteristic relaxation time of the
umklapp process τu.
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Fig. 3. Hatched region in the T–L plane (L is the sample
size) in which the umklapp processes play an important
role. Calculations are performed for a fixed parameter δ =
0.18 cm under the assumption that δ does not depend on T.
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In the most interesting (theoretically and experi-
mentally) temperature range, namely, at T < ΘD, and for
not too large samples with a linear size L (Fig. 3), the
inequality 1/τ3 @ 1/τu (Fig. 2) must be satisfied. This
implies that the attainment of a final equilibrium in all
the subsystems is characterized by the relaxation time

 ≈ (L/2δ)τllt. For small-sized samples at L ≥ 2δ, we

obtain  ≥ τllt. In the case of bulk samples, we have

L @ 2δ and  @ τllt. In order to compare the relax-
ation times τ3 and τu, it is necessary to use an analytical
expression for the time τu. The relaxation time τu for the
three-particle interaction of longitudinal phonons can
be written in the form

(6)

The averaging of the inverse time  over the equilib-
rium Bose distribution function of longitudinal
phonons is performed according to the formula

Substitution of the explicit expression (6) for 1/τuk into
the above formula gives

(7)

where G =  × 2.44 × 10–5, β = /(πT), and the func-

tions have the form ϕ(y, z) = ,
S(x, y) = 37x2(x + y)2 + 3[x2 + (x + y)2 – ϕ(y, z)]2, g1(β) =

, and (y) = .

All the other mean relaxation times for a crystalline
dielectric with cubic symmetry are derived as follows.
The inverse relaxation time for the longitudinal phonon
interacting with one longitudinal virtual phonon and
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one transverse virtual phonon can be described by the
relationship

(8)

where α = , λ = cl/ct > 1,  = , ΘD = ,

and cs =  are the dimensionless parameters

and the function has the form ϕ1(x, y) = y4[x2 + y2 – (x –
y)2λ2][(x + y)2 – λ2(x – y)2] + 6(λ2 – 1)y2(x – y)2[x2 + y2 –
λ2(x – y)2]2 + 36(x – y)2[(x + y)2 – λ2(x – y)2]3. The
inverse time of the relaxation process with the participa-
tion of the optical phonon is determined by the equality

(9)

where the lower limit of integration is written as xH(y) =

, b = , and the function has

the form ϕ3(x, t) = x2 – xyβ –  +

.

The inverse relaxation time for impurity scattering
is represented by the formula

(10)

where ci is the concentration of impurity atoms and

 = . Here,  is the phenomenological

dimensionless constant of the interaction between
phonons and impurity atoms.

Finally, the last relaxation time is determined by the
expression
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Experimental parameters of dielectrics
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m3m 3.57 [11] 8 1.785 3.51 18.1 12.1 13.22 1.5 1850 [10] – 135
1860 [10]
2250 [10]
2196*

NaCl m3m 5.64 [11] 6 3.1 2.17 4.57 2.69 2.98 1.7 320 [10] –8.43 7
275 [10]
285*

SiO2
(α-quartz)

32 a, b = 4.913 9 2.438 2.65 5.96 4.44 4.77 1.34 580* –2.1 25
c = 5.404 [12] –8.15 

(C333333)
* Calculated from the data presented in the table.
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where the limits of integration with respect to x are

written in the form B1 =  and B2 = 

and the function ϕ2(x, y) is defined by the relationship

ϕ2(x, y) =  – .

The mean relaxation time τ3 can be estimated from
the formula

(12)

where  = (1 + (y))dy is the normal-
ization function.

In the explicit form, we obtain
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It should be noted that all the above expressions for
the relaxation times were necessary for numerical cal-
culations. The results of these calculations are pre-
sented in Fig. 2. The interested reader can verify the
validity of the relationships between the relaxation
times by way of numerical integration.

Before proceeding to the description of the thermal
conductivity coefficient, a number of points regarding
the parameter δ need to be made. By definition, the sur-
face layer of the dielectric is the thermostat and its
thickness is determined by the time of elastic relaxation
of surface (but three-dimensional) phonons due to their
scattering directly from the dielectric boundary. It can
be seen from the numerical estimates of the relaxation
times (Fig. 2) that, for diamond, the elastic relaxation
time corresponds to the time τllt(T0); i.e., the quantity δ
should be less than clτllt(T0). At τllt ~ 10–7 s, we obtain
δ < 1.8 × 106 × 10–7 = 0.18 cm. For samples with a lin-
ear size L ≅  0.5 cm, the small parameter relating the
relaxation times τllt and , according to relationships
(1), is determined to be ε = 2δ/L = 0.72. As model
parameters (a, ρ, ΘD, etc.) in our calculations, we used
the reference experimental data presented in the table.

The calculations of the inverse relaxation times 
(coinciding in order of magnitude with the inverse

relaxation time ) and  demonstrated that the
interaction of longitudinal phonons with transverse
phonons of the thermostat is dominant for samples with
a size L < L0 = 3–10 cm. However, for bulk samples
(L > L0) and in some regions in the T–L plane (Fig. 3),
the umklapp processes come into play.

It should also be noted that the temperature depen-
dence of the thermal conductivity coefficient κ(T) at
any temperatures T, including the range to the right of
the maximum, cannot be represented in analytical
form, even though this dependence is of particular

τ lTlt

τ3
1–

τ llT
1– τu

1–
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interest. Nonetheless, the problem can be solved using
the methods of numerical integration.

The analysis of the dependence κ(T) will be started
with the general expression for the tensor κij, where
i, j = x, y, and z. Within the standard gas kinetic approx-
imation [2], the tensor κij can be represented in the fol-
lowing from:

(14)

where ωlt(k) = cl, tk is the phonon dispersion.

By averaging tensor (14) over the traveling direc-
tions of phonons and retaining the components corre-
sponding to the fastest longitudinal relaxation process,
we obtain

(15)

where ξ–1 is the parameter defined by the relationship
ξ−1 = 31/3(1 + 2λ3)2/3. In order not to overload the text,
hereafter the bar over κ will be omitted.

Despite the simplicity of the derived formula, it can
be used to analyze the temperature dependence of the
thermal conductivity coefficient κ over the entire range
of temperatures T. The problem is reduced to estimating
the relaxation times τlk. It can be shown that the laws of
conservation of energy and momentum allow only for

the following four dissipative processes: (1) ,

(2) , (3) , and (4) . In the
case of process (1), the allowable magnitudes of the vir-
tual wave vector are determined by the inequality k1 ≥

. For process (2), we have the inequality

 ≤ k1 ≤ . For process (3), there are

no restrictions. In the case of process (4), we can write

the inequality k1 ≥ k, where β is derived from

the mathematical definition of the spectrum of optical
phonons ωok = ωo – βk2, which holds good for the long-
wavelength approximation: ωo ≅  2(cs/a) and β ≈ acs/4.

As a result, we found that the inverse relaxation time
can be represented as the sum
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In sum (16), the relaxation times are determined by the
relationships

(17)

(18)

(19)

(20)

where  =  = 1.94 × 10–6 , A =

 (where A ≤ 1), λ = cl/ct ≥ 1, α =

(λ + 1)/(λ – 1),  =  = 9.5 × 10–5 , B =

, z1 = (λ – 1)/2, z2 = (λ + 1)/2, z3 =

, and  =  = 3.7 × 10–5 .

The relaxation time L/cl accounts for the Knudsen
scattering of longitudinal phonons from the sample
boundaries. This relaxation time is predominantly
responsible for the broadening of the maximum in the
dependence κ(T) and plays a significant role only at low
temperatures.

With the use of formulas (16)–(20), the thermal con-
ductivity coefficient κ (15) can be represented in the
following compact form:
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where  = ΘD  and the function in the

denominator is the sum F(y) = F1(y) + F2(y) + F3(y) +
Fimp(y). The functions entering into this sum are given
in the Appendix.

Numerical integration of expression (21) with
allowance made for formulas (A1)–(A4) was carried
out using methods that have been widely covered in the
literature (see, for example, [5–7]), and, hence, we will
not dwell on their description. We note only that, as the
parameters, we used the experimental data presented in
the table (it was assumed that cl = ). The effective

constant  was chosen so that the results of numerical
integration would be consistent with the experimental
data. The last column of the table lists the dimensional
constants  related to the effective constant  through

the simple expression  = ΘD/a3 (the dimensional

constant  is given for diamonds of the IIa type).

Since relationships (A1)–(A4) include the quantity ,
the dimensional constant  can be determined only in
magnitude. The constant γimp is taken equal to 102.
However, there arises a problem with the choice of the
Debye temperature. The point is that, according to dif-
ferent publications (and sometimes even in the same
publication), the Debye temperature ΘD for the same
material has different values (the difference can be as
much as 20%; see table). In our calculations for the dia-
mond and NaCl, we used the Debye temperatures taken
from [8]: ΘD = 2250 K for the diamond and ΘD = 275 K
for NaCl. These data are in best agreement with the
Debye temperatures determined from the relationship
ΘD = "cs(6π2N/V)1/3. Since the value of ΘD for quartz is
not given in [8], we used the Debye temperature calcu-
lated from the above formula and the experimental data
presented in the table (ΘD = 580 K for quartz). Note
that, in our case, the difference in the Debye tempera-
tures for the same material leads to an insignificant
change in the dependence κ(T). The experimental data
on the thermal conductivity were obtained for samples
of the following sizes: ≈0.5 cm for the diamond and
NaCl (in the calculation, the value of L was taken equal
to 0.5 cm) and 0.5 × 0.5 × 4 cm for quartz (the thermal
conductivity coefficient κ was measured along the C
axis, and, hence, the size was taken to be L = 4 cm).

As can be seen from Figs. 4 and 5, the results of
numerical integration of the theoretical expression
derived for the thermal conductivity coefficient of
dielectrics are in good agreement with the experimental
data. It should be noted that, in this case, the contribu-
tion of impurity scattering cannot be ignored even for
the purest diamond of the IIa type (Fig. 4a), because
perfect diamond crystals do not occur in nature and,
moreover, synthetic (artificial) diamonds contain even a
greater amount of defects than natural diamonds. In the

ΘD*
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------------------ 
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calculation performed for diamonds of the IIa type with
the aforementioned integration parameters, we
obtained the dimensional constant  ≈ 1.35 ×
1014 erg/cm3 and the concentration ci ≈ 3 × 10–6, which
corresponds to an impurity concentration of the order
of 5 × 1017 cm–3. Here, it should be specially empha-
sized that, first, a change in the value of γimp would lead
to a change in the concentration of impurity atoms ci

and, second, an impurity concentration of 1017 cm–3 is
not too high for diamonds. According to Plotnikova [9],
in the purest diamonds (IIa type), the concentration of
only nitrogen in the A form is less than 1018 cm–3. Fur-
thermore, up to 50 types of different defects (including
impurity and intrinsic point defects) are revealed in dia-
monds. However, to the best of our knowledge, only
averaged data, as a rule, are available in the literature.
In this respect, it is more difficult to compare the theo-
retical and experimental data for diamonds of the I and
IIb types (Fig. 4b), because some diamonds of the IIb
type exhibit semiconductor properties [9, 10] and dia-
monds of the I type are usually divided into subclasses

γe
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Fig. 4. Temperature dependences of the thermal conductiv-
ity coefficient for diamonds of the (a) (1, 2) IIa, (b) (3) I, and
(4) IIb types. Points are the experimental data taken from
(1, 3, 4) [10] and (2) [13]. Solid lines represent the results
of theoretical calculations.
4
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depending on the type and amount of defects and impu-
rities [9]. There are also diamonds in which the impu-
rity concentration is higher than 1020 cm–3. Moreover,
an increase in the impurity concentration to high values
should result in a change in the density, acoustic veloc-
ity, and other parameters of the material, which, in turn,
can substantially change the dependence κ(T). With the
aim of simplifying our calculations and making allow-
ance for the fact that the experimental data are aver-
aged, all the integration parameters for diamonds of the
I and IIb types were taken to be constant (as was the
case with diamonds of the IIa type) and only the quan-
tities  and ci were varied in computations. The results
of the calculations are as follows:  ≈ 1.7 ×
1014 erg/cm3 and ci ≈ 1.5 × 10–5 for diamonds of the IIb
type and  ≈ 2 × 1014 erg/cm3 and ci ≈ 6 × 10–5 for dia-
monds of the I type.

In the numerical experiment for NaCl and SiO2, we
took into account the mechanism of scattering of acous-
tic phonons by optical phonons. However, the impurity
concentration in these compounds was assumed to be

γ
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Fig. 5. Temperature dependences of the thermal conductiv-
ity coefficient for (a) NaCl and (b) SiO2. Points are the
experimental data taken from [10]. Solid lines represent the
results of theoretical calculations.
P

negligible (ci = 0), because grown crystals of NaCl and
SiO2, as a rule, are of sufficiently high quality. From
analyzing the temperature dependences of the thermal
conductivity coefficient κ(T) presented in Fig. 5, we
can draw the evident conclusion that, although NaCl is
an ionic crystal and quartz is a piezoelectric crystal, the
main contribution to the dependences κ(T) for these
crystals, as for diamonds, is made by the phonon relax-
ation mechanism. This mechanism is associated with
the retardation of bulk phonons (traveling with drag
velocity V) by immobile thermalized phonons in the
boundary layer δ. In this case, optical phonons play a
very important role. As regards the dimensional con-
stant  for quartz, we assume that its value should dif-
fer from those for NaCl and diamonds. This can be
explained by the fact that α-quartz belongs to the sym-
metry group 32, for which the tensor γiklmnp has not six
but fourteen independent components.

It turned out that an increase in the impurity concen-
tration leads to a drastic decrease in the thermal con-
ductivity coefficient. This theoretical result is in agree-
ment with the experimental data. The dependence κ(T)
becomes flatter, and the maximum of the thermal con-
ductivity coefficient shifts toward the high-temperature
range. This means that, in principle, there can occur a
situation where the thermal conductivity coefficient
κ(T) will not reach its maximum up to the temperature
of the phase transition (for example, melting). A similar
dependence has been observed for a number of glasses
[10] (see also [11–15]). The dependence κ(T) for
glasses has defied explanation in such a simple way,
because relationship (21) for highly defective and non-
crystalline materials provides a means for evaluating
only the qualitative behavior of the thermal conductiv-
ity coefficient, even though the general tendency is
quite clear.

Figure 6 illustrates how the effective interaction
constant affects the thermal conductivity coefficient.
Curves 1 and 3 are plotted for the effective interaction
constants  = 1.5 × 1014 erg/cm3 and  = 3.5 ×
1014 erg/cm3, respectively. An increase in the effective
constant  leads to a decrease in the thermal conduc-
tivity coefficient κ and a shift of the maximum in the
dependence κ(T) toward the low-temperature range.
The rate of change in κ( ) indicates that the nonlinear
interaction constant has a profound effect on the max-
ima of the thermal conductivity coefficient. The posi-
tions of these maxima virtually coincide for the dia-
mond, NaCl, and quartz (Fig. 7). The positions of the
extrema in the dependences shown in Fig. 7 are as fol-
lows: λ ≈ 1.35 for extremum a, λ ≈ 3.25 for extremum
b, λ ≈ 1.65 for extremum c, and λ ≈7.8 for extremum d.
It is of interest to note that, according to the experimen-
tal data taken from [10], the parameters λ for crystalline
and vitreous dielectrics, for the most part, fall in the
range 1.34–3.10.

γe

γe γe
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γe
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3. CONCLUSIONS

Thus, the main results obtained in this study can be
summarized as follows.

(1) The problem concerning the role of surface
phonons of a thermostat in the theory of internal micro-
scopic relaxation in crystalline dielectrics was correctly
formulated for the first time.

(2) The relaxation theory was constructed with
allowance made for the interaction of four main sub-
systems: (i) the subsystem of longitudinal acoustic
phonons, (ii) the subsystem of transverse acoustic
phonons, (iii) the subsystem of optical phonons, and
(iv) the subsystem of thermalized surface phonons. An
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Fig. 6. Dependences κ(T) for different nonlinear interaction
constants (1)  < (2)  < (3) . The inset shows the

dependences of (1) the temperature Tmax and (2) the height
κmax of the maximum in the dependence κ(T) on the nonlin-

ear interaction constant .
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Fig. 7. Dependences of (1) the temperature Tmax and (2) the
height κmax of the maximum in the dependence κ(T) on the
ratio λ of the longitudinal acoustic velocity to the transverse
acoustic velocity. The inset shows the same dependences on
a reduced scale (1 : 10). Letters a, b, c, and d indicate the
extreme points observed in the dependences depicted on an
enlarged scale.

1

2

PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
exact relationship between the relaxation times was
obtained by numerical integration. Within strictly ana-
lytical approaches, it would be impossible to derive this
relationship and, hence, to elucidate the hierarchy of
relaxation times.

(3) In the framework of the relaxation theory con-
structed in this work, it became possible to describe
exactly the thermal conductivity coefficient with inclu-
sion of only the most important mechanisms of interac-
tions.

(4) The exact theoretical dependences κ(T) for a
number of crystalline dielectrics (diamond, NaCl,
SiO2) were determined using numerical integration.
Satisfactory explanations were offered for the numer-
ous available experimental data over the entire range of
temperatures, except for the range of ultralow tempera-
tures. Analysis of the above dependences in this tem-
perature range will be the subject of a separate study.

(5) The dependences κ(T) were constructed using
only the experimentally determined parameters. Our
analysis did not include adjustable parameters, except
for the constant of nonlinear phonon interaction and the
width δ of the contact region. Since the sample size L
was small, the quantities δ and L were of the same order
of magnitude; hence, the parameter δ/L was not
involved in the final relationships (see the above esti-
mates). The constant of nonlinear phonon interaction
was estimated at 1013 erg/cm3 from the best fitting to the
experimental data.

It should also be noted that examination of the
region of contact with a thermostat and the temperature
dependence δ(T) is an important problem from both the
theoretical and experimental standpoints.
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APPENDIX

Expression (21) involves the functions F1(y), F2(y),
F3(y), and Fimp(y). The function F1(y) has the form

(A1)
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where  =  = 0.12  is the nonlinear inter-

action constant and the function ϕ1(x) is defined by the
relationship 

The function F2(y) is represented in the form

(A2)

where  = , ϕ2(x) = ,

and z1 and z2 are the same as in expression (16). By
using the expression F3(y) = (L/cs)(1/τ3k) and taking
into account relationship (12) and the dispersion of
optical phonons at T < ΘD, we obtain

(A3)
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The function Fimp(y) is given by the formula

(A4)

where Bi = .
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Abstract—The optical, magnetooptical, and electric properties of epitaxial (La1 – xPrx)0.7Ca0.3MnO3 films
(0 ≤ x ≤ 1) grown by MOCVD on LaAlO3 and SrTiO3 substrates were studied. It is shown that the decrease in
the average cation radius resulting from isovalent substitution of the Pr for La ions brings about a lowering of
the Curie temperature, the metal–insulator transition temperature, and the temperatures of the maxima in mag-
netotransmission (MT) and magnetoresistance (MR). These temperatures depend only weakly on the substrate
type. Substitution of La by Pr does not change the shape of the spectral response of the transverse Kerr effect.
For concentrations x ≤ 0.50, the maximum values of the Kerr effect and of the MT vary insignificantly, which
should be assigned to the existence of a singly connected ferromagnetic metallic region at low temperatures. In
films with x = 0.75, the presence of ferromagnetic metallic drops in an antiferromagnetic insulating matrix was
revealed. The totality of the experimental data obtained suggest that nanoscopic magnetic and electronic non-
uniformities exist both in films with a singly connected metallic region and in an x = 1 film, which is an anti-
ferromagnetic insulator. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The phenomena of colossal magnetoresistance
(MR) and giant magnetotransmission (MT) observed in
lanthanum manganites with perovskite structure offer a
broad potential for these materials in designing new
recording media, electromagnetic radiation sensors [1],
and IR optoelectronic devices controlled by magnetic
or thermal fields [2]. These phenomena are related to
the metal–insulator (MI) transition observed to occur
near the Curie temperature and can be used to gain
valuable information in studies on nonuniform charge
distributions in manganites [3]. Deviations from sto-
ichiometry [3] and nonisovalent doping of the antifer-
romagnetic dielectric LaMnO3 by Ca2+ and Sr2+ ions
bring about an increase in the volume of the ferromag-
netic phase, the Curie temperature (TC), and the metal–
insulator transition temperature (TMI). The actual varia-
tions in the magnetic and electric properties of the man-
ganites depend on the vacancy concentration and dop-
ing level, i.e., on the Mn4+/Mn3+ ion concentration ratio.

Isovalent doping also noticeably affects the Curie
temperature and the fractional volumes of the ferro-
magnetic (FM) and antiferromagnetic (AFM) phases.
Indeed, substitution of Pr3+ for La3+ in an optimally
doped manganite La0.7Ca0.3MnO3 initiates transition
from the FM metallic to the AFM insulating state [4].
1063-7834/04/4607- $26.00 © 21241
In this system, (La1 – xPrx)0.7Ca0.3MnO3 (0 ≤ x ≤ 1), an
increase in the praseodymium concentration reduces
the Mn–O–Mn valence angles because the ionic radius
of Pr3+ is smaller than that of La3+, while the Mn4+/Mn3+

ratio remains unchanged [5]. The phase diagram con-
structed from neutron diffraction data [4] defines the
concentration region x < 0.6 as the region of existence
of a uniform FM metal, while the region x > 0.8 is iden-
tified with a uniform insulator with a canted AFM struc-
ture. Within the concentration interval 0.6 ≤ x ≤ 0.8, a
macroscopically nonuniform magnetic state prevails,
which is essentially a mixture of the FM and AFM
phases.

The present study dealt primarily with the effect of
Pr doping on the magnetic and electronic subsystems of
epitaxial (La1 – xPrx)0.7Ca0.3MnO3 films (0 ≤ x ≤ 1) and
with the effect of the substrate on the magnetoresis-
tance and magnetotransmission of films. This study is
based on an integrated approach combining electrical,
optical, and magnetooptical measurements. The first of
them yield volume-averaged characteristics of the
material, the second permit isolation of the contribution
from regions with enhanced conductivity to light
absorption, and magnetooptical measurements offer
information concerning the magnetic subsystem.
004 MAIK “Nauka/Interperiodica”
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Reduced lattice parameters a', b', c' and average unit cell volume (a'b'c')1/3 of films, maximum values of the MT at λ = 6.7 µm

and of the MR in a magnetic field of 8 kOe, effective Curie temperature , and temperatures of the maxima in MT and MR
of films of various composition grown on LaAlO3 (LAO), SrTiO3 (STO), and Zr0.85Y0.15O1.925 (ZYO) single crystal substrates

Film/substrate a', b', Å c', Å (a'b'c')1/3, Å MT, % MR, % , K , K , K

La0.7Ca0.3MnO3/LAO 3.862 3.872 3.865 ± 1 26 44 273 249 250

La0.7Ca0.3MnO3/STO 3.868 3.859 3.865 ± 2 25 33 259 259 255

(La0.75Pr0.25)0.7Ca0.3MnO3/LAO 3.856 3.869 3.860 ± 1 30 68 211 213 211

(La0.75Pr0.25)0.7Ca0.3MnO3/STO 3.864 3.855 3.861 ± 2 25 45 214 215 214

(La0.75Pr0.25)0.7Ca0.3MnO3/ZYO 3.864 3.858 3.861 ± 1 25 19 211 211 211

(La0.5Pr0.5)0.7Ca0.3MnO3/LAO 3.848 3.869 3.855 ± 1 26 65 176 176 175

(La0.5Pr0.5)0.7Ca0.3MnO3/STO 3.861 3.848 3.856 ± 1 23 60 179 180 177

(La0.25Pr0.75)0.7Ca0.3MnO3/LAO 3.841 3.866 3.850 ± 2 4 21 79 103 <95

(La0.25Pr0.75)0.7Ca0.3MnO3/STO 3.858 3.835 3.850 ± 1 4 85 108 <95

Pr0.7Ca0.3MnO3/LAO 3.839 3.858 3.845 ± 2

Pr0.7Ca0.3MnO3/STO 3.852 3.835 3.846 ± 2

Unannealed

(La0.25Pr0.75)0.7Ca0.3MnO3/LAO 3.841 3.867 3.850 ± 2 10 45 97 120 115

(La0.25Pr0.75)0.7Ca0.3MnO3/STO 3.860 3.834 3.851 ± 1 2 40 97 120 137

TC
*

TC
* TMT

max TMR
max
2. SAMPLES AND EXPERIMENTAL 
CONDITIONS

(La1 – xPrx)0.7Ca0.3MnO3 (LPC) epitaxial films (x = 0,
0.25, 0.5, 0.75, 1) 300 nm thick were MOCVD grown
on single crystal, (001)-oriented perovskite SrTiO3
(STO) and LaALO3 (LAO) substrates at a substrate
temperature of 750°C and a partial oxygen pressure P =
0.003 atm. The film with x = 0.25 was grown on a fluo-
rite-structure Zr0.85Y0.15O1.925 (ZYO) substrate. The film
thickness was the same because of the equal reagent
supply rates under diffusive deposition. To obtain
homogeneous oxygen stoichiometry, the films were
annealed for an hour in an oxygen flow under atmo-
spheric pressure at a temperature of 750°C. In order to
elucidate the part played by annealing in the formation
of the properties of films close in composition to the
percolation threshold, the characteristics of unannealed
films with x = 0.75 grown on LAO and STO substrates
were additionally studied. The table contains the
reduced lattice parameters (a', b', c') and the pseudocu-
bic perovskite parameter (a'b'c')1/3 of films grown on
STO substrates (cubic structure, a = 3.903 Å),
pseudocubic LAO substrates (a = 3.788 Å), and, for the
x = 0.25 composition, on ZYO substrates (cubic struc-
ture, a = 5.14 Å, which corresponds to the perovskite
cube face diagonal, a/(2)1/2). The orientation of the
films relative to the substrates was derived from x-ray
diffraction measurements and is (001)[100]STO ||
(001)[100]LPC, (001)[100]LAO || (001)[100]LPC, and
(001)[110]ZYO || 010[111]LPC. The reduced parame-
ters are related to the parameters of the orthorhombic
cell (a, b, c) as follows: c' = c/2, (a' + b')/2 = (a + b)/(2 ×
PH
21/2) for films on STO; (a' + b')/2 = (a + b)/(4 × 21/2) +
c/4, c' = (a + b)/2 × 21/2 for films on LAO; and c' = (a +
b)/2 × 21/2, (a' + b') = (a + b)/(4 × 21/2) + c/4 for the film
on ZYO. The fact that the values of a, b, c for films on
different substrates are different indicates the existence
of residual strains between the film and the substrate;
these strains are elastic, because the average volume of
the perovskite cube (a'b'c')1/3 in films grown on differ-
ent substrates is practically the same (see table).
Annealing in oxygen relieves strains in the films and,
possibly, slightly changes the oxygen stoichiometry.
The film preparation conditions are described in [6],
where one can also find x-ray diffraction, Raman spec-
troscopy, and electron microscopy data indicating the
structural and chemical homogeneity of the samples.
As a reference in the determination of the chemical
composition of the films, a ceramic of identical compo-
sition was used.

The transverse Kerr effect (TKE) was measured in
the energy range 1.0–3.8 eV and the temperature inter-
val 20–300 K for in-plane magnetic fields of up to
3.5 kOe. The relative change in the reflected light inten-
sity δ = [IH – I0]/I0 was determined experimentally,
where IH and I0 are the reflected light intensities with
and without the magnetic field applied, respectively.
The technique employed to measure the TKE is
described in some detail in [7]. The electrical resistivity
of the films was measured by the two-probe method in
the temperature interval 77–300 K under magnetic
fields of up to 10 kOe directed perpendicular to the cur-
rent and along or perpendicular to the film plane. Silver
YSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Fig. 1. Temperature dependences of the TKE of (La1 – xPrx)0.7Ca0.3MnO3 films (0 ≤ x ≤ 0.75) grown on STO (open symbols) and
LAO (filled symbols) obtained at an energy of 2.8 eV in a magnetic field of 380 Oe. Inset shows field dependences of the TKE
measured at 2.8 eV and 77 K on LAO-grown films with different Pr concentrations.
contacts were ultrasonically applied to the films with
indium-based solder.

The absorption spectra of films in the energy range
0.1–1.4 eV were studied with a high-sensitive IR spec-
trometer in the temperature interval 80–295 K and
magnetic fields of up to 8 kOe directed both along the
film plane and perpendicular to it. The TKE, light inten-
sity transmitted through the film, MT, electrical resis-
tivity, and MR were measured as a function of temper-
ature in the heating mode at a rate of ~1–3 K/min in the
temperature range 77–295 K. The field dependences of
the MT and MR were measured at the temperatures of
their maximum values in fields of up to 10 kOe.

3. EXPERIMENTAL RESULTS

3.1. The Kerr Effect

Figure 1 displays the temperature dependences of
the TKE taken at an energy of 2.8 eV in a magnetic field
of 380 Oe. Increasing the Pr concentration results in a

decrease in the ferromagnetic ordering temperature 

(see table). The effective Curie temperature  was
determined as the point of the minimum of derivative
d(δ)/dT, because δ(T) reflects the temperature depen-
dence of the magnetization. The effective Curie tem-
peratures found in this way turn out to be slightly
higher in the films grown on STO substrates than in the
films grown on LAO and ZYO. The temperature depen-
dences of the TKE obtained in the cooling–heating
mode exhibit hysteretic behavior for all films. The

TC*

TC*
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actual pattern of the hysteresis and its sign and width
depend on the Pr concentration, film microstructure,
and the kind of substrate used [8, 9]. This behavior may
indicate that the transition to a magnetically ordered
state in the LPC system is a first-order transition.

The spectral dependences of the TKE obtained in
the low-temperature domain, i.e., after the transition to
a metallic state, were similar for all films and mimicked
the spectra measured on ceramic samples [10]. The
magnetooptical activity of the manganites was shown
[11] to originate from the transitions in the Mn3+ and
Mn4+ octahedral complexes, which are responsible for
the unique properties of these oxides. Substitution of Pr

for La leads to rotation and tilting of the [ ] octa-
hedra rather than to their deformation and does not
change the Mn4+/Mn3+ ratio, which correlates with the
isovalent doping of the manganite. The magnitude of
the TKE decreases strongly in annealed and unannealed
samples with x = 0.75. The magnitude of the effect and
the pattern of the TKE spectral response are different
for unannealed films grown on different substrates
(Fig. 2). All samples with x = 0.75 exhibited an inverse
temperature hysteresis; in other words, the effect was
smaller under cooling.

The field dependence of the TKE measured on films
with x ≤ 0.5 at 77 K shows saturation in weak fields of
~1.2 kOe, a feature characteristic of ferromagnets (see,
e.g., inset to Fig. 1 for films with x = 0 and 0.25 grown
on LAO). The nearly linear δ(H) relation obtained on
the film with x = 0.75 attests to a predominantly AFM

MnO6
9–
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Fig. 2. Spectral response of the TKE in unannealed
(La0.25Pr0.75)0.7Ca0.3MnO3 films grown on LAO and STO.
Inset shows the temperature dependence of the TKE for a
film grown on STO; the direction in which the temperature
is varied is specified by arrows.
P

ordering in these films, while the fairly large amplitude
of the TKE in weak fields indicates the existence of a
fraction of the FM phase.

3.2. The Electrical Resistivity 
and Magnetoresistance

The temperature behavior of the electrical resistivity
ρ(T) of the LPC films displayed in Fig. 3 is evidence of
the MI transition in compositions with x ≤ 0.5, in unan-
nealed films with x = 0.75 on both types of substrates,
and in the annealed film with x = 0.75 on STO, which
shows that the metallic behavior of ρ(T) below TC
switches to a semiconductor pattern above TC. The MI
transition temperature decreases with increasing Pr
concentration and is higher in films grown on STO sub-
strates. The difference in the MI transition temperature
between films grown on different substrates is the
strongest for the x = 0.75 composition. The annealed
film with x = 0.75 on LAO and the x = 1 films do not
exhibit the MI transition in the temperature interval
covered in our study. At 150 K, the ρ(T) dependence
measured in the x = 0.25 film on LAO reveals a weak
anomaly. The film with x = 0.25 grown on ZYO has a
higher resistivity than the films grown on LAO and
STO perovskite substrates (particularly in the region of
FM ordering) and undergoes a diffuse MI transition.

The temperature dependences of the absolute value
of MR measured in LPC films in a field of 8 kOe per-
pendicular to the film plane have maxima near TC
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Fig. 3. Temperature dependences of the electrical resistivity of (La1 – xPrx)0.7Ca0.3MnO3 films (0 ≤ x ≤ 1) grown on STO (open sym-
bols, solid line for x = 1), LAO (filled symbols, dashed line for x = 1), and ZYO (asterisks, x = 0.25) and of unannealed films (pen-
tagons, x = 0.75). Inset shows field dependences of magnetoresistance at the maximum of MR(T) measured in a film with x = 0.25
on STO in a field oriented in the film plane (curve 1) and perpendicular to this plane (curve 2).
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Fig. 4. Temperature dependences of the MR of (La1 – xPrx)0.7Ca0.3MnO3 films (0 ≤ x ≤ 0.75) grown on STO (open symbols), LAO
(filled symbols), and ZYO (asterisks, x = 0.25) and of unannealed films (pentagons, x = 0.75) in a magnetic field of 8 kOe directed
perpendicular to the surface of the films. Inset shows the MR(T) dependence for films with x = 1.
(Fig. 4, table). The temperature of the maximum in

magnetoresistance, , in films grown on STO sub-
strates is higher than that in films grown on LAO. An
increase in the Pr concentration to x = 0.50 leads to an

increase in MR and a decrease in the temperature .
For the x = 0.25 composition, the maximum MR ~ 70%
is reached in films prepared on LAO substrates and the
minimum MR (~19%) is reached in films grown on
ZYO. The decrease in the magnitude of MR observed
in films with x = 0.75, as well as the decrease in the
maximum value of TKE in the δ(T) dependence of
these films (Fig. 1), is connected with the decrease in
the fractional volume of the FM phase in these films.
The presence of a small fraction of the FM phase in the
x = 1 composition is indicated by the appreciable mag-
nitude of MR in the temperature interval 110–150 K
(see inset to Fig. 4). Note the jumpy pattern that the
MR(T) curve acquires as the temperature is lowered to
150 K, exhibiting high jumps and abrupt drops to zero.

Besides the main maximum near TC, the MR(T)
dependence of films with x ≤ 0.50 has a weaker, diffuse
satellite peak (Fig. 4). The satellite amplitude is the
largest (~12%) in the film with x = 0.25 grown on LAO
and is observed at T ~ 135 K; in films with x = 0.50 and
0.25 on STO, the satellite peak is ~4.5% at ~125 K, and
the smallest satellite peak, ~0.5%, was measured at
~165 K in x = 0 films. Besides the maximum in the
MR(T) relation, the film with x = 0.25 grown on ZYO
exhibits monotonic growth of MR with decreasing tem-

TMR
max

TMR
max
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perature for T < 170 K. The MR reaches ~10% at 80 K
in a field of 8 kOe.

The field dependences of MR of the films with x ≤
0.50 (see, for instance, inset to Fig. 3 for composition
x = 0.25) measured near TC show no hysteresis and no
saturation under application of a magnetic field either
perpendicular or parallel to the film plane. The magne-
toresistance in an in-plane field is slightly larger than
the MR measured in a field perpendicular to the film
surface.

3.3. Optical Properties

A common feature of optical absorption spectra of
the films studied here (Fig. 5) is an increase in light
absorption at wavelengths λ < 4 µm (E > 0.32 eV),
which can be identified with the onset of interband tran-
sitions. At the fundamental absorption edge for compo-
sitions with x = 0.5 and 0.75 (annealed films), a band
appears at 1.15 µm (~1.08 eV), whose intensity is
higher in STO-grown films. As the samples are cooled
to ~TC, the band shifts toward shorter wavelengths, and
below TC, it shifts toward longer wavelengths (inset to
Fig. 5). No such band is seen in the spectra of films with
x = 0 and 1.

The absorption in the mid-IR range of films with x =
1 decreases under cooling from 295 to 80 K, as it does
in conventional semiconductors (Fig. 5). The absorp-
tion of films with x ≤ 0.75 behaves differently with tem-
perature; namely, down to TC it falls off, while below TC
the absorption undergoes a substantial growth. Appli-
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Fig. 5. Absorption spectra of (La1 – xPrx)0.7Ca0.3MnO3 films grown on different substrates and measured at different temperatures.
Inset shows the temperature dependence of the position of the band at 1.15 µm in the spectrum of the film with x = 0.50 grown
on STO.
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Fig. 6. Temperature dependences of light transmission at λ ~ 6.7 µm in a field H = 0 obtained on (La1 – xPrx)0.7Ca0.3MnO3 films
(0 ≤ x ≤ 1) grown on STO (open symbols, bold solid line for x = 1), LAO (filled symbols, dashed line for x = 1), and ZYO (asterisks,
x = 0.25) and of unannealed films (pentagons, x = 0.75); the thin solid line for the x = 0 composition is obtained in a field H = 8 kOe.
cation of a magnetic field near TC enhances the absorp-
tion in films with x ≤ 0.75 even further and shifts the
band at ~1.15 µm to longer wavelengths (Fig. 5). No
noticeable effect from the application of a magnetic
field (up to 8 kOe) was observed in the absorption spec-
tra of films with x = 1.

The character of the variation in the IR absorption in
films with temperature near TC and under application of
a magnetic field is clearly illustrated by the temperature
P

dependence of the transmitted light intensity I(T) mea-
sured at a fixed wavelength λ ~ 6.7 µm (Fig. 6). For all
compositions, except the annealed films with x = 0.75,
the I(T) curves correlate well in behavior with the ρ(T)
dependences (Fig. 3). In films with x ≤ 0.5 and unan-
nealed films with x = 0.75, the I(T) dependence under-
goes a sharp change in behavior with increasing tem-
perature near the Curie point, which is an optical coun-
terpart of the metal–insulator transition in the ρ(T)
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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transmission at λ ~ 6.7 µm of films with x = 0.50 obtained in a magnetic field perpendicular to the film plane (open squares) and in
an in-plane field (filled circles). The curve corresponding to the x = 0 composition is offset upwards for clarity (filled triangles).
dependence. In the vicinity of the MI transition, the IR
transmission drops by a factor of more than 4000. The
MI transition temperature in the I(T) dependence
decreases with increasing Pr concentration and, as in
the ρ(T) dependence, is higher in films grown on STO
substrates. In annealed films with x = 0.75, the MI tran-
sition in the I(T) dependence is observed to occur in
films on both types of substrates, despite its absence in
the ρ(T) dependence for the film grown on LAO
(Fig. 3). The I(T) and ρ(T) dependences exhibit a semi-
conducting behavior in samples with x = 1 throughout
the temperature range covered.

Application of a magnetic field, as well as a
decrease in temperature, brings about a decrease in film
transparency near the MI transition (see, for instance,
the solid line in Fig. 6 for the x = 0 film on STO), i.e.,
the onset of negative magnetotransmission, which is an
analog of magnetoresistance. Magnetotransmission is a
relative magnetic field–induced change in the intensity
of the light transmitted through a film, MT = [IH – I0]/I0,
where IH and I0 are the values of transmission with and
without a magnetic field present, respectively. The tem-
perature dependence of the absolute values of the film
MT (Fig. 7) follows the same pattern as that of the MR
(Fig. 4). Just as the MR, magnetotransmission reaches
a maximum near TC. As the Pr concentration is
increased to x = 0.50, the temperature at which the max-

imum in magnetotransmission is observed ( )
decreases, but the value of MT changes insignificantly
(~25%), in contrast to MR. The asymmetry in the
MT(T) curves for films with x = 0.50 should be

TMR
max
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assigned to the appearance of an additional magne-
totransmission band in the form of a shoulder near
150 K. The value of MT in annealed samples with x =
0.75 is smaller than that in unannealed samples. Films
grown on STO substrates feature higher temperatures
of the maximum in MT than films grown on LAO and
ZYO (x = 0.25). Practically no MT is observed in films
with x = 1 (less than 0.5%).

For films with x = 0, the field dependence of the
transmission has no hysteresis and no saturation and the
I(H) dependence is close to linear in fields above
1.5 kOe (inset to Fig. 7). Magnetotransmission, as well
as magnetoresistance, is an effect that is an even func-
tion of field. Films with x = 0.25, 0.50, and 0.75 (unan-
nealed) on either type of substrate reveal a hysteresis in
the I(H) relation in fields of up to 10 kOe. After removal
of the field oriented perpendicular to the film plane, the
transmission does not regain its original value. The new
value of transmission, for instance, in films with x =
0.50, decreases by ~17% compared to the original level
(inset to Fig. 7); in films with x = 0.75 (unannealed), by
~25%; and in films with x = 0.25, by ~3%. Demagne-
tizing the films by switching the field polarity does not
restore the original level of light transmission. The film
with x = 0.50 placed in an in-plane field of up to 8 kOe
exhibits hysteresis, and the transmission recovers its
original value as the magnetic field is cyclically
switched.
4
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4. DISCUSSION OF THE RESULTS

Let us compare the results of our study on the opti-
cal and magnetooptical properties and the electrical
resistivity of (La1 – xPrx)0.7Ca0.3MnO3 epitaxial films
(0 ≤ x ≤ 1) with the data from [4], where a phase dia-
gram for bulk polycrystals of this system is presented.
As in [4], an increase in the concentration of Pr3+ ions
substituting for La3+ brings about a decrease in TC that
is practically linear in x because of the decrease in the
cation radius. The Goldschmidt radius of the La3+ ion is
1.06 Å, and that of Pr3+ is 1.01 Å. The decrease in the
average cation radius 〈ra〉  with the Pr concentration
increasing to x = 0.50 is accompanied by enhanced car-
rier localization, which entails a decrease in TC and in
the MI transition temperature in the ρ(T) and I(T)
dependences and an increase in the electrical resistivity
and MR (see table, Figs. 3, 4, 6). Importantly, one of the
most essential conclusions reached in [4] is the exist-
ence of praseodymium concentration ranges within
which the magnetic and charge states are uniform (x >
0.8, x < 0.6).

The values of TC of films with x ≤ 0.50 (see table)
insignificantly exceed those for polycrystals of corre-
sponding composition [4]. The enhanced TC may be
due to different oxygen off-stoichiometries of films and
bulk polycrystals and to a specific feature of the film
state due to the strains generated at the film–substrate
interface and to the stress gradient across the film thick-
ness. The latter may also account for the differences in
the magnitude and temperature of the maxima of MT
and MR and in the values of the TKE between LPC
films grown on STO and LAO.

Compressive (in the case of LPC–LAO and LPC–
ZYO) or tensile (LPC–STO) strains arising at the film–
substrate interface give rise to the formation of strain
components normal to this interface. The maximum
amplitude of potential energy at the interface is E0 =
(µc')/(2π2) ≈ 530 erg/cm2, where c' is the reduced lattice
parameter along the film surface normal and µ is the
interface rigidity modulus (2.6 × 1011 dyn/cm2 [12]). In
general, the interface potential energy depends on the
parameter β = 2π(c/p)(λ+/µ), where the ratio c/p = (a –
b)/(1/2)(a + b) characterizes the lattice parameter misfit
between the substrate (b) and film (a), λ+ = (1 – σa)/µa +
(1 – σb)/µb, and σ is the Poisson ratio [12]. Estimates of
β made for x = 0.25, σ = 0.3, and µa/µb = 1 yield 0.054
for LPC–STO, 0.093 for LPC–LAO, and 0.264 for
LPC–ZYO. For all the substrates, the condition β ! 1
is met. A rough relation connecting the critical film
thickness h/a with the critical lattice misfit fc = (a – b)/a
can be derived from the equation [12]

(1)

where fc is ~0.01 for the LPC–STO combination, 0.02
for LPC–LAO, and 0.06 for LPC–ZYO. As follows
from Eq. (1), the largest pseudomorphic layer is in films

2πf ce/ 1 σ–( ) 2π 1 σ–( )
2
h f c/ 1 2σ–( )a+[ ]ln  = 0,
P

grown on STO, h/a = 20. In films grown on LAO, this
value is smaller than 10, and the smallest value, 2, cor-
responds to films grown on ZYO. These values are
noticeably smaller than the thicknesses of the films
themselves, which implies that this difference cannot
produce an appreciable change in the critical tempera-
tures. At the same time, one may conceive of a small
contribution due to thermal stresses arising because of
the different coefficients of thermal expansion of the
film and the substrate.

LPC films 300-nm thick with x = 0.50 and 0.25
exhibit a slight difference in the critical temperature

, the MI transition temperature, , and 
depending on the substrate material. There are a num-
ber of publications on La0.7Ca0.3MnO3 films in which
substitution of an STO by a LAO substrate resulted in a

shift in TC, the MI transition temperature, and 
toward (i) higher temperatures up to 30°C [13–15],
(ii) lower temperatures [16, 17], or (iii) remained prac-
tically unaffected [18, 19]. In the first and second cases,
the values of TC of the films differed appreciably from
those in the phase diagram constructed for bulk sam-
ples [4]. In the third case, as in our studies, the values
of TC of films and bulk samples are similar. All publica-
tions mentioned above pointed out the substantial effect
of strains at the film–substrate interface and of twinning
on the position of the critical temperatures. Deviation
from oxygen stoichiometry was also found to have a
considerable effect on the critical temperatures [17].
We believe that, because of the large thickness
(300 nm) of the (001)LPC films with x ≤ 0.50, their
deviation from oxygen stoichiometry (as well as the
substrate type) does not affect the position of critical
temperatures for films grown on different substrates.

The maximum sensitivity of the critical tempera-
tures and of the magnitude of MT to the oxygen stoichi-
ometry of films and the substrate type is observed when
comparing the properties of annealed and unannealed
films with the Pr concentration x = 0.75, which corre-
sponds to separation into the FM metallic and AFM
insulating phases (TN > TC [4]). In unannealed films,
most likely, the Mn4+/Mn3+ concentration ratio changes
from that of the annealed composition. Such nonisova-
lent doping can result in higher Curie temperatures than
for the annealed films and in the MI transition in films
on both types of substrates (Figs. 3, 6). The values of
MT (for films grown on LAO) and of MR also turn out
to be higher than those for the films annealed in oxygen
(see table). The difference in the MT value and in the
magnitude and shape of the spectral response of TKE
between unannealed films with x = 0.75 grown on LAO
and STO substrates suggests different deviations from
oxygen stoichiometry, and this deviation is probably
higher in the film grown on LAO. The magnitude of the
TKE in this film is higher because of the larger ferro-
magnetic contribution. Annealing in an oxygen flow
results in a more uniform film stoichiometry. The criti-

TC* TMT
max

TMR
max

TMR
max
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cal temperatures decrease, and the values of the MT
(~4%) and TKE level off. At the same time, in annealed
films with x = 0.75, the MI transition is seen in the ρ(T)
dependence (Fig. 3) only in the film grown on an STO
substrate, while in the I(T) relation (Fig. 6) the MI tran-
sition manifests itself in films grown on both type of
substrates. As we have shown for manganites with
weakly nonisovalent doping [3, 20], this observation is
a compelling argument for the presence of metallic
drops that are not connected with one another in an
insulating matrix. The existence of a fairly strong Kerr
effect in films with x = 0.75 (Fig. 1), whose appearance
temperature is close to the temperature of the MI tran-
sition observed in the I(T) dependence, suggests that
the metallic regions are ferromagnetic. Thus, films with
x = 0.75 undergo phase separation just as polycrystal-
line samples do [4]. Tensile stresses in films grown on
STO substrates are conducive to the formation of
metallic regions of a more elongated shape, giving rise
to through conduction in such films, which does not
occur in films grown on LAO.

In films with x = 1, only the magnetoresistance data
(see inset to Fig. 4) attest to the existence of charge and
magnetic small-scale nonuniformities. Quite possibly,
nonuniformities form in this composition in the layer
close to the interface, where conduction channels ter-
minate and current instabilities similar to the pinching
effect in semiconductors set in. As already mentioned,
the thickness h/a of this layer is small; therefore, field-
induced changes in transmission manifest themselves
here only weakly (MT < 0.5%).

Optical and magnetooptical studies show that LPC
films are also nonuniform, both magnetically and in
charge distribution, in the concentration range x ≤ 0.50,
where a singly connected metallic region forms. As fol-
lows from the ρ(T) relations obtained for LPC films
(Fig. 3), the percolation threshold, i.e., the transition
from isolated metallic drops to through conduction in
the crystal, occurs in the concentration range 0.5 < x <
0.75. Near the percolation threshold, at x = 0.50, the
MR reaches its maximum value (Fig. 4). As the film
conductivity increases (x < 0.5), the MR decreases.
This behavior of the MR is characteristic of nonuni-
form systems and doped magnetic semiconductors. An
exclusion is the minimum value of MR in a completely
relaxed x = 0.25 film grown on a ZYO substrate, which
has the lowest conductivity. The higher electrical resis-
tivity of the film grown on ZYO (Fig. 3) compared to
those grown on LAO and STO perovskite substrates
should be assigned to the resistance of large-angle
boundaries separating regions with different crystallo-
graphic orientations, which form in a lanthanum man-
ganite film grown on ZYO [21]. The growth in the MR
in the film grown on ZYO observed to occur with
decreasing temperature (Fig. 4) can be accounted for by
the tunneling of spin-polarized carriers through the
boundaries between these regions [21].
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
Nonuniformities are also possibly responsible for
the satellites in the MR(T) dependences and for the
asymmetry in the MT(T) curves (Fig. 7) for composi-
tions with x ≤ 0.50. Structural changes may serve as
another explanation for the appearance of the satellites
and of the anomaly in ρ(T) at 150 K observed in the x =
0.25 film. Studies of this system performed over a
broad range of temperatures [22, 23] did not uncover
indications of structural transformations but revealed
only a jump in volume for a polycrystal with x = 0.5 at
a temperature of 150 K, which is associated with the MI
transition. In films with x = 0.5, a satellite in the MR(T)
relation is observed at 125 K.

Under application of a magnetic field, transmission
is strongly reduced only in the FM regions, while in the
AFM matrix it remains unchanged; therefore, the MT is
actually proportional to the relative change in transmis-
sion in the FM regions and, unlike the MR, reaches a
maximum when a singly connected metallic region
forms in the sample below TC [3].

In our case, substitution of Pr3+ for La3+ does not
change the Mn3+/Mn4+ ratio and the singly connected
metallic FM region persists up to the Pr concentration
x = 0.5. This is what accounts for the similarity of the
values of TKE at 70 K (Fig. 1) and of the maximum val-
ues of the MT, ~25%, between films with x ≤ 0.50
grown on different substrates (Fig. 7).

Below the percolation threshold x > 0.6 [4], the val-
ues of the TKE and MT decrease noticeably, which sug-
gests a decrease in the fractional volume of the FM
phase. Because it is sensitive to even a small concentra-
tion of metallic drops, the MT effect is fairly large,
~10%, for the unannealed x = 0.75 film grown on STO
(Fig. 7).

The charge and magnetic nonuniformities also
become manifest in absorption spectra in the form of a
resonance-like line at ~1.15 µm, whose position
depends on the magnetic ordering (Fig. 5). This band
probably originates from the overlap between elec-
tronic transitions and the geometric resonance (the Mie
resonance) [3], i.e., from the appearance of a feature in
the absorption spectrum resulting from surface plas-
mon excitation at the boundary of nonuniformities.
This effect is accompanied by the onset of forbidden or
weakly allowed transitions. The shift in the line toward
longer wavelengths for T < TC or under application of a
magnetic field (in the vicinity of TC) may be due to a
change in the resonance conditions near TC.

Field dependences of the TKE at low temperatures
show saturation for compositions with x ≤ 0.50 (inset to
Fig. 1).The absence of saturation in the I(H) and ρ(H)
dependences near TC under application of a magnetic
field in the film plane and perpendicular to it should be
assigned to magnetic moment fluctuations becoming
maximum near TC (Figs. 3, 7). The hysteresis in the
I(H) dependences near TC observed under application
of a magnetic field perpendicular to the film plane (the



1250 SUKHORUKOV et al.
case of the maximum demagnetizing factor) is similar
to that in the ρ(H) relation at 75 K [13] and is observed
for compositions close to the percolation threshold. The
residual transmission in the hysteretic I(H) dependence
(Fig. 7) cannot be removed by demagnetizing the films
and is probably associated with the magnetic field–
induced melting of the charge-ordered state (the transi-
tion to the charge-ordered state occurs at TCO = 180 K
[23]). The melting of the charge-ordered state is argued
for by the decrease in film transmission after the first
cycle of field variation. The residual transmission
reaches a maximum value of ~25% at x = 0.75 (for the
unannealed film; the annealed films were not measured
because of the weak MT effect), where the fractional
volume of the AFM charge-ordered phase exceeds that
of the FM phase, and reaches a minimum level of ~3%
in the x = 0.25 films. There is no residual transmission
in the I(H) dependence when an in-plane magnetic field
is applied (the case of the minimum demagnetizing fac-
tor). The difference in the I(H) behavior between differ-
ent field geometries can be due to anisotropic magnetic
nonuniformities. The MT hysteresis itself is apparently
caused by a hysteresis of the magnetic structure in the
transition layer separating the AFM matrix from FM
drops, because it is not seen in the MR(T) dependences
near TC (Fig. 3). The MT hysteresis is determined by
the ratio of the fractional volumes of the AFM and FM
regions at a given Pr concentration and by the shape of
the FM regions in films grown on different substrates.
The shape of the FM regions depends on the character
of strains at the film–substrate interface, which define
the shape of charge-disordered regions [24]. The
absence of MT hysteresis at x = 0 is due to the small
fraction of magnetic nonuniformities in these films.
The TKE hysteresis observed in all films in the heat-
ing–cooling mode also attests to the existence of mag-
netic nonuniformities.

The high values of magnetotransmission in the IR
range suggest that (La1 – xPrx)0.7Ca0.3MnO3 films may
potentially be applied as a new functional material for
magnetically controlled optoelectronic devices
intended for operation in the temperature range from
170 to 260 K. A number of conceivable optoelectronic
devices were briefly described in [2]. The film with x =
0.25 grown on a LAO substrate has a high value of MR,
~70%, in a field of 8 kOe at 211 K, which makes it
promising for applications.

5. CONCLUSIONS

Isovalent substitution of La3+ by the smaller radius
Pr3+ ions in (La1 – xPrx)0.7Ca0.3MnO3 films brings about
a decrease in the Curie temperature, in the temperatures
of the maxima in magnetotransmission and magnetore-
sistance, and in the MI transition point. The nature of
the substrate does not noticeably affect the Curie tem-
perature and the temperatures of the maxima in the
magnetotransmission and magnetoresistance. The
P

slight changes in the maximum values of the Kerr effect
and magnetotransmission for concentrations x ≤ 0.50
argue for the formation of a singly connected ferromag-
netic metallic region in films at low temperatures. The
totality of the magnetooptical and optical data obtained
indicates, however, that nanoscopic magnetic and elec-
tronic nonuniformities exist both in films with a singly
connected region and in a film with x = 1, which is an
antiferromagnetic insulator. It has been shown that
films with x = 0.75 undergo separation into an antifer-
romagnetic insulating matrix and ferromagnetic metal-
lic drops.
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Abstract—By studying the magnetic and magnetoelastic properties, it is established that, as the temperature is
lowered, Sm1 – xSrxMnO3 single crystals (x = 0.5, 0.55) undergo spontaneous phase transitions from the para-
magnetic to a local charge-ordered state at Tco = 220 K and to an A-type antiferromagnetic state at TN = 175 K.
It is shown that strong magnetic fields (Hcr ~ 200 kOe) break up the antiferromagnetic order and charge ordering
and drive a phase transition to a conducting ferromagnetic state. H–T phase diagrams are constructed for single
crystals with x = 0.5 and 0.55. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The R1 – xMxMnO3 substituted manganites (R = La,
Pr, Nd, Sm; M = Ca, Sr) have attracted considerable
interest over the past decade, largely due to the discov-
ery of the colossal magnetoresistance effect in these
compounds within a certain concentration interval [1,
2]. Substituted manganites are also remarkable for the
strong correlation between their spin–charge lattice
degrees of freedom and for the variety of T–x phase dia-
grams. The phase diagrams differ appreciably depend-
ing on the actual type of rare-earth ion involved. As the
tolerance factor decreases as the atomic number of R
increases or as one goes from Sr to Ca, the band width
decreases, which enhances the localization effects and
drives the transition from the ferromagnetic to antifer-
romagnetic and charge ordering state.

Among the various R1 – xMxMnO3 substituted man-
ganites, the compounds with x = 0.5 are of particular
interest, because it is in them that states with various
types of magnetic, orbital, and charge ordering were
discovered. Of these compounds, Sm0.5Sr0.5MnO3 is the
least studied; the information on the character of its
ordering is fairly contradictory. A study [3] performed
on polycrystalline samples yielded a T–x phase dia-
gram according to which the x = 0.5 composition
should be a ferromagnet with local charge ordering.
Measurements carried out on a Sm0.5Sr0.5MnO3 single
crystal revealed antiferromagnetic ordering [4]. In
order to straighten out these contradictions, we carried
out an investigation of both spontaneous phase transi-
tions and phase transitions induced by a strong mag-
netic field in these single crystals with x = 0.5 and 0.55.
1063-7834/04/4607- $26.00 © 21252
Our study of the magnetic and magnetoelastic proper-
ties revealed, in contrast to [3], that these compounds
have no spontaneous magnetic moment and that they
undergo two spontaneous phase transitions, namely,
local charge ordering at Tco = 220 K and antiferromag-
netic ordering at TN = 175 K. We showed that a strong
magnetic field (~200 kOe) suppresses the weakly mag-
netic, low-conducting state and drives a phase transi-
tion to the ferromagnetic conducting state.

2. EXPERIMENTAL RESULTS 
AND DISCUSSION

Single crystals of Sm1 – xSrxMnO3 (x = 0.5, 0.55)
were grown by zone melting with radiative heating. The
magnetic and magnetoelastic properties were measured
in the temperature range 10–300 K. In weak magnetic
fields, the magnetic susceptibility passes through a
broad maximum near Tco = 220 K (Fig. 1a), followed by
a drop as the temperature decreases to TN = 175 K. We
believe that at Tco = 220 K local charge ordering sets in,
in full agreement with [3], while at TN = 175 K, as
opposed to [3], antiferromagnetic ordering takes place,
which is indicated by the absence of a spontaneous
moment in the M(H) curves (inset to Fig. 1a). As seen
from Fig. 1b, at TN = 175 K a local maximum appears
in the temperature dependence of electrical resistivity,
while on the whole the ρ(T) graph features semicon-
ducting behavior typical of manganites with a fairly
large degree of localization. The temperature depen-
dence of thermal expansion likewise exhibited an
anomaly at TN = 175 K (Fig. 1c), while at Tco = 220 K
004 MAIK “Nauka/Interperiodica”
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no anomaly was observed, probably because of the
charge ordering bearing a local character [3]. We
believe that Sm0.5Sr0.5MnO3 has an A-type antiferro-
magnetic structure; i.e., it consists of antiferromagneti-
cally coupled ferromagnetic layers.

Magnetization curves measured in a strong mag-
netic field revealed an increase in magnetization with
jumps at T ≤ TN = 175 K, which switched to a diffuse
behavior in the temperature range 175 < T < 220 K. The
strong rise in magnetization in threshold fields Hcr is
obviously due to a transition to a ferromagnetic state
with suppression of antiferromagnetic ordering for T <
TN and suppression of local charge ordering in the
range 175 < T < 220 K (we assumed the average charge
ordering temperature to be Tco = 220 K). The threshold
field for T = 10 K was Hcr = 240 kOe. The magnetiza-
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tion curves of the composition with x = 0.55 obtained in
a strong magnetic field exhibited a similar behavior
(Fig. 2b). The threshold fields driving the phase transi-
tion to the ferromagnetic state at different temperatures
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were used to construct H–T phase diagrams for both
compositions (Fig. 3). The difference between the data
on the magnetic structure of Sm0.5Sr0.5MnO3 single
crystals and polycrystals should possibly be assigned to
single crystals having a better oxygen stoichiometry.

We also found that the phase transition from the
antiferromagnetic to the ferromagnetic state is accom-

panied by a magnetostrictive deformation  ~ 10–3.

Note that the transition is so steep that after the first
measurement the sample partially breaks down, so the
subsequent values of the magnetostriction turn out to be
an order of magnitude smaller. For this reason, the mag-
netostriction is plotted in Fig. 4 in arbitrary units. Note
that the magnetostrictive deformation is accompanied
by strong hysteresis having complex character.

3. CONCLUSIONS

We have established that Sm1 – xSrxMnO3 single
crystals (x = 0.5, 0.55) are not ferromagnets as was
reported in [3]. Our measurements revealed that two
spontaneous phase transformations occur with decreas-
ing temperature, namely, a transition to a state with
local charge ordering at Tco = 220 K and a transition to
the pure antiferromagnetic state, tentatively identified
as A type, at TN = 175 K. Thus, the T–x phase diagram
presented in [3] for a composition close to x = 0.5
apparently needs to be refined. A strong magnetic field
(~200 kOe) suppresses the antiferromagnetic and
charge-ordered phases and drives a phase transition to
the ferromagnetic conducting state.
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Abstract—Thin Re0.6Ba0.4MnO3 epitaxial films (Re = La, Pr, Nd, Gd) grown on (001)SrTiO3 and
(001)ZrO2(Y2O3) single crystal substrates have been prepared and studied. All the films were found to have a
cubic perovskite structure, with the exception of the film with Re = La, which revealed rhombohedral distortion
of the perovskite cell. The temperature dependences of the electrical resistivity and magnetoresistance pass
through a maximum near the Curie point TC, where the magnetoresistance reaches a colossal value. The mag-
netization isotherms M(H) are superpositions of a magnetization that is linear in field (like that of an antiferro-
magnet) and a weak spontaneous magnetization. The magnetic moment per formula unit is substantially smaller
than that expected under complete ferro- or ferrimagnetic ordering. The magnetizations of samples cooled in a
magnetic field (FC samples) and with no field applied (ZFC samples) differ by an amount that persists up to the
highest measurement fields (50 kOe). The M(T) dependence obtained in strong magnetic fields is close to linear.
Hysteresis loops of the FC samples are shifted along the field axis. The above magnetic and electric properties
of thin films are explained in terms of two coexisting magnetic phases, which are due to strong s–d exchange
coupling. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Re1 – xAxMnO3 manganites (Re is a rare earth
ion; A = Ca, Sr, Ba) are currently attracting consider-
able interest because of the colossal magnetoresistance
exhibited by some of them at room temperature. The
best studied thus far are the compositions with Sr and
Ca. Much less information is available on the
Re1 − xBaxMnO3 compounds, particularly, on their thin
films. Only La1 – xBaxMnO3 thin films with x = 0.2 and
0.33 have been investigated [1–3]; their room-tempera-
ture magnetoresistance R0/RH was observed to reach
~50% in a magnetic field H = 0.8 T for the former com-
position and H = 5 T for the latter. It has been pointed
out that the magnetoresistance of the composition with
x = 0.33 depends strongly on the deviation of oxygen
from stoichiometry [4]. The La1 – xBaxMnO3 system is
obviously of considerable interest, because it exhibits
very high Curie temperatures TC (up to 362 K in the x =
0.3 composition) [5–7]. Such high values of TC are due
to the relatively large average radius of the A cation
(〈rA〉); indeed, it is known that in the ABO3 manganites
TC grows with increasing 〈rA〉  [8, 9]. However, the mis-
fit in size between the A cations (Re3+ and Ba2+) reduces
TC [10].

There is currently no consensus on the crystal struc-
ture of the Re1 – xBaxMnO3 compounds. For instance, in
compositions with 0.2 ≤ x ≤ 0.4 of the La1 – xBaxMnO3
1063-7834/04/4607- $26.00 © 21255
system, the hexagonal structure  was observed in
[6], whereas stoichiometric samples of Re1 – xBaxMnO3
(Re = La, Pr) exhibited a more complex crystal struc-
ture (according to the data from [7]), which correlates
with neutron diffraction data [11]. At the same time,
investigation of Raman and x-ray spectra showed that
polycrystalline samples of La1 – xBaxMnO3 with x ≥
0.35 undergo separation into the cubic phase
La0.65Ba0.35MnO3 and the hexagonal phase BaMnO3

[12]. This is believed to be due to the size of the Ba2+

ions being too large for the cubic structure to be able to
accommodate them for x ≥ 0.35 [12].

This communication reports on a study of the crys-
tallographic, magnetic, and electrical properties of thin
Re1 – xBaxMnO3 epitaxial films (Re = La, Pr, Nd, Gd)
and interpretation of their features based on the theory
of magnetic semiconductors. Re1 – xBaxMnO3 films
(Re = Pr, Nd, Gd) were obtained and characterized by
us for the first time.

2. THIN-FILM PREPARATION 
AND EXPERIMENTAL TECHNIQUE

All the films were grown by MOCVD with an aero-
sol source of vapors of volatile metalorganic com-
pounds. The aerosol was prepared by the ultrasonic
method from a solution in diglyme (the total concentra-
tion of the metalorganic compounds in the solution was

R3c
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0.02 mol/l). The starting volatile compounds were
Re(thd)3 (Re = La, Pr, Nd, Gd), Mn(thd)3, and
Ba(thd)2(Phen)2, where thd stands for 2,2,6,6-tetrame-
thylheptane-3,5-dionate and Phen, for o-phenanthro-
line. Deposition was performed in a reactor with the
substrate holder inductively heated to 800°C at an oxy-
gen partial pressure of 3 mbar and a total pressure of
6 mbar. The deposition rate was 1 µm/h. The film thick-
ness was varied in the range 300–400 nm. We used
(001)SrTiO3 and (001)ZrO2(Y2O3) single crystal sub-
strates. The films thus prepared were characterized by
scanning electron microscopy complemented with
x-ray microprobe analysis and x-ray diffraction.

The thin-film magnetization was measured with a
SQUID magnetometer, and the electrical resistivity, by
the four-probe technique.

3. EXPERIMENTAL RESULTS 
AND DISCUSSION

3.1. Structural Characteristics

X-ray diffraction measurements of the films depos-
ited on (001)SrTiO3 showed them to be cube-on-cube
epitaxially grown single-phase perovskites. The
pseudocubic lattice parameter of the perovskite phase
decreased monotonically with decreasing Re3+ ionic
radius. Only a La0.6Ba0.4MnO3 film revealed the weak
superstructural reflections and pseudocubic-reflection
splitting expected to be observed in a rhombohedrally

distorted perovskite structure (space group ),
which correlated with the behavior of this material in
the ceramic state [7]. The other Re0.6Ba0.4MnO3 films
did not exhibit either peak splitting or the appearance of
superstructural reflections characteristic of the rhombo-
hedral, tetragonal, and orthorhombic distortions that
can be met in the rare-earth (RE) perovskite manganites
described in the literature. The rise in the symmetry to
cubic can be attributed to the disorder parameter
increasing with decreasing RE ion radius (and, accord-
ingly, to the increased difference between the ionic
radii of the RE element and barium, which fill the A
sublattice of the perovskite structure in a random man-
ner). This effect should be most pronounced for compo-
sitions with barium doping levels approaching 0.5.

A film on the (001)ZrO2(Y2O3) substrate grew
simultaneously in two orientations, (001) and (110).
Our earlier studies of perovskite manganite films grown
on (001)ZrO2(Y2O3) revealed, as a rule, one orientation
type only, (110) [13, 14]. We assign the appearance of
the second orientation to the increase in the perovskite
lattice constant caused by barium doping, which
changes the lattice misfit between the film and the sub-
strate.

R3c
P

3.2. Magnetic Properties

Figure 1 gives the temperature dependences of mag-
netization M(T) of all the films studied [except the
NdBaMnO film on the ZrO2(Y2O3) substrate] in differ-
ent magnetic fields. For the NdBaMnO film on
ZrO2(Y2O3), this dependence is similar to that shown in
Fig. 1c. As seen from Fig. 1, at temperatures below a
certain characteristic temperature Tf, each M(T) curve
splits in two at a certain field. The upper part of the
curve was obtained in the following way. At this field,
the sample was cooled from 300 down to 5 K (FC sam-
ple), after which its magnetization was measured under
heating in the same field. The lower part of the curve
was obtained in the same magnetic field under heating,
but its cooling before the measurement proceeded dif-
ferently; namely, the sample was cooled from 300 to
5 K with no field applied (ZFC sample). For T < Tf, the
magnetization of the FC sample was higher than that of
the ZFC sample; this difference was the larger, the
lower the temperature and the magnetic field in which
the magnetization was measured. In weak fields, the
M(T) curves of the ZFC sample exhibit a maximum at
the temperature Tf, while for T > Tf the M(T) curves of
the ZFC and FC samples merge. In strong fields, no
maximum is observed in the M(T) curves of the ZFC
sample; nevertheless, the difference between the ZFC
and FC curves persists up to the highest fields used,
H = 50 kOe (except for the GdBaMnO film, for which
the difference disappears for H ≤ 6 kOe). Note that the
M(T) curves obtained for the NdBaMnO film on
ZrO2(Y2O3) in different magnetic fields are close to
those observed for the film of the same composition on
the SrTiO3 substrate (Fig. 1c).

Figure 2 presents magnetization isotherms of the FC
samples of GdBaMnO and NdBaMnO films grown on
SrTiO3 substrates. The isotherms of the other films
studied in this work are similar to those depicted in
Fig. 2. One immediately sees that the M(H) curves
actually represent a superposition of a weak spontane-
ous magnetization and a magnetization that is linear in
field (like that of an antiferromagnet). Extrapolation of
the linear part of the M(H) curves to the point of its
intersection with the M axis yielded this spontaneous
magnetization, which was used to calculate the mag-
netic moment µex (in µB/f.u.). The values of µex at 5 K
are listed in the table for all the films studied in this
work. The table also presents the theoretical magnetic
moments µth (in µB/f.u.) calculated for three cases of
spin ordering of the Mn3+, Mn4+, and Re3+ ions; the first
value was obtained taking into account ferromagnetic
(FM) ordering of the Mn3+ and Mn4+ ions only; the sec-
ond, taking into account the FM ordering of the Mn3+,
Mn4+, and Re3+ spins; and the third, when the coupling
between the Re3+ spins and the ferromagnetically
ordered Mn3+ and Mn4+ ions is antiferromagnetic. We
used the purely spin values of the ion magnetic
moments: 2 µB for Pr3+, 3 µB for Nd3+, and 7 µB for
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Fig. 1. Temperature dependences of the magnetization of thin Re0.6Ba0.4MnO3 films (Re = La, Pr, Nd, Gd) on SrTiO3 substrates
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0.2
Gd3+. As is evident from the table, µex is far smaller than
µth for all the films studied. This observation also argues
for the coexistence of two magnetic phases in the films
under study.

As seen from Figs. 1a–1c, the M(T) dependence for
films with Re = La, Pr, and Nd in strong fields is close
to linear, a feature not typical of ferromagnets. For fer-
romagnets, the M(T) dependence is known to follow the
Brillouin function [15]. The exact value of the Curie
temperature TC can obviously be extracted only from
experiments performed with no external magnetic field
applied, because a magnetic field suppresses and broad-
ens the phase transition. In practice, however, the Curie
point is customarily determined by extrapolating the
steepest part of the M(T) curve to the temperature axis,
although this procedure yields, generally speaking, a
certain characteristic temperature TC' close to TC. If the
Curie temperature of the films studied here is deter-
mined in this way, TC' will depend strongly on the field
in which it is measured. The values of TC' obtained by
this technique are given in the table. From the table, it
follows that the magnitude of TC' of our films grows
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
strongly with increasing H. For instance, TC' of the
LaBaMnO film measured in fields of 100 Oe and
50 kOe is 283 and 373 K, respectively. In magnetically
uniform magnets with spontaneous magnetization, for
example, in ferromagnets, this difference does not
exceed 10 K.

As seen from Fig. 1d, the magnetizations of the FC
and ZFC GdBaMnO films differ only in weak fields and
disappear altogether in H = 6 kOe. The shape of the
M(T) curves for this film differs from that for the other
films studied (Figs. 1a–1c). In weak fields, as is evident
from Fig. 1d, the M(T) curves of the ZFC sample pass
through a maximum and then exhibit a minimum fol-
lowed by a steep rise. In place of the minimum seen in
the curve for the ZFC sample, the M(T) curve of the FC
sample shows an inflection, after which a rapid rise sets
in as the temperature is lowered still further. For H ≥
6 kOe, there is no difference between the FC and ZFC
magnetizations and the magnetization falls off mono-
tonically with increasing temperature without any of
the features observed in lower fields. The magnetic
moment in a field of 50 kOe at 5 K is 3.28 µB/f.u. At the
same time, the M(T) curves obtained in fields H < 6 kOe
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Fig. 2. Magnetization isotherms of FC thin films grown on
SrTiO3 substrates. (a) Gd0.6Ba0.4MnO3 and (b)
Nd0.6Ba0.4MnO3.

80

0 50
T, K

60

40

20

100 150 200

M, emu/g

Fig. 3. Temperature dependence of the magnetization of a
thin Gd0.6Ba0.4MnO3 film on SrTiO3 measured in a mag-
netic field of 50 kOe (points). Solid line is the Langevin
function for an ensemble of superparamagnetic clusters
with magnetic moments µ = 22 µB and true magnetization
M0 = 73.6 emu/g.
P

resemble those characteristic of a ferrimagnet with a
compensation point. In this case, µth at low tempera-
tures should be equal to the difference between the
magnetic moments of the Gd3+ and manganese ions,
i.e., 0.6 µB/f.u. The experimentally observed magnetic
moment at H = 500 Oe, where the compensation point
is still seen, does not exceed 0.08 µB/f.u. (i.e., 7.5 times
smaller than µth). This means that only part of the
sample (about 13%) is ferrimagnetic; the remainder
resides in the antiferromagnetic (AFM) state. Note that
the ferrimagnetic state with a compensation point was
observed earlier in a related compound,
Gd0.67Ca0.33MnO3 [16]. The existence of the AFM
phase in the GdBaMnO film, as mentioned above, is
indicated by its magnetization isotherms, shown in
Fig. 2a. For H ≥ 6 kOe, the compensation point on the
M(T) curves is no longer discernible and the film mag-
netization increases strongly, with the magnetic
moment in a field of 50 kOe at 5 K becoming µ =
3.28 µB/f.u. This magnetic moment is substantially
larger than the value that should be expected under
complete ferrimagnetic ordering of the sample
(0.6 µB/f.u.) but noticeably smaller than what should be
expected in the case of complete FM ordering
(7.8 µB/f.u.). It may be conjectured that in these fields
the moments of the Gd3+ and manganese ions are ferro-
magnetically ordered but the FM phase occupies only
part of the sample. It thus follows that, in the
GdBaMnO film residing in a state with two magnetic
phases, the spontaneously magnetized phase undergoes
a magnetic field–induced transition from the ferrimag-
netic to FM ordering. The experimental M(T) curve
obtained in a field of 50 kOe can be fitted well by the
Langevin function for an ensemble of superparamag-
netic clusters with an FM cluster moment µ = 22 µB and
a true magnetization M0 = 73.6 emu/g (Fig. 3):

(1)

where M is the magnetization at the given temperature
and M0 is the true magnetization. Assuming the spins of
the Gd3+ and manganese ions in a cluster to be ferromag-
netically ordered, a cluster should contain ~3 chemical
formulas. This argues for the existence of two, FM and
AFM, magnetic phases in the GdBaMnO film, with the
FM cluster moment being ~22 µB.

The existence of a state with two magnetic phases in
the films under study is corroborated by the hysteresis
loops of the FC samples being displaced along the H
axis. Figure 4 illustrates the displaced loops for the
GdBaMnO and PrBaMnO films. A similar shift of the
hysteresis loop was first observed in partially oxidized
cobalt and was attributed to the exchange interaction
between the ferromagnetic Co particles and their AFM
shells of CoO [17]. This phenomenon was subse-
quently called exchange anisotropy. Observation of
shifted hysteresis loops in a sample cooled in a weak
magnetic field was later considered evidence of the

M/M0 µH/kT( )coth kT /µH ,–=
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Magnetic properties of thin Re0.6Ba0.4MnO3 films (Re = La, Pr, Nd, Gd) grown on (001)SrTiO3 or (001)ZrO2(Y2O3)

Parameter
La

(SrTiO3)
Pr

(SrTiO3)
Nd

(SrTiO3)
Nd

(ZrO2 (Y2O3)
Gd

(SrTiO3)

µex, µB/f.u. 1.93 1.15 1.52 1.35 3.28

µth, µB/f.u. 3.6 3.6, 4.8, 2.4 3.6, 5.4, 1.8 3.6, 5.4, 1.8 3.6, 7.8, 0.6

∆H, Oe 57 400 230 300 380

Ku × 10–4 1 1.9 1.2 3.2 2.7

, K (H = 100 Oe) 283 160 142 145 75

, K (H = 6 kOe) 308 213 170 210 26

, K (H = 50 kOe) 373 369 260 50

Tf, K (H = 100 Oe) 100 95 73 75

Tf, K (H = 6 kOe) 50 50 41 38

Tf, K (H = 50 kOe) 30 33 33

Tρ(max), K 284 116

Note: µex is the magnetic moment per formula unit calculated from spontaneous magnetization at 5 K, µth is the theoretical magnetic
moment per formula unit, ∆H is the displacement of the hysteresis loop along the H axis measured at 5 K, Ku is the exchange anisot-

ropy constant,  is the Curie temperature determined by extrapolating the steepest part of the magnetization vs. temperature curve

to intercept with the temperature axis, Tf is the temperature of the maximum in the temperature dependence of magnetization of the
FC sample, and Tρ(max) is the temperature of the maximum in the temperature dependence of resistivity.

TC
'

TC
'

TC
'

TC
'

existence of a spin-glass-like state in the sample. Nev-
ertheless, this phenomenon finds explanation only for
the cluster spin glasses and should not exist in a true
spin glass consisting only of randomly oriented spins.
Kouvel [18] explained the shifted hysteresis loops that
he observed in CuMn and AgMn spin glasses in terms
of a nonuniform distribution of the Mn ions; he
believed that the Mn-depleted regions are ferromag-
netic and the Mn rich ones are antiferromagnetic, with
the two being coupled by exchange interaction. The
shifted hysteresis loops observed by us indicate unam-
biguously the presence of two magnetic phases, FM
and AFM, in the films under study, with the FM and
AFM regions exchange coupled. From the shift of the
hysteresis loops

, (2)

where Ku is the exchange anisotropy constant and Ms is
the saturation magnetization, we calculated Ku for all
the above films. This constant was found to be on the
order of 104 erg/cm3 (see table). Given the value of Ku,
one can derive the exchange integral J describing one
Mn–O–Mn bond through the FM/AFM interface
between the phases in the film for a known surface area
of this interface. Unfortunately, these data are currently
lacking.

3.3. Electrical Properties

The electrical resistivity ρ and magnetoresistance
∆ρ/ρ = (ρH – ρH = 0)/ρH = 0 of LaBaMnO, PrBaMnO, and

∆H Ku/Ms=
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
NdBaMnO films on SrTiO3 substrates were studied for
T > 78 K in fields H ≤ 8.2 kOe. Because of their small
thickness, the GdBaMnO and NdBaMnO films on
SrTiO3 and ZrO2(Y2O3) substrates, respectively, had
such a high electrical resistivity that we succeeded in
measuring it by the four-probe technique above TC only.
Figure 5 displays ρ(T) curves for all the films on SrTiO3

substrates studied by us, and Fig. 6 shows (∆ρ/ρ)(T)
curves for the PrBaMnO and LaBaMnO films. The mag-
netoresistance is negative. We see from Figs. 5 and 6 that
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Fig. 4. Hysteresis loop of a thin Pr0.6Ba0.4MnO3 film on a
SrTiO3 substrate obtained at 5 K after cooling in a magnetic
field of 4 kOe. Inset: same for a thin Gd0.6Ba0.4MnO3 film
grown on SrTiO3.
4
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the ρ(T) and |(∆ρ/ρ)|(T) curves pass through a maxi-
mum, and the temperatures of the maximum for the lat-
ter curves are lower than those for the former curves, a
situation typical of magnetic semiconductors. These
temperatures are listed in the table. The maximum val-
ues of ρ are ~10–3 Ω cm for PrBaMnO and NdBaMnO
and ~10−5 Ω cm for LaBaMnO. The magnetoresistance
at the maximum is very high; as seen from Fig. 6, it is
43% for the PrBaMnO films.

The presence of maxima in the ρ(T) and |∆ρ/ρ|(T)
curves and the colossal magnetoresistance imply that
our films are in a state with two coexisting magnetic
phases induced by strong s–d exchange. Obviously
enough, these compositions are actually AFM semicon-
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250150 200

ρ, Ω m
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4

Fig. 5. Temperature dependence of the resistivity of thin
Re0.6Ba0.4MnO3 films grown on SrTiO3 substrates. Re
stands for (1) Gd, (2) Nd, (3) Pr, and (4) La.
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Fig. 6. Temperature dependence of the magnetoresistance
of thin Pr0.6Ba0.4MnO3 and La0.6Ba0.4MnO3 films mea-
sured in a magnetic field of 8.5 kOe.
P

ductors LaMnO3, PrMnO3, NdMnO3, and GdMnO3

doped by Ba2+ ions. Judging from the value of ρ of the
LaBaMnO, PrBaMnO, and NdBaMnO films grown on
SrTiO3 substrates, their state is conducting, with the
conducting FM matrix containing AFM clusters free of
charge carriers (holes). This conducting state with two
magnetic phases originates from a strong s–d exchange
and is described in review [19]. The conducting state
with two magnetic phases is characterized by a strongly
increased resistivity in the vicinity of the Curie temper-
ature. One can conceive here of two mechanisms
through which the magnetic impurity interaction can
affect the resistivity, namely, the scattering of carriers,
which reduces their mobility, and the formation of a tail
of their band, which consists of localized states. Near
the Curie point, the mobility of carriers decreases dra-
matically and they localize partially in the band tail,
which accounts for the maximum in the ρ(T) curve near
TC. A magnetic field delocalizes the carriers from the
band tails and increases their mobility, thereby giving
rise to the colossal magnetoresistance.

3.4. Experimental Evidence of the Existence 
of a Ferromagnetic–Antiferromagnetic Two-Phase 

State in Thin Re0.6Ba0.4MnO3 Films
(Re = La, Pr, Nd, Gd)

The above-mentioned magnetic properties resemble
those of cluster spin glasses. For instance, the FC and
ZFC samples have different magnetizations (Fig. 1),
the magnetic moment per formula unit at 5 K is very
small (see table), and the M(T) curves differ in shape
from the Brillouin function. Nevertheless, there are also
substantial differences. Indeed, in spin glasses, the
value of M of an FC sample does not depend on T for
T < Tf, provided that the cluster size does not vary with
T, which is frequently observed in spin glasses. In the
case under study, the magnetization of an FC sample
grows with decreasing temperature. In spin glasses, the
magnetizations of FC and ZFC samples remain differ-
ent only in weak fields, not over a few kilooersteds; by
contrast, in the films studied by us, this difference per-
sists up to the maximum fields used, 50 kOe (except for
the GdBaMnO film). These observations can be
assigned to the FM phase of a two-phase sample
increasing in volume with decreasing temperature. The
difference in the shape of the M(T) curves from that of
the Brillouin function can be attributed to the same fac-
tor. The magnetization isotherms of spin glasses are
nonlinear; as can be seen from Fig. 2, the films under
study represent a superposition of a small spontaneous
magnetization with a magnetization that is linear in
field and characteristic of antiferromagnets.

The H-shifted hysteresis loops of the FC samples
are not unambiguous evidence of the coexistence of
two magnetic phases in them. Although this property is
also observed in spin glasses, it implies only the exist-
ence of FM and AFM regions in them coupled by
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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exchange interaction [18]. In our earlier study [20], we
estimated from this shift ∆H the exchange integral J
describing one Mn–O–Mn bond through the FM/AFM
interface for a number of manganites residing in the
insulating FM/AFM two-phase state. It was found that
|J | ~ 10–6 eV; i.e., this value was two orders of magni-
tude smaller than the absolute value of the negative
exchange integral between the FM layers in LaMnO3,
|J1 | = 5.8 × 10–4 eV derived from neutron scattering
experiments [21]. This means that the presence of a
transition layer with canted spins at the above interface
is unlikely. Because the charge carriers in such a two-
phase sample are concentrated in its FM phase and are
absent from the AFM phase, the topology of the two-
phase-state is determined by Coulomb forces and the
surface interface energy. As is evident from the table,
the volume of the FM phase is comparable to that occu-
pied by the AFM phase in LaBaMnO, PrBaMnO, and
NdBaMnO films grown on SrTiO3 substrates. Judging
from the magnitude of ρ, the magnetic-two-phase state
of these films is conducting, with the FM phase filling
the space between the AFM insulating spheres. The val-
ues of Ku for the films studied by us (part of which are
in the conducting two-phase state) and for the mangan-
ites studied in [20] and residing in the insulating two-
magnetic-phase state are of the same order of magni-
tude. This fact suggests that the areas of the FM/AFM
interfaces in these cases are likewise of the same order
of magnitude and that the conclusions drawn in [20]
can be extended to the films studied here; in other
words, it is unlikely that a canted spin layer is present
at the above interface.

The GdBaMnO film is apparently in the insulating
magnetic-two-phase state; using the Langevin func-
tion (1), we estimated the FM cluster moment for this
film at H = 50 kOe to be 22 µB, which shows that this
cluster includes 3 formula units.
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Abstract—The dynamic dielectric response and the nonlinear dielectric susceptibility of K1 – xLixTaO3 (x =
0.010, 0.016, 0.030) compounds are measured in a dc electric field in the temperature range 4 ≤ T ≤ 150 K. It
is found that the permittivity ε' of K1 – xLixTaO3 samples with two lower concentrations of lithium impurities
decreases in an electric field E. For samples with a lithium concentration x = 0.030, the permittivity ε' decreases
in electric fields E > 1 kV/cm and increases in fields E < 0.5 kV/cm. The observed dependences of the maximum
of the permittivity on the temperature and the frequency of the measuring field obey the Arrhenius law for sam-
ples with lower concentrations of lithium impurities (x = 0.010, 0.016) and the Vogel–Fulcher law for samples
with a higher lithium concentration (x = 0.030). The results of the theoretical treatment performed in the frame-
work of the random-field theory are consistent with the experimental data. It is established that the Arrhenius
law is valid for dipole glass phases, whereas the Vogel–Fulcher law holds true for a mixed ferroelectric–glass
phase in which the short-range and long-range polar orders coexist. The inference is made that the results of
measurements of the dielectric response can be used to identify a mixed ferroelectric–glass phase in any disor-
dered ferroelectric material. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Disordered ferroelectrics have attracted the par-
ticular attention of researches owing to their unusual
properties. Potassium tantalate with lithium and nio-
bium impurity ions occupying off-center positions in
the crystal lattice has been frequently used as a
model disordered ferroelectric material. All proper-
ties of K1 – xLixTaO3 (KLT) and KTa1 – xNbxO3 (KTN)
compounds substantially depend on the concentration
of Li+ or Nb5+ off-center ions even at small x < 0.1 [1,
2]. In particular, the dipole glass phase with short-range
polar clusters is observed at low impurity concentra-
tions (x < xc, where xc is the critical concentration). At
higher impurity concentrations (x0 ≥ x ≥ xc), there exists
a mixed ferroelectric–glass phase in which the short-
range and long-range polar orders occur simulta-
neously. A further increase in the impurity concentra-
tion (x ≥ x0) leads to the formation of a ferroelectric
phase. The critical concentrations measured in the
experiments are as follows: xc = 0.022 for K1 – xLixTaO3

ferroelectrics and xc = 0.008 for KTa1 – xNbxO3 ferro-
electrics (see, for example, [3]). According to theoreti-
cal calculations, the critical concentration xc and the
phase diagram of disordered ferroelectrics, as a whole,
are governed by the type and parameters of the distribu-
tion function of random electric fields, namely, the ratio
of the most probable field E0 to the half-width ∆Ei. The
1063-7834/04/4607- $26.00 © 21262
most probable field E0 is completely determined by the
contribution of electric dipoles and is proportional to
their concentration (E0 ~ x) [1]. However, apart from
the above contribution, the half-width ∆Ei depends on
the contribution from other sources of random electric
fields, for example, point charges and dilatation centers
[4]. Note that the inclusion of contributions from these
additional sources of random electric fields provides an
explanation for the relatively high critical concentration
of impurities in K1 – xLixTaO3 ferroelectrics.

In the general case, the dipole glass, mixed ferro-
electric–glass, and ferroelectric phases are character-
ized by the following ratios of the field parameters:
E0/∆Ei < 1, E0/∆Ei ≥ 1, and E0/∆Ei @ 1, respectively. Up
to now, the problem of separating and identifying the
dipole glass phase and mixed ferroelectric–glass phase
in many disordered ferroelectrics, specifically in relax-
ors, has been extremely complicated. Although the non-
ergodic behavior and processes with long relaxation
times are typical of both the dipole glass and mixed fer-
roelectric–glass phases, these characteristics have been
initially used for describing only the glass state. On the
other hand, theoretical analysis of the effect of an exter-
nal dc electric field on the dielectric susceptibility has
demonstrated that the applied dc electric field always
decreases the dielectric response in the dipole glass
phase and either decreases or increases this response in
the ferroelectric–glass phase [5, 6]. Therefore, the
004 MAIK “Nauka/Interperiodica”
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results of measuring the nonlinear dielectric suscepti-
bility make it possible to identify a mixed ferroelectric–
glass phase. It is known that, in the model disordered
ferroelectric compounds K1 − xLixTaO3, the dipole glass
and ferroelectric phases exist at impurity concentra-
tions x < xc = 0.022 [7] and x ≥ x0 = 0.05 [8], respec-
tively. Hence, we can expect the formation of a mixed
ferroelectric–glass phase in samples with intermediate
concentrations of impurities. Thus, the results of mea-
suring the nonlinear dielectric response in samples with
impurity concentrations lying in the above range can be
used to identify a mixed ferroelectric–glass phase.
Moreover, it is reasonable to compare the experimental
and theoretical dependences of the dynamic dielectric
susceptibility in the lithium concentration ranges corre-
sponding to the dipole glass and mixed ferroelectric–
glass phases.

In the present work, we measured the dynamic
dielectric response and the nonlinear permittivity of
K1 – xLixTaO3 compounds in an external dc electric field
with the aim of identifying a mixed ferroelectric–glass
phase. Furthermore, we proposed a new approach to the
identification of the dipole glass and mixed ferroelec-
tric–glass phases on the basis of analyzing the temper-
ature dependence of the dynamic dielectric response. In
this work, we demonstrated both experimentally and
theoretically that the temperatures of the maximum of
the permittivity at different frequencies of measure-
ment obey the Arrhenius law for dipole glass phases
and the Vogel–Fulcher law for a mixed ferroelectric–
glass phase. Since the temperature and frequency
dependences of the permittivity, as a rule, are measured
in the study of disordered ferroelectrics, the proposed
method for identifying the dipole glass and mixed fer-
roelectric–glass phases seems very promising.

2. EXPERIMENTAL TECHNIQUE 
AND RESULTS

We studied single crystals of the KTaO3 compound
doped with lithium ions at contents of 1.0, 1.6, and
3.0 at. %. The faces of crystals 3 × 2 × 1 mm in size
were parallel to the (001) planes. Electrodes were
applied to the opposite faces of the crystal sample with
the use of a silver paste.

The dielectric response was measured as a function
of the frequency and temperature in an external dc elec-
tric field with a strength of up to 2000 V/cm. The mea-
surements were performed on an HP 4275A bridge.
The frequency of the ac electric field ranged from
10 kHz to 2 MHz. The temperature was varied from
300 to 4.2 K. The heating rate was 0.2–0.3 K/min.

Figures 1 and 2 show the temperature dependences
of the permittivity and the dielectric loss measured at
different frequencies for KTaO3 samples with lithium
contents of 1.0 and 1.6 at. % in a zero dc electric field.
These dependences are characteristic of crystals doped
with lithium at these contents. The temperature depen-
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
dences of the permittivity and the dielectric loss mea-
sured at different frequencies for the KTaO3 : 3.0 at. %
Li sample are plotted in Fig. 3. At temperatures T < Tm

(where Tm is the temperature of the maximum of the
permittivity), the experimental dependences are char-
acterized by a specific anomaly, namely, a stepwise
decrease in the real part ε' and in the imaginary part ε''
of the permittivity at T ≈ 50 K (see insets to Fig. 3). It
can also be seen that this anomaly exhibits a hysteresis
upon heating and cooling. Note that the temperature of
the principal peak of the permittivity does not depend
on the order in which the sample is subjected to heat
treatment; i.e., it is identical upon heating and cooling.
The second distinguishing feature of the anomaly at
T ≈ 50 K is that it is dispersionless. This means that, at
least in the frequency range 104–2 × 106 Hz, the tem-
perature of the jump in the permittivity ε does not
depend on the frequency of the ac electric field.
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Fig. 1. Temperature dependences of the real part ε' and the
imaginary part ε'' of the permittivity of KTaO3 : 1.0 at. % Li
and their frequency dispersion.
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For samples doped with lithium at the three above
contents, we analyzed the temperature dependences of
the dispersion of the permittivity at temperatures close
to Tm under the assumption that the relaxation of lith-
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Fig. 2. Temperature dependences of the real part ε' and the
imaginary part ε'' of the permittivity of KTaO3 : 1.6 at. % Li
and their frequency dispersion.

Dynamic characteristics of the dielectric response of
K1 − xLixTaO3 compounds
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x
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ment theory experi-
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1012

Tg, K 0 0 0 0 12 15
P

ium dipoles has a Debye character and that the fre-
quency of dipole reorientations obeys either the Arrhe-
nius law

(1)

or the Vogel–Fulcher law

(2)

Here, the preexponential factor ν0, the activation barrier
U, and the freezing temperature Tg are adjustable
parameters. These parameters are listed in the table.
Their values indicate that the dispersion of the permit-
tivity ε for samples with low lithium contents (1.0,
1.6 at. %) is determined by the dynamics of individual
(isolated or weakly interacting) lithium dipoles and is
adequately described by the Arrhenius law, which is in
good agreement with the 7Li NMR data [1]. For sam-
ples with a higher lithium content (3.0 at. %), the dis-

ν ν0 –U/Tm( )exp=

ν ν0 –U/ Tm Tg–( )[ ] .exp=
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Fig. 3. Temperature dependences of the real part ε' and the
imaginary part ε'' of the permittivity of KTaO3 : 3.0 at. % Li
and their frequency dispersion. The insets show the anom-
aly of the dielectric response at T ≈ 50 K.
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persion of the permittivity ε ceases to obey the Arrhe-
nius law. In this case, the use of the Vogel–Fulcher law
for describing the temperature dependence of the fre-
quency of dipole reorientations leads to better agree-
ment with the experimental data at reasonable adjust-
able parameters. It is this approach that is most fre-
quently applied to the description of the dynamics of
compounds containing the dipole glass phase or mixed
ferroelectric–glass phase with allowance made for col-
lective interactions.

The nonlinear effects of the permittivity were exam-
ined in an external dc electric field E. The permittivity
was measured under the “field cooling” (FC) and “field
cooling–zero-field heating” (FC–ZFH) conditions.
After each measurement in an external dc electric field,
the sample was heated to room temperature in order to
eliminate the space charge. The space charge was accu-
mulated in the immediate vicinity of the electrodes,
which led to a decrease in the measured capacitance of
the sample. On the other hand, the space-charge effect
at low temperatures (4–150 K) can be taken into
account under the assumption that there exists a tem-
perature-independent capacitor connected in series
with a capacitor of an “ideal” sample. It is evident that
this additional capacitance, which depends on the elec-
tric field strength, can be determined by comparing the
values of ε'(T) measured in the zero-field cooling (ZFC)
mode immediately after applying a dc electric field and
after slow heating (for 4–6 h) to 400–500 K. As an
example, the temperature dependences of the permittiv-
ity ε'(T) measured with and without a dc electric field
and experimental data, including the correction to ε'(T)

10 kHz

400 kHz

KTaO3 : 1 at. % Li
ZFC

1000

800

600

400

ε'

30 60 90
T, K

Fig. 4. Temperature dependences of the real part ε' of the
permittivity of KTaO3 : 1.0 at. % Li measured under zero-
field cooling (ZFC) conditions before (circles) and after
(squares) application of a dc electric field E0 = 1.4 kV/cm.
Solid lines represent experimental data corrected for the
space-charge effect.
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through the introduction of the series-connected capac-
itor C0, are presented in Fig. 4. It can be seen from this
figure that the introduction of the series-connected
capacitor into the circuit makes it possible to take into
account the space-charge effect to sufficient accuracy.

The results of dielectric measurements under the FC
conditions for the KTaO3 : 1.0 at. % Li compound with
due regard for the space-charge effect are presented in
Fig. 5a. The temperature dependence of the nonlinear
part of the permittivity ε', i.e., the difference ε'(T, E) –
ε'(T, 0), is depicted in Fig. 5b. It can be seen from Fig. 5
that the permittivity of the sample in an external dc
electric field decreases at temperatures below the tem-
perature Tg, which is usually referred to as the temper-
ature of freezing of the dipole glass. It is at this temper-
ature that the dipole system loses its ergodicity. A similar
dependence ε'(T) is observed for the KTaO3 : 1.6 at. % Li

E = 0V/cm

(a)

KTaO3 : 1 at. % Li
100 kHz, FC

1000
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800
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ε'

(b)

E = 700V/cm
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100 kHz, FC– 25

–75

–100

0

25 50 75 100
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–50

ε'(FC) – ε'(ZFC)
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1400
2200
2500
2850

500

Tf

1400
2200
2500
2850

Fig. 5. (a) Effect of the dc electric field on the temperature
dependence of the real part ε' of the permittivity of
KTaO3 : 1.0 at. % Li measured under field-cooling (FC)
conditions at a frequency of 100 kHz. (b) Temperature
dependences of the nonlinear part of the permittivity ε'.



1266 LAGUTA et al.
compound. For the KTaO3 : 3.0 at. % Li sample, the dc
electric field has a radically different effect on the per-
mittivity. A profound effect of the dc electric field on
the permittivity is observed only at temperatures T <
50 K. The permittivity ε' increases in weak electric
fields (E ≤ 0.5 kV/cm) at T ≤ 50 K. However, in stronger
fields E ≥ 1 kV/cm, the permittivity ε' decreases; i.e.,
the difference ε'(T, E) – ε'(T, 0) can be both positive and
negative in sign (Figs. 6a, 6b). Moreover, the tempera-
ture dependence of the permittivity ε' exhibits a broad
maximum in the temperature range T < 50 K. It is quite
possible that this maximum shifts toward the high-tem-
perature range with an increase in the frequency. How-
ever, we will not analyze this effect, because the posi-
tion of the maximum cannot be determined to sufficient
accuracy. Furthermore, the dc electric field substan-
tially affects the jump in the permittivity ε' at T ≈ 50 K.
This anomaly decreases and completely disappears in
electric fields with a strength of the order of 1–2 kV/cm.
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Fig. 6. Temperature dependences of the real part ε' of the
permittivity of KTaO3 : 3.0 at. % Li measured under ZFC
(solid lines) and FC (dotted lines) conditions in dc electric
fields of (a) 0.5 and (b) 2 kV/cm.
P

3. DIELECTRIC SUSCEPTIBILITY 
IN THE FRAMEWORK OF THE RANDOM-FIELD 

THEORY

Let us consider the temperature and frequency
dependences of the dielectric susceptibility of disor-
dered ferroelectrics. In the general case, the dielectric
susceptibility is determined by the reorientational
motion of electric dipoles. In disordered ferroelectrics,
the reorientation rate of electric dipoles strongly
depends on random electric fields at their sites, because
these fields affect the barrier between equivalent equi-
librium positions of the dipoles with different orienta-
tions of the dipole moment [9]. It is obvious that the
observed dielectric response can be obtained by averag-
ing over random electric fields with allowance made for
their distribution function. In [5], for electric dipoles
with two possible orientations, the averaging was per-
formed with a distribution function accounting for both
the linear and nonlinear effects in external and internal
(random) electric fields [10]. The relationship thus
derived for the dielectric susceptibility is as follows:

(3)

(4)

(5)

Here, E is the external dc electric field (the ac measur-
ing field is assumed to be very weak and tends to zero),
n is the concentration of electric dipoles with dipole
moment d, d* = dγ(ε0 – 1)/3, γ is the Lorentz factor,
ε0 is the static permittivity of KTaO3 as the host lattice,
L is the ferroelectric order parameter (dimensionless
polarization) characterizing the number of coherently
oriented dipoles, n1 is the concentration of point defects
with charge Ze, rc is the correlation length of the host
lattice, and Ei stands for the internal random electric
fields with a distribution function obtained in the
framework of the statistical theory (see [4]). The time 
obeys the Arrhenius law for the reorientational motion
of electric dipoles between two equivalent positions
separated by a barrier with height U:  = τ0exp(U/kT).
Expression (4) was derived under the assumption that
each isolated electric dipole attains equilibrium through
Debye relaxation.

Therefore, relationships (3)–(5) describe the depen-
dences of the dielectric susceptibility on the tempera-
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ture, frequency, external dc electric field, parameters of
the host lattice, and sources of random electric fields.

In [5], the dielectric susceptibility (nonlinear with
respect to the external dc electric field) was calculated
from formulas (3) and (4). These calculations demon-
strated that, for parameters corresponding to a mixed
ferroelectric–glass phase, the external dc electric field
either decreases or increases the dielectric response,
depending on the field strength and temperature. In the
dipole glass phase, an external dc electric field of any
strength leads only to a decrease in the dielectric
response over the entire range of temperatures.

The theoretical inference made in [5] is confirmed
by the experimental data presented in Figs. 5 and 6. In
actual fact, the permittivity of K1 – xLixTaO3 compounds
with lithium concentrations x = 0.010 and 0.016, which
correspond to the dipole glass phase (because x < xc =
0.022), decreases in an external electric field (Fig. 5).
For samples with x = 0.03, i.e., in the mixed ferroelec-
tric–glass phase, the external dc electric field E has a
substantially different effect on the permittivity
(Fig. 6). It can be seen from Fig. 6 that the permittivity
ε' increases in weak electric fields E ≤ 0.5 kV/cm at
temperatures T ≤ 50 K and decreases in stronger fields
E > 1 kV/cm. This implies that the difference ε'(T, E) –
ε'(T, 0) can be both positive and negative in sign.

Now, we analyze the frequency and temperature
dependences of the dielectric susceptibility in the
absence of an external dc electric field (E = 0). The cal-
culations were performed according to formulas (3)
and (4) for the following parameters obtained earlier by
the NMR technique for individual lithium ions in
K1 − xLixTaO3 compounds [11]: U = 1000 K; τ0 = 10–13 s;
and x = 0.010, 0.016, and 0.030. The temperature-
dependent correlation lengths involved in relation-
ships (5) were determined from an expression for the
static permittivity of pure potassium tantalate (whose
magnitude is proportional to the soft-mode frequency
according to the Barrett formula) with the parameters
taken from [12]. The values of ε0 in relationships (4)
and (5) were obtained from the phenomenological
expression for pure KTaO3: ε0 = 48 + C/(T – T0), where
C = 5 × 104 K and T0 ≅  12.9 K. We also assumed that
impurity point charges make a considerable contribu-
tion to the width of the random-field distribution. Since
nothing is a priori known about the concentration and
other characteristics of point defects in K1 – xLixTaO3
ferroelectrics, the parameter A determined by these
defects can be used as an adjustable parameter of theory
and experiment. It should be emphasized that changes
in the parameter A do not lead to a shift in the maximum
of the dependence ε'(T) (i.e., Tm = const) and only
broaden the distribution and decrease its maximum
(Fig. 7). Since the temperature Tm of the maximum of
the permittivity is the most important characteristic
responsible for the temperature dependence of the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
relaxation rate, it is clear that the choice of the parame-
ter A does not affect the relaxation behavior.

Figures 8a–8c present the results of calculating the
permittivity ε'(ω, T) according to relationships (3) and
(4) for x = 0.010, 0.016, and 0.030. The temperatures
Tm(ν) of the maxima of the permittivity are described
by the Arrhenius law with high accuracy for the follow-
ing parameters: U = 1100 K and ν0 = 4 × 1012 Hz for x =
0.01 and U = 1150 K and ν0 = 4 × 1012 Hz for x = 0.016.
Our attempts to describe the dependence Tm(ν) for x =
0.03 in terms of the Arrhenius law with reasonable val-
ues of the parameter ν0 were not successful. The exper-
imental data were described only using the Vogel–
Fulcher law (2) for parameters ν0 = 4 × 1012 Hz and
Tg = 15 K.

A comparison of the calculated data with the results
of dielectric measurements shows that theory ade-
quately describes experiment and that the theoretical
and experimental parameters of the Arrhenius and
Vogel–Fulcher laws are close to each other (see table).
Thus, the experimental investigation and theoretical
analysis proved that, for K1 – xLixTaO3 compounds, the
Arrhenius law is valid for the dipole glass phase (x =
0.010, 0.016), whereas the Vogel–Fulcher law holds
true for the mixed ferroelectric–glass phase (x = 0.030).

4. DISCUSSION

Investigations into the model disordering of
K1 − xLixTaO3 ferroelectrics demonstrated that the
relaxation rates are adequately described by the Arrhe-
nius law at x < xc (the dipole glass phase) and the Vogel–
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Fig. 7. Theoretical temperature dependences of the real part
ε' of the permittivity of a K1 – xLixTaO3 ferroelectric at a fre-

quency of 106 Hz for different concentrations A of point
charges: (1) A1, (2) 2A1, and (3) 3A1 (where A1 is an arbi-
trary relative concentration of point charges).
4



1268 LAGUTA et al.
Fulcher law at x > xc (the mixed ferroelectric–glass
phase). It should be noted that the rate of dielectric
relaxation in K1 – xLixTaO3 compounds (at x > xc) has
already been described theoretically by the Vogel–
Fulcher law in [13]. However, for many years, the
dielectric spectra of K1 – xLixTaO3 compounds, as a
rule, were described by the Arrhenius law over the
entire range of lithium concentrations [1, 2]. Therefore,
the experimental data obtained in the present work for
the first time confirmed the validity of the Vogel–
Fulcher law for K1 – xLixTaO3 compounds with lithium
concentrations x0 > x > xc. Note also that a similar situ-
ation occurs with investigations into the properties of
KTa1 – xNbxO3 compounds. Samara [14] was the first to
demonstrate that the relaxation processes in these com-
pounds at x > xc = 0.008, i.e., in the ferroelectric–glass
phase, can be described by the Vogel–Fulcher law
rather than by the Arrhenius law, which holds true only
at low lithium concentrations, i.e., in the dipole glass
phase (see [1–3] and references therein). In the study of
the specific features in the properties of the dipole glass
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Fig. 8. Theoretical temperature dependences of the real part
ε' of the permittivity of K1 – xLixTaO3 ferroelectrics at
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(5) 106 Hz for lithium contents of (a) 1.0, (b), 1.6, and
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and mixed ferroelectric–glass phases, the significant
advantage of K1 – xLixTaO3 and KTa1 − xNbxO3 com-
pounds over more complex disordered ferroelectrics,
such as relaxors PbMg1/3Nb2/3O3, is that the aforemen-
tioned phases can be prepared by varying the concen-
tration of lithium or niobium ions. Taking into account
that the phases of all disordered ferroelectrics are of
similar nature, the results of our investigations into the
dielectric properties of K1 − xLixTaO3 compounds open
up possibilities for identifying the dipole glass and
mixed ferroelectric–glass phases in any disordered fer-
roelectrics, including relaxors. In particular, since the
Vogel–Fulcher law has been successfully used for
describing the dielectric relaxation in all relaxors (see,
for example, [15, 16]), we can conclude that all ferro-
electric relaxors are in a mixed ferroelectric–glass
phase in which the short-range and long-range polar
orders coexist. This inference is in good agreement
with experimental data on the nonlinear dielectric sus-
ceptibility of PbMg1/3Nb2/3O3 ferroelectrics, according
to which an external dc electric field can lead to both a
decrease and an increase in the dielectric susceptibility
[6]. In our case, the same situation was observed for the
K1 – xLixTaO3 compound at x = 0.03. Furthermore, a
similar effect of the external electric field E on the
dielectric susceptibility, namely, an increase in the
dielectric response at some temperatures T and electric
field strengths E, was observed earlier for K1 – xLixTaO3
compounds with x = 0.026 [17] and 0.035 [18].

The origin of the weak maximum in the dependence
ε'(T, ν) of the K1 – xLixTaO3 compound (x = 0.030) at
T ≈ 50 K remains unclear. Similar anomalies with a
hysteresis in the experimental dependences ε'(T) were
previously observed for the K1 – xLixTaO3 ferroelectric
at x = 0.026 [7]. We cannot rule out the possibility that
these anomalies in the mixed ferroelectric–glass phase
are associated with the first-order phase transition in
long-range order regions. Earlier [12], two types of
anomalies in the dielectric response of disordered fer-
roelectrics in the mixed ferroelectric–glass phase were
predicted theoretically. At present, we are performing
further investigations with the aim of elucidating the
nature of the anomalies in the dielectric response of the
model disordered ferroelectrics K1 – xLixTaO3.
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Abstract—The structure and dielectric characteristics of the (1000 nm)SrTiO3 spacer in a (001)SrRuO3 ||
(001)SrTiO3 || (001)La0.67Ca0.33MnO3 trilayer heterostructure grown on a (001)(LaAlO3)0.3 + (Sr2AlTaO6)0.7
substrate have been studied. Both oxide electrodes, as well as the strontium titanate layer, were cube-on-cube
epitaxially grown. The unit cell parameter in the SrTiO3 layer measured in the substrate plane (3.908 ± 0.003 Å)
practically coincided with that determined along the normal to the substrate surface (3.909 ± 0.003 Å). The tem-
perature dependence of the real part of the permittivity ε' of the SrTiO3 layer in the range 70–180 K fits the

relation (ε' )–1 ~ (T – TC) well, where C0 and TC are the Curie constant and the Curie–Weiss temperature,
respectively, for bulk strontium titanate crystals and ε0 is the free-space permittivity. The data obtained on the tem-
perature dependence of the permittivity of SrTiO3 films enabled us to evaluate the effective depth of electric field
penetration into the manganite electrode (Le ≈ 0.5 nm) and the corresponding capacitance (Ce ≈ 1 × 10–6 F/cm2)
of the interface separating the (001)SrTiO3 layer from the (001)La0.67Ca0.33MnO3 bottom electrode. © 2004
MAIK “Nauka/Interperiodica”.

ε0
1–
C0

1–
1. INTRODUCTION

Thin layers of (Ba,Sr)TiO3 (BSTO) are a promising
material for application in microelectronics (RAM cells
[1]) and microwave technologies (tunable filters, phase
shifters, delay lines, etc. [2]). The permittivity ε = ε' –
iε'' (ε' and ε" are the real and imaginary parts of permit-
tivity), the leakage current, and the loss tangent  =
ε''/ε' of a BSTO film depend strongly on its microstruc-
ture, which is determined by the growth conditions and
parameters of the substrate and the conducting material
employed for the electrodes. The response of ε' of a thin
BSTO film to an electric field and temperature variation
is, as a rule, substantially weaker than that of a single
crystal. The strong difference in the temperature and
field dependences of ε' between thin film and bulk
BSTO samples can originate, besides from microstruc-
ture degradation, from (i) the formation of an off-sto-
ichiometric spacer at the film/electrode interface [3],
(ii) a strong electric field in the bulk of the ferroelectric
layer [4], (iii) biaxial mechanical strains [5] caused by
lattice misfit and different temperature coefficients of
linear expansion of the film and the substrate, etc.

BSTO epitaxial films are more attractive for appli-
cations than polycrystalline layers, because they are
distinctly oriented (the parameters of the BSTO para-
and ferroelectric phases are anisotropic [6, 7]), both
with respect to the surface normal and azimuthally; in

δtan
1063-7834/04/4607- $26.00 © 21270
addition, these films have no large-angle grain bound-
aries in the bulk, near which one usually observes devi-
ations from stoichiometry (primarily, in oxygen). To
fabricate plane-parallel film capacitors with an epitax-
ial BSTO spacer, thin layers of conducting perovskite-
like oxides SrRuO3 (SRO), (La,Sr)CoO3, and
YBa2Cu3O7 – δ have been employed to advantage for the
bottom electrode [4, 8].

We report here on a study of the structure and
dielectric parameters of a SrTiO3 (STO) layer grown on
the surface of a conducting film of manganite
(120 nm)La0.67Ca0.33MnO3 (LCMO). Thin films of per-
ovskite-like manganites can be employed to advantage
as electrodes in capacitive heterostructures that include
a ferroelectric layer, because the effective hole concen-
tration in their bulk at temperatures close to the ferro-
magnetic phase transition point is strongly magnetic-
field dependent, which is conducive to the development
of tunable devices (we have in mind controlling the
impedance of a heterostructure with a magnetic field).
There is only a very small number of publications deal-
ing with studies of epitaxial heterostructures that
include thin layers of manganites and ferroelectrics [9].

The material used for the top electrode was stron-
tium ruthenate. As we showed earlier [10], the stray
capacitance per unit area of the BSTO/SRO interface is
004 MAIK “Nauka/Interperiodica”
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substantially larger than that of the BSTO/noble-metal
contact.

2. EXPERIMENTAL

An excimer laser (ComPex 205, KrF, λ = 248 nm,
τ = 30 ns) was used for successive evaporation of the start-
ing stoichiometric targets, LCMO  STO  SRO,
prepared by standard ceramic technology. Trilayer hetero-
structures (100 nm)SRO/(1000 nm)STO/ (120 nm)LCMO
were grown on the surface of a single-crystal substrate
(001)(LaAlO3)0.3 + (Sr2AlTaO6)0.7 (LSATO) at an oxygen
pressure PO = 0.3 mbar. The laser radiation density on the
target surface was within the limits (1.8–2.0) J/cm2. In the
course of the electrode preparation (LCMO, SRO), the
substrate temperature was maintained at Ts = 760°C.
The temperature Ts was raised to 780°C when deposit-
ing the STO layer.

The phase composition of the heterostructures thus
grown, the orientation of the films making up these het-
erostructures, and the lattice parameters of the elec-
trodes and the STO spacer were studied by x-ray dif-
fraction (Philips X’pert MRD, CuKα1, ω/2θ and φ
scans, rocking curves). To estimate the average grain
size and the lattice distortions in the heterostructure
layers, the first four Bragg peaks (of each of the layers)
in the ω/2θscans were visualized with a four-crystal
germanium monochromator ({220}Ge) forming the
incident x-ray beam and a plane graphite monochroma-
tor (to measure 2θ).

The morphology of the free surface of the grown
films was studied with an atomic force microscope
(NanoScope-IIIa, tapping mode).

Square contact pads (S = 200 × 200 µm) on the top
SRO electrode, as well as windows in the STO spacer
(intended for providing electrical contact with the com-
mon bottom LCMO electrode), were made by photoli-
thography and ion milling (Ar, 500 V, 0.2 mA).

The capacitance C = ε'S/d and the loss tangent 
of the plane-parallel SRO/STO/LCMO capacitor struc-
tures (Fig. 1) were measured with an hp 4263A LCR
meter (f = 100 kHz) at a constant bias Vb = ±2.5 V
applied to the oxide electrodes and with no bias. The
same LCR meter was employed to measure the resis-
tance R of the conducting oxide electrodes in the van
der Pauw geometry. The electrical resistivity ρ of the
film electrodes was calculated from the relation ρ =
Rπd1/ln2 [11], where d1 is the conducting oxide layer
thickness.

3. EXPERIMENTAL RESULTS
AND DISCUSSION

The structure and dielectric and electronic proper-
ties of heteroepitaxial films of perovskite-like oxides
depend strongly on the conditions of their growth and
the substrate characteristics. The difference in the tem-

δtan
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perature coefficients of linear expansion and the misfit
m between the lattice parameters of the deposited layer
material aL and the material of the substrate as [m =
(aL – as)/as × 100%] are the major factors responsible
for the biaxial mechanical strains, which exert a pro-
nounced influence on the electron transport, ferroelec-
tricity, and ferromagnetism in thin layers of perovskite-
like oxides.

The temperature coefficients of linear expansion of
SRO, STO, LCMO, and LSATO are very close to one
another [4]. The lattice parameters of LCMO
(pseudocubic, a1 = 3.858 Å [12], T = 300 K) and
LSATO (pseudocubic, a2 = 3.868 Å [13], T = 300 K)
differ only slightly, m = –0.3%. This was a decisive fac-
tor in choosing LSATO as the substrate material. The
STO cubic cell parameter (a3 = 3.905 Å [14]) is larger
than that of the LCMO (m ≈ 1%), which accounts for
the manganite film grown on a strontium titanate sub-
strate being acted upon by tensile in-plane mechanical
stresses. Thin epitaxial LCMO films grown on the sur-
face of strontium titanate single crystals have typically
high electrical resistivities ρ and low ferromagnetic
phase transition temperatures [15] (compared to those
for magnetic films grown on (001)LSATO). To fabri-
cate the top electrode with a high conductivity through-
out the temperature range covered in our study (4.2–
300 K), an epitaxial film of strontium ruthenate (SRO
pseudocubic cell parameter 3.923 Å [16], T = 300 K)
was grown on the STO/LCMO/LSATO surface. Appli-
cation of different conducting oxides for the bottom
and top electrode materials made it possible for us to
estimate (using x-ray measurements) the lattice param-
eters, both in the substrate plane and along its surface
normal, for all layers in the trilayer heterostructures
prepared.

We analyze first the data obtained on the structure
and surface morphology of the layers making up the
SRO/STO/LCMO/(001)LSATO heterostructure and
then the data on the electrical parameters of the elec-
trodes and the dielectric properties of the STO layer.

SRO

STO

LCR meter

LCMO

LSATO

Fig. 1. Schematic of a plane-parallel capacitive heterostructure
used to study the dielectric parameters of a (1000 nm)STO
layer grown on the (001)LCMO || (001)LSATO surface.
4
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3.1. Layer Structure in the SRO/STO/LCMO Trilayer 
System

Our analysis of the x-ray diffractograms of the
SRO/STO/LCMO heterostructure did not reveal any
peaks that would indicate the presence of macroinclu-
sions of secondary phases in its bulk or on the free sur-
face (Fig. 2). As seen from Fig. 2, the reflections due to
the electrodes (SRO and LCMO), the STO layer, and
the substrate in the x-ray scans obtained were reliably
resolved. The x-ray measurements (ω/2θ and φ scans)
suggest that the ferroelectric film and the oxide elec-
trodes in the grown heterostructures were preferentially
oriented (both azimuthally and relative to the normal to
the substrate plane) with the (001) plane and the [010]
direction in SRO, STO, and LCMO parallel to the (001)
plane and the [010] direction in the LSATO substrate,
respectively.

The lattice parameter of the (120 nm)LCMO layer
in the SRO/STO/LCMO/LSATO heterostructure,
which was measured along the normal to the substrate
plane (a⊥  = 3.837 ± 0.003 Å), was less than that in the
substrate plane (a|| = 3.866 ± 0.003 Å) (see table). The
measured parameter a|| in the manganite layer coin-
cided with the parameter of the pseudocubic LSATO
unit cell, which implies that the LCMO film was grown
coherently on the substrate surface. Because of the neg-
ative value of m, the (001)LCMO || (001)LSATO films
were subjected to weak in-plane tensile stresses. An
analysis of the measured diffractograms (2θ = 20°–
120°) did not reveal any complex structure in the
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Fig. 2. X-ray diffractogram (CuKα1, ω/2θ) of the (001)SRO ||
(001)STO || (001)LCMO || (001)LSATO heterostructure
obtained in the case where the plane containing the incident
and reflected x-ray beams was oriented perpendicular to the
substrate plane; the asterisk denotes substrate peaks. Inset
shows a fragment of the diffractogram obtained from the
same heterostructure in the case where the plane containing
the incident and reflected x-ray beams was oriented perpen-
dicular to (101)LSATO.
PH
(00n)LCMO peaks that would indicate strain relaxation
in the 120-nm-thick manganite film (or in part of it).

The effective cell volume Veff = a⊥  ≈ 57.32 Å3 in the
LCMO layer of the SRO/STO/LCMO heterostructure
differed only slightly from those for the bulk stoichio-
metric LCMO samples (Veff = 57.42 Å3 [12], see table).

The LCMO films grown on (001)LSATO substrates
had a smooth surface (Fig. 3). The AFM image of the
free surface of the manganite film clearly shows growth
steps, whose height is a multiple of the LCMO lattice
parameter. Unlike the thin LCMO films grown on the
surface of substrates with an appreciable negative (for
instance, STO) or positive (LaAlO3) lattice misfit, on
the surface of the (001)LCMO || (001)LSATO layers
prepared in this study we did not see the characteristic
hollows [17] decorating small-angle grain boundaries
in the manganite layer.

The lattice parameter of the strontium titanate layer
in the SRO/STO/LCMO heterostructure measured in
the substrate plane practically coincided with that
determined along the normal to the substrate surface
(see table). The strain relaxation in the STO layer
occurred in the course of its deposition and cooling to
room temperature.

The (100 nm)SRO film in the
SRO/STO/LCMO/LSATO heterostructure was sub-
jected to in-plane compressive strains. The lattice misfit
is ~0.7% in the case of an SRO film grown on the STO
surface. The lattice parameter measured in the stron-
tium ruthenate layer along the normal to the substrate
plane (3.973 ± 0.003 Å) was substantially larger than
that in the substrate plane (3.915 ± 0.003 Å). Epitaxial
SRO films tend to grow coherently on the substrate sur-
face even in the case of a fairly large m [18].

To estimate the average grain size in the conducting
electrodes and the ferroelectric spacer in the
SRO/STO/LCMO heterostructure, we made use of the
data on the dependence of the FWHM ϑ  of the peaks in

a||
2

0

200

400
nm

50
nm

Fig. 3. AFM image of the free surface of the
(120 nm)LCMO film grown coherently on (001)LSATO.
The film surface clearly reveals growth steps with a height
that is a multiple of the LCMO lattice parameter.
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the x-ray diffractograms on θ (Fig. 4). The dependence
of ϑ  on the effective grain size t and the average lattice
distortion ∆a/a in a film can be written as [19]

(1)

where λ1 = 1.54056 Å is the x-ray wavelength. We used
Eq. (1) and the ϑ cosθ vs. sinθ relations extracted from
x-ray measurements to derive (from the intercept that
the straight line makes on the ordinate axis) the values
of t for all layers in the heterostructure (see table). The
slope of the graphs in Fig. 4 yielded the relative lattice
distortions in the oxide electrodes and the ferroelectric
spacer (see table). The largest value, t ~ 150 nm, was
obtained for the bottom electrode in the
SRO/STO/LCMO heterostructure; this value differs lit-
tle from the thickness of the manganite layer. Thus, if
the LCMO layer in the SRO/STO/LCMO heterostruc-
ture consists of crystalline grains, their average size is
150 nm. The mechanisms responsible for the formation
of grain boundaries in coherently grown epitaxial films
were considered by us in [20]. The average grain size in

ϑ θcos 0.9λ1/t 2∆a/a θ,sin+=

2

0 0.2

ϑ cos θ, 10–3 rad

sin θ

1

2

3

4

0.4 0.6 0.8

4

6

8

Fig. 4. ϑ cosθ vs. sinθ for (1) the top SRO electrode,
(2) STO spacer, (3) bottom LCMO electrode, and (4) the
LSATO substrate in the (100 nm)SRO/(1000 nm)STO/
(120 nm)LCMO/(500 µm)LSATO heterostructure.
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the STO film grown on LCMO/LSATO was 60 nm,
which fits well with the corresponding data for the
(700 nm)Ba0.25Sr0.75TiO3 layer grown on the
SRO/LSATO surface [4]. The values of ∆a/a were the
largest for the top electrode (SRO) in the
SRO/STO/LCMO heterostructure, which consisted of
crystalline grains of the smallest size (see table).

The structure of the STO spacer in the
SRO/STO/LCMO trilayer system obtained under the
above growth conditions is governed to a considerable
extent by the quality of the structure and morphology of
the free surface of the manganite electrode. The small
lattice misfit between LCMO and LSATO favors the
formation of high-perfection epitaxial (001)LCMO
films on the (001)LSATO surface [21]. The halfwidth
of the rocking curve for the (002) x-ray reflection pro-
duced by the (120 nm)LCMO film in a (001)SRO ||
(001)STO || (001)LCMO || (001)LSATO heterostruc-
ture was in the range 0.06°–0.09°, which is about one-
half that for the STO (002) x-ray peak from the same
heterostructure (see inset to Fig. 5). A rocking curve for
the (002) x-ray peak from a single crystal LSATO sub-
strate is shown for comparison in the same figure.

1

0
100

ρ,
 m

Ω
 c

m

T, K

1

2

3
2

1

2

200 300

–0.2 0 0.2
ω, deg

I,
 a

rb
. u

ni
ts

0

10

20

ρ,
 m

Ω
 c

m

Fig. 5. Temperature dependences of the electrical resistivity
ρ (1) for the (100 nm)SRO layer grown on
(1000 nm)STO/(120 nm)LCMO/LSATO and (2) for the
LCMO layer in the heterostructure (1000 nm)STO/
(120 nm)LCMO/LSATO; f = 100 Hz. Inset shows rocking
curves for the (002) x-ray peak due to (1) the LSATO sub-
strate, (2) bottom LCMO electrode, and (3) STO spacer in
the SRO/STO/LCMO/LSATO heterostructure.
Parameters of layers in the heterostructure (001)SRO || (001)STO || (001)LCMO || (001)LSATO (T = 300 K)

Layer d, nm a⊥ , Å a||, Å Veff, Å
3 t, nm (∆a/a) × 104

LCMO 120 3.837 3.866 57.32 150 11

STO 1000 3.908 3.909 59.72 60 3

SRO 100 3.973 3.915 60.89 40 26

Note: The pseudocubic lattice parameter in the LSATO substrates used here was 3.867 ± 0.003 Å (calculated from our x-ray data).
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3.2. Electrical Resistivity of SRO and LCMO Films
in an SRO/STO/LCMO Heterostructure

Figure 5 presents temperature dependences of ρ for
the LCMO layer in the (1000 nm)STO/(120 nm)LCMO/
LSATO and the (100 nm)SRO layer grown on the
(1000 nm)STO/(120 nm)LCMO/(001)LSATO surface.
A sharp peak on the ρ(T) curve for the (120 nm)LCMO
film was observed at TR ≈ 225 K, which fits well with
the corresponding available data on bulk stoichiometric
LCMO samples [22]. We did not find any systematic
difference in the values of ρ for the manganite film
(120 nm)LCMO/LSATO before and after the formation
of a (1000 nm)STO layer on its surface. Ferromagnetic
spin ordering in the SRO layer accounts for the change
in the slope of the ρ(T) curve at T ~ 150 K (Fig. 5). The
absolute values of the electrical resistivity of the SRO
layer in the grown heterostructures were several times
those for the strontium ruthenate film grown on a single
crystal substrate of strontium titanate. This should be
assigned to the high density of grain boundaries and
oxygen vacancies in the SRO layer grown on
STO/LCMO/LSATO. For T < 200 K, the conductivity
of both the top (SRO) and the bottom (LCMO) elec-
trode in the SRO/STO/LCMO heterostructure was in
excess of 500 Ω–1 cm–1 (Fig. 5).

3.3. Dielectric Parameters of STO Films

The temperature dependences of ε' of the STO layer
in the SRO/STO/LCMO heterostructure measured at
Vb = 0 and –2.5 V are presented in graphical form in
Fig. 6. The maximum in the ε'(T) curve for Vb = 0 was
observed at temperature TM ≈ 25 K. The response of ε'
of the STO layer in the SRO/STO/LCMO heterostruc-
ture to electric field (E ≤ 25 kV/cm) was seen to persist
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Fig. 6. Temperature dependences of (1, 2) ε'/ε0 and (3) ε0/ε'
obtained for the STO layer in the SRO/STO/LCMO hetero-
structure. (1, 3) Vb = 0 and (2) Vb = –2.5 V. In the tempera-
ture interval 70–180 K, ε0/ε' increased linearly with temper-
ature (dashed straight line 4).

0

P

up to 150 K. In bulk single-domain STO single crystals,
noticeable suppression of ε' by the electric field was
observed at temperatures below the structural phase
transition point TS (~65 K [7]). Nonuniform biaxial
stresses may account for the substantial TS fluctuations
in the grains making up the STO layer.

The ε'(T) relation measured in the range 70–180 K
for the STO layer in the SRO/STO/LCMO/LSATO het-
erostructure was fitted well by the relation

(2)

where TC = 30 K is the Curie–Weiss temperature for
STO single crystals [7]; C0 = 0.86 × 105 K is a constant,
which practically coincides with the Curie constant for
bulk strontium titanate samples [23]; and εI ≈ 1100ε0.

It appears natural to relate the second term in Eq. (2)
to the effect of STO/electrode interfaces on the effec-
tive permittivity of the strontium titanate spacer mea-
sured in the experiment, or rather, to the stray capaci-
tance CI = εIS/d created by electric field penetration into
the top and bottom electrodes, which, according to [24,
25], does not depend on either the electric field or tem-
perature. The capacitance (per unit STO/electrode
interface area) Ce = CI /S ≈ 1 × 10–6 F/cm2 induced by
the penetration of an electric field into an electrode can
be cast as [24]

(3)

where εe is the permittivity of the electrode material and
Le is the characteristic depth of electric field penetration
into the electrode. We could not find any literature data
on the value of the low-frequency (f < 1 MHz) permit-
tivity of LCMO. A rough estimate of Le in a film of a
perovskite-like manganite can be gained from the high-
frequency permittivity ε ≈ 8.5ε0 reported in [26].
Assuming the contributions to Ce from the top and bot-
tom ferroelectric/electrode interfaces in the
SRO/STO/LCMO heterostructure to be approximately
equal and using Eq. (3) for the characteristic electric
field penetration depth into the manganite electrode, we
obtained Le ≈ 5 Å. The characteristic electric field pen-
etration depth into the manganite electrode exceeds the
value of Le for noble metals by nearly an order of mag-
nitude [24]. According to [24], Le can be cast as

(4)

where EF is the Fermi energy and n is the carrier con-
centration in the electrode. With n ≈ 6 × 1021 cm–3 (hole
concentration in the LCMO electrode in accordance
with the chemical formula) and the effective hole mass
m* ≈ 2.5m0 [22] (this value of m* was used to estimate
EF; m0 is the free electron mass), Eq. (4) yields for Le a
value of 1.5 Å. The fairly large difference (three to four
times) between the value of Le derived from the exper-
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imental data on the temperature dependence of ε' for
the STO spacer and that calculated using Eq. (4) indi-
cates that the hole concentration in the LCMO layer
near the interface with the ferroelectric layer is substan-
tially lower than that in the bulk of the manganite layer.
The decrease in the hole concentration in the LCMO
layer near the STO/LCMO interface may be associated
with its depletion in oxygen. It is the high concentration
of oxygen vacancies in the near-surface layer that
accounted for the drop in the magnetization of thin
(<50 Å) LCMO films with a decrease in their thick-
ness [27].

As the temperature increased in the range 200–255 K,
ε' of the STO layer in the SRO/STO/LCMO hetero-
structure decreased more slowly than predicted by
Eq. (2) (Fig. 6). Among the factors responsible for the
features in the ε'(T) relation appearing at temperatures
close to the ferromagnetic phase transition point, one
could mention, in addition to the variation in the effec-
tive hole concentration, that (i) the lattice parameters in
the LCMO layer undergo a sharp change in this temper-
ature interval (the Jahn–Teller distortion), which cannot
but affect the effective permittivity of the manganite
electrode; (ii) the walls separating the ferromagnetic
from antiferromagnetic domains in the LCMO layer

and polarons may contribute to ; and (iii) the induc-
tance of the bottom electrode changes strongly in the
above temperature interval, which may influence the
measured effective capacitance of the
SRO/STO/LCMO heterostructure.

The suppression of ε' by an electric field was
observed to be most pronounced at temperatures close
to TM (see Fig. 6 and inset to Fig. 7). No hysteresis was
observed in the measured ε'(Vb) relations within the
4.2- to 150-K interval (Vb was varied in the order 0 
+2.5 V  0  –2.5 V  0 in steps of 0.05 V; see
inset to Fig. 7). The maximum in the ε'(Vb) relations
obtained for STO films in the SRO/STO/LCMO hetero-
structures grown was found to be slightly shifted
toward positive values of Vb. The lack of symmetry in
the ε'(Vb) curve with respect to the point Vb = 0 is par-
tially associated with the existence of a built-in electric
field in the bulk of the ferroelectric layer, which formed
because the work functions of the bottom (LCMO) and
top (SRO) electrodes were different.

For T < 200 K, (Vb = 0) for the STO spacer did
not exceed 0.03 and increased approximately linearly
with temperature (Fig. 7). Application of a bias of
±2.5 V to the oxide electrodes brought about a slight
decrease in  (see inset to Fig. 7). The sharp peak
in the (T) curve is due to the low conductivity of
the manganite electrode at temperatures close to the
ferromagnetic phase transition point. The maximum
values of the loss tangent were measured on the
SRO/STO/LCMO capacitive heterostructure at the

εI'

δtan

δtan
δtan
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same transition temperature at which the maximum in
the ρ(T) dependence for the LCMO electrode was
observed.

4. CONCLUSIONS

The strontium titanate layer (d ≤ 1000 nm) grown at
Ts = 780°C and PO = 0.3 mbar on the surface of a
(001)LCMO || (001)LSATO epitaxial film consists of
grains with a lateral size of ~60 nm. The crystal
grains in the STO layer show distinct preferential
orientation (both azimuthal and relative to the nor-
mal to the substrate surface). Mechanical strains in
the (1000 nm)STO spacer in the
SRO/STO/LCMO/LSATO heterostructure relax to a
considerable extent in the course of deposition and
cooling of the heterostructure from Ts to 300 K. For T <
180 K, the characteristic electric field penetration depth
into the manganite (LCMO) electrode is about 5 Å.
Because of the relatively large value of Le, the stray
capacitance of the STO/LCMO interface may exert
considerable influence on the pattern of the temperature
dependence of ε' of the ferroelectric layer.

ACKNOWLEDGMENTS

This study was supported in part by the program
“Low-Dimensional Quantum Nanostructures.”

REFERENCES

1. C. S. Hwang, Mater. Sci. Eng. B 56 (2–3), 178 (1998).

2. J. P. Hong and J. S. Lee, Appl. Phys. Lett. 68 (21), 3034
(1996).

5

0 100

(t
an

 δ
) 

× 
10

2

T, K

3

2

1

10

200 300

–2 0 2
Vb, V

(t
an

 δ
) 

× 
10

2

600

900 10

5

0

15

ε'/
ε 0

f = 100 kHz

Fig. 7. Temperature dependence of  for a plane-paral-
lel SRO/STO/LCMO capacitive structure. Inset shows the
(1, 2) ε'/ε0(Vb) and (3) (Vb) dependences measured for
the STO layer in the SRO/STO/LCMO heterostructure at
temperature T equal to (1) 25 and (2, 3) 77 K.

δtan

δtan



1276 BOŒKOV, CLAESON
3. S. K. Streiffer, C. Basceri, C. B. Parker, S. E. Lash, and
A. I. Kingon, J. Appl. Phys. 86 (8), 4565 (1999).

4. Y. A. Boikov and T. Claeson, Physica B (Amsterdam)
311 (3–4), 250 (2002).

5. N. A. Pertsev, A. K. Tagantsev, and N. Setter, Phys. Rev.
B 61 (2), R825 (2000).

6. W. J. Merz, Phys. Rev. 91 (3), 513 (1953).
7. R. C. Neville, B. Hoeneisen, and C. A. Mead, J. Appl.

Phys. 43 (5), 2124 (1972).
8. Yu. A. Boikov and T. Claeson, Physica C (Amsterdam)

336 (3–4), 300 (2000).
9. M. Tachiki, M. Noda, K. Yamada, and T. Kobayashi,

J. Appl. Phys. 83 (10), 5351 (1998).
10. Yu. Boikov and T. Claeson, Appl. Phys. Lett. 80 (24),

4603 (2002).
11. T. I. Kamins, J. Appl. Phys. 42 (9), 4357 (1971).
12. C. J. Lu, Z. L. Wang, C. Kwon, and Q. X. Jia, J. Appl.

Phys. 88 (7), 4032 (2000).
13. Specification of the Kristek Company Supplying the

LSATO Sublayers.
14. R. W. J. Wyckoff, Crystal Structure, 2nd ed. (Inter-

science, New York, 1964), Vol. 2, p. 394.
15. Yu. A. Boikov, D. Erts, and T. Claeson, Mater. Sci. Eng.

B 79 (2), 133 (2001).
16. J. C. Jiang, W. Tian, X. Pan, Q. Gan, and C. B. Eom,

Mater. Sci. Eng. B 56 (2–3), 152 (1998).
PH
17. Yu. A. Boœkov, T. Claeson, and A. Yu. Boœkov, Fiz. Tverd.
Tela (St. Petersburg) 45 (6), 1040 (2003) [Phys. Solid
State 45, 1090 (2003)].

18. R. A. Rao, Q. Gan, and C. B. Eom, Appl. Phys. Lett. 71
(9), 1171 (1997).

19. E. D. Specht, R. E. Clausing, and L. Heatherly, J. Mater.
Res. 5 (11), 2351 (1990).

20. Yu. A. Boœkov, V. A. Danilov, and A. Yu. Boœkov, Fiz.
Tverd. Tela (St. Petersburg) 45 (4), 649 (2003) [Phys.
Solid State 45, 681 (2003)].

21. Yu. A. Boœkov, T. Claeson, and A. Yu. Boœkov, Zh. Tekh.
Fiz. 71 (10), 54 (2001) [Tech. Phys. 46, 1260 (2001)].

22. Y. Tokura, in Colossal Magnetoresistive Oxides, Ed. by
Y. Tokura (Gordon and Breach, Amsterdam, 2000), p. 1.

23. A. D. Hilton and B. W. Ricketts, J. Phys. D: Appl. Phys.
29 (5), 1321 (1996).

24. H. Y. Ku and F. G. Ullman, J. Appl. Phys. 35 (2), 265
(1964).

25. J. G. Simmons, Appl. Phys. Lett. 6 (3), 54 (1965).
26. A. V. Boris, N. N. Kovaleva, A. V. Bazhenov, A. V. Sam-

oilov, N.-C. Yeh, and R. P. Vasquez, J. Appl. Phys. 81 (8),
5756 (1997).

27. U. P. Wad, A. S. Ogale, S. B. Ogale, and T. Venkatesan,
Appl. Phys. Lett. 81 (18), 3422 (2002).

Translated by G. Skrebtsov
YSICS OF THE SOLID STATE      Vol. 46      No. 7      2004



  

Physics of the Solid State, Vol. 46, No. 7, 2004, pp. 1277–1284. Translated from Fizika Tverdogo Tela, Vol. 46, No. 7, 2004, pp. 1238–1245.
Original Russian Text Copyright © 2004 by Zakharov, Kukushkin, Osipov.

              

MAGNETISM
AND FERROELECTRICITY

               
Theory of Switching of Multiaxial Ferroelectrics (Initial Stage)
M. A. Zakharov*, S. A. Kukushkin**, and A. V. Osipov**

* Novgorod State University, Novgorod, 173003 Russia
** Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, 

Vasil’evskiœ Ostrov, Bol’shoœ pr. 61, St. Petersburg, 199178 Russia
e-mail: ksa@math.ipme.ru
Received November 24, 2003

Abstract—The classical theory of nucleation and growth is used to study the thermodynamics and kinetics of
switching of multiaxial ferroelectrics. The initial stage of 180°- and 90°-domain switching is studied in the tet-
ragonal, orthorhombic, and trigonal phases. The multidimensional kinetic theory of first-order phase transitions
is applied to describe the initial stage of switching of ferroelectric crystals in the general case where three-
dimensional growth (along the radius and height) of repolarized domains occurs. The energy of nucleus forma-
tion is calculated in the vicinity of the saddle point of an activation barrier in the space of sizes and shapes, and
the dependence of the critical domain size on the switching field is found. The two-dimensional Fokker–Planck
kinetic equation is reduced to a one-dimensional Zel’dovich equation, and a stationary solution to the Zel’dov-
ich equation is obtained. The diffusion coefficients are derived in the size space for the normal and layer-by-
layer mechanisms of domain growth. The main characteristic of the initial switching stage, namely, the steady-
state flux of repolarized domains, is found as a function of the applied field. © 2004 MAIK “Nauka/Interperi-
odica”.
1. INTRODUCTION

This work is the continuation of our studies [1, 2]
dealing with the development of a kinetic theory of
switching of ferroelectrics and related materials. In
those papers, we showed that the role of an applied
electric field during the switching of ferroelectrics is
analogous to that of supersaturation or supercooling
during conventional phase transitions in solutions and
melts. This analogy allows us to apply the classical the-
ory of nucleation and growth to develop a theory of
switching of ferroelectrics.

This work deals with the thermodynamic and
kinetic description of the initial switching stage in mul-
tiaxial ferroelectrics, i.e., the stage of the fluctuation
formation of nucleation centers of a new repolarized
phase. An important feature of such crystals (typically
represented by barium titanate BaTiO3) is that the order
parameter that appears has several components. As a
consequence, during the repolarization of a ferroelec-
tric, both 180° and 90° domains can form depending on
the direction of the applied field. The kinetic descrip-
tion of the nucleation and growth of 180° domains in
multiaxial ferroelectrics does not differ radically from
the description of repolarization of uniaxial ferroelec-
trics [1]. Therefore, in this work, particular attention is
given to the thermodynamics and kinetics of nucleation
of 90° domains.

Another specific feature of the theory described
below is the consideration of the general case of three-
dimensional domain growth. In our previous studies [1,
2], the growth of nucleation centers was implicitly
1063-7834/04/4607- $26.00 © 21277
assumed to be two-dimensional, since we took into
account only radial domain growth. The presence of
two degrees of freedom for repolarized domains does
not allow us to apply the “traditional” one-dimensional
kinetic theory; it requires a two-dimensional Fokker–
Planck kinetic equation. To analyze and solve the cor-
responding equations, we use the multidimensional
kinetic theory of first-order phase transitions proposed
by Shneœdman [3] and then developed in [4, 5].

This paper is organized as follows. In Section 2, we
study the thermodynamics of switching of a multiaxial
ferroelectric, making allowance for various symmetry
types of the pyroelectric phase. In particular, we con-
sider switching in the tetragonal, orthorhombic, and
trigonal low-symmetry phases. In Section 3, the kinet-
ics of the initial switching stage is studied using the
multidimensional kinetic theory of first-order phase
transitions. We introduce a two-dimensional nonequi-
librium distribution function of repolarized domains
over the number of unit cells and the corresponding
two-dimensional Fokker–Planck (Zel’dovich) kinetic
equation and find the domain critical size as a function
of the switching field. The two-dimensional kinetic
equation is reduced to a one-dimensional Zel’dovich
equation, and the main kinetic characteristic of the ini-
tial switching stage, namely, the steady-state flux of
repolarization centers, is determined. In Section 4, we
discuss the results and compare them qualitatively with
the experimental data on barium titanate.
004 MAIK “Nauka/Interperiodica”
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2. THERMODYNAMICS OF SWITCHING

Let us consider a multiaxial ferroelectric crystal in a
spatially uniform (single-domain) state at a temperature
below the Curie point. For definiteness, the high-sym-
metry phase of the crystal is assumed to belong to point
symmetry group m3m. A typical example of a ferro-
electric whose paraelectric phase has this symmetry is
barium titanate BaTiO3.

Let the crystal be placed in an external electric field
E. The Cartesian coordinate system is chosen so that
the x, y, and z axes are directed along the corresponding
fourfold rotation axes of the cubic group m3m of the
initial high-symmetry phase of the crystal. In this case,
the incomplete thermodynamic potential of the multi-
axial ferroelectric in the external electric field at a tem-
perature near the Curie point has the form [6]

(1)

where h = {ηx , ηy , ηz} is the order parameter of the
proper ferroelectric phase transition, which transforms
like a polar vector; Φ0(p, T) is the part of the thermody-
namic potential that is independent of the order param-
eter; p and T are the pressure and temperature of the
medium where the crystal is placed, respectively; α, β1,
and β2 are the coefficients of expansion of the thermo-
dynamic potential in powers of η; TC is the Curie tem-
perature; and a is a positive constant.

Minimizing thermodynamic potential (1), we obtain
the following relation between the order-parameter
components and the external field:

(2)

Using the explicit form of Gibbs potential (1), we
can derive a relation between the polarization vector P
and the order parameter h,

(3)

where the equilibrium values of the order-parameter
components are determined by the solutions to sys-
tem (2).

We first consider the case of a zero external field
(E = 0). It follows from system (2) that, in the absence
of an electric field at temperatures above the Curie
point, the high-symmetry phase is stable (η = 0). When
studying switching, we are interested in the tempera-
ture range below the Curie point, where a stable state is
characterized by a nonzero order parameter (low-sym-
metry phase) and, hence, a nonzero polarization. It
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should be noted that, unlike uniaxial ferroelectrics,
which have a single low-symmetry phase, multiaxial
ferroelectrics can have two or more low-symmetry
phases, each of which is stable in the corresponding
temperature range. For example, at T < TC, thermody-
namic potential (1) allows the existence of three differ-
ent low-symmetry phases [6]. One low-symmetry
phase, which will be called phase I, corresponds to the
following solutions to system (2):

(4)

The second low-symmetry phase (phase II) corre-
sponds to a different type of solutions to system (2):

(5)

Finally, solutions of the type

(6)

are related to the third possible low-symmetry phase
(phase III).

The appearance of a nonzero order parameter below
the Curie point is caused by a change (lowering) of the
symmetry of the ferroelectric crystal. In particular,
solutions (4) correspond to the tetragonal point group
4mm; solutions (5), to the orthorhombic point group
mm2; and phase III [solutions (6)] belongs to the trigo-
nal point group 3m [6]. The stability of a low-symmetry
phase in a certain temperature range is determined by
the relations between the expansion coefficients of ther-
modynamic potential (1). Therefore, to describe the
switching of a multiaxial ferroelectric, one has to take
into account the specific features of the low-symmetry
phase that exists under given thermodynamic condi-
tions.

Under given thermodynamic conditions, the quanti-
tative measure of the metastability of a system undergo-
ing a first-order phase transition is the difference in
chemical potential between the parent and new phases;
the time evolution of this quantity allows complete
description of the transition kinetics. For first-order
phase transitions occurring in solutions or melts, this
quantity is called supersaturation or supercooling. To
develop a kinetic theory of phase transformation in an
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arbitrary metastable condensed system (e.g., in the
course of repolarization of a ferroelectric, magnetiza-
tion reversal of a ferromagnet, martensitic transforma-
tions, etc.), it is necessary to define the corresponding
analog of supersaturation or supercooling. In particular,
in the kinetic theory of switching of uniaxial ferroelec-
trics [1], where a phase transition is described by a one-
component order parameter, we introduced quantities
∆P = |Pz – Pz10 | and ξP = |Pz – Pz10 |/ |Pz10 | = ∆P/ |Pz10 |,
which we call repolarization and relative repolariza-
tion, respectively. To describe the switching of uniaxial
ferroelastic ferroelectrics, we also introduced redefor-
mation in addition to repolarization [2].

To thermodynamically describe the switching of
multiaxial ferroelectrics where an order parameter has
several components, it is necessary to generalize the
concepts of repolarization and relative repolarization
introduced earlier. To this end, we introduce the follow-
ing quantities characterizing the metastability of a mul-
tiaxial ferroelectric:

(7)

These quantities will be called reorientation and rela-
tive reorientation, respectively. Taking into account
relation (3) between the order parameter η and the
polarization vector P, we introduce generalized repolar-
ization and relative repolarization as follows:

(8)

Now, let us consider the case of a weak field applied
to the crystal. The repolarization and relative repolar-
ization can easily be determined as functions of this
field. To this end, we expand the left-hand side of
Eq. (2) in powers of (η – η10)

(9)

where ∆ηx = ηx – ηx10, ∆ηy = ηy – ηy10, and ∆ηz = ηz – ηz10.
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With definitions (7) and (8), Eqs. (9) allow one to
derive the general relation between the repolarization
∆P and the external field E and, hence, open the way for
thermodynamic and kinetic description of the switch-
ing of multiaxial ferroelectrics using well-developed
methods from the classical theory of nucleation and
growth. It should be noted that the generality of this
approach consists in the fact the thermodynamics and
kinetics of switching of a ferroelectric from any possi-
ble low-symmetry phase can be studied using a univer-
sal model, which is based on the concept of repolariza-
tion as an analog of supersaturation. Therefore, we will
discuss in more detail the specific features of the
description of the switching thermodynamics with
allowance for the symmetry of possible pyroelectric
phases of the multiaxial ferroelectric crystal under
study.

For convenience in the further thermodynamic
description of switching, we consider the following
temperature ranges separately. Let us assume that phase
I is stable in the range T1 < T < TC; phase II, in the range
T2 < T < T1; and that phase III is stable at T < T2. Note
that this situation takes place in BaTiO3 crystals [6].

First, we consider the temperature range T1 < T < TC,
where the tetragonal 4mm phase (phase I) is stable. Let
the order parameter and the spontaneous polarization of
the this single-domain low-symmetry phase be η =
{0, 0, ηz} and P = {0, 0, Pz}, respectively. We place the
ferroelectric in an external electric field, which is either
opposite to the initial polarization of phase I, E = {0, 0,
–Ez}, or perpendicular to it, E = {0, Ey , 0}. As a result
of the application of the external field, the ferroelectric
initial phase has a certain excess energy and does not
correspond to the absolute minimum of thermodynamic
potential (1); thus it is a metastable phase. A stable
phase should have a polarization directed along the
external field. As a consequence, nucleation centers of
a new energetically favorable phase form in the crystal
and there appear either 180° domains, when the applied
field is opposite to the initial polarization, or 90°
domains, when the switching field is normal to it. The
former case (homogeneous formation of 180° domains)
was studied earlier when analyzing the switching of
uniaxial ferroelectrics [1] and uniaxial ferroelastic fer-
roelectrics [2]. Therefore, we will consider only the
nucleation and growth of 90° domains.

Substituting the order parameter η10 = {0, 0,
ηz10}and the field E = {0, Ey , 0} into Eqs. (9), we obtain

(10)

∆η x 0,=
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-------------,= =
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where χyy = a2(β1/β2)/α(TC – T) is the yy component of
the dielectric susceptibility tensor. It follows that

(11)

These expressions determine the reorientation ∆η
and repolarization ∆P as a function of the applied field
for switching the ferroelectric from the tetragonal pyro-
electric phase. As seen from Eqs. (11), in the case of
nucleation of 90° domains in the ferroelectric, the role
of supersaturation during conventional first-order phase
transitions is played by the electric field applied per-
pendicular to the polarization axis of the crystal. It
should be noted that, for repolarization of the initial
sample with the formation of 180° domains, the analog
of supersaturation is a field directed parallel to the
polarization axis [1].

Now, we consider the temperature range T2 < T < T1,
where the orthorhombic mm2 phase of the model ferro-
electric under study is stable. For definiteness, the order
parameter is taken to be η10 = {ηx10, ηy10, 0}, where
ηx10 = ηy10, which agrees with one of the possible solu-
tions from (5) corresponding to the point symmetry of
this pyroelectric phase. Using general relations (9), it is
easy to show that [6]

(12)

where χ1 ≡ χxx = χyy, χ2 ≡ χxy = χyx.

Depending on the direction of the external field,
both 90° and 180° repolarization centers can form. In
particular, in the switching field E = {–Ex , Ey , 0} with

Ex = Ey = E/  (which causes the formation of 90°
domains in the orthorhombic phase), the reorientation
∆η and repolarization ∆P are

(13)

where E =  =  and P10 =  =

.

On the other hand, when 180° domains nucleate in
the field E = {–Ex , –Ey , 0} with Ex = Ey, the reorienta-
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tion and repolarization in the orthorhombic phase are
different:

(14)

The thermodynamics of switching from the trigonal
phase is studied similarly. It is obvious that the consid-
eration given above can easily be applied to a pyroelec-
tric phase of any allowable symmetry. In other words,
the application of an external electric field in a certain
direction makes the initial pyroelectric phase metasta-
ble. The reorientation introduced above can serves as a
quantitative characteristic of the metastability of the
ferroelectric crystal. The type of repolarization centers
forming in the parent multiaxial ferroelectric is speci-
fied by the direction of the applied field, while the meta-
stability of the system is fully determined by the mag-
nitude of the applied field.

3. KINETICS OF THE INITIAL STAGE
OF SWITCHING

To describe the kinetics of switching of multiaxial
ferroelectrics, we introduce, in addition to the polariza-
tion P = {Px , Py , Pz} used above, the corresponding
specific quantity p = {px , py , pz} per unit cell of the
crystal, i.e., the dipole moment of the unit cell, p = Pω,
where ω is the unit cell volume.

Then, we make an assumption about the shape of the
nucleating ferroelectric domains. Note that the shape of
domains, as well as their orientation, cannot be arbi-
trary, since the continuity condition of the tangential
component of an electric-field vector must be met at the
nucleation center–medium interface in a ferroelectric
[7]. Nucleation centers can be, for example, cylindrical
in shape (with the lateral surface oriented parallel to the
field) or, in a more general case, ellipsoidal, with one of
the principal axes oriented along the field. In [1, 2], the
growth of cylindrical domains with a constant height
and a variable base radius was studied; in other words,
it was implicitly assumed that domains had a single
degree of freedom that could affect the kinetics of
switching of a ferroelectric. In what follows, we study
the general case of the kinetics of the early switching
stage, where repolarization centers have two degrees of
freedom.

Let us analyze the nucleation of a cylindrical
domain with height H and base radius R. Elementary
building blocks of such domains are assumed to be unit
cells of the crystal with polarization p. When a repolar-
ization center forms, the free energy of the ferroelectric
crystal changes by ∆F, which, according to the classical

∆η
E χ1 χ2+( )
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--------------------------, ∆P E χ1 χ2+( ),= =
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theory of nucleation and growth, can be determined
from the relation

(15)

where f1 and f2 are the free energies per unit cell of the
medium and nucleation center, respectively; ∆f = f1 – f2;
V = πR2H and S = 2πR2 + 2πRH are the volume and sur-
face area of the cylindrical domain; and σ is the surface
tension coefficient of the domain wall.

The quantity ∆f can be interpreted as the effective
driving force that leads to the growth of energetically
favorable domains with polarization directed along the
applied field. To find ∆f, we write the initial thermody-

namic potential (1) in the form Φ =  – EP, where 
is the field-independent part of the potential. Then, the
free energies of the unit cells with polarization directed
along the field, opposite to the field, and perpendicular

to it are Φ =  – Ep, Φ =  + Ep, and Φ = ,
respectively (p is the specific polarization introduced
earlier). It follows that, in the case of switching of the
ferroelectric crystal with the formation of 180°
domains, the energy of the system decreases by ∆f =
2Ep [1] and the gain in energy due to the formation of
90° domains is ∆f = Ep.

It should be noted that the process of repolarization
of a ferroelectric is inevitably accompanied by pro-
cesses that decrease the effective driving force ∆f of the
phase transformation. In particular, the effect of the
elastic energy related to the critical phenomenon and
the depolarizing field can be of importance. Note also
that the elastic stresses caused by deformation of the
crystal lattice can result in a ferroelastic transition,
which is observed in ferroelastic ferroelectrics.

Instead of the parameters R and H of a cylindrical
nucleation center, we introduce new variables n and α,
where n is the number of unit cells in a nucleation cen-
ter of volume V and α = H/R is the characteristic ratio
of the linear dimensions of a domain. The free energy
of the nucleation center expressed in terms of the new
variables takes the form

(16)

The critical domain size is determined by the saddle
point (nc, αc) in the energy surface ∆F = ∆F(n, α),
where

(17)
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From Eqs. (17), we obtain

(18)

Therefore, the minimum energy for the formation of a
critical nucleus is

(19)

The critical domain size and the minimum energy for
nucleus formation are functions of the applied field and
can be calculated directly. Note also that these depen-
dences can be applied for studying both 180° domains
(at ∆f = 2Ep) and 90° domains (at ∆f = Ep).

To describe the kinetics of switching of the ferro-
electric crystal with allowance for the three-dimen-
sional growth of new-phase nucleation centers, we
introduce the two-dimensional nonequilibrium distri-
bution function of repolarized domains over the num-
ber of unit cells and their shapes f(n, α, t) normalized
to the number of domains N(t) per unit volume of the
crystal:

The time evolution of the two-dimensional nonequi-
librium distribution function is determined by the solu-
tion to the corresponding two-dimensional Fokker–
Planck kinetic equation [5]

(20)

where Dn and Dα are the diffusion coefficients in the
space of sizes and shapes, respectively, and kB is the
Boltzmann constant.

Kinetic equation (20) can be solved using the multi-
dimensional kinetic theory of first-order phase transi-
tions [3–5]. In this theory, the multidimensional kinetic
equation is linearized in the vicinity of a saddle point
(i.e., the Fokker–Planck approximation is used, as is
normally done for studying the kinetics of first-order
phase transitions) and then a linear transformation is
performed in order to pass to new, separable variables
characterizing the state of a nucleation center [4]. The
Fokker–Planck equation linearized in the vicinity of the
saddle point corresponds to constant (i.e., independent
of the variables characterizing a nucleation center) dif-
fusion coefficients in the space of sizes and shapes;
their values are calculated at the saddle point.
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Let us find a stationary solution to kinetic equa-
tion (20), which describes the initial stage of switching
of the ferroelectric crystal under study. First, following
[4, 5], we analyze the energy for nucleus formation
∆F = ∆F(n, α), which is determined by Eq. (16) in the
vicinity of the saddle point (nc, αc). In the vicinity of
this point, we can use the quadratic approximation to
the quantity ∆F

(21)

where ∆Fc is the minimum energy for the formation of
a critical nucleus (19), A = (∆f )4/96πσ3ω2, and B =
2πσ3ω2/3(∆f )2.

As can be seen from the structure of Eq. (21), n is a
thermodynamically unstable variable and α is thermo-
dynamically stable. Note that the presence of a thermo-
dynamically unstable variable describing a nucleation
center is a characteristic feature of all multidimensional
first-order phase transitions [4].

Using the Gibbs formula and the energy for nucleus
formation (21), we can obtain the equilibrium distribu-
tion of domains over their sizes and shapes:

(22)

Using this equilibrium distribution function for
domains, kinetic equation (20) can be supplemented
with the standard initial and boundary conditions

(23)

We seek a solution to Eq. (20) in the form

(24)

where the normalizing constant C is chosen such that

With this constant C, the distribution function ϕ(n, t) is
normalized to the number of domains per unit volume
of the crystal, i.e.,
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kBT
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By substituting Eq. (24) into Eq. (20), the two-
dimensional kinetic equation is reduced to an ordinary
one-dimensional Zel’dovich equation,

(25)

with the initial and boundary conditions

(26)

Knowing the energy for the formation of a critical
nucleus (19) and using the expression for the diffusion
coefficient Dn in the space of sizes, we can determine
the steady-state flux of repolarization centers (the main
kinetic characteristic of the initial stage of switching of
the ferroelectric). According to [1, 8], the steady-state
flux is given by

(27)

where Nv is the number of unit cells per unit volume of
the crystal, which can be estimated as Nv ~ 1/ω.

Substituting Eq. (21), we obtain

(28)

To determine the steady-state flux I, we need to
know the diffusion coefficient in the size space Dn. The
explicit form of this coefficient significantly depends
on the growth mechanism of repolarized regions in the
crystal. In [1], two mechanisms of domain growth,
namely, the normal and layer-by-layer mechanisms,
were studied. Using the technique developed in [1], we
can easily find the diffusion coefficient with allowance
for the three-dimensional growth of repolarized regions
for both growth mechanisms. In the case of the normal
mechanism, we obtain

(29)

where β0 is the kinetic coefficient.
Following [1] in the case of the layer-by-layer

growth mechanism, we obtain

(30)
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where βst0 and σst are the step-related kinetic coefficient
and surface tension coefficient, respectively.

With these expressions, the steady-state fluxes of
repolarization centers take the form

(31)

where superscripts 1 and 2 refer to the normal and
layer-by-layer growth mechanisms, respectively.

Let us express the steady-state fluxes in terms of the
electric field applied to the crystal. For the flux of 180°
domains, we obtain

(32)

and, for the flux of 90° domains, we have

(33)

For comparison with the experimental data, the follow-
ing approximate expressions can be conveniently used
for the domain fluxes as a function of the electric field:

(34)

for 90° domains and

(35)

for 180° domains. Here, the constants C1, 2 depend on
the domain-growth mechanism and are determined by
the preexponential factors in Eqs. (32) and (33).

Finally, the time required for the domain flux to
reach a steady-state value and the lifetime of the steady-
state flux can be estimated from the formulas obtained
in [1].

4. DISCUSSION OF THE RESULTS

Now, we present some estimates for the critical
nucleus size and the steady-state repolarization flux.

I
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We use the experimental data for the best studied mul-
tiaxial ferroelectric, barium titanate. According to [6, 9,
10], the Curie temperature of barium titanate is TC ~
393 K; the equilibrium spontaneous polarization at T ~
373 K is Px10 ~ 1.2 × 10–1 C m–2; the dielectric suscep-
tibilities along and perpendicular to the polar axis are
χc ~ 60 and χa ~ 300, respectively; the molecular
weight is M ~ 0.233 kg mol–1; and the density is ρ ~
6.02 × 103 kg cm–3. The unit cell volume of barium
titanate is estimated as ω ~ M/ρNA = 0.64 × 10–28 m3

(NA is Avogadro’s number); therefore, Nv ~ ω–1 = 1.6 ×
1028 m–3. The kinetic coefficient β0 depends on the acti-
vation energy for atomic displacement in the ferroelec-
tric; according to [1], it can be estimated as β0 ~
1031 m−2 s–1.

To estimate the critical nucleus size and the repolar-
ization flux, it is necessary to know the surface tension
coefficient σ of a domain wall and, in the case of layer-
by-layer growth, the surface tension coefficient of the
step. The experimental (as well as theoretical) esti-
mates of the surface tension coefficients are highly con-
tradictory [11–14]. For example, according to Miller
and Weinreich, σ ~ 0.56 × 10–3 J m–2, whereas
Zhirnov’s calculations give σ ~ (2–4) × 10–3 J m–2 for a
180° wall and σ ~ 10 × 10–3 J m–2 for a 90° wall [10].
Following [15], we can assume that the coefficient of
surface tension of a domain wall in barium titanate lies
in the range from σ ~ 0.1 × 10–3 to ~10 × 10–3 J m–2.
This scatter in the values of σ makes it difficult to make
strict quantitative estimations using Eqs. (18) and (31)–
(35), and the further consideration is qualitative in
character.

Note that, in general, the coefficient of surface ten-
sion should be determined from the nucleation rate of a
new phase, namely, from Eqs. (31)–(35). Therefore, it
is necessary to find the nucleation rate experimentally
and to compare it with theoretical dependences (31)–
(35). Only in this case can one find the exact value of
the surface interphase energy. It should be noted that
the process of repolarization, as a rule, begins at the
surface of a ferroelectric, specifically, at the places
where electrodes are applied or at defects, which are
always present in crystals. In this case, the energy for
nucleus formation decreases significantly and the pro-
cess of switching acquires features that are inherent to
the heterogeneous formation of nucleation centers on a
substrate. Therefore, in general, Eqs. (31)–(35) should
contain a coefficient γ (0 ≤ γ ≤ 1) taking into account the
decrease in the energy for the formation of a repolariza-
tion center.

For the normal growth mechanism, the numerical
calculation by Eqs. (18) and (31)–(35) with σ ~ 0.56 ×
10–3 J m–2 indicates that, with applied fields Ex < Ecx or
Ey < Ecy (where Ecx ~ 4 × 105 V m–1 and Ecy ~ 0.8 ×
106 V m–1), the steady-state repolarization fluxes are
zero; hence, the crystal is not switched. This estimation
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of the lower value of the applied field agrees with the
experimental values of the coercive field for barium
titanate [16]. We think that the slightly overestimated
values can be explained by the rough assumption
regarding the cylindrical shape of domains. More accu-
rate estimates can be obtained assuming an ellipsoidal
shape of nucleation centers and taking into account the
depolarizing fields and lattice defects. In fields Ex > Ecx

or Ey > Ecy, it is easy to estimate the main characteristics
of the initial repolarization stage. For example, in a
field Ex = 7 × 105 V m–1, the dimensions of the critical
nucleation center of a 180° domain are Rc, Hc ~ 10–8 m
and the steady-state flux is I ~ 1032. Similar linear
dimensions of critical nucleation centers for 90°
domains are reached in a field Ey = 0.8 × 107 V m–1, and
the steady-state flux under these conditions is I ~ 1040.

5. CONCLUSIONS
Let us briefly formulate the basic result of this work

and directions for further developing our approach. In
the context of the classical theory of nucleation and
growth, we have considered the thermodynamics and
kinetics of the initial stage of switching of multiaxial
ferroelectrics. The switching kinetics has been
described in the most general case, where repolarized
domains have two degrees of freedom and their growth
is not limited by any formal relations. However, we
considered only the initial stage of the switching kinet-
ics, where the fraction of a crystal involved in the phase
transformation is very small. Therefore, there is virtu-
ally no switching current at this stage. In this connec-
tion, it is interesting to study the second and third stages
of the phase transformation, i.e., the stages of bulk
polarization and Ostwald ripening. These problems will
be discussed in a future publication.
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Abstract—Temperature dependences of the pyroelectric, piezoelectric, and polarization responses of glycine
phosphite crystals containing different amounts of glycine phosphate were studied in the range 120–320 K. The
experimental data obtained suggest the presence of a built-in bias field oriented along the twofold symmetry
axis in these crystals. This field was found to be 5 kV/cm. It is suggested that the built-in bias plays a decisive
role in the formation of the pyroelectric and piezoelectric crystal responses in the temperature interval 225–
280 K, which is significantly higher than the ferroelectric phase transition point in nominally pure glycine phos-
phite crystals (224 K). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of crystals of protein aminoacids and
their derivatives, of which many belong to crystal
groups lacking inversion symmetry (including polar
groups) and may possess piezo-, pyro-, and ferroelec-
tric properties, is of considerable interest both in the
physics of crystals and biophysics (see reviews [1, 2]
and references therein). The phase transition observed
recently [3] in glycine phosphite (NH2CH2COOH) ·
H3PO3 (Gly · H3PO3) at about 224 K from the paraelec-
tric phase of symmetry C2h to the ferroelectric state of
symmetry C2 raises interest in glycine phosphite crys-
tals containing glycine phosphate (Gly · H3PO4). The
fact is that Gly · H3PO4 crystals, which, like Gly ·
H3PO3, have a centrosymmetric monoclinic structure
C2h at room temperature, retain this structure under
cooling to at least 120 K and do not exhibit piezoelec-
tric properties in this temperature interval [4].

2. EXPERIMENTAL TECHNIQUE

We studied single crystals grown from saturated
aqueous solutions of Gly · H3PO3 and Gly · H3PO4
mixed in ratios of 90 : 10, 75 : 25, 60 : 40, and 10 : 90.
The crystals were grown under slow cooling of the
solutions from 25 to 8°C at a rate of 1 K/day to a vol-
ume of about 1 cm3. X-ray diffraction analysis of crys-
tals of various compositions showed that the crystals on
the glycine phosphite side have the structure of pure
glycine phosphite and that the crystals on the glycine
phosphate side have the structure of pure glycine phos-
1063-7834/04/4607- $26.00 © 21285
phate, thus indicating low mutual solubility of the com-
ponents in the solid phase (we estimated it to be no
greater than 0.1%). The pyroelectric, piezoelectric, and
dielectric properties were studied in most detail on
crystals grown from solutions with a component ratio
of 75 : 25.

Gly · H3PO3 crystals belong to space group P21/a–

 of the monoclinic system at room temperature [5].
The samples intended for investigation of the pyroelec-
tric and dielectric properties were platelets 8 × 3 ×
0.2 mm in size cut from single crystals, with the major
face oriented perpendicular to the twofold symmetry
axis. Conducting electrodes were applied as a slurry of
finely dispersed silver. Measurements were conducted
in a vacuum of 10–5 bar in the temperature range from
200 to 293 K.

The pyroelectric response of the crystals was mea-
sured under stepped IR irradiation [6]. The IR radiation
was produced by an incandescent lamp with a 0.2-mm-
thick silicon filter. The voltage was fed from a load
resistor of 10 GΩ to the input of a KR544-UD-1A-
based operational amplifier with a voltage gain of unity
and then supplied to a recorder. For illustration, Fig. 1
shows the typical time dependence of the pyroelectric
response of the crystals studied (obtained for nominally
pure glycine phosphite at 210 K) after the IR source
was turned on. The quantitative characteristic of the
pyroelectric response in this study was the maximum
pyroelectric voltage, which is proportional to the pyro-
electric coefficient of the material [6].

C2h
5
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Dielectric hysteresis loops were measured in the
standard Sawyer–Tower arrangement at 50 Hz, with the
samples dc-biased from an external source within the
voltage range from 0 to ±200 V. The dielectric permit-
tivity ε and the loss tangent  were studied in the
frequency range from 1 kHz to 1 MHz for voltage
amplitudes of 4V and 100 mV measured with E7-8 and
E7-12 bridges, respectively.

The integrated piezoelectric response of the crystals
was measured in the temperature range 120–320 K on
an IS-2 NQR setup [4]. The sample to be studied, in the
form of a set of small crystallites, was placed in the
capacitor of a circuit to which 4-µs-long voltage pulses
with a carrier frequency of 10 MHz were applied at a
pulse repetition frequency of 12 Hz and a maximum
voltage across the circuit of 4 kV. The piezoelectric
response signals were measured with an AI-1024 mul-
tichannel pulse-height analyzer.
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Fig. 1. Pyroelectric response of nominally pure glycine
phosphite crystals plotted vs. time of IR illumination (at
210 K).
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Fig. 2. Temperature behavior of the pyroelectric responses
of nominally pure glycine phosphite (solid line) and of gly-
cine phosphite doped with glycine phosphate (dashed line).
Numbers on the curves denote the percentage of glycine
phosphate impurity in the starting aqueous solution.
P

3. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 2 displays temperature dependences of the
pyroelectric response of nominally pure glycine phos-
phite and of glycine phosphite containing glycine phos-
phate measured under identical conditions; the data
related to doped crystals were obtained on crystals
grown from an aqueous solution of Gly · H3PO3 and
Gly · H3PO4 taken in a ratio of 75 : 25. Introducing an
impurity is seen to shift the pyroelectric response peak
toward lower temperatures and reduce its intensity. In
addition to this peak, Gly · H3PO3 crystals doped with
Gly · H3PO4 exhibited a pyroelectric response signal of
opposite polarity that was comparable in magnitude to
this peak in the temperature region considerably in
excess of the Curie temperature (up to 280 K). Prepo-
larization of the crystals with a field of ±10 kV/cm did
not change either the sign or the amplitude of the pyro-
electric responses as the temperature was lowered from
room temperature to 200 K. This gives us grounds to
suggest that glycine phosphite crystals doped with gly-
cine phosphate have a built-in bias field similar to that
revealed earlier in crystals of natural colemanite [7] and
later in triglycine sulfate doped with L-alanine [8] and
some other materials.

Figure 3 displays temperature dependences of the
integral piezoelectric response of Gly · H3PO3 crystals
grown with different concentrations of Gly · H3PO4 in
the original aqueous solution (the integral piezoelectric
response is understood to mean the total piezoelectric-
response signal intensity, which is determined both by
the electromechanical coupling and by the sample ring-
ing time, i.e., the damping time of elastic vibrations).
As the temperature is lowered from the phase transition
point of pure Gly · H3PO3 (224 K [3]), the piezoelectric
response is seen to vary nonmonotonically with tem-
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Fig. 3. Temperature behavior of the pyroelectric responses
of nominally pure glycine phosphite and of glycine phos-
phite doped with different amounts of glycine phosphate.
Numbers on the curves are the same as those in Fig. 2. The
right-hand ordinate axis corresponds to pure crystals, and
the left-hand ordinate axis, to doped crystals.
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perature. Figure 3 also shows that, as the Gly · H3PO4
concentration is increased, the maxima and minima of
these dependences shift toward lower temperatures.
Note also the relatively low piezoelectric response of
pure crystals compared to the doped ones, which may
be attributed to the higher damping of elastic vibrations
in pure crystals.

Figure 4 presents temperature dependences of the
integral piezoelectric response (in arbitrary units) of
pure and doped glycine phosphite crystals obtained at
temperatures close to the ferroelectric phase transition
point of pure Gly · H3PO3. These dependences clearly
show the temperature interval of the piezoelectric
response of doped crystals to spread noticeably toward
higher temperatures as compared to the nominally pure
samples. Possible reasons for this behavior will be dis-
cussed later.

Figures 5 and 6 display P(E) hysteresis loops mea-
sured on crystals of nominally pure and doped glycine
phosphite, respectively. A comparison of these relations
obtained at the same temperature (220 K) with and
without application of an external bias of both polari-
ties suggests that, in the glycine phosphite crystal
doped with glycine phosphate, there exists a built-in
field of about 5 kV/cm oriented parallel to the C2 crys-
tallographic axis. This conclusion follows both directly
from the strongly asymmetric shape of the hysteresis
loops of the doped crystal measured without a bias and
from the pattern of the variation in the dielectric hyster-
esis loop shape produced when a bias of either polarity
is applied to the crystal from an external source. For
instance, when a negative bias is applied to the top elec-
trode connected directly to the ac voltage source in the
Sawyer–Tower circuit and generates a field Eb =
−3 kV/cm in the crystals, the change in polarization
induced by the measuring voltage increases consider-
ably, whereas a positive bias producing a field Eb =
+3 kV/cm reduces the change in the polarization. It can

220 240 260 280 300 320
T, K

Pi
ez

oe
le

ct
ri

c 
re

sp
on

se
, a

rb
. u

ni
ts 1.0

0.8

0.6

0.4

0.2

0
0

25

Fig. 4. Temperature behavior of the piezoelectric responses
of nominally pure and doped glycine phosphite crystals.
Numbers on the curves are the same as those in Fig. 3.
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be assumed that in the first case the external bias field
is directed oppositely to the built-in field in the crystal
and partially counterbalances it. By contrast, in the sec-
ond case, the bias produced by the external source and
aligned with the built-in field adds to the latter and fur-
ther saturates the crystal polarization generated by the
built-in field, thereby suppressing the polarization
switching effected by the ac measuring voltage. Note
that our crystals of pure glycine phosphite also have a
built-in bias field, albeit a lower one than in the doped
glycine phosphite (not over 500 V/cm), which is indi-
cated by the relatively weak asymmetry of the hystere-
sis loops shown in Fig. 5 and is supported by data in the
literature [9]; the generation of this field in nominally
pure crystals should most probably be assigned to their
containing residual impurities and defects.

Fig. 5. Dielectric hysteresis loops of nominally pure glycine
phosphite obtained at a frequency of 50 Hz at different tem-
peratures.
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Figures 7 and 8 illustrate the temperature behavior
of the permittivity of pure and doped glycine phosphite
crystals measured on the same samples with no external
bias applied and with a bias of both polarities. Applica-
tion of a bias voltage to samples of pure glycine phos-
phite is seen to entail approximately the same decrease
in ε at the maximum of the temperature dependence for
both voltage polarities (Fig. 7), whereas biasing crys-
tals with the glycine phosphate impurity (Fig. 8) pro-
duces essentially different results when the voltage
polarity is switched; indeed, with the external field
opposing the built-in bias (Eb = –7 kV/cm), the ε peak
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Fig. 6. Dielectric hysteresis loops of glycine phosphite
doped with glycine phosphate (75 : 25 solution ratio) plot-
ted vs. external bias Eb. Temperature 220 K, and measuring
voltage frequency 50 Hz. The positive and negative values
of the bias correspond to the field Eb parallel and antiparal-
lel to the direction of the built-in bias field Ei, respectively.
PH
increases in amplitude, while for the opposite orienta-
tion (Eb = +7 kV/cm) it decreases.

Additional evidence of the existence of a strong
built-in field in crystals doped with glycine phosphate
is given by the temperature dependences of tanδ of pure
and doped (60 : 40) glycine phosphite crystals mea-
sured at 1 kHz and a measuring voltage amplitude of
4 V (i.e., in an electric field of 200 V/cm). We see that,
in contrast to pure crystals, whose tanδ grows strongly
with decreasing temperature to reach a maximum at a
temperature a few degrees below TC, tanδ in doped
samples remains relatively small within the tempera-
ture range covered. In view of the contribution of
molecular motions to the ferroelectric phase transition
observed in glycine phosphite crystals [10], this may be
accounted for by the hindering action that the built-in
bias field in doped crystals exerts on these molecular
motions, which are apparently responsible for the high
values of tanδ and the above-mentioned strong damp-
ing of elastic vibrations in pure crystals.

Thus, the totality of the results obtained suggests
that, in glycine phosphite crystals doped with glycine
phosphate, there exists a strong (about 5 kV/cm) built-
in bias field aligned with the C2 crystallographic axis.
This internal bias field may account for the pyro- and
piezoelectric response in crystals doped with glycine
phosphate at temperatures substantially in excess of the
ferroelectric phase transition temperature, thus causing
a slight deformation of the glycine phosphite lattice,
which is, however, large enough for the pyro- and
piezoelectric activity to become observable in the tem-
perature region from 225 to 280 K. To verify this con-
jecture experimentally, one should carry out an addi-
tional investigation, primarily, comprehensive x-ray
diffraction characterization of doped glycine phosphite
crystals in the above temperature region.

320

280

240

200

160

120

80
210 215 220 225 230 235 240
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–7 kV/cm

+7 kV/cm

Fig. 7. Temperature behavior of the permittivity of nomi-
nally pure glycine phosphite crystals measured for different
values of the external bias field Eb. Measuring voltage fre-
quency 1 MHz, and field 5 V/cm. The interpretation of pos-
itive and negative values of the bias is the same as that in
Fig. 6.
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The existence of a built-in bias field in Gly · H3PO3
crystals doped with Gly · H3PO4 also makes it possible
to explain (at least qualitatively) the above-mentioned
reversal of the sign of the pyroelectric response
observed to occur as one crosses the Curie temperature
TC. As in the colemanite crystals studied earlier, which
revealed a shift in hysteresis loops in the absence of an
external bias [7], in triglycine sulfate doped with L-ala-
nine [8, 11], in deuterated glycine phosphite [12], and
in BaTiO3 ceramics doped by acceptor impurities [13],
the formation of a built-in bias field Ei in doped glycine
phosphite crystals is accounted for most probably by
structural defects, which possess an electric dipole
moment and are oriented appropriately with respect to
the crystallographic axes. The preferential orientation
of dipolar defects is usually related to the energy of
their electrical and/or elastic interaction with the crystal
lattice [7, 8, 11–15]. In Gly · H3PO3 crystals doped with
Gly · H3PO4, complexes including differently charged
anions [HPO3]–2 and [PO4]–3, which also differ in terms
of their spatial configuration and size, may serve as
such dipolar defects. The preferential orientation of
these defects most probably forming in the course of
crystal growth creates a polarization Pi in the crystals at
T > TC. In a crystal cooled below TC, this polarization
adds algebraically to the spontaneous polarization Ps

oriented along the C2 symmetry axis to make the total
polarization PΣ = Pi + Ps in the crystal at T < TC, with
the vectors Pi and Ps being either parallel or antiparallel
to each other, depending on the absolute and relative
magnitude of the electric and elastic interaction ener-
gies [13].

Figure 10 schematically shows the assumed orienta-
tion of the vectors Pi, Ps, PΣ, and Ei in the crystals under
study and the corresponding pattern of the temperature
dependence of the pyroelectric coefficient dP/dT at
temperatures above and below TC. At T > TC, because of
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200 205 210 215 220 225 230

T, K

ε

Eb = 0

–7 kV/cm

+7 kV/cm

Fig. 8. Temperature behavior of the permittivity of glycine
phosphite doped with glycine phosphate (75 : 25 solution
ratio) measured for different values of the external bias field
Eb. Conditions of measurement and notation of the curves
are the same as those in Fig. 7.
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the continuity of the normal component of electric
induction D = ε0E + P, the dipole-induced polarization
Pi brings about a redistribution of free charges between
the crystal electrodes connected through the load resis-
tor in pyroelectric response measurements, so the sur-
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0
210 215 220 225 230 235 240

Fig. 9. Temperature behavior of loss tangent tanδ of nomi-
nally pure glycine phosphite (solid line) and of glycine
phosphite doped with glycine phosphate (60 : 40 solution
ratio, dashed line). Measuring voltage frequency 1 kHz, and
field 200 V/cm.
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Fig. 10. Schematic image of glycine phosphate–doped gly-
cine phosphite crystals connected in a circuit for measuring
the pyroelectric response and temperature dependences of
the polarization P and the pyroelectric coefficient dP/dT. Pi
is the polarization induced by the oriented dipoles present in
the crystal, Ei is the dipole field (built-in bias field), Ps is
spontaneous polarization; PΣ is the total (net) polarization,
and Ip is the pyroelectric current. Symbols + and – denote
the polarity of free charges at the electrodes. Curves 1–3 are
temperature dependences of Pi, Ps, and PΣ (and of their
derivatives), respectively.
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face charge density at the electrodes becomes equal to
|Pi |. When the crystal is heated by IR radiation, Pi

decreases in magnitude and a pyroelectric current
appears in the measuring circuit; the pyroelectric
response signal, which is proportional to dPi/dT, varies
comparatively weakly with temperature and, for the
dipole orientation shown in Fig. 10, is negative at T >
TC. For the antiparallel orientation (with respect to Pi)
of the spontaneous polarization vector Ps, which
appears under cooling below TC, and for |Ps | > |Pi |, the
pyroelectric response (proportional to dPΣ/dT)
becomes negative at T < TC.
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Abstract—An effective Hamiltonian for Zr–Ti cation ordering in PbZrxTi1 – xO3 solid solutions is written out.
To determine the parameters of the effective Hamiltonian, a nonempirical calculation is performed within an
ionic-crystal model taking into account the deformation and dipole and quadrupole polarizabilities of ions. The
thermodynamic properties of cation ordering are studied using the Monte Carlo method. The calculated phase
transition temperatures (180 and 250 K for the concentrations x = 1/3 and 1/2, respectively) are much lower
than the melting temperature of the compound under study. At such temperatures, the ordering kinetics is frozen
and, in reality, the phase transition to the ordered phase does not occur, in agreement with experimental obser-
vations. Within the same ionic-crystal model, we calculated the high-frequency permittivity, Born dynamic
charges, and the lattice vibration spectrum for a completely disordered phase and certain ordered phases. It is
shown that soft vibration modes, including ferroelectric ones, exist in the lattice vibration spectrum of both the
completely disordered and the ordered phases. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Solid solutions of lead titanate and lead zirconate
PbZrxTi1 – xO3 (PZT) have been attracting research
attention for many decades; a great number of experi-
mental and theoretical studies have dealt with their
physical properties. The PZT system has a complicated
phase diagram and a number of interesting properties in
terms of both theory and application (in particular, high
values of the piezoelectric constants).

At high temperatures, PZT has a perovskite struc-
ture. As the temperature is decreased, this compound
exhibits structural phase transitions to a rhombohedral,
an orthorhombic, or a monoclinic phase with ferroelec-
tric or antiferroelectric ordering, depending on the
Zr/Ti content ratio (see, e.g., [1] and references
therein). Phase transitions related to the ordering of tet-
ravalent zirconium and titanium cations have not been
observed experimentally at any concentration or tem-
perature; however, there are experimental indications
that, in the samples under study, there exist small
regions with an ordered distribution of titanium and zir-
conium ions over the lattice sites [2]. Apparently, the
presence of such ordered regions has a significant effect
on lattice instability with respect to ferroelectric, anti-
ferroelectric, and rotational distortions [3]. The proper-
ties of the solid solutions, in particular, the energies of
different structures [4], some lattice vibration frequen-
cies in the distorted phases [3], and Born effective
charges in the disordered and ordered phases [5–8],
were studied by performing ab initio calculations using
different approaches in combination with the density
functional method. However, the phase transitions
1063-7834/04/4607- $26.00 © 21291
related to ordering of titanium and zirconium ions over
the lattice sites were not discussed in the papers men-
tioned above; it was only noted that the energy of such
ordering is small, because the valences of ions ran-
domly distributed over the perovskite structure are
equal.

In this paper, we perform a nonempirical calculation
within an ionic-crystal model including the deforma-
tion and dipole and quadrupole polarizabilities of ions
to study phase transitions related to ordering of tita-
nium and zirconium ions and determine the entire
vibration frequency spectrum of the disordered phase,
the vibration frequencies at q = 0 for the ordered
phases, the Born effective charges, and the high-fre-
quency permittivity.

In Section 2, we introduce an effective Hamiltonian
describing phase transitions of the order–disorder type
in a model two-component Zr/Ti alloy. The parameters
of the effective Hamiltonian, in which interactions
within the first three coordination shells are taken into
account, are determined by calculating the total energy
of the crystal in different ordered phases. At certain val-
ues of the parameters of the effective Hamiltonian,
using the Monte Carlo method, we study the thermody-
namic properties of the system, namely, the phase tran-
sition temperatures and the temperature dependences of
the heat capacity and of the long-range and short-range
order parameters.

In Section 3, in the virtual-crystal approximation for
different values of the Zr/Ti content ratio, we calculate
the permittivity, Born effective charges, and the entire
lattice vibration spectrum of the cubic phase of the dis-
004 MAIK “Nauka/Interperiodica”
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ordered crystal for different concentrations x. Analo-
gous calculations are also carried out for certain
ordered phases of PbZrxTi1 – xO3 with x = 1/3 and 1/2;
however, for brevity, we present here only the vibration
frequencies at the center of the Brillouin zone.

Finally, in Section 4, we summarize the results of
the study.

2. STATISTICAL MECHANICS 
OF B-CATION ORDERING

To describe phase transitions related to B-cation
ordering in PbZrxTi1 – xO3 solid solutions, we use the
effective-Hamiltonian method in which only the
degrees of freedom related to positional disorder of tita-
nium and zirconium atoms at the sites of the crystal lat-

tice (the b positions in the  space group) are taken
into account. In this case, the problem of B-cation
ordering in AB'B''O3 solid solutions is equivalent to the
problem of ordering in a two-component alloy and we
can use a model based on the assumption that the atoms
of a solution are placed at the sites of a certain rigid
crystal lattice [9]. The configuration energy of the solu-
tion is expressed as the sum of all interatomic pair inter-
action potentials. In this model, the Hamiltonian of the
system can be written as

(1)

where vB'B', vB''B'', and vB'B'' are the pair interaction
potentials between B' atoms, between B'' atoms, and
between B' and B'' atoms, respectively, at lattice sites rk

and rj and µB' and µB'' are the chemical potentials of the

cations B' and B''. The quantities  and  are ran-
dom functions defined as follows: if site j is occupied

by a B' atom, then  = 1 and  = 0, and if site j is

occupied by a B'' atom, then  = 0 and  = 1. The

quantities  and  satisfy the relation  +  =
1. Using this relation, we can rewrite Eq. (1) as [9]

(2)
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PH
is the effective interaction constant and

is the chemical potential of the system.
The effective interaction constants are evaluated by

performing a nonempirical calculation of the total
energy of the crystal in the Gordon–Kim model with
inclusion of the dipole and quadrupole polarizabilities
of ions [10, 11]. The total energy is

(3)

where

(4)

(5)

(6)

(7)

Here, Es is the interaction energy of spherically sym-
metric ions; Ep, Eq, and Epq are the interaction energies

of dipole and quadrupole moments; Eself = 

is the self-energy of ions;  =  is the

long-range part of the interactions, which is calculated

by the Ewald method; (Vi , Vj , |Ri – Rj |) is the

short-range part of the interaction; and ( ) are the
dipole (quadrupole) moments of ions, which can be
found by minimizing the total energy of the crystal [11].
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To find the crystal energy in the disordered phase,
we use the virtual-crystal approximation. In this
approximation, the short-range part of pair interactions
of a virtual ion 〈B〉  with the other ions (i) is

(8)

The contribution from the virtual ion to the self-energy
can be written as

(9)

The quadrupole and dipole polarizabilities of the vir-
tual ion B are

(10)

The long-range part of the interaction remains the same
as that for the pure components of the solutions.

Let us discuss the phase transition in a PbZrxTi1 – xO3
solid solution related to ordering of the B cations in the
case where x = 1/2 and 1/3. Furthermore, in the effec-
tive Hamiltonian (2), we restrict ourselves to interac-
tions within the first three coordination shells. To calcu-
late the effective constants, we find the energies of sev-
eral structures with different ordering of the titanium
ions. For the ordered structures, we use the notation
from [12], where an analogous calculation of the ener-
gies was performed for the PbSc1/2Ta1/2O3 solid solu-
tion. Table 1 lists the configuration motif, the lattice
parameters of the ordered structures, the energies per
ABO3 formula unit calculated without and with regard
to relaxation of Pb and O ions, and expressions of the
energy in terms of the effective constants defined in
Eq. (2). The table also gives the energies of mixtures of
pure substances PbTiO3 (PTO) and PbZrO3 (PZO) for
concentrations x = 1/2 and 1/3. It is seen from the Table 1
that at any concentration the most favorable ordered
structure considered is the structure with Zr and Ti cat-
ions ordered along the body diagonal of the cubic unit
cell of the disordered phase. However, without taking
the relaxation of Pb and O ions into account, this struc-
ture has a somewhat greater energy than the mixture of
the pure substances. For concentration x = 1/2, the
result obtained agrees with calculations performed by
other authors [4]. The difference in the energies of the
two unrelaxed structures with ordering along the [111]
and [100] directions obtained in this study (5.3 mRy)
also agrees with the results obtained in other calcula-
tions (4.6 and 5.9 mRy [4]).

Since only the degrees of freedom related to posi-
tional disorder of B' and B'' atoms are taken into account
in the effective Hamiltonian, the effective interaction
constants are calculated using the energies of unrelaxed
structures. The energy expressed in terms of the effec-
tive constants contains a constant energy E0, which is
independent of the positions of B' and B'' ions and can
be taken as the zero of energy. The calculated effective
interaction constants are listed in Table 2.
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To study the statistical properties of the phase tran-
sitions related to the ordering of B cations in the
PbZrxTi1 – xO3 compounds (x = 1/2, 1/3), in addition to
using the effective Hamiltonian (2), we applied the
standard Monte Carlo method [13].

The Monte Carlo procedure consists in the follow-
ing. As the initial structure, we take one of the ordered
structures or the completely disordered structure at a
fixed temperature. One Monte Carlo step is sequential
running over all lattice sites. For each site (s), one of the
nearest neighbors is randomly chosen (s'). If the atoms
at sites s and s' are of the same type, then the configura-
tion remains unchanged. If the atoms at sites s and s'
differ in type, then we calculate the energy difference
between the initial configuration and the configuration
in which the atoms in sites s and s' change places:

(11)

where  is the number of ith nearest B'-type neigh-

bors of a B'-type atom,  is the number of ith near-
est B'-type neighbors of a B''-type atom before the per-
mutation, and δ = 1 if i = 1 and δ = 0 if i = 2, 3.

The latter condition means that the nearest neigh-
bors change places. The permutation is accepted and
the configuration is taken to be new in the following
cases: (i) ∆Econf ≤ 0 or (ii) ∆Econf > 0 if ξ <
exp[−∆Econf/kT], where ξ is a random number and
0 < ξ < 1.

After each Monte Carlo step, we calculate the
energy of the configuration, the short-range order
parameter σ, and the long-range order parameter η. The
short-range order parameter is defined by [14]

(12)

where NB'B''(disorder) = (1 – x) is the number of

B'B'' pairs in the completely disordered solid solution, 
is the coordination number, N is the number of atoms
in the solution, and x is the concentration of atoms of
type B'.

For concentration x = 1/2, the structures with order-
ing along the [111], [110], and [100] directions have the
lowest energies; therefore, they are of greatest interest.
For each of these structures, we calculate the short-
range and long-range order parameters.

For different completely ordered structures in the
case where x = 1/2, the values of nB'B''(order) are
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Table 1.  Energies of different ordered PbZrxTi1 – xO3 structures

Configuration
{IJKL} {MNOP}
B' = +1, B'' = –1

Lattice parameters
(a0 = 3.95 Å)

Calculated energies without regard
to the ion self-energy, eV

Expressions of the energy
in terms of the effective

constants v iwithout relaxation with relaxation

x = 1/2

{–1 1 –1 1} a = b = c = 2a0 –158.128282 –158.253272 6v1 + 8v3 – µ/2 + E0

{1 –1 1 –1}

B'B'' along [111]

{–1 1 –1 –1} a = b = c = 2a0 –158.074271 –158.180158 3v1 + 6v2 + 8v3 – µ/2 + E0

{1 1 1 –1}

{1 1 1 1} a = b = a0, –158.056270 –158.227649 2v1 + 8v2 + 8v3 – µ/2 + E0

{–1 –1 –1 –1} c = 2a0

B'B'' along [100]

{1 –1 1 –1} , –158.091386 –158.210677 4v1 + 8v2 – µ/2 + E0

{1 –1 1 –1} c = a0

B'B'' along [110]

{–1 –1 –1 1} a = b = c = 2a0 –158.091829 –158.203578 4v1 + 6v2 + 4v3 – µ/2 + E0

{1 1 1 –1}

{1 –1 –1 –1} a = b = c = 2a0 –158.073826 –158.160574 3v1 + 8v2 + 4v3 – µ/2 + E0

{1 1 1 –1}

{1 1 1 1} a = b = a0 –158.012134 –158.900837 v1 + 4v2 + 4v3 – µ/2 + E0

{1 1 1 1}+ c = 4a0

{–1 –1 –1 –1}

{–1 –1 –1 –1}

1/2PZO + 1/2PTO –158.157773

x = 1/3

B'B'' along [100] a = b = a0, –159.074277 –159.210991 (4v1 + 16v2 + 16v3 – 2µ)/3 + E0

c = 3a0

B'B'' along [111] , –159.133164 –159.259862 4v1 + 4v2 + 4v3 – 2µ/3 + E0

1/3PZO + 2/3PTO –159.229638

J K

N O
I L

M P

a b 2a0= =

a b 2a0= =

c 3a0=
Table 2.  Effective interaction constants (in meV)

v1 v2 v3

–12.22 –1.61 –0.86
P

For concentration x = 1/3, two ordered structures were
considered, namely, those with ordering along the
[111] and [100] directions. The number of B'B'' pairs
for the ordered structures in the case of x = 1/3 is

nB'B'' 111( ) 4N , nB'B'' 100( ) 4/3N .= =
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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The long-range order parameter for x = 1/2 is defined as

(13)

where RB'(B') is the number of atoms of type B' at their
“sites proper.”

For different types of ordering, the B' sites are
defined by the following conditions:

(14a)

for ordering along the [111] direction,

(14b)

for ordering along the [110] direction, and

(14c)

for ordering along the [100] direction, where x, y, and z
are the site coordinates.

For concentration x = 1/3, the long-range order
parameter is

(15)

The B' sites are defined by the following conditions:

(16a)

for ordering along the [111] direction and

(16b)

for ordering along the [100] direction.
We studied lattices 16 × 16 ×16 in size for x = 1/2

and 18 × 18 × 18 for x = 1/3 with periodic boundary
conditions. The first 10 000 steps at each temperature
are disregarded and are not included in averaging the
quantities Econf, η, and σ. The average values 〈Econf 〉 ,

η
4RB' B'( )

N
-------------------- 1– ,=

iπ x y z+ +( )[ ]exp 1,=

iπ x y+( )[ ]exp 1,=

iπ x( )[ ]exp 1,=

η 1
2
---

9RB' B'( )
N

-------------------- 1– .=

2π
3

------ x y z+ +( ) 
 cos 1,=

2π
3

------x 
 cos 1,=

3.0

2.5

2.0

1.5

1.0

0.5

0 100 200 300 400 500

C
/R

T, K

Fig. 1. Temperature dependence of the excess heat capacity
related to B-cation ordering in the PbZr1/2Ti1/2O3 solid
solution.
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〈(Econf )2〉 , 〈η〉 , and 〈σ〉  are calculated in two steps. After
p = 50 steps, the group averages are calculated:

(17)

Then, the averaging over M = 500 groups is performed:

(18)

The heat capacity of the system is defined as C =

(〈(Econf )2〉  – 〈Econf 〉2).

The temperature dependences of the heat capacity
and of the short-range and long-range order parameters
for x = 1/2 are shown in Figs. 1 and 2. At low tempera-
tures, the only stable structure is the structure with the
ordering along the [111] direction, which appears both
upon heating and cooling. The structures with other
ordering types are unstable; this can be seen from
Fig. 2. The long-range order parameters of the struc-
tures with ordering along the [110] and [100] directions
are equal to zero throughout the entire temperature
range. The phase transition from the ordered to the dis-
ordered state occurs at a temperature of about 250 K. As
noted in Section 1, experimental data show that order-
ing does not occur in the PbZr1/2Ti1/2O3 solid solution.

η〈 〉 g
1
p
--- η i, σ〈 〉 g

i 1=

p

∑ 1
p
--- σi,

i 1=

p

∑= =

E
conf〈 〉 g

1
p
--- Ei

conf
, E

conf( )
2

〈 〉 g

i 1=

p

∑ 1
p
--- Ei

conf( )
2
.

i 1=

p

∑= =

η〈 〉 1
M
----- η〈 〉 g, σ〈 〉

i 1=

M

∑ 1
M
----- σ〈 〉 g,

i 1=

M

∑= =

E
conf〈 〉 1

M
----- E

conf〈 〉 g,
i 1=

M

∑=

E
conf( )

2
〈 〉 1

M
----- E

conf( )
2

〈 〉 g.
i 1=

M

∑=

1

kT2
--------

1.2

1.0

0.8

0.6

0.4

0.2

0 100 200 300 400 500

σ,
 η

η[110], η[001]
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Fig. 2. Temperature dependence of the long-range and
short-range order parameters in the PbZr1/2Ti1/2O3 solid
solution.
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Since the ordering processes in solid solutions, as well
as in metal alloys, are diffusive in character, the kinetics
of these processes is frozen at the transition tempera-
ture obtained, T = 250 K, which is much smaller than
the melting temperature of PZT (Tmelt ~ 1200 K); there-
fore, the phase transition to an ordered state does not
occur.

The temperature dependences of the heat capacity
and of the short-range and long-range order parameters
for concentration x = 1/3 are shown in Figs. 3 and 4.
The structure with the 1 : 2 ratio and ordering along the
[111] direction is metastable for this concentration. If
we start the Monte Carlo procedure at a low tempera-
ture from this configuration, then the structure col-
lapses with increasing temperature. Part of the solution

T, K

C
/R

0.7

0.5

0.3

0.1

0 100 200 300 400

Fig. 3. Same as in Fig. 1 but for the PbZr1/3Ti2/3O3 solid
solution.

T, K

σ,
 η

1.0

0.8

0.6

0.4

0.2

0 100 200 300 400

σ

η

Fig. 4. Temperature dependence of the long-range and
short-range order parameters for the PbZr1/3Ti2/3O3 solid
solution. Dashed lines show the order parameter for order-
ing along [111] with a B-cation ratio of 1 : 2, points repre-
sent the order parameter for ordering along [111] with a
B-cation ratio of 1 : 1 in the heating and cooling modes, and
triangles represent the short-range order parameter.
P

becomes ordered along the body diagonal to the Zr/Ti
ratio of 1 : 1, and regions of pure Ti appear. With a fur-
ther increase in temperature (near 180 K), the ordered
regions with the 1 : 1 ratio become disordered. In the
cooling regime, ordered regions with the 1 : 1 ratio
appear at 180 K, and this structure survives down to low
temperatures. A peak in the heat capacity is observed to
occur at 180 K. There are experimental indications [2]
that nanodomains with the ordering of Zr and Ti ions in
a ratio of 1 : 1 exist in PZT solid solutions at low tem-
peratures.

3. LATTICE DYNAMICS OF THE DISORDERED 
AND CERTAIN ORDERED PHASES

The frequency vibration spectrum, high-frequency
permittivity, Born effective charges, and elastic moduli
of the ordered phases of PbZrxTi1 – xO3 solid solutions
are calculated within the Gordon–Kim model of ionic
crystals with regard to deformability and dipole and
quadrupole distortions of the electronic density of ions.
The corresponding formulas for calculations can be
found in [15]. In the case of disordered solid solutions,
we calculated the dynamic properties using the virtual-
crystal approximation; i.e., in the dynamic matrix, all
but the long-range Coulomb contributions are calcu-
lated by expanding the interaction energy of a virtual
〈B〉  ion with the other ions into a Taylor series in small
displacements.

First, we discuss the case of disordered solid solu-
tions, which, like the pure components, have a cubic
perovskite structure and one molecule per unit cell.

Table 3 lists the calculated lattice cell parameters,
high-frequency permittivity, Born effective charges,
and elastic moduli for the pure components PbZrO3 and
PbTiO3 and for solid solutions with concentrations x =
1/3, 1/2, and 2/3. For comparison, the results of other
ab initio calculations [16, 17] are also presented. Figure 5
shows the calculated vibration spectrum of the disor-
dered PbZr1/2Ti1/2O3 solid solution for symmetry points
and directions in the Brillouin zone, and Table 4 lists
the calculated vibration frequencies at the Γ(0, 0, 0) and
R(1/2, 1/2, 1/2) points for the pure components and for
the disordered solutions with concentrations x = 1/3,
1/2, and 2/3. It is seen from Tables 3 and 4 that the
results of our calculations agree (within 10–30%) with
the results of other ab initio calculations (except for the
value of ε∞ for PbTiO3 obtained in [17]). In solid solu-
tions, as well as in the pure components, there are soft
modes in the vibration spectrum. We note that, in addi-
tion to a polar vibration mode, our calculations for pure
PbTiO3 predict antiferroelectric lattice instability and
that the vibration mode R25, whose eigenvectors corre-
spond to rotation of the TiO6 octahedron, turns out to be
hard. At the same time, in PbZrO3, in addition to the
ferroelectric and antiferroelectric instabilities, there
exists a soft mode R25 related to rotation of the ZrO6
octahedron. All three types of instability exist in a solid
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Table 3.  Lattice parameter a0, permittivity ε∞, Born effective charge Z, and elastic moduli Cij for crystals PbZrxTi1 – xO3 in
the virtual-crystal approximation

x a0, Å ε∞ ZPb Z〈B〉 ZO1 ZO3
C11,

102 GPa
C12,

102 GPa
C44,

102 GPa

0 3.83 4.90 2.78 5.67 –4.93 –1.76 2.58 1.16 1.14

3.97* 8.24* 3.90** 7.06** –5.83** –2.56**

1/3 3.91 5.21 2.78 5.78 –4.97 –1.79 2.45 0.99 0.96

1/2 3.95 4.87 2.77 5.62 –4.68 –1.86 2.34 0.91 0.90

3.99*** 3.92*** 6.47*** –5.28*** –2.54***

2/3 3.97 4.81 2.77 5.56 –4.53 –1.90 2.42 0.89 0.86

1 4.03 4.50 2.77 5.35 –4.15 –1.98 2.36 0.80 0.78

4.12* 6.97* 3.92** 5.85** –4.81** –2.48**

    * Calculated by the pseudopotential method and the linear-response method [17].
  ** Calculated by the pseudopotential method and the frozen-phonon method [16].
*** Calculated by the pseudopotential method in the virtual-crystal approximation [6].
solution if the position of a tetravalent cation is occu-
pied by the virtual atom 〈B〉 .

It is seen from Table 1 that, for concentration x =
1/2, there are two ordered structures of lowest energies.
The structure with the B' and B'' cations ordered along
the [001] direction has the P4/mmm symmetry, and the
structure with ordering along the [111] direction (the
elpasolite structure) has the Fm3m symmetry. For both
structures, there are adjustable parameters. In the tet-
ragonal structure, the oxygen ions located between the
Zr and Ti ions, as well as the Pb ions, can be displaced
along the z axis. In the elpasolite structure, there is a
degree of freedom related to “breathing” of the oxygen
octahedron. We minimized the total energy with respect
to the volume and the free parameters at a constant
value of the ratio c/a = 2.0 for the tetragonal lattice. For
the elpasolite structure, the oxygen octahedron is drawn
to the Ti ion by 0.05 Å. For the tetragonal structure, the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
oxygen and lead ions are displaced along the z axis to
the Ti ion by 0.11 Å. The calculated unit cell parame-
ters, high-frequency permittivity, and Born effective
charges for these two ordered structures at x = 1/3 and
1/2 are given in Tables 5 and 6; for comparison, the
results of other calculations are also presented. It is
seen from Tables 5 and 6 that the Born dynamic charges
calculated in this study (especially for the lead ion) both
in the disordered and in the ordered phases at concen-
trations x = 1/2 and 1/3 are somewhat smaller than
those obtained using the pseudopotential method [18].
It is interesting to note that, in the pure components of
a solution, the effective charge of the titanium ion
exceeds that of the zirconium ion, whereas for the
ordered structures the effective charge of the zirconium
ion either is approximately equal to or exceeds that of
the titanium ion.
800

600

400

200

0

ω
, c

m
–1

XM RΓ Γ MRX

800

600

400

200

0

Fig. 5. Phonon spectrum of PbZr1/2Ti1/2O3 calculated in the virtual-crystal approximation.
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Table 4.  Vibration frequencies (cm–1) for PbZrxTi1 – xO3 calculated for various concentrations in the virtual-crystal approxi-
mation (the mode degeneracy is indicated in parentheses)

x
q = 0

TO1(2) LO1 T2u(3) TO2(2) LO2 TO3(2) LO3

0 87.3i 142.0 180.8 236.7 318.9 437.8 616.3

144i* 104* 121* 410* 497* 673*

1/3 88.3i 121.6 154.6 222.5 288.7 442.8 608.2

1/2 89.5i 114.7 156.4 219.7 289.6 448.4 600.7

2/3 88.4i 113.3 153.4 218.2 285.5 470.8 611.4

1 91.9i 104.9 150.0 214.1 283.5 488.2 609.3

131i* 90* 30** 63* 310* 486* 720**

140i** 170** 600**

q = R

R15(3) R25(3) R15(3) R25'(3) R12'(2) R2'

0 110.5i 51.3 177.5 383.0 423.8 718.9

1/3 119.4i 67.8i 171.8 365.7 438.6 691.2

1/2 113.3i 77.5i 178.8 342.2 451.6 676.8

2/3 110.9i 93.6i 181.5 328.5 483.9 677.5

1 105.0i 113.3i 190.9 299.7 510.8 661.6

  * Calculated by the pseudopotential method and the frozen-phonon method [15].
** Calculated by the pseudopotential method and the linear-response method [16].

Table 5.  Lattice parameters, Born effective charges, and permittivity for ordered PbZr1/2Ti1/2O3 solid solutions with different
ordering types (for the ordering along [001], the O1 ions lie between Zr and Ti ions, the O2 ions lie in the same plane as the
Zr ions, and the O3 ions lie in the same plane as the Ti ions)

Ordering a0, Å
ε∞ ZPb ZTi ZZr ZO1 ZO2 ZO3

11 33 xx zz xx zz xx zz xx zz xx, yy zz xx, yy zz

Along [111] a = 7.88 4.97 4.97 2.78 5.48 5.77 –1.85 –4.71

Along [001] a = 3.95, 5.01 4.85 2.78 2.84 5.52 6.02 6.10 5.53 –1.79 –4.98 –5.02 –2.12 –5.11, –1.51

c/a = 2.0 –1.93 –1.71

Along [001] 
(calculation 
data from [5])

a = 3.99, 
c/a = 2.07

– – 3.0 5.3 6.0 –4.6 –2.1 –2.1
We calculated the entire lattice vibration spectra in
low-energy ordered PZT phases at concentrations x =
1/3 and 1/2. The limiting optical vibration frequencies
at q = 0 are given in Table 7. For comparison, the table
also lists the results of ab initio LAPW calculations of
limiting frequencies in the PbZr1/2Ti1/2O3 phase ordered
along the [111] direction [3]. We see from Table 7 that,
for both values of the Zr/Ti ratio in the ordered phases,
the crystal lattice is unstable with respect both to the
ferroelectric mode (100.6i and 115i cm–1 in the phases

 and P4mm for x = 1/3, respectively, and 87.3i
and 103.5i cm–1 in the phases Fm3m and P4/mmm for
x = 1/2, respectively) and to other vibration modes. We

P3m1
P

note that, in the ordered Pb2ZrTiO6 with an elpasolite
structure, in addition to the ferroelectric soft mode,
there is a soft T1g mode that is very close in energy
(87i cm–1) and whose eigenvectors correspond to rota-
tions of the TiO6 (ZrO6) octahedrons. Thus, for a Zr/Ti
ratio close to 1/2, we might expect both polar and rota-
tional distortions of the crystal lattice. It is seen from
Table 7 that the Pb3ZrTi2O9 compound with ordering
along the [111] and [001] directions is even more unsta-
ble with respect to a ferroelectric mode or other vibra-
tion modes that are close in energy. For these values of
the Zr/Ti ratio, the pattern of lattice distortions during
structural phase transitions can be more complicated.
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Table 6.  Permittivity and Born effective charges for ordered PbZr1/3Ti2/3O3 solid solutions with different ordering types

Ion

Ordering along [001] (calculation data) Ordering along [111] (our calculation 
data)this study [18]

ε11 ε33 ε11 ε33 ε11 ε33

5.09 5.28 – – 5.11 5.04

Zxx Zzz Zxx Zzz Zxx Zzz

Pb1 2.88 2.87 3.90 4.04 2.86 2.96
Pb2 2.81 2.92 3.88 3.53 2.93 2.65
Pb3 2.88 2.87 3.90 4.04 2.86 2.96
Ti1 5.50 6.52 6.77 6.65 5.63 5.07
Ti2 5.50 6.52 6.77 6.65 5.63 5.07
Zr 6.09 5.87 6.33 6.69 5.24 5.75
O1 –1.65 –5.32 –2.58 –5.39 –1.69 –5.23
O2 –5.16 –1.62 –5.58 –2.34 –1.57 –5.20
O3 –1.72 –1.62 –2.72 –2.34 –1.57 –5.20
O4 –1.55 –6.09 –2.53 –5.57 –1.65 –4.91
O5 –5.16 –1.62 –5.58 –2.34 –1.79 –4.93
O6 –1.72 –1.62 –2.72 –2.34 –1.65 –4.91
O7 –1.65 –5.32 –2.58 –5.39 –1.79 –4.93
O8 –5.06 –2.17 –5.17 –2.94 –1.65 –4.91
O9 –1.96 –2.17 –2.33 –2.94 –1.65 –4.91

Table 7.  Vibration frequencies (cm–1) at q = 0 for ordered PZT structures with concentration x = 1/3 and 1/2 (the mode degen-
eracy is indicated in parentheses)

Pb3ZrTi2O9 Pb3ZrTiO6

ordering along [111],

P m1 symmetry
(our calculation data)

ordering along [001],
P4mm symmetry

(our calculation data)

ordering along [111], Fm3m 
symmetry (calculation data)

ordering along [001],
P4/mmm symmetry

(our calculation data)this study [3]

100.6i 218.1 115.0i 185.6 87.3i(2) 125i 103.5i 379.7
98.9i 219.2 95.5i 186.6(2) 87.0i(3) 101.8i 398.6
94.6i(2) 237.4 67.5i(2) 195.5 58.2i(3) 16i 28.8(2) 431.9
66.7i 261.8 23.5i 202.0 117.0 75.9 453.3
52.8i 286.5 22.8i 203.9 157.3(3) 82.6 517.5
52.7i 299.6 63.3(2) 227.0 217.5(2) 106.3 625.6
16.9i(2) 332.2 91.4(2) 296.6 226.9(3) 158 119.4 626.1
3.6i 335.3(2) 97.6 319.5 276.5 120.8

42.3 357.3 102.3 375.9 361.3(2) 326 158.9
78.3 370.6 116.0 383.4(2) 372.2 357 159.4
90.3(2) 372.1 138.7(2) 384.8 442.6(2) 538 164.8(2)

120.9 459.8 141.8 442.9 456.6(2) 190.3
147.9(2) 489.3(2) 160.3(2) 452.1 608.2 197.5
156.8 491.8 167.5(2) 551.0 699.7 838 205.9
207.4 622.2 172.5 628.7 210.6
211.6 687.5 181.7 650.6 212.9
214.7(2) 723.7 183.4 666.0 213.8
215.2 293.3

3

PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004



1300 ZINENKO, SOFRONOVA
4. CONCLUSIONS

Thus, we have written out the effective Hamiltonian
and studied the thermodynamic properties of cation
ordering in PbZrxTi1 – xO3 solid solutions using the
Monte Carlo method. We have calculated the parame-
ters of the effective Hamiltonian by performing nonem-
pirical total-energy calculations for structures with dif-
ferent types of zirconium and titanium ion ordering.
The energies were calculated using the ionic-crystal
model with regard to deformability and dipole and qua-
drupole polarizabilities of the ions. By carrying out
Monte Carlo calculations, we determined the cation-
ordering phase transition temperatures Tc ≈ 180 and
≈250 K for concentrations x = 1/3 and 1/2, respectively.
For the compound under study, these temperatures are
much lower than the melting temperature (Tmelt ~
1200 K). Due to the alloy ordering being diffusive in
character, the ordering kinetics at temperatures close to
room temperature is frozen and in reality the phase
transition in the ordered phase does not occur, in agree-
ment with experiment.

Using the same ionic-crystal model, we have calcu-
lated the high-frequency permittivity, Born dynamic
charges, and the lattice vibration spectra for the com-
pletely disordered and for the ordered phases of lowest
energies. It was found that there are soft vibration
modes, including ferroelectric modes, in the lattice
vibration spectrum both in the completely disordered
and in the ordered phases; moreover, a few soft modes
of different symmetry have almost equal energies.
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Abstract—Raman scattering spectra of RbMnCl3 are measured at room temperature under high hydrostatic
pressure. The results are interpreted based on first principles lattice dynamics calculations. The experimental
data obtained correlate with the calculations in the low frequency domain but disagree slightly in the region of
high-frequency vibrations. The transition from the hexagonal to the cubic perovskite phase observed earlier
(near 0.7 GPa) was confirmed, and new transitions to lower symmetry distorted phases were discovered (at
1.1 and 5 GPa). © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The RbMnCl3 crystal belongs to the large family of
perovskite-like structures with the general formula
ABX3. The smaller radius cations B (in this case, of
manganese) surrounded by anions X form fairly rigid
octahedral groups in these structures, with the larger
radius cations A located in the voids between these
groups. These octahedra can share corners to form a
classical cubic perovskite lattice (c-type packing in
Fig. 1a) or faces in the case of hexagonal structures
(h-type packing in Fig. 1b). Most of the widely known
oxygen-containing perovskites crystallize in the cubic
packing, and their properties have been studied in con-
siderable detail. Halogen-containing perovskites are
capable of forming both cubic and hexagonal lattices,
as well as mixed structural types consisting of combi-
nations of these two types [1], as illustrated in Fig. 1c.
These structures are exemplified by RbMnX3 crystals,
where X stands for a halogen. The fluoride RbMnF3 has
a cubic perovskite structure, the bromide RbMnBr3

possesses a hexagonal structure, and the chloride
RbMnCl3 has a mixed structure (Fig. 1c) [1, 2]. The
similarity in the chemical composition and structure of
these crystals gives grounds to suggest that a change in
the external conditions (temperature or pressure) may
induce phase transitions between these structural types,
which should inevitably manifest itself in anomalies in
the lattice dynamics. Indeed, RbMnCl3 exhibits a phase
transition with decreasing temperature (which is
accompanied by restoration of the soft mode in the
Raman spectrum [3]), as well as another transition from
1063-7834/04/4607- $26.00 © 21301
the hexagonal to cubic structure at high temperatures
and pressures. In [4], a fine-grained RbMnCl3 powder
was subjected to a hydrostatic pressure of above
0.7 GPa and annealed under pressure (for half an hour
at 700°C), after which the cubic structure stabilized in
this way was studied under normal conditions. In [5],
the cubic structure was observed to form in a part of the
sample volume at comparable temperatures and pres-
sures. Although it was pointed out that the actual
annealing temperature affects the pressure of the transi-
tion to the cubic phase only slightly, this transition has
nevertheless not been observed at room temperature
to date.

Recent theoretical studies of this group of crystals
[6] performed in an ab initio approach [7] revealed that
the hexagonal structure of RbMnCl3 should become
unstable with increasing hydrostatic pressure, with the
cubic modification of the crystal becoming energeti-
cally preferable (the calculated pressure at which the
hexagonal lattice should lose stability is about 1 GPa,
which correlates well with the experimental value of
0.7 GPa). According to those calculations, the onset of
instability of the hexagonal lattice should be attributed
to the high polarizability of the halogen ion and the
breakdown of the fine balance between the multipole
contributions to the energy of the hexagonal structure.
Considering that the difference between the calculated
energies of the cubic and hexagonal RbMnCl3 lattices
is very small and depends on pressure only weakly,
those calculations obviously require experimental veri-
fication, both to test the validity of this approach for
calculating the ion interaction potential as a whole and,
004 MAIK “Nauka/Interperiodica”
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in particular, to look for the existence of a room temper-
ature transition of the hexagonal to cubic structure in
RbMnCl3 under pressure.

This stimulated our present comparative experimen-
tal investigation of polarized Raman spectra in the hex-
agonal phase of RbMnCl3 and of the vibrational spec-
trum calculated by the method proposed in [7] and by
another technique similar to it [8] and a study of the
effect of hydrostatic pressure on the Raman spectrum of
this crystal.

(a)

(b)

(c)

Fig. 1. Octahedral group packing in ABX3 polytypes.
(a) Cubic perovskite structure and (b) double-layer hexago-
nal and (c) six-layer hexagonal structures.
P

2. STRUCTURE AND SYMMETRY 
OF THE CRYSTAL

The crystals intended for experimental study were
Bridgman-grown in a quartz ampoule by multiple
recrystallization. The grown bright red boules were
40 mm in diameter and up to 50 mm long and were
inspected to select regions with no inclusions, crystal-
lites, or other structural defects visible with a micro-
scope. The samples fabricated for polarization mea-
surements were rectangular parallelepipeds measuring
3 × 4 × 5 mm, with two edges oriented along the a and
c crystallographic axes. The orientation was performed
using the x-ray technique to within ±15′ and using a
polarization microscope; in the course of experiments
conducted under normal conditions, the crystal orienta-
tion was checked periodically from the absence of bire-
fringence in the sample and from the Rayleigh scatter-
ing background level. The techniques employed to
grow the single crystals and prepare the samples are
described in [3].

At room temperature, the structure of the crystal
belongs to space group P63/mmc, Z = 6 [1, 9]. Each of
the ions in the unit cell can occupy two symmetry-inde-
pendent positions, with the five atomic coordinates not
being fixed by crystal symmetry (Table 1). As follows
both from experimental studies [9] and from calcula-
tions of the equilibrium crystal structure [6], the MnCl6

octahedra differ slightly from the ideal shape; indeed,
they are extended along the hexagonal axis.

The vibrational representation can be decomposed
into irreducible representations at the center of the Bril-
louin zone for the hexagonal phase as

(1)

with the Raman tensor components in which the vibra-
tional modes of the corresponding symmetry are active
being shown in parentheses. While this result differs
somewhat from the expression given in [3], it agrees
with the number of vibrational degrees of freedom per
unit cell and is in accord with [8].

One can write a similar expression for the cubic
phase (Pm3m, Z = 1),

(2)

This expression does not contain Raman active vibra-
tions. As follows from a comparison of Eqs. (1) and (2),
the selection rules for these structures are essentially
different, which greatly simplifies their assignment by
Raman spectroscopy.

Γ 5A1g xx yy zz, ,( ) 6E1g xz yz zx zy, , ,( )+=

+ 8E2g xx yy xy yx, , ,( ) A1u 7A2u 2B1u 6B2u+ + + +

+ 9E1u 7E2u 2A2g 6B1g B2g,+ + + +

Γ 4F1u F2u.+=
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3. EXPERIMENTAL TECHNIQUE
AND RESULTS

3.1. Raman Scattering under Normal Conditions

The experiment under normal conditions was per-
formed on a computerized DFS-24-based Raman spec-
trometer. The experimental techniques used, the design
of the setup, and the data treatment chosen were
described in considerable detail in [10]. Ar+ laser polar-
ized radiation served for pumping (500 mW, 514.5 nm).

We obtained spectra in four scattering geometries:
y(xx)z with the expected lines, according to Eq. (1),
5A1g + 8E2g; y(xy)z with 8E2g lines, y(xz)x with 6E1g

lines; and y(zz)x with 5A1g lines. The results obtained
are displayed in Fig. 2.

The y(xz)x and y(zz)x components are seen to be
substantially weaker than the others (the spectra are
plotted on an arbitrary scale, but the drop in scattering
intensity is evident from the deteriorating signal/noise
ratio). Obviously enough, this is due to a strong anisot-
ropy in the crystal susceptibility. Out of the five
expected A1g lines, only two, at 55 and 178 cm–1, can be
reliably detected in Fig. 2c. To search for the others, the
spectra in Figs. 2a and 2b need to be compared. In com-
parison with Fig. 2b, Fig. 2a reveals a strong increase in
intensity in the region of 260 cm–1 and a somewhat
weaker, but still clearly pronounced increase near
138 cm–1. The remaining maxima in Figs. 2a and 2b,
namely, the maxima at 49, 60, 78, 154, 174, and
218 cm–1, should be assigned to E2g-type vibrations.
Note that the strongest spectral line at 260 cm–1 also
manifests itself in the xy component, although at a sub-
stantially lower intensity, which may be due to either
sample misorientation or to the radiation becoming
depolarized by defects in the crystal structure. The
remaining, weakest component of the xz spectrum is
shown in Fig. 2d. Out of the six expected E1g lines, one
sees reliably only the maxima at 55, 111, and 153 cm–1,
with a tentative identification of a weak line near
80 cm–1; its intensity is, however, comparable to the
background level.

3.2. Raman Scattering under Pressure

Room temperature experiments under high hydro-
static pressure (up to 9 GPa) were carried out on a dia-
mond anvil setup similar to the one employed in [11,
12]; the chamber containing the sample was 0.25 mm in
diameter and 0.1 mm in height. The pressure was deter-
mined to within 0.05 GPa from the luminescence band
shift of ruby [12, 13], a microcrystal of which was
placed near the nonoriented sample measuring 50–
70 µm. The pressure-transmitting medium was a highly
dehydrated mixture of ethyl and methyl alcohols. The
Raman spectra were also excited by an Ar+ laser
(514.5 nm, 500 mW) and recorded with an OMARS 89
(Dilor) multichannel Raman spectrometer. Because of
the small sample size and the strong diffuse scattering,
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
only the high-frequency part of the spectrum (150–
500 cm–1) was recorded. Simultaneously, the domain
structure and birefringence in the sample were
observed with a polarization microscope.

The transformation of the spectrum with pressure is
shown in Fig. 3. The high-frequency part of the spec-
trum observed under normal pressure coincides with
that shown in Fig. 2a; namely, one clearly sees a strong
peak at 260 cm–1, a weak maximum at 218 cm–1, and an
increase in intensity as the 154–174 cm–1 doublet is
approached. A similar pattern (with a slight increase in
the peak frequency) is observed when the pressure is
increased to ~0.4 GPa, where the spectral intensity
begins to gradually fall off. At the same time, the micro-
scope reveals the appearance and growth of an optically
isotropic region in the crystal. Note that the possible
phase separation at the pressure-induced transition to
the cubic phase was pointed out in [5]. At pressures
above 0.75 GPa, there is no Raman scattering at all and
the crystal becomes completely optically isotropic
(with the exception of small regions on the surface,
which may be due either to surface defects or to crystal
interaction with the pressure-transmitting medium).
This phase transition point agrees satisfactorily with
the value of 1.1 GPa quoted in [6] and the transition
pressure of 0.7 GPa reported in [4].

As the pressure increases above ~1.1 GPa, Raman
scattering reappears, but its spectrum changes the pat-
tern in that the 218 cm–1 line is absent and a doublet
forms in its place in the region of 200 cm–1. On the
whole, the pattern of the spectrum (in this high-fre-
quency part, which derives primarily from stretch
vibrations of the bonds forming the octahedral groups)
closely resembles that of the spectra of “cubic” perovs-
kites after transition to the rhombohedrally distorted
phase (see, e.g., [14]). As the pressure increases, the
intensity of the Raman lines and their frequencies
increase. At pressures near 5 GPa, the frequency growth
rate increases, while the line intensities start to wane
noticeably, which may indicate the onset of one more
phase transition (Fig. 4). No other transient phenomena
are observed in the spectra as the pressure is increased
still more (up to 9.65 GPa). As the pressure is relieved,
the crystal recovers its original state by passing through
the same sequence of changes. Multiple transitions

Table 1.  Positions of atoms in the six-layer hexagonal struc-
ture of RbMnCl3 (in units of ah = 7.1 Å, ch = 19.0 Å [8])

Ion Position x y z

Rb1 2(b) 0 0 1/4

Rb2 4(f) 1/3 2/3 z1

Mn1 2(a) 0 0 0

Mn2 2(f) 1/3 2/3 z2

Cl1 6(h) y1 2y1 1/4

Cl2 12(k) y1 2y2 z3
4
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Fig. 2. Room-temperature polarized Raman spectra of
RbMnCl3 measured in different scattering geometries.
PH
through the first detected point of transition from the
hexagonal to the optically isotropic phase do not entail
its displacement, nor are any hysteresis phenomena
observed (within the measurement accuracy), in con-
trast with [4], where the annealed cubic phase persisted
after the removal of pressure.
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Fig. 3. Pressure-induced transformation of the high-fre-
quency part of a Raman spectrum.
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4. MODELING OF THE SPECTRUM

To calculate the vibrational spectrum, we used the
Gordon–Kim model and took into account the ion elec-
tronic density distortion up to quadrupoles [7, 15]. The
electronic density of the crystal in this model is repre-
sented as the sum of electronic densities of individual
ions:

(3)

where  and  are the dipole and quadrupole
components of the ion electronic density, respectively.
The electronic density of an ion was calculated in terms
of the Watson sphere, which describes the effect of the
crystal environment [7, 15]:

(4)

where Z is the ion charge and RW is the radius of the Wat-
son sphere. The total crystal energy can be written as

(5)

where Eself is the sum of the ion self-energies,

(6)

is the interaction energy of spherically symmetric
ions, and

(7)

are the energies of the dipole–dipole, quadrupole–qua-
drupole, and dipole–quadrupole interactions, respec-
tively;  and  are the diagonal matrices of the
dipole and quadrupole polarizabilities of single ions
calculated by the Steinheimer method (for more details,
see [7]). The short-range parts of the ion pair interac-
tions Φ(ll ') are calculated in terms of the density func-
tional theory as

(8)
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and the long-range part of the interaction potential

(9)

is calculated by Ewald’s method. The fitting parameters
of the structure (Table 1), as well as the dipole and qua-
drupole ion moments, were determined from the fol-
lowing energy minimum conditions:

[whence it follows that

(10)

with A being a matrix that is the inverse of that of the
dipole–dipole interaction in Eq. (7)] and

which yields the equation

where

(11)
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Fig. 4. Pressure dependences of the strongest spectral line
frequencies. Dashed vertical lines indicate the tentative
transition points, and solid straight lines are linear extrapo-
lations.
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Note that the structural parameters calculated in this
way are almost identical to the figures derived experi-
mentally [8]. Equations (3)–(11) are discussed in more
detail in [6].

To calculate the vibrational spectrum of a crystal,
one has to take into account the dependence of its
energy (5) on the displacements of ions from their equi-
librium positions. The corresponding expression for the
dynamic matrix, including the electronic polarizability
of ions and their breathing modes in the crystal environ-
ment, can be written in the form (for a crystal of arbi-
trary symmetry) [7]

(12)

The matrices entering Eq. (12) are defined as follows:

(13)
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where Na is the number of atoms in a unit cell and the
lattice sum matrices C (2) and C (4) describe the contribu-
tions from long-range Coulomb interactions to the
dynamic matrix. The short-range interaction contribu-
tions can be cast as

(14)

Note that this approach to calculating the frequen-
cies and eigenvectors of lattice vibrations differs some-
what from the method proposed in [8], where the Gor-
don–Kim model was used to determine the Born–
Mayer potential coefficients.
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Table 2.  Vibration frequencies in the hexagonal phase (in cm–1)

Vibration mode Calc. Data from [8] Exp. Vibration mode Calc. Data from [8] Exp.

A1g 52 40 55 E1g 25 44

A1g 90 161 E1g 53 120 55

A1g 114 254 138 E1g 69 157 80?

A1g 149 339 178 E1g 97 171 111

A1g 189 368 260 E1g 155 301 153

A1u 87i 20i E1g 65i 51i

A2g 61 63 E1u(LO/TO) 49i/73i 40

A2g 85i 71 E1u(LO/TO) 0/0 0

A2u(LO/TO) 0/0 0 E1u(LO/TO) 50/15 56

A2u(LO/TO) 42/36 35 E1u(LO/TO) 53/51 64

A2u(LO/TO) 73/59 56 E1u(LO/TO) 74/69 119

A2u(LO/TO) 86/83 146 E1u(LO/TO) 98/80 171

A2u(LO/TO) 141/88 202 E1u(LO/TO) 111/104 242

A2u(LO/TO) 157/144 271 E1u(LO/TO) 136/128 244

A2u(LO/TO) 200/187 352 E1u(LO/TO) 186/163 330

B1g 30 26 E2g 24 39

B1g 70 62 E2g 42 55 49

B1g 77 99 E2g 53 80 60

B1g 83 174 E2g 76 143 78

B1g 155 296 E2g 90 216 154

B1g 185 356 E2g 105 242 174

B1u 61 74 E2g 157 306 218

B1u 88i 44i E2g 67i 39i

B2g 84i 53i E2u 86i 7

B2u 52 53 E2u 27 42

B2u 57 112 E2u 32 82

B2u 114 221 E2u 80 135

B2u 148 276 E2u 95 166

B2u 150 339 E2u 119 215

B2u 202 391 E2u 163 328
To make a symmetry analysis of the eigenvectors of
the normal lattice vibration modes obtained by diago-
nalizing the dynamic matrix (12), we made use of the
projection operators to expand the eigenvectors in
terms of a set of basis functions for irreducible repre-
sentations of the crystal symmetry group. We con-
structed a complete vibrational representation P(g) for
the space group of the hexagonal phase and used it to
calculate the projection operators [16]:

(15)

where d(ρ) is the dimension of a representation ρ of a
point symmetry operation, N(g) is the dimension of the

Pρ
d ρ( )
N g( )
------------ χρ g( )P g( ),

g G∈
∑=
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symmetry group, χρ(g) is the character of the matrix of
the irreducible representation ρ, P(g) is the vibrational
representation of the symmetry operation of the given
irreducible representation ρ of group G, Pρ is the pro-
jection operator, and summation is performed over all
symmetry group operations. An eigenvector f of vibra-
tion transforms according to the irreducible representa-
tion ρ of group G provided it satisfies the criterion [16]

(16)

This algorithm of expansion of the dynamic matrix
eigenvectors in terms of irreducible representations was
realized with the Mathematica 4.2 software package.

Pρf
N g( )
d ρ( )
------------f .=
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Table 3.  Eigenvectors of fully symmetric lattice vibrations in the hexagonal phase

Atom Coor-
dinate

Frequency (cm–1)
Atom Coor-

dinate
Frequency (cm–1)

52 91 114 149 189 52 91 114 149 189

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.012 –0.016 0.024 –0.006 0.004
Y 0.000 0.002 0.000 0.000 0.000 Y 0.012 –0.016 0.024 –0.006 0.004
Z 0.000 0.000 0.000 0.000 0.000 Z 0.000 0.000 0.000 0.000 0.000

Rb X –0.001 0.000 0.000 0.000 0.000 Cl X –0.012 0.013 –0.024 0.006 –0.004
Y 0.000 0.000 0.000 0.000 0.000 Y 0.000 0.000 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000 0.000 Z 0.000 0.000 0.000 0.000 0.000

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.000 0.000 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.000 Y –0.012 0.006 –0.024 0.006 –0.004
Z –0.012 0.001 0.005 –0.003 0.001 Z 0.000 0.000 0.000 0.000 0.000

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y 0.000 0.000 0.000 0.000 0.000 Y –0.002 –0.005 –0.002 0.010 0.018
Z 0.012 –0.001 –0.006 0.003 –0.001 Z 0.002 0.007 0.002 –0.001 0.003

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.000 0.000 0.000 0.000 Y 0.000 –0.001 0.000 0.000 0.000
Z –0.012 0.001 0.006 –0.003 0.001 Z 0.002 0.007 0.002 –0.001 0.003

Rb X 0.000 0.000 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.000 0.000 0.000 0.000 0.000 Y 0.002 0.002 0.002 –0.010 –0.018
Z 0.012 –0.001 –0.005 0.003 –0.001 Z 0.002 0.007 0.002 –0.001 0.003

Mn X 0.000 0.000 0.000 0.000 0.000 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.000 0.000 0.000 0.000 Y 0.002 0.006 0.002 –0.009 –0.019
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Mn X 0.000 0.000 0.000 0.000 0.000 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y 0.000 0.000 0.000 0.000 0.000 Y 0.000 0.000 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.000 –0.005 0.000 0.000 0.000 Y –0.002 –0.003 –0.002 0.010 0.018
Z –0.001 0.003 0.006 0.011 –0.005 Z –0.002 –0.007 –0.002 0.001 –0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.006 0.000 0.000 0.000 Y 0.002 0.006 0.002 –0.000 –0.019
Z 0.001 –0.003 –0.005 –0.011 0.005 Z 0.002 0.007 0.002 –0.001 0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y 0.000 0.006 0.000 0.000 0.000 Y 0.000 0.000 0.000 0.000 0.000
Z –0.001 0.003 0.005 0.011 –0.005 Z 0.002 0.007 0.002 –0.001 0.003

Mn X 0.000 0.001 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.000 –0.005 0.000 0.000 0.000 Y –0.002 –0.003 –0.002 0.010 0.018
Z 0.001 –0.003 –0.006 –0.011 0.005 Z 0.002 0.007 0.002 –0.001 0.003

Cl X –0.012 0.013 –0.025 0.006 –0.004 Cl X –0.003 –0.005 –0.002 0.010 0.018
Y –0.012 0.013 –0.025 0.006 –0.004 Y –0.002 –0.005 –0.002 0.010 0.018
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Cl X 0.012 –0.016 0.024 –0.006 0.004 Cl X 0.003 0.005 0.002 –0.009 –0.019
Y 0.000 0.001 0.000 0.000 0.000 Y 0.000 –0.001 0.000 0.000 0.000
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003

Cl X 0.000 0.000 0.000 0.000 0.000 Cl X 0.000 –0.001 0.000 0.000 0.000
Y 0.012 –0.006 0.025 –0.006 0.004 Y 0.002 0.002 0.002 –0.010 –0.018
Z 0.000 0.000 0.000 0.000 0.000 Z –0.002 –0.007 –0.002 0.001 –0.003
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5. RESULTS AND DISCUSSION

The results of the calculations of the eigenfrequen-
cies and their assignment according to irreducible rep-
resentations of the crystal symmetry group are com-
pared in Table 2 with the results quoted in [8] and the
frequencies of the experimentally observed Raman
spectral lines; the eigenvectors of the fully symmetric
(A1g) vibrations are presented in Table 3.

The calculated and experimental frequencies for all
vibration modes are seen to be in satisfactory agree-
ment considering that the method of calculation did not
employ fitting parameters. Some of the calculated fre-
quencies turned out to be imaginary, which indicates
the lattice of the hexagonal phase to be unstable at 0 K
and is in accord with the phase transition in RbMnCl3
observed to occur at 272 K [3] (a comprehensive anal-
ysis of the origin of this instability is given in [8] in
terms of a similar approach; we do not dwell on it here).
We did not succeed in observing the lowest frequency
modes near 20 cm–1, apparently because of the low-fre-
quency dynamics undergoing strong rearrangement at
this phase transition; this could also be associated, how-
ever, with the strong wing of Rayleigh scattering in this
region. In accordance with experiment, the calculation
shows that the highest frequency vibrations correspond
to the irreducible representation A1g; an analysis of their
eigenvectors (Table 3) suggests that such vibrations are
primarily connected with the chlorine ions being dis-
placed in the Mn–Cl bond direction (although they also
have a small contribution from the manganese ions and
even an insignificant contribution from the heavy rubid-
ium ions). As seen from Table 2, the disagreement
between the calculated and experimental frequencies is
the largest in this spectral region.

In the middle frequency range, the agreement
between the calculated and experimental frequencies is
noticeably better; the dynamics is governed here appar-
ently primarily by long-range Coulomb interactions of
the ions. Interestingly, the heavy rubidium ions provide
a substantial contribution to the eigenvectors of the
fairly high-frequency modes at 114 and 149 cm–1,
which is even larger than that to the lower lying modes
(Table 3).

Note that the calculation of the crystal lattice poten-
tial and of the phonon spectrum performed in [8] took
into account only the Coulomb interaction of point ions
and the short-range repulsion of spherically symmetric
free ions. However, as shown in [7], the energetically
preferable structure for RbMnCl3 in this case is cubic
rather than hexagonal. Stabilization of the latter struc-
ture is determined by the polarization energy, which is
connected with the presence of dipole and quadrupole
ion moments.

Note, however, that the frequency spectra obtained
by the methods used in [7] and [8] are qualitatively sim-
ilar; also similar are the numbers of imaginary frequen-
cies corresponding to vibrations that are unstable at low
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
temperatures (the lowest positive frequency of 7 cm–1,
which was obtained with the Born–Mayer potential,
turned out to be imaginary when the multipole distor-
tions of the electronic density were included). This sim-
ilarity suggests that an analysis of the origin of the lat-
tice instability at low temperatures (which is deter-
mined primarily by the low-frequency dynamics)
should yield similar results in both cases. Good qualita-
tive agreement is also observed in the middle frequency
range (up to 50–60 cm–1). By contrast, in the region of
high-frequency vibrations, which are associated prima-
rily with the stretch vibrations of the Mn–Cl bonds, the
results are in obvious disagreement. Apparently, this
indicates overestimation of the force constants of these
bonds with the Born–Mayer potential, whereas the
multipole approximation underestimates them.

The agreement between the calculated (1.1 GPa)
and experimental (0.7 GPa) pressures for the transition
from the hexagonal to cubic phase should apparently be
considered satisfactory. This is corroborated by the
optical isotropy of the crystal and the absence of Raman
scattering. Note that this phase transition, associated
with a considerable rearrangement of the lattice, entails
separation of the phases that coexist in the pressure
interval 0.4–0.8 GPa (and, possibly, at still higher pres-
sures near the sample surface, where structural defects
should play an appreciable role).

6. CONCLUSIONS

Thus, our study has revealed that the fitting parame-
ter–free method proposed in [8, 15] permits efficient
calculation of the lattice stability and dynamics of ionic
crystals in fairly complex structures. A comparative
analysis of Raman scattering and of the calculated lat-
tice vibration spectrum for the RbMnCl3 hexagonal
phase made it possible to assign most of the Raman
lines allowed by the selection rules and to determine the
eigenvectors of the corresponding vibrations. Some dif-
ferences between the experimental and calculated fre-
quencies observed in the high-frequency part of the
spectrum can be tentatively related to the covalency of
the Mn–Cl bonds.

The pressure-induced transition from the hexagonal
to cubic phase, which was earlier observed to occur
only at high temperatures, has been detected at room
temperature, in full agreement with calculations [5].
This transition takes place through separation of the
phases that coexist in the range 0.4–0.8 GPa, which cor-
relates with the calculated pressure of 1.1 GPa at which
the hexagonal phase becomes unstable; the phase tran-
sition was found to be reversible and was not accompa-
nied by noticeable hysteresis effects. A further increase
in pressure was observed to drive transitions at 1.1 GPa
and, tentatively, at 5 GPa.
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Abstract—Raman scattering spectra of elpasolite Rb2KScF6 are studied in a wide temperature range including
two phase transitions: from the cubic to the tetragonal phase and then to the monoclinic phase. The experimental
Raman scattering spectrum is compared with the lattice vibration spectra of these phases calculated using an
ab initio approach. A number of anomalies (caused by structural rearrangement during the phase transitions)
are revealed and quantitatively analyzed in the ranges of both the intramolecular vibrations of the octahedron
molecular ScF6 ions and low-frequency intermolecular lattice vibrations. The interaction between low-fre-
quency intramolecular vibrations and the intermolecular modes is found to be significant, and strong resonance
interaction of the rotational soft modes (which are recovered below the phase transition points) with hard low-
frequency vibrations of the rubidium ion sublattice is detected. These interactions are shown to substantially
complicate the spectra. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The perovskite-like Rb2KScF6 crystal belongs to
the family of A2B(1)B(2)X6 elpasolites, where A and B
are metal cations or more complex molecular ions and
X are oxygen or halogen anions [1]. As a rule, one of
the highly polarized cations enters into the rather rigid
octahedral molecular group BX6 and the crystal struc-
ture can be considered a skeleton of these octahedra
separated by cations with a strongly localized electron
density. In many cases, phase transitions in elpasolites
are related to changes in the octahedral skeleton,
namely, small tilts of these octahedra or their orienta-
tion ordering. In particular, these changes manifest
themselves experimentally in substantial anomalies in
the crystal lattice dynamics, including the condensa-
tion of soft phonon modes during displacive transitions
[1–5].

The Rb2KScF6 crystal undergoes phase transitions
from the cubic to the tetragonal phase and then to the
monoclinic phase [6]. The stability of these structures
and the dynamics of their lattices were analyzed in [7,
8] by performing nonempirical calculations. It was
shown that the instability of these structures is of
phonon nature and that the mechanism of at least the
first transition is related to the condensation of an opti-
cal phonon, which should appear again in the low-sym-
metry phases. Earlier searches for manifestations of
such vibrations in Raman scattering spectra did not
meet with success [9] (as in the cases of other fluorine-
containing elpasolites [10]). Later, observation of the
1063-7834/04/4607- $26.00 © 21311
recovery of soft phonon modes in the Rb2KScF6 crystal
was reported in [11, 12]. However, the number of these
modes is inconsistent with that predicted by group-the-
oretic analysis [13] and they can be observed experi-
mentally only well below the phase transition point.
Therefore, the purpose of this work is to analyze the
experimental spectral data quantitatively, compare
them with the results of numerical calculations, and
establish the causes of discrepancies between the calcu-
lated and experimental data.

2. CRYSTAL STRUCTURE 
AND SYMMETRY

The unit cell of the high-symmetry cubic phase of
the elpasolite A2BB3+X6 can be represented as a cubic
perovskite cell with doubled parameters in which the B
and B3+ ions alternate along all three coordinate axes.
The structure of the unit cell (space group Fm3m, Z = 4)
is shown in Fig. 1.

As the temperature decreases, the Rb2KScF6 crystal
undergoes two sequential phase transitions: from the
cubic to the tetragonal phase (space group I114/m,
Z = 2) at T1 = 252 K and then to the monoclinic phase
(space group P121/n1, Z = 2) at T2 = 223 K [6]. The cal-
culated distortion of the structure [8] that is predicted to
occur at the first phase transition is shown in Fig. 2. As
is seen, this distortion is a rotation of the rigid ScF6
octahedra.
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Structure of the initial cubic phase of the Rb2KScF6
crystal.

Fig. 2. Lattice distortions associated with the transition to
the tetragonal phase.
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Fig. 3. Correlation diagrams for the Raman-active vibra-
tions of the cubic and tetragonal phases.
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Fig. 4. Correlation diagrams for the Raman-active vibra-
tions of the cubic and monoclinic phases.
P

In the high-symmetry cubic phase, the reduction of
the oscillation representation at the center of the Bril-
louin zone is

(1)

The Raman tensor components in which the corre-
sponding vibrations are active are indicated in paren-
theses. The intramolecular modes related to the internal
vibrational degrees of freedom in the ScF6 octahedron
in the crystal can be considered to interact only weakly
with intermolecular lattice vibrations related to the
rigid motion of the octahedron as a whole and to remain
strongly localized, which agrees with the data from
[10–13]. In this case, in the cubic phase, only the inter-
molecular mode F2g is Raman-active; the other Raman-
active modes are the intramolecular vibrations of this
group.

Since the symmetry of the free octahedron coincides
with the symmetry of the position of the ScF6 groups in
the crystal, the symmetry and shape of their intramolec-
ular vibrations should remain unchanged in this
approximation [14].

In the tetragonal phase, the reduction of the oscilla-
tion representation at the center of the Brillouin zone
has the form

(2)

Figure 3 shows the correlation diagram for vibra-
tions (1) and (2).

The structural distortions due to the first phase tran-
sition (Fig. 2) transform according to the triply degen-
erate irreducible representation F1g. Therefore, the soft
mode above the transition point should also transform
according to this representation; this mode is inactive in
the Raman scattering spectra (and the infrared absorp-
tion spectra).

From the correlation diagram in Fig. 3, it follows
that, below the transition point to the tetragonal phase,
the degeneracy of the intramolecular (Eg, F2g) and inter-
molecular (F2g) vibrations can be removed (i.e., split-
ting will occur) and two soft modes can split and
become Raman-active.

In the low-symmetry monoclinic phase, the reduc-
tion of the oscillation representation of the symmetry
group has the form

(3)

The transition to the monoclinic phase is accompanied
by a twofold increase in the unit cell volume. The
modes at the X(0, 0, π/a) point in the Brillouin zone,
including the possible soft mode , are Raman-inac-
tive; however, they can become Raman-active below

Γvibr Fm3m( ) A1g xx yy zz, ,( ) Eg xx yy zz, ,( )+=

+ 2F2g xz yz xy, ,( ) F1g 5F1u F2u.+ + +

Γvibr I114/m( ) 3Ag xx yy zz, ,( ) 3Bg xx yy xy, ,( )+=

+ 3Eg xz yz,( ) 5Au Bu 6Eu.+ + +

Γvibr P121/n1( ) 12Ag xx yy zz xy yx, , , ,( )=

+ 12Bg xz yz zx zy, , ,( ) 18Au 18Bu.+ +

X2
+
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the second transition point (and the soft mode can also
be recovered). The correlation between the Raman-
active modes in the monoclinic phase and the modes in
the cubic phase is shown in Fig. 4. As is seen, the mode

 is the only one in this structure and it corresponds
to rotation of the octahedral groups. We might also
expect further splitting of the modes that are degenerate
in the tetragonal phase, including the recovering soft
mode corresponding to the transition from the cubic to
the tetragonal phase.

3. EXPERIMENTAL AND DATA PROCESSING 
TECHNIQUES

To study Raman spectra, we applied polarized
514.5-nm radiation from a 500-mW Ar+ laser as an
excitation source. The spectra were recorded in the
180° geometry using a T-64000 spectrometer (I.S.A.,
Jobin Yvon) with matrix recording. Samples 2 × 2 ×
4 mm in size were taken from the solidification batch
used in [6, 11]; their edges were orientated along the
crystallographic axes of the cubic phase. The samples
are optically transparent and do not contain color
defects or inclusions that are visible under a micro-
scope. To weaken the wing of elastic scattering as much
as possible to record low-frequency spectra, we applied
a triple monochromator in the dispersion subtraction
mode. Low frequencies were cut beginning from 8 cm–1.
To record high-resolution spectra of intramolecular
vibrations (with minimum distortion of line contours),
we applied the dispersion addition mode. The spectral
size of the recording matrix cell was 650/1024 cm–1 in
the dispersion subtraction mode and 220/1024 cm–1 in
the dispersion addition mode; the counting time was
600 s. The temperature of a sample during the record-
ing of spectra was maintained with an accuracy of bet-
ter than 0.2 K. The Rb2KScF6 crystal was studied in the
temperature range 50–600 K.

To determine the parameters of spectral lines, we
processed the experimental data with the SigmaPlot 8.0
software package using the dispersion shape of a con-
tour. Moreover, we took into account the frequency-
dependent correction

(4)

to the temperature dependence of the scattering inten-
sity.

To correctly compare the experimental Raman spec-
tra with the calculations carried out in [7, 8] and deter-
mine the eigenvectors of the observed vibrations, we
performed a group-theoretic analysis of the eigenvec-
tors of the calculated lattice vibrations. For this pur-
pose, the calculated eigenvectors of the dynamic matrix
are expanded in terms of the basis functions of the irre-
ducible representations of the crystal symmetry group
using projection operators. We constructed the com-

X2
+

Is Ωα( ) Qα
2

nα 1+∼ ∼ 1
1 "Ωα /kBT–( )exp–
-------------------------------------------------=
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plete oscillation representation P(g) of the space group
of the hexagonal phase and then found the projection
operators [15]:

(5)

Here, d(ρ) is the dimension of the representation ρ of
the point symmetry operation, N(g) is the dimension of
the symmetry group, χρ(g) is the character of the matrix
of the irreducible representation ρ, P(g) is the oscilla-
tion representation of the symmetry operation for the
irreducible representation ρ of the group G, and Pρ is
the projection operator. Summation is performed over
all operations of the symmetry group. A vibration
eigenvector f is transformed according to the irreduc-
ible representation ρ of the group G if it satisfies the cri-
terion [15]

(6)

This algorithm of expansion of the eigenvectors of a
dynamic matrix in terms of the irreducible representa-
tions is realized using the Mathematica 4.2 software
package.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. Raman Scattering Spectrum 
of the Cubic Phase

The spectrum of the Rb2KScF6 cubic crystal far
from the phase transition point is shown in Fig. 5. In
Table 1, the calculated modes of the cubic phase [7] are
assigned to the symmetry types and the experimental
frequencies are compared with the corresponding cal-
culated frequencies.

The number, frequencies, and polarization of the
spectral lines of the cubic phase agree well with those
observed earlier [9–13]. The lines are strongly polar-

Pρ
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Fig. 5. Raman spectrum of the cubic phase of Rb2KScF6
(T = 300 K).
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ized, which confirms the high quality of the sample.
The calculated frequencies are somewhat lower than
the experimental ones, which can be due to the fact that
the calculations correspond to the absolute zero of tem-
perature, where the cubic phase is unstable. This cir-
cumstance also explains the imaginary values of the
frequencies of the low-frequency vibrations.

Table 2 gives examples for the eigenvectors of
intramolecular vibrations of the ScF6 octahedra. As was
expected, the eigenvectors of the two highest frequency
vibration modes (390 and 505 cm–1) correspond to
intramolecular vibrations of the free ScF6 octahedra

Table 1.  Experimental and calculated vibration frequencies
(cm–1) of Rb2KScF6 in the cubic phase

Vibration mode Calculation [7] Experiment

F1g 66i
F1u 34i

F2g 26i 89

F1u 0

F1u 80

F2u 99

F1u 135

F2g 152 230

F1u 164

F1u 185

F1u 189

Eg 343 390

A1g 402 505

F1u 404

F1u 462

Note: Boldface type shows the calculated frequency of the soft
mode corresponding to the first phase transition.
P

(390 and 498 cm–1 for the free ScF6 ion, respectively
[14]). However, the low-frequency intramolecular
vibration of the octahedral ion and the intermolecular
vibration mode of the rubidium ion sublattice (both
vibrations have the F2g symmetry) are found to be
mixed, although their vibration frequencies are rather
far from each other (230 and 89 cm–1, respectively).
This finding indicates noticeable interaction between
the intermolecular and the intramolecular vibrations
even in the high-symmetry cubic phase.

4.2. Temperature Dependence 
of the Internal Vibration Modes

The correlation diagrams of the Raman-active inter-
nal modes are given in Fig. 6. It is seen that, below the
transition to the monoclinic phase, an additional line
corresponding to the Brillouin zone boundary can
appear in the region of the fully symmetrical high-fre-
quency vibration of the ScF6 group.

The transformation of the spectrum in the frequency
range in question is shown in Fig. 7, and the tempera-
ture dependences of the frequencies and half-widths of
the observed lines are shown in Fig. 8. In Fig. 7, addi-
tional lines are clearly seen to appear in this spectral
region at low temperatures, which agrees well with the
selection rules (see the correlation diagram in Fig. 6).
The temperature dependence of the frequency signifi-
cantly changes in character near the phase transforma-
tion points. Extrapolating the temperature dependence
of the frequency in the cubic phase using the well-
known relation [12, 13] (see Fig. 8)

(7)

gives the product of the Grüneisen parameter by the
coefficient of thermal expansion, γαα ≈ 0.2 × 10–5 K–1.
The frequency extrapolated to zero temperature is equal
to 518 cm–1. Such a low value of the Grüneisen param-

Ωα T( ) Ωα 0( ) 3γααT–( )exp=
Table 2.  Eigenvectors of the internal vibrations of the ScF6 ion

Eg A1g

Atom x y z x y z x y z

Rb 0 0 0 0 0 0 0 0 0

Rb 0 0 0 0 0 0 0 0 0

K 0 0 0 0 0 0 0 0 0

Sc 0 0 0 0 0 0 0 0 0

F 0 0 0.29 0 0 0.5 0 0 –0.41

F 0 0 –0.29 0 0 –0.5 0 0 0.41

F 0.29 0 0 0.5 0 0 0.41 0 0

F –0.29 0 0 –0.5 0 0 –0.41 0 0

F 0 –0.58 0 0 0 0 0 –0.41 0

F 0 0.58 0 0 0 0 0 0.41 0
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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eter, even making allowance for its dependence on the
frequency

(8)

indicates that the effect of anharmonicity on this vibra-
tion is weak (Ωα is the frequency of this vibration, BT is
the isothermal bulk modulus of elasticity, P is the
hydrostatic pressure).

The frequency shift with respect to the extrapolated
value below the transition to the tetragonal phase is
shown in Fig. 9.

A small additional frequency shift appears even in
the cubic phase in a rather wide (about 50 K) region
above the phase transition point. The shift increases
monotonically in the tetragonal phase and becomes vir-
tually linear in the monoclinic phase, which corre-
sponds to a second-order (or close-to-second-order)
phase transformation.

The half-width of this line also changes with tem-
perature. Its temperature dependence is shown in
Fig. 10. The curve in Fig. 10 is the half-width in the
cubic phase fitted by the expression

(9)

which describes the line broadening caused by the
decay into two phonons [16, 17]. The experimental
dependence is seen to be correctly described by this
expression; this fact indicates the absence of substantial
contributions from other line-broadening mechanisms,
e.g., structural disordering of the crystal in the high-
temperature phase. The fitted frequencies of the
phonons involved in the decay of this intramolecular
vibration are found to be Ωβ1 ≈ 413 cm–1 and  =
Ωα – Ωβ1, which correspond to a decay into two optical
phonons with one of the phonons being close in fre-
quency to the intramolecular vibration ν2 [14] and the
other falling in the region of high-frequency lattice
vibrations. The line half-width extrapolated to zero
temperature is 0.9 cm–1.

As follows from Fig. 5, the intramolecular vibration
ν2 in the cubic phase is very weak; for this reason, we
failed to reliably detect its splitting below the phase
transition points. The temperature dependence of its
frequency is also described well by Eq. (7) with γαα ≈
0.4 × 10–4 K–1, which corresponds to a higher value of
the Grüneisen parameter (i.e., greater anharmonicity of
vibrations); the frequency extrapolated to zero temper-
ature is equal to 407 cm–1.

The temperature dependences of the frequencies
and half-widths of the lines detected in the region of the
intramolecular vibration ν5 are shown in Fig. 11. The

γα
BT

Ωα
-------

dΩα

dP
---------- 

 
T

=

σ Ωα T,( ) σ Ωα 0,( ) 1
1

"Ωβ1/kBT( )exp 1–
------------------------------------------------+

=

+
1

"Ωβ2/kBT( )exp 1–
------------------------------------------------



Ωβ2
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ScF6 intramolecular modes 
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Fig. 6. Correlation diagrams for the Raman-active internal
vibrations of the ScF6 groups. The vibrations that are
allowed in the spectrum by the selection rules are marked.
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number of the lines corresponds to the selection rules
(Fig. 6), and their positions agree qualitatively with the
calculations [7].

The frequency of the most intense line in this range
(232 cm–1) remains virtually unchanged in the cubic
phase, which indicates that the contributions from ther-
mal expansion and phonon–phonon interaction to the
temperature dependence of the frequency compensate
each other. Below the transition from the cubic to the
tetragonal phase, the frequency of this line changes
continuously and the line splits to form a doublet. At the
transition to the monoclinic phase, the frequencies
change in a jump and split further. The continuous vari-
ation of the spectrum during the first phase transition
and the jumpwise change during the second transition
agree with the data on the thermodynamics of these
transitions [6]. The lines that appear in the monoclinic
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Fig. 10. Temperature dependence of the half-width at half-
maximum (HWHM) of the internal vibration ν1. The curve
is extrapolation by Eq. (9).
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phase and correspond to the Brillouin zone boundary of
the cubic phase are very weak, and some of them can be
detected only far below the transition to the monoclinic
phase.

The temperature dependence of the half-width of
the line at 232 cm–1 fitted by Eq. (9) gives a value of
0.1 cm–1 for the line half-width extrapolated to T = 0
and a frequency of 224 cm–1 for the phonon that forms
during decay; this frequency corresponds to the decay
into an optical and acoustic phonons at the Brillouin
zone boundary.

4.3. Temperature Dependence
of the Lattice Vibration Modes

The variation of the intermolecular vibration spec-
trum with temperature is shown in Fig. 12. The spec-
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the region of the internal vibration ν5. The vertical bars
show the line half-widths (HWHM).
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trum can be divided into two portions, above and below
60 cm–1. The higher frequency spectrum corresponds to
stable (hard) intermolecular vibration modes of the
rubidium ion sublattice with a small admixture of the
low-frequency intramolecular deformation vibration
mode of the ScF6 ions. (The eigenvector of this mode,
as well as the eigenvector of the Raman-inactive soft
mode in the cubic phase, is given in Table 3). In this
range, the frequency of the intermolecular mode grows
slowly (89 cm–1 at room temperature). Below the first
transition point, this mode splits into two lines and then
splits further below the second transition point and
additional low-intensity lines appear upon deeper cool-
ing. The temperature dependences of the frequencies
and widths of these lines are shown in Fig. 13. 

The total number of lines detected in this higher fre-
quency range corresponds to the selection rules (see the
correlation diagram in Fig. 14).

Note that new lines appear immediately after the
phase transitions, which is related to the splitting of
degenerate vibration modes in the high-symmetry
phases. However, the additional lines caused by a two-
fold increase in the unit cell volume appear far below
the phase transition points. This finding can be
explained by the fact that the phase transitions result in
substantial changes in the crystal dynamics, which
leads to shifts and splitting of the lines corresponding to
Raman-active modes in the high-temperature phase. At
the same time, the derivatives of the crystal dielectric
susceptibility with respect to the atomic displacements
change only weakly and the forbidden vibrations at the
Brillouin zone boundary remain weak until their eigen-
vectors become sufficiently strongly distorted.

In the low-frequency portion of the spectrum
(<60 cm–1), the central scattering peak grows and
broadens as the temperature decreases in the region
several degrees above the phase transition point. Below
the first transition point, a wide wing (which can be
interpreted as the excitation of a low-intensity broad
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
band) appears near the central peak (Fig. 15). At lower
temperatures, this band exhibits two maxima, at 26 and
39 cm–1. Figure 15 shows the temperature dependence
of the squared frequencies of the maxima of these lines.

In the tetragonal phase, no significant shifts in the
frequencies of these lines are observed (the accuracy of
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Fig. 12. Variation of the lattice vibration spectrum of
Rb2KScF6 with temperature.
Table 3.  Eigenvectors of lattice vibration modes in the cubic phase

Hard F2g mode, Ω = 89 cm–1 Soft F1g mode, Ω = 66i cm–1

Atom x y z x y z

Rb 0.35 –0.52 0.18 0 0 0

Rb –0.35 0.52 –0.18 0 0 0

K 0 0 0 0 0 0

Sc 0 0 0 0 0 0

F –0.16 0.10 0 0.39 0.08 0

F 0.16 –0.10 0 –0.39 –0.08 0

F 0 –0.05 0.16 0 0.31 0.39

F 0 0.05 –0.16 0 –0.31 –0.39

F 0.05 0 0.10 0.31 0 –0.08

F –0.05 0 –0.10 –0.31 0 0.08
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Intramolecular high-frequency (rigid) modes 
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determining the line positions is low, because the noise
level is comparable to the line intensities). We note only
a transfer of intensity to the high-frequency portion of
this band and a decrease in the intensity of the central
peak (which is likely due to rearrangement of the
domain structure) with decreasing temperature.

When the second transition point is reached, the
intensity of elastic scattering increases jumpwise and
the intensity of the detected band is redistributed;
namely, its high-frequency portion increases substan-
tially. The frequency of this maximum increases mono-
tonically upon cooling, and the temperature depen-
dence of the frequency squared is almost linear, which
is characteristic of the soft modes related to displacive
second-order (or close-to-second-order) phase transi-
tions. Below 100 K, where the lines become strongly
narrower because of small anharmonicity at such tem-
peratures, this maximum splits in two. As the tempera-
ture decreases further, the high-frequency component
of the doublet formed continues to move upward,
whereas the position of the low-frequency component
remains virtually unchanged (47–48 cm–1).

The position of the lowest frequency maximum also
remains virtually unchanged (23–27 cm–1). Its intensity
decreases slowly, and, below 100 K, it can hardly be
detected against the noise background.

The number of lines observed in the lattice vibration
spectra is consistent with the selection rules (see the
correlation diagram in Fig. 14). This diagram shows
that, below the first transition point, the two modes will
be observed that are formed as a result of the condensa-
tion and partial splitting of the earlier Raman-inactive
F1g phonon, which corresponds to rotational vibrations
of the octahedron groups prior to the transition (Table 3).
By analogy with the hard intermolecular modes, we
might expect their intensities to be rather low. After the
second phase transition, they should split to yield a trip-
let (the symmetry of the corresponding vibrations in the
monoclinic phase is Ag + 2Bg). Simultaneously, the soft
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cies of the detected low-frequency lattice vibrations.
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mode corresponding to this transition should begin to
recover; this mode also has the Ag symmetry in the
monoclinic phase and also corresponds to rotations of
the octahedron groups in the high-temperature phase.
The presence of the hard vibration modes of the rubid-
ium ion sublattice of the same symmetry in the spec-
trum (Fig. 14; the calculated frequencies and eigenvec-
tors of all lattice vibrations in the monoclinic phase can
be found in [18]) leads to their resonance interaction
with the recovering soft modes. This mode interaction
is accompanied by strong mixing of their eigenvectors
until the high-frequency component of the “soft multip-
let” shifts toward sufficiently high frequencies, where it
becomes observable in the experimental spectrum.
Note that, according to the dynamics calculations of the
monoclinic phase at T = 0 [7], the frequencies of the
two lowest vibration modes in the spectrum are 22 and
31 cm–1, which agrees well with the experimental posi-
tion of the low-frequency maximum (23–27 cm–1).
However, calculations [18] show that the eigenvector of
these vibrations is a superposition of the rotations of the
rigid ScF6 groups (without distortion) and the displace-
ments of the rubidium atoms.

5. CONCLUSIONS

The phase transitions in Rb2KScF6 have been found
to be accompanied by the recovery of soft phonon
modes, which allows us to attribute them to displacive
transitions [8, 9]. We did not detect any lattice disorder-
ing–induced anomalies in the lattice dynamics of the
high-symmetry phase. The group-theoretic analysis
shows that the eigenvectors of both soft modes above
the phase transition points are connected with the rota-
tions of the  octahedron molecular ions. Below
the transition to the monoclinic phase, a strong interac-
tion between the recovering rotational soft modes and
the displacements of the rubidium ions is observed.
This interaction results in modification of the tempera-
ture dependences of the phonon frequencies and mix-
ing of the phonon eigenvectors and complicates the
vibration spectrum.

Anomalies in the temperature dependences of the
parameters of the hard intermolecular modes and the
intramolecular vibrations of the KScF6 groups have
been revealed and interpreted. Quantitative analysis of
these anomalies supported the transition to the tetrago-
nal phase being a second-order transition and the tran-
sition to the monoclinic phase being a first-order (close-
to-second-order) transition. The small values of the line
half-widths and their temperature dependences indicate
that the vibration damping in the high-symmetry phase
is determined by the decay of phonons due to their
anharmonicity and is not related to structure disorder-
ing, except, possibly, for the pretransition region.

ScF6
+
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Abstract—The unit cell parameters a, b, and c of [N(CH3)4]2ZnCl4 have been measured by x-ray diffraction
in the temperature range 80–293 K. Temperature dependences of the thermal expansion coefficients αa, αb, and
αc along the principal crystallographic axes and of the unit cell thermal expansion coefficient αV were deter-
mined. It is shown that the a = f(T), b = f(T), and c = f(T) curves exhibit anomalies in the form of jumps at phase
transition temperatures T1 = 161 K and T2 = 181 K and that the phase transition occurring at T3 = 276 K man-
ifests itself in the a = f(T) and b = f(T) curves as a break. A slight anisotropy in the coefficient of thermal expan-
sion of the crystal was revealed. The phase transitions occurring at T1 = 161 K and T2 = 181 K in
[N(CH3)4]2ZnCl4 were established to be first-order. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The tetramethylammonium tetrachlorozincate
[N(CH3)4]2ZnCl4 belongs to the [N(CH3)4]2XB4 family
(X = Zn, Co, Cu, Mn, Fe, Cd, Ni; B = Cl, Br), which is
characterized by the occurrence of phase transitions
(PTs) in most of these crystals and by the manifestation
of ferroelectric properties within a relatively narrow
temperature interval [1]. In addition, some of these
crystals exhibit an intermediate incommensurate phase
at the crossover from the para- to the ferroelectric
phase.

The [N(CH3)4]2ZnCl4 crystal is of interest because it
undergoes a sequence of phase transitions. PTs were
shown in [2] to occur in this crystal at 161, 181, 276.3,
279, and 293 K, with ferroelectric properties (spontane-
ous polarization along the a axis and a hysteresis loop)
revealed in the range 276.3–279 K. The paraelectric
phase crosses over to the ferroelectric phase in this
crystal through an incommensurate phase with a mod-
ulation wave vector qi = 0.42c*, which is observed in
the temperature interval 279–293 K.

At room temperature, [N(CH3)4]2ZnCl4 belongs to
the orthorhombic crystal system (space group Pmcn)
and has unit cell parameters a = 8.946 ± 0.007 Å, b =
15.515 ± 0.012 Å, and c = 12.268 ± 0.007 Å [4] or a =
8.998 Å, b = 15.541 Å, c = 12.276 Å and Z = 4 [5]. The
crystal structure of this compound was studied by x-ray
diffraction at 303, 333, and 363 K (normal phase) and
278.5 K (ferroelectric phase) [6]. The [N(CH3)4]2ZnCl4
crystal in the ferroelectric phase was shown to be mon-
oclinic (space group P21cn). The crystal structure of the
phases in the temperature intervals 276.3–181 K and
181–161 K is monoclinic (space groups P1121/n and
P121/c1, respectively) and below 161 K, orthorhombic
(space group P212121) [3]. It was of interest to deter-
1063-7834/04/4607- $26.00 © 21320
mine the variation in the unit cell parameters with tem-
perature in the regions of these PTs.

In this study, measurements of the variation in the
unit cell parameters of [N(CH3)4]2ZnCl4 with tempera-
ture and the coefficients of thermal expansion deter-
mined from them are given.

2. EXPERIMENTAL TECHNIQUES

X-ray measurements of the unit cell parameters
were carried out on a DRON-3 diffractometer with
CuKα and MoKα monochromatic radiation in the tem-
perature interval 80–293 K. The measurements were
performed on 4 × 4 × 3-mm single crystal platelets,
whose faces were growth planes parallel to the (010),
(001), and (110) crystallographic planes. The tempera-
ture dependences of the unit cell parameters were
derived from measurements of the Bragg angles of the
080, 004, and 440 2θ reflections. The Bragg reflections
at large angles obtained from this crystal were very
weak. Therefore, we had to use reflections at compara-
tively small angles to determine the cell parameters.
The parameters b and c were determined using samples
whose major faces coincided with the (010) and (001)
growth planes. The parameter a was derived from the
temperature dependences d010 = f(T) and d110 = f(T).
Because the maximum changes in the angles induced
by monoclinic distortions in the P1121/n and P121/c1
phases do not exceed ∆γ ≤ 0.6° and ∆β ≤ 0.06°, respec-
tively [7] (thus yielding an error of ∆a ~ 10–4 Å in the
calculation of the parameter a), we neglected the mon-
oclinic distortions in its determination. The diffraction
spectra were taken in the θ–2θ arrangement. The reflec-
tion intensity profiles were scanned in steps of 0.01°
over a constant pulse accumulation time T0 = 20 s. The
004 MAIK “Nauka/Interperiodica”
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2θ angles were determined from the centers of gravity
of the reflections.

Samples were placed in a helium cryostat designed
for x-ray measurements. The desired temperature was
set and maintained automatically with a VRT-2 temper-
ature control unit. The sample temperature was moni-
tored by means of a chromel–alumel-0.15% Fe thermo-
couple, one of whose junctions was attached to the
sample and the other was thermostatted in thawing ice.
This system permitted us to set and maintain the sample
temperature to within 0.1 K over the temperature region
covered. Prior to each exposure, the sample was kept at
the given temperature for 10–12 min.

The room-temperature unit cell parameters of the
[N(CH3)4]2ZnCl4 crystal determined by us are a =
8.993 ± 0.009 Å, b = 15.533 ± 0.008 Å, and c = 12.273 ±
0.008 Å, which is in satisfactory agreement with litera-
ture data.

The experimental temperature dependences of the
unit cell parameters and volume were used to derive the
corresponding coefficients of thermal expansion
(TECs) αa = f(T), αb = f(T), and αc = f(T) along the
principal crystallographic axes, as well as the coeffi-
cient of thermal expansion of the cell volume αV = f(T),
in the temperature interval 80–293 K. In the intervals
80–161, 161–181, and 181–293 K, the c = f(T) and V =
f(T) curves were fitted by three cubic polynomials of

the type L = A + . The a = f(T) and b =
f(T) curves were fitted by four cubic polynomials of this
type in the intervals 80–161, 161–181, 181–276, and
276–293 K because of an anomaly at T3 ≈ 276 K, which
was not observed in the c = f(T) and V = f(T) curves.

The fitting curves were divided into temperature
sections 0.7–1.5-K long, within which the TECs were

calculated using the relation αL = , where L is the

unit cell parameter corresponding to the center of the
∆T section and ∆L is the change in the parameter within
this section.

3. RESULTS AND DISCUSSION

Figures 1–4 plot the temperature dependences of the
unit cell parameters and volume and of the coefficient
of thermal expansion of the [N(CH3)4]2ZnCl4 crystal
obtained in the range 80–293 K. From these figures, we
see that the cell parameters a, b, and c and volume V
grow smoothly with increasing temperature. In the
phase transition regions at T1 ≈ 161 K and T2 ≈ 181 K,
however, the a = f(T), b = f(T), c = f(T), and V = f(T)
curves exhibit anomalies in the form of jumps. Interest-
ingly, the jumps seen at T1 = 161 K in the temperature
dependences of the cell parameters a, b, and c and of
the cell volume V are small in amplitude, namely,
≈0.011, ≈0.004, ≈0.005 Å, and ≈3.6 Å3, respectively.
The changes in the parameters a, b, and c measured in

1–( )i
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i

i∑

1
L
---∆L
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the PT region at T2 = 181 K are fairly large: ∆a ≈ 0.081 Å,
∆b ≈ 0.041 Å, and ∆c ≈ 0.04 Å. Note, however, that
while the parameters b and c drop abruptly by ∆b ≈
0.041 Å and ∆c ≈ 0.04 Å at T2 = 181 K, the parameter
a increases by ∆a ≈ 0.081 Å. As a result, the cell vol-
ume changes insignificantly at this PT, ∆V ≈ 5.3 Å3, and
these large changes in linear dimension do not lead to
crystal breakup.

In the PT region at T3 ≈ 276 K, the a = f(T) and b =
f(T) curves exhibit distinct anomalies in the form of
breaks. As for the PT at T4 = 279 K, it is practically
impossible to separate this PT from the PT at T3
because their temperatures are too close. Note that the
cell parameters a, b, and c undergo slight changes as the
temperature increases in the range 80–161 K. By con-
trast, after the phase transition at T2 = 181 K, the three
cell parameters suffer a stronger variation with increas-
ing temperature, with the result that the TEC in the
range 181–276 K is larger in magnitude than in the
interval 80–161 K (Figs. 1–3).

As is evident from Figs. 1–4, the αb = f(T) and αc =
f(T) curves feature a small maximum in the temperature
interval between the PTs at T1 = 161 K and T2 = 181 K,
while the TEC αa decreases with increasing tempera-
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31680
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αV, 10–4K–1

1640
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Fig. 4. Temperature dependences (1, 2) of the unit cell vol-
ume V [(1) experimental points, (2) fitting to the experimen-
tal data] and (3) of TEC αV.
P

ture. At the PT points T1 = 161 K and T2 = 181 K, the
αa = f(T) and αc = f(T) curves pass through sharp min-
ima, while the αa = f(T) curve has a minimum at T1 =
161 K and a maximum at T2 = 181 K. In the PT region
at T3 = 276 K, the TEC drops along the a axis while
undergoing a jump along the b axis. In the region of the
phase transitions at T1 = 161 K and T2 = 181 K, the vol-
ume expansion coefficient αV varies with temperature
similarly to the TEC αa.

As seen from the above data (Figs. 1–3), the thermal
expansion of [N(CH3)4]2ZnCl4 is slightly anisotropic,
with the relation between the TECs αa, αb, and αc being
different in different temperature intervals. In the range
80–161 K, αa ≈ αb ≈ αc, while in the temperature region
181–276 K, where the crystal structure is monoclinic,
the thermal expansion anisotropy is more noticeable,
αa > αb > αc. In the temperature interval 161–181 K, the
TEC relation can be written as αa ≈ αb < αc. Note that,
in the ranges 80–161 and 181–276 K, the TECs along
the three principal crystallographic axes vary little with
increasing temperature. Above T3 = 276 K, αa and αb

vary more strongly, with αb increasing and αa decre-
asing.

The above data allow us to conclude that the phase
transitions at T1 = 161 K and T2 = 181 K are first-order.
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Abstract—The temperature dependences of the shear modulus and internal friction in ceramic samples of
(1 − x)SrTiO3 + xSrMg1/3Nb2/3O3 solid solutions were studied by the torsional vibration method in the range

80–300 K. It was established that the temperature Ta of the  structural phase transition in these solid
solutions increases with increasing x, although the lattice constant also increases. A discussion is presented of
the contributions to the Ta(x) dependence due to a change in the volume and changes caused by the presence of
a second solid-solution component (the impurity contribution). It is also shown that the defect-induced relax-
ation revealed earlier in a study of the dielectric properties of these materials manifests itself in internal friction
peaks. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

At a temperature Ta = (105–110) K, strontium titan-
ate SrTiO3 undergoes an improper ferroelastic phase
transition with doubling of the unit cell (soft mode at

the Brillouin zone edge) and with a  symmetry
change (this transition is also referred to as antiferrodis-
tortive). In SrTiO3-based solid solutions of the
Sr1 − xAxTiO3 type, the change in the transition temper-
ature Ta correlates with the change in the lattice param-
eter [1]; indeed, for A = Ca the temperature Ta increases
[2] and the lattice parameter a decreases, whereas for
A = Pb and Ba the transition temperature Ta decreases
[3, 4] while the lattice parameter increases. Note that
the introduction of a small amount of the second com-
ponent in the above solid solutions drives a ferroelectric
phase transition at low temperatures [1].

It was of interest to explore the character of the Ta(x)
dependence in SrTi1 – x(Mg1/3Nb2/3)xO3 solid solutions,
in which Mg2+ and Nb5+ substitute for the Ti4+ ions.
These solid solutions were also found to suffer a very
strong dielectric relaxation [5], which raised the
intriguing question of whether this relaxation is also
seen in the elastic properties.

2. EXPERIMENT

(1 – x)SrTiO3 + xSrMg1/3Nb2/3O3 samples were pre-
pared using standard ceramic technology [5]. The start-
ing reagents were strontium carbonate and very-high-
purity oxides of Ti, Mg, and Nb. The SrMg1/3Nb2/3O3
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ceramic was synthesized in two steps, with columbite
MgNb2O6 prepared in the first step,

MgO + Nb2O5 = MgNb2O6,

and SrMg1/3Nb2/3O3, in the second,

SrCO3 + 1/3MgNb2O6 = SrMg1/3Nb2/3O3 + CO2.

The columbite was synthesized at 1000°C for 20 h.
Samples were subjected to compression under 200 MPa
(2 kbar) and sintered at 1460°C for 1.5 h. In contrast to
the small samples 8 mm in diameter and 2 mm thick
used in [5], the present study was carried out on large
ceramic plates 1.5 × 4.5 cm in area and 0.4 to 1.4 cm
thick, from which samples 1.5 × 0.2 × 0.2 cm in size
were cut for measurements. The density of all the sam-
ples was 94 to 97% of the density as determined from
x-ray diffraction.

X-ray diffraction measurements were conducted on
a DRON-2 diffractometer at room temperature. The lat-
tice parameters were measured on powders with Ge as
an internal reference.

The shear modulus G and the Q factor were deter-
mined on a reverse torsion pendulum [6]. A long twist-
ing rod was attached to the sample, and the lower end
of the rod was fixed. A special electromagnetic system
periodically twisted the rod and, hence, the sample at
the resonance frequency of the composite oscillator
(the twisting rod–sample system), which was 25 Hz in
our case. Photoelectric sensors were employed to mea-
sure small torsional strains. The internal friction
(inverse Q factor, Q–1) was derived from the decay rate
of free oscillations. The shear modulus G was deter-
mined from the period (frequency) of resonance oscil-
lations. The maximum shear stresses in a sample
reached about 10 MPa. Such stresses corresponded to
004 MAIK “Nauka/Interperiodica”
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shear strains of the order of 10–4 and sample twisting
angles of about 0.1°. All measurements were performed
at strain amplitudes substantially smaller than their
maximum values.
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Fig. 1. Concentration dependence of the lattice parameter of
(1 – x)SrTiO3 + xSrMg1/3Nb2/3O3 solid solutions.
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Fig. 2. Temperature dependences of (a) the relative shear
modulus G/G(300 K) and (b) internal friction Q–1 in (1 –
x)SrTiO3 + xSrMg1/3Nb2/3O3 solid solutions for different
values of x.
P

3. EXPERIMENTAL RESULTS
AND DISCUSSION

Figure 1 plots the dependence of the lattice parame-
ter of the (1 – x)SrTiO3 + xSrMg1/3Nb2/3O3 solid solu-
tion on concentration x.

SrMg1/3Nb2/3O3 belongs to the trigonal crystal sys-

tem and space group  with unit cell parameters a =
5.66 Å and c = 6.98 Å [7]. The parameter of the reduced
perovskite cell is ap = 4.01 Å. As seen from Fig. 1, the
lattice parameter of the solid solution as a function of x
varies from the SrTiO3 parameter (a = 3.905 Å) to the
reduced lattice parameter of SrMg1/3Nb2/3O3 (ap =
4.01 Å) following the linear Vegard law. The slope of
the a(x) graph is da/dx = 0.1 Å. For concentrations x >
0.15, the linear a(x) relation breaks down, and for x =
0.2 the samples become two-phase, which suggests that
the solubility limit of SrMg1/3Nb2/3O3 in SrTiO3 lies at
a value of x between 0.15 and 0.2.

Figure 2 illustrates the temperature behavior of the
relative shear modulus G/G(300 K) and of internal fric-
tion Q–1 obtained for samples with x = 0, 0.01, 0.03,
0.07, and 0.15. We see that the temperature depen-
dences of the shear modulus in the phase transition
region behave as they do in SrTiO3 single crystals sub-
jected to torsional vibrations about the [110] direction
[8]. When a single crystal is oriented in this way, the
domain wall motion provides a dominant contribution
to the change in the shear modulus at the phase transi-
tion. In ceramic samples, this change turns out to be of
the same magnitude or even slightly larger (for x = 0.07,
0.15) than in a single crystal of pure strontium titanate
(note that the diffuse anomaly of the shear modulus in
the sample with x = 0.15 is apparently due to this con-
centration being close to the solubility limit). Thus, the
contribution from structural domains in a ceramic with
an average grain size of about 10 µm to the elastic prop-
erties is not less than that in single crystals. The domi-
nant contribution of domains to the change in the shear
modulus in the region of the phase transition in single
crystals was corroborated by experiments with static
shear stresses [8]. Such stresses convert the sample to
the single-domain state, with the phase transition–
induced changes in the shear modulus decreasing by
approximately one order of magnitude. Unfortunately,
such experiments cannot be performed on ceramic sam-
ples because of their comparatively high brittleness.

Now, we consider the temperature dependence of
the internal friction, Q–1(T). As seen from Fig. 2b, the
Q–1(T) relation exhibits two anomalies, namely, an
appreciable increase in internal friction at temperatures
near 100 K and internal-friction peaks at about 130,
135, and 165 K for concentrations x = 0.03, 0.07, and
0.15, respectively. The origin of the first anomaly lies in
the fact that alternating elastic stresses initiate domain
wall motion, which accounts for the increased losses.
As for the internal friction peaks, they may be due to

D3d
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reorientation of {Mg2+–VO}-type defects driven by
elastic stresses [9]. These defects are actually electric
and elastic dipoles consisting of the Mg2+ ion in the Ti4+

position in the SrTiO3 lattice and of a nearby vacancy
VO of the O2– ion, which provides charge neutrality. It
appears [5] that it is reorientation of such defects by an
ac electric field that accounts for the giant dielectric
relaxation. The samples employed in this study also
exhibit dielectric relaxation, albeit not so strong as that
observed in [5]. Our suggestion that it is the reorienta-
tion of such defects that is responsible for the internal
friction peaks is borne out by the following two exper-
imental observations.

According to [5], the dielectric relaxation frequen-
cies obey the Arrhenius relation

(1)

As suggested by experimental data on dielectric relax-
ation [5], the activation energy U for x = 0.03, 0.07, and
0.15 is 0.21, 0.24, and 0.3 eV and the values obtained
for the frequency ω0 are (in units of 10–11 s–1) 1.1, 2.5,
and 5, respectively. If the internal friction peaks are
connected with the same defects, then these data can be
used to calculate the temperatures at which internal
friction peaks should appear at a frequency of 25 Hz.
For the concentrations x = 0.03, 0.07, and 0.15, these
temperatures are found to be 120, 130, and 160 K,
which agrees quite satisfactorily with the experimental
results of 130, 135, and 165 K, respectively (Fig. 2b).

The second point consists in that high-temperature
annealing of samples with subsequent quenching car-
ried out in the presence of defects associated with oxy-
gen vacancies should bring about an enhancement of
internal friction losses. Indeed, as follows from Fig. 3,
annealing at 1300°C followed by quenching to room
temperature resulted in increased losses.

The mechanism of internal friction losses is similar
to that of dielectric losses.

When considering the dielectric losses, the {Mg2+–
VO} defect should be treated as an electric dipole that
can be reoriented by an alternating electric field [5]. In
the case of internal friction losses, the same defect acts
as an elastic dipole, whose symmetry breaks down
under elastic deformation [9]. Assuming the relaxation
mechanism of losses, we have

(2)

Here, δG = G∞ – G0; for ωτ @ 1, G = G∞, while for
ωτ ! 1, G = G0. Also, the quantity G∞ is the shear mod-
ulus to which the relaxing defects cannot contribute
because the time is too short and G0 is the shear modu-
lus containing the total contribution from the defects.

For the relaxation time τ in Eq. (2), the Arrhenius
relation holds; therefore, as the temperature is lowered,

ω ω0 U/kT–( ).exp=

G G∞ δG/ 1 ω2τ2
+( ),–=

Q
1– δG/G( )ωτ/ 1 ω2τ2

+( ).=
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the shear modulus should increase from G0 at high tem-
peratures to G∞ in the low-temperature limit.

Let us estimate the value of δG = G∞ – G0 from the
experimental internal friction losses. As follows from

Eq. (2), for ωτ = 1, we have Q–1 =  = δG/2G. The

experimental value of  (the amplitude above the
background) is on the order of 10–2. The change in the
shear modulus should be of the same order of magni-
tude, i.e., δG/G ≈ 10–2. Such a change cannot be reli-
ably detected in our experiments against the back-
ground of the giant change in the shear modulus at the
phase transition.
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Fig. 3. Same as in Fig. 2 but for x = 0.07 in the starting sam-
ple (open circles) and a sample quenched to room tempera-
ture after annealing at 1300°C (filled circles).
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Now, we consider the dependence of the phase tran-
sition temperature Ta on the solid-solution concentra-
tion x. Let us determine the temperature Ta from the
G(T) graphs (Figs. 2, 3) as the temperature at which
G(T) is 0.8 of the value of G(T) at the same temperature
but does not contain the contribution from the phase
transition. The values of Ta obtained in this way are
plotted as a function of x in Fig. 4. Also shown for com-
parison are the data for Sr1 – xAxTiO3 solid solutions
with A = Ca [2], Pb [3], and Ba [4] (more complete data
for the case of Pb and Ba can be found in [10]).

As follows from Fig. 4 and the data on the lattice
parameter of the solid solutions, the changes in Ta(x)
and a(x) are correlated, as already mentioned, in the
cases of Ca, Pb, and Ba. As the lattice parameter of the
solid solution decreases, its phase transition tempera-
ture Ta increases (Ca), and as the lattice parameter
increases, the temperature Ta decreases (Pb, Ba). The
reverse occurs with the SrTi1 – x(Mg1/3Nb2/3)xO3 solid
solution; indeed, an increase in the lattice constant of
the solid solution is accompanied by an increase in the
transition temperature Ta (Fig. 1).

A change in the transition temperature of a solid
solution can be written as

(3)

The term (∂Ta/∂x)V in this expression is the contribution
from the second component of the solid solution to the
variation of the transition temperature at a constant vol-
ume (the impurity contribution), and the second term
on the right-hand side of Eq. (3) describes the depen-
dence of the transition temperature on volume (the vol-
ume contribution).

The volume contribution can be recast in the form

(4)

Here, B is the bulk modulus and (∂Ta/∂p)x is the change
in transition temperature under hydrostatic pressure.

For SrTiO3, we have B = 1.8 × 1011 Pa and ∂Ta/∂p =
1.7 × 10–8 K/Pa [11]. As follows from Fig. 1,
(1/a)da/dx = +2.6 × 10–2 or (1/V)(∂V/∂x) = +7.8 × 10–2.
From Eq. (4), the volume contribution is found to be
(∂Ta/∂V)x(∂V/∂x) = –2.38 × 102 K. Next, we substitute

dTa/dx ∂Ta/∂x( )V ∂Ta/∂V( )x ∂V /∂x( ).+=

∂Ta/∂V( )x B ∂Ta/∂p( )x 1/V( ) ∂V /∂x( ).–=

Temperature Ta of the  phase transition in SrTiO3-
based solid solutions SrTi1 – xBxO3 and Sr1 – xAxTiO3

Substituting ion
dTa/dx,
102 K

(∂Ta/∂V)x(∂V/∂x), 
102 K

(∂Ta/∂x)V ,
102 K

B: (Mg1/3Nb2/3) 11 –2.38 13.4

A: Ca 26 1 25

A: Pb –6 –0.4 –5.6

A: Ba –25 –2.2 –23
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the experimental value dTa/dx = 11 × 102 K into Eq. (3)
and obtain (∂Ta/∂x)V = +13.4 × 102 K for the impurity
contribution.

The values of the volume and impurity contributions
to the Ta(x) dependence are given in the table. Also pre-
sented for comparison are data available on other
SrTiO3-based solid solutions [1]. As seen from the
table, while the signs of the volume and impurity con-
tributions to the change in Ta coincide for the solid solu-
tions with substitution in the A position, the impurity
contribution is an order of magnitude larger than the
volume contribution. In the case of B substitution, the
contributions are opposite in sign but the impurity con-
tribution is about six times larger in magnitude than the
volume contribution.
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Abstract—The crystallization of nickel nanoclusters is investigated using a molecular dynamics simulation
with tight-binding potentials. The formation of a cluster structure depends on the cooling conditions. Slow cool-
ing results in the formation of a face-centered cubic structure, whereas fast cooling, according to the data
obtained in 40% of the simulation experiments, leads to the formation of an icosahedral structure. The molec-
ular dynamics simulation experiments demonstrate the possibility of controlling the formation of a structure of
nickel nanoclusters during crystallization. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Investigation of the properties of small-sized metal-
lic particles containing from several hundreds to several
thousands of atoms is of great research interest due to
their possible use as catalysts or surface nanostructures
[1–4]. The properties of such particles are intermediate
between those exhibited by molecules and crystalline
solids. This makes them especially attractive for use in
various fields of engineering. In this respect, the under-
standing of the mechanisms of formation of nanoclus-
ters from a liquid or gas phase is particularly important
for the controlled growth of low-dimensional structures
with specified parameters. Elucidation of the internal
structure of free clusters can play a key role in explain-
ing their physical and chemical features.

The structure of metallic nanoclusters and, in partic-
ular, the size dependence of their properties have been
intensively studied using experimental and theoretical
methods over the course of more than 30 years. Com-
puter simulations have demonstrated that, compared to
conventional bulk materials, nanoclusters are charac-
terized by several structural modifications. For exam-
ple, nanoclusters of metals with a face-centered cubic
lattice can exist in face-centered cubic, hexagonal
closely packed, icosahedral, and decahedral modifica-
tions [5–11]. Some of these modifications are presented
in Fig. 1. Metallic clusters with different symmetries
were experimentally observed by Martin [7] with the
use of an electron microscope. It should be noted that,
in bulk face-centered cubic materials, the formation of
other structures is suppressed kinetically, whereas nan-
oclusters of these materials can be obtained in different
structural modifications with a great variety of physical
and chemical properties.

Thermodynamically equilibrium modifications of
metallic clusters have been thoroughly studied in the
1063-7834/04/4607- $26.00 © 21327
framework of different theoretical models. The results
of theoretical calculations performed by Iijima and
Ichihashi [12] and K. Mannien and M. Mannien [13]
indicate that, for some metals with a face-centered
cubic lattice (such as gold and nickel), the icosahedral
structure is metastable even in the case of small-sized
clusters (containing less than 100 atoms), which is
inconsistent with experimental observations. Further-
more, an increase in the cluster size is accompanied by
a decrease in the stability of the icosahedral structure
[12]. However, direct observations with the use of an
electron microscope [7–10] have revealed that clusters
containing even several thousands of atoms can exhibit
icosahedral or decahedral morphology. These experi-
ments have demonstrated that the formation of an icosa-
hedral structure of a cluster is most likely governed by
the kinetic rather than thermodynamic factors [14].

2. SIMULATION TECHNIQUE

In order to investigate how the kinetic factors affect
the formation of a structure of nickel nanoclusters, we
carried out a molecular dynamics simulation of heating
of nickel nanoparticles with subsequent cooling to the
formation of a crystal phase. The computer simulation
was performed with the use of the tight-binding poten-
tials proposed by Cleri and Rosato [15]. In the simula-
tion experiment, a face-centered cubic nickel cluster
consisting of 555 atoms was used as an initial structure.
With the aim of completely destroying the long-range
order in the nickel cluster, it was smoothly heated to a
temperature of 1800 K, which is considerably higher
than the melting temperature of nickel clusters (Tmelt =
1145 K). During the simulation experiment, the tem-
perature was determined from the mean kinetic energy
of the atoms. The cluster was held at T = 1800 K for a
004 MAIK “Nauka/Interperiodica”
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Fig. 1. Decahedral (upper row), icosahedral (middle row), and face-centered cubic (lower row) structures of the nanoclusters [1].
Each structure is drawn in two projections: the lateral view (first and second columns) and the top view (third and fourth columns).
long time, more precisely, for 200 ps (1.0 × 105∆t where
∆t = 2 fs is the time step in the molecular dynamics sim-
ulation experiment). Then, the cluster was cooled to a
temperature of 300 K. The cooling and heating curves
are depicted in Fig. 2, which shows the temperature
dependence of the potential energy of the nickel nano-
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Fig. 2. Dependence of the potential energy EP of the nickel
nanocluster (N = 555) on the absolute temperature T.
P

cluster. The melting and crystallization points of the
cluster were determined from the jumps in the potential
energy as a function of temperature. The temperature
was stabilized by two methods: (i) with the use of a
Nose thermostat and (ii) according to the Anderson
method. When simulating a constant temperature, the
best results were obtained using the Nose thermostat. In
this case, the total energy is represented as the sum of
the kinetic and potential energies of the particles and
the kinetic and potential energies of the thermal reser-
voir s:

(1)

where Q is an adjustable parameter. The smooth varia-
tion in the temperature at a specified rate was simulated
using the Anderson method:
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(a)

(b)

(c)

Fig. 3. Nickel cluster configurations corresponding to por-
tions A, B, and C in the crystallization curve depicted in
Fig. 2: (a) the nanocluster in a molten state, T = 1200 K;
(b) the nanocluster immediately after crystallization, T =
995 K; and (c) the nanocluster after complete structural
transformation, T = 800 K.
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
where W is an adjustable parameter. This approach
makes it possible to determine more exactly the melting
and crystallization temperatures of simulated particles
as compared to the method used by Qi et al. [16],
according to which it was necessary to perform addi-
tional calculations (specifically of the maximum of the
heat capacity) when determining these temperatures.

3. RESULTS AND DISCUSSION

It can be seen from Fig. 2 that, during cooling below
the melting temperature, the simulated system tends to
transform into an icosahedral structure (portion B in the
cooling curve). However, the nickel nanocluster in this
temperature range is in a very unstable state and under-
goes transformation into a face-centered cubic structure
with a further smooth decrease in the temperature. In
order to analyze the crystallization of the nickel nano-
cluster, we consider the cluster configurations (Fig. 3),
which correspond to the portions A, B, and C in the
crystallization curve depicted in Fig. 2 (at temperatures
T = 1200, 995, and 800 K, respectively), and the radial
distribution function (Fig. 4), which is calculated for
the portions B and C in this curve. To avoid errors in
determining the cluster structure due to side effects
associated with thermal noise, the nanocluster was kept
at the aforementioned temperatures for approximately
400 ps with the aim of attaining an equilibrium config-
uration.

At a temperature of 1200 K (which is higher than the
crystallization temperature Tcryst = 1025 K), the nano-
cluster exists in a molten state and its particles strongly
fluctuate, even though the cluster shape, as a whole,
remains nearly spherical (Fig. 3a). An abrupt decrease
in the potential energy (Fig. 2) indicates that the cluster
at T = 995 K occurs already in a crystalline state
(Figs. 3b, 4). In this case, the nanocluster has a facet
structure with a pronounced fivefold symmetry, which
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Fig. 4. Radial distribution function g(r) of the nickel nano-
cluster (N = 555) for portions B and C in the crystallization
curve depicted in Fig. 2.
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T = 800 K (face-centered cubic
 structure)
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corresponds to an icosahedral configuration. With a fur-
ther smooth decrease in the temperature, the nickel nan-
ocluster undergoes a structural transformation with the
formation of a face-centered cubic structure involving
stacking faults (Fig. 3c). The formation of an icosahe-
dral configuration upon fast cooling was observed in
40% of the simulation experiments. In other cases, the
final face-centered cubic configuration of the nickel
nanocluster is formed without a metastable icosahedral
structure. In our simulation experiments performed with
nickel, we did not reveal the formation of an icosahedral
structure first on the cluster surface and then deep in the
cluster core, as was observed for gold in [14].

The result obtained is in agreement with the classi-
cal theory of nucleation [17–19], according to which
the final face-centered cubic structure of a cluster
formed in the course of crystallization is energetically
more stable than the icosahedral structure. However,
numerous molecular dynamics simulations have dem-
onstrated that, at T = 0 K, it is this icosahedral configu-
ration that is energetically more favorable, at least for
clusters containing from two to three thousands of
atoms [13]. It should be noted that the metastable icosa-
hedral structure (portion B in the cooling curve in
Fig. 2) can be stabilized by instantaneous cooling to
lower temperatures, for example, to temperatures in the
range 600–700 K.

4. CONCLUSIONS

Thus, the structural properties of nickel nanoparti-
cles were investigated using a molecular dynamics sim-
ulation of their melting and crystallization in terms of
tight-binding potentials. The simulation experiments
demonstrated the possibility of controlling the forma-
tion of a structure of nickel nanoclusters. The results
obtained in the computer simulation allowed us to con-
clude that, after the onset of crystallization, the forma-
tion of a cluster structure strongly depends on the cool-
ing conditions. Slow cooling leads to the formation of
only a face-centered cubic structure, whereas fast cool-
ing results in the formation of a metastable icosahedral
structure, as was observed in 40% of the simulation
experiments.
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Abstract—The photonic band gap of opals has been studied experimentally from their optical transmission
spectra as a function of the incident beam orientation in the opal crystal lattice. The measurements were carried
out for all high-symmetry points on the surface of the Brillouin zone of an fcc lattice. The experimental depen-
dence of the energy position of the photonic band gap on the light wave vector direction is well described by
the set of theoretical relations developed for the stop bands originating from the Bragg diffraction of light on
{111}-type planes of the twinned fcc lattice of synthetic opals. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Photonic crystals are weakly absorbing materials
with three-dimensional periodic modulation of the
dielectric permittivity, in which Bragg diffraction of
electromagnetic waves gives rise to the formation of
bands in the frequency spectrum that are forbidden for
the propagation of electromagnetic waves. Depending
on the actual crystal symmetry and the amplitude of the
permittivity modulation, the formation of a three-
dimensional (complete) photonic stop band [1, 2] or of
one-dimensional spectral stop bands in certain direc-
tions of the light wave vector in the photonic crystal [3]
is possible. Theoretically, a complete photonic band
gap should suppress spontaneous radiation from a sam-
ple and give rise to other optical effects of considerable
significance in basic science and applications [1, 3–5].

Whether a complete photonic band gap is present or
absent in a given crystal structure can be determined
through study of the photonic band gap by scanning the
light wave vector over the whole Brillouin zone sur-
face, because the tips of the wave vectors of the incident
and diffracted light lie on the surface of the Brillouin
zone under the conditions of Bragg diffraction. Of par-
ticular interest is the investigation of the photonic band
gap in the visible region of the electromagnetic spec-
trum. As far as we know from the literature, there is no
clear cut evidence of the observation of a complete pho-
tonic band gap in this spectral region. One-dimensional
stop bands, however, have been observed in the optical
range in a number of materials, such as synthetic opals
[6] and related inverted opals [7], colloidal crystals [8],
and periodic structures made up of spherical TiO2
microparticles [9]. Most publications [6, 10–16] deal
with investigation of the photonic band gap in opals
(three-dimensional structures made up of tightly
packed spherical a-SiO2 particles a few hundred
nanometers in diameter). Experiments with opals have
been reduced primarily to a study of the photonic band
gap in the vicinity of the high-symmetry point L on the
1063-7834/04/4607- $26.00 © 21331
surface of the Brillouin zone of an fcc lattice. The
dependence of the opal photonic band gap on the wave
vector over the entire Brillouin zone has thus far
remained an open question.

The major goal of the present paper is to investigate
the variation in the spectral position (i.e., dispersion) of
the photonic band gap in opals as the wave vector of the
incident light wave sweeps the Brillouin zone surface.
Optical studies of light diffraction from high-quality
synthetic opals obtained by careful preliminary selec-
tion and characterization of samples were reported in
[17–19]. The results obtained indicate, in particular, the
possibility of measuring the photonic band gap disper-
sion. In this study, measurements of optical transmis-
sion spectra as a function of light vector direction in the
opal lattice were performed on preliminarily selected
samples of synthetic opals of a high degree of perfec-
tion. The experimental data on the position of the bands
(stop bands) in the transmission spectra were compared
in considerable detail with the relations derived from
the theory of Bragg diffraction of light waves from dif-
ferent planes of the opal lattice. It was established that
the measured dependences of the energy position of a
photonic band gap on the wave vector position agree
well with the positions of the stop bands determined by
Bragg diffraction on {111}-type planes of the twinned
fcc opal lattice.

In Section 2, we discuss the real crystal structure of
synthetic opals and the specific features of their Bril-
louin zone. In Section 3, these features are used to
define three planes of light wave vector scanning,
which cover all high-symmetry points on the surface of
the Brillouin zone. In Section 4, the experimental tech-
nique employed to characterize the samples and to
measure optical transmission spectra is described. The
experimental results obtained in these measurements
are presented in Section 5 and discussed in Section 6 in
terms of the theory of Bragg diffraction of light waves.
The main conclusions are summed up in Section 7.
004 MAIK “Nauka/Interperiodica”
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2. THE STRUCTURE OF SYNTHETIC OPALS

Opals are essentially self-assembled structures
made up of monodisperse a-SiO2 particles of spherical
shape a few hundred nanometers in size. Directed
growth of a sample arranges the a-SiO2 spheres in
closely packed layers stacked perpendicular to the sam-
ple growth axis. Alternation of such hexagonal closely
packed layers along the growth axis in different
sequences of positions A, B, and C may bring about the
formation of either an fcc lattice (ordered
…ABCABC… layer arrangement), a hexagonal close-
packed structure (ordered …ABABAB…), or, again, a
structure with a disordered layer sequence (for exam-
ple, …ABACBAC…). All these structures can be char-
acterized by a stacking correlation coefficient p, which
is equal to the probability that three layers will follow
one another to occupy three different positions out of
the set A, B, and C. If the first layer of spheres occupies
position A and the second, position B, then the third
layer may be found either in position C with a probabil-
ity p or in position A with a probability of 1 – p. For p =
1, the stacking is that of an fcc lattice; for p = 0, it is a
hexagonal close-packed lattice; and for 0 < p < 1, the
layer stacking is characteristic of a structure disordered
along the [111] growth axis [20].

An analysis of experimental data on light diffraction
performed on samples of synthetic opals in [17–19]
yielded p ≈ 0.8 for the stacking correlation coefficient.
This comparatively large value of the coefficient p
relates to the most uniform regions of the samples. This
value means that the samples contain fairly extended
domains made up of sequences of hexagonal layers reg-
ularly stacked perpendicular to the growth axis to make
up an fcc lattice. Therefore, in what follows, we use the
universally accepted notation of the planes and axes for
an ideal (reference) fcc lattice. We identify the growth
plane parallel to which these layers are stacked as the
(111) plane of the fcc lattice. Two types of fcc stacking
are possible for the structure under study, namely,
ABCABC… and CBACBA…, which are denoted subse-
quently as fcc-I and fcc-II. In synthetic opals, these two
types of fcc stacking alternate randomly. The twinned
opal structure forming in this way has a unique feature
in that the system of closely packed (111) growth
planes with an ordered arrangement of a-SiO2 spheres
over sufficiently large distances in these planes (~102–
103 µm) differs radically from the three other systems

of fcc planes, more specifically, of the ( ), ( ),

and ( ) planes, in which the spheres are arranged
randomly. Accordingly, the growth axis [111] in the
structure of a real opal is likewise specific with respect

to the three other axes, [ ], [ ], and [ ],
which would be equivalent to it in an ideal fcc lattice.

Both of the ideal lattices, fcc-I and fcc-II, are char-
acterized by the Brillouin zone. One of these zones is
sent into the other either under mirror reflection in a

111 111

111

111 111 111
PH
plane parallel to the (111) growth plane or through rota-
tion by 60° about the [111] vertical growth axis (the
Γ  L direction in the reciprocal lattice). We call the
set of two Brillouin zones belonging to the fcc-I and
fcc-II lattices the Brillouin zone of the twinned fcc lat-
tice. The validity of such a consideration of the Bril-
louin zone of the twinned fcc lattice rests in our case on
the structure of the samples studied and the actual
experimental conditions. The fact is that the character-
istic regularity scale of the fcc-I and fcc-II structures
along the growth axis in the opal structure with a stack-
ing correlation coefficient p ≈ 0.8 is about ten layers
(~3 µm), which is two orders of magnitude less than the
light beam cross section. As a consequence, the proper-
ties of the fcc-I and fcc-II structures, as well as the spe-
cific features of their Brillouin zones, become manifest
in an additive manner in light transmission and Bragg
diffraction experiments.

3. FORMULATION OF THE PROBLEM

We report here on a study of the transmission spec-
tra of opals obtained under direct propagation of white
light. The characteristic transmission dips in these
spectra are closely related to the photonic band gap of
the opals, which forms in Bragg diffraction from differ-
ent plane systems of the fcc lattice. The Bragg diffrac-
tion condition for a light wave can be expressed through
the Laue equation:

(1)

Here, K(K') is the wave vector of the incident (dif-
fracted) electromagnetic wave and b(hkl) is a reciprocal
lattice vector of the crystal, which is perpendicular to
the plane (responsible for diffraction) with the Miller
indices (hkl). For a given b(hkl), the end points of the vec-
tors K and K' satisfying condition (1) with |K'| = |K| =
2π/λ lie on the surface of the Brillouin zone. Thus, vec-
tor triangle (1) defines the relevant scheme of scanning
of the Brillouin zone surface; namely, by properly
changing the incident wave vector K (i.e., the light
wavelength λ and the angle of incidence Θ, which is
equal to the angle between the vectors K' and b(hkl)), one
can, according to Eq. (1), scan various points on the
surface of the Brillouin zone.

The Brillouin zone of the twinned fcc lattice of syn-
thetic opals has hexagonal symmetry; namely, rotation
through 60° about the growth axis brings it into coinci-
dence with itself (the C6 symmetry axis is parallel to the
[111] sample growth direction). With this in mind, the
main information on dispersion (dependence on the
wave vector) of the photonic band gap position can be
obtained by selecting three paths for scanning the Bril-
louin zone surface that include all high-symmetry
points of the surface. These paths lie in sections I, II,
and III of the Brillouin zone and are presented in
Figs. 1a, 1c, and 1e, respectively.

K' K b hkl( ).+=
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Consider the specific high-symmetry points on the
surface of the Brillouin zone through which the end
point of the scanning wave vector K will pass. Path I in
the reciprocal lattice can be represented schematically
as (Figs. 1a, 1b)

L  U  X  U  P (2a)

for fcc-I and
L  K  L'  P (2b)

for fcc-II. Note that, in a twinned structure, in addition
to the Γ  L direction along the [111] axis, the scan-
ning path (2b) is complemented by an inequivalent
direction Γ  L', which makes an angle of 70.5° with
the [111] axis. In Eqs. (2a) and (2b), we introduced a
symbol P to denote the point where vector 
crosses the surface of the Brillouin zone (point P is not
a standard high-symmetry point in the Brillouin zone of
the fcc lattice).

Path II is drawn through the points
L  W  M  K (3)

for both the Brillouin zones of fcc-I and fcc-II (Figs. 1c,
1d). Equation (3) contains another nonstandard point
M, whose significance will become clear in the discus-
sion of the experimental data.

Path III lies in section III of the reciprocal lattice
[the (111) growth plane] and is

P  K (4)

for the Brillouin zones of both fcc-I and fcc-II (Figs. 1e,
1f).

Sections I (L  P) and II (L  K) of the Bril-
louin zone pass through the [111] growth axis and make
an angle of 30° with each other, while section III
(P  K) is perpendicular to the [111] growth axis and
closes the first two sections. As a result, part of the Bril-
louin zone surface of the twinned fcc structure is cut out
inside an octant that includes all high-symmetry points
of the reciprocal lattice (Fig. 1). On completing these
three paths, one obtains full information on the disper-
sion of the photonic band gap position.

4. EXPERIMENTAL TECHNIQUE
For the measurements, we used samples of synthetic

opals that were properly oriented and characterized in
considerable detail in our earlier studies [17–19, 21]. It
was established in [21] that the sample structure varied
markedly along the growth axis and that the most
ordered regions corresponded to later growth stages.
Samples (not more than 0.5 mm thick) for studying the
photonic band gap were cut from these ordered regions
along different opal crystallographic axes. Below, we
present the results obtained in a study of an opal sample
with a diameter of spherical a-SiO2 particles of 270 nm.

Images of (111) growth layers obtained by atomic
force microscopy [21] reveal a high degree of a-SiO2
sphere packing order in these layers, with long-range

b
211[ ]
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order extending over hundreds of microns in each layer.
In those experiments, the crystallographic axes were
linked to the geometric shape of each sample.

Optical spectra were obtained in transmission
geometry on a DF-170 JOUAN double-beam spectro-
photometer (wavelength range 400–700 nm) and a
DFS-12 spectrometer (in the latter case, an incandes-
cent lamp served as a light source and the beam was
collimated with a diaphragm and a lens). The sample
could be rotated about its vertical axis to study light
transmission spectra with the opal lattice oriented dif-
ferently relative to the incident beam. The total light
beam cross-sectional area on the sample surface was
0.5–1 mm2. In both experimental setups, the opal sam-
ple was mounted at the center of a spherical vessel 5-cm
in diameter with an immersion liquid, whose refractive
index was chosen to be close to its average value for the
opal, thus substantially reducing incoherent (diffuse)
scattering from the sample surface. As a result, practi-
cally no light was either reflected or refracted by the
sample surface, which made the part played by the
shape of the sample and its surface relief insignificant.
The immersion liquid used in this study was isopropyl
alcohol with a refractive index n ≈ 1.37. The effective
refractive index of the opal–isopropyl-alcohol structure
is neff ≈ 1.36, which corresponds to a photonic crystal
with a weak permittivity contrast.
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5. EXPERIMENTAL RESULTS

The main goal of this experimental work was to
investigate the transmission spectra of an oriented opal
sample illuminated by white light for different angles
of incidence of light Θ on the sample surface. Measure-
ments were conducted with different sample orienta-
tions, thus permitting one to scan the surface of the
Brillouin zone of the twinned opal fcc lattice along
three paths, (2)–(4). The spectral response of the trans-
mission coefficient TK(λ) = IK(λ)/I0(λ) was determined
as the ratio of the intensity IK(λ) of a beam with wave
vector K passing through the sample to the intensity
I0(λ) of the reference beam. The results of the measure-
ments are displayed in Figs. 2–4 in arbitrary units,
because the effective length of the light path through
the sample shaped as a rectangular platelet and, as a
consequence, the intensity IK(λ) varied substantially
with the angle of incidence. In addition, the spectral
intensity was normalized to a value of order unity at a
wavelength of 650 nm.

The transmission spectra were studied in consider-
able detail as a function of the angle of incidence of
light ΘI in scanning plane I (Fig. 2), ΘII in plane II
(Fig. 3), and ΘIII in plane III (Fig. 4). The scanning
angles in our experiments were varied in the ranges
0° ≤ ΘI ≤ 90°, 0° ≤ ΘII ≤ 90°, and 0° ≤ ΘIII ≤ 30°. The
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Fig. 2. Transmission spectra of opal samples measured at
different angles of incidence ΘI by scanning the Brillouin
zone along path I (L  P in plane I). The spectra are
translated vertically upwards by the amount specified for
each spectrum.
PH
transmission spectra reveal characteristic bands (dips)
whose position, width, and depth depended substan-
tially on the angles Θi defining the directions of light
wave propagation in the opal lattice when scanning
along the ith path. In addition, some spectra show
noticeable transmission, which depends on the wave-
length of light but has no structure in the spectral range
studied.

Figure 2 presents transmission spectra measured
with white light striking the sample at different angles
ΘI, which corresponds to changing the direction of the
wave vector K in plane I from the Γ  L to the Γ 
P direction. We measured a series of transmission spec-
tra with an average step of 2° in angle ΘI. Figure 2
shows the most typical of them. The spectrum relating
to normal incidence of light (ΘI = 0) on the (111)
growth plane of opal (direction Γ  L) exhibits the
deepest and narrowest band at a wavelength of 595 nm
(2.04 eV). We see that the band in the transmission
spectra measured for oblique beam incidence on the
(111) growth plane shifts to shorter wavelengths, its
width increases, and the depth of the spectral dip
decreases. As the scanning angle is further increased
(ΘI ≥ 20°), a second band enters the operating range of
the spectrophotometer (λ > 400 nm) on the short-wave-
length side and shifts to longer wavelengths with
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Fig. 3. Transmission spectra of opal samples measured at
different angles of incidence ΘII by scanning the Brillouin
zone along path II (L  K in plane II). The spectra are
translated vertically upwards by the amount specified for
each spectrum.
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increasing ΘI. As the angle increases, these bands
approach each other to finally overlap at ΘI ≈ 35° and a
wavelength of ≈485 nm (2.56 eV). The angle ΘI ≈ 35°
in scanning plane I corresponds to the high-symmetry
direction Γ  U in the Brillouin zone of fcc-I and to
the Γ  K direction in the Brillouin zone of fcc-II
(Fig. 1b). Note that the crossing of the spectral bands is
not accompanied by noticeable interference. As the
angle is further increased (ΘI > 35°), the two bands
diverge. The band originating from the 595-nm band (at
ΘI = 0) continues to shift to shorter wavelengths and
leaves the spectral region covered (λ < 400 nm) at ΘI =
50°. The second band also continues to shift to longer
wavelengths, and at ΘI ≈ 70° its position corresponds to
the maximum wavelength, ≈595nm. This value coin-
cides exactly with the initial position of the first band at
ΘI = 0 (the Γ  L direction in the fcc-I and fcc-II
structures), and the scanning angle ΘI = 70.5° can be
identified with the Γ  L direction in the fcc-II lattice
(Fig. 1b). At still larger angles (ΘI > 70.5°), this band
shifts to shorter wavelengths λ, and at ΘI = 90° (the
Γ  P direction) its position in the spectrum corre-
sponds to λ ≈ 565 nm (2.19 eV).

Figure 3 presents transmission spectra obtained at
different angles ΘII in scanning plane II, which corre-
sponds to the wave vector K turned from the original
Γ  L direction to Γ  K (Figs. 1c, 1d). The spec-
trum with a band at λ ≈ 595 nm taken under normal
incidence of light on the (111) growth plane coincides
with the corresponding spectrum displayed in Fig. 2. As
the scanning angle ΘII increases, this band shifts to
shorter wavelengths until, at ΘII ≈ 38°, it crosses
another band at wavelength λ ≈ 480 nm (2.58 eV). This
second band enters the operating range of the spectro-
photometer (λ > 400 nm) starting from the angle ΘII =
20° and shifts thereafter to longer wavelengths. The
angle ΘII = 39.2° in scanning plane II corresponds to
the high-symmetry direction Γ  W in the Brillouin
zone of both fcc lattices making up the twin structure
(Figs. 1c, 1d). These two bands diverge for ΘII > 39.2°.
Just as in the case of scanning in plane I, the band orig-
inating from the band at 595 nm (at ΘII = 0°) continues
to move to shorter wavelengths and then leaves the
measurement range (λ < 400 nm) for angles ΘII > 50°).
The other band continues to shift to longer wave-
lengths. However, in contrast to scanning I, where the
maximum wavelength of ≈595 nm was reached at ΘI =
70° (the Γ  L direction), the maximum wavelength
attained in scanning in plane II is ≈580 nm (2.14 eV) at
ΘII ≈ 60°. As the angle is increased further (ΘII > 60°)
up to the end of scanning in plane II (the Γ  K direc-
tion), this band shifts in position to shorter wave-
lengths. This band is weak and can be resolved against
the background of the second, stronger band only up to
angles ΘII ≈ 85°, at which the wavelength becomes λ ≈
520 nm (2.38 eV).
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When scanning the path from point P to point K in
plane III (Figs. 1e, 1f), the incident light propagates in
the (111) hexagonal layer plane perpendicular to the
[111] growth axis. The initial, Γ  P, and the final,
Γ  K, directions of wave vector K in scanning III
coincide with the final directions of vector K reached in
scannings I and II, respectively. As a result, the set of
paths I, II, and III make up a closed contour on the sur-
face of the Brillouin zone. Figure 4 presents transmis-
sion spectra corresponding to scanning III with the
angle ΘIII changed by 30° through rotation of the crys-
tal about the [111] growth axis. We see one band, which
shifts monotonically with increasing ΘIII from λ ≈
565 nm (2.20 eV; Γ  P direction) to ≈525 nm
(2.36 eV; Γ  K). The second, short-wavelength
band was not observed in this scanning in the transmis-
sion spectra near the K point (ΘIII  30°), which
should be assigned to intense light scattering setting in
for λ < 500 nm. A certain difference seen between the
spectra obtained in scannings II and III near the K point
(Figs. 3, 4) may be caused by deviation of the real from
theoretical scanning path (such a deviation appears
more probable in scanning II, because scanning III
occurs in the well-defined growth plane of the sample).
Furthermore, the measurement error originates from
the different thicknesses of the two samples used in
these two scannings. The difference in thickness arises
as a result of the difference in the shape of the samples
determined by the actual conditions of sample fixation
provided for rotation in different planes.
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6. DISCUSSION OF THE RESULTS

In accordance with current concepts, the position of
the minimum of the characteristic band in the transmis-
sion spectrum of a photonic crystal observed in our
experiments corresponds to the Bragg wavelength. The
behavior of the bands in the transmission spectra
(Figs. 2–4) correlates well with the spectral and angular
dependences of the intensity of Bragg diffraction from
the opal structure studied by us earlier [17–19]. Theory
offers the following general relation for the intensity of
Bragg diffraction (elastic light scattering) with the
wave vector transformation K  K':

(5)

Here, S(K' – K) is the structural factor, ε(K' – K) are the
Fourier components of the periodic dielectric function
ε(r) = ε(r + a), and a is a direct-lattice translation vec-
tor. The structural factor has maxima in the scattering
directions defined by the condition K' – K = b [see
Eq. (1)]. The diffraction intensity is nonzero for the
crystal planes for which ε(b) ≠ 0.

As is evident from condition (1), Bragg diffraction
from a crystal plane follows the law of mirror reflection
relative to vector b, which acts as the normal to this
plane. Since the optical absorption and background
reflection in opals are small, the transmission and
Bragg diffraction spectra are mutually complementary,
which can be written as

(6)
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Fig. 5. Bragg wavelength plotted vs. angle of incidence for
the case of diffraction from systems of different fcc lattice
planes. The calculations are performed with the parameters
R = 135 nm and neff ≈ 1.36.
P

Here, TK(λ) is the dependence of the transmission spec-
trum on wavelength λ for a given direction K of the
incident wave and Iλ(K' – K)|K' = K + b is the Bragg dif-
fraction intensity from a crystal plane with vector b at
a given wavelength of light. The summation over the
reciprocal lattice vectors b in Eq. (6) means that all
Bragg diffraction processes defined by Eq. (1) are taken
into account.

In accordance with Eq. (1), the dependence of the
Bragg wavelength on the angle of incidence of light Θ
on the (hkl) plane in an ideal fcc lattice can be written as

(7)

The quantity d(111)neff ≈ 300 nm entering this expression
was measured for our opal samples in [21]. Figure 5
plots Eq. (7) for light diffraction from the low-index
planes {111}, {200}, {220}, and {311} of the opal fcc
lattice. For such samples, diffraction in the visible
region (400–700 nm) is seen to be possible from the
{111}- and {200}-type plane systems only; the diffrac-
tion conditions for other plane systems are satisfied in
the near UV region. The λ(hkl)(Θ) dependences for the
low-index {210} and {211} planes are not shown in
Fig. 5, because for these planes the structural factor in
Eq. (5) is zero [22]. We will discuss subsequently only
diffraction of visible light from {111}- and {200}-type
planes of our samples.

As already mentioned, the photonic band gap forms
as a result of Bragg diffraction of light waves from a
periodically modulated dielectric structure [1–5]. In the
case of Bragg diffraction of light from a plane system
with Miller indices (hkl), we obtain, by analogy with
Eq. (7), the following dependence of the Bragg wave-
length in vacuum on the angle of incidence of light θ on
the sample:

(8)

Here, the angle Ψ(hkl) and the geometric factor Φ(hkl)
(0 < Φ(hkl) ≤ 1) are determined by the mutual orientation
of the vectors K, b(hkl), and b(111); the angle θ is mea-
sured from the vector b(111). It thus follows that the con-
dition of Bragg diffraction (8) defines the position of
the photonic stop bands for the spatial directions deter-
mined by the angle θ. One of the goals of our study was
to verify this conclusion experimentally.

Figure 6 plots the Bragg diffraction wavelengths
calculated for scannings I (Fig. 6a) and II (Fig. 6b) of
the Brillouin zone of a twinned fcc structure. These
quantities were derived from Eq. (8) for each plane of
the {111} and {200} sets and are shown as functions of
the angle θ. Although the calculations were made with
the parameter d(111)neff ≈ 300 nm of a specific photonic
structure, such plots can be derived for any fcc structure
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SPECTROSCOPY OF THE PHOTONIC STOP BAND IN SYNTHETIC OPALS 1337
from Fig. 6 using linear scaling with the parameter
dneff. The position of the stop bands is scaled with the
parameter dneff in the same way.

The experimental energy positions of the band min-
ima in the transmission spectra obtained by processing
the spectra (Figs. 2–4) are presented in Fig. 7. For com-
parison, solid lines plot the λ(hkl) relations calculated
from Eq. (8) corresponding to the three Brillouin zone
scannings (I, II, III in Fig. 1). The scanning paths are
shown on the bottom scale of Fig. 7 for the fcc-I and
fcc-II structures. Using the data from Fig. 7, let us dis-
cuss the evolution of the photonic band gap of synthetic
opals as the surface of the Brillouin zone is scanned. As
seen from Fig. 7, the calculated energy positions of the
stop bands corresponding to {111}-type planes are, on
the whole, in agreement with the experimental data. In
particular, there is good agreement for the energy posi-
tion of the photonic band gap (2.09 eV) at the two L
points of the Brillouin zone. To these points in scanning
I correspond the angles ΘI = 0 and 70.5°, which define

the orientation of the (111) growth and ( ) non-
growth diffraction planes, respectively. The energy
minimum in the position of the photonic band gap cor-
responding to the L point identifies the low-energy edge
of the opal photonic band gap.
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The good agreement between the experimental data
(Fig. 7) and Eq. (8) suggests that the main features of
the photonic band gap in the visible region (1.5–3.0 eV)
are accounted for by the Bragg diffraction of light from
{111}-type planes of the twinned fcc structure. The
spectral position of the band minima in the transmis-
sion spectra obtained for different orientations is seen
to be in accord with the Bragg wavelengths for reflec-
tion from {111}-type planes. Diffraction of light from
{200}-type planes was not observed in our present
experiments, which most probably should be attributed
to the smallness of the Fourier components ε(b(200))
(according to [23], |ε(b(200))|/ |ε(b(111))| ~ 10–1 for
unfilled opal).

A certain disagreement between the experimental
data and calculations is observed in scanning II, partic-
ularly, close to the M point (Fig. 7). The experimental
dependence of the stop band energy on the angle ΘII
passes through a minimum at ≈2.15 eV (577 nm),
which lies below the calculated curve in energy [the
theoretical value of the minimum energy at point M is
≈2.37 eV (522 nm)] but is still above the absolute min-
imum of ≈2.08 eV (596 nm) corresponding to the L
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Fig. 7. Experimental energy position of the band minima in
the transmission spectra displayed in Figs. 2–4 (circles cor-
respond to scanning I; squares, to scanning II; triangles, to
scanning III). Solid lines plot relations (8) calculated with
the same parameters as those in Fig. 6.
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point (dashed line in Fig. 7). This disagreement can be
explained if we look at the scheme of the Brillouin zone
shown in Fig. 1. The M and L points of the Brillouin
zone are seen to lie in very close planes parallel to the
(111) growth plane. It may be conjectured that, in real
samples of synthetic opals, different regions in the
(111) growth layer are slightly misoriented with respect
to the [111] growth axis (in the ΘIII angle). In this case,
the regions on the surface of the Brillouin zone that lie
close to the L point (and, hence, in which the photonic
band gap energy is lower than at the M point) addition-
ally contribute to the experimentally observed band in
the transmission spectra.

The experimentally observed band in the transmis-
sion spectrum provides information not only on the
energy position of the corresponding stop band but also
on its width, which is larger the higher the contrast
(modulation depth) of the permittivity. Indeed, the band
gap width of an ideal photonic crystal can be estimated
as [2]

(9)

where λ0 is the wavelength of light in the crystal, ε(b)
are the Fourier components of the permittivity, and ε0 =
ε(0). Using the value ε0 = 1.352 and the estimate
|ε(b(111))| ≤ 0.1, we find from Eq. (9) ∆λb/λ0 ≤ 0.05.
This width correlates well with the stop band width cal-
culated within the one-dimensional model of a photo-
nic crystal described in [21].

Using the value of the intrinsic width of the photonic
band gap ∆λb as a reference, let us consider possible
mechanisms of the additional broadening of the trans-
mission bands. As is evident from Figs. 2 and 3, the
transmission band corresponding to the photonic band
gap near the L point for the (111) growth plane (ΘI = 0°)
is substantially narrower than the band near point L'

related to the nongrowth ( ) plane (ΘI = 70.5°) and
than the band near the M point, which is also related to

the ( ) nongrowth plane. The band width for the
(111) growth plane is minimal, ≈20 nm, which corre-
sponds to ∆λb/λ0 ≈ 0.1, a figure close to the theoretical
estimate obtained from Eq. (9). The width of the other
bands is 30–50 nm. This difference can be accounted
for by relating the band width in a transmission spec-
trum to the extent to which the corresponding Bragg
planes deviate from perfection. We may recall that the
(111) growth plane is substantially more perfect than
the {111}-type nongrowth planes, in which the tight
hexagonal packing of a-SiO2 spheres is distorted by
random stacking of the (111) growth layers along the
[111] growth axis. As pointed out in Section 2, the
stacking correlation coefficient in the samples studied
is p ≈ 0.8; the formation of twins in which regions of the
regular fcc structure consisted of about ten hexagonal
layers was most probable. Structural imperfections of

∆λb

λ0
---------

ε b( )
ε0

--------------,=

111

111
P

the {111}-type nongrowth planes decrease the size of
the regions with regular a-SiO2 sphere arrangement in
these planes and broaden the corresponding bands in
the transmission spectra, as well as decrease the dip
depth in these bands.

Note one more characteristic feature of the trans-
mission spectra. The stop band appearing under normal
incidence of light on the (111) opal growth plane is
observed against the background transmission (≈90%)
depending only weakly on λ (Figs. 2, 3). The weak
spectral dependence of the background transmission
coefficient outside the stop band can be attributed to a
decrease in the absorption coefficient of the plate with
increasing wavelength [21]. Figures 2–4 show, how-
ever, that, as the angle of incidence deviates from nor-
mal, particularly at large angles Θ, the dependence of
the background transmission coefficient on wavelength
becomes appreciable and the background transmission
falls off noticeably with decreasing λ. This behavior of
the transmission spectra can be interpreted using the
results from studies [17–19, 24] on light diffraction in
opals. Indeed, the diffraction of white light from the
opal (111) growth planes at small angles Θ satisfies the
Bragg condition (1) and the spectral composition of the
diffracted light is confined in a narrow wavelength
interval. In this case, the background in the transmis-
sion spectra is constant because there is no diffraction
within a broad spectral range, which is in accord with
the energy balance equation (6). At large angles of inci-
dence Θ, however, the diffraction patterns observed are
more complex and result from spectral decomposition
of white light undergoing diffraction from the (111)
growth planes, which are stacked randomly along the
growth axis. It is this broadening of the spectral compo-
sition of light removed from the transmission channel
through diffraction that gives rise to the decrease in
background transmission with increasing angle Θ, in
accordance with Eq. (6).

7. CONCLUSIONS

An integrated program for measuring transmission
spectra in this study and the Bragg diffraction of light
in [17–19, 24] has yielded a broad picture of the photo-
nic band gap in synthetic opals. In contrast to the avail-
able publications, in which the photonic band gap was
studied only in the vicinity of the L point in the Bril-
louin zone [6, 8, 10–12], the dispersion of the photonic
band gap was measured in this study over the whole
surface of the Brillouin zone of the twinned opal fcc lat-
tice. Our results provide direct evidence of the absence
of a full photonic band gap in synthetic opals with a
weak contrast in permittivity. For an opal with the
parameter d(111)neff ≈ 300 nm, the dispersion of the pho-
tonic band gap in the visible region is fitted well by the
set of dispersion relations for the stop bands corre-
sponding to {111}-type planes of the twinned fcc struc-
ture. The observed nonuniform band broadening and
the presence of a background in the transmission spec-
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tra is accounted for by the existence of different types
of structural disorder in real synthetic opals.
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Abstract—The process of silver intercalation under a graphite monolayer (GM) grown on the (111) nickel sin-
gle-crystal face, GM/Ni(111), is studied. The experiments were conducted in ultrahigh vacuum. The systems
were formed in situ in a vacuum chamber under direct monitoring of each stage in the formation of the systems
by angle-resolved UV photoelectron spectroscopy and LEED. The possibility of silver intercalation in the
GM/Ni(111) system was studied in the course of deposition of various amounts of the metal on the given subject
with subsequent heat treatment. It was established that the process occurs optimally under cyclic alternation of
the operations of adsorbate (Ag) deposition on the GM/Ni(111) surface and subsequent annealing of the system.
In the intermediate stages of GM/Ag/Ni(111) formation, the GM on Ni(111) was found to exist in two phases.
Ag intercalation under a graphite monolayer on Ni(111) at room temperature was verified. © 2004 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Graphite-based multilayer systems formed by inter-
calating various materials into the interlayer space are
attracting considerable attention because of their
unique properties and their application potential [1, 2].
Some elements, such as gold, silver, and copper, can-
not, however, be intercalated into bulk graphite by stan-
dard technologies [1]. Fabrication of intercalated sys-
tems based on noble metals with the purpose of obtain-
ing new types of objects and investigating them can
only be accomplished through the use of a single graph-
ite monolayer deposited on the surface of d metals or
their carbides [2–18].

Thin films of noble metals (in particular, Au and Cu)
of variable thickness, prepared by intercalation under a
graphite monolayer, are bounded on one side by the
graphite monolayer and on the other, by the substrate
surface plane. This confers clearly pronounced two-
dimensional properties to the given systems. In addi-
tion, as shown in [19], a graphite monolayer also acts as
a passivator by protecting the metal from interaction
with the active components of the atmosphere.

Our earlier publications [12–16] reported on a study
of gold and copper intercalation under a graphite mono-
layer (GM). We showed the possibility of inserting
atoms of noble metals under a GM on Ni(111) and
investigated the electronic structure and phonon spectra
of such intercalated systems using photoelectron spec-
troscopy, low-energy electron energy-loss spectroscopy
(LEELS), and scanning tunneling microscopy.

It was shown by Tontegode and his group of
researchers [4–7] that, while silver also belongs to the
1063-7834/04/4607- $26.00 © 21340
group of noble metals, a system with silver atoms inter-
calated under a GM is unique in terms of its properties
and the specific features of the intercalation process
involved. Attempts at inserting silver directly under a
GM formed on a patterned Ir foil failed [4–7], and this
goal could only be attained by substituting silver atoms
for the preintercalated alkali metal atoms. The limiting
concentration of the Ag atoms penetrating under the
GM in this case was one monolayer (ML), in compari-
son with the systems studied earlier, GM/Au/Ni(111)
and GM/Cu/Ni(111), where the intercalant thickness
reached 1–2 MLs.

The present communication reports on a compara-
tive study of the possibility of intercalating various
amounts of silver predeposited on the GM/Ni(111) sur-
face (ranging from a monolayer coverage to tens of Ag
monolayers). Direct evidence was obtained of the inter-
calation of the metal under a GM. Special experiments
permitted us to compare the possibilities inherent in
step-by-step intercalation at standard (T = 375°C) and
room temperature. The electronic structure of the inter-
calated systems thus formed was studied, and the mech-
anisms by which silver interacts with the GM/Ni(111)
system were analyzed.

2. EXPERIMENTAL CONDITIONS

Experiments were carried out on an ADES-400
commercial angle-resolving photoelectron spectrome-
ter (VG Scientific).1 The equipment included a 150°
1 The authors express their gratitude to Prof. Kaindl, Free Univer-

sity of Berlin, for giving us the chance to use this instrument.
004 MAIK “Nauka/Interperiodica”
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spherical-sector analyzer (angular resolution 2°), a gas-
discharge UV helium lamp (UVS-10/35), an ion gun,
and a gas admission system. The energy resolution of
the analyzer was 50 meV. The UV lamp radiation was
incident at an angle of 55° to the sample surface nor-
mal. The photon sources were the He-I and He-II reso-
nance lines with energies of 21.2 and 40.8 eV, respec-
tively. The sample orientation and the surface structure
periodicity were determined by the LEED method. The
diffraction patterns were imaged by a four-grid retard-
ing-field energy analyzer. These patterns were used to
adjust the principal azimuthal directions (GM, GK) of
the surface Brillouin zone, after which angle-resolved
photoelectron measurements were conducted within
the polar angle range from –20° to 45° with respect to
the sample surface normal (0° corresponds to emission
along the normal). The sample temperature was moni-
tored with a Ni–Ni/Cr thermocouple. The metal was
deposited from a silver weight mounted on a W–Re spi-
ral. The exact amount of deposited material (Θ) was
measured with a quartz microbalance. The experiment
was performed in ultrahigh vacuum. The base pressure
in the chamber at the time of spectrum was recorded did
not exceed 1 × 10–10 Torr.

The surface of the nickel single crystal was specially
prepared by repeated ion etching alternated with
annealing in an oxygen and a hydrogen atmosphere
until the photoelectron spectra acquired the shape typi-
cal of a clean Ni(111) face [14, 15]. The diffraction pat-
tern measured after this procedure demonstrated, as
expected, hexagonal symmetry, thus indicating the
good quality of the crystal structure.

Monolayer coverage of graphite on the nickel sur-
face was produced by propylene cracking, a technology
described in [12–16]. The sample was exposed to pro-
pylene C3H6 for 5 min at a gas pressure of 1 × 10–6 Torr
and a substrate temperature of 500°C.

After the formation of the first monolayer, there is
practically no further growth of graphite layers (as indi-
cated in [3, 4]), which results from reduced reactivity of
the surface. The substantial differences between the
growth rates make it possible to monitor the thickness
of the graphite coating with high accuracy. For
instance, whereas the formation of 1 ML of graphite
requires an exposure of a few hundred langmuirs, the
exposure needed for deposition of the second layer is
tens of thousands of langmuirs [20]. This observation
permits us to choose conditions favoring the formation
of only one monolayer of graphite on the Ni(111) sur-
face.

The electronic and crystal structures of the system
thus formed were identified by LEED and photoelec-
tron spectroscopy. After the GM formation, the diffrac-
tion pattern did not change dramatically, with bright
reflections at the hexagon corners still prevailing. In
view of the slight difference (less than 2%) between the
(0001)graphite and Ni(111) face lattice constants, this
behavior may indicate the formation of a structure that
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
is coherent with that of the substrate. The presence of
features corresponding to graphite in the photoelectron
spectra, as will be shown later, and the general pattern
of dispersion of these features suggest that the starting
point of our studies was indeed a graphite monolayer on
Ni(111), an object with well-defined properties.

3. EXPERIMENTAL RESULTS

Figure 1 presents a series of angle-resolved photo-
electron spectra (hν = 40.8 eV) obtained for the
GM/Ni(111) system. The spectra were measured with
photoelectrons emerging in the GM direction of the
two-dimensional Brillouin zone of graphite for various
polar angles reckoned from the surface normal.

These experimental relations exhibit distinct peaks
corresponding to electron excitation from the d states of
Ni and π states of graphite lying in the binding-energy
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Fig. 1. Photoelectron spectra (hν = 40.8 eV) obtained for
the GM/Ni(111) system under variation of the polar angle θ
in the plane corresponding to the ΓM direction of the two-
dimensional Brillouin zone of graphite. 0° corresponds to
emission in the normal direction. Shown below is the graph-
ite two-dimensional Brillouin zone specifying the direc-
tions in which the angular dependence was studied. Filled
circles identify the LEED pattern reflections.
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regions 0–2.5 and 4–10 eV, respectively. Some spectra
also contain weak features in the binding-energy region
4–6 eV (normal emission), which can be assigned to the
σ2,3 graphite states. The decisive part in the interaction
mechanism between the graphite substrate and the GM
is played by the graphite π states [2], whose dispersion
was studied by us before and after intercalation. Unfor-
tunately, in the course of angular measurements, the
sample position underwent a slight displacement rela-
tive to the axis of analyzer rotation due to the specific
design of the manipulator. This led to accumulated
error, and, as a result, the π-state branch was somewhat
squeezed in the angle. Assuming this contraction to be
due exclusively to the specific features of the experi-
ment, we calibrated the setup against the published data
on GM/Ni(111) [14, 15]. Based on this calibration, the
graphs of Fig. 2 should be related to the dispersion of
electronic states in the GM/Ni(111) valence band along
the GM direction. The dashed line in Fig. 2 shows the
experimental data obtained in [14] for a graphite single
crystal. Comparison with the data for bulk graphite
shows that the π-state branch of the GM/Ni(111) sys-
tem is shifted toward higher binding energies (BEs) by
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Fig. 2. Band dispersion in the GM direction of the two-
dimensional Brillouin zone of graphite for the following
systems: (1) GM/Ni(111); (2, 3) GM/Ag/Ni(111) for depos-
ited silver concentrations of 3.0 and 4.7 MLs, respectively;
and (4) bulk graphite (dashed line).
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about 2.0 eV. Note the specific pattern of this shift; on
reaching its maximum value at the G point, it falls off as
the Brillouin zone edge is approached. This shift, as
established in [2], is caused by hybridization of the π
states of graphite with the d states of Ni.

Figure 3a displays photoelectron spectra (normal
emission) (1) for the clean Ni(111) surface, (2) for the
surface coated by a graphite monolayer, (3) for
GM/Ni(111) with a silver layer with surface concentra-
tion Θ = 11 MLs, and (4) for the same system as (3) but
heated to a temperature of 375°C. The photoelectron
spectrum 1 of the clean Ni(111) surface has peaks of
the Ni d states with binding energies of 0.5 and 1.5 eV.
The formation of a graphite monolayer on Ni(111)
(curve 2) is accompanied by the appearance of a peak
due to the graphite π states localized in the energy
region of 10.2 eV and a weakening of the nickel d states
in the photoelectron spectra. Deposition of 11 Ag
monolayers on this system (curve 3) results in an
almost complete disappearance of the graphite and
nickel peaks (i.e., complete suppression of signals from
the GM/Ni(111) system by silver) and the appearance
of a structure characteristic of the silver d states in the
binding energy range 4–8 eV. Annealing the system at
T = 375°C restores the graphite π-state peak but in a
position shifted toward lower binding energies to
~9.0 eV, as well as the peaks due to the Ni d states with
a substantially weaker intensity (curve 4).

Figure 4 displays photoelectron spectra obtained for
various angles from a GM/Ag/Ni(111) system with a
layer of Ag about ~5 ML thick repeatedly added and
annealed at 375°C (GM direction of the two-dimen-
sional Brillouin zone). A common feature in the series
of these spectra is the dispersion of the π states of
graphite and a nearly dispersion-free behavior of the 4d
states of the silver valence band. The features corre-
sponding to the π states are identified by vertical
arrows. They were used to construct curve 3 for the dis-
persion in Fig. 2. As follows from a comparison with
the GM/Ni(111) system, the π-state branch of the
GM/Ag/Ni(111) system is shifted by 1–1.5 eV to the
region of energies characteristic of single crystal
graphite.

4. DISCUSSION OF THE RESULTS

Now, we consider in more detail the mechanisms for
interaction in the three-component GM/Ni(111) + Ag
system under study and analyze the main changes
occurring in the sample. A noticeable feature in the
band structure of the system, which becomes manifest
after silver deposition on the GM/Ni(111) and thermal
annealing, consists in an appreciable shift of the graph-
ite π states by ~1–1.5 eV toward decreased binding
energies (Fig. 3a). This shift was assigned in [15, 16] to
penetration of the intercalant under the GM and sup-
pression of its strong covalent bonding to the Ni(111)
substrate. Similar changes observed in the spectra of
the gold and copper systems, GM/Au/Ni(111) and
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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Fig. 3. (a) Photoelectron spectra (hν = 40.8 eV) measured for normal emission. (1) Clean Ni(111); (2) graphite monolayer on
Ni(111); (3) 11 MLs of Ag deposited on the GM/Ni(111) surface; and (4) the preceding system heated to 375°C. (b) Normalized
peak intensities of the graphite π states, Ag 4d states, and Ni 3d states. (1) Clean GM/Ni(111); (2) same as in (1) but with 11 MLs
of Ag deposited on top of GM/Ni(111) at room temperature; and (3) same as in (2) but after annealing of the system up to 375°C.
The normalization was made against the amplitude of the signal obtained in a given state.
GM/Cu/Ni(111), were considered to be related to pen-
etration of the Au and Cu atoms under the graphite
monolayer. In our case, thermal annealing occurred in
the same temperature region (350–400°C) that is
needed to ensure intercalation of Au and Cu under the
GM on the Ni(111) surface [12–16]. The same values
were used in LEELS studies of the interaction of silver
with a GM [17, 18]. The similarity of the conditions
and the observed shift of the graphite π states in binding
energy provides compelling evidence for silver behav-
ing in our case in much the same way, thus suggesting
Ag intercalation under the GM. Let us estimate the spa-
tial silver location from the intensities of the Ag, C, and
Ni peaks in each stage of formation of the system (clean
GM/Ni(111) substrate, silver deposition, heat treat-
ment). Figure 3b shows the relative variation of the
graphite, nickel, and silver peak intensities measured
under normal emission and reflecting the transforma-
tion of the system in the course of Ag deposition and
annealing of the system. In Fig. 3b, state 1 refers to the
GM/Ni(111) system; state 2, to the system after Ag
deposition on GM/Ni(111); and state 3, to the system
after annealing. We see that, after the deposition of sil-
ver, the peak intensities of the graphite π states and Ni
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
d states drop practically to zero, with only the silver
features prevailing. After the annealing (state 3), the
graphite π-state peak grows in amplitude. The silver
peak intensity decreases after the annealing by about
one-half, and the nickel features remain barely visible
on top of the broad plateau adjoining the Fermi level.
This relative amplitude of the signals indicates that sil-
ver atoms are located above the metallic Ni substrate
and that the atoms of carbon are on the surface of the
system. This is direct evidence of Ag intercalation
under the GM.

However, while the amplitude of the signal due to
the graphite π states does increase after the anneal, it
does not reach the level corresponding to GM/Ni(111)
(state 3 in Fig. 3b). This is because the silver atom
redistribution brought about by the increase in the sam-
ple temperature gives rise to several processes. In the
initial stage, after deposition of a large amount
(~11 MLs) of Ag on the GM/Ni surface, the adsorbate
film completely suppresses the signals due to graphite
and nickel (spectrum 3 in Fig. 3a). After the system was
heated, part of the atoms penetrate under the GM, while
others tend to escape from the working surface and
migrate toward the sample periphery or coalesce into
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larger formations (compared to atomic size). The coa-
lescence and buildup of Ag should occur preferentially
at the boundaries of the graphite islands, which may be
considered to be defects in the GM structure. Such
behavior of the silver atoms affects the signal intensity
redistribution for all three elements, C, Ag, and Ni
(state 3 in Fig. 3b). Raising the sample temperature to
375°C does not restore the amplitude of the graphite π-
state peak completely. As a result, the peak diminishes,
compared to that for the GM/Ni(111) system, by about
25%. It appears natural to assume that the reason for
this lies in the silver left on the GM surface and cap-
tured by adsorption centers located along the bound-
aries of the graphite islands. Thus, the fraction of the
GM free surface in this particular case is approximately
75% of the surface area. Therefore, the Ag signal orig-
inates actually from two silver states, more specifically,
from the silver remaining on the graphite surface and
from the silver that penetrated under the GM.
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As known from experiments on Ag adsorption on
graphite, the silver layer in the initial stages of growth
has an island structure [21]. One could expect similar
behavior on the GM/Ni(111) surface. Indeed, photo-
electron spectra exhibit features near the Fermi level
that correspond to the substrate signal even for precoat-
ing thicknesses of the order of 5–7 MLs. This suggests
that the growth of a silver film on the surface of bulk
graphite and on GM/Ni(111) follows an island pattern.
STM studies of Cu deposition on a GM on Ni(111) and
of Cu intercalation under a GM on Ni(111) [15] also
attest to the island growth of the predeposited Cu layer,
which is close in electronic properties to Ag.

The measured angular energy distributions of the
outgoing electrons (Fig. 4) and the calculated valence-
state dispersion (Fig. 2) show that the new system
retains its quasi-two-dimensional graphite-like charac-
ter. This suggests that the electronic and geometric
characteristics of a GM on the surface remain
unchanged.

The spectra displayed in Fig. 5 permit more compre-
hensive analysis of the intermediate stages in intercala-
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tion. We see here photoelectron spectra that reveal the
evolution of the GM/Ni(111) system as silver is being
deposited stepwise on its surface to various total thick-
nesses (starting from 0.3 to 7.1 MLs), with each depo-
sition step followed by annealing to 375°C. The bottom
spectrum shows the original state of the system and is
seen to derive from the Ni d states, as well as from the
graphite π states localized near 10.2 eV. The spectra
obtained with up to 1.8 ML of deposited silver reveal
features typical of the silver d states against the back-
ground of decay of the graphite and nickel peaks related
to the GM/Ni(111) system. Note a certain broadening
of the graphite π-state peak and its simultaneous shift
toward lower binding energies. After the total thickness
has reached 3.5 MLs, the shift of the π states toward
lower binding energies in the photoelectron spectra
already becomes considerable, about 1.2 eV. Further
deposition of silver and annealing of the system do not
bring about significant changes in the energy of this
feature; only a gradual weakening of the signal due to
the substrate is observed. As a result, the double-
humped peak characteristic of the Ni d states degener-
ates into a nearly flat step, on which one can neverthe-
less discern barely visible features with binding ener-
gies of 0.5 and 1.5 eV. The column of figures on the left
of Fig. 5 identifies the thickness of the deposited layers.
These figures are of arbitrary character and specify only
the total amount of Ag applied to the GM surface dur-
ing the experiment. As already mentioned, only a frac-
tion of the intercalant penetrates under a GM and each
heating of the system is accompanied by migration of
silver atoms over the surface in addition to insertion, as
a result of which part of them escape to an area inacces-
sible for analysis.

It appears natural to assume that, in the initial
stages, where the silver concentration is not high
enough to saturate the GM–substrate interlayer space
(over the entire sample area), a certain intermediate
state prevails. In this case, part of the Ag atoms have
already penetrated under the GM, while part of the GM
remains in the initial state; i.e., the surface can be
divided into regions with and without intercalated sil-
ver atoms. In particular, it is this situation that the bot-
tom spectra in Fig. 5, which correspond to a total thick-
ness of the deposited film of up to 1.8 ML, should
reflect. The π-state peak in this early stage is broad-
ened, and the center of gravity of this feature shifts
toward lower BEs. The shift is quite substantial in the
case of thick coverages (the upper spectra in Fig. 5).
Starting with concentrations above 3.0 MLs and going
upwards, the position of the graphite π-state peak
remains unchanged as the amount of the adsorbate is
increased. Thus, there is an initial stage of the system,
namely, a GM on Ni(111), and a final stage (a system
with a saturated layer of intercalated silver), which are
characterized by π-state binding energies of 10.2 and
9.0 eV, respectively. Assuming all the intermediate
spectra to be the sums of two signals associated with
the above states and assigned certain weights, one can
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
fit the experimental curve by the sum of two such com-
ponents. To do this, the π-state peak was decomposed
(after subtracting the background) into two constituent
Gaussians, with their half-width serving as a fitting
parameter. The result of this unfolding is shown in
Fig. 6. The dashed lines display the contributions from
each of the components, and the solid line describes
their sum, which in most cases is seen to be in good
agreement with the experiment. The decompositions
made with other positions of the maxima (not 10.2 and
9.0) do not agree with the experiment, which provides
a compelling argument for the validity of the above rea-
soning.

Assuming that the concentration of the silver that
penetrated under the GM on Ni(111) for the final state
is 1 ML and that the silver is uniformly distributed
under the GM, the relative contribution from the second
(low-energy) component of the π states to the total
spectrum should correlate with the fraction of the GM
bound to the Ni(111) substrate through the Ag atoms.
This suggests that, to ensure efficient penetration of
~1 ML of Ag under the GM for the given method of for-
mation of the system, one should preliminarily deposit
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three to four MLs of silver on the GM/Ni(111) surface.
The assumption that Ag is present under the GM in a
monolayer concentration appears reasonable. Indeed,
after the second component of the π states has saturated
(with a preliminary coverage of 3–4 MLs), there is
practically no change in the structure of the peak and in
its intensity and energy with increasing Θ. At the same
time, further decay of the Ni d state peak in intensity
with the thickness of the predeposited Ag layer increas-
ing to 11 MLs may indicate an increase of the interca-
lated silver layer in thickness.

Thus, the above experimental data and their analysis
may be considered an additional argument for silver
intercalation under a GM grown on Ni(111). Moreover,
the reasoning presented here shows convincingly that
the intercalation process is indeed accompanied by a
complex behavior of the metal deposited on
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tion of 1.8 ML.

GM/Ni(111)
P

GM/Ni(111), including intercalation of the material
and its coalescence and migration. At the same time, it
should be stressed that the GM itself in this system is a
fairly stable formation and retains its geometric and
electronic properties in the course of these processes.

In order to study the temperature dependence of the
intercalation process, an attempt was undertaken to
detect Ag intercalation at room temperature. This was
done by successive deposition of small amounts of sil-
ver on GM/Ni(111) without intermediate heating (the
total amount of the deposited material was Θ =
2.7 MLs). The results obtained are displayed in Fig. 7.
The bottom spectrum shows the state of the original
GM/Ni(111) system, and the subsequent spectra show
its evolution with increasing silver coverage. As in the
case with intermediate heating of the system, this
experiment also reveals a broadening of the peak
accompanied by a shift toward lower binding energies.
Although the increase in the half-width and the shift of
the graphite π states are less obvious, the corresponding
treatment of the data enables us to unfold the peak of
graphite π states into two constituents with the same
binding energies as derived earlier. This implies that the
pattern of the relevant processes remained unchanged.
The inset in Fig. 7 demonstrates this type of treatment.
Deconvolution of the graphite π-state peak into compo-
nents performed for a spectrum corresponding to a total
coating thickness of 1.8 ML reveals a shifted peak of π
states, which indicates the presence of silver under the
GM. The data relating to the system obtained by depos-
iting silver on the sample without heating suggest that,
while the temperature factor plays an important part in
intercalation, the intercalation process itself is not of
activated character; in other words, insertion of silver
atoms under the GM takes place already at room tem-
perature. Annealing the system only intensifies the
intercalation process (see the top spectrum in Fig. 7).

The totality of our data also shows that intercalation
of one silver atom changes the electronic structure of
only the nearest hexagon located above it in the graph-
ite layer (or in its nearest neighbor environment),
whereas the other carbon atoms remain strongly
bonded to the Ni surface. This means that, in penetrat-
ing under the GM over the boundaries of graphite
islands and propagating in the space between the GM
and the Ni(111) surface, the Ag atoms do not affect the
total area of the substrate surface. They most probably
coalesce in dense formations near the boundaries of
graphite domains to produce a separate intercalated
graphite-coating phase and a phase of the graphite layer
residing in its original state. This behavior is reflected
in the spectra in the form of two components of the
graphite π-state peak in the intermediate intercalation
stages. Thus, decomposition of the graphite π-state
peak and estimation of the relative magnitude of the
shifted and unshifted components, as performed in
Fig. 6, provide the fraction of the GM surface under
which silver has penetrated.
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To sum up, systems obtained both by simultaneous
deposition of large amounts of silver and by alternation
of the deposition–annealing cycles, as well as by inter-
calation at room temperature, revealed the presence of
two phases of existence of a graphite layer in various
stages of formation. These two phases correspond to
the position of the graphite layer hexagons above the
inserted silver atoms or, as before, bonded directly to
the Ni(111) substrate.

It should be pointed out that heating a system
obtained by step-by-step deposition of silver at room
temperature to T = 375°C does not produce a spectrum
of a clearly pronounced intercalant (Fig. 7). The peak
due to the π states of graphite remains diffuse; i.e., at
given concentrations Θ = 2.7 MLs) of silver predepos-
ited at room temperature, a substantial contribution
under heating comes from the accumulation of silver
atoms in islands on the GM surface, a factor hindering
complete intercalation of the system. If the Ag coverage
is increased to surface concentrations of the order of 7–
10 MLs (i.e., with silver coating practically the entire
surface), the spectrum obtained after annealing of the
system becomes similar to the spectra presented in
Figs. 3 and 4. Summing up, one can say that the contri-
bution from the processes giving rise to silver coales-
cence in islands at low concentrations of deposited sil-
ver is quite high, a factor substantially hindering the
intercalation process, which requires the presence of a
certain amount of silver atoms near the boundaries of
the graphite domains. At large coverages, the silver
concentration (despite the competing coalescence pro-
cess) becomes high enough for efficient intercalation.

5. CONCLUSIONS

The results of our studies can be summed up as fol-
lows:

(1) We have obtained direct evidence of the interca-
lation of silver under a graphite monolayer formed on
the Ni(111) surface. Silver atoms penetrate into the
interlayer space between the GM and Ni(111), thus
blocking (substantially reducing) the strong covalent
bonding between the GM and the substrate. As a result,
the electronic structure of the valence band of the
GM/Ag/Ni(111) system formed reveals a general shift
of the graphite π-state peak toward lower binding ener-
gies by 1.0–1.5 eV, depending on the actual position in
the Brillouin zone. The graphite-like character of the π-
band dispersion is retained. The spatial position of the
layers of the elements making up the system, namely,
C, Ag, and Ni, was established. The system formed was
described as a set of layers of graphite and silver and a
nickel substrate surface, with metal being present at the
same time at boundaries of graphite domains in the
form of islands.

(2) We have shown that, in the initial stages of silver
intercalation under a GM, the system surface area can
be divided into two parts, with and without intercalated
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
silver atoms, with different electronic structure of the
valence bands. It was established that the changes in the
spectra in the region of the graphite π states can be con-
sidered a superposition of two components correspond-
ing to the clean and saturated states of the system, with
their characteristic binding energies. The experimental
data obtained enable one to follow the evolution of the
electronic structure of the system with variation of the
silver concentration under the GM.

(3) It has been established that silver intercalation
under a GM on Ni(111) follows the same scenarios
under repeated deposition–annealing cycles and under
silver deposition at room temperature. Increasing the
temperature only intensifies the process of adsorbate
penetration into the interlayer space.

(4) It has been shown that the graphite monolayer in
this system is a sufficiently stable formation and retains
its main geometric and electronic properties in the
course of intercalation.
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Abstract—This paper reports on the results of investigations into the photoconducting properties of amorphous
molecular semiconductors based on films of two types: (i) poly(styrene) films doped with epoxypropylcarba-
zole (EPC) and a cationic polymethine dye (PD1) and (ii) poly(styrene) films doped with tetranitrofluorenone
(TNF) and an anionic polymethine dye (PD2). Films of the first type possess p-type conductivity, whereas films
of the second type exhibit n-type conductivity. It is found that, for films with n-type conductivity, unlike films
with p-type conductivity, the activation energy of photogeneration of mobile charge carriers decreases with a
decrease in the optical wavelength in the absorption range of the dyes. The possible mechanisms of the influ-
ence of the photoexcitation energy on the initial distance between charge carriers in electron–hole pairs are ana-
lyzed. The inference is made that, when the excess thermal energy of excited dye molecules dissipates at a low
rate, the distance between the photogenerated electrons and photogeneration centers increases as compared to
the distance between the photogenerated holes and photogeneration centers due to the electron–nucleus inter-
action. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since amorphous molecular semiconductors can
change their optical and electrical characteristics under
exposure to light in the visible and near-IR ranges,
these materials are widely used as media for recording
and displaying optical information, converting solar
energy, and controlling light emission [1–3]. Amor-
phous molecular semiconductors are solid solutions in
which molecules have no translational symmetry [4]. In
the general case, these semiconductors can be consid-
ered true solutions that involve three types of com-
pounds in a neutral film-forming binder. Molecules of
two compounds in a solid solution form transfer bands
of electrons and holes, whereas molecules of the third
compound serve as centers of photogeneration and (or)
recombination of charge carriers. The electron-transfer
band is formed by the lowest unoccupied molecular
orbitals (LUMOs) of molecules that possess acceptor
properties and are separated by a mean distance Rn =

 (where Na is the concentration of acceptor mole-
cules in an amorphous molecular semiconductor). The
hole-transfer band is formed by the highest occupied
molecular orbitals (HOMOs) of molecules that exhibit
donor properties and are separated by a mean distance

Rp =  (where Nd is the concentration of donor mol-
ecules in an amorphous molecular semiconductor). The
electronic levels of the molecules forming the charge-
transfer bands are not split and remain local. Note that,

Na
1/3–

Nd
1/3–
1063-7834/04/4607- $26.00 © 21349
in this case, the localization length αn of the electron
wave functions of acceptor molecules can differ from
the localization length αp of the hole wave functions of
donor molecules.

The transport of charge carriers in the transfer band
occurs through tunneling transitions between local lev-
els of the molecules. The majority of the amorphous
molecular semiconductors used in practice [5] (with
only a few exceptions [4]) are characterized by the fol-
lowing empirical dependences of the electron mobility
µn and the hole mobility µp in the corresponding trans-
fer bands on the external electric field strength E and
the temperature T:

(1)

(2)

Here, W0n and W0p are the activation energies of the
electron and hole mobilities in a zero electric field (E =
0), respectively; β is the coefficient numerically coin-
ciding with the theoretical value of the Pool–Frenkel
constant; k is the Boltzmann constant; and T0 is the tem-
perature corresponding to the intersection point of the
experimental dependences (extrapolated to the high-
temperature range) of  and  on 1/T at

µn Rn
2

2Rn/αn–( )exp∼

× W0n βE
1/2

–( ) 1/T 1/T0–( )/kB–( ),exp

µp Rp
2

2Rp/α p–( )exp∼

× W0 p βE
1/2

–( ) 1/T 1/T0–( )/kB–( ).exp

µn( )log µp( )log
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different electric-field strengths E. It is worth noting
that the first factor in relationships (1) and (2) has a
form similar to the expression for the probability of the
tunneling transition of an electron between localized
states. Furthermore, the second factor has a form simi-
lar to the expression for the probability that, during its
motion in an external electric field, the charge carrier
overcomes the potential barrier produced by an oppo-
sitely charged center. Consequently, the transport of
charge carriers within the transfer bands can be treated
as a process involving diffusion inside molecules and
hoppings (tunneling) between these molecules.

When a photon with energy hν is absorbed by a pho-
togeneration center in an amorphous molecular semi-
conductor, an electron and a hole appear to be separated
and can leave the photogeneration center. In this case,
the electron and the hole pass into the corresponding
charge-transfer band and form a Coulomb-bound elec-
tron–hole pair with an initial distance r0 between
charge carriers. The quantum yield Φ0 of the formation
of an electron–hole pair is determined by the intramo-
lecular conversion and interconversion of the molecule
of the photogeneration center, the ratio of the HOMO
and LUMO energies of the photogeneration center to
the energies of the corresponding molecular orbitals of
the molecules forming the electron-transfer and hole-
transfer bands, steric factors, the distance from the pho-
togeneration center to the molecules of the transfer
bands, and the spin conversion in the electron–hole
center. The charge carriers in the electron–hole center
either can be widely spaced, thus producing free non-
equilibrium photoconduction centers, or can recombine
at the photogeneration center. For the majority of amor-
phous molecular semiconductors, the quantum yield η
of photogeneration of free charge carriers can be repre-
sented by the empirical relationship [5]

(3)

where W0PH is the activation energy of photogeneration
of free charge carriers in a zero electric field (E = 0) and
T0 is the temperature corresponding to the intersection
point of the experimental dependences (extrapolated to
the high-temperature range) of  on 1/T at differ-
ent electric-field strengths E. It should be noted that,
according to the model of two-stage photogeneration of
charge carriers through the formation of electron–hole
pairs and their dissociation, the activation energy W0PH
can be identified with the energy of the Coulomb inter-
action between the electron and the hole in the elec-
tron–hole pair [1, 5]:

(4)

where q is the elementary charge, ε0 is the permittivity
of free space, and ε is the permittivity.

η Φ0RnRp –Rn/αn Rp/α p
–( )exp∼

× W0PH βE
1/2

–( ) 1/T 1/T0–( )/kB–( ),exp

η( )log

W0PH q
2
/4πε0εr0,=
P

The above scheme of photogeneration, transfer, and
recombination of charge carriers in amorphous molec-
ular semiconductors very roughly reflects the real situ-
ation, but it is sufficient for demonstrating the substan-
tial differences between these processes and those
occurring in crystalline and amorphous vitreous semi-
conductors. This scheme can serve as an illustration of
the possible ways of preparing amorphous molecular
semiconductors used both in media for recording opti-
cal information (electrography, holography) and in
photoelectric converters. The basic requirement placed
on these semiconductor materials consists in increasing
the efficiency of photogeneration of electron–hole pairs
with a maximum initial distance between charge carri-
ers. However, the problem concerning the dependence
of these parameters on the type of charge carrier (a hole
or an electron) that is the first to leave the photogenera-
tion center during the formation of an electron–hole
pair has received little attention in the literature. At the
same time, this problem could turn out to be important,
because an electron escapes from an excited center of
photogeneration upon intermolecular electronic transi-
tion from the LUMO of this center to the LUMO of an
acceptor molecule, whereas a hole escapes upon inter-
molecular electronic transition from the HOMO of the
donor molecule to the HOMO of the photogeneration
center. These processes are not identical, especially as
the electron occupying the LUMO of the photogenera-
tion center rather than the HOMO of the donor mole-
cule is involved in relaxation of the excited state of the
center. In this respect, the purpose of the present work
was to elucidate how the activation energy of photoge-
neration of free charge carriers and the initial distance
between charge carriers in electron–hole pairs depend
on the type of photogenerated carries (electrons or
holes) and also to refine the model of photogeneration
of electrons and holes.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

For this purpose, we prepared amorphous molecular
semiconductors based on films of two types:
(i) poly(styrene) (PS) films doped with a cationic poly-
methine dye (PD1) and epoxypropylcarbazole (EPC) as
an electron donor and (ii) poly(styrene) films doped
with an anionic polymethine dye (PD2) and tetranitrof-
luorenone (TNF) as an electron acceptor. The structural
formulas of the dopant molecules are presented in
Fig. 1.

Poly(styrene) films are transparent, do not exhibit
intrinsic photoconductivity in the visible and near-IR
ranges, can easily be prepared, and are convenient
objects for investigating the intermolecular interactions
upon their doping with organic compounds. Polyme-
thine dyes serve as sensitizers of photoconductivity and
electroluminescence in photoconducting polymers,
because they can efficiently convert the luminous
energy, are characterized by intense absorption and
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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luminescence bands over a wide spectral range [6], and
are suitable for simulating the dependences of the pho-
toelectric properties of amorphous molecular semicon-
ductors on the molecular structure. The choice of the
polymethine dyes PD1 and PD2 as the objects of our
investigation was made for the following reasons. In the
visible range, the shapes and maxima of the electronic
absorption spectra of these dyes in poly(styrene) films
are similar to each other (Fig. 2) and are determined by
only one electronic transition. On the other hand, in
amorphous molecular semiconductors, the PD1 dye
molecules play the role of photogeneration centers of
holes, whereas the PD2 dye molecules serve as photo-
generation centers of electrons. The last circumstance
is associated both with the opposite electrical charges
of the colored ionic organic structures PD1 and PD2
and with the substantial difference in their HOMOs and
LUMOs [7]. Amorphous molecular semiconductors
containing carbazole groups possess p-type conductiv-
ity, and films based on poly(N-vinylcarbazole) or
poly(N-epoxypropylcarbazole) have found wide appli-
cation in holographic and electrographic recording
media [1, 4]. Therefore, polymer films doped with the
EPC monomer are convenient model objects for use in
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Fig. 1. Structural formulas of (a) cationic polymethine dye,
(b) anionic polymethine dye, (c) epoxypropylcarbazole, and
(d) tetranitrofluorenone molecules.
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studying the intermolecular transfer of holes. Fluo-
renone-based electron acceptors are used for providing
n-type conductivity in amorphous molecular semicon-
ductors, and, consequently, polymer films doped with
TNF are appropriate for investigating the intermolecu-
lar transfer of electrons.

In order to determine the dependences of the activa-
tion energy of photogeneration and the initial distance
between charge carriers in electron–hole pairs on the
type of mobile carries that are the first to leave the pho-
togeneration centers upon the formation of electron–
hole pairs, the activation energies of photogeneration of
holes and electrons were investigated as functions of
the electric field strength E and the wavelength of light
used for photogenerating charge carriers. The activa-
tion energy of photogeneration of holes WPHp was deter-
mined for the films PS + Nd mol % EPC + N1 mol %
PD1 with unipolar p-type conductivity, whereas the
activation energy of photogeneration of electrons WPHe

was obtained for the films PS + Namol % TNF +
N2 mol % PD2 with unipolar n-type conductivity. 

The optical absorption, photoluminescence, and
photoconductivity spectra of the polymer films PS +
Nd mol % EPC + N1 mol % PD1 and PS + Na mol %
TNF + N2 mol % PD2 were measured in the wavelength
range λ = 400–1000 nm. The concentrations of donors
Nd, acceptors Na, and dyes N1 or N2 were varied from
zero to 30, 20, and 1% with respect to the polymer
weight, respectively. The samples to be studied were
prepared by drying polymer solutions with dopants in
dichloroethane, which were spread over the surfaces of
glass substrates either with an SnO2 transparent con-
ducting layer or without this layer. The drying was per-
formed in a desiccator at a temperature of 80°C for 4 h.
The thickness of the polymer films prepared was mea-
sured with the use of an MII-4 interference microscope
and was equal to 0.6–3 µm. The samples without con-
ducting layers were used for recording the spectra of
the absorption coefficient κ and the photoluminescence
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Fig. 2. (1, 2) Optical absorption spectra and (3, 4) photolu-
minescence spectra of the polymer films: (1, 3) PS +
30 mol % EPC + 1 mol % PD1 and (2, 4) PS + 20 mol %
TNF + 1 mol % PD2.
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intensity IPL of polymers films on a KSVIP-23 spectro-
metric computer complex. In order to prepare samples
with a sandwich structure, an aluminum film was ther-
mally evaporated on the surface of polymer film sam-
ples with SnO2 layers in a vacuum chamber. The sand-
wich samples thus prepared were used to measure the
photocurrent density jPH upon exposure to monochro-
matic light. For these purposes, the samples were
exposed to monochromatic light from an incandescent
lamp with a set of optical filters. The light intensity I
was varied in the range 0.2–5 W/m2 with the use of neu-
tral optical filters. The strength E of the electric field
induced in the polymer films by applying the electrical
voltage across the Al and SnO2 contacts was measured
in the range (1–20) × 107 V/m. The kinetics of photo-
conduction during irradiation and after its termination
was recorded on a storage oscilloscope. The depen-
dences of the photocurrent density jPH on the electric
field strength E and the temperature T were measured
using the samples placed in a thermostat with an optical
window whose temperature could be changed from 293
to 343 K. The activation energies of photogeneration of
holes WPHp and electrons WPHe were determined from
the experimental temperature dependences of the pho-
tocurrent density jPH.

3. EXPERIMENTAL RESULTS

The polymer films PS + Nd mol % EPC do not
exhibit optical absorption in the wavelength range λ >
400 nm. As can be seen from Fig. 2, the optical absorp-
tion spectra of the polymer films PS + Na mol % TNF
are characterized by the red fundamental absorption
edge of TNF (curve 2) [5]. The absorption coefficient κ
increases in direct proportion with the acceptor concen-
tration Na. However, the shape of the absorption band
with an increase in the acceptor concentration remains
unchanged. This suggests that the EPC and TNF mole-
cules have a weak tendency toward aggregation in the
poly(styrene) films [6]. Therefore, these films can be
treated as solid solutions. In the sandwich samples con-
taining the polymer films PS + Nd mol % EPC and PS +
Na mol % TNF, no photocurrent is observed in the stud-
ied ranges of electric field strengths E, temperatures T,
and wavelengths λ.

The optical absorption spectra of the polymer films
PS + Nd mol % EPC + N1 mol % PD1 and PS +
Na mol % TNF + N2 mol % PD2 exhibit new absorption
bands (Fig. 2, curves 1, 2) due to the electronic absorp-
tion of PD1 and PD2, respectively. The normalized
absorption and photoluminescence spectra of these
dyes have a symmetric shape and only slightly change
with a variation in the dopant concentration in poly(sty-
rene). Analysis of the above spectra shows that the
effects of dye aggregation and the formation of charge-
transfer complexes between EPC and PD1 or TNF and
PD2 are insignificant in the films under investigation.
P

Therefore, these films can also be considered solid
solutions.

In the sandwich samples with the polymer films
PS + Nd mol % EPC + N1 mol % PD1 and PS +
Na mol % TNF N2 mol % PD2, the photoconductivity is
observed in the absorption range of the dyes. After the
onset of exposure of these samples to monochromatic
light in an external electric field, the electric current in
the amorphous molecular semiconductor increases and,
within 40–60 s, reaches a quasi-stationary value jPH,
which only slightly changes in the course of further
exposure. After termination of exposure, the electric
current decreases. The kinetic curves characterizing the
rise and relaxation of the photocurrent are symmetric.
At constant values of E and I, the photocurrent density
jPH increases with an increase in the concentration Nd

and (or) Na. The dependences of the photocurrent den-
sity jPH on the electric field strength E can be approxi-
mated by straight lines in the E1/2–logjPH coordinates
and then can be analytically described by an expression
similar to relationship (3). The activation energies of
photocurrent WPHp and WPHe, which were calculated
from the slopes of the dependences of logjPH on 1/T,
decrease with an increase in the electric field strength
E. The dependences WPHp(E) and WPHe(E) in the
E1/2−WPHp and E1/2–WPHe coordinates exhibit a linear
behavior, and their slopes are equal to (4.8 ± 0.3) ×
10−5 eV (V/m)–1/2, which is close to the Pool–Frenkel
constant [4, 8]. The portions of these dependences
extrapolated to E = 0 intersect the axis of ordinates.
This allows one to determine the activation energies of
photogeneration of holes and electrons W0PHp and W0PHe

in a zero electric field and to calculate the distances
between charge carriers in electron–hole pairs before
dissociation.

However, a decrease in the wavelength λ at constant
electric field strengths E leads to an insignificant
change in the activation energy of hole photogeneration
WPHp and a decrease in the activation energy of electron
photogeneration WPHe. It turned out that, as the wave-
length λ decreased, the activation energy of hole photo-
generation and the initial distance r0p between charge
carriers in electron–hole pairs only slightly changed for
the polymer films PS + Nd mol % EPC + N1 mol % PD1,
whereas the activation energy of electron photogenera-
tion decreased and the initial distance r0e between
charge carriers in electron–hole pairs increased for the
polymer films PS + Na mol % TNF + N2 mol % PD2.
For example, at optical wavelengths of 540, 445, and
420 nm, we obtained W0PHp = (0.97 ± 0.05) eV and
r0p = 5.6 ± 0.1 Å for samples with the polymer films
PS + 30 mol % EPC + 1 mol % PD1. For samples with
the polymer films PS + 20 mol % TNF + 1 mol % PD2
upon exposure to light at the same wavelengths, we
obtained the following parameters: W0PHe1 = (1.05 ±
0.05) eV and r0e1 = (5.4 ± 0.1) Å at λ = 540 nm,
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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W0PHe2 = (0.72 ± 0.05) eV and r0e2 = (7.8 ± 0.1) Å at
λ = 445 nm, and W0PHe3 = (0.54 ± 0.05) eV and r0e3 =
(10.5 ± 0.1) Å at λ = 420 nm. Note that the distances
between charge carriers in electron–hole pairs were cal-
culated using the permittivity ε = 2.55 for poly(styrene)
under the assumption that this quantity is approxi-
mately equal for different electron–hole pairs. Indeed,
since the samples under investigation can be treated as
solid solutions, the nearest environments of donor,
acceptor, and dye molecules predominantly contain
monomer units of the poly(styrene) solid binder.

4. DISCUSSION

Thus, it is established that the experimental depen-
dences of logjPH on E1/2 exhibit a linear behavior, the
coefficient β in relationship (3) is close to the theoreti-
cal value of the Pool–Frenkel constant, and the depen-
dences of jPH on E can be described by relationship (3)
for amorphous molecular semiconductor films with
polymethine dyes PD1 and PD2. Therefore, the experi-
mental results obtained for these films can be analyzed
in the framework of the previously developed models of
photogeneration and transfer of charge carriers in
amorphous molecular semiconductor films [4, 8].
According to the model concepts, the photogeneration
of charge carriers from photogeneration centers (in our
case, the role of photogeneration centers is played by
dye molecules) proceeds in two stages. At the first stage
of the photogeneration, the absorption of a photon by a
dye molecule leads to the formation of a bound elec-
tron–hole pair. At the second stage of the photogenera-
tion, the electron–hole pair dissociates into free charge
carriers under the action of heating and an external
electric field.

The first and second stages of the photogeneration
are completed at the instant of time when, after absorp-
tion of a photon by the photogeneration center, the
charge carrier transferred from this center (dye mole-
cule) to a molecule of the corresponding transfer band
reaches thermal equilibrium with the environment.
Prior to this instant of time, the following processes
occur in sequence: (i) absorption of the photon and
excitation of the dye molecule, (ii) intramolecular con-
version in the excited dye molecule and the intermolec-
ular electronic transition from the dye molecule to a
molecule of the corresponding transfer band, and
(iii) partial dissipation of the energy of the excited dye
molecule and (or) the charge carrier escaping from it. It
is owing to these processes that the charge carrier can
appear to be either at a shorter distance or at a longer
distance from the photogeneration center. In the exper-
iments, this difference manifests itself in different acti-
vation energies of photogeneration in a zero electric
field. In this respect, in order to explain the weak
dependence of the activation energy for photogenera-
tion of holes on the wavelength of light used for photo-
generating charge carriers, on the one hand, and the
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
experimentally observed decrease in the activation
energy for photogeneration of electrons with a decrease
in the wavelength, on the other hand, we will analyze
the possible mechanisms of formation of electron–hole
pairs.

In the visible range, the PD1 and PD2 dyes used in
the aforementioned experiments are characterized by
only one electronic transition. In the temperature range
covered, this transition for an individual dye molecule
can be interpreted as the intramolecular transition of an
electron from the lower vibrational level of the HOMO
to the ith discrete vibrational level of the LUMO. The
correlation between the processes of dissipation of the
excitation energy and photogeneration of charge carri-
ers can be illustrated by the diagram shown in Fig. 3.
For this purpose, we introduced the following designa-
tions: hνi and Pi are the photon energy and the effi-
ciency of photoexcitation of a dye molecule from the
singlet ground state S0 to the unrelaxed singlet excited
state Si, respectively; Ni is the concentration of dye mol-
ecules in the unrelaxed state Si; hν1 is the photon energy
corresponding to the 0–0 transition; U = hνi – hν1 is the
difference between the photon energies of excitation
and 0–0 transition; kU is the rate constant of the internal
conversion of the excited dye molecule from the Si state
to the S1 state; kV is the rate constant of the dissipation
of the energy U to the environment; kSU and kS are the
rate constants of the nonradiative and radiative S1–S0
transitions, respectively; ni is the concentration of elec-
tron–hole pairs in which the charge carrier in a mole-
cule of the corresponding transfer band is formed
through the intermolecular electronic transition from
the Si state or has a potential energy identical to that of

HOMO 1

HOMO 3

LUMO 3

LUMO 2

i = 3

i = 2

i = 1

ku

kν

k1
r0e1

r0e2

r0e3

Rn

Rp

k1

r0p1

hν1
hν2

hν3

Fig. 3. Diagram of electronic transitions during photogener-
ation of holes and electrons. HOMO 1 is the highest occu-
pied molecular orbital of donor molecules; LUMO 2 is the
lowest unoccupied molecular orbital of acceptor molecules;
and HOMO 3 and LUMO 3 are the highest occupied and
lowest unoccupied molecular orbitals of dye molecules,
respectively.
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the electron in this state and is located at the distance r0i

from the photogeneration center; ki is the rate constant
of the formation of an electron–hole pair from the Si

state; k–i is the rate constant of the recombination of an
electron–hole pair through the Si state; and kDi is the
rate constant of the diffusion of charge carriers in the
corresponding transfer band outward from the photoge-
neration center.

For the majority of organic dyes and related com-
pounds, the relaxation of excited states to the ground
state proceeds in the course of the S1–S0 transition [6].
Therefore, it can be assumed that the energy U of the
excited dye molecule dissipates either through the
transfer of the energy of thermal vibrations from this
dye molecule to adjacent molecules [9] or as a result of
an increase in the kinetic energy of the charge carrier
upon intermolecular electronic transition during the
formation of an electron–hole pair [10]. The latter case
was considered in [10] for explaining the dependences
of the activation energy W0PHe and the distance r0e on
the photon energy hνi for organic crystals. In [10], it
was assumed that electrons are photogenerated from
the highest excited states of molecules. In the course of
the formation of an electron–hole pair, the electron
moves away from the photogeneration center in the
conduction band of the crystal and loses excess kinetic
energy due to the electron–phonon interaction with the
crystal lattice. An increase in the excitation energy is
accompanied by an increase in the kinetic energy of the
electron and in the distance r0e. However, in our earlier
works [11–13], we demonstrated that the intermolecu-
lar electronic transitions upon photogeneration or
recombination of charge carriers in amorphous molec-
ular semiconductors occur through electron tunneling
between two molecules, namely, between the photoge-
neration center and the molecule of the corresponding
transfer band. This implies that, when the charge carrier
moves away from the photogeneration center, the
energy of this carrier changes only as a result of the
interaction with the electron–nucleus system of mole-
cules involved in the corresponding transfer band.
Moreover, it should be emphasized once again that
amorphous molecular semiconductors differ from
organic crystals in that their molecules in the transfer
bands have no translational symmetry, do not form
broad energy bands and, at low concentrations, are sur-
rounded by the polymer binder.

The mechanism of photogeneration of charge carri-
ers in amorphous molecular semiconductors can be
refined using a system of kinetic equations describing
the changes in the concentrations of excited dye mole-
cules and electron–hole pairs with variations in the dis-
tance r0i between the charge carriers:

(5)

(6)

dNi/dt Pi Ni 1+ kU nik i– N+ +=

– Ni kU kSU kS+( )δi1 ki+ +( ),

dni/dt Niki ni 1– kDi 1– ni k i– kDi+( ),–+=
P

where δi1 = 1 (i = 1) and 0 (i > 1).
The internal conversion and the S1–S0 transitions are

competing processes in the course of the formation of
an electron–hole pair from excited states of the photo-
generation center. Let us now analyze the system of
equations (5) and (6) for different relationships
between the rate constants of the corresponding pro-
cesses.

(1) For kU @ ki and (kSU + kS) @ ki, electron–hole
pairs cannot undergo photogeneration, because the
relaxation of excited states and the S1–S0 transition are
the fastest processes.

(2) For kV @ kU > ki > (kSU + kS), the electron transfer
from the excited dye molecule to the acceptor molecule
can occur only from the S1 state irrespective of the pho-
toexcitation energy. The excess energy U is completely
dissipated by the time the electron–hole pair is formed.
For holes and electrons, the concentration distributions
of electron–hole pairs over distances between charge
carriers in the pairs are described by a delta function
and these distributions do not depend on the photon
energy hνi. Most likely, this is not the case for our
experiments, because such a dependence on the photon
energy hνi is observed for amorphous molecular semi-
conductors based on the polymer films PS + 20 mol %
TNF + 1 mol % PD2.

(3) For ki @ kV > kU > (kSU + kS), the excited center
of photogeneration has no time to undergo an internal
conversion within the time interval between the absorp-
tion of the photon with energy hνi and the formation of
an electron–hole pair; in this case, the electron is
involved in an intermolecular transition from the Si

excited state during the formation of an electron–hole
pair. Upon photogeneration of a hole, the intermolecu-
lar transition occurs through the transfer of an electron
from the HOMO of the donor molecule (in the hole
transfer band) to the partially occupied HOMO of the
dye molecule located at the distance r0p from the donor
molecule (Fig. 3). Since the photoexcitation energy hνi

does not affect the HOMO energy of the donor and dye
molecules, the distance r0p does not depend on the
energy hνi. This inference is confirmed by our experi-
mental data obtained for samples with the polymer
films PS + 30 mol % EPC + 1 mol % PD1, for which an
increase in the energy hν does not lead to a change in
the activation energy of photogeneration of charge car-
riers.

For the above relationship between the rate con-
stants with allowance made for the tunneling mecha-
nism of formation of electron–hole pairs, it can be
expected that the electron escaping from the excited
dye molecule should transfer to the acceptor molecule
(in the electron transfer band) located at a distance r0ei

from the dye molecule. Consequently, an increase in
the photon energy should result in an increase in the
distance between the photogeneration center and the
electron (Fig. 3). However, in the case of samples with
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the polymer films PS + Na mol % TNF + N2 mol % PD2,
the increase in the distance r0ei with an increase in the
photon energy hνi is not nearly so appreciable as could
be expected. In particular, for samples with the polymer
films PS + 20 mol % TNF + 1 mol % PD2 upon expo-
sure to light at wavelengths of 540, 445, and 420 nm,
the activation energies of photogeneration of electrons
in a zero electric filed and the distances r0ei should be as
follows: W0PHe1 = 1.05 eV and r0e1 = 5.4 Å at λ =
540 nm, W0PHe2 = 0.56 eV and r0e2 = 10.1 Å at λ =
445 nm, and W0PHe3 = 0.4 eV and r0e3 = 14.2 Å at λ =
420 nm. Here, the activation energy of photogeneration
of electrons is determined as the difference between the
activation energy of photogeneration upon the forma-
tion of an electron–hole pair from the S1 state and the
energy hνi – hν1. The photon energy hν1 is calculated
from the wavelength λ corresponding to the intersec-
tion point of the normalized dependences of the absorp-
tion coefficient and the photoluminescence intensity for
the amorphous molecular semiconductor films (Fig. 2).
The distances r0e2 and r0e3 thus calculated turned out to
be substantially larger than those determined from the
experimental temperature dependence of the photocur-
rent density jPH.

(4) For kU > ki > kV > (kSU + kS), the excited center of
photogeneration has time to undergo an internal con-
version within the time interval between the absorption
of the photon with energy hνi and the formation of an
electron–hole pair. The formation of an electron–hole
pair from the S1 excited state occurs concurrently with
the dissipation of the thermal energy U. In the course of
intermolecular vibrational relaxation, the excited mole-
cule of the photogeneration center nonradiatively trans-
fers excess absorbed light energy to vibrational states of
the surrounding polymer molecules. The higher the
mobility of polymer chains and the higher the elasticity
of the polymer, the more efficient the transfer of the
excess vibrational energy (heat transfer) from the dye
molecule to polymer molecules and donor and (or)
acceptor molecules [14]. This can lead to a consider-
able increase in the distance between the charge carri-
ers in the electron–hole pair, because the intermolecular
electronic transition proceeds between the molecule of
the photogeneration center and molecules of the trans-
fer band, which, at thermal energies U > 0, are not at
thermal equilibrium and have excess vibrational
energy. The excess thermal energy depends on the dis-
sipation mechanism and the distance from the photoge-
neration center and favors an increase in the distance
between the mobile charge carrier in the electron–hole
pair and the photogeneration center to a distance at
which all the molecules are at thermal equilibrium. For
identical energies U, mechanisms of dissipation of
excess thermal energy, rate constants ki and kV, and
numbers of molecules forming the nearest environment
of an individual molecule, the distance r0ei is larger than
the distance r0pi. This difference can be explained as
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      200
follows. In the course of photogeneration of electrons,
the intermolecular electronic transitions occur between
“hot” and “cold” molecules. On the other hand, during
the photogeneration of holes, the intermolecular transi-
tions proceed through the transfer of an electron from
the HOMO of the donor molecule (in the hole transfer
band), which is located far from the photogeneration
center and acquires a small excess of thermal energy
from it. Therefore, the hole moves away from the pho-
togeneration center through the intermolecular elec-
tronic transitions between cold and hot molecules.

It is important to note that the distribution of elec-
tron–hole pairs over distances r between charge carriers
cannot be described by a delta function and depends on
the thermal energy U. Figure 4 shows the numerically
simulated distribution functions ni(r) at different ener-
gies U for amorphous molecular semiconductors based
on the polymer films PS + 30 mol % EPC + 1 mol %
PD1 (curves 1, 2) and PS + 20 mol % TNF + 1 mol %
PD2 (curves 3, 4). These distribution functions were
obtained by solving the system of equations (5) and (6)
under the following conditions: T = 293 K, k–i ! ki, ki ~
kS = 5 × 1010 s–1 [6], the number of molecules forming
the nearest environment of an individual molecule is
equal to six, and kDi = νDexp[–q2(1/ri –
1/ri + 1)/4πε0ε(kBT + U/m)]. Here, ε = 2.55; νD is the fre-
quency factor, which accounts for the diffusion of
charge carriers inside molecules and the tunneling of
charge carriers between molecules (this factor was
taken to be close to 1012 s–1 [12]); and m is the number
of events of dissipation of the thermal energy U from
molecules by the instant of time t with the rate constant
kV = 5 × 1010 s–1 [9]. The thermal equilibrium condition
was assumed to be U/mkB = 1 K. It was found that, as
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Fig. 4. Dependences of d(n/n0)/dr on r for amorphous
molecular semiconductors based on the films (1, 2) PS +
30 mol % EPC + 1 mol % PD1 and (3, 4) PS + 20 mol %
TNF + 1 mol % PD2 under exposure to light at wavelengths
of (1, 3) 445 nm (U = 0.49 eV) and (2, 4) 420 nm (U =
0.65 eV).
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the energies hν and U increase, the mean distance
between the photogenerated electron and the photoge-
neration center increases to a greater extent than the
corresponding distance in the case of photogeneration
of holes. This is in agreement with the aforementioned
experimental dependence of the photocurrent density
jPH on the temperature for the amorphous molecular
semiconductors under investigation.

5. CONCLUSIONS

Thus, the performed analysis of the experimental
results made it possible to interpret the dependences of
the activation energy for photogeneration of charge car-
riers in amorphous molecular semiconductors on the
optical wavelength and to propose practical recommen-
dations for the choice of amorphous molecular semi-
conductor materials with a high quantum yield of pho-
togeneration of charge carriers in the short-wavelength
range of the optical absorption spectrum. It is our opin-
ion that, in amorphous molecular semiconductors, the
photogeneration of mobile charge carriers occurs
through the electron–nucleus interaction and that the
dissipation of excess thermal energy U can favor an
increase in the mean distance between charge carriers
in electron–hole pairs. This effect is more pronounced
in amorphous molecular semiconductors with n-type
conductivity and is less pronounced in amorphous
molecular semiconductors with p-type conductivity.
Therefore, in order to increase the quantum yield of
photogeneration of charge carriers, it is necessary to
choose molecules of photogeneration centers, electron
donors, electron acceptors, and polymer binders in such
a way as to ensure a relatively low rate of heat exchange
between these molecules. One way of doing this is to
increase the rigidity of molecules forming amorphous
molecular semiconductors.
P
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Abstract—Electron paramagnetic resonance (EPR) spectra of nonmetallic amorphous polyphthalocyanines
are investigated in the temperature range 295–500 K. The EPR spectrum of nonmetallic amorphous polyphth-
alocyanine samples at room temperature prior to heating is a narrow singlet of approximately Lorentzian shape
with a linewidth ∆Hpp ≈ 1.7 Oe, a splitting factor g = 2.00, and an intensity IEPR ≈ 1017 spins/g. It is found that
the intensity and linewidth of the EPR spectrum increase with increasing temperature. Beginning with a char-
acteristic temperature T1, both parameters, ∆Hpp and IEPR, become dependent on time (under isothermal condi-
tions). Computer calculations of the spectra demonstrate that the EPR spectrum can be represented as a super-
position of two lines with substantially differing parameters whose dependences on the temperature and micro-
wave power also differ significantly. The possible reasons for the existence of electron paramagnetic resonance
centers of two types with different degrees of delocalization of a charge carrier with a magnetic moment in non-
metallic amorphous polyphthalocyanines are discussed. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Polyphthalocyanines are semiconductor organic
materials that exhibit a great variety of interesting and
useful properties. These materials have found extensive
application as dyes (for example, in modern laser
disks), catalysts, and active elements in gas sensors and
hold considerable promise for use in molecular elec-
tronics. It is known that phthalocyanine molecules are
characterized by a high thermal stability. Owing to this
remarkable property, it has become possible to prepare
high-purity thin films through thermal evaporation of
phthalocyanines. Although phthalocyanines of differ-
ent modifications have been intensively investigated
over the last 40–60 years, their properties are still not
clearly understood. In particular, nonmetallic crystal-
line phthalocyanines, oligophthalocyanines, and
polyphthalocyanines exhibit pronounced paramagnetic
properties [1, 2] and strong electron paramagnetic res-
onance (EPR). It is believed that, for nonmetallic phth-
alocyanine compounds, the EPR signals are associated
with the electron conjugated system [3]. However, even
in the best understood case of crystalline phthalocya-
nines, the results of experimental studies on electron
paramagnetic resonance are rather ambiguous [4]. Fur-
thermore, there is virtually no reliable information on
the EPR spectra of nonmetallic oligophthalocyanines
and polyphthalocyanines.

In the present work, we investigated how the tem-
perature and microwave power affect the parameters of
1063-7834/04/4607- $26.00 © 201357
EPR spectra of nonmetallic amorphous polyphthalocy-
anines.

2. PREPARATION AND CHARACTERIZATION
OF SAMPLES

The compounds to be studied were synthesized
according to the polycyclotetramerization reaction of
pyromellitic acid tetranitrile in a molten monomer in
the presence of 5 mol % urea at a temperature of 285°C
for 5 h, followed by separation of the reaction product
into two fractions soluble in organic solvents (acetone,
dimethylformamide) and one insoluble fraction [5].
Polyphthalocyanine samples were prepared from the
insoluble fraction in the form of a dark green powder
The grain size was approximately equal to 0.1 mm. Part
of the polyphthalocyanine powder was evacuated under
vacuum at a residual pressure of 10–3 Torr and room
temperature for 4 h and was then stored in a sealed
ampule.

The polyphthalocyanine compounds were identified
using IR absorption and electronic absorption spectros-
copy. The IR absorption spectra of samples prepared in
the form of pellets with KBr in a ratio of 1.5 : 400 were
measured on a Specord M-80 spectrophotometer. The
electronic absorption spectra of the studied samples
were recorded on a Specord UV–VIS spectrophotome-
ter. In this case, the samples were placed in a quartz cell
filled with concentrated sulfuric acid. The amount of
free –C≡N terminal groups was estimated from the inte-
04 MAIK “Nauka/Interperiodica”
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grated intensity of the absorption band at 2230 nm–1 in
the IR absorption spectrum (AC≡N) according to the for-
mula AC≡N = 2.4D∆V1/2/L, where D is the optical den-
sity, ∆V1/2 is the half-width of the absorption band, and
L is the thickness of the pellet (expressed in centime-
ters). For the polyphthalocyanine samples under inves-
tigation, the percentage of free –C≡N terminal groups
was equal to 10%. The analysis of the x-ray diffraction
patterns (DRON-3 x-ray diffractometer, CuKα radia-
tion, Ni filter) showed that the polyphthalocyanine
samples are amorphous.

The EPR spectra of polyphthalocyanine samples
were recorded in the X band (at an operating frequency
of ~9.15 GHz) on a Varian E-4 spectrometer equipped
with an E-257 nitrogen thermoelectric device and inter-
faced with a personal computer. The EPR measure-
ments were performed in the temperature range 295–
490 K. The temperature was measured with the use of
a platinum resistor to an accuracy of ± 1 K. The line-
width ∆Hpp and the amplitude A of the EPR signals
were determined using a peak-to-peak method. The
EPR signals were digitized, entered on a personal com-
puter with the use of an analog-to-digital converter, and
stored in computer memory for further processing. The

(a)

(b)

3230 3240 3250 3260 3270 3280
Magnetic field, Oe

Fig. 1. EPR spectra of (a) unevacuated and (b) evacuated
samples of nonmetallic amorphous polyphthalocyanine at a
temperature of 295 K prior to heating. The microwave
power is 1 mW. The solid and dotted lines represent Lorent-
zian and Gaussian line shapes, respectively.
P

computer codes used for processing the EPR spectra
were developed by one of the authors (Yu. A. K.).

3. TEMPERATURE DEPENDENCES
OF THE PARAMETERS OF THE EPR SPECTRA

The EPR spectrum of nonmetallic amorphous
polyphthalocyanine samples at room temperature is a
narrow singlet of approximately Lorentzian shape with
a linewidth ∆Hpp ≈ 1.7 Oe and a splitting factor g = 2.00
(Fig. 1). The typical experiment for measuring the tem-
perature dependence of the parameters of the EPR
spectrum was performed as follows. A sample and a
temperature-sensitive element were placed in an
ampule at the center of a continuous-flow quartz cry-
ostat mounted in the cavity of the spectrometer. The
sample was slowly heated at a rate of one degree per
minute. After the temperature was stabilized, the EPR
spectra were recorded at 5- to 10-min intervals. In cases
when no significant increases in the intensity and line-
width of the EPR signal were observed, the sample was
heated to a higher temperature. When the parameters of
the EPR signal became dependent on time, the temper-
ature was stabilized and the EPR spectra were recorded
at 5- to 10-min intervals. After the rate of change in the
parameters of the EPR spectrum decreased signifi-
cantly, the sample was again heated and the above pro-
cedure was repeated.

The temperature–time dependences of the linewidth
and intensity of the EPR signal for unevacuated and
evacuated samples of nonmetallic amorphous polyph-
thalocyanine are shown in Fig. 2. The intensity IEPR of
the EPR signal was determined as the product
A(∆Hpp)2. For the studied samples at room temperature
prior to heating, the intensity IEPR corresponds to
approximately 1017 spins/g. As the temperature
increases above room temperature, the intensity of the
EPR signal for samples of both types does not decrease.
This indicates that the Curie law does not hold for these
samples. It can be seen from Fig. 2a that, for the une-
vacuated polyphthalocyanine sample, the linewidth and
intensity of the EPR signal become dependent on time
beginning at temperature T1nv ≈ 350 K and increase
under isothermal conditions. For the evacuated polyph-
thalocyanine sample, a similar effect manifests itself
beginning at temperature T1v ≈ 410 K (Fig. 2). It is
worth nothing that, even at the highest temperature
(~490 K) used in this experiment, the linewidth of the
EPR signal does not exceed 2.4 Oe (Fig. 2). The relative
increase in the intensity of the EPR signal with an
increase in the temperature in the range from 295 to
490 K is more pronounced for the unevacuated sample
(400%) than for the evacuated sample (300%). Upon
cooling of the samples to room temperature, the line-
width of the EPR signal returns to its initial value
(∆Hpp ≈ 1.7 Oe). However, the intensity of the EPR sig-
nal after heating the sample is substantially (two to six
times) higher than the intensity of the EPR signal of the
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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sample prior to heating. The increase in the intensity of
the EPR signal after heating is most pronounced for the
evacuated sample at high microwave powers (see the
next section).

4. DEPENDENCES OF THE PARAMETERS
OF THE EPR SPECTRA

ON THE MICROWAVE POWER

Figure 3 shows the dependences of the linewidth
∆Hpp, the amplitude A, and the intensity IEPR of the EPR
spectrum on the microwave power P for unevacuated
and evacuated samples of nonmetallic amorphous
polyphthalocyanine. The EPR spectra were measured
at room temperature prior to and after the samples were
heated according to the procedure described above
(Fig. 2). The intensity of the EPR signal was calculated
using double integration of the experimental spectrum.
As can be seen from Fig. 3, the dependences ∆Hpp(P),
A(P), and IEPR(P) for the unevacuated and evacuated
samples are similar to each other and practically do not
change upon heating to 490 K. The effect of heating of
the samples most clearly manifests itself in a decrease
in the saturation of the EPR signal with an increase in
the microwave power (see insets to Fig. 3). This is also
indicated by the appearance of a maximum in the
curves A(P) for the unevacuated and evacuated samples
after heating. As the microwave power increases from
0.5 to 200 mW, the linewidth of the EPR spectrum for
both samples increases by approximately 35%, which
suggests a homogeneous broadening of the EPR lines.

5. COMPUTER CALCULATION 
OF THE EPR SPECTRA

The shape of the EPR spectrum for the samples of
nonmetallic amorphous polyphthalocyanines under
investigation can be described by a Lorentzian function
rather than by a Gaussian function; however, this spec-
trum cannot be adequately represented by only one
Lorentzian line (see Fig. 1). As was noted by Tanaka
et al. [6] and, even earlier, by Dulov and Slinkin [7],
semiconductor polymers with an extended system of π
conjugation are characterized by two types of EPR-
active centers. In this respect, we decomposed the
experimental EPR spectra into two Lorentzian lines
with different parameters and examined the depen-
dences of the parameters of each Lorentzian line on the
temperature and microwave power. The spectra were
decomposed according to the following procedure. The
experimental values of the linewidth ∆Hpp and ampli-
tude A were obtained from the measured EPR spectra
and were then used to determine the parameters Γ, HR,
and Ymax of the Lorentzian line in the zeroth-order
approximation [8]:

Y YmaxΓ
2
/ Γ 2

H HR–( )2
+[ ] .=
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Fig. 2. Temperature–time dependences of (a, c) the line-
width and (b, d) the intensity of the EPR signal for (a, b)
unevacuated and (c, d) evacuated samples of nonmetallic
amorphous polyphthalocyanine. Crosses indicate projec-
tions onto the coordinate planes.
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Fig. 3. Dependences of the linewidth (squares), the ampli-
tude (circles), and the intensity (triangles) of the EPR signal
on the microwave power for (a, b) unevacuated and (c, d)
evacuated samples of nonmetallic amorphous polyphthalo-
cyanine prior to heating (closed symbols) and after cooling
from the maximum temperature to room temperature (open
symbols). The insets show the dependences of the ratio of
the EPR intensity after heating to the EPR intensity prior to
heating of the samples on the microwave power.
P

The EPR lines with the parameters determined by this
method are depicted in Fig. 1.

The final theoretical spectrum was obtained by min-
imizing the squared deviations of the theoretical and
experimental lines according to a modified method of
gradient minimization. In our calculations, we varied
the parameters Γ, HR, and Ymax for the two Lorentzian
lines (i.e., a total of six parameters were varied). The
correctness of the minimization procedure was checked
by specifying different initial conditions for calculating
the parameters of the second Lorentzian line (for the
first Lorentzian line, we used the parameters obtained
in the zeroth-order approximation). When the results of
the minimization under different initial conditions
coincided accurate to within 1%, the convergence of the
method used was accepted as satisfactory.

The results of the computer calculations demon-
strated that the EPR spectra of nonmetallic amorphous
polyphthalocyanines can be represented by two lines of
Lorentzian shape, one of which is relatively narrow and
the other line is rather broad. The parameters character-
izing the width of the narrow and broad lines at room

temperature are ∆Hpp1 = 2Γ1/  ≈ 1.6 Oe and ∆Hpp2 =

2Γ2/  ≈ 4.9 Oe, respectively. The intensity of the
broad line (at low microwave powers) exceeds the
intensity of the narrow line; however, the amplitude of
the broad line is smaller than that of the narrow line.
Consequently, the sum of these two Lorentzian lines is
characterized by a linewidth close to ∆Hpp1. Note that
the experimental spectrum has a linewidth ∆Hpp ≈
1.7 Oe (Fig. 2). Figure 4 depicts the dependences of the
amplitude, the parameter Γ, and the intensity of the
EPR spectrum represented by two lines of Lorentzian
shape on the microwave power for an unevacuated sam-
ple of nonmetallic amorphous polyphthalocyanine at
room temperature. For the unevacuated sample at room
temperature, the EPR signal represented by the broad
Lorentzian line is saturated more rapidly than the EPR
signal corresponding to the narrow Lorentzian line. At
a microwave power P = 200 mW, the signal intensities
become identical (see inset to Fig. 4b). After heating to
490 K, the relative contribution from the broad Lorent-
zian line to the intensity of the total EPR spectrum
decreases significantly (Fig. 4). In particular, prior to
heating, the intensity of the broad Lorentzian line
exceeds the intensity of the narrow Lorentzian line by
a factor of 5 (at P = 0.5 mW). However, after heating,
the ratio of the intensity of the broad Lorentzian line to
the intensity of the narrow Lorentzian line is equal to
only 1.8.

An analysis of the temperature dependences of the
parameters of the two Lorentzian lines for the unevacu-
ated sample confirms the fact that the intensity of the
broad Lorentzian line decreases upon heating. It can be
seen from Fig. 5 that, beginning at approximately
380 K, the intensity of the narrow Lorentzian line dras-
tically increases (by several factors), whereas the inten-
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Fig. 4. Dependences of the amplitude (circles), the parameter
Γ (squares), and the intensity (triangles) of the EPR spectrum
represented by two lines of Lorentzian shape on the micro-
wave power for an unevacuated sample of nonmetallic amor-
phous polyphthalocyanine at room temperature: (a, b) prior
to heating and (c, d) after heating. The open and closed sym-
bols indicate the narrow and broad Lorentzian lines, respec-
tively. The insets show the ratio of the EPR intensity of the
broad Lorentzian line to the EPR intensity of the narrow
Lorentzian line as a function of the microwave power.
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sity of the broad Lorentzian line considerably
decreases. At temperatures above 450 K, the intensity
of the broad Lorentzian line becomes one order of mag-
nitude lower than the intensity of the narrow Lorentzian
line (Fig. 5). It is worth noting that this significant
decrease in the intensity of the broad Lorentzian line is
not irreversible. Upon cooling of the unevacuated sam-
ple from 490 K to room temperature, the intensity of the
broad Lorentzian line, as before, exceeds (in magni-
tude) the intensity of the narrow Lorentzian line; how-
ever, this excess is several times smaller than that
observed prior to heating (Fig. 4). The linewidths of
both components are also characterized by an increase
at temperatures T > 480 K, which is especially pro-
nounced for the broad component (Fig. 5).

Figure 6 shows the dependences of the amplitude,
the parameter Γ, and the intensity of the EPR spectrum
represented by two lines of Lorentzian shape on the
microwave power for an evacuated sample of nonme-
tallic amorphous polyphthalocyanine at room tempera-
ture. Prior to heating, the dependences Γ(P), Ymax(P),
and IEPR(P) for the evacuated and unevacuated samples
are very similar (Figs. 4, 6) not only qualitatively but
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(b) the parameter Γ of the EPR spectrum represented by two
lines of Lorentzian shape for an unevacuated sample of non-
metallic amorphous polyphthalocyanine. The open and
closed symbols indicate the narrow and broad Lorentzian
lines, respectively. Crosses indicate experimental values of
(a) the intensity IEPR and (b) the linewidth ∆Hpp.
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also quantitatively. However, after heating, the intensity
of the broad Lorentzian line for the evacuated sample
decreases (with respect to the intensity of the narrow
Lorentzian line) to a lesser extent as compared to that
for the unevacuated sample (Figs. 4, 6). It can be seen
from Fig. 6 that, for the evacuated sample after heating,
the decrease observed in the saturation of the EPR sig-
nal represented by the broad Lorentzian line is more
pronounced than that for the signal corresponding to
the narrow Lorentzian line.

The temperature dependences of the parameter Γ
and the intensity of the EPR spectrum represented by
two lines of Lorentzian shape for the evacuated sample
of nonmetallic amorphous polyphthalocyanine are
depicted in Fig. 7. As can be seen, the parameter Γ for
the broad Lorentzian line begins to increase apprecia-
bly (by several tens of percent) at temperatures T >
430 K (for the unevacuated sample, an analogous
increase is observed at T > 380 K), whereas the intensi-
ties of both components significantly increase at T >
410 K (Fig. 7b), i.e., beginning from temperatures at
which the intensity of the EPR signal becomes depen-
dent on time (Fig. 2). At the highest temperatures
(~490 K) used in our experiment, the intensities of the
broad and narrow Lorentzian lines are equal to each
other (Fig. 7). It should be noted that, for the unevacu-
ated sample heated to these temperatures, the intensity
of the broad Lorentzian line is substantially less than
the intensity of the narrow Lorentzian line (Fig. 5).

6. RESULTS AND DISCUSSION

Since compounds based on phthalocyanine exhibit
polymorphism, their investigation is severely compli-
cated. In particular, nonmetallic crystalline phthalocya-
nine can exist in three modifications, namely, the α, β,
and x modifications. The α modification of phthalocya-
nine is considered to be metastable and, under external
actions (for example, upon heating), can transform into
the stable β modification [9]. As was shown by Guil-
laud et al. [10] and Gould [11], apart from the α and β
modifications, phthalocyanine can exist in the x form;
moreover, the α modification itself has three more
forms. According to Kubiak et al. [12], the x form is a
modification of the β form. Taking into account that oli-
gophthalocyanines and polyphthalocyanines are char-
acterized by a great diversity of structures [13, 14], the

Fig. 6. Dependences of the amplitude (circles), the parame-
ter Γ (squares), and the intensity (triangles) of the EPR
spectrum represented by two lines of Lorentzian shape on
the microwave power for an evacuated sample of nonmetal-
lic amorphous polyphthalocyanine at room temperature:
(a, b) prior to heating and (c, d) after heating. The open and
closed symbols indicate the narrow and broad Lorentzian
lines, respectively. The inset and rhombuses show the ratio
of the EPR intensity of the broad Lorentzian line to the EPR
intensity of the narrow Lorentzian line as a function of the
microwave power.
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fact that there exist two types of EPR-active centers in
nonmetallic polyphthalocyanines is not surprising. On
the other hand, no exhaustive explanation of the origin
of unpaired electron spins in conjugated polymers has
been offered to date. Boguslavskiœ and Vannikov [3]
considered the following possible sources of EPR sig-
nals in polymers with conjugated bonds: (1) inorganic
paramagnetic impurities, (2) organic radicals formed in
the course of polymerization, (3) polymer molecules in
a triplet state, (4) stabilized double radicals, (5) polar
states induced by charge transfer (including charge-
transfer complexes), and (6) quasi-free charge carriers.
Detailed analysis allows us to assume that the most
plausible hypotheses are associated with stable double
radicals and charge-transfer complexes [3, 7].

The second hypothesis, as applied to polyphthalocy-
anines (especially to amorphous polyphthalocyanines),
is considered the most credible owing to many factors
favorable for charge transfer. These factors include an
extended π-electron conjugated system, which ensures
a high polarizability and readability of ionization of the
molecules; polydispersity (the presence of molecules
with different molecular weights), which is responsible
for the difference both in electron affinity and in ioniza-
tion potential between the molecules; and structural
disorder, which provides a wide variety of local interac-
tions between the molecules.

The Lorentzian line shape of the EPR signals for
polyphthalocyanines indicates the occurrence of strong
exchange interactions of EPR-active centers and the
homogeneous mechanism of broadening of the EPR
lines. This can also be judged from both the strong
dependence of the EPR linewidth on the microwave
power and the considerable decrease in the amplitude
of the EPR signals even at low microwave powers [8].
The homogeneous broadening of the EPR lines sug-
gests that there is a relatively small spread of parame-
ters of the EPR spectrum (resonance fields and line-
widths) for different centers. Possibly, it is owing to this
circumstance that the experimental EPR spectra can be
represented to a sufficient accuracy by only two lines
(rather than by a greater number of lines).

The large difference between the widths of the two
Lorentzian lines (into which we managed to decom-
pose the experimental EPR spectra) can be associated
with the different degrees of delocalization of the cor-
responding sources of the EPR signals. It is known that
an increase in the degree of delocalization of a charge
carrier with a magnetic moment, as a rule, leads to a
decrease in the EPR linewidth [8]. An important point
is that the effect of saturation of the EPR signal with an
increase in the microwave power is more pronounced
for the broad component of the EPR spectrum (Figs. 4,
6). This indicates a slower spin relaxation of the corre-
sponding centers.

It can be assumed that the samples of polyphthalo-
cyanines studied contain EPR-active centers of two
types. Centers of the first type are characterized by a
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
high degree of delocalization, short times of relaxation,
and a narrow EPR line. Centers of the second type are
localized to a greater extent (most likely, they are not
related to the π-electron conjugated system) and, as a
consequence, cannot undergo fast spin relaxation.
Moreover, centers of the second type are characterized

300 350 400 450 500
1

2

3

4

5

6

L
in

ew
id

th
, O

e

(a)

(b)

(c)

300 350 400 450 500
0

500

1000

E
PR

 in
te

ns
ity

, a
rb

. u
ni

ts

300 350 400 450 500
T, K

1

2

3

4

5

R
at

io
 o

f 
E

PR
 in

te
ns

iti
es

Fig. 7. Temperature dependences of (a) the parameter Γ,
(b) the intensity of the EPR spectrum represented by two
lines of Lorentzian shape, and (c) the ratio of the EPR inten-
sity of the broad Lorentzian line to the EPR intensity of the
narrow Lorentzian line for an evacuated sample of nonme-
tallic amorphous polyphthalocyanine. The open and closed
symbols indicate the narrow and broad Lorentzian lines,
respectively. Crosses indicate experimental values of (a) the
linewidth ∆Hpp and (b) the intensity IEPR.
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by a relatively broad EPR line. It is of interest to note
that the experimental EPR spectra of crystalline phtha-
locyanines (in these measurements, we used commer-
cial powder samples) have a linewidth of 4–5 Oe and
exhibit a fast decrease in the intensity of the EPR signal
with an increase in the microwave power, as was
observed for the EPR signal represented by the broad
Lorentzian line (Figs. 4, 6). It seems likely that the EPR
signals for crystalline phthalocyanines and the EPR sig-
nals corresponding to the broad line for polyphthalocy-
anines are of similar origin.

According to our data, the number of strongly local-
ized (“isolated”) EPR-active centers in nonmetallic
polyphthalocyanines exceeds the number of delocal-
ized centers. Upon smooth heating of the polyphthalo-
cyanine samples to temperatures in the range 400–
500 K, the number of isolated EPR-active centers
decreases, whereas the number of delocalized centers
increases. This can be associated with the increase in
the size of the regions involved in the electron conju-
gated system in the polyphthalocyanine samples sub-
jected to heat treatment. It is worth noting that, for pre-
liminarily evacuated samples, the effect of temperature
on the EPR characteristics of the polyphthalocyanine is
less pronounced. It can be assumed that, during heat-
ing, absorbed molecules of gases (O2, N2, H2O) and the
remaining molecules of solvents (which are present in
a relatively large amount in unevacuated samples), in
one way or another, encourage an increase in the size of
the regions involved in the electron conjugated system
(for example, they can provide a higher lability of the
structure).

7. CONCLUSIONS
Since the regions involved in the electron conju-

gated system play a key role in the formation of specific
properties of conjugated polymers (including those
responsible for electron transport, optical and magnetic
properties, etc.), the results of analyzing the correlation
between the parameters of the EPR spectra and the size
of the electron conjugation regions are of fundamental
and practical importance. In this respect, it is necessary
P

to perform further investigations, in particular, into the
influence of the synthesis conditions (primarily, the
temperature and duration of the synthesis) on the prop-
erties of nonmetallic amorphous polyphthalocyanines.
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Abstract—A modified method is proposed for preparing fullerene compounds with alkali metals in a solution.
The compounds synthesized have the general formula MenC60(THF)x, where Me = Li or Na; n = 1–4, 6, 8, or
12; and THF = tetrahydrofuran. The use of preliminarily synthesized additives MeC10H8 makes it possible to

prepare fullerene compounds with an exact stoichiometric ratio between  and Me+. The IR and EPR spectra
of the compounds prepared are analyzed and compared with the spectra of their analogs available in the litera-
ture. The intramolecular modes Tu(1)–Tu(4) for the  anion are assigned. The splitting of the Tu(1) mode into
a doublet at room temperature for MenC60(THF)x (n = 1, 2, 4) compounds indicates that the fullerene anion has
a distorted structure. An increase in the intensity of the Tu(2) mode, a noticeable shift of the Tu(4) mode toward
the long-wavelength range, and an anomalous increase in the intensity of the latter mode for the Li3C60(THF)x
complex suggest that, in the fullerene anion, the coupling of vibrational modes occurs through the charge–
phonon mechanism. The measured EPR spectra of lithium- and sodium-containing fullerene compounds are
characteristic of  anions. The g factors for these compounds are almost identical and do not depend on tem-

perature. The g factor for the  anion depends on the nature of the metal and differs from the g factor for the
 anion. © 2004 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The electron-acceptor ability of fullerenes is one of
the most important properties of these compounds.
Research into the formation of fullerene complexes
with alkali metals, which is accompanied by electron-
density transfer from metal atoms to fullerene mole-
cules, has revealed very interesting electrical properties
exhibited by the resultant complexes. In the last decade,
these properties have been a subject of extensive theo-
retical and experimental investigation.

The electronic structure of  anions has been
thoroughly studied using electron paramagnetic reso-
nance (EPR), ultraviolet (UV), and nuclear magnetic
resonance (NMR) spectroscopy. The results obtained
thus far for fullerene compounds [1] clearly demon-
strate that the C60 fullerene much more readily reacts
with oxygen than considered previously. The oxygen-
containing impurities (especially, C120O) revealed in
initial fullerene samples substantially affect the EPR
and 13C NMR spectra of the compounds under investi-
gation, which makes correct interpretation of their elec-

C60
n–
1063-7834/04/4607- $26.00 © 21365
tronic structure difficult. Moreover, fullerene com-
pounds with alkali metals are highly reactive and
readily interact with both polar solvents [such as tet-
rahydrofuran (THF) and dimethyl sulfoxide] and halo-
gen-containing solvents. This also hampers the study of
these complexes in solutions with the use of the afore-
mentioned techniques. In this respect, infrared (IR)
spectroscopy is one of the most appropriate methods
for elucidating the nature of fullerene compounds with
alkali metals. Derivatives of lithium and sodium are
chosen as the objects of our investigation, because the
properties and structure of these compounds (especially
of those with higher reduction states of the fullerene)
are poorly understood as compared, for example, to
potassium derivatives. For LinC60 compounds, this cir-
cumstance is most likely associated with the fact that
the lithium fullerides are rather difficult to prepare
through gas-phase synthesis because of the very low
pressure of lithium vapor (10–9 Torr at 200°C as com-
pared with 10–4 Torr for sodium at 300°C). It should
also be noted that LinC60 and NanC60 compounds are
promising for use as initial reactants in synthesizing
new organic and organoelement fullerene complexes.
004 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL TECHNIQUE

All the compounds prepared in this work are highly
sensitive to oxygen and moisture. For this reason,
fullerene compounds with alkali metals of the general
formula MenC60(THF)x (Me = Li, Na; n = 1–4, 6, 8, 12)
were synthesized and isolated in evacuated ampules
and all-sealed devices. Solvents (toluene, tetrahydrofu-
ran) were dried over sodium benzophenone ketyl and
distilled into a reaction ampule immediately before use.
The IR spectra were recorded on a UR-20 spectrometer.
Samples were prepared as Nujol mulls in evacuated
systems filled with dry argon. The EPR spectra were
measured on a Bruker ER 200 D-SRC spectrometer
equipped with an ER 4105DR double cavity (operating
at a frequency of approximately 9.5 GHz) and an ER
4111 VT temperature controller. The g factors were
determined using the DPPH compound as a standard.

3. SYNTHESIS OF Li1C60(THF)x

Lithium naphthalenide was preliminarily synthe-
sized from lithium (0.011 g, 1.57 mmol) and naphtha-
lene (0.211 g, 1.65 mmol). A solution of lithium naph-
thalenide in tetrahydrofuran (5 ml) was added to a solu-
tion of the C60 fullerene (1.008 g, 1.40 mmol) in toluene
(100 ml) with vigorous stirring for 30 min at a temper-
ature of 5–10°C. The reaction rate was equal to the mix-
ing rate of the reactants. After the Li1C60(THF)x com-
pound precipitated out, the solution was decanted and
the product was extracted three times with toluene,
dried, and isolated. The yield of Li1C60(THF)x was 95%
with respect to the lithium weight. The other
MenC60(THF)x compounds were synthesized in a simi-
lar manner with special attention paid to the stoichio-
metric ratio between C60 and C10H8Me. As a result, we
prepared the MenC60(THF)x compounds, where Me = Li
or Na and n = 1–4, 6, 8, or 12. The compounds synthe-
sized were characterized by IR spectroscopy. IR spec-
tra, ν (cm–1): 516, 528, 576, 890, 916, 1045, 1183, and
1395 for Li1C60(THF)x; 516, 526, 576, 890, 916, 1045,
1183, and 1345 for Li2C60(THF)x; 575, 785, 890, 916,
1045, 1183, and 1345 for Li3C60(THF)x; 516, 527, 576,
785, 890, 916, 1045, 1185, and 1345 for Li4C60(THF)x;
576, 785, 890, 916, 1045, 1185, and 1345 for
Li6C60(THF)x; 575, 785, 890, 916, 1045, 1171, and
1345 for Li8C60(THF)x; 572, 780, 890, 970, 1045, 1171,
and 1345 for Li12C60(THF)x; 528, 579, 1060, 1180, and
1372 for Na1C60(THF)x; 512, 528, 576, 890, 916, 1045,
1183, and 1355 for Na2C60(THF)x; 512, 528, 574, 890,
916, 1045, 1183, and 1350 for Na3C60(THF)x; 529, 576,
890, 960, 1045, 1182, and 1365 for Na4C60(THF)x; 528,
576, 890, 960, 1045, 1183, and 1352 for Na6C60(THF)x;
528, 573, 890, 960, 1045, 1183, and 1352 for
Na8C60(THF)x; and 528, 573, 890, 960, 1171, and 1355
for Na12C60(THF)x.
P

The LinC60(THF)x compounds synthesized are dark
brown solids. The NanC60(THF)x derivatives are black
solids. These compounds readily interact with polar
solvents (such as tetrahydrofuran, dimethyl sulfoxide,
and organic halogen-containing compounds) and are
insoluble in aliphatic and aromatic hydrocarbons. It
was found that the Na2C60(THF)x derivative self-ignites
in air.

4. EXPERIMENTAL RESULTS AND DISCUSSION

One of the main difficulties encountered in prepar-
ing fullerene compounds with alkali metals is associ-
ated with the necessity of ensuring an exact stoichio-
metric ratio between the fullerene anion and the metal
cation. The gas-phase method that has been most uni-
versally employed for synthesizing MenC60 compounds
also has this disadvantage and, furthermore, requires
long times (up to two weeks) and high temperatures (up
to 500°C). The rate of gas-phase synthesis is limited by
two main processes, namely, mass transfer of metal
atoms in the gas phase and diffusion of metal cations in
the C60 solid phase. Reducing the C60 fullerene in the
liquid phase makes it possible to avoid these processes.

We proposed a simple method for preparing
MenC60(THF)x stoichiometric compounds in a toluene
solution with preliminary synthesis of naphthalenide
complexes of alkali metals in a tetrahydrofuran solu-
tion. To put it differently, the mixing of homogeneous
solutions of the initial components enables one to per-
form the reaction with the formation of the desired
compounds on the molecular level with precise control

over the stoichiometric ratio between  and nMe+.
Since the electron affinity of the C60 fullerene is 1 eV
greater than that of aromatic polycyclic hydrocarbons
[2], the reduction of C60 with naphthalenide complexes
of lithium or sodium proceeds rather readily and at a
high rate. Proper choice of the solvent for the synthesis
is of utmost importance. Boyd et al. [3] showed that tol-
uene is one of the most suitable solvents and that tet-
rahydrofuran taken in small amounts (≈5%) promotes
electron-transfer reactions. We used the proposed
method for synthesizing the MenC60(THF)x (Me = Li,
Na; n = 1–4, 6, 8, 12) compounds. The yield was
approximately equal to 95%. The compounds prepared
were investigated using IR spectroscopy.

In this work, fullerene compounds containing eight
and twelve metal atoms (in which the t1g orbital of C60
is partially occupied by electrons) were synthesized
and studied relying on the data obtained in [4, 5]. Zim-
mermann et al. [4] and Cristofolini et al. [5] carried out
theoretical calculations, analyzed the mass spectra of a
mixture of LinC60 compounds prepared by the gas-
phase method, and proved that the Li12C60 fulleride is a
stable compound with a maximum lithium content.
This compound has a structure in which 12 lithium cat-
ions each are located above the pentagon of the

C60
n–
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fullerene fragment retaining icosahedral symmetry.
According to [4, 5], lithium cations in the Li8C60 com-
pound are located at vertices of the cube and above the
hexagons of the fullerene fragment. Chen et al. [6] used
the gas-phase method in order to synthesize a series of
fullerene compounds with alkaline-earth metals of the
general formula MenC60 (Me = Ca, Ba; n = 3, 4, 6), in
which the reduction state of the fullerene varies from 6
to 12. Moreover, those authors measured the Raman
spectra of BanC60 (n = 3, 4, 6) compounds. It was found
that the Raman spectra of the Ba3C60 and K6C60 ful-
lerides are very similar to each other. This suggests that
the fullerene anions in these compounds have the same
electronic structure. The hybridization of barium with
C60 π orbitals was observed for higher reduction states
of the C60 fullerene. In the immediate future, the Raman
spectra of the compounds synthesized in the present
work will be measured and compared with the Raman
spectra of BanC60 fullerides.

Figures 1 and 2 show the IR spectra of the
LinC60(THF)x and NanC60(THF)x compounds. The
vibrational modes Tu(1)–Tu(4) for these compounds are
presented in Table 1. It is known that, owing to its high
symmetry (Ih), the C60 fullerene exhibits only four IR-
active modes, namely, Tu(1), Tu(2), Tu(3), and Tu(4) at
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Fig. 1. IR spectra of (1) fullerene, (2) Li1C60(THF)x,
(3) Li2C60(THF)x, (4) Li3C60(THF)x, (5) Li4C60(THF)x,
(6) Li6C60(THF)x, (7) Li8C60(THF)x, and (8)
Li12C60(THF)x (* Nujol mull).
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frequencies of 527, 576, 1183, and 1429 cm–1, respec-
tively [7]. A change in symmetry and the redistribution
of the electron density upon the formation of fullerene
compounds with alkali metals manifest themselves in
the IR spectra. In the literature, these effects, as a rule,
are interpreted in terms of the charge–phonon mecha-
nism [8], according to which the filling of the C60 t1u

orbital with electrons is accompanied by coupling of
the Tu vibrational modes with virtual electronic transi-
tions from the t1u orbital to the higher lying t1g orbital.
It was shown that, for intercalated MenC60 compounds,
the charge effect is more pronounced for the Tu(4) mode
and is somewhat weaker for the Tu(2) mode. The Tu(3)
mode remains virtually unchanged [9]. The Tu(1) mode
is associated with the radial motion of carbon atoms
and is more sensitive to intramolecular processes,
which, in some cases, can lead to a distortion of the
fullerene structure, as was observed for a number of
compounds in the experiments. For example, according
to the x-ray diffraction data obtained by Penicaud et al.
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Fig. 2. IR spectra of (1) C60, (2) Na1C60(THF)x,
(3) Na2C60(THF)x, (4) Na3C60(THF)x, (5) Na4C60(THF)x,
(6) Na6C60(THF)x, (7) Na8C60(THF)x, and (8)
Na12C60(THF)x (* Nujol mull).
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[10], the fullerene spheroid in the [(Ph4P)2I]+  com-
pound turns out to be prolate along one axis and has
diameters of 7.064, 7.064, and 7.106 Å. By contrast, the

fullerene spheroid in the [PPN+]2  compound has
three different diameters: 7.040, 7.106, and 7.126 Å
[11]. Dahlke and Rosseinsky [12] carried out a neutron
powder diffraction study of the CsC60 fulleride and
revealed that the distortion of symmetry is more pro-

nounced for the  anion and less pronounced for the

, , and  anions as compared to the spherical
C60 fullerene.

The vibrational modes Tu(1)–Tu(4) in the IR spectra
of LinC60(THF)x compounds (Fig. 1) exhibit a more
complex behavior than in the IR spectra of the
NanC60(THF)x derivatives (Fig. 2). A comparison of the
IR spectra of the LinC60(THF)x derivatives with the IR
spectrum of the pure C60 fullerene shows that, for these
derivatives, unlike the pure fullerene, the band associ-
ated with the Tu(1) vibrations is characterized by a
lower intensity and the Tu(1) mode is split into two
components (for n = 1, 2, 4). The measured splitting
∆ν = 8–12 cm–1 (for n = 1, 2, 4) indicates that the
fullerene anions have a slightly distorted structure. Fur-
thermore, as can be seen from Fig. 1, the splittings of
the Tu(1) mode for the Li1C60(THF)x, Li2C60(THF)x, and
Li4C60(THF)x compounds differ in character. It was
revealed that the IR spectra of the fullerene derivatives
with n = 3, 6, 8, and 12 do not contain the band assigned
to the Tu(1) vibrations. It is worth noting that the band

C60
–

C60
2–

C60
4–

C60
3–

C60
5–

C60
6–

Table 1.  Frequencies ν (cm–1) of the absorption bands assigned
to the Tu(1)–Tu(4) vibrations in the IR spectra of the C60
fullerene and MenC60(THF)x (Me = Li, Na; n = 1–4, 6, 8, 12)
compounds

Compound Tu(1) Tu(2) Tu(3) Tu(4)

C60 527 576 1183 1429

Li1C60(THF)x 516, 528 576 1183 1395

Li2C60(THF)x 516, 526 576 1183 1345

Li3C60(THF)x – 575 1183 1345

Li4C60(THF)x 516, 527 576 1185 1345

Li6C60(THF)x – 576 1185 1345

Li8C60(THF)x – 575 1171 1345

Li12C60(THF)x – 572 1171 1345

Na1C60(THF)x 528 579 1180 1372

Na2C60(THF)x 512, 528 576 1183 1355

Na3C60(THF)x 512, 528 574 1183 1350

Na4C60(THF)x 529 576 1182 1365

Na6C60(THF)x 528 576 1182 1352

Na8C60(THF)x 528 573 1183 1352

Na12C60(THF)x 528 573 1171 1355
P

associated with the Tu(1) vibrations was also not
observed in the IR spectra of the KnC60 compounds (n =
3, 4, 6) prepared by doping of fullerene films [13]. The
band attributed to the Tu(2) mode at a frequency of
576 cm–1 is almost not shifted at all, but its intensity
increases significantly. The absorption band of the Tu(3)
mode is broadened by ≈5 cm–1 for the derivatives with
n = 4, 6, and 12 and is shifted (by ≈13 cm–1) toward the
long-wavelength range for the compounds with n = 8
and 12. According to Kamaras et al. [14], this behavior
is explained by the increase in the intermolecular dis-
tance in the fullerides. The band observed at a fre-
quency of 1429-cm–1, which corresponds to the Tu(4)
mode of the pure C60 fullerene, is shifted to 1395 cm–1

for the Li1C60(THF)x compound and to 1345 cm–1 (i.e.,
by 84 cm–1) for the other lithium derivatives of the
fullerene. The substantial shift and the increase
observed in the intensity of the absorption band of the
Tu(4) mode with an increase in the charge of the
fullerene anion are consistent with the charge–phonon
mechanism [8]. The anomalously high intensity of the
absorption band associated with the Tu(4) mode for the
compound with n = 3 is in agreement with the data
obtained by Pichler et al. [13]. In [13], the considerable
increase in the intensity of the band assigned to the
Tu(4) vibrations in the metallic phase (n = 3) was
explained in terms of the effects brought about by both
free charge carriers in the conduction band and the low-
energy transitions t1u  t1u*. It was found that, for
doped samples of K3C60, K4C60, and K6C60, the absorp-
tion band attributed to the Tu(4) mode is also apprecia-
bly shifted to 1363, 1352, and 1341 cm–1, respectively
[13]. A comparison of these data with our results gives
grounds to assume that the charge of the fullerene anion
in the Li3C60(THF)x compound is close to –3.

It can be seen from the IR spectra that all the
fullerene compounds of lithium and sodium contain tet-
rahydrofuran solvate molecules. This is indicated by
the absorption bands at frequencies of 890, 916, and
1045 cm–1. Note that the number of tetrahydrofuran sol-
vate molecules in the LinC60(THF)x compounds is
larger than that in the NanC60(THF)x compounds,
because the charge density of the lithium ion is higher
than the charge density of the sodium ion (the ionic
radii of Li+ and Na+ are equal to 0.63 and 0.97 Å,
respectively [5]). A comparison of the absorption bands
of the coordinated tetrahydrofuran with the absorption
bands of pure tetrahydrofuran (915 and 1070 cm–1) sug-
gests that there is a rather strong interaction between
the tetrahydrofuran molecules and the metal cations.
Therefore, it seems reasonable that the donor ability of
lithium atoms should increase substantially and that a
considerable part of the charge should be transferred to
the fullerene fragment. In [4], it was assumed that,
unlike the other metal atoms, the lithium atoms can be
involved in covalent bonding with carbon atoms of the
HYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
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fullerene fragment, which, in turn, should lead to a
decrease in the charge of the fullerene anion. However,
the IR spectra indicate a significant charge transfer
from lithium atoms to the fullerene fragment.

The absorption bands in the IR spectra of the
sodium fullerene compounds are less pronounced than
those in the IR spectra of the LinC60(THF)x compounds.
However, the Tu(1)–Tu(4) vibrational modes for these
derivatives exhibit a similar behavior. Unlike the IR
spectrum of the pure C60 fullerene, the IR spectra of the
derivatives are characterized by an inverse intensity
ratio of the bands at frequencies of 527 and 576 cm–1,
which correspond to the Tu(1) and Tu(2) modes. The
splitting of the band at 527 cm–1 is insignificant for the
compound with n = 2 and is somewhat larger for the
compound with n = 3. In contrast to the spectra of the
LinC60(THF)x compounds, the band at 527 cm–1 does
not disappear in the spectra of the NanC60(THF)x com-
pounds with n = 3, 6, 8, and 12; however, its relative
intensity considerably decreases when changing over
from n = 4 to n = 12. The band of the Tu(3) mode is
broadened by ~5 cm–1 for the compounds with n = 6, 8,
and 12 and is shifted by ~13 cm–1 for the compound
with n = 12. The band associated with the Tu(4) vibra-
tional mode is shifted, as is the case in the spectra of the
LinC60(THF)x compounds (Table 1), but the relative
intensity of this band is substantially less than that for
the fullerene compounds with lithium. The intensity of
the band attributed to the Tu(4) vibrations in the
Na3C60(THF)x compound is not as anomalously high as
in the case of the Li3C60(THF)x compound. In this
respect, it should be noted that no phase with metallic
conductivity is found for the intercalated Na3C60 ful-
leride [15].

According to the data available in the literature [16],
the absorption band observed at a frequency of 785 cm–1

in the IR spectra of the lithium and sodium fullerene
derivatives (except for the derivatives with n = 1 and 2)
can be assigned to dimeric fullerene anions.

In this work, solid samples of MenC60(THF)x (Me =
Li, Na; n = 1, 3) were also studied by EPR spectros-
copy. As was shown earlier by Allemand et al. [17], the
most characteristic spectrum is observed for fullerene
radical monoanions. The specific features of this spec-
trum are as follows: (i) the g factor differs significantly
from the g factor of the free electron, and (ii) the line-
width drastically increases with increasing tempera-
ture. Such a temperature dependence is not observed
for the EPR spectra of aromatic radical anions with
structures similar to the structure of the  anion. It is

assumed that these features of the  radical anion are
associated with both the high symmetry of the fullerene
fragment and the degenerate molecular orbital occu-
pied by an unpaired electron.

C60
–

C60
–
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It can be seen from Table 2 that the EPR linewidth
for the Li1C60(THF)x compound is maximum at a tem-
perature of 285 K and decreases by a factor of 2 at
120 K. The linewidth for the Na1C60(THF)x compound
is approximately 2.2 times narrower than that for the
Li1C60(THF)x compound (at 285 K). This linewidth
decreases by a factor of 1.5 with a decrease in the tem-
perature to 125 K.

The linewidth for the  radical anion in the
Me3C60(THF)x compounds is approximately one order

of magnitude smaller than that for the  radical anion
in the Me1C60(THF)x derivatives for each metal. As the
temperature decreases from 285 to 120 K, the values of
∆H for the Li3C60(THF)x and Na3C60(THF)x com-
pounds decrease by factors of 1.7 and 2.5, respectively.
These results are in good agreement with the data
obtained by Rosseinsky [18].

The g factor for the  radical anion does not
depend on the nature of the metal or on the temperature.
A similar inference was previously made by Solodovni-

kov [19]. The g factors for the  and  radical
anions differ from each other. In the EPR spectra of the

Me3C60(THF)x compounds, the g factor for the  rad-
ical anion depends on the nature of the metal and is
independent of the temperature.

According to Paul et al. [1], the EPR signal with g =
2.0027 in the spectra of the fullerene derivatives is asso-
ciated with the presence of oxygen-containing impuri-
ties (C120O) in the sample. Note that a narrow signal of
oxygen-containing impurities was also observed in the
spectra of the compounds under investigation.

Thus, we can make the inference that the IR spectra
of the lithium- and sodium-containing fullerene com-
pounds synthesized in this work exhibit bands associ-
ated with the Tu(1)–Tu(4) vibrational modes. These

C60
3–

C60
–

C60
–

C60
–

C60
3–

C60
3–

Table 2.  Values of the g factor and EPR linewidth ∆H for
MenC60(THF)x (Me = Li, Na; n = 1, 3) compounds

Compound T, K g factor ∆H, mT

C60 120 2.0027 0.2

C60 290 2.0027 0.2

Li1C60(THF)x 120 1.9990 2.700

Li1C60(THF)x 285 1.9987 5.400 2

Na1C60(THF)x 125 1.9992 1.560

Na1C60(THF)x 285 1.9990 2.360 1.5

Li3C60(THF)x 115 2.0023 0.280

Li3C60(THF)x 285 2.0023 0.470 1.7

Na3C60(THF)x 125 2.0011 0.130

Na3C60(THF)x 285 2.0013 0.327 2.5

∆H 285 K( )
∆H 125 K( )
----------------------------
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modes are characterized by a different behavior with an
increase in n, and their evolution is most pronounced in
the spectra of the LinC60(THF)x compounds. In particu-
lar, the intensity ratio of the Tu(1) and Tu(2) vibrational
modes for the fullerene compounds differs from that for
the pure C60 fullerene. The Tu(1) mode can be split in
different ways and is absent in a number of the com-
pounds synthesized. The absorption band of the Tu(4)
vibrations is considerably shifted toward the long-
wavelength spectral range, and its intensity is anoma-
lously high for the Li3C60(THF)x compound. These
results, together with the data of EPR spectroscopy,
provide a basis for further in-depth investigation into
the physical characteristics of the prepared compounds
with the use of magnetic susceptibility measurements
and x-ray diffraction analysis.

In conclusion, it should also be noted that we
observed the disproportionation reaction for the
Li1C60(THF)x compound. Holding this compound in a
toluene–tetrahydrofuran solution (20 : 1) for one day
(or longer) at room temperature leads to disproportion-
ation with the formation of the C60 fullerene and the
Li2C60(THF)x derivative, which were isolated and char-
acterized by IR spectroscopy. No similar reactions were
observed for the other compounds. Chen et al. [20]
studied the K1C60(THF)x compound but did not reveal
disproportionation of the fullerene radical anion. How-
ever, Trulove et al. [21] observed disproportionation of

 when recording the UV spectra of a C60 fullerene
suspension in dimethyl sulfoxide with tetrabutylammo-
nium hexaphosphate.
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Abstract—Polyimide–fullerene composite thin coatings are investigated using thermal desorption mass spec-
trometry in the temperature range 20–800°C. It is found that, at temperatures below the temperature of decom-
position of the polymer matrix, thermally stimulated desorption of fullerene molecules is limited by the dif-
fusion of fullerene molecules in the matrix. The diffusion coefficients and activation energies of diffusion of
C60 and C70 fullerene molecules are determined from the experimental data on thermally stimulated desorption
in the framework of several approaches. It is revealed that the diffusion of C70 molecules in the polyimide
matrix is more hindered than the diffusion of C60 molecules in the same matrix. © 2004 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Although fullerene-containing polymer systems
have been intensively studied in recent years [1–4],
there is virtually no data on the transport properties of
fullerene molecules in polymer matrices. Fink et al. [5]
made an attempt to determine the diffusion coefficient
of C60 fullerene molecules in a polyimide matrix. In [5],
the diffusion coefficient of C60 fullerene molecules at
room temperature was estimated using neutron depth
profiling of polyimide samples in which tracks were
preliminarily produced by high-energy ions.

Thermal desorption mass spectrometry is highly sen-
sitive to molecular flow in a gaseous phase. This makes
it possible to obtain detailed information on the fullerene
state in a polymer–fullerene system at an extremely low
fullerene content (less than 1 wt %). This information
cannot be derived by other extensively employed meth-
ods of thermal analysis (for example, thermal gravimet-
ric analysis), because the sensitivity of these methods is
considerably less than that of thermal desorption mass
spectrometry. In our previous works [6–8], fullerene-
containing polymer systems were investigated using
thermal desorption mass spectrometry. It was shown
that the interaction of macromolecules with fullerene
molecules and the structural state of fullerene mole-
cules in a polymer matrix can manifest themselves in
the thermal desorption spectra of fullerene molecules
and the products of destruction of the polymer matri-
ces. Owing to the high thermal stability of polyimide,
1063-7834/04/4607- $26.00 © 21371
the processes of thermally stimulated desorption of
fullerene molecules can be thoroughly studied at tem-
peratures below the decomposition temperature of the
polymer matrix. In the present work, we investigated
the thermally stimulated desorption of C60 and C70
fullerene molecules upon heating of an insoluble rigid-
chain polyimide doped with these fullerenes.

2. SAMPLE PREPARATION 
AND EXPERIMENTAL TECHNIQUE

Polyimide–fullerene mixtures were prepared using
a polyimide prepolymer, polyamic acid (PAA), which
was synthesized from 3,3'4,4'-oxydiphthalic anhydride
(ODPA), p-phenylenediamine (PPD), and 2,5-bis(4-
aminophenyl)pyrimidine (APP). The components of
the ODPA–PPD–APP copolyimide were taken in the
molar ratio 100 : 50 : 50. A solution of PAA and the
fullerene in dimethylacetamide was prepared according
to the procedure described in our earlier work [8]. The
purity of C60 and C70 fullerenes was higher than 98%.
The calculated weight of the fullerene in the initial PAA
solution amounted to 2% of the weight of the PAA syn-
thesized, which corresponded to a fullerene concentra-
tion of 2.3 × 1019 cm–3 in the coating. The precipitate
was filtered off, and the PAA–fullerene solutions were
poured onto a stainless steel substrate (heater) with the
aim of forming a coating. The samples were dried in air
for 1 h. Then, at the second stage of producing the poly-
imide coating, the PAA–fullerene system was subjected
004 MAIK “Nauka/Interperiodica”
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to thermal imidization. For this purpose, the PAA and
PAA–fullerene films were heated in a vacuum chamber
of the mass spectrometer to a temperature of ~280°C,
which resulted in the formation of polyimide–fullerene
coatings. The calculated thickness of the coatings
formed on the substrate was approximately equal to
2 µm.

The processes of thermally stimulated desorption
were investigated on an MX-1320 magnetic mass spec-
trometer (energy of ionizing electrons, 70 eV) equipped
with a device for controlled heating of the samples. The
samples were heated at a constant rate of 7 K s–1. The
pressure in the chamber of the mass spectrometer prior
to the experiment was maintained at 10–5 Pa. The rates
of formation of identified volatile products were calcu-
lated using the measured absolute sensitivity of the
instrument to flow of fullerene vapors formed during
heating of a thin fullerene film (with known weight)
deposited on the surface of the preliminarily prepared
polyimide coating (Fig. 1, curve 2). In our experiments
on thermally stimulated desorption, we measured the
intensity of the principal line of the mass spectrum of
the corresponding fullerene (for the C60 and C70
fullerenes, m/e = 720 and 840, respectively) simulta-
neously with the total ionic current, whose intensity is
directly proportional to the rate of release of all volatile
products from the analyzed sample and, hence, to the
rate of mass losses for this sample.

3. RESULTS AND DISCUSSION

Analysis of the mass spectra recorded upon heating
of the polyimide–C60 composite coating revealed that,
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Fig. 1. Thermal desorption spectra of (1) C60 fullerene mol-
ecules from a polyimide–C60 composite coating ~2 µm
thick, (2) C60 fullerene molecules from a pure C60 thin layer
(calculated thickness ~10 nm) deposited on the surface of a
pure polyimide, (3) C60 fullerene molecules from a polyim-
ide–C60 composite coating prepared after reprecipitation of
a PAA–C60 solution in toluene, and (4) C70 fullerene mole-
cules from a polyimide–C70 composite coating ~2 µm
thick. (5) Typical temperature dependence of the total ionic
current measured during heating of the coatings. Experi-
mental conditions: pressure, 10–5 Pa; heating rate, 7 K s–1.
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at temperatures in the range ~200–500°C, the mass
spectrum of the coating coincides with the mass spec-
trum of pure fullerene C60 (the energy of ionizing elec-
trons is 70 eV [9]). The latter spectrum contains a prin-
cipal line of singly charged  ions (m/e = 720, where
m is the ion mass and e is the ion charge) and a line of

doubly charged  ions (m/e = 360) with a lower
intensity. At higher temperatures (~400–600°C), the
mass spectrum involves a more complex set of lines
with a ratio m/e in the range ~300–800, including the
line assigned to  ions with a ratio m/e = 720. The
thermal desorption spectra were obtained by measuring
the intensity of the line attributed to singly charged ions
with a ratio m/e = 720.

The experimental data on thermally stimulated des-
orption are presented in Fig. 1. It can be seen from this
figure that the temperature of desorption of C60 mole-
cules from the composite film (Fig. 1, curve 1) is sub-
stantially higher (above 300°C) than that of desorption
of C60 molecules from the surface of the polyimide sub-
strate (Fig. 1, curve 2). The thermal desorption spectra

exhibit maxima at temperatures of ~450 ( ) and

590°C ( ). As can be seen from the temperature
dependence of the total ionic current (Fig. 1, curve 5),
the desorption of the residual solvent and the imidiza-
tion product (water) under the same experimental con-
ditions occurs at lower temperatures (T max ~ 300°C).

The volume concentration of unbound fullerene
molecules in the coating was calculated from the num-
ber of fullerene molecules desorbed at the low-temper-
ature stage. According to thermal desorption mass
spectrometry, the concentration of fullerene molecules
in the unbound state is estimated at ~1.5 × 1019 cm–3.
This concentration is less than the calculated concen-
tration of fullerene molecules in the initial solutions
(2.3 × 1019 cm–3). Therefore, it can be inferred that the
fullerene molecules are contained in the precipitate
formed upon treatment of the PAA–fullerene solutions.
This is also confirmed by visual examination of the
solutions in the visible spectral range. The solutions of
PAA–C60 mixtures are violet in color, which is charac-
teristic of fullerene C60. In turn, the PAA solution is
pale yellow in color. It is reasonable to assume that the
change in color of the PAA–C60 solution is caused by
the absorption of dissolved C60 fullerene molecules in
the visible range. In order to verify that the PAA–C60
solution contains unbound C60 molecules, the solution
was precipitated in toluene, which served as a precipi-
tant for PAA and as a solvent for the C60 fullerene. This
led to the formation of a precipitate. The toluene solu-
tion over the precipitate remained violet in color, which
is characteristic of C60 solutions in toluene. It should be
noted that, after redissolving in dimethylacetamide, the
PAA–C60 precipitate formed in toluene changed to a
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+
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pale yellow color similar to the color of the PAA solu-
tion. These findings confirm the above inference that
the initial PAA–C60 solution contains C60 fullerene
molecules in the unbound state. The experimental data
on thermally stimulated desorption from the PAA–C60
coatings prepared from a solution of the PAA–C60 pre-
cipitate formed in toluene indicate that, in this case, the
desorption of fullerene molecules at a temperature

 (Fig. 1, curve 3) is considerably less intensive
than the desorption of fullerene molecules from the
coatings produced from the initial solutions (Fig. 1,
curve 1).

Analysis of the thermal desorption spectra of the C60
and C70 fullerene-containing coatings (see curves 1 and
4 in Fig. 1, respectively) with the same calculated thick-
ness also demonstrates that, for the C60 and C70

fullerenes, the temperatures  differ significantly
(the difference can be as large as ~50°C), whereas the

temperatures  are virtually identical. The low-tem-
perature stage of the desorption is observed at temper-
atures that are too low to initiate thermal decomposition
of the polyimide matrix (Fig. 1, curve 5) but are high
enough for additional volatile products to be formed in
the temperature range above ~570°C. This gives
grounds to believe that the difference between the
curves of thermal desorption of the C60 and C70
fullerene molecules at the low-temperature stage is
associated with the properties and geometry of diffus-
ing particles rather than with the processes of destruc-
tion and structure formation of the polyimide matrix. In
particular, the latter processes lead to an increase in the
thermal expansion coefficient of the ODPA–PPD–APP
copolyimide in the vicinity of the glass transition tem-
perature (~320°C) [10]. Recall that C70 fullerene mole-
cules have the shape of an ellipsoid of revolution whose
major and minor axes are equal to ~0.78 and ~0.7 nm,
respectively, whereas C60 fullerene molecules have the
shape of a sphere ~0.7 nm in diameter. On this basis, the
results obtained can be explained, for example, by the
fact that the size of ellipsoidal C70 fullerene molecules
is greater than the size of spherical C60 fullerene mole-
cules.

The high-temperature stage of the desorption

( ) is observed at temperatures close to the temper-
ature of the onset of thermal decomposition of polyim-
ide macromolecules (Fig. 1, curve 5 for the temperature
dependence of the total ionic current). However, the

temperature  corresponding to the high-tempera-
ture stage is somewhat lower than the temperature of
the maximum in the curve for the total ionic current. In
our opinion, the desorption of fullerene molecules at
this stage is governed by complex processes of ther-
mally stimulated destruction of the polyimide matrix.
As was done in our earlier work [8], we assume that
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max

T2
max

T2
max
PHYSICS OF THE SOLID STATE      Vol. 46      No. 7      2004
strong chemical bonds between the polyimide macro-
molecules and the fullerene molecules begin to dissoci-
ate in the temperature range under consideration. The
assumption regarding the formation of strong polyim-
ide–fullerene bonds is in agreement with the results of
the IR spectroscopic study performed in [10]. Accord-
ing to these data, the IR spectra of polyimide–C60 films
contain lines characteristic of nonmodified fullerene
C60 and additional lines that are absent in the spectrum
of a pure polyimide. In [10], the additional lines
revealed in the IR spectrum were attributed to the for-
mation of polyimide–fullerene adducts. This assump-
tion is indirectly confirmed by the higher kinematic vis-
cosity of PAA–C70 solutions as compared to the viscos-
ity of PAA–C60 solutions, because, as a rule, the
viscosity of solutions increases with an increase in the
density of an interpenetrating network of PAA macro-
molecules. Up to this point, the question as to the specific
type of bonding involved remains open. Nonetheless,
since the reactions of addition of fullerene molecules to
amines are well understood [11], we can argue that
fullerene molecules in the PAA–fullerene solution inter-
act with terminal amine groups of the polyamic acid.

The diffusion coefficient of fullerene molecules in
the polyimide matrix at the low-temperature stage of
thermally stimulated desorption can be estimated from

the relationship  ~ Dτ, where D is the diffusion

coefficient,  is the mean square of the diffusion dis-
placement of a molecule, and τ is the diffusion time.
However, in order to apply this relationship, it is neces-

sary to know the value of  and the diffusion time τ.
The diffusion time τ can be determined from experi-
ments on thermally stimulated desorption in the course
of isothermal annealing of specially prepared polyim-
ide–fullerene composite films at a specified tempera-
ture and a specified time of exposure to this tempera-
ture. The experimental results demonstrate that the low-
temperature stage of the thermally stimulated desorp-
tion in the polyimide–C60 coatings annealed at a tem-
perature of 310°C is completed in ~5 min. Let us now
assume that the diffusion toward the ends of the sample
is negligible. Under this assumption, all fullerene mol-
ecules can be considered to be completely desorbed
from the coating only in the case when the last fullerene
molecule traverses the distance from the coating–sub-
strate interface to the polymer–vacuum interface, i.e., a
distance equal to the thickness L of the coating. Note
that the assumption regarding negligible diffusion
toward the ends of the sample is quite reasonable,
because the thickness of the coatings under investiga-
tion is substantially smaller than their length or width:
the thickness-to-length (thickness-to-width) ratio is
approximately equal to 10−4. From the experimental
data (D ~ L2/τ) obtained at a temperature of 310°C, we
determined the diffusion coefficient D ~ 10–14 m2/s in
the case of isothermal annealing of the polyimide–C60

∆x
2

∆x
2

∆x
2



1374 POZDNYAKOV et al.
coating at 310°C. For the polyimide–C70 coating, the
same diffusion coefficient of C70 fullerene molecules
was obtained at a higher temperature (380°C).

It should be noted that the analysis of the diffusion
process under consideration can be reduced to the prob-
lem of one-dimensional diffusion in a planar layer
when the diffusant is desorbed from the outer surface of
the layer. This model is a simplification of the real situ-
ation and involves a number of assumptions. These
assumptions are as follows: (i) the diffusion mechanism
remains unchanged during the experiment, and (ii) the
diffusion coefficient is not anisotropic. Moreover, it is
assumed that, at the initial instant of time, the fullerene
concentration c(x, 0) smoothly varies across the coating
from a maximum at the coating–substrate interface to a
minimum at the coating–vacuum interface. The tem-
perature dependence of the diffusion coefficient can be
represented by the relationship used in the free volume
model of diffusion in bulk polymers: D =
D0exp(−u/RT), where u is the activation energy of dif-
fusion, T is the absolute temperature, and R is the gas
constant. Then, at the low-temperature stage, the distri-
bution of the fullerene concentration over the coating
thickness in the course of linear heating can be parame-
trized (with respect to the coating thickness L, the heat-
ing rate β, and other possible parameters) using the solu-
tion to the equation of the second diffusion law [12]:

(1)

Here, x is the spatial coordinate along the direction per-
pendicular to the coating–vacuum interface, t is the
time, and D is the diffusion coefficient, which is equal

c x t,( ) 2
L
--- k

2π2

L
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---------- D td

0

t
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k 0=
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Fig. 2. Arrhenius curves plotted from the experimental
curves of thermal desorption of (1) C60 and (2) C70
fullerene molecules. Arrows indicate the temperatures of
isothermal experiments.
P

to D0exp[–u/R(T0 + βt)] under the conditions of our
experiment.

In order to determine the initial approximations for
u and D0 (the thickness L was taken equal to the calcu-
lated thickness of the coating), we applied the approach
proposed by Zholnin and Zaluzhnyœ [12], according to
which the diffusion coefficient D can be obtained using
only the first term in expansion (1). Hence, the diffu-
sion coefficient D can be written in the form

(2)

where dNFl/dt is the desorption rate of fullerene mole-
cules at a given temperature and NFl is the number of
fullerene molecules in the coating at this temperature,
which is determined by integrating the corresponding
portion of the experimental curve. The portions corre-
sponding to the low-temperature stages in the experi-
mental curves of thermal desorption of C60 and C70
fullerene molecules (Fig. 1) were recalculated accord-
ing to expression (2). As a result, we obtained the
dependences shown in Fig. 2. It can be seen that these
dependences exhibit an Arrhenius behavior and are lin-
ear over a wide range of temperatures. The activation
energies of diffusion of C60 and C70 fullerene molecules
were determined using linear regressions of the temper-
ature dependences of the diffusion coefficient and
amounted to ~90 and ~130 kJ/mol, respectively. The
diffusion coefficient D obtained by extrapolating the
Arrhenius dependence to room temperature is approxi-
mately equal to 10–22 m2/s for C60 fullerene molecules
in neat polyimide. This coefficient is substantially
smaller than the diffusion coefficient D ~ 10–17 m2/s
determined in [5] from experimental data on the diffu-
sion of C60 fullerene molecules in irradiated polyimide.
This difference can be explained in terms of consider-
able loosening of the polyimide structure subjected to
treatment with high-energy ions. The diffusion coeffi-
cients D calculated from relationship (2) are in good
agreement with those obtained from the results of the
aforementioned isothermal experiments (the tempera-
tures of the isothermal experiments are indicated by
arrows in Fig. 2). However, it should be kept in mind
that, in the framework of our approach, the initial con-
centration distribution c(x, 0) of fullerene molecules
over the coating thickness remains unknown, because
the sample was preliminarily heated to 280°C during
imidization. This heat treatment can disturb the initial
uniform distribution of fullerene molecules in the coat-
ing. Closer examination of the structure of the coatings
with the aim of refining the activation energies of diffu-
sion will be performed in further investigations.

The activation energy of diffusion of fullerene mol-
ecules in the polyimide matrix, which was determined
within the above approaches, fits well the linear extrap-
olation (to the diameter of the C60 fullerene molecule)
of the dependence of the activation energy for the pen-
etration of gases and vapors through the KaptonTM

D L/π( )2
dNFl/dt( )/NFl,–=
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polyimide sample on the molecular diameter of diffus-
ing particles (see the monograph by Ohya et al. [13]).
Actually, for the C60 fullerene, the molecular diameter
is approximately equal to 0.7 nm; in this case, the acti-
vation energy is estimated at ~90 kJ/mol (Fig. 3). This
result is in satisfactory agreement with the activation
energy determined from the linear regression of the
Arrhenius dependences for the ODPA–PPD–APP
copolyimide.

It should be noted that, on the molecular level, the
nonspherical shape of C70 fullerene molecules can lead
to diffusion anisotropy (a decrease in the probability of
hopping along one of the spatial coordinates). Conse-
quently, the mean diffusion rate also decreases. This
can be taken into account by introducing the effective
diameter d of diffusing particles. It is seen from Fig. 3
that, for the C70 molecule, unlike the C60 molecule, the
effective diameter d exceeds its maximum linear size
(~0.78 nm) and is approximately equal to 0.92 nm.

4. CONCLUSIONS

Thus, the thermally stimulated desorption of
fullerene molecules from polyimide–fullerene compos-
ite films was investigated. The diffusion coefficients of
C60 and C70 fullerene molecules in a polymer matrix
were determined and compared.
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Fig. 3. Linear extrapolation (to the diameter of the C60 mol-
ecule) of the dependence of the activation energy for the
penetration of gases and vapors [13] through the KaptonTM

polyimide sample on the molecular diameter of diffusing
particles.
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Abstract—The dependence of current–voltage characteristics of single-wall nanotubes on their radius and
chirality is studied theoretically. It is shown that the conductance of a single-wall nanotube at low voltages can
assume discrete values equal to zero for a dielectric tube and 4(e2/h) for a conducting tube (e is the electron
charge, h is the Planck constant). The current–voltage characteristic of a nanotube exhibits kinks related to the
discreteness of the electron spectrum. The behavior of the conductance of the nanotube at zero temperature is
analyzed in a quantizing longitudinal magnetic field that changes the type of tube conduction. In a magnetic
field, the conductance of a dielectric tube at low voltages can assume a value of 2(e2/h) in the region where the
tube becomes conducting. In a weak magnetic field, a conducting tube becomes dielectric with an energy gap
depending on the magnitude of the magnetic field. The conductance of a carbon nanotube is calculated as a
function of the temperature and longitudinal magnetic field. © 2004 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is known that the conductance of a quantum wire
can assume discrete values determined by the number
of transverse modes occupied by electrons, which act as
quantum channels for the current flow. Experimentally,
these channels can be observed if the electron wave-
length is comparable to the transverse size of the wire
when the value of eV (e is the electron charge, V is the
potential difference between the ends of the wire) is of
the order of the distances between discrete electron
energy levels (see, e.g., [1]). In a single-wall nanotube
treated as a quantum wire, the discrete electron states
with different values of the magnetic quantum number
are analogous to transverse modes. Accordingly, the
conductance of the nanotube can also assume discrete
values. However, for this effect to be observed experi-
mentally, the tube must be of sufficiently small radius,
since the energy distance between quantum electron
states is inversely proportional to the tube radius
squared.

A geometrically ideal carbon tube can be repre-
sented as a cylindrical surface consisting of closely
packed carbon “benzene rings” (without hydrogen
atoms). Tubes with a length of up to one micron and a
diameter that is hundreds of times smaller than the
length were experimentally studied. It has been found
that the geometrical orientation of carbon rings on the
tube surface determines whether the tube is a dielectric
or a conductor. This important property may make such
tubes attractive candidates for applications in nanoelec-
tronics. In this paper, we theoretically study the cur-
rent–voltage characteristic of an arbitrary ideal single-
wall carbon nanotube under the assumption that the
system is in thermodynamic equilibrium. A simple geo-
metrical model for calculating the carbon nanotube
1063-7834/04/4607- $26.00 © 21376
conductance is suggested. In this model, we define a
zone of nonequivalent electron quantum states, which
is analogous to the Brillouin zone for crystalline solids.
In calculating the current–voltage characteristic of the
tube numerically, we use the ballistic approximation, in
which the electron free path is assumed to be much
greater than the tube size. Analogous calculations were
performed for carbon nanotubes with the simplest “zig-
zag” and “armchair” symmetries in theoretical study
[2], where it was shown that, at zero temperature and
low voltages, the conductance of the tube can assume
discrete values that are multiples of e2/h (h is the Planck
constant).

Interest has been expressed in studying carbon nan-
otubes for several reasons: first, their high strength and
the large values of their elastic moduli, which are actu-
ally equal to the elastic moduli of the graphite plane;
second, the wide range of variation of the band gap in
the π-electron spectrum (from zero to several electron-
volts, depending on the tube radius and chirality); and,
third, the high capillary and adsorption characteristics
of the tube. Therefore, one might expect carbon nano-
tubes to find application in nanoelectronics and nano-
mechanical devices and as selective molecular adsor-
bates. Theoretical and experimental studies on the
properties of carbon nanotubes are described in [3–6].

2. GEOMETRICAL STRUCTURE
AND THE π-ELECTRON ENERGY SPECTRUM 

OF A CARBON TUBE

A carbon nanotube can be represented as a graphite
sheet rolled into a cylindrical surface. Accordingly, we
choose two perpendicular vectors C and L on the
graphite sheet (Fig. 1). The vector C connects two lat-
004 MAIK “Nauka/Interperiodica”
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tice sites determined by basis vectors a1 and a2, and the
vector L determines the length of the carbon nanotube.
The vectors C and L define a rectangle on the graphite
plane. The procedure of gluing this rectangle identifies
points that lie on opposite sides of the rectangle and are
separated by the vector C. After gluing, the rectangle
becomes a finite cylindrical surface and the basis vec-
tors a1 and a2 become screw translations on the cylin-
der, which has radius R = /2π (R is the nanotube
radius).

We note that the basis vectors on the graphite sheet
determine a unit cell with two carbon atoms and are

equal in magnitude, |a1| = |a2| = , where a0 = 1.42 Å
is the distance between two nearest neighbor carbon
atoms in graphite. After gluing a cylindrical surface
with an infinite generatrix length, the basis vectors
become operators of screw rotations, which are charac-
terized by a translation along the cylindrical surface
and the rotation angle; for example, for the vector a1,
these quantities are given by ∆ϕ1 = (a1C)/R and ∆z1 =
(a1L)/|L|. Analogous expressions can also be written
for the other basis vector. Thus, the two operators of
screw rotations on a carbon nanotube generate a sym-
metry group of the tube and there are two carbon atoms
per unit cell of the tube.

The vector C on the graphite layer is specified by
two numbers (i1, i2): C = i1a1 + i2a2. These integers (i1,
i2) are called chirality indices of the carbon nanotube,
since they determine the angle at which the graphite
layer is rolled (this angle is denoted by φ in Fig. 1). The
radius and the chirality angle are easily expressed in
terms of the chirality indices

and the parameters of the two operators of screw rota-
tion take the form

. 

The parameters of operators (1) are involved in the
spectrum of π-electron quantum states of the carbon
tube, which depends on two quantum numbers (m, k),
where m = 0, ±1, ±2,… is the magnetic quantum num-
ber and "k is the electron quasimomentum along the
nanotube axis. In the tight-binding approximation, the

C
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energy of π electrons in a state with quantum numbers
(m, k) (disregarding spin) is

(2)

where (∆ϕ1, ∆z1) and (∆ϕ2, ∆z2) are given by Eqs. (1);
β is a parameter equal to a matrix element of the Hamil-
tonian, which can be expressed in terms of the wave
functions of electrons of the nearest neighbor atoms (in
what follows, we set β = 2.2 eV); the ± signs in Eq. (2)
refer to two energy bands; and E0 is the binding energy
of a π electron in a free carbon atom, whose value does
not affect the subsequent calculations (we set it equal to
zero in what follows).

In the literature, other forms of expression (2) are
also used [3] and the value of the parameter β is varied
from 2 to 3 eV (see, e.g., [7, 8]). We note that a more
correct expression for the electronic spectrum in the
tight-binding approximation contains three different
parameters (rather than one parameter β), which are
equal to the matrix elements relating an atom to its
three nearest neighbors. The values of these parameters
depend on the tube radius and chirality [9]. Actually,
formula (2) is valid for a nanotube of large radius.

Phenomenological parametric models are also used
in the literature to calculate the electronic spectrum of
π electrons on the cylindrical surface of a tube with
inclusion of spin–orbit interaction [10]; however, these
models do not take into account the dependence of the
spectrum on the nanotube symmetry. Apparently, final
choice of the most adequate model of the π-electron

Em k,
±

E
0

Hm k, ,±=

Hm k, β 1 im∆ϕ2– ik∆z2–( )exp+( )=

× 1 im∆ϕ1– ik∆z1–( )exp+( ),

L

a2
a1

φ
C

Fig. 1. Fragment of a graphite plane. a1 and a2 are basis vec-
tors of the unit cell, C is the vector generating the cylindri-
cal nanotube, L determines the tube length, and φ is the
chirality angle.
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energy spectrum and of the numerical values of the
spectral parameters can be made after accumulating
quantitative experimental data on the electronic charac-
teristics of single-wall nanotubes of arbitrary chirality.

Thus, using the one-parameter formula (2) for the
π-electron energy spectrum of a single-wall carbon
nanotube, the nanotube symmetry can be taken into
account in the simplest way.

The electron energy given by Eq. (2) is a doubly
periodic function of quantum numbers m and k, whose
nonequivalent values satisfy the inequalities

(3)

The set of quantum states (m, k) for which inequalities (3)
are satisfied lies within a tetragon on the (m, k) plane.
This tetragon is analogous to the Brillouin zone used to
describe the electronic spectra of crystals. In Fig. 2a,
constant-energy curves on the (m, k) plane are plotted
for the (10, 9) nanotube and the corresponding band of
nonequivalent states is shown. The energy reaches a
maximum at the band center; at singular points (m∗ , k∗ )
in the zone, the energy of each branch of spectrum (2)
vanishes.

The choice of the zone is not unique; it follows from
Fig. 2a that this zone can be chosen either as another

m∆ϕ1 k∆z1+ π,≤
m∆ϕ2 k∆z2+ π.≤
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(b)

Fig. 2. Nonequivalent quantum states and constant-energy
curves for π electrons of a carbon (10, 9) nanotube. (a) Con-
stant-energy curves on the (m, k) plane, and (b) discrete
quantum states of a finite-length carbon nanotube.
P

equivalent tetragon or as a hexagon whose vertices are
located at the points where energy (2) is zero.

For a finite-size nanotube, the quantum number k
assumes discrete values that are multiples of 2π/L. As
an example, Fig. 2b shows the zone for a finite (10, 9)
tube; the allowed quantum states (m, k) within this zone
are indicated by points.

At zero temperature, π electrons occupy all allowed
states of the zone with energies corresponding to the
lower branch of spectrum (2); therefore, the chemical
potential is equal to the energy E0, which is taken to be
zero.

Singular points (m∗ , k∗ ) of the zone can be found
using the following arguments. It follows from Eq. (2)
that the electron energy is equal to the product of the
parameter β and the modulus of a complex number that
is the sum of three complex numbers (the first of them
is unity, and the moduli of the second and third numbers
are also equal to unity). This sum vanishes if the phases
of the second and third complex numbers are ±2π/3; the
corresponding conditions can be written as two systems
of linear equations for m and k:

(4)

We note that the two systems of equations (4) differing
in the sign (+ or –) in the right-hand side can be
obtained using the substitution m  –m and k  −k.
The solutions to system (4) satisfying inequalities (3)
are symmetric with respect to the origin and have the
form

(5)

By substituting the coordinates of screw rotation oper-
ators (1) into Eqs. (5), we express m∗  and k∗  in terms of
the nanotube chirality indices:

(6)

From Eq. (2), we can also find the dependence of the
energy gap of a nanotube on its radius and chirality
indices. With this aim, we calculate the derivative of the
electron energy with respect to the magnetic quantum
number at the point (m∗ , k∗ ) of the zone and estimate
the shortest energy distance from the point m∗  to the
nearest curve (Fig. 3a) with an integer magnetic quan-
tum number m using linear interpolation of the electron
energy in the vicinity of this point. In this way, we
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obtain the following formula for estimating the energy
gap width:

(7)

According to Eq. (7), if m∗  is an integer, the gap
width ∆ vanishes and the corresponding tube is a con-
ductor. It follows from Eq. (6) that this is possible if the
sum of the tube indices is a multiple of three; otherwise,
the quantity |m∗  – m | in Eq. (7) is equal to 1/3. Thus,
knowing the chirality indices and using Eq. (6), we can
determine whether a carbon nanotube is conducting or
insulating. Using Eq. (7), we can approximately esti-
mate the energy gap for a dielectric tube, which is pro-
portional to the angular parameters of the screw rota-
tion operators and, according to Eq. (1), is inversely
proportional to the tube radius. In the literature, a rough
formula for estimating the nanotube energy gap ∆ ≈

 was discussed [2]; this formula follows from

Eq. (7).

3. CONDUCTANCE OF AN IDEAL NANOTUBE

Let contacts be attached to the left and right ends of
the tube, and let a voltage V be applied to the contacts.
We assume that the electron mean free path is greater
than the nanotube size. In this case, electrons pass from
one end of the tube to the other without scattering. If the
system is in thermodynamic equilibrium, then we can
assume that the difference in the chemical potentials at
the left and right ends of the tube is eV; therefore, the
electron fluxes from the left and right ends of the tube
are different, giving rise to electric current. We note that
the chemical potential of a carbon nanotube does not
depend on temperature due to the symmetry of the
branches of energy spectrum (2).

The electron flux passing through an arbitrary cross
section from any end of the tube is given by

(8)

where fm, k =  is the Fermi–Dirac func-

tion, kB is the Boltzmann constant, and µ is the chemi-
cal potential, which is set equal to zero for one end of the
tube and to eV for the other end; the summation is per-
formed over the two branches of electron spectrum (2)
for all values of m and k lying within the zone of
allowed states in which the electron velocities are
directed one way (for example, for the flux from the left

∆ 2 ∂Hm k,
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end of the tube, we take into account the electrons
whose velocities are directed to the right end); the fac-
tor of two before the sum accounts for the electron spin.
Expression (8) allows a simple physical interpretation.
Let us consider an arbitrary cross section of the tube
and an arbitrary quantum electron state. An electron in
the specified quantum state can pass across the speci-
fied cross section during a unit time if it is located in
any cross section of the tube lying at a distance from the
specified cross section that is numerically equal to the
electron velocity; therefore, the probability of finding
the electron at a given distance from the chosen cross
section is equal to the ratio of the electron velocity to
the total tube length. The Fermi–Dirac function in
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Fig. 3. Calculated current–voltage characteristic and con-
ductance of a carbon (10, 9) nanotube. (a) Constant-energy
curves near the (m∗ , k∗ ) state with a step in energy of 0.1 eV,
(b) the current–voltage characteristic, and (c) the conduc-
tance as a function of applied voltage at various values of
the magnetic flux through a cross section of the tube.
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Eq. (8) defines the occupation probability of the chosen
quantum state. In the limit L  ∞, the quantum num-
ber k assumes continuous values; hence, the summation
over this quantum number can be replaced by integra-
tion over k; for any fixed value of the discrete quantum
number m, the integration limits are defined geometri-
cally by the position of the line of allowed states on the
(m, k) plane with respect to the zone boundaries
(Fig. 2a). Consequently, formula (8) can be written as

Expression (8) for the electron flux assumes the sim-
plest form at zero temperature (T = 0). In this case, the
Fermi–Dirac function can be represented as a step func-
tion of the form fm, k = Θ(µ – Em, k) and the electric cur-
rent (which is equal to the difference in the electronic
fluxes from the left and the right ends of the tube) is

(9)

where  is the energy minimum of the positive
branch of spectrum (2) for a given value of the mag-
netic quantum number m; the sum in Eq. (9) is taken
over the states with different values of the magnetic
quantum number of the positive branch of spectrum (2)
for which Em, k ≤ eV. For a conducting tube, one of the

values of  for m = m∗  vanishes, whereas for a

dielectric tube  ≥ ∆/2. Therefore, in a conducting
tube, the current arises at arbitrarily low voltages
between the ends of the tube, whereas in a dielectric
tube the current appears only for voltages satisfying the
inequality eV ≥ ∆/2. According to Eq. (9), the number
of terms in the sum depends on the applied voltage and
is greater than or equal to two for a conducting tube,
whereas for a dielectric tube it is greater than or equal
to zero.

In a dielectric tube, the number of terms in sum (9)
is zero until the condition eV ≥ ∆/2 is satisfied. The
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Fig. 4. Conductance of a carbon (20, 10) nanotube as a func-
tion of applied voltage at various values of the magnetic flux
through a cross section of the tube.
PH
appearance of new terms in sum (9), related to the vari-
ation in the voltage V applied to the tube, changes the
slope of the current–voltage characteristic of the nano-
tube (Fig. 3b).

An increase in the tube radius decreases the distance

between the minimum energies  for different val-
ues of m, thus resulting in an increase in the density of
points at which the slope of the current–voltage charac-
teristic changes. In the limit of large tube radii, the cur-
rent–voltage characteristic of a nanotube has a para-
bolic form.

The above arguments on the summation rules in
Eq. (9) are illustrated in Fig. 3a, where constant-energy
curves in part of the region of nonequivalent values of
the quantum numbers are plotted for a carbon (10, 9)
nanotube. The energy step for constant-energy curves is
taken to be 0.1 eV. The point in Fig. 3a corresponds to
the values of (m∗ , k∗ ) at which the electron energy van-
ishes, and the two straight lines determine the allowed
quantum states for an infinitely long nanotube with m =
6 and 7. It follows from Fig. 3a that the curve corre-
sponding to allowed states with m = 6 touches the
0.42-eV constant energy curve and that the line with
m = 7 touches the 0.78-eV constant energy curve. Thus,
at zero temperature, the electric current appears in the
tube only at voltages V ≥ 0.42 V; under these condi-
tions, the channel with m = 6 opens first and then, at a
voltage of V = 0.78 V, the second channel opens with
m = 7. Accordingly, at temperature T = 0, kinks on the
current–voltage characteristic of the (10, 9) nanotube
are observed at voltages V = 0.42 and 0.78 V. Figure 3b
shows the current–voltage characteristic numerically
calculated from Eq. (9) for a carbon (10, 9) nanotube;
kinks are visible at voltages V = 0.42 and 0.78 V.

From Eq. (9), we can easily obtain the conductance
of a carbon nanotube at zero temperature:

(10)

The summation rules in Eq. (10) are the same as those
in Eq. (9). For a conducting nanotube, one of the values
of  for m = m∗  is zero and, at low voltages V, the
sum in Eq. (10) has only two terms, each of which is
equal to unity. Therefore, the conductance of a conduct-
ing tube is equal to 4(e2/h) (Fig. 4), as was indicated in
[2]. For a dielectric tube at low voltages, the number of
terms in Eq. (10) is zero and the conductance of the
tube is also zero; for voltages eV ≥ ∆/2, the tube
becomes conducting and nonzero terms appear in the
sum in Eq. (10).

If a magnetic field is applied parallel to the carbon
nanotube axis, formula (2) for the energy spectrum
remains unchanged, but the quantum number m in it has
to be replaced by m + Φ/Φ0, where Φ = πR2B is the
magnetic flux through the cross section of the nano-
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tube, Φ0 = c"/e is the magnetic flux quantum, c is the
velocity of light in vacuum, and B is the magnetic
induction. Accordingly, the value of m∗  on the (m, k)
plane at which energy (2) vanishes is displaced in a
magnetic field. For a conducting tube, the displacement
implies the emergence of a gap in the energy spectrum.
The width of this gap can be estimated from Eq. (7),
according to which the energy gap is proportional to the
magnetic field.

In Fig. 3c, the conductance of the (10, 9) tube [cal-
culated from Eq. (10)] is shown as a function of voltage
at different values of the magnetic flux. At zero mag-
netic flux, the (10, 9) tube is dielectric with an energy

gap of 2 × 0.42 eV; for a magnetic flux of  = , the

gap is closed and the tube becomes conducting. With a
further increase in the magnetic field, a gap appears

again and reaches a maximum value at  = . A sub-

sequent increase in the magnetic field results in a vari-
ation of the gap width, which is symmetric with respect

to the magnetic flux  = .

Figure 4 shows the voltage dependence of the conduc-
tance of a conducting carbon (20, 10) nanotube at zero
temperature numerically calculated from formula (10)
at different values of the magnetic flux through the
cross section of the tube. If a magnetic field is switched
on, the (20, 10) tube becomes dielectric (Fig. 4); the
energy gap increases with magnetic flux Φ/Φ0 and then,

after reaching a maximum value at  = , decreases

with increasing magnetic flux and vanishes at Φ/Φ0 = 1.
At nonzero temperatures, dielectric tubes become

conducting if the condition kBT ~ ∆ is satisfied. Figure 5
shows the numerically calculated conductance of the
carbon (210, 10) nanotube, which is a narrow-gap
dielectric. The calculations were performed for low
voltages and various temperatures and magnetic fields.
The conductance was calculated using formula (8) for
electrons going from the left-hand and right-hand ends
of the tube. It follows from Fig. 5 that, at temperatures
near 200 K, the conductance depends on the magnetic
field only weakly and is a growing function of temper-
ature.

All numerical calculations presented in Figs. 3–5
were performed for finite tubes of length L = 105 Å.
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Our calculations of the temperature dependence of
the conductance of single-wall carbon nanotubes are in
qualitative agreement with the experimental data on the
temperature dependence of the resistance of a bunch of
multilayer nanotubes described in review [3].
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