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It is shown that the two bends observed in the cosmic ray energy spectrum can be well
approximated by equations derived by assuming that cosmic rays can be generated and accelerated
in plasma pinches. ©1997 American Institute of Physics.@S1063-7761~97!00102-9#

1. THE PROBLEM OF BENDS IN THE COSMIC RAY the purely approximate, ‘‘bend-free’’ expression
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The subject of the article is the origin of galactic cosm
rays and their spectrum, various parts of which are show
Figs. 1–3.

The most widely accepted hypothesis is that cosmic
particles are accelerated at shock fronts generated by su
nova explosions~see Ref. 1 and the literature cited therei!.
We note that the explosion of a supernova generates a
time, single expanding shock wave, but, for example,
Crab Nebula~a supernova remnant! continuously emits syn-
chrotron radiation of ultrarelativistic electrons. For this re
son a number of theoretical papers favor the hypothesis
cosmic ray particles are accelerated by plasma waves
tinuously generated by rotation of the central pulsar o
nebula together with its enormous magnetic field. It is the
fore assumed here that the principal source of cosmic ray
not the supernova explosionper se, but its long-term activity
following the explosion.

In the present article we discuss an alternative hypo
esis~see Refs. 4–6 and the literature cited therein!, specifi-
cally the possibility that the particles are accelerated in b
ken cosmic plasma pinches.

We postulate that closed toroidal magnetic field loops
the type shown in Fig. 4 can occur from time to time in
turbulent cosmic plasma, possibly in the vicinity of supern
vae. The gradual constriction of the magnetic torus tow
the axis can lead to the formation of a central curre
carrying pinch, whose breakup can be accompanied by
acceleration of plasma particles.

More detailed information about the energy spectrum
galactic cosmic rays has appeared in recent years.
prominent bends are observed in the spectrum: the firs
energies of the order of (3–5)•1015 eV and the second a
3•1018 eV. However, the cosmic ray spectrum at energ
E.1016 eV can only be determined by recording the seco
ary particles of extensive air showers generated in the ea
atmosphere by solitary primary particles. Here the transit
from secondary to primary particles is not a trivial matt
and the presence of the first bend in the primary part
spectrum is challenged in Refs. 7 and 8. Conceivably
should be ascribed to a higher energy range~1016–1017 eV!,
and for the energy range 1013–1018 eV Nikol’ski�7 proposes
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dN/dE5const•E2n, n52.5510.02 ln~2E! ~1!

~here the proton energy is measured in TeV!. We propose to
show that equations based on physical notions of the me
nisms of particle acceleration in pinches can be used wi
certain choice of parameters to approximate the entire c
mic ray spectrum with all its subtle details.

2. APPROXIMATE EQUATIONS FOR THE COSMIC RAY
SPECTRUM

It was first shown in Ref. 4 that the hydrodynam
squeezing of plasma from the waist of a pinch~as from a
pipette! with a relativistic plasma gives rise to a spectrum
accelerated particles~commonly called ‘‘pips’’!

I 0~E!5const•E2n, n511A3, ~2!

with exponentn52.732, which is very close to the actu
‘‘observed’’ value for cosmic ray particles~see Fig. 1! with
energies 1010<E< 3•1015eV.

In addition to the pipette mechanism, however, there
also a second, induction mechanism in the pinch effect:
acceleration of peripheral plasma ions in the induced elec
field ~see Refs. 5 and 6!, which in the ultrarelativistic case
leads to a spectrum of the form

I 1~E!5C1E
21e~2E/E1!, E15eJ1 /c, ~3!

whereJ1 is the pinch breaking current. If both spectra a
summed for the many pinches ascribed to our Galaxy mo
we obtain the equation for the total differential spectrum

dN

dE
5( I 01( I 15

cpip
En 1

S~E!

E
,

S~E!5(
i51

?

Ci expS 2
E

Ei
D , ~4!

wherecpip andEi5eJi /c are constants. We do not have an
information on the statistics of the breaking currentsJi in the
Galaxy, but clearly the quantitiesn, cpip and the required
number of parametersCi , Ei can be chosen in such a wa
that an approximation equation can be formulated, reflec
all the nuances in the behavior of the spectrum. A sin
term in Eq.~4! can describe some kind of narrow peak in t
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spectrum, while a broad, smooth bend can be attribute
the presence of a group of many continuously distribu
currents, which are best analyzed separately.

We consider the following model as an example. W
replace the sumS(E) in Eq. ~4! by an integral over the
‘‘currents’’ J5eJi /c, writing it in the form
S(E)5*C(J)exp(2E/J)dJ. Assuming many small current
and few large ones, we assume that the functionC(J) decays
according to a power law and, in addition, is cut off exp
nentially at high currents according to

C~J!5aJ212p exp~2J/4Egal!, ~5!

FIG. 1. Differential spectra of cosmic rays from Ref. 1. The straight l
represents our approximation~2!.
to
d

-

wherea, p, andEgal are fitting parameters. This choice ad
the following continuous-current correction to the spectru

1

E
S~E!5

a

E E
0

`

J212p expS 2
J

4Egal
2

E

J DdJ
5A

Kp~x!

xp12 , ~6!

where A54a(2Egal)
2p21, x5AE/Egal, and Kp(x) is a

modified Bessel function, for which the following approx
mation is recommended for any value ofx:

Kp~x!'G~p!2p21
e2x

xp
~11bpx!~2p21!/2,

bp5
1

2 F Ap

G~p!
G2/~2p21!

. ~7!

For p53/2 the approximation formula is exact and, for e
ample,K1 andK2 are given by the expressions

K1~x!'x21e2xA11
xp

2
,

K2~x!'2x22e2xAS 11
xp1/3

2 D 3, ~8!

which differ at most by 3% from the tabulated values
K1,2 for all values ofx.

FIG. 2. Experimental cosmic ray spectrum from Refs. 1 and 2. The cu
represents our approximation~7!.
FIG. 3. Differential cosmic ray spectrum from
Ref. 3.L! Our approximation~18!.
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If the rise of the spectrum after the second bend is id
tified with the cutoff of some sort of hypothetical metagala
tic currents (Imet), the spectrum can be augmented with
least one more term of the form~3!, so that in the final
analysis the pinch mechanism can be said to predict a s
trum of the form

dN/dE5I pip1I gal1Imet, I pip5C1E
2n,

I gal5C2E
2me2xjm~x!, Imet5C3E

21e2E/Emet, ~9!

wherejm(x)5(11xbm21)
m23/2, x5AE/Egal, andC1,2,3 are

constants.
Let us compare our equations with the observed spec

In Figs. 2 and 3 the factorE3 is added to the spectrum fo
convenience and is taken into account by rewriting Eq.~9! in
the form

dN

dE
E35cpipE

32n1cgalE
32me2xjm~x!

1cmetE
2expS 2

E

Emet
D , ~10!

where new notation has been introduced for the constan
Here we have seven fitting parameters, and to plot

curve in Fig. 2, we have assigned them the valu
cpip55•1020, n52.82, cgal58.2•1019, m52.73, Egal51.4
• 1017 eV, cmet52.77•10214, andEmet59•1018 eV. It is evi-
dent from Fig. 2 that these parameters lead to satisfac
approximation of the experimental points of Ref. 2 in t
vicinity of the second bend. In the vicinity of the first ben
however, the situation is less satisfactory~the theoretical
bend appears too smooth!, and to improve the agreement, w
introduce a new factor in the theory, the diffusion drift
cosmic ray particles out of the Galaxy.

3. ALLOWANCE FOR THE DIFFUSION DRIFT OF
PARTICLES

We now show that the postulated pinch mechanism
be used to obtain a qualitatively correct description of p
ticle drift from the Galaxy.

Roughly speaking, the spectrum of galactic cosmic r
takes the form of a power lawI;E2n with exponent

FIG. 4. Constriction of a magnetic torus with the formation of a cente
pinch in the presence of external pressure.
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E1*53•10 eV, and with exponentn53.1 after the bend
~see Fig. 3!. Here the difference in the experimental exp
nents is equal todn50.5, and it is customarily assumed~see
Refs. 9 and 10! that this can be attributed to the dependen
of the diffusion coefficient on the energy associated with
faster drift of higher-energy particles in comparison w
lower-energy particles, which are more thoroughly entang
in the random magnetic fields of the Galaxy.

Under steady-state conditions, the drift of particles w
energyE is described by the diffusion equation

div~D¹n!5Q0~E!,

where n5n(r ,E)5I /c is the density of particles, and th
right-hand side characterizes the primary particle source
we assume that the diffusion coefficient depends on the
ergy according toD(E)5D0F(E), the latter factor can be
transferred to the right, and the observed spectrum sho
have the formI;I 0(E)/F(E). Consequently, the first ben
can be correctly described by assuming that the diffus
coefficient is constant at low energies and is proportiona
AE in the high-energy range beyond the first bend.

We now show that the required form of the dependen
D(E) is obtained in a natural way in our theory when certa
reasonable assumptions are made about the structure o
galactic magnetic field. Following convention~see Ref. 10!,
we assume that the fieldB is localized at inhomogeneities o
scaler , and a particle that penetrates these is deflected b
anglew5r /r, wherer5E/eB is the Larmor radius of an
ultrarelativistic particle. We also assume that the field is
completely random, but is ‘‘regular’’~see Ref. 10! in the
sense that it has the same direction in neighboring inho
geneities.

The collision cross section is now approximate
s5wr 2 ~'pr 2 for slow, back-scattered particles!, and for
the average diffusion coefficient we have the approxim
expression

^D&'
1

3
cl5

c

3nrr
2 K 1w L , K 1w L 5

E

e K 1

rB L , ~11!

wherenr is the number density of inhomogeneities, and t
angle brackets signify averaging over the field inhomoge
ities, i.e., essentially over the distribution function of th
currents producing the inhomogeneities. For the current
tribution function, in the meantime, we have already in E
~5! adopted a model power law with a cutoff exponenti
which is the one we shall use~since it yields the required
result!. Assuming closed currents, we assume that the field
the ring currentJ is approximatelyB5w0J/cr, wherew0 is
a coefficient of the order of unity, and adopting the notati
of Eq. ~5!, we have

K 1w L 5
E

w0
K 1J L 5

E

w0

Sp11~E!

Sp~E!
, ~12!

where~see~6!!

d
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~2Egal!
p

Kp~x!

xp
. ~13!

We therefore obtain

K 1w L 5
pF~x!

w0
, F~x!5

xKp11

2pKp
H '1, x!1,

'x/2p, x@1.
~14!

Here the two asymptotes obviously satisfy

Fapp~x!5A11~x/2p!25A11E/4p2Egal, ~15!

which is also useful, so that the current-averaged diffus
coefficient~11! is equal to

^D&5D0F~E!, D05
c

3nrpr
2 , F~E!'A11«,

~16!

where«5E/4p2Egal is the normalized particle energy.
The diffusion coefficient determined from these cas

estimates has the asymptotic forms that we want, and the
bend in the spectrum is located in the region«'1. We now
examine the newly obtained spectra with allowance for d
fusion.

4. SPECTRA WITH AND WITHOUT DIFFUSION

Here we discuss several alternative approximations
cosmic ray spectra. In the first case we discard the induc
terms, taking only the pip term and diffusion into accou
whereupon we obtain the following approximations:

1) I 15I pip1dif5A1

E2n

F~E!
, F~E!5A11

E

E1*
. ~17!

This spectrum can describe the first bend, but does not h
a bump in the vicinity of the second bend; to include it, w
add a ‘‘metagalactic’’ term, which yields

2) I 25I pip1dif1Imet1dif5A1

E2n

F~E!

3F11S E

E2*
D n21

expS 2
E

Emet
D G . ~18!

By trial and error we have found that the choice of para
etersA157•1017, n52.55, E1*51.2•1015 eV, Emet51019

eV, andE2*57.4•1029 eV yields satisfactory agreement wit
Fig. 3, where the theoretical curve~18! is represented by
diamonds.

However, the experimental data of Fig. 3 have too gr
a spread, and for definiteness we shall attempt to appr
mate the experimental points of Fig. 2, where the sec
bend is a dip with rounded left and right wings. On the oth
hand, in approximation 2 the left wing is straight, becaus
is formed by pips. Also, in this approximation the first be
is induced by the diffusion of ‘‘galactic’’ particles, eve
though such particles themselves are disregarded, and
now attempt to take them into account.
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altogether for simplicity, and then if we take diffusion int
account, we have for the spectrum~cf. model 2!

3) I 35I gal1dif1Imet1dif5A2

E2m

F~E! Fe2xjm~x!

1S E

E3*
D m21

expS 2
E

Emet
D G . ~19!

To preserve the initial part of the spectrum and the region
the first bend intact, we must proceed here as in model 2
set A25A157•1017, E1*51.2•1015 eV, and m5n52.55;
we now find that j2.555(11xb1.55)

1.05'11x. Subse-
quently, however, forx5AE/E2* we need once again sele
three parameters:E2*51.3•1018 eV, E3*57.44•1029 eV, and
Emet51019 eV.

As another case we consider a model without pips a
without diffusion:

4) I 45I gal1Imet5A4E
2mFe2xjm~x!

1S E

E4*
D m21

expS 2
E

Emet
D G , ~20!

with the new choice of parametersA452•1020, m52.75,
x5AE/E2, E252.36•1017 eV, j2.75(x)5(110.845x)5/4,
E4*51.6•1019 eV, andEmet51.3•1019 eV.

Finally, we consider a special check model 5, which
similar to model 4 but has the half-integer expone
m55/2 for low energies. This case is useful in that, fir
Bessel functions with half-integer exponents can be
pressed exactly in terms of polynomials and exponentials
that here the asymptotic forms do not need to be matche
the diffusion coefficient as before. Second, the expon
m55/2 is close to the valuemN52.55 used by Nikol’ski�4 at
low energies. Thus, taking diffusion into account, we co
sider the equation~see~6!!

5) I 55I gal1dif
m55/21Imet1dif5

S~E!

EF~E!
5

1

F~E! FAK3/2~x!

x7/2

1
B

E
expS 2

E

Emet
D G5A5

E25/2

F~E! F11x

ex

1S E

E5*
D 3/2 expS 2

E

Emet
D G , ~21!

wherex5AE/Egal. We reiterate that here we are using t
exact expression for the Bessel functio
K3/2(x)5Ap/2x23/2e2x(11x), and in the given situation it
coincides perfectly with our approximation~7!. For the dif-
fusion we again obtain the elementary ‘‘exact’’~see ~14!!
expression

D~E!5D0F~E!, F~E!5F~xd!,

F~x!5
xK5/2

3K3/2
511

x2

313x
, ~22!

wherexd5AE/Edif, andEdif is the ‘‘diffusion’’ energy pa-
rameter, which must be properly chosen for the first bend

214Vlasov et al.
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FIG. 5. Approximation of the cosmic ray spectrum a
cording to Eqs.~18!–~20!. L! Experimental data from
Ref. 2.
be situated in the right place. With the appropriate choice of
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all the required parameters, the exactly solvable mode
does not really differ from model 3, as is demonstrated
clarity in Fig. 5.

If diffusion is taken into account here in the same way
before, then by dividing expression~21! by A11E/E1* and
making the necessary choice of the parameterE1* character-
izing the position of the first bend, we find that model 5 do
in fact coincide with model 3.

Figure 5 shows the experimental points from Ref. 2~dia-
monds! and the three model approximations 2, 3, and 4.

The best approximation to the experimental data in F
2 and 3 is No. 3, which can be regarded as a good prac
approximation formula to be used in describing the full ran
of ultrarelativistic energies 1010<E<1020 eV. This distin-
guishes it from other approximation formulas~e.g., from the
Nikol’ski � equation~1!, which omits the second bend!, which
are generally aimed at describing limited intervals of t
spectrum.

All the same, our equations are not simply chosen for
sake of approximationper se, but are based on definit
model physical notions as to the mechanism of particle
celeration in electric fields; we therefore examine the
physical models in greater detail~see below!.

5. DISCUSSION OF PINCH MECHANISMS

Approximation 1 takes into account only pips and t
diffusion responsible for the first bend. However, it disr
gards the second bend, which in our model can only be ta
into account by adding a metagalactic term, as is done
approximation 2. In this approximation the~visually! straight
parts of the profile in Fig. 5 between the first and seco
bend and after the metagalactic bump are formed by p
which nonetheless appear to give excessively high intens
for the very high-energy range 1020<E<1021 eV. Pips are
therefore totally disregarded in approximations 3 and 4.

Approximation 3, which takes ‘‘galactic’’ and ‘‘metaga
lactic’’ particles and diffusion into account, probably yield
the best fit to the experimental data of Fig. 3. It is importa
to note, however, that in order to correctly position the fi
bend ~assuming that it is diffusion-related!, we have aver-
aged the diffusion coefficient over the spectrum of curre
of the form ~5! using one value of the paramete
Egal5Edif51.25•1014 eV, whereas to correctly position th
second kind~assuming that its left wing is formed by gala
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but with a different value of the parameterEgal51.3•1018

eV. This means that in approximation 3 we assume the p
ence of two sets of currents, the first being responsible
diffusion, and the second for the acceleration of a group
galactic particles.

We refine this explanation with a physical interpretati
of the parameters. In Eq.~5! we have introduced the variabl
J5eJi /c; in application to diffusion the equation is mor
advantageously rewritten in the form

C~J!5aJ212p exp~2J/4Egal!

5aJ212p exp~2J/Jmax
dif !. ~23!

Here we have introduced the notationJmax
dif 54Egalc/e for the

maximum current, so thatEgal5Edif5eJmax
dif /4c, while in ap-

plication to diffusion the variablex has the form
x5AE/Edif and gives our postulated functional relation f
the diffusion coefficientD5D0A11E/E1* . We thus obtain
E/E1*5(x/2p)2 andE1*54p2Edif . In approximations 2 and
3 the correct position of the first bend is achieved for t
choice

E1*51.2•1015 eV, p5m2151.55,

so that hereEdif51.25•1014 eV, which corresponds to the
maximum current responsible for diffusion

Jmax
dif 54cEdif /e55•1022 a.u.51.7•1013 A.

This numerical value can most likely be taken as an acc
able estimate for our Galaxy. In Raadu’s survey,11 for ex-
ample, our Galaxy is in fact assigned a current of the or
JG;1013 A, and the same currents are ascribed to the in
stellar medium in Peratt’s book.12

On the other hand, galactic cosmic rays are known
have an energy density of 1 eV/cm3, and the average energ
density is the same for the magnetic field, which is theref
equal toB56•1026 G. The above-determined maximum
currentJmax

dif 51.7•1013 A could generate this field if the cur
rent channel had a radiusr J55.7•1017 cm50.6 light years.
It is well worth noting that this distance coincides with th
Larmor radius of a particle in this field:

r B5E/eB5E@eV#/300B@G#55.7•1017 cm50.6 ly,

if the critical energy of the particle is equal toEcr51015 eV.
This value also corresponds to the first bend in the spect

215Vlasov et al.
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consistency to our conclusion that the diffusion coefficie
D5D0A11E/E1* .

We now consider galactic particles in approximation
~with the diffusion-related first bend! and in approximation 4
~without diffusion!. In both cases Eq.~21! is used for the
current distribution, but with the parameter

Egal
~3!51.3•1018 eV or Egal

~4!52.36•1017 eV.

Converting to currents as above, we find

Jmax54Egalc/e, Jmax
~3! 51.7•1015 A,

Jmax
~4! 53.15•1014 A.

These currents are~respectively! 100 and 19 times greate
than our ‘‘diffusion’’ current determined above, and the
would produce a standard magnetic fieldB56•1026 G for
current channels having corresponding radii

r J
~3!55.7•1019 cm560 ly and r J

~4!51019 cm510 ly.

The second result is approximately consistent with the a
age distance between stars in the Galaxy. If these radii of
current channels are set equal to the Larmor radii for
same magnetic field, we obtain the corresponding part
critical energies

Ecr
~3!51017 eV, Ecr

~4!52•1016 eV.

We now discuss the metagalactic term, which has b
introduced in both approximations 3 and 4 with appro
mately the same cutoff parameter

Emet51019 eV5eJmax
met/c,

so that

Jmax
met53.3•1017 A.

These currents can be identified with the space between
dinary quiet galaxies~see Ref. 12!, whereas based on nu
merical modeling of the active radio galaxy Cygnus A, a
cording to numerical modeling results, it is ascribed a curr
of 2.5•1019 A,12 the periodic cutoff of which should lead t
the generation of particles with maximum ener
Emet
max57.5•1020 eV. However, this radio galaxy is situated 7

Mpc from us, and it is not very likely that these particl
could traverse such a distance after being slowed down
the cosmic background radiation~stopping length;40
Mpc!.

However, the well-known cluster of galaxies in the co
stellation Virgo is situated at a distance of 17 Mpc from u
and it has been hypothesized9 that particles with a maximum
observable energy~today! E53•1020 eV, which corresponds
to a current of 1019 A, can reach us from this object. How
ever, such particles do not move in a straight line, but inst
in intergalactic fieldsBmet;5•1027 G wind around with the
Larmor radius

r B5E@eV#/300B@G#52•1024 cm'1 Mpc.

This distance corresponds roughly to the distance betw
galaxies, so that no astronomical objects are visible th
recorded observable directions of arrival of these very hi
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in contrast with 1 and 2, theoretically suggest a sharp ex
nential cutoff of the spectrum at energies of the order
1020 eV, which is consistent with observations.

One final point is that we have discussed approximat
4 without diffusion because, in particular, several author3,7

have questioned the existence of the sharp first bend, and
theory predicts a more rounded bend in the curve even w
out diffusion~or, more precisely, on the assumption that t
diffusion coefficient does not depend on the energy!. It is
evident from Figs. 1 and 5 that the exponent of the pow
spectrumn52.75 ('11)) works quite well not only for
the energy rangeE<1013 eV ~Fig. 1!, but also at higher
energies up toE;1016–1017 eV.

The preceding estimates of the parameters of the pi
mechanism underlying the generation of galactic cosmic r
are reasonable. Clearly, cosmic rays are accelerated in
tain electric fields and, according to the generally accep
shock wave hypothesis, these~relatively weak! fields exist in
magnetohydrodynamic waves~or in MHD shock waves!,
with which the particles have resonantly interacted for a lo
time. The pinch mechanism proposed here is based o
different picture, namely acceleration in comparative
strong but short-lived electric fields produced by period
current cutoffs in pinches of the cosmic plasma.

6. CONCLUSION

We summarize the investigation in five concluding r
marks.

1! The observed cosmic ray spectra shown in Fig. 3 h
appreciable differences but, roughly speaking, they exh
eight characteristic parameters: a common normalization,
slope of the initial segment of the spectrum, the position
the first bend, the slope of the spectrum after it, the posit
of the second bend~see Fig. 2!, the slope after it, and finally
the position of the last maximum and the dow
slope following it. Clearly, an analytic approximation mu
contain the same number of fitting parameters, but in
~19! ~see also Fig. 5! we have succeeded in circumventin
six parameters. Three of them~the characteristic energie
E1* , E2* , andEmet! can be linked to three characteristic d
mensions in a physically meaningful way, namely, the av
age distance between stars, the thickness of the galactic
and the dimensions of the halo~or average distance betwee
galaxies!.

2! Particles squeezed from the waist of a relativis
pinch must have a total spectrum with exponent) ~see Ap-
pendix A!, which is very close to the observed value. Ho
ever, in Eq.~19! these particles are disregarded for simpl
ity, and the model essentially uses only Eq.~3! and the
current distribution function.

3! The hypothesized form of the current distributio
function gives the correct~close to the observed! jump
(n22n1'0.5) of the exponents of the spectrum in the vici
ity of the first bend, partially confirming the hypothesis.
the given model this jump is caused by the diffusive nat
of the propagation of particles through the Galaxy after g
eration events, a process that imparts isotropy to the par
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flux as a whole, as is indeed observed. We note, however,
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that such an astrophysical explanation of the first bend is
unique, and in some papers~see Ref. 7! it is not attributed to
the primary flux of cosmic rays, but to specific character
tics of the nuclear reactions in the secondary extensive
showers, which provide a basis only for the investigation
high-energy particles.

4! It is sometimes assumed that energetic particles th
selves arrive from the nearest cluster of galaxies, 14 M
away in the constellation Virgo and possibly from more d
tant active galactic nuclei. In particular, to match t
computer-generated radio emission of the galaxy Cygnu
with the observed pattern, it must be assumed~according to
published data12! that circulating in the pinches of the galax
is a colossal current of 2•1019 A, whose periodic cutoffs
would be capable, according to our model, of producing p
ticles with energyEmax5eJ/c57•1020 eV, which appears to
be consistent with the maximum possible cosmic ray ene
~currentlyEmax53•1020 eV!.

5! Finally, there is one other hypothesis to consider,
it requires further study. We cannot rule out the possibi
that gamma-ray bursts, the precise nature of which has y
be established, are generated in the pinches~other possible
hypotheses are discussed in a recent survey13!.

The high forward directionality of bremsstrahlung fro
a narrow beam of ultrarelativistic electrons as they
slowed down by collisions with ions, but move almost rec
linearly, drastically shortens~by a factor of 1024; see Ap-
pendix B! the period of the instrument-recorded signal
comparison with the period of the emission of radiation
self. We note that a typical gamma-ray burst lasts 10 s on
average, but a rare instance with a duration of 1.5 h an
maximum photon energy of 18 GeV is described in Ref.
It is possible that here the short, roughly three-minute, hi
intensity initial interval is attributable to the first pipet
mechanism, while the subsequent long, low-intensity
high-energy ‘‘tail’’ is generated by a second, electrodynam
mechanism. Allowance for such highly directional propag
tion may prompt a reexamination of the existing estimates
the total power of gamma-ray bursts~it is conceivable that
many rays simply miss our instruments!.

Moreover, in gamma-ray bursts the generation of el
tron beams by the pinch mechanism must be accompanie
the generation of ion beams withM /m'2000 times the en-
ergy ~since electrons and ions have identical velocities in
pipette mechanism of a quasineutral plasma being sque
from the waists of the pinches!. In this light one cannot dis-
miss the possibility that the ‘‘ionic’’ power of gamma-ra
bursts is high enough to sustain the continuous replen
ment of cosmic rays whose particles, as the estimates s
are transported out of our Galaxy by diffusion to distances
approximately 100 million light years.

We note that several different mechanisms for the ac
eration of charged particles might well be at work in spa
shock waves associated with supernova outbursts, a ‘‘rec
ing relay’’ mechanism in neutral current sheets along
calledX lines or ‘‘tears’’ ~note, however, that these are d
focusing lines, a property that would inhibit acceleratio!,
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bly other, as yet unknown mechanisms.
For example, some researchers believe that the so-ca

dark matter in galaxies, which is estimated to harbor
times the total mass of their visible stars, could be compo
of dust particles rather than a gas~see Ref. 15!, endowing
them with an observable transparency due to rarefact
And would it not be possible for lightning to occur in them
similar to those observed in the turbulent ash clouds fr
volcano eruptions?

APPENDIX A: PIPETTE MODEL OF THE GENERATION OF
GALACTIC COSMIC RAYS

In the main body of the text the equation for the spe
trum of pips~1! is valid under the assumption that the plasm
equation of state is nonrelativistic in proper coordinates.
this appendix we analyze a more general case.

We consider the cylindrical cavity of a stripped Z-pinc
with a relativistic plasma inside it, of radiusa(t,z), with
currentJ5const and magnetic fieldB52J/ca at the bound-
ary r5a(t,z). The relativistic equation of continuity has th
form

]

]t
gn52div~gnv!52

]

r ]r
~rgnv r !2

]

]z
~gnvz!,

g5
1

A12b2
, b5

v

c
, ~A1!

wheren5ni5ne is the density of ions and electrons in the
proper coordinate system. At the boundaryr5a(t,z) we
have

v r ur5a5
da

dt
5

]a

]t
1vz

]a

]z
,

and in the so-called narrow channel approximation we
v r5(r /a)da/dt. Equation~A1! then assumes the form

]

]t
~gna2!1

]

]z
~gna2v !50, ~A2!

where v5vz . We denote t5ct, g5coshy,
u5gv/c5sinhy, r*5na2/n0a0

2 and introduce the two op
erators

P̂5g
]

]t
1u

]

]z
, Q̂5u

]

]t
1g

]

]z
. ~A3!

Equation~A2! then assumes the formQ̂y52 P̂ ln r* , but at
the boundary we have the pressure condit
p52nQ5Bw

2/8p5p0(a0 /a)
2, so that r*5Q0 /

Q5const•m, where we have introduced the new and mo
convenient variablem5Mic

2/Q with the ion massMi and
the temperatureQ in energy units. Now Eq.~A2! can be
rewritten in the final form

Q̂y52 P̂ ln m. ~A4!
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The second equation is the relativistic equation of motion
i i i i

n

io

n

m
on
n
g

whereJ5ty8zm8 2tm8 zy8 is the Jacobian of the transformation.

xi-

s

no-

ions

ere
is

-

¹ iTk50, where Tk5(e1p)u uk2pdk is the energy–
momentum tensor. In the narrow channel approximatio
assumes the form

~e1p!P̂y52Q̂p, S 11
e

pD P̂y52Q̂ ln p, ~A5!

where the scalare5ei1ee5n(Mic
2^g&Ti1mec

2^g&Te) de-
notes the energy density in proper coordinates. In addit
we have the adiabatic equationdE5d(Ve)52pdV and,
since nV5const, this equation yields the functio
n5n(Q):

dn

n
5
1

2
mdG5

1

2
@d~mG!2Gdm#,

G5^g&Ti1
me

Mi
^g&Te. ~A6!

Introducing the Bessel function

Kn~m!5E
0

`

exp~2m coshx!cosh~nx!dx,

we find

N~m!5E
0

`

e2mA11u2u2du5
K2~m!

m
,

^g&5
d

dm
ln

1

N
, G5

d

dm
ln

1

NiNe
, ~A7!

and integration of Eq.~6! yields the relativistic adiabatic law

p~m!5C expS L2m
d

dm
L D , L5 ln Z,

Z5
1

m2 AK2~m!K2Sme

Mi
m D , n~m!5

mp~m!

2Mic
2 . ~A8!

Finally, the resulting equations~A4! and ~A5! can be
concisely rewritten as

P̂m52mQ̂y, P̂y52 f Q̂m, f5
Lmm9

Lm8

5
d

dm
lnS d

dm
ln ZD , ~A9!

and can lead to a linear system of equations.
To achieve the latter, we use a hodographic transfor

tion, and as the first step introduce the inverse functi
t5t(m,y) and z5z(m,y). The direct derivatives can the
be expressed in terms of the inverse derivatives accordin
the equations

]

]t
y~t,z!5

zm8

J
,

]

]t
m~t,z!52

zy8

J
,

]

]z
y~t,z!52

tm8

J
,

]

]z
m~t,z!5

ty8

J
, ~A10!
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Substituting Eqs.~A10! into ~A9! and introducing the
‘‘large’’ functions T5gt2uz and Z5gz2ut, we obtain
the linear system of equations

Zy852~mT!m8 , Zm8 52~Z1Ty8! f ~m!,

~mT!mm9 1@~mT!m8 2Tyy9 # f ~m!50, ~A11!

which can only be solved numerically. However, appro
mate solutions are worth considering as well.

For the nonrelativistic equation of state (m@1) we have

K2'A p

2m
e2m, Z'const•m25/2e2m/2,

L85~ ln Z!8'2
1

2
2

5

2m
, f5

L9

L8
'2

5

m2 , ~A12!

and if we introduce the new argumentx55/m, the last equa-
tion in the set~A11! assumes the form

L̂T5x~Txx9 1Tx8!5T2Tyy9 . ~A13!

HereL̂ is the Laguerre operator, which has the propertie

L̂cn52~11n!cn , n50, 1, 2, . . . ,

cn5wLn
~1! , w5xe2x,

L0
~1!51, L1

~1!5~22x!/&,

E
0

`

Lm
~1!Ln

~1!w dx5dm,n . ~A14!

Equation~A13! has a general solution of the form

T~x,y!5w~x! (
n50

`

CnLn
~1!~x!YAn12,

Y2e2uyu5g2Ag221. ~A15!

Any function can be represented by a series in these poly
mials and, in particular, for the delta functiond5d(x2x0)
and its derivative we have the expressions

d5(
0

`

cnLn
~1! ,

d

dx
d5(

0

`

cn
d

dx
Ln

~1! ,

cn5w~x0!Ln
~1!~x0! . ~A16!

The assumption that a pinch does not have any perturbat
at the ‘‘initial’’ time t52` implies that the condition
T(x,y)52` holds at the pointx5x0 , y50, total breakup at
the waist corresponds tox5`, T50, and at this critical time
all accelerated particles must be forced into the bulge, wh
x50. Consequently, at this time the distribution function
equal to

dN5ngpa2dz5Fdu, F5
dN

du
5
A

g
Tx8U

x→0

, ~A17!

where A5pa0
2n0x0 . It has been shown4,5 that the series

~A15! must begin withn50 for the perturbation to be peri
odic along the pinch.
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But typical perturbations are local, and for these,~A15!
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we obtain the orthogonality condition for the

or

the
must begin withn51. Then at ultrarelativistic velocities~for
Y'1/2y, but using the nonrelativistic equation of state!, we
obtain the particle energy distribution in the form of a pow
function

dN/dE5F/Mc2}E2n ~A18!

with exponentn511), which is very close to the value
2.74 ‘‘observed’’ for cosmic rays in the energy rang
1010–1016 eV.

We now consider the ultrarelativistic equation of sta
for which instead of~A12! we find

K2'2m22, Z;m24, Lm8 5~ ln Z!m8 '24/m,

f'21/m. ~A19!

In this case the second equation~A11! assumes the quas
Besselian form

Tmm9 1
1

m
Tm8 1

1

m2 ~Tyy9 2T!50, ~A20!

and it can also be solved. However, the approximation mo
described below is more accurate.

The nonrelativistic case~A12! and the ultrarelativistic
case~A18! can be combined by setting

f52
5

m~m15!
5 H 25/m2, m@1,

21/m, m!1. ~A21!

This interpolation model simultaneously describes a non
ativistic situation in the bulges of the pinch and an ultrare
tivistic situation in the slender waists. For this kind of mod
it is convenient to introduce the argumentx55/m, where-
upon the last equation~A11! assumes the form

ĤT2T1Tyy9 50524preff ,

ĤT5x~11x!Txx9 1xTx8 . ~A22!

HereĤ is the hypergeometric operator, and the correct~real!
solution of the equationĤT52k2T is the sum of two hy-
pergeometric functions F(a,b;c;z). Assuming that
T;zSk(z), we find

Sk~z!5~12z! ikF~11 ik,11 ik;2;z!

1~12z!2 ikF~12 ik,12 ik;2;z!, ~A23!

wherez5x/(11x) is a new argument. It is the sum and n
the difference that ensures the correct lim
S521(12k2)z1 . . . , T;z as z→0 in the bulges of the
pinch. On the other hand~for x→1`, z→1 in the waists!,
we have the asymptotic expressio
Sk(z→1)52k21 sin@k ln(12z)#, which we use to expres
the delta functiond(k)5(pk)21 lim

a→`
sin(ka). Then from the

equations

d

dz F ~12z!
d

dz
T1G52

k1
2T1

z~12z!
,

d

dz F ~12z!
d

dz
T2G52

k2
2T2

z~12z!
~A24!
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Sk(z)-functions:

E
0

1

S1S2
z

12z
dz5

p

2k1k2
d~k12k2!. ~A25!

Using this condition, we obtain the following expressions f
the delta function and its derivative:

d~z2z0!52pE
2`

`

ckSk~z!dk,

d

dz0
d~z2z0!52pE

2`

`

ck
1Sk~z!dk, ~A26!

where ck5k2z0Sk(z0)/(12z0) and ck
15dck /dz0 . Next,

dropping the constant, we write the basic equation in
operator quasi-Laplacian form

D̂T5Ĥt2T1Tyy9 5d~y!
d

dz0
d~z2z0!,

T5E
2`

`

CkzSk~z!Yqdk, ~A27!

whereY5exp(2uyu). Making use of the relations

duyu
dy

5sgny,
d

dy
sgny52d~y!,

d2

dy2
Yq5@q222qd~y!#Yq, ~A28!

for the left-hand side we have

D̂T5E
2`

`

CkzSkY
q@q22k22122qd~y!#dk. ~A29!

From this result we obtainq5A11k2 and, taking into ac-
count the limitSk(z0!1)52, we have

E
2`

`

CkzSkqdk52
dd~z2z0!

2dz0
,

Ck52
k2

pqz0

d

dz0
Fz0Sk~z0!12z0

G52
2k2

pqz0
. ~A30!

The ‘‘time’’ then turns out to be

T52
2z

pz0
J~z,y!, ~A31!

where

J~z,y!5E
2`

`

Sk~z!
k2

A11k2
exp~2uyuA11k2!dk,

and for z5x/(11x)50 we obtain J(z50,y)
5(4/uyu)K1(uyu), whereK1 is a modified Bessel function
with the asymptotic form K1'Ap/2uyu exp(2uyu) for
uyu@1. Finally, since the spectrum equation~A17! is valid
~asx→0! in both cases,~A15! and ~A30!, the spectrum for
the interpolation model~A21! is now

dN/dp;K1~ uyu!/guyu;g22~ ln g!23/2 ~A32!
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and is sufficiently close to the spectrum~A18!
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dN/dE;g with exponentn511) obtained for the non-
relativistic plasma equation of state in proper coordinate

APPENDIX B: DURATION OF BREMSSTRAHLUNG FROM
ULTRARELATIVISTIC ELECTRONS

In this special Appendix we discuss the hypothesis of
possible generation of gamma-ray bursts in plasma pinc
and, in particular, the problem of their having an observa
duration of the order of several seconds.

If an ultrarelativistic electron with initial kinetic energ
E05mc2k0 at time t50 enters a plasma cloud at the poi
x50, its kinetic energy is spent in bremsstrahlung and
cays according to the exponential lawE(t)5E0 exp(2t/t0),
where for simplicity we assume thatt05const. The path
traversed by the electron is then given by the equation

dx5cA12~11k0e
2t/t0!22dt, x5ct0S~ t !, ~B1!

where

S~ t !54E
s~0!

s~ t ! x2

x421
dx, s~ t !5A112m~ t !,

m~ t !5
mc2

E~ t !
,

and for ultrarelativistic energies (m!1) we have approxi-
mately

x5x~ t !5ct2d~ t !, where d~ t !'ct0Fm~0!

2 G2~e2t/t021!.

~B2!

Since an ultrarelativistic electron emits bremsstrahlu
gamma rays in a narrow cone with vertex angle of the or
of 1/g in the forward direction, andxfr5ct is the position of
the radiation front, the radiated energy is localized in a t
layer having a thickness of the order ofd between the front
and the electron at a very slight distance from it. Fort@t0
we haved(t)'ct0@mc2/2E(t)#2, and if the radiation still
enters the observing instrument, it produces a signal of s
duration therein. If, for example, the initial electron energy
220 JETP 84 (2), February 1997
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t*54.6t0 , we obtain a signal of durationDt'10 t* in the
observing instrument.

These considerations should be useful when cos
gamma-ray bursts originate from bremsstrahlung produ
by electron beams that have in some way been accelerat
ultrarelativistic energies. Moreover, their highly direction
emitted radiation can miss the instruments, and only at
end of deceleration, after the energy has been reduce
values in the MeV range, does the radiation become alm
isotropic and capable of entering the instrument. These c
siderations should help to improve estimates of the po
lated primary power of gamma-ray burst sources, the na
of which remains a mystery at the present time.
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Nonlinear propagation of optical pulses of a few oscillations duration in dielectric

r,
media
S. A. Kozlov
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S. V. Sazonov

Astrakhan State Technical University, 414025 Astrakhan, Russia
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Using a semi-phenomenological model of the polarization response of an isotropic solid
dielectric that does not resort to the slowly-varying-envelope approximation, we have obtained a
nonlinear wave equation for the electric field of a femtosecond light pulse propagating in
the given dielectric. Evidence is presented that this equation possesses breatherlike solutions in
the region of anomalous group dispersion and does not have any solutions in the form of
steady-state traveling solitary video pulses. A universal relation is found linking the minimum
possible duration of a breatherlike pulse with the medium parameters. It is shown that
such a pulse contains roughly one and a half periods of the light-wave. ©1997 American
Institute of Physics.@S1063-7761~97!00202-3#
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21
The development of the laser technology of ultrash
light pulses has led to the creation of laser systems gen
ing pulses only a few periods of the light field in duration.1–5

It is natural to ask how such pulses propagate in opt
media. Clearly, nonlinear propagation regimes—especi
soliton regimes—are of the greatest interest since th
pulses spread out rapidly in the case of low-intensity rad
tion due to dispersion, according to well-known laws.6,7

The nonlinear evolution of light pulses of durationtp
down to the femtosecond range in dielectric media is usu
treated theoretically by solving a wave equation of the for8

i
]«

]z
1a1

]2«

]T2
1 ia2

]3«

]T3
1...1b0u«u2«

1 ib1

]

]T
~ u«u2«!1...50, ~1!

where«(z,T) is the slowly varying envelope of the electr
field E of the light pulse:

E5
1

2
« exp@ i ~vT2kz!#1c.c. ~2!

Here v is the frequency, k is the wave number
T5t2z/vg is the time in the co-moving system of coord
nates, andvg is the group velocity. Dispersion of the linea
and nonlinear refractive indices of the medium is taken i
account in various approximations of dispersion theory w
the help of phenomenological, generally complex coe
cients a1 , a2 , . . . and b0 , b1 , . . . , respectively. How-
ever, analysis of the propagation of pulses consisting onl
a few oscillations becomes qualitatively more complicat
For such ultrashort pulses it is difficult even to introduce
concept of an envelope. Therefore, we cannot use
slowing-varying-envelope approximation—so fruitful in tr
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consequently, can we use the wave equation~1! obtained in
this approximation.

At present there is a large body of work~see, e.g., Refs
9–23! dedicated to an analysis of the self-action of ultrash
pulses in optical media which do not use the slowly-varyin
envelope approximation. The closed system of the w
equation and the material equations, written not for the
velope of the light pulse but directly for the wave field itse
is analyzed in these treatments, as a rule, in terms of
model of a two-level medium. Such a system of nonline
equations, e.g., in the form of the Maxwell–Bloch equatio
for the case of ultrashort pulses frequently simplifies sign
cantly. Thus, for pulses that are very long,11,13,16,17,22,24

~v0tp!
2@1, ~3!

in comparison with the characteristic time of intra-atom
processes v0

21 the given system reduces in th
monodirectional wave approximation to the modifie
Korteweg–de Vries~MKdV ! equation, and for very shor
pulses10,11,13,14,16,18

~v0tp!
2!1, ~4!

to the sine-Gordon equation. However, in the analysis of
nonlinear propagation in a dielectric of ultrashort puls
whose spectrum belongs to the transparency region of
medium, the results of the above-mentioned works are
our opinion, inapplicable. This has to do, primarily with tw
factors. First, modeling the electronic nonlinearity of the p
larization response using the two-level medium approxim
tion gives a uniformly negative value for the nonlinear r
fractive index coefficientn2 in the transparency region of th
dielectric.25 At the same time, the experimentally measur
values ofn2 for glasses and crystals are positive.

25 This dif-
ference in the results of theory and experiment is understa
able since the two-level medium approximation in esse
allows for only one nonlinearity mechanism—variation
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main one in the nonresonant interaction of light w
matter.25 Second, the two-level model describes normal d
persion of the group velocity, but does not account
anomalous dispersion, whereas it is well known from
nonlinear optics of pico- and subpicosecond pulses that
nature of their self-action differs qualitatively depending
whether the pulse spectrum lies in the region of norma
anomalous dispersion of their group velocity.8

The present paper presents material equations which
equately describe the dispersion of both the linear and n
linear refractive indices in their transparency region. A no
linear wave equation is derived which characterizes
evolution of the field of ultrashort pulses in dielectric med
for the case in which the pulse spectrum belongs to the tr
parency region of the medium. Both the derived equat
and its solution are analyzed.

2. POLARIZATION RESPONSE OF A DIELECTRIC MEDIUM
IN THE FIELD OF ULTRASHORT PULSES

The polarization response of a dielectric medium in
intense light field can be completely rigorously described
the semiclassical approximation in terms of the equations
the density matrix in which the electric fieldE is represented
classically.26 However, to write out such equations exactly
difficult even for the simplest atomic gas media. Therefor
is necessary to use reasonable physical approximat
which, on the one hand, considerably simplify the system
material equations and, on the other, preserve the featur
the optical medium that are most important for an analysis
the problem. In the study of the self-action of ultrash
pulses, i.e., pulses with a very wide spectrum, it is essen
that the material equations adequately account for disper
of both the linear and the nonlinear susceptibility of the
electric medium over practically its entire transparen
range.

In Refs. 25, 27–30, usng the density matrix formalis
Azarenkovet al. derived material equations satisfying th
requirement. Their treatment of the linear polarization
sponse takes into account the contribution of both the e
tron and phonon subsystems of the dielectric. This mad
possible to describe both normal and anomalous group
persion. Their treatment of the nonlinearity of the mediu
response takes into account its most important mechan
in an ultrashort pulse field—namely, electronic a
electronic–vibrational. Each of these mechanisms was
scribed in the approximation of a three-level medium. It h
been proved31 that such an approximation provides the min
mum accuracy needed for an adequate description of the
persion of the nonlinear refractive index of the medium in
transparency range. Reference 32 gives an intuitive inter
tation of the resulting material equations in terms of the cl
sical theory of dispersion of intense light fields. The esse
of this interpretation is that in the classical theory of disp
sion the dependence of the nonlinear refractive index of
optical medium on the frequency of the light wave has
same form as in quantum theory if the structural unit of
material in the Lorentz model is taken to be not one, bu
least two parametrically coupled nonlinear oscillators. Th
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it has been shown that the polarization response of the
electric mediumP5Pe1Pi is described by the system o
material equations

]2Pe

]t2
1

2

Te

]Pe

]t
1ve

2Pe5aeE1b~Re1Rv!E,

]2Pi

]t2
1

2

Tı

]Pi

]t
1v i

2Pi5a iE,

]2Re

]t2
1

2

Te1

]Re

]t
1ve1

2 Re5ge~Pe1Pi !E,

]2Rv

]t2
1

2

Tv

]Rv

]t
1vv

2Rv5gv~Pe1Pi !E, ~5!

wherePe andPi are the contributions to the polarization o
the electronic and ionic components; the oscillators
scribed by the dynamical variablesRe andRv give rise to
nonlinear parametric coupling between the pulse elec
field and the medium@here the dynamical parameterRe is
responsible for the electronic nonlinearity, and the dynam
parameterRv—for the electronic–vibrational~Raman! non-
linearity; the phenomenological parameters of the medi
ae , ve , Te anda i , v i , Ti characterize the dispersion of th
electronic linear polarization response and ionic~vibrational!
in Gaussian linear polarization response, respectively;
the coefficientsb, ge , ve1 , Te1 andgv , vv , Tv character-
ize the dispersion of the electronic and electronic–vibratio
nonlinear polarization response, respectively#. System of
equations~5! adequately describes the dispersion both of
linear and of the nonlinear refractive index of a dielect
medium over practically its entire transparency range. Th
for example, for quartz glasses forve52.09631016 s21,
ae53.86231031 s22, v i52.15431014 s21, and
a i52.53431027 s22 the dispersion of the linear refractiv
index in the visible and near-infrared is described by eq
tions ~5! out to four significant figures~Fig. 1!, and
for ve153.031016 s21, vv58.331013 s21, and
b52.031043, ge52.93109, andgv58.03103 in Gaussian
units they also describe the dispersion of the low-inertia
efficient of the nonlinear refractive indexn2 ~Fig. 2! in good

FIG. 1. Dispersion of the linear refractive indexn0(l) of quartz glass~l is
the wavelength, the points are experimental data, the solid curve is
dispersion calculated according to the theoretical model~5!.
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agreement with known experimental results. Figure 2,
course, requires comment. Quartz glass is the dielectric
terial for which the largest number of measurements of
low-inertia coefficientn2 have been carried out, and at di
ferent wavelengths~see the review in Ref. 25!. However, as
can be seen from the figure, the experimental results of
ferent authors~denoted in Fig. 2 by squares! differ substan-
tially, thanks to the great complexity of optical measu
ments of this type.25 Therefore their interpolation by a
theoretical dependence for the above-listed parameter
quite complicated, and when more reliable experimental d
are obtained it will be possible to refine the model medi
parameters in system~5! definingn2 .

We supplement system~5! with Maxwell’s equation

DE2
1

c2
]2E

]t2
5
4p

c2
]2

]t2
~Pe1Pi !, ~6!

wherec is the speed of light in vacuum.
Thus, the problem of the propagation of an ultrash

optical pulse with frequency spectrum falling within th
transparency region of the dielectric medium reduces t
study of the closed nonlinear system consisting of the m
rial equations~5! and the wave equation~6!. Such a system
however, is hard to analyze. Therefore we will reduce it
something simpler using the nonresonant approximat
whose essence is laid out below.

3. WAVE EQUATION DESCRIBING THE NONRESONANT
INTERACTION OF AN ULTRASHORT PULSE WITH
A DIELECTRIC MEDIUM

In dielectrics the natural frequencies of the medium
termining electronic and ionic absorption usually differ
orders of magnitude. In the given example of quartz gl
ve /v i;102. Therefore, if the frequencyv̄ corresponding to
the center of the spectrum of an ultrashort pulse~it is no
longer possible to introduce the concept of a carrier f
quency for such short signals! satisfies the condition

vv
2,v i

2!v̄2!ve
2,ve1

2 . ~7!

FIG. 2. Dispersion of the nonlinear refractive index coefficientn2(l) of
quartz glass~l is the wavelength, the points are experimental data, the s
curve is the dispersion calculated according to the theoretical model~5!.
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tion of the radiation with the medium in the linear optic
approximation can be taken to be nonresonant. That is
this paper we do not consider the situation of a single-pho
resonance with an accompanying large linear absorption,
allow for the possibility of two-photon resonances of both
electronic and a Raman nature. The latter case is realize
a Raman-active dielectric automatically since the wide sp
trum of an ultrashort pulse contains an infinite set of spec
components satisfying the conditions for stimulated Ram
resonance.28,33 Note that condition~7! includes within itself
the two inequalities~3! and ~4! used above.

The relation v̄2@v i
2 @see Eq.~7!# implies that low-

frequency components are almost completely absent f
the spectrum of the ulatrashort pulse, i.e., it imposes
condition

E
2`

1`

Edt50 ~8!

on the ultrashort pulse.
This means that self-action of half-wavelength pulses

mains outside the scope of the present paper, i.e., self-ac
of solutions in the form of bell-shaped video pulses, whi
have attracted so much interest in the context of the inte
tion of ultrashort pulses with matter, when the natural f
quencies of the medium are spanned by the pu
spectrum.10,11,13,14,16,18

Expanding in the small dynamical parameter (v̄/ve)
2 in

the first of equations~5! in accordance with the nonresona
approximately~7!, we find

Pe.
ae

ve
2 E2

ae

ve
4

]2E

]t2
1

b

ve
2 ~Re1Rv!E. ~9!

By virtue of (v̄/v i)
2@1, we find from the second of equa

tions ~5!

]2Pi

]t2
.a iE. ~10!

Comparing Eqs.~9! and ~10!, we obtain the estimate

Pi /Pe;~a i /ae!~v̄/ve!
2.

Usuallya i!ae . Also taking conditions~7! into account, we
find Pi!Pe . Therefore, in the last two equations of syste
~5! we may setPi50. Then from these equations and al
Eq. ~9! taking conditions~7! into account, we have

Pe'
ae

ve
2 E2

ae

ve
4

]2E

]t2
1

baege

ve
4ve1

2 E3

1
baegv

ve
4 EE

2`

t

dt8E
2`

t8
E2dt9. ~11!

The simplified material equations~10! and~11!, like the
original system of equations~5!, contain the main character
istics of the medium for estimating the evolution of u
trashort pulses. Thus, Eq.~10! takes account of the contribu
tion to the anomalous group dispersion of the ionic~lattice!
vibrations. Expansion~12! takes account of the normal grou
dispersion due to the electron subsystem of the dielec

d
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electronic and Raman. As follows from Eq.~12!, the latter
type of nonlinearity has an inertial character. The first-or
expansion in small dynamical parameters in Eqs.~10! and
~11! does not take account of attenuation of the ionic a
electronic contributions to the polarization. This attenuat
defines the absorption of radiation in the medium, which
the case of the nonresonant interaction~7! we can take to be
small. Relaxation of a Raman nature can also be negle
since the corresponding characteristic times in dielect
significantly exceed the duration of an ultrashort pulse.
example, for quartz glass we haveTv.70 fs.

Next, substituting Eqs.~10! and~11! in Eq. ~6! and em-
ploying the approximation of unidirectional wav
propagation,7 we obtain the following closed nonlinear equ
tion for the pulse electric field:

]E

]z
2a

]3E

]t3
1bE

2`

t

Eat81gE2
]E

]t

1q
]

]t SEE
2`

t

dt8E
2`

t8
E2dt9D

5
c

2n0
D'E

2`

t

Edt8. ~12!

Here the pulse propagates in thez direction,D' is the trans-
verse Laplacian,t5t2n0z/c is time in the comoving system
of coordinates, and the coefficientsa, b, g, andq are alge-
braic combinations of the medium parameters introdu
above:

a5
n0
221

2cn0ve
2 , b5

2pa i

cn0
,

g5
3n2
c

, q5
gv

ge
ve1
2 n2

c
. ~13!

In relations~13! the low-frequency refractive index

n05A114pae /ve
2 ~14!

and the coefficient of the electronic nonlinear low-frequen
refractive index

n25
2pbaege

n0ve
4ve1

2 ~15!

define the total refractive index corresponding to the s
system of electronic transitions

n5n01n2E
2. ~16!

In the reduced wave equation~12! the term on the right-
hand side describes diffraction of the ultrashort pulse,
the second and third terms on the left-hand side desc
dispersion of the electronic and Raman linear polarizat
response, respectively.

In the derivation of the reduced wave equation, the
electric medium was assumed to be homogeneous. Howe
treating the coefficientsae anda i in the material equations
~5! and, consequently, the parametersa, b, g, andq in Eq.
~12! as independent of the transverse coordinates, we
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geneous media, e.g., waveguides~optical fibers!.

4. ANALYSIS OF THE NONLINEAR WAVE EQUATION

Equation~12! allows us to compare the influence of bo
electronic and electronic–vibrational nonlinearity on t
evolution of a light signal in a medium. Setting

]E/]t;v̄E and E
2`

t

dt8E
2`

t8
E2dt9;E2tp

2,

we obtain for the ratio of the nonlinear terms in Eq.~12!

q
]

]t
~E*2`

t dt8*2`
t8 E2dt9!

gE2
]E

]t

;
gv

3ge
~ve1tp!

2. ~17!

For quartz glass this ratio is equal to unity fortp535 fs,
while for pulses of durationtp510 fs it is equal to only
0.08. Thus, it follows from~17! that as the duration of the
ultrashort pulse decreases, the relative influence of
electronic–vibrational nonlinearity of the medium on th
character of the self-action of the pulse decreases quad
cally. For an ultrashort pulse withtp&10 fs, the nonlinear-
ity can be neglected to first order. This conclusion, valid
quartz glasses and other media with moderate Raman a
ity, correlates well with the estimate of the inertial charac
of the contribution ton2 for dielectrics with an electronic–
vibrational nonlinearity mechanism.25 Therefore we will ana-
lyze the wave equation

]E

]z
2a

]3E

]t3
1bE

2`

t

Edt81gE2
]E

]t
50, ~18!

i.e., we will take account only of the electronic nonlineari
of the medium, and also, guided by Eq.~12!, we will restrict
the discussion to the case of one-dimensional propagatio
the pulse, taking the medium and the wave to be transver
homogeneous. For media with strong Raman activity
term describing the electronic–vibrational nonlinear
should be kept in the wave equation. In this case it is use
to refer to the results of Refs. 33–35 which analyze se
action of ultrashort pulses in model media with a pure
Raman nonlinearity, i.e., they neglect all other effects c
sidered in the present work even though these effects
usually important, as was shown above, for ultrashort pu
in dielectrics.

It is important to note that the nonlinear wave equati
~18!, which describes the dynamics of an ultrashort pu
field in the limiting case of ‘‘long’’ pulses~with duration
greater than ten periods!, transforms into the cubic, modifie
nonlinear Schro¨dinger equation~1! with higher orders of dis-
persion theory taken into account, which characterizes
variation of the pulse envelope. This is not hard to do if w
substitute the field in the form~2! into Eq. ~18! and differ-
entiate in the usual way7 for the slowly varying envelope and
then integrate using multiple integration by parts:
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The relations between the coefficients of the modified n
linear Schro¨dinger equation~1! and the wave equation~18!
have the form

a152
3a

v3 ~vc
42v4!, a252a~113vc

4/v4!,

b052gv/4, b15g/4, vc
45b/3a,

T5t23av2@11~vc /v!4#z. ~19!

Thus, Eq.~18! contains Eq.~1! as a special case, being
generalization of the latter when the slowly-varyin
envelope approximation is invalid.

As in the case of a quasi-monochromatic wave pac
~2! self-action of ultrashort pulses in a dielectric mediu
varies, depending on whether the main part of its spect
lies in the region of normal or anomalous dispersion.

In the first case, dispersion is defined mainly by the el
tronic linear polarization response, i.e., the second term
Eq. ~18!. But if the linear lattice response, i.e., the third ter
in the wave equation~18! can be neglected, then Eq.~18!
takes the form of the modified Korteweg–de Vries equat

]E

]z
2a

]3E

]t3
1gE2

]E

]t
50. ~20!

In this case, it is important that the coefficientsa andg in
Eq. ~20! are positive. Therefore the self-action of ultrash
pulses in dielectrics for the case under consideration con
in their temporal defocusing added onto linear-dispersio
pulse spreading. The duration of the pulse increases du
generation in the medium of new light fields.36 Equation~20!
has no solutions in the form of solitary waves~solitons and
breathers!.

In the case of anomalous group dispersion, the third te
in Eq. ~18! cannot be neglected, since it is specifically th
term that defines anomalous group dispersion. The natur
the evolution of the ultrashort pulse changes qualitatively

Figure 3 presents results of a numerical calculation
the nonlinear propagation of an ultrashort pulse whose s
trum belongs to the region of anomalous dispersion of
group velocity.37 The parameters of Eq.~18! in this calcula-
tion correspond to quartz glass. The duration of the ultras
pulse does not vary as the pulse propagates in the med
and the dynamics consist in the periodic evolution of
internal structure of the pulse. This result correlates with
results of Ref. 38 in which the numerical calculation of t
unreduced system~5!–~6! also demonstrates that an u
trashort pulse of soliton~breather! type can form in a dielec-
tric.

Analytical solitonlike solutions of Eq.~18! are hard to
find. This is because the nonlinear wave equation~18! for
b50, as previously noted, does not have soliton solutio
Therefore, forb Þ 0 the usual soliton perturbation theory,39

which considers slow variations of the parameters
‘‘starter’’ solutions of the equations being integrated, can

225 JETP 84 (2), February 1997
-

t

m

-
in

n

t
ts
al
to

m

of

f
c-
e

rt
m,
e
e

s.

f
t

be applied to it. Thus, the presence of the integral term in
~18! is fundamental for the existence of solitonlike solution
and the term in question cannot be regarded as a small
turbation. Despite these difficulties, quantitative relations
tween the parameters of the breather can be found thro
analytic continuation of the dispersion parameters to
complex plane.40–43 A detailed justification of this method
applied to two-parameter solutions is given in Ref. 43.
essence consists in the following. Letf (v,k)50 be the dis-
persion relation of the linearized equation whose origi
nonlinear variant allows a solution in the form of solita
waves. Carrying out analytic continuations of the form

v→v1 ig, k→k1 ik

and then making these substitutions in the original relat
f (v,k)50, after separating the real and imaginary parts
obtain two equations linking the four parameters. Thus
obtain two free parameters. We may take as these two
parameters the filling frequencyv and the duration
tp52/g of the pulse. The factor of 2 in the latter relatio
arises because the field of a solitonlike pulse is exponenti
localized on both sides of its ‘‘center of mass.’’ In this cas
the group velocity of the pulsevg is equal tog/k and the
phase velocity of the oscillations filling the pulsevph is equal
to v/k. A solitonlike solution~pulse! of Eq. ~18! has two
degrees of freedom: an external degree of freedom res
sible for its translational motion as a solitary pulse, and
internal degree of freedom corresponding to pulsations of
profile of the breather in the comoving coordinate syste
Therefore there are grounds to assume that any soliton
solution of Eq.~18! is a two-parameter solution.

Linearizing Eq.~18!, we find a dispersion relation for i
of the form

k5av32b/v. ~21!

Hence it follows that the condition of anomalous gro
dispersion, when formation of optical solitons is possible
n2.0,

]2k/]v2,0 ~22!

FIG. 3. Dynamics of an ultrashort pulse in a dielectric. The fieldE is scaled
by the intra-atomic fieldEa5e/aB

2 ~e is the charge of the electron,aB is the
Bohr radius!, and the coordinatez is scaled by the dispersion spreadin
lengthzd5tp

2/2ua1u ~Ref. 8!.
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v,vc , ~23!

where the critical frequency is

vc5S b

3aD
1/4

5S a i

3ae
D 1/4ve . ~24!

Condition~23! is valid for envelope pulses having a na
row spectral component at the frequencyv. The spectral
width of a pulse containing only a few periods depends s
stantially on its duration. Let us generalize the given con
tion to the case of ultrashort pulses.

Applying to Eq. ~21! the above-proposed procedure
analytic continuation of the dispersion parameters to
complex plane, we obtain

k~v,g2!5av323avg22b
v

v21g2 , ~25!

1

vph
5av223ag22

b

v21g2 , ~26!

1

vg
2

1

vph
52Fa~v21g2!1

b

v21g2G . ~27!

As could be expected, forb50 anda,0 expression~27!
coincides with the corresponding expression for a MK
breather,39 which is an important argument on behalf of th
proposed method. According to Eq.~8! the parameterv is
always nonzero for solution~18! in the form of a solitary
pulse. Therefore the given solution cannot be a sing
parameter solution. Since we havea, b.0, it must be the
case thatvg Þ vph @see Eq.~27!#. Consequently, Eq.~18! has
no solutions in the form of traveling pulses with a stead
state profile.

Let us now determine the region of possible values
the parametersv andg52/tp of the solitonlike solution of
Eq. ~18!. Broadening of the spectrum of an ultrashort pu
corresponds to entrainment of a continually increasing nu
ber of frequency components into the dynamics of the pu
For the formation of a solitonlike pulse it is important th
these components lie in the region of anomalous group
persion. The mentioned broadening of the spectrum of
ultrashort pulse is taken into account in relation~25!. Hence
we arrive at the following generalization of condition~22! to
the case of an ultrashort pulse:

]2k~v,g2!

]v2 ,0. ~28!

Substituting relation~25! here, we find the equation o
the curve in the (v,g) plane enclosing the values ofv and
g corresponding to solitonlike pulses:

~W21G2!35W223G2, ~29!

whereW[v/vc.0 andG[g/vc.0.
The region of possible values ofv andg for a soliton-

like pulse is shown by the shaded area in Fig. 4. The cu
bounding this region from above is defined by Eq.~29!. It is
easy to see from this equation that in the low-frequency
gion the given curve has the form of a straight lin
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g.v/). Hence it follows, in particular, that asv→0 the
pulse durationtp52/g→`. This circumstance is in line
with the conclusion made above that the central frequenc
the spectrum of an ultrashort pulse cannot be equal to z
@see condition ~8!#. Near the critical frequency
g'A(vc

22v2)/3.
A numerical study of the transcendental equation~29!

leads to the result~see Fig. 4! that

gmax50.18vc , vm50.76vc . ~30!

It should be especially stressed that relations~30! are
universal for solid isotropic dielectrics and do not depend
their specific structure ‘‘encoded’’ in the parametervc . The
magnitude ofgmax corresponds to the minimum value of th
pulse durationtp

min that can be formed in a solid dielectric
Knowing tp

min is important from the point of view of deter
mining the maximum transmission rate of information in d
electric light-guides. The period of the oscillations filling th
breather isTp52p/v. Thus for a pulse of minimum dura
tion we find tp

min/Tp5vm/pgmax'1.33. Thus, the result ob
tained here corresponds to the results of our numerical
periments with Eq.~18!, namely, that the ultrashort puls
holds within itself roughly one and a half periods of the lig
wave. Using relations~30!, let us obtain numerical estimate
of the minimum pulse duration and its corresponding filli
frequency for quartz glass. It follows from relation~24! and
the numerical parameter values given above that for qu
glass vc50.07ve51.4731015 s21. Thus, the minimum
pulse duration istp

min57 fs and its filling frequency is
vm51.0631015 s21. The latter frequency corresponds to
wavelength oflm52pc/vm51.8 mm, lying in the region
of the anomalous group dispersion. Let us now estimate
frequency of pulsationsV of the profile of the electric field
of the traveling pulse in the accompanying coordinate s
tem. This estimate may be found from the formula22

V'~cv/n0!~1/vg21/vph!.

Next employing relations~27!, ~13!, and~30!, for the short-
est pulse corresponding to relations~30! we find

FIG. 4. Region of possible values of the pulse parametersv[2p/Tp and
g[2/tp of Eq. ~18! ~shaded!. The upper boundary of this region is describe
by Eq. ~29!. The valuegmax50.18vc corresponds to the minimum duratio
tp
min511.1vc

21 of a pulse that can be formed in the dielectric. The ratio
the durationtp

min of the given pulse to the period of the optical oscillation
Tp filling it is equal to 1.33 for any solid dielectric in its transparenc
region. The critical frequencyvc is determined by the concrete paramete
of the dielectric.
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Above we foundvc50.07ve51.4731015 s21 for quartz
glass. Also substituting the valuen051.45 here,25 we obtain
V'1.531013 s21, which is significantly smaller than th
corresponding pulse filling frequencyv51.0631015 s21

~see above!. Thus, the deformation of the profile of the pul
electric field in the comoving coordinate system varies qu
slowly, so that the parameterV/v can be taken to be smal

Let us estimate the intensity of an ultrashort solitonli
pulse. A soliton is the result of a balance between nonline
ity and dispersion. Equating the corresponding terms in
~18!, we obtain for the amplitude of the pulse electric fiel

Em;
1

tp
Aa

g S vc
4

v421D .
Thus the estimate for its intensity, taking relations~30! and
~13! into account, has the form

I;
c

n2
~vetp!

22.

Substituting the characteristic valuesn2 ; 1013 emu and
ve52.1 3 1016 s ~Ref. 25! for quartz glass, and alsotp57
fs ~see above!, we find I;1013 W/cm2.

To conclude the present section, we note that the non
ear wave equation~18! can be written in the form of a varia
tional principle:

d E
2`

1`

Ldt50, ~31!

where the ‘‘Lagrangian’’ is equal to

L5
1

2

]F

]z

]F

]t
1
a

2S ]2F

]t2 D 22b

2
F21

g

12 S ]F

]t D 4, ~32!

and the pulse electric field isE5]F/]t.
The existence of a variational principle for Eq.~18! al-

lows us to study the formation and propagation of an
trashort pulse with the help of the approximate method of
‘‘average Lagrangian’’ due to Ritz and Whitham.44 A neces-
sary condition for the application of this method is the pr
ence of a slow dynamical variable. As was shown above
such a variable we may choose the pulsation frequencyV of
the breather in the comoving coordinate system sinceV!v,
tp

21. We propose to pursue this topic in future work.

5. CONCLUSION

In the present work we have derived a nonlinear wa
equation ~12! describing the propagation of an ultasho
pulse in dielectrics in the case in which the pulse spectr
lies in the transparency range of the material. We have ta
account of diffraction, dispersion, and the nonlinearity of t
polarization response of the medium. We have discussed
properties of the solutions of this equation in the form
transversely homogeneous waves propagating in hom
neous dielectrics. We have shown that these properties d
qualitatively depending on whether the spectrum of the
trashort pulse lies in the region of normal or anomalous d
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both linear and nonlinear temporal defocusing, while in t
second it can propagate in the form of solitons. We ha
presented results of numerical and analytical studies of
properties of ultrashort optical solitons. In this context, it
of special interest to determine the region of the parame
v and tp

21 of the soliton that is independent of the speci
structure of the dielectric. We also obtained relations~30!,
which define the minimum possible duration of an optic
soliton in a dielectric and the corresponding filling frequen
in terms of the critical frequencyvc. These relations are
valid for any isotropic solid dielectric and in this sense a
universal, as is the conclusion that a minumum-durat
pulse contains roughly one and a half periods of the opt
oscillations. We have also shown that Eq.~18! has no solu-
tions in the form of isolated video solitons, which, cons
quently, cannot form in an isotropic dielectric.

However, many questions of the nonresonant, nonlin
optics of ultashort pulses remain unanswered. Among th
we note the following:

1. Even for an ultrashort pulse with a homogeneous p
nar wavefront only a general analysis has been attempte
the solutions of the wave equation. Self-action of an
trashort pulse whose spectrum contains both normal
anomalous group dispersion has not been discussed. Th
ture of the evolution of an ultrashort pulse as a function
the duration and energy of the pulse has not been inve
gated. The interaction of ultrashort pulses with each ot
has not been analyzed.

2. A theoretical discussion of the nonlinear evolution
an ultrashort pulse in a dielectric medium with diffraction
real, transversely bounded signals taken into account
stands before us, both in homogeneous and inhomogen
media~including optical fibers!.

3. The model we have constructed of the propagation
an ultrashort pulse in a dielectric is valid only for linear
polarized radiation. Self-action of elliptically polarized u
trashort pulses will be qualitatively different since they i
duce not only inhomogeneity of the refractive index but a
anisotropy of the medium in a nonlinear medium.25

4. The analysis presented here is valid in essence o
for isotropic dielectrics in which the lowest-order nonlinea
ity is the cubic. In dielectric crystals without an inversio
center the quadratic nonlinearity also plays an important r

5. Dielectric media in an ultrashort pulse field are ch
acterized by high optical strength. The maximum values
the intensity at which transparent glasses and crystals do
yet break down, according to the estimates in Ref. 8,
reach 1015 W/cm2. Under these conditions nonlinearities
higher orders, including nonlinearities of a different natu
from those considered here, will possibly play an importa
role.

6. A study of the mathematical properties of the nonl
ear wave equation~18! is of no small interest because th
presence of the integral term is fundamental for solitonl
solutions. This term, for this reason, cannot be thought o
a small addition to the modified KdV equation. Cons
quently, the standard perturbation theory for solitons is in
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tional principle~31!, ~32!.
The answer to these and a number of other question

addition to the results of the present work and the referen
we have cited lays a theoretical foundation for the nonlin
optics of ultrashort pulses for the case of non-resonant in
action of light with matter. Here we again note that we u
the term ‘‘non-resonant interaction’’ here as above only
the sense of an approximation of linear optics, assuming
ear absorption of light in dielectrics to be small because
spectrum of an ultrashort pulse belongs to the transpare
region of the medium.
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Multiphoton static and polarization bremsstrahlung in collisions of charged particles

d in
with multiply-charged ions in a strong laser field
V. A. Astapenko

Physicotechnical Institute, 141700 Dolgoprudny� Moscow Province, Russia

A. B. Kukushkin

Kurchatov Institute, 123182 Moscow, Russia
~Submitted 23 May 1996!
Zh. Éksp. Teor. Fiz.111, 419–439~February 1997!

A universal analytic description of multiphoton bremsstrahlung, including the static and
polarization bremsstrahlung channels, in the collision of charged particles with multiply-charged
ions is obtained on the basis of a specified quantum/classical current for arbitrary ‘‘quantum/
classical’’ motion of the incident particle. For the description of stimulated polarization
bremsstrahlung, the method of equivalent Fermi photons and the Kramers electrodynamics
method @V. I. Kogan, A. B. Kukushkin, and V. S. Lisitsa, Phys. Rep.213, 1 ~1992!# are
generalized to multiphoton processes. The resulting description of stimulated polarization
bremsstrahlung is valid over a broad range about resonance, where its contribution is the most
significant. The regions of polarization predominance over the static channel are indicated,
and examples of interaction between the static and polarization channels are given. ©1997
American Institute of Physics.@S1063-7761~97!00302-8#

1. Stimulated bremsstrahlung in a laser field~otherwise slow-electron atomic bremsstrahlung has been develope
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known as free–free or continuous–continuous transition
a laser field, or laser-assisted scattering! plays an important
role in the physics of interaction between radiation and m
ter, and has been investigated by a number of author
various physical situations and approximations.

The investigation of this category of phenomena beg
with calculations in the approximation of the static scatter
potential, i.e., static bremsstrahlung, for two opposite lim
ing values of the Coulomb parameterj[Ze2/\v ~Ze is the
charge of the target, andv is the initial velocity of the inci-
dent charged particle!. Bunkin and Fedorov2 treated the Born
case (j!1), while Berson3 studied the semiclassical cas
(j@1). The theory of static multiphoton bremsstrahlung w
further elaborated in Refs. 4–9. Kroll and Watson4 calcu-
lated the stimulated bremsstrahlung effect in the lo
frequency limit for the scattering of an electron by a sho
lived potential for arbitrary values ofj, and Rahman5 gave a
simple derivation of their result in Ref. 4 for the Born cas
Lisitsa and Savel’ev6 generalized Berson’s work3 to brems-
strahlung in an external electromagnetic field in the alter
tive cases of narrow~single-mode! and broad~Planck radia-
tion field! spectra. Veniardet al.7 analyzed two-photon
stimulated and spontaneous static bremsstrahlung in a C
lomb potential, using a Green’s function method develop
in Ref. 8. We also mention the recent work of Korol,9 in
which two-photon static bremsstrahlung is calculated in
distorted partial wave formalism.

At the same time, it has been shown in a major serie
papers10–12 ~see also the review monograph13 and Amusia’s
survey14! for spontaneous bremsstrahlung~or one-photon
bremsstrahlung! that it is important to treat both channels—
static and polarization—in radiation processes associ
with charge scattering by a structured target particle~the for-
malism of calculating the contributions of both channels
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Ref. 15!. The latter case is concerned with the emission
so-called polarization bremsstrahlung ~dynamic
bremsstrahlung,10 atomic bremsstrahlung11!, for which a
~real! photon is generated as a result of interaction betw
the polarization current induced in the target and fluctuati
of the electromagnetic vacuum in the case of spontane
bremsstrahlung, and its interaction with the laser field in
case of stimulated bremsstrahlung. Polarization radiation
universal phenomenon subsuming not only the well-kno
processes of macroscopic electrodynamics~e.g., transition
radiation!, but also more recently cited processes~polariza-
tion recombination16 and polarization bound–boun
transitions17! is a burgeoning branch of the theory of radi
tive processes in media beginning with the work
Bu�mistrov10 and Tsytovich.18

Polarization radiation is based on the conversion o
portion of the energy of the electric self-field of a partic
into dynamic polarization of the medium with the subsequ
emission of a photon by the compound system. The spa
scale of the induced polarization varies over a wide ran
from macroscopic scale to polarization of the Debye clo
around a charged particle, as in the virtual excitation of
individual atom, an ion with core, and a nuclear particle~see
Ref. 13 for details!. For the whole wide-ranging class o
polarization radiation processes, it is useful to describe i
‘‘scattering’’ of the electric self-field~which is longitudinal
for a nonrelativistic particle! of the particle by fluctuations o
the charge density in the medium, specifically as the n
resonant scattering of equivalent Fermi photons19 by the ion
core ~for polarization radiation in the plasma-frequen
range, this is analogous to the ‘‘transition radiation’’ of vi
tual waves of colliding particles13,18!. Such an approach per
mits the well-established results for radiative processes to
applied to calculations of collision processes~for more de-

229-12$10.00 © 1997 American Institute of Physics



tails see Refs. 1 and 16 and Chap. 4 in Lisitsa’s book20!.
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Dubois and Maquet detailed the theory of spontaneou
polarization bremsstrahlung for the case in which
target—atomic hydrogen—is incorporated exactly in t
Coulomb Green’s function formalism for an incident Bo
electron. Amusiaet al.22,23 have calculated the total brem
strahlung, including the polarization kind, beyond the sco
of the Born approximation for the scattering of electrons
a neutral xenon atom.

Especially noteworthy is the work of Verkhovtse
et al.,24 who investigated spontaneous total bremsstrahl
theoretically and experimentally for Xe atoms in the fr
quency range corresponding to the giant resonance in
photoabsorption of xenon due to the 4d subshell. They cal-
culated the differential cross section of total bremsstrahl
in the Born approximation with respect to the incident ele
tron, while acknowledging the inadequacy of this appro
mation. The total bremsstrahlung on the same target in
spectral range of the ionization threshold of the 4d subshell
was studied experimentally in a more recent paper.25 A the-
oretical interpretation of the results of this work is given
Ref. 26, based on the so-called low-frequency approxim
tion, by which it is possible to extend the Born treatment

To the best of our knowledge, polarization effects in t
scattering of an electron by an atom in the presence o
weak, near-resonance laser field were first taken into acc
in Ref. 27 for small momentum transfer from the incide
particles, within the framework of the time-dependent clo
coupling method.

Calculations of total multiphoton stimulated bremsstra
lung within the framework of a ‘‘dipole’’ perturbation of the
target ~neutral hydrogen and helium atoms!, and the Born
approximation for the incident particles, were carried out
Refs. 28 and 29 without and with excitation of the targ
respectively. These papers stress the importance of ‘‘dr
ing’’ of the target by the laser field for small momentu
transfer from the incident particle, a strong laser field, and
the near-resonance case, where the laser photon ener
close to one of the natural frequencies of the target.

A general expression for the multiphoton stimulat
bremsstrahlung cross section of an atom in a strong l
field, in the Born approximation with respect to the moti
of the incident particle, and taking into account the emiss
of an arbitrary number of photons by way of the polarizati
channel, has been derived30 and calculated.31 Stimulated
bremsstrahlung in a laser field of relativistic intensity h
been investigated with allowance for polarization and ex
tation of the target.32

Two-photon stimulated bremsstrahlung has been ca
lated for the scattering of a Born electron by a hydrog
atom in the presence of a weak laser field33 with allowance
for virtual one- and two-photon excitation of the target~i.e.,
polarization effects!. The authors mention the importance
these effects for the special case in which the hydrogen a
remains in its ground state after electron scattering.

An analysis of experimental data on the energy losse
electrons in small-angle scattering by helium atoms in a la
field34 suggests the need to take the polarization channel
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The method of equivalent photons as a means of desc

ing multiphoton polarization stimulated bremsstrahlung w
summarized in Ref. 35.

Note that polarization bremsstrahlung from the Deb
cloud around an ion in a plasma, originally called transiti
bremsstrahlung, was first investigated in Refs. 18 and 36
the spontaneous process~see also Chaps. 2 and 3 in Ref. 1!
and later with allowance for the interference of atomic a
plasma polarization bremsstrahlung.37 Multiphoton stimu-
lated bremsstrahlung in a plasma has been calculated
allowance for the polarization channel.38

It is evident from the foregoing survey of the literatu
that most of the results in the theory of stimulated brem
strahlung have been obtained for the case of Born motion
the incident particle, which admits of relatively simple ca
culations and for which the parameterj is small. However,
radiation in a plasma with multiply-charged ions usually fa
in the alternative range of semiclassical electron mot
(j@1), where the methods and concepts of Kramers e
trodynamics are found to be productive.1

The objective of the present article is to obtain a univ
sal analytic description of the multiphoton stimulated brem
strahlung, encompassing the static and polarization chan
that occurs when charged particles collide with multip
charged ions for arbitrary ‘‘quanticity/classicality’’ of th
motion of the incident particle. The result obtained here
mits of direct application in calculations of energy trans
between a plasma and a strong nonresonant laser field;
has important bearing on a great many practical proble
The description of stimulated polarization bremsstrahlung
quires generalizations of the method of equivalent Fe
photons19 and Kramers electrodynamics1 to multiphoton pro-
cesses.

In Sec. 2 we summarize the method of a specified~not
necessarily classical! current for multiphoton processes i
collisions of charged particles with multiply-charged ions.
Sec. 3 we generalize the method of equivalent Fermi phot
to multiphoton processes in order to describe polarizat
bremsstrahlung. In Sec. 4 we analyze the resulting gen
expression for the probability of multiphoton stimulate
bremsstrahlung, taking both mechanisms—static a
polarization—into account. Finally, in Sec. 5 we indicate t
region in which the polarization channel dominates the st
channel, and we give examples of interaction between
two channels.

2. SPECIFIED-CURRENT APPROXIMATION FOR
MULTIPHOTON PROCESSES IN COLLISIONS OF CHARGED
PARTICLES WITH MULTIPLY CHARGED IONS:
MULTIPHOTON STIMULATED STATIC BREMSSTRAHLUNG
FOR ARBITRARY j

Major mathematical difficulties are encountered in t
systematic quantum electrodynamic solution of the sta
problem assuming summation of an infinite diagram ser
The approach developed below corresponds to the appr
mate summation of such a series in the case of interest to

230V. A. Astapenko and A. B. Kukushkin



collisions of a charged particle with multiply-charged ions.
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This approach is based on the feasibility of describing rad
tion processes associated with electron scattering in the
of a multiply-charged ion in the approximation of a specifi
~not necessarily classical! current. The given model has
broad domain of applicability for the case of stimulat
bremsstrahlung in the collision of charged particles w
multiply-charged ions. The main condition for the approa
to be valid is that the motion of the incident particle in t
spatial region responsible for the emission of photons i
laser mode be only slightly perturbed by either the laser fi
~in comparison with the perturbation of the motion by t
field of multiply-charged ions! or by the emission or absorp
tion of a photon in and of itself~a real photon in static
bremsstrahlung or an equivalent photon in polarizat
bremsstrahlung!.

The weakness of the laser field relative to the ion field
the spatial region responsible for emission imposes an u
bound on the amplitude of the electric field component in
laser beam:

E0,
Ze

rv
2 .

Here rv is estimated to be the characteristic distance
which a photon of frequencyv is emitted in the field of
multiply-charged ions:

rv'FZS Ry\v D 2G1/3aB
~here Ry is the Rydberg energy, andaB is the Bohr radius! in
the high-frequency asymptotic limit in the semiclassic
case1,39 (j@1, v@v̄, andv̄[mv3/Ze2 is the characteristic
Coulomb frequency!, and

rv'
v
v

for the Born case (j!1) and the low-frequency asymptot
limit in the case of semiclassical motion of the incident p
ticle (j@1,v!v̄).

We now give the results of Refs. 2 and 3 for the oppos
limiting types of motion of the incident particle.

The equation for the probabilityW(n) of an n-photon
static process in the Born case (j!1), first obtained in Ref.
2, has the form

W~n!5Jn
2~a–q!. ~1!

HereJn is thenth-order Bessel function, anda5eE0 /mv2 is
the amplitude of the electron oscillations in a laser field
frequencyv and amplitudeE0 , and \q is the change in
momentum of the incident particle due to inelastic scatter
by a multiply-charged ion.

In the case of semiclassical motion (j@1) Berson3 ~see
also Ref. 6! obtained the similar result
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wherevv is the Fourier component of the classical trajecto
of the incident particle in the ion field.

The relationship between the formalism of the semicl
sical description of bremsstrahlung and the specified cur
method has been analyzed in Ref. 3 at the qualitative le
for the radiative transition of an incident particle in a sta
central field. For the calculation of multiphoton transitions
incident particles in a static central field in the presence
laser radiation for an arbitrary transition operator~that de-
pends only on the coordinates!, the specified classical curren
method can be justified quantum mechanically within t
framework of the two-dimensional semiclassical method1,40

by passing to the limit\→0 in the quantum formalism o
multiphoton transitions. The result of passing to this lim
which yields the correspondence principle for multiquantu
inelastic processes, is given in Appendix A.

In the fast collision limit (vtcoll!1), which corresponds
to weak inelasticity of the process, both results are rep
sented, as noted in Ref. 3~see also Ref. 6!, by a single
equation of the form~1!, in which the vector\q is again the
momentum change in the incident particle in scattering b
multiply-charged ion for bothj!1 andj@1.

We find that Eq.~1! can be extended to the region o
strong inelasticity in the sense that the ratio of the total
ergy of the emitted photons to the initial energy of the in
dent particleEi is not small. In this case the validity of th
equation is actually restricted to weak perturbation of
motion of the incident particle by an emission event in t
spatial region responsible for photon emission. This gen
alization of Eq. ~1! essentially covers~provided that it is
applicable to the region just mentioned! the region of strong
inelasticity in the case of semiclassical motion of the incid
particle—an electron in particular. In the latter case,
shown by a generalization of the Kramers electrodynam
formalism1,39,40to multiphoton processes~a generalization of
the result described in Appendix A for the leading term
the limiting process for\ in the quantum probability of the
multiquantum inelastic transition of an incident particle!, the
actual condition for weak perturbation of the motion of
electron, according to the main conclusions of Kramers e
trodynamics, is weak local kinematic inelasticity:

m[n\v/Ekin~rv!,

whererv is the characteristic radius of revolution of an ele
tron about an ion near the point of closest approach,
Ekin(rv) is the local kinetic energy of the incident particle.
the case of semiclassical electron motion, which is in f
typical of the important practical case of collisions betwe
electrons and multiply-charged ions, the condition of sm
m is satisfied over a wide range of frequencies. Inde
m'n(\v/Ry)1/3Z22/3, so that for typical frequencies of th
Coulomb bremsstrahlung spectrumv'mv3/Ze2 we have
m'n/j, and at the short-wavelength bremsstrahlung lim
we obtainm'(n/j)2/3.

Equation ~1! can be generalized to the case of stro
inelasticity and any degree of quantization of the incide
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particle motion by analyzing the matrix element of multiph
ton transitions between the exact wave functions for mot
of the incident particle in a static central ion field. This kin
of generalization is based on matching the descriptions in
various regions of space$\v/Ze2, n\v/Ei%. Here the first
step is to demonstrate the validity of the description~1! in
the low-frequency limit (\v!Ei j , \v!Ef) for arbitrary
j. For the special case of the emission of two photons i
Coulomb field, this has been done7 by elaborate calculation
that expand upon the approach in Ref. 8~we mention also
that an equation for low frequencies and an arbitrary sh
lived potential is given in Ref. 4!. The second step is to
extend the low-frequency description to the case of arbitr
inelasticity within the scope of classical motion of the inc
dent particle in the ranglej@1. This is achieved by the
aforementioned justification of the specified classical curr
method~see Appendix A!.

As a result of rigorous justification over the indicate
ranges of parameters and interpolation over the intermed
range, we finally obtain the following universal represen
tion for the probability of multiphoton bremsstrahlung in th
static field of the target ion, covering the entire range
validity of the specific current approximation~see Fig. 1!:

Wstat~n!5Jn
2$~4nkl

Lasnkl
stat!1/2%, ~3!

wherenkl
Las is the occupation number of photons in the las

mode (nkl
Las@1),

nLas5~8p3c2/\v3!I Las, ~4!

I Las is the spectral intensity of the laser radiation;nkl
stat is the

occupation number of photons spontaneously emitted in
usual one-photon bremsstrahlung regime by an incident
ticle in the static ion field in laser mode$k,l%, with wave
vector k and polarizationl, during an inelastic~radiative!
transition from a state with initial momentumpi to a state
with momentum in the same directionnf[pf /upf u as that of

FIG. 1. ‘‘Transition inelasticity vs. nonclassicality of motion’’ diagram
(DE5n\v). The region of validity of Eq.~3! lies above the curve. The
numbers indicate the region of validity of the following results:1! multi-
photon bremsstrahlung2 and factorization of the multiphoton emission cro
section in the first Born approximation, Jauch and Rohrlich~1956!; see Ref.
42;2! two-photon bremsstrahlung in a Coulomb field, exact derivation7,8 for
arbitraryz, and multiphoton bremsstrahlung in the low-frequency appro
mation in a short-range potential4; 3! multiphoton bremsstrahlung3; 4! quan-
tum derivation of equations for classical bremsstrahlung in a central fi
one-photon1,39,40and multiphoton~the present study; see Appendix A!.
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Ef5Ei2n\v!, and with an energy that differs from the in
tial energy by only one photon:

nkl
stat5

2p

\

uv~e–di f 1!u2

Vdsscatt/dV f1
, ~5!

wheredi f 1 is the matrix element for the emitting dipole mo
ment of the incident electron between statesu i & and u f1&,

u i &[upi&[uEini&[upi
2/2m,pi /upi u&,

u f1&[uEi2\v,nf&, ~6!

V is the quantization volume, anddsscatt/dV f is the elastic
scattering cross section of the incident particle in the
field from stateu i & to stateu f1&.

It is evident from Eq.~5! that the specified curren
method~in the region where it is valid; see Fig. 1! can be
extended to the case of arbitrary quantum character of
motion of the incident property by replacing the classic
Fourier transformJv

proj of the current generated by the inc
dent particles with the quantum-mechanical expression

m^ f u jproju i &

2p\Adsscatt/dV f

. ~7!

In fact, by the correspondence principle1,40 for one-quantum
inelastic transitions of the incident particles in an arbitra
central field between the states described by the wave fu
tions of the continuous spectrum~wave functions likeCp

1

andCp8
2 in Ref. 41, Sec. 136!, we obtain from~7! in the limit

\→0 the Fourier component of the classical trajectory in
argument of the Bessel function of Eq.~2!. In the Born limit
(j!1), on the other hand, Eq.~7! coincides with the quan-
tity q/v in Eq. ~1! to within this same approximation, whic
is based on weak inelasticity of the transition~a change in
the energy, i.e., the modulus of the momentum vector, p
vides q with a contribution of second-order smallness
comparison with the contribution of the angle of rotation
the momentum vector!.

An equation for the cross section of the process can
obtained from~3! by summing over the statistical weights o
the final state of the incident particle. This operation cor
sponds to multiplication of the emission probability by th
Coulomb scattering cross sectiondsCoul of the incident par-
ticle in the field of a multiply-charged ion:

ds~n!5dsCoulW~n!. ~8!

3. GENERALIZATION OF THE FERMI METHOD TO
MULTIPHOTON PROCESSES: POLARIZATION
BREMSSTRAHLUNG IN THE COLLISION OF A CHARGED
PARTICLE WITH A MULTIPLY CHARGED ION IN A
STRONG LASER FIELD

The ensuing generalization of the method of equival
Fermi photons to the multiphoton case is based on the ex
sion of the specified classical current approximation used
Refs. 3 and 6 as a means of describing multiphoton st
stimulated bremsstrahlung forj@1 to polarization stimu-
lated bremsstrahlung, including arbitrary quantization of
motion of the incident particle.

-

d:
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method is~within the scope of its validity discussed in th
cited papers! insensitive to the quanticity/classicality of th
motion of the charged particle producing the flux of equiv
lent photons, it is natural in the problem of multiphoto
stimulated polarization bremsstrahlung to include the in
action of ~quantized if necessary! the emitted/absorbed fiel
of real photons not only directly via the incident partic
current ~as in ordinary, static bremsstrahlung!, but also via
the polarization current induced by the incident particle
the target ion/atom. For the case of a specified classical
rent ~see below for the generalization to quantum motion
the incident particle!, this adds an additional term to th
Hamiltonian, so that the equation for the wave functionx of
one mode of the laser field in the interaction picture assu
the form

i\
]x

]t
52eS 2p\

vV D 1/2~ekl• j
total!@akl~ t !1akl

1 ~ t !#x. ~9!

Here a and a1 are the laser-mode photon annihilation a
creation operators,ekl is the unit polarization vector of the
electric component of the laser radiation,e is the electron
charge, andV is the quantization volume.

The Fourier transform of the total current, including t
polarization current, is given by the expression

jv
total5 jv

proj1 jv
pol5F12Smv2

Ze2 Da~v,E0!G jvproj . ~10!

Here jv
proj is the Fourier current of the incident-particle cu

rent, evaluated on the classical trajectory, andjv
pol is the Fou-

rier transform of the polarization current induced in the t
get.

Equation~10! corresponds to the dipole approximatio
both in terms of the interaction of the laser radiation w
multiply-charged ions and the incident electron, and w
respect to interaction of the incident electron with multip
charged ions. The first two conditions are expressed by
inequalitiesl.r b and l.r (v), and the third condition is
expressed by the inequalityr (v).r b ~l is the laser wave-
length,r b is the radius of the orbit of a bound electron in t
multiply-charged ion, andr (v) is the characteristic distanc
from the incident particle to the multiply-charged ion, whic
provides the main contribution to radiation of frequen
v!. It is evident that the dipole approximation is valid over
wide range of emission frequencies.

The last condition,r (v).r b , also dictates that the field
of the incident electron at the site of the bound electron
much lower than the field of the multiply-charged ion co
We can therefore assume that the following relation is
proximately satisfied:

jpol;x~E0!j
proj, ~11!

wherex(E0) is the total susceptibility operator of the ele
tronic system of the multiply-charged ion~taking into ac-
count the influence of the laser field of amplitudeE0!, which
includes the contribution of all harmonics of the incide
particle field. This equation establishes a linear relation
tween the incident particle current and the current induce
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particle during scattering, justifying the choice of total cu
rent in the form~11!.

For problems of energy transfer between the plasma
a strong laser field~but still, however, not greater than th
Coulomb field of a multiply-charged ion in the effective zon
of photon emission/absorption! due to the stimulated emis
sion and absorption of radiation in the collision of plasm
particles with multiply-charged ions, it is important to in
clude the contribution of the polarization channel created
the presence of the electronic core of multiply-charged io
This channel can be expected to play the greatest role w
the main contribution to polarization stimulated bremsstr
lung is determined by the presence of one-photon near r
nance of the laser field with the eigenfrequencies
multiply-charged ions. This case corresponds to the stim
lated scattering ofn equivalent photons of energy\v, each
‘‘emitted’’ by the incident particle as it is scattered in th
Coulomb field of a multiply-charged ion~under the influence
of the laser field!, by the core of the target ion and the
subsequent conversion inton real photons. In a systemati
QED analysis this process can be described by a sum
‘‘ladder’’ diagrams ~see Appendix B, which leads to nea
resonance of ordern in the amplitudes of then-photon pro-
cesses. The indicated approach actually corresponds
mechansim for the induced~stimulated, preferential! emis-
sion of quanta of energy at the frequency of the exter
field, not only for~real! photons, but also for virtual photon
in anticipation of their coherent conversion to real photon

The foregoing approach, however, overlooks contrib
tions from resonances in the ion core with higher harmon
of the laser frequency. This would correspond to the inc
tion of higher orders of polarizability~see Ref. 43! and, in
particular, to a process such as the conversion of one vir
photon of energyn\v, into n real photons, which in dia-
gram language is represented by a single~for given n!
‘‘comb’’ diagram, and thus corresponds, first, to perturbati
of the target ion over a considerably more restricted f
quency range and, second, to the possibility of only fir
order resonance in the amplitude of the process.

In our approximation we obtain

jv
total5F12Fmv2

Ze2 Ga~v,E0!G jvproj , ~12!

where a(v,E0) is the first-order polarizability at the fre
quencyv for the target ion, determined with allowance fo
the perturbation of the target by a laser field of amplitu
E0 .

4. PROBABILITY OF MULTIPHOTON
STATIC1POLARIZATION INDUCED BREMSSTRAHLUNG

A consequence of Eqs.~9! and ~10! is the following
expression for the total probability of then-photon emission/
absorption processW(n) in the casenLas @ 1 ~nLas is the
occupation number of photons in the laser mode!, which in-
cludes the static and polarization channels:

WS~n!5Jn
2$2~nkl

Lasnkl
stat!1/2u12du%. ~13!
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mv2a~v,E0!

Ze2
~14!

describes the contribution of the polarization radiati
mechanism to the amplitude of the process. If radiation in
polarization channel is dominant, we obtain35

Wpol~n!5Jn
2$2~nkl

Lasnkl
pol!1/2%, ~15!

where nkl
pol5d2nkl

stat is the occupation number of photon
spontaneously emitted into the laser mode$k,l% by an inci-
dent particle in the polarization channel when it collides w
a multiply-charged ion.16

Equation~13! is the result of summing the contribution
of the two channels. The radiation contribution from eith
channel can be isolated in this sum by means of the add
formula for Bessel functions. Equation~13! can then be re-
written in the form

WS~n!5U (
v1m5n

~21!mJvSA4nkl
Lasnkl

statD JmSA4nkl
Lasnkl

polDU2.
~16!

The equation~13! for the probability of a multiphoton
process is a generalization of equations previously deri
by Bunkin and Fedorov2 in the Born approximation and b
Berson3 in the semiclassical limit. First, they were applied
the case of a highly inelastic multiquantum transition ove
broad range of quantum versus classical motion of the i
dent particle~Fig. 1!, spanning not only the range of validit
of the results of Refs. 2 and 3, but also the entire range
validity of the specified quantum/classical current appro
mation as well. Second, they were applied to the case
which the contributions of the static and polarization cha
nels, including their interference, to the emission process
taken into account simultaneously in the approximation o
specified quantum/classical current generated by the inci
particles.

It is important to note that the result~13! generalizes to
the multiphoton case the well-known10–14 phenomenon of
‘‘stripping’’ of a target ion, i.e., the partial~for an ion! or
complete~for an atom! unscreening of the nucleus as a res
of cancellation of the contributions from polarization rad
tion and the part of the incident-particle bremsstrahlung
to Coulomb interaction of this particle with core electron
Such cancellation exactly corresponds to the vanishing
bremsstrahlung in the dipole approximation for the collisi
of particles having the same charge-to-mass ratio.

Another consequence of Eq.~13! is that the nature of the
interference in our case of bremsstrahlung associated
scattering by a multiply-charged ion differs significant
from the case of a neutral atom. This contrast is aptly ill
trated in the example ofs1(Z50,j!1), the cross section fo
one-photon bremsstrahlung by a neutral atom with allowa
for both the static and the polarization channel in the cas
Born scattering of the incident particle, which has alrea
been studied in detail~see, e.g., Refs. 2 and 13!. Indeed, even
though the cross sections1(Z50, j!1) initially has the
same structure~of the typeu12du2! as Eq.~13! in our inves-
tigated region of dipole collisions~the parameterd itself dif-
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equivalent photons for scattering by a neutral atom and b
charged particle; more details can be found in an ear
paper16 which appears in Ref. 13 pp. 288–289!, we know
that the interference term proportional tod drops out after
integration over the scattering angle of the incident partic
owing to the difference in the regions of significance of t
static and polarization channels~specifically, interference is
significant only over a rather narrow interval of angles!. In
the case of bremsstrahlung by a multiply-charged ion, on
other hand, the regions of significance of the static and
larization channels, subject to the condition that the co
sions have a dipole character, simply coincide, so that in
ference becomes far more important.

The approach used in deriving Eq.~13! differs from the
investigation in Refs. 30 and 31, which is framed in the Bo
approximation without second quantization of the emitte
absorbed field, in that it systematically incorporates inter
tion of the polarization current induced in a multiply-charg
ion with a quantized laser field and is generalized to the c
of arbitrary values of the parameterj in the region of validity
of the specified current formalism~see Fig. 1!.

Note, however, that the result of Refs. 30 and 31 ha
rigorous physical analog. A direct comparison of~13! with
Eq. ~2! in Ref. 30 and Eq.~13! in Ref. 31 at the level of the
corresponding process obtained by multiplying the proba
ity and the Coulomb scattering cross section of the incid
particle in the field of the multiply-charged ion indicates th
their structures are similar. The main difference is the fo
of the factors representing the polarization channel, which
Refs. 30 and 31 are expressed in terms of the nonlinear
ceptibilities of the target. This difference is attributable to t
dissimilar models on which the description of the given ph
nomenon is based. For example, our result~13!, as men-
tioned, corresponds to the stimulated scattering~under the
influence of the laser field! of n equivalent photons of energ
\v, each ‘‘emitted’’ by the incident particle as it is scattere
in the Coulomb field of the multiply-charged ion, by the co
of the target ion, and their subsequent conversion inton real
photons~here we encounter near resonance of ordern; see
Appendix B!.

In contrast, the approach of Refs. 30 and 31 correspo
in terms of the equivalent photon formalism, to the conv
sion of a single virtual phonon of energyn\v into n real
photons, where only first-order resonance is possible.
approximation is found to be more realistic for the multiph
ton bremsstrahlung discussed in the present article, in c
nection with the collision of a charged particle with
multiply-charged ion in the presence of a strong laser fi
close to resonance, with respect to one-photon transition
the core of the multiply-charged ion~see Sec. 3!.

We note that the ‘‘extra’’ lines of virtual phonons in th
ladder diagrams describing ‘‘n-to-n’’ conversion increase
the number of diagram vertices, but do not necessarily
crease the amplitude of the process. Such a decrease
place upon satisfaction of a condition that generalizes
familiar Born condition for the static scattering potential
the case of a time-dependent potential. For the investiga
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the form

U @a~1!~v!#n

a~n!~nv!

@Ep~v!#n

Ep~nv!
U,1.

Herea (n)(nv) is thenth-order polarizability of the multiply-
charged ion, andEp(nv) is thenth harmonic of the ampli-
tude of the incident-particle field. Clearly, such an inequa
does not hold in the near-resonance case.

The difference between Eq.~13! and the equations in
Refs. 28 and 29 stems from the fact that the target w
function in the indicated situations was taken into accoun
the ‘‘dipole perturbation’’ approximation, which dictates th
the emission of only one photon in the polarization chan
is taken into account.

5. INTERACTION OF THE STATIC AND POLARIZATION
CHANNELS IN STIMULATED BREMSSTRAHLUNG
IN A STRONG LASER FIELD

The contribution of the polarization mechanism to t
total probability of stimulated bremsstrahlung becom
dominant in the case of near-resonant laser radiation. In
kind of region, which is characterized in the general case
the condition

g!uv2v0u!v ~17!

~v0 is the natural frequency of the resonant electron tra
tion in a multiply-charged ion,D5v2v0 , andg is the total
width of the investigated transition!, we need to take into
account the influence of the laser field on electrons of
multiply-charged ion core, as it produces a certain modifi
tion of the polarizability of the ion, and the generalized Ra
frequency appears in the denominator of the expression
the near-resonance polarizability,

VR5AS d•E0

\ D 21~v2v0!
2.

As for the near-resonance polarizability of a multipl
charged ion, it can be described by the expression

a~v,E0!5d2sgn~v02v!/\VR ,

whered is the dipole matrix element of the near-resonan
transition. Accordingly, the expression for the quantityd de-
scribing the contribution of the polarization channel to t
total amplitude of the process can be written in the form~the
contribution of the lower level of the ‘‘near-resonant’’ tran
sition in the core of the multiply-charged ion is tacitly u
derstood from now on!

d5
mv2

Ze2
d2

\VR
sgn~v02v!. ~18!

From this expression we obtain the condition for dominan
of the polarization channel over the static channel~in natural
units!:

D21
f 0
2v

E2,S f 0v2Z D 2, ~19!
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condition ~19! we deduce an expression for the saturat
amplitude of the laser field in the given near-resonance c

Esat5A2v

f 0
uDu.

In soft x rays and at off-resonance laser frequencies w
uDu'1022 ~which exceeds the characteristic line broaden
in the current case!, we estimateEsat.1022–1021 a.u.

From this condition we obtain an upper bound for t
laser field when polarization bremsstrahlung dominates
static kind in the near-resonance case:

E*5A2v

f 0
F S v f 0

2Z D 22D2G , Esat,E,E* . ~20!

Hence, forZ510, v'3 a.u.,D50.03 a.u., andf 0;0.3 we
find E*;0.15 a.u.

In laser fields withE,Esat, we have the following con-
dition governing the dominance of polarization over sta
bremsstrahlung:

uDu,
f 0
2Z

v, ~21!

from which it follows that an extremely broad spectral ran
is covered in this case as well.

We illustrate the interaction of the static and polarizati
channels in stimulated bremsstrahlung over the range of
rameter values that are relevant to the case of coheren
diation emitted in the soft x-ray range, and at the same t
are attainable in present-day and planned experiments~see,
e.g., Elton’s book44!. For example, the numerical estimatio
of the stimulated emission/absorption cross sections for
case of a recombination scheme is most appropriate in ap
cation to the ‘‘Kramers’’ frequency rangev@v̄[v3/Z.
Here we obtain the expression for the total cross sec
~integrated over the impact parameter! of the n-photon
stimulated process

sn~a!5
~2Z!4/3

v2v2/3 E
0

2p

dw

3E dN

N1/3 Jn
2F u12du

v5/3Z1/3
25/3

A3
N2/3F~N,a,w!G ,

~22!

where

F~N,a,w!

5Acos2 aK2/3
2 S 43 ND1cos2 w sin2 aK1/3

2 S 43 ND ,
~23!

anda is the angle between the~initial! velocity of the inci-
dent particle and the polarization vector of the laser field

Figure 2 shows the cross section of the one-photon p
cesss1 , averaged over the anglesa, as a function of the
strength of a linearly polarized laser field for ionic char
Z510, electron velocityv51.44 a.u., laser frequenc
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one-
v53 a.u.~near-resonance with transitionsDn50 in the ion
core!, oscillator strengthf 050.3, and relative frequency de
viation uDu/v'0.01 ~in the present case we have the sem
classicality parameterj'7 and the ‘‘Kramers’’ paramete
v/v̄'10!. The curves are plotted for identical moduli an
opposite signs of the frequency deviation~curves1 and 2!
and also with only one channel taken into account~curve3
corresponds to the static channel alone, and curve4 to the
polarization channel alone!. The plotted cross section corre
sponds to the contribution of only one of the levels involv
in a near-resonance~virtual! transition in the core of the
multiply-charged ion. The upper curve1 corresponds to a
deviationD.0 for the contribution of the lower level of a
‘‘near-resonant’’ transition in the core of the multiply
charged ion~or, equivalently,D,0 for the contribution of
the upper level of such a transition!; the lower curve2 cor-
responds to a deviationD,0. The actual difference betwee
these curves illustrates the degree of interference of the s
and polarization channels. The dip in the lower curve
caused by the complete cancellation of the amplitudes of
two channels and, accordingly the vanishing of the argum
of the Bessel function in~22! whend51. We note that the
curves describing the contribution of only one of the cha
nels intersect precisely at this value of the laser field. Allo
ance for the contributions of the populations of the upper
lower levels smooth out the dip, but curve2 is still not
monotonic.

Over the range of parameters for Fig. 2, the contribut
of multiphoton radiative transitions is small.

Figure 3 shows the dependence of the differential cr
sections of bremsstrahlung for one-photon@s1(0), curve1#
and two-photon@s2(0), curve2# processes on the streng
of a linearly polarized laser field for the anglea50, ion
chargeZ54, electron velocityv50.447 a.u., laser frequenc
v50.37 a.u.~near-resonance with transitionsDn50 in the
ion core!, oscillator strengthf 050.69, and relative frequenc

FIG. 2. Dependence of the cross sections1 of the one-photon process
averaged over anglesa, on the strength of a linearly polarized laser field f
an ion chargeZ510, an electron velocityv51.44 a.u., a laser frequenc
v53 a.u., an oscillator strengthf 050.3, and a relative frequency deviatio
uDu/v.0.01. The curves are given for equal moduli and opposite sign
the frequency deviation~curves1 and2! and for cross sections with only
one of the two channels taken into account~curve3 corresponds to the static
channel alone, and curve4 to the polarization channel alone!.
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deviationD/v.10.014~in this case we have the quasicla
sicity parameter j'9 and the ‘‘Kramers’’ paramete
v/v̄516.5!. The competition between the one-photon a
two-photon processes with increasing strength of the la
field is evident. Also shown in the figure are curves cor
sponding to the contribution of the static channel alo
~curves3 and4!. Clearly, when the polarization channel
taken into account, the cross section of the two-photon p
cess becomes comparable with the one-photon cross se
for weaker laser fields.

6. CONCLUSION

The universal analytic description obtained here for m
tiphoton stimulated bremsstrahlung, encompassing both
static and the polarization channel, can be used to calcu
the cross sections of stimulated emission and absorptio
photons in the collision of charged particles with multipl
charged ions for any degree of quantum versus classical
tion ~the ‘‘quanticity/classicality’’ criterion! of the incident
particle, over a wide range of parameters such that the sp
fied incident-particle current approximation is applicable
the stimulated emission/absorption of a photon by the co
posite system$incident particle1ion and core%. The approach
developed here for the description of multiphoton polariz
tion stimulated bremsstrahlung generalizes the method
equivalent Fermi photons,19 to multiphoton processes elabo
rating the method of Ref. 16 for spontaneous polarizat
bremsstrahlung and the method of Kramers electrodynam1

for the semiclassical description of radiative collision pr
cesses involving multiphoton ions.

The foregoing numerical calculations of the stimulat
bremsstrahlung cross sections over the range of param
relevant to problems in the kinetics of a strong laser field
a multicomponent plasma with multiply-charged ions, und
conditions in which nonresonant processes influence

f

FIG. 3. Dependence of the differential bremsstrahlung cross sections
one-photon@s1(0), curve1# and two-photon@s2(0), curve2# processes on
the strength of a linearly polarized laser field for the anglea50, ion charge
Z54, electron velocityv50.447 a.u., laser frequencyv50.37 a.u., oscil-
lator strengthf 050.69, and relative frequency deviationD/v.10.014.
Also shown are curves corresponding to the static channel alone for
photon~curve3! and two-photon~curve4! processes.
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reveal the significance of interference effects between
static and polarization channels.
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APPENDIX A: SCHEME DEMONSTRATING THE
CORRESPONDENCE PRINCIPLE FOR A MULTIQUANTUM
TRANSITION MATRIX ELEMENT

We generalize the formalism of the limit\→0 for a
one-quantum inelastic transition1,40 to the case of multiquan
tum transitions~including induced transitions! within the
framework of the previously developed40 two-dimensional
semiclassical method in the theory of inelastic transitions
a particle in a central field.

The analysis is best carried out in general form for
most representative form of the correspondence princi
For the matrix element of scattering between sta
$particle1field%

^pf ,muT̂ expH E
2`

1`

Q̂~r ,t !•Â~ t !dtJ upi ,n& ~A1!

~hereT̂ is the time ordering operator, the arbitrary opera
Q̂(r ,t) and the electromagnetic field vector potential ope
tor Â(t) are defined in the interaction picture,m andn are
the photon occupation numbers, andpf andpi are the mo-
menta of the emitting particle in the initial and final state!,
the expression for a typical nonvanishing term in the exp
sion of the scattering matrix has the form

Mn5^pf ,s1nuT̂H E
2`

1`

â1~ t !Q̂~r ,t !dtJ nupi ,s&, ~A2!

where the photon creation operatora1(t) is defined in the
interaction picture. The introduction of (n21) unitary op-
erators in the form of sums over the complete set of stat

(
p

C~2 !* ~p,r 8!C~2 !~p,r !}d~r 82r !,

whereC (2)(p,r ) is taken from Ref. 41~Sec. 136!, leads to
the factorization of~A2! into a product ofn matrix elements
mutually coupled inn time integrals. The application of th
operators exp(6i/\*Ĥdt) contained in the operatorsQ in the
interaction picture toC (2)(p,r ) and the subsequent comp
tation of the time integrals produces (n21) resonance de
nominators~which, as the upper limit of the time integra
exponentially approaches infinity, tend to the correspond
delta functions and thus ensure the approximate conserva
of energy in each successive one-photon transition in
multiquantum transition event factorized in this way! and
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energy in a single multiquantum transition event. The co
bined influence of the indicated delta function and the ove
limit \→0 in ~A2! brings the resonance denominators to t
mass shell, yielding the following expression as a result:

Mn}d~Ef1n\v2Ei !~Mn!photE drn21E dpn21

3C~2 !* ~pf ,rn21!Q~rn21!C
~2 !~pn21 ,rn21!d~En21

1~n21!\v2Ei ! . . . E dr kE dpkC
~2 !*

3~pk11 ,r k!Q~r k!C
~2 !~pk ,r k!d~Ek1k\v

2Ei ! . . . E dr1E dp1C
~2 !* ~p2 ,r1!Q~r1!

3C~2 !~p1 ,r1!d~E11\v2Ei ! . . . E drC~2 !*

3~p1 ,r !Q~r !C~1 !~pi ,r !, ~A3!

where the photon part of the matrix element

~Mn!phot5S ~s1n!!

s! D 1/2 ~A4!

is attributable to the matrix elements of successive o
quantum transitions in the presence of the initial and alre
emitted photons in the given mode.

We consider the simplest version of~A3!, the case
n52, which corresponds to a two-quantum transition. A
plying the formalism of the limit\→0 to the matrix element
^p1uQupi&, for the coordinate partM2 we obtain

M2}E dV1E dr1C
~2 !* ~pf ,r1!Q~r1!C

~2 !~p1 ,r1!

3F S ds

dV D 1/2 Qv expS i\ SD G
$ i→1* %

, ~A5!

whereV1 is the solid angle of the vectorn1 , n1[p1 /up1u;
here also the scattering cross sectionds/dV, the Fourier
componentQv of the functionQ(r ), and the actionS are
evaluated for the trajectoryr (t) corresponding to the scatte
ing event$pi→$Ei ,n1%%[$ i→1* %. It will be advantageous
below to transform the integral over the solid angleV1 into
an integral with respect to the trajectory variablesM1 and
w1 ~see Refs. 1 and 40!,

E dV1}E M̄1 dM̄1 dw̄1S ds

dV D
$1*→ i %

21

, ~A6!

so that the integrals left in~A5! are grouped, as in Refs.
and 40, into a single time integral on trajectories depart
~scattered! in the direction of the final momentumpf and a
quadruple integral in the doubly-reduced trajectory sp
$M̄1 ,w̄1% ^ $M1 ,w1%. The latter integral is evaluated in th
limit \→0 by the stationary phase method in fou
dimensional space. Here the stationary phase corresp
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to n15nf[pf /upf u, and the phase factors~action functions!
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in the semiclassical wave functionsC * (pf ,r1)
andC (2)(p1 ,r1) are preserved~in contrast with their sum-
mation in the action function along the classical trajectory
^p1uQupi&! to within their difference, due to the differenc
between the energiesEf andE15Ei2\v, which yields the
factor required for the Fourier component

vt1}
1

\

]S

]E
~Ef2E1!

in the exponential function. In the final analysis, the scat
ing cross section in~A6! cancels the product of the squa
roots of this quantity that emerge when the integrals~A5! are
evaluated by the stationary phase method.

The generalization~by induction! of the conclusion
briefly described here to the case of an arbitrary numbe
photons can be used in the generalization of Eq.~4.42! from
Ref. 1 to find a correspondence principle for then-quantum
transition between wave functions of the scattering prob
$pi→pf% with s photons present in the given mode~which
do not perturb the particle motion!:

^pf ,s1nuT̂H E
2`

1`

â1~ t !Q̂~ t !dtJ nupi ,s&\→0

}S ds

dV f
D 1/2~Qv!nd~Ei2Ef2n\v!S ~s1n!!

s! D 1/2,
whereds/dV f is the classical particle scattering cross s
tion from a state with initial momentumpi to a state with
momentumpf upi u/upf u, ~pf is the momentum of the fina
quantum state!, andQv is the Fourier component ofQ(r )
along the trajectoryr (t) corresponding to the indicated sca
tering event.

APPENDIX B: JUSTIFICATION OF THE SPECIFIED
POLARIZATION CURRENT METHOD

This justification of the specified polarization curre
method~in the sense that this current is not perturbed b
photon emission/absorption event! is based on the possibility
of ‘‘cutting’’ the corresponding diagrams along the lines
propagation of the electronic core of the multiply-charg
ion ~in Fig. 4 the double slash across the heavy line co
sponding to the Green’s function of the electronic core of
multiply-charged ion!. We note here that the possibility o
‘‘cutting’’ ~up to an elastic scattering contribution—the ro
of the scattering cross section—with but a single comm
factor! the diagram along the line of propagation of the in
dent particle~the single slash across the thin line in Fig.!
follows from the validity of the specified current approxim
tion. For example, in the limit of classical motion of th
incident particle for the case of static bremsstrahlung,
corresponds to factorization of the probability of multiphot
emission~see the justification in Appendix A of the corre
spondence principle for multiquantum processes!. And, fi-
nally, cutting along the photon Green’s function correspon
to the method of equivalent Fermi photons.
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We wish to investigate the ladder diagrams describ
multiphoton radiation in the polarization channel, which a
the result of expanding the formal solution for the scatter
matrix in powers of the interaction of the electronic su
system of a multiply-charged ion with the laser field.

As an example, we discuss the elementary case of
conversion ofn virtual photons inton real photons for
n52. One of the topologically similar diagrams is shown
Fig. 4. In this diagram the fine line corresponds to the in
dent particle scattered in the field of a multiply-charged i
from stateupi& to stateupf&. The electronic subsystem of th
multiply-charged ion does not change its stateu i & and is rep-
resented by the heavy line;q1 and q2 are 4-vectors of
equivalent Fermi photons, andun&, um&, and us& are the in-
termediate states of the electronic subsystem of the multi
charged ion.

In the dipole approximation~with respect to interaction
with both real and virtual photons!, the analytic expression
corresponding to the given ladder diagram has the form

M2}E dq1
0dq2

0d~q1
01q2

022\v!Ea*Eb*Ec
EPh

3~q1!Ed
EPh~q2!Ri i

abcd~2q1
0 ,v,2q2

0 ,v!. ~B1!

HereE is the vector representing the electric component
the laser field,EEPh is the field of equivalent Fermi photon
~we are assuming that the diagram has already been ‘‘c
along the incident-particle line as represented by the sin
slash in Fig. 4!, Ri i

abcd is the diagonal matrix element of th
nonlinear scattering tensor of the electromagnetic field by
electronic subsystem of the multiply-charged ion; in t
given situation it is proportional to the third-order suscep
bility, and is given by the expression

FIG. 4. Second-order ladder diagram describing the conversion of two
tual photons~4-momentaq1,2! into two real photons~energy\v! at the
electronic core of a multiply-charged ion. The single slash represents
‘‘cutting’’ of the diagram along the incident-electron line~see Sec. 3!. The
double slash indicates the cutting of the diagram along the line of the e
tronic core of the multiply-charged ion.
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Ri i
abcd~2q1

0 ,v,2q2
0 ,v!
} (
n,m,s

din
a dnm

b dms
c dsi

d

~vni1v2q1
02q2

02 igni/2!~vmi1v2q1
02 igmi/2!~vsi2q1

02 igsi/2!
, ~B2!

where vmn and gmn are the eigenfrequencies and corre- 9A. V. Korol, J. Phys. B26, 3137~1993!.
10
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V. M. Bu�mistrov, Ukr. Fiz. Zh.17, 640 ~1972!; V. M. Bu�mistrov and

.

d

pe-

ys.

.

sponding transition widths between states of the electro
subsystem of the multiply-charged ion, anddmn denotes the
matrix elements of the dipole moment operator.

This approximation of the specified polarization curre
corresponds to them5 i term in the sum overm in Eq. ~A2!.
Discarding terms withm Þ i can be justified if the near
resonance condition~17! is satisfied; this is precisely th
condition for which the polarization radiation mechanis
plays a significant role.

The indicated term, which is responsible for the ma
contribution toRi i

abcd in the case of interest, is written in th
form

Ri i ,m5 i
abcd }

a~v!a~q1
0!dabdcd

v2q1
02 ig i i /2

. ~B3!

Herea(v) anda(q1
0) are the dynamic polarizability of the

multiply-charged ion at the frequenciesv and q1
0, respec-

tively, anddmn is the Kronecker delta. Noting thatv@g i i ,
we can use the Sokhotski� equation, which gives the sum o
the delta function and the principal-value operator. Integ
tion with respect toq1

0 in Eq. ~B1! cancels the contribution o
the principal value, and the part that remains gives the le
ing contribution to the amplitudeM2 :

M2}$@ELas
•EEPh~v!#a~v!%2}$ELas

• jpol~v!%2. ~B4!

Here jpol } a(v)EEPh(v) is the polarization current induce
by equivalent photons of frequencyv in the multiply-
charged ion, andELas is the amplitude of the laser field
Equation~B4! substantiates the ‘‘cutting’’ of the diagram
along the line of the electronic subsystem of the multip
charged ion~as represented by the double slash in Fig. 4!.

This cutting reduces thenth-order diagram to thenth
power of the expression in braces in Eq.~B4!. The resulting
series of such multiplied diagrams~taking into account the
series for the static radiation channel! can be convolved with
an exponential function, the argument of which contains
total emitting current as a factor in accordance with Eq.~10!.
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26B. A. Zon, Zh. Éksp. Teor. Fiz.107, 1176~1995! @JETP80, 655 ~1995!#.
27J. I. Gersten and M. H. Mittleman, Phys. Rev. A13, 123 ~1976!.
28F. M. Byron, Jr., P. Francken, and C. J. Joachain, J. Phys. B20, 5487

~1987!.
29P. Francken, Y. Attaourti, and C. J. Joachain, Phys. Rev. A38, 1785

~1988!.
30E. L. Beilin and B. A. Zon, J. Phys. B16, L159 ~1983!.
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Quantum theory of the resonance interaction of an intense monochromatic

nce
electromagnetic wave with arbitrary polarization composition
A. A. Panteleev

Troitsk Institute of Innovational and Thermonuclear Research 142092 Troitsk, Moscow Region, Russia
~Submitted 24 July 1996!
Zh. Éksp. Teor. Fiz.111, 440-466~February 1997!

A theory describing the absorption and emission spectra of an atomic transition in the field of an
intense monochromatic wave with arbitrary polarization composition is developed. The
theory includes a quantum description of forward-directed four-wave interaction processes.
Expressions are obtained for describing the absorption and emission spectra in transitions adjacent
to the working transition. The description developed includes the perturbation of the atomic
subsystem by a constant magnetic field. The spectral characteristics, polarization composition, and
angular distribution of the resonance fluorescence are investigated. The nonlinear Faraday
effect and the properties of resonance fluorescence are investigated for the transition
J51→J50. © 1997 American Institute of Physics.@S1063-7761~97!00402-2#
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The investigation of the properties of the interaction
intense radiation with resonant media is a fundamental p
lem of modern optics. It is well known that the absorpti
and emission spectra of atoms change substantially in
field of a strong electromagnetic wave. The basic theoret
and experimental investigations of these spectra concern
study of the spectra of a nondegenerate two-level system1–7

which presupposes that it is excited by a wave with fix
polarization. The resonance fluorescence of the transi
J50→J51 accompanying the excitation of atoms by i
tense linearly polarized radiation was investigated in Ref
and 9 allowing for collisional mixing of the magnetic su
levels, and the emission and absorption spectra for the
dium D2 lines were studied in Refs. 10 and 11. In Ref.
Mollow’s theory of resonance fluorescence13 was extended
to a degenerate two-level atom in the field of a monoch
matic linearly polarized wave.

In Refs. 14–16, an approach was developed for calcu
ing the absorption and emission spectra of the magnet
transition J50→J51 in the field of an electromagneti
wave of arbitrary intensity for the Faraday (kLi H) and
Voigt (kL'H) geometries, wherekLis the wave vector of the
pump wave andH is the magnetic field vector. It was show
that the scattering spectrum, and in particular the Hanle
nal characterizing the depolarization of the scattered ra
tion, can contain up to seven peaks.

In Ref. 17 the polarization, spectral, and angular~allow-
ing for the thermal motion of the atoms! characteristics of
the absorption coefficients for transitions with arbitraryJ in
the field of an intense electromagnetic wave with defin
polarization~linear or circular! were investigated by the tes
field method.

The propagation of an intense electromagnetic wave
resonant medium is accompanied by the appearance
forward-directed nondegenerate four-wave mixing. Ma
ematically, the forward-directed nondegenerate four-w
mixing processes are determined by the same~second! order
of the perturbation theory in the radiation–atom coupli
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photons. It should be noted that in Refs. 18 and 19 it w
indicated that these are quantum processes: For the stat
the electromagnetic field which correspond to them, th
exist spontaneous sources similar to resonance fluoresc
which determine the appearance of the scattered radia
field. It was found that a quantum description of these p
cesses is fundamental for constructing a theory of the g
eration of squeezed states by means of resonant four-w
mixing20,21and for the interpretation of the first experiment
observation of squeezed states of light.22

In Refs. 18, 19, and 23 it was proved that the radiat
absorption coeffcicients and four-wave coupling consta
describing induced processes are the same for quantum
diation and classical test fields. They can be calculated
the classical fields by perturbation theory using the stand
atomic density matrix formalism.17 A number of approaches
have been used to calculate resonance fluorescence sp
We mention the atom–photon wave function apparatus1,2

the quantum regression theorem,24,13 Keldysh’s diagram-
matic technique for nonequilibrium Green’s functions23,25,26

Haken’s method,21,27 and the Scully–Lamb atom–photo
density matrix apparatus.28,29The present paper employs th
latter approach.

In this paper the results of Refs. 14 –16 are extende
the case of the interaction of an arbitrarily polarized mon
chromatic electromagnetic wave with a resonant atomic tr
sition with an arbitrary angular momentum. The absorpt
and emission spectra associated with transitions adjace
the working transition~see the level scheme in Fig. 1! are
also investigated. This paper is organized as follows. In S
2 the mathematical apparatus is developed and a modi
tion of the formalism is given on the basis of the repres
tation of nondegenerate polarization operators. In Sec. 3
characteristic features of the polarization and angular dis
butions of the scattered radiation are investigated. Sectio
is devoted to an investigation of the resonance fluoresce
spectra. In Sec. 5 the formalism developed is employed
study the fluorescence spectra of the transit
J51→J50. The characteristic features of the nonline
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Faraday effect for this transition are also investigated. T
basic results and a discussion of the limitations and limits
applicability of the formalism developed are presented in
concluding section.

2. BASIC EQUATIONS

2.1. Model

We shall study the interaction between a monochrom
wave, in resonance with the transitiona→b ~see Fig. 1!, and
an ensemble of atoms. Assuming arbitrary polarization of
electromagnetic wave, we represent the wave as a sum

E5 (
s50,61

esEs,

E617
1

A2
~Ex6 iEy!, E05Ez, ~1!

wherees is a unit polarization vector. In the case when
constant magnetic field perturbing the atomic system
present, we assume that the field is oriented along thez axis.
Using the dipole and resonance approximations, the Ha
tonian ~in rad/s! of this system can be represented as a s

Ĥ5Ĥ01Ĥ f1Ĥmag1V̂L1V̂q , ~2!

where

Ĥ05(
j51

N

(
j

«j

\
R̂jj

~ j ! ~3!

describes the unperturbed atomic subsystem. H
j5aJM5nM is the set of quantum numbers of the atom
state with energy«j , total angular momentumJ, and projec-
tion M of the total angular momentum on the quantizati
axis (z); a represents the other quantum numbers; a
R̂jj85uj&^ju is the atomic projection operator. In Eq.~2!
Ĥ f is the Hamiltonian of the quantum radiation field

Ĥ f5(
k,s

vkâks
1 âks , ~4!

wherevk is the frequency of photons with wave vectork and
polarizations and âks

1 and âks are the creation and annih

FIG. 1. Level scheme.
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atomic system by a magnetic field is described by the exp
sion

Ĥmag5(
j51

N

(
j

gjMVR̂jj
~ j !, ~5!

wheregj is the Lande´ factor andV52mBH/\ is the Lar-
mor frequency. The interaction of the pump wave with t
transitiona→b is described by the expression

V̂L5(
j51

N

(
MM8

@Vba~MM 8!R̂MM8
1~ j !

1Vba* ~M 8M !R̂M8M
2~ j !

#,

~6!

Vba~M 8M !5(
s

2dba~M 8M !EsUL~r !
exp~ ivLt !

2\
,

~7!

wheredba(M 8M )5dbM8,aM is the dipole moment matrix el
ement andUL(r ) is the spatial mode factor. Using th
Wigner–Eckart theorem,30 we represent the expression~7! in
the form

Vba~M 8M !5(
s

Vba~s!~21!Ja2MCJbM8Ja2M
12s exp~ ivLt !,

~8!

Vba~s!52
~21!sidbaiEsUL~r !

2A3\
,

whereCJbM8Ja2M
12s are the Clebsch–Gordan coefficients30 and

idbai is the irreducible value of the dipole moment matr
element. Here

Vba~MM 8!5Vba* ~M 8M !,

Vba~s!5~21!Ja2Jb2sVba* ~2s!. ~9!

The operators satisfyR̂jj8
1

5uj&^j8u for j Þ j8 and«j,«j8
andR̂jj8

2
5uj&^j8u for «j.«j8. The superscripts1 and – are

introduced in connection with the resonance approximati
The operatorsR̂MM8

1
5uaM&^bM8u and R̂MM8

2
5ubM8&^aMu

are specially distinguished for the transitiona→b.
The projection operators satisfy the following commu

tion relations:

@R̂jj8
~ j ! ,R̂zz8

~ j 8!
#5d j j 8~R̂jz8

~ j ! dzj82R̂j8z
~ j ! djz8!. ~10!

whered j j 8 is the Kronecker delta function.
The interaction of atoms with a quantized radiation fie

is described by the expression

V̂q5(
j51

N

(
ks

(
jj8

~gjj8
ks ,âksR̂j8j

1~ j !
1gjj8

ks âks
1 R̂jj8

2~ j !!, ~11!

wheregjj8
ks

5 idjj8Uks(r )A2pvk /\W andW is the quanti-
zation volume. Settingdjj85dnn8(MM 8), we employ the
Wigner–Eckart theorem:

gjj8
ks

5gnn8
ks

~MM 8!5~21!sCJMJ82M8
12s gnn8/A3, ~12a!

gnn85 i idnn8iUk~r !A2pvk /\W. ~12b!
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We shall employ the Scully–Lamb atom–photon dens
matrix formalism to describe the system under study.28 The
equation of motion for the atom–photon density matrix o
eratorra2ph has the form

i ṙa2ph5@Ĥ,ra2ph#1 i Ĝ~ra2ph!, ~13!

where the operatorĜa2ph describes relaxation processe
The atomic density matrixr is determined from the operato
ra2ph by summing over the photon variable
r5Tr(ra2ph)ph and the photon field operatorP is deter-
mined by contracting over the atomic variabl
P5Tr(ra2ph)a . In the zeroth approximation we neglect th
effect of the quantum radiation field on the atomic su
system. Then the equation of motion for the atomic den
matrix r has the form

i ṙ5@Ĥ01Ĥmag1V̂L ,r#1 i r̂1 iŜ1 iQ̂, ~14!

where the operatorr̂ describes the radiation relaxation pr
cesses,Ŝ describes the effect of collisions, andQ̂ describes
the pumping to the levels from other states. The compon
of the atomic density matrix are determined by the relat
rjj85^rR̂jj8&, which satsifies the equation

i ṙjj85Djj8rjj81 (
j15a,b

~Vjj1
rj1j82rjj1

Vj1j8!1 ir jj8

1 iSjj81 iQjdjj8, ~15!

whereDjj85(«n2«n8)/\1V(gnM2gn8M 8).
Two terms can be distinguished in the operatorr̂ de-

scribing the radiation processes:

r̂52 r̂ ~1!1 r̂ ~2!, ~16!

where r̂ (1) corresponds to radiative loss processes andr̂ (2)

corresponds to radiative arrival processes:

r jj8
~1!

5~gn1gn8!rjj8/2, gn5 (
n9,n

Ann9, ~17!

r jj8
~2!

5dnn8 (
n1M1M18

A~nMnM8un1M1n1M18!rn1n1~M1M18!,

~18!

A~nMnM8un1M1n1M18!5An1n ( CJM1s
J1M1C

JM81s

J1M18 , ~19!

and the coefficientAnn9 determines the spontaneous rela
ation rate in the transitionn→n9. One can see from the
expressions~17! and~18! that the decay of the density matr
has a diagonal structure, and the arrival termr (2) describes
not only the ‘‘transfer’’ of the population of the sublevels b
also the coherence between the magnetic sublevels. The
dition

M2M 85M12M18 . ~20!

for Eq. ~19! follows from the properties of the Clebsch
Gordan coefficients.30 In the polarization operator represe
tation (kq representation!, which will be examined below
the arrival term is diagonal with respect ton and the degen-
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which is described by the operatorŜ, is a complicated prob-
lem of quantum kinetics which depends strongly on the c
ditions of the gaseous medium. In the present paper the
fect of collisions is taken into account pure
phenomenologically. We note that, just as in the case of
operatorr̂ , loss and arrival termsŜ(1) andŜ(2), respectively,
can usually be distinguished in the operatorŜ. For the often
employed model of isotropic collisions the loss termŜ(1) in
theM representation is diagonal, like the loss termr̂ (1), and
the arrival termŜ(2) possesses a similar structure under
condition ~20!.

Since the pump wave interacts only with the transiti
a→b, the populations of the other levels are determined
the pumpQjj5Qnn /A2Jn115Q̃n , which we assume to be
isotropic for all sublevels:

rnn~MM 8!5dMM8Qnn /GnA2Jn11, nÞa,b, ~21!

whereGn5gn1vn
(c) is the decay rate of the population of th

staten andvn
(c) is the decay rate due to collisions. The d

namics of the transitiona→b in the rotating-wave approxi-
mation is described by the standard equations:

i ṙaa~MM 8!5@ga~M2M 8!V2 iGa~MM 8!#raa~MM 8!

1 (
M1M18 ,n5a,b

iGa
n~M1M18!rnn~M1M18!

1(
M1

@Ṽab~MM1!r̃ba~M1M 8!

2 r̃ab~MM1!Ṽba~M1M 8!#1 iQ̃adMM8, ~22!

i ṙbb~MM 8!5@gb~M2M 8!V2 iGb~MM 8!#rbb~MM 8!

1 i (
M ,M8

vb
~c!~MM 8ubM1M18!rbb~M1M18!

1(
M1

@Ṽba~MM1!r̃ab~M1M 8!

2 r̃ba~MM1!Ṽab~M1M 8!#1 iQ̃bdMM8, ~23!

i ṙ̃ba~MM 8!5@DL1V~gbM2gaM 8!

2 iGba~MM 8!#r̃ba~MM 8!

1(
M1

@Ṽba~MM1!raa~M1M 8!

2rbb~MM1!Ṽba~M1M 8!#, ~24a!

r̃ab~M 8M !5 r̃ba* ~MM 8!, ~24b!

where

Ṽba~MM 8!5Vba~MM 8!exp~2 ivLt !,

r̃ba~MM 8!5rba~MM 8!exp~2 ivLt !,

DL5vba2vL ,
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1 (
M1 ,M18

vn
~c!~nM1M18uMM 8!,

Ga
n~M1M18!5A~aMaM8unM1nM18!

1va
~c!~MM 8unM1M18!.

In the general case the constantvba
(c) is complex, i.e., colli-

sions result in not only depolarization of coherence betw
the states but also a shift of the levels. The quan
vn
(c)(MM 8un1M1M18) describes arrivals, which are due

collisional mixing of the populations of the magnetic suble
els, or the coherence between them for statesn with
n15n, and forn1 Þ n it describes arrivals from upper state
In the expressions~22! and ~23!, we assume that arrival
from the levelsp and s ~see Fig. 1! enter in the pumping
Qb andQa . For the case when the levela is the ground state
and there is no pumping (Q50), Eqs.~22! and~23! must be
supplemented by the condition

(
M ,n5a,b

rnn~MM !51.

We represent the system of equations~22!–~24! in the
matrix form

i ṙ5Lr1 iQ, ~25!

wherer is a column matrix of the components of the dens
matrix,

rT5~raa~2Ja ,2Ja!,raa~2Ja ,2Ja

11!,...,rbb~MM 8!,...,r̃ba~MM 8!,...,r̃ab~MM 8!,...!,

QT5~Q̃a,0,...!.

After contraction over the atomic variables in Eq.~13!,
we have

i Ṗ5@Hph ,P#1S (
ks,jj8, j

gjj8
ks R̂j8j

1~ j !F̂ks
2

1gjj8
ks R̂jj8

2~ j !F̂ks
1 2H.c.D , ~26!

whereF̂ks
1 5âks

1 ra2ph andF̂ks
2 5âksra2ph are auxiliary op-

erators.
For the slow component of the operatorP Eq. ~2! re-

duces to the form

Ṗ52 i H (
ks,jj8, j

@gjj8
ks Fj8j

2~ j !
1gjj8

ks Fjj8
1~ j !

2~gjj8
ks Fj8j

2~ j !!1

2~gjj8
ks Fj8j

1~ j !!1#J . ~27!

The operatorP makes it possible to determine the number
photons in a given mode:nks5^Pâks

1 âks&. A linear equation
for nks follows from the equation forP in second-order per
turbation theory in the coupling constantg. For this, we seek
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~13!, we obtain for the operatorsFks andFks the equations

i F̂
˙

ks
1 5@Ĥ01Ĥmag1V̂L ,F̂ks

1 #2vkF̂ks
1 1 i Ĝ@F̂ks

1 #

1(
s8

~ T̂s8
1 r~0!âks

1 âks8P2âsk
1 Pâks8r

~0!T̂s8
1

1âk8s8
1 âks

1 T̂s8
2 r~0!2âks

1 Pâks8
1 r~0!T̂s8

2
!, ~28!

i F̂
˙

ks
2 5@Ĥ01Ĥmag1V̂L ,F̂ks

2 #1vkF̂ks
2 1 i Ĝ@F̂ks

2 #

1(
s8

~ âksâks8
1 PT̂s8

2 r~0!2âksPâks8
1 r~0!T̂s8

2

1âk8s8âksPT̂s8
1 r~0!2âksPâk8s8r

~0!T̂s8
1

!, ~29!

where

T̂s
65(

jj8
gjj8
ks R̂j8j

7 ,

r (0) is the stationary solution of the system~22!–~24!. The
last two terms in Eqs.~28! and ~29! describe the interaction
of the pump wave with two quantum modes which a
frequency-detuned from it:

vk1vk852vL ~30a!

under the condition

ks1ks8
8 'kLs1kLs8. ~30b!

2.2.1. Scattering in the transition a ˜b

To describe scattering in the transitiona→b, we shall
study the projection of the operatorsF̂1 and F̂2 on the
statesa andb. We employ the rotating-wave approximatio
and separate the rapidly oscillating components:

Faa
6 ~MM 8!5F̃aa

6 ~MM 8!exp~6 ivLt !,

Fbb
6 ~MM 8!5F̃bb

6 ~MM 8!exp~6 ivLt !,

Fab
1 ~MM 8!5F̃ab

1 ~MM 8!exp~2ivLt !,

Fba
2 ~MM 8!5F̃ba

2 ~MM 8!exp~22ivLt !,

Fba
1 ~MM 8!}1, Fb

2~MM 8!}1.

We now introduce the column matricesFks
1 andFks

2 for the
slow components of the atomic parts of the correspond
operators. Let the order of the components in these colu
matrices be the same as that of the components of the at
density matrix in the column matrixr in Eq. ~25!. Then the
equations forF̂1 andF̂2 can be represented in the form

i Ḟks
6 5~L7nkI !Fks

6 1Sks
6 , ~31!

wherenk5vk2vL , I is a unit matrix, andL is the matrix in
Eq. ~25!. Taking account of the structure of Eqs.~28! and
~29!, we represent the column matrixS as a sum

S5 ~1!S1 ~4!S. ~32!

244A. A. Panteleev



Here (1)S corresponds to isotropic photon absorption and
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emission processes andS corresponds to four-wave pro
cesses under the condition~30!. The explicit expressions
for the components of the column matrices (Sks

1 ) jM ,mM8
5S jm

1 (ksuMM 8) ~where j , m5a,b) are

~1!S jm
1 ~ksuMM 8!5 (

M9s8
@ âks

1 âks8Pgba
ks8~MM 9!

3ram
~0!~M 9M !d jb

2âks
1 Pâks8gba

ks8~M 9M 8!

3r jb
~0!~MM 9!dma#, ~33!

~4!S jm
1 ~ksuMM 8!5 (

k8s8M9
@ âk8s8

1 âks
1 Pgab

k8s8~MM 9!

3rbm
~0!~M 9M 8!d ja

2âks
1 Pâk8s8

1 gab
k8s8~M 9M 8!

3r ja
~0!~MM 9!dmb#. ~34!

We find the stationary solution for the components of
operatorsFks

6 :

Fks
1 52~L7nkI !

21Sks
1 . ~35!

We now substitute (Fks)bM,aM85Fba(ksuMM 8) into Eq.
~27! and transform the equation for the photon field opera
P into the form

Ṗ5 (
ss8,kk8

@Ass8
~k!

~ âks
1 Pâks82Pâks8âks

1 !2Bss8
~k!

3~ âks
1 âks8P2âksPâks

1 !1Css8
~k!

~ âks
1 âk8s8

1 P

2âk8s8
1 Pâks

1 !2Dss8
~k!

~ âks
1 Pâk8s8

1
2Pâk8s8

1 âks
1 !

1~k↔k8!1H.c.#, ~36!

where the coefficientsA, B, C, andD are determined by the
expression

(
MM8 j

igab
ks~M 8M !Fba

1~ j !~ksk8s8uMM 8!

5~Ass8
~k! âks

1 Pâks82Bss8
1 âks

1 âks8P1Css8
~k! âks

1 âk8s8
1 P

2Dss8
~k! âks

1 Pâk8s8
1

!. ~37!

HereFba
1 (ksk8s8uMM 8) is found by solving Eq.~35! with-

out summing over the indexs8 in Eqs.~33! and~34!. Using
Eq. ~36! for photons, we obtain the following equations
motion:

d

dt
^aks8

1 aks&52(
s9

~ass9
~k! ^aks8

1 aks9&

1~as8s9
~k!

!* ^aks9
1 aks&!2 (

k,k8,s9
~bss9

~k!

3^aks8
1 ak8s9

1 &1~bs8s9
~k!

!* ^ak8s9aks&!

1~Ass8
~k!

!*1As8s
~k! , ~38!
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dt k8s8 ks (
s9

ss9 k8s8 ks9 s8s9

3^ak8s9aks&!2(
s9

~bss9
~k! ^aks9

1 ak8s8&

1bs8s9
~k8! ^ak8s9

1 aks&!1Cs8s
~k!

1Css8
~k8! ,

~39!

^ak8s8
1 aks

1 &5^ak8s8aks!1, ~40!

where ^aks8
1 aks&5^Pâks8

1 âks&, ^ak8s8aks&5^Pâk8s8âks&,

^ak8s8
1 aks

1 &5^Pâk8s8
1 âks

1 &, ass8
(k)

5Ass8
(k)

2Bss8
(k) , and

bss8
(k)

5Css8
(k)

2Dss8
(k) .

The correlation functionŝaks8
1 aks& correspond to the

well-known Fano polarization matrix. The correlation fun
tions ^ak8s8aks& and ^ak8s8

1 aks
1 & describe forward-directed

four-wave mixing processes under the condition~30!, the
coefficientsass8 describe the absorption and dispersion
the radiation, and the coefficientsbss8 describe four-wave
coupling of the modes. A detailed interpretation of these c
relation functions and coefficients is given in Ref. 16. T
free terms in Eqs.~38! and~39! describe spontaneous sourc
for the corresponding correlation functions. Fors5s8 in
Eq. ~38! the quantityAss (Ass85Ass81As8s

* ) character-
izes the resonance fluorescence spectrum ofs-polarized pho-
tons.

The intensity of the electromagnetic field of the quantu
modes can be described byEks5^âksP&Ev , whereEv is
the intensity of the field of a single photon. Using Eq.~36!,
we obtain the system of equations

d

dt
Eks52(

s8
ass8

~k! Eks82 (
s8k8

bss8
~k! Ek8s8

* . ~41!

This system is identical to the equations for classical t
fields interacting with the transitiona→b in the presence of
a pump waveEL . The coefficientsa andb are identical to
the polarizabilities calculated from the standard equations
the density matrix in first-order perturbation theory inEs and
arbitrary order inEL . In the general case the system~38!–
~40! contains 36 equations. If the terms corresponding
forward-directed four-wave interaction, which are importa
only for describing forward scattering, are discarded, the s
tem reduces to 9 equations. Then the system consistin
Eqs.~41! and ~38!–~40! have the form

d

dt
«52K«. ~42!

where

«5S E1

E0

E2

D , K5S a11 a10 a12

a01 a00 a02

a21 a20 a22

D
d

dt
F52K•F2F•K11A, ~43!

where
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in
A5S A01 A00 A02

A21 A20 A22

D ,
F5S ^a1

1a1& ^a1
1a0& ^a1

1a2&

^a0
1a1& ^a0

1a0& ^a0
1a2&

^a2
1a1& ^a2

1a0& ^a2
1a2&

D .
To simplify the equations we drop the 1 in the indices61.
For the quantitiesAss8 andass8 we drop the upper index
k, since the forward-directed four-wave mixing processes
neglected and the equations of motion include only a m
with the wave vectork.

2.2.2. Scattering on adjacent transitions

To describe absorption and emission processes in
transitionsp→b and s→a, we apply the projection opera
tors corresponding to these transitions to Eq.~28!. Then

i Ḟpb
1 ~ksuMM 8!5@Dpb1~gpM2gbM 8!V

2 iGpb~MM 8!#Fpb
1 ~ksuMM 8!

1(
M

F̃pa
1 ~ksuMM 8!Ṽab~M1M 8!

1 (
s8M1

gpb~ks8uMM1!âks
1 âks8P

2gpb~ksuMM 8!rpp
~0!~MM !âsk

1 Pâsk ,

~44!

i Ḟpa
1 ~ksuMM1!5@Dpb1DL1~gpM2gaM1!V

2 iGpa~MM1!#Fpa
1 ~ksuMM1!

1(
M2

Fpb
1 ~ksuMM2!Vba~M2M1!

1 (
s8M2

gpb~ks8uMM2!r̃ ba
~0!

3~M2M1!âks
1 âks8P, ~45!

whereDpb5vpb2vk and F̃pa
1 5Fpa

1 exp(ivLt). The compo-

nents of the density matrixr̃ ba
(0) and rbb

(0) are the stationary
solution of the system~22!–~24! and rpp

(0)(MM ) is deter-
mined by the expression~21!. The equations for the trans
tion s→a are similar with the substitutionsp→s, b↔a, and
DL→2DL .

For the transitionb→ l Eq. ~28! assumes the form

i Ḟbl
1~ksuMM 8!5@Dbl1V~gbM2glM 8!

1 iGbl~MM 8!#Fbl
1~ksuMM 8!

1(
M1

Ṽba~MM1!F̃al
1~ksuM1M 8!

1gbl~ksuMM 8!âks
1 âksPr l l

~0!~M 8M 8!

~46!
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M1s8
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i Ḟal
1~ksuM1M 8!5@Dbl2DL1V~gaM12glM 8!

2 iGal~MM 8!#F̃al

1(
M2

Ṽab~M1M2!Fbl
1~ksuM2M 8!

2 (
M2s8

r̃ ab
~0!~M1M2!gbl~ks8uM2M 8!

3âks
1 Pâks8, ~47!

whereFal
15F̃al

1exp(2ivLt). The equations for the transitio
a→m are similar to Eqs.~44! and~45! with the substitutions
b↔a, l→m, andDL→2DL .

Substituting the stationary solutions of Eqs.~44!, ~45!,
~46!, and ~47! in Eq. ~27!, we obtain an equation for the
photon field operatorP that is similar to Eq.~36! but without
the terms corresponding to forward-directed four-wave int
action processes (C5D50). Equations~42! and ~43! de-
scribe the dynamics of the photon field. For the transitio
p→b ands→a Ass85Assdss8, i.e., ordinary spontaneou
emission with no correlation between photons with differe
polarizations occurs. This means that there are no inter
ence effects, but here interference effects occur in connec
with absorption in these transitions:Bss8 Þ 0 for s Þ s8.
This is due to the presence of coherence induced betwee
magnetic sublevels of the statesa andb by the pump wave.
Conversely, interference effects are absent in the photon
sorption processes for the transitionsb→ l and a→m,
Bss85Bssdss8, since there is no coherence between
sublevels of the statesl and m. Interference effects are
present in the spontaneous Raman spectrum~in the presence
of different polarizations in the pump wave!:Ass8 Þ 0 for
sÞs8.

2.3. Application of the kq representation

It is evident from Eqs.~22! and ~23! that terms describ-
ing relaxation processes are strongly nondiagonal. Thi
also true of Eq.~31! for the quantitiesFks

6 . This drawback
disappears when the polarization operator orkq representa-
tion is used.30 This representation has wide application
problems of spectroscopy, atomic collisions, and others.31,32

In this representation the system of equations~22!–~24!
assumes the form

i ṙaa~kq!5@qVa2 iGa~k!#rbb~kq!1 iAba~k!rbb~kq!

1 iQa~k!2 (
k1q1s

Uaa
bs~kquk1q1!@

~21!k12kṼab~s!r̃ba~k1q1!

1 r̃ab~k1q1!Ṽba~s!#, ~48!

i ṙbb~kq!5@qVb2 iGb~k!#rbb~kq!1 iQb~k!
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2 Uas~kquk q !@~21!k12kṼ
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The components of the column matrixSks
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To
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ate

ef-
(
k1q1s

ba 1 1 ba

3~s!r̃ab~k1q1!1 r̃ba~k1q1!Ṽab~s!#, ~49!

i ṙ̃ba~k1q1!5@DL1q1~Vb1Va!/22 iGba~k1!#r̃ba~k1q1!

2 (
k2q2s

Ṽba~s!@~21!k22k1Uba
as

3~k1q1uk2q2!raa~k2q2!

1Uab
as~k1q1uk2q2!rbb~k2q2!#

1
Vb2Va

2 Fq1 Ja~Ja11!2Jb~Jb11!

k1~k111!
r̃ba

3~k1q1!1 f ~k1 ,q1!r̃ba~k121,q1!

1 f ~k111,q1!r̃ba~k111,q1!G , ~50!

r̃ba~k,2q!5~21!Ja2Jb1qr̃be* ~k,q!, ~51!

where

Uab
gs~kquk1q1!5~21!Jb1Ja1k12q1

3A~2k111!~2k211!Ckqk12q1
12s

3H k 1 k1

Jg Ja Jb
J , ~52!

f ~k1 ,q1!5
1

k1
H @~Ja1Jb11!22k1

2#@k1
22~Ja

2Jb!
2#

k1
22q1

2

4k1
221 J 1/2, ~53!

Aba~k!5~21!Ja1Jb1k11~2Jb11!H Jb Ja k

Ja Ja 1JAba .

~54!

HereV j5gjV andAba54vba
3 idbai2/3\c3(2Jb11).

The relaxation constantsGn(k) and Gba(k) are deter-
mined in the standard manner.31,32We assume that the co
lisions are isotropic, and therefore the quantitiesG andQ do
not depend onq. A great advantage of the system of equ
tions~48!–~51!, in contrast to Eqs.~22!–~24!, is that they are
diagonal with respect to the relaxation constants. Howe
as one can see from Eq.~50!, this system becomes mor
complicated because of the coupling of the component
different rank with respect tok. This direct coupling van-
ishes when the Lande´ factors of the levelsa andb are equal
(Va5Vb) or for the transitionJa51→Jb50 and, naturally,
in the absence of a magnetic field.

Writing the system~48!–~51! as

i ṙ5J•r1Q, ~55!

we represent the system of equations, similar to Eq.~31!, for
the auxiliary operatorFks

6 (kq) in the form

i Ḟks
6 5~J7nkI !Fks

6 1Sks
1 . ~56!
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by the expression

( jm
1 ~ksukq!5 (

k1q1s8;d5a,b;k9

3$~21!k12kUmj
ds8~kquk1q1!~12dmd!

3@ âks
1 âks8Pgba~s!ram

~0!~k1q1!d jb

1âs8k8
1 âsk

1 Pgab~s!rbm
~0!~k1q1!d ja#

1Ujm
ds8~kquk1q1!r jd

~0!~k1q1!

3@ âsk
1 Pâs8kgba~s8!ddbdma

1gab~s8!âsk
1 Pâs8k8

1 ddadmb#%. ~57!

The equation for the operator of the density of the pho
field resonant with the transitiona→b has the form, taking
account of thekq representation of the operatorsF6,

d

dt
P52 i (

ks,q
@Fba

1 ~ksu1q!gba* ~s!

1Fab
2 ~ksu1q!gab* ~s!2H.c.#, ~58!

where the values of the components of the opera
F6(ksu1q) are found from Eq.~56!. The equation ulti-
mately obtained for the operatorP is completely identical to
Eq. ~36! derived from theM representation.

The application of thekq representation for describin
scattering in transitions adjacent to the transitiona→b re-
duces to applying this representation to Eqs.~44!–~47!.

3. PROPERTIES OF THE SCATTERED RADIATION:
ANGULAR AND POLARIZATION CHARACTERISTICS

In our system the intensity of the radiation scattered
large angles is determined by the correlation functio
^aks

1 aks8& whose dynamics is described by the system~43!.
In the chosen coordinate system, it was assumed that
have the same polarization vectors as the pump wave.
interpret the experimental observations and describe theo
cally the propagation of radiation in an extended mediu
the modification of these quantities in a rotated coordin
system is of interest. The coupling between the correlat
functions ^al

1al8& and ^as
1as8&, where âl

1 and âl are the
photon creation and annihilation operators in the coordin
system rotated by the Euler anglesa, b, and g, is deter-
mined by the expression~for simplicity, we drop the super-
script!

^al
1al8&5(

ss8
«ll8

ss8^as
1as8&,

«ll8
ss8~a,b,g!5~Dsl

1 !*Ds8l8
1 , ~59!

whereDsl
1 (a, b, g) are the Wigner functions.30 The equa-

tions for the correlation functionŝal
1al8& are similar to the

system~43! with the corresponding replacement of the co
ficientsA andB; for example,

247A. A. Panteleev



te

nc

ns

o

e

correlation functionŝaw
1aw& and ^au
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ing

s

col-

ef.
sti-

of
ible
er-
All85(
ss8

«ll8
ss8
Ass8 . ~60!

The quantityAss8 can be regarded as a spectral charac
istic. We note that using the relation30

DM1N1

J1 ~a,b,g!DM2N2

J2 ~a,b,g!

5 (
J5uJ12J2u

J21J1

(
M ,N

CJ1M1

JM DMN
J ~a,b,g!CJ1N1J2N2

JN ,

we obtain the well-known polarization–angular depende
of the spontaneous radiation33

All85 (
ss8

L50,1,2

~21!l81s8~2L11!S 1 1 L

s8 2s x
D

3S 1 1 L

l8 2l 2m DDxm
L
Ass8 ~61!

where according to the properties of the 3jm symbols we
havem5l82l andx5s82s.

Neglecting dispersion, we introduce the tensor of inte
scattered radiation:

Jll85cE ^akl
1 akl8&\vd~v2vk!

dk dv

~2p!4
. ~62!

Scattering in the direction of the unit vectore is determined
by the expression

Jll8~e!5E \vk
3dvk

4p2c2
^akl

1 akl8&d~O2Oe!dO, ~63!

whereO is the solid angle. For the spectral intensity tens
we have

Jll8~vk ,l!5
\vk

3

4p2c2
^al

1al8&5Qv^al
1al8&. ~64!

We now consider the case of a spherical geometry~see
Fig. 2!, which is important for practical applications, and w
introduce for photons with polarization vectorsew andeu the

FIG. 2. Spherical coordinate system.
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are the corresponding photon annihilation operators. Us
the expression~59!, we obtain

^au
1au&5

1

2 (
ss8

~Ds21
1 2Ds1

1 !* ~Ds821
1

2Ds81
1

!

3^as
1as8&, ~65!

^aw
1aw&5

1

2 (
ss8

~Ds21
1 1Ds1

1 !* ~Ds821
1

1Ds81
1

!

3^as
1as8&. ~66!

HereDs61
1 5Ds61

1 (w,u, 0). Using the explicit form of the
D function,30 we write the expression~66! in the compact
form

^aw
1aw&5

1

2
@^a1

1a1&1^a2
1a2&1cos~2w!~^a1

1a2&

1^a2
1a1&!1 i sin~2w!~^a2

1a1&2^a1
1a2&!#.

~67!

In the case of scattering along ther axis ~see Fig. 2!
Stokes parameters can be introduced as follows:

h15~Ju~45,0!2Jw~45,0!!/Jt , ~68a!

h25~J112J22!/Jt , ~68b!

h35~Ju~0,0!2Jw~0,0!!/Jt , ~68c!

whereJu(w)(w, u) is the intensity, which is defined similarly
to the expression~64!, of photons linearly polarized along
the vectoreu (ew) and Jt is the total intensity. Using the
expressions~64! and ~67!, we obtain

h15
i ~^a2

1a1&2^a1
1a2&!

^a1
1a1&1^a2

1a2&
, ~69a!

h25
^a1

1a1&2^a2
1a2&

^a1
1a1&1^a2

1a2&
. ~69b!

h352
^a1

1a2&1^a2
1a1&

^a1
1a1&1^a2

1a2&
. ~69c!

For observation along thez axis the number of equation
reduces to four, and in this case the system~43! is deter-
mined for the quantity

F5S ^a1
1a1& ^a1

1a2&

^a2
1a1& ^a2

1a2&
D . ~70!

Here one can see that if the scattered radiation is
lected in a cavity, then the system of equations~43! is math-
ematically completely equivalent to the equations from R
20, where the production of squeezed states was inve
gated. In our system the correlation functions^a1

1a2& and
^a2

1a1& are the analogs of the correlation functions^a1a3&
and ^a1

1a3
1& from Refs. 18–20. The question arises

whether or not the production of squeezed states is poss
in the present case. A numerical analysis which we p
formed of this system for the transitionsJa50→Jb51 and
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tities ~detuning from resonance, pump wave intensity, m
netic field intensity, cavityQ) did not reveal such a poss
bility. Apparently, the impossibility of the appearance
squeezed states is due not simply to the behavior of the s
tral characteristics in the equations of motion, which is d
termined by the properties of the transitions in question. T
is connected with the properties of the photon states, as
lows. The biphoton stateb̂5mâ11vâ3

1 , which was investi-
gated in Refs. 20 and 21, presumes that the commuta
relation @ b̂, b̂1]51 holds, whence follows a condition o
the coefficientsm andv: umu22uvu251. This means that the
solutionâ1 } coshx andâ3 } sinhx (x is a dynamical vari-
able!, which is well-known34 to lead to the production of a
squeezed state, is possible for the operatorsâ1 and â3

1 . In
our case, the commutation relation for the biphoton st
b̂5vâ11mâ2 implies the conditionumu21uvu251 and a
possible solution of the formâ1 } cosx andâ2 } sinx for the
operatorsâ1 andâ2 . A solution of this type does not lead t
the production of squeezed states.

4. PROPERTIES OF THE SCATTERED RADIATION:
RESONANCE FLUORESCENCE

The study of the properties of resonance fluorescenc
of great practical value in laser spectroscopy and its appl
tions. When laser radiation interacts with an optically th
medium, i.e., when absorption is weak, one of the main ch
acteristics is resonance fluorescence. In this case it foll
from Eqs. ~43! that the correlation functionŝas8

1 as& are
determined by the quantitiesAs8s which describe the reso
nance fluorescence spectra. The quantitiesAs8s with s8
Þ s characterize the interference effects in the emission
photons with different polarization as a result of the coh
ence between magnetic sublevels.

Let us consider the properties of resonance fluoresce
for the transitiona→b. In sufficiently strong fields the spec
trum possesses a multiplet structure and can be approxim
by a set of Lorentzians:

Ass}(
j51

NL
2 S f j

~s!

n1V j
R1 iG j

1c.c.D , ~71!

whereV j
R1 iG j are the eigenvalues of a matrix whose d

mension is determined by the quanti
dim L54(I a1I b11)25NL

2 and f j
(s) is a constant determin

ing the contribution of this term. The number of peaks
determined by the quantityZL5NL

2 2NL11. This result can
be interpreted from the standpoint of the states of a dres
atom: In a strong field this transition splits intoNL quasien-
ergy levels at the top and bottom~see Fig. 3!. Transitions
between them determine the resonance fluorescence
trum. In some cases, for example, at exact resonance o
pump wave with the transition frequency (DL50) or in the
presence of a magnetic field, the quasienergy spectrum
comes equidistant and the number of peaks decreases (ZL is
the maximum number of peaks!. In the general case, fo
arbitrary pump wave intensity, detuning of the pump wa
from resonance, and magnetic field strngth, it follows fro

249 JETP 84 (2), February 1997
-

c-
-
is
l-

on

te

is
a-

r-
s

f
-

ce

ted

ed

ec-
he

e-

e

the expression~37! thatAs8s(n) is determined by the ratio
of two polynomials inn: the dimensionNL

2 in the denomi-
nator andNL

2 21 in the numerator~we recall thatAs8s is
determined by the sumAs8s1As8s

* ). Using the expressions
~33! and~35!, we find from Eq.~37! that the total resonance
fluorescence signal, i.e., the signal integrated over the sp
trum, is determined by the expression

Ss8s5N (
M ,M8,M9

gab
ks~M 8M !gba

ks8~M 9M 8!rbb
~0!~MM 9!.

~72!

We note that theM representation was employed here
Of course, the results do not depend on the type of repres
tation. We note that the dimension of the matrixJ equals the
dimension ofL. An expression forSs8s in thekq represen-
tation is obtained by the corresponding transformation~72!.
To describe the Hanle effect,35 characterizing the depolariza-
tion of the scattered radiation in a magnetic field, in th
optically thin medium we employ the expressions~64! and
~67!. Then

Sw5
1

2
@S111S221cos~2w!~S121S21!

1 i sin~2w!~S212S12!#, ~73!

whereSw is the Hanle signal of radiation linearly polarized
along the vectorew . The expressions~73! and ~72! general-
ize the results of Ref. 36.

We now consider the case when the lower level is th
ground state. This case is important for practical applica
tions. The spectrum can be represented in the form

As8s5As8s
el

1As8s
inel , ~74!

whereAs8s
el

5 limn→0nAs8s(n) describes scattering with
no change in the photon frequency,As8s

el } d(n) is the Ray-

FIG. 3. Scheme of quasienergy states of a resonant transition in the field
an intense electromagnetic wave.
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leigh scattering, andAinel is the inelastic scattering, i.e
scattering with a change in the photon frequency.

In theM representationAs8s
el is determined by the ex

pression

As8s
el

~n!52pN (
MM8M1M2

gab
ks~MM 8!gba

ks8~M1M2!r̃ ab
~0!

3~M2M1!r̃ ba
~0!~M 8M !d~n!. ~75!

We note that the contribution of the elastic componen
very small in the presence of strongly depolarizing co
sions. In a purely radiative relaxation regime its contributi
is determined by the parameters

Ṽab~MM 8!/uDL1~gbM2gaM 8!V1 iAba/2u.

If at least one of these parameters is large, then the inela
component will be determining, but if not all are small, th
the elastic component will dominate.

For spontaneous radiation on transitions which are a
cent toa→b, the maximum number of peaks in the spectru
is (2Jn11)NL , n5 l , m, s, andp. The radiation is incoher-
ent, even if one of the levels is the ground state. In Sec.
it was noted from Eqs.~44! and ~45! that the interference
termsAs8s5ds8sAss will be absent in the emission spe
trum for the transitionsp→b ands→a.

5. INTERACTION AND SCATTERING OF A
MONOCHROMATIC ELECTROMAGNETIC WAVE IN THE
TRANSITION Ja51˜J b50

Three basic types of transitions between atomic sub
els can be distinguished in the description of the interac
between an electromagnetic wave, possessing arbitrary
larization composition, and a resonance transition. They
shown schematically in Fig. 4. The simplest type is shown
Fig. 4a: transitions between two-level subsystems. Sche
referring to theL andV types of interaction of radiation with
sublevels are displayed in Figs. 4b and 4c. Their comb
tions make it possible to describe all possible transitions

Recently, a description was developed in Refs. 12
37 and the resonance fluorescence spectra of a degen
two-level system~with arbitrary Ja and Jb neglecting the
effect of a magnetic field, i.e.,H50) in the field of a mono-
chromatic, linearly polarized, electromagnetic wave of ar

FIG. 4. Transition scheme in the case of excitation of the atoms by line
polarized light~a!, of theV type~b!, and of theL type~c! with excitation by
left- and right-circularly polarized radiation. The dashed lines repres
spontaneous emission.
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no interference effects:As8s50 (s8 Þ s) in our descrip-
tion.

The simplest system describingV-type transitions is the
interaction of an electromagnetic wave with the transiti
Ja50→Jb51 ~Fig. 4b!. The resonance fluorescence spe
trum and the interference phenomena for this system, as
as the effect of degenerate processes on their properties,
recently investigated in Refs. 15 and 16. The Faraday
optical alignment effects have been well studied for t
transition.14,38

Both the interaction and scattering spectra of inten
electromagnetic waves in the transitionJa51→Jb50 ~see
Fig. 4c! have been investigated in much less detail. T
transition is the simplest system describingL-type transi-
tions. The investigation of this transition is of interest
itself and it is important for understanding the interaction
an electromagnetic wave with atomic transitions which ha
a complicated structure.

5.1. Nonlinear Faraday effect for the transition J a51˜J b50

In the Faraday geometry the rotation angle of the po
ization plane of a monochromatic electromagnetic wa
which has passed through an optically thin gaseous med
is determined by the expression

w5~n12n2!vLl /2c, ~76!

where l is the length of the medium andns is the index of
refraction, which for a medium with the working transitio
Ja51→Jb50 equals ns5112pN Re(dsbrbs /ELs),
whereN is the density of atoms. In the present section
adopt the notationrbb

(0)(00)5rbb , r̃ ba
(0)(0s)5rbs and raa

(0)

3(ss8)5rss8. We find the value ofrbs from the stationary
solution of Eqs.~22!–~24! for the given transition. Figure 5
displaysw as a function of the detuning of the electroma
netic wave from resonance for different values of the para
etersVs5Ṽba(0s). Here and below we assume in the ca
culations that Ga(ss)5g, Ga(ss8)56g (s Þ s8),
Gb53g, Gba59g, andAba!g . One can see from Fig. 5
that the dependence ofw on the detuning changes substa
tially as the intensity increases. This modification of the li
shapew(DL) is qualitatively identical to the results for thi
dependence in a medium with the working transiti
Ja50→Jb51.14 Therefore similar results should be e
pected for transitions with a more complicated structure
the atomic sublevels. We note that this agrees with the
perimental results of Ref. 39.

Assuming that at the entrance into the medium the e
tromagnetic wave was linearly polarized along they axis, it
should be expected that the appearance of an orthog
component, due to the rotation of the polarization plane b
small anglew, will be described by the expression

I x}I Lw
2. ~77!

whereI L is the intensity of the radiation at the entrance in
the medium andI x5uE12E2u2. This expression is correc
only far from resonance, where radiation absorption can
neglected. Near resonance, the appearance of an orthog
component will be due to both the different magnitude of t

ly

t
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dispersion for left- and right-hand circularly polarized wav
and the difference of the absorption of these waves. F
Maxwell’s equations it follows that for the slowly varyin
amplitude

]I x
]z

5Px* ~E12E2!1c.c., ~78!

wherePx } i (db1r1b2db2r2b). In the optically thin case
E12E2 } Px . Then

I x}udb1r1b2db2r2bu2. ~79!

The expressions~77! and ~79! are identical only at exac
resonance. The difference in the dependencesI x(DL) and
I x(V) calculated according to Eqs.~77! and ~79! is demon-
strated in Figs. 6 and 7. The expressions~77! and ~79! are
almost identical in a strong pump-wave fieldV6.DL or in a
strong magnetic fieldV@DL . They differ most in the region
of the parametersV;DL andV6!DL ~see Figs. 6 and 7!.

We point out that for intense radiation characteristic fe
tures can be observed in the transverse distributionI x . Let
the radiation intensity at the entrance have a Gaussian d
bution:

UL5exp@2~r' /r 0!
2#, ~80!

FIG. 5. Angular rotation of the polarization plane of the radiation versus
detuning of the radiation from resonance withV/g520,V6 /g50.1 ~curve
1!, 20 ~curve2!, and 50~curve3!. The curve is normalized to 1.

FIG. 6. I x(V) calculated according to Eqs.~77! ~curve1! and~78! ~curve2!
with V6 /g51 andDL /g520.
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wherer' is the transverse coordinate andr 0 is the size of the
beam. The functionI x(r'), calculated from the expressio
~79! allowing for the dependence~80!, is displayed in Fig. 8.
The distribution I x(r') is reminiscent of the well-known
conical radiation,40–42 but it is of a completely different na
ture. This distribution is determined by two main factors: t
decrease in the rotation angle of the polarization plane a
result of saturation and the transverse distribution of the
tering radiation. The result obtained explains qualitative
the experimental results of Ref. 43, where the Faraday ef
for the transitionJa51→Jb50 in neon atoms was investi
gated. A quantitative analysis should take account of
thermal motion of the atoms, which we neglect in the pres
work and which is important for the conditions of the expe
ment in Ref. 43.

5.2. Spontaneous emission spectra for the transition
J a51˜J b50

Using the formalism developed in Sec. 2 above for t
transitionJa51→Jb50, we shall investigate its spontane
ous emission spectra in the field of a strong electromagn
wave. The scattering spectra of atoms in the Voigt geome
(kL'H) with the same parameters of the atomic subsys

eFIG. 7. I x(DL) calculated according to Eqs.~77! ~curve1! and ~79! ~curve
2! with V6 /g51 andV /g520.

FIG. 8. Transverse distributionI x with a Gaussian pump wave over th
cross section of the beam forDL50 and V/g520 and the parameters
V6 /g51 ~curve1!, 10 ~curve2!, 20 ~curve3!, and 50~curve4!.

251A. A. Panteleev



e
FIG. 9. Resonance fluorescenc
spectra with different polarization for
the parameters V6 /g550,
DL/g580, V0 /g570, and V/g
560.
as in the preceding section are displayed in Fig. 9. Explicit
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expressions for the scattering spectra are given in Ref.
One can see from Fig. 9 that in accordance with the result
Sec. 4, up to 13 peaks can be observed in the scatte
spectrum. An important distinction of the transition und
study from the transitionJa50→Jb51 is that the scattered
radiation containsp ands6 components, irrespective of th
polarization composition of the exciting radiation. The qua
tity Ax describes the spectra of fluorescence which is
early polarized along thex axis and scattered along they
axis. Figure 10a displays the spectrumAx for the pump
wave, whose linear polarization vectoreL is orthogonal to
the direction of the magnetic field,eLiey . It follows from
Eqs.~60! and ~67! thatAx is determined by the expressio

Ax5A111A221A121A21 . ~81!

The complete scattering signalSx is determined by the popu
lation of the upper level:

Sx5E Ax

dn

2p
}rbb . ~82!

This is associated with the structure of the transit
Ja51→Jb50, for which it follows from~72! that

Ss8s}ds8srbb . ~83!

Comparing the results obtained~for eLiey , i.e.,V050) with
the results of Refs. 15 and 36, where for the same geom
the scattering of a monochromatic wave on the transit
Ja50→Jb51 was investigated, we shall indicate the mo
important differences. First, there is nop component~there
is no collisional mixing of the magnetic sublevels! in the
scattered radiation for the transitionJa50→Jb51. Second,
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of the corresponding quantitiesAs8s andSs8s (s Þ s8) dif-
fer substantially. The spectral dependence ofA6 is pre-
sented in Fig. 10b, c; one can see from these plots tha
changes sign. Moreover, it follows from the expression~83!
thatSs8s50 for s Þ s8. This means that the Hanle effec
~change in the polarization characteristics of the scatte
radiation under the influence of a magnetic field! for the
transition Ja50→Jb51, in contrast to the transition
Ja51→Jb50, is manifested primarily as a change in th
emission spectra. Figure 11 displaysSx as a function of the
magnetic field intensity. Comparing it with the analogo
dependenceSx for the transitionJa50→Jb51,36 we can see
that there is no interference dip atV50. The effect of a
magnetic field reduces to the effect of the magnetic field
the population: The maximum ofSx is reached at
V56DL , and forV@DL , Vs , Gba the population of the
upper level~and thereforeSx) decreases as a result of a
increase in the detuning of the radiation from resonance

In the case when a transition is excited by a wave wit
single polarization typeVs (Vs850, s8Þs), the fluores-
cence spectrumAss corresponding to this transition will be
described by the well-known expressions for a nondege
ate open two-level system.17 In sufficiently strong fields it
has the form of a triplet. The spectra of the other two co
ponents ofAs8s8 will have the form of doublets and will be
described by the expressions

As8s8~n!} i
rbb~n1D̃s8s!1Vs* rbs

~n2D̃s8!~n1D̃s8s!2uVsu2
1c.c., ~84!

where
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D̃s5DL2Vs1 iGba , D̃s8s5V~s82s!2 iGa~s8s!,

Vs* rbs52~Gbrbb2Qb!D̃s/2Gba . ~85!

ForQb50

rbb5
2GbauVsu2Qs

uD̃su2GbGa12GbauVsu2~Gb1Ga2Aba/3!
. ~86!

Using Eq.~85! with Qb50, Eq.~84! can be put into the form

As8s8~n!}ImS rbb
n1D̃s8s2D̃sGb/2Gba

~n2D̃s8!~n1D̃s8s!2uVsu2D .

~87!

FIG. 10. Spectral dependence ofAx ~a! and the real~b! and imaginary~c!
parts of the quantityA12 with the parametersV6 /g520,DL5V050, and
V/g510.
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Let us consider the limit when the lower level is the grou
state and the relaxation regime is radiative:Gb52Gba5Aba

andGa(s8s)50. This system is open. Therefore, in ord
for a stationary solution to exist formally, we assume t
presence of a pump at the lower level of the working tran
tion. Then

As8s~n!}
rbb
2

uVsu2Aba

u~n1Ds8s!~n1D̃s8!2uVsu2u2
. ~88!

whereDs8s5V(s82s). As expected, the total intensity o
thes8 component satisfies

E As8s8dn}rbb

and therefore is linear in the intensityI Ls of the pump wave
~see Eq.~86!!. In weak fieldsVs!Aba the spontaneous emis
sion spectrum of thes8 component consists of a very narro

peak with a width of orderuVsu2/uD̃su. Substituting the ex-
pression ~86! for rbb , we find from Eq. ~88! that
As8s8(n) } O(Vs

4) or proportional toI Ls
2 . The result ob-

tained is similar to the spectral composition of the resona
fluorescence of a two-level atom in the field of a weak el
tromagnetic wave:13 The elastic~or Rayleigh! component is
proportional toI Ls and the inelastic~or mixed! component is
proportional toI Ls

2 . In the case of a degenerate two-lev
atom irradiated by a weak,s-polarized wave, Mollow’s
result13 generalizes as follows:

As8s8}d~n!I Lsds8s1 f s8s8
inel

~n!I Ls
2 , ~89!

wheref s8s8
inel (n) is the form of the linear inelastic compone

~see Eq.~88!!. This analysis was performed for the transitio
Ja51→Jb50. However, the result~89! can be extended to
transitions with arbitrary values of the angular momentu
provided that the lower level is the ground state and
relaxation regime is radiative.

The foregoing investigation of the polarization–Ram
scattering spectra for the transitionJa51→Jb50 pertains to
scattering in the transitionb→ l ~see Fig. 1! for nondegener-
ate states, the case investigated in Ref. 45. The express
~84! and ~89! agree with the results of Ref. 45.

FIG. 11. Dependence of the quantitySx , normalized to unity, on the mag
netic field for DL5V050 and the parametersV6 /g50.1 ~curve 1!, 10
~curve2!, and 50~curve3!.
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6. CONCLUSIONS
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In the present paper a technique was developed for
scribing nondegenerate resonant scattering of a monoc
matic electromagnetic wave with arbitrary polarization co
position. Expressions were obtained for describing
resonance fluorescence spectra, the absorption~amplifica-
tion! coefficients, and the forward-directed four-wave inte
action of the scattered photons. A technique was develo
for calculating the polarization-spectral characteristics of
absorption and emission of radiation in transitions betw
laser-coupled and other states. This result extends the
scription developed in Ref. 45.

It was shown that in the general case the dynamics of
scattered radiation, accompanying the propagation of
electromagnetic wave, is determined by a system of 36 eq
tions. In the description of the scattering of the radiation
large angles, when the forward-directed four-wave mix
processes become inconsequential, this system reduces
equations.

In an optically thin medium the resonance fluoresce
of the atoms determines the characteristics of the scatt
radiation. In the present paper, the polarization, spectral,
angular characteristics of the resonance fluorescence
investigated. It is well known that if the lower level is th
ground state, then the scattering spectrum contains both
Rayleigh~elastic! and mixed~inelastic! components. Explicit
expressions were obtained for the elastic component, w
include interference effects between the fluorescence pho
with different polarization. A possible influence of a consta
magnetic field on the atoms is taken into account in t
work. Expressions were obtained for describing the depo
ization of the radiation~Hanle effect! in a magnetic field
accompanying scattering of an electromagnetic wave w
arbitrary intensity. Expressions that make it possible to
scribe the spectral properties of the Hanle effect and its t
intensity and extend previously obtained results in some
ticular cases15,16,36were obtained.

In the general case the dynamics of a laser-coupled t
sition ~with arbitraryJ) is determined by a set of configura
tions of transitions between two- and three-level system
theV andL types~see Fig. 4!. In this paper the properties o
the transitionJa51→Jb50 were studied in order to inves
tigate the properties of the scattering of radiation
L-type systems. The investigation of the nonlinear Fara
effect for this transition showed that the shape of the line
the rotation angle of the polarization plane of the pump wa
is qualitatively and quantitatively identical with respect
the parameterI L /I sat ~hereI sat is the saturation intensity! to
the results for the transitionJa50→Jb51. This suggests
that the results obtained for these transitions can be exte
to transitions with arbitrary values of the angular moment
~in the dipole approximation!. The resonance fluorescenc
spectra and the properties of the Hanle signal were inve
gated for the transitionJa51→Jb50. We shall indicate the
main difference in the properties of the interference effe
for the transitionsJa51→Jb50 and Ja50→Jb51. This
difference is due to the fact that in the case of the scatte
of waves with different polarization on the transitio
Ja50→Jb51 the atomic system ultimately arrives at o
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rives in different states. In the first case, substantial inter
ence effects are present, and in the second case only spe
nonlinear effects occur. For the complete signal~integral
over the spectrum! these effects are completely absent, sin
according to the laws of quantum mechanics interfere
phenomena are present only for processes with the same
states.

We note that the model investigation of the resonan
fluorescence spectrum of the transitionJa51→Jb50, where
the lower state is the ground state, with a radiative relaxa
regime excited by radiation with fixeds polarization re-
vealed a characteristic feature in the spontane
s-polarized radiation (s8 Þ s). This feature is manifested
for weak fields I Ls!I sat: The spectral emission line be
comes narrower, almost a delta function. The spectral d
sity of the scattereds8 component is proportional toI Ls

2 .
This result is correct for transitions with arbitrary values
the angular momentum.

The description developed in this paper neglects
thermal motion of the atoms, i.e., the results are valid wh
Doppler broadening is much less than the broadenings du
other phenomena. A substantial thermal motion of the ato
not only changes in the absorption~amplification! and emis-
sion spectra of the atoms, but also makes them more an
tropic with respect to the direction of propagation of t
pump wave. A formal kinematic extension to the case of
thermal motion of atoms does not present any difficul
However, to take into account correctly the change in
number of particles with a fixed velocity as a result of col
sions, photoexcitation, and so on,17,32a separate analysis an
a careful investigation are required.

In the present paper it was assumed that the intensit
the pump wave can be arbitrary. The change in the relaxa
constants as a result of the effect of a strong field was
glected~see, for example, Ref. 46!. This phenomenon may
be important in the study of radiation in optically dense m
dia, where induced processes become determining, sinc
this case the absorption~amplification! and four-wave inter-
action spectra can be substantially modified in a defin
range of the parameters.47–49 The change in the relaxatio
constants of an atom in a strong field will have a mu
smaller effect on the resonance fluorescence spectra.47 This
phenomenon could strongly influence interference effe
but this requires a separate investigation.
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25L. V. Keldysh, Zh. Éksp. Teor. Fiz.47, 1515~1964! @Sov. Phys. JETP20,
1018 ~1965!#.

26H. R. Zaidi, Can. J. Phys.59, 737 ~1981!.
27H. Haken inHandbuch der Physik, Springer-Verlag, Berlin, 1970, Vol.
25/2c.

28M. O. Scully and W. E. Lamb Jr., Phys. Rev.159, 208 ~1967!.
29E. V. Baklanov, Zh. E´ksp. Teor. Fiz.65, 2203 ~1973! @Sov. Phys. JETP
38, 1100~1974!#.
255 JETP 84 (2), February 1997
.

31K. Blum, Density Matrix Theory and Applications,Plenum Press, New
York, 1981.

32A. Omont, Prog. Quant. Electron.5, 69 ~1977!.
33E. M. Lifshitz and L. P. Pitaevskiı˘, Quantum Electrodynamics, Pergamon
Press, N. Y.@Russian original, Nauka, Moscow, 1989#.

34D. F. Walls, Nature306, 141 ~1983!.
35Z. Phys. D18~1! ~1991! ~special edition dedicated to W. Hanle on his 90
birthday!.

36P. Avan and C. Cohen-Tannoudji, J. de Phys. Lett.36, L85 ~1975!.
37B. Gao, Phys. Rev. A50, 4139~1994!.
38E. B. Aleksandrov, G. I. Khvostenko, and M. P. Chaı˘ka, Interference of
Degenerate Atomic States@in Russian#, Nauka, Moscow, 1991.
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Highly nonideal classical thermal plasmas: experimental study of ordered macroparticle

eu-
structures
V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samaryan, and A. V. Chernyshev

Scientific Research Center for the Thermophysics of Pulsed Interactions, Russian Academy of Sciences,
127412 Moscow, Russia
~Submitted 25 April 1996!
Zh. Éksp. Teor. Fiz.111, 467–477~February 1997!

The formation of spatially ordered CeO2 particle structures in a thermal plasma at atmospheric
pressure and temperatures of 1700–2200 K is studied. The spatial structure of the particles
in the plasma is analyzed using laser time-of-flight counting of individual particles. Probe and
optical diagnostics are used to determine the parameters of the thermal plasma. The
CeO2 particles were positively charged~about 103 electronic charges!. The resulting Coulomb
interaction parameter for the particles isgp.120, which corresponds to a highly nonideal
plasma. ©1997 American Institute of Physics.@S1063-7761~97!00502-7#
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A thermal plasma with macroscopic particles is a lo
temperature plasma that contains small sized liquid or s
material particles.1,2 The macroparticles interact efficientl
with the charged species in the plasma, and therefore, ha
major effect on its properties. Thus, particles that emit el
trons can raise the electron density of the gaseous phas
well as its electrical conductivity. If, on the other hand, t
particles capture electrons, then the opposite effect occur
the limiting case of an unionized gas, the macropartic
fully determine the electrical properties of the plasma.
fects associated with the presence of particles were obse
in early experiments3,4 on the plasma of hydrocarbon flame

The conditions for the existence of a plasma with m
roparticles can vary considerably. Because of the high m
roscopic charges that the particles can acquire~on the order
of 1022104e), the entire range of plasma states, from a D
bye plasma to a highly nonideal system of charged partic
can be realized in typical thermal plasm
(Tg5170023000 K, ne510921012 cm23!, depending on
the concentration, size, and electron work function of
particles, as well as on the concentrations of electrons
ions.2 Therefore, the interparticle interaction parametergp ,
defined as the ratio of the Coulomb interaction energy of
particles to their energy of thermal motion, can greatly e
ceed unity, which means that the plasma is highly nonid
Theoretical calculations of the equilibrium properties
these plasmas show that under certain conditions, strong
terparticle interaction leads to ordered structure in the lo
tions of the macroscopic particles analogous to structure
liquids or solids.5

A detailed examination of the ordered structures, inclu
ing the conditions for their formation, has been carried
using a single-species plasma model and a Yuka
model.5–7 We note that these models were for a classic
quasineutral, spatially unbounded plasma, for which criti
values of the interparticle interaction parameter correspo
ing to phase transitions were obtained by numeri
simulation.8,9

A single-species plasma consists of an idealized sys
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tralizing particles, so that the system is electrically neut
overall. The interaction potential of the particlesF(r ) is the
Coulomb potential in this case, and the thermodynamics
the plasma is characterized by the parametergp , which has
the form

gp5~Zpe!2/^r &kTg .

HereZp is the charge on a particle,Tg is the plasma tem-
perature,̂ r &5(4pnp /3)

21/3 is the average distance betwee
particles, andnp is the plasma density. It was found that
three-dimensional system forms a regular crystalline str
ture forgp greater thangc5171.8 For smallgp (gp,4), the
plasma is in a ‘‘gaseous’’ state.2,5

In the Yukawa model one examines the effect of shie
ing by the background charges, which leads to a Deby
Hückel type interaction potential.9,10When shielding, whose
effect is determined by the ratiôr &/r D ~r D is the Debye
radius!, is taken into account, the new parameter

Gs5
~Zpe!2 exp~2^r &/r D!

^r &kTg

is introduced. The limiting cases in the Yukawa model a
the single-species plasma~for ^r &/r D→0! and the hard
sphere model~for ^r &/r D→`!.10

One of the first observations of crystalline structures w
in a system of charged, micron-sized, iron and alumin
particles confined by a certain configuration of alternat
and static electric fields.11 Later, Coulomb crystals were ob
served for atomic ions in various types of traps, such as
Penning trap.12 For macroscopic particles with high negativ
charge (;104e), crystalline states have been observed wh
they were introduced into a space-charge boundary layer13 in
which equilibrium was established between gravitational a
electrostatic forces.14–17

In most published experimental work, ordered structu
have been observed in a cloud of space charge contai
hundreds to several thousand charged particles.12 The inter-
action potential of the particles~the form of the potential has
a significant effect on phase transitions in the plasma!, can
then differ considerably from the interaction potential in

256-06$10.00 © 1997 American Institute of Physics
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type, the boundary conditions have been predicted theo
cally to have a major effect on the phase state of
plasma.18 Thus, for example, in a spherical trap, the cloud
particles separates into spherical layers. Instead of s
phase transitions, there is a gradual evolution of the sys
from a liquid state with close ordering to an intermedia
state characterized by the existence of liquid and s
phases, and finally to a solid state.19

Under quasineutrality conditions for large aggregatio
of macroparticles~more than 107 particles in the plasma vol
ume!, ordered structures have been observed in a strea
thermal plasma atTg'1700 K and with electron and mac
roparticle densities on the order of 1010 and 107 cm23,
respectively.20

In this paper we present the results of an experime
study of the formation of macroscopic ordered structures
classical quasineutal thermal plasma at atmospheric pres
and temperatures of 170022200 K. The rather large plasm
dimensions~its volume is;10 cm3, which corresponds to a
particle number on the order of 108 at a particle density of
107 cm23!, its uniformity, and the absence of external ele
tric and magnetic fields made it possible to eliminate
effect of boundary conditions on phase transitions in
plasma.

2. EXPERIMENTAL APPARATUS

2.1. Source of thermal plasma with macroparticles

The test stand includes a plasma generator and the d
nostic means for determining the parameters of the parti
and gas.21 The main part of the plasma source consists o
two-flare Maecker burner with propane and air fed into
inner and outer flares. The diameter of the inner flare is
mm and that of the outer, 50 mm. Particles are introdu
into the inner flare of the burner. This burner design make
possible to create a laminar stream of plasma with unifo
parameter distributions~temperature, electron and ion dens
ties! in the region. During operation, the velocityVg of the
plasma stream was varied over 2–3 m/s and the elec
density in the flame, over 10921011 cm23. The temperatures
of the electrons and ions were equal and were varied ove
rangeTi5Te5Tg5170022200 K. Spectroscopic measur
ments of the temperatureTp of the particles

22 showed that it
was close to the gas temperature (Tp>Tg). The combustion
products were at atmospheric pressure.

In our experiments we studied a thermal plasma w
two types of chemically inert particles, Al2O3 and CeO2.
The particles of powder contain an admixture of alkali me
compounds. Spectral measurements in the plasma strea
vealed the presence of alkali metal atoms~sodium and po-
tassium! with low ionization potentials. Thus, the main com
ponents of the plasma in one case were charged C2
particles, electrons, and singly charged Na1 ions, and, in the
other, charged Al2O3 particles, electrons, and Na1 and K1

ions.
In order to study Coulomb ordered structures in t

plasma, it is necessary to have data on the charge of
particles, as well as on the basic plasma parameters.
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important feature of this plasma source is that it create
large plasma volume. As a result, various diagnostic m
surements of the plasma can be made. Various paramete
the gas and macroscopic particles were determined, suc
the electron and alkali ion densities, the gas temperature,
the size and density of the macroparticles.

2.2. Plasma diagnostics

The plasma was diagnosed by probe and optical te
niques. The arrangement of the probe measurement
shown in Fig. 1. The densityni of the positive alkali metal
ions was measured with an electrical probe.23,24The rms er-
ror in the density determination was 20%. The local elect
densityne was determined by a method based on measu
the currentI and longitudinal electric fieldE in the plasma.23

An electrode at constant voltage relative to the burner w
placed in the plasma flow to determine the currentI . Two
platinum probes were introduced into the plasma to de
mine the tangential componentE of the electric field. The
electrical conductivity of the plasma,s5neeme , was deter-
mined on the basis of Ohm’s lawj5sE ~j is the current
density andme is the mobility of the electrons!. The electron
density was found from knownme . The error inne was less
than 30%.

The gas temperature and alkali metal concentration w
measured by traditional methods: a generalized invers
method and a total absorption method21 ~the rms errors were
less than 1% and 30%, respectively!.

2.3. Particle diagnostics

A novel laser technique was used to determine the m
~Sauter! diameterDp and densitynp of the macroparticles.

25

This technique is based on measurements of the extinc
~attenuation of light! in a dispersive medium at small sca
tering angles, and is intended for determining the charac
istics of particles with sizes of 0.5–15mm.

The setup for measuring the extinction of optical rad
tion includes a rotating disk with aperture stops of vario
diameters located in front of a photodetector~Fig. 2!. A
He–Ne laser~l50.633mm! is used as the light source. Fo

FIG. 1. The arrangement of the probe measurements.
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an error in the measurement of the extinction of about 2
the errors in recovering the particle sizes and density w
about 3%, 10%, respectively.

The ordered structures were analyzed using the bin
correlation function5 obtained with a laser time-of-fligh
counter~Fig. 2!. The measurement volume is formed by f
cusing the beam of an Ar1 laser ~l50.488mm! onto the
axial region of the plasma stream. Radiation scattered
individual particles at an angle of 90° when they cross
waist of the laser beam is collected by a lens and direc
onto the 15-mm-wide monochromator entrance slit. The d
ameter of the measurement volume was less than 10mm.
The resulting pulsed signals were then processed to calc
the binary correlation functiong(r ), which characterizes the
probability of finding a particle a distancer5Vpt from a
given particle. Heret is time andVp is the average particle
velocity ~Vp;Vg for micron sized particles26!. An analysis
of g(r ) makes it possible to describe the spatial structure
interparticle correlations of the particles.

3. RESULTS AND DISCUSSION

Plasma diagnostics were performed in the tempera
stabilized zoneh525240 mm above the top of the burner
various plasma temperatures and particle densities.
plasma temperature was changed by varying the propan
ratio over 0.95–1.47. Thus, it is was possible to change
Debye radius, the distance between particles, and the ch
of particles in the plasma. Measurements of the spatial st
tures of the macroparticles were compared with data for
aerosol stream at room temperature. In the latter case,
air with particles of Al2O3 or CeO2 was fed into the inner
flare of the burner. This system simulates a plasma wit
random spatial disposition of the macroparticles~a ‘‘gas-
eous’’ plasma!.

In measurements with CeO2 particles, the particle den
sity np was varied over the range (0.225.0)•107 cm23 and
the plasma temperatureTg over 170022200 K. As a conse-
quence, the ion densityni varied from 0.42•1010 to
4.0•1010 cm23 and the electron density, ove
(2.527.2)•1010 cm23. The CeO2 particles are polydisperse
with a distribution half-width of less than 30% according
our measurements. The average Sauter diameter of the
ticles was about 0.8mm.

FIG. 2. The setup for the optical measurements of the sizes, density
spatial structures of the macroparticles
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Zpnp1ni5ne implies that the CeO2 particles are positively
charged at 103e to with a factor of 2. The observed magn
tude and sign of the charge on the particles can be expla
by thermal emission of electrons from the surface of hea
CeO2 particles,

1,2 which are characterized by a low electro
work function~;2.75 eV27!. In the following analysis of the
data, we use the lower limit for the measured particle cha
(Zp'500).

To analyze the state of the plasma with CeO2 particles,
we first estimate the relaxation times in the plasma: the ch
acteristic timetR to establish an ordered particle structur
and the thermalization timetT over which the kinetic energy
of the particles approaches the kinetic energy of those of
ambient gas. The estimate oftT addresses the validity o
using a particle interaction parameter in the for
gp5Zp

2e2/^r &kT, whereT5Tg .

3.1. Relaxation processes in thermal plasmas with
macroparticles

Relaxation processes in plasmas can be related to
times for ionization and the changes in the relative locatio
of the macroparticles. Estimates show that the ionization
laxation times in the plasma are short. The equilibration c
trolled by the dynamics of the particles’ motion in a high
nonideal plasma is characterized by very much longer tim

Let us estimate the time to establish an ordered struc
in a thermal plasma. This process occurs when initially r
domly oriented particles are introduced into a plasma flo
In the Wigner–Seitz cell model, the relaxation timetR is

2

tR5S 41
1

2
p D Rp

2ungmg

Zp
2np

, ~1!

whereu5AkTg/2pmg andmg andng are the mass and den
sity of the gas molecules.

In the experiments with CeO2 particles ~ng52.7•1018

cm23, mg55.0•10223 g, Tg52000 K, Rp50.4mm,
Zp'500, andnp55.0•107 cm23!, the estimated relaxation
time is tp>10 ms. In order to establish spatial ordering
the particle positions, the plasma lifetime must be mu
longer thantR . Under our conditions,tR is much longer
than the relaxation time of the particle charge and elect
density to their equilibrium values and is shorter than
plasma lifetime, which is characterized byt f5h/Vp . For
h>40 mm andVp>2 m/s, we havet f>20 ms, which yields
t f>2tR .

3.2. Thermalization of particles in the plasma

For an approximate estimate of the thermalization ti
tT we use the equation

Dp'VT
2tT'~kTg /Mp!tT , ~2!

whereDp is the diffusion coefficient of the particles,VT is
their thermal speed, andMp is their mass.

nd
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Under conditions such that a thermal plasma exists~the
transition from a free molecular flow to a hydrodynam
flow!, the following interpolation formula is usually used fo
the diffusion coefficient:28

Dp5S kTg
6phRp

D F11
l

Rp
S 1.25710.400 exp

21.10Rp

l D G ,
~3!

wherel is the mean free path in the gas andh is the viscosity
of the gas.

Finally, we find

tT'
2rpRp

2

9h F11
l

Rp
S 1.25710.400 exp

21.10Rp

l D G .
~4!

For the typical conditions of the experiments wi
CeO2 particles ~Tg52000 K, Rp50.4 mm, l'0.4 mm,
rp57.3 g/cm23, andh57.0•1025 Pa•s!, we obtaintT'10
ms, or much less than the characteristic plasma lifeti
t f5h/Vp . Thus confirms the validity of our assumption th
the kinetic energy of the particles is close to the kinetic
ergy of the ambient gas particles.

3.3. Spatially ordered structures in thermal plasmas

Figures 3a, b, and c show typical binary correlati
functions g(r ) for CeO2 particles in an aerosol stream

FIG. 3. The binary correlation functiong(r ) for CeO2 particles in an air
stream at room temperatureTg>300 K with gp50 ~a!, in plasmas
(Zp'500) at temperatureTg52170 K with gp540 (Gs'1) ~b! and at
temperatureTg51700 K withgp5120 (Gs'40) ~c!.
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e
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room temperature~Tg>300 K! and in plasmas~Tg52170
and 1700 K!. It is quite evident that the correlation function
g(r ) for the plasma with temperatureTg52170 K and par-
ticle densitynp52.0•106 cm23 and for the aerosol stream
are essentially the same. Thus, the particles in the pla
interact weakly and formation of ordered structures is imp
sible. This is also confirmed by the plasma diagnostic m
surements. The optical and probe measurements showed
the average interparticle distance (^r &550 mm! is roughly
3.5 times the Debye radius~r D514 mm!, while the interac-
tion parametergp is about 40. Then an estimate ofGs ,
which accounts for Debye shielding, yieldsGs>1.

Figure 4 shows the range ofne and np within which
ordered structures can develop. Curves1 ~18! (Tg51700 K!
and2 ~28! ~Tg52200 K! correspond togp54 (Gs54). Near
ordering in the particle positions is established in the reg
above curves1 and 2 ~single-species plasma model! or
curves18 and28 ~Yukawa model!. The Yukawa model pre-
dicts highergp for the observed interparticle separations a
Debye radii. The experimental point~Tg52170 K and
np52.0•106 cm23, corresponding to the correlation functio
shown in Fig. 3b! denoted by a solid circle lies below th
boundary between the weakly and strongly nonideal plas
states according to the Yukawa model.

For the lower plasma temperatureTg51700 K and a
particle density ofnp55.0•107 cm23, Fig. 3c shows that the
binary correlation functiong(r ) exhibits the near ordering
characteristic of a liquid. Under these conditions, as the
agnostic measurements showed, the ion density~ni;109

cm23! is roughly an order of magnitude lower than the ele
tron density~ne;1010 cm23!, while the particle chargeZp is
determined by the quasineutrality condition in the for
Zpnp5ne (ni!ne). The calculated values ofgp andGs are
;120 and 40, respectively, which correspond to a system
strongly interacting particles. Therefore, the particles fo
an ordered structure, in accord with the phase diagram
the plasma~Fig. 4!. The corresponding experimental poi
~the hollow circle! lies above the theoretical curves for th
Yukawa model.

An analysis of the distributions of the relative interpa

FIG. 4. The range of plasma (ne1ni) and particle (np) densities within
which an ordered structure is formed forZp5500. Curves1 ~18! and2 ~28!
refer to gp54 (Gs54) with Tg51700 and 2200 K, respectively;gp540
(Gs51) (d) andgp5120 (Gs540) (s) for plasmas with CeO2 particles.
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FIG. 5. Distributions over the pa-
rameterr /^r & for CeO2 particles in
an air stream at room temperatur
Tg>300 K, gp50 ~a! and in a
plasma (Zp5500) at Tg51700 K
andgp5120 (Gs540) ~b!.
ticle distancesr /^r & obtained under the same conditions as
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the correlation functions showed that both regions with
dered structures~domains! and regions with random particl
positions exist.29 Figures 5a and b show histograms for t
aerosol~Tg>300 K! ~the ‘‘gaseous’’ plasma! and the plasma
~Tg51700 K!. The distributions were measured for 1500
2000 particles using the laser time-of-flight counter d
scribed above and are normalized in area. For a plasma
perature of 1700 K the histogram becomes substantia
narrower~by a factor of 4–5!, its peak shifts toward smalle
interparticle separationsr /^r &50.3, and the maximum valu
rises from 6–7% to 10–11%. In this case the observed st
ture of the particles differs sharply from the ‘‘gaseous’’ ca
which suggests the development of strong correlation in
positions of the particles. At the same time, the presenc
randomly oriented particles leads to the appearance of
broad pedestal characteristic of the ‘‘gaseous’’ plasma in
histogram.

The development of domains can be explained by
polydisperse nature of the CeO2 particles, which results in
the finer particles forming regions of ordered structure~do-
mains! with small interparticle distances,29 while the coarser
particles, which lie at large distances, are positioned r
domly.

The formation of ordered structures was observed o
at sufficiently high~;107 cm23! particle densities. Lower-
ing the concentration of CeO2 particles increases the avera
distance between particles and leads to a reduction in
Coulomb interaction energy. Then an ordered structure d
not develop, as shown in Fig. 3b~np52.0•106 cm23!.

Plasmas with Al2O3 particles were studied at temper
turesTg5190022200 K. The higher concentration of Na1

and K1 ions ~by ;10 times! should be noted in this case
The measured ranges of the densities of the ions, electr
and particles were, respectively, (0.35212.0)•1010 cm23,
(0.85218.0)•1010 cm23, and (0.721.0)•106 cm23. The av-
erage particle diameter was about 1.5mm. The high density
of alkali metal ions leads to strong shielding of the Coulom
interaction of the macroparticles. Thus, as an example,
Tg52035 K, ni58.6•1010 cm23, ne51.3•1011 cm23, and
np51.0•106 cm23, we obtain r D56.5 mm and ^r &560
mm. Since^r &>9r D , the particles are strongly shielded an
cannot form a spatially ordered structure.
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In this paper a way of finding the binary correlatio
function for a system of macroparticles has been propos
based on a laser time-of-flight method. An analysis of cor
lation functions obtained in this way has demonstrated
existence, under certain conditions, of spatially ordered p
ticle structures in thermal plasmas. The existence of th
structures is also confirmed by diagnostic~probe and optical!
measurements. The formation of ordered structures was
served for micron-sized particles in a plasma consisting
positively charged CeO2 particles, the electrons emitted b
them, and singly-charged sodium ions. When the density
the particles was reduced and the density of alkali metals
increased, the particles were positioned randomly. Exp
mental data have been obtained on the plasma param
~particle, ion, and electron densities, and temperature! at
which the structures are formed. This occurs at a part
density of;107 cm23 and a temperature of about 1700 K
The CeO2 particles were positively charged at about 13

electron charges. The Coulomb interaction parameter for
particles isgp.120, which corresponds to a highly nonide
plasma.
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Anomalous kinetics of plasmas in high-power radiation fields

the
V. P. Silin

P. N. Lebedev Physics Institute, Russian Academy of Sciences, 117333 Moscow, Russia
~Submitted 17 June 1996!
Zh. Éksp. Teor. Fiz.111, 478–495~February 1997!

Transport equations are obtained in the nine-moment approximation for plasmas in intense
radiation fields where the amplitude of the electron oscillations in the electromagnetic field exceeds
the thermal speed. It is shown that for plasmas with a high degree of ionization,Z, the
electron thermal conductivity is higher by approximately a factor ofZ. The change in the frictional
force on electrons colliding with ions owing to the effect of the radiation field leads to the
possibility of electron acceleration and to a change in the sign of the dc and low-frequency
electrical conductivities. ©1997 American Institute of Physics.@S1063-7761~97!00602-1#

1. INTRODUCTION violated, electron–ion collisions will be suppressed, since
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Advances in short-pulse laser technology1 have made the
development of plasma kinetic theory in high-power elect
magnetic fields essential, both at microwave and laser
quencies. Collisional kinetic theory is not adequately dev
oped for fully ionized plasmas in which high-power radiati
is absorbed by electrons in collisions with ions or, as one
says, through inverse bremsstrahlung absorption.2 Usually,
when the radiation power is low, the kinetic coefficien
characterizing the plasma properties are independent o
electric field,3,4 while the contribution of the radiation to th
nonequilibrium fluxes is determined by expanding in pow
of bilinear combinations of the radiation field strength.5 This
situation occurs when the electron thermal speedvT is sub-
stantially higher than the amplitudevE of the velocity of the
electron oscillations in the electromagnetic field of the rad
tion. In the case of plasma ions with a high degree of io
ization,

Z5uei /eu, ~1.1!

the condition for applicability of this sort of ordinary theor
is more restrictive, i.e.,

ZvE
2!vT

2, ~1.2!

otherwise the electron distribution differs greatly from Ma
wellian, as predicted theoretically6–8 and confirmed
experimentally.9 The reason the distribution differs from
Maxwellian is that when Eq.~1.2! is violated, i.e., for

ZvE
2.vT

2.vE
2, ~1.3!

electron–electron collisions are comparatively rare and
electron distribution cannot relax to Maxwellian. Some ste
toward constructing a theory of transport under conditio
~1.3! have been taken in local10 and nonlocal11 treatments of
transport. At the same time, we note the self-similar, s
tially nonuniform and time-dependent distribution obtain
analytically by Uryupinet al.12 for the parameter range~1.3!.
That distribution differs substantially from the standard d
tribution of Balescu7 at high electron velocities and ma
have important consequences.

As the intensity of the radiation heating a plasma is
creased, when the right-hand side of the inequality~1.3! is
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frequency of these collisions falls off asvE ~Ref. 13!.
However, when the condition

ZvT.vE.vT ~1.4!

is satisfied, it has been shown14 that the electron distribution
in the heated plasma is not only time-dependent, it is a
anisotropic.

We shall be interested in even higher fields, such tha1!

vE.ZvT . ~1.5!

Then electron–ion collisions are so strongly suppressed c
pared to electron–electron collisions, that a Maxwellian d
tribution can be used for the electrons. This is assumed in
theory of nonlinear high frequency plasma conductivity13 un-
der the condition~1.5!. These results13 have been confirmed
to a great extent, and this has led to a large number of s
cessor articles.15,16 Considerable attention has been devo
to modifications of the Coulomb logarithm, which dete
mines the electron–ion collisions. These studies have b
summarized by Silin and Uryupin,17 who clarified the condi-
tions for various effects controlled by the Coulomb log
rithm. This is also discussed by Polishchuk a
Meyer-Ter-Vehn,18 who examined an important property o
plasmas in intense radiation fields, the relaxation of the e
tron and ion temperatures under condition~1.5!. Here, in
particular the electron heating owing to the absorption
intense radiation was also discussed. With regard to o
transport processes in fully ionized plasmas located in hi
power, high-frequency radiation fields whose frequen
greatly exceeds the electron collision frequency, the theor
not yet adequately developed. In this paper we fill in th
gap. We shall use Grad’s moment method.19 We emphasize
also that the foundations of kinetic theory for plasmas in
case of the rapidly varying processes of interest to us w
laid previously.19–21

In Sec. 2 we introduce a basic kinetic equation for av
aging the electron distribution function over the period o
high-frequency radiation field which can be used to constr
a theory for slow transport processes. In Sec. 3 we w
down the transport equations in Grad’s nine-moment
proximation. In Sec, 4 an approximate approach is form
lated that is realized under condition~1.5! and can be used to

262-10$10.00 © 1997 American Institute of Physics
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electron–ion collisions. It is shown that both the friction
force and the variation in the heat released in the plas
owing to ordered electron motion are determined by the
fective collision frequency tensor. In Section 5 it is show
that the anisotropy in the effect of the radiation on t
plasma, which is characterized by its polarization, shows
in such a way that the frictional force can either slow do
or accelerate the electrons. This sort of acceleration
cause the spontaneous generation of currents~and, therefore,
magnetic fields!, as well as the generation of currents i
duced by a quasi-dc electric field and pressure gradient.
tion 6 is devoted to an anomaly in the dc and low-frequen
conductivities, which are negative in directions lying in
plane perpendicular to the beam of radiation. This pheno
enon is similar to a high-frequency anomaly that has b
predicted elsewhere.22–24 In Section 7 it is shown that the
electron thermal conductivity increases by roughly a fac
of Z under high-power irradiation owing to the suppress
of electron–ion collisions when condition~1.5! is satisfied.

Formulas needed to characterize the dependence o
averages over the oscillation period of the radiation on
polarization are given in Appendix 1 and a detailed deri
tion of the features of the transition24 from low power to the
limit of high power radiation is given in Appendix 2 fo
extending the basic material in this article to the case
circularly polarized radiation. Finally, a summary is given
Section 8.

2. BASIC KINETIC EQUATION

We consider a fully ionized plasma in a high-frequen
electric field

E~r ,t !5
1

2
@E~r ,t !e2 ivt1E* ~r ,t !eivt#, ~2.1!

B~r ,t !5
1

2
@B~r ,t !e2 ivt1B* ~r ,t !eivt#. ~2.2!

Here the amplitudes of the electricE(r ,t) and magnetic
B(r ,t) fields are slowly varying functions of time over th
period 2p/v of the high-frequency field. With the Maxwe
equation

curlE52
1

c

]B

]t
~2.3!

this allows us to write the following approximate formula

B5
c

iv
curl E2

c

v2

]

]t
curl E. ~2.4!

With Eq. ~2.4! the kinetic equation for the electron distribu
tion function f (v,r ,t) can be written in the following form:

] f

]t
1v

] f

]r
1

] f

]v

e

m SE01
1

2
$Ee2 ivt1E* eivt%

1
1

2iv
@v curl~Ee2 ivt2E* eivt!#
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v2 F S ]t ]t D G D
5Jee@ f , f #1Jei@ f , f #. ~2.5!

HereE0 is the quasi-dc or low-frequency electric field,e and
m are the charge and mass of the electron, andJee andJei
are the electron–electron and electron–ion collision frequ
cies, respectively.

Under the influence of the high-frequency field the ele
tron distribution function varies rapidly in time and becom
anisotropic, since this sort of field causes rapid oscillation
the electron velocity,

uE~ t !5
ei

2mv
$Ee2 ivt2E* eivt%. ~2.6!

In this regard, it is convenient to use the new function

F~u,r ,t !5 f ~v,r ,t !, ~2.7!

where

u5v2uE~ t !. ~2.8!

Equations~2.7! and~2.8! can be used to transform the kinet
equation~2.5! to the following:

]F

]t
1u

]F

]r
1S em E02

e2

4m2v2

]uEu2

]r D ]F

]u

1e2 ivt
e

2mv i H 2E
]F

]r
1

]F

]u S ]E

]t
1

]

]r
~uE!

2
i

v Fu curl
]E

]t G D J 1eivt
e

2mv i HE* ]F

]r

2
]F

]u S ]E*

]t
1

]

]r
~uE* !1

i

v Fu curl
]E*

]t G D J
1e22ivt

e2

4m2v2 H 12 ]~E!2

]r
2

i

v FE curl
]E

]t G J
3

]F

]u
1e2ivt

e2

4m2v2 H 12 ]~E* !2

]r

1
i

v FE* curl ]E*]t G J ]F

]u

5Jei@u1uE~ t !,F~u!#1Jee@F~u!,F~u!#. ~2.9!

Note that, since the electron–electron collision integral
pends on the relative velocity of the two colliding electron
Eq. ~2.8! does not introduce a dependence on the hi
frequency field intoJee. On the other hand, the electron–io
collision integral in Eq.~2.9! does depend onuE(t).

It can be seen from Eq.~2.9! that if the amplitude
aE5eE/mv2 of the oscillations in the high frequency field
sufficiently small compared to the scale lengths of the in
mogeneities in the fieldLE and in the electron distribution
L, then a comparatively simple equation can be obtained
the distribution function̂ F&5F0 averaged over the perio
of the fast oscillations. Here we shall assume that the follo
ing inequalities are satisfied:13
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Then, on averaging Eq.~2.9! we can neglect the contributio
of the harmonics ofF. As a result, we obtain

]F0

]t
1u

]F0

]r
1S em E02

e2

4m2v2

]uEu2

]r D ]F0

]u

5^Jei@u1uE~ t !,F0~u!#&1Jee@F0~u!,F0~u!#.

~2.11!

We shall use this equation below to elucidate the uniq
features of transport in plasmas caused by a strong h
frequency electromagnetic field.

3. THE NINE-MOMENT APPROXIMATION

In the following we shall use Grad’s method, with th
distribution in the nine-moment approximation represen
by19

F0~u,r ,t !5
n~r ,t !

~2p!3/2vT
3 expH 2

m@u2ue~r ,t !#2

2kBT~r ,t ! J
3H 12

q~r ,t !m@u2ue~r ,t !#
n~r ,t !@kBT~r ,t !#2

3S 12
m@u2ue~r ,t !#2

5kBT~r ,t ! D J . ~3.1!

HerekB is Boltzmann’s constant,n(r ,t) is the electron num-
ber density,ue and T(r ,t) are the average velocity of th
electrons and their temperature, given by

ue~r ,t !5
1

n E du uF0 ,

T~r ,t !5
2

3kBn
E du

m

2
@u2ue~r ,t !#2F0 , ~3.2!

vT5AkBT/m is the electron thermal speed, and the elect
thermal flux is given by

q5E du@u2ue~r ,t !#•
1

2
m@u2ue~r ,t !#2F0~u,r ,t !.

~3.3!

The kinetic equation~2.11! yields the following system of
transport equations:2!

]n

]t
1div~nue!50, ~3.4!

mnS ]ue

]t
1S ue ]

]r DueD1
]nkBT

]r
2nS eE0

2
e2

4mv2

]uEu2

]r D5Rei, ~3.5!

]T

]t
1ue

]T

]r
1
2

3
T div ue1

2

3nkB
div q5

2

3nkB
Qei,

~3.6!
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2

nkBT

m

]kBT

]r
5DQee1DQei2

5kBT

2m
Rei.

~3.7!

Here, in the usual terminology for Grad’s method, w
write the frictional force as

Rei5E du m~u2ue!^Jei@u1uE~ t !,F0~u!#&, ~3.8!

the heat delivered to the electron component owing to co
sions with ions as

Qei5E du•
1

2
m~u2ue!2^Jei@u1uE~ t !,F0~u!#& ~3.9!

and finally,

DQee5E du~u2ue!•
1

2
m~u2ue!2Jee@F0 ,F0#, ~3.10!

and

DQei5E du~u2ue!•
1

2
m~u2ue!2^Jei@u

1uE~ t !,F0~u!#&. ~3.11!

In the following we find a form of Eqs.~3.8!–~3.11! that
closes the system of transport equations~3.4!–~3.7!. Infor-
mation will be obtained on the qualitative changes in el
tron transport produced by the electromagnetic fields
high-power radiation.

4. ELECTRON–ION COLLISIONS

The electron–ion collision integral in a radiation fie
has been obtained classically.13,20,21 The required quantum
mechanical treatment has been described elsewhere.17 It
should be emphasized that Refs. 17 and 13 show that
Landau collision integral with needed refinements in the
pression for the Coulomb logarithmLe,i can be used in the
kinetic theory of plasmas in high-power radiation fields. W
shall use the Landau collision integral in the following, r
ferring the reader to Refs. 17 and 13 for the form of t
Coulomb logarithm, which is always large compared to un
in low-density plasmas.

We shall not be interested further in quantities that
small compared to the electron–ion mass ratio in accorda
with a study18 of temperature relaxation of plasma species
a high-power radiation field. Then19 we have

Jei@u1uE~ t !,F~u!#5
2pe2ei

2niLei

m2

3
]

]uk
Dk j~u1uE~ t !!

]F

]uj
, ~4.1!

where
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~uEu!2

. ~4.10!
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3~u1uE! j%uu1uEu23. ~4.2!

For simplicity and, at the same time, generality, we avoid
special case of plane polarized radiation, where the velo
of the electron oscillations,uE can go to zero, and conside
elliptically polarized radiation. Here we shall assume that
minimum velocity uE(t) is high compared to the electro
thermal velocity. This makes it possible to expand Eq.~4.2!
in powers ofuE

21 :

Dl j5uE
23H uE2d l j2uEluE j1@23~uEu!uE

22~d l j uE
2

2uEluE j!12~uEu!d l j2uEluj2uEjul #1u2d l j

2uluj26~uEu!2uE
22d l j13uEluj~uEu!uE

22

13uEjul~uEu!uE
222

3

2
u2uE

22~d l j uE
22uEluE j!

1
15

2
~uEu!2uE

24~d l j uE
22uEluE j!1...J . ~4.3!

We use the approximation~4.3! to find the frictional force.
Given Eqs.~4.1!–~4.3!, Eq. ~3.8! can be written in the fol-
lowing form:

~Rei!k5
2pe2ei

2niLei

m E du F0K ]

]uj
Dk jL , ~4.4!

where, according to Eq.~4.3!,

]

]uj
Dk j5

1

uE
3 H 22uEk22uk16

uEkuE j
uE
2 uj J . ~4.5!

In conformity with the Fourier expansion Eq.~A.1.4!, we
have

^uEl /uE
3&50, ^uEluE juEi /uE

5&50. ~4.6!

Thus, according to Eq.~3.1! the frictional force can be writ-
ten in the form

~Rei!k52mnnk juj
e , ~4.7!

where

nk j5
4pe2ei

2niLei

m2 H K 1

uE
3~ t !L dk j23K uEk~ t !uEj~ t !uE

5~ t ! L J
~4.8!

is the effective electron–ion collision frequency tensor.
the following we examine the unique properties of this te
sor, which are determined by the polarization of the radiat
and might be expected because the trace of the tensor~4.8! is
zero.

We now consider the heatQei released in collisions be
tween electrons and ions. In accordance with Eq.~4.1!, Eq.
~3.9! takes the form

Qei5
2pe2ei

2niLei

m E du F0KDj j1~u2ue!k
]Dkj

]uj
L .
~4.9!

In the approximation~4.3! we have
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Given Eq.~4.6!, in the nine-moment approximation~3.1! this
expression, together with Eq.~4.5!, yields

Qei5QIB1
1

2
Reiue, ~4.11!

where the first term

QIB5
4pe2ei

2nniLei

m K 1

uE
L ~4.12!

represents the heat released through inverse bremsstra
absorption, neglecting the ordered motion of the electro
The second term originates, first, in the work performed
the frictional force,2ueR

ei, as is customary in plasmas
including those without high-power radiation, and second
the effect of the ordered motion of the electrons on inve
bremsstrahlung absorption, (3/2)ueRei.

Finally, we consider the contribution of electron–io
collisions to the right hand side of Eq.~3.7!. In the approxi-
mation of Eq.~4.3!, Eq. ~3.11! reduces to

~DQei! j5
2pe2ei

2niLei

m2 E du F0mH 12 ~u

2ue!2
]^Djk&

]uk
1~u2ue!k~u2ue! j

]^Dkl&
]ul

1~u2ue! j^Dll &12~u2ue!k^Djk&J . ~4.13!

Using the explicit expressions~4.3!, ~4.5!, and~4.9!, we ob-
tain

~DQei! j52
1

2
n jkH 11nkBTuk

e1
34

5
qkJ . ~4.14!

The contribution to the right hand side of Eq.~3.7! from
electron–ion collisions takes the form

~DQei! j2
5kBT

2m
~Rei! j52n jkS 3nkBTuk

e1
17

5
qkD .

~4.15!

We shall obtain some physical consequences of these e
tions below.

5. GENERATION OF CURRENTS BY ACCELERATED
ELECTRONS

The equations obtained in Appendix 1 make it possi
to write the effective electron–ion collision frequency tens
~4.9! in the form

n l j5n~E!Nl j , ~5.1!

where the tensorNl j is defined by Eqs.~A1.9! and

n~E!58&pe2ei
2niLeim

22vE
23, ~5.2!

wherevE
25(e2E2/m2v2). In order of magnitude, the effec

tive frequency~5.2! is a factor of (vE /vT)
3 smaller than the

ordinary electron–ion collision frequency in the absence
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larly polarized radiation the frictional force~4.7! takes the
form

Rei5~Rx
ei ,Ry

ei ,Rz
ei!52mnn~E!S 2

1

2
ux
e ,2

1

2
uy
e ,uz

eD .
~5.3!

Whereas thez component of this formula corresponds to
reduction in the averagedz component of the velocity, the
other two components of Eq.~5.3! correspond to acceleratio
of the electrons owing to the work performed by the hig
power radiation field.

A similar situation occurs in the other limiting case
nearly plane polarization. Thus, in the case of Eq.~A1.13!,
we have

Rei52mnn~E!~Nxxux
e ,Nyyuy

e ,Nzzuz
e!. ~5.4!

Equation~A1.3! shows that, approximately,

Nzz5
1

p&

E2

Ey
2 52Nyy , Nxx52

1

p&
ln
4E

Ey
, ~5.5!

so that, first, the effective collision frequency is much high
than that for circular polarization, sinceE@Ey , and, second,
the electrons are slowed down, as in the case of circ
polarization, along thez axis, while they are accelerate
along the other two axes. In fact, if we neglect the spa
inhomogeneity and slowly varying electric field in Eq.~3.5!,
then according to Eq.~5.1! we obtain

duk
e

dt
52n~E!Nkjuj

e . ~5.6!

In the case of Eqs.~5.4! and ~5.5!, the acceleration is mos
intense along they axis, i.e., perpendicular to the plane
polarization. Then, assumingE5const, we have

uy
e~ t !5uy

e~0!exp~ t/tac!, ~5.7!

where we obtain

tac5p&Ey
2/E2n~E! ~5.8!

for the characteristic acceleration time. This sort of elect
acceleration leads to the generation of spontaneous cur
by high-power heating radiation and, therefore, to the g
eration of spontaneous magnetic fields.

The presence of a quasi-dc fieldE0 ~or pressure gradi-
ent! in the plasma makes the process of accelerating the e
trons as they collide with ions and simultaneously abs
radiation an induced process. Here in place of Eq.~5.6! we
have

duk
e

dt
1n~E!Nkjuj

e5
e

m
E0k . ~5.9!

In the case of Eqs.~5.4! and~5.5! with E05const, for accel-
eration along they by a high-power radiation pulse of dura
tion t0 we obtain

uy
e5

eE0y
m

tacH expS t0tacD21J , ~5.10!

where the acceleration time is given by Eq.~5.8!.
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down the dependence of the heat released in the plas
~4.1!, on the polarization of the radiation:

QIB5
8&e2ei

2nniLei

mvEA11r2
K SA 2r2

11r2D . ~5.11!

In nearly plane-polarized radiation, whenr2 is close to unity,
we have

K SA 2r2

11r2D'
1

4
lnF 32

12r2G .
The resulting large logarithm is similar to that derived in t
theory of the absorption of high-power plane polariz
radiation13,15 and shown to depend on the ratiovT

2/vE
2 . A

suitable comparison shows that the approximation~4.3! is
applicable in the limit 12r2@vT

2/vE
2 . Note that in the case

of nearly plane polarization, the plasma heating time
;@n(E)ln(E/Ey)#

21, substantially longer than the acceler
tion time ~5.8!.

6. ANOMALOUS CONDUCTIVITY

We now use Eq.~3.5! to determine the dc conductivity
In doing this we neglect the inertial term. Then this equat
gives

Rei5
]nkBT

]r
2neEeff , ~6.1!

where

Eeff5E02
e

4mv2

]uEu2

]r
. ~6.2!

For the subsequent discussion it is convenient to use
electron–ion collision mean free time tensortk j , which is
defined by

tk jnkl5d j l . ~6.3!

According to Eq.~5.1! and using the tensorTk j introduced in
Appendix 1, we can write

tk j5
1

n~E!
Tk j . ~6.4!

These formulas allow us to derive the following from E
~4.7!:

mnuj
e52t jkRk

ei52
1

n~E!
Tk jRk

ei . ~6.5!

Since the electric current density isj5enue, Eqs.~6.1! and
~6.5! imply that

j i5s ikFEeff2
1

en

]nkBT

]r G
k

, ~6.6!

where the dc conductivity tensor has the form

s ik5
e2n

m
t ik5

e2n

mn~E!
Tik . ~6.7!

In the case of circular polarization, the tensorTik is diagonal
with Txx5Tyy522 andTzz51. This means that the com
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sponds to ordinary dissipation. On the other hand, in
plane perpendicular to the beam of radiation heating
plasma, the components of the conductivity tensor are ne
tive. In the case of nearly plane polarization, the compone
of the tensorTik are given by Eqs.~A.1.14!. In the special
casewx2wy5p/2 andEy

2!Ex
2 , the conductivity tensor is

diagonal with

szz5
e2np&Ey

2

mn~E!Ex
2 52syy ,

sxx52
e2np&

mn~E!@ ln~4E/Ey!21#
. ~6.8!

Here the components of the conductivity tensor perpend
lar to the beam are again negative. The anomaly is espec
strong in the direction of the electric field vector of the r
diation that is heating the plasma.

Equation~3.5! can also be used in the case of an alt
nating field

E0~ t !5E0 exp~2 iv0t !. ~6.9!

Neglecting the spatial inhomogeneity, when we ha
ue(t)5ueexp(2iv0t), Eq. ~3.5! yields

2 iv0uk
e1n~E!Nkjuj

e5
e

m
E0k . ~6.10!

In the simplest case, when the tensorNkj is diagonal, we
have j i5s i i (v0)E0i . Here no sum is taken over the su
script i and the conductivity at frequencyv0 is given by

s i i ~v0!5
e2n

m

iv01n~E!Nii

v0
21@n~E!Nii #

2 . ~6.11!

The negative real conductivities forNii,0 correspond to the
possibility of generating and amplifying an alternating ele
tric field under the influence of the high-power radiation th
is heating the plasma. This sort of phenomenon has b
predicted theoretically22–24 for a high-frequency alternating
field (v0.vLe5A4pe2n/m). If we take v0@n(E)Nii in
Eq. ~6.11!, then in the special case of circularly polarize
radiation we obtain the corresponding result of Ref. 24
using Eqs.~A2.5!.

7. ELECTRON–ELECTRON COLLISIONS AND THERMAL
CONDUCTIVITY

We now consider the contribution of electron–electr
collisions to the right hand part of Eq.~3.7!. The collision
integral has the form

Jee@F0 ,F0#5
2pe4Lee

m2

3
]

]uk
E du8

~u2u8!2dk j2~u2u8!k~u2u8! j
uu2u8u3

3S ]

]uj
2

]

]uj8
DF0~u!F0~u8!. ~7.1!
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neglected. Simple calculationsgive

DQee52
16

15

vT
l ee

q, ~7.2!

wherel ee5m2vT
4 /Ape4nLee is the electron mean free path

Using Eq. ~4.14!, for the right-hand side of Eq.~3.7! we
obtain

S DQee2
5kBT

2m
Rei1DQeiD

j

5
3kBT

m
~Rei! j2

16

15

vT
l ee

qj2
17

5
n jkqk . ~7.3!

Thus, the system of equations for the nine-moment appr
mation ~3.4!–~3.7! has been closed. In this article we sha
neglect the last term on the right-hand side of Eq.~7.3! since
vT / l ee@un jku.

We now determine the thermal conductivity with the a
of Eq. ~3.7!. To do this, as is customary in the mome
approximation, we neglect all terms on the left-hand side
Eq. ~3.7! except the last. We then obtain

q52
75

32
nkBvTl eeH ]T

]r
2
6

5

Rei

kBn
J , ~7.4!

whereRei is given by Eq.~6.1!. In the simplest case, wher
ue50, Eq. ~7.4! gives Fick’s law

q52x
]T

]r
, ~7.5!

wherex is the thermal conductivity. Equation~7.4! corre-
sponds to the approximation

x15
75

32
nkBvTl ee. ~7.6!

In the absence of high-power plasma heating radiation,
same nine-moment approximation leads to a thermal cond
tivity of the form19

x05x1F11
13Z

4&
G21

. ~7.7!

Thus, applying a high-power radiation field to a plasma w
highly charged ions (Z@1) increases the thermal conducti
ity by roughly a factor of 2Z.

The thermal conductivityx1 is the same as that calcu
lated by the Hilbert–Chapman–Enskog method in the
proximation of a single Sonine–Laguerre polynomial. In t
approximation of two polynomials we obtain

x25
375

128

kBvT
5m2

Ape4Lee

, ~7.8!

which exceeds the first approximation by 25%.

8. CONCLUSION

The results on the kinetics of fully ionized plasmas
high-power electromagnetic radiation fields presented in
preceding sections make it possible to obtain the equat
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for generalized electron hydrodynamics in the nine-moment
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approximation. Here we note the consequences of this hy
dynamics. First of all, we discuss the consequences of
~4.11! for the heat released in a plasma by electron–ion c
lisions. This formula consists, first of all, of a term~4.12!
that is similar to that discussed previously for several po
izations of the radiation and which corresponds to ordin
collisional absorption. Second, Eq.~4.11! includes a contri-
bution owing to the presence of an ordered average mo
of the electrons. The formal difference between the exp
sion for this contribution and the ordinary expression fo
plasma without a high-power radiation field lies in the opp
site sign and the factor~1/2! in front of the productueRei.
However, the actual difference is more important, since
cording to Eqs.~4.7! and~5.1! this expression can be writte
in the form

1

2
Reiue52

1

2
mnuk

enk juj
e52

1

2
n~E!mnuk

eNk juj
e .

~8.1!

The properties of the electron–ion collision tensor are s
that, depending on the orientation of the velocityue of the
average electron motion relative to the polarization of
radiation, Eq.~8.1! can be either positive or negative. Her
when the quadratic form

uk
enk juj

e ~8.2!

which determines Eq.~8.1! is positive definite, we have a
situation corresponding to the ordinary role of collisions
the cause of dissipation. Then the contribution of the hea
Eq. ~8.1! is negative. This means that the correction~8.1! to
the energy flux~4.12! absorbed by the plasma decreases
total absorbed power. The opposite situation occurs when
quadratic form~8.2! can be nonpositive definite.

An opposite situation of this type is discussed in Sect
5. It is shown there that the dependence of the signs of
diagonal elements of the electron–ion collision frequen
tensor on the polarization properties of the radiation make
possible for the electrons to be accelerated collisionally b
high-power high-frequency field. This kind of accelerati
leads both to spontaneous and to induced generation of
rents by the electric field. During the heating time, in whi
the thermal velocity of an electron changes fromvT(0) to a
value on the order ofvE , the velocity of electrons acceler
ated as a result of the presence of a quasi-dc electric field
reach a magnitude on the order of (eE0 /mn(E))vE /vT(0).
The possibility of a negative electron–ion collision fr
quency demonstrated here will show up as a negative
electrical conductivity for the plasma. In an alternating ele
tric field, a negative real part of the complex electrical co
ductivity corresponds both to acceleration and to the gen
tion of such a field.22–24

As for heat transport,3! we have identified some behavio
which is important for the practically interesting case
high-power radiation acting on a plasma with a high deg
of ionization Z. There, because the high-power radiati
suppresses electron–ion collisions and essentially has n
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conductivity of a plasma in an intense radiation field
higher by a factor ofZ.

All the phenomena discussed here can be attributed
direct nonlinear manifestation of the inverse bremsstrahl
absorption of high-power electromagnetic radiation in t
kinetic properties of the plasma.

This work was completed as part of project No. 96-0
17002-a of the Russian Fund for Fundamental Research
partially supported by the Program on Optics and La
Physics.

APPENDIX I

The heat released in electron–ion collisions and the f
tional force are determined by taking the averages, over
period of the field, of the expressions

K 1

u~ t !L and K 1

u3~ t !L dk j2K uEk~ t !uEj~ t !uE
5~ t ! L . ~A1.1!

We shall examine the dependence of these quantities on
polarization of the radiation that is heating the plasma. W
E5(Exe

iwx,Eye
iwy,0), whereEx andEy are the real ampli-

tudes and the differencewx2wy determines the phase shi
of the components of the polarized radiation. Then, using
notationEx5E cosa andEy5E sina, we can write

uE~ t !5~uEx~ t !,uEy~ t !,0!,

where

uEx~ t !5vE cosa sin~vt2wx!,

uEy~ t !5vE sin a sin~vt2wy!,

andvE
25(eE/mv)2. Thus, we can write

uE
2~ t !5

1

2
vE
2$12r2 cos~vt22c!%, ~A1.2!

where

tan 2c5
cos2 a sin 2wx1sin2 a sin 2wy

cos2 a cos 2wx1sin2 a cos 2wy
,

r4512sin2 2a sin2~wx2wy!. ~A1.3!

Using the Fourier series expansion

S vE
&uE~ t !

D n5 1

@12r2 cos~vt22c!#n/2
5A0

~n/2!~r2!

12(
m51

`

Am
~n/2!~r2!cos@2m~vt2c!#.

~A1.4!

it is easy to see that Eq.~4.6! is satisfied.
In accordance with the expansion~A1.4!, we have

K 1

u~ t !L 5
&

vE
A0

~1/2!~r2!5
23/2

vEpA11r2
K SA 2r2

11r2D .
~A1.5!

HereK (k) is the complete elliptic integral of the first kin
~Eq. ~8.111.2! of Gradshtein and Ryzhik25!. Similarly,
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1
5
23/2

A~3/2!~r2!5
23/2a0

d

e

io

r

g

~1/2! 2
1 32

a-

the

on
d

K uE3~ t !L vE
3 0 vE

3

5
25/2

vE
3p~12r2!A11r2

ESA 2r2

11r2D , ~A1.6!

whereE(k) is the complete elliptic integral of the secon
kind ~Eq. ~2.574.4! of Gradshtein and Ryzhik25!. According
to the expansion~A.1.4!, for the nonzero elements of th
tensor^uEk(t)uEj(t)/u

5(t)& we obtain

K uEx2 ~ t !

uE
5~ t ! L 5

23/2

vE
3 ~a1 cos

2 a1a2!,

K uEy2 ~ t !

uE
5~ t ! L 5

23/2

vE
3 ~a1 sin

2 a1a2!,

K uEx~ t !uEy~ t !uE
5~ t ! L 5

23/2

vE
3 a1 sin a cosa cos~wx2wy!,

~A1.7!

where

a15A0
~5/2!~r2!2

1

r2
A1

~5/2!~r2!, a25
12r4

2r2
A1

~5/2!~r2!.

~A1.8!

In these last formulas the coefficients of the expans
~A1.4! have the form

A0
~5/2!~r2!5

2

3p~11r2!1/2~12r2! H 4

12r2
ESA 2r2

11r2D
2K SA 2r2

11r2D J ,
A1

~5/2!~r2!5
2

3p~11r2!3/2~12r2! H 113r4

12r2
ESA 2r2

11r2D
2K SA 2r2

11r2D J .
If we denote the tensor~A1.1! by 23/2vE

23Nkj , then for the
nonzero elements of the tensorNkj we have

Nxx5a023a223a1 cos
2 a,

Nyy5a023a223a1 sin
2 a,

Nxy5Nyx53a1 sin a cosa cos~wx2wy!, Nzz5a0 .
~A1.9!

In the special case of circularly polarized radiation, whe
a5p/4 andwx2wy5p/2, we have

^uE
21~ t !&5&/vE and Nkj52

1

2
@dkxd jx1dkyd jy#

1dkzd jz . ~A1.10!

Things are a little more complicated in the other limitin
case of nearly plane polarization, wherer2 is close to unity.
Then, in particular, we have
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n

e

A0 ~r !.
p&

ln
12r2

. ~A1.11!

For the quantities determined by the tensorNkj ~A1.9!, we
obtain

a05
&

p H 1

12r2
1
1

8
ln

32

12r2
1
1

8 J ,
3a15

&

p H 2
1

12r2
1
3

8
ln

32

12r2
1
17

8 J ,
a023a25

&

p H 2
1

12r2
1
1

8
ln

32

12r2
2
9

8 J . ~A1.12!

In particular, for wx2wy5p/2 and Ey!Ex , we have
12r252 sin2 a and the tensorNkj is diagonal with

Nxx52
1

p&
H ln 4

sin a
21J ,

Nyy52
1

p&
H 1

sin2 a
2
1

2
ln

4

sin a
1
5

4 J ,
Nzz5

1

p&
H 1

sin2 a
1
1

2
ln

4

sin a
1
1

4 J . ~A1.13!

For an arbitrary phase differencewx2wy but withr2 close to
unity, the tensor inverse toNkj , Tl j5(Nl j )

21, has the fol-
lowing nonzero elements:

Txx5
p&

d H 2cos2 a1
1

8
~12r2!F ~1

23 sin2 a!ln
32

12r2
29117 sin2 a G J ,

Tyy5
p&

d H 2sin2 a1
1

8
~12r2!F ~1

23 cos2 a!ln
32

12r2
29117 cos2 aG J ,

Tzz5
p

&

~12r2!. ~A1.14!

Note that the relatively small terms in Eqs.~A1.12! deter-
mine the expression

d5
1

2
ln

32

12r2
21. ~A1.15!

which, according to Eq.~6.8!, characterizes the large neg
tive component of the dc electrical conductivity tensor.

APPENDIX 2

As a supplement to the main text, here we examine
transition from a relatively weak field, for whichvE!vT , to
the limit of high-power radiation, for whichvT!vE , for the
part of the frictional force determined by the ordered moti
of the electrons,ue, in the special case of circular polarize
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radiation. We first note that after linearization with respect to
e

cy

1 2
3 2x2

e
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ond-
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ke,

ys.
the velocityu of the ordered motion, Eq.~3.8! can be writ-
ten in the form

~Rei!k52
4pe2ei

2niLei

m E dv
vk
v3

n

~2p!3/2vT
5 ^~ue,v1uE~ t !!&.

~A2.1!

Given thatvx5v sinu cosw and vy5v sinu sinw, in the
case of circular polarization we obtain

expH 2
~v1uE~ t !!2

2vT
2 J

5expH 2
v2

2vT
22

vE
2

4vT
2 J expS 2

vvE
&vT

2
sin u cos~vt2w!D .

~A2.2!

Using the expansion~Eq. ~9.6.34! of Abramowitz and
Stegun26!

expS 2
vvE
&vT

2
sin u cos~vt2w!D

5I 0S vvE
&vT

2
sin u D 12(

n51

`

~21!nI nS vvE
&vT

2
sin u D

3cos~n~vt2w!!. ~A2.3!

we obtain

K expH 2
@v1uE~ t !#2

2vT
2 J ~ue,v1uE~ t !!L

5expH 2
v2

2vT
22

vE
2

4vT
2 J H ~uev!I 0S vvE

&vT
2
sin u D

2I 1S vvE
&vT

2
sin u D vE

&

~ux
e cosw1uy

e sin w!J . ~A2.4!

Using Ref. 26~Eqs.~6.618.4! and ~10.2.13!!, we have

E
0

`

dv expS 2
v2

2vT
2D I 1S vvE

&vT
2
sin u D

5
&vT

2

vE sin u FexpS vE2 sin2 u

4vT
2 D 21G

and finally obtain a diagonal effective collision frequen
tensornk j with the following elements:24

nxx5nyy5n~E!F'S vE2vT
D , nzz5n~E!F iS vE2vT

D .
~A2.5!

Heren(E) is defined by Eq.~5.2! and
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F'~x!5
2 H 2erf~x!1

Ap
~x12x !e J , ~A2.6!

F i~x!5erf~x!2
2

Ap
xe2x2, ~A2.7!

where

erf~x![F~x!5
2

Ap
E
0

x

e2t2dt

is the probability integral.
In the limit vE!vT we have

F'(x)5F i(x)5(8/3Ap)x3, which yields the usual3,4,19 ex-
pression for the effective collision frequency,

nxx5nyy5
4A2pe2ei

2niLei

3m2vT
3 5nzz.

In the opposite case ofvE@vT , we have F i51 and
F'521/2 and obtain Eq.~5.3!.

Equations~A2.5!–~A2.7! describe the transition from th
ordinary case of low-intensity radiation to the case of hig
power radiation. The signs of the componentsnxx andnyy of
the effective collision frequency tensor change
vE53.02vT .

24

1!Condition ~1.5! is satisfied if the energy flux of the radiation
qR5cE2/4p obeys the conditionl2qR.Z2(pmc3/e2)kBT, wherel is the
wavelength of the radiation. If the electron temperature is measure
electron volts (kBT5Qe), the wavelength in microns, and the energy flu
in W/cm2, then this condition reduces to
l2@mm#qR@W/cm2#>Z2Qe@eV#•1013.

2!In Eq. ~3.7! the repeated subscripts denotes summation.
3!We note that the neglect of the nonlocal nature of heat transfer corresp
ing to our examination of this system is natural, in particular, when
wavelength of the radiation is much greater than the electron mean
path in electron–electron collisions.
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Average-ion model for calculating the state of a multicomponent transient nonequilibrium

by
highly charged ion plasma
S. A. Bel’kov, P. D. Gasparyan, Yu. K. Kochube , and E. I. Mitrofanov

~Submitted 28 June 1996!
Zh. Éksp. Teor. Fiz.111, 496–513~February 1997!

The ionization kinetics of a transient nonequilibrium highly charged ion plasma are investigated
in the average-ion approximation. Approximations of a hydrogenic ion, whose energy
levels depend either on the principal quantum number alone or on the principal and orbital
angular momentum quantum numbers, are considered as atom models. The results of calculations
of various plasma characteristics performed within this model are presented, and a comparison
with previously published data, as well as with calculations in the chemical-bond approximation, is
performed. It is shown that the average-ion model satisfactorily describes the spectral
characteristics of a nonideal plasma. ©1997 American Institute of Physics.
@S1063-7761~97!00702-6#
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Investigations of the radiation and thermodynamic pro
erties of a high-temperature highly charged ion plasma
based on separation of the plasma into weakly interac
subsystems, whose kinetics can be described by tran
equations for single-particle distribution functions. In the
gion of a high-temperature plasma these subsystems ar
ion, electron, and photon subsystems. In some case
plasma can be in a state of partial thermodynamic equ
rium among the components. As the plasma density
creases, its degree of nonideality increases, but the time
the establishment of equilibrium between its components
multaneously decreases. Since the time for the establishm
of equilibrium in the photon subsystem has the largest va
numerous problems are described quite accurately by an
proximation in which the deviation of only the photon su
system from equilibrium is taken into account~the local ther-
modynamic equilibrium approximation!. One special feature
of a nonequilibrium high-temperature highly charged i
plasma is the role of radiation processes in the plasma ki
ics, which increases relative to that of collisional proces
asZ increases. This is why for small plasma dimensions a
large values ofZ, a deviation of the photon subsystem fro
equilibrium causes the electron subsystem to deviate f
equilibrium at very high~up to solid-state! densities of a
high-temperature highly charged ion plasma, at which
plasma is very nonideal. A nonideal high-temperature hig
charged ion plasma forms in experiments devised to inve
gate targets for laser thermonuclear fusion and inertial c
finement fusion, in experiments set up to investigate the
teraction of ultrashort powerful pulses of laser radiation w
solids, etc. A description of the state of such a plasma w
consideration of its gas-dynamic motion and energy tran
is possible only within a kinetic approach.

2. EQUATIONS OF IONIZATION KINETICS IN THE
AVERAGE-ION APPROXIMATION

A detailed description of a multicomponent high
charged ion plasma requires determination of the concen
tion distribution of a large number of states of the ion
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the configuration of occupation numbers of the electro
orbitals of each ion in an assigned state, at each momen
time. A large system of kinetic equations describing the tr
sitions among all possible states of the ions must be solv
Such a description of a plasma is called the chemical-b
model.1 However, the feasibility of taking into account th
ionization kinetics in the chemical-bond approximation
radiation gas-dynamic programs, especially two-dimensio
and three-dimensional ones, is very limited, since a la
number of kinetic equations must be solved at each mom
in time and at each point in space. The number of equati
increases rapidly when we move to the description o
plasma with a large value ofZ (Z.10), and can reach hun
dreds and even thousands.

Assuming that the charge of an ion varies continuous
we can replace a set of ions in different charge states by
ion in some average charge state. The state of such an a
age ion is described completely by assigning the occupa
numbers of the ion’s various electronic orbitals, which c
also vary continuously. In this case the complete system
equations of the ionization kinetics of a plasma in t
average-ion approximation can be reduced to the equat
describing the kinetics of the average populations of the e
tronic states:2,3

d

dt
~PjN!5RjNeNQj2I j NeNPj1N

3F (
j8

~Ej8.Ej!

Aj8jPj8Qj2 (
j8

~Ej8,Ej!

Ajj8PjQj8G
1NNeF (

j8
~Ej8.Ej!

Cj8j
D Pj8Qj2 (

j8
~Ej8,Ej!

Cjj8
D PjQj8G

1NNeF (
j8

~Ej8,Ej!

Cj8j
U Pj8Qj2 (

j8
~Ej8.Ej!

Cjj8
U PjQj8G ,

~1!

wherePj is the average population of the electronic orbi
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of the ion characterized by the quantum numbersj. In the
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average-ion model without consideration of the distribut
over orbital angular moment,j is specified by the principa
quantum numbern, and in the model that takes into accou
the distribution over orbital angular momentum it is specifi
by the pair of quantum numbers (n,l ). In addition, in ~1!
Qj512Pj /gj is the number of vacancies in statej, gj is
the statistical weight of statej, N5rNA /A is the ion den-
sity, r is the plasma density,A is the atomic weight of the
ion, NA is Avogadro’s number,

Ne5N^Z&5NFZ02(
j

PjG
is the free electron density,^Z& is the charge of the averag
ion, Z0 is the nuclear charge,I j andRj are, respectively, the
ionization and recombination rate coefficients in statej, and
Aj8j , Cj8j

D andCj8j
U are the rates of the transitions betwe

the states (j8,j) as a result of spontaneous radiative dec
impact quenching, and excitation processes.

The rate constants of the atomic processes appearin
the right-hand side of the system of equations~1! are func-
tions of the temperature and the plasma density, as we
the binding energies of electrons in statej, in the general
case. The binding energies, in turn, depend on the pop
tions of the levels and the ion density~so-called pressure
ionization!. Thus, an atom model that makes it possible
calculate the binding energy of an electron in statej from the
known values of the populations of all the states must
employed to close the system of equations~1!.

The simplest models of an atom are various versions
the Slater model.4 However, all of these models have on
serious drawback: they faithfully describe the states of
isolated free ion, but are inapplicable to a fairly den
plasma, where the influence of adjacent ions can no lon
be neglected and their presence can significantly alter b
the energies of bound states of a particular ion and the
tistical weight of each state.

Self-consistent-field models of the Hartree–Fock typ5

make it possible to take the influence of the surroundi
into account, but their application in practice entails en
mous additional computational expenditures, which are
acceptable when the necessary kinetic calculations are
formed together with gas-dynamic calculations of plas
flow.

It was suggested in Ref. 2 that the dependence of
statistical weight of a state on the plasma density should
introduced in such a manner that the statistical weight of
state of an isolated ion would be obtained at low densit
and would tend to zero at high densities. This simulates
moval of the degeneracy of statej due to its interaction with
the surrounding ions~for example, due to Stark splitting o
the level!, as a result of which some of the bound sta
move into the continuum. The simplest function having the
properties is a function of the form

gj5
gj
0

11a~Rj
0/R0!

b , ~2!
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ions in the plasma, andRj andgj are the effective radius o
the orbital and the statistical weight of levelj of an isolated
ion.

When a function like~2! is chosen and the effectiv
radius of the orbital is properly determined, highly excit
states disappear first as the plasma density increases.
dependence of the extent of ionization^Z& of the cold sub-
stance on the densityr then has the form

^Z&5(
j

Pj
0S 12

gj

gj
0D , ~3!

where thePj
0 are the populations of the levels of a neutr

isolated (r50) atom.
The parametersa andb can be found from the condition

that the dependence of the extent of ionization of the c
substance on the density obtained, for example, within
Thomas–Fermi model,6 is most closely approximated by Eq
~3!. The specific values of the constantsa andb depend on
the atom model and will be presented below.

An equation of the ionization kinetics of the form~1!
does not contain terms that describe photoionization
photoexcitation processes, which are the reverse process
photorecombination and radiative decay. Such a model
which only collisional processes~collisional ionization and
recombination, as well as collisional excitation and quen
ing! and radiation processes~photorecombination and radia
tive decay! are taken into account, is called the collisiona
radiative model. It describes an optically thin plasma,
which the radiation density is low, and therefore photoio
ization and photoexcitation can be neglected. The station
solution obtained within the collisional–radiative model do
not correspond to thermodynamic equilibrium in the gene
case, since not all the direct processes are balanced b
verse processes. However, at high densities, where c
sional processes are dominant, the stationary solution of
collisional–radiative model should proceed to thermod
namic equilibrium. At low densities, three-particle recomb
nation processes can be neglected, and the collision
radiative approximation transforms into the so-called coro
approximation.

3. ION MODEL NEGLECTING SPLITTING WITH RESPECT
TO THE ORBITAL ANGULAR MOMENTUM QUANTUM
NUMBER (H MODEL)

The simplest ion model that permits determination of t
energy levels of the bound states is the model propose
Ref. 7. In this model the state of the ion is determined by
occupation numbers of orbitals with different values of t
principal quantum numbern. States with identical principa
quantum numbers but different orbital angular momenta
assumed to be degenerate~hence it is called the hydrogeni
~H! atom model!.

Let there bePn electrons in the state with principa
quantum numbern. Then the effective nuclear charge, whic
determines the Coulomb interaction of an electron in an
bital with quantum numbern, is calculated with consider
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ation of its scre

TABLE I. Coefficients of the screening matrixsnm .

9999
9999
9999
9900
9800
9700
9500
9000
8300
.7612
n

m 1 2 3 4 5 6 7 8 9 10

1 0.3125 0.9380 0.9840 0.9954 0.9980 0.9990 0.9995 0.9999 0.9999 0.
2 0.2345 0.6038 0.9040 0.9722 0.9880 0.9979 0.9985 0.9990 0.9999 0.
3 0.1093 0.4018 0.6800 0.9155 0.9796 0.9820 0.9860 0.9900 0.9920 0.
4 0.0622 0.2430 0.5150 0.7100 0.9200 0.9600 0.9750 0.9830 0.9860 0.
5 0.0399 0.1381 0.3527 0.5888 0.7320 0.8300 0.9000 0.9500 0.9700 0.
6 0.0277 0.1109 0.2455 0.4267 0.5764 0.7248 0.8300 0.9000 0.9500 0.
7 0.0204 0.0808 0.1811 0.3184 0.4592 0.6098 0.7374 0.8300 0.9000 0.
8 0.0156 0.0624 0.1392 0.2457 0.3711 0.5062 0.6355 0.7441 0.8300 0.
9 0.0123 0.0493 0.1102 0.1948 0.2994 0.4222 0.5444 0.6558 0.7553 0.
10 0.0100 0.0400 0.0900 0.1584 0.2450 0.3492 0.4655 0.5760 0.6723 0
ening by the inner electrons~relative to the
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electron under consideration! from the formula

Zn5Z02 (
m<n

PmsnmS 12
1

2
dnmD , ~4!

wheresnm is the matrix of screening constants, which w
first proposed in Ref. 7 and whose coefficients are prese
in Table I.

The total energy of an ion is calculated from th
formula7

E52(
m

PmZm
2

m2 IH , ~5!

whereIH5e2/2a0 is the ionization potential of the hydroge
atom anda0 is the Bohr radius.

The binding energy for a level is found by differentiatin
~5! with respect to the populationPn :

En
05

]E

]Pn
5IHF2

Zn
2

n2
1 (

m>n
2Pm

Zm
m2snmS 12

1

2
dnmD G .

~6!

The radius of an orbital is calculated from the famili
expression for the radius of an orbital in the hydrogen ato

Rn
05a0n

2/Zn . ~7!

The constants in~2!, accordingly, have the value
a53.5 andb51.75.

In the general case of a dense plasma, lowering of
ionization potential of the orbital due to the influence of t
Coulomb fields of the surrounding ions occurs in addition
the removal of the degeneracy, so that Eq.~6! can be written
in the formEn5En

01DE, whereDE5e2^Z&/2R0 is the dis-
placement of the level due to pressure ionization.2

4. ION MODEL WITH CONSIDERATION OF THE SPLITTING
WITH RESPECT TO THE ORBITAL ANGULAR
MOMENTUM QUANTUM NUMBER (L MODEL)

A further development of the simple hydrogenic-io
model takes into account thel splitting of the levels~we call
it the L model!. According to this model, the effectiv
nuclear chargeZn in the nth orbital of an atom is written
with consideration of the screening by the inner electrons
the form8
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e

n

Zn5Z02 (
m<n

PmsnmS 12
2

dnmD
1(

m
Pmqmn(

l50

n21
Pnl

Pn
Gnl , Pm5 (

l 850

m21

Pml8.

The values ofvn andqnn are presented in Table II, an
the values ofqnm andGnl are calculated using the formula

qnm5H 1

p Smn D 5F22Smn D 2G1/2, 2n2.m2,

0, 2n2<m2,

Gnl5
1

4n2
@n222l ~ l11!21#1vn .

The total energy of the ion is calculated just as in the
model from Eq.~5!. Then the energy levelsEnl are calcu-
lated from the formula

Enl5En
022IHF(

m
Pm~qnmSm2qmnSn!

1
Zn
n2
Gnl(

m
PmqmnG1DE,

where

Sn5
Zn
n2 (

l50

n21
Pnl

Pn
Gnl ,

TABLE II. Numerical values of the constantsqnn and vn used in theL
model.

n qnn vn

1 0.270672 0.000
2 0.366310 0.070
3 0.371802 0.020
4 0.329523 0.012
5 0.295072 20.100
6 0.296580 20.400
7 0.320910 20.420
8 1/p 0
9 1/p 0
10 1/p 0
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andEn
0 is the energy of the level neglectingl splitting ~6!.

This model was used in Ref. 9 to calculate the char
teristics of a plasma in the local thermodynamic equilibriu
approximation. However, the expression proposed in Re
for the radius of an orbital in thenl subshell is inconsisten
when the statistical weight in~2! is calculated, since it cause
the orbitals with smalll , which are more symmetric and hav
larger binding energies, to begin to disappear first as
plasma density increases. The use of the mean dipole in
action radiusRnl;^1/r 2&21/2, rather than the mean distanc
between an electron and the nucleusRnl;^r & ~Ref. 9! is
more easily justified. Thus, orbitals with largel have an ef-
fectively larger radius, or, more specifically,

Rnl5
a0n

3/2

Zn
Al1

1

2
. ~8!

The use of~8! instead of~7! in ~2! results in alteration of
the values of the constants:a512.0, b52.7. Figure 1 pre-
sents the dependence of the mean extent of ionization
aluminum, copper, tin, and gold on the density of the c
(T50) plasma for the constants just presented, and c
pares them with the results for the Thomas–Fermi mode

A somewhat different atom model which takes into a
count l was considered in Ref. 10. Faussurier, Blancard,
Decoster10 proposed using an expression similar to~4! with
replacement of the screening matrixsmn by a matrix which
depends not only on the principal quantum number, but a
on the orbital angular momentum quantum number to ca
late the screened nuclear charge. Unfortunately, comp
testing of this model over a broad range of nuclear char
was not possible, since the new screening matrix was sp
fied only for values ofn not exceeding 4.

Figure 2 presents the first ionization potentials of e
ments with the nuclear chargesZ051, . . . ,36calculated us-
ing the H andL models, as well as the matrix in Ref. 10. Th
figure also presents an experimental curve.11 As seen from
the figure, theL model greatly overestimates the first ioniz
tion potentials for elements withZ0 > 20. However, there are
classes of problems~for example, the interaction of lase
radiation with matter!, in which the range of temperature

FIG. 1. Dependence of the extent of ionization of the cold substance on
density:1 — the Thomas–Fermi model,2–5 — calculation using Eq.~3!
with a512.0 andb52.7 for Al, Cu, Sn, and Au.
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and densities is such that the plasma is ionized sufficie
strongly. In this case the decisive role in the calculation,
example, of the spectral characteristics of the plasma
played by the higher ionization potentials, rather than
first. Figure 3 presents the dependence of the ionization
tential of copper on the extent of ionization calculated us
the models described here, as well as the experimental va
from Ref. 11. As a whole, both models agree well with t
literature data. Consideration of thel splitting produces ad-
ditional jumps in the ionization potentials, which appe
upon passage from one ionized subshell to another.

5. RATE CONSTANTS OF ATOMIC PROCESSES

There are presently a multitude of expressions for
collisional ionization rate constant. The approximations p
posed in Refs. 12–16 are the most widely used. They can
be written in the form

I j5CT23/2
exp~2u!

uz F~u,Zn!, ~9!

where u52Ej /T and T is the electron temperature. Th
constantsz andC, as well as the functionF(u,Zn), are pre-
sented in Table III.

he
FIG. 2. Ionization potentialsI 1 of neutral ions calculated on the basis of th
H model~curve1!, theL model~curve2!, and the model in Ref. 10~curve
3!; 4— experimental curve.

FIG. 3. Dependence of the ionization potentialI Z of copper on the extent of
ionizationZi : curves1 and2 are the results of calculations based on the
andL models, and curve3 was constructed on the basis of data from R
11.
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Two process

TABLE III. The parametersC andz and the functionF(u,Zn) appearing in the approximating formula~9! for
the collisional ionization rate constant.
No. Source C, cm3s21keV1.5 z F(u,Zn)

1 Ref. 12 3.44310211 2 12.18@12exp(2u)#(110.0335n)
3(120.622/Zn20.0745/Zn

2)u f (y)u,
y50.25 lnu,

f (y)50.2310.46y10.1074y2

20.045y320.01505y4

2 Ref. 13 9.516310211 1 E1(u)expu
3 Ref. 14 6.82310211 2 1
4 Ref. 15 7.399310212 7/4 1
5 Ref. 16 3.92310211 2 0.915(110.64/u)2210.42(110.5/u)22

Note:E1(u)5*u
`e2t

dt

t
is an exponential integral.
es, namely three-particle recombination and
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whereRnl(r ) is the radial part of the wave function of an
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photorecombination, were taken into account in the reco
bination rate constant:

Rj5Rj
3b1Rj

R .

The rateRj
3b of three-particle recombination to statej is

calculated from the principle of detailed balance:

Rj
3b5

1

2 S 2p\2

meT
D 3/2Ne exp~u!gjI j .

The rateRj
R of the photorecombination of electrons

statej is given by the expression

Rj
R5

8A2p e10gjZn
4

3A3me \3c3n5T3/2
exp~u!E1~u!,

where

E1~u!5E
u

`

e2t
dt

t

is the exponential integral.
The rate of spontaneous radiative decay from statej8 to

statej was calculated from the formula17

Aj8,j5
2e2

mec
3\2 ~Ej8,j!

2S gj

gj8
D f j,j8, l 85 l61,

whereEj8,j5Ej82Ej is the transition energy andf j,j8 is the
oscillator strength for the transition under consideration.

In the H model we calculated the oscillator streng
using the expression obtained for transitions between le
with the principal quantum numbersm andn of a hydrogenic
ion:2

f nm51.96
Zn
4Zm

2

n5m3Ej8,j
3 .

In the L model the oscillator strength of the transitio
from levelnl to levelml8 was calculated using the formula18

f nl,ml85
1

3

max~ l ,l 8!

2l11

Ej8,j

IH
SRnl

ml8

a0
D 2,

Rnl
ml85E

0

`

Rnl~r !Rml8~r !r 3dr,
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electron in the Coulomb field of a nucleus with the char

Zn . The analytic expression forRnl
ml8 can be found in Ref. 6.

The formulas for the rate constants of collisional exci
tion from levelnl to levelml8 has the form17

Cj,j8
U

524p
\4

me
2e4 S IH

Ej8,j
D 2f j,j8A 2T

pme
bj8,j

3exp~2bj8,j!Gj,j8,

wherebj8,j5Ej8,j /T, and

Gj,j850.19H 110.9 exp~bj8,j!E1~bj8,j!

3F11
m~m2n!

20 S 11bj8,jH 12
2

Z J D G J
is the Gaunt factor.2

The transition rate from excited statej8 to statej in an
impact quenching process is found from the principle of d
tailed balance:

Cj8,j
D

5Cj,j8
U gj

gj8
exp~bj8,j!.

6. CALCULATION RESULTS

The model of ionization kinetics described above w
investigated numerically over a broad range of plasma te
peratures and densities and was used to calculate the sp
characteristics. The system of differential equations~1! was
solved by the implicit Euler method, and at each time s
the system of algebraic equations obtained was solved
Newton’s method.19

We performed comparative calculations using the H a
L average-ion models for various plasma compositions, te
peratures, and densities. The collisional ionization rate w
calculated using constants No. 2 in Table III. Figure 4 p
sents the mean charge of an aluminum plasma atT5100 eV
versus the density for the stationary solution of Eqs.~1!. The
calculations were performed both in the local thermod
namic equilibrium approximation~curves2!, in which only
the collisional processes were taken into account in Eqs.~1!,
and in the collisional–radiative approximation~curve1!. As
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seen from this figure, the differences between the plots of
mean charge for the two average-ion models are very s
and do not exceed fractions of a percent. The calculation
the local thermodynamic equilibrium approximation at lo
densities give higher values of the mean charge than do
calculations in the collisional–radiative approximation. A
the density increases, the collisional–radiative approxim
tion goes over to the local thermodynamic equilibrium a
proximation, as was postulated. At ion densitiesNi.1021

cm23, the two approximations give essentially identical s
lutions not only for the mean charge, but also for the po
lations.

Figures 5 and 6 show plots of the occupation numb
Pnl /gnl of level nl versus the energy of the level for tw
density values. At the low density the collisional–radiati
approximation gives an occupation number distribution t
differs significantly from the Boltzmann distribution. Th
states closer to the ground state are more populated, w
the highly excited states are depleted. At the density co

FIG. 4. Dependence of the extent of ionization of an Al plasma atT5100
eV on the density for the average-ion model without consideration of thl
splitting ~solid curves! and with consideration of thel splitting ~points!: 1—
collisional–radiative approximation;2— local thermodynamic equilibrium
approximation.

FIG. 5. Dependence of the occupation numbers of the levels on their b
ing energy in the average-ion model with consideration of thel splitting for
an Al plasma with an electron temperatureT5100 eV and a density
Ni51019 cm23: 1 — collisional–radiative approximation;2 — local ther-
modynamic equilibrium approximation.
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sponding to the merging of the two curves in Fig. 4 t
populations also coincide.

Figures 7 and 8 show plots of the temperature dep
dence of the mean charge of Al and Ag plasmas calculate
the average-ion approximation and the chemical-bond mo
at various densities. About 150 different ion states w
taken into account in the calculations based on the chem
bond model. Pressure ionization was not taken into acco
and this is possibly the reason for the discrepancy betw
the results at 10 g/cm3. As a whole, satisfactory agreeme
between the temperature dependences obtained using th
ferent models of the kinetics is observed.

The influence of the various processes taken into acco
in the ionization kinetics on the mean charge was studied
an aluminum plasma at a temperature of 0.1 keV. Figur
presents the mean charge versus the density for the statio
solution of Eqs.~1! when different processes were disr
garded in the calculation of the right-hand side.

It is seen from a comparison of curves2 and3 that the
influence of the collisional excitation and collisional quenc
ing processes becomes significant at 1026–1025 g/cm3. Ow-

d-

FIG. 6. Dependence of the occupation numbers of the levels on their b
ing energy in the average-ion model with consideration of thel splitting for
an Al plasma with an electron temperatureT5100 eV and a density
Ni51021 cm23: 1 — collisional–radiative approximation;2 — local ther-
modynamic equilibrium approximation.

FIG. 7. Dependence of the mean charge of an Al plasma on the temper
T: calculations performed using the chemical-bond model~lines! and in the
average-ion approximation~points! for densities equal to 1023 ~1!, 1021 ~2!,
and 10 g/cm3 ~3!.
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ing to the occurrence of cascade ionization processes,
cause an increase in the mean charge~curve2! as the density
increases in the range 1026–1023 g/cm3. At densities greater
than 1023 g/cm3

, three-particle recombination becomes t
dominant process, and the mean charge begins to decr
Curves1, 2, and 4 show that radiative decay prevents t
establishment of equilibrium~curve 1 essentially coincides
with curve 4 by the time the density is 1026 g/cm3, and
curve2 does so only at a density of 1021 g/cm3).

7. CALCULATION OF THE SPECTRAL EMISSION AND
ABSORPTION COEFFICIENTS

The expressions for the spectral coefficients for
bremsstrahlung and photoabsorption of quanta with the
ergy «n52p\n have the form17

kn
f f5

16p2

3
A 2p

3meT

e6\2NA
2r2^Z&3

cmeA
2«n

3 ,

FIG. 8. Dependence of the mean charge of a Ag plasma on the temper
T: calculations performed using the chemical-bond model~lines! and in the
average-ion approximation~points! for densities equal to 1023 ~1!, 1021 ~2!,
and 10 g/cm3 ~3!.

FIG. 9. Dependence of the mean charge of an Al plasma atT5100 eV on
the density for the stationary solution of Eqs.~1! when the following pro-
cesses were taken into account on the right-hand side of these equatio1
— collisional ionization, three-particle recombination, photorecombinati
collisional excitation, and collisional quenching;2— collisional ionization,
three-particle recombination, photorecombination, collisional excitat
collisional quenching, and radiative decay;3— collisional ionization, three-
particle recombination, photorecombination, and radiative decay. Cur4
was obtained in the local thermodynamic equilibrium approximation.
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u~x!5H 1, x>0,

0, x,0.

The line absorption coefficient is given by th
expression2

kn
abs,bb5

2p2\e2NAr

mecA

3(
j8

(
j

PjS 12
gjPj8
gj8Pj

D f j,j8cj,j8d l ,l 861 ,

wherecj,j8 is the line profile.
The total spectral absorption coefficient with consid

ation of the induced emission equals

kn
abs5~kn

f f1kn
b f!F12expS 2

«n

T D G1kn
abs,bb .

For the emission coefficient in a line and the recombin
tion emission coefficient we used the expressions

kn
em,bb5

2p2\e2NAr@exp~«n /T!21#

mecA«n
3 (

j
(
j8

~gj2Pj!

3~Ej82Ej!
3
Pj8
gj8

f j,j8cj,j8d l ,l61 ,

kn
f b5

8p2A2p

3A3me

e10NA
2r2^Z&

T3/2cA2«n
3

3(
j

~gj2Pj!expSEj

T D Zn4n5 u~«n2uEju!.

The total spectral emission coefficient equals

kn
em5~kn

f f1kn
f b!F12expS 2

«n

T D G1kn
em,bb .

The spectral emission coefficient thus determined is
lated to the spectral radiated powerJn per unit volume of the
substance by

Jn5ckn
emUn

Pl ,

where

Un
Pl5

«n
3

p2\3c3
1

exp~«n /T!21

is the Planck distribution.
Figure 10 presents the results of calculations of the sp

tral absorption coefficients for aluminum at a temperat
T50.01 keV and densityr52.7 g/cm3. The spectral absorp
tion coefficients of cold dense aluminum obtained in Ref.
are presented for comparison. Close agreement betwee
results is observed over the entire portion of the spectr
where the calculations were performed~10 eV,«n,30
keV!.
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In calculations of the spectral characteristics of a
plasma, the line profile and linewidth are of great impo
tance. The simplest line profile, which was used in Ref. 9
the Lorentzian

cj,j85
1

p

gj,j8

~Ej82Ej2«n!21gj,j8
2 , ~10!

gj,j85A~gj,j8
N

!21~gj,j8
D

!21~gj8
C

!2,

where gj,j8 is the total linewidth, andgj,j8
N , gj,j8

D , and
gj,j8
C are, respectively, the radiative, Doppler, and collisio

linewidths.
Figure 11 presents the results of calculations of the sp

tral absorption coefficients using the average-ion model
scribed above with consideration of thel splitting for a gold
plasma at a temperatureT50.1 keV and densityr50.1
g/cm3. The figure also presents the results from Ref.
Qualitative agreement between our calculations and the
from Ref. 9 is observed on the whole. The differences
tween the positions of the jumps in absorption and the li
can be attributed to the fact that at the density and temp
ture indicated, the rate of collisional processes is insuffici
for establishing local thermodynamic equilibrium. As w
shown above, the calculation in Ref. 9, which was perform
in the local thermodynamic equilibrium approximatio

FIG. 10. Spectral absorption coefficientskn
absin cold dense aluminum~curve

1 was constructed on the basis of calculations in the average-ion app
mation, and curve2 was constructed on the basis of data from Ref. 20!.
t
-
s

l

c-
e-

.
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-
s
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t

d

yields higher values for the mean charge of the plasma a
therefore, leads to displacement of the levels in the sti
direction.

The characteristic values of the linewidth at a tempe
tureT'0.1 keV and plasma densityr'0.1 g/cm3 amount to
several electron volts. Nevertheless, in a high-Z plasma ther-
modynamic fluctuations of the occupation numbers lead
level shifts comparable to the binding energy.21 If we assume
that the fluctuations of the occupation numbers of differ
levels are statistically independent, this leads to effect
broadening of the line. As shown in Refs. 21 and 22, in t
case the line has a Doppler line shape:

cj,j85
1

A2p~DEj,j8!
2
expF2

~Ej82Ej2«n!2

2~DEj,j8!
2 G ,

where the linewidthDEj,j8 is related to the root-mean
square values of the energy fluctuationsdEj of the levels by

~DEj,j8!
25^~dEj82dEj!

2&. ~11!

In the average-ion approximation under considerat
here we can express the linewidth~11! in terms of deriva-
tives of the energies of the respective states with respec
the population:

xi-

FIG. 11. Spectral absorption coefficientskn
abs in gold at a temperature

T50.1 keV and a densityr50.1 g/cm3: 1, 2 — absorption coefficients
calculated with consideration of lines and without consideration of lines
the local thermodynamic equilibrium approximation~results from Ref. 9!; 3,
4— corresponding results of the calculations in the present work with
line shape~10!.
FIG. 12. Spectral absorption co-
efficient in lines for a gold

,

l

plasma at a temperatureT5750
eV and densitiesr51.9 g/cm3

~a! and r519 g/cm3 ~b!: 1 —
calculated results from Ref. 21
2, 3 — calculation using the
average-ion model with and
without consideration of thel
splitting with linewidths~12! and
~13!, respectively;4 — calcula-
tion using the average-ion mode
with consideration of thel split-
ting and doubled linewidths.
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TABLE IV. Transition parameters calculated by different methods.
~DEj,j8!
25(

j9
S ]Ej8
]Pj9

2
]Ej

]Pj9
D 2^~dPj9!

2&

5(
j9

S ]Ej8
]Pj9

2
]Ej

]Pj9
D 2Pj9S 12

Pj9
gj9

D . ~12!

Thus, differentiating~6!, for the average-ion model with
out consideration of the splitting with respect to the orbi
angular momentum quantum numbers~the H model! we ob-
tain

]En

]Pm
52IH

{
Zn
n2

snm2 (
k>n

sknS 12
1

2
dknD

3skmS 12
1

2
dkmDPk

k2
, m<n,

Zm
m2smn2 (

k>m
sknS 12

1

2
dknD

3skmS 12
1

2
dkmDPk

k2
, m>n.

~13!

The expression for the linewidth~11! in the case in
which the l splitting is taken into account~the L model!,
which has a fairly cumbersome form, can be obtained i
similar manner.

Table IV presents the energies of various transitions
well as the values of the linewidths, calculated from Eqs.~6!,
~12!, and~13! for an iron plasma at a temperatureT5200 eV
and densityr57.8 g/cm3. For comparison, the table als
presents the energies of the corresponding transitions
linewidths from Ref. 22, which were obtained in th
Thomas–Fermi model. It can be seen from a comparison
the calculations of the transition energy in the average-
model are in satisfactory agreement with the quantu
mechanical calculations. The difference in the transition
ergy does not exceed 2% for most transitions, and it amo
to about 10% only for the 3→4 transition. However, the
linewidth values differ by almost twofold, although line
width differences among the various transitions agree qu
tatively with the data in Ref. 22.

Transition energy, eV DEj,j8, eV

Transition Ref. 22 ~6! Ref. 22 ~12!, ~13!

1→2 6339 6454 57.7 24.8
1→3 7128 7272 97.3 50.4
1→4 7307 7459 117.6 67.8
2→3 886.5 819 41.4 26.2
2→4 1066 1006 67.7 44.9
3→4 210.8 187.3 27.8 19.5
280 JETP 84 (2), February 1997
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lines for a gold plasma at a temperatureT50.75 keV and
densitiesr51.9 and 19 g/cm3. Curves2 and3 correspond to
an exact calculation of the linewidth from Eqs.~12! and~13!,
while curve4 was obtained for the case in which the exa
widths were doubled. For comparison, the figure also p
sents the results from Ref. 21~curve1!, where the calcula-
tions were performed using the Hartree–Fock model.

This study has shown that the use of the average
approximation to calculate the ionization kinetics of a hig
temperature highly charged ion plasma gives satisfactory
sults when the thermodynamic and spectral characteristic
such a plasma are determined. This approach can be us
comprehensive calculations of the kinetics and the radia
gas dynamics.
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On the dynamics of a curved deflagration front
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An equation describing evolution of a curved deflagration front of finite thickness is obtained for
the case of an arbitrary equation of state of the ‘‘fuel’’, an arbitrary type of energy release
and an arbitrary type of thermal conduction. The equation is complemented by conservation laws
for the mass flux and the momentum flux through the deflagration front of finite thickness.
As an illustration of the method, the growth rates and the cutoff wavelengths for the linear stage
of the flame instability are calculated for the case of a flame in an ideal gaseous fuel and
for the case of a thermonuclear deflagration propagating in a strongly degenerate matter of white
dwarfs. © 1997 American Institute of Physics.@S1063-7761~97!00802-0#
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The dynamics of a deflagration wave is a key problem
many physical phenomena from industrial problems of bu
ing in engines to astrophysical problems of stellar evoluti
A deflagration wave~flame! is a front of energy releas
propagating due to thermal conduction with a subso
velocity.1 An ordinary flame supported by chemical reactio
of a gaseous or liquid fuel is a typical example of a defl
gration wave. Other examples are waves of laser ablatio
inertial fusion,2,3 fronts of thermonuclear reaction in supe
nova events,4,5 evaporation waves in a superheated flui6

etc. A deflagration wave may propagate as a planar stat
ary front separating cold initial matter~fresh ‘‘fuel’’ ! from
heated products of deflagration. It was shown by Landau
by Darrieus1,7 that a planar flame front is hydrodynamical
unstable against perturbations which bend the front on len
scales large compared to the flame front thickness. Sim
instability is inherent to all waves of the deflagration typ
The instability leads to a cellular structure of a deflagrat
front8,9 or to self-turbulization of the combustion flow,1,9,10

which may cause considerable increase of the velocity of
deflagration front. Because of the Landau–Darrieus insta
ity the configuration of a curved deflagration front is mu
more common than the configuration of a planar front. B
sides, some external effects like turbulence may wrinkl
deflagration front as well.

To study propagation of a deflagration wave one has
consider the complete system of hydrodynamic equatio
taking into account thermal conduction and the kinetics
the energy release. This is a rather complicated problem e
for numerical solution and any simplification of the proble
is of great interest. The problem may be simplified consid
ably if the region of thermal conduction and energy rele
can be replaced by a surface of discontinuity, separating
fuel and the products of deflagration. In this case one m
specify the evolution equation for the deflagration front a
the boundary conditions at the front. Such a model w
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a planar flame front of zero thickness. However further
vestigation of the flame front stability showed that the fin
thickness of the front has to be taken into account.9,10 The
influence of thermal conduction and finite flame thickne
remains important even on the scales exceeding the fl
thickness by several orders of magnitude. At the same t
introduction of a discontinuity surface for a flame front do
not necessarily imply that the front has zero thickness:
flame thickness may enter the boundary conditions and
evolution equation as an external parameter, depending
the fuel properties. The evolution equation for a flame fro
of finite thickness and the boundary conditions at the fr
were obtained first by Matalon and Matkowsky11 ~though
misprints in the final results somewhat spoil the excell
work!. Matalon and Matkowsky considered the case of
ordinary laboratory flame propagating in an ideal gas wit
large activation energy of the chemical reaction. The sa
evolution equation for a flame in an ideal gaseous fuel w
obtained independently in Ref. 12. However, the diversity
deflagration waves and their properties require developm
of more general theory of curved deflagration fronts, inclu
ing the case of an arbitrary fuel with an arbitrary type
energy release.

In the present paper we obtain the conservation laws
deflagration front and the evolution equation for a curv
deflagration front of finite thickness propagating in a fu
with an arbitrary equation of state, an arbitrary type of th
mal conduction and an arbitrary type of energy release.
illustrate the method, the growth rates and the cut-off wa
lengths for the linear stage of the flame instability are cal
lated for a flame in an ideal gaseous fuel and for a therm
nuclear deflagration propagating in the strongly degene
matter of white dwarfs. For the particular case of a flame
an ideal gas with large activation energy of the reaction
equations obtained agree with the results of Ref. 11.

281-08$10.00 © 1997 American Institute of Physics



2. A PLANAR STATIONARY DEFLAGRATION FRONT
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As usual the deflagration velocity is essentially subson
so that the flow caused by a deflagration wave can be tre
as incompressible. The equations describing propagation
deflagration wave are

]r

]t
1¹•~rv!50, ~1!

r
]v

]t
1~rv•¹!v1¹P5mFDv1S mS1

mF

3 D¹•~¹v!,

~2!

r
]H

]t
1rv•¹H5¹•~k¹T!1

r2Q

tR
W~T!, ~3!

whereH is the enthalpy per unit mass,k is the coefficient of
thermal conduction,mF andmS are the coefficients of the firs
and second viscosity respectively, which may be taken c
stant for the majority of physical problems. For incompre
ible matter the density, enthalpy, and thermal conduction
pend only upon temperature:r5r(T), H5H(T), k5k(T).
The last term in Eq.~3! describes the energy release in t
deflagration wave,tR is a constant with dimension time an
Q is the energy release per unit mass. For a given enthalp
the fuel ~label ‘‘2’’ ! the enthalpy of deflagration produc
~label ‘‘1’’ ! is computed through the conservation of e
ergy:H15H21Q. Then the equation of state gives the fin
temperature of the deflagration productsT15T(H1), and
the final densityr15r~H1!. The dimensionless function
W(T) gives the temperature dependence of the reaction
this function vanishes for the initial matter and for the defl
gration productsW(T2)50, W(T1)50. Strictly speaking,
the process of energy release should be described by a
rate kinetic equation: the chemical kinetic equation,
equation of laser light absorption, etc. However in ma
cases the kinetic equation together with the equation of
ergy transfer may be reduced to an equation of the form
Eq. ~3!. This is an exact result for a flame in an ordina
gaseous fuel with Lewis number equal to unity, when
coefficients of mass diffusion and thermal diffusivity a
equal.9,10This simplification can be made also for the case
negligible mass diffusion, when electron thermal conduct
or thermal conduction of radiation is the dominant proce
as it is for the thermonuclear reaction fronts in supernova13

for laser ablation3 and for many other physical processes.
Equations~1!–~3! have a stationary solution which is

planar deflagration front propagating alongz-axis. In the ref-
erence frame comoving with the deflagration front the s
tionary solution consists of the upstream homogeneous
of cold matter, the transition region of heating and ene
release, and the homogeneous downstream flow of the d
gration products. For the stationary flow we ha
ru5r2Uf5const and the speed of a stationary deflagrat
is determined as an eigenvalue of the energy transfer e
tion ~3!

r2Uf

dH

dz
5

d

dz S k
dT

dzD1
r2Q

tR
W~T! ~4!
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tion front andT5T1 behind the front.
It is convenient to introduce the dimensionless variab

and parameters r5r/r2 , Q5T/T2 , h5H/H2 ,
P5(P2P2)/r2Uf

2, x5k/k2 , PtF,S5mF,SH2/T2k2 ,
L5QL/(H2UftR), and the dimensionless coordinatej5z/
L, whereUf is the velocity andL5k2T2/(H2r2Uf) is the
thickness of the planar stationary deflagration front. The
rameterL is an eigenvalue of the dimensionless equation
heat transfer

d

dj S x
dQ

dj D2
dh

dj
1LW~Q!50, ~5!

with the boundary conditionsQ51 for j→2` andQ5Q1

for j→`.
Let us consider the approximate analytical solution

Eq. ~5! for the case of negligible thickness of the zone
energy release using the method proposed by Zel’dovich
Frank-Kamenetskii.10 Outside the reaction zoneW'0 holds
and the temperature obeys the equation

x
dQ

dj
5h21. ~6!

Neglecting the second term in Eq.~5! inside the thin zone of
energy release and using Eq.~6! as a boundary condition
upstream from the zone we obtain the following approxim
value ofL

L'
~h121!2

2x1
S E

1

Q1

W~Q!dQ D 21

. ~7!

Equation~7! makes it possible to obtain the deflagration v
locity depending on the particular function of the ener
release asUf 5 AQk2T2 /LH22r25tR.

3. EVOLUTION EQUATION FOR AN INFINITELY THIN
DEFLAGRATION FRONT

Let the curved deflagration front be described by a fu
tion z5Rf~x,t!, so that the evolution of the front is chara
terized by the length scaleR@L and by the time scaleR/Uf .
It is convenient to introduce the dimensionless tim
t5Uft/R, the transverse coordinateh5x/R and the small
parameter«5L/R!1. In a coordinate system comoving wit
the flame front

z5j2 f ~h,t!/«, h5h, t5t ~8!

the hydrodynamic equations take the form

«
]r

]t
1

]m

]z
1«¹'~ry!50, ~9!

«r
]y

]t
1m

]y

]z
1«r ~y¹'!y

52«¹'P1¹' f
]P

]z
1PrFDzy1S PrS1 PrF

3 D
3S «¹'2¹' f

]

]z D S ]

]z Smr D1«¹'yD , ~10!
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We expand a solution of Eqs.~9!–~12! in power series of
2

:

a-
al
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s of
]t ]z '

52
]P

]z
1PrFDzu1S PrS1 PrF

3 D ]

]z

3S ]

]z Smr D1«¹'yD , ~11!

«r
]h

]t
1m

]h

]z
1«ry¹'h

5N2
]

]z S x
]Q

]z D1«¹'FxS «¹'Q2¹' f
]Q

]z D G
2«¹' f

]

]z
~x¹'Q!1W~Q!, ~12!

where the mass fluxm is given by the expression

m5ru2r
] f

]t
2ry¹' f , ~13!

u5vz/Uf , y5vx/Uf are the components of the dimensio
less velocity, and¹' is the part of the operator¹ related to
the coordinateh along the front surface. The Laplace oper
tor in these variables takes the form

Dz5N2
]2

]z2
2«¹'

2 f
]

]z
22«

]

]z
~¹' f¹'!1«2¹'

2 ,

~14!

whereN 5 A11(¹' f )
2. It is convenient to rewrite Eqs.~10!

and~11! in another form, putting the expression for the m
mentum flux in the left-hand side

m
]

]z
~y1u¹' f !52«r S ]

]t
1y¹'D ~y1u¹' f !

1«ruS ]

]t
1y¹'D¹' f2«¹'P1PrF

3~Dzy1¹' fDzu!1«S PrS1 PrF
3 D¹'

3S ]

]z Smr D1«¹'yD , ~15!

N2
]

]z S P1
m2

N2r D
52«

]m

]t
2«¹'~my!2«r

]2f

]t2
22«ry¹'

] f

]t

2«ry~y¹'!¹' f1«¹' f¹'P1PrFDzSmr D
1PrFyDz¹' f1PrFDz

] f

]t
1S PrS1 PrF

3 D SN2
]

]z

2«¹' f¹'D S ]

]z Smr D1«¹'yD . ~16!
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the small parameter «: m5m01«m11O(« ),
Q5Q01«Q11O~«2!, etc. Then with accuracyO~«! Eqs.~9!,
~12!, ~15!, and~16! take the form

]m

]z
50, ~17!

m
]

]z
~y1u¹' f !5PrFN

2
]2

]z2
~y1u¹' f !, ~18!

N2
]

]z S P1
m2

N2r D5S 43 PrF1PrSDN2
]2

]z2 Smr D , ~19!

m
]h

]z
5N2

]

]z S x
]Q

]z D1W~Q!. ~20!

It follows from Eq. ~17! thatm5m0~h,t!1O~«!. Similar to
Eq. ~5!, the solution of Eq.~20! can be presented in the form

Q05Qp~z/N!, m0~h,t!5N[A11~¹' f !2, ~21!

whereQ5Qp~j! is the temperature profile for a planar defl
gration front, which is a solution of the ordinary differenti
equation~5!. The equation of state of the fuel gives us im
mediately

r 05r ~Q0!5r p~z/N!, h05h~Q0!5hp~z/N!. ~22!

Equations~18! and ~19! integrated across the deflagratio
front supply the conservation laws for the momentum flux
the infinitely thin surface of discontinuity. In particular, w
find from Eq.~18!

y1u¹' f5y21u2¹' f1O~«!. ~23!

Equations~13! and ~23! give the solution for the velocity
components

u5u22
1

N

r21

r
1O~«!, ~24!

y5y21
¹' f

N

r21

r
1O~«!. ~25!

The expression for pressure follows from Eq.~19!

P5P21
r21

r
1S 43 PrF1PrSDN ]

]z S 1r D1O~«!.

~26!

Equations~13! and ~21! give the evolution equation for an
infinitely thin deflagration front

] f

]t
1y2¹' f1A11~¹' f !22u25O~«!. ~27!

The evolution equation~27! and the relations~24!–~26! de-
termine the dynamics of an infinitely thin deflagration fron
which is, in fact, the Landau–Darrieus model of a deflag
tion front.

4. INFLUENCE OF THE FINITE THICKNESS OF A
DEFLAGRATION FRONT ON FRONT EVOLUTION

The evolution of a deflagration front depends essentia
upon the finite thickness of the front even on the leng
scales which exceed the front thickness by several order
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magnitude.9,10 The next terms of the expansion in« describe
n

f

it

m

If we write the right-hand side of Eq.~31! in Hermitian form,

ity

he

ary
n-

is
the
ry
iva-
the influence of the finite thickness of the deflagration fro
The equation for the mass flux, Eq.~9!, with accuracy«2

may be written in the form

]m1

]z
5N21S ]N

]t
1y2¹'N1

¹' f¹'N

N D ]

]z
~~r 021!z!

2
r 021

N S ]N

]t
1¹'~Ny2!1¹'

2 f D2¹'y2 .

~28!

The solution of Eq.~28! is

m15m122z¹'y21S ]N

]t
1y2¹'N1

¹' f¹'N

N D
3

z

N
~r 021!2S ]N

]t
1¹'~Ny2!1¹'

2 f D JS z

ND ,
~29!

where

JS z

ND5E
2`

z/N

~r p~n!21!dn. ~30!

Substituting the expression~29! for the mass flux into the
thermal conduction equation~12! and extracting the terms o
order ofO~«! we have

m12

]h0
]z

2S ]N

]t
1¹'~Ny2! D z

N

]h0
]z

2S ]N

]t
1¹'~Ny2!

1¹'
2 f D JS z

ND ]h0
]z

1¹'
2 fx

]Q0

]z

22¹' f
¹'N

N

]

]z S zx
]Q0

]z D
5N2

]2

]z2
~xQ1!2N

]

]z S dhdQ
Q1D1

dW

dQ
Q1 . ~31!

One can check by simple substitution and comparison w
Eq. ~5! that the right-hand side of Eq.~31! is zero for
Q15]Q0/]z:

F̂S ]Q0

]z D[N2
]2

]z2 S x
]Q0

]z D2N
]

]z S dhdQ

]Q0

]z D
1
dW

dQ

]Q0

]z
50. ~32!

The operatorF̂~Q1! can be reduced to a Hermitian for
F̂H~c! by the substitution

Q15
c

x
expS 12 E

z2 /N

z/N

xp
21 dhp

dQp
dn D , ~33!

wherez2 is an arbitrary position since the operatorF̂~Q1! is
linear. The expressionF̂H~c! becomes zero for

c05x
]Q0

]z
expS 2

1

2 E
z2 /N

z/N

xp
21 dhp

dQp
dn D . ~34!
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multiply it by c0 and integrate, we obtain the relation

m125S ]N

]t
1¹'~Ny2!1¹'

2 f D K ~j1J~j!!
dhp
dj L

2¹'
2 f K j

dhp
dj

1x
dQp

dj L 12
¹' f¹'N

N

3 K d

dj S jx
dQp

dj D L , ~35!

where

^F&5S E
2`

`

FC2dj D S E
2`

` dhp
dj

C2dj D 21

~36!

and

C25x
dQp

]j
expS 2E

j2

j

xp
21 dhp

dQp
dn D . ~37!

The profiles of temperature, enthalpy and dens
Qp5Qp(j), hp5hp(j), rp5rp(j) for a planar stationary
deflagration front follow from Eq.~5! and the equation of
state. Taking into account Eq.~35! we obtain the evolution
equation for a deflagration front of finite thickness with t
accuracyO~«2!

] f

]t
1y2¹' f2u21N

52«S ]N

]t
1¹'~Ny2!1¹'

2 f D K ~j1J!
dhp
dj L

1«¹'
2 f K j

dhp
dj

1x
dQp

dj L
22«

¹' f¹'N

N K d

dj S jx
dQp

dj D L , ~38!

whereN 5 A11(¹' f )
2. Equation~38! is obtained for the

case of an arbitrary equation of state of the fuel, an arbitr
type of the thermal conduction and an arbitrary type of e
ergy release.

Let us consider a deflagration wave, for which energy
released in a zone of negligible thickness compared to
total thickness of the deflagration front. For an ordina
flame this case corresponds to a reaction with large act
tion energy. In this case we have from Eq.~6! C251 for j,0
andC250 for j.0, so that the average of Eq.~36! becomes

^F&5
1

h121 E
2`

0

Fdj. ~39!

Calculating the coefficients in Eq.~38! we can write the evo-
lution equation for the deflagration front in the form

] f

]t
1y2¹' f2u21N5«aS ]N

]t
1¹'~Ny2!1¹'

2 f D .
~40!
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Equation~40! describes the influence of front stretching and
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4
Pr 1Pr N2

]2 m
2«

]N
2«¹ ~Ny !

t
ain
the
the finite thickness of the deflagration wave on the veloc
of the front. The numerical factor depends on the fuel pr
erties

a5
h1

h121 E
1

Q1

rxdQ1E
1

Q1 12rh

h21
xdQ. ~41!

For many physical problems the dimensionless equation
state for an isobaric flow has the formrh51. This holds
when pressure is determined for an ideal gas, a nonrelat
tic, or ultra-relativistic fermi-gas, by radiation pressure, e
In this case the numerical factor becomes

a5
h1

h121 E
1

Q1

rxdQ. ~42!

For the particular case of an ideal gas~rQ51! with a con-
stant coefficient of thermal conduction~x51! the evolution
equation obtained by Matalon and Matkowsky11 is recovered
from Eq. ~40!.

5. CONSERVATION LAWS AT A DEFLAGRATION FRONT
OF FINITE THICKNESS

The evolution equation~40! should be complemented b
conservation laws at the deflagration front which take i
account the finite thickness of the front. These conserva
laws follow from Eqs.~9!, ~15! and ~16! integrated with ac-
curacyO~«2!. The conservation law for the mass flux follow
immediately from Eq.~29!:

S ru2ry¹' f2r
] f

]t D U
2

1

5«J1S ]N

]t
1¹'~Ny!1¹'

2 f D ,
~43!

where the numerical factor is given by the formula

J15E
2`

`

j
drp
dj

dj. ~44!

To obtain conservation laws for the momentum flux we ne
to integrate Eqs.~15! and~16!, which toO~«2! have the form

m
]

]z
~y1u¹' f !

52«r S ]

]t
1v2¹'Dy22«r¹' f S ]

]t
1y2¹'D

3u22«
r21

N
~¹' f¹'!y22«

r21

N
¹' f ~¹' f¹'!u2

2«¹'P22«
r21

N S ]

]t
1y2¹'1

¹' f

N
¹'D¹' f

1«
¹'N

N

]

]z S z
r21

r D1PrFN
2

]2

]z2
~y1u¹' f !

2«PrF¹'N
]

]z S r21

r D , ~45!

N2
]

]z S P1
m2

N2r D
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]t2
22«ry2¹'

] f

]t
22«~r21!S ]

]t
2y2¹'D

3N2«
~r21!2

r

¹' f¹'N

N
2«rv2~y2¹'!¹' f

1«¹' f¹'P22«
r21

r
¹'
2 f1«S 43 PrF

1PrSDN2¹'S ¹' f

N D ]

]z S r21

r D . ~46!

Integrating Eqs.~45! and ~46! and taking into accoun
asymptotic behavior outside the deflagration front we obt
the jump of the components of the momentum flux across
deflagration front of finite thickness:

~y1u¹' f !u2
15PrFNS ]y

]z
1¹' f

]u

]z D U
2

1

2«PrF
r121

r1

¹'N

N
1«J1~D̂y2

1¹' f D̂u21N21D̂¹' f !, ~47!

S P1
m2

N2r D U
2

1

5«J2¹'S ¹' f

N D 1
«J1
N S ]2f

]t2

12y2

]

]t
¹' f1y2~y2¹'!¹' f

12D̂N2
¹' f¹'N

N D 1S 43 PrF1PrSD
3S ]

]z Smr D U
2

1

1«
r121

r1
¹'S ¹' f

N D D ,
~48!

where the coefficientJ2 is

J25E
2`

` j

r p
2

drp
dj

dj ~49!

and the differential operatorD̂ is introduced for conve-
nience:

D̂5
]

]t
1y2¹'1N21¹' f¹' . ~50!

From the hydrodynamic equations~9!–~11! outside the de-
flagration front,11

S ]y

]z
1¹' f

]u

]z D U
2

1

52«
r121

N S D̂y21¹' f D̂u2

1
1

N
D̂¹' f D1«

r121

r1

¹'N

N2 ,

~51!

285V. V. Bychkov and M. A. Liberman



] m U1

52«
r121

¹
¹' f

. ~52!

-

s
en
k-
s
in
ib
ic
t
h

of

ra
an
th
tio
ak

tio
ss
n
n
tio
gh
na
e

wherev2 is the flow velocity at the cold boundary of the

s

of

-
by

s
n
te
se.
ility
.,
el,
po-

itu-
ous
of
a-

n

]z S r D
2

r1
'S N D

Taking into account Eqs.~51!–~52!, we can rewrite the con
servation laws~47! and ~48! in the form

~y1u¹' f !u2
15«~J12PrF~r121!!~D̂y21¹' f D̂u2

1N21D̂¹' f !, ~53!

S P1
m2

N2r D U
2

1

5«J2¹'S ¹' f

N D1
«J1
N S ]2f

]t2
12y2¹'

] f

]t

1y2~y2¹'!¹' f12D̂N2
¹' f¹'N

N D .
~54!

Equations~43!, ~53! and~54! represent the conservation law
for the mass flux and the tangential and normal compon
of the momentum flux for a deflagration front of finite thic
ness for the case of an arbitrary fuel. The left-hand side
these equations represent the conservation laws for an
nitely thin deflagration front, the right-hand sides descr
the influence of the transport processes and the finite th
ness of the deflagration front. The dependence upon
equation of state of the fuel and the particular form of t
energy release enters the conservation laws through the
efficients J1 , J2 . For the common case of a thin zone
energy release the coefficients take the form

J15E
1

Q1

rxdQ1E
1

Q1 12rh

h21
xdQ, ~55!

J25E
1

Q1

xdQ1E
1

Q1 12rh

h21

x

r
dQ. ~56!

The evolution equation~38! and the conservation laws~43!,
~53! and ~54! determine the dynamics of a curved deflag
tion front in a fuel with an arbitrary equation of state and
arbitrary type of energy release. It should be mentioned
second viscosity does not enter either the evolution equa
or the conservation laws, though this process has been t
into account in calculations.

6. SUMMARY OF THE RESULTS AND DISCUSSION

In the present paper we have obtained the evolu
equation for a curved deflagration front of finite thickne
propagating in a fuel with an arbitrary equation of state a
an arbitrary type of energy release. The evolution equatio
complemented by the boundary conditions: the conserva
laws for the mass flux and for the momentum flux throu
the deflagration front. Let us write the results in dimensio
units in a coordinate free form. For a deflagration front d
scribed by a functionF~z,x,t!50 ~for example, F5z
2Rf~x,t!50! we haveN5u¹Fu and so the evolution of a
deflagration front is described by the equation

n•v21
1

N

]F

]t
5Uf2aLK, ~57!

286 JETP 84 (2), February 1997
ts

of
fi-
e
k-
he
e
co-

-

at
n
en

n

d
is
n

l
-

deflagration front,n5¹F/u¹Fu is the unit normal vector di-
rected towards the products of deflagration,K is the front
stretch, which may be written in a coordinate-free form a11

K5
1

N

]N

]t
1
1

N
¹•~N~v22Ufn!!, ~58!

and the numerical factor for the case of a narrow zone
energy release is given by

a5
Q1H2

Q E
T2

T1 rkdT

r2k2T2

1E
T2

T1 r2H22rH

H2H2

kdT

r2k2T2
. ~59!

Taking into account Eqs.~57! and ~58! we can write the
conservation laws in the following coordinate-free form

rS n•v1
1

N

]F

]t D U
2

1

5r2LJ1K, ~60!

@n•v#u2
15

L

Uf
S J11PrF

r22r1

r2
Dn3D̂~v22Ufn!,

~61!

~P1r~v•n!2!u2
152Lr2Uf

2J2¹•n1Lr2J1

3SUf

N
D̂N1n•

]v

]t
1n•~v2•¹!v2D ,

~62!

where the dimensional form of the operatorD̂ is

D̂5
]

]t
1v2•¹2Ufn•¹ ~63!

and the coefficientsJ1 , J2 for the common case of a defla
gration wave with a thin zone of energy release are given
the formulas

J15E
T2

T1 rk

r2k2T2
dT1E

T2

T1 r2H22rH

H2H2

kdT

r2k2T2
,

~64!

J25E
T2

T1 k

k2T2
dT1E

T2

T1 r2H22rH

r~H2H2!

kdT

k2T2
. ~65!

The evolution equation Eq.~57! and the conservation law
Eqs. ~60!–~62! determine the dynamics of a deflagratio
front in the flow of a fuel with an arbitrary equation of sta
and arbitrary type of thermal conduction and energy relea
An essential advantage of the present model is the possib
of applying it to physical problems of different nature, i.e
flame propagation in a chemical of thermonuclear fu
propagation of an ablation front in a laser target, the eva
ration front in a superheated fluid, etc.

Let us apply the results to some particular physical s
ations. In the simplest case of a flame in an ideal gase
fuel with a large activation energy and equal coefficients
thermal conductivity and fuel diffusion the evolution equ
tion ~57! and the conservation laws~60!–~62! coincide with
the equations derived in Ref. 11. The well know
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expression14–16 for the instability growth rates of perturba-
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tions at a planar flame front of finite thickness may also
derived directly from these equations. The linearized eq
tions ~57!, ~60!–~62! couple the amplitudes of the perturb
tion modes generated by an unstable flame front in the
stream and the downstream flows. Taking into account
explicit expressions for the perturbation modes16 one finds
the instability growth rate from the consistency condition
the linearized equations~57!, ~60!–~62!:

s5SUfk~12klc/2p!, ~66!

whereS5 (11 r1)
21(A111/r12r1 2 1) is the coefficient

obtained in the Landau–Darrieus theory of the flame fr
instability. The instability is suppressed by thermal cond
tion for perturbations with wavelength shorter than the c
off wavelength

lc5
pLr1

2S~S~r111!1r1! S 12r12
ln r1

12r1

3~2Sr1111r1! D . ~67!

Because of the large numerical coefficient in Eq.~67! the
cut-off wavelength lc for typical laboratory flames
~r150.120.2! exceeds the flame thicknessL substantially,
lc'20L. For this reason smooth planar flames are obser
much more often than was expected from the Landa
Darrieus theory.1,7,10

Another interesting application of the obtained nonline
model is to the dynamics of a thermonuclear deflagration
supernova events. It is generally believed that the obse
spectrum of a supernova of type Ia is determined mostly
the first deflagration stage of white dwarf burning.4,17 At the
same time investigation of the deflagration stage is gre
complicated by the huge range of the length scales wh
have to be taken into account. The hydrodynamic len
scale of the deflagration dynamics in supernovae is abou
white dwarf radius;100 km, which exceeds the flame thic
ness~;1025 cm! by 12 orders of magnitude. By this reaso
a direct numerical simulation of white dwarf burning is im
possible and a simplified model is required. The most pr
able scenario of the deflagration dynamics in white dwarf
development of a fractal structure, which implies many c
cades of cells of different sizes growing because of
Landau–Darrieus instability.18 The velocity of a fractal flame
increases with the flame radiusR as18,19

U5r1
21Uf S 2pR

nclc
D d, ~68!

where 21d is the fractal dimension andnc is the critical
number of a spherical function for a fractal accelerat
flame found in Ref. 19, which determines the upper limit
the fractal structure. The cutoff wavelengthlc gives the low
limit of the fractal structure of the deflagration in whi
dwarfs. This value may be calculated on the basis of
model equations~57!, ~60!–~62!, taking into account the
properties of the white dwarf fuel. In the dense central lay
of a white dwarf withr53•109 g/cm3 the equation of state is
determined by degenerate ultrarelativistic electrons, so th20
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P50.77\cS rZ

Mi
D 4/3S 112.06SMi

rZD 2/3 T2

\2c2D , ~70!

whereeZ andMi are the average electrical charge and
average mass of the ions. Because of the relatively low t
perature the thermal conduction of the degenerate elect
dominates in a white dwarf over the radiation thermal co
duction, therefore21

k5
0.81\c2

e4ZLei
S rZ

Mi
D 1/3T, ~71!

whereLei is the Coulomb logarithm. Using the equation
state and the expression for the thermal conduction we
culate the coefficients of the nonlinear model Eqs.~59!, ~64!
and ~65!. Then similar to the case of a flame in an ide
gaseous fuel, we find the cutoff wavelength of the Landa
Darrieus instability of a deflagration front in white dwarfs

lc5
2pL

Sr1

b11Sb2
~11r1!S11

~72!

with the coefficients depending upon the ratio of densitiesr1

of the fuel and the products of the thermonuclear reactio

b15
322r1

1/32r1
4/3

6~12r1
4/3!

1
r111

12r1
4/3~12r1!~11r1

4/3!

3~323r1
2/314r1

4/31r1
6/31r1

8/3!, ~73!

b25
1

2r1
4/3~12r1!

2
12r1

2/3

6r1
2/3~11r1

4/3!
~312r1

2/31r1
4/3!.

~74!

The fuel close to the white dwarf center is strongly degen
ate so that energy release in the reaction causes only a s
decrease of density of the burning matter,r150.85–0.9. For
such small expansion the Landau–Darrieus instability
rather weak, while the thermal stabilization is strong and
cutoff wavelength exceeds the flame thickness by alm
three orders of magnitude,lc5410L. This value differs con-
siderably from the crude estimate of the cutoff wavelen
made in,22 where the stabilization of the hydrodynamic in
stability was expected on length scales of about 10L.

The developed model may be useful as well for inves
gation of the fractal dimension of the deflagration fronts
white dwarfs, which up to now has been estimated w
rather low accuracy~;50%!18 not acceptable in the theory o
thermonuclear supernovae.
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Distribution of the electric field and current in a turbulent conducting fluid for small

e

magnetic Reynolds numbers
V. A. Bityurin and A. L. Tseskis

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
~Submitted 17 April 1996; resubmitted 5 September 1996!
Zh. Éksp. Teor. Fiz.111, 528–535~February 1997!

Various aspects of the influence of an external magnetic field on turbulent flow of a conducting
fluid are investigated. The distributions of electric variables are determined for weak
magnetic fields~both the electric field and the current have nonzero values in this case!. For very
strong magnetic fields it is shown that turbulent motion acquires a two-dimensional
character. The emergence of an electric current component perpendicular to the flow and to the
magnetic field is described in the case of a temperature-stratified medium in the presence
of turbulent heat flux. ©1997 American Institute of Physics.@S1063-7761~97!00902-5#
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The description of magnetohydrodynamic turbulent m
tion encompasses two types of problems. On the one han
concerns~for example! the generation of magnetic fields i
the turbulent motion of a conducting fluid~phenomena of
this kind are of utmost importance for a variety of astr
physical applications!. The corresponding mathematical a
paratus reduces to a system of equations that embody
hydrodynamic equations of motion~including the Lorentz
j3B force! and discontinuities, along with all the Maxwe
equations.1 On the other hand, the investigation of MH
turbulent motion in the channels of various MHD devic
and the extremely important problem of how the propert
of turbulent motionper sechange under the influence of a
external field lead to situations in which the fluctuating ma
netic field can be disregarded. This possibility is associa
with the smallness of the magnetic Reynolds number

Rem!1,

where Rem5vL/nm ~v is the order of the hydrodynamic ve
locity, L is a characteristic length of the problem, andnm is
the magnetic viscosity of the fluid!. In this so-called nonin-
ductive approximation the Maxwell equation

curl E52
]B

]t

reduces to curlE50 in the case of a static externalB field,
so that the electric field is a potential field:

E52¹w.

Accordingly, taking into account Ohm’s law
j5s(E1v3B) and the condition of continuity of the elec
tric current divj50, we arrive at the equation~for a constant
conductivity of the fluid!

¹2w5B•curl v. ~1!

Equation ~1! in conjunction with the hydrodynamic equa
tions of motion and continuity~we assume that the fluid i
incompressible, divv50! thus forms a complete system o
five equations for the determination of five unknown fun
tions: the three components of the velocity, the pressure,
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electric current can be determined from Ohm’s law.
Since a solution of these equations cannot be obtaine

any reasonably general form,1! it is customary to rely on
additional semiempirical hypotheses or formal assumpti
to investigate the corresponding phenomena. It is impor
to note at this point that such modifications are often inc
rect; for example, in the literature we sometimes encoun
the notion that it is permissible to setE50 for Rem!1 ~Refs.
2 and 4!. The lack of substance in this condition can
clearly demonstrated with the aid of Eq.~1!: the solution of
the problem in this case reduces to the trivial case of a fl
at rest.5 On the other hand, experimental data show that
application of an external magnetic field to initially isotrop
turbulence~in a conducting fluid! produces a multitude o
nontrivial phenomena. In this paper we investigate the e
tric current~and field! distribution for a small value ofB, the
formation of two-dimensional~2D! turbulence in the oppo-
site case of strong magnetic fields, and a certain ‘‘odd’’
fect that occurs in a temperature-inhomogeneous conduc
fluid in the presence of turbulent heat flux.

2. WEAK MAGNETIC FIELDS

The ‘‘weakness’’ of the magnetic field must be chara
terized by a dimensionless quantity; in our case it cor
sponds to smallness of the ratio of the magnitude of
Lorentz forcejB to the term nonlinear inv in the hydrody-
namic equation of motion,rv2/L, so that

sB2L

rv
!1,

wheres andB have nonzero values; of course, the inequa
tiessL/c«0@1 and especiallysL/v«0@1 must be satisfied
in this case to ensure that the electromagnetic field is qu
stationary~see Ref. 1, Sec. 58!. Looking at the distribution of
the electric field, we can completely disregard the influen
of the Lorentz force on the motion, because it is read
apparent that the corresponding corrections to the elec
field would merely add higher-order corrections in the sm
quantityB to the expansion of̂E2& in powers ofB ~angle
brackets are used everywhere to signify statisti

289-04$10.00 © 1997 American Institute of Physics



averaging!. Inasmuch as the distribution ofE must be uni-
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form in a homogeneous fieldB applied to isotropic turbu-
lence, and since the statistical averages must coincide
the volume averages~see Ref. 6 regarding the ergodicity o
hydrodynamic fields!, on the basis of the well-known rela
tion

~¹w!25div~w¹w!2w¹2w,

and with allowance for the transformation of the volum
integral of div( . . . ) into a surface integral, we have

^E2&5^~¹w!2&52^w¹2w&. ~2!

The solution of Eq.~1! has the form

w~x!52
1

p E B•v~x1r !
d3r

r
,

v5curl v, ~3!

so that from Eqs.~1!–~3! we obtain

^E2&5
BiBj

4p K E v i~x!v j~x1r !
d3r

r L ~4!

~summation over repeated lower-case Latin indices is tac
understood throughout the article!. Considering a homoge
neous magnetic field directed along one of the coordin
axes,B5(0, 0,B3), B3[B, and making use of the well
known relations for the average values of the products of
derivatives of the velocity with respect to the coordinate7

we can reduce Eq.~4! to the form~with obvious interchange
ability of the averaging and integration operations!

^E2&5
B2

4p K E v3~x!v3~x1r !
d3r

r L
5

B2

4p E F2Dbii ~r !1
]2bii ~r !

]r 3
2 1Db33~r !G d3rr .

~5!

In the isotropic case, the two-point velocity correlation te
sor bi j can be expressed in terms of the longitudinal sca
bLL and the transverse scalarbNN , which depend onr ~Ref.
7!:

bi j ~r !5@bLL~r !2bNN~r !#
r i r j
r 2

1bNNd i j ,

whered i j is the Kronecker delta. Taking the latter express
in to account, we have

bii5bLL12bNN ,

b335~bLL2bNN!
r 3
2

r 2
1bNN ,

so that the bracketed expression in Eq.~5! is transformed to
(2 1/3)¹2(bLL12bNN). Consequently,

^E2&52
B2

12p E d3r

r S ]2

]r 2
1
2

r

]

]r D ~bLL12bNN!.

After integration over angles, this expression yields~for
brevity we setbLL12bNN5A!
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B2

3 S 2Au0
`1r

]A

]r
u0
` 2E

0

` ]A

]r
dr D . ~6!

To calculate the corresponding quantities in Eq.~6!, we need
to take account of the fact that asr→` the correlation func-
tions decay in any case asr25 or faster~as a consequence o
the finiteness of the Lo�tsyanski� invariant associated with
the conservation of angular momentum8!; the final result
therefore has the form

^E2&5
B2

3
A~0!5

B2

3
^v2&, ~7!

sincebLL(0)12bNN(0) is simply the mean-square velocit
of the turbulent motion. It is evident from Eq.~7! that the
energy of the electric field is proportional to the kinetic e
ergy of the fluid and in the given situation is not related
the mean-square vorticity in the sense that Eq.~7! does not
contain any factor with units of length~otherwise the right-
hand side of~7! would include some characteristic leng
corresponding to the relation between̂(curl v)2& and
^v2&)), contrary to the oft-encountered notion that^E2& is
determined by small-scale motions, which provide the m
contribution to^(curl v)2& ~see Ref. 9!.

Calculating the average values of (v3B)2 and
E•(v3B) analogously, we readily verify that the mea
square current differs from~7! by a constant factor, so tha
both the electric field and the current densityj are nonzero in
the given situation. We also recognize that, generally spe
ing, these assertions are equally valid for arbitrary~but not
too large! values ofB. We have already mentioned that
choose the trivial solution of the Maxwell equations,E50,
lacks any kind of logical foundation for the turbulent motio
of a conducting fluid. In the next section, however, we inte
to show that for sufficiently high values ofB, another special
case arises,j50, which reduces to 2D turbulent motion.

3. STRONG MAGNETIC FIELDS: TWO-DIMENSIONAL
TURBULENCE

For sufficiently large values ofB, such that the inequal
ity sB2L/rv!1 is not satisfied, the influence of the ma
netic field on turbulence in a conducting fluid can no long
be ignored, and all the corresponding quantities beco
more or less anisotropic. In a homogeneous magnetic fi
there is only one preferred direction in space, and the tw
point velocity correlation function must be axisymmetric:

bi j ~r !5a1r i r j1a2l il j1a3d i j1a4r il j1a5r jl i ,

wherel5B/B is the unit vector in the direction ofB, and
a1 , . . . , a5 are functions ofr 2 and r•l. Of course, the
equations containingbi j ~and the corresponding three-poi
moments! and the generalizing Karman–Howarth equatio
are also relatively easy to obtain in the given situation,
their solution is even more difficult than the solution of th
Karman–Howarth equation. On the other hand, the most
portant issue from a physical standpoint is to ascertain
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character of the anisotropy of turbulence for magnetic fields
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of sufficient strength as to satisfy the opposite of the inequ
ity given in Sec. 2:

sB2L

rv
@1. ~8!

This problem is important in that experimental data10

have shown that when this inequality holds and Rem!1, the
turbulent motion becomes 2D, with the velocity perpendic
lar to the magnetic field; such motion has a great many n
trivial features that distinguish it from the three-dimension
kind ~see Refs. 11 and 12!. In addition, it should be noted
here that, as shown previously,1 2D turbulent motion perpen
dicular to the external field also occurs in the opposite li
iting case Rem@1, because now the field-generating equat
holds identically. Obviously the ideal way to achieve the
results theoretically would be to incorporate the correspo
ing equations into the solution. This being impossible, so
sort of additional considerations11,13 or numerical experi-
ments~see, e.g., Ref. 14! are brought into the picture. As
rule, these considerations rest on an analogy with fluid m
tion in a rotating reference frame, for which the so-call
Proudman–Taylor theorem holds.15

On the other hand, qualitative ‘‘mechanical’’ conside
ations suggest in any case how MHD interaction can lea
two-dimensionality. Indeed, an examination of a nondefor
able, planar, closed electric current line in an external m
netic field quickly reveals that interaction rotates the plane
the current loop until it rests perpendicular to the magne
field. It is clear, however, that nondeformable current loo
do not exist in the fluid, and the indicated consideratio
cannot be regarded as proof of the result in question. Su
proof might be based on the derivation of some kind of lo
relations resulting from hydrodynamic and electrodynam
equations and leading to two-dimensionality.

To assist in the selection of these relations, and bea
condition~8! in mind, we can disregard the termr(v•¹)v in
comparison with the Lorentz force in the equation of motio
Assuming that the derivative]v/]t is also small and ignoring
it, we obtain

2¹p1 j3B50, ~9!

which is exactly analogous to the basic relation used to
rive the Proudman–Taylor relation~the only difference being
that the latter contains a term proportional tov3V instead of
j3B!. We note here that as in the case of the Proudm
Taylor theorem, to write expression~9! without ]v/]t cannot
be rigorously justified and is essentially an assumption. A
plying the curl operator to~9! and taking into account the
homogeneity ofB and the continuity of the current, we ob
tain

~B•¹!j50. ~10!

In the case of the Proudman–Taylor theorem we wo
have (V•¹)v50, and the two-dimensionality of the motio
would be guaranteed; for the case investigated here Eq.~10!
requires further consideration. Assuming thatB is directed
along thez axis and noting that Eq.~10! is satisfied by all
components of the current density, we have
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Since v3B contributes absolutely nothing to th
z-component of the current density, this component is rela
only to the strength of the electric fieldE ~or, more precisely,
to its z-component!. Consequently, without a potential dif
ference in thez-direction, according to~11!, we have simply
Ez50 ~or, equivalently,j z50!, and the distribution of the
current and the electric field is 2D. For this reason the vec
curl j is directed alongz, so that from the potential characte
of E and Ohm’s law we infer that

~B•¹!v5kc~x,y,t !,

wherek is the unit vector alongz, andc is a function that
does not depend onz. It follows from the latter relation that

]vx
]z

50,
]vy
]z

50,
]vz
]z

5c~x,y,t !.

Inasmuch as the velocityvzmust be bounded in any case, th
functionc(x,y,t) vanishes, so that we have

v5~vx ,vy!, div v50,

and it is at once obvious that the equations of motion rev
to 2D equations. Since in fact curlj50 and the current dis-
tribution in this case corresponds to minimum Joule heat l
~see Problem 3 in Sec. 21 of Ref. 1!, it is reasonable to state
that the transition to a 2D turbulence structure in a condu
ing fluid under the influence of a homogeneous field
equivalent to requiring minimization of the Joule heat los

Finally, looking at the physically relevant case of no
conducting boundaries~zero current at the boundary!, we
also infer from divj50 and curlj50 in accordance with the
Liouville theorem thatj50. This relation simply implies tha
the electric field is related to the velocity byE52v3B, so
that the magnetic field no longer interacts with the result
2D motion.

We conclude this section with the stipulation that t
foregoing results are naturally valid in situations where
lowed by the boundary conditions. In real life, this mea
that the corresponding phenomena must be treated at l
distances from any boundary whose normal is parallel to
field; these distances must be at least much greater than
primary space scale of the turbulent motion.

4. AVERAGING OF OHM’S LAW IN THE PRESENCE OF
TURBULENT HEAT FLUX

The results described in the preceding sections are v
in a temperature-homogeneous medium, but if the temp
ture distribution is nonuniform, its fluctuations induced b
the turbulence of the fluid can be correlated with the veloc
fluctuations. It will be shown below that the existence
such a correlation with allowance for the temperature dep
dence of the conductivity of the medium leads to a nontriv
effect, which can be observed in appropriate experiment

In describing the motion of a conducting fluid, it is us
ally necessary to use certain averaged values of the co
sponding quantities. For small magnetic Reynolds numb
in the noninductive approximation this refers specifically
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quantities involved in Ohm’s law, in which the conductivity
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is replaced by an effective value that depends on the di
bution of the space–time inhomogeneities. In the case
turbulent fluid motion, the averaged Ohm’s law has the fo

^ j &5^s&^E&1^s&@^v&3B#1^s8E8&1^s8~v83B!&
~12!

~the primes in this expression refer to fluctuations of
corresponding quantities, and the Hall effect is disregar
for simplicity!.

The quantity ^s8E8& also includes the componen
^s8Es8

8 & associated with the presence of inhomogeneity
the electric field in a medium with inhomogeneous cond
tivity even when it is not in motion~in some cases the cor
responding effective values of the conductivity can be cal
lated in their entirety16!. Since the value ofs8 is small in the
given situation~see below!, the quantityEs8

8 is also small
and can be neglected in relation to the fluctuations of
field E8 due to turbulent motion for a homogeneous cond
tivity. Thus, when the conductivity has a small inhomogen
ity, the corresponding perturbation of the electric fieldEs8

8 is
a certain functional ofs8 such that it does not contain an
zeroth-order terms ins8. In any case, therefore, the quanti
s8Es8

8 is of higher than first order ins8; on the other hand
the turbulence-dependent quantityE8 is not small, so that
s8E8 is first-order ins8.

Naturally, it is impossible to calculatês8E8& and
^s8(v83B)& for arbitrary values of the corresponding qua
tities. However, it follows from the preceding sections th
for B not too large, these are quantities of the same or
and in general they are of the same order as their sum. In
presence of turbulent heat fluxq the component
^s8(v83B)& can then be expressed exactly in terms of
magnitude of this flux.

The form of the expression for this component of t
current makes it clear that it can only fail to vanish when
mean ofs8v8 is nonzero. Since the conductivity of a plasm
for example, depends on the temperature~neglecting non-
equilibrium effects and weak pressure dependence17!, we
must writes8[s8(T8), wheres8 andT8 have the same sign

Consequently, for a nonzero value of^T8v8& the quantity
^s8v8& is also nonzero in general. WhenT8!T̄ ~average
temperature!, as is usually the case in practice, this assert
becomes exact, becauses85(ds/dT)T8, and

^s8v8&5 K s8

T8
T8v8L 5

ds

dT
^T8v8&. ~13!

Recalling now that̂T8v8& is none other~to within some
factor! than the turbulent heat flux,6

q5rcp^T8v8&,

for the additional contribution to the current density we ha
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The emf corresponding to this current density is

E;
1

s

ds

dT

Bq

rcp
.

The indicated effect can be demonstrated in the labora
using, for example, an aqueous NaCl solution, for wh
(1/s)(ds/dT) is of the order of 1022 K21. Then for
q;10 W/cm2 andB;1 T we have an induced electric fiel
;1023 V/cm, which is easily measurable.

We also note that formally analogous conclusions can
drawn for the case Rem@1, so that we actually have a certa
mechanism, over and above thea-effect,18 for the generation
of large-scale fields in turbulent motion. However, its ana
sis is far more complex than for Rem!1, because in the pres
ence of nonzero fluctuations of the magnetic fieldB8 it
would be necessary to augment Eq.~12! with ternary corre-
lation, specifically to include the quantitŷs8(v83B8)&,
which is not small for Rem@1.

1!Except for situations that are reducible to laminar flow stability proble
and the onset of turbulence2 or are associated with the degeneracy
turbulence, in which case the nonlinear terms in the hydrodynamic e
tions can be neglected.3
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Phenomenological theory of the magnetoelectric effect in some boracites

s

D. G. Sannikov

Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia
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Zh. Éksp. Teor. Fiz.111, 536–546~February 1997!

An explanation is given for the narrow peak in the temperature dependence of the component
a32 of the magnetoelectric effect tensor near the transition atT5Tc to them8m28 phase
observed in the boracites. A phenomenological approach is used which is based on the symmetry
of the cubic phase of the crystals. The change in the sign ofa23 anda32 observed in some
of the boracites as the temperature is lowered is attributed to the low value ofTc . © 1997
American Institute of Physics.@S1063-7761~97!01002-0#

The boracites are a large family of crystals with the gen-lowest powers inTi , as well as in the polarization vector
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eral formula M3B7O13X, where M is the ion of a doubly
valent metal and X is a halogen. In the Co–Br, Co–I, Ni–
and several other boracites, as the temperatureT is reduced,
a sequence of phase transitions is observed from the c
phaseTd854̄3m18 ~the C0 phase! into the orthorhombic
phase: first C2v8 5mm218 ~the C1 phase! and then
C2v(Cs)5m8m28 ~the C2 phase!. The higher temperature
first-order transition atT5T0 ~T05466 K for Co–Br borac-
ite! is a nonintrinsic ferroelectric ferroelastic transition, a
involves a change in the translational symmetry of the cr
tal. The lower second-order transition atT5Tc is simulta-
neously a nonintrinsic ferroelectric ferroelastic transition a
a weak ferromagnetic transition. In theC2 phase, the com-
ponentsa32 and a23 of the magnetoelectric effect tenso
a ik are observed to have a temperature dependence.1–3 The
characteristic features of this dependence are a sharp pe
a32(T) nearT5Tc and a change in the sign ofa32(T) or
a23(T) at some distance fromTc in some individual cases
~see Fig. 1!.

The purpose of this paper is to examine the depende
a32(T) anda23(T) theoretically in the framework of a phe
nomenological approach~see the earlier work of Chupis,4 as
well!. Consistent with experimental data,5 we assume tha
the translational symmetry of the crystal does not cha
during theC12C2 phase transition. This means that the o
der parameter transforms according to one of the irreduc
representations of the point symmetry group of the crys
The symmetry of the cubicC0 phase will serve as the bas
for subsequent analysis. This makes it possible, in particu
to compare the values of the coefficients in the result
expressions fora32, a23, and other quantities.

The two three dimensional representations of theTd8
point group reduce to theC2v(Cs) group. The magnetic mo
ment vector Mi transforms according to one of the
(F1m). Then theC2 phase is the usual~exchange! ferromag-
netic phase. An analysis shows that this case is inconsis
with the experimental data, so it will not be examined he

The toroidal momentum vectorTi transforms according
to the other representation (F2m) ~a discussion of the third
dipole moment Ti in electrodynamics can be foun
elsewhere6!. We regardTi as the order parameter for th
C12C2 phase transition, and construct the invariants of
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Pi and magnetizationMi .
It must be kept in mind that the coordinate systems

the cubic and orthorhombic systems are different. One
rotated relative to the other by an angle of 45° about thz
axis. The coordinates in the cubic phase (x,y,z) and ortho-
rhombic phase (x1 ,x2 ,x3) are related by

x5
1

A2
~x11x2!, y5

1

A2
~2x11x2!, z5x3 ,

x15
1

A2
~x2y!, x25

1

A2
~x1y!, x35z. ~1!

We shall write down the invariants in both coordinate sy
tems.

The order parameter of theC02C1 phase transition has
six components. It transforms according to the six dime
sional representation of theTd

55F4̄3c space group of the
C0 phase.

7 We denote the square of the order parameter
R2. This quantity is all that is needed in the following, sin
theC02C1 phase transition, as such, is of no interest to

The part of the thermodynamic potential that depends
R2 andPi can be represented in the form

aR21
1

2
bR41

1

2
kP22sPzR

22P•E,

P25Px
21Py

21Pz
25P1

21P2
21P3

2,

P•E5PxEx1PyEy1PzEz5P1E11P2E21P3E3 . ~2!

The fact that theC02C1 transition is a first-order phas
transition is not important, and we treat it as if it were
second-order transition, i.e., setb.0 and neglect the invari-
ant gR6 in Eq. ~2!. This does not affect the final results. I
the mixed invariantPzR

2 only one component,Pz , of the
vectorPi has been retained. It is assumed for concreten
that in theC1 phase the crystal has a single domain and
spontaneous polarization is directed along thez axis. The
fact that the componentPz is actually related to some qua
dratic combination of the components of the order param
is not important, i.e., this combination can be replaced
R2, as has been done in Eq.~2!.

293-07$10.00 © 1997 American Institute of Physics



FIG. 1. Temperature variations in
the componentsa32 and a23 of the
magnetoelectric tensor in the
m8m28 phase of Co–Br1 ~1!, Co–I2

~2!, and Ni–Cl3 ~3! boracites.
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R2 andPi , can be written in the form

1

2
AT21

1

4
CT42DR2T2. ~3!

Note that using the same notation for the absolute magni
of the vectorTi and the temperature cannot lead to con
sion. There is yet another independent invariant of the fou
degree inTi :

cIT45c~Tx
2Ty

21Tz
2Tx

21Ty
2Tz

2!

5
1

4
c~T1

22T2
2!21c~T1

21T2
2!T3

2.

This invariant, however, is relativistic and is small compar
to the exchange invariantCT4, so it can be neglected.

Yet another relativistic invariant has the form

dIPT25d~PxTyTz1PyTzTx1PzTxTy!

52d~P1T12P2T2!T32
1

2
dP3~T1

22T2
2!. ~4!

Although it can be neglected compared to the exchange
variant DR2T2, we can use it to see how the thre
dimensional representation of the cubicC0 phase splits up
into three one-dimensional representations of the rhom
C1 phase.

The invariant~4! renormalizes the coefficientA of T2 in
Eq. ~3!:

1

2
~A2dP3!T1

21
1

2
~A1dP3!T2

21
1

2
AT3

2. ~5!

In order for aC1–C2 phase transition to take place, th
coefficient A must decrease with temperature and p
through zero. As can be seen from Eq.~5!, one of the coef-
ficientsA7dP3 goes to zero before the others, sinceP3 has
a spontaneous value in theC1 phase. Let us assume that it
the coefficient ofT1

2, i.e.,dP3.0. Then a spontaneous valu
T1 arises in theC2 phase and the componentT1 is the order
parameter for theC12C2 transition. The choice ofT1 as an
order parameter ensures that the componentM2 will have a
spontaneous value in theC2 phase~see below!.

The part of the potential that depends onM1 can be
written in the form
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BM 1aIPMT22bIMT32M•H,

I PMT5@PM#T5~PyMz2PzMy!Tx

1~PzMx2PxMz!Ty1~PxMy2PyMx!Tz

5~P2M32P3M2!T11~P3M12P1M3!T2

1~P1M22P2M1!T3 ,

I MT35MxTx~Ty
22Tz

2!

1MyTy~Tz
22Tx

2!1MzTz~Tx
22Ty

2!

5
1

2
~M2T12M1T2!~T1

22T2
2!

2~M2T11M1T2!T3
212M3T1T2T3 . ~6!

The form of the invariantI MT8 implies that a spontaneou
M2 } T1

3 develops in theC2 phase.
We have not considered invariants containing the de

mation tensoruik in the above discussion. In the meantim
the componentsuyz , uzx , anduxy transform asPx , Py , and
Pz , so that they play an equally important role. However
we include these components and then eliminate them f
the potential by taking derivatives with respect to them,
then obtain the same expressions~2!–~6!, but with renormal-
ized coefficientsb, k, s, d, a, andb. Thus, we may assum
that this sort of operation eliminatinguik has already been
carried out and that the coefficients in Eqs.~2!–~6! are renor-
malized.

If we expressPi andMi in terms ofEi andHi from Eqs.
~2! and ~6!,

P5
1

k
E, M5

1

B
H ~7!

and substitute Eq.~7! in Eq. ~6!, then we obtain the invarian

a

kB
~E3H!•T. ~8!

Equation ~8! implies that the vector productE3H can be
treated as a generalized force conjugate to the genera
coordinateT, the toroidal momentum. In crossed fields wi
E3 Þ 0 andH2 Þ 0 orE2 Þ 0 andH3 Þ 0, the second-orde
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C12C2 phase transition is smeared out, since these fields

-
s
a
s
s

th

o
t

y

b

t-

e-
,

F5F 1
1

k̃P22sR2P 1
1
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induced a toroidal ordering in theC1 phase, removing the
symmetry difference between theC1 and C2 phases. The
presence of the invariant~8! leads to the existence of off
diagonal components of the magnetoelectric effect ten
a ik in a phase with spontaneous toroidal momentum. It m
be said that the appearance of off-diagonal component
the tensora ik in the low-temperature phase during the pha
transition is the most characteristic feature of the~ferro! to-
roidal phase transition. Note that the phase transition in
Ni–I boracite has been treated as a~ferro! toroidal transition
before.8

The thermodynamic potential, therefore, consists
three parts:~2!, ~3!, and~6!. We retain only one componen
T1 of the vectorTi , settingT25T350. Let us first consider
only the componentsP3 andM2 of the vectorsPi andMi .
The componentsP2 andM3 will be considered separatel
~see below!. Thus, we have

F~R2,P3 ,M2 ,T1!5aR21
1

2
bR41

1

2
kP3

226P3R
2

1
1

2
~A2dP3!T1

21
1

4
CT1

4

2DR3T1
21

1

2
BM2

22aP3M2T1

2bM2T1
32P3E32M2H2 . ~9!

Let us consider theC1 phase, in whichT150 and
M250. Differentiating the potential~9! with respect to the
variablesR2 andP3 and settingT150, we obtain

FR25a1bR22sP350,

FP3
5kP32sR22E350. ~10!

Here and in the following the derivatives are denoted
subscripts, e.g.,FR25]F/](R2).

Solving the system of Eqs.~10! with E350, we obtain

P35
s

k
R2, R252

a

b̃
, b̃[b2

s2

k
, k̃[k2

s2

b
.

~11!

Recall that theC02C1 phase transition is, in fact, a firs
order transition, so that the second expression in Eq.~11!
yields a false dependenceR2(T). However, it is possible to
use only the first expression in Eq.~11!, assuming that the
dependenceR3(T) is known from experiment.

We now consider theC2 phase, in which all the vari-
ablesR2, P3 , M2 , andT1 are nonzero, i.e., have spontan
ous values. The variableR2, which is of no intrinsic interest
can be conveniently eliminated from the potential~9!. Dif-
ferentiating Eq.~9! with respect toR2, we obtain

FR25a1bR22sP32DT1
250,

R25R0
21

s

b
P31

D

b
T1
2, R0

2[2
a

b
. ~12!

Substituting Eq.~12! into Eq. ~9!, we find
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or
y
of
e

e

f

y

0 2 3 0 3 2 1 4 1

2
sD

b
P3T1

21
1

2
BM2

22aP3M2T12bM2T1
3

2P3E32M2H2 , F0[2
1

2
bR0

4,

Ā[A22DR0
2, C̄[C2

2D2

b
. ~13!

In Eq. ~13! the invariantdP3T1
2 is neglected, being relativis

tically small compared to the invariant (sD/b)P3T1
2. The

advantage of the potential~13! compared to~9! is not only
that it has fewer variables~three instead of four!, but also
that there is a direct relationship betweenP3 andT1

2 ~and not
indirectly in terms ofR2, as in Eq.~9!!.

Differentiating Eq. ~13! with respect toP3 , M2 , and
T1 , we obtain

FP3
5k̃P32sR0

22
sD

b
T1
22aM2T12E350,

FM2
5BM22aP3T12bT1

32H250,

FT1
5ĀT11C̄T1

32
2sD

b
P3T12aP3M223bM2T1

250.

~14!

Solving the system formed by the first two of Eqs.~14!,
which are linear inP3 andM2 , with E350 andH250, we
obtain

P35P01
sD

bk̃
T1
2, M25

aP0
B

T11
1

B S sD

bk̃
a1bDT13.

~15!

In Eq. ~15!, the quantityR0
2 that shows up in Eqs.~12!–~14!

has been replaced byP0 , which is given by

P0[
s

k̃
R0
25

s

k̃

~2a!

b
5

s

k

~2a!

b
,

where the last expression coincides with Eq.~11! for P3 in
theC1 phase. Thus, the first termP0 in Eq. ~15! for P3 in the
C2 phase can be regarded as part of theP3 obtained by
extrapolating the experimentalP3(T) curve from theC1

phase into theC2 phase.
Substituting the solutions~15! into the third of Eqs.~14!

and solving it, we obtain

T1
25

2Ã

C̃
, Ã[Ā2

2sD

b
P02

a2

B
P0
25A2

2kD

s
P0

2
a2

B
P0
2, C̃[C̄2

2s2D2

b2k̃
5C2

2D2

b̃
. ~16!

We have retained all terms in the coefficientÃ, sinceÃ goes
to zero at theC12C2 transition point. Even the last, smal
est, term inÃ is important for subsequent calculations.
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We now find the susceptibilities: dielectricx335P3E3
,

ve
.

th

-

e

Ã5AT~T2Tc!. ~21!

and

t

h
ase

e
ic

,

ed

are

ion
s,

h
-

n

tion

–Br
magnetic k225M2H2
, and magnetoelectrica325P3H2

5M2E3
, where the subscripts, as before, denote derivati

e.g.,P3H2
[]P3 /]H2 . We take the total derivatives of Eq

~14! with respect toE3 and H2 . As a result we obtain a
system of three plus three equations, which we write in
consistent form

FP3P3
P3E3~H2!1FP3M2

M2E3~H2!1FP3T1
T1E3~H2!51~0!,

FM2P3
P3E3~H2!1FM2M2

M2E3~H2!1FM2T1
T1E3~H2!50~1!,

FT1P3
P3E3~H2!1FT1M2

M2E3~H2!1FT1T1
T1E3~H2!50~0!.

~17!

According to Eq.~13! or ~14!,

FP3P3
5k̃, FP3M2

5FM2P3
52aT1 ,

FP3T1
5FT1P3

52
2sD

b
T1 , FM2M2

5B,

FM2T1
5FT1M2

52aP323bT1
2,

FT1T1
5Ā23C̄T1

22
2sD

b
P3 , ~18!

whereP3 , M2 , andT1 are taken from Eqs.~15! and ~16!.
The determinant of the system of linear equations~17! re-
duces to the form 2k̃BC̃T1

2. It must be assumed~see Eqs.
~11! and ~15!–~18!! that b̃.0, k̃.0, B.0, andC̃.0. The
remaining coefficientss, D, a, andb have arbitrary signs.

Solving Eq.~17! for P3E3
, M2H2

, andP3H2
5M2E3

, we
obtain

x335
1

k̃
1
2s2D2

b2k̃2C̃
, k225

~aP0!
2

2B2C̃

1

T1
2

1
1

B
,

a325
sDaP0

bk̃BC̃

1

T1
1

1

k̃B
S a1

3s2D2

b2k̃C̃
a1

3sD

bC̃
bD T1 .

~19!

The susceptibilitiesx33 andk22 in theC1 phase can be ob
tained from Eqs.~17! and ~18! by setting T150 and
M250:

x335
1

k̄
, k225

~aP0!
2

B2Ã
1
1

B
, ~20!

whereP0 is the polarization in theC1 phase. In accordanc
with Eq. ~7!, in theC0 phase we have

x335
1

k
, k225

1

B
.

Let us examine the temperature dependences of Eqs.~15!,
~16!, ~19!, and ~20! for P3 , M2 , x33, k22, and a32. We
assume, as usual, that only one coefficient,Ã, depends lin-
early on the temperature:
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s,

e

The remaining coefficients are assumed constant
equal to their values at the transition pointT5Tc . Then,
according to Eq.~16!, we obtain

T1
25

ATTc

C̃

Tc2T

Tc
. ~22!

The dependence of these quantities onT in theC2 phase is
determined by their dependence onT1 .

The second term in Eq.~16! for P3 is the spontaneous
polarization, which appears in theC2 phase as a supplemen
to the polarizationP0(T) that existed in theC1 phase~see
above!. It can be said that theC12C2 phase transition is a
nonintrinsic ferroelectric~and ferroelastic! transition with an
index f52: DP3 ; T1

f . During aC12C2 transition, the di-
electric susceptibilityx33 undergoes an upward jump, whic
is the characteristic feature of nonintrinsic ferroelectric ph
transitions~see the review by Levanyuk and Sannikov,9 for
example!.

If the C02C1 phase transition did not exist, th
C02C2 transition would be a nonintrinsic ferromagnet
transition withf53: M2 ; T1

3; see Eq.~15! ~a latent antifer-
romagnetism in the terminology of Dzyaloshinski� and
Man’ko10!. Because of theC02C1 transition and, therefore
the existence of spontaneous polarizationP0 in theC1 phase,
C2 is a weak ferromagnetic phase:M2 ; T1 ; see Eq.~15!.
The coupling constantaP0 /B is proportional to two small
quantities,a/B andP0 . The distortion of theC1 phase rela-
tive to theC0 phase is considered small, i.e., it is assum
that P0 is small even far from the temperatureT0 of the
C02C1 transition.

Because of the linear relationship betweenM2 andT1 ,
the susceptibilityk22 in the potential~13! obeys the Curie–
Weiss law in both phasesC2 andC1 ~compare Eqs.~19! and
~20!!. The Curie constant, which is proportional to the squ
of the coupling constantaP0 /B, is very small. Thus, the
peak in k22 near the transition pointT5Tc must be very
narrow. Outside a narrow neighborhood of the transit
pointT5Tc the susceptibilityk22 is the same in both phase
and equals 1/B.

The componenta32 of the magnetoelectric tensor, whic
differs from zero only in theC2 phase, contains a term in
versely proportional toT1 ~see Eq.~19!!. The coefficient of
T1

21 is proportional to the two small quantitiesa/B and
P0 . Thus, the peak in thea32(T) curve near the transition
point T5Tc is narrow ~but not so narrow as the peak i
k22(T)!. If we define the widthDT of the peak in terms of its
width at the temperature for which the first term in Eq.~19!
equals the second term, then we obtainDT ; P0 for a32 and
DT; (aP0 /B)

2 for k22.
A peak ina32(T) in the neighborhood ofT5Tc has been

observed in the boracites~see the Fig. 1!. Since the signs of
the coefficientss, D, a, andb are arbitrary, the first term in
Eq. ~19! for a32, which determines the peak ina32(T), and
the second term, which determines the subsequent varia
in a32(T), can have either the same or opposite signs~com-
pare the dependences for the Co–I boracite and the Co
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and Ni–Cl boracites in the figure!.

to
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e
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1
FP2T22

1
k8P2R22tI 3 ,

rm

ted
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We now consider the variablesP2 andM3 in the ther-
modynamic potential constructed from the invariants~2!, ~3!,
and ~6!:

F~P2 ,M3!5
1

2
kP2

21
1

2
BM3

21aP2M3T1

2P2E22M3H3 . ~23!

Differentiating this part of the potential with respect
P2 andM3 , we obtain a system of equations in addition
the system~14!:

FP2
5kP21aT1M32E250,

FM3
5BM31aT1P22H350. ~24!

Solving Eq.~24! with E250 andH350, we obtain

P250, M350. ~25!

SinceP2 andM3 are equal to zero in all phases, the part
the potential~23! added to the potential~9! does not change
the previous analysis, and all the previous results rem
valid.

Taking the total derivatives of Eq.~24! with respect to
E2 andH3 , we obtain the system of equations~cf. Eq. ~17!!:

FP2P2
P2E2~H3!1FP2M3

M3E2~H3!51~0!,

FM3P2
P2E2~H3!1FM3M3

M3E2~H3!50~1!, ~26!

where, according to Eqs.~23! or ~24!,

FP2P2
5k FP2M3

5FM3P2
5aT1 , FM3M3

5B. ~27!

The expressions for the susceptibilitiesx225P2E2
,

k335M3H3
, anda235P2H3

5M3E2
obtained from Eqs.~26!

and ~27! have the form

x225
1

k
, k335

1

B
, a2352

a

kB
T1 , ~28!

whereT1 is taken from Eq.~16!. The expressions forx22 and
k33 in Eq. ~28! are valid in all phasesC2 , C1 , andC0 , while
a23 is nonzero only in theC2 phase, whereT1 Þ 0.

The componentsa23 andk33 in Eq. ~28!, in contrast to
a32 and k22 in Eq. ~19!, have no terms that diverge at th
transition pointT5Tc . Note that if theC02C1 phase tran-
sition did not exist, then we would hav
a3252a235aT1 /kB. Note also that all three terms ina32

proportional toT1 in Eq. ~19! have arbitrary signs and, gen
erally, are comparable in magnitude. Obviously, the cha
in sign ofa23 observed in Co–Br boracite~see Fig. 1! cannot
be explained on the basis of Eq.~28!. Thus, we find the
subsequent terms in the expansion ofa23 in powers ofT1

2

~this is much harder to do fora32!.
Let us examine invariants in higher powers ofT1

2 in the
potential ~23! than those included in Eqs.~2!, ~3!, and ~6!.
One part of these invariants has the form
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f

in

e

2 2 P

I P35PxPyPz52
1

2
~P1

22P2
2!P3 . ~29!

There are two other independent invariants of the fo
P2T2: f (P• T)2 and

f 8I P2T25 f 8~PxPyTxTy1PzPxTzTx1PyPzTyTz!

5
1

4
f 8~P1

22P2
2!~T1

22T2
2!

1 f 8~P1T11P2T2!P3T3 .

Both of these invariants are relativistic, and can be neglec
compared to the exchange invariantFP2T2 in Eq. ~29!.

Yet another part of the invariants has the form

2
1

2
GM2T22

1

2
G8~M•T!22

1

2
B8M2R2. ~30!

The invariant (M 3 T)25M2T22(M • T)2 is not indepen-
dent, while the two further invariants,

gIPM25g~PxMyMz1PyMzMx1PzMxMy!

52g~P1M12P2M2!M31
1

2
gP3~M1

22M2
2!,

g8I M2T25g8~MxMyTxTy1MzMxTzTx1MyMzTyTz!

5
1

4
g8~M1

22M2
2!~T1

22T2
2!

1g8~M1T11M2T2!M3T3 ,

which are of the same order inT1
2 as the invariants in Eq

~30!, are relativistic and can be neglected.
Part of the invariants in addition to Eq.~29! and~30! has

the form

2a18I PMTT
22a9I PMTR

22a-I P2MT

2a28~ I PMT31I PMT3
8 !,

I P2MT5PxPy~MxTy2MyTx!1PzPx~MzTx2MxTz!

1PyPz~MyTz2MzTy!

52
1

2
~P1

22P2
2!~M1T22M2T1!2P1P3~M2T3

2M3T2!1P2P3~M3T12M1T3!,

I PMT35~PyMz1PzMy!Tx~Ty
22Tz

2!

1~PzMx1PxMz!Ty~Tz
22Tx

2!

1~PxMy1PyMx!Tz~Tx
22Ty

2!

5
1

2
~P2M31P3M2!T1~T1

22T2
222T3

2!

1
1

2
~P3M11P1M3!T2~T1

22T2
212T3

2!
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I PMT3
8 5~PyMz2PzMy!Tx~Ty

21Tz
2!

1~PzMx2PxMz!Ty~Tz
21Tx

2!

1~PxMy2PyMx!Tz~Tx
21Ty

2!

5
1

2
~P2M32P3M2!T1~T1

22T2
212T3

2!

2
1

2
~P3M12P1M3!T2~T1

22T2
222T3

2!

1~P1M22P2M1!~T1
21T2

2!T3 . ~31!

Still another invariant

I P2MT
8 5Px

2~MyTy2MzTz!1Py
2~MzTz2MxTx!

1Pz
2~MxTx2MyTy!

52
1

2
~P1

21P2
222P3

2!~M1T21M2T1!

1P1P2~M1T11M2T222M3T3!,

and the invariantI PMT32I PMT3
8 do not contribute to the po

tential ~23!, only to the potential~9!.
As a result of this analysis, the part of the potential

addition to Eq.~24! can be written in the form

DF~P2 ,M3!52
1

2
FP2

2T1
22

1

2
k8P2

2R22
1

2
tP2

2P3

2
1

2
GM3

2T1
22

1

2
B8M3

2R22a8P2M3T1
3

2a9P2M3T1R
22a-P2M3T1P3 , ~32!

where a8[a181a28 . The solution~25! is unchanged if we
add Eq.~32! to Eq.~23!. We use Eqs.~12! and~15! to elimi-
nate the variablesR2 andP3 from Eq.~32!. Substituting Eqs.
~12! and~15! into Eq.~32! and neglecting terms proportiona
to P0 , we obtain

DF~P2 ,M3!52
1

2
S F1

k8D

b̃
1

tsD

b̃k
D P2

2T1
2

2
1

2
SG1

B8D

b̃
DM3

2T1
2

2S a81a9
D

b̃
1a-

sD

b̃k
D P2M3T1

3. ~33!

Repeating the same calculations with the sum of the
tentials ~23! and ~33! as have been done with Eq.~23!, in-
stead of Eq.~27! we obtain

FP2P2
5k2S F1

k8D

b̃
1

tsD

b̃k
D T12,

FP2M3
5FM3P2

5aT12S a81a9
D

b̃
1a-

sD

b̃k DT13,
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FM3M3
5B2SG1

b̃
D T1. ~34!

From Eqs.~26! and ~34! we obtain

a235
2aT11~a81a9D/b̃1a-sD/b̃k!T1

3

@k2~F2k8D/b̃1tsD/b̃k!T1
2#@B2~G2B8D/b̃ !T1

2#
. ~35!

The stability conditionFP2P2
.0 andFM3M3

.0 implies
~see Eq.~34!! that the denominator of Eq.~35! is always
positive. In the numerator of Eq.~35! the coefficients ofT1
and T1

3 generally are of the same order of magnitude w
arbitrary signs. Thus, the numerator can go to zero w
(Tc2T)/Tc , which determines the value ofT1

2 ~Eq. ~22!!, is
of order unity. This can happen far from the transition po
T5Tc , but the boracites being considered are character
by a low Tc ~see the figure!. Thus, even for comparatively
small values ofTc2T, the sign ofa23, like that of a32,
might change~see the figure!. Obviously, the above discus
sion is qualitative and is not changed if higher-order terms
the expansion inT1

2 are taken into account.
It is well known that in the phenomenological theory

phase transitions the physical significance of the order
rameter is unimportant. Only its transformation propert
are important, i.e., the irreducible representation of the sy
metry group of the initial phase of the crystal according
which it transforms. In this sense, the toroidal moment
can be regarded as a special case of the antiferromagne
vector in which off-diagonal components of the magne
electric effect tensor develop in the low-symmetry phase
the crystal. Toroidal spin ordering assumes the formation
a closed annulus of spins~in the simplest case, three! and of
a toroidal momentum perpendicular to the plane in which
spins lie. This sort of structure should be looked for in t
low-symmetry phase of these boracites. That task, howe
lies beyond the scope of this paper.

In conclusion, we emphasize that the first feature of
a i j curves for the boracites~the narrow peak ina32(T)!, in
contrast to the second feature~the sign change ina23 or
a32!, can be explained rigorously in terms of the prese
approach based on the sole assumption that theC12C2 tran-
sition is equitranslational.
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pleting this work.
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The phase diagram of the superconducting state of superconductor–band

the
-antiferromagnet superlattices
V. N. Krivoruchko

A. A. Galkin Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340144 Donetsk,
Ukraine
~Submitted 7 June 1996!
Zh. Éksp. Teor. Fiz.111, 547–561~February 1997!

The formation of the superconducting phase in short-period proximity-effect layered superlattices
of the superconductor–band-antiferromagnetic-metal~SC/AF! type is studied. The exact
solution of the Usadel equations is used to discuss the possibility of formation in such structures
of a ground state in which the order parameters of the adjacent superconducting layers
have opposite signs~the ‘‘p-phase’’!. The dependence of the superconducting transition
temperature and the upper critical field normal to the layers on the lattice period, the intensity of
magnetic interaction in the antiferromagnetic layer, and the state of the interface between
the layers is examined. It is found that there exists a nonlinear dependence of the conditions for
the appearance of the superconducting state in a layered SC/AF system on the system’s
parameters. Finally, the conditions for the appearance of the superconducting phase in proximity-
effect superlattices consisting of a superconductor with nonmagnetic, ferromagnetic, and
antiferromagnetic metals are compared. ©1997 American Institute of Physics.
@S1063-7761~97!01102-5#
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e
ta
ee
o
th
o

c
e
n

d

fe

fe
s
is
e

th
ivi
le

ite

l
ic
a
si
h

AF
AF
uct-
of

a
rst

uch
sate
In
ges

tates
uct-

ure

on-
n

with
of
ry
n-
e in
-
-
-
the

an-
ty-

00
Among artificial layered systems the structures form
by alternating layers of superconducting and magnetic me
constitute ideal objects for studying the relationship betw
superconductivity and magnetism. There exists a vast b
of experimental and theoretical work devoted to studying
properties of superlattices that consist of layers of superc
ducting and ferromagnetic metals~SC/FM superlattices!.1–9

The remarkable properties of these objects, such as the
existence of bulk superconductivity and ferromagnetic ord
ing in the layers and the nonlinear temperature depende
of the critical fields~to name just some!, have been predicted
theoretically and in some cases have been observe
experiments.4–9

Alternating systems of a superconductor and an anti
romagnetic metal~SC/AF superlattices! have been investi-
gated to a considerably smaller extent~see, e.g., Ref. 1 and
10–12!. At the same time, for example, most high-Tc super-
conducting materials are obtained by doping layered anti
romagnets, and the strong antiferromagnetic correlation
the copper spins in the CuO planes are their character
feature. The question of how closely related are the magn
and superconducting properties of high-Tc superconductors
still remains open. At present this and other aspects of
interrelationship between magnetism and superconduct
are being actively discussed in connection with the prob
of the symmetry type of the order parameter in high-Tc sys-
tems ~see, e.g., Refs. 13 and 14 and the literature c
therein!.

Recently the present author derived15 a system of Usade
equations for antiferromagnetic superconductors in wh
electrons of the same type are carriers of the magnetic
superconducting properties of the system and the disper
law of electrons and holes has the property of nesting. T
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superconducting phase in proximity-effect layered SC/
structures, where it was assumed that the thickness of the
layer is much greater than the corresponding supercond
ing correlation length. At the same time, the technology
fabricating superlattices has become so advanced16,17 that it
is quite possible to fabricate lattices from layers with
thickness of several lattice periods. Already the fi
theoretical6,7,18 and experimental2,9 studies of lattices with
small periods demonstrated the unusual properties of s
structures, properties caused by the overlap of conden
wave functions of neighboring superconducting layers.
particular, for SC/N lattices this leads to quantitative chan
in the properties of the system,18 and for SC/FM lattices to
the appearance of entirely new states. For instance, s
with a nontrivial phase difference between the supercond
ing layers can exist in the system~the ‘‘p-phase’’!,19 and
oscillations of the superconducting transition temperat
across the ferromagnetic layer can be observed.2,6,7,9

Note that the properties of a superlattice in the ‘‘p-
phase’’ are in many respects similar to those of superc
ductors withd-pairing.7,9 In connection with the discussio
concerning the type of pairing in high-Tc superconductivity
systems and the presence in such systems of layers
strong antiferromagnetic correlations, solving the problem
a ‘‘p-phase’’ appearing in thin SC/AF lattices becomes ve
important. Bearing all this in mind, we will analyze the co
ditions for the appearance of the superconducting phas
proximity-effect superlattices consisting of a low
temperature superconductor~SC! and a band antiferromag
netic metal~AF! with periods that are smaller than or com
parable to the characteristic scale of the problem,
superconducting correlation lengths.

Section 2 gives the basic equations describing the tr
sition to the superconducting state in small-period proximi
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Usadel equations for an SC layer is used to study the po
bility of the system passing into a ground state with a n
trivial phase difference between the closest SC layers. S
tion 4 is devoted to a discussion of the results of calculatio
for SC/AF systems, of the upper critical field normal to t
layers. In the same section we will also discuss the con
tions for the existence of proximity-effect superconductiv
for SC/AF, SC/N, and SC/FM superlattices. The theoreti
results obtained in this paper are compared with the exis
experimental data in Sec. 5. Finally, Sec. 6 discusses
main conclusions.

2. FORMATION OF THE SUPERCONDUCTING PHASE IN
THIN SC/AF SUPERLATTICES: BASIC EQUATIONS

We assume that both metals, SC and AF, are ‘‘dirty
i.e., they satisfy the conditionl S(AF)!jS(AF), with l S(AF) the
mean free path andjS(AF) the correlation length in the
SC~AF! layer. As we know,20,21 in describing the supercon
ducting states of such metals it is convenient to use Gre
functions that have been integrated with respect to the en
and averaged over the Fermi surface.

The SC layer

For the SC layer we have the usual system of Usa
equations for the Green’s functionsGS(r ,v) and FS(r ,v)
describing normal excitations in the system and the Coo
pair condensate, respectively. Writing only independent r
tionships, we have

2
DS

2
P~GS~r ,v!PFS~r ,v!2FS~r ,v!“GS~r ,v!!

5
DS~r !

\
GS~r ,v!2vFS~r ,v!,

GS
2~r ,v!1FS~r ,v!FS

1~r ,v!51. ~1!

HereP5“12p iA/F0 is the gradient-invariant momentum
operator,A is the vector potential,F0 is the flux quantum,
DS is the diffusion coefficient in the SC layer, an
\v5pT(2n11), with n50,61,62, . . . . The self-
consistency equation for the order parameterDS(r ) and the
functionFS(r ,v) has the standard form

DS~r !5pTl(
v

FS~r ,v!, ~2!

wherel is the constant of the electron–electron interactio
forming the superconducting electron correlations, and
summation is limited by the Debye frequencyVD ~the
Boltzmann constantkB is set equal to unity!.

Near the phase transition to the normal state we h
GS(r ,v).sgn(v), while for the anomalous Green’s functio
we have the linearized equation

2
DS

2
P2FS~r ,v!5

DS~r !

\
2vFS~r ,v!. ~3!

At this point it is convenient to introduce the characteris
superconducting correlation length in the SC lay
jS5(\DS/2pTc0)

1/2, whereTc0 is the superconducting tran
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jS is related to the correlation length in the Ginzburg
Landau theory by the following formula:

jGL~T!5
p

2
jSS 12

T

Tc
D 21/2

.

The AF layer

The magnetic properties of many band antiferromagn
are closely related to the special features of the band st
ture of these materials.22 More precisely, the Fermi surfac
of such metals exhibits a nesting property, i.e., consists
electron and hole sections that almost coincide under a tr
lation by a wave vectorQ, known as the nesting vector. Th
transition to a magnetically ordered state is accompanied
the appearance of a spin-triplet insulator gap on the Fe
surface. Typical representatives of band antiferromagnets
Cr and Cr-based alloys.23 These compounds were used in a
the experimental studies of metallic superlattices of
SC/AF type. For this reason, when we estimate the par
eters of the AF layer we have in mind chromium-based m
netic materials. Extensive experimental data on the magn
properties of Cr and its compounds have been assemble
the review by Fawcettet al.23

As we know,24 the contact of a metal and a superco
ductor results in the appearance of proximity-induced sup
conductivity in a thin layer of the normal metal. The induc
superconducting state of the AF metal is described by
following system of independent equations:15

2
Dn

2
P~G11~r ,v!PF11~r ,v!2F11~r ,v!“G11~r ,v!!

5
D1n~r !

\
G11~r ,v!2vF11~r ,v!, ~4!

2
Dn

2
P~G22~r ,v!PF22~r ,v!2F22~r ,v!“G22~r ,v!!

5
D2n~r !

\
G22~r ,v!2vF22~r ,v!, ~5!

Dn“~G11~r ,v!“G12~r ,v!2G12~r ,v!“G22~r ,v!!

22vG12~r ,v!2 i
Hexc

\
~G11~r ,v!1G22~r ,v!!50,

~6!

Dn“~G12~r ,v!“G11~r ,v!2G22~r ,v!“G21~r ,v!!

12vG21~r ,v!2 i
Hexc

\
~G11~r ,v!1G22~r ,v!!50.

~7!

Here the anomalous Green’s functionsF11(22), as usual, de-
scribe the Cooper-pair condensate,G11(22) andG12(21) de-
scribe normal excitations in the system,Dn is the diffusion
coefficient in the AF layer,D1n andD2n are the band super
conducting order parameters, and the magnetic param
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Hexc ~the antiferromagnetic exchange energy! can be as-
25,26
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sumed real. The following normalization condition also
holds:

Gii
2 ~r ,v!1Fii ~r ,v!Fii

1~r ,v!1Gi j ~r ,v!Gi j
1~r ,v!51,

where iÞ j51, 2, and there is no summation over repea
indices.

The following fact concerning the system of equatio
~4!–~7! must be mentioned. As we know, in the absence
interactions that violate the invariance under time rever
the system Hamiltonian commutes with the time reversal
erator T̂. As a result the energy of the time-reversed on
electron states is the same and Cooper pairing of st
(k,s) and (2k,2s) becomes possible. For~antiferro!mag-
netic interactions of the form

H int5Hexc(
s

@cs
1~r !w2s~r1a!1ws

1~r1a!c2s~r !#,

wherecs
1(r ) andcs(r ), andws

1(r ) andws(r ) are the cre-
ation and annihilation operators of electrons and holes in
first and second bands, respectively, anda is the translation
vector linking the magnetic sublattices, the invariance is b
ken: @H int ,T̂# Þ 0. ~The transformation of the operato
(cs

1w2s) under the operationT̂ is similar to the transforma
tion of the spin operatorsS65Sx6 iSy.! The total system
Hamiltonian now commutes with the operatorŶ5T̂R̂,
whereR̂ is the operator of translation by vectora. This fact is
unimportant in the superconducting pairing of electrons
longing to the same band~sublattice!. But when there are
interband superconducting correlations, the triplet type ra
than the singlet type of electron convolutions proves to
compatible with AF ordering~here a certain analogy can b
drawn between the superconducting phases of systems
heavy fermions27 and3He ~Ref. 28; see also Chap. 9 in Re
29!. We will assume that the superconducting properties
the SC layer are caused by the ordinary~singlet! type of
pairing. Since the superconductivity of the AF layer is i
duced, we should not expect~say, from symmetry consider
ations! triplet correlations to appear in this layer. If we allo
for this fact, the system of equations~4!–~7! contains only
intraband superconducting correlation functions of
s-type.

Band antiferromagnets based on chromium have fa
high Néel temperaturesTN;200–300 K~see Ref. 23!. Tak-
ing this circumstance into account, we restrict ourselves
treatment of the situation of greatest current interest,
which the magnetic ordering temperatureTN significantly
exceeds the superconducting transition temperature of
SC/AF superlattice:Tc<Tc0!TN . Actually this means tha
in studying the conditions for the formation of the superco
ducting phase we ignore the temperature-induced variat
of the magnetic properties of the AF layer. In addition,
Sec. 4 we will assume that the upper critical field of t
superconducting state does not exceed the fields for the
sition of the AF layer from the antiferromagnetic phase to
phase with another magnetic configuration.

It is now convenient to pass from the band variables
the total variablesFAF(r ,v)5F11(r ,v)1F22(r ,v) and
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the anomalous Green’s functionFAF assumes the form

Dn

2
GAF~r ,v!P2FAF~r ,v!

5vFAF~r ,v!2
DAF~r !

\
GAF~r ,v!, ~8!

where GAF(r ,v)5\v sgn(v)((\v)21Hexc
2 )21/2. Next we

use the substitutionFAF(r ,v)5DAFGAF(r ,v)(\v2pT)21

and transform Eq.~8! to the standard form

P2FAF~r ,v!5kAF
2 FAF~r ,v!, kAF

2 5
2pT

\DnGAF~r ,v!
.

~9!

The typical superconducting transition temperatureTc for the
systems considered here is lower than 10 K~see Refs. 10–
12!, i.e., the characteristic frequencies satis
\v;Tc!TN . In the adopted approximation of ignoring th
temperature-induced variations in the properties of the
layer we can write the following expression forkAF :

kAF5
2

jAF
, jAF5S 2\Dn

Hexc
D 1/2. ~10!

Here we have introduced the characteristic damping len
jAF for superconducting correlations in the AF layer. No
that the destruction of Cooper pairs in an AF layer is mu
more intense than in a normal nonmagnetic layer of the sa
thickness:jAF is much smaller than the corresponding dam
ing length jN5(\Dn/2pT)1/2 ~see Ref. 30! in a normal
metal with the same diffusion coefficient. In this the acti
of the antiferromagnetic exchange field coincides with
action of the ferromagnetic exchange field. The difference
that for an FM layer the equation of the form~10! contains a
complex-valued parameter; the characteristic wave vector
an FM metal is4,6

kFM5
2~11 i !

jFM
, jFM5S 4\Dn

Hexc
D 1/2, ~11!

whereHexc is the ferromagnetic exchange field. This fact,
we will shortly see, is important and leads to a qualitati
difference in the properties of SC/FM and SC/AF syste
with a small lattice period.

Equations~3! and~9! should be supplemented by boun
ary conditions at the interface between the layers. We
relations of the form31,32

FS~r ,v!5FAF~r ,v!,
d

dr
FS~r ,v!5h

d

dr
FAF~r ,v!.

~12!

The phenomenological parameterh depends on the nature o
electron scattering on the interface and the properties of
materials comprising the layers; its value in the general c
is unknown. Under mirror reflection at the interface it sat
fiesh5sAF /sS , wheresAF (sS) is the conductivity of the
AF ~SC! layer in the normal state.

We also note that the when the normal electrons of
AF layer penetrate the SC layer they induce magnetic pr
erties in the latter, which constitutes what is known as
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magnetic proximity effect. For ‘‘clean’’ superconductors
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magnetic proximity effects play an important role up to d
tances of orderjS , and allowing for this fact is important in
examining the properties of superlattices consisting
‘‘clean’’ metals.33 In the ‘‘dirty’’ limit ( l S!jS), magnetic
correlations inside the SC layer manifest themselves ov
distance of the order of the mean free pathl S and for this
reason can be ignored.

3. THE SUPERCONDUCTING TRANSITION TEMPERATURE.
STATES WITH A NONTRIVIAL PHASE DIFFERENCE
BETWEEN SC LAYERS

As noted earlier, for superlattices consisting of th
normal-metal layers the overlap of the wave functions of
condensate from the next layers following the neare
neighbor layers is important. This fact can be taken into
count by solving the Usadel equations for the SC layer
actly and satisfying the boundary conditions for each va
of v.

Let us require that the functionFS,AF(r ,v) satisfy the
periodicity condition in the form

FS,AF~z1L,v!5exp~2 iw!FS,AF~z,v!, ~13!

whereL5dS1dAF is the lattice period, andw is the phase
difference between the nearest SC layers. We select thex,y
plane of the coordinate system to be the interface betw
the layers and direct thez axis perpendicular to the planes.
this section we assume that the magnetic field satis
H5curl A50.

We define the superconducting transition temperature
the maximum value ofT(w), i.e., the value at which the
Green’s function of the Cooper-pair condensate satisfies
~3! and~9! and the boundary conditions~13!. Allowing for a
situation in which states with a nontrivial phase differen
w between SC layers can be realized, we seek a solution
the functionFAF(z,v) asymmetric with respect to the midd
of the AF layer:

FAF~z,v!5C1 exp~kAFz!1C2 exp~2kAFz!,

dS<z<dS1dAF .

The coefficientsC1 andC2 can be found explicitly from the
boundary conditions and the periodicity condition. We ha

2 sinh~kAFdAF!C15FS~0,v!exp~2 iw2kAFdS!

2FS~dS ,v!exp~2kAFL !,

2 sinh~kAFdAF!C25FS~dS ,v!exp~kAFL !2FS~0,v!exp

~2 iw1kAFdS!.

Now it is convenient to introduce the Fourier transform
the variablez and reduce the differential equation~3! to the
algebraic equation

2
\DS

2dS
@~21!mFS8~dS ,v!2FS8~0,v!#1

\DSqm
2

2

3FS~qm ,v!5DS~qm!2\uvuFS~qm ,v! ~14!
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rivativesFS8(dS ,v) andFS8(0,v) can be expressed in term
of the values of the function proper if we plug the explic
values of the coefficientsC1 andC2 into the Fourier trans-
form of the boundary condition~12!. We get

FS8~0,v!sinh~kAFdAF!5hkAF(
m8

$FS~qm8 ,v!

3cosh~kAFdAF!2~21!m8

3exp~ iw!FS~dS ,v!%, ~15a!

FS8~dS ,v!sinh~kAFdAF!52hkAF(
m8

$~21!m8FS~qm8 ,v!

3cosh~kAFdAF!2exp~ iw!

3FS~qm8 ,v!%. ~15b!

Using the above relationships, we can write the funct
FS(qm ,v) in the following compact form:

FS~qm ,v!5
DS~qm!

A~qm ,v!

2
1

A~qm ,v! (
m8

Bmm8~v!FS~qm8 ,v!.

~16!

The following notation has been introduced:

A~qm ,v!5\uvu1
1

2
\DSqm

2 ,

Bmm8~v!5
\hDSkAF

2dS sinh~kAFdAF!
$@11~21!m1m8#

3cosh~kAFdAF!2@~21!m

3exp~2 iw!1~21!m8 exp~ iw!#%. ~17!

The values of the sums

(
m

FS~qm ,v!, (
m

~21!mFS~qm ,v!

in ~16! can easily be found by employing Eq.~16! proper.
Finally, plugging~16! into the Fourier transform of the self
consistency condition~2! and performing simple but some
what lengthy calculations, we arrive at a system of line
equations for the Fourier transform of the order parame
DS(qm) of the SC layer:

(
m852`

`

Amm8~v!DS~qm8!50,

Amm8~v!5F12pTl(
v

A21~qm ,v!Gdmm8

1pTl(
v

gmm8A
21~qm ,v!A21~qm8 ,v!.

~18!
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The explicit form of gmm8 is given in the Appendix~Eq.
~A1!!.

The system of equations~18! has a nontrivial solution if

detuAmm8~v!u50. ~19!

The greatest value ofT(w) at which this is still true is the
superconducting transition temperature of the SC lay
Equation~19! was solved numerically; some details of th
numerical method are given in the Appendix. Figures 1

FIG. 1. Dependence of the reduced superconducting transition temper
of an SC/AF superlattice,tc5Tc /Tc0 , on the reduced thickness of the S
layer,dS /jS , and the parameter« characterizing the state of the interfac
Solid curves depict the results for«510 and dashed curves the results f
«51.

FIG. 2. The reduced superconducting transition temperature of an SC
superlattice,tc5Tc /Tc0 , as a function of the reduced thickness of the A
layer, dAF /jS , with weak magnetic effects at the interface between lay
(«510). Here and in Fig. 3 solid curves represent the results for a
phase difference between SC layers,Tc(w50), and dashed curves the re
sults for a finite phase difference,Tc(w5p).
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depict the results of calculations of the superconducting tr
sition temperature for SC/AF superlattices. We will now d
cuss the results.

First we note that the properties of an SC/AF superlatt
are extremely sensitive to the value of the parame
e5jAF(hjS)

21, which characterizes the intensity wit
which the exchange field acts on the Cooper pairs near
interface between the layers. Here the valuese@1 corre-
spond to a weak exchange field~Figs. 1 and 2!, while e;1
corresponds to a strong exchange field~Figs. 1 and 3!. In
general we see that, as with large-period sublattices,15 for
each value ofdAF the superconducting state is realized if t
thickness of the SC layer is greater than a certain crit
value. For systems with sufficiently thick SC layers, an
crease indAF may initiate a transition to the two-dimension
~2D! superconductivity mode, when the transition tempe
ture does not depend ondAF ~see the results represented
Figs. 2 and 3 by solid curves!. When the effect of the ex-
change field is weak, this mode is observed even in thin
layers:dS,jS ~Fig. 2!; when the effect is strong, the mode
observed in thick AF layers~Fig. 3!. The value ofdAF for the
transition to the 2D state in both limiting cases is appro
mately the same,dAF'2jAF , but the values of the critica
temperature of 2D superconductivity are drastically differe
In these properties the behavior of SC/AF superlattices
similar to the behavior of SC/FM structures.3,6

The most dramatic differences between SC/AF a
SC/FM systems concern the transition to a state with a fi
phase difference between the SC layers and the change o
phase transition to the normal state from one type to
other. In Figs. 2 and 3 the solid curves depict the depende
of Tc on the lattice period for a zero phase difference b
tween neighboring SC layers, and the dashed curves
same dependence for a finite phase differencew5p. We see
that the critical temperature of the ground state, at which
order parameters of neighboring SC layers have oppo
signs, is always lower than the temperature of the transi
to the state withw50. Interestingly, while for weak mag

ure

F

s
ro

FIG. 3. The same as in Fig. 2 but at«51. The values forTc(w5p) are
given only in the two-dimensional superconductivity region.
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netic effects the valuesTc(0) andTc(p) in the 2D supercon-
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ductivity mode are equal~see Fig. 2!, at e;1 the value
Tc(p) is strongly suppressed even in this region~see the
results fordS.3jS in Fig. 3!.

Thus, the ‘‘p-phase’’ is not realized in SC/AF superla
tices, and in this respect their properties are similar to th
of SC/N systems.18 The physical origin of such behavior lie
in the fact that in an AF layer, just as in an N layer, the wa
function of a Cooper pair monotonically decays as a funct
of distance into the layer, while for an FM layer this decay
in addition, oscillatory. Note that similar conclusions co
cerning the energy disadvantage of the ground state wi
finite phase difference between neighboring SC layers h
been obtained for lattices made of ‘‘clean’’ SC and A
layers.7 A microscopic analysis based on the Gor’kov equ
tions shows7 that for structures with Josephson coupling b
tween the SC and AF layers there is no ‘‘p-phase’’ for all
reasonable ratios ofHexc and the Fermi energy.

An earlier paper of Sarma34 discussed the effect of th
change in the phase transition into the superconducting s
from second-order to first-order as the strength of the
change magnetic field acting on the electron spins increa
Not long ago the existence of a phenomenon of this type
predicted for SC/FM superlattices.6 As the results of the
present study imply, the antiferromagnetic exchange fi
does not change the type of phase transition of thin SC
superlattices into the normal state.

4. THE UPPER CRITICAL FIELD Hc2'

We find the values of the upper critical field normal
the layers by solving the Usadel equations for the SC la
exactly. However, in view of the results of Sec. 3, we rest
our discussion to states withw50.

A magnetic field perpendicular to the layers penetra
the lattice in the form of Abrikosov vortices modulated alo
the field. Separating variables in the usual manner, i.e., w
ing FS,AF(r ,v)5 f (x,y)gS,AF(z,v), and using Eq.~8! for the
AF layer, we find that

d2

dz2
gAF~z,v!5gN

2gAF~z,v!,

2~Px
21Py

2! f ~x,y!5~qN
22kAF

2 ! f ~x,y!5
2pH

F0
f ~x,y!.

~20!

As with bulk superconductors,35 the smallest eigenvalue o
Eq. ~20! yields the largest valueH5Hc2' , so that

qN
25kAF

2 1
2pHc2'

F0
. ~21!

We seek the functiongAF(z,w) in a form symmetric with
respect to the middle of the AF layer:

gAF~z,v!5CN coshFqNS dAF2 2uzu D G .
Equations of the form~14!–~16! also become much simple
because of the conditionFS(0,v)5FS(dS ,v). As a result,
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repeating the calculations of Sec. 3, we arrive at equati
similar to ~18! and ~19!, where, however, the coefficien
A(qm ,v) specified in~17! has the form

A~qm ,v!5\uvu1
\DS

2 S qm2 1
2pHc2'

F0
D , ~22!

and the parametergmm85gmm8(H) is given by Eq.~A2!.
The values ofHc2' were found by numerically solving Eqs
~19! with A(qm ,v) given by ~22! and gmm8(H) given by
~A2!. The results are depicted in Figs. 4–6.

At this point it is convenient to introduce into the pictu
the upper critical field of the Ginzburg–Landau theor

FIG. 4. Dependence of the upper critical field perpendicular to layers of
SC/AF lattice,hc25Hc2' /Hc2GL , on the reduced temperaturet5T/Tc0 for
different conditions for electron scattering on the interface between the
ers, i.e., values of«, and a fixed thickness of the SC and AF layers. He
and in Figs. 5 and 6 solid curves represent the results for«510 and dashed
curves the results for«51.

FIG. 5. Dependence of the upper critical field perpendicular to the lat
layers,hc2 , on the reduced thickness of the SC layer for different thic
nesses of the AF layer and different conditions for electron scattering on
interface between the layers;T50.1Tc .
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HcGL5F0/2pjS
2 , and the reduced critical field

hc25Hc2' /Hc2GL . Figure 4 depicts the dependence of t
reduced critical field hc2 on the reduced temperatur
t5T/Tc0 for different conditions of electron scattering o
the interface between the layers, i.e., values ofe, and a fixed
lattice period. The dependence of the critical field for diffe
ent values ofdS and fixede, T, anddAF is shown in Fig. 5
and for different values ofdAF and fixede, T, anddS in Fig.
6. Note the absence of publications in which the upper c
cal field of thin SC/FM superlattices are calculated. For t
reason below we will compare the results only with tho
obtained for SC/N systems.

As usual, when the magnetic field is perpendicular to
layers, its critical valueHc2' is shown to vary linearly with
temperature in a broad vicinity ofTc , with saturation at low
temperatures~see Fig. 4!. This behavior ofHc2' corresponds
to the three-dimensional nature of the superconducting s
of the lattices. Note that the value ofHc2' at T50 depends
significantly on the thickness of the SC layer. At the sa
time, when the SC layer in superlattices consisting of a
perconductor and a nonmagnetic metal is not excessi
thin, Hc2'(T) tends to a unique valueHc2'(0).

36,5 Depair-
ing effects of a magnetic nature, rather than the state of
interface, are decisive for the value ofHc2' .

The results depicted in Figs. 5 and 6 show that for e
given value ofdAF the fieldHc2'Þ0 is finite if the thickness
of the SC layer is greater than a certain critical value. T
value,dScr , increases withdAF and strongly depends on th
parametere. In the 2D superconductivity mode the upp
critical field is independent of the lattice period~see Fig. 6!;
however,Hc2'(2D) is strongly dependent on the intensity
scattering of Cooper pairs on the interface between the
ers.

Equation~21! can be written in a different form if we
use the characteristic parameters of the problemjS , jAF ,
andHc2GL :

FIG. 6. Dependence of the upper critical field perpendicular to the lat
layers,hc2 , on the reduced thickness of the AF layer for different thic
nesses of the SC layer and different conditions for electron scattering o
interface between the layers;T50.1Tc .
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We see that applying a magnetic field also makes it poss
to study the dependence of the properties of the system
the parameterk5jAF /jS . Note that atH50 the ratio of
correlation lengths of the layers enters into the formulas o
together with the parameterh, which characterizes the stat
of the interface between the layers. The results depicte
Figs. 4–6 were obtained atk51; varyingk by a factor of
ten in both directions was found to change the numer
results no more than by one percentage point. This, we
lieve, supports the hypothesis of Deutscher and de Genn37

that suppression of the superconducting order paramete
proximity-effect junctions of a superconductor and a ma
netic material is caused chiefly by destruction of Coop
pairs on the magnetic defect in the interface between
layers, rather than by the type of magnetic order in the b
of the normal layer.

5. COMPARISON WITH EXPERIMENTAL DATA

Because there exists no systematic experimental stud
SC/AF systems with a small lattice period, only qualitati
comparison of the theoretical results of the theory with
experimental data was possible. For instance, both the
experimental studies of the proximity effect in SC/A
junctions1 and the later investigations of SC/A
superlattices11,12have revealed a sharp drop in the superc
ducting transition temperature with increasing thickness
the AF layer for fairly thin SC layers as well as the fact th
Tc becomes saturated for large values ofdS . But there are
still a number of problems and discrepancies. The ambig
in interpreting the results for Nd/Cr lattices12 is caused by the
large thickness of the transition layer between the SC and
metals. The thickness of this layer~'20 Å! is comparable to
the thickness of the Cr layer~30 Å!. Actually, the investi-
gated objects consisted of three alternating layers, a fact
supported by the two-stage nature of the transition into
superconducting state of such lattices observed by Ch
and Stearns.12

The most thorough investigations of SC/AF syste
have apparently been conducted by Deviset al.11 The re-
searchers studied the conditions needed for the appearan
a superconducting state in V/Cr superlattices by varying
thickness of the SC layer from 98 to 197 vanadium atom
layers and the thickness of the AF layer from 3 to 100 ch
mium atomic layers. They found that starting atdCr>80
atomic layers the superconductivity is quasi-tw
dimensional. The transition temperature monotonically
creases with increasing AF-layer thickness in the 3D sup
conductivity region and tends to become saturated in the
superconductivity region, which agrees with our results.
the same time, with one set of samples~prepared under con
ditions differing from those in which other samples we
prepared, however! nonmonotonic behavior ofTc(dCr) was
discovered in the 2D superconductivity region.

Yetteret al.10 studied the dependence of the upper cr
cal fields of multilayered Pb–Bi/Cr systems on the thickne
of the SC layer at fixed temperatures. Note that the sys

e

he
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model: Cr does not mix with Pb and Bi, and the interfa
between the layers is apparently fairly sharp. Moreover
the lattices investigated by Yetteret al.10 the normal layers
were fairly thin:dAF520 Å and 75 Å. One can expect, ther
fore, that for systems withdS,5jS ~jS'200 Å for the
Pb–Bi alloy! interference effects become important. For l
tices with a thickness of the SC layer in the interv
1.5jS<dS<10jS , Hc2' was observed to increase withdS .
This dependence of the behavior ofHc2' on the thickness of
the SC layer is also characteristic of the results depicte
Figs. 5 and 6. However, the reason why the critical field
superlattices with 10jS<dS<15jS is much higher than tha
for the bulk sample of the Pb–Bi alloy,Hc2

bulk , remains un-
clear. In the rangedS.15jS, the experimental values of th
fieldHc2' are approximately equal toHc2

bulk , as physical con-
siderations suggest.

6. CONCLUSION

The results of the present investigation suggest that
general dependence of the superconducting transition
perature and the upper critical fieldHc2' on the system pa
rameters is qualitatively the same for a thin SC/AF super
tice and a thin SC/N superlattice. More precisely,Tc rapidly
drops as the thickness of the normal layer in fairly thin S
layers increases, and becomes saturated when the SC l
are thick. As in SC/N systems, the transition to a grou
state with a nonzero coherent-phase difference between
layers is energetically disadvantageous; the type of trans
remains unchanged. Quantitatively, however, the conditi
for the formation of a superconducting phase in SC/AF s
tems may differ drastically from those in SC/N systems
cause of magnetic effects of scattering on the interface
tween layers. We established the qualitative differen
existing between SC/AF and SC/FM small-period lattic
These differences manifest themselves primarily in
change of the type of phase transition into the normal s
and in the transition to a superconducting state with a fin
coherent-phase difference between the SC layers.

As for the discrepancies~mentioned in Sec. 5! between
the theoretical results and the experimental data, in addi
to the possible explanations given by Yetteret al.10 and De-
vis et al.11 one more should be mentioned. These res
were interpreted in Refs. 10 and 11 on the assumption
Cr has only one~antiferro!magnetic phase. But chromium
and its alloys are known to have many magnetic pha
including those with a magnetic cell incommensurate w
the crystal lattice.23 An external agent can easily transfor
one phase into another. In the vicinity of magnetic pha
transitions one should expect a nonmonotonic dependenc
the transition temperature and the upper critical fields of
superconducting state of the system on the lattice per
These problems were not discussed here, but, we beli
they merit a separate study.
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Medvedev for reading the manuscript of this paper and
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APPENDIX

The coefficientgmm8 is given by the following expres-
sion:

gmm85$@11~21!m1m8#@cvav coth~kAFdAF!#2@~21!m

1~21!m8#cvbv2@~21!m exp~ iw!1~21!m8

3exp~2 iw!#sinh21~kAFdAF!%H cv
211

2dScv

\2DSuvu

12Fav coth~kAFdAF!2bv

cosw

sinh~kAFdAF!G J 21

. ~A1!

Here we have introduced the notationcv5\DShkAF/2dS ,
av5av(H50), andbv5bv(H50), with the explicit form
of the coefficientav(H) andbv(H) given in Eqs.~A3! and
~A4! below.

Note that although formally the matrixÂ given by Eq.
~18! is infinite, we haveAmm8→dmm8 asm,m8→6`, as the
expression forAmm8 implies. As a rule, even a 5-by-5 matri
provides an accuracy of about one percentage point, whic
sufficient for our purposes. Simple sums over frequenc
were evaluated using the formula~see, e.g., Ref. 31!

pT (
n

\VD /Tc0 1

\uvu1x
5l212 ln

T

Tc0

2CS 121
x

2pTD1CS 12D ,
which is valid for \uvu@T,x; hereC(x) is the digamma
function. In more complicated cases the summation w
done explicitly, with \VD /Tc05200 and
l215 ln(1.134\VD /Tc0).

The expression forgmm8(H) has the form

gmm8~H !5@11~21!m1m8#jv

3
11jvav~Hc'!2~21!m8jvbv~Hc2'!

@11jvav~Hc2'!#22jv
2bv

2 ~Hc2'!
,

~A2!

where the following notation has been introduced:

jv5
\DS

2dS
hqN tanh

qNdAF
2

,

av~H !52dS cothFdSS 2uvu
DS

1
2pH

F0
D 1/2G

3F\DSS 2uvu
DS

1
2pH

F0
D 1/2G21

, ~A3!
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b ~H !52d sinh21 d
2uvu

1
2pH 1/2

J.
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Realization of a heavily doped and fully compensated semiconductor state in a

and
crystalline semiconductor with a deep impurity band
M. I. Daunov, I. K. Kamilov, and A. B. Magomedov

Institute of Physics, Dagestan Science Center, Russian Academy of Sciences, 367003 Makhachkala, Russia
~Submitted 18 October 1995; resubmitted 2 August 1996!
Zh. Éksp. Teor. Fiz.111, 562–574~February 1997!

We use the data on the pressure~up toP51.5 GPa! and field~up toH517 kOe! dependence
of the Hall coefficient and the resistivity at 77.6 and 300 K inp-CdSnAs2^Cu& to calculate
the effective kinetic characteristics of the charge carriers, the density and mobility of the
conduction electrons and the holes of the deep acceptor and valence bands, in an interval
of excess-acceptor densitiesNext ranging from 1010–1017 cm23. We establish that in a heavily
doped semiconductor with a deep impurity band at the tail of the density of states of the
intrinsic band, with unequal donor and acceptor densities, a a heavily doped and fully compensated
semiconductor state is realized under hydrostatic compression. The threshold value of the
pressure that initiates the transition into such a state,Pc , depends on the extent to which the
impurity band is populated. Inp-CdSnAs2^Cu& at Next5NA , whereNA is the density of
deep acceptors, andT<77.6 K the value ofPc amounts to 1024 GPa. As the population of the
deep acceptor band grows,Pc increases and in the limit becomes infinite. We discuss the
special features of the electrophysical properties ofp-CdSnAs2^Cu& arising from the absence of
an energy gap between the states of the conduction band and those of the deep acceptor band.
© 1997 American Institute of Physics.@S1063-7761~97!01202-X#

1. INTRODUCTION charge carriers has been discussed in detail in Refs. 4, 5,
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The analogy of the properties of a heavily doped a
fully compensated semiconductor and those of an amorph
semiconductor, which is caused by the presence of a ran
large-scale potential in both systems, has been emphasiz
Refs. 1–3. In this connection, Shklovski� and Éfros1 devel-
oped a theory of a heavily doped and fully compensa
semiconductor and suggested using this theory as a mod
describing amorphous semiconductors. It was also sugge
that a model of an amorphous semiconductor could be c
structed by introducing, in various ways, compensatory
purities in a heavily doped crystalline semiconductor. T
idea has been implemented, for instance, in heavily do
n-Ge samples irradiated by fast neutrons2 and in heavily
dopedn-CdSnAs2 samples diffusion-doped by copper fro
the electrolytic layer on the sample surface.4,5

In earlier work~see Ref. 6! the present authors discov
ered a deep acceptor level~band! of the intrinsic defect of the
cadmium vacancy in CdSnAs2^Cu& crystals. The level was
found to be closely related to the valence band and was
ated at a distance

«A5«A
01aT2bP ~1!

~where «A
05230 meV, a54.631022 meV/K, and

b5120 meV/GPa) from the unperturbed edge of the c
duction band (b5]«g /]P, and «g50.28 eV is the
bandgap6!. Here and in what follows the energy is measur
from the unperturbed edge of the conduction band, and
the positive direction we take the one pointing into the ba
The behavior of the density of states for the model be
discussed in the caseKA5NA

2/NA'0 is depicted in Fig. 1
(NA

2 is the density of ionized deep acceptors!. The tempera-
ture dependence of the effective mobilities of localiz
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7. It was found that from 2 K to 40–50 K thetemperature
dependence of the effective mobilities of electrons from
conduction band and holes from the acceptor band obeys
Mott law

mc,A}exp$2~T0c,A /T!1/4%, ~2!

which is characteristic of systems with large-scale fluct
tions and of amorphous systems. Heremc andmA are, re-
spectively, the effective mobilities of the electrons of t
conduction band and the holes of the acceptor band,
T0c andT0A are constant parameters that increase with p
sure; in the limitP→` we haveT0c→` andmc→0, while
T0A andmA tend to fixed values. It has also been found

4 that
in samples for which the population coefficientKA of the
deep acceptor band is larger than 0.9 the state of a hea
doped and fully compensated semiconductor emerge
liquid-helium temperatures when the hydrostatic compr
sionP is greater than 0.1 GPa.

We introduce the following notation:n, pA5NA2NA
2 ,

andpv are the densities of, respectively, the electrons of
conduction band, of the holes of the deep acceptor band,
of the holes of the valence band;Na

25Na2pA and
Nd

15Ndm
1 2Ndr

1 are the total densities of the ionized accep
and donor centers, whereNa5Nar

1 1Nam
2 1NA , Nam

2 and
Ndm

1 are the densities of the shallow impurity centers, a
Nar

2 andNdr
1 are the densities of possible ionized deep acc

tor and donor centers whose energy levels are much lowe
much higher than the Fermi level«F5«A ~because of their
position with respect to the Fermi level such centers do
affect the behavior of the electron system!; and
N5Nd

12(Nam1Nar
2 ). The condition for electrical neutrality

of the system,

309-08$10.00 © 1997 American Institute of Physics
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1 , ~3!

yields the following expression for the density of excess
ceptors:Next5Na2Nd

15NA2N5pv1pA2n. With this no-
tation we can writeKA5(N1pv2n)/NA . Note that when
0<N<NA , in the limit of T→0 andP→` the population
coefficient of the deep acceptor band satisfies the inequ
0<KA5N/NA<1, and«F'«A .

Obviously, ifKA'0, holds i.e., the states of the accep
band are neutral, the conductivity in this band is zero. In
absence of a random potential, near absolute zero, an

FIG. 2. Pressure dependence of the Hall coefficientR0 in a very weak
magnetic field~curves1 and 4!, the resistivityr0 ~curves2 and 5!, the
mobility mA of the holes of the acceptor band~curves3 and6! at 77.6 K
~1–3! and 280 K~4–6!, and the deep-acceptor energy level«A at 280 K
~curve7! in sample 10.

FIG. 1. The ~schematic! behavior the density of states o
p-CdSnAs2^Cu&, a heavily doped and compensated semiconductor wit
deep acceptor band whose population coefficientKA is approximately zero,
at atmospheric pressure~a! and under hydrostatic compression~b!. Here
«v and«c are the unperturbed energies of the top of the valence band
the bottom of the conduction band,«A and«F are the energies of the dee
acceptor level and the Fermi level, and«v

p and«c
p are energies of the per

colation levels for the holes of the valence band and the electrons o
conduction band. The dot–dash curve describes the behavior of the de
of states in a perfect crystal. The shaded areas correspond to popu
states.
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Next5NA , the Fermi level is situated between the top of t
valence band and the acceptor band. In this c
n5pv5Na

250. However, large-scale fluctuations of th
density of ionized impurities and the corresponding rand
potential, which are sure to be present in a heavily dop
semiconductor, bend the edges of the conduction and vale
bands so that these edges cross the acceptor band, cha
the energy by a quantity of order«g ~Fig. 1!. As a result the
Fermi level gets shifted to the acceptor band, while the e
trons and hole that have condensed into droplets screen
random potential. In this way, forNa Þ Nd , even at atmo-
spheric pressure a state of the type of a heavily doped

FIG. 3. Magnetic field dependence of the Hall coefficientR in sample 10 at
77.6 K ~curves1 and2! and 280 K~curves3–5! at different pressuresP
~measured in GPa!: curve1— 0.02; curve2— 1.09 curve3— 1024; and
curves4 and5— 1.51. The dashed curve represents the results of theo
ical calculations.

FIG. 4. Curves representing the calculated dependence of the densityn of
the conduction electrons~curves1 and2!, the densitypA of the holes of the
acceptor band~curves3 and4!, the parameterc5(pA1pv)/n ~curves5 and
6!, the mobilitymA of the holes of the acceptor band~curves7 and8!, and
the densitypv ~9! of the holes of the valence band at atmospheric press
and at 300 K~odd-numbered curves! and 77.6 K~even-numbered curves! on
R`5(Nexte)

21 in p-CdSnAs2^Cu&.
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TABLE I. Parameters of samples under atmospheric pressure.

02
No. of
sample

Next ,
1016 cm23

NA ,
1016 cm23

2R0,
cm3 C21

r0
21

V21
•cm21

mc ,
cm2 V21 s21 KA

R0,
cm3 C21

r0
21,

V21
•cm21

mc ,
cm2 V21 s21 KA

T5300 K T577.6 K

1 1.231026 0.28 781 12.3 8000 0.190 29600 0.71 7070 0.80
2 4.631023 1.38 331 31.1 12300 0.285 22290 1.20 4040 0.90
3 6.931023 1.50 320 21.5 8020 0.280 22130 1.00 3170 0.90
4 1.2531022 1.70 280 25.2 8540 0.300 21800 1.70 5010 0.91
5 5.9031022 2.35 220 25.0 7040 0.330 21100 1.29 3060 0.90
6 0.245 3.16 206 38.1 9780 0.350 2930 0.94 2440 0.87
7 0.275 3.20 210 32.0 8160 0.355 2920 0.83 2200 0.86
8 1.040 4.20 286 23.0 6980 0.360 2850 0.58 2260 0.73
9 1.980 4.77 405 8.84 3160 0.315 2795 0.25 1300 0.56
10 5.94 6.03 650 3.50 3890 0.077 212 0.08 520 0.
11 6.25 6.08 530 3.70 – 0.060 260 0.07 – ;0
12 11.1 6.80 225 35 – – 770 0.17 – –
fully compensated semiconductor could be realized. Our
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goal was to verify this assumption in experiments. To t
end we performed a complex investigation of transfer p
nomena using a series of single-crystalp-CdSnAs2^Cu&
samples with a total impurity center density of ord
1018 cm23 in a broad interval of excess-acceptor densi
ranging from 1010 to 1017 cm23, with acceptor-band popu
lation coefficients 0<KA,1 and compensation coefficien
0.9,K5Nd1/Na,1. The study, which was started in Ref.
and was conducted in magnetic fields up toH517 kOe,
under hydrostatic compression up toP51.5 GPa, and a
77.6 and 300 K, was aimed at determining the density
pendence of the various kinetic characteristics, examin
the characteristic features of the gapless state induced
impurity centers, and selecting samples withNext'NA .

2. EXPERIMENTAL RESULTS

Figures 2–4 and Tables I and Tables II depict and
some characteristic results of experimental studies and
gathered by quantitative interpretation. The notation is giv
above and in the figure captions. ForNext'NA the measure-
ments were done on two identical samples, 10 and 11~Table
I!, and reference measurements on sample 11 produce
sults that for all practical purposes coincided with those
volving sample 10.

To generate pressure we used a nonmagnetic stand-a
low-temperature chamber of the piston–cylinder type wit
fixed clamp and a liquid as the agent for transferring
pressure. The measurement method is described in Re
TABLE II. Parameters of sample 10.
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Hall coefficient, and the Hall mobility amounted to 4%, 2%
and 5%, respectively. The errors in measuring hydrost
pressure with a Manganin transducer were less than 1.5
room temperature and 3% atT'100 K. In experiments with
hydrostatic compression, the maximum relative errors
measuring the resistivity and the Hall coefficient were le
than 5%. The accuracy of measuring relative variations
the kinetic coefficient under variations of pressure w
higher by a factor of ten.

As in Refs. 4–6, the samples were prepared by diffus
doping by copper impurities from the surface layers
n-CdSnAs2 crystals with a donor density of orde
1018 cm23. Introduction of compensating acceptors, whi
are apparently substitutional impurities~a copper atom in an
arsenic vacancy6,9!, lowers the Fermi level to the energ
level of a deep acceptor of a cadmium-vacancy intrinsic
fect, and because of this the states of the acceptor band
come electrically active.6 The extremely high compensatio
of p-CdSnAs2^Cu& crystals agrees with the Reis–Fulle
theory, which attributes the high solubility of diffused copp
in cadmium–tin diarsenide to the effect of donor impuritie9

To analyze the density dependence of the Hall cons
and the resistivity atT15300 K andT2577.6 K qualita-
tively, we used the curves representing the dependencie
R0(T1), R0(T2) and r0(T1), r0(T2) on R0(T2)/R0(T1).
The appropriateness of such constructions, which mak
possible even before calculations to determine the chara
istic features of the functionsR0(Next) and r0(Next) and
8

T,
K

P,
GPa

R0,
cm3 C21

r0,
V•cm

pA31016,
cm23

mA ,
cm2 V21 s21 pA/n pv/pA mc/mA mv/mA KA

1024 2650 0.286 5.6 130 16.5 0.13 30 1.6 0.0
280 1.5 2300 2.50 5.4 22 1450 0.10 180 9.5 –

` 530 3.80 5.4 10 ` 0.10 0 21 0.10

1024 212 12.7 5.9 7.9 33104 331023 67 27 0.2
77.6 1.0 320 16.8 5.9 6.1 – – – – 0.2

` 507 22.0 5.9 4.4 ` – 0 – 0.02
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TABLE II. ~Continued!
«A , meV «F , meV ]«A/]P, ]«F/]P,

K T5280 K P51024 GPa meV/GPa meV/GPa

0.98 211 270 2120 2110
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density dependence of the kinetic characteristics, was d
onstrated on the gapless semiconductorp-HgTe ~Ref. 10!.
The similarity of the kinetic properties ofp-CdSnAs2^Cu&
andp-HgTe has been noted in Ref. 6~see Sec. 4!.

As the excess-acceptor density grows, the ra
R0(T2)/R0(T1) is found to decrease from positive values
negative~from 12 to24.5 in the studiedp-CdSnAs2^Cu&
crystals!. A feature characteristic ofp-CdSnAs2^Cu&, caused
by the fact that a gapless state in this compound app
because the conduction band and the impurity~acceptor!
band merge, was discovered in the process; namely,uR0u was
found to increase with the ratioR0(T2)/R0(T1) from 5 to 12.
This feature can be explained by the narrowing of the acc
tor band asNext decreases~see Sec. 4!.

3. DETERMINING THE PARAMETERS OF THE CHARGE
CARRIERS

The procedure of calculating the effective kinetic ch
acteristics, the charge-carrier densities and mobilities, fr
the data on the Hall coefficientR(T,P,H) and the resistivity
r(T,P,H) has been thoroughly discussed in Refs. 4–6.
in contrast to Refs. 4–6, in addition to allowing for the co
tributions of the conduction electrons and acceptor-b
holes, we took into account the contribution of valence-ba
holes to conductivity, which that cannot be ignored
p-CdSnAs2^Cu& crystals withNext'NA . Thus, the calcula-
tions have been carried out using well-known phenome
logical relationships in terms of a theory that allows for thr
types of charge carriers with parameters~densities and mo-
bilities! independent of the magnetic field strength and
sumes that the contribution of each type of charge carrie
the conductivity tensor is additive. The effective densit
and mobilities of the charge carrier were found from t
formulasnj5(uRj ue)21 andm j5uRj us j , whereRj and s j

are the partial values of the Hall coefficient and the resis
ity. Determining the characteristic parameters in this cas
a reliable manner is not a trivial problem. Mathematic
analysis of theR(T,H) andr(T,H) dependences, includin
computer models needed for determining whether ther
enough data to estimate the unknown parameters, as we
the results of physical modeling, can be found in Refs. 1
13. We also used the electroneutrality equation, the kno
values of the band parameter, and the Kildal–Bodnar~KB!
four-band model for the dispersion law.6

The fact thatNA
25NA@11gexp(«A*2h)#21 implies

ln g1«A
0*2b*P5h1 ln

12KA

KA
, ~4!

whereg is the parameter of the acceptor-level spin deg
eracy, «A

0*5«A
0/kBT, b*5b/kBT, and h5«F /kBT, with
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lating the characteristic charge-carrier parameters when
variation of the average charge-carrier energy caused b
random potential is small compared to the energy proper
when acceptor-level broadening can be ignored.6,14 At
Next'NA at room temperature and with allowance for t
fact that the acceptor-level baric coefficient]«A /]P is inde-
pendent of pressure, at least up toP51.5 GPa,6,8 we used
Eq. ~4! in the pressure interval from atmospheric
P51.5 GPa, wheref (P)5h1 ln(12KA)/KA is a linear
function ~Fig. 2!. Here we allowed for the fact that the pa
rameterh was estimated byn in the KB dispersion-law ap-
proximation, which used the known values of band para
eters, whilen and KA were determined directly from the
experimental data. Hence the deviation off (P) from a linear
function suggests that the random potential affects the d
sity of conduction-band states. Since in semiconductors
baric coefficients of the energy gapsD« are usually pressure
independent~or are weakly dependent on pressure15!, in
cases where hydrostatic compression has a strong effec
electron statistics, expressions of type~4! can usually be used
as a condition for the applicability of the dispersion law f
impurity-free semiconductors in a semiconductor with a ra
dom potential.

In other words, applying the dispersion law for a perfe
semiconductor to a semiconductor with a random potentia
meaningful as long as the pressure dependence ofD«(P)
calculated using experimental data and relations of type~4!
remains linear, as is the case with CdSnAs2^Cu& for samples
with Next'NA at room temperature and at pressures up
P'1 GPa~Fig. 2! and for samples withNext,NA at room
temperature and at pressures up to at least 1.5 GPa, as
as at 77.6 K and nearly atmospheric pressure.6

With allowance for adjustments in graph plotting, phys
cal models, and a satisfactory agreement between the
moelectric power measured in experiments16 and the one cal-
culated with the use of certain values of the characteri
parameters, the maximum relative error in determining
characteristic charge-carrier parameters, including the ex
acceptor density, is 15%.

The compensation coefficient of the samples was e
mated by the formula

12K5
Next

nin
2~12Kin!

11Kin . ~5!

Herenin5(uR0
inue)21 andKin are, respectively, the electro

density and the compensation coefficient for crystal prior
diffusion doping. The parameterKin was calculated by the
Bruns–Herring formula for electron mobility in heavil
doped degeneraten-CdSnAs2 crystals at 77.6 K when elec
tron scattering on ionized impurities dominates.17 Here the
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error in determining the total density of ionized impurities,
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caused by using measured values ofR0 andr0 was found to
be no higher than 10%. In deriving Eq.~5! we allowed for
the fact that the appearance of a Cu→VAs defect~VAs is an
arsenic vacancy! is accompanied by the disappearance o
VAs defect,

9 and used the simplifying assumption that defe
charges are equal to unity. We also assumed
nin@Next.

Equation~5! made possible a qualitative suggestion th
compensation in thep-CdSnAs2^Cu& crystals studied is ex
tremely strong.

Within the range of variation ofNext studied here~see
Table I!, a decrease inNext leads to a decrease in the para
eter 12K from 1021 to 1026.

4. DISCUSSION

Within the range of variation ofNext studied here we
have the following empirical formula:

NA54.231016~10216Next!
1/5, ~6!

whereNA andNext are measured in units of cm23. Thus, as
Next decreases, the acceptor band narrows. Such correl
between the parametersNA andNext, as we will shortly see,
has a strong effect on the density dependence of elec
physical properties.

The dependence of the Hall coefficient in an extrem
weak magnetic field,R0 , onNext ~Table I! is characteristic of
p-type semiconductors with an electron-to-hole mobility
tio much larger than unity. However, the quasi-intrinsic co
ductivity region, wherec5(pA1pv)/n51 ~Fig. 4!, contains
a characteristic feature, an increase inuR0u with decreasing
Next, caused by a narrowing of the acceptor band.
Next→0, the Hall coefficient tends to the valueRi for intrin-
sic CdSnAs2 ~Ri52830 cm3 C21 at room temperature; se
Ref. 18!. Naturally, a transition to quasi-intrinsic conducti
ity at 77.6 K occurs for lower values ofNext. Of certain
interest here is the dependence of the acceptor-band
mobility on the excess acceptor density~Fig. 4!. As Next

decreases from a value of order 1016 cm23 (KA'0), mA

grows ~the coefficientKA increases! and passes through
maximum. Further decrease inmA can be linked to the de
crease in the deep-acceptor density, i.e., to the narrowin
the acceptor band. The explanation for the temperature
baric dependence ofKA is equally straightforward. The fac
that in crystals withNext.231016 cm23 ~samples 10 and
11! KA decreases as the temperature drops from 300 to
K ~Table I! is caused by the freezing of electrons into t
valence band.

The similarity betweenp-CdSnAs2^Cu& and the gapless
semiconductorp-HgTe ~Ref. 19! in their electrophysical
properties was noted in Ref. 6. A characteristic feature h
is that the mixed-conductivity region is ‘‘extended’’ in tem
perature, even down to liquid-helium temperatures when
excess-acceptor density is lower than the threshold v
(R0,0) ~for p-CdSnAs2^Cu& Next,1015 cm23; see Ref.
4!. Moreover, the temperature dependence of the intrinsic~or
quasi-intrinsic @n(pA1pv)#

1/2 in CdSnAs2^Cu&! density
(ni) in both compounds is close to theni } T3/2 law, and the
reduced Fermi energy (h i) is weakly temperature-dependen
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p-CdSnAs2^Cu& ~Table I and Fig. 4!, uh i u grows from 1.5 to
1.7 as the temperature rises from 77.6 to 300 K. The Fe
energy was estimated from the electron density~Fig. 3! with
the use of the known values of the band parameter and
KB four-band model for the dispersion law.6

The baric and magnetic-field dependence of the kine
coefficients and the baric dependence of the character
parameters, with the exception ofmA , in p-CdSnAs2^Cu&
crystals withNext'NA at room temperature are typical o
p-type semiconductors in the mixed-conductivity range, w
a tendency toward a transition to impurity conductivity as t
pressure rises~Figs. 2 and 3 and Table II!. On the other hand
the rapid decrease inmA with increasing pressure is cause
by the separation of the states of the band continuum fr
those of the deep acceptor band, since, as noted in Ref. 5
effective mobility of the impurity-band carriers depends
the density of statesg(«A) of the band continuum in its
vicinity. As the conduction band moves away from the a
ceptor band, i.e., asg(«A) decreases, the rate of the decrea
of mA with increasing pressure drops. The extremely we
dependence ofpA and pv on pressure explains the almo
linear dependence of«F on pressure up toP51 GPa, as
long as the random-potential effect is insignificant. Nev
theless, in contrast to the acceptor band, whose positio
fixed in relation to the top of the valence band, because
electrons become ‘‘frozen’’ into the lower states the Fer
level slowly moves away, as the pressure grows, from
top of the valence band, approaching the acceptor band
a rate of 10 meV/GPa~Table II!. The satisfactory agreemen
between the values of«A

0 and]«A /]P found in our investi-
gation and the earlier estimates4,6 suggests that the prese
calculations of the values of the kinetic characteristics of
charge carrier using theR(H,P) andr(P) dependences ar
reliable.

As the temperature is lowered, the Hall coefficie
changes sign. At 77.6 KR0.R`5(Nexte)

21 ~see Tables I
and II and Fig. 3!, which suggests that two types of hole
from the valence and acceptor band, participate in trans
processes11–13 ~see Eq.~7! below!. This is also evident from
the calculated dependence ofR on the magnetic field
strength in the high-field range at room temperature~Fig. 3!.
The fact that at 77.6 K the Hall constant is independent
H implies that the limit of an extremely weak field holds fo
the charge carriers. As the temperature drops from room t
perature to 77.6 K and the pressure remains atmosph
bothpv andn decrease by one to three orders of magnitu
The Fermi level moves toward the acceptor band and
pinned there. Also, the acceptor-band hole mobility d
creases by a factor greater than ten. The observed tend
toward localization of acceptor-band holes is caused not o
by the decrease in the average thermal energy but also b
fact that, in accordance with~1!, the conduction band move
away from the acceptor band, i.e., by the decreases
g(«A), as in the case of growing hydrostatic compression

The values of the coefficientsR0 and r0 at 77.6 K are
determined by the kinetic characteristics of the holes of
valence and acceptor bands. The hole density, the vale
band hole mobility, the Fermi energy, and the gap«A2«v
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acceptor-band hole mobility decreases with increasing p
sure because of the decrease ing(«A). This means that the
density of states of the conduction band at the Fermi le
frozen into the acceptor band is nonzero starting at at
spheric pressure~although the electron contribution to th
formation ofR0 and r0 is unessential!. The increase in the
Hall coefficient and the resistivityr0'(epAmA)

21 with
pressure is determined by the decrease inmA . Indeed, a
simple phenomenological calculation of the Hall coefficie
for two types of carrier of the same sign and the inequal

Rv5~pve!21@R0.RA5~pAe!21'R`5~Nexte!21 ~7!

~Table II! imply that R0 increases with decreasingmA ~as
mA decreases to zero,R0 tends toRv!. Just as at room tem
perature, as the pressure increases the effective acce
band hole mobility decreases to several cm2 V21 s21 as
P→` ~Table II!, approaching values obtained
p-CdSnAs2^Cu& samples withKA.0.9 at liquid-helium
temperatures,4,5 i.e., a pronounced tendency toward localiz
tion of acceptor-band holes with increasing pressure can
observed.

Thus, the presence of a large number of valence-b
holes and conduction electrons (g(«A).0) at 77.6 K in
p-CdSnAs2^Cu& with Next'NA suggests strong deformatio
of the band edges and formation of heavily doped and fu
compensated semiconductor states even at atmospheric
sure.

5. CONCLUSION

In p-CdSnAs2^Cu& crystals with KA→0 and
NA→Next, a heavily doped and fully compensated semico
ductor state is realized atT<77.6 K even at atmospheri
pressure, in contrast to the case withKA→1 ~see Refs. 4 and
5!. For semiconductors with a deep impurity band, the equ
ity of donor and acceptor densities is not a necessary co
tion for the formation of a state of a heavily doped and fu
compensated semiconductor, in contrast to the model
gested in Ref. 1.

The unique possibility of continuously controlling th
height of potential barriers by applying hydrostatic compr
sion in such systems is of certain interest to studies of
specific phenomena in disordered semiconductors, suc
the state of ‘‘frozen’’ photoconductivity of nonequilibrium
carriers, which can be retained indefinitely. Possible obje
for such investigations are the heavily doped and stron
compensated Ge^Au,Sb&, InSb̂ Cr&, and n-InAs crystals
with an excess donor density of order 1015 cm23. The im-
portance of these substances cannot be overestimated,
they can serve as an effective model for a disordered se
conductor~an amorphous semiconductor, in particular! con-
trollable by compensation and hydrostatic compression.

The authors are grateful to the Russian Fund for Fun
mental Research for financial support~Project No. 95-02-
03653a!.
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To increase the reliability of estimates of the charact
istic parameters of the charge carrier, i.e., their density
mobility, we employed the transformations that lineariz
Eq. ~4! ~Ref. 6!:

L@g exp~«A*
02h0!#215M1N~n02pv

0!21,

L5@12~n2pv!/~n
02pv

0!#~12exp j!21, ~A1!

M52@12$~n2pv!/~n
02pv

0!%exp j#~12exp j!21,

with j5h02h2b*P ~the superscript 0 correspond to atm
spheric pressure!, and the expression for the Hall coefficie
for three types of charge carriers whenR Þ 0 ~Ref. 11!:

R5R0

11wH21uH4

11cH21nH4 . ~A2!

The coefficientsR0 , w, c, u, andn are determined by the
densities~n, pA , andpv! and mobilities~mc , mA , andmc!
of the charge carriers, and in the adopted approximation
independent of the magnetic field strength. In the mixed c
ductivity range, where the dependence ofR on H is ex-
pressed most vividly, the ratiopA /n is much larger than
unity, andmvH!1 in fields up to 20 kOe~mv is a quantity of
the order of several hundred cm2 V21 s21!. In this case we
have

~wH21uH4!~wH2!21'1, ~cH21vH4!~cH2!21'1

to within one percent, and Eq.~A2! becomes

R5R0

11wH2

11cH2 . ~A3!

This implies that

R0

R
5
12R0 /R

wH2 1
c

w
, ~A4!

~R2R`
eff!215~R02R`

eff!211c~R02R`
eff!21H2. ~A5!

Note that

R`
eff5R0S w

c D.R`5R0S u

n D5 lim
H→`

R5~Nexte!21.

Allowing for the fact that (mc /mv)
2@1, we obtain

w5mc
2S 12

mc
2

RcR0s0
2D , c5mc

2S 12
mc

Rcs0
D 2, ~A6!

with uRcu5(ne)21. Thus, in weak fields theR vs H depen-
dence is determined primarily by the characteristic para
eters of the highly mobile charge carriers, the electrons of
conduction band, andn andmc can be found directly from
~A6!. Equations~A6! also lead directly to the following
equations:

RAsA
2F11S mv

mA
D 2 pv

pA
G5R0s0

22Rcsc
2 ,

~A7!

sAS 11
mv

mA

pv
pA

D5s02sc ,
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with sc5nmce. Then, usingn, the known band parameter
and the approximation of the KB dispersion law, we es
matedh andpv . Finally, we used Eqs.~4!, ~A1!, and~A7! to
determine the other characteristic parameters of the ch
carriers.

To determine the errors in estimating the characteri
parameters by formulas~A4! and ~A5! we used differentia-
tion. We introduce the notation

y5
R0

R
, l5

12R0 /R

w
, b5

c

w

to be used in Eq.~A4!, and the notation

y5~R2R`
eff!21, l5c~R02R`

eff!, b5~R02R`
eff!21

to be used in Eq.~A5!.
The maximum relative errors in determining the coe

cientsl andb by ~A4! are

uD l u
u l u

5
uDyu
uyu U12

R

R`
effU21

,
uDbu
ubu

5
uDyu
uyu U R

R`
effU21

,

~A8!

while largest relative errors in determining the coefficie
l andb by ~A5! are

uD l u
u l u

5
uDyu
uyu U12R`

eff/R0

12R/R0
U,

uDbu
ubu

5
uDyu
uyu U12

R2R`
eff

R02R`
eff bH2U21

. ~A9!

In our calculations we usually used~A4!, while ~A5! was
used if two types of charge carriers were involved, when
contribution of the valence-band holes could be igno
(KA.0.5, at low temperatures and high pressures! and when
R.0. This made it possible to determineR` by graphical
methods by extrapolating theR0 vs P21 dependence to
P→` ~Ref. 4! and by formula~A5!.

According to~A8!, the maximum relative error of deter
mining the ratio c/w in Eq. ~A4! exceeds
uDR0 /RuuR0 /Ru21 by a factor ofuR`

eff/Ru, while according to
~A8! the maximum relative error of determining the quant

FIG. 5. Experimentally measured~curve 1! and theoretically calculated
~curve 2! dependencies of the thermoelectric powerl on the pressure in
sample 10 ofp-CdSnAs2^Cu& at room temperature.
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uDR0 /RuuR0 /Ru by a factor of u12R/R` u (R,0) and
does not exceed 4%.

All this reasoning and the above relationships sugg
that the method of calculation and the estimates of the er
in determining the characteristic parameters are determ
by the properties of the specific sample~more precisely, by
R0 , R`

eff , R` and the range of variation ofR(H,P)!. The
case of two types of charge carriers is fairly simple and
been discussed in detail in Refs. 4–6 and 9. We examine
case of three types of charge carriers11–13using sample 10 of
p-CdSnAs2^Cu& with NA'Next as an example. For room
temperatures we used Eqs.~A4! and ~A6! to estimaten and
m and to derive two independent equations~A7! containing
the characteristic parameterspA , mA , pv , and mv . The
value of n and the known band parameters were used
estimateh andpv . After this we employed Eqs.~4!, ~A1!,
and ~A7! to estimate the remaining parameters. There w
aspects that facilitated the calculations and made the re
more reliable: the value of the baric coefficient]«A /]P was
known a priori,6 while the parameterspA andmv at a fixed
temperature and NA'Next are practically pressure
independent.

Moreover, the reliability of the results of calculation
was increased by adjusting the estimates via a compara
analysis of the curves reflecting the dependence ofR` , N,
andNA on R0(77.6 K)/R0(300 K), by extrapolatingR0 to
the pointP2150 ~i.e., P→`!, etc.

Finally, for crystals withNext'NA , in the present work
~Fig. 5! and earlier in other cases,16 additional verification of
the results was performed; namely, the value of the therm
electric powerl calculated using the values of the param
eters of the charge carriers and the approximation in wh
scattering of charge carriers on ionized impurities is p
dominant, was compared with the experimental value. Up
P51 GPa at room temperature andNext'NA the agreement
was satisfactory~Fig. 5!. The observed discrepancy in th
l vs P curves at pressures above 1 GPa is caused by
growing importance of the random potential with increasi
pressure, a fact mentioned in the discussion of the«A vs P
dependence~Fig. 2!.

On the whole, with allowance for adjustments in plottin
and for physical models and according to what has been
earlier, the error in determining the characteristic parame
of charge carriers, includingNext, is at most 15%.
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The Landauer resistance of a one-dimensional metal with periodically spaced random

the
impurities
D. M. Sedrakyan, D. A. Badalyan, V. M. Gasparyan, and A. Zh. Khachatryan

Erevan State University, 375049 Erevan, Republic of Armenia
~Submitted 14 February 1996!
Zh. Éksp. Teor. Fiz.111, 575–584~February 1997!

We find the dependence of the ensemble-averaged resistance,^rL&, of a one-dimensional chain
consisting of periodically spaced random delta-function potentials of the chain lengthL,
the incident-electron energy, and the chain disorder parameterw. We show that generally the
^rL& vs L dependence can be written as a sum of three exponential functions, two of
which tend to zero asL→`. Hence the asymptotic expression for^rL& is always an exponential
function ofL. Such an expression for^rL& means that the electronic states are indeed
localized and makes it possible~which is important! to find the dependence of the localization
radius on the incident-electron energy and the force with which an electron interacts with
the sites of the chain. We also derive a recurrence representation for^rL&, which proves convenient
in numerical calculations. ©1997 American Institute of Physics.@S1063-7761~97!01302-4#
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It is well known that the procedure of averaging a
calculating the averages of the physical properties for dis
dered systems is difficult primarily from the mathematic
viewpoint. The phenomenon of electron localization in s
tems with random interaction potentials makes it poss
occasionally to draw certain conclusions about the natur
the possible solutions without actually solving the proble
For instance, in the one-dimensional case, as shown in R
1–4, the dependence of the average resistance of a m
with fixed impurities, where all the electronic states are
calized , on the lengthL of the impurity chain can be ex
pressed, forL→` at absolute zero, by the following formul
(\5e251):

^rL&5 1
2~e

L/j21!,

wherej is the electronic-state localization radius, which
independent ofL. Here the ‘‘nonideal region’’ is assumed t
exist between two semi-infinite electrodes in which electro
move freely. It is the fraction of electrons that have pas
through the ‘‘nonideal region’’ from one electrode to th
other that determines the transmissivity of the system, wh
is inversely proportional tôrL&. Thus, such a one-to-on
correspondence between the Landauer resistance^rL& with
L→` and the localization radiusj of one-electron states, th
latter depending only on the electron energy and the forc
the electron–impurity interaction, reduces the problem
finding j to that of finding^rL& with L→`, and vice versa.

For instance, for the entire class of random potentials
which the average potential is zero, i.e., potentials of
white-noise type, the localization radii have been calcula
both in the presence of an external field and in the absenc
such a field.5 The well-known method of transfer matrice
when applied to the model of short-range potentials,6 has
made it possible to effectively perform numerical calcu
tions but proved ineffective in obtaining analytic results. T
determinant method, suggested in Refs. 7 and 8 for o
dimensional systems consisting of random single barri
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assumption of weak or strong scattering of an electron b
single barrier and in the event of resonant passage. Calc
tions of the localization radius from the behavior of^rL& as
L→` were also done in Refs. 9–11.

In Ref. 12 it was shown that for the model of period
cally spaced delta-function potentials whose amplitudes
independent random quantities with a zero average value
average Landauer resistance^rL& can be represented by
series expansion. In Ref. 13 we were able to sum this se
and to derive a finite-difference equation for determini
^rL&. There we also gave solutions for this equation in p
ticular cases, i.e., for electron energies corresponding to
edge and center of the energy band.

In the present paper we find the analytic solution of t
finite-difference equation for̂rL& in the general case. Thi
solution actually giveŝrL& as a function of the chain lengt
L, the energy of the impinging electron, and the intensity
electron scattering on a single barrier. We show that the
lution for ^rL& with L→` can always be reduced to the for
^rL& } exp(L/j), with j independent ofL. We also calculate
the localization radius.

In Sec. 2 we formulate the problem and give the resu
obtained in Ref. 13 that are needed for our present study
Sec. 3 we find the general solution of the finite-differen
equation that the unknown function̂rL& satisfies. Here we
also derive a recurrence relation for^rL&. Section 4 is de-
voted to an analysis of the characteristic equation wh
roots are used, as shown in Sec. 3, to express the depend
of ^rL& on L. We also find the solution of the equation fo
^rL&, with L→`, from which we derive an expression fo
the electron localization radius. In Sec. 5 we analyze
results.

2. STATEMENT OF THE PROBLEM

We take a chain ofN delta-function potentials with ar
bitrary amplitudesVn and corresponding coordinatesxn :

317-05$10.00 © 1997 American Institute of Physics
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V~x!5 (
n51

Vnd~x2xn!, n51, 2, . . . ,N.

Let the solution of the Schro¨dinger equation for an electro
with an energyE5k2 (\52m051, with m0 the electron
mass! outside the structure be

c~k,x!5H eikx1r N~k!e2 ikx, x<x1 ,

tN~k!eikx, x>xN ,

wherer N(k) and tN(k) are, respectively, the electron refle
tion and transmission amplitudes. The Landauer resista
can be expressed in terms ofr N(k) and tN(k) by the well-
known formula

rN5
1

utN~k!u2
21, ur N~k!u2512utN~k!u2. ~1!

This formula holds for any type of scattering potenti
In Ref. 13 we found that the quantityrN averaged over the
different realizations of the random field for a model
which N delta-function potentials occupy arbitrary poin
x1 , x2 , . . . ,xN can be expressed as

^rN&511 (
p51

N

(
1< j 1<•••< j p

N

2p21ap

3 )
l51

p21

$12cos@2k~xj l11
2xj l !#%, ~2!

where

a5
1

wE2w/2

w/2

f ~Vj !
Vj
2

4k2
dVj ,

1

wE2w/2

w/2

f ~Vj !dVj51.

Here f (Vj ) is the distribution function of the potentialsVj ,
which is defined in the interval@w/2,2w/2#, is assumed
equal for all theVj ( j51,2, . . . ,N), and is an arbitrary even
function of Vj . In particular, for f (Vj )51 we have
a5w2/48k2.

Direct summation of the series~2!, even assuming tha
the scatterers are positioned equidistantly, runs into un
mountable difficulties. Equation~2! can be summed only in
some particular cases, when the electron energy corresp
either to the center of the energy band or to the e
(ka5p/2 or ka5p, wherea is the chain period!.12,13How-
ever, as shown in Ref. 13, we can sum over the inner ind
in ~2!. The result is a finite-difference equation for the u
known quantity^rN&. This equation has the form

^rN&5aN1 (
n51

N

cN2n^rn&, ~3!

where

r151, cn52a@12cos~2kan!#.

Note that Eq.~3! can be interpreted as a system of line
algebraic equations in the unknowns^r1&,^r2&, . . . ,̂ rN&,
with the result that̂ rN& can be written in the form of a
determinant.
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ka5p can be obtained immediately becausecn50 for all
n:

^rN&5aN. ~4!

This result corresponds to resonant passage of electrons
was first derived in Ref. 6. In Ref. 13 we found the soluti
of Eq. ~3! for another particular case, where the incide
electron energy corresponds to the center of the energy b
ka5p/2. The solution is

^rN&5
1

2 F ~a1b!N1~a2b!N

2
1

~a1b!N2~a2b!N

2b G ,
~5!

where

a52a, b5A114a2.

As the solution~5! shows, for anya andN→` we can write
^rN& in the form^rN& } exp$Na/j%, wherej is independent of
N and is the electron localization radius.

Below we show, however, that Eq.~3! can also be
solved in the general case, i.e., for any values of the incid
electron energy and the parametera.

3. SOLVING THE FINITE DIFFERENCE EQUATION FOR ŠrNŠ

Let us now solve Eq.~3! in the general case. We seek th
solution in the following form:

^rN&5(
j51

p

Ajxj
N1A0 , ~6!

where thexj , Aj , andA0 are assumed independent ofN.
The quantityp, determining the number of terms in~6!, will
be left undefined for the time being. Substituting the solut
~6! in Eq. ~3! and requiring that the latter hold for all value
of N, we arrive at the necessary relationships determin
xj , Aj , andA0. These conditions are

(
j51

p

Ajxj5
1

2
1a, ~7!

(
j51

p
Aj

11xj
5
12a

4
, ~8!

(
j51

p

Aj5
1

2
, A05

1

2
. ~9!

Here thexj are the roots of the characteristic equation

x32x2~ l1m!1x~ l2m!2150, ~10!

where

l5112 cos~2ka!, m52a@12cos~2ka!#. ~11!

Note that Eq.~10! implies, among other things, thatp53 in
Eqs.~7!–~9!. Simultaneous solution of Eqs.~7!–~9! and Eq.
~10! determines the coefficientsAj ( j51,2,3):

A15
1

2

~12a!~11 l !2~11x1!~ l1m2x122a!

~x22x1!~x32x1!
. ~12!
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A2 andA3 can be obtained from~12! via cyclic permutation
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of x1, x2, andx3. The quantitiesxj , which are the roots of
the cubic equation~10!, are given by the standard formula

x15C1D1
l1m

3
,

~13!

x2,352
C1D

2
6 iA3

C2D

2
1
l1m

3
.

Here

C5A3 2
q

2
1AQ, D5A3 2

q

2
2AQ,

Q5
2l

3

l 213m2

9
2

1

12S l
22m2

3 D 22 l 22m2

6
1
1

4
, ~14!

q522S l1m

3 D 31 l 22m2

3
21.

From the general solution given by~6!, ~12!, and~13! we can
easily find the particular solution for electrons with an e
ergy corresponding to the center of the energy band. Ind
for ka5p/2 Eqs. ~11! yield l521 andm54a. Then the
solutions of Eq.~10! are

x1521, x2,352a6A114a2. ~15!

Plugging~15! into ~6! and~12! and noting that the coefficien
A1, corresponding to the rootx1521, is zero, we arrive a
the solution~5! found in Ref. 13.

Combining ~6! and the characteristic equation~10!, we
obtain the following recurrence equation for^rN&:

^rN&5~ l2m!^rN21&2~ l1m!^rN22&1^rN23&1m,
~16!

where the initial valueŝr1&, ^r2&, and^r3& for ~16! can be
found from ~3!:

^r1&5a, ^r2&52a12a2@12cos~2ka!#,

^r3&53a12a2@322cos~2ka!2cos~4ka!#

14a3@12cos~2ka!#3.

The recurrence equation~16! can be used for numerical ca
culations and for studyinĝrN& for moderate values ofN.

We note that, as solution~6! shows, the dependence o
the average Landauer resistance of a chain of periodic
spaced random delta-function potentials on the chain len
L5Na generally has the form of a sum of three exponen
functions.

4. LOCALIZATION OF ONE-ELECTRON STATES

Now let us discuss the behavior of^rL&, the solution~6!,
as L→`. We wish to demonstrate that for all reasonab
values of the parametersl andm the quantitŷ rL& increases
in the limit L→` according to an exponential law. Th
means that in our model all the one-electron states are lo
ized. The only exceptions are the edges of the energy ba
(ka5pm, m51,2, . . . ), for which the ^rL& vs L depen-
dence is linear.5
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certain properties of the real roots of the characteristic eq
tion ~10!. This requires writing Eq.~10! in the form

l5
x21x11

x
2
x11

x21
m. ~17!

Here we allowed for the fact thatxj Þ 0 and excluded the
solutionxj51, j51, 2, 3, which corresponds to the edges
the energy bands~see above!. If we substitute any real solu
tion xj of Eq. ~10! in ~17!, then in the plane specified by th
coordinatesl andm Eq. ~17! specifies a straight line contain
ing all the pairsl andm for which xj is a solution of Eq.
~10!. This statement provides the key to establishing whet
or not a fixed realxj is a solution of Eq.~10!. To this end we
need only to plugxj into Eq. ~17! and see whether the
straight line~17! passes through the range of possible valu
of the parameterl andm. If it does,xj is a solution of Eq.
~10!.

As the definitions~11! of the parametersl andm imply,
the ranges of their allowed values are

21< l<3, m>0. ~18!

Examining the various straight lines in thel , m plane for a
fixed xj , we can easily see that these straight lines p
through the region specified in~18! only if

21<xj,0, xj>1. ~19!

Hence the conditions~19! determine the range of values o
the real roots of Eq.~10! for arbitrary values of the electron
energy~or ka) and the parametera.

As is well known, forQ.0 Eq. ~10! has only one real
root. Then the other two roots are complex-valued a
x25x3* . This means that we can always write

x25reiw, x35re2 iw, ~20!

wherer andw are real numbers. According to Viete’s the
rem, we have the following relationship for the roots of E
~10!:

x1x2x351. ~21!

Plugging~20! into ~21! yields

x1r
251. ~22!

Since by definitionr2 is positive, Eq.~22! implies that the
only real rootx1 is positive, so that according to~19! we
have

x1>1. ~23!

Then from~22! it follows that 0,r2<1. The real rootx1 in
the given case (Q.0) can be found from~13!. Using ~20!
and ~22!, we write the solution~6! in the following form:

^rN&5A1x1
N12ax1

2N/2cos~Nw1c!2 1
2. ~24!

The coefficientsA2 andA3 of the solution~6! can be written
as

A25aeic, A35ae2 ic,
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condition~23!, from ~24! we obtain the following asymptotic
expression for̂ rN&:

^rN&5A1x1
N2 1

2. ~25!

Reducing this expression to the form^rL& } exp$L/j%, we ar-
rive at a simple formula for the localization radiusj:

j5
a

ln x1
. ~26!

Let us now examine another case, whereQ<0. Equation
~10! then has three real roots. As Eq.~21! shows, all three
roots cannot be greater than unity simultaneously, sinc
this case their product would be greater than unity, wh
contradicts~21!. The case where all three roots are equa
unity, x15x25x351 (Q50), corresponds to the edge o
the energy band and is a feature of this model; it has b
repeatedly discussed in the literature.8,9 The case when one
of the roots is negative and the other two are positive is a
impossible, sincex1x2x3 would be negative, which contra
dicts condition~21!. Hence the only variant that does n
contradict conditions~19!–~21! is the one in whichx1>1
and21<x2,3,0. In this case one of the negative roots, s
x3, can be found from~13! by using the formula

x35C1D1
l1m

3
, ~27!

with C5D* . The other two roots are also determined
~13! and can be written as

x1,25a6b, ~28!

with a andb expressed in terms ofx3 in the following man-
ner:

a5
l1m2x3

2
,

~29!

b5A3

4 S l1m

2
1x3D ~ l1m2x3!1m2 l .

Instead ofa andb we introduce other variables,r andx, by
the formulas

a5r sinh x, b5r coshx. ~30!

Then b22a25r252x3
21. Plugging ~30! and ~29! into the

solution~6! for ^rN&, we arrive at the following expressions

^rN&5H 1
2$~21!NA3r

22N1rN@K1sinh~xN!

1K2cosh~xN!#21, N52n11,
1
2$~21!NA3r

22N1rN@K1cosh~xN!

1K2sinh~xN!#21, N52n,

~31!

where

K1,25
A16A2

2
, n51, 2, . . . .

As noted earlier, for the electron energy corresponding to
center of the energy band,ka5p/2, we haveA350. For this
particular case we can easily see thatK15r51 and
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tions ~53! and~54! of Ref. 13. If we takeN to infinity, as in
the caseQ.0, the solutions~31! become the solutions~25!,
in which x15a1b.1. Hence in this case too the localiza
tion radius is determined by formula~26!.

We have proved that the solution~6! with L→` always
leads to an exponential dependence of the average Land
resistancê rL& on L. This means, in particular, that all th
one-electron states are localized, with the localization rad
given by formula~26!.

5. THE LOCALIZATION RADIUS OF ONE-ELECTRON
STATES

Before proceeding with the calculation of the localiz
tion radius of one-electron states we would like to ment
several general properties of the solution obtained for^rN&.

As noted earlier, the average Landauer resistance^rN&,
expressed by~24! and ~31!, in the asymptotic caseN→` is
a power function ofN, i.e., ^rN& } x1

N , with x1.1, and is
independent ofN. The nature of the transition to such
dependence is determined by the values of the rootsx2 and
x3 of the characteristic equation~10!. The farther the electron
energy is from the edges of the energy bands, the closer
absolute values ofx2 andx3 are to zero, and hence the mo
rapidly the solutions~24! and ~31! acquire the form~25! as
N grows. The dependence of^rL& onL is oscillatory for any
electron energy, but such behavior becomes less and
evident asL increases. The average Landauer resista
^rL& depends on the incident-electron energy in a sim
way, provided thatL andw are fixed.

We calculated the dependence ofj on ka andw numeri-
cally, with the results depicted in Fig. 1. Clearly, at a fix
w the value of the localization radius increases as a func
of the electron energy within the first energy ba
(0<ka<p), tending to infinity aska→p. Note that the
localization radius has a minimum when the electron ene
varies within the second band (p<ka<2p), and the value
of this minimum tends to the center of the energy band
w increases. The diagram in Fig. 1 clearly demonstrate
natural physical result: at fixed electron energies the loc
ization radius monotonically decreases as the chain diso
parameterw increases. Figure 1 also depicts the curves
equal values of the localization radius of electronic stat
The universal result obtained here is that the electron ene
must grow withw for the localization radius to remain un
changed.

In conclusion we note that in the cases of weak a
strong electron scattering, simple analytic expressions ca
obtained for the dependence of the localization radius on
electron energy and the chain disorder parameterw.

Let us start with weak electron scattering, i.e.,a!1. In
this limit the root of Eq.~10! determining the localization
radius can be found in the form

x1511Dx, ~32!

where 0,Dx!1. Plugging~32! into ~10! and keeping only
terms linear ina, we arrive at the following expression fo
Dx:
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FIG. 1. Dependence of the electron localization radi
j/a51/ln x1 on ka andw.
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52a. ~33!

Plugging~32! and ~33! into ~26! and taking ln(112a)'2a,
we finally obtain

j596S kwD 2a. ~34!

Here the value ofj exceeds by a factor of two the valu
obtained by Perel’ and Polyakov.9 The reason is that in Ref
9 the localization radius was determined from the value
^ ln r&, which for a!1 is two times the value of ln̂r&.

In the limit of strong electron scattering, i.e.,a@1, and
with the additional requirement that

a sin2~ka!@1, ~35!

we arrive at the following simple expression for the electr
localization radius:

j5
a

ln@4a sin2~ka!#
. ~36!

The same result was obtained in Ref. 13 fora@1. We see
that to derive formula~36! we need a stronger requireme
thana@1, namely, condition~35! must be met.
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High-temperature transition of uranium dioxide to the super-ion state

d is
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Moscow, Russia
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A microscopic model of the high-temperature (T'2670 K) phase transition of uranium dioxide
to the super-ion state is developed. It is shown that accounting for the interaction of the
point defect subsystem with the electron subsystem in the mean-field approximation~where this
interaction leads to significant additional screening of the charge of some of the defects!
and then calculating the configurational entropy of the point defects with allowance for the actual
symmetry of the UO2 crystalline lattice affords satisfactory agreement with the available
experimental data on the degree of disorder of the anion sublattice and the behavior of the specific
heat of uranium dioxide in the given temperature range. ©1997 American Institute of
Physics.@S1063-7761~97!01402-9#
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The last ten years have seen active experimental
theoretical studies of the high-temperature behavior of u
nium dioxide. This question is interesting both from a pra
tical point of view—the behavior of nuclear fuel during a
accidental temperature increase—and for purely theore
reasons. In particular, the question of a microscopic desc
tion of the anomaly of the thermodynamic properties of u
nium dioxide in the vicinity of 0.8Tm still remains open. The
significant peak in the specific heat and the abrupt growth
disorder of the anion sublattice over a temperature inte
on the order of 100 degrees about the given peak have
quired the name ‘‘Bredig transition’’ in the literature are us
ally compared with the transition to the super-ion conduct
state observed in crystals of fluorite type over approxima
the same temperature range~near 0.8Tm!.

In earlier work~e.g., Ref. 1! the growth of the specific
heat was linked with the behavior of the electron subsys
of the crystal and was considered to be a result of electro
excitation, on the basis of the fact that uranium dioxide i
semiconductor with a wide band gap on the order of 2 e
Later the given anomaly was linked mainly with disorderi
of the anion subsystem by studying the interaction of
defects within the framework of the lattice gas model. Th
one of the most interesting and important studies in this
gard is that of Tam, Fink, and Leibowitz,2 which takes ac-
count of the fact that UO2 is an ionic crystal and, conse
quently, the nascent defects are charged. In this case
interaction energy of the defects is determined by the lo
range Coulomb interaction so that an important contribut
to the free energy comes from charge screening by
Debye–Hu¨ckel mechanism. When a critical defect conce
tration is reached with rising temperature, the Debye–Hu¨ckel
interaction strongly lowers the initial energy of Frenkel p
formation, and as a result can lead to a spontaneous ris
defect generation. Such a mechanism of the transition to
super-ion conducting state was first proposed for crystal
fluorite type by Marchet al.3

A more detailed treatment of this mechanism should
low for the fact that the Coulomb repulsion between hom
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very large, so that in the calculation of the number of sta
in the configurational entropy it is necessary to take acco
of ‘‘blocking’’ of neighboring sites occupied by homotypi
defects. Taking account of these factors in Ref. 2 leads
abrupt growth of the equilibrium defect concentration wh
a sufficiently high temperature is reached.

Despite the fact that the given model is able to provid
qualitative explanation of the mechanism of the phase tr
sition, the quantitative description does not accord with
available experimental data. Thus, the defect concentra
calculated by Tamet al.,2 which determines the onset of th
transition to the super-ion staten'331023, turns out to be
substantially lower than the valuen'0.1 measured by
Hutching4 by neutron scattering.

For a more accurate quantitative description of t
super-ion transition in crystals with fluorite structure a nu
ber of microscopic models of lattice-gas type have been p
posed, as have models which treat the problem in the me
field approximation. These models describe the Fren
defect distribution over the two sublattices with allowan
for their long-range action and differ among themselves
the introduction of various terms~with varying degree of
justification!, describing the entropy contribution of the d
fects to the free energy functional. For the right choice
terms it is possible to explain the specific heat anomaly t
arises; however, such a procedure often has an artificial c
acter.

Thus, Hiernautet al.5 added a term to the free energ
functional that is connected with the vibrational entropy
the defect sites, which is proportional to ln(vi /v0), where
v i andv0 are the vibration frequencies of the oxygen ato
at an interstitial position and at a lattice site, respective
However, the ratio of these two frequencies, while providi
good agreement between the results of analysis~Ref. 5! and
the experimental data on the behavior of the equilibrium
fect concentration in the vicinity of the transition, turns o
to be unjustifiably high:v i /v0'102 ~cf. Ref. 6!. To account
for the above-mentioned blocking of neighboring sites
charged defects, Oberschmidt7 expressed the number of po

322-08$10.00 © 1997 American Institute of Physics
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of the defect concentration including fitting parameters, a
so on.

This being the case, a more general~phenomenological!
treatment of the problem would seem apt, one that wo
allow one to correctly describe the symmetry and form of
free energy functional in the vicinity of the transition. Tw
papers by one of the authors of the present paper8,9 are dedi-
cated to constructing such a model within the framework
the Landau theory of phase transitions that enables on
determine from general symmetry arguments the nature
the observed transformation and classify its order~and form!,
thereby narrowing down the possible choice of microsco
models. These papers showed that the given transition ca
considered to result from disordering of oxygen atoms o
the two sublattices: the anion sublattice, in which the O
oms initially find themselves, and the cation sublatti
whose sites are located at the centers of the cubes o
anion sublattice in such a way that half of these sites
occupied by uranium atoms. As follows from the experime
tal data, the position of the cations is essentially fixed all
way to the melting temperature, so that disordering of
anions over the two sublattice takes place in the ‘‘extern
crystal field of the fixed cations. The concrete form of t
free energy functional obtained in Ref. 8 is connected wit
peculiarity of the spatial group (Oh

5) of crystals with fluorite
structure that ensures preservation of the spatial symm
even for complete disordering of the anions over the t
sublattices. As a result, the given functional describes a t
sition which can be characterized as a second-order p
transition in an external field and, consequently, is accom
nied by the appearance of a ‘‘smeared’’ anomaly in the s
cific heat over some finite temperature range.

The results of this analysis impose rigorous constra
on the form of the entropy term in the construction of t
microscopic model, and require a more detailed and con
tent description of the configurational distribution of the
oms and defects over the sites of the crystalline lattice~in
particular, a more exact treatment, to the extent this is p
sible in the mean-field approximation, of ‘‘blocking’’ o
nearby sites with the real symmetry of the fluorite crystall
lattice taken into account!.

Thus, the problem posed in the present paper consis
two parts: 1! a calculation of the configurational entropy
the distribution of defects over crystalline lattice sites
fluorites with a correct account of blocking of neighborin
sites reflecting the real~special! symmetry of the crystal, and
2! a consistent description of the interaction of charged
fects within the framework of the Debye–Hu¨ckel mecha-
nism, which probably requires an account of their interact
with the electron subsystem of the semiconductor cry
UO2.

The sense of the first problem has already been spe
out in sufficient detail. In addition it may be mentioned th
the problem of ‘‘blocking’’ of nearest sites was first consi
ered by Pauling10 in the mean-field approximation, who ex
plained the nonzero value of the residual entropy of ice
T→0 by the degree of disorder of the protons on the doub
minimum H-bonds. Later, within the framework of this a
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nearest-neighbor interaction~including ‘‘blocking’’ ! more
accurate cluster methods were developed,10,11whose applica-
bility, however, was limited to short-range potentials a
which in the case under consideration are not directly ap
cable.

In regard to the second problem some additional exp
nations are necessary. The point is that although the v
idea3 of spontaneous formation of charged defects whe
certain concentration is reached~with increasing tempera
ture! at which mutual screening of charges self-consisten
lowers the effective formation energy of these defects is
doubtedly valid, actual calculations within the framework
the Tam–Fink–Leibowitz model2 lead to a value of the
spontaneous defect disordering concentration that subs
tially exceeds the value measured in experiment. Analysi
the Tam–Fink–Leibowitz model shows that the main reas
for such high values of the spontaneous defect disorde
concentration has to do with the large charge of the defe
(Z562 respectively for the positively charged oxygen v
cancies and the negatively charged oxygen interstitia!.
However, a more detailed treatment of the charge state o
vacancy defects shows that as a result of the interactio
the crystal defects with the electron subsystem of the se
conducting UO2 crystal, the charge of these defects can va
considerably with increasing temperature. Indeed, accord
to the microscopic calculations based on the shell mod12

the vacancies of the oxygen sublattice areF-centers, so their
electron level«a lies in the band gap~'2 eV! near the
position of the chemical potential for a defect-free crys
~i.e., approximately in the center of the gap!. With increasing
defect concentration they begin to influence the position
the chemical potential in the crystal, which in turn can le
to a self-consistent change in the degree of excitation of
electron subsystem and the occupancy of the«a level. Since
the ‘‘correlation’’ energy determined by the Coulomb inte
action heavily depends on the chargesZ forming the defect
‘‘plasma’’

Ecorr}S (
a

Za
2NaD 3/2,

allowance for defect ‘‘recharging,’’ which is related t
changes in the occupancy of the defect levels«a , signifi-
cantly affects the behavior of the system and, as will
shown below, ultimately leads to a substantial rise in
critical defect concentration at which the phase transit
takes place.

A self-consistent solution of the two parts of the stat
problem would consist of a correct description of the Co
lomb interaction of the charged defects~allowing for charge
exchange with the electron subsystem of the semicondu
crystal UO2! and the defect configurational entropy~allow-
ing for blocking by the charged defects of the nearest site
the specific~fluorite! crystalline lattice, i.e., reflecting the
special symmetry of the system!. Such a solution would en
able us to develop a microscopic model on the basis of wh
it is possible to obtain a valid quantitative description of t
structural transition in the UO2 crystal in the region ofTcrit
~essentially without resorting to fitting parameters!.
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2. DESCRIPTION OF MODEL

To describe the behavior of the point defect system i
UO2 crystal, we write the free energy in the lattice-gas a
proximation in the standard form13

F5wN1FDH2kTS. ~1!

The first term on the right-hand side of Eq.~1! is the energy
of Frenkel pair formation (Ni5Nv1N). Here, on the basis
of microscopic calculations of the formation of nascent co
plexes of defects,4 we will assume that at high temperatur
the defects are short-lived clusters~3:1:2! consisting of a
Frenkel pair and two relaxing atoms at sites of the an
sublattice neighboring the interstitial~see Fig. 1!. The relax-
ing atoms are displaced toward the center of the urani
free cube of the anion sublattice by a distance of 0.25 to
times the length of the diagonal. The vacancies formed
the relaxation of the vacancy atoms also contribution to
total number of defects as measured by neutron scatter4

On the other hand, the displacement of the relaxing atom
rigidly fixed both relative to the anion lattice sites and to t
position of the initial interstitial~see Fig. 1!. Therefore, they
do not make an additional contribution beyond the contri
tion of the interstitials forming the ‘‘current’’ Frenkel pair t
either the correlation energy (FDH) or the configurational
entropy. Proceeding from what has been said, we denot
N the number of ‘‘current’’ Frenkel pairs or, in other word
the number of clusters, which, as follows from the~3:1:2!
cluster model, is three times smaller than the total numbe
interstitials~vacancies! measured in experiment.

According to the measurements reported in Ref. 14
the degree of disorder of the anion sublattice at temperat
of the order of 2000 K, the formation energy of an oxyg
Frenkel pair is equal to 3.67 eV. The measurements w
carried out in a temperature interval lying quite far from t
transition region~a few hundred degrees belowTcrit! and,
consequently, the defect concentration was sm

FIG. 1. Clusters~3:1:2! of defects, formed by the disordering of the anio
lattice of UO2 at high temperature.d—oxygen atoms,̂ —uranium atoms.
Frenkel pair:*—interstitial,s—vacancy. Relaxing atoms:n—interstitial,
h—vacancy. The interstitial* is displaced relative to the center of the ed
connecting two vacanciesh in the direction@1̄,1,0#.
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defect concentrationn according to formula~1! the contribu-
tion FDH , conditioned by the correlation interaction, can
neglected, yielding the standard temperature dependenc
the equilibrium defect concentration, valid for small conce
trations,n } exp(2w/kT), wherew is the defect formation
energy. Therefore, in the following calculations we may u
the value 3.67 eV forw, measured in Ref. 14.

The point defect subsystem is a lattice gas of char
particles electrostatically interacting with each other. Con
quently, for the interaction energy in the mean-field appro
mation we may use the formula describing the correlat
interaction in a solid-state plasma~see Refs. 13 and 15!:

FDH52
2Ape3

3«3/2AkTV S (
a

NaZa
2 D 3/2, ~2!

wheree is the charge of the electron,T is the temperature
k is the Boltzmann constant,V is the volume,« is the per-
mittivity, Na is the number of particles of typea, andZa is
their charge. In the simplest case the indexa51, 2 corre-
sponds respectively the positively charged vacancies
negatively charged interstitials. In the case under consid
ation, as will be shown below, the partially electron-screen
vacancies and the holes formed as a result of excitation
the electron subsystem will also contribute to expression~2!.
In the given model we do not take account of formation
uranium vacancies by the Schottky mechanism in light
their high formation energy (7210 eV).

The calculations carried out in Ref. 12 show that t
vacancies and interstitials forming the Frenkel pairs in
anion sublattice at low temperatures possess effective ch
Z562. The same values were adopted in Ref. 2, which l
however, to too high a correlation energy~see the Introduc-
tion!. Reference 12 also calculates the electron spectrum
UO2, from which it follows that UO2 is a semiconductor
with a wide band gap'2 eV, which has been confirme
many times over in experiment~e.g., Ref. 16!. Here the na-
scent oxygen vacancies areF-centers, and are capable o
attaching themselves to an electron at the free electron l
of the F-center located approximately in the middle of th
band gap, i.e., near the position of the chemical potential
the defect-free crystal. The upper filled level of the inters
tial Oi

22 lies below the valence band and therefore har
participates in the excitation of the electron subsystem.

The presence of an vacancy electron level in the b
gap can lead to important consequences in the behavio
the system of interacting defects and electrons which h
been considered in numerous works in the literature. By w
of an example we may mention the phenomenon of s
compensation in doped semiconductors, which consist
the following.17 To increase the number of charge carrie
~e.g., electrons in the conduction band!, the semiconductor is
doped with a high-valence impurity. However, in a numb
of cases, formation of vacancies containing the electron le
~F-center! with trapping of the ‘‘impurity’’ electrons at this
level turns out to be statistically more favorable for such
system than the transition of the ‘‘impurity’’ electron to th
conduction band. As a result of such a process, the num

324L. V. Matveev and M. S. Veshchunov



of carriers in the conduction band does not increase and,
s
le
ni
lt
th

on
ific

:

,

on

er
It

o
fo

n
ce

f
f t
ic
tra

al

io

o-

Hence, neglectingne in Eq. ~4!, we easily obtain an expres-

we

ion,
e-

l

be
by
ion

st
ect
tron

on
stan-
of
-

all

gy
e
is
f the

e
of
r of
va-

ted
to a
one
ncy
accordingly, conduction does not grow. Similarly, in the ca
under consideration, the presence of a vacancy electron
near the middle of the band gap can lead to strong scree
of these vacancies by the electrons appearing as a resu
thermal excitation and, consequently, to a lowering of
effective charge of some of the point defects~anion vacan-
cies!. In this case, allowing for the interaction of the electr
and vacancy subsystems can lead to a substantial ampl
tion of the excitation of the electron subsystem.

For nonzero temperatureT, the distribution of the elec-
trons over the energy levels« i obeys Fermi–Dirac statistics

f ~« i !5S 11expS « i2m

kT D D 21

. ~3!

The position of the chemical potentialm is determined
self-consistently by the electrical neutrality of the system

ne1na5nh , ~4!

where ne is the electron concentration in the conducti
band,na is the electron concentration at theF-center level,
and nh is the hole concentration in the valence band. H
na5n f(«a), wheren is the anion vacancy concentration.
is not hard to show that in the case under consideration

u
m

kT
u@1,

«g2m

kT
u@1

~m'1 eV, «g'2 eV, kT'0.25 eV! so that to describe the
electron population of the conduction band and the h
population of the valence band we can use the standard
mulas for a non-degenerate semiconductor:18

ne5
2

m SmekT

2p\ D 3/2 expS m2«g
kT D ,

nh5
2

m SmhkT

2p\ D 3/2 expS 2
m

kTD , ~5!

whereme andmh are the effective masses of the electro
and the holes,m is the concentration of the anion sublatti
sites, and«g is the width of the band gap.

It is clear from Eq.~5! that the degree of excitation o
the electron subsystem and the degree of screening o
vacancies are determined by the position of the chem
potential. At low temperatures, when the defect concen
tion is not large~n'exp(2w/kT), wherew'4 eV!, the solu-
tion of system~3!–~5! yields an estimate for the chemic
potentialm'«g/2, whereupon

na!ne'nh'expS 2
«g
2kTD . ~6!

With rising temperature and increasing defect concentrat
the contributionna to the balance~4! grows, and in the re-
gion of Tcrit'2670 K it is decisive, so that the chemical p
tential is of orderm'«a/2, and instead of relation~6! we
have

ne!na'nh'expS 2
«a
2kTD . ~7!
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nh52nH 11S 11
n exp~«a /kT!

2~kT!3/2 D 21/2J 21

. ~8!

In calculations with~5! we takemh'10m0 , wherem0 is the
mass of the free electron, andm'2.2431022 cm23, where
m is the density of the cation sublattice sites.2 Substituting
the valuesn'0.07 andkT'0.3 eV into Eq.~8!, these values
being characteristic of the region of the phase transition,
easily obtain the estimatenh'n, which is self-consistent
with Eq. ~7!.

Thus, in the temperature range of the phase transit
the lattice gas of charged particles forms the following d
fects: oxygen interstitials with chargeZi522 and concen-
tration ni5n; fully ionized oxygen vacanciesZv512,
nv5(12 f )n; oxygen vacancies with filled electron leve
Za511, na5n f ; holes with Zh511 and concentration
nh . Finally, the sum in expression~2! takes the form

(
a

Na Za
25~8n22nh!M , ~9!

whereM is the number of anion sublattice sites. As can
seen from Eq.~9!, as a result of screening of vacancies
electrons the variation of the total charge in the express
for the correlation energy is governed by the term22nh ,
which is comparable in order of magnitude with the fir
term 8n. This latter fact is a consequence of the back eff
of the vacancy subsystem on the behavior of the elec
subsystem leading to the relationnh'n.

Thus, taking account of the interaction of the electr
subsystem and the point defect subsystem leads to a sub
tial decrease in the correlation energy of the interaction
the charged defects~in comparison with the calculated re
sults of Ref. 2!.

Note that the opinion exists~see, e.g., Ref. 19! that the
holes in the valence band can be localized and form sm
polarons U51. In this case, expression~7! takes the form

nh5
2n

11~118n exp~«a /kT!!1/2
. ~10!

Below we will also consider this case.
To calculate the entropy contribution to the free ener

functional ~1! it is necessary to allow for the fact that th
Coulomb interaction of the charged defects, which
screened at large distances, leads to a strong repulsion o
charged defects with like sign at close distances~of the order
of interatomic!. Therefore, following Ref. 2, we will assum
in the calculation of the number of states that the addition
one oxygen vacancy leads to a decrease in the numbe
remaining free sites over which to distribute subsequent
cancies by a factor of seven~one site is occupied by the
defect itself and it blocks its six nearest neighbors!. When
the defect concentration is high enough, vacancies loca
near each other can block the same sites, which leads
decrease in the effective number of sites blocked by
vacancy in comparison with the case of a tenuous vaca
gas~in which their concentration tends to zero!. The Appen-
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dix considers the possible configurations of interacting
fects in a crystalline lattice with fluorite structure and on th
basis calculates the contribution to the configurational
tropy due to the vacancies~Eq. ~A1!!.

Let us consider the contribution to the entropy from t
distribution of the interstitials Oi

22 To start with, we assume
that the Oi

22 ions can be located at identical positions insi
the uranium-free cubes of the oxygen sublattice~e.g., at their
centers, from among the possible Oi

22 sites inside the cube!,
where these positions form a face-centered cubic~fcc! lattice
with edge length equal to twice the interatomic distance
the oxygen sublattice. A test defect located at a site of su
lattice ~see Fig. 2! blocks 12 nearest neighbors–the sites~1!.
To find the mean number of sites blocked by the test def
it is necessary, as in the previous case~see the Appendix!, to
consider the possible configurations of the interstitials
sites~2!, ~3!, and~4! and calculate their probabilities. How
ever, in the given case the problem is complicated by the
that the arrangement of particles at sites~2!, ~3!, and ~4! is
not independent. Therefore, to calculate the number of sta
we will use the following approach. Consider the case
which the concentration of interstitials is so high that th
occupy all possible sites, provided their nearest neighbors
free as a result of blocking. In this case, the defects w
completely occupy sites of one of the four simple cubic s
lattices into which the initialfcc lattice is subdivided. We
take this configuration as the new ground state~quadruply
degenerate!. The number of sites of the new sublatticeK
equalsM /8, whereM is the number of sites of the anio
sublattice. If the number of interstitialsN is less thanK, then
K2N unoccupied sites is formed in the sublattice, and a
result the number of states corresponding to the given n
ber of interstitials is

CK
K2N5CK

N .

As follows from the calculations in Ref. 4, in reality a
Oi
22 interstitial is located not at the center of a cube of t

anion sublattice, but near one of its edges~see Fig. 1!. Con-
sequently, each interstitial has 12 different positions ins
the cube. Moreover, the relaxing atoms of the~3:1:2! clusters

FIG. 2. Arrangement of different types of sites around a test defect in
sublattice formed by the interstitials.j—test defect~0!, s—blocked sites
~1!, l, m, L—sites~2!, ~3!, and~4!, capable of blocking sites~1!.
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of states of a cluster associated with the given sublattice
is 24. Finally, the total number of states corresponding to
configurational entropy of the interstitial subsystem is

G524NCK
N .

The contribution to the configurational entropy from th
interstitial distribution correspondingly takes the form

S5n ln 242n ln n2~0.1252n!ln~0.1252n!. ~11!

Reference 6 calculates the entropy of formation o
Frenkel pair due to the change in the phonon spectrum f
the formula

DS52k lnS )
i

3N

v i8/)
i

3N

v i D , ~12!

which is valid at high temperatures~above the Debye tem
perature!. Herev i is the spectrum of the ideal crystal,v i8 is
the spectrum of the crystal with a defect. The value obtain
as a result of these calculations,DS'4k, is the contribution
of the nonconfigurational entropy to the general express
~1!.

Substituting the expression for the correlation energy~2!
in Eq. ~1! taking Eq. ~9! into account and also Eqs.~A1!,
~11!, and~12!, which define the various contributions to th
entropy, and using the values of the numerical parame
entering here and indicated above, we finally obtain the
lowing expression for the free energy functional:

F53.67n2
0.09~8n22nh!

3/2

AkT
1kT~2n ln n

1~0.1252n!ln~0.1252n!2Sv~n!27.1n!, ~13!

~the free energy per site of the anion sublattice!, where the
free energy and the quantitykT are expressed in units o
electron volts, and the hole concentration is given by Eq.~8!
or ~10!.

Also note~see, e.g., Ref. 14! that the term in the formula
for the free energy proportional tonkT is usually dictated by
the contribution of the non-configurational entropy, e.g.,
change in the phonon spectrum associated with the app
ance of defects. It follows in our model, then, that part of t
configurational entropy defined by Eq.~11! also contributes
to the free energy proportional tonkT. In summary, the co-
efficient of nkT is equal approximately to 7, which accord
with the results of experiments16 in which the given quantity
was estimated from specific heat measurements in the
perature range from 300 to 1500 K.

3. RESULTS AND DISCUSSION

To describe the high-temperature behavior of urani
dioxide, specifically, that is, to find the degree of disorder
the anion sublattice and describe the temperature depend
of the specific heat, it is necessary to examine the deri
system of equations~8! and~13!. The equilibrium concentra-
tion of the vacancies in the oxygen sublattice is found
minimizing the free energy function~13! under the condition
that the hole concentration is given by Eq.~8!. In light of the

e
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fact that at present the position of the electron level of
F-center («a'1 eV) is a calculated quantity and not an e
perimentally measured one, the temperature dependenc
the defect concentration can be constructed by varying«a in
some neighborhood of its indicated value 1 eV. The dep
dences so obtained are plotted in Fig. 3 for three value
«a . Here the experimentally measured quantityN(T) is the
total vacancy concentration, formed both by the vacanc
corresponding to the current Frenkel pairs and by vacan
resulting from a shift of the relaxing atoms in the~3:1:2!
cluster. In line with this, the quantity plotted in the graph
N(T)53n(T), wheren(T) corresponds to the minimum o
F at the given temperature.

Best agreement of the calculated curveN(T) and the
experimentally measured quantity in the vicinity ofTcrit is
obtained for«a'0.97 eV. With increasing«a the transition
region ~i.e., the temperature range over which a substan
change in the equilibrium concentration takes place
abrupt growth of the specific heat is observed! shifts toward
lower temperatures and lower concentrations. Physica
this means that an increase in«a corresponds to a decrease
the degree of excitation of the electron subsystem at a g
temperature and, consequently, in the degree of screenin
the vacancies by the electrons, so that the value of the
relation energy at the given concentrations grows. At hig
values of«a (>1.05 eV) the hole concentration becom
negligible in comparison with the vacancy concentratio
nh!n, and excitation of the electron subsystem cease
influence the behavior of the point defect subsystem. T
case in fact corresponds to the model of Ref. 2, in which
electron subsystem was generally ignored. Moreover, at h
values of«a, growth of the equilibrium concentration of th
vacancies with increasing temperature becomes very ab
so that for«a>1.05 eV the equilibrium concentration in th
vicinity of the transition does not vary continuously but by
jump, which contradicts the results of the general pheno
enological treatment of this transition8 and experimenta
observations.4

In light of the above analysis, a few critical remarks a
appropriate regarding the expressions for the configuratio
entropy used in some other models. The account of block

FIG. 3. Temperature dependence of the equilibrium defect concentratio
various values of «a : 1—«a51.05 eV, 2—«a50.97 eV, and 3—
«a50.9 eV.
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free energy due to the configurational entropy has appr
mately the form

Sconf'22n ln~n!1~0.5213n!ln~0.5213n!

1~127n!ln~127n!, ~14!

where the numbers 13 and 7 control the decrease in the n
ber of vacant sites upon the addition of one defect for
interstitial and vacancy subsystems, respectively. The n
ber of defects to be distributed over the possible sites can
exceed the total number of sites, as the arguments of
logarithms in Eq.~14! must be positive. Hence it follows a
once that in the given model the defect concentrationn can-
not exceed 1/(2•13)'0.04. Consequently, the region of th
phase transition characterized by concentration val
n'0.1 according to the measurements of Ref. 4 in gen
within the frame cannot be described by the given mode

An effort to account for the fact that different defects c
block the same sites~so that the effective number of blocke
sites decreases with growth of the concentration! was made
in Ref. 5, and led to an expression for the configuratio
entropy, ln(CN

aMCN
2bM), wherea andb themselves depend o

N, and, in particular,a5(1118N/M )21. Analogous argu-
ments give for the maximum possible defect concentrati
n5N/M values on the order of 0.11, which are inconsiste
with the concentration valuesn'0.2 obtained in Ref. 5 from
numerical calculations for temperatures above the transi
temperature.

The temperature dependence of the equilibrium vaca
concentration can also be constructed for the case in w
the hole concentration is given by Eq.~10!, i.e., assuming
that the holes are localized on the uranium atoms. In
case good quantitative agreement of the dependenceN(T)
with the experimentally measured values4 was achieved for
smaller values of«a'0.88 eV, which is also not in bad
agreement with the calculated value«a'1 eV.

It should be pointed out that the value of the no
configurational entropy~which in our model defines the co
efficient ofnkT in the expression for the free energy! is also
an approximate quantity. Therefore we also studied the
havior of N(T) for weak variation of«a within the limits
65%. Variations in the behavior of the concentration o
tained in this way proved to be negligible.

The specific heat was calculated in accordance with
thermodynamic formulaC52T]2F/]T2, where in the cal-
culation of the temperature derivative in the expression
the free energy functional~13! we substituted the equilib
rium concentrationn(T). Within the accuracy of the calcu
lations, this did not result in any difference between the v
ues ofCV andCP . Comparison of the calculated results wi
the experimental data4 shows that the proposed model pr
vides a good description of the behavior of the specific h
and together with the transition temperature satisfactorily
produces the height of the specific heat pe
(dCmax'100 J/mole•K) and the width of the temperatur
interval of smearing (dT'80 K) of the peak~see Fig. 4!.

or
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4. CONCLUSIONS

In the present paper we have proposed a model wh
makes it possible, on the basis of the available calculated
experimental data, to achieve a satisfactory quantitative
scription of the disordering of the oxygen subsystem and
anomalous behavior of the specific heat of uranium diox
in the region of its high-temperature phase transition. A
point of departure we chose the model proposed in Ref
which takes account of the fact that UO2 is an ionic crystal
and, consequently, the nascent defects possess charge.
some critical defect concentration is reached with increas
temperature, screening of the charges of the nascent de
via the Debye–Hu¨ckel mechanism strongly lowers the e
ergy of Frenkel pair formation, which can lead to an abru
growth of their equilibrium concentration. Here the Coulom
repulsion between homotypic defects at interatomic d
tances is not screened and is very large, so that in the ca
lation of the number of states in the configurational entro
it is necessary to allow for blocking of neighboring sit
occupied by homotypic defects. Allowance for these fact
in Ref. 2 permits a qualitative explanation of the mechani
of the phase transition; however, the defect concentra
defining the onset of the transition to the super-ion st
n'331023 calculated in this model turned out to be tw
orders of magnitude lower than the valuen'0.1 measured in
Ref. 4 by neutron scattering.

In the present work we have achieved satisfactory qu
titative agreement with the experimental data thanks to
lowing for the following two factors.

1. An important parameter defining the magnitude of
correlation energy in a system of electrostatically interact
defects is the charge of these defects. For defects of
crystalline lattice of uranium dioxide, which play a maj
role in the description of the phase transition, the magnitu
of the chargesZ are usually taken to be equal to62 for the
positively charged oxygen vacancies and the negativ
charged oxygen interstitials, respectively. However, a m
detailed treatment of the charge state of the vacancy de
shows that as a result of the interaction of the crystal def
with the electron subsystem of the semiconducting cry

FIG. 4. Temperature dependence of the excess specific heatdC for
«a50.97 eV.
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growth of temperature. This has to do with the fact that
vacancies of the oxygen sublattice formF-centers whose
electron level«a lies in the band gap~width '2 eV! near
the position of the chemical potential for the defect-free cr
tal. With growth of the defect concentration as the tempe
ture is raised the position of the chemical potential in t
defect-containing crystal begins to be affected by their pr
ence, which in turn can lead to self-consistent variation
the occupancy of the«a level and the degree of excitation o
the electron subsystem. Taking this interaction into acco
has a significant influence on the effective charge of the
cancies and, consequently, on the behavior of the system
whole.

2. The strong Coulomb repulsion of homotypic defec
at close distances leads to blocking of the sites neare
given defect. Taking this phenomenon into account lead
the result that the number of available sites for defects of
kind is decreased and the expression for the configuratio
entropy changes. The general phenomenological treatm
presented earlier in Refs. 8 and 9 of the behavior of
system at the investigated transition imposes rigid constra
on the form of the free energy and, in particular, on the fo
of the configurational entropy. This requires a more detai
and consistent description description of the configuratio
distribution of the atoms and defects over the crystal latt
sites—in particular, a more accurate treatment of blocking
nearby sites with allowance for the actual symmetry of
fluorite crystalline lattice.

Taking these two factors into account has allowed us
develop a microscopic model within the framework of whi
it has been possible to obtain a quantitative description of
structural transition in the UO2 crystal in the region of
Tcrit , that is consistent with the following experimental o
servations: 1! as the temperature is raised from 2650 to 27
K, a substantial growth of disorder of the anion sublattice
observed, so that the equilibrium defect concentration in
range grows from 0.02 to 0.25 in the calculation per oxyg
sublattice site; 2! the corresponding anomaly in the behavi
of the specific heat has the form of a smeared peak w
maximum heightdCmax'100 J/mole•K and smearing width
dT'80 K.

Finally, on the basis of this model we have carried ou
critical review of models previously proposed to describe
super-ion transition in uranium dioxide.
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APPENDIX A

We calculate the mean number of sites blocked by o
vacancy in the case when the vacancy concentration is n
zero. Let a test defect be located at the site~0! ~Fig. 5!,
blocking the six neighboring sites~1! of the first coordination
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sphere. The~1! sites may already be blocked if there a
already other defects on the sites~2! of the second coordina
tion sphere or~3! of the third coordination sphere. In thi
case, by virtue of the fact that the~2! and ~3! sites are not
nearest neighbors, the probabilities of finding defects at e
of them are assumed to be independent and equal toP5n,
wheren is the mean defect concentration. The total num
of ~2! and ~3! sites by which the~1! sites can be blocked i
equal to 18.

The probability that all the~2! and ~3! sites are free is

P65~12n!18,

where the subscript 6 indicates that the test defect blocks
sites.

The probability that one of the~1! sites is already
blocked and the test defect blocks five sites is

P556~12n!17n.

The probability that two~1! sites are already blocked i

P4512~12n!17n115~12n!16n2124~12n!16n2,

where the first term is the probability that one defect is fou
at the ~2! sites, the second term is the probability that tw
defects are found at the~3! sites, and the third term is th
probability that the defects occupy a~2! site and a~3! site
situated next to each other so that two~1! sites are blocked
Similarly, with terms out ton2 we calculate

P3548~12n!16n2130~12n!16n2,

P2536~12n!16n2.

Finally, for the mean number of sites blocked by the t
defect we obtain

a~n!5 (
k52

6

kPk~n!S (
k52

6

Pk~n!D 21

56230n2867n2.

Let us now calculate the number of statesG for a system
of N defects occupyingM possible sites. In analogy with th
simple system in which one particle occupies one site,
write

FIG. 5. Arrangement of various types of sites about a test defect in the a
sublattice. Markers denote the test defect~0! ~d!, blocking sites~1! ~s!, and
sites on the second~2! and third~3! coordination spheres, respectively~h
andL!.
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M SM2S 11aSM D D D SM2S 21aSM D
1aS 2M D D D ...SM2SN211 (

1

N21

aS kM D D D
or, replacing the sume in each term by an integral

(
k51

K S 11aS kM D D5ME
0

K/M

~11a~x!!dx5MbS KM D
5M S 7S KM D215S KM D 22286S KM D 3D ,

we obtain the following expression for the entropy:

Sv5 lnS )
K50

N SM2MbS KM D D D 2N lnSNe D
5 (

K50

N

lnS 12bS KM D D 2N lnS N

MeD .
Again replacing the sum by an integral, we obtain the fin
expression for the contribution of vacancies to the confi
rational entropy:

Sv5M H E
0

n

ln~127n115n21286n3!dn2n ln n1nJ .
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Spin-density wave in a Kondo lattice
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An Anderson model withN-fold degeneracy in the Kondo regime is considered. It is presumed
that the electron–electron correlations in the system off electrons have their maximum
strength. A criterion for instability against the formation of a weakly antiferromagnetic phase
superposed on the Kondo state is obtained by the auxiliary-boson method using the 1/N
expansion. An effective interaction leading to the formation of magnetic ordering appears because
of the spin fluctuations in the system of localized electrons. The phase diagram of the
system is constructed. ©1997 American Institute of Physics.@S1063-7761~97!01502-3#
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The influence of Kondo impurities on the formation
weak antiferromagnetic ordering in a system of band e
trons @which is also called a spin-density wave~SDW!# was
previously discussed in Refs. 1 and 2. In the limit of a sm
concentration of Kondo centers the principal effect is
incoherent scattering of the band electrons on these cen
which gives rise to antiferromagnetism. It was assumed
this case that the mechanism for forming the SDW is ba
on the exchange interaction in the system of band electr
which thus competes with the mechanism for destroying
SDW.

The present work is concerned with a system havin
regular arrangement of Kondo centers~i.e., a Kondo lattice!,
in which the interaction of the band electrons with one a
other is totally disregarded. As we know, in the Kondo
gime the spin of a strongly correlated local center is shiel
as a result of the redistribution of the spin density of the ba
electrons, and a nonmagnetic coherent state appears, w
competes with magnetic states of various types.

The possibility of magnetic instability of a specific typ
in a heavy-fermion system is a question that was posed
actively studied a long time ago.3–10 Several heavy-fermion
systems experimentally exhibit weak antiferromagnetic
dering at low temperatures. The recent attempts to ana
cally describe the magnetic instability in such systems w
generally based on the use of pseudofields. The latter
introduced either according to Barnes’ procedure,11 in which
different kinds of auxiliary particles obey Fermi and Bo
statistics,10 or by the method of Kotliar and Ruckenstein,12 in
which the pseudoparticles introduced are bosons.7,8

In most cases the problem of a doubly degeneratef level
is investigated in connection with magnetic solutions~see,
for example, Refs. 7, 9, and 10!. The results are obtaine
either in the boson mean-field approximation~i.e., by replac-
ing the boson operators byc-numbers! or in first order with
respect to the fluctuations of the boson field. It should
noted that the absence of a small parameter in the theorie
this type causes the higher-order corrections to the~essen-
tially variational! solutions to be comparable to the solutio
themselves. This circumstance precludes drawing confid
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The situation is different in the case of strong orbi

degeneracy of thef level. Although it is known that an in-
crease in this degeneracy renders a heavy-fermion sys
more stable with respect to magnetic ordering, the prese
of the small parameterN21!1 (N is the degree of degen
eracy of the level! makes it possible to devise a more sy
tematic theory.

Below we investigate a situation in which a weakly a
tiferromagnetic state of localized and band electrons app
as a result of quantum fluctuations of the spin density i
system with anN-fold degenerate seedf level on a back-
ground of a Kondo state. We assume thatN@1. This allows
us to utilize the 1/N expansion and the diagram techniq
developed for it13–15 by introducing auxiliary Barnes fields
Miura, Matsurura, and Kuroda15 pointed out the possibility
of considering different types of ordering in a Kondo latti
within the 1/N diagram technique, but concentrated on c
culating the lifetime of the quasiparticles and the respo
functions to an external field in a general form with cons
eration of vertex corrections.

An attempt to extend the Kotliar–Ruckenstein schem12

to the case of orbital degeneracy was made by Dorin
Schlottmann in Ref. 8. These workers did not study the t
dency for antiferromagnetism in a Kondo lattice, but th
thoroughly treated the case ofN52 in the mean-field ap-
proximation.

We stress that in the mean-field approximation with
spect to boson operators there are no magnetic solution
all in the Hamiltonian under investigation here~see below!,
and there is only a solution of the Kondo type. We take in
account the fluctuations of the boson field in the lowest
proximation with respect to 1/N, and we derive a Stone
criterion as a necessary condition for the existence of a
ferromagnetism in just this approximation. Naturally, the a
tiferromagnetism in our scheme is found to be weak~the
effective exchange is small, of orderN22, since the boson
propagator itself contains the small parameter 1/N!1), and
we proceed so as not to exceed the range of applicabilit
the 1/N expansion. The Ne´el temperatureTN and the antifer-
romagnetic gapS in the spectrum of the band electrons
this situation are small in comparison with the Kondo te

330-08$10.00 © 1997 American Institute of Physics
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Thus, we are concerned with the coexistence of antife
magnetism and a Kondo state, which is possible when
tain conditions are satisfied. We shall discuss them in
paper, bearing in mind the case of a zero tempera
T50.

A transition to finiteN;2 is impossible in our scheme
since it requires consideration of correlators that are hig
with respect to 1/N, which cannot be done correctly in th
absence of a small parameter.

2. MODEL HAMILTONIAN

We write anN-fold degenerate Anderson Hamiltonia
for a lattice in the pseudofermion and pseudoboson fi
representation:16

H5Hb1Hf1Hbf , ~1!

where

Hb5(
km

e~k!akm
1 akm , Hf5(

im
E0f im

1 f im ,

Hbf5(
kmi

V~k,m!exp~ ik•Ri !akm
1 f imbi

11H.c.

Here akm
1 is the creation operator of a band electron w

‘‘spin’’ projection m, quasimomentumk, and energye(k);
f im

1 is the creation operator of a pseudofermion at sitei with
‘‘spin’’ projection m; and bi

1 is the creation operator of
pseudoboson at sitei . The position of the Fermi level corre
sponding to half filling of the band is taken as the zero le
of all the energies in the problem. The Kondo regime of
two-band model~1! is considered. This corresponds to t
following conditions:E0,0 and uE0u@N(0)V2, where the
latter quantity is an estimate of the broadening of thef level
due to the hybridizationV, andN(0) is the density of the
band states at the Fermi level. It is assumed that the cor
tions of the f electrons have their maximum values, an
thus, thef sites are singly occupied at most. As usual,
express this condition in the form

(
m

f im
1 f im1bi

1bi51. ~2!

We shall assume below that the multiplicity of the dege
eracy of the E0 level is high, i.e., N52J11@1
(2J<m<J), which allows us to use the 1/N
expansion.13,14,16 Following Ref. 16, we assume that th
Kondo regime is characterized by the appearance of
anomalous pseudoboson average

1

AN
^bk&5adk,0 ; ~3!

and the appearance of a resonant pseudofermion levele f near
the Fermi level.

The mean-field part of the Hamiltonian~1! has the form

Hmf5(
k,m

e~k!ak,m
1 ak,m1(

k,m
e f f k,m

1 f k,m
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km km

1N(
k

~e2E0!Ak
1Ak , ~4!

where we went over to a new parameter scale:

V→V/AN, bi
15ANAi1 .

The Hamiltonian~4! can be diagonalized by the standa
procedure of going over to new quasiparticles having a sp
trum with two branches:

e1,2~k!5
e~k!1e f7A@e~k!2e f #

214~Va!2

2
. ~5!

Here and below we use the notationV25^V2(k)&, where the
angle brackets denote averaging over the directions of
vectork on the Fermi surface.

The Fourier transforms of the Green’s functions of t
band electrons, the pseudofermions, and the pseudobo
respectively, for the Hamiltonian~4! have the following
form:16

Gaa,m~k,iv!5
iv2e f

~ iv2e f !@ iv2e~k!#2V2a2
,

Gf f ,m~k,iv!5
iv2e~k!

~ iv2e f !@ iv2e~k!#2V2a2
, ~6!

Gaf,m~k,iv!5
V~k!a

~ iv2e f !@ iv2e~k!#2V2a2
,

D~k,in!5
1

N~e f2E0!
,

where iv5 ipT(2n11), in52inpT, and n50,61,62,...
are the fermionic and bosonic Matsubara frequencies.

The interaction between the band and localized electr
in the Kondo regime is introduced by the fluctuational part
the HamiltonianHbf :

H int5(
km

V~k!ak,m
1 f k1q,mbq

11H.c. ~7!

As will be shown below, the appearance of antiferromagne
ordering on a background of a Kondo state is possible s
cifically within H int .

3. CRITERION FOR THE EXISTENCE OF WEAK
ANTIFERROMAGNETISM

The antiferromagnetic ordering in the system under c
sideration is characterized by the appearance of self-en
parts of the Green’s functions on a certain wave vectorQ
that are antisymmetric with respect to the spin indexm:
Saa,m , S f f ,m . Henceforth we confine ourselves to conside
ation of the simplest case of a linearly polarized struct
with Q5G/2, whereG is a reciprocal-lattice vector. This
corresponds to antiferromagnetic ordering with period d
bling. The simplest diagrams which contribute toSaa and
S f f in the lowest order with respect to 1/N are shown in Fig.
1. We note that the self-energy partSa f,m which is off-
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P ~Q!5T G ~q,iv!G ~q1Q,iv!, ~13!

o-
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e

o
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art
ex

-

ba
diagonal with respect to the band indices vanishes becau
the symmetry condition̂Vm(k)&50 upon integration over
the directions of the vectork in the Brillouin zone. We as-
sume that the quantization axis is directed along the po
ization vector of the SDW. In this case, for simplicity, w
write the dependence ofSm on the spin index in the form

Sm5sgn~m!S. ~8!

Thus, to first order inS we obtain the following system o
self-consistency equations:

Saa~k,k1Q!5T(
ivq

V2

N~e f2E0!
Gf f ,m~q,iv!

3Gf f ,m~q1Q,iv!S f f~q,q1Q!

1T(
ivq

V2

N~e f2E0!
Gfa,m~q,iv!

3Gaf,m~q1Q,iv!Saa~q,q1Q!, ~9!

Saa~k,k1Q!5T(
ivq

V2

N~e f2E0!
Gaa,m~q,iv!

3Gaa,m~q1Q,iv!Saa~q,q1Q!

1T(
ivq

V2

N~e f2E0!
Gaf,m~q,iv!

3Gfa,m~q1Q,iv!S f f~q,q1Q!. ~10!

It follows from Eqs.~9! and ~10! that Saa andS f f do not
depend on the quasimomentum and the frequency. In
case we have the following equations:

Saa5
V2

N~e f2E0!
@Pa f~Q!Saa1P f f~Q!S f f #, ~11!

S f f5
V2

N~e f2E0!
@Pa f~Q!S f f1Paa~Q!Saa#, ~12!

where

P f f~Q!5T(
ivq

Gf f ,m~q,iv!Gf f ,m~q1Q,iv!,

FIG. 1. Diagrams for the self-energy parts of the pseudofermions and
electrons.
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aa (
ivq

aa,m aa,m

Pa f~Q!5T(
ivq

Gaf,m~q,iv!Gfa,m~q1Q,iv!.

Setting the determinant of the system of equations~11! and
~12! equal to zero, we can obtain the criterion for antiferr
magnetic instability

F12
V2

N~e f2E0!
Pa f~Q!G2

2
V4

N2~e f2E0!
2P f f~Q!Paa~Q!50, ~14!

which can be written in a different form:

15
V2

N~e f2E0!
Pa f~Q!

6A V4

N2~e f2E0!
2P f f~Q!Paa~Q!. ~15!

It is easy to show that only the plus sign should be chose
~15!, since in the system under consideration

AP f f~Q!Paa~Q!@uPa f~Q!u,

so that we can omit the first term in~15! ~the details are
presented below!.

To elucidate the physical meaning of the condition~14!
we setPa f50 and consider a more realistic model with th
Hamiltonian

H int5 (
kma

Vm,a~k!ak,a
1 f k1q,mbq

11H.c., ~16!

wherea561 is the spin index of the band electrons. T
second order with respect to the fluctuations of the bo
field two types of diagrams appear for the self-energy p
Sa , which is antisymmetric with respect to the spin ind
~Fig. 2!:

Sa
~a!~k,k1Q!52T2 (

iv8 iv9
(
k8k9

(
mm8a8

uVmau2uVm8a8u
2D~k9

2k!D~k92k1Q!Gf f ,m~k9!Gf f ,m8~k91k8

2k!Ga~k8!Ga~k81Q!Sa8
~a!

~k8,k81Q!,

~17!

where k5(k,iv), k85(k8,iv8), k95(k9,iv9), and
Q5(Q,0);

Sa
~b!~k,k1Q!5T2 (

iv8 iv9
(
k8k9

(
mm8a

Vma* Vma8Vm8a
* Vm8a8

3D~k92k!D~k92k8!Gf f ,m~k9!

3Gf f ,m8~k91Q!Ga~k8!

3Ga~k81Q!Sa8
~b!

~k8,k81Q!. ~18!

Expressions~17! and ~18! contain mean-field Green’s func
tions that are symmetric with respect to the indicesm and

nd
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FIG. 2. Diagrams for the self-energy
parts of the band electrons.
a. In the general case we can representGf f andGaa in a
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simple form like ~6!, and the calculations in~17! and ~18!
become far more complicated than in~9! and~10!. Neverthe-
less, for a qualitative analysis we take the simplest form
the dependence ofVma on the indices in the approximatio
of an isotropic scattering potential:

Vma5Vgma , gma5AJ1ma

2J
,

where thegma are the Clebsch–Gordan coefficients. The d
pendence ofSa on the spin index has the form

Sa5aS, a561. ~19!

It can be shown that the diagram in Fig. 2a is proportiona
the quantity

A5 (
a8mm8

a8gma
2 gm8a8

2
50, ~20!

while the contribution of the diagram in Fig. 2b toS is finite
as long asB is finite:

B5
1

2(mm8
S (

a
agmagm8aD 2Þ0. ~21!

It can be concluded from an analysis of the diagrams
Fig. 2 that diagram 2a actually represents the self-energy
of the band electrons, in which the functional corrections
the boson propagator are taken into account. Such cor
tions do not give rise to a pseudofermion Green’s funct
that depends on two different magnetic indices. At the sa
time, diagram 2b contains a fluctuational correction toGf f ,
which leads to such a dependence~i.e., the pseudofermion
propagatorGf f ,mm8 with m Þ m8 effectively shows itself!.
This allows us to conclude that antiferromagnetic order
appears simultaneously in the subsystems of the band
localized electrons.

From ~17!–~21! we can obtain the instability condition

1<
BV4

N2~e f2E0!
2P f f~Q!Paa~Q!, ~22!

which is similar to~14!, if we setB51 andPa f(Q)50.
We note that the condition~22! exhibits definite similar-

ity to the generalized Stoner criterion17

1<Ũx0~Q!, ~23!
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magnetic susceptibility of a noninteracting system on
vector Q. When the equality in~23! holds, the magnetic
susceptibility calculated in the random-phase approxima
has a pole:

x~Q!5
x0~Q!

12Ũx0~Q!
,

which signals the appearance of antiferromagnetic orde
with the wave vectorQ in the system.

If we consider~22! @or its analog~14!# from the stand-
point of the band electrons, the role ofx0 is played here by
Paa(Q), and the role of the effective exchange interaction
played by the quantityBV4(e f2E0)

22N22P f f(Q) @in ~14!
B51#. Criterion ~22! can also be interpreted from the stan
point of localized electrons coupled by the effective RKK
interactionBV4(e f2E0)

22N22Paa(Q). In this case the role
of x0(Q) is played byP f f(Q).

In the general case the polarization loops in~14! can be
calculated only numerically. To analyze them we use
model spectrum of band electrons with a constant densit
statesN(0), which allows us to go easily from summatio
over the quasimomentum to integration over the ene
e(k). We assume that the Fermi level is located in the ba
corresponding to the branche1(k) of the spectrum~5!. Our
calculations show that the main contribution to the polari
tion operator of the band electrons is made by states w
energies from the bottom of the band to energies on the o
of the width of the hybridization gapD5Va, where the seed
spectrum of the band electrons is modified significantly
cause of the hybridization with thef level. At the same time,
the main contribution toP f f(Q) is made by states in an
energy range of widthD below e f . Outside this range the
Green’s functions of the pseudofermions do not dif
strongly from the Green’s functions of dispersionless p
ticles and make a nearly zero contribution toP f f(Q).

Below we present the results of our calculations
T50 for the most interesting caseD/e f@1. To simplify the
calculations we consider the case of an almost half-fil
seed bande(k), which has the property of ideal nesting
e(k)52e(k1Q). In principle, this condition is not critica
for the existence of antiferromagnetism, as demonstrated
low, although it is exceptionally favorable for its appearan
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FIG. 3. Phase diagram ink3 versusg coordinates.
The regions of the antiferromagnetic phase a
hatched: a – in a system with ideal nesting; b –
a system with imperfect nesting.
The spectrum~5!, of course, does not have the property of
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nesting in the Kondo phase. The main terms of the polar
tion operators in order of importance are

Paa~Q!;2N~0!ln
W

D
,

Pa f~Q!;2N~0!ln
D

e f
, ~24!

P f f~Q!;2
D2

e f
2 N~0!,

where W is an energy on the order of the half-wid
of the band (W@D). We note that, according to~24!,
P f f(Q)Paa(Q)@Pa f

2 (Q) , sinceD/e f@1.
Substituting~24! into ~14! and taking into account tha

e f!uE0u, we obtain the following instability criterion:

1<
V4N2~0!

N2E0
2

D2

e f
2 ln

W

D
. ~25!

As was shown in Ref. 16, the quantityD2/e f
2 , specifies the

increase in the effective mass:

D2

e f
2 5

m*

m
;

W

e fN
5
exp@ uE0u/V2N~0!#

N
. ~26!

Let us consider the criterion~25! in the heavy-fermion
phase. It is convenient to introduce the following notatio
k[m* /m, g[uE0u/V2N(0). TheKondo regime correspond
to the limit g@1. In the new notation we obtain the follow
ing inequality from~25! and ~26!:

k3e22g

g2 S g2
1

2
ln k D>1. ~27!

We also require fulfillment of the conditionN@1, which
ensures applicability of the 1/N expansion and takes on th
following form in the new notation:

eg

k
@1. ~28!

Employment of the 1/N expansion allows us to omit th
logarithmic term in~27!. We ultimately have

ge2g<k3!e3g, ~29!

where it is assumed thatg@1.
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:

Kondo lattice is qualitatively shown on thek3–g phase dia-
gram in Fig. 3a.

As we have already noted, the quantity in front of t
logarithmic factor in~25! can be regarded as an effectiv
interaction of the band electrons through the fluctuations
pseudofields. According to~25!, this interaction is a decreas
ing function ofN, which corresponds to the disappearance
the fluctuations in the limitN→`. Using ~25! and ~26!, we
can show thatN has an upper bound in the heavy-fermio
phase with antiferromagnetic ordering:

1!N,
eg/3

g1/3. ~30!

We have hitherto assumed that the spectrum of the b
electrons obeys the condition of exact nesti
e(k)52e(k1Q). The expressions~24! were presented for
just this case. If the nesting is imperfect@for example, when
the filling of the band deviates from half, we hav
e(k)52e(k1Q)1m, wherem is the displacement of the
Fermi level from the position in the half-filled band#, the
factor ln(W/max@umu,D#) appears instead of ln(W/D) in
Paa(Q) ~24!. At the same time, the expression forP f f(Q) in
first order with respect toe f /D remains unchanged.

Whenm.D holds, instead of~29! we obtain

g2e2g

ln~W/umu!
<k3!e3g. ~31!

As follows from this inequality, the deviation from idea
nesting narrows the region of antiferromagnetism~Fig. 3b!,
and whenumu is sufficiently large, the parameter of the 1/N
expansion must have an upper bound specified by the co
tion

1!N3,
eg

g2 ln
W

umu
. ~32!

4. AMPLITUDE OF THE SPIN DENSITY

Let us turn to the calculation of the amplitudeS of the
spin density in the ground state near the boundary of
region where the antiferromagnetic phase exists. As an
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FIG. 4. System of equations for the Green’s functions
the antiferromagnetic phase.
ample, we consider the band componentSa , which is de-
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dy
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e
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of
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where all the coefficients are expressed in terms of the

-
ons
s

n

fined in terms of the anomalous Green’s functi
Gmaa(k, k1Q) in the following manner:

Sa5
T

N(
iv

(
m

(
k
sgn~m!Gmaa~k,k1Q!, ~33!

where the self-energy partsSaa,m and S f f ,m appear in
Gmaa(k,k1Q) in a complicated manner along with the alrea
known parameters of the problem. The self-energy parts
turn, are determined from the self-consistency equations

Saa,m

V2

~e f2E0!N
T(

iv
(
k
Gmf f~k,k1Q!,

~34!

S f f ,m

V2

~e f2E0!N
T(

iv
(
k
Gmaa~k,k1Q!.

To calculate the functionsGmaa, f f(k,k1Q) we must solve
two fourth-order systems of linear equations: the first c
tains Gmaa(k,k), Gmaa(k,k1Q), Gmaf(k,k), and Gmaf(k,k1Q),
and the second system is obtained from the first by the
placement of indicesa↔ f . To illustrate this, we present th
diagram representation of such a system of equations in
4. The expressions for the Green’s functionsGmi j ( i , j5a, f )
are exceedingly cumbersome, forcing us to resort to num
cal methods to solve the system of self-consistency equat
~34!. Nevertheless, near the line of instability with respect
the transition to the phase with an SDW~the hatched area in
Fig. 3!, whereSaa,m is small, we can find an analytic solu
tion using an expansion inSaa,m /D!1.

We use the ansatz~8! to describe the dependence
Saa, f f ,m onm. Leaving the terms with powers ofSaa, f f ,m no
higher than cubic in~34! and antisymmetrizing with respec
to m, we obtain the following system of equations:

Saa5L fS f f1A3Saa
3 1A0S f f

3 1A2Saa
2 S f f1A1S f f

2 Saa ,
~35!

S f f5LaSaa1F3S f f
3 1F0Saa

3 1F2S f f
2 Saa1F1Saa

2 S f f ,
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Green’s functions~6!:

La, f5
V2

~e f2E0!N
Paa, f f~Q!,

A35
V2

~e f2E0!N
T(

iv
(
k
Gaa~k!Gaa~k1Q!

3Gaf~k!Gaf~k1Q!,

A05
V2

~e f2E0!N
T(

iv
(
k
Gf f
2 ~k!Gf f

2 ~k1Q!, ~36!

A25
V2

~e f2E0!N
T(

iv
(
k

@2Gaa~k!Gf f~k!Gaf
2 ~k1Q!

1Gaf
2 ~k!Gaf

2 ~k1Q!#,

A15
V2

~e f2E0!N
T(

iv
(
k
3Gaf~k!Gaf~k1Q!

3Gf f~k!Gf f~k1Q!.

HerePaa(Q) andP f f(Q) are given by~13!. The expres-
sions for theF j ( j50,1,2,3) in terms of the Green’s func
tions ~6! can be obtained from the corresponding expressi
for theAj in ~36! after performing the interchange of indice
a↔ f in the latter.

ExpressingS f f in terms ofSaa in ~35! up to cubic terms,
we have

Saa5LaL fSaa1@L f~La
3F31F01La

3F21LaF1!1A3

1La
3A01LaA21L f

2A1#Saa
3 . ~37!

According to~36!, each of the coefficients in~37! contains
the multiplier N21!1. Leaving the terms no higher tha
N22 in ~37!, we have
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Our calculations, which were performed using a mo
seed dispersion law of band electrons with a constant den
of states for the case of ideal nesting, leads to the follow
results for the dominant terms inF0 and A2,3 (D/e f@1,
e f!uE0u, m50) atT50:

F0;2
V2N~0!

E0ND2 ,

A2;2
V2N~0!

E0ND2 ln
D2

e f
2 , ~39!

A3;2
V2N~0!

E0ND2 .

Substituting~13!, ~36!, and~39! into ~38!, we obtain

Saa
2 52

1

Z F12
V4N2~0!D2

N2E0
2e f

2 ln
W

D G , ~40!

where

Z5
V2N~0!

E0ND2 FV2N~0!

E0N
S ln W

D
ln

D2

e f
2 1

D2

e f
2 D 11G . ~41!

To analyze~40! and ~41!, we go over to the parameter
k andg introduced above. In the region where the antif
romagnetic phase exists, which is specified by the condi
~29!, the numerator in~40! is negative, i.e.,Saa

2 .0. The
denominatorZ ~41! in the region ~29! has the following
form:

Z5
ke2g

gD2 Fke2gS ln k1
k

g D21G . ~42!

We note that near the transition to the antiferromagn
phase

k5g1/3e2g/31a, ~43!

wherea is a small parameter compared with the first ter
The ratio between the terms in the round brackets in~42! is

g ln k

k
;g5/3e22g/3!1,

so that the second term is dominant~we recall thatg@1).
Using ~43!, we now compare the second term in~42! with
unity:

k2e2g

g
;g21/3eg/3@1.

Thus, near the line of the transition to the antiferroma
netic phase the second term is dominant in~42!; therefore,

Saa
2 5

g ln~W/D!21

g
D2, ~44!

where

g5
V4N2~0!D2

E0
2N2e f

2 .
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g ln~W/D!21

g
!1,

so that the expansion inSaa /D!1 is justified. We note that
the antiferromagnetic phase appears in the system under
sideration at large, but finiteN @see the inequality~30!#. The
presence of such a restriction also makes it possible for
term proportional to 1/N2 to dominate the terms proportiona
to 1/N in the expression~41! for Z in the region where an
SDW exists.

Substituting~44! into ~33!, in the linear approximation
with respect toSaa /D we obtain

Sa5N~0!D ln
W

D
Aln

W

D
2
1

g
. ~45!

The result~45! was obtained for the system with exa
nesting (m50). In the case of a substantial deviation fro
ideal nesting (umu@D), the quantityD in the logarithmic
terms in ~44! should be replaced byumu with a resultant
decrease in the amplitudeSa of the spin density. The ampli
tudeSf of the spin density of the localized electrons, whi
we shall not write out here, is calculated similarly.

5. CONCLUSIONS

Thus, we have demonstrated the possibility of satisfy
the criterion for the existence of antiferromagnetic order
in a Kondo lattice within the 1/N expansion. The interaction
which leads to the formation of the magnetically order
phase appears because of the fluctuations of the boson
The appearance of an SDW in the system of band elect
is accompanied by antiferromagnetic alignment of the p
tially shielded spins in the localized system. The interact
between the localized electrons through polarization of
band electrons has the character of an effective RKKY in
action that has been renormalized by Kondo shielding. T
state of the Kondo lattice can be regarded as an antife
magnetic state of a system containing several sublatt
with significantly different localization of the magnetic mo
ments in them.

We described the state with magnetic ordering in
lowest order with respect to the fluctuations of the bos
field within the 1/N expansion. The solutions that we ob
tained claim to describe only weak antiferromagnetism a
cannot be extended to strong antiferromagnets. We are a
ally dealing with systems withg,1 @see~44!#. As we move
into the region of the phase diagram withg.1, which cor-
responds to strong antiferromagnetism, consideration of
fluctuations of higher orders~i.e., terms that are higher in
1/N) becomes essential for determiningSaa, f f . Now the sys-
tem of equations~34! should be reformulated in the spirit o
the self-consistency scheme for fluctuations in Ref. 18.

Within our approach it was assumed that the influence
antiferromagnetic ordering on the Kondo state is very we
(TN!TK). This allowed us to disregard the renormalizati
of the pseudoboson propagator in the magnetic phase. S
an approach seems justified in any case from the standp
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of the 1/N expansion, since all normalizations of the pseudo-
re

e
u
ifi
os

ur
te
ex
i.

ta

ra
ta

in

Ac

r
-
rm
ity

We thank B. A. Volkov, L. V. Keldysh, and the partici-
tical
e of
ults
he
boson Green’s function will contain corrections that a
higher in 1/N. In the case ofN52 ~which we did not con-
sider in the present work!, of course, the problem of th
coexistence of a Kondo state and antiferromagnetism m
be solved within a different self-consistency scheme. Sign
cant modification of the phase diagram in Fig. 3 is then p
sible.

In conclusion, we wish to comment on the temperat
of the transition to the antiferromagnetic phase in the sys
under consideration. The renormalization of the effective
change interaction in the magnetic phase remains weak,
bearing in mind the inequalityTN!D, we can calculate the
Néel temperature using the same effective coupling cons
g5ŨN(0) as in the case ofT50. In this case the quantity
x0(Q) } ln(W/D) is also weakly dependent on the tempe
ture. Such a situation is known in the Moriya-Kawaba
theory of self-consistent spin fluctuations,19 where the tem-
perature of the transition to the magnetic phase is determ
not by the weak temperature dependence ofx0(Q), but by
corrections due to the thermodynamic spin fluctuations.
cording to Ref. 19, we then have

TN;D@g ln~W/D!21#4/3.

In the theory of self-consistent spin fluctuations19 an energy
of the order of the Fermi energy appears as the first facto
the analogous expression for the Ne´el temperature. This cor
responds to the energy range in which the interaction fo
ing the magnetic state takes place. In our case this quant
specified by the energy parameter of the Kondo regime.
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Magnetoplastic effect in irradiated NaCl and LiF crystals

tic
V. I. Al’shitz, E. V. Darinskaya, and O. L. Kazakova

Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russia
~Submitted 9 April 1996!
Zh. Éksp. Teor. Fiz.111, 615–626~February 1997!

The effect of lowx-ray irradiation doses ('102 rad) on the magnetoplastic effect — the
detachment of dislocations from paramagnetic centers under the action of an external magnetic
field B — in alkali-halide crystals has been investigated. The measurements were
performed on LiF crystals and three types of NaCl crystals, differing in impurity content. The
dependence of the mean free pathl of the dislocations on the rotational frequencyn of
a sample in a magnetic field was especially sensitive to low irradiation doses. In unirradiated
crystals this dependence is a single-step dependence and is characterized by a critical
frequencync } B2 above which the magnetoplastic effect is not observed. The frequencync
depends only on the type of paramagnetic centers, and not on their density. Even the lowest
irradiation dose employed (,100 rad) leads to a sharp restructuring of the dependence
l (n), converting it into a two-step dependence~for edge dislocations! with an additional critical
frequencync2, that is insensitive to the irradiation dose, and that corresponds to the
appearance of magnetically sensitive stoppers of a new type under irradiation. The initial critical
frequencync1, as a rule, also varies with the dose, reflecting the change in state of the
impurity complexes~Ca in NaCl and Mg in LiF!. Specifically, it is shown for NaCl~Ca! crystals
that as the irradiation dose increases, the frequencync1 increases, gradually approaching
the valuenc2, so that by the time the dose is'300 rad, the dependencel (n) once again becomes
a single-step dependence, dropping sharply only forn>nc2. It is shown that the addition of
a small number of Ni atoms to a NaCl crystal makes the Ca complexes radiation resistant, and the
critical frequencync1 corresponding to them initially equalsnc2 for crystals with no Ni. The
recombination kinetics of radiation defects in the case in which the samples are irradiated under a
tungsten lamp was investigated. A possible physical model of the observed dependences is
discussed. ©1997 American Institute of Physics.@S1063-7761~97!01602-8#
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It is well known that electronic excitations with a wid
range of energies and lifetimes arise in alkali-halide crys
under the action of ionizing radiation of different nature a
intensity. High-energy electronic excitations decay, tra
forming into very simple structural defects like electron
hole pairs and excitons, which in turn can form more co
plicated radiation-induced lattice defects.1,2 This process,
though not completely understood, has nonetheless b
studied quite well in alkali-halide crystals at moderate a
high irradiation doses (D510321017 rad).

In practice, however, existing methods are too insen
tive for investigations at low irradiation doses. In a rece
paper,3 we proposed a fundamentally new method for stu
ing weak radiation actions ('102 rad).1! The method is
based on the observed high sensitivity of the so-called m
netoplastic effect, investigated in Refs. 4–19, to x-ray ir
diation of the crystals.

In many nonmagnetic crystals~alkali-halide crystals, Al,
Zn!, the magnetoplastic effect shows up experimentally a
displacement of dislocations under a constant magnetic
in the absence of a mechanical load. The mean free pathl of
dislocations increases as the magnetic treatment timetm of
the samples and the squared magnetic inductionB
( l } B2tm), and decreases as the concentrationC of the para-
magnetic impurity increases (l } 1/AC). In crystals where
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field on dislocation mobility has been observed. The mag
toplastic effect is very insensitive to temperature: the me
free path at 4 K is essentially identical to that at 77 K, and
only 20% less than the mean free path at room temperat

Essentially all basic features of the phenomenon can
explained on the basis of spin-dependent electronic tra
tions in an external magnetic field. It is assumed that
magnetic field engenders an evolution of the spin state in
dislocation–paramagnetic center system, which is comple
by the removal of the spin-forbiddenness of a certain el
tronic transition. As a result, the configuration of the syst
changes radically. This change results in detachment of
dislocation from a point defect, and motion under existi
internal stresses. The total energy in the system remains
sentially unchanged, although the interaction energy
even change sign. A similar rationale lies at the root of
theoretical interpretation of an entire group of magnetica
sensitive phenomena.20 The corresponding theory has bee
developed in greatest detail to describe the magnetic ef
on the rate of chemical reactions.21

All such effects are due to the spin selectivity of certa
transitions or reactions. For example, the process proce
only from the singlet state of the spin system, being forb
den in the triplet state. In this case the evolution of the s
tem in a magnetic field from the triplet state to the sing
state (T02S transition! completely determines the kinema

338-07$10.00 © 1997 American Institute of Physics
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mechanisms ofT02S transitions are considered to be th
Dg mechanism and paramagnetic phase relaxation.21

The first mechanism arises if the Larmor precession
quencies of interacting spins in a magnetic field are differ
~for example, as a result of a small difference in the cor
sponding Lande´ g factors!. As a result, in the course of pre
cession, the spins must periodically be antiparallel, wh
corresponds to aT02S transition. The frequency of suc
transitions is obviously linear in the magnetic field, a
should equalnDg;107 s21 for B;1 T andDg;1023.

The second mechanism, determined by stepwise re
ation ~decay! of the precession of the spin magnetizati
components perpendicular to the magnetic field yield
T02S transition when the spins are aligned parallel~or an-
tiparallel! to the magnetic inductionB. This process is ordi-
narily much slower than theDg effect ~for reasonable value
of the parameters — by several orders of magnitude!. It is
important that the corresponding phase relaxation time
proportional toB22.

It is now considered to be well established that theDg
mechanism plays the main role in the magnetic sensitivity
chemical reactions. On the other hand, considering the
that according to our data the detachment timetdp of a dis-
location from a paramagnetic stopper atB;1 T is of the
order of 1024 s and is proportional toB22, we are inclined to
assume that the magnetoplastic effect is limited by param
netic phase relaxation.

Definite predictions follow from the proposed physic
model of the magnetoplastic effect. Specifically, no proc
of the type being considered is impossible when the requ
spin evolution timet is much longer than the average spin
lattice relaxation timetsl and thermal fluctuations in the sys
tem actively mix the spin states. Under the present con
tions t;tdp } B22, so there should exist a thresho
magnetic fieldBc below which the magnetoplastic effe
vanishes. On the other hand, forB.Bc the temperature de
pendence of the effect should be very weak. In recent wo11

we observed such a threshold field. The new method
determining the spin–lattice relaxation time in th
dislocation–paramagnetic center system givestsl>tdp(Bc).

Another consequence of the model under considera
should be the existence of a critical rotation frequencync of
a sample in a magnetic field, above which the mean free p
l of dislocations decreases sharply. Indeed, in order for
mechanism under discussion to operate in a rotating cry
the changeDw52pntdp in the orientation of the magneti
field with respect to the crystal over the spin evolution tim
t;tdp should obviously be quite small~for n@nc the spins
simply ‘‘do not know’’ the direction in which they should
relax!.

Such a critical frequency is indeed observ
experimentally.5–10 According to our data

nctdp;102221023.

The frequencync depends only on the magnetic field inte
sity (nc } B2) and the type of paramagnetic centers, and i
also different for screw and edge dislocations. Being prop
tional to the probability of an elementary event consisting
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nc is a fundamental characteristic of the process. There
the type of paramagnetic stoppers at a dislocation can
judged according to the position of the step (n5nc) in the
curvel (n). The dislocation plays the role of a measuring to
with exemplary sensitivity.

The interaction of dislocations with paramagnetic ce
ters, which consisted of impurity complexes in the cryst
was investigated in Refs. 4–11. It is well known that som
defects formed in the crystal during irradiation exhibit pa
magnetic properties.22 Together with impurity paramagneti
centers, they form a spectrum of magnetically sensitive st
pers with which a dislocation interacts in a magnetic fie
The method that we proposed in Ref. 3 , based on measure
ments of the dependencel (n) for different irradiation doses
makes it possible to distinguish the contributions of differe
stoppers in dislocation retardation. As a result of our inv
tigations, we were able to follow the detachment of disloc
tions from different types of impurity centers that we
modified as a result of irradiation.

Our objective in the present work is to study further t
effect of preliminary low dose x-ray irradiation on the ma
netoplastic effect in NaCl and LiF crystals. We present
results of an experimental investigation of the magnetop
tic effect in irradiated crystals with differing impurity com
position. As we shall see, the interaction of screw and e
dislocations with impurity–radiation defects is distinctive.

2. EXPERIMENTAL PROCEDURE

The investigations were performed on three types
NaCl crystals and on LiF crystals: NaCl-1, with yield stre
t5150 kPa and Ca impurity concentrationCCa50.5 ppm;
NaCl-2, witht5500 kPa andCCa>10 ppm; NaCl-3~modi-
fication of NaCl-2 crystals with additional Ni impurity!, with
t5360 kPa andCNi >0.06 ppm and LiF, witht5300 kPa
and total impurity concentration 0.5 ppm.

Preannealed 33437 mm3 samples were irradiated in a
IRIS-M x-ray apparatus by a Mo source with waveleng
l50.7 Å. The tube voltage and current wereU545 kV and
I535 mA, respectively, and the irradiation timet r55230 s.
The irradiation dose acquired by a sample per unit time w
approximately 10 rad/s. The experimentally measured co
ficient of through transmission of x-rays was 70–80% for t
NaCl samples and 60–70% for LiF. Irradiation did not pr
duce any coloring of the samples.

After irradiation, fresh dislocations were introduced in
a sample by impact and the sample was positioned in a
(B50.320.6 T! field, or an ac magnetic field produced b
rotating the sample at frequencyn502200 Hz in a constant
magnetic field. The magnetic treatment time varied over
rangetm55240 min. The crystals were held in the magne
field in the dark in order to prevent de-excitation of the r
diation defects. In experiments on the decay of radiation
fects, an irradiated sample was de-excited under a tung
incandescent lamp in a timet l5152300 min, after which
dislocations were introduced into the sample and the sam
was placed in a magnetic field.

The initial and final positions of the dislocations we
determined by selective chemical etching. In the course

339Al’shitz et al.
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control experiments, the mean free path of dislocations
different faces of the sample was recorded. It was found
be approximately the same on the front~closest to the radia
tion source!, back, and lateral surfaces of the crystal. Sinc
was impossible to construct representative histograms
screw dislocations in NaCl, in these crystals observati
were performed only on edge dislocations. In LiF crysta
all dependences were obtained for both edge and screw
locations.

The investigations of the transmission spectra of the
radiated samples were performed with an IFS-113v Fou
spectrometer in the IR (l52225 mm), and with a Hitachi
spectrometer in the visible (l536422500 nm) and UV
(l51852360 nm!.

3. EXPERIMENTAL RESULTS

The optical investigations performed on the samp
over a wide range of wavelengths~from IR to UV! showed
that the apparatus was insensitive to the low irradiation do
that we employed. The absorption bands correspondin
F-centers and an increase in the transmission~by 5–20%! in
the IR could be observed only by increasing the irradiat
dose for the sample by two orders of magnitude~up to 104

rad!. However, the magnetoplastic effect was found to
sensitive to small structural changes caused by irradia
doses of the order of 102 rad.

Our investigations showed that a linear growth of t
mean dislocation free pathl with magnetic treatment time
tm and the squared magnetic induction remains in the irra
ated crystals:l5 l 01kB2tm , wherel 0 is the background free
path value, which also exists atB50 and is associated with
the etching out of near-surface stoppers.23 The coefficient of
proportionalityk decreases monotonically with increasing
radiation dose; this is shown in Fig. 1, where the curves
the effective dislocation velocityV5( l2 l 0)/tm5kB2 versus
the irradiation timet r with a fixed magnetic fieldB50.5 T
are constructed for NaCl-1 and LiF crystals. Such dep
dences reflect a gradual change in the spectrum of point
fects under irradiation, but yield no information about t
possible types of point defects.

FIG. 1. Effective dislocation velocity (l2 l 0)/tm versus sample irradiation
time t r ; B50.5 T,d — NaCl-1, * — LiF ~edge dislocations!, % — LiF
~screw dislocations!.
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As we have already noted, according to Ref. 3 such
formation is best obtained from measurements of the m
free pathl in samples rotating in a magnetic field as a fun
tion of the rotation frequencyn. Such measurements, whic
were performed on all types of crystals indicated abo
showed that x-ray irradiation of samples, even for seve
seconds, radically changes the dependencel (n). Figure 2a
displays the effective velocityV5( l2 l 0)/tm versus the fre-
quencyn for unirradiated and irradiated NaCl-1 crystals. A
one can see from the figure, irradiation not only decrea
the path length, but it also converts the one-step cu
V(n) into a two-step curve. The appearance of a second
indicates irradiation-induced production of a new, magne
cally active, type of stopper. It is important that the first a
second steps react differently to an increase in dose.
shown in Fig. 2 that increasing the irradiation time f
NaCl-1 crystals fromt r55 s tot r530 s has no effect on the
position of the second critical frequencync2'150 Hz with
B50.5 T. At the same time, as the irradiation dose increa
the first step gradually expands and the critical freque
nc1 corresponding to this step increases, reachingnc1'nc2
at t r530 s ~Fig. 2a, b!. A similar picture is observed in
NaCl-2 crystals.

The situation is somewhat different in NaCl-3 crysta
According to Refs. 9 and 10 , even unirradiated, these c
tals are much more magnetically sensitive than NaCl-2. T
magnetoplastic effect in them, under otherwise identical c
ditions, is characterized by higher relative densities of m
bile dislocations, larger dislocation travel distances, an
shorter delay time on paramagnetic stoppers, i.e. a hig
critical frequency~by approximately a factor of 6–7!. This is
probably due to the alignment of Ni atoms in Ca complex
that occurs during the growth of the NaCl crystal, which c
intensify the magnetic properties of the complexes, as w
as changing their characteristic size~and hence their concen
tration!.

In irradiated NaCl-3 crystals, two steps also appear
the curveV(n) ~Fig. 3!. But this time, not only the secon
but also the first critical frequency are insensitive to the
radiation dose, i.e.nc15nc ~Fig. 3a!. It is significant that the

FIG. 2. a — Effective dislocation velocity (l2 l 0)/tm versus sample rotation
frequencyn in a magnetic field in NaCl-1 crystals for different irradiatio
times t r ; B50.5 T, * — t r50, h — t r55 s, s — t r520 s, l —
t r530 s. b — Critical frequenciesnc1 (d) andnc2 (n)in NaCl-1 crystals
versus the irradiation timet r ; B50.5 T.
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FIG. 3. a! Effective dislocation ve-

f-

n

locity ( l2 l 0)/tm versus sample rota-
tion frequencyn in a magnetic field
in NaCl-3 crystals for different irra-
diation times t r ; B50.3 T. * —
t r50, h — t r55 s,s — t r520 s.
b! Frequency dependence of the e
fective dislocation velocity, normal-
ized to the squared magnetic field, i
NaCl-2 and NaCl-3 crystals;t r55 s,
� — NaCl-2, B50.2 T; j —
NaCl-3, B50.2 T; h — NaCl-3,
B50.3 T.
frequencync1 for NaCl-3 is essentially identical to the fre-
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quencync2 for NaCl-2 ~Fig. 3b! and NaCl-1. The second
critical frequencync2 for NaCl-3 is almost three times th
first, and has no analog in NaCl-1 and NaCl-2 crysta
Therefore the spectrum of paramagnetic stoppers in NaC
very sensitive to small additions of Ni impurity.

To study the effect of different types of dislocations
the interaction of the dislocations with magnetically sensit
stoppers, the magnetoplastic effect was investigated in
crystals, for which it is possible to construct comple
histograms of the travel distances for both edge and sc
dislocations. In the case of edge dislocations, a numbe
general laws typical for NaCl are observed in the irradia
LiF crystals (t r55 s): V(n) is a two-step curve, and th
critical frequencies satisfync,nc1,nc2 ~Fig. 4a!. The sec-
ond critical frequency does not change as the irradiation d
increases~just as in the case of NaCl! and isnc2>115 Hz
for B50.5 T. The first critical frequency is essential
identical for irradiation times of 5 and 10 s (nc1
555 Hz!, but increasing the irradiation time tot r520 s in-
creasesnc1 to approximately 85 Hz. Unfortunately, measur
ments were not performed fort r.20 s, since as one can se
from Fig. 1, as the irradiation dose increases further,
dislocation travel distances in these crystals essentially
crease to the background values.

In LiF, screw dislocations react to irradiation complete
differently ~Fig. 4b!: V(n) remains a single-step curve, in th
irradiated crystals the critical frequencync1 is less thannc ,
and no appreciable sensitivity ofnc1 to the irradiation dose is
observed over the experimental range of irradiation tim
t r55220 s, i.e. the entire dynamics of the transition fro
nc to nc1 is played out at doses corresponding tot r,5 s.
.
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defects were conducted on NaCl-1 and LiF crystals. Irra
ated samples of NaCl-1 were illuminated with a tungs
lamp for t r55 s ~Ref. 3! andt r520 s~Fig. 5!. Qualitatively
the same pattern of decay of the radiation defects is obse
in both cases. Initially, illumination causes the second ste
vanish, and the first step has a very long ‘‘tail’’ whose cen
lies betweennc andnc1. Further illumination of the sample
restores the critical frequencync corresponding to the unir
radiated crystal. In the NaCl-1 samples irradiated fort r55 s,
complete restoration ofnc occurs over a de-excitation tim
t l560 min.3 After irradiation for 20 seconds, the critical fre
quency is restored over a timet l5300 min ~Fig. 5!. It was
noted that in both cases, the travel distance of dislocation
the plateau~for n,nc) does not return to the level corre
sponding to the travel distance in the unirradiated cryst
remaining approximately half the initial value. The max
mum travel distance of dislocations on the plateau is reac
long before the critical frequency is restored, and a furt
increase in the de-excitation time has essentially no effec
it.

Experiments on the de-excitation of irradiated LiF cry
tals~with t r55 s! show that in contrast to NaCl, illumination
with light from a tungsten lamp for one hour is inadequa
for de-excitation of all magnetically sensitive radiation d
fects~Fig. 6!. The critical frequency of the unirradiated cry
tal is restored for edge~Fig. 6a! and screw~Fig. 6b! disloca-
tions only if the de-excitation time increases tot l5120 min.
It is significant that for both edge and screw dislocatio
continuation of illumination of the crystal~up to t l5180
min! restores not only the step width but also the initial me
free path l for n,nc . Recall that in NaCl-1, under the
FIG. 4. Effective dislocation veloc-
ity ( l2 l 0)/tm versus sample rotation
frequencyn in LiF crystals in a mag-
netic field for various irradiation
timest r ; B50.5 T,* — t r50,h —
t r55 s; ¹ — t r510 s; s —
t r520 s; a! edge dislocations; b!
screw dislocations.
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present illumination conditions, the mean free path of dis
cations after de-excitation did not exceed half its value in
unirradiated crystal~Fig. 5!.

4. DISCUSSION

The frequency dependence of the dislocation travel
tances in irradiated samples rotating in a magnetic field
indeed a very sensitive indicator of weak radiation effects
a crystal. Experiments with edge dislocations are yet m
informative. In any case, a second step is not formed in
curvesV(n) ~Fig. 4b and 6b! for screw dislocations in irra-
diated LiF crystals. If it is assumed that each step co
sponds to a particular type of stopper that pins dislocatio
then the two-step curvesV(n) measured for edge disloca
tions in all experimental crystals attest to irradiation-induc
generation of pinning centers~‘‘transparent’’ in LiF for
screw dislocations!.

We now discuss the kinematics of the dislocation mot
in a way that admits the appearance of a second step in
curveV(n) after irradiation. We note that the fresh disloc
tions introduced into the unirradiated crystal, and on wh
all measurements were performed, stop only at locati
where long-range stresses are too weak to detach disloca
from impurity complexes. As follows from Refs. 5–10,
these crystals, fornc,n, the spin-dependent transitions
impurity complexes, which pin dislocations, cease, and
dislocation motion ceases with them. Fresh dislocations

FIG. 5. Effective dislocation velocity (l2 l 0)/tm versus sample rotationa
frequencyn in irradiated NaCl-1 crystals in a magnetic field for variou
de-excitation timest l ; B50.5 T, *—t r50, t l50; s — t r520 s, t l50;
� — t r520 s,t l560 min;d — t r520 s,t l5300 min.
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the irradiated crystals can also stop in more highly stres
locations, since they are pinned together with the impu
complexes, by new radiation defects. Fornc1,n,nc2 only
the new stoppers are ‘‘turned off’’ in a magnetic field. This
sufficient for depinning of some dislocations from the mo
stressed locations in the crystal. As the dislocations mo
the distribution of long-range stresses changes, which
result in other dislocations being entrained into the motion
well. In this manner, a second plateau appears in the cu
V(n). Only for n.nc2 are all magnetic depinning effect
eliminated, and dislocation motion stops.

If the proposed scheme is correct, then it can be
pected that fornc1,n,nc2 the saturation travel distanc
~for large values ofB and tm), corresponding to relaxation
not of an entire dislocation structure but only some dislo
tions which started from the most stressed locations, sho
be much less than the average dislocation travel distance
n,nc1 ~for the same values ofB2tm), whereupon essentially
all freshly introduced dislocations participate in the motio
This behavior of the dislocations is demonstrated in Fig.
which displays the mean free path versusB2tm , measured
for a NaCl-1 crystal for the two cases mentioned and n
malized to the average distance 1/Ar between dislocations in
a ‘‘forest’’ ( r is their density!. This is also reflected in the
experimental histograms of the dislocation travel distanc
which for otherwise identical parameters are much wider

FIG. 7. Average dislocation travel distance, normalized to the density
dislocations in a forest, versusB2tm in NaCl-1 crystals:t r510 s; ¹ —
n,nc1 ,. — nc1,n,nc2.
FIG. 6. Effective dislocation veloc-
ity ( l2 l 0)/tm versus sample rotation
frequencyn in LiF crystals in a mag-
netic field for different de-excitation
times t l ; B50.5 T, *—t r50, t l50.
a! Edge dislocations,t r55 s: h —
t l50; n — t l530 min; 1 —
t l560 min; 3 — t l5120 min; b!
screw dislocations,t r55 s: h —
t l50; 3 — t l5120 min; ^ —
t l5180 min.
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The nature of the new type of stopper arising under
radiation cannot be unequivocally interpreted solely on
basis of the experimental data presented above. However
information accumulated thus far about the formation of
diation defects in alkali-halide crystals under low irradiati
doses suggests a number of plausible conjectures expla
the measurement results presented above.

It is well known24 that rare-earth and alkaline-ear
metal impurities, which have a low second ionization pote
tial, form complicated radiation defects under the action
irradiation —Z-centers, which contain, besides an impur
ion, a cationic vacancy and aF-center. According to Ref. 25
as a result of irradiation of alkali-halide crystals containi
such impurities, the complex consisting of Me21 and a cat-
ionic vacancy@C#2 can be restructured, and aZ-center and
interstitial halogen molecule Hal2

0 form in the process:

Me21@C#2→ Me11 Hal01@C#21@A#1→ Me1

1@C#21@Hal2
21@A#1→ Me11@C#2

1F-center1 Hal2
0 ,

where @A#1 is an anionic vacancy. Ca and Mg, being t
main impurities in NaCl-1, 2 and LiF crystals, respective
are such centers. In contrast to Ca and Mg atoms, Ni im
rity in NaCl-3 has quite a high second ionization potenti
and ordinarily does not form aZ-center. It is also well
known that the formation ofF-centers at low irradiation
doses is suppressed in crystals with Ni impurity.26,27The Ni
impurity plays the role of an electron trap, i.e., the valen
state of Ni changes under irradiation:26–30

Ni21→ Ni1→ Ni0. ~1!

It is natural to conjecture that in the experimen
NaCl-1, 2 and LiF crystals, stoppers of the new type, wh
are responsible for the second step in the curvel (n), are
Z-centers formed on isolated impurity atoms. In the ordin
state, these obstacles are too weak for dislocation motion
compared with impurity complexes. Under irradiation, t
latter complexes also gradually become ‘‘packed’’ w
Z-centers; this is reflected in an expansion of the first s
(nc1→nc2), which ultimately results in merging of this ste
with the second step~Fig. 2a, b!.

In NaCl-3 crystals, the first step is characterized, even
the initial state~prior to irradiation!, by a critical frequency
nc1 that is approximately equal to the frequencync2 for
NaCl-2~Fig. 3b! and NaCl-1 crystals. We are not prepared
discuss now the mechanism of such a strong ‘‘catalyt
effect of Ni atoms on the state of Ca complexes, in which
Ni atoms are probably present. It can only be stated tha
result is equivalent to the longest irradiation of NaCl-1 cry
tals in our experiments (t r530 s). At the same time, it is
obvious thatZ-centers formed on isolated Ca-atoms by ir
diation of NaCl-3 crystals cannot be manifested as a sepa
step, because the critical frequency corresponding to the
essentially identical to the frequency of radiation-resist
impurity complexes. The second step in the curvel (n) in
NaCl-3 crystals is probably due to isolated Ni impurity a
oms whose valence changes under irradiation.
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Note for edge dislocations formed under irradiation, t
new stoppers and the old complexes whose state change
characterized by an increase in critical frequency, i.e., a
crease in the delay time on a stopper compared with
initial time. For screw dislocations in LiF, we observed e
actly the opposite trend: under irradiation, the critical fr
quency decreases, together with the probability of deta
ment of a dislocation from a paramagnetic complex~Fig.
4b!.

Despite the decrease in the delay time of edge dislo
tions on individual paramagnetic stoppers in irradiated cr
tals, the average velocity of the dislocationsV5( l2 l 0)/tm
decreases as the irradiation dose increases~see Fig. 1!. There
is nothing paradoxical in this: first, additional paramagne
centers appear and are responsible for the second step i
curveV(n), and second, magnetically insensitive radiati
defects, which slow the dislocation motion, also form und
irradiation. This is especially clear in Fig. 4b, which refers
screw dislocations, where as the irradiation dose increa
from 5 to 20 s,nc1 remains unchanged and the velocity o
the plateau (nc,nc1) decreases by a factor of 3. The sam
magnetically insensitive defects, which were not de-exci
for our crystal illumination times, are responsible in NaCl
~Fig. 5! for the incomplete restoration of the height of th
first step, in contrast to its width.

One of the quantitative characteristics directly associa
with the density of such defects is the dislocation start pr
ability Wst ,

5,7 which can be obtained from the experimen
data on the dependence of the mobile dislocation den
rm in irradiated crystals on the magnetic treatment timetm
on the basis of the simple formula5 rm /r0
512exp(2Wsttm), wherer0 is the density of freshly intro-
duced dislocations. The quantityWst is inversely propor-
tional to the characteristic timetst up to detachment of a
dislocation from nonmagnetic stoppers after it is depinn
from paramagnetic centers. In Fig. 8 one can see that
dislocation start probability was four times lower in NaCl
crystals irradiated for 20 s than in the unirradiated samp

In summary, our experimental investigations show
that the magnetoplastic effect can be used to distinguish
contribution of different types of stoppers, both new
formed and altered as a result of irradiation, to dislocat

FIG. 8. Dislocation start probabilityWst in NaCl-1 crystals versus sampl
irradiation timet r .
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retardation, and to follow the main stages in the changes of
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the state of stoppers as the irradiation dose increases or i
course of de-excitation of irradiated samples. The invest
tions demonstrated that the magnetoplastic effect is uniq
sensitive to low irradiation doses.
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Triangular antiferromagnets with a layered structure in a uniform field

R. S. Gekht and I. N. Bondarenko

L. V. Kirenski� Institute of Physics, Siberian Branch of Russian Academy of Sciences, 660036 Krasnoyarsk,
Russia
~Submitted 24 April 1996!
Zh. Éksp. Teor. Fiz.111, 627–643~February 1997!

We study the magnetic states and phase transitions in layered triangular antiferromagnets and
show that in compounds of the VBr2 ~or VCl2! type the quantum effects alter the structure
of the ground state and initiate a series of transitions as the magnetic field strength is increased.
We establish that planar structures with different spin configurations are realized when the
magnetic field strength is far from the saturation value, while a nonplanar structure of the umbrella
type is realized in fields close to the saturation value. Finally, we build the phase diagram
of the ground state and indicate a finite range of field strengths where a collinear phase is possible,
too. © 1997 American Institute of Physics.@S1063-7761~97!01702-2#

1. INTRODUCTION
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Spin systems on triangular lattices are currently be
widely studied.1–7 It is well known that because of frustra
tion effects, even systems with an exceptionally simple ba
interaction exhibit a broad range of phases and phase tra
tions. In BX2 compounds of halogen with 3d-transition met-
als having a CdI2 crystal structure~space groupP3̄m1), the
magnetic ions lie in triangular layers perpendicular to thec
axis, with the layers forming a hexagonal lattice along
c axis.8 According to neutron-diffraction data,9,10 in sub-
stances like VX2 (X5Br,Cl) the interactions within and be
tween the layers are antiferromagnetic. Below transition te
peraturesTN,40 K the spins in a layer form a 120-degre
structure, which remains unchanged down to extremely
temperatures.11,12,6 The VX2 systems can be described b
Heisenberg spins: within the accuracy of resonance meas
ments the gyromagnetic ratio of vanadium ions is isotropi13

A magnetic field applied to frustrated systems leads
many interesting effects~see, e.g., Ref. 14!, which can often
be explained in a classical manner. However, quantum fl
tuations play an important role in systems with nontriv
continuous degeneracy.5 These fluctuations not only lift the
degeneracy but can, as a result of competition with ot
interactions, change the very nature of the structure.

The goal of the present work is to study the possi
structures in compounds of the VBr2 and VCl2 type. In or-
dinary triangular antiferromagnets in an external magn
field, quantum fluctuations do not alter the state with a n
planar spin configuration. However, in compounds of
VX2 type, where neighboring V21 layers are separated b
two X2 layers, the interplanar exchangeJ8 is weaker than
the intraplanar exchangeJ by a factor of 100~see Refs. 9 and
10!, with the result that the energy of zero-point vibratio
may exceed the energy of the interaction between the lay
Hence the nonplanar state changes to a planar state, wit
planar configuration changing as the field strength is
creased~four planar phases and one collinear phase are
sible in the field-induced phase transitions!. The problem we
are examining here can be described by the following Ham
tonian:

345 JETP 84 (2), February 1997 1063-7761/97/0203
g

ic
si-

e

-

w

re-

o

c-
l

r

e

ic
-
e

rs.
the
-
s-

l-

^ i , j &n in in

~1!

where summation with respect to^ i , j & is over all the neares
pairs in thenth layer; below we assume that the field
applied along thec axis ~the z axis!.

In purely two-dimension Heisenberg systems (J850),
spin structures with minimum energy satisfy the condition

S11S21S35
mH

6J
, ~2!

whereSi is the spin of thei th sublattice. In a spherical sys
tem of coordinates ~S65S sinu exp(6iw) and
Sz5S cosu), the solution for the inclination angles in~2!
can be expressed as follows:

cosu353h2cosu22cosu1 ,

tanw35
sin u1 sin w11sin u2 sin w2

sin u1 cosw11sin u2 cosw2
, ~3!

cosu25
~3h2cosu1!/21R sin u1 cos~w12w2!

12u
,

where

h5
mH

18JS
, R5FD~12u!2

1

4G1/2,
D5~9h226h cosu111!21,

u5D sin2 u1 sin
2~w12w2!.

Obviously, a system with a planar or nonplanar spin co
figuration exhibits nontrivial degeneracy: forh,1/3 the
angleu1 is arbitrary~and so are the anglesw1 andw2!, while
the anglesu2 and u3 vary in a nonequivalent manner. Fo
h.1/3 the arbitrary values ofu1 are limited to a finite inter-
val: values ofu1 nearp are forbidden, with the forbidden
region growing withh until all spins become aligned with
the field ath51.

Interplanar interaction and quantum fluctuations lift t
continuous degeneracy of the structures. For instance, w

345-09$10.00 © 1997 American Institute of Physics
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FIG. 1. Spin configurations of triangular antiferromagnets with
layered structure in an external magnetic fieldH: a is the nonplanar
configuration of the umbrella type;b, d, e, f , g, h, andi are planar
configurations; andc is the collinear phase. The arrows with sol
and dashed lines correspond to the directions of spins in two dif
ent layer types.
J8 is finite, of all the previously possible planar~say, with
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t-
wa56p/2 in ~3!! and nonplanar structures those with t
lowest energy have field-transverse spin components
form a 120-degree structure. At the same time it is know15

that, in purely two-dimensional triangular antiferromagne
of all the possible degenerate states, quantum fluctuat
select those with planar spin configurations. Below we sh
that whenJ8 is small the energy difference between differe
states is small, too, and can be balanced by quantum eff

2. SPIN CONFIGURATIONS

In triangular magnetic substances with antiferromagn
interaction between the layers, the ground state consist
six sublattices. The energy of six-sublattice structures w
N spins on the sites can be written for large values ofS as

E0

N
5J(

a.b
Sa•Sb1

2

3
J8(

a
Sa•Sa132

1

6
mH(

a
Sa
z .

~4!

The equations for the equilibrium state,
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have solutions with planar and nonplanar spin configu
tions. For the ground state we take nine possible structu
one with a nonplanar configuration, seven with planar c
figurations, and one collinear state~Fig. 1!.

1. A nonplanar configuration of the umbrella type~con-
figuration a in Fig. 1!. The inclination angles of the subla
tices and the structure’s energy are

ua5u, wa5 H2~a21!p/3, if a51, 2, 3,
~2a25!p/3, if a54, 5, 6, ~6!

E0

N
52~3J12J8!S21~9J14J8!S2

3cos2 u2mHS cosu. ~7!

Substituting the equilibrium solution cosu5H/Hs, where
Hs5(18J18J8)S/m is the saturation field, into~7!, we ar-
rive at the following expression forE05E* :

346R. S. Gekht and I. N. Bondarenko



E* 52~3J12J8!S22
1

mSH h2, h5
H
. ~8!
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In equilibrium we have]E0 /]u50 and]E0 /]x50, which
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N 2 s Hs

2. Planar configuration b. In calculating the energy
planar structures we always assume thatwa50 and take
ua from the interval ~2p,p!. Then for b we have
u15u65p and u25u452u352u55u. The classical en-
ergy of this configuration is

E0

N
52S J1

J8

3 D ~cos 2u22 cosu!S2

1
1

3
mHS~122 cosu!. ~9!

The angles of inclination of the sublattices with resp
to the field and the minimum energy are given to first ord
in j5J8/J(!1) by the following expressions:

cosu5
mH12~31 j !JS

4~31 j !JS
, ~10!

E05E*1 j ~12h2!JS2N. ~11!

A structure formed by cyclic permutation~4→6, 5→4,
6→5! of the sublattices in the b configuration in Fig. 1 h
the same energy. However, for other possible permutat
of sublattices the structure with a configuration of the b ty
has a higher energy in the interval of angles from 0 top/3.
For instance, for structures with parallel sublattices 1 and
2 and 5, and 3 and 4~or 1 and 5, 2 and 4, and 3 and 6! we
have

E05E*12~11h!~122h! jJS2N,

while for the structure where 1 and 4, 2 and 6, and 3 an
are parallel we have

E05E*12~11h!2 jJS2N.

The structure with the highest energy in this class of confi
rations is the one in which the directions of the spins
neighboring layers of the hexagonal lattice coincide: whe
and 4, 2 and 5, and 3 and 6 are parallel, the differe
E02E* is greater than the difference in~11! by a factor of
four.

3. Collinear structure c: u15u65p and
u25u35u45u550. Its energy at large values ofS is given
by the following relationship:

E05E*1F ~123h!21
4

3
j ~122h13h2!GJS2N. ~12!

A similar expression exists for the structure formed by
permutation of the sublattices 6 and 5. The energy of
other structure~permutation of the sublattices 6 and 4! is
greater than~12! by 8jJS2N/3.

4. Planar configuration d: u15u65x and
u25u35u45u55u. The classical energy of the given stru
ture is given by the following relationship:

E0

N
52S J1

J8

3 DS2@112 cos~u1x!#

2
1

3
mHS~cosx12 cosu!. ~13!
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~31 j !sin~u1x!2~914 j !h sin u50,

2~31 j !sin~u1x!2~914 j !h sin x50. ~14!

The solution of these equations has the form

cosu5
3

4
hk1

1

4hk
, cosx5

3

2
hk2

1

2hk
, ~15!

where k5(914 j )/(913 j ). Plugging ~15! into ~13! and
keeping only the linear approximation inj , we arrive at an
expression forE0 coinciding with ~11!. The given state is
degenerate with respect to a permutation of the sublattic
and 5. But under a permutation of the sublattices 6 and 4
differenceE02E* increases fourfold.

5. Planar configuration e: u152u452x and
u25u352u552u65u. Its energy is given by the follow-
ing relationship:

E0

N
52JS2@112 cos~u1x!#1

2

3
J8~cos 2x12 cos 2u!

2
1

3
mHS~cosx12 cosu!. ~16!

The equilibrium values ofu and x can be found from the
equations

3 sin~u1x!2~914 j !h sin u12 j sin 2u50,

6 sin~u1x!2~914 j !h sin u12 j sin 2x50, ~17!

whose solution in the approximation linear inj has the fol-
lowing form:

cosu5
3

4
h1

1

4h
1 j

~12h2!~3h221!

18h3
,

cosx5
3

2
h2

1

2h
1 j

~12h2!~723h2!

18h3
. ~18!

The minimum energy of this configuration is

E05E*1
~12h2!2

2h2
jJS2N. ~19!

The other two possible structures in the class ofe con-
figurations are degenerate, and their energy

E05E*1
~12h2!~13h221!

4h2
jJS2N

is higher either than the energyE0 in ~19! or than the energy
of the planar configuration d.

The energy of the structures b, c, d, and e is higher t
that of the nonplanar structure a for values ofH,Hs . On the
other hand, comparison of the energies of the planar st
tures shows that the b configuration has a lower energ
h,1/322 j /27, the tapered d configuration has a lower e
ergy if h lies in the interval@1/3,1/)#, and the e configura-
tion if h.1/). The collinear structure c forj Þ 0 has a finite
interval of field strengths (1/3,(122 j /9)/3) in which it is
more preferable than the b, d, or e configuration.
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6. Planar configuration f~a structure resembling a six-

or
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8. Planar configuration h:u152u65u, u552u25x,

ria-
n

be

f
its

m
e

an

1
n-
pointed star; Fig. 1f!: u15p, u252u35u, u450, and
u552u65x. In this state the classical energy is

E0

N
5JS2~cos 2u1cos 2x!2S 2JS21 mHS

3 D cosu

1S 2JS22 mHS

3 D cosx2
2

3
J8S2

3@122 cos~u1x!#. ~20!

Minimizing the energy with respect to the anglesu andx,
we get

cosu5
3h11

2
2
1

3
jh, cosx5

3h21

2
2
1

3
jh. ~21!

As a result the minimum energy of the f configuration f
small values ofj is given by the following expression:

E05E*1 j $12h22@~12h2!~129h2!#1/2%JS2N. ~22!

The difference between this energy and the energy of
umbrella structure a is positive forH.0, butE0 of ~22! is
smaller than the energy~11! of the b configuration and, in
contrast with it, coincides atH50 with the energyE* of the
nonplanar structure. In weak fields (h!1),

E0.E*1 j ~4h218h4!JS2N. ~23!

7.Planar configuration g:u15c, u25u35u, u450, and
u552u65x. Its energy at large values ofS is given by the
following relationship:

E0

N
52JS2@cosx1cos2 x1cos~u1c!#

1
2

3
J8S2~cosc12 cosx cosu!

2
1

6
mHS~11cosc12 cosu12 cosx!. ~24!

At j50 the equilibrium solutions for the angles coincid
with the respective solutions in~19! and~21!. The minimum
energy of the g configuration is given by the following e
pression:

E05E*1 j
~12h2!~5h21!

2h
JS2N. ~25!

Note that this configuration is degenerate with respec
variations of the angle between two planes, one contain
the spins of the sublattices 1, 2, and 3, and the other the s
of the sublattices 4, 5, and 6.

The other structures formed by permutations of the s
lattices 4, 5, and 6 in Fig. 1g have equal energies

E05E*1 j
12h

4h
@~11h!~7h11!1~3h11!

3A3~11h!~3h21!#JS2N;

in the given configuration class this energy is higher th
E0 in ~25!.
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andu352u45c. The energy of this structure is given by

E0

N
52H JS2@cos~u1x!1cos~c2u!1cos~x1c!#

1
1

3
J8S2@2 cos~u1c!1cos 2x#

2
1

6
mHS~cosu1cosx1cosc!J . ~26!

At J850 the structure is degenerate with respect to va
tions of the anglec, while the other two angles depend o
c as follows:

cosu5
1

12

mH

JS
2
1

2
cosc1R sin c,

sin u52
1

2
sin c1RS 16 mH

JS
2cosc D ,

cosx5
1

12

mH

JS
2
1

2
cosc2R sin c,

sin x5
1

2
sin c1RS 16 mH

JS
2cosc D , ~27!

where

R5H F S 16 mH

JS D 22 1

3

mH

JS
cosc11G21

2
1

4 J 1/2.
ForJ8 Þ 0 the minimum energy of the h configuration can
found by varying the energy

E05E*1
4

3
j @123h21cos~u1c!1cos2 x#JS2N ~28!

with respect toc. Near h50 the equilibrium valuec0 is
5p/6, with the result thatu05p/6 andx05p/2. Hence in
weak fields

E0.E*1 j ~8h2212)h3!JS2N. ~29!

Comparison of~23! and ~29! shows that for small values o
h the classical energy of the f configuration is lower than
value in a state with the configuration of Fig. 1h~a P-state;
see Ref. 16!. But because of the minus in front of the ter
with h3 in ~29! the energy of the given configuration can b
lower than that of the f configuration. Indeed, ath5 1/3 the
equilibrium valuec0 in ~28! is 2p/3, and Eqs.~27! yield
u050 andx05p/3. As a result, by comparing~22! and~28!
we find that the energy of the h configuration is lower th
that of the f configuration byjJS2N/3.

Note that forh.1/3 the state in which the sublattices
and 6 in Fig. 1h are parallel is not an equilibrium one. I
stead the state represented in Fig. 1i, withu<p/2, can serve
as an equilibrium state.

9. Planar configuration i:u15u450 andu35u552u2
52u65u. Its energy can be written as follows:
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Sin
z 5S2ain

1ain ,

:

in-
es:

ri-
all

on-
N 3 3 S 3 D
3cosu1S 2J1

4

3
J8DS2 cos 2u. ~30!

The equilibrium value of the angle of inclination of the su
lattices is

cosu5
mH26JS

4~312 j !JS
, ~31!

so that for the minimum energy of the i configuration w
have

E05E*12~12h!2 jJS2N. ~32!

Rastelli and Tassi16 found that foru,p/2 the given state
~theSF-state, according to their terminology! can be stable
in the classical sense in the presence of a finite anisotrop
the easy-axis type.

Note that foru.p/2 the permutation of the sublattices
and 6 leads to a configuration that is the reciprocal of th
configuration, withH replaced by2H and an energy coin
ciding with ~11!. The structures formed by other sublatti
permutations in this class of configurations possess an
ergy higher than that of the i configuration or of the config
ration that is the reciprocal of b.

Thus, forj Þ 0 the different structures have different e
ergies and the nonplanar configurationa is the most advan-
tageous one. Nevertheless, we expect that forj!1 the quan-
tum corrections will change the fine balance of the to
energy in favor of planar structures~at least in fields whose
strength is far from that initiating a transition to a homog
neous state!.

3. MAGNETIC TRANSITIONS

Let us examine the effect of quantum fluctuations on
ground state of the system in an external fieldH. We transfer
to a local system of coordinates (j,h,z), in which the quan-
tization axis ~the z axis! is selected in such a way that
coincides with the direction of the spin,

Sin
x 52Sin

j sin w in2Sin
h cosu in cosw in

1Sin
z sin u in cosw in ,

Sin
y 5Sin

j cosw in2Sin
h cosu in sin w in

1Sin
z sin u in sin w in ,

Sin
z 5Sin

h sin u in1Sin
z cosu in , ~33!

andu in andw in coincide with the angles of inclination of th
nine sublattices found earlier in the limit of large values
S. To describe the spin deviations from the equilibrium cla
sical states we introduce six types of Bose operatorsaka :

ain5A6

N (
k
aka exp~ ik•r in!,

where the wave vectork for each sublatticea lies in the first
Brillouin zone. Below we limit our discussion to the cub
approximation inain :
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Sin
j 1 iSin

h 5A2SS 12
ain

1ain
4S Dain ,

Sin
j 2 iSin

h 5A2S ain
1S 12

ain
1ain
4S D , ~34!

so that the initial Hamiltonian can be written as

H5E01H~1!1H~2!1H~3!. ~35!

The linear term inH is given by the following expression

H~1!52
S

2
ASN

3 (
a

S (
b

Aab~0!2 i
mH

S
sin uaD

3a0a1H.c., ~36!

where

Aab~k!52Jab~k!$sin ub sin~wa2wb!

1 i @sin ua cosub2cosua sin ub

3cos~wa2wb!#%, ~37!

andJab(k) are the Fourier components of the exchange
teraction between the spins belonging to different sublattic

Jab~k!5 (
m2n

Jma,nb exp~ ik•rma,nb!.

At k50 we have

(
b

Aab~0!2 i
mH

S
sin ua

5
6

NS2 S 1

sin ua

]E0

]wa
1 i

]E0

]ua
D ,

and, as expected,H(1) vanishes in the case of equilibrium
configurations.

In diagonalizing the quadratic termH(2) we put j50.
We then compare the energy of zero-point vibrations of va
ous configurations with the energy of structures with sm
values ofj . The expression forH (2) is

H~2!523JSN13JS(
k

ak
1Mkak , ~38!

whereak
15(ak1

1 ,ak2
1 , . . . ,ak6

1 ,a2k1
,a2k2

, . . . ,a2k6
), and

Mk5S e~k! f ~k!

f * ~2k! e* ~2k!
D .

The diagonal elements of the 6-by-6 matricese(k) and
f (k) are equal to unity and zero, respectively, and the n
zero off-diagonal elements can be written as

eab~k!5eba* ~k!5Bab
~1 !~k!,

f ab~k!5 f ba* ~k!5Bab
~2 !~k!, ~39!

where
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with

nk5
1

3 Fexp~ ikx!1expS i 2kx1)ky
2 D

1expS i 2kx2)ky
2 D G , ~40!

and the subscriptsa and b are either 1,2,3 or 4,5,6. Th
remainingea,a63 and f a,a63 matrix elements are zeros.

The spin-wave spectrum in the zero-point vibration e
ergy

E~2!523JSN1
1

2
S(
ka

va~k! ~41!

was found both analytically and numerically. For the nonp
nar configurationa this spectrum is given by the following
formula («a5va/6J):

«a~k!5«a13~k!5$~12la~k!!

3@11~223h2!la~k!#%1/22)hma~k!, ~42!

where

la~k!5
1

3 H cosFkx1 2p

3
~a21!G

12cosFkx2 2
2p

3
~a21!Gcos)2 kyJ ,

ma~k!5
1

3 H sinFkx1 2p

3
~a21!G

22 sinFkx2 2
2p

3
~a21!Gcos)2 kyJ .

In a zero field, the frequency spectrum«(k), which in
this case is the same for all structures, can be found by s
ing the following equation:

«613~ unku221!«41
3

4
Pk«

21Qk50,

Pk59unku413~nk
31nk*

3!127unku214,

Qk5
1

3
~nk

31nk*
3!~nk

31nk*
313unku227!

2
9

4
unku41

15

4
unku221. ~43!

The positive values of the roots of the polynomial~43! are
depicted in Fig. 2. We see that the three surfaces represe
«a have common intersection points. Threefold degener
«a*51 ~as stated in Refs. 17 and 9,J516 K in VBr2 , which
corresponds to a frequencyv52.2 THz! appears at
k5(2p/3,2p/3)) and atk5(0,4p/3)). The section plane
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kx50 containing the last point of threefold degeneracy a
contains the line of intersection of two surfaces.

When there is a magnetic field, the lines of intersecti
which are straight lines whenH50, become curved. How
ever, the threefold degeneracy of the spectrum is presen
the samek’s and for the same value«a*51. This is true not
only for the umbrella configuration but also for all the plan
configurations. In Fig. 3 we compare the spectru
«a5«a13 (a51,2,3) of the configurations a and b
H50.3Hs . Clearly, everywhere except at the symmet
points of the Brillouin zone the lower branch of the b co
figuration lies below the corresponding branch of the a c
figuration. Moreover, within a large range ofk’s the second
branch of the b configuration also lies below the correspo
ing branch of the a configuration. Such a situation is o
served when the spectra of the umbrella structure are c
pared with those of other planar structures. Hence one

FIG. 2. The energy spectrum«a(k) of spin configurations in a zero mag
netic field ~kx54p k̃x/3350 and ky52p k̃y/50)!. Here «a51 at
k5(2p/3,2p/)) and atk5(0,4p/3)).

FIG. 3. The energy spectrum«a(k) of configurationsa andb in an external
field H50.3Hs . The solid curves correspond to the nonplanar configurat
a, and the dashed curves to the planar configuration b.

350R. S. Gekht and I. N. Bondarenko



on
on
-
T
th
he
ta
a-

i
b

n
-
si.
s

re
f
n
o
ur
h
eld

e
ls
o
a
m
e
ib

ave

re
es

rg

ti

d

expect that the energy of zero-point vibrations of planar c
figurations is lower than that of the nonplanar configurati

Below we calculate the 1/S-correction to the ground
state energy for the nine configurations considered here.
results depicted in Fig. 4 show that the energy curve for
umbrella structure lies above all such curves for the ot
structures and that quantum corrections are most impor
for the b, d, and e configurations. These latter configur
tions, however, are never realized forjS.0.082, no matter
how high the applied magnetic field is. Instead, because
the competition between quantum effects and interplanar
teraction, in weak and intermediate magnetic fields the sta
planar structures aref andh, while in fields close in strength
to the saturation field the stable structure is the umbrella o
Note that the possibility of anh structure existing in Heisen
berg systems was first pointed out by Rastelli and Tas16

The diagram of the total energy for the various structure
jS50.1 is depicted in Fig. 5. The additional states,b, d, and
e, stabilize if jS,0.082. As jS decreases, the range whe
the phasesf , h, anda can exist narrows, and in the limit o
jS50 such phases simply cannot exist. As Chubukov a
Golosov15 demonstrated, quantum fluctuations in purely tw
dimensional triangular antiferromagnets separate struct
of theb andd (e) type, and between the true structures t
collinear phase is stable in a finite interval of magnetic fi
strengths.

In a nonzero field, quantum effects and interplanar int
action not only stabilize various classical structures but a
modify them. Configurational variations are especially n
ticeable near the critical field of the transition to the colline
state (h5 1/3), where the gain in energy due to quantu
fluctuations and finitej ’s is the largest. Let us calculate th
quantum corrections to the angles of inclination of equil
rium states. The cubic term in~35! is given by the following
relationship:

FIG. 4. The quantum corrections to the ground-state ene
(De5DE/3JSN) for eight spin configurations~solid curves! and the energy
difference of classical structures with respect to the nonplanar configura
a at jS50.1 ~dashed curves!.

351 JETP 84 (2), February 1997
-
.

he
e
r
nt

of
n-
le

e.

at

d
-
es
e

r-
o
-
r

-

H~3!5
1

4
A3S

N (
k1k2k3

d~k11k21k3!

3F(
a

S (
b

Aab~0!2 i
mH

S
sin uaD ak3a

1 ak2aak1a

14(
ab

Aab~k1!a2k3b
1 ak2bak1aG1H.c. ~44!

We replace two of the three operators in~44! by their expec-
tation values inH(3) substitute the anglesua

(0) andwa
(0) for

equilibrium classical configurations. The result is

H~3!5A3S

N (
ab

(
k

@Aab~k!^akb
1 aka&1Aab* ~2k!

3^akb
1 a2ka

1 &1Aba~0!^aka
1 aka&#a0b1H.c. ~45!

PuttingH (1)1H (3)50, we arrive at equations forua and
wa ; in the case of planar configurations these equations h
the following form:

(
b

Jab~0!sin~ua2ub!2
mH

2S
sin ua

5
1

S (
b

I ab sin ~ua
~0!2ub

~0!!, ~46!

where

I ab5
6

N (
k

@Jab~0!^akb
1 akb&1Jab* ~k!~^aka

1 a2kb
1 &

2^aka
1 akb&!#. ~47!

From ~46! it follows that in the first order in 1/S the equa-
tions for the inclination angles in the classical setting a
replaced by similar equations with renormalized valu
J̃ab(0):

J̃ab~0!5Jab~0!2
1

S
I ab . ~48!

y

on

FIG. 5. The total normalized energye5E/3JSN of the ground state for
eight spin configurations atjS50.1. Thee vs h dependence was measure
with respect toe*5E* /3JSN for the nonplanar structurea.
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The results of calculations for the angleu in a state with
configurationb and for the anglesu and x in a state with
configurationd show that the collinear structurec emerges
in the range of field strengths between

h25
1

3
2

2

27
j2

0.018

S
and h35

1

3
1
0.043

S
. ~49!

Clearly, the collinear phase is stabilized both by quant
fluctuations and by interplanar interaction, with the lat
broadening the field interval of the given phase only into
region whereh,1/3. The completejS–h phase diagram is
depicted in Fig. 6. As expected, atjS50 it becomes the
phase diagram of a two-dimensional triangu
antiferromagnet15 ~thed ande configurations are equivalen
if jS50!.

Note that in contrast to systems with an anisotropyD of
the easy-plane type,5 in purely Heisenberg quasi-two
dimensional (J8!J) systems the umbrella configuration
not realized when the field is weak, because in such fields
energy difference between the configurationsf and a is
small and proportional to the second power ofh, i.e.,
E02E*; jh2JS2N, while in systems with easy-plane an
isotropy the same difference between the planar and the
planar a configurations is finite even fo
h50(E02E*;DJS2N). Hence in our case the quantum e
fects dominate in the weak-field range, and only when
field strength is close to that initiating a transition to t

FIG. 6. The jS–h phase diagram of the ground state~the
1/S-approximation!.
TABLE I. The temperature dependence of the normalized field intervalsDha , D
andh at jS50.1 (t5T/Sv

*
).
r
e

r

he

n-

e

is minute but the effect of interplanar exchange coupling
great, does the umbrella structure stabilize.

In compounds of the VX2 type the V21 ions have an
S5 3/2 spin, and the exchange parameters for, say, VBr2 are
J516 K and J850.2 K ~see Ref. 9!, with the result that
jS50.019. Thus, a change in structure can be expecte
h150.18,h250.31,h350.36,h450.58, andh550.78~Fig.
6!, which for VBr2 ~with the gyromagnetic ratio equal t
two! corresponds to the fieldsH1558 T, H25100 T,
H35116 T, H45187 T, andH55251 T. Fields of such
magnitude can be achieved by using devices with pul
fields.18 At all critical points excepth3 the transition is not
continuous. The jump in magnetization in such magne
transitions is, respectively,

DM15
1

3
jh1M0 , DM25

1

9
jM 0 ,

DM45
1

9 S 12
1

)

D jM 0 ,

DM55
1

54

~12h5
2!~3h5

215!

h5
3 jM 0 , ~50!

here whereM05mS is the saturation magnetization. Plug
ging j , h1 , and h5 into ~50!, for VBr2 we obtain
DM1 /M050.7631023, DM2 /M051.431023, DM4 /M0

50.5931023, andDM5 /M051.331023.
Note that some compounds of the VX2 family ~such, for

instance, as VI2! exhibit considerable anisotropy of the eas
axis type. In this case the phase diagram may differ con
erably from the one depicted in Fig. 6: the easy-axis anis
ropy has an additional stabilizing effect on the planar a
collinear phases but destabilizes phases with an umbr
like structure. The latter may completely disappear at a c
tain critical value of anisotropy of orderJ8. The effect of
anisotropy in such systems has been recently examine
Ref. 16.

We also studied the effect of thermal fluctuations on
stability of the structures. The contribution of entropy to t
free energy

F5E023JSN1
S

2 (
ka

va~k!

1T(
ka

lnF12expS 2
Sva~k!

T D G
hb , Dhc , Dhd , Dhf , andDhh of the respective configurationsa, b, c, d, f ,
t Dhf Dhh Dhb Dhc Dhd Dha

0 0.263 0.032 – – – 0.695
0.05 0.267 0.048 – 0.015 – 0.648
0.10 0.269 0.049 – 0.039 – 0.563
0.15 0.270 0.050 – 0.040 0.025 0.473
0.20 0.271 0.037 0.013 0.039 0.055 0.374
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was found numerically. The results indicate that asT grows
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the region occupied by the nonplanar structurea in the
jS–h phase diagrams shrinks because of the renormaliza
of the saturation field strength and because the struct
b, c, andd become stabilized. The intervalsDh of stability
of the structuresf , h, b, c, d, anda are listed in Table I for
different values of the normalized temperaturet5T/Sv*
and jS50.1. It is clear that thec, d, andb configurations
occur whent is approximately equal to 0.05, 0.15, and 0.2
respectively, while the field interval of configurationa de-
creases with temperature. As for theh configuration,Dh first
increases up to 0.05 and then, as the temperature grows
further, drops.

4. CONCLUSION

We have studied equilibrium states with different co
figurations of spins located in the triangular layers of a h
agonal lattice. We have found that in compounds of
VBr2 and VCl2 type the quantum effects compete with e
fects caused by interplanar antiferromagnetic interaction.
H,H1 the planar configurationf with a structure resem
bling a six-pointed star is stabilized both by interplanar e
change and by quantum fluctuations; in the intermed
rangeH1,H,H5 the planar configurationsb, d, ande are
stabilized by quantum fluctuations, while nonplanar config
rations of the umbrella type become stabilized in t
H.H5 range because of interplanar exchange. The magn
transitions in the critical points, with the exception
H5H3 , are not continuous: the magnetization curve exhib
small jumps. We have found a finite region of field streng
where the collinear phase is stable. We have also discov
that in the spin configurations emerging in intermedi
fields are additionally stabilized by thermal fluctuations.

In conclusion we note that the well-known compoun
of the ACrO2 type (A5H,Li,Na) also consist of triangula
layers on which belowTN the Heisenberg spins form a 120
degree structure.19,20,12However, in contrast to compound
of the VX2 type, here the triangular layers form a rhomb
hedral structure~the space groupR3̄m!. In view of this the
system is frustrated not only in the plane but also in the th
~spatial! direction, which leads to an additional degenera
of classical structures.21,22 We believe that in ACrO2 com-
353 JETP 84 (2), February 1997
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VX2 compounds by exchange coupling of the layers, is
likely to occur no matter what valuej assumes, while the
planar configurationsb, d, ande become even more stab
lized because of quantum fluctuations.

The authors are grateful to E. Rastelli and A. Tassi fo
copy of the paper cited in Ref. 16.
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Polar Jahn–Teller centers and the anomalous isotope effect in copper–oxygen high- Tc

the
superconductors
A. S. Moskvin and Yu. D. Panov

A. M. Gorky Ural State University, 620083 Ekaterinburg, Russia
~Submitted 5 May 1996!
Zh. Éksp. Teor. Fiz.111, 644–653~February 1997!

We examine the isotope effect in copper–oxygen high-Tc superconductors using the model of
polar Jahn–Teller centers, a variant of the local-boson model. The isotope-effect
exponents for oxygen and copper depend on the structure of Jahn–Teller centers and its variation
due to boson motion. A number of YBa2Cu3O72d-based compounds are used to illustrate
the feasibility of quantitatively describing the experimentally observed values ofaCu andaO and
their relationship toTc . © 1997 American Institute of Physics.@S1063-7761~97!01802-7#
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A model of polar Jahn–Teller centers that unifies in
natural manner the various model approaches based on
idea of local pairing and extremely strong electron
vibrational interaction and also partially reconciles the s
porters of the ‘‘charge,’’ ‘‘structural,’’ and ‘‘spin’’ scenarios
of high-Tc superconductivity has been proposed in Refs
and 2. In this model copper oxides are interpreted as syst
unstable under a disproportionation reaction accompanie
the formation of a system of hole (CuO4

52) and electron
(CuO4

72) polar Jahn–Teller centers~h- ande-centers! differ-
ing by anS-boson, two electrons paired in a completely fille
molecular shell. Actually the polar-center phase is a sys
of localS-bosons moving inside a lattice of Jahn–Teller ho
centers, which insure both local pairing and effective scre
ing of boson–boson repulsion.

The remarkable properties of polar Jahn–Teller cen
follow from the quasidegeneracy in the ground state, i.e.,
fact that the energies of the highly correlated states1A1g ~the
Zhang–Rice singlet! of a configuration of theb1g

2 type and
1,3Eu of the b1geu Refs. 2 and 3 configuration are clos
which leads to a multimode pseudo-Jahn–Teller effect w
active displacement modes of the nuclei of CuO4-clusters of
theQb1g

, Qb2g
, or Qeu

type.
Thus, the formation of the structures of the ground a

lower excited states of the Jahn–Teller lattice involves s
glet and triplet spin states and even-nondegenerate and
degenerate orbital states of separate centers, and a numb
active quadrupole (Qb1g

andQb2g
) and dipole (Qeu

) local-
displacement modes of the nuclei of CuO4-clusters. The
structure of the lower energy levels of a polar Jahn–Te
center of the CuO4

52 or CuO4
72 type is depicted schemat

cally in Fig. 1. Note the quantityDAE , the main parameter o
the pseudo-Jahn–Teller effect. It determines the degre
1A1g–

1Eu hybridization, the parameters of the adiabatic p
tential of a Jahn–Teller center, and the singlet–triplet sp
ting parameterDst , which plays an important role in th
interaction of the charge and spin subsystems.2

The model of polar Jahn–Teller centers allows for
natural explanation of the entire spectrum of the extrao
nary physical properties of copper oxides. Here, in spite
the complicated structure of Jahn–Teller centers, it is usu
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various phenomena. We would like to illustrate this by usi
the example of the isotope effect, which historically has be
one of the main factors in favor of the electron–vibration
mechanism of superconductivity.

Here we do not attempt to analyze the entire drama
story of the discovery and study of the isotope effect
copper–oxygen high-Tc superconductors, but we do mentio
a number of important features.

1. The problem of obtaining reliable values ofa, the
isotope-effect exponent (Tc;M2a), in copper oxides is
complicated by the irreproducibility of the results, the pre
ence of various nonequivalent positions of the oxygen a
copper atoms, the inaccuracies in determiningTc , and many
other factors. The clearest illustration of these is provided
the work of Nickel et al.4 and Zechet al.,5 where the re-
searchers obtained isotope shifts inTc of opposite sign.

2. A remarkable feature of the isotope effect in copp
oxides is the extremely broad range of the observed value
a ~large positivea;1.5 ~!! for oxygen and sizable negativ
values for copper!.

3. A number of laws and empirical rules6 have been
discovered:~a! high values ofTc correspond to low values o
a, small superconducting transition widths, and small ba
coefficients]Tc /]p; ~b! low values ofTc correspond to high
values ofa, large superconducting transition widths, a
large baric coefficients]Tc /]p.

4. There is no theoretical model capable of explaini
the principal features of the isotope effect, notwithstand
the large number of papers that explain individual expe
mental facts~see, e.g., Ref. 7!.

In view of the attempts to theoretically explain the fe
tures of the isotope effect in copper–oxygen high-Tc super-
conductors we mention the model approaches of Kresin
Wolf8 and Bar-Yam,9 since some elements of these a
proaches are close to our concept of Jahn–Teller center

Today there exists a vast body of reliable experimen
data on the different features of the isotope effect, prima
for YBa2Cu3O72d systems with various substitutions~Pr,
Pr:Ca, Zn, La, etc.!.6,11,14 Thus the situation is ripe for a
theoretical model, which in turn must be a true componen
a unique scenario of high-Tc superconductivity.

354-06$10.00 © 1997 American Institute of Physics
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The complexity of this problem is due primarily to th
possibility of extraordinary isotope-effect mechanisms ma
festing themselves, mechanisms absent from standard
scenarios and BCS systems. In this connection we men
the percolation mechanism of formation of a thre
dimensional superconducting state ‘‘operating’’ over lar
areas of the copper-oxide phase diagram.2 The metal–
insulator transition in such systems is realized through
formation of a phase-inhomogeneous state~phase separa
tion!, and the most important role here is played by area
charge inhomogeneity~CI-centers! with centers of the Sr21

or Ce41 ion type, oxygen vacancies, ‘‘extraneous’’ oxyge
ions in oxides of the type La22xSrxCuO4, Nd22xCexCuO4,
YBa2Cu3O72d , etc.

2

It is the CI-centers that serve as nucleation centers
the polar-center phase. An increase inx, the concentration of
CI-centers, is accompanied by an increase in the volum
the new phase, which under certain conditions (x5xcr) leads
to percolation and an increase in the transition tempera
Tc with x. When a certain concentrationxcr8 is reached, the
new phase occupies the entire volume of the sample. Cle
on the percolation section of theTc vs x dependence
(xcr,x,xcr8 ) the isotope effect can be related to the isoto
variation of the volume of the new phase.

Note that CI-centers form a narrow quasi-impurity ba
and determine the position of the Fermi level. This narr
band can be associated with low-frequency charge exc
tions of the acoustic-plasmon type,7 excitations that ensure
an effective screening of the electrostatic boson repuls
and a number of ‘‘marginal’’ properties of copper oxides.7

It is to the nature of the spatial distribution of the ord
parameter in CI-centers that thes- and/ord-scenario of su-
perconductivity is related. The low-frequency charge a
phase excitations in CI-centers manifest themselves in
spectra of inelastic neutron scattering and the spectra
angle-resolved photoemission.

An essentially ‘‘oxide’’ feature of the isotope effect i
copper–oxygen high-Tc superconductors is the potential
strong effect of the 16O→18O substitution
(DM /M512.5% !! on the variation of the lattice parameter
the Madelung potentials, crystalline fields, and other imp

FIG. 1. The structure of the lower energy levels of a polar Jahn–Te
center. The four types of distortion of the square cluster CuO4 correspond-
ing to the four minima of the adiabatic potential are schematically depic
in the inset.
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2. THE JAHN–TELLER MECHANISM OF THE ISOTOPE
EFFECT

The principal mechanism of the isotope effect in the h
mogeneous polar-center phase is linked to the dependen
theS-boson transfer integral on the parameters of the a
batic potential of a Jahn–Teller center and the mass of
bration modes:

Tc;t5Keht
~0!, ~1!

wheret (0) is the purely electron part of the transfer integr

Keh5^xeuxh&
2 ~2!

is the vibronic reduction factor, and̂xeuxh& is the overlap
integral of vibrational states corresponding to a certain w
of the adiabatic potential for the electron and hole polar c
ters.

What is important is that Eqs.~1! and ~2! suggest the
existence, at least in principle, of ‘‘optimized’’ systems
which the adiabatic potentials of the hole and electron Jah
Teller centers coincide. In such systems^xeuxh&[1,
and the motion ofS-bosons is not accompanied by
variation in the adiabatic potential of Jahn–Teller cente
Moreover, for an optimized system, the conditionKeh51
corresponds to a maximum of the functio
Keh5Keh(De ,Dh ,ke ,kh ,Ve ,Vh , . . . ) in the space of the
different parameters of Jahn–Teller centers~here thek’s are
elastic constants and theV’s vibronic constants!:

]Keh

]De
5

]Keh

]Dh
5

]Keh

]ke
5•••50, ~3!

which leads to suppression of fluctuations in the vibro
reduction factor and, as a result, to suppression of fluc
tions in the transfer integral and the transition temperat
Tc in real systems.

In optimized systems, the charge, structural, and s
subsystems can be ‘‘separated,’’ with the effect of the Jah
Teller lattice reduced to screening of the boson–boson re
sion. With such systems one should expect that

~a! Tc is at its maximum,
~b! the superconducting transition width is at its min

mum,
~c! there is no isotope effect, and
~d! the values of the baric coefficient]Tc /]p and similar

‘‘susceptibilities’’ are minimal.
Note that the absence of an isotope effect in optimiz

systems is a feature of the anomalously strong electro
vibrational interaction characteristic of the Jahn–Teller
fect ~rather than a weak electron–vibrational interaction!.

For an optimized system, the parametersDAE of ‘‘ini-
tial’’ 1Eu–

1A1g-orbital splitting coincide, and so do the pa
rametersDst of singlet–triplet splitting~see Fig. 1! in the
hole and electron centers. Hence the spin subsystem ce
to react to the transformation of charge correlations n
Tc , which has an effect on the nature of magnetic inelas
neutron scattering.10

Of course, optimized systems are an exception, ra
than the rule. Among the copper–oxygen high-Tc supercon-

r

d
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FIG. 2. a! Solutions of the equation
Keh(De ,Dh)5const for various values
of k. b! The dependence of the vibroni
reduction factorKeh on the dimension-
less parameterk ~see text! in different
cross sections~curves1, 2, and3! of the
(De ,Dh) plane.
ductors the optimally doped YBa2Cu3O72d compound with
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0<d<0.1 Ref. 11 may serve as such a system.1)

In a more realistic situation, the motion of a local bos
is accompanied by a variation in the adiabatic potential o
Jahn–Teller center, primarily because of the difference in
initial parametersDAE for the hole and electron Jahn–Tell
centers. This automatically leads to strong coupling of
charge, structural, and spin fluctuations2) and has a dramatic
effect on all physical properties of copper oxides.

Even with the methods used in the theory of the Jah
Teller effect,12 analysis of the vibronic reduction factor con
stitutes an extremely complicated problem. Indeed, in
present situation of the pseudo-Jahn–Teller effect, the a
batic potential has four minima. The normal vibration mod
in the minima have a hybrid (b1g–eux)- or (b2g–
euy)-nature. In other words, the cross section of the adiab
potential near a minimum is the direct sum of two ellips
~polarization ellipses!, in which the orientation and length o
the semiaxes are complicated functions of the param
DAE , the vibronic constants, and atomic masses of oxy
and copper.

The wave function of the vibrational ground state is
scalar~an s-function! and has the usual form:

x~Q!5p21/4l21/2e2Q2/2l2, ~4!

wherel is the characteristic oscillator length, which is a co
plicated function of the parameters of the polarization
lipse. Calculating the overlap integral of the functio
x(Q) for the electron and hole Jahn–Teller cente
^xeuxh&, generally constitutes a complicated problem b
cause it proves impossible to separate the variables co
sponding to the hybridizing modes,Qb1g

and Qeux
, and

Qb2g
andQeuy

.
The functional dependence of the vibronic reduction f

tor has the form

Kch5Ne2g, ~5!

with the pre-exponential factorN, which has a complicated
structure, and the exponentg, which depends on the oscilla
tor masses and the distance between the correspon
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proximately the same way as in the single-mode case:

g;Am~DQ!. ~6!

Figure 2a depicts the solutions of the equati
Keh(De ,Dh)5const, which can actually be interpreted
‘‘isotherms,’’ i.e., solutions of the equation

Keh5
Tc~De ,Dh!

Tc~De5Dh!
5

Tc
Tc
max5const.

The pattern of ‘‘isotherms’’ clearly shows thatTc is not a
single-valued function ofDe andDh .

Figure 2b depicts the dependence of the vibronic red
tion factor on the dimensionless parameter

k5
De2Dh

D̄
~7!

for different values of the parameterD̄5De1Dh , with De

andDh measured from the minimum value at which the ad
batic potential has four minima. All the other parameters
the Jahn–Teller problem fore- andh-centers were assume
equal, and were selected in such a way so as to ensure
sonable values of the oscillator energies (\v0;100 cm21),
the Jahn–Teller stabilization energies (EJT;1000 cm21),
and the characteristic oscillator lengths (l 0;0.1 Å).

As noted earlier, the factorKeh is at its maximum
([1) atk50 and decreases ask grows: it decreases slowly
for k small (]Keh /]k→0 ask→0) and rapidly asuku→1.
For compositions close to the optimized one (k50), the
factor Keh depends weakly onDe and Dh , since for such
compositions]Keh /]De5]Keh /]Dh50.

The dependence of the vibronic reduction factor on
masses of oxygen and copper atoms makes the domi
contribution to the isotope effect for copper–oxygen hig
Tc superconductors.

If within the framework of the theory of a lattice Bos
gas13 we putTc;t, we get

356A. S. Moskvin and Yu. D. Panov
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FIG. 3. Illustration of the dependence of the overla
integral of the vibrational functions of the electron an
hole centers,̂xeuxh&, on the deformation and rotation
of the polarization ellipses in the process of isoto
substitution. Processes of type1 ~heavy arrows! lead to
an increase in̂xeuxh&, and those of type2 ~light ar-
rows! to a decrease in̂xeuxh&.
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~8!

In the simple single-mode case, the pre-exponential
tor N is independent of the mode massm, and
g;Am(DQ)2, so thata is nonnegative and its value is de
termined primarily by the distanceDQ between the minima
of the adiabatic potential for thee- andh-centers.

In the multimode case the situation is much more co
plicated, with the isotope effect determined not only
DQ but also by the dependence on the atomic masses o
orientation and ratio of the semiaxes of the polarization
lipses. Variation of the atomic masses of oxygen and cop
leads to deformation and rotation of the polarization ellip
of the vibrational modes in thee- andh-centers, which leads
to a variation~increase or decrease! in the overlap integral
^xeuxh& ~see Fig. 3!. As a result there emerges a nonze
contribution toa from the pre-exponential factorN, and the
contribution may be either positive or negative~!!.

In our model a negative isotope effect can be obser
only in copper. To achieve this the positiveg-contribution to
aCu must be suppressed, i.e.,]g/]mCu!1. This is the situa-
tion in the above (De ,Dh)-model, in which the difference in
thee- andh-center is assumed to exist only in the paramet
De andDh .

Figure 4 depicts the dependence onk of aO andaCu for
different values ofD̄. It also depicts the solutions of th
equationsaO(De ,Dh)5const andaCu(De ,Dh)5const. Note
the intervals of possible variation ofaCu andaO and the fact
that these solutions and ‘‘isotherms’’ do not coincide~see
Fig. 2a!, an indication, in particular, that thea vs Tc depen-
dence is not single-valued.

Figure 5 depicts the dependences of the ty
a(Keh)5a(Tc /Tc

max) for aO and aCu, corresponding to
definite trajectories in the (De ,Dh) plane that ensure eithe
negative~curve1 for aCu) or positive ~curves2 and3! for
aCu values of the isotope effect for copper. A characteris
feature of compositions withaCu,0 is a relatively large
positive value ofaO, obtained as a result of adding a relati
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preferably coppereu-type and a relatively large positive con
tribution to aO from a vibrational mode of a preferabl
purely oxygenb1g-type. HereaO may reach values that ar
considerably higher thanaBCS50.5.

At the same time, for compositions withaCu.0 the two
contributions toaO balance each other, so that the net va
of aO is small.

Figure 5 also shows some experimental values ofaO and
aCu as functions of the reduced transition temperat
Tc /Tc

max for the following compositions:
Y12xPrxBa2Cu3O72d , Y0.82yPr0.2CayBa2Cu3O72d , and
YBa2Cu32xZnxO72d ~see Ref. 6!; YBa22xLaxCu3O72d ~Ref.
14!; and YBa2Cu3O72d ~Ref. 11!. These compositions ar
inherently linked to the model optimized compositio
YBa2Cu3O6.93 with Tc

max'93 K. It is natural, then, that in
the general case for such systems theTc vs x dependence
corresponds to different ‘‘trajectories’’ in the (De ,Dh) plane
with different behavior of the functiona(x).

Note the similarity in the dependencesaO(Tc) in a 1-2-3
system with fixedd and substitution in the Y- or Ba
sublattice, i.e., out of the active CuO2-planes. This suggest
that the nature of variation of the parametersDe and Dh

~with D̄ conserved! under such substitution is approximate
the same~the respective (De ,Dh)-trajectories are close!.

A slightly different situation is observed in the 1-2-
system whend varies. In this case an increase ind is accom-
panied by a sizable variation inD̄, which forces the system
into a mode with a negative isotope effect for copp
(aCu,0).

The absence, for all practical purposes, of an isoto
effect in YBa2Cu32xZnxO72d over a wide range of values o
Tc , with such an important characteristic of an optimiz
composition as the minimum superconducting transit
width retained,6 agrees with the ideas concerning the effe
of Zn21 on the disintegration of Jahn–Teller centers
CuO2-planes combined with formation of large two
dimensional regions of a highly inhomogeneous norm
phase, a process accompanied by a lowering of the trans
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FIG. 4. a! The dependence on the parameterk of the oxygen isotope-effec
exponentaO ~solid curves! and the copper isotope-effect exponentaCu ; the
curves1, 2, and3 correspond to the cross sections of the (De ,Dh) plane
depicted by the dashed straight lines1, 2, and 3 in Figs. 4b and 4c. b!
Solutions of the equationaO(De ,Dh)5const. c! Solutions of the equation
aCu(De ,Dh)5const; the hatched region corresponds to negative value
aCu .
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substitution has essentially no effect on the variation of
electron properties of the CuO2-planes, which are in an op
timized state except for regions of lowTc , where in view of
the percolation nature of the transition the role of even sm
fluctuations sharply increases.

The data of Fig. 5 firmly suggest that a quantitative d
scription of the rather intricate features of the isotope eff
for oxygen and copper in copper–oxygen high-Tc supercon-
ductors is possible. At the same time this is only a sm
example illustrating the possibilities of the polar-cen
model in explaining and predicting physical phenomena a
properties.

3. CONCLUSION

The model of polar Jahn–Teller centers provides
only a simple and graphic description of all, including th
most exotic, qualitative features of the isotope effect in co
per oxides but also explains the various quantitative laws

On the whole, the experimental data on the isotope ef
in copper oxides serve as a clearcut confirmation of the
lidity of the model of polar Jahn–Teller centers, not only
the general aspects but also in details. For instance, the
covery of an isotope effect for copper essentially unambi
ously points to the active role of the unique hybrid Cu–
mode Qeu

of the local displacements of CuO4-clusters,
which in turn points to the active role of the electro
Eu-state.

The results of our work illustrate the vast possibilities
the model of polar Jahn–Teller centers, not only in expla
ing certain physical properties of copper oxide but also
predicting their physical behavior. Here we are speaking

of

FIG. 5. The dependence on the reduced transition tempera
Tc /Tc

max([Keh) of the theoretical and experimental results for the oxyg
isotope-effect exponentaO ~solid curves! and the copper isotope-effect ex
ponentaCu ~dotted curves!. The solid and dotted curves are theoretic
curves corresponding to the cross sections1, 2, and3 of the (De ,Dh) plane
~see Figs. 2a, 4b, and 4c!. The experimental values of the isotope-effe
exponents are given for YBa2Cu3O72d-based systems:n—aCu for
YBa2Cu3O72d ~Ref. 11!; L—aO for YBa2Cu32xZnxO72d ~Ref. 6!; ,—
aO for Y0.82yPr0.2CayBa2Cu3O72d ~Ref. 6!; s—aO for
Y12xPrxBa2Cu3O72d ~Ref. 6!; andh—aO for YBa22xLaxCu3O72d ~Ref.
14!.
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2!Here we are dealing with singlet–triplet mixing and fluctuations of spin
multiplicity.
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with a unique set of physical properties~the highest possible
values ofTc , the smallest superconducting transition width
and maximum stability under various external influenc
such as the presence of defects and mechanical stresse!. In
this connection we note the special role of pressure a
universal experimental tool that makes it possible to stu
the local characteristics of the vibronic reduction factor a
to determine the prospects of achieving higher values oTc
in a specific ‘‘unoptimized’’ composition.

We would also like to note that in illustrating the resu
of the theory we selected a system based
YBa2Cu3O72d , for which there exists a vast body of expe
mental data. Unfortunately, studies of the isotope effec
another popular high-Tc system, La22xMxCuO4
(M5Ba,Ca,Sr) are less representative, although here to
number of interesting effects, meriting a separate invest
tion, have been discovered~large values ofa0 and the strong
effect of 3d-substitutions!.15

This work was made possible by the partial financ
support due to Grants Nos. a1394 and p459 from the ISS
fund.

1!Note the decrease in the intensity of magnetic inelastic neutron scatt
in this system.
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The effect of magnetic ordering on the quantum temperature oscillations of current-

the
carrier magnetization in strongly correlated systems
V. V. Val’kov* and D. M. Dzebisashvili

L. V. Kirenski� Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 660036
Krasnoyarsk, Russia and Krasnoyarsk State University, 660036 Krasnoyarsk, Russia
~Submitted 20 June 1996!
Zh. Éksp. Teor. Fiz.111, 654–668~February 1997!

We show that the effect of magnetic ordering in magnetic semiconductors by the mechanism of
s–d( f ) exchange interaction plays an important role in explaining the quantum temperature
oscillations of band-electron magnetization that were discovered in the experiments of S. G.
Ovchinnikov, V. K. Chernov, A. D. Balaev, N. B. Ivanova, B. P. Khrustalev, and V. A.
Levshin ~JETP Lett.64, 642 ~1995!!. We analyze how hybridization of band and localized
electrons affects the amplitude of this effect. Finally, we establish that because of strong
intratomic correlations the amplitude of the oscillation effects depends to a great extent on the
sign of the exchange constantJ. © 1997 American Institute of Physics.
@S1063-7761~97!01902-1#

1. INTRODUCTION serve quantum temperature oscillations in experiments,
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Among the multitude of substances with strong elect
correlations the so-called strongly correlated systems w
low current-carrier concentration have lately drawn the int
est of researchers. Representative of this class of mate
are rare-earth compounds1–4 with the general formula ReX
where Re stands for a rare-earth element and X for P, As
Sb. The cerium compounds CeAs, CeSb, and CeP exhi
number of nontrivial properties.2–4 These compounds, whic
are semimetals, at low temperatures exhibit long-range m
netic order. The electronic structure of these cerium co
pounds is explained by the presence of a valence band w
top is at theG-point of the Brillouin zone and a conductio
band near theX-point of the Brillouin zone. It has been ex
perimentally established that the degree of electron–h
compensation in such compounds is high. Studies of the
Haas–van Alphen effect involving cerium compounds s
port the main features of the respective electronic struct
However, the fine details in the behavior of the de Haas–
Alphen oscillation frequencies have required new conce
for their explanation,3,4 related primarily to the presence o
magnetic ordering.

As is well known,5,6 the effect of magnetic order on th
electronic properties of materials manifests itself in magn
semiconductors. In such compounds the hybridization in
action between collectivized and localized electrons can
sult in a dependence of kinetic characteristics on str
single-site correlation. Therefore, such magnetic semic
ductors can be related to the systems with low current-ca
concentrations mentioned above. The ferromagnetic se
conductor HgCr2Se4 is an example of such a compound.

In a recent paper, Ovchinnikovet al.7 reported the re-
sults of an experimental study of the quantum tempera
oscillations of the current-carrier magnetization
HgCr2Se4 . The existence of such oscillations was predic
earlier in Ref. 8. However, there exists a large discrepa
between the experimental data of Ref. 7 and the result
Ref. 8, which is due to the following fact. To reliably ob

360 JETP 84 (2), February 1997 1063-7761/97/0203
n
th
r-
als

or
t a

g-
-
se

le
de
-
e.
n
ts

ic
r-
e-
g
n-
er
i-

re

d
y
of

phases of the oscillating terms in the magnetization m
change by more than 2p as the temperature changes fro
absolute zero toT;\vc ~at higher temperatures the oscilla
ing terms are exponentially small!. Achieving such a change
in phase is difficult if the current-carrier concentration is lo
Hence to interpret the results of Ref. 7 one needs an a
tional physical mechanism that would ensure that in the ti
it takes the temperature to vary the number of oscillatio
that the band-electron magnetization performs before s
oscillations decay is sufficiently large.

As is well known,5,6 the existence of a strong coupling o
collectivized and localized electrons in magnetic semic
ductors is corroborated in experiments by a shift of the
tical absorption edge in the temperature range where m
netic ordering can take place. The physical reason for
shift of the bottom of the conduction band and/or the top
the valence band is thes–d( f ) exchange interaction betwee
the spin angular momenta of the two groups of electrons9 It
was this interaction that made it possible to interpret
experimental data on the extremely strong effect of a m
netic field on the optical properties of HgCr2Se4 recently
discovered by Bol’nykhet al.10

Bearing all this in mind, we can easily assume that
s–d( f ) exchange interaction plays an important role in ge
erating quantum temperature oscillations. The physics of
mechanism by which magnetic ordering affects quant
temperature oscillations is fairly simple. A rise in temper
ture lowers the magnetization of the localized subsystem.
a result and due tos–d( f ) exchange coupling the Landa
levels begin to move. Some of the upper Landau levels
come depleted, and the electrons involved go over to
localized state, thus increasing the number of bivalent ch
mium ions. What is important in this process is the proxim
of the chemical potential values and the energy correspo
ing to the Cr31→Cr21 transition. Such dynamics generat
well-known oscillations of the density of the electronic sta
and manifests itself, in particular, in the oscillatory depe
dence of the collectivized-electron magnetization with
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creasing temperature. With these ideas a simple criterion for
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quantitative description of quantum temperature oscillations.
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the existence of quantum temperature oscillations can be
rived. As the temperature grows from absolute zero
T;\vc the magnetization decreases by a quantity of or
(\vc/4psI)3/2. The effect is present if the level shift cause
by s–d( f ) exchange is much larger than the distance
tween Landau levels:

a[U J

4psI US \vc

4psID
1/2

@1,

whereJ is thes–d( f ) exchange coupling constant, andI is
the integral of the exchange interaction in the localized s
system. If for the values of the various parameters we ta
those that are characteristic of magnetic semiconductors,
J;0.4 eV, 4psI;Tc;102 K, and \vc;10 K, thena'8,
and all the conditions needed for quantum temperature o
lations to set in are met.

Note, however, that the hybridization interaction tends
suppress the de Haas–van Alphen effect in general and q
tum temperature oscillations in particular. Hence an estim
of the possibility of such an effect occurring based on
above criterion can be too optimistic in the presence of
bridization. In this connection it is important to take in
account single-site correlations, which renormalize the
bridization coupling constant. For our further studies it
important to note that in certain conditions~see below! such
renormalization may neutralize the negative effect of
mixing of collectivized and localized states and may ma
quantum temperature oscillations observable.

These ideas concerning magnetic semiconductors
submetallic cerium compounds are proof of the importa
of studying the effect of magnetic ordering in strongly co
related system on both the de Haas–van Alphen effect
quantum temperature oscillations. In the present paper
study the case of ferromagnetic ordering in the subsystem
localized spins. This type of long-range magnetic order
realized in chalcogenide chrome spinels. Hence our res
can be directly applied to HgCr2Se4 and can be used to in
terpret the quantum temperature oscillations discovered
Ovchinnikovet al.7 Strongly correlated systems with antife
romagnetic order~the cerium compounds CeAs, CeSb, a
CeP! will be studied separately. Here we only note that t
qualitative aspect of the effect of long-range order in
localized subsystem on the initiation of quantum tempera
oscillations is the same for both types of magnetic orderi

The plan of this paper is as follows. In Sec. 2 we brie
describe a model of the electronic structure of HgCr2Se4 that
allows for strong intratomic correlations. In Sec. 3 we der
the basic equations for the Green’s functions and discuss
conditions for the applicability of the assumptions. The th
modynamic potential of the system in the presence of L
dau quantization and hybridization interaction is calcula
in Sec. 4. In Sec. 5 we analyze the effect of magnetic ord
ing on the temperature and field dependence of the ba
electron magnetization. We show that the temperatu
induced decrease in the magnetic order parameter via
mechanism ofs–d( f ) exchange coupling can lead to inten
motion of the Landau levels. This is the key issue in t
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Finally, in Sec. 6 we discuss the results.

2. THE MODEL HAMILTONIAN

We examine the effect of magnetic ordering on quant
temperature oscillations in strongly correlated systems us
the example of the model of the electronic structure
HgCr2Se4 . The electronic structure of magnetic semicondu
tors in general and of chalcogenide chrome spinels in p
ticular has been discussed in the monographs of Methfe
and Mattis5 and Nagaev.6 The concept of multielectron Hub
bard operators,11–13which describes strong single-site corr
lations fairly well, was employed in the theory of chalcoge
ide chrome spinels in Refs. 14–16. Using these ideas, we
write the model Hamiltonian that reproduces the ene
spectrum of HgCr2Se4 in the following form:

H5(
ks

~«ks2m!cks
1 cks1(

f ,m
~E12gmBHm

23m!Xf
mm1 (

f ,m8
~E22gmBHm824m!Xf

m8m8

2
1

2 (
f ,l

I f l~SfSl !2(
f
J~Sfsf !

1
1

AN (
fks

~vk exp~2 ikR f !cks
1 dfs1H.c.!. ~1!

The first term on the right-hand side describes the subsys
of collectivized electrons in a magnetic fieldH with an en-
ergy«ks5«k22smBH, wheres561/2 andmB is the Bohr
magneton. The second term takes into account the state
the trivalent chromium ions, which have an energyE1 and a
3d3 outer-electron configuration. The presence of spin
grees of freedom is expressed by summation over the pro
tions of spin angular momentum on thez axis, with the pro-
jection denoted bym. The 3d3 configuration (Cr31)
corresponds to a spin quartet (S53/2!, which splits in a mag-
netic field with a gyromagnetic ratio close to two because
orbital angular momentum in the crystal field is frozen. Su
mation with respect tom is over half-integral values from
m523/2 tom53/2. The operatorsXf

nm are the Hubbard op-
erators known from the theory of strongly correlat
systems.11–13Notwithstanding the relative complexity of th
commutation relations for these operators, today we h
effective methods for calculating systems in the atomic r
resentation. Among these is the method of diagrams for
Hubbard operators.17–19 The diagonal Hubbard operator
Xf
nn are actually projection operators on a chosen subspac

atomic ~ionic! states for sitef . The off-diagonal operator
Xf
nm describes the transition of the ion at sitef from state

u f ,m& to stateu f ,n&. In terms of Dirac’s bra and ket vector
the Hubbard operators can be written as

Xf
nm[u f ,n&^ f ,mu.

The third term on the right-hand side of Eq.~1! allows for
the state of Cr21 ions with an electron configuration 3d4 and
an energyE2 . In the crystal field the states with spin angul
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momentumS51 correspond to this configuration. The triplet
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nature is reflected by the presence of summation overm8
from m8521 tom851. The fourth term takes into accoun
the exchange interaction between the spin angular mom
of the localized subsystems. The fifth term on the right-ha
side of Eq.~1! describes the exchange coupling of localiz
and collectivized electrons within the framework of thes–
d( f ) exchange interaction.6,9 Finally, the last term describe
processes of hybridization interaction, when the creation
nihilation of an electron in the conduction band is accom
nied by the transition of a chromium ion from state Cr21

(Cr31) to state Cr31 (Cr21). Here the electron operato
dfs is expressed as a linear combination of multielect
Hubbard operators:14

df↑52
1

)

Xf
1/2,12A2

3
Xf

21/2,02Xf
23/2,21 ,

~2!

df↓5Xf
3/2,11A2

3
Xf
1/2,01

1

)

Xf
21/2,21 ,

where the half-integral values of the superscripts corresp
to states of Cr31 with half-integral values of the projection o
the spin angular momentum, and the integral values num
the states of Cr21 with spin projectionsm8561, 0.

3. THE GREEN’S FUNCTIONS AND THE ENERGY
SPECTRUM

Examining de Haas–van Alphen effects and quant
temperature oscillations requires calculating the thermo
namic potentialV of the system. A convenient approac
here is to use the coupling-constant integration metho20

Bearing this in mind, we define the Matsubara Green’s fu
tions needed for further investigations as follows:

Gks~t2t8!52^Ttc̃ks~t!c̃ ks
1 ~t8!&

5T(
vn

exp~2 ivn~t2t8!!Gks~vn!,

~3!
Fks~ f ;t2t8!52^Tt d̃fs~t!c̃ ks

1 ~t8!&

5T(
vn

exp~2 ivn~t2t8!!Fks~ f ;vn!.

We start the derivation of a system of equations from wh
these Green’s functions can be found by mentioning a
that simplifies our problem. Nominally pure samples
HgCr2Se4 haven-type conductivity with a carrier concentra
tion ;1017–1018 cm23. At such low band-electron concen
trations ~the electron concentrationn per site is
;1024–1023! the effect of the electrons on a state of t
localized subsystem is negligible.6 This means, for instance
that the temperature behavior of the magnetization of
subsystem of localized spins is determined to a high deg
of accuracy by the properties of the localized subsys
proper. But at the same time, the spectral characteristic
the band electrons are controlled to a great extent by
degree of magnetic order through the mechanism ofs–
d( f ) exchange, and by single-site correlations through
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terms of lower-order perturbation-theory, and only the
terms will be taken into account. In diagram language17–19

this approximation corresponds to allowing only for loople
diagrams, while in the equation-of-motion method
amounts to decoupling in the higher-order Green’s functio

On the basis of the above we can write the equations
the Green’s functions in the adopted approximation as
lows:

~ ivn2 «̃ks1m!Gks~vn!511
1

AN (
f
vke

2 ik•RfFks~ f ;vn!,

~ ivn2 «̃ds1m!Fks~ f ;vn!5
1

AN
vk* e

ik•RfKsGks~vn!, ~4!

where the renormalized energies are

«̃ks5«ks2sJR, «̃ds5«d2sH̄, s56
1

2
. ~5!

HereR stands for the average value of thez-projection of the
localized spin angular momentum,

R5
1

N (
f

^Sf
z&, ~6!

andH̄ for the effective field determining the splitting of th
localized energy levels,

H̄5gmBH1I 0R1Jsc , ~7!

with I 0 the Fourier transform of the exchange integral
q50, and sc the magnetization of the collectivized sub
system~in units ofmB! per site, which can be ignored if th
electron concentration values are those cited earlier.

The presence of single-site correlations is reflected
the factor

Ks5
1

N (
f

^@dfs ,dfs
1 #1&5

1

3 S 3222sR1
1

2
ndD , ~8!

where

nd5
1

N (
f

^Xf
1,11Xf

0,01Xf
21,21& ~9!

determines the single-site concentration of Cr41 ions.
Solving the system of equations~4!, we find that

Gks~vn!5
ivn2 «̃ds1m

~ ivn2Eks
2 1m!~ ivn2Eks

1 1m!
,

1

AN (
f
e2 ikR f vkFks~ f ;vn!

5
Ksuvku2

~ ivn2Eks
2 1m!~ ivn2Eks

1 1m!
, ~10!

where the mixonic spectrum is determined by the ordin
expressions13

Eks
6 5

1

2
~ «̃ks1 «̃ds!6AS «̃ks2 «̃ds

2 D 21Ksuvku2. ~11!
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bridization interaction parameter is renormalized. In view
the importance of this fact in the initiation of quantum tem
perature oscillations we shall dwell on the physical rea
for the renormalization. AtT50 the Cr31 ions are in a state
with the projectionm of the spin angular momentum equal
3/2. Hence an electron withs511/2 cannot go into a lo-
calized state~high-spin states have a higher energy a
therefore are not included in the low-energy basis of io
states!. However, an electron with an oppositely direct
projection of the spin angular momentum can always go i
a localized state. This leads to a dependence of effec
hybridization on the direction of the spin angular mome
of the electrons, and in the low-temperature range hybrid
tion for electrons withs511/2 proves to be suppressed.

Mathematically, a meaningful description of single-s
correlations is provided by the algebra of Hubbard operat
and in the adopted approximation it formally manifests its
in multiplicative renormalization of the hybridization inte
action,uvku2→uṽksu25Ksuvku2. A similar renormalization is
present in the slave-boson approach,21 with Ks acting as the
number of slave bosons in the condensate. In our c
K↑→0 andK↓→1 asT→0, in accordance with the physica
situation. Here in the expression forKs we ignored the band
carrier concentration due to the smallness of this quantit

4. THE OSCILLATING PART OF THE THERMODYNAMIC
POTENTIAL

As is known, in examining the de Haas–van Alph
effect we must calculate the trace of the statistical oper
taken in the Landau representation.22,23 When conduction-
electron concentration is low, with only the states near
bottom of the conduction band contributing to the thermo
namic characteristics, the use of the effective-m
approximation22 is justified. In this case the Landau spectru
can be written as

« rs~p!5S r1
1

2D\vc1
p2

2mi
12mBsH, s561/2 ,

~12!

wherevc5eH/cm' is the cyclotron frequency,22 m' is the
effective mass corresponding to transverse electron mo
~in relation to the vectorH!, p is the electron momentum in
the direction of the external magnetic field, andmi is the
effective mass corresponding to longitudinal electron m
tion.

When there is mixing of collectivized and localized ele
tronic spectra, the resulting electron spectrum without L
dau quantization is given by Eq.~11!. Since we are intereste
only in states with small quasimomenta, we can ignore
dependence of the hybridization parametervk on k. In this
case, employing Onsager quantization,22 we can easily see
that the electron spectrum in a quantizing magnetic field
obtained from~11! by replacing«ks with «ns(p). In the
process the dependence ofE6 on the Landau representatio
indices becomes irrational. This makes a direct calculatio
the trace of the statistical operator impossible.

To overcome this difficulty, Wassersmanet al.24 sug-
gested using the Luttinger method25 together with contour
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thermodynamic potential, we employ the ideas of Ref. 24
We introduce a system Hamiltonian dependent on a

rameterl:

H~l!5H01lHmix , ~13!

whereHmix is the operator describing hybridization intera
tion processes~the last term on the right-hand side of E
~1!!. At l51 the Hamiltonian ~13! coincides with the
Hamiltonian ~1!. The meaning ofH0 immediately follows
from this correspondence.

The thermodynamic potential corresponding to~13! also
depends on the parameterl:

V~l!52T ln Tr~exp~2bH!!. ~14!

Introduction of a temperature scattering matrix20

Sl~1/T!5Tt expH 2lE
0

1/T

Hmix~t!dtJ ~15!

makes it possible, as is known, to write the statistical ope
tor in the form

exp$2bH~l!%5exp~2bH0!Sl~1/T!, b5
1

T
. ~16!

These relationships yield the following exact equation:

]V

]l
5
2T

AN (
vn

(
fks

eivnde2 ikR fvkFks~ f ;vn!, d→10.

~17!

In the present approximation the unknown quantities in~17!
are described by Eqs.~10!. Hence

]V

]l
5T (

vnks
eivnd

2lKsuvku2

~ ivn2Eks
1 m!~ ivn2Eks

2 1m!
~18!

with d→10. To remove the irrational dependence of t
electron spectrum on the quantum numbers, we write
electron propagators in the following form:

~ ivn2 «̃ks1m!2152E
b

b1 i`

exp$2s~ «̃ks2m

2 ivn!%ds, vn.0,

~ ivn2 «̃ks1m!215E
b2 i`

b

exp$2s~ «̃ks2m

2 ivn!%ds, vn,0, ~19!

with b→10. Using these relationships, we can write E
~18! in a form that makes it possible~later! to sum over the
Landau representation indices:

]V

]l
5T (

vn,0
(
ks

E
b2 i`

b

exp$2s@ «̃ks2m2 ivn

1l2cs~vn!#%2lcs~vn!ds

2T (
vn.0

(
ks

E
b

b1 i`

exp$2s@ «̃ks2m2 ivn

1l2cs~vn!#%2lcs~vn!ds, ~20!
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where cs(vn)5Ksuvu2/( ivn2 «̃ds1m). Here, in accor-
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or-
em-
tem
tial

ion
s to

an

e

pera-

s-
he

ion
tion
iza-
dance with the earlier remark about the smallness of the
ume of the region in thek-space we are interested in, w
ignored the dependence ofvk on k, taking the value of the
hybridization parameter at the point of extremum.

Integration of Eq.~20! leads to the following expressio
for V:

V5V l2T (
vn,0

(
ks

E
b2 i`

b

fks~s,vn!
ds

s

1T (
vn.0

(
ks

E
b

b1 i`

fks~s,vn!
ds

s
, ~21!

where

fks~s,vn!5exp$2s~ «̃ks2m2 ivn1cs~vn!!%. ~22!

The termV l can easily be determined from the condition

V5V052T ln Tr~exp~2bH0!!

when the hybridization parameter is zero. SinceV l is of no
importance to our further discussion, we do not given
value ofV l here.

In a quantizing magnetic field summation overk is re-
placed by summation over the quantum numbers of the L
dau representation:

(
k
→S eHV

4p2\cD E2`

1`

dkz(
r50

`

.

Integrating with respect tokz and summing overr , from
~21! we obtain

V5V l1V11V2 , ~23!

where

V15D(
s

(
vn.0

E
b

b1 i` ds

s3/2
exp$s~ ivn1m̃s2cs~vn!!%

2 sinh~s\vc/2!
,

V25D(
s

(
vn,0

E
b2 i`

b ds

s3/2
exp$s~ ivn1m̃s2cs~vn!!%

2 sinh~s\vc/2!
,

~24!

D5
TVeHA2pmi

~2p\!2c
, m̃s5m12smBH1sJR.

Further calculations involve separating the oscillating p
V; from the rest of the thermodynamic potentialV. Since
s50 is a branch point, we cut the complexs plane along the
semiaxis of real negative values ofs. This procedure close
the integration contours in the second and third quadrants
V1 andV2 , respectively. The integrals along the upper a
lower edges of the cut contribute to the monotonic com
nent of the thermodynamic potential.26 The oscillating part
V; is determined by the poles on the imaginary axis
s\vc/256 ikp. After performing the necessary calculatio
we get
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s

(
vn.0

(
k51

`

expH 2
2pk

\vc
vnansJ

3cosH 2pk

\vc
m̃ns1wsJ . ~25!

Here

ans511Gns , Gns5
Ksuvu2

vn
21~ «̃ds2m!2

,

m̃ns5m1sJR1~ «̃ds2m!Gns ,

ws52pskSmc

m0
D2

p

4
. ~26!

These formulas describe the essential effect of magnetic
dering on the de Haas–van Alphen effect and quantum t
perature oscillations. The presence of a localized subsys
affects the oscillating part of the thermodynamic poten
~and hence other physical characteristics! through two chan-
nels, so to say. First, through the mechanism of hybridizat
interaction the presence of localized states generally lead
a decrease in the oscillation amplitude~the effect ofGns in
ans!. Here, as noted earlier, single-site correlations play
important role. Second, thes–d( f ) exchange interaction
leads to an additive term in the expression form̃ns . When
the energy level«̃ds is close to the chemical potential, th
latter becomes pinned. In view of this,m̃ns acquires a strong
temperature dependence, which ensures quantum tem
ture oscillations.

5. THE MAGNETIZATION OF COLLECTIVIZED ELECTRONS

Equation~25! readily leads to an expression for the o
cillating part of the system’s magnetization. Keeping t
principal terms, we can write

M;52(
s

(
k51

`

(
vn.0

~21!kAks~vn!

Ak

3sinS 2pkmns

\vc
1fsD , ~27!

where the ‘‘partial’’ amplitudes are

Aks~vn!5S TVem̃ns

p\2c D S mi

\vc
D 1/2expS 2

2pkvnans

\vc
D .

~28!

Mathematically, the presence of a hybridization interact
manifests itself in the appearance of an additional summa
over the Matsubara frequencies. In the absence of hybrid
tion (v50), the summation overvn can be done explicitly.
Since in this caseGns50 andans51 hold, we find that

364V. V. Val’kov and D. M. Dzebisashvili



`
~21!k m̃s 2pkm̃s

s

t
n
rm
-
n
b
llo
c
ite
th
fo

of

,
rl
tu

a

of

o
on
et

a b

tic

x-
n in
he
the

scil-

f-

in
lar.
en-
is

e
the
of
-

t

pin
n-

ser-
he
ffi-
in

the
by
the
e
to
tita-

tum

s

sts
M;52(
s

(
k51 Ak

BS \vc
D sinS \vc

1fsD ,
~29!

B5S TVe

2p\2cD ~mi\vc!
1/2sinh21S 2p2kT

\vc
D ,

with m̃s5m1sJR. These formulas make it possible to ea
ily follow the effect of s–d( f ) exchange splitting of spin
subbands on quantum temperature oscillations. Using
renormalized expression for the chemical potential, we fi
that the phases of the oscillating functions contain a te
;JR/\vc . Since the parameterJ in magnetic semiconduc
tors may exceed\vc by several orders of magnitude, eve
small variations in the magnetization of the localized su
system may cause a noticeable change in the phases. A
ing for the fact that in the low-temperature range the Blo
law is valid in ferromagnetic semiconductors, we can wr
the expression for the average value of the projection of
spin angular momentum of the localized subsystem as
lows:

R5S2S T

4psID
3/2

Z3/2~2mBH/T!, ~30!

where

Za~x!5 (
n51

`
exp~2nx!

na

is the generalized Riemann zeta function. In the case
small effective mass of the current carriers (m*;0.01m0 in
HgCr2Se4! there is a temperature rangemBH!T<\vc in
which the following expansion holds:

Z3/2~2mBH/T!5z~3/2!22A2pmBH

T
1
35mBH

12T
,

with z(3/2)52.612. In this case

JR5JS2z~3/2!t3/212JtAh2
35

48p
JAth, ~31!

wheret5T/4pIS andh5mBH/SI. As the temperature rises
R decreases, which in accordance with what was said ea
leads to quantum temperature oscillations. The other fea
is the presence of a term proportional toAh. Hence the total
oscillation phase contains the term

2pksSmc

mi
D S T

rpsID S J2

mBHSI
D 1/2; 1

AH
. ~32!

If we take the values of the parameters characteristic of m
netic semiconductors, i.e.,J;0.5 eV, T;10 K,
mc /m0'0.01, andH'50 kOe, we find that the smallness
the first two factors on the left-hand side of Eq.~32! is bal-
anced by the large value of the fourth factor. Hence the c
tribution of this term becomes essential and the oscillati
of magnetization under variations of the external magn
field cease to be strictly periodic in 1/H. This can easily be
verified if, taking into account the expansion~31!, we write
the oscillating factors in the form
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sinH 2pkS H 1
AH D J , ~33!

wherea and b are quantities independent of the magne
field strength,

When the band-electron concentration is low, the e
change splitting of the spin subbands leads to a situatio
which the electrons fill only states with one value of t
projection of spin angular momentum. Here the sign of
exchange constantJ, while affecting the polarization of the
band electrons, has no effect on quantum temperature o
lations.

The situation is quite different when hybridization e
fects are taken into account. In this case the sign ofJ may be
of great importance to the de Haas–van Alphen effect
general and quantum temperature oscillations in particu
To demonstrate this feature explicitly we ignore the dep
dence onvn of Gns , assuming that the main contribution
due to terms with small values ofvn . Then after summation
overvn we obtain a formula similar to~29! if the following
replacements are performed:

B→Bs5S TVe

2p\2cD ~mi\vc!
1/2sinh21S 2p2kT

\vc
a0sD ,

m̃s→m̃0s , ~34!

with a0s andm̃0s defined in~26!. We see that hybridization
through the factora0s may considerably lower the amplitud
of oscillations of the band-electron magnetization. Here
presence of the factorKs leads to the strong dependence
the effect on the sign of thes–d( f ) exchange coupling con
stant, noted above. For instance, whenJ is positive, the band
electrons are in states with spin ‘‘up.’’ SinceK↑→0 as
T→0, in this casea0↑→1, and the amplitude of the effect a
low temperature is renormalized only slightly. But ifJ is
negative, the band electrons fill the subband with s
‘‘down.’’ In this case, as noted earlier, the hybridization i
teraction channel is open anda0↓@1. This leads to a large
decrease in the oscillation amplitude, so that reliable ob
vation of the oscillation effect becomes impossible. T
physics of the effect of single-site correlations on the e
ciency of hybridization interaction was discussed earlier
this paper.

In a more general case the additional contribution to
total phase of the oscillating terms is determined not only
the magnetization of the localized subsystem but also by
term («̃ds2m)Gns . This fact considerably complicates th
net effect of magnetic ordering when mixing is taken in
account, and computer calculations are needed for quan
tive results.

Figure 1 depicts the dependence of temperature quan
oscillations on the magnitude and sign of thes–d( f ) ex-
change coupling constantJ. The following model parameter
were used in the calculations:v50.05 eV,m*50.01m0 ,
n5331018 cm23, and H520 kOe. We see that atJ50
there is only one oscillationM; , in accordance with the
nature of this behavior discussed earlier. WhenJ is finite, the
spin subbands experience additional motion, which manife
itself in a buildup in the number of oscillations. The curves2
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and 3 were calculated for positive values ofJ. As noted
earlier, in this case hybridization is effectively suppress
and the amplitude of the effect is sufficiently large for e
perimental observation of oscillations to be possible. Bu
J is negative, the collectivized states are strongly hybridiz
with localized states, and the amplitude of oscillations
comes too small for observation. This becomes espec
evident if we compare curves3 and 4. The curve4 was
calculated for the same values of the parameters as cur3
but with J of opposite sign. We see that because of inter
tions of the collectivized electron subsystem and the loc
ized subsystem and strong intratomic correlations the am
tude of the oscillation effects is extremely sensitive to
sign ofJ. Satisfactory agreement with the experimental d
on quantum temperature oscillations exists forJ50.8 eV.
This value ofJ corresponds to the results of earlier studies
HgCr2Se4 ~see Ref. 16!. Moreover, the results of recen
experiments10 that established the presence of an extrem
strong effect of an external magnetic field on the band ga
HgCr2Se4 can be correctly interpreted with the chosen va
of J.

The high sensitivity of the effect to the magnitudev of
the hybridization interaction is illustrated by Fig. 2, whe
we give the results of calculations of quantum temperat
oscillations for three values ofv at J50.8 eV. The other
parameters are the same as in Fig. 1. We see that hybri
tion strongly suppresses the oscillation amplitude and
creases the distance between the nearest peaks. The
effect is caused by the fact thats–d( f ) exchange interaction
counteracts hybridization. WhenT rises, thes–d( f ) ex-
change interaction forces the bottom of the conduction b
up, while hybridization forces it down. The competition
these two mechanisms ‘‘flattens’’ theM; vs T dependence
~see the initial section of curve3 in Fig. 2!.

The effect of a magnetic field on quantum temperat
oscillations is depicted in Fig. 3, where the temperature
pendence ofM; for two values of the magnetic field
strength,H520 and 60 kOe, is given. As expected, the a
plitude and period of the oscillations increase with fie

FIG. 1. Quantum temperature oscillations of magnetization for differ
values of thes–d( f ) exchange interaction parameter.J50 ~curve 1!,
J50.1 eV ~curve2!, J50.8 eV ~curve3!, andJ520.8 eV ~curve4!.
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strength. Such behavior of the magnetization irrevocably
lows from Eqs.~25!–~27!.

6. CONCLUSION

Several remarks are in order. The main conclusion t
can be drawn is that magnetic ordering has a strong influe
on quantum oscillation effects. The reason for this and
important role played by single-site correlations have be
thoroughly discussed in this paper. Here we would only l
to note that these effects may manifest themselves not
in magnetic semiconductors but also in many systems w
strong correlations. In this respect mixed-valence compou
and heavy fermions~in addition to the cerium compound
CeAs, CeSb, and CeP! are especially interesting. Many o
these exhibit antiferromagnetic order, and some mix
valence compounds are ferromagnetically ordered. The la
value of the band-electron concentration as compared to
discussed in the present work will require correcting the

tFIG. 2. Effect of the hybridization interaction on the quantum temperat
oscillations of the band-electron magnetization.v50 ~curve1!, v50.05 eV
~curve2!, andv50.1 eV ~curve3!.

FIG. 3. Effect of a magnetic field on quantum temperature oscillatio
H520 kOe~curve1! andH560 kOe~curve2!.
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of
tures of the effect of magnetic ordering on oscillation effe
will be retained.

As is well known, the temperature dependence of
amplitude of the de Haas–van Alphen effect is used to
termine the effective mass. Experimental studies of quan
temperature oscillations make it possible to extract m
more information about the parameters of the electro
structure. In particular, the temperature profile of the ba
electron magnetization provide estimates forJ and the inten-
sity of hybridization interaction. This means that experime
tal studies of quantum temperature oscillations may serv
an effective method for investigating the electronic struct
of matter.

The authors would like to express their gratitude to S.
Ovchinnikov and V. K. Chernov for the stimulating discu
sions concerning the results of the experiment in quan
temperature oscillations. The work was supported by gra
from the Russian Fund of Fundamental Research~Grant No.
96-02-16075-a! and the Krasnoyarsk Science Fund~Grant
No. 5F0158!.

*e-mail: vvv@iph.krasnoyarsk.su

1B. R. Cooper, R. Siemann, D. Yanget al., in The Handbook on the Phys
ics and Chemistry of the Actinides, Vol. 2, edited by A. J. Freeman and G
H. Lander, North-Holland, Amsterdam~1985!, p. 435.

2Q. R. Sheng and B. R. Cooper, J. Appl. Phys.69, 5472~1991!.
3T. Kasuya, J. Phys. Soc. Jpn.64, 1453~1995!.
4T. Kasuya, T. Suzuki, and Y. Haga, J. Phys. Soc. Jpn.62, 2549~1993!.
5S. Methfessel and D. C. Mattis,Magnetic Semiconductors, Springer, Ber-
lin ~1968!.
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Thermodynamic fluctuations in two-dimensional degenerate antiferromagnetic

structures

V. M. Rozenbaum

Institute of Surface Chemistry, Ukrainian National Academy of Sciences, 252022 Kiev, Ukraine
~Submitted 27 June 1996!
Zh. Éksp. Teor. Fiz.111, 669–680~February 1997!

A model of a two-dimensional antiferromagnet with an arbitrary anisotropic interaction that
allows for degeneracy of the ground state is proposed. The lifting of degeneracy by thermodynamic
fluctuations and the accompanying effects are studied by a method of self-consistent
calculations of Gaussian angular fluctuations that is asymptotically exact at low temperatures.
Fluctuations are shown to lead to collinear ordering of the orientations of magnetic
sublattices, an effect that initiates long-range orientational order in systems with anisotropic
interaction but retains only short-range order in systems with isotropic short-range interaction. The
temperature patterns of the orientational correlators are given for the particular cases of
dipole and isotropic short-range interaction models. The nature of the Ising-like behavior of the
system is discussed for the case of a strong anisotropy of the correlators, which corresponds
to quasi-one-dimensional behavior. ©1997 American Institute of Physics.
@S1063-7761~97!02002-7#
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Of the various systems with complicated periodic orie
tations of the magnetic or electric moments, those with
continuously degenerate ground state occupy a special p
Such degeneracy usually corresponds to certain rotation
the moments in antiferromagnetic sublattices and can
lifted by thermodynamic fluctuations, which occasiona
leads to interesting physical effects. Among the structu
that could be considered belonging to this class of syst
are many spinels,1,2 fcc antiferromagnets3 ~including, for in-
stance,g-Mn ~Ref. 4! and Cd12xMnxTe with large values of
x ~Ref. 5!!, bcc antiferromagnets of the garnet type,6 materi-
als of the Gd3Ga5O12 type with a complicated antiferromag
netic structure~which have lately been under intensiv
investigations!,7 and two-dimensional antiferromagnets wi
dipole–dipole interactions on square8–10 and hexagonal10–12

lattices.
The possibility of the moments in antiferromagnetic su

lattices being ordered by thermodynamic fluctuations can
explained by the fact that in contrast to the ground-state
ergyH0, the dispersion lawJ0(k) of spin-wave excitations
~calculated forT50! and the system’s free energy

F~T→0!5H02
T

2 (
k
ln

2pT

J0~k!
~1!

depend on the degeneracy parametera. Minimization of ~1!
with respect toa suggests that a discrete symmetry w
collinear orientations of the moments in the sublattic
emerges.3,10,13

A special feature of two-dimensional degenerate syste
is that they may have no long-range orientational order,
fined by the following quantity:14

r05 lim
ur u→`

^cos~w r11r2w r1
!&5expF2

T

N (
k

1

J0~k!G ~2!

~angular fluctuationsw r are measured with respect to vecto
of the ground-state magnetic moments!. In this case we have
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with respect tok. But can such thermodynamic ordering e
ist, and if it can, will selection of collinear states result
long-range orientational order? Monte Carlo experimen
which by their very nature are limited to modeling fini
systems, yield conflicting results, both supporting15,16 and
contradicting17 the presence of a phase with a discrete sy
metry in the systems being discussed.

In this paper an analysis of a new general model o
degenerate antiferromagnet on a square lattice is use
prove that in systems with isotropic short-range interactio
dispersion lawJ(k) of spin excitations (T Þ 0) that has been
renormalized by thermodynamic fluctuations ensures th
modynamic ordering of moments without long-range ord
(r050). On the other hand, in systems with dipole–dipo
interactions the renormalized functionJ(k) and thermody-
namic ordering lead to long-range orientational order (r0
Þ0).

2. THE MODEL OF A TWO-DIMENSIONAL DEGENERATE
ANTIFERROMAGNET ON A SQUARE LATTICE

Let us examine a system of magnetic or electric m
ments at the sitesr of a planar Bravais lattice. The syste
Hamiltonian in the most general form is

H5
1

2 (
r ,r8

Vab~r2r 8!er
aer8

b
5
1

2 (
k
Ṽab~k!ẽk

a ẽ2k
b , ~3!

where the interactionsVab(r )5Vab(2r )5Vba(r ) can be
anisotropic and long-range, theer are the two-dimensiona
unit vectors specifying the orientations of the momen
a, b5x, y, and summation over repeated Greek indices
assumed. The ground state of the system is determine
the smallest eigenvalueṼmin and the corresponding unit e
genvector~or eigenvectors! hp of the tensorVab(k). To in-
troduce a four-sublattice antiferromagnetic ground state w
degenerate orientation of the magnetic moments in the s
lattices, we will restrict our discussion to square lattices a

368-07$10.00 © 1997 American Institute of Physics
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require that the minimum valueṼmin is attained at two sym-
metric points,kA and kA8 , of the first Brillouin zone~Fig.
1a!. Then

Ṽab~kA!h0
b5Ṽminh0

a , Ṽab~kA8!h1
b5Ṽminh1

a , ~4!

with h1'h0 , and the structure of the moments in the grou
state,er5j0(r ), with an energyH05 NṼmin/2 is degenerate
in the angular parametera:

j0~r !5h0 exp~ ikAr !cosa1h1 exp~ ikA8r !sin a. ~5!

Sincer5n1a11n2a2 ~herea1 anda2 are the basis vectors o
the lattice, andn1 and n2 are integers!, kAr5pn1 , and
kA8r5pn2 , the exponentials in~5! assume values61, and
we obtain the four-sublattice structure depicted in Fig.
For isotropic interactionsVab(r )5V(r )dab the orientations
of the vectorsh05(cosb,sinb) and h15(2sinb,cosb)
with respect to the lattice axes are arbitrary. For anisotro
interactions the value of the parameterb is fixed ~say,
b5p/2 for dipole–dipole interactions!. In both cases the
angle 2a between the orientations of the dipole moments
sublattices shifted by the vectora1 or a2 remain arbitrary in
the ground state.

In introducing the concept of angular fluctuationsw r of
vectorser with respect to the orientational structure of t
ground state it is convenient to employ anr -dependent or-
thonormalized base of vectorsj0(r ), j1(r ), where

j1~r !5h1 exp~ ikAr !cosa2h0 exp~ ikA8r !sin a, ~6!

and expand the vectorer in the basis vectors:

er5j0~r !cosw r1j1~r !sin w r ~7!

~such an expansion for an arbitrary Bravais lattice was s
gested in Ref. 14!. Plugging~7! into ~3!, we get

H5
1

2 (
r ,r8

Vab~r2r 8! (
s561

@zs
ab~r ,r 8!cos~w r2sw r8!

1sz̃s
ab~r ,r 8!sin~w r1sw r8!#, ~8!

where

FIG. 1. ~a! The first Brillouin zone of a square lattice, and~b! the four-
sublattice structure of moments on a square lattice. The dotted lines c
spond to the orthonormalized basish0 ,h1, the solid heavy arrows specify
the configuration of moments in the ground statej0(r ), and the solid light
arrows specify the structure of the vectorsj1(r ). The dashed arrows stan
for the angular fluctuations ofer about the ground state.

369 JETP 84 (2), February 1997
d

.

ic

g-

s 2 0 0 1 1

z̃s
ab~r ,r 8!5

1

2
@j0

a~r !j1
b~r 8!1sj1

a~r !j0
b~r 8!#. ~9!

To calculate the low-temperature asymptotic behavior of
free energy in a meaningful manner, we must allow for t
possibility that the correlatorŝw r ,w r8& may be divergent~as
they are in the Berezinski�–Kosterlitz–Thouless phase18,19!
and the fact that an expansion of~8! up to terms quadratic in
w r is not sufficient. There are various methods of specify
the principal contributions obtained in the summation of t
series inw r ~see Refs. 18–20!. Here we will use a variationa
method~the most transparent one! that is asymptotically ex-
act in the low-temperature limit. This method has been u
to describe orientational ordering in two-dimensional s
tems with anisotropic and long-range interactions.14

We introduce the effective Hamiltonian of Gaussian a
gular fluctuations,

Heff5
1

2 (
k
J~k!w̃kw̃2k , ~10!

with a functionJ(k) minimizing the right-hand side of the
Feynman inequality21

F<
Tr H exp~2Heff /T!

Tr exp~2Heff /T!
2T

]

]T FT ln Tr expS 2
Heff

T D G
5
N

4 (
r

(
s561

@W0~r !1sW1~r !#@exp~ ikAr !cos
2 a

1s exp~ ikA8r !sin
2 a#r~r us!2

T

2 (
k

ln
2peT

J~k!
, ~11!

where Tr stands for integration over the complex-valu
variablesw̃k5w̃2k* ,

Wp~r !5hp
aVab~r !hp

b , p50, 1, ~12!

r~r us!5^cos~w r81r2sw r8!&

5expF2
T

N (
k

12s coskr

J~k! G , ~13!

and we have used the identity

^cos~w r6w r81C!&5Re expF2
1

2
^~w r6w r8!

2&2 iC G .
~14!

valid in averaging the Gaussian fluctuations of angles
scribed by the Hamiltonian~10!. Varying ~11! with respect
to J(k) leads to the equation

J~k!52
1

2 (
r

(
s561

@W0~r !1sW1~r !#

3@exp~ ikAr !cos
2 a1s exp~ ikA8r !sin

2 a#

3~12s coskr !r~r us!, ~15!

which defines the functionJ(k).

re-
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3. GENERAL ANALYSIS OF THE EQUATIONS
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First we note that atT50 the correlatorsr(r us) are
equal to unity and Eq.~15! immediately leads to the follow
ing expression:

J0~k!5W̃1~k1kA!cos2 a1W̃0~k1kA8!sin
2 a2Ṽmin ,

~16!

which does indeed depend ona. In Secs. 4 and 5 we will se
that this expression is reduced to well-known relationsh
for two short-range models.13,17In view of the definitions~4!
and~12! we haveW̃0(kA)5W̃1(kA8)5Ṽmin , so that allowing
for the property

W̃p~k12kA!5W̃p~k12kA8!5W̃p~k!,

yields

J0~kJ!50, kJ5kA1kA8

~see Fig. 1a!. Since for short-range and dipole–dipole inte
actions the quantitiesṼab(k) near the pointsk5kA and
kA8 exhibit quadratic asymptotic behavior in the correspo
ing wave-vector shifts,14,22 the functionJ0(k1kJ) is qua-
dratic in k and the sums with respect tok in ~13! diverge,
provided that the quantities 12s coskJr do not vanish.
Such is the situation if we use the functionJ0k ~Eq. ~16!!
unrenormalized by thermodynamic fluctuations.

We can show that asT→0 ~but T Þ 0!, near the point
k5kJ a gap appears in the renormalized dispersion
J(k). To this end we must employ the lattice–sublattice
lationships of Refs. 22 and 23 and the fact that the tens
Ṽab(k) are isotropic at the symmetric pointsk50 andkJ .
As a result we get

J~k1kJ!'
1

2
@Ṽ~0!2Ṽ~kJ!#@r~a1u1!2r~a2u1!#cos 2a

1J0~k1kJ!, ~17!

where we have left only the correlators that are not equa
unity and provide the main contribution to the formation
the gap.

Expanding theW̃s(k) at the pointskA andkA8 ,

W̃0~k1kA!5Ṽmin1Cx~ka1!
21Cy~ka2!

2,

W̃1~k1kA8!5Ṽmin1Cy~ka1!
21Cx~ka2!

2, ~18!

we can writeJ0(k1kJ) in the form

J0~k1kJ!5
1

2
~Cx1Cy!q

2~12v cos 2uk!, ~19!

where

v5
Cx2Cy

Cx1Cy
cosa, q5ka, ~20!

anduk is the angle between the vectork and thex axis. The
presence of a gap in the spectrum~17! prevents the correla
tors r(a1u1) andr(a2u1) from vanishing at finite tempera
tures. Indeed, substituting Eqs.~17! and ~19! in ~13! and
performing asymptotic integration near the pointq50, we
obtain
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r~a1u1!'r~a2u1!'expF2
p~Cx1Cy!A12v2

G ,
ur~a1u1!2r~a2u1!u}T, T→0, ~21!

where the coefficientg(v) is determined by integration ove
the first Brillouin zone for each specific model.

Since the size of the energy gap in Eq.~17! is propor-
tional to temperature, forT→0 the gap can be ignored i
calculations of physical quantities that have no singularit
at the points whereJ0(k)50. This is the case with the en
tropy contribution to the free energy~1!, which is linear in
temperature. Allowing for the fact that under a rotation of t
system of coordinates through 90° the quantities in Eq.~16!
are transformed as

W̃0,1~k1kA!↔W̃1,0~k1kA8!,

we can write thea-dependent contribution to the free e
ergy:

DF~a!5
T

2 (
k

ln J0~k!5
1

4 (
k

ln@A1
2 ~k!

2A2
2 ~k!cos2 2a#<

T

4 (
k

ln A1
2 ~k!, ~22!

A6~k!5
1

2
$@W̃1~k1kA!2Ṽmin#6@W̃0~k1kA8!

2Ṽmin#%.

This implies that collinear orientations of the moments
sublattices, i.e., 2a50 andp, are preferable. Since the ga
size in Eq.~17! is positive, the choice ofa50 or p/2 with
allowance for the sign ofṼ(0)2Ṽ(kJ) ~orCx2Cy! fixes the
sign of r(a1u1)2r(a2u1).

If there is no single point exceptk5kJ where J0(k)
vanishes, the square of the long-range order parameterr0 ,
defined by Eq.~2! with a renormalized functionJ(k), can be
found by solving

r0'r1/2~a1u1!, ~23!

and it proves to be nonzero. This is the situation for syste
with dipole–dipole interaction,24 which we will study in Sec.
4.

In the case of isotropic interactions, we ha
W0(r )5W1(r ), with the result that only terms withs51
remain in Eqs.~11! and ~15!, so thatJ(0)50. For short-
range interaction, the functionJ(k) is characterized by a
quadratic asymptotic behavior neark50, which results in the
divergence of the integral ofJ21(k) and an absence of long
range order (r050 atT Þ 0!. One of the possible example
of systems of this type is discussed in Sec. 5.

4. THE DIPOLE SHORT-RANGE MODEL

The nonzero components of the tensors describing
interaction of the dipole moments at neighboring sites o
square lattice are given by the following relationships:

Vxx~a1!5Vyy~a2!5W1~a1!5W0~a2!522V,
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Vyy~a1!5Vxx~a2!5W0~a1!5W1~a2!5V, ~24!
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Ṽxx~q!5W̃1~q!5V~24 cosqx12 cosqy!,

Ṽyy~q!5W̃0~q!5V~2 cosqx24 cosqy!, ~25!

where q5ka, and V5m2/a3 is the characteristic dipole–
dipole interaction energy, withm the dipole moment anda
the lattice constant. Within the chosen parametrizat
scheme,b in Fig. 1b is equal top/2, and the degenerac
anglesa specify the slope of the ground-state vectors w
respect to they axis of the square lattice. By introducing
compact notation for the nearest-neighbors correlators,

r15r~a1u1!, r25r~a2u1!,

r35r~a1u21!, r45r~a2u21!, ~26!

we can transform the function~15! to the following form:

J~k!5
1

2
uṼminuJ~qx ,qy!,

J~qx ,qy!5r3~11cosqx!1r4~11cosqy!

2v@r1~12cosqx!2r2~12cosqy!#, ~27!

where

1

2
uṼminu5Cx1Cy53V, v5

1

3
cos 2a. ~28!

The valuesCx5V andCy52V agree with the definition of
v in ~20! and make it possible to estimate the low
temperature behavior ofr1 and r2 by employing~21!. At
T50, when all correlators are equal to unity, the functi
~27! coincides, to within notation and the choice of the p
rametrization scheme, with the expression in Ref. 17.

Calculating the integrals in~13! over the first Brillouin
zone with the function~27!, we arrive at the following sys-
tem of equations for the correlators~26!:

r1,25
r0
2

r3,4
, r05exp~2tL0!, t5

T

3V
, ~29!

L05
1

~2p!2
E E

2p

p

dqxdqy
J~qx ,qy!

5
1

p F r3r4
r3
2r4

22v2r0
4G1/2K~m!, ~30!

r3,45exp~2tL3,4!,

L3,45
1

~2p!2
E E

2p

p

11cosqx,y
J~qx ,qy!

dqxdqy

5
r3,4

r3,4
2 6vr0

2 @12L0~«3,4,m!#, ~31!

m5
~r3

21vr0
2!~r4

22vr0
2!

r3
2r4

22v2r0
4 ,
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-

«3,45arcsinF r3r47vr0
2

r3,4~r31r4!
G1/2, ~32!

whereK(m) is the complete elliptic integral of the first kind
and L0(«,m) is Heuman’s lambda function.25 The long-
range order parameterr0

1/2 links the nearest-neighbors cor
elators and assumes nonzero values in the low-tempera
range forr3.r4 . This inequality corresponds to structure
with a50 for v.0, r1,r2 , and the gap size satisfie
J(p,p)52v(r22r1).0. The parametrization scheme ch
sen in Ref. 24 corresponds tob50 in the ground state
which results inJ(p,p)52v(r12r2).0 andr3,r4 .

The system of Eqs.~29!–~32! allows for an analytic so-
lution when the parameterv is small ~or r0 is small when
m→1!:

r3,45r6d, r5expF2
t

2rG , ~33!

r05expH t

2~pr22t!
ln

~p22!v2t
4r4@2pr2~p22!t# J ,

t,
pr

2
, ~34!

d5
~p22!r0

2vt

r@2pr2~p22!t#
. ~35!

Equation ~33! determines the variation ofr from 1 to
e21'0.3679 as the temperature parametert grows from 0 to
tc52e21'0.7358. However, at the somewhat smaller va
tc85 (p/2)exp(2p/4)'0.7162 the denominatorpr22t
vanishes. At pointt5tc8 the logarithmic factor is negative
for v,v*52 exp(2p/2)@(62p)/(p22)#1/2'0.6579, and
the long-range order parameterr0

1/2 also vanishes, which cor
responds to spontaneous breaking of the discrete symm
Z4 . In the narrow temperature intervaltc8,t,tc we have
r05r15r250, d50, and the correlatorsr35r45r change
from exp(2p/4)'0.4559 toe21, with the result that only
the phase with short-range order can be realized. The t
perature patterns ofr0 ,r1 , . . . ,r4 at v51/3 are depicted in
Fig. 2 by solid curves.

FIG. 2. The square of the long-range order parameter~curve 0! and the
nearest-neighbors correlatorsr j ~the curvesj51, . . . ,4! as function of tem-
perature for the dipole~solid curves! and isotropic~dashed curves! short-
range interaction models atv51/3.
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5. THE ISOTROPIC SHORT-RANGE MODEL
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obtained by the same researchers via numerical integration,
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Let us examine a two-dimensional model of XY m
ments that allows for isotropic exchange interactions b
between the nearest neighbors on the square lattice (V1) and
between the neighbors ‘‘linked’’ by the diagonals of th
squares of the lattice (V2) ~see Refs. 3 and 13!:

Vab~r !5V~r !dab , V~a!5V1 , V~A2a!5V2 , ~36!

Ṽ~q!5W̃0~q!5W̃1~q!52V1~cosqx1cosqy!

14V2 cosqx cosqy . ~37!

For 0,V1,2V2 the system in the ground state is charact
ized by an energyH0522NV2 (Ṽmin5 2 4V2) and can be
separated into two square (&3&) sublattices, each o
which is antiferromagnetically ordered and has arbitr
angles 2a between the orientations of the moments in t
sublattices. Because of the isotropy of the interactions~36!,
the orientations of the moments are entirely independen
the orientations of the lattice axes, and in contrast to
dipole moment the angleb is also arbitrary. Such a mode
can be realized, for instance, in two adjacent square C2
layers, with one centered above the other~as in some high-
Tc superconductors!, in which V1 describes small interlaye
exchange interactions.13

For the given model the function~15! assumes the form

J~k!5
1

2
uṼminuJ~qx ,qy!,

J~qx ,qy!5~r31r4!~12cosqx cosqy!1~r32r4!

3sin qx sin qy12v@r1~12cosqx!

2r2~12cosqy!#, ~38!

where

r15r~a1u1!, r25r~a2u1!,

r35r~a11a2u1!, r45r~a12a2u1!, ~39!

uVminu5Cx1Cy , Cx,y52V26V1 ,

v5
V1

2V2
cos 2a. ~40!

At T50 all correlators are equal to unity and~38! reduces to
an expression obtained in Ref. 13. The correction~22! to the
free energy becomes

DF~a!5
NT

2 H 2 ln 21
2

p F f S p

2
1d D1 f S p

2
2d D G J

——→
v→0

NT

2 S 4p G2 ln 22
v2

p D , ~41!

wheref (d) is the Clausen integral, sind5v, andG'0.916 is
the Catalan constant.25 The asymptotic behavior at small va
ues ofv described by~41! agrees with the results of a Mont
Carlo calculation done by Fernandezet al.,15

DF(a)5const10.04NT(2a)2 ~at V15V2!, and, to within
the factor 12 discarded in Ref. 13, coincides with the res

372 JETP 84 (2), February 1997
h

-

y

of
e

DF(a)'const20.32NTv ~the factor 0.32 is simplyp !.
The integrals in~13! with the functionJ(qx ,qy) given

by ~38! can easily be calculated:

M1~r1 ,r2 ,r3 ,r4!5
1

~2p!2
E E

2p

p

12cosqx
J~qx ,qy!

dqxdqy

5
1

pB1/2 ln
~A1B!1/21~2B!1/2

~A2B!1/2
, ~42!

A52r3r422v2r1r21v~r12r2!~r31r4!,

B5r3r42v2r1
2 ,

M2~r1 ,r2 ,r3 ,r4!5
1

~2p!2
E E

2p

p

12cosqy
J~qx ,qy!

dqxdqy

5M1~2r2 ,2r1 ,r4 ,r3!, ~43!

M3,4~r1 ,r2 ,r3 ,r4!

5
1

~2p!2
E E

2p

p

12cos~qx6qy!

J~qx ,qy!
dqxdqy

5
1

r3,4
H 122v~r1M12r2M2!1sgn~r3,42r4,3!

3F11
1

p
arctan

ur32r4u
~2A!1/2 G J , ~44!

and the correlatorsr1 , . . . ,r4 are specified by the following
system of equations:

r j5exp@2tM j~r1 ,r2 ,r3 ,r4!#, j51, . . . ,4, ~45!

wheret5T/2V2 . Let us assume thatr3.r4 . Then Eq.~44!
implies thatM3.M4 , and Eq.~45! that r3,r4 . This con-
tradiction shows that the only solutions of~45! are those with
r35r4 .

The low-temperature behavior of the correlatorsr1 and
r2 is determined by Eq.~21!, while the temperature depen
dence ofr3 for v<0.5 is described with a high degree o
accuracy by the equationr35exp@2t/2r3#. At large dis-
tanceR52n1a112n2a2 , and fort!1 the same correlator
decrease like

r~a11Ru1!;~l1R/at2!2t/2pA12v2,

r~a11a21Ru1!;~l2R/a!2t/pA12v2 ~46!

~l1 andl2 are constants independent ofR andt! and vanish
asR→`, which according to~2! corresponds tor050.

The system of equations~45! with v→0 and
0,t,tc'2/e has the following asymptotic solution:

r35r45exp@2 t/2r3#,
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The analysis of the generalized model of planar degen-
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ev.
1 F2~pr32t! 4pr3
3G 1 2 pr3

2

~47!

The nature of the obtained temperature curves is illustra
by the dashed curves in Fig. 2.

6. DISCUSSION

Let us first discuss the range of applicability of the r
sults obtained by the self-consistent method of calcula
Gaussian angular fluctuations. In Ref. 14 it was shown
the method provides a correct description of low-tempera
correlation functions when the statistics of rotations of
moments through large angle with respect to their orien
tions in the ground states can be ignored. This situatio
inherent in degenerate systems~which are characterized by
well-defined value of the wave vectork at whichJ(k)50!
and in systems with a small perturbation lifting the dege
eracy. A possible example of such perturbations can be s
in the potentials~examined in Ref. 14! hp cospwr , with
p52, 3, . . . andhp→0, which in a two-dimensional system
give rise to long-range order at low temperatures and to
intermediate phase with short-range order, starting from
certain value ofp.

In this paper, anisotropic corrections proportional to t
parameterv act as a similar perturbation. Indeed, Eq.~19!
with v50 implies that the asymptotic behavior of the d
persion lawJ0(k) near the pointk5kJ is isotropic. More-
over, atv50 we haver(a1u1)5r(a2u1), and the excitation
spectrum~17! contains no gap, so that the functionsJ(k) and
J0(k) coincide. Thus, the small-perturbation conditio
within which the above method can operate, is realized
v!1. On the other hand, asv→1, the asymptotic behavio
of J0(k1kJ) tends to (Cx1Cy)a

2ky
2 , which corresponds to

a transition to a quasi-one-dimensional system with indep
dent moment chains. The low values of interchain inter
tions as compared to those of intrachain interactions are
cause for Ising-like behavior of the systems and low tran
tion temperatures.

For instance, for dipole–dipole interactions the coe
cientsCx andCy change fromV and 2V for the short-range
model to 0.1447V and 1.7873V when long-range interaction
is taken into account,14,22 which corresponds tov changing
from 1/3 to 0.8502. The increase in the value ofv leads to a
more rapid decrease of the correlators~21! with increasing
temperature. This agrees with the results of Monte Ca
modeling reported in Refs. 17 and 26, which indicate that
transition temperature drops from the val
Tc5(1.5260.01)V for the short-range model to the valu
Tc'0.75V when long-range dipole forces are taken into a
count. The first value proves to be close to the transit
temperatureTc51.641V of a similar exactly solvable short
range Ising dipole model,27 in which the dipoles can hav
four discrete orientations along the diagonals of the squ
lattice, corresponding toa5p/4. The second value also co
relates well with the result of the simple self-consiste
interchain-field approximation~Tc'0.76 V; see Ref. 28!,
which allows for Ising-like behavior of the dipole momen
in the chains.
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erate antiferromagnetic structures performed in this paper
plains the mechanism by which collinear orientations of
moments arise in the system due to the emergence in
spin-wave excitation spectrum of an energy gap whose
is a linear function of the temperature. The presence of s
a gap is the cause of the specific temperature dependen
the nearest-neighbors correlators~21!, which enter into the
correlator

^CR&5
1

4
^~ea11a21R2eR!~ea11R2ea21R!&

5
1

2
@r~a1u1!1r~a2u1!#cos 2a ~48!

determined from the Monte Carlo experiments of Refs.
and 17.

In the case of anisotropic interactions the system
quires long-range order characterized by the same temp
ture dependence ofr0 that exists in Eq.~21!. Lately a similar
temperature dependence of the long-range order param
(r0;exp(2Tuln Tu)) was proved to exist in a planar triangu
lar antiferromagnet placed in a magnetic field.29 For isotropic
short-range interactions there can be no long-range order
there is no obstacle for collinear orientations of magne
moments over distances shorter than the correlation lengt
the Berezinski�–Kosterlitz–Thouless phase.
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Kinetic theory of semiconductor cascade laser based on quantum wells and wires

f-
V. F. Elesin and A. V. Krasheninnikov

Moscow State Institute of Engineering Physics, 115409 Moscow, Russia
~Submitted 4 June 1996!
Zh. Éksp. Teor. Fiz.111, 681–695~February 1997!

The paper presents a numerical solution of a system of nonlinear equations for the electron
distribution functions in the upper and lower subbands between which lasing transitions occur and
the number of nonequilibrium optical phonons in semiconducting cascade lasers based on
quantum wells and wires. For the case of quantum wells, we propose an analytical solution of this
system of equations, which is a generalization of the previously found solution@V. F. Elesin
and Yu. V. Kopaev, Zh. E´ksp. Teor. Fiz.108, 2186~1995! @JETP81, 1192~1995!#; V. F. Elesin
and Yu. V. Kopaev, Sol. St. Commun.96, 897 ~1995!# in a wider range of injection rates.
The threshold injection rate can be significantly reduced owing to reabsorption and accumulation
of nonequilibrium optical phonons, nonparabolicity of the subbands and different effective
masses of electrons in different subbands. In the case of quantum wires, the threshold injection rate
is considerably lower, and its decrease is even larger than in quantum wells. It is remarkable
that, owing to the lower electron–electron relaxation rate in the one-dimensional case,
the decrease in the threshold injection rate may be two or three orders of magnitude. The relation
between the density of states and threshold current has also been studied. ©1997
American Institute of Physics.@S1063-7761~97!02102-1#
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A new type of semiconductor laser~quantum cascade
laser! proposed in the original publications by Kazarinov a
Suris1 has been implemented quite recently.2,3 The interest in
quantum cascade lasers based on electronic transitions
tween subbands in the conductance band is stimulated b
possibility of tuning them over a wavelength interval exten
ing from the near to far infrared.

Since transitions between subbands due to emissio
optical phonons are allowed, quantum cascade lasers
characterized by high threshold currents and highly none
librium states of their electron systems. Specifically,
electron lifetime in the upper subband, equal to the time
optical phonon emission (t0), is short~t0'10212–10213 s!
compared to the electron lifetime~t r'10210 s! in conven-
tional semiconductor lasers based on transitions between
conduction and valence bands. As a result, it is difficult
create population inversion in the system and, since the e
tron system is far from equilibrium, a kinetic approach
indispensable in modeling the electron energy relaxation
such lasers.

In the first experiments with quantum cascade laser2,3

the parameters of a semiconducting heterostructure were
lected so that the electron transit time from the lower s
band,t t , should be shorter thant0 in order to create the
population inversion. This condition is inevitable if the las
is treated as a two-level system and band nonparabolici
ignored.2,4 With due account of the nonparabolicity, how
ever, the situation is radically different.5,6 In this case, radia-
tive transitions occur in a fairly narrow energy range,
there is no need to satisfy the strict conditiont0@t t . As a
result, full inversion of the subband populations is not n
essary. This conclusion was confirmed by experime
shortly afterward.7

375 JETP 84 (2), February 1997 1063-7761/97/0203
be-
he
-

of
re
i-
e
f

he

c-

in

se-
-

r
is

-
ts

fect is the considerable drop in the threshold current due
an increase int t(t0!t t), and accumulation and reabsorptio
of optical phonons.5,6 In fact, these effects lead to a longe
effective lifetime of electrons in the upper subband, henc
lower injection rate is needed to create conditions for
population inversion.

The calculations5,6 for the case of quantum wells wer
based on an exact analytic solution of the system of kin
equations for the electron distribution functions in the su
bands and the number of phonons. The injection rateQ was
assumed to be low in this case~Qt0!1, linear approxima-
tion!.

The aim of the present study was to find a solution of
system of kinetic equations for the electron distribution fun
tions and threshold injection rates~hence the threshold cur
rents! over a wide range of parameters of the kinetic mo
of the quantum cascade laser. We have studied both the
dimensional model of a quantum-well laser and the o
dimensional model of a quantum-wire laser. The latter c
is especially interesting in that it offers a way to substantia
reduce the threshold current~our study has confirmed th
feasibility of this effect!. This reduction is due to singulari
ties in the electron density of state in a one-dimensional s
tem and a drastically lower electron–electron relaxation ra
Let us recall that, in the one-dimensional configuration o
single-band model, electron–electron scattering does
lead to energy relaxation8 ~this follows from energy and mo
mentum conservation!. An important point is that for
t0!t t the threshold current is controlled by electron
electron relaxation.5,6

The paper is organized as follows. Section 2 descri
the model and gives basic solutions. Section 3 present
exact analytical solution of the system of kinetic equatio
for electrons and phonons in the quasilinear approximat

375-08$10.00 © 1997 American Institute of Physics
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which applies to a wide range ofQ. Numerical solutions of
the initial equation system in the case of quantum wells
their detailed analysis are given in Sec. 4. Section 5 pres
a numerical solution of the system of nonlinear kinetic eq
tions for the case of quantum wires.

2. BASIC EQUATIONS AND STATEMENT OF THE PROBLEM

As in the previous studies,5,6 let us consider the follow-
ing model~Fig. 1!. Let there be two subbands with dispe
sions«1(p) and «2(p), such that transitions between the
are accompanied by emission of phonons with the ene
\V ~hereafter\5c51, wherec is the speed of light in
vacuum!. Electrons are injected into the subband 2 at a r
Q and drain from the subband 1 with a probabilityt t

21. The
optimal conditions for operation of quantum cascade las
are achieved by selecting the parameters of the quan
wells and barriers of the structure.2–4

In the present model, the main scatterers of electrons
optical phonons~the typical energy isv0'0.034 eV7!. At
p50 the difference between the subband energ
v5«2(0)2«1(0) is approximately several phonon energ
v0 . The parameterm (m!v0) is the spread of the injecte
electron energy.

Our main task is to determine the threshold injection r
Qth . It can be derived by equating the gaina(V) and the
reciprocal of the photon lifetimet in the cavity5,6 controlled
by the total losses:

a~V0 ,Jth!5
1

t
,

]a~V!

]V U
V5V0

50. ~1!

The latter condition is the equation for the lasing frequen
The expression fora(V) describing electronic transition
between the subbands has the form5,6

a~V!

a0
5E

0

` d«@ f 2~«!2 f 1~«!#g

~j2~«!2j1~«!!21g2 , a05
e2uV12u2

Vk
,

~2!

j2~«!5«1v2
V

2
, j1~«!5«1

V

2
, ~3!

wheref 2(«) and f 1(«) are distribution functions of electron
in the subbands2 and1 ~Fig. 1!, g is the damping factor of

FIG. 1. Energy in the subbands versus quasimomentum. The dashed
show transitions with emission of an optical phonon, the wavy line show
optical transition.
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to be constant with the energy!, V is the electromagnetic
field frequency,V12 is the matrix element of the electroni
transition between the subbands,k is the dielectric constant
ande is the electron charge.

If the band nonparabolicity is ignored, the differen
j22j15v2V[d is independent of the energy. In this cas
the electronic transitions with emission~or absorption! of
photons occur throughout the subband, and the system
equivalent to a conventional two-level system. The las
condition in this approximation is2,4

t t,t0 , ~4!

which is necessary to satisfy conditions~1! and ~2!.
The inclusion of the subbands nonparabolicity chan

the situation radically.5,6 First, the rigorous condition~4! is
no longer necessary. Second, it becomes possible to sig
cantly reduceQth because the subband nonparabolicity lim
the lasing spectral range.

If we use the simplest approximation for the GaAs ele
tronic spectrum,9 the differencej22j1 in the case of a deep
quantum well can be expressed as5,6

«22«15d2b«, b52v/«g , ~5!

where«g is the band gap width. Later similar results we
obtained by Gelmontet al.10 Faist et al.7 studied a more
complicated model taking into account features of real str
tures, and their results are approximately equal to those
ported in Refs. 5 and 6 to within 25%.

By taking into account Eq.~5! and assuming that

f 2~«!2 f 1~«!5H D f , 0,«,m,

0, m,«,
~6!

we derive from Eq.~1! at the resonant frequency

V05v2
mb

2
,

a~V0!

a0
5
2D f

b
arctan

mb

2g
'

D fp

b

for mb@2g. The threshold population inversion is dete
mined, correspondingly, by the expression

D f th5
b

pta0
. ~7!

In order to determineQth , we need the relationship betwee
f i(«) andQ. It can be determined by solving the system
kinetic equations for f i(«) and the number of optica
phononsN.

The relevant kinetic equations were derived by Ele
and Kopaev.5,6 They also reduced the system of equations
a system of coupled equations for the functionsf 1(n) and
f 2(n), where

f 1~n![ f 1~v1~n21!v0!5 f 1~«!,

f 2~n![ f 2~v1nv0!5 f 2~«!, n50, 1, 2 . . .

The functionsf 1(n) and f 2(n) describe the distribution o
electrons with energies in a narrow intervalm!v0 around

es
n
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the energies«5v6nv0 . These equations have the form
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At the same time, ‘‘dangerous’’ denominators that may
nal

-

ns.
ear
f 1~0!@j1N~11z!1 f 1~1!1z f2~1!#

5~11N!@ f 1~1!1z f2~1!#, ~8!

f 1~0!@j111N~21z!2 f 1~0!1 f 1~2!1z f2~2!#

5Nf1~0!1~11N!@ f 1~2!1z f2~2!#, ~9!

f 2~1!@Qt0111N~21z!2 f 1~0!1 f 1~2!1z f2~2!#

5Nf1~0!1~11N!@ f 1~2!1z f2~2!#1Qt0 , ~10!

f 1~n!@j1~11z!~112N!2 f 1~n21!2z f2~n21!

1 f 1~n11!1z f2~n11!#

5N@ f 1~n21!1z f2~n21!#1~11N!@ f 1~n11!

1z f2~n11!#, ~11!

f 2~n!@~11z!~112N!2 f 1~n21!2z f2~n21!1 f 1~n

11!1z f2~n11!#

5N@ f 1~n21!1z f2~n21!#1~11N!@ f 1~n11!

1z f2~n11!#, ~12!

wherej5t0 /t t , z5m2 /m1 is the ratio between the electro
effective masses in the subbands2 and1, respectively. In all
our analytical calculations we takez51 ~the casez Þ 1 is
considered in Sec. 4!. Equations~11! and ~12! are valid for
n>2. The system should be supplemented with an equa
for the numberN of optical phonons:5

N
t t

tesc
5 f 1~0!2 (

n52

`

~n21! f 1~n!, ~13!

wheretescis the time in which phonons escape from a reg
with given dimensions.5

Given that the functionsf 2(n) are nonzero in a narrow
energy interval, the differencef 2(«)2 f 1(«) in Eq. ~6! be-
comes equal tof 2(1) at the generation threshold. Speci
cally, the electrons emitting optical phonons do not arrive
the bottom of the subband1, i.e., f 1(«)50 in the region
where lasing occurs~Fig. 1!, except the case of resonanc
whenv5kv0 .

3. EXACT ANALYTICAL SOLUTION IN THE QUASILINEAR
APPROXIMATION FOR QUANTUM WELLS

An exact analytical solution of the Eqs.~8!–~13! in the
approximation linear inf andQt0 was described in Refs. 5
and 6. It was assumed that the linear approximation~f!1,
Qt0!1! applied in a range extending toQ;1/t0, since the
nonlinear terms in Eqs.~8!–~12!, which were omitted in that
approximation, were comparable to terms of order 113N,
whereN;1.

Numerical calculations and more accurate analysis, h
ever, have revealed that some terms in the denominato
the expressions forf i ~their formulas are given below! cancel
one another, and the linear approximation is valid wh
Qt0 is limited to a quantity of orderj!1, rather than
113N'4.
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lead to divergence are caused only by the term proportio
to Qt0f 2(1) on the left-hand side of Eq.~10!. If this term is
retained~we call this the quasilinear approximation!, the lin-
ear system of equations derived from Eqs.~8!–~13! has an
exact analytical solution in good agreement~see Sec. 4! with
the numerical solution to Eqs.~8!–~13!.

The solution of the system~8!–~13! in the quasi-linear
approximation is as follows:

f 1~n!5A1 exp~an!, f 2~n!5A2 exp~an!, n>2,
~14!

Ã15A1 exp~a!5Qt0
~j1c!b

~j12b!D̃
,

Ã25A2 exp~a!5Qt0
~j1b!~j1c!

~j12b!D̃
, ~15!

D̃5~j1c!~c1Qt0!2~11N!~j12c1Qt0!2~11N!

3~j12c1Qt0!@exp~a!1N/~j12N!#, ~16!

f 1~0!5Qt0
~11N!~j1c!

~j12N!D̃
, ~17!

f 1~1!5Qt0
y

D̃
, y5~11N!exp~a!1

N~11N!

j12N
, ~18!

f 2~1!5Qt0
j1c2y

D̃
, ~19!

exp~a!5
b~j1b!

2~11N!~j12b!

2AH b~j1b!

2~11N!~j12b! J 22 N

11N
, ~20!

b52~112N!, c5113N.

Equations~7! and~14!–~20! yield the threshold injection
rateQth in a general form.

The solution~14!–~20! obtained in the quasilinear ap
proximation differs from the linear solution5,6 only in the
denominatorD̃, which containsQt0 . We note that some
errors slipped into the equations given in Ref. 5~for ex-
ample, Eq.~57! of Ref. 5 should containn>2!, although
these errors did not affect the final results and conclusio
The calculations performed in both linear and quasilin
approximations coincide in the limiting casej!1, but some
differences in numbers emerge forj@1. Note that the solu-
tion ~14!–~20! agrees well with numerical calculations~see
Sec. 4!.

It is interesting to investigate the limiting casesj!1 and
j@1. In the first case, after expanding inj!1 (j!N) and
performing lengthy calculations, we derive from Eqs.~14!–
~20!

f 1~0!'Qt0
11N

j~11N!21Qt0N
, ~21!
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2 1 0 j~11N!21Qt0N

We see thatQt0 in the denominators of Eqs.~21! and
~22! should be compared not with 113N, but with a param-
eter proportional toj. If

Qt0,Qct05j~11N!2/N;4j, ~23!

we obtain Eqs.~72! and ~73! from Ref. 5. ForQ.Qc @or
j,jc5Qt0N/(11N)2# the growth in f 2(1) described by
Eq. ~22! saturates, i.e.,f 2(1)→1.

In the quasilinear approximation, one can easily der
an equation forN:

N

11N
5Qtesc

j~12N2!

j~11N!21Qt0N
. ~24!

ForQ,Qc it transforms to Eq.~74! from Ref. 5. The value
of N derived from this cubic equation is substituted into E
~22! to obtainf 2(1) as a function ofQt0 ~see below Fig. 3a!.
The limit of N atQtesc@1 is of order unity~for details see
Sec. 4!.

Now let us determine the threshold injection rate us
Eqs.~7! and ~22!:

Qth~j!1!'
~11N!2

Nt t

q

12q
, ~25!

q5b/pta0 .

We can see that, owing to the effect of optical phon
reabsorption,Qth is determined not byt0 , but by the effec-
tive electron lifetime in the upper subband,t tN/(11N)2.

Consider the opposite limitj@1. By expanding in terms
of the small parameter 1/j and assumingj@N, we obtain
the following expressions:

f 1~0!'
Qt0~11N!

j~a1Qt0!
, ~26!

f 2~1!'
Qt0

a1Qt0
, ~27!

where a5N1A113N13N2.
The equation forN in this case has the form

N

Qtesc
5

~11N!~21N2A113N13N2!

~A113N13N22N!~A113N13N21N1Qt0!
.

~28!

In the caseQtesc@1, we derive from Eq.~28! the limit of the
phonon numberN0 :

N051.5.

Hence,a55 atN5N0 , and the linear approximation is vali
for Qt0<5.

At arbitraryQtesc the number of phonons as a functio
of Qt0 can be determined by solving Eq.~28! numerically.
These numerical calculations are shown in Fig. 2. The gr
shows thatN051.5, in agreement with the analytical calc
lation. The dashed curve in Fig. 2 shows the funct
N(Qt0) calculated by numerically solving the system
nonlinear equations using the iterative technique~see Sec. 4!.
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The solid and dashed curves are very close, which pro
that the quasilinear approximation can be used in calcula
N.

Let us derive the threshold injection rate in the lim
j@1 from Eqs.~7! and ~27!:

Qth~j@1!'
5

t0

q

12q
. ~29!

By comparing Eqs.~25! and ~29!, we obtain the relation

Qth~j!1!

Qth~j@1!
'

~11N!2

5N
j,

wherej!1 holds on the right-hand side. AssumingN'1,
we have an estimate

Qth~j!1!

Qth~j@1!
;j, ~30!

which is almost identical to Eq.~76! in Ref. 5. It is clear that
the threshold injection rate can be reduced proportionally
j5t0 /t t ~for example, by increasingt t through the barrier
thickness!. We should stress that this result is valid f
Qtesc@1, butQth can be reduced for allQtesc>1.

4. NUMERICAL SOLUTIONS OF THE SYSTEM OF
NONLINEAR KINETIC EQUATIONS FOR THE CASE OF
QUANTUM WELLS

We have calculated numerical solutions of the nonlin
equation system~8!–~13! with the parameterstesc, t0 , t t ,
andQ varied over wide ranges. This has been done using
iteration technique. On each step of the iteration process
equation system~8!–~13! was considered as a system of li
ear algebraic equations, the functionsf i(n) in the brackets
on the left-hand side of Eqs.~8!–~13! being constants calcu
lated in the previous iteration. All the times were measu
in units of t0 .

Sincef 2(1) determines, in fact, the threshold populati
inversion, it seems that the shape of this function is m

FIG. 2. The number of phononsN versus the injection rateQt0 obtained by
solving Eq. ~28! numerically. The curves were calculated at~1!
tesc/t0510, ~2! 102, ~3! 103, and~4! 105. The dashed line corresponds to
numerical solution of nonlinear system of equations~8!–~13! at
t t /t050.1 (j510) andtesc/t0510.
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FIG. 3. The functionf 2(1) versus
the injection rateQt0 . The solid
curve shows a numerical solution o
the nonlinear equation system~8!–
~13!, the dashed curve a solution o
Eqs. ~8!–~13! in the quasilinear ap-
proximation, and the dash-dotte
curve a solution of Eqs.~8!–~13! in
the linear approximation. The dash
dotted line with three dots in a row is
a calculation from Eq.~22! for the
casej510 and from Eq.~27! for the
case j50.2, tesc/t0510. ~a!
t t /t055 (j50.2); ~b! t t /t050.1
(j510).
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calculation with equal electron masses~solid curve!, all other

er
iew
ies
he
to a
more information. Figures 3–8 show typical curves
f 2(1) andN as functions oft t /t0 andQt0 .

Figure 3a demonstrates the coincidence among
curves of f 2(1) versusQt0 calculated by Eq.~22! for the
limiting case j!1 ~dash-dotted line with three dots in
row!, of the numerical solution of Eqs.~8!–~13! in the quasi-
linear approximation~dashed curve!, and of the numerica
solution of the equation system~8!–~13! ~solid curve!. The
graph indicates that the solution obtained in the quasilin
approximation is, in fact, identical to the numerical soluti
in the wide range ofQt0 , and the solution obtained in th
linear approximation has a satisfactory accuracy up
Qt0;j.

Figure 3b shows similar curves atj510. In the limit
j@1 the functionf 2(1) versusQt0 was calculated using Eq
~27!. It is clear that in the limitj@1 the analytical solution
~27! is in good agreement with the numerical solutions of
nonlinear equation system and with solutions obtained in
linear and quasilinear approximations. Note that in all
limiting cases the quasilinear analytical solution~22!, ~27! is
valid over a wide range ofQt0 .

Figure 4a showsf 2(1) versust t /t0 at Qt050.1. The
curve demonstrates the growth inf 2(1) with t t /t0 , in ac-
cordance with the analytical results~22! and ~27! ~see also
Refs. 5 and 6!. For example, in the caseQt0!1, Qtesc@1
~Fig. 3b!, we havef 2(1);0.027 att t /t050.1 (j510) and
f 2(1);0.25 at t t /t0510 (j50.1). This is in agreemen
with the main conclusion that the threshold injection ra
should decrease witht t . Note also that the increase i
f 2(1) is not so large at relatively largeq/t0 @Eqs. ~22! and
~27!#.

Up to this point, we have assumed that the elect
masses in the subbands are equal. If we assume that the
different (m2.m1), the solid curves with dots in Fig. 4
numerically calculated by solving Eqs.~8!–~13! at
m2 /m151.5, indicate thatf 2(1) becomes larger than for th
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conditions being equal.

5. NUMERICAL SOLUTIONS OF THE NONLINEAR KINETIC
EQUATION SYSTEM FOR THE CASE OF QUANTUM
WIRES

As was noted in Introduction, it is interesting to consid
a kinetic model of a one-dimensional cascade laser in v
of the slower electron–electron relaxation and singularit
in the density of states in a one-dimensional system. T
system of kinetic equations can be reduced in this case
system of coupled equations in the form

f 1~0!F j1NS 1

Aw
1

x

A2m̃
D 1

f 1~1!

Aw
1x

f 2~1!

A2m̃
G

5~11N!F f 1~1!

Aw
1
f 2~1!

A2m̃
G , ~31!

f 1~1!F j1
11N

Aw21
1NS x1

1

Aw11
D 2

f 1~0!

Aw21

1
f 1~2!

Aw11
1x f2~2!G

5 f 1~0!
N

Aw21
1~11N!F f 1~2!

Aw11
1x f2~2!G , ~32!

f 2~1!FQt01
11N

Aw21
1NS x1

1

Aw11
D 2

f 1~0!

Aw21

1
f 1~2!

Aw11
1x f2~2!G

5 f 1~0!
N

Aw21
1~11N!F f 1~2!

Aw11
1x f2~2!G

1Qt0 , ~33!
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f 1~2!F j1
Aw

1
&

1NS Aw12
1

Aw
1

A2m̃
1
&

D
2
f 1~1!

Aw
2x

f 2~1!

A2m̃
1

f 1~3!

Aw12
1x

f 2~3!

&

G
5NF f 1~1!

Aw
1x

f 2~1!

A2m̃
G1~11N!

3F f 1~3!

Aw12
1x

f 2~3!

&

G , ~34!

f 2~2!F ~11N!S x

A2m̃
1

1

AwD 1NS 1

Aw12
1

x

&

D
2
f 1~1!

Aw
2x

f 2~1!

A2m̃
1

f 1~3!

Aw12
1x

f 2~3!

&

G
5NF f 1~1!

Aw
1x

f 2~1!

A2m̃
G1~11N!F f 1~3!

Aw12

1x
f 2~3!

&

G , ~35!

f 1~n!F j1
1

Aw1n22
1

x

An
1NS 1

Aw1n
1

1

Aw1n22

1
x

An22
1

x

AnD 2
f 1~n21!

Aw1n22
2x

f 2~n21!

An22

1
f 1~n11!

Aw1n
1x

f 2~n11!

An G
5NF f 1~n21!

Aw1n22
1x

f 2~n21!

An22
G1~11N!

3F f 1~n11!

Aw1n
1x

f 2~n11!

An G , ~36!

f 2~n!F ~11N!S x

An22
1

1

Aw1n22
D 1NS 1

Aw1n

1
x

AnD 2
f 1~n21!

Aw1n22
2x

f 2~n21!

An22

1
f 1~n11!

Aw1n
1x

f 2~n11!

An G
5NF f 1~n21!

Aw1n22
1x

f 2~n21!

An22
G1~11N!

3F f 1~n11!

Aw1n
1x

f 2~n11!

An G , ~37!

wherej5t0 /t t , x5Am1 /m2, w5v/v0 , andm̃5m/v0 . In
Eqs.~36! and ~37! we haven>3.
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This equation system should be supplemented with
equation for the phonon number5 similar to Eq.~13!. In the
one-dimensional configuration, this equation may differ fro
the corresponding equations in the two-dimensional@Eq.
~13!# and three-dimensional cases. In fact, one can ea

FIG. 4. The functionf 2(1) versust t /t0 . The solid curve shows a numeri
cal solution of the system of nonlinear equations~8!–~13!, the dashed line
shows a solution in the quasi-linear approximation, the dash-doted lin
solution in the linear approximation. The solid line with circles is a nume
cal solution of Eqs.~8!–~13! for a ratio between the effective masses in t
subbands m2 /m151.5. ~a! Qt050.1, tesc/t0510; ~b! Qt050.1,
tesc/t05100; ~c! Qt051, tesc/t0510.
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prove using the energy and momentum conservation tha
optical phonon emitted by an electron can impart its ene
only to the same electron. Therefore Eq.~13! should be,
generally speaking, modified considerably. But in the r
situation, when there are several types of optical phono
these changes may be not so drastic.11 Taking into account
this factor and with a view to simplify the calculation, w
use an equation similar to Eq.~13!, but with allowance for
the electron density of states in the one-dimensional cas

N
t t

tesc

1

m̃
5

f 1~0!

Aw21
2 (

n52

`
~n21! f 1~n!

Aw1n21
. ~38!

Since the density of state in this case is a function
energy, the system of equations~31!–~38! is more compli-
cated than in the case of quantum wells@Eqs.~8!–~13!#, and
we could not find an analytical solution. Both systems~31!–
~38! and~8!–~13! have been solved by an iteration techniq

FIG. 5. Curves off 2(1) versust t /t0 for quantum wires~solid lines! and
quantum wells~dashed lines!. The calculations were performed at~1!
Qt051, ~2! 0.5, and~3! 0.1.

FIG. 6. Curves off 2(1) versusQt0 for the case of quantum wires~solid
lines! and quantum wells~dashed lines!. Calculations were preformed at~1!
t t /t055, ~2! 2, ~3! 1, ~4! 0.7, and~5! 0.1.
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with the parameterstesc, t0 , t t , Q, andm varied over a
wide ranges. In all these calculations the electron masse
the subbands were equal.

Figure 5 shows typical curves off 2(1) versust t /t0 at
variousQt0 ~see caption to Fig. 5!. For comparison similar
curves for the two-dimensional system are also shown.
solid curves show functions calculated numerically for t
case of quantum wires, and dashed curves correspond t
case of quantum wells. One can see that in the o
dimensional system, as in the two-dimensional configurat
f 2(1) increases witht t /t0 , and at a higher rate. Thus w
conclude that the threshold injection rate in quantum wi
decreases witht t , and even faster than in quantum wells.

We have also thoroughly investigatedf 2(1) as a func-
tion of Qt0 . The curves are shown in Fig. 6. The gain
f 2(1) is higher at small injection rates. It is interesting th
for t t /t0!1 the gain inf 2(1) for quantum wires is less tha
for quantum wells.

FIG. 7. The function f 2(1) versus t t /t0 for quantum wires. ~1!
m/v050.2, ~2! 0.02, and~3! 0.002;Qt050.05.

FIG. 8. The number of phononsN versusQt0 for the case of quantum wires
~solid lines! and quantum wells~dashed lines!. The curves were calculated
at ~1! t t /t050.1, ~2! 0.2, ~3! 0.7, ~4! 1, ~5! 2, and~6! 5.
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which showsf 2(1) versust t /t0 for various energy spread
m of the injected electrons. If the electron energy distribut
is narrower, the parameterf 2(1) grows faster witht t /t0
owing to the singularity in the density of states described
Eqs.~31!–~35! by the terms proportional to 1/Am̃.

The difference inf 2(1) between two- and one dimen
sional systems is probably caused by the difference in
numbers of phonons in wires and wells for equal model
rameters. This is illustrated by Fig. 8, which showsN as a
function ofQt0 at differentt t ~see caption to Fig. 8!. Figure
8 demonstrates that in both quantum wells and quan
wires N rapidly saturates with the growth of the injectio
rate att t,1 ~N;1 even thoughQt0!1! because at large
t t energy is accumulated not only by phonons, but also
the electrons of the lower subband.

6. CONCLUSION

Thus, numerical solutions of the system of nonline
equations for the electron distribution functionsf 1(n) and
f 2(n) and the number of phononsN have confirmed the
main conclusions of Refs. 5 and 6 about the possibility
reducing the threshold injection rate~threshold current! and
about the kinetics of a quantum cascade quantum-well la
We have determinedf 1(n), f 2(n), andN with the model
parameters and injection rateQ varied over wide intervals
and limits within which the linear approximation5,6 applies.
We have proved that the linear approximation is valid
Q,Qc @see Eq.~23!#, whereQ;j, i.e., in a relatively nar-
row range forj!1 and over a wider range forj@1.

On the other hand, the analytical solution in the qua
linear approximation described in the paper can be used
a wide interval ofQ with good accuracy. Using this solution
one can obtain the threshold injection rateQth both in the
general case and in specific limiting cases, and prove tha
phonons are accumulated (Qtesc@1), the threshold injection
rateQth can be reduced notably and is controlled only
electron–electron and electron–phonon scattering. Note
estimates oftesc present some problems. The phonon dec
rate 1/tesc is determined by its departure from the acti
region ~this time is evidently long, 1028–1029 s5,6! and its
decay into acoustic phonons. The latter process is faste
382 JETP 84 (2), February 1997
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The features of the electron kinetics in two-dimension

quantum cascade lasers are also typical of quantum-wire
sers. The exact numerical solutions of the respective kin
equation system demonstrate that by increasingt t it is pos-
sible to reduce the threshold current even more than i
quantum-well laser.

Furthermore,t t in a quantum-wire laser can be increas
to a higher value~10210 s! owing to the lower intrasubband
electron–electron relaxation rate,8 so the threshold curren
may be two or three orders of magnitude lower.

The threshold current can be additionally reduced ow
to singularities in the electron density of states and differ
effective masses in the subbands. To sum up, it is poss
that quantum-wire lasers using transitions between subba
in the conductance band will have threshold currents com
rable to those of conventional quantum-well lasers based
the transitions between the conductance and valence ba
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Microwave impedance of Ba 0.6K0.4BiO3 crystals: comparison with Nb

del,
M. R. Trunin, A. A. Zhukov, and A. T. Sokolov

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region,
Russia
~Submitted 4 April 1996!
Zh. Éksp. Teor. Fiz.111, 696–704~February 1997!

The surface impedanceZs5Rs1 iXs of samples of Ba0.6K0.4BiO3 in the temperature range
4,T,50 K is measured at 9.42 GHz. The BCS theory completely describes the electrodynamic
properties of Nb in the dirty limit, and its application to Ba0.6K0.4BiO3 allows determination
of the London penetration depthlL(0)531006100 Å. © 1997 American Institute of Physics.
@S1063-7761~97!02202-6#

The surface impedance of Ba12xKxBiO3 films forming a experimental curves can be described within the BCS mo
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parallel-plate resonator was measured at 6.5 GHz in Re
Microwave measurements of the impedanceZs5Rs1 iXs of
Ba12xKxBiO3 films have not been performed hitherto. A
analysis of the temperature dependence of the surface r
tanceRs(T) and the surface reactanceXs(T) of a supercon-
ductor determines the gap size, the London penetra
depth, the presence of impurities in the sample, and, u
mately, the superconductive pairing mechanism. The re
investigations of Zs(T) for YBaCuO ~Refs. 2–4! and
BiSrCaCuO~Ref. 5! single crystals performed by a metho
that is convenient for measuring samples of small size~the
‘‘hot-finger’’ method! can serve as a example. These inv
tigations allowed the two most probable pairing mechanis
(d or anisotropics pairing! in these materials to be identifie
from the plethora of proposed models.

Unlike other high-temperature superconductors,
compound Ba0.6K0.4BiO3 ~BKBO!, which does not contain
copper and has a cubic perovskite structure, is apparentl
ordinary isotropic type-II superconductor with a high sup
conducting transition temperatureTc'30 K. In fact, many
experimental findings can be explained within the Barde
Cooper–Schrieffer~BCS! model with a singlet type of car
rier pairing.6 Nevertheless, several anomalous properties,
example, the positive curvature of the temperature dep
dence of the second critical field, have been observed in
normal and superconductive states of BKBO.7–9 In addition,
the parameters of BKBO extracted from experiments, v
the coupling constant,10,11 the gap size,12,13 the London pen-
etration depth,1,14 etc., differ considerably. The main reaso
for such disparate interpretations of the experiments is ap
ently the ‘‘imperfect’’ nature of the BKBO crystals invest
gated. In particular, according to dynamic susceptibility m
surements, the width of their superconducting transit
amounts to several degrees, and even in samples with a
small resistivity r(Tc),100 mV•cm the transition is
inhomogeneous.7

In the present work the superconducting properties
BKBO crystals were studied in the 3-cm wavelength ran
The effectiveness of the method used was tested in w
with Nb samples. The measurements of the temperature
pendence of the surface impedance exhibit inhomogene
broadening of the superconducting transition and consi
able residual losses in the BKBO crystals. Nevertheless,
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which takes into account both of these factors, over the en
temperature range.

The surface impedance of the Nb and BKBO samp
was measured atf 059.42 GHz by a method that was firs
proposed in Ref. 15. A cylindrical resonator of length a
diameter equal to 42 mm, which was cut on a lathe from p
niobium. Among the resonator was not subjected to any
ditional treatment. Among the important features of the d
sign and operation of the resonator, the degree of couplin
waveguides with the resonator could be smoothly varied
large frequency shift (.30 MHz! between the degenerat
H011 and E111 modes could be achieved, and the worki
temperature of the resonator was constant atT54.2 K.

The experiments were carried out with Nb samples
from the same original material as the resonator itself a
with BKBO crystals, which were prepared by electrochem
cal crystallization.16 Figure 1 presents typical plots of th
temperature dependence of the real part of the dynamic
ceptibility x8(T)/x8(0) of BKBO single crystals of identica
composition, whose synthesis conditions were varied in
der to obtain a crystal having a narrow homogeneous tra
tion to the superconducting state. Such a crystal has not
been successfully grown: as is seen from Fig. 1, the se
plots ofx8(T)/x8(0) for different samples reveals the vari
tion of their superconducting transitions from a very bro
and smooth transition~sample1! to a ‘‘two-stage’’ transition
~sample3!, which begins atT'29 K and changes slope a
T'26 K. Similar structures were previously observed f
superconducting transitions in Ref. 7 when the magnetiza
of BKBO crystals grown by a similar method was measur
Below we present the results of measurements of the sur
impedance of two samples having an approximately cu
shape: a 5.5 mm3 sample of Nb and a 0.2 mm3 sample of
BKBO ~sample3!.

Each sample was fixed to the end surface of a sapp
rod and positioned at the center of the resonator, where
magnetic fieldH of the working modeH011 is uniform and
axially directed. The entire resonator-sample assembly
placed in a high vacuum, which, together with the therm
insulation of the rod, provided for the possibility of exte
nally regulating the temperature of the sample in the ra
from 4.2 to 50 K without heating the resonator itself. T
Q factor of the resonator without the sample~but with a

383-05$10.00 © 1997 American Institute of Physics
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heated sapphire rod inside! did not vary in this temperature
range, remaining equal toQ0(T)'7.13106, and a small but
reproducible shiftD f 0(T) of the frequencyf 0 of the resona-
tor was observed. The accuracy of the measurements o
Q factor of the resonator was;1%; the error in setting and
measuring the resonant frequency, as well as the instab
of the frequency of the microwave synthesizer, did not
ceed 1029.

Figure 2 presents the temperature dependence of the
perimentally measured parameters, viz., theQ factorQ(T)
of the resonator with a Nb or BKBO sample, and the cor
sponding variations of the resonant frequen
D f (T)2D f 0(T). The surface resistanceRs(T) of a sample
and the variation of its reactanceDXs(T) are found from the
relation

Rs~T!5Gs@Q
21~T!2Q0

21~T!#,

DXs~T!52
2Gs

f 0
@D f ~T!2D f 0~T!#, ~1!

where

FIG. 1. Dynamic susceptibility of three BKBO crystals.

FIG. 2. Measured temperature dependences of 1/Q andD f of a niobium
sample~unfilled points! and a BKBO crystal~filled points!.
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is the geometric factor of the sample, whose unit of meas
in the Syste`me International is the ohm,v052p f 0,
m054p•1027 H/m, the integration in the numerator of~2! is
over the volume of the resonator, and the integration in
denominator is over the surface area of the sample. A
seen from~1! and~2!, the determination of the absolute va
ues ofRs(T) andXs(T)5DXs(T)1X0 requires knowledge
of two parameters: the additive constantX0 and Gs . The
former is found from the condition that the realRn and
imaginaryXn parts of the impedance in the normal state
equalRn5Xn, since the criteria for the normal skin effect a
satisfied for the Nb and BKBO samples that we investigat
The problem of calculating the latter parameter, i.e.,Gs can
be solved in the general case only by numerical metho
However, if the sample has an ellipsoidal shape and is p
tioned at the center of a resonator operating in theH011

mode, it is not difficult to obtain an analytical expression f
Gs ~Ref. 17!. Therefore, our first step was to evaluateG1,Nb

and G1,BKBO under the assumption that both samples
spheroids having volumes equal to the known volumes of
Nb and BKBO samples. The second step was based on
experimental method for determiningGNb . Under the condi-
tions of the normal skin effect, the surface resistance
Rn5Avm0r/2. We measured the resistivityrNb~10 K!
'3mV•cm of a thin strip of Nb cut from the same materi
as the niobium sample itself. Next, equatingRn andRs~10 K!
from ~1!, we found the valueGNb51.383104V, which is
only 24% smaller than the value ofG1,Nb calculated by the
first method. Taking into account the similarity between t
shapes of the Nb and BKBO samples investigated, we se
geometric factor of the BKBO crystal equal t
GBKBO50.76•G1,BKBO512.43104V.

Figure 3 shows plots ofRs(T) andXx(T) of a niobium
sample, whose critical temperature isTc59.2 K. ForT.Tc
~in the normal state! Rn5Xn5Avm0m/2ne

2t'33 mV. The
value of the ratio of the effective massm to the carrier den-
sity n in Nb is known:18,19m/n'1.5310259 kg•m3. We find
the relaxation time of the carrierst'2310214 s and the
mean free pathl540 Å, which is much smaller than th
depth of the skin layerd5r/Rn'9000 Å. In the supercon-
ducting stateXs(T) practically reaches its minimum valu
Xs(0)'6 mV for T,5.5K50.6Tc . the surface resistanc
Rs(T) decreases by three orders of magnitude as the t
perature varies fromTc to 0.5Tc . Such behavior ofRs(T)
andXs(T) corresponds to the BCS model, and knowledge
the absolute values ofRs(T) andXs(T) gives the supercon
ducting parameters of Nb.

In the local case there is a simple relationship betwe
the surface impedance of a superconductor and its com
conductivityss5s12 is2:

Zs5Rs1 iXs5S ivm0

s12 is2
D 1/2. ~3!

384Trunin et al.



s
it

c
pe

th

-
n
6
ra
-

p

s

n

s2
5

pD~T!
tanh

D
~6!

mic
h

t
d
t

g
m

ost

ran-
ns:
t
era-

the
the
ibe

he

the
n-
n
n.
un-
rent

ion
he
-

st,

are
ple

he

e

S

After measuringRs andXs , from ~3! we find the expression
for the real and imaginary components of the conductiv
ss normalized to the valuesn in the normal state:

s1

sn
5

4Rn
2RsXs

~Rs
21Xs

2!2
,

s2

sn
5
2Rn

2~Xs
22Rs

2!

~Rs
21Xs

2!2
. ~4!

The most striking feature of the BCS model,6 which dis-
tinguishes it from all the other theories on the high-frequen
response of superconductors, is the nonmonotonic de
dence ofs1(T), which increases at 0.85,T/Tc,1 and de-
creases atT,0.85Tc ~the so-called coherent peak!. The am-
plitude of the peak decreases with increasing values of
frequencyv, the ratiol /j0 (j0 is the coherence length! and
the electron-phonon coupling constant,20 and the peak van
ishes if this constant exceeds unity. We know of only o
study,21 in which the coherent peak in Nb was observed at
GHz. In the inset in Fig. 3 the solid line shows the tempe
ture dependence ofs1 /sn calculated from the general for
mulas of the BCS theory22 with known values ofv, t, and
m/n. The temperature dependence of the gapD(T) was
taken from the same formulas: 2D(0)53.53kTc . There are
no fitting parameters. The shaded squares in the inset re
sent the experimental dependence ofs1 /sn(T/Tc) found
from ~4!.

The imaginary part of the conductivitys2(T) deter-
mines the depthl(T) to which a magnetic field penetrate
into the superconductor:

l5~Avm0s2
21. ~5!

At low temperatures (T!Tc) the dependence ofl(T) coin-
cides withXs(T)5vm0l(T), and from Fig. 3 we at once
find l(0)5Xs(0)/vm0'800 Å. In the dirty (l,Aj0l,l)
low-frequency (\v!D) limit of the BCS theory, which is
satisfied by the experiments under consideration, it is
difficult to obtain an exact analytical expression fors2

FIG. 3. Plots ofRs(T) andXs(T) in Nb. The inset contains plots of th
temperature dependence of the real part of the conductivitys1 /sn ~filled
squares! and the London penetration depthlL ~unfilled circles! found from
the measured values ofRs(T) and Xs(T) using Eqs.~4! and ~5! and the
relationlL(T)50.4l(T). The solid curves were calculated within the BC
model.6,23
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and an expression fors1 that is approximate nearTc , but
quantitatively correct in the limitT!Tc :

s1

sn
'

D~T!

2kT
cosh22S D

2kTD lnS D

\v D . ~7!

The coherent peak appears because of the logarith
factor in ~7!. In the dirty limit the London penetration dept
lL(0) is related to the measured depthl(0) by the expres-
sion lL(0)5l(0)Al /j0. After determinings2(T) from ~4!
and l(T) from ~5! and taking into account tha
Al /j05ApD(0)t/\'0.4 holds for our Nb sample, we fin
the dependence oflL(T) depicted by the circles in the inse
in Fig. 3. The solid curve is a plot oflL(T) calculated using
Eqs. ~6! and ~5!. The value foundlL(0)5320610 Å coin-
cides with the known literature data for Nb.21,23,24

Figure 4 presents plots ofRs(T) andXs(T) of a BKBO
crystal, which differ appreciably from the correspondin
curves for Nb~Fig. 3!. First, as the temperature varies fro
T5Tc'29 K to T515 K the surface resistanceRs(T) de-
creases altogether by only a factor of 18, reaching an alm
constant residual resistanceR0'49 mV for T,15 K. Sec-
ond, there is a broad inhomogeneous superconducting t
sition, which actually consists of two successive transitio
the first begins atT'29 K, and the second begins a
T'26 K. They are also manifested in the measured temp
ture dependence of 1/Q andD f in Fig. 2. In the normal state
Rs~40 K!'0.89 V corresponds tor~40 K!'2100mV•cm,
and for the ratiom/n'2.6310257 kg•m3 in BKBO13,25 we
obtaint'0.5310214 s from the Drude formula.

Both features cited of the temperature dependence of
impedance of BKBO are related to the defect density in
surface layer of the crystal. We now show how to descr
the experimental plots ofRs(T) andXs(T) in Fig. 4 while
remaining within the BCS model and taking into account t
heterogeneity of the sample and the residual lossesR0 in it.
For this purpose we utilize the ideas in Ref. 26, where
origin of the narrow incoherent peak in the microwave co
ductivity s1(T) of YBaCuO single crystals was explained o
the basis of the simple effective-medium approximatio
Thus, we assume that different regions of our sample
dergo the transition to the superconducting state at diffe
critical temperatures lying in the rangeDTc . If each of these
regions is small compared with the London penetrat
depth, the distribution of the microwave currents over t
sample is uniform, and the calculation of the effective im
pedanceZeff of the sample reduces to two operations: fir
the impedancesZs of the regions of the sample~with differ-
entTc) that are connected in a chain along a current line
summed, and then averaging over the volume of the sam
is performed. As a result, we have

Zeff~T!5E
DTc

Zs~T,Tc! f ~Tc!dTc , ~8!

where the distribution functionf (Tc) is such that the fraction
of the volume of the sample with critical temperatures in t
rangeTc,T,Tc1dTc equals f (Tc)dTc . In the simplest
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FIG. 4. Plots ofRs(T) and Xs(T) of a BKBO
crystal. In the upper inset the points depict th
temperature dependence of the relative values
the surface resistance (r ) and the reactance (x)
and the imaginary part of the conductivitys2, the
solid lines are plots of the corresponding effectiv
values found from Eq.~8!, and the dashed line is a
plot of the dependence~6!. The lower inset pre-
sents plots oflL(T) calculated in the dirty limit of
the BCS theory~dashed line! and within a model
which takes into account the presence of regio
with different critical temperatures in the samp
~solid line!. The points depict the measured d
pendence oflL(T).
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bution function of the different regions of the sample w
respect toTc should reflect the two transitions observed:
we move from the low-temperature side, the broad transi
with a maximum f (Tc2) at Tc2'26 K rapidly transforms
into a narrow transition with a maximumf (Tc1) at
Tc1'28 K.

The upper inset in Fig. 4 presents the temperature de
dence of the relative quantities

r5
Rs2R0

Rn2R0
'
Rs2R0

Rn
, x5

Xs

Xn2R0
'
Xs

Rn
. ~9!

The numerator in the expression forr takes into account only
the temperature-dependent part of the surface resista
which is obtained fromRs(T) by subtracting the residua
resistanceR0!Rn . We further note that, as follows from~1!,
r andx in ~9! do not depend on the geometric factor~2! of
the sample. The continuous lines correspond to the effec
values of r and x from ~8!, in which the impedance
Zs(T,Tc) was calculated using the general BCS formulas
the electromagnetic response of superconductors22 with
2D(0)53.53kTc and the values oft and n/m indicated
above for a BKBO crystal, and the expression

f ~Tc!5
2

3
A2

pF 1

DT1
expH 2

~Tc12T!2

2~DT1!
2 J 1

1

DT2

3u~Tc22T!expH 2
~Tc22T!2

2~DT2!
2 J G

with Tc1528 K, DT151 K, Tc2526.5 K, andDT254.7 K
served as the distribution functionf (Tc). The points in this
inset show the dependence ofs2 /sn on (T/Tc) found from
measured values ofr andx using Eq.~4!, the solid line is a
plot of the effective conductivitys2,eff /sn , which is also
found using~4!, but from the effective values ofr andx, and
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cides with the preceding curve atT,0.3Tc . The minimum
value of the imaginary part of the impedanceXs(0)'Xs~5
K!'70 mV, and, therefore,l(0)5Xs(0)/vm0'9400 Å.
Taking into account the measurement error and the fa
Al /j0'0.33, we find the London penetration depth of a ma
netic field into a BKBO crystal at T50:
lL(0)531006100 Å. The course oflL(T), which is repre-
sented by the points in the lower inset in Fig. 4, follows t
BCS law~dashed line! in the dirty limit with consideration of
the deviation from it atT.0.3Tc ~solid line!, which is ob-
tained from the model of inhomogeneous broadening of
superconducting transition under consideration. The va
found for lL(0) is consistent with the recent measureme
of l(0),1,27 if the correctionA11j0 / l due to scattering on
impurities is taken into account in them
lL(0)5l(0)/A11j0 / l .

Thus, comparative measurements of the microwave
face impedance of Nb and BKBO have revealed distinct d
ferences in the values of the residual surface resistanceR0

and the widths of the superconducting transitions of th
samples. While the high-frequency response of Nb is fa
fully described by the BCS model, the large value of t
R0 and the inhomogeneous broadening of the supercond
ing transition complicate the interpretation of the experime
tal data for BKBO. Nevertheless, the standard procedure
isolating the temperature-dependent part of the impeda
Zs(T) and the use of a Gaussian distribution of the mic
scopic regions comprising the surface layer of the sam
with respect toTc enable us to describe the observed dep
dence ofZs(T) over the entire temperature range and to d
termine the value of the London penetration depth of a m
netic field into a BKBO crystal.
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Formation of spatial solitons and spatial shock waves in photorefractive crystals

V. A. Vysloukh, V. Kutuzov, V. M. Petnikova, and V. V. Shuvalov

International Laser Center, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
~Submitted 21 July 1996; resubmitted 17 September 1996!
Zh. Éksp. Teor. Fiz.111, 705–716~February 1997!

An analytical model, which describes the drift and diffusion mechanisms for the formation of the
nonlinear response~local and nonlocal nonlinearities! of photorefractive crystals on the
microscopic level, is constructed. New types of stable self-consistent distributions of the light
field intensity, i.e., spatial solitons, are found. The trajectories of their motion~self-
bending! are calculated, and the possibility of observing a new nonlinear-optical effect in
photorefractive crystals, viz., the formation of spatial shock waves, is demonstrated. The
modulation instability appearing when plane waves propagate in photorefractive crystals
is analyzed, and the characteristic spatial scales of the light field distribution formed as a result
of self-interaction~fanning! are determined. The results of the analysis are confirmed by
computer simulation data. ©1997 American Institute of Physics.@S1063-7761~97!02302-0#
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One of most interesting problems in contemporary n
linear optics is the investigation of self-organization pr
cesses~phase transitions! in systems consisting of a nonlin
ear medium and a light field. While the stable self-consist
solutions of such problems~solitons! in media with a spa-
tially localized ~local! nonlinear response~the case of so-
called Kerr nonlinearity1! have been studied quite tho
oughly, our understanding of the physics of the formation
the analogous space–time structures in self-pumped sys
on the basis of nonlocal nonlinearity of the photorefract
type is still on a fairly low level. Investigations of such sy
tems are urgently needed, because photorefraction is on
the strongest mechanisms of nonlinearity, whose manife
tions are observed at light intensities amounting to only s
eral mW/cm2 ~Ref. 2!.

Photorefractive crystals are characterized by delayed
fects, which make it possible to regulate the time for t
formation of the nonlinear response in the range from ten
seconds to a few milliseconds or less.3 However, more im-
portantly, owing to its nonlocal component, fundamenta
new types of nonlinear optical signal conversion, such
two-beam energy coupling, the transfer of phase informat
etc., can be realized.4 A unique place among all these pro
cesses is occupied by wave-front reversal. This effect
also be observed in self-pumped devices, which are es
tially four-photon and often mirrorless parametric lig
generators.5 In such systems reversed waves can be ge
ated even when the pump waves are incoherent.6 In fact, this
process is an example of such self-organization, i.e., a p
transition occurring in a nonlinear-medium–light-fie
system.7

The physics of the processes occurring in response to
spatially inhomogeneous illumination of a photorefracti
crystal is presently well known.8 The interference of externa
light fields and/or light fields generated in photorefracti
crystals leads to the spatially inhomogeneous photogen
tion of free carriers. This is followed by their spatial diffu
sion and drift in a static electric field. The subsequent cap
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spatially inhomogeneous distribution of the internal elect
field to form. The influence of this field through the line
electro-optic effect leads to a spatially inhomogeneous
tribution of the refractive index. The scattering of light o
the resultant dynamic hologram closes a two-dimensio
feedback loop, forming a complete self-consistent proble

Although the system of material equations needed to
scribe photorefraction8 and the possibility of creating variou
generation devices from photorefractive crystals9 have been
known for a fairly long time, only a stationary generatio
regime5 and the transitional processes accompanying
nonlinear interaction of plane waves in photorefracti
crystals10 have been described on the microscopic level. T
generation threshold of self-pumped devices and the cha
teristic time until they achieve a stationary regime have b
evaluated. The main cause of this seemingly paradox
situation is quite simple. The fact is that a very complicat
nonlinear system of equations must be solved when the p
lem is formulated on the microscopic level. Unfortunate
its numerical integration requires the use of an excessiv
fine grid along the time and spatial coordinates.11 Serious
problems also arise in the interpretation of the comp
structure of the nonstationary nonlinear wave fields obtai
as a result of computer simulation. Under the analytical
proach in Ref. 12, in which these problems are eliminat
the problem is always regularized, which sharply deple
the possible spatial spectrum of the interacting light fields
the statistical description in Ref. 13 the problem is lineariz
through the use of numerous assumptions that greatly res
its generality. The pump fields are assumed to be assig
the role of the self-interaction and diffraction processes
higher orders is disregarded, etc. Actually, averaging of
system of nonlinear equations is carried out, which sho
not be done under the conditions of such strong nonlinea
Thus, there is presently virtually no adequate description
the processes leading to the formation of stable solution
self-pumped systems based on media with photorefrac
nonlinearity. We also note that the problem of transformi
dynamic images, i.e., wavefronts with regular dynamic s

388-07$10.00 © 1997 American Institute of Physics



tial modulation, can also lead to fundamentally new effects
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like stable space–time autowave solutions.
Soliton effects play a very important role in the form

tion of nonlinear wave fields in photorefractive crystals. T
pioneering work in Ref. 15 was devoted to a theoreti
analysis of these effects. The experimental realization o
soliton regime for the propagation of light beams in pho
refractive crystals was first demonstrated in Refs. 16 and
The further progress in this area has been largely assoc
with the analysis of new types of soliton solutions, such
‘‘dark,’’ 18 ‘‘gray,’’ 19 ‘‘vector,’’ 20 ‘‘vortex,’’ 21 and other soli-
tons.

The purpose of the present work was to investigate
formation and propagation of the known stationary wa
packets of the soliton type, as well as a new self-consis
spatial distribution of a light field, viz., spatial shock wave
in systems with local and nonlocal components of the n
linear response. We succeeded in constructing a physic
explicit and fairly general model based on a microsco
description of the processes occurring in a nonline
medium–light-field system. In the process we were able
dispense with numerous traditional approximations t
would have restricted the generality of the solutions obtai
and to correctly describe the fairly complex and unusual s
tial structure of self-consistent light beams propagating
such a nonlinear medium.

2. INITIAL MODEL

The model of the nonlinear response of photorefract
crystals that we used is based on the classical system
material equations for the internal electric fieldEsc(x,t)
~Ref. 8! written for the two-dimensional case without co
sideration of the photovoltaic effect:

]n

]t
5

]Nd
1

]t
2
1

e

] j

]x
,

]Nd
1

]t
5s~ I1I 0!~Nd2Nd

1!2gRnNd
1 , ~1!

j5emn~E01Esc!2mQ
]n

]x
,

]Esc

]x
5
4pe

«
~n1Na2Nd

1!.

Heren, Nd , Nd
1 andNa are the number densities of the fre

carriers, donors, ionized donors, and acceptors, respecti
s is the cross section of the photoionization process;I (x,t) is
the radiated intensity;I 0 is a parameter which describes th
dark conductivity of photorefractive crystals and specifi
the rate of the dark ionization of the donors assI0; gR is the
pair recombination constant;e and m are the charge and
mobility of the free carriers with consideration of their sign
which are negative for electrons and positive for holes;« is
the static dielectric constant of the photorefractive crys
andQ is its temperature in energy units. It is assumed tha
external static electric fieldE0 is applied to the photorefrac
tive crystal in the transverse direction~along thex axis!;
therefore, both the drift and diffusion components of the c
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assumed that the optical radiation propagates along thz
axis.

The system of material equations~1! is solved together
with the standard reduced wave equation for the comp
amplitude of a light fieldA(x,z,t):

i
]A

]z
5

1

2k

]2A

]x2
1k

dh

h
A, ~2!

which is written in the paraxial approximation without co
sideration of the absorption. Herek is the wave number;
dh5(1/2)r effh

3Esc(x,z,t) is the nonlinear addition to the
refractive indexh; and r eff is the effective electro-optica
coefficient. The variation of the refractive index caused
the static fieldE0, which is uniform with respect tox, was
omitted in ~2!. Equations~1! and ~2! form a self-consistent
problem, in which the mutual influence of the redistributio
of the light intensity and the redistribution of the electr
field in the bulk of the photorefractive crystal is taken in
account. Such a model faithfully describes experiments w
so-called slit beams,22 which are widely used in practice in
investigations of soliton effects in photorefractive crysta
because of the strong anisotropy of the nonlinear respons
the latter.

3. SOLUTION OF THE SYSTEM OF MATERIAL EQUATIONS

The system of material equations~1! is solved in the
stationary approximation]/]t→0, j5 j (x). As a result, j
andNd

1 are eliminated from it, and

En2E0n05
Q

e

]n

]x
, ~3!

n5s~ I 01I !~Nd2Na!S 11ax
]E

]x D
Y gRNaS 12a

]E

]x D . ~4!

Heren0 is the dark density of free carriers. In~4! we have
introduced the notation

a5
«

4peNa
, E5E01Esc, x5

Na

Nd2Na
, ~5!

and it is assumed thatNa@n. For photorefractive crystals
with a large dark conductivity, i.e., when the inequali
I 0@I holds, the system of equations~3! and~4! is linearized
with respect toI , Esc, andn. Now, under the assumption tha
a]E/]x!1 it can be reduced to a single linear equation t
is second-order with respect toEsc

]2Esc

]x2
2
eE0
Q

]Esc

]x
2

e

Qa~x11!
Esc

5
1

a~x11!I 0
S eE0Q

I2
]I

]xD . ~6!

Its solution can be represented in the form
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sc a~x11!I 0~l12l2!
F 1

2`

3exp@l2~x2j!#dj1l2E
x

`

I ~j!exp@l1~x2j!#djG ,
~7!

l1,25
eE0
2Q

6AS eE02Q D 21 e

aQ~x11!
,

which also specifies the nonlinear addition to the refract
index on the right-hand side of Eq.~2!.

When ~7! is integrated,I (j) can be expanded into a se
ries in the vicinity of the pointx. This enables us to write th
solution of ~7! in the form of an expansion in derivatives o
the radiated intensity

Esc5
1

aI0~x11!~l12l2!
(
m50

` S l1

l2
m11 2

l2

l1
m11D ]mI ~x!

]xm
.

~8!

The relation between the spatial distributions of the inter
field and the radiated intensity is even more transparen
the spectral representation. It is easily seen that in sha
the spatial spectrum of the distribution of the internal fie
Esc(k) the photorefractive crystal actually plays the role o
field of the spatial frequenciesk with the transmission coef
ficient

T~k!52
E0

I 0

11 ikQ/eE0
12 ikaE0~x11!1k2aQ~x11!/e

~9!

with respect to the spatial spectrum of the distribution of
light intensityI (k). The expressions forT(k) in the cases of
pure drift of the free carriers and their pure spatial diffusi
can easily be obtained from~9! after the limiting transitions
Q→0 andE0→0:

Tdr~k!52
E0

I 0

1

12 ikaE0~x11!
, ~10!

Tdf~k!52 ik
Q

eI0

1

11k2aQ~x11!/e
. ~11!

We note that~10! and~11! can be simplified significantly, if
the terms proportional tok andk2 in their denominators are
neglected orTdr(k) andTdf(k) are expanded in power serie
in k with retention of only the linear terms. The latter ca
nearly always be done, since under the conditions of any
experiment in external fields up to 10 kV/cm atQ;300 K
all the subsequent terms become significant only for spa
scales of variation of the light field smaller than the wav
length. This actually means that in the expansion~8! we can
retain only the first two terms, which are proportional
I (x) and]I /]x and which we shall henceforth call the loc
and nonlocal components of the nonlinear response.
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Let us discuss some very important solutions of the s
consistent problem formulated by Eqs.~2! and ~8!. We at-
tempt to find solutions which fit the case of the separation
variables

A~x,z!5Y~x!exp~2 inz!, ~12!

where the real functionY(x) assigns the distribution of the
field along the transverse coordinatex, and the positive con-
stantn specifies the nonlinear phase trajectory of the solut
along z. Thus, the problem is to attempt to find intensi
distributions that are stationary with respect toz and t. It is
easy to see that the substitution of~12! into ~2! leads to an
equation for the spatial profile of the amplitude having t
form

d2Y

dx2
24

akE0
I 0

F Q

eE0
1a~x11!E0G

3Y2
dY

dx
12kS aE0

I 0
Y32nYD50, ~13!

wherea5kreffh
2/2 and the first two terms of the expansio

~8! have been retained~see above!. In the case of focusing
Kerr nonlinearity (dh.0), it is convenient to introduce the
dimensionless coordinatesj5x/x0 andz5z/Ld and the nor-
malized amplitude of the light fieldr(j)5Y(j)AR/I 0 into
~13!. Herex0 is determined by the characteristic transve
scale of the problem, for example, by the width of the
coming beam;Ld5kx0

2 is the diffraction length correspond
ing to x0; R5Ld /Lr.0; and Lr51/aE0 is the nonlinear
refraction length. Now~13! becomes

d2r

dj2
12gr2

dr

dj
12~r32br!50, ~14!

where the parameter

g522
akE0
R F Q

eE0
1a~x11!E0Gx0

characterizes the magnitude of the nonlocal componen
the nonlinear response, andb5Ldn. Below we shall say
more regarding the case ofg.0, which can occur when the
orientation of the photorefractive crystal and the direction
E0 are chosen appropriately.

4.1. Modulation instability

It is easy to see that, as in a medium with pure K
nonlinearity, a plane wave with an amplituder(j)5r0 is a
trivial solution of ~14! whenb5r0

2. Let us consider the sta
bility of this solution toward small (dr0!1) harmonic dis-
turbances of the distributiondr(j)5dr0cos(Vj) at the di-
mensionless spatial frequencyV5kx0. Using the
linearization technique developed by Bespalov a
Talanov23 and the results obtained in Ref. 24, we can eas
show that the amplitude of such a disturbance increases
ponentially asz increases with the growth rate

g5ImS 12AV2~V224r0
2!1 igVr0

2D . ~15!

390Vysloukh et al.



rr

th
fr

-
-

o
m

ne
ol
g
um
a
pe
ro
al
ve

m

tio
s
c
-
ta
on
o
y

on
g
e

elf-

e

he
r-
nt

y
t
of
n

-
is
the
am-
erm

lu-

e

ns

n-
We note that the familiar result for a medium with a Ke
nonlinearity follows in the limitg→0. As we know,23 in the
latter case the exponential increase in the amplitude of
disturbances occurs only in the restricted band of spatial
quencies 0,V,Vb52r0, and the maximum value ofg is
achieved atV5Vm5A2r0. The appearance of a term pro
portional todr/dj in Eq. ~14! expands the modulation insta
bility band to infinity, but even forg'1, its half-width is
close to the half-width of the instability band for the case
Kerr nonlinearity, and the frequency where the maximu
gain is achieved is close toVm ~Fig. 1!.

Thus, in a medium with nonlocal nonlinearity the pla
waves are unstable, although they fall into the class of s
tions with separated variables. In the case of exceedin
small seed modulation with a sufficiently broad spectr
such a plane wave breaks up as it propagates into comp
tively thin filaments with a mean dimensionless spatial
riod L52p/Vm and a mean thickness equal to the recip
cal width of the instability band. The first experiment
observation of modulation instability in a photorefracti
crystal was reported in Ref. 24.

4.2. Spatial solitons

In the preceding case of Kerr nonlinearity (g50), Eq.
~14! has a well-known single-soliton solution of the for
r(j)5sech(j), which is written out here forb51/2. Al-
though it is known that this solution is stable,22 in real ex-
periments the necessary one-dimensionality of the diffrac
and self-interaction processes is achieved only by using
beams, which have a uniform field distribution in the dire
tion orthogonal to thej axis. The possibility of the develop
ment of modulation instability along the length of the crys
with resultant filamentation of the beam in that directi
must then be considered. We note that the stability of tw
dimensional solitons is achieved because the nonlinearit
saturable.

Let us examine the question of the influence of the n
local component of the nonlinear response on the propa
tion of solitons of such form in a photorefractive crystal. W

FIG. 1. Dependence of the growth rate of a small disturbance on the dim
sionless spatial seed modulation frequencyV: local ~Kerr! nonlinearity —
dashed line; photorefractive crystals with local and nonlocal respo
(r051, g51) — solid line.
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note at once that this question is directly related to the s
bending of laser beams.25–28 Therefore, we turn to Eq.~2!,
introducing the normalized complex amplitud
q(j,z)5A(j,z)AR/I 0 into it in analogy to~14!:

i
]q

]z
5
1

2

]2q

]j2
1

gq

2

]uqu2

]j
1uqu2q. ~16!

Now, assumingg,1, we seek the solution of Eq.~16! in the
self-similar form

qs~j,z!5Ksech@K~j2Vz!#exp@ iF~j,z!#, ~17!

F~j,z!52Vj1
1

2
~V22K2!z.

Here the form factorK(z) describes the dependence of t
amplitude and width of the soliton on the longitudinal coo
dinatez, andV(z) specifies the angle between the curre
direction of propagation of the soliton and thez axis. Utiliz-
ing the tools of perturbation theory,1 we can show that the
soliton amplitude remains unchanged to first order ing and
thatV(z) satisfies the ordinary differential equation

dV

dz
52

8

15
gK2 ~18!

with the initial conditionV(0)50. It follows from ~18! that
in a photorefractive crystal the soliton vertex~17! with the
coordinate js moves along the parabolic trajector
js524gK2z2/15. This analytical result is in excellen
agreement with the data from direct numerical integration
the quasioptical equation with the initial conditio
q(j,0)5sech(j), which are presented in Fig. 2 in the form
of contours of constant intensity in the (j,z) plane. For ex-
ample, forg50.1 andz56, the error in the analytical deter
mination of the current coordinate of the soliton vertex
less than 5%. An increase in the nonlocal component of
response results only in a slight decrease in the soliton
plitude in the outgoing plane. Thus, the appearance of a t
responsible for a nonlocal nonlinear response in Eq.~16!
removes the single-soliton solutions from the class of so
tions with separated variables.

n-

es

FIG. 2. Self-bending of the trajectories of motion of spatial solitons: co
tours of the distribution of the normalized intensity in the (j,z) plane with
spacing 0.1.
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FIG. 3. Profile of a spatial shock wave
for b50.5 andg50.15: in the phase
plane ~a! and in the coordinate spac
~b!.
4.3. Spatial shock waves
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Let us now examine the fairly unusual stationary, sp
tially unrestricted solutions that appear in a medium with
nonzero nonlocal component of the nonlinear response.
special features of the solutions of this type, which we ha
termed spatial shock waves, are conveniently analyzed
the phase portrait of Eq.~14!, i.e., in the (r,]r/]j) plane.
Here we can take advantage of the direct mathematical a
ogy between the character ofr(j), which is assigned by
~14!, and the nonlinear oscillations of an oscillator in t
potential

U~r!5
1

2
r42br2 ~19!

with nonlinear damping described by the term 2gr2dr/dj.
The potential energy of such an oscillator has three lo
extrema, which correspond to three critical points of t
phase portrait. The two minima ofU(r) lying on ther axis
with the coordinatesr1,256Ab are points of stable equilib
rium, i.e., focal points, and the single maximu
(r5dr/dj50) is a point of unstable equilibrium, i.e.,
nodal point. Linearization of~14! in the vicinity of the nodal
point gives the equation

d2r/dj222br50, ~20!

which has the exponentially increasing solutionr(j)
} exp(A2bj) in addition to the trivial solutionr50. In the
vicinity of either of the focal points the same procedure giv
the equation of damped oscillations

d2u

dj2
12gb

du

dj
14bu50 ~21!

for the small displacementsu(j)5r(j)2r1,2 from the equi-
librium position. The solutions of Eq.~21! correspond to
periodic (g,2/Ab, frequencyv5A4b2(gb)2) or aperi-
odic (g ! 2/Ab) passage to the corresponding focal po
whenj→`.

Although the exact solution of Eq.~14! cannot be written
in elementary functions, the character ofr(j) is described
quite well by the approximate solutions presented abo
This was confirmed by the numerical integration of~14!. The
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j0!0 on the basis of the asymptotic dependen
r(j0)5exp(A2bj0), dr/dj5A2b exp(A2bj0), which cor-
responds to the vicinity of a nodal point in the phase pla
The corresponding phase trajectory, which is shown in F
3a, has the form of a spiral, which converges to the sta
focal pointr1. A profile of the amplituder(j) of a spatial
shock wave is shown in Fig. 3b. The characteristic featu
of solutions of this type, viz., the abrupt spatial shock wa
front, which rises exponentially from zero, reaches a plat
with amplitude oscillations that are damped with respect
j, and then achieves the stationary valuer1, are clearly seen
The frequency of these oscillations and the damping coe
cient agree well with the values predicted by Eq.~21!. At
large values ofg the approach tor1 becomes aperiodic.

An analytical investigation of the stability of the solu
tions obtained as they propagate alongz @the evolutionary
equation~16!# raises some definite difficulties in view of th
lack of an explicit expression for the spatial distribution
the field. The asymptotic transition of the shock wave to
plane wave asj→` provides some basis to assume that
modulation instability can develop in that region. Neverth
less, the computer simulation results convince us that wa
of this new type can be produced experimentally in photo
fractive crystals. Figure 4a illustrates the stable propaga
of an undisturbed~to within ‘‘computer noise’’! spatial
shock wave over a distancez52, which corresponds to a
length of a photorefractive crystal of about 1 cm on the r
scale. Figure 4b shows its structural stability when the o
going field amplitude profile is significantly~20% in terms of
intensity! disturbed by Gaussian noise. Thus, spatial sh
waves in photorefractive crystals represent a new type
soliton-type solutions that belong to the class of solutio
with separated variables.

4.4. Evolution of a stepped intensity distribution

To illustrate the importance of the particular solutio
obtained above to the structure of the nonlinear wave fie
formed in the general case, we present data from the di
computer simulation of the evolution of a laser beam w
the stepped incoming amplitude profileq(j,0)
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FIG. 4. Profile of a spatial shock wave
for b50.5 and g50.15 in successive
cross sections of photorefractive crysta
along z: in the absence of disturbance
~a! and at a noise level of 20% intensit
~b!.
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nonlocal nonlinearity. Figure 5 shows spatial profiles of t
intensity uq(j)2u in successive cross sections of a crystal
the valuesg50, 1. As the radiation propagates, a diffractio
spike forms on the front of the initial intensity distributio
and then transforms into a soliton due to the local compon
of the nonlinearity. Simultaneously, it is gradually deflect
from thez axis by the nonlocal component of the respon
As the beam propagates further, the next solitons split
from the front of the intensity distribution. At all times th
remainder of the beam has a structure similar to a spa
shock wave. Thus, although we were dealing with a v
complicated nonlinear superposition of fields in the compu
experiment, understanding the structure of the elemen
self-consistent solutions obtained above significantly fac
tates its analysis.

5. CONCLUSIONS

Summarizing the work, let us briefly recount its ma
results and formulate several conclusions. Thus, starting
from a very general microscopic model of the formation
the nonlinear response of photorefractive crystals, we h
obtained a fairly simple and physically explicit expansion
it in both coordinate~8! and spectral~9! representations
Taking into account the nonlocal component of the nonlin
response, we have succeeded in refining the physical pic
of the development of modulation instability~fanning! in
photorefractive crystals.24 An analytical numerical analysi
of the role of this component of the response in the dynam

FIG. 5. Formation of spatial solitons and spatial shock waves from
stepped intensity distribution: intensity profiles in successive cross sec
of the crystal alongz for g50.1.

393 JETP 84 (2), February 1997
e
r

nt

.
ff

al
y
r
ry
-

ut
f
ve
r

r
re

s

order perturbation theory it leads to self-bending of the t
jectories of motion of the solitons25 and that in second-orde
perturbation theory it leads to a decrease in their amplit
and an increase in their width.

We have succeeded in obtaining solutions in the form
spatial shock waves in photorefractive crystals for the fi
time. The numerical experiments conducted here have sh
that such elementary solutions are not only physically f
sible, but are also clearly traceable in the structure of
nonlinear wave fields formed in photorefractive crystals fro
incoming radiation with an arbitrary transverse intensity d
tribution.

Concluding this paper, we should mention the possi
areas for further research. We associate the most impo
prospects both with an analysis of the self-organization p
cesses that take place under the conditions of defocu
nonlinearity and lead to the formation of so-called da
solitons18 and with stochastic generalizations of the regu
problems considered above.28
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Why have no manifestations of the excitonic mechanism been detected in Ginzburg

in
sandwiches?
Yu. A. Krotov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia

I. M. Suslov

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
~Submitted 28 June 1996!
Zh. Éksp. Teor. Fiz.111, 717–729~February 1997!

Using spatially inhomogeneous E´ liashberg equations in the local-interaction limit, an exact
solution of the problem of the superconducting transition temperature in a Ginzburg sandwich~a
superconducting film coated with a dielectric layer containing Bose-type excitations, i.e.,
excitons! in the first order ina/L ~wherea is the interatomic distance andL is the film thickness!
has been obtained. The result has been found to be independent of the exciton frequency.
The excitonic mechanism appears only in second order ina/L since both components of the
Cooper pair should enter a layer of thickness;a in order to interact through the exchange
of excitons. Numerical estimates indicate that manifestations of the excitonic mechanism are
practically undetectable in systems withL@a. Calculations for the model with a narrow-
gap and a wide-gap dielectric have been performed and compared to experimental data. ©1997
American Institute of Physics.@S1063-7761~97!02402-5#

1. INTRODUCTION All the existing theories2 are based on the assumption that,
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In 1964 in his famous paper,1 Ginzburg set forth a new
method for creating high-temperature superconductors.
thin metal film is coated with a layer of a dielectric~Fig. 1!
containing high-frequency boson excitations, i.e., excito
whose frequencyvex is considerably higher than the phono
frequencyvph in the metal, the combination of the finit
electron density of states on the interface and the high e
tation frequency should lead, according to the BCS formu
to a high local value of the superconducting transition te
peratureTc . The theory of Ginzburg sandwiches has be
developed by many authors~see Ch. 8 in Ref. 2 and refer
ences therein!, but the available estimates ofTc are unsatis-
factory because all these theories ignore the problems re
to the spatial inhomogeneity of sandwiches. All of the
were based on the use of the BCS or MacMillan-type form
las and rough estimates of their parameters. Below we s
demonstrate that such an approach leads to qualitatively
roneous results.

Following the terminology of Ref. 2, we define san
wiches as structures manufactured using the approp
technology, such that their metal film thicknessL is essen-
tially larger than the interatomic distancea.1! Structures with
L;a should be treated as quasi-two-dimensional, and
topic is beyond the scope of this paper. Besides, we ass
that the superconductivity in the film is three-dimension
since the predicted surface superconductivity of Tam
states1,5 has not been detected with certainty in any mater

It is clear from general principles that the difference b
tweenTc in a sandwich andTc0 in the bulk material of the
film should be proportional toa/L:

dTc
Tc0

[
Tc2Tc0
Tc0

5C
a

L
. ~1!

395 JETP 84 (2), February 1997 1063-7761/97/0203
a

s,

i-
,
-
n

ed

-
all
er-

te

is
e
l

l.
-

the formal limitvex→`, the factorC should diverge, and its
large value should compensate for the smallness of the r
a/L or, at least, make the exciton-mediated interaction do
nant over all other effects, which yieldC;1. In this paper,
however, we demonstrate that

C~vex!5const for vex*vph. ~2!

This result, however strange it may seem at first sight
natural. In order to interact through the exchange of excito
both components of a Cooper pair must reach a layer w
thickness of the order ofa, and the probability of this even
is ;(a/L)2, hence the excitonic mechanism should not a
pear to first order ina/L. If the term quadratic ina/L is
considered, after the dimensionless interaction constantl0 in
the bulk metal is factored out, we have

dTc
Tc0

5
A

l0

a

L
1
B~vex!

l0
S aL D 21 . . . , ~3!

and the coefficients in this formula can be estimated as2!

B~vex!5B01B1l0 ln
vex

vph
, A, B0 , B1;1, ~4!

i.e., the coefficient of (a/L)2 in fact diverges asvex→`.
The factorsl0

21 arise in Eq.~3! because the variation of th
BCS formulaTc;v̄ exp(21/l) with respect tov̄ and l
yields dTc /Tc0 proportional todv̄/v̄ and dl/l0

2, respec-
tively, i.e., the relative change inl is multiplied by the factor
l0

21, as compared to the relative change inv̄. According to
Eqs.~3! and~4!, the ratio of the contribution of the excitoni
mechanism to the total change inTc is

~dTc!ex
~dTc! tot

;
a

L
l0 ln

vex

vph
. ~5!

395-07$10.00 © 1997 American Institute of Physics
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2. SPATIALLY INHOMOGENEOUS ELIASHBERG
EQUATIONS

c-
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The limitations due to the Tolmachev logarithm2 lead to the
inequality vex/vph&102, and for typical values
l050.2–0.33! we havel0 ln(vex/vph);1, hence the exci-
tonic contribution is always small atL@a. This means that
any attempts to detect the excitonic effects in the ‘‘sm
correction regime’’ are doomed to failure: when a metal fi
is coated with a dielectric, the change inTc may be con-
trolled by all effects, except the exchange of excitons. T
is, apparently, the main reason why this effect has not b
detected in experiments.

A formula for Tc , naturally, cannot be derived for a
arbitrary spatially inhomogeneous system, but this is p
sible for the case of a local spatial inhomogeneity, when
dimensiond is smaller than the coherence lengthj0 or the
total system dimensionL ~if L&j0!. These formulas were
derived earlier6,7 and used to study the localization of th
order parameter localization, quantum oscillations ofTc , the
contribution of an interface between two materials toTc as a
function of material parameters, etc.6–9All these studies used
the Gor’kov equation,10,11which does not allow for the spa
tial dependence of the cut-off frequencyv̄. In the weak-
coupling regime, this dependence expressed byv̄(r ) usually
leads only to small corrections determined by the param

l0 ln
v̄max

v̄min
!1. ~6!

In the case of a large disparity in the frequenci
v̄max@v̄min , the condition ~6! may be violated even fo
l0!1, and this is the case in a Ginzburg sandwich.

In the present study, formulas forTc similar to those in
Refs. 6 and 7 are derived from the spatially inhomogene
Éliashberg equations.10 Since Ginzburg’s concept does n
depend on the nature of the high-frequency bosons, we h
used the E´ liashberg equations for the case of electro
phonon interaction. Their structure is, in fact, identical f
any bosons with frequencies small in comparison to
Fermi energyeF . This statement especially applies to t
limit of local interaction~Sec. 3!, in which no specific infor-
mation about phonons is essential.

FIG. 1. A Ginzburg sandwich is a thin superconducting film S with a
posited dielectric layer D with high-frequency bosons excitations, wh
exchange should increaseTc considerably.
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Consider the Hamiltonian of electron–phonon intera
tion in the form

H int52E dr ĉs
1~r !ungn~r !ĉs~r !, ~7!

whereĉs
1 and ĉs are electron operators,un is the displace-

ment vector of thenth ion, andgn(r ) is the deformation
potential which in the rigid-ion approximation takes th
form12

gn~r !5¹Un~r2Rn!, ~8!

whereUn(r ) is the potential of thenth ion andRn is its
equilibrium position. Following the standard procedure,10 we
obtain the spatially inhomogeneous E´ liashberg equations
@x5(r ,t)#

S 2
]

]t
2Ĥ01m DG~x,x8!5d~x2x8!2E dx1G~x,x1!

3D~x,x1!G~x,x8!1E dx1

3F~x,x1!D~x,x1!F
1~x1 ,x8!,

S 2
]

]t
2Ĥ01m DF~x,x8!52E dx1G~x,x1!D~x,x1!

3F~x1 ,x8!2E dx1F~x,x1!

3D~x,x1!G~x8,x1!, ~9!

whereG andF are the normal and anomalous Green’s fun
tion andm is the chemical potential. Unlike Eq.~35.2! in
Ref. 10, all the functions in Eq.~9! depend on the two coor
dinates, not just on their difference, the operatorp̂2/2m is
replaced by a one-particle HamiltonianĤ0 of general form,
and the coupling constantg is included in the definition of
the phonon Green’s function:

D~x,x8!5 (
a,a8

(
n,n8

gn
a~r !gn8

a8~r 8!Dnn8
aa8~t2t8!, ~10!

whereDnn8
aa8 is the Green’s function in the site representatio

which can be expressed in terms of eigenvectorsBa
(s)(n) and

eigenvaluesvs
2 of the dynamic operator matrix:13

Dnn8
aa8~V!52

\

AMnMn8
(
s

Ba
~s!~n!Ba8

~s!
~n8!

V21vs
2 , ~11!

Mn is the mass of thenth ion, andV is the Matsubara
frequency.

In order to determineTc , we must linearize Eq.~9! in
F. If we rewrite these equations in the symbolic form

S 2
]

]t
2Ĥ01m1GDDG51,

S 2
]

]t
2Ĥ01m1GDDF52FDG, ~12!

-
e
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we note thatG is the Green’s function for the operator in

o
w

v
ns

fre
e
qu
ity

ev
d-
e
r-
ac

o

-o
e

th

a
at
n
s

D ~r ,r 8!'d~r2r 8!E dr 8D ~r ,r 8!, ~18!
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parentheses and can rewrite the second equation in~12! as
F52GFDG. In the explicit form, after transformation t
the Matsubara representation and complex conjugation,
have

Fv
1~r ,r 8!52T(

V
E dr1E dr2G2v~r1 ,r !

3DV~r1 ,r2!Fv2V
1 ~r1 ,r2!Gv~r2 ,r 8!. ~13!

Let us introduce the order parameter

Dv~r ,r 8!52T(
V

Fv2V
1 ~r ,r 8!DV~r ,r 8!, ~14!

and rewrite Eq.~13! in the form

Dv~r ,r 8!52T(
v8

E dr1dr2Dv2v8~r ,r 8!

3G2v8~r1 ,r !Gv8~r2 ,r 8!Dv8~r1 ,r2!. ~15!

In Eqs. ~13!–~15! V is the boson frequency, andv andv8
are fermion frequencies. Note that Eq.~15! contains only
renormalized Green’s functions.

3. THE LOCAL-INTERACTION LIMIT

Equation~15! has a form similar to that of the Gor’ko
equation10,11 and reduces to the latter if two approximatio
typical of the BCS theory are used:

Dv2v8~r ,r 8!→2Vv2v8~r !d~r2r 8!, ~16!

Vv2v8~r !→V~r !u~v̄2uvu!u~v̄2uv8u! ~17!

@as a result,Dv(r ,r 8)→D(r )d(r2r 8)u(v̄2uvu)#. Equation
~17! means that the spatial dependence of the cut-off
quency is ignored, and it will not be used further. This do
not cause any complications because all the relevant e
tions can be solved by removing the logarithmic singular
~Ref. 2, p. 90!.

The approximation expressed by Eq.~16! corresponds to
the physically transparent local-interaction limit and has s
eral advantages:~a! it yields simple and easily understan
able results;~b! it does not demand a specification of th
Fermi surface shape;~c! it does not demand detailed info
mation about the electron–phonon interaction since, in f
an interaction constantVv(r ) which is an arbitrary function
of the frequency and coordinates is introduced into Eq.~16!,
and so the generalization to other types of interaction is p
sible; ~d! the structure of the expression forTc is identical to
that derived from the Gor’kov equation, and earlier results6–9

can be automatically generalized to the case of the cut
frequency depending on coordinates. The absence of th
fect of the excitonic mechanism to lowest order ina/L can
also be proved with due account of the nonlocality, but
expressions in this case would be too lengthy.

We should stress that the local interaction limit is
physical approximation and cannot be introduced by a m
ematically rigorous procedure. In fact, if the functio
Dv(r ,r 8) is assumed to be short-range and expressed a
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the integral on the right-hand side is zero because the i
gral ofgn(r ) vanishes since the deformation potential is ge
erated by redistribution of charges and can be described
superposition of fields generated by dipoles. In the rigid-
approximation it follows directly from Eq.~8!. The local
approximation is resonable from the physical viewpoint b
cause the expression forTc is, in effect, determined by the
integral in Eq.~18! over the regionur 8u&kF

21 , wherekF is
the Fermi momentum. This can be proved by taking the
sult for the spatially homogeneous case in Ref. 2, Ch. 4.

If we assume the approximation described by Eq.~16!,
we haveDv(r ,r 8)5Dv(r )d(r2r 8), and Eq.~15! takes the
form

Dv~r !5T(
v8

Vv2v8~r !E dr 8Kv8~r ,r 8!Dv8~r 8!, ~19!

where

Kv~r ,r 8!5G2v~r 8,r !Gv~r 8,r !. ~20!

If the system is invariant under time reversal, the ker
Kv(r ,r 8) is symmetric with respect to the exchange ofr and
r 8 and is positive. If forGv(r ,r 8) one-particle Green’s func
tions are used, the following sum rule applies to the kerne11

E dr 8Kv~r ,r 8!5
p

uvu
N~r !, ~21!

whereN(r ) is the local density of states at the Fermi leve

N~r !5(
n

ucn~r !u2d~eF2en!, ~22!

determined by the one-particle eigenfunctionscn(r ) and ei-
genvaluesen . With due account of interaction effects, E
~21! can be considered as a definition of the local density
statesN(r ). In the spatially homogeneous case this para
eter ~independent ofr ! enters in the BCS formula.

4. THE EXPRESSION FOR Tc IN THE CASE OF LOCAL
SPATIAL INHOMOGENEITY

Suppose that the system varies as a function ofz, and
the inhomogeneity is localized in the regionuzu&d. Since
Dv(r ) is independent of the longitudinal coordinater i , Eq.
~19! takes the form

D~z!5E dz8Q̂~z,z8!D~z8!, ~23!

whereD5(Dv1
,Dv2

,...). If thesystem transverse dimensio
satisfiesL!j0 , the solution can be sought in the form6,7

D~z!5c1D0~z!, ~24!

where the functionc is independent ofz andD0(z) is local-
ized in the regionuzu&d. Substituting Eq.~24! into ~23!, we
obtain

c5E dz8Q̂~`,z8!c1E dz8Q̂~`,z8!D0~z8!, ~25!
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D ~z!5E dz8@Q̂~z,z8!2Q̂~`,z8!#c1E dz8@Q̂~z,z8!

th

ht

ic
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he
0

2Q̂~`,z8!#D0~z8!. ~26!

In deriving these equations we have taken into account
for uzu*d the kernelQ̂(z,z8) is independent ofz and equals
Q̂(`,z8). The sum rule~21! implies the estimateQ̂;1/L,
and the second terms on the right-hand side of Eqs.~25! and
~26! are small;d/L. In order to calculateTc with to
;d/L inclusive, we can omit the second term on the rig
hand side of Eq.~26! and substitute the resultingD0(z) into
Eq. ~25!. Given thatKv(`,z8)'L21*dzKv(z,z8), we ob-
tain with due account of Eq.~21! an equation forc in the
explicit form

cv5pT(
v8

L~v,v8!

uv8u
cv8 , ~27!

L~v,v8!5Vv2v8~`!N~`!

1
1

L E dzpT(
v9

1

uv9u
Vv2v8~`!N~z!

3@Vv92v8~z!N~z!2Vv92v8~`!N~`!#. ~28!

Equation ~27! can be solved by removing the logarithm
singularity.4! By taking advantage of the fact that the sum
mation over Fermi frequencies yields

pT (
uvu,v̄

1

uvu
5 ln

1.14v̄

T
, ~29!

we transform Eq.~27! to

cv5L~v,v0!cv0
ln
1.14v̄

T
1 f ~v!, ~30!

wherev05pT, and the function

f ~v!5pT (
uv8u.v̄

L~v,v8!cv8
uv8u

1pT (
uv8u,v̄

L~v,v8!cv82L~v,v0!cv0

uv8u
~31!

is introduced. After settingv5v0 andL(v0 ,v0)'L(0,0) in
Eq. ~30!, we have the expression forTc :

Tc51.14v̄e21/L~0,0!, ~32!

wherev̄ is defined by the conditionf (v0)50. After replac-
ing summation by integration in Eq.~31! and substituting
cv in the lowest-order approximation@i.e., neglectingf (v)
in Eq. ~30!#, we obtain forv̄

ln v̄52
1

L~0,0!2 E0
`

ln v@L~0,v!L~v,0!#v8dv. ~33!

Substitution of Eq.~28! into ~32! and ~33! and expansion in
terms ofd/L yield the variation inTc relative toTc0 in the
spatially homogeneous system

dTc
Tc0

5
1

l0
3L

E dzW0N~z!@W~z!N~z!2W0N0#; ~34!
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herel05V0(`)N(`), W05W(`)5V0(`), and the func-
tion

W~z!5V0~z!22N~`!E
0

`

dv ln
v

v̄
@Vv~`!Vv~z!#v8 ,

~35!

is introduced, wherev̄ is calculated in the zeroth approx
mation,

ln v̄52
1

V0~`!2
E
0

`

dv ln v@Vv~`!2#v8 , ~36!

corresponding to a spatially homogeneous system@so that
Tc051.14v̄ exp(21/l0)#. If Vv(z) is a step function of the
frequency,

Vv~z!5V~z!u~v̄~z!2uvu!, ~37!

it follows from Eq. ~36! that v̄5v̄(`), and Eq.~35! yields

W~z!5V~z!F11l0 ln
min$v̄~`!,v̄~z!%

v̄~`! G . ~38!

For v̄(z)5const we haveW(z)5V(z), and Eq.~34! be-
comes identical to the result obtained in Ref. 7. It becom
clear that the spatial dependence of the cut-off freque
does not change the structure of Eq.~34!, but only replaces
V(z) with a more complicated functionW(z).

For a Ginzburg sandwich, the main contribution to t
integral in Eq.~34! comes from the regionuzu&a near the
interface, and the relative variation ofTc is ;a/L. It is es-
sential that the functionVv(z), which contains information
about the exciton frequencyvex at uzu&a ~Fig. 2!, is multi-
plied in Eq. ~35! by the functionVv(`), which decreases
fast atuvu*vph. As a result,vex is not included in Eqs.~34!
and ~35!, which determineTc . In the approximation de-
scribed by Eq.~37!, this directly follows from Eq.~38!. This
approximate result holds for all orders inl0 @Eqs. ~34! and
~35! were derived via iterations in this parameter#. Specifi-
cally, consider the eigenvalue equation

ncv5pT(
v8

Vv2v8~`!N~`!

uv8u
cv8 , ~39!

FIG. 2. Typical behavior of the parameterVv(z) as a functions ofv deep
inside the metal film (z5`) and on the metal–dielectric interface (z50).
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which is identical to Eq.~27! for a spatially homogeneous
.

t
te

th

e

system atn51. If n(T) is the maximal eigenvalue of Eq
~39!, Tc0 is determined by the conditionn(Tc0)51. Let c̄v

andc% v be the solution to Eq.~39! and its adjoint solution a
n51. Then the perturbation calculation in the parame
; d/L in Eq. ~28! yields

dTc52
1

n8~Tc0!l0
2L

E dzW0N~z!@W~z!N~z!2W0N0#

~40!

with the functionW(z) defined by the equation

W~z!5
l0

pT(vuvu21~ c̄v!2
pT

3(
v8

c̄v8

uv8u
pT(

v9

c̄v9

uv9u
Vv92v8~z!, ~41!

usingc% v5uvu21c̄v . It follows from the analysis of Eq.~39!
that c̄v decreases rapidly as a function ofv beyondvph,
therefore the summation over the frequency in Eq.~41! is
limited to the regionuv8u&vph, uv9u&vph, and the fre-
quencyvex in the functionVv92v8(z) does not affect the
final result.

5. ESTIMATE OF THE GINZBURG EFFECT

By iterating Eqs.~25! and ~26! up to second order in
d/L,

c 5E dz8Q̂~`,z8!c1E dz8E dz9Q̂~`,z8!@Q̂~z8,z9!

2Q̂~`,z9!#c1E dz8E dz9E dz-Q̂~`,z8!

3@Q̂~z8,z9!2Q̂~`,z9!#@Q̂~z9,z-!2Q̂~`,z-!#c,

~42!

we obtain Eq.~27! with a functionL(v,v8) differing from
that defined by Eq.~28! by an additional term;(d/L)2,
which leads to a second-order correction toTc :

S dTc
Tc0

D
2

5
1

l0

1

V0~`!

1

L E dz8dz9N~z8!pT

3(
v8

Vv8~`!

uv8u
T(

v9
@Vv82v9~z8!Kv9~z8,z9!

2Vv82v9~`!Kv9~`,z9!#pT(
v-

Vv-~`!

uv-u

3@Vv92v-~z9!N~z9!2Vv92v-~`!N~`!#. ~43!

The summation overv8 and v- is limited to the region
uv8u,uv-u&v̄;vph. By performing the summation with
logarithmic accuracy and separating the contribution of
high-frequency region, we obtain the change inTc due to the
exciton-mediated interaction:

S dTc
Tc0

D
ex

5
1

l0
3L

V0~`!E dz8dz9N~z8!N~z9!T

399 JETP 84 (2), February 1997
r

e

3 (
uvu.v̄

Vv~z8!Kv~z8,z9!Vv~z9!. ~44!

If the local density of statesN(z) in the sandwich~Fig. 1!
varies near the interface faster thanVv(z), then, using the
sum rule, we can assume that

Kv~z,z8!.
pN0

uvuL
u~z!u~z8!, N~z!5N0u~z!; ~45!

hence

FIG. 3. ~a! CalculatedTc in a metal–dielectric sandwich as a function of th
dielectric thickness for a narrow-gap dielectric (U2eF!eF); curves1, 2,
and 3 correspond toW1 /W0.7/2, 3/2,W1 /W0,7/2, andW1 /W0,3/2;
~b! similar curves for a wide-gap dielectric (U@eF) in the cases~curve1!
W1 /W0.3k0

2/kF
2 , ~2! 3k0

2/kF
2.W1 /W0.3k0

2/kF
2 , and ~3!

W1 /W0,k0
2/2kF

2 ; ~c! experimental curves ofTc as a function of the dielec-
tric thicknessd in Pb–Si, Pb–Ge, and Pb–C sandwiches.14
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dTc .
1 N0

2 L

dz8
L

dz9pT
Vv~z8!Vv~z9!

.
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In this caseq0'k0 , and the limits of integration in Eq.
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0
(

uvu.v̄ uvu
~46!

Since the integrand is a logarithmic function of the cut-
frequency, Eq.~46! is valid in a fairly large region. In the
simplest case, when

Vv~z!5 HV0u~vph2uvu!, z.a,
V1u~vex2uvu!, z,a, ~47!

we have

S dTc
Tc0

D
ex

.S aL D 2 V1
2

V0
2 ln

vex

vph
. ~48!

Since it is unlikely that the coupling constantV1 for
high-frequency excitations is larger than for low-frequen
excitations (V0), the contribution of the excitonic mecha
nism given by Eq.~48! is always smaller than the main con
tribution ;a/l0L determined by Eq.~34!.

6. MODEL CALCULATIONS TO FIRST ORDER IN a/L AND
COMPARISON WITH EXPERIMENTAL DATA

Let us perform calculations with Eq.~34! using the sim-
plest model: the functionW(z) is piecewise continuous an
takes the valuesW0 andW1 in the metal and dielectric, re
spectively, and the electronic spectra of these materials
determined by the equations

eM~k!5
k2

2m
, eD~k!5

k2

2m
1U, ~49!

whereU.eF andeF is the Fermi energy in the metal. For
thin layer of dielectric with thicknessd inside a metal plate
with thicknessL, the expression forN(z) has the form

N~z!5
m

~2p!2
E
q0

k0
dq

q

k
H~k,iq,z!uk5Ak

0
22q2 , ~50!

where

q05Ak022kF
2, k05A2mU,

and the functionH(k,iq,z) is defined by Eq.~22! in Ref. 9.
Consider two limiting cases corresponding to a narrow-g
semiconductor and a wide-gap dielectric.

~a! 0,U2eF!U.
The result forU→eF and q0→0 coincides with the

qF→0 limit in Eq. ~24! of Ref. 9:

dTc
Tc0

5
1

l0kFL
FW1

W0
P1~k0d!1P2~k0d!G , ~51!

where the functionsP1(x) and P2(x) are those plotted in
Fig. 2 of Ref. 9. This result for finite but smallq0 differs
from Eq. ~51! only in that for d*q0

21@k0
21 the algebraic

approach to a constant value asd→` described byP1(x)
andP2(x) is replaced by an exponential behavior. Depen
ing on the ratioW1 /W0 , curves of one of the three type
shown in Fig. 3a are realized.

~b! U@eF .
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~50! are close. By assumingq.k0 and expanding in terms o
kF /k0 , we obtain forW1 /W0;k0

2/kF
2

dTc
Tc0

5
1

l0kFL

{SW1

W0
2

k0
2

2kF
2 D kFd, k0d! kF/k0 ,

2
2p

3

kF
2

k0
2

1

~k0d!2

1
16

9

kF
5

k0
5

W1

W0

1

~k0d!3
, kF/k0 !k0d!1,

1

3

kF
3

k0
3 SW1

W0

2kF
2

3k0
2 21D

2
8p

3

kF
2

k0
2 e22k0d, k0d@1.

~52!

Similarly to the previous case, depending on the ra
W1 /W0 , the functionTc(d) has one of three typical shape
shown in Fig. 3b. It is remarkable that all three types
curves were recorded by Orlovet al.14 in Pb–Si, Pb–Ge, and
Pb–C sandwiches~Fig. 3c!. Since the experiments obviousl
satisfyU;eF , the experimental curves present an interm
diate case between the curves of Figs. 3a and 3b.

Note that forv̄(z)5const, whenW(z)5V(z), holds the
condition V1.V0 , which is intuitively obvious, is insuffi-
cient for increasingTc . A stronger condition is necessary:

V1

V0
.C, C5H 3/2, U2eF!eF ,

U/2eF , U@eF ,
~53!

which is very limiting in the case of a wide-gap dielectri
The point is that forV(z)5const a spreadd of the step in the
functionN(z) defined by Eq.~45! has a negative effect pro
portional tod @see Eq.~34!#. It can be compensated for b
the positive effect;d(V12V0)/V0 due to the increase in th
constantV in the dielectric, and in this case condition~53!
with C.1 holds.

7. CONCLUSIONS

The issue of the efficiency of the exciton-mediated pa
ing in layered structures has many aspects, most of wh
have not been discussed in the paper, namely, whether t
are appropriate excitons in the dielectric, whether they p
etrate into the metal film to a sufficient depth, whether t
excitonic exchange leads to attraction between two electr
how strong this attraction sufficiently is, etc. The main co
clusion of our study is that, even under the most favora
conditions, when the answers to all the above questions
positive~as a result of which,Tc should be high atL;a!, the
effect of exciton-mediated pairing would not be detectable
L@a. Therefore the failure of all the attempts to detect it
sandwiches does not mean that its search in quasi-t
dimensional systems should be abandoned.
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1!Modern technologies can produce fairly uniform films with a thickness of
several angstroms,3 but superconductivity in them is suppressed owing to
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5V. L. Ginzburg and D. A. Kirzhnits, Zh. E´ksp. Teor. Fiz.46, 397
~1964!@Sov. Phys. JETP19, 219 ~1964!#.
their highly disordered structure that leads to localization effects.4

2!Note that this result is not contained in the MacMillan formula, which
apparently, the main reason why it has not been discovered previous
can be derived qualitatively from the E´ liashberg equations for the homog
enous medium if the Eliashberg function is presented in the fo
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Spin dynamics of the muon in muonium in normal metals

res
A. N. Belemuk, Yu. M. Belousov, and V. P. Smilga

Moscow Physicotechnical Institute, 141700 Dolgoprudnyi, Moscow Region, Russia
~Submitted 25 July 1996!
Zh. Éksp. Teor. Fiz.111, 730–736~February 1997!

The question of the charge state of the proton~the positive muon! in metals is of fundamental
importance for the theory of metal hydrides. The theory developed here permits
determination of the charge state ofm1 in normal metals. The experimental possibilities of the
observation of Mu atoms in metals at various strengths of the external magnetic field and
various temperatures are analyzed. ©1997 American Institute of Physics.
@S1063-7761~97!02502-X#

1. The charge state of the positive muon in metals or,larization precession. Investigations at very low temperatu
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equivalently, the state of the proton is a question of v
interest primarily in connection with the attention that h
been attracted by metal hydrides. However, this problem
not yet been solved theoretically or experimentally. Mo
over, even if it is assumed that the proton does not form
chemical compound with lattice atoms and is localized
some interstitial site, it is not clear whether it forms a bou
state with a conduction electron of the metal, i.e., whet
there is a ‘‘local level’’ for an electron. It would be strange
such a bound state were absent from all metals and espec
from semimetals.

Thus, the entire problem is of general significance
solid-state physics.

It is presently tacitly assumed in the analysis of the
sults ofmSR experiments that the muonium atom Mu~the
bound charge statem1e2) is absent in metals. In fact, th
precession of muon spin polarization with a frequency cl
to the precession frequency of muon spin polarization i
vacuum heretofore has generally been observed~see, for ex-
ample, Refs. 1 and 2!. The only exceptions are the exper
ments in Sb, in which an anomalously large frequency s
was observed in the temperature range3 2,T,300 K. How-
ever, since this shift is proportional to the field up toB59
kG, it is naturally identified with the Knight shift.1)

2. As is generally known,1,2 the precession of muon spi
polarization with muonium frequencies may not be obser
even in the presence of Mu atoms.

In fact, because of the high exchange frequencies w
conduction electrons atT.1–5 K, the hyperfine interaction
in the Mu atom is ‘‘broken,’’ and the ‘‘bare’’ muonm1 is
effectively observed, i.e., it can be stated that ‘‘spin mu
nium’’ is absent even if ‘‘Coulomb muonium’’ is present.

Equations describing the behavior of muon spin pol
ization when muonium atoms form in a metal were deriv
in Ref. 5. Recommendations for the experimental identifi
tion of Mu atoms were also given in that paper. Howev
several experimentally important ramifications were not p
sented in Ref. 5, partially because the authors restricted
analysis to only the experimental possibilities for the inst
mentation available at that time. During the past 20 years
possibilities for mSR experiments have expanded sign
cantly, primarily in regard to the temporal resolution of p
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(T,0.1 K! have become commonplace.
Even if Mu atoms form in a metal, the hyperfine splittin

frequencyv0 of the Mu atoms in a metal should differ sig
nificantly from the vacuum value,v0

vac52.831010 s21, be-
cause of the shielding by the conduction electrons. We in
duce the dimensionless parametera5v0 /v0

vac. When
a;1023, the ‘‘diameter’’ of a Mu atom in a metal is of the
order of 5 Å, which significantly exceeds the lattice co
stants for all metals. Evaluations give the typic
value a<1022–1021 (v<33108–33109 s21, \v0

<0.231022– 0.02 K!.
Since at the initial moment in time an ensemble of mu

nium atoms is an incoherent mixture ofu1&u1& and
u2&u1& states, the polarization of the muon spin in a ze
external field, disregarding the interaction with the mediu
is clearly

P~ t !5@11cos~v0t !#P~0!/2. ~1!

Oscillations occur because the initialu2&u1& state is not an
eigenstate of the spin Hamiltonian.

3. When there is an interaction with the medium, t
behavior ofP(t) can change drastically. Let us determine t
real conditions under which the observation of ‘‘spin mu
nium’’ is possible. Before proceeding to an analysis of t
possibilities of the experimental observation of Mu atoms
a metal, we write the relaxation equation for the spin dens
matrix of muonium. In a metal the electron spin relaxation
muonium is governed mainly by exchange scattering
electrons of the medium; therefore, the approximation
short correlation times is applicable for the relaxation eq
tions. In this case the basic relaxation equations have
form2,6

]rmn

]t
1

i

\
@H01G,r#mn

5(
k,l

H FGmkln~v ln!1G lnmk~vmk!expS 2
\vmk

T D Grkl
2Gmkkl~vkl!expS 2

\vkl

T D r ln2Gknlk~v lk!rmlJ , ~2!
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where Ĥ0 is the Hamiltonian of muonium,vkl5(Ek
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2El)/\, Ek is the spectrum ofĤ0, and the coefficients are
determined by the operator for the interaction of muoni
with the heat reservoirV̂:

Gmkln~v ln!5
p

\ (
a,a8

Vmaka8Vla8nara8ad~v ln1va8a!,

~3!

Gmk5` (
a,a8 l

Vma la8Vla8karaa~v ln1va8a!21. ~4!

Here vaa85(«a2«a8)/\ @«a is the spectrum of the hea
reservoir~the conduction electrons of the metal!#, the symbol
` indicates that the sum~4! should be understood in th
sense of a principal value, andra8a5da8aexp@(F2«a)/T # is
the density matrix of the heat reservoir.

We write the operator of the spin-exchange interact
of a muonium atom~a paramagnetic impurity! with the con-
duction electrons of the metal, as usual, in the form7,8

V̂5
J

n (
ksk8s8

sesks,k8s8aks
1 ak8s8, ~5!

whereJ is the exchange coupling constant,n0 is the density
of the conduction electrons, andse andsks,k8s8 are, respec-
tively, the spin operators of the muonium electrons and
medium. It is clear that sinceVmana Þ 0, we assign the par
of the interaction that is diagonal with respect to the h
reservoir to the HamiltonianĤ0, and we should substitut
V̂5V̂2V̂d , where (V̂d)mn5(aVmanaraa , into Eqs.~3! and
~4!.

After some fairly cumbersome mathematical manipu
tions, we obtain the expression for the relaxation coefficie
~3!

Gmkln~v ln!5
p

2 S 3J«F
D 2v ln coth

\v ln

2T
smksln , ~6!

and the expression for the matrix, which determines the
ergy shift, retaining only the main terms:

Gmn'
3

4 S 3J4«F
D 2«Fdmn . ~7!

The part of the interaction that is diagonal with respect to
heat reservoir is determined by the polarization of the e
trons of the metal. In fields that are not very strong we ha

Vd522m0S J«FD s•B, ~8!

wherem0 is the Bohr magneton. We see that the energy s
~7! is inconsequential in our case, since it does not influe
the hyperfine structure of muonium, and that the correct
~8! effectively reduces to renormalization of the magne
moment of the muonium electron. The sign of the correct
is opposite to the sign of the exchange integral.

Under the conditionT@u\v lnu, which holds even for
vacuum muonium atT.1 K in the fieldsB,104 G, the
relaxation coefficients have a very simple form:

Gmkln'nsmksln , ~9!
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In this case the relaxation equation reduces to the sim
Wangsness–Bloch equation, whose Hamiltonian should t
into account the effective renormalization of the magne
moment of the muonium electron:

ṙ1
i

\
@Ĥeff ,r̂ #5

n

2
~ŝer̂ŝe23r̂ !. ~10!

In the low-temperature rangeT<0.1 K the relaxation
equation is very complicated;5 however, it can be solved
over the entire temperature range in a zero external magn
field. Let us first consider the case of small effective e
change frequencies (uGmklnu!v0), in which oscillations of
the polarization with the hyperfine splitting frequency shou
be observed. If the terms of ordern/v0 are disregarded, we
can write the polarization in the form

P~ t !'
1

2 FexpS 2
t

t1
D1expS 2

t

t2
D cos~v0t !GP~0!, ~11!

where

t1
215

n

2 S 11
\v0

2T
coth

\v0

2T D , ~12!

t2
215t1

211n
\v0

4T
coth

\v0

2T
. ~13!

As can be seen, whenT→0 (T,\v0), the depolariza-
tion rates of the nonoscillating and oscillating compone
tend to constant values:

t1
215

pv0

2 S 3J«F
D 2, t2

2152t1
21 . ~14!

Accordingly, forv05108 s21 andJ/«F50.1 we obtain the
appreciable valuet1

21'33107 s21, and forJ/«F50.01 we
havet1

21'33105 s21.
If \v0 /T!1, we obtaint1

215n andt2
2153n/2.

We note that the muonium electron spin relaxes in
stochastic nuclear fields,b;1–5 G ~muon spin relaxation
can be neglected in stochastic nuclear fields! at a rate of
order ugeub;107–53107 s21. Since the spin-spin coupling
in a Mu atom is not ‘‘broken,’’ this damping will be trans
ferred to the muon. Therefore, the experiment should be
ried out in metals with zero nuclear spins~for example, in
Mg24,26, Ti46,48,50, etc.!. Most metals have stable isotope
with zero spin~see, for example, Ref. 9!. Experiments in a
zero magnetic field probably are the simplest way to de
muonium.

4. Let us now consider the high-temperature ran
T@\v,\v0, in which the relaxation equation reduces to t
Wangsness-Bloch equation. The solution of Eq.~10! for the
transverse polarizationP'5Px1 iPy gives

P'~ t !5 (
k51

4

Ak expS lkv0t

2 D . ~15!

Here thelk are the roots of the characteristic equation
2,5,10,11
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~l1a!~l1a1g!~l1b!21~2l1a1b!
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rse
3~2l1a1b1g!50, ~16!

where a52i zx, b5g22ix, z51/207, g54n/v0, and
x5v/v0.

2)

We solve Eq.~16! for x,g!1 ~i.e., n!v0, v!v0). For
n;108T s21 and a;1022 this condition requires
T;0.01–0.1 K andB; 5 G. In the solution we disregarde
zx in comparison tog andx.

Let g!x. Then

P'~ t !5exp~2nt !expS ivt2 D H expS 2
nt

2 D cos~v0t !

1
1

2 FexpS 2 i
v2

4v0
t D1exp~2nt !

3expS i v2

4v0
t D G J P'~0!

2
. ~17!

We note that the last two terms, which correspond to
triplet-triplet transitionsv12 andv23, respectively, decay a
different rates. Wheng→0, Eq. ~17! gives the muon spin
polarization in ‘‘vacuum’’ muonium.

Let g;x. Then l1,2523g/41 i (x62), l352g/2
1 ix(12x2/2), andl452g1 ix(11x2/2). The polarization
now has the form

P'~ t !5exp~2nt !expS ivt2 D FexpS 2
nt

2 D cos~v0t !

1S 12 i
v

4n DexpS 2 i
v3

4v0
2 t D 1 i

v

4n

3exp~2nt !expS i v3

4v0
2 t D GP'~0!

2
. ~18!

We note the fundamental difference between the last
terms in Eq.~18! and the corresponding terms in Eq.~17!.
First, at frequencies corresponding to triplet-triplet tran
tions, an addition that is cubic with respect to the field
observed instead of the quadratic addition, and, second
form of the amplitudes corresponding to these transition
altered.

In the case ofx!g, we have

P'~ t !5exp~2nt !FexpS 2
nt

2 D cos~v0t !

1expS 2
ivt

2 D GP'~0!

2
. ~19!

Oscillations of the polarization with a frequency of ord
v0 will be observed forn!v0 and for longitudinal polariza-
tion. When n;108T s21, the necessary conditions a
T;0.01–0.1 K andB;50 G. We have2,5

Pi~ t !5
1

11x2 F ~112x2!expS 2
t

t1
D

1exp~22nt !cos~v24t !GPi~0!

2
, ~20!
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5. It would be interesting to investigate the mean lon
tudinal polarization

^P&5
1

tm
E
0

`

expS 2
t

tm
DPi~ t !dt. ~21!

Heretm52.231026 s is the mean lifetime of the muon. W
obtain

^P&5
1

11tmn

P~0!

2
. ~22!

The temperature dependence of^P(T)& ~at T;0.01–0.1 K!
permits refinement of the value of the exchange integral.

As was pointed out in Ref. 12, the search for Mu ato
in superconductors, in which the density of electrons w
unpaired spins decays with the temperature according to
exponential law exp(2D/T), is very promising. It can be ex
pected that the frequencyn of muonium electron spin flips
will behave similarly if the local distortion caused by
single paramagnetic impurity~muonium atom! is smaller
than the correlation lengthj in a superconductor~see, for
example, Ref. 13!. It was also noted there thatmSR can be
used, in principle, to measure the energy gap widthD. Muo-
nium was first observed in the compound Rb3Co60 in Ref.
14. Muonium has since been observed in vario
fullerenes.15

6. The situation in whichn@v0 is most widely encoun-
tered. It has been investigated in detail, for example, in R
1, 2, and 5. We note that in the limit where the Wangsne
Bloch equation is valid~for example,B5102–103 G, T>1
K!, the longitudinal polarization decays exponentially wi
the characteristic rate1,2,5

t1
215nv0 /~4n21v21v0

2!, ~23!

which has the maximumtmax
21 51/(4Av21v0

2) at the tem-
perature

T*5
\

2p S «F
3JD

2

Av21v0
2.

For example, whenB5100 G, we haveT*;1 K and
tmax

21 ;107 s21, and whenB5103 G, we haveT*;10 K and
tmax

21 ;106 s21. The characteristic temperature dependence
the depolarization rate of the longitudinal polarization w
presented in Refs. 1 and 2. For the ‘‘bare’’ muon the rela
ation rate of the longitudinal polarization is of orde
gmb;105–53105 s21 and thus differs significantly from the
rate in the case of ‘‘Coulomb muonium.’’

A different effect associated with the formation of mu
nium in metals is observed in strong magnetic fie
(\v@T). In the fieldsB;103–104 G this limit is achieved
at T<0.01 K. The precession frequency of the transve
polarization~see Ref. 5!

404Belemuk et al.
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1!Some very recent experiments performed to study the temperature depen-
dence of the muon spin depolarization rate in Sb single crystals showed

tion

Insti-
differs from the precession frequency of the ‘‘bare’’ muo
by the shiftv0/2;108 s21 when a;1022. Since the best
results regarding the resolution of the precession freque
Dv;1010 s21 were achieved in the experiments in Ref. 1
the indicated possibility of measuring the frequency sh
v0/2 can be easily achieved.

In conclusion, let us examine the conditions under wh
second-order perturbation theory can be significant at
temperatures (T,1 K! when the scattering of a conductio
electron of the metal on a muonium atom~the Kondo effect!
is considered. Using the Born approximation, we should c
rect the formula for the effective frequency of muoniu
electron spin flips. According to the qualitative theory
Refs. 7 and 17,n should be replaced by

ñ5n~11D!2, where D;
J

«F
ln

«F
max~\v,\v0 ,T!

. ~25!

An analysis reveals that atn<108T s21, at which Mu atoms
can be observed through two-frequency precession@Eqs.~17!
and ~18!#, the correctionD is insignificant. Ifn.108T s21,
the observation of Mu atoms through the shift of the prec
sion frequency of the transverse polarization in a strong m
netic field is most reliable.

Thus, the recommendations presented by us make it
sible to experimentally observe muonium atoms in metals
the temperature rangeT;0.01–0.1 K and atT>1 K.

We express our gratitude to Prof. D. Kondo for som
useful discussions.
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that Mu atoms nevertheless form.4

2!We note that in Refs. 5, 10, and 11 the roots of the characteristic equa
were calculated with a smaller accuracy.
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Magnetically stabilized electron–hole liquid in indium antimonide

ain
I. V. Kavetskaya, N. V. Zamkovets, N. N. Sibeldin, and V. A. Tsvetkov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia
~Submitted 12 August 1996!
Zh. Éksp. Teor. Fiz.111, 737–758~February 1997!

Luminescence spectra of sufficiently puren-type indium antimonide crystals
(ND2NA5(122)•1014 cm23) in a magnetic field of up to 56 kOe, at temperatures of 1.8–2 K,
and high optical pumping densities~more than 100 W/cm2) have been studied. More
evidence of the existence of electron–hole liquid stabilized by magnetic field has been obtained,
and its basic thermodynamic parameters as functions of magnetic field have been measured.
When the magnetic field increases from 23 to 55.2 kOe, the liquid density increases from
3.2•1015 to 6.7•1015 cm23, the binding energy per electron–hole pair rises from 3.0 to 5.2
meV, and the binding energy with respect to the ground exciton level~work function of an exciton
in the liquid! rises from 0.43 to 1.2 meV. ©1997 American Institute of Physics.
@S1063-7761~97!02602-4#
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The formation of an electron–hole liquid in a semico
ductor is possible if it is stable against decay into free ex
tons, i.e., when the binding energy per electron–hole pai
the ground state is higher in absolute value than the exc
binding energy.1)

Theoretical calculations indicate that in a model sem
conductor with simple isotropic and nondegenerate band
sufficiently low temperatures, the ground state of a system
nonequilibrium carriers with a moderate density of electro
hole pairs (n!aex

23 , whereaex is the exciton Bohr radius! is
a gas of noninteracting excitons.1,2 In real semiconductors
the liquid phase is energetically favored, owing to vario
stabilizing factors. For example, in polar semiconducto
such as GaAs, CdS, etc., the liquid state is stable becau
interaction between charge carriers and longitudinal opt
phonons.3–6 In germanium and silicon, traditional materia
for studies of electron–hole liquid, in which it has been stu
ied comprehensively, the liquid is stable owing to the hi
orbital degeneracy of electron states due to the multiva
structure of the conductance band in these materials.7–13Like
the multivalley spectrum, any complication in a semicond
tor electron spectrum favors stabilization2) of the electron–
hole liquid if it leads to a higher density of states near the
of the valence band or the bottom of the conduct
band.12,14–18

The electron–hole liquid in semiconductors and se
metals with a strong anisotropy of the electron spectrum
studied theoretically in Refs. 21–23. In addition to semico
ductors and semimetals with multiple valleys, quasi-o
dimensional ~systems of parallel conducting wires! and
quasi-two-dimensional~parallel conducting planes! systems
with separations between neighboring wires or pla
smaller thanaex have been studied, as well as bulk semico
ductors under very strong magnetic fields. It was found t
under certain conditions, a ‘‘highly compressed’’ electro
hole liquid with a density much higher than the reciproc
exciton volume in the respective anisotropic system, a
with a binding energy per electron–hole pair much high
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contribution to the binding energy, is due to spatial corre
tions between particles populating different equivale
minima of the bands in the multivalley semiconductors w
sufficiently large numbers of valleys, or in neighboring co
ducting wires or planes in quasi-one-dimensional and qu
two-dimensional structures, respectively, or on neighbor
Landau cylinders under strong magnetic fields. The corre
tion energy in such systems~the exchange energy in the con
sidered density range is much lower! can be expressed in
terms of the asymptotically accurate formula

Ecorr52An1/4, ~1!

whereA is a factor that depends on the nature of the sys
and features of its band spectrum.21,22 This formula for
Ecorr allows one to derive simple analytic expressions for
density and energy of the ground state of a highly co
pressed electron–hole liquid in such anisotropic systems

This paper describes an experimental study of electro
hole liquid stabilization due to a strong magnetic field. It
noteworthy that this case is formally equivalent to the qua
one-dimensional case—as the resulting expressions are
sentially identical after substitution of the magnetic fie
strengthH multiplied by a factor proportional to the densit
of the parallel wires.22 Therefore the main features of a sy
tem of nonequilibrium charge carriers in quasi-on
dimensional structures should be roughly consistent with
behavior of that system in a strong magnetic field.

In a strong magnetic field such thataH!aex, where
aH5A\c/eH is the magnetic length, the exciton effectiv
volume is of the order ofaexaH

2 ~such excitons are usuall
termed diamagnetic24–26!, and the condition of strong com
pression of electron–hole plasma is expressed by the firs
the following two inequalities:21

~aexaH
2 !21!n!aH

23 . ~2!

Under strong compression, the electron–hole system
degenerate Fermi liquid, and its energy as a function of d
sity has a minimum atn5n0. In the ultraquantum limit,
when the second of the inequalities~2! is satisfied, the equi-

406-11$10.00 © 1997 American Institute of Physics
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is n0 } H , and the energy per electron–hole pair in t
ground state isuE(n5n0)u[uE0u } H2/7 ~Refs. 21, 27, 28!.3)

Since the ionization energy of diamagnetic excitons
creases with field strength more slowly thanE0,
(uEexu} ln2H; see Ref. 29! the stability of the liquid state
characterized by the exciton work function in the liquid sta
w5Eex2E0, should increase with magnetic field strength
a strong field. Moreover, in a strong magnetic field the liqu
phase may become stable (w.0) even if it is unstable a
zero magnetic field. An electron–hole liquid stabilized by
magnetic fieldH*20 kOe was found by us30 in indium an-
timonide.4)

Indium antimonide is the most suitable material for stu
ies of the effect of a magnetic field on weakly bound ele
tronic states. The electron effective mass in this semicond
tor is extremely small, so that in a field of only several kil
oersted the magnetic length is smaller than the excito
radius and the electron cyclotron energy is larger than
excitonic Rydberg. Moreover, the existing growth techn
ogy allows one to fabricate highly regular single cryst
with few residual impurities.

In this paper, we present a detailed study of lumin
cence spectra of fairly pure single crystals of indium an
monide in magnetic fields of up to 56 kOe, at temperatu
of 1.8–2 K, and high~more than 100 W/cm2) intensities of
optical pumping, and of the effect of electric fields on the
spectra. We have obtained additional evidence for the e
tence of an electron–hole liquid stabilized by magnetic fi
and measured its basic thermodynamic parameters.
renormalized band gap and Fermi energies of particles in
liquid have been derived from the shapes of luminesce
spectra of the liquid phase. As the magnetic field rises fr
23 to 55.2 kOe, the liquid density linearly grows fro
3.2•1015 to 6.7•1015 cm23, and the binding energy pe
electron–hole pair in the ground state increases from 3.
5.2 meV. At the same time, the exciton work function in t
liquid also increases from 0.43 to 1.2 meV. This featu
qualitatively distinguishes it from the electron–hole liquid
germanium, which is stable at zero magnetic field and ha
constant exciton work function in magnetic fields up to 1
kOe.35

Note that the numerical values of the exciton work fun
tion and density of electron–hole liquid given in this pap
are slightly different from those in our earlier publication36

since the data of this paper were derived from measurem
with due account of the Landau level broadening and
complex structure of the valence band.

2. EXPERIMENTAL TECHNIQUES

The basic experiments were performed usingn-InSb
samples with a differential impurity concentratio
ND2NA5(1–2)•1014 cm23 and degree of compensatio
k.50%. Mechanically polished samples were processe
CP-4A polishing etchant. Typical dimensions of the samp
were 5353(0.1–0.25! mm3. The larger faces of the
samples were perpendicular to the^211& crystal axis. A stud-
ied sample was freely suspended at the center of a supe
ducting solenoid so that the magnetic field was perpendic
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immersed in superfluid helium. The measurements w
made atT51.8–2 K.

The source of quasi-continuous optical pumping wa
cw Nd31YAG laser generating a wavelengthl 5 1.06mm
with a maximum power of about 1 W. The pumping radi
tion was chopped at a frequency of 1 kHz by a mechan
chopper and focused on the wider sample face. The pum
intensity was varied using neutral-density optical filters.

The recombinataion radiation was collected either fro
the face exposed to the laser light~back-scattering configu
ration! or from the opposite face~transmission configura
tion!. This radiation was dispersed by an MDR-2 monoch
mator with a 100 lines/mm diffraction grating and detect
by a Ge:Au photoresistor cooled to a temperature of ab
100 K. In magnetic fields of several kilo-oersted or high
the recorded luminescence spectra were identical in b
configurations; therefore this paper only presents data
rived from measurements in the transmission configurati

In order to compare the spectral positions of the
corded luminescence lines with the energies of diamagn
excitons, we recorded reflection spectra in magnetic field
these measurement the broad-band source of light was a
bar, and the reflected light was analyzed by the same mo
chromator as the recombination radiation.

In order to measure the luminescence distribution o
the sample volume,11,13,15,20an additional horizontal slit was
placed in front of the~vertical! monochromator entrance sl
so that their planes coincided. The wider sample fa
through which the recombination radiation was transmit
was imaged one-to-one in this plane by a condenser.
exciting laser beam was focused on the opposite face in
spot about 0.2 mm in diameter at the center of the rectan
lar image of the opening formed by the crossed slits. T
luminescence spatial distribution was measured by vary
the width of the horizontal slit. The width of the monochr
mator entrance slit was maintained constant~it was 300
mm! so that the spectral resolution would not change.

As will be described below, the luminescence line
electron–hole liquid emerging in a magnetic field under s
ficiently high pumping power is superimposed on lumine
cence lines due to shallow donors and magnetically st
lized exciton–impurity complexes~bound excitons!.30,37,38

These three lines overlap and form a relatively wide spec
range~which is structureless at the highest pumping powe!,
so they cannot be resolved using conventional technique
order to separate the liquid luminescence line, we used
methods: the differential technique with low modulation a
plitude of the pumping radiation,39 and application to the
sample of an electric field whose strength was sufficien
cause impact ionization of shallow donors and bou
excitons.40 The low-amplitude modulation was performed b
a mechanical chopper with a perforated disk made from p
tographic film whose emulsion was removed. This d
modulated the laser beam with an amplitude of about 20
The applied electric field was perpendicular to the magn
field. It was applied using indium contacts attached to
opposite narrow faces of the samples. In both cases we
tected luminescence from a 0.330.3 mm2 area within the

407Kavetskaya et al.



laser spot, whose diameter in these experiments was about
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0.4 mm.
Low-temperature measurements performed at h

pumping powers may be misleading owing to sample ov
heating by the laser beam. In order to test the thermal c
ditions, we lowered the duty cycle of the pumping puls
from 1/2 to 1/10. This change did not notably affect t
shapes of recorded luminescence spectra. Since the inte
of the luminescence light due to bound excitons stabilized
magnetic field is very sensitive to temperature,37,38 we con-
cluded that sample overheating was insignificant through
the range of pumping powers used in our experiments.
known that, even if a bubble of gaseous helium is produ
on the sample surface at the laser focus, sample overhe
will not be very high41–43 ~this issue was discussed in deta
in Ref. 20!. The sample temperature increases considera
at pumping powers much higher than the bubble format
threshold, when the whole sample is surrounded by a
jacket.41 Under conditions of our experiments with lo
modulation amplitude, overheating affected our results s
nificantly only at pumping power densities higher th
.600 W/cm2.

3. EXPERIMENTAL RESULTS

Without magnetic field, the main luminescence line
the studied samples at low pumping powers is entirely in
spectral range below the band gap.38,44 Its maximum is at
hnmax.235.3 meV~the band gap atT52 K is Eg5236.8
meV45!, and its FWHM is about 1.5 meV. This line is due
the transitions of electrons from the levels of shallow don
to the valence band, and its position and shape are contro
by large-scale fluctuations in the concentration of char
impurities, which cause bending of the semiconductor
ergy bands~see Refs. 38, 44!.5) In a magnetic field, the main
~donor! line shifts to shorter wavelengths with increasi
magnetic field strength, becomes more narrow, and its in
sity drops.37,38 In magnetic fields of 5–7 kOe, a narrow lu
minescence line due to bound excitons stabilized by the m
netic field ~BEII line in the notation of Ref. 38! emerges in
the low-energy wing of the initial line; it dominates the spe
trum at high magnetic fields.30,37,38Luminescence spectra o
one sample recorded at a relatively low pumping powe
H546 kOe are given in Fig. 1~curve3! and in the insert of
Fig. 5a.

Changes in the shape of luminescence spectra du
higher pumping power in strong (H*20 kOe! and weak
magnetic fields are qualitatively different. Luminescen
spectra in the fieldH546 kOe recorded at different pumpin
powers are shown in Fig. 1. The intensity of the donor lum
nescence line grows faster with the pumping power den
than that of bound excitons~at low pumping powers the
latter grows linearly38!. At high powers these two line
merge into a single relatively broad band. Figure 1 a
shows that the luminescence spectrum broadens on the
wave side and develops a ‘‘tail’’ extending to the region
lower energies. At the same time, the shape of the sh
wave wing of the resulting spectrum is essentially the sa
as that of the donor line.
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The behavior of the luminescence spectrum in a re
tively weak magnetic field (H,20 kOe! is markedly differ-
ent. At higher pumping powers the structure of the lumin
cence spectrum is also blurred. In this case, however, no
long-wave, but the short-wave edge of the structureless b
broadens~Fig. 2!, i.e., the shape of the high-energy edge
the luminescence spectrum demonstrates behavior simila
that of the zero-field case.44,51At the same time, in the stud
ied range of pumping powers, no features were detecte
the low-energy edge of the recorded luminescence band
could be attributed to an induced emission line44,50,51under
the intense pumping, contrary to the case of zero magn
field.6)

In order to avoid misunderstanding, we stress from
start that the change in the low-energy edge of the lumin
cence spectrum in high magnetic field is in no way related
the amplification of recombination radiation. Above all, th
is suggested by the character of changes due to a hi
pumping power, the position, and the shape of the long-w
radiation band emerging at high excitation intensity~see be-
low!. This statement, however, is confirmed by the aggreg
of experimental facts, which have led us to the conclusio
presented below.

In what follows, we will limit our discussion to result
obtained in strong magnetic fields. Figure 3 shows lumin
cence intensities as functions of the pumping power, m
sured at high excitation in a magnetic fieldH546 kOe for
the three energies of detected photons corresponding to
ferent sections of the spectra shown in Fig. 1. One of th
energies corresponds to the maximum of the donor line
low pumping powers (hn5245.4 meV!, the second to the

FIG. 1. Luminescence spectra in a magnetic fieldH546 kOe. The pumping
power density~1! P.210 W/cm2, ~2! 140W/cm2, and~3! 100 W/cm2. The
spectra are normalized to equalize the intensities athn5245.7 meV~I is a
donor line; II is a bound exciton line!.

FIG. 2. Luminescence spectra in magnetic fieldsH546 kOe ~solid line,
upper scale! andH59.2 kOe~dashed line, lower scale! under high-intensity
excitation. The pumping power densityP.500 W/cm2. The arrows mark
absorption lines of atmospheric water vapor.
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maximum of the bound exciton line (hn5244.8 meV!, and
the third one to an arbitrarily selected point of the long-wa
edge of the luminescence spectrum (hn5244.2 meV!. The
curves in Fig. 3 demonstrate that at the highest pump
power the intensities of the donor~curve1! and bound exci-
ton ~curve2! lines change relatively slowly, whereas the i
tensity of the low-energy edge~curve3! is essentially linear
with the pumping power. The emergence of the low-ene
tail demonstrating a dependence on the pumping power
ferent from those of the initial two components is attribut
to a new band on the low-energy edge, which can be isola
from the total spectrum by recording the luminescence int
sity derivative with respect to the pumping power.30

Before proceeding to the results obtained using this te
nique, let us discuss measurements of the spatial distribu
of the luminescence intensity due to donors (I D) and bound
excitons (I BE). These intensities as functions of the size
the observed region of the sample~width of the horizontal
slit; see Sec. 2! are plotted in Fig. 4. These curves demo
strate that the luminescent region is much larger than
laser spot diameter, which is.0.2 mm, and since the dono
line intensity is a steeper function of the pumping pow
~Fig. 3!, the intensity ratioI BE /I D increases with horizonta
slit width ~Fig. 4!. The data plotted in Figs. 3 and 4 indica
that at high pumping density, when the intensitiesI BE and
I D saturate, the main contribution to the increase in th
intensities with pumping power comes from the periphery
the laser spot. For this reason, luminescence from within
laser spot was detected in measurements of the long-w
band emerging at high pumping powers using the differen
technique in order to reduce the contributions of the do
and bound exciton lines to the differential spectrum.

Luminescence spectra recorded at high pumping po
and 100%~curve 1! and 20%~curve 2! modulation of the
pumping intensity are given in Fig. 5a. The latter was m

FIG. 3. Luminescence intensity as a function of pumping power at h
excitation levels for three spectral positions:~1! hn5245.4 meV,~2! 244.8
meV, and~3! 244.2 meV~see Fig. 1!. H546 kOe. The maximum pumping
power density is about 480 W/cm2. Luminescence was collected from
0.330.5 mm2 area centered at the laser focus.
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tiplied by a constant so that it could be compared to t
recorded at 100% modulation amplitude. Spectrum3 in Fig.
5a is the difference between spectra1 and2. It occupies the
same spectral range as the luminescence spectra at
pumping powers~insert of Fig. 5a!. In accordance with the
above reasoning, however, the lines of donors and bo
excitons are not resolved in the difference spectrum3,
whereas at lower pumping powers these lines are clearly
solved in the difference spectrum~curve2 in Fig. 5b!. The
arrow in Fig. 5a marks the energy of the transition to t
lowest-lying state of free diamagnetic excitons, as deriv
from the position of the long-wave component of the ex
tonic reflection spectrum in magnetic field.37,38

Jumping ahead, we note that experiments with elec
field have demonstrated that at the highest pumping pow
the radiation from donors and bound excitons contribu
little to the differential spectrum2 in Fig. 5a, whereas a
intermediate pumping power densities~140–250 W/cm2) it
appreciably distorts the short-wave wing of the different
spectrum.30

We now discuss experiments with electric field. By a
plying an electric field sufficient to collisionally ionize im
pact ionization of shallow donors and bound excitons, o
can quench luminescence lines due to these species and
separate the long-wave line which emerges at higher pu
ing powers.30 Figure 6 shows dark current–voltage chara
teristics of one sample at various magnetic fields. Owing
the increase in ionization energy of shallow donors w
magnetic field,52 the sample resistance at fields below brea
down ~at low voltageU across the sample!, the breakdown
voltage, and the steepness of the breakdown region of
current–voltage characteristics also increase.

The effect of a dc electric field on the photolumine
cence spectrum at an intermediate pumping power such
the donor and bound exciton lines are clearly seen in
spectrum is illustrated by Fig. 7. At higher voltage across
sample, the intensities of these lines are lower. AtU.15 V
the spectrum contains only a broad band whose shap
similar to that of the differential spectrum2 in Fig. 5a ob-
tained at 20% modulation amplitude of the pumping inte
sity, and which has approximately the same spectral posit

h

FIG. 4. Intensities of bound excitonIBE ~full circles! and donorID ~open
circles! lines and their ratioIBE /ID ~triangles! as a function of the horizonta
slit width d. The pumping power density is about 140 W/cm2, H546 kOe.
The insert schematically shows the luminescence spectrum.
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x-
FIG. 5. Luminescence spectra recorded und
intense pumping in a magnetic fieldH546 kOe:
~a! P.500 W/cm2. The modulation amplitudes
are~1! 100% and~2! about 20%. Curve3 shows
the difference between spectra1 and2. The ar-
row shows the energy of the optical transition
the diamagnetic exciton ground state. Lumine
cence was collected from an area of 0.330.3
mm2. The insert shows the spectrum at low e
citation (P.50 W/cm2). ~b! Difference lumi-
nescence spectra at~1! P.500 W/cm2 and ~2!
140 W/cm2 ~I is a donor line, II is a bound ex-
citon line!.
Figure 7 also shows that the electric field has little effect
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on the shape of the low-energy wing of the luminesce
spectrum. At the same time, the intensity of the long-wa
band increases with electric field strength. This increas
clearly demonstrated by the differential spectra recorded
applying a square-wave voltage with a frequency of 1 k
and a 50% duty cycle under cw optical excitation of t
sample. The donor and bound exciton lines are clearly
solved in the luminescence spectrum differential with resp
to the electric field~Fig. 8!. The signal at these lines has
positive phase, corresponding to an intensity decrease ca
by the electric field. The negative signal at the long-wa
edge is due to an increase in the long-wave luminesce
intensity. Its absolute value grows with the pumping pow

FIG. 6. Current–voltage characteristics of a sample in the dark at diffe
magnetic fields strengths andT52 K.

410 JETP 84 (2), February 1997
e
e
is
y
z

e-
ct

sed
e
ce
.

quenched by the electric field at a notably higher volta
across the sample than that of donor collisional ionization
the dark~compare Figs. 6 and 7!. This probably occurs for
two reasons. First, the electric field in the excited region
likely to be lower than the mean field in the sample. This
supported by observed data plotted in Fig. 9. As the la
spot dimension gets larger, the curve of the bound exc
line intensity versus electric field becomes steeper, and c
plete quenching occurs at a lower voltage. Second, the e
tric field at which donors are almost fully ionized is know
to be several times the breakdown field.53,54 These two fac-
tors probably prevented us from observing quenching in
electric field separately for close-lying donor and bound
citon lines.

Thus the results discussed above have demonstrated
in magnetic fieldsH.20 kOe, at high pumping powers, a
additional spectral band emerges at the long-wave edg
the indium antimonide luminescence spectrum, which can
separated from the resultant spectrum by either recording
spectrum differential with respect to the pumping power
applying a dc electric field. Unlike the other two componen
of the spectrum, this band grows in intensity with the volta
across the sample. This means that the band is assoc

nt

FIG. 7. Luminescence spectra in a magnetic fieldH546 kOe at various dc
voltages across the sample:~1! U50; ~2! 10 V; ~3! 15 V. The pumping
power density is.140 W/cm2; T52 K. The modulation amplitude of the
pumping power is 100%. The spectra are normalized to equalize the in
sities athn5244.4 meV~I is a donor line; II is a bound exciton line!.
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with the recombination of electrons and holes populat
states which are not depleted in the electric field, althoug
is close in energy to the donor and bound exciton lines—
these features are destroyed by collisional ionization.

Therefore, the electron states in question are inhere
substantially different from atomic or molecular states, i
those containing small numbers of interacting particles~do-
nors and acceptors, free and bound excitons, etc.!. The be-
havior of the long-wave emission band in an electric fie
indicates that it is due to the recombination of particles in
electron–hole plasma whose energy is reduced owing to
terparticle interactions. Its increase in intensity in an elec
field and at the same time the constancy of its low-ene
edge shape may indicate that the volume occupied by
plasma in the semiconductor increases. The high-ene
edge of the long-wave band loses an appreciable amou
energy relative to the transition to the free exciton grou
state~see Figs. 5a and 7;hnex5246 meV atH546 kOe!,
i.e., the energy of plasma particles is lower than that
electron–hole pairs bound in excitons.

Thus, we conclude that we are dealing with a plasma
interacting particles stable against decay into free excito

FIG. 8. Luminescence spectra recorded at 100% modulation amplitud
the pumping power~curve 1: electric field is absent,U50) and under
square-wave voltage~curve 2: U510 V, cw excitation!. H546 kOe, the
pumping power density about 140 W/cm2 ~I is a donor line, II is a bound
exciton line and III is an electron–hole liquid line!.

FIG. 9. Intensity of bound exciton line versus voltage across the samp
different diameters of the exciting laser spot.H546 kOe. The pumping
power is.40 mW. The laser spot diameter is~1! .0.2 mm and~2! .0.4
mm. The ordinate scales for curves1 and2 are different.
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carriers by an electric field should broaden the high-ene
wing of the plasma luminescence line, its constant sha
independent of the technique used to separate it from
other spectral lines~the applied electric field or 20% modu
lation of the pumping power!, provides additional evidence
favoring the electron–hole liquid interpretation.

To conclude this section, we note that a long-wave l
emerging at high magnetic fields under intense optical pum
ing was detected more or less clearly in essentially all su
ciently puren-type InSb samples, with various concentr
tions of the majority and compensating impurities, that
studied. A list of the samples was given in Refs. 36 and
The highest intensity of luminescence due to the electro
hole liquid was, however, detected in the samples studie
the work reported here. These samples were selected
studies of the electron–hole liquid with a view to deriving
basic thermodynamic parameters for this reason, and bec
their luminescence spectra contain only one line of bou
excitons stabilized by magnetic field~in some samples up to
three bound exciton lines were detected in a magn
field!.36,38

4. ANALYSIS OF EXPERIMENTAL DATA

One convincing argument for interpreting the corr
sponding luminescence band as a spectral line in
electron–hole liquid is the good fit of a theoretical curve
the recorded spectrum shape. Furthermore, the analys
the spectral line shape yields the most reliable values of
characteristics energies of particles in the electron–hole
uid and its density.8,9,11,14,15,17

The shape of the recombination radiation spectrum
the electron–hole liquid in indium antimonide in magne
field can be analyzed using the conventional formula for
rect allowed optical transitions:

I ~hn!}n2g~hn! f ef h , ~3!

wheref e and f h are the Fermi distribution functions for elec
trons and holes with Fermi energiesEFe andEFh , respec-
tively, and the density of states is55

g~hn!5
A2mr

~2p\!2

eH

c

3A~hn2EgL!/G1A@~hn2EgL!/G#211

2G$@~hn2EgL!/G#211%
. ~4!

Heremr is the reduced effective mass of electrons and ho
in the bands between which recombination transitions oc
EgL is the renormalized band gap in the electron–hole liqu
andG is the damping parameter, which eliminates singula
ties in the density of states at Landau levels.

For simplicity, we assumed that throughout the stud
range ofhn, the electron and hole energies in the expr
sions forf e and f h were related to the emitted photon ener
by Ee5(mr /me)(hn2EgL) and Eh5(mr /m1)(hn2EgL),
respectively, which apply to the case of direct transitio
between parabolic electron and hole bands (me is the elec-
tron effective mass andm1 is the hole effective mass in th

of

at

411Kavetskaya et al.



f

th
th
o
nd
i
f
le
he
tr
a

n

a

lat

p
ol

liq
e

c
o
w

e
:
s

populating the two magnetic subbands considered. The elec-
Eq.

es-

g
ther

ara-

the
ec-

de-

i
y
c-
rgy
nce

den,
mi-
gies,
as,

-

the

ittle
m
k
ub-
le
he
s-
ed

etic

d to

e
is

tes
e
tri-

by
upper magnetic subband of the valence band!. We assumed
in addition that the damping parameterG was independent o
bothEe andEh .

Further analysis was performed in two stages. First,
calculated spectrum was fitted to the experimental data in
two-band approximation, i.e., the holes were assumed to
cupy only the upper magnetic subband of the valence ba36

~below we will find that a great many holes are contained
the next magnetic subband!. As concerns the distribution o
electrons, over the present magnetic field range, all the e
trons in the liquid are in the lowest spin subband of t
zeroth Landau electron subband. In this case, the elec
and hole Fermi energies are related to each other in the s
way as Ee and Eh , i.e., EFe5(mr /me)EF and
EFh5(mr /m1)EF , whereEF5EFe1EFh .

The differential luminescence spectrum of the electro
hole liquid ~with respect to the pumping power! at H555.2
kOe, and its fit calculated by Eqs.~3! and~4! in the two-band
approximation, are given in Fig. 10. This fit obtained
me50.014m0 andm150.075m0 ~this value ofm1 yields the
best agreement between the experimental and calcu
spectra,m0 is the free electron mass! yielded the damping
parameter G50.55 meV, the renormalized band ga
EgL5246.26 meV, and the sum of the electron and h
Fermi energiesEF50.95 meV.

Then the luminescence spectra of the electron–hole
uid were analyzed under the assumption that two magn
subbands of the valence band were populated~it followed
from our analysis that higher hole subbands were not oc
pied!, and the main point was determination of new values
electron and hole Fermi energies. The hole Fermi energy
calculated by numerically solving the equation

E
2`

EFe
ge~E!dE5E

2`

EFh
gh1~E!dE

1E
2`

EFh2DE12
gh2~E!dE, ~5!

which is valid, strictly speaking, atT50, and represents th
electrical neutrality of the electron–hole liquid
ne5n11n2, wheren1 andn2 are the concentrations of hole

FIG. 10. Measured and calculated~squares! by Eqs.~3! and ~4! lumines-
cence spectra of electron–hole liquid.H555.2 kOe,P.500 W/cm2. The
values ofEgL and EF obtained by fitting the calculations are marked
arrows.
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tron concentration is determined by the left-hand side of
~5! with the density of states

ge~E!5
A2me

~2p\!2

eH

c
AE/Ge1A~E/Ge!

211

2Ge@~E/Ge!
211#

, ~6!

whereGe is the electron damping parameter. Similar expr
sions describe the hole density of statesgh1 andgh2 in the
respective magnetic subbands~with me andGe replaced by
m1 and G1 or m2 and G2). We assumed that the dampin
parameters of electrons and holes were related to each o
by Ge5(mr /me)G, G15(mr /m1)G5(me /m1)Ge , and
G25(me /m2)Ge , following from the proportionality be-
tween the damping parameters and Fermi energies in p
bolic bands.17

When the hole Fermi energyEFh was derived from Eq.
~5!, the value of the Fermi energyEFe substituted into its
left-hand side was found from the spectrum shape fit in
two-band approximation, the hole effective mass in the s
ond subband was equated tom250.045m0, and the gap be-
tween the two upper subbands of the valence band was
termined by the formulaDE125mH, wherem57.5•1023

meV/kOe. The resultingEFh was substituted into the Ferm
distribution function f h and then the spectrum defined b
Eqs. ~3! and ~4! was again fitted to the experimental spe
trum, and, as a result, the corrected electron Fermi ene
was determined. Note that the shape of the luminesce
spectrum was still described by Eqs.~3! and ~4!, because
electron transitions to the second hole subband are forbid
and the population of the second subband affects the lu
nescence spectrum through the change in the Fermi ener
which are no longer related by the above simple formul
which hold in the two-band model.

This procedure of deriving electron–hole liquid param
eters from luminescence spectra yields values ofG, EgL , and
EFe that are essentially identical to those obtained using
two-band model (EFe changes by several percent!. Therefore
the inclusion of the second magnetic hole subband has l
effect on the accuracy of the liquid density determined fro
the derived valueEFe . At the same time, in a relatively wea
magnetic field, where the hole population of the second s
band is relatively high and affects the position of the ho
Fermi level, it should be taken into account in deriving t
liquid binding energy from experimental data. This is illu
trated by the data plotted in Fig. 13, which will be discuss
below.

Luminescence spectra recorded at different magn
field strengths were analyzed similarly~the magnetic field
strength at which calculations were performed correspon
the experimental points in Figs. 11–14!. The damping pa-
rameterG is independent of the magnetic field to within th
experimental uncertainty, and its average value
Gav.0.58 meV.

The liquid density n0[ne5n11n2, determined at
T50 by the integral on the left-hand side of Eq.~5!, was
obtained by integrating numerically the density of sta
given by Eq.~6! up to EFe derived from the luminescenc
spectra. Neglect of the thermal spread of the electron dis

412Kavetskaya et al.
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FIG. 11. ~a! Density of the electron–hole liquid~curve
1 shows data from Ref. 36, curve2 of the present work!
and~b! populations of the two upper magnetic subban
of the valence band (n1 andn2) and their ratio as func-
tions of magnetic field.
bution gives rise to a density uncertainty of about 4%. The
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electron–hole liquid density as a function of magnetic fie
strength is plotted in Fig. 11a~filled circles!, and Fig. 11b
shows how populations of the first and second hole subba
vary with magnetic field@as determined by the first and se
ond integrals, respectively, on the right-hand side of Eq.~5!#.
Figure 11a also shows, for comparison, results of our pr
ous investigation36 ~open circles!, in which the liquid density
was calculated using a formula for the density of states
does not include broadening of the Landau levels~this is the
limit of Eq. ~6! asGe→0!. The graphs in Fig. 11a indicat
that the magnetically stabilized electron–hole liquid in
dium antimonide is highly compressed by an external m

FIG. 12. Renormalized band gapEgL , energy of transitions to the level o
chemical potential in the electron–hole liquidEgL1EF (EF5EFe1EFh),
energy of the transition to the diamagnetic exciton ground statehnex ~the
dotted line shows calculations!, and band gapEg ~theory! as functions of
magnetic field.
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perimental results for germanium.35

The work function of an exciton in the liquid was dete
mined using the formula

w5hnex2~EgL1EFe1EFh!,

wherehnex is the energy of the transition to the ground sta
of a free diamagnetic exciton. In calculatingw, we used
hnex derived from measured reflection spectra in magne
field ~Fig. 12; see also Ref. 38!. The work function at differ-
ent magnetic field strengths is plotted in Fig. 13~filled
circles!. Here we also show the results of work function me
surements from Ref. 36 obtained in the two-band approxim
tion ~open circles!. The data plotted in Figs. 12 and 13 dem
onstrate that unlike germanium,35 the stability of the
electron–hole liquid against decay to free excitons in indi
antimonide increases dramatically with magnetic field.

In order to derive the energyE0 per electron–hole pair
in the liquid ground state from the experimental data, wh
is the main calculated parameter in the theory of electro
hole liquid, we need the binding energy of diamagnetic e
citons, sinceE05Eex2w. In calculatingE0 we usedEex de-
rived from spectra of oscillating absorption in magne
field56 using the theory developed by Gelmontet al.57 ~the

FIG. 13. Exciton work function in the electron–hole liquid versus magne
field: s) Ref. 36,d) this work.
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two theoretical straight lines in Fig. 12 are the result of the
calculations;Eex5hnex2Eg).

7) The energy per pair of par
ticles in the liquid ground state versus magnetic field
shown in Fig. 14.

To conclude this section, we note an important circu
stance that was not mentioned in our discussion of the th
retical analysis of luminescence spectra. In fitting the spe
calculated using Eqs.~3! and~4! to the experimental data, w
had to substitute into the Fermi functionsf e and f h in Eq. ~3!
a temperature about 10% lower than that of the liquid heli
heat bath; in other words, the electron–hole liquid tempe
ture turned out to be lower than that of the crystal. This
did in analyzing all the luminescence spectra recorded
different magnetic field strengths.

This effect might be due to purely technical inconsiste
cies, namely, the short-wave edge of the luminescence s
trum differential with respect to the pumping power~the
temperature affects mostly the short-wave edge of the s
trum! might be slightly deformed by bound exciton and sh
low donor lines overlapping with the liquid line~Figs. 1, 5,
and 7!. But that would more likely broaden the short-wa
edge of the differential spectrum. This edge of the spectr
may also be deformed because of the amplification of rec
bination radiation, which quite often occurs in direct ba
gap semiconductors.17 We have, however, no experiment
facts that would support this interpretation. Thus the ques
remains open and requires further investigation.

5. DISCUSSION

The experimental data described above have yielded
sic thermodynamic parameters and characteristics energi
the electron–hole liquid in indium antimonide stabilized
magnetic field as functions of the magnetic field stren
~Figs. 11–14!. Let us compare our results to predictions
the theory of electron–hole liquid highly compressed
strong magnetic field based on the asymptotic formula~1! for
the correlation energy.21,22,27,28We should stress before star
ing this discussion that the theory does not apply to our c
because at real liquid densities~Fig. 11a! the condition of
strong compression~i.e., the first of inequalities~2!! is not
satisfied, hence Eq.~1! cannot be used in calculating th

FIG. 14. Absolute values of~1! the energy per electron–hole pair in th
liquid ground stateuE0u and ~2! sum of exchange and correlation energi
uExcu as functions of magnetic field.
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although the second of inequalities~2! is formally valid, the
ultraquantum limit for holes is not achieved, as follows fro
the data in Fig. 11b. Nevertheless, it makes sense to com
our data to the theoretical predictions.

The theory yields the equilibrium density of th
electron–hole liquid,

n0~H !.0.03Smh

me
D 1/7S aexaH

D 16/7aex23}H8/7, ~7!

and the energy per pair of particles in the liquid ground sta

E0~H !.0.84EexSmh

me
D 2/7S aexaH

D 4/7} H2/7. ~8!

The graphs in Figs. 11a and 14 demonstrate that
liquid density grows with the magnetic field slower than pr
dicted by Eq.~7!, and the energy per electron–hole pa
grows more rapidly than in Eq.~8!. The latter circumstance
probably results from the rapid growth with magnetic field
the sum of the exchange and correlation energiesExc ~Fig.
14!, which was calculated by the formul
Exc5EgL2Eg1(2/3)EF . Note that the theory of strongly
compressed electron–hole liquid whose electrons and h
have very different effective masses for the case when
ultraquantum limit is achieved only for the lighter carrie
yields a steeper functionE0(H) (E0 } H2/5) than that in Eq.
~8!. But in this case the densityn0 also grows more rapidly
with the magnetic field (n0 } H6/5).12,18

The density and energy per electron–hole pair in
liquid ground state estimated using Eqs.~7! and ~8! at
me50.014m0, mh5m150.075m0, aex5800 Å, and
uEexu50.5 meV aren0.2.6•1015 cm23 and uE0u.1.7 meV
at H523 kOe andn0.7•1015 cm23, uE0u.2.1 meV at
H555.2 kOe. The estimates ofn0 are in excellent agreemen
with the experimental data given in Fig. 11a~this agreement
is probably accidental!, whereas the estimates ofuE0u are
lower than the experimental values~Fig. 14!. However, in
light of the above reasoning concerning the applicability
this theory to our results, we should not have expected qu
titative agreement between the theory and experiment.

The theory of electron–hole liquid in strong magne
fields predicts emergence of a dielectric gap in its ene
spectrum because of the quasi-one-dimensional nature o
carrier motion,21,27,28,58and the formation of a dielectric liq
uid is more probable at ‘‘intermediate’’ magnetic fie
strengths.28 It seems probable that the ‘‘overcooling’’ of th
electron–hole liquid with respect to the crystal lattice d
cussed at the end of the previous section may indicate
emergence of a dielectric gap in the spectrum.

In conclusion, let us compare the density of t
electron–hole liquid in InSb stabilized by magnetic field
that of liquids in other semiconductors. As usual, we w
characterize it by the dimensionless parame
r s5@(4/3)paexaH

2 n0#
21/3. As the magnetic field varies be

tween 23 and 55 kOe,r s increases from.1.5 to .1.6.
These values ofr s are greater than that in the electron–ho
liquid in germanium (r s50.5) and silicon (r s50.86), but
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used by Kalugina and Skok33,34 in their interpretation of some features in
the behavior of induced radiation lines from indium antimonide. These
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approximately equals that in strongly deformed germani
and silicon.14–17

6. CONCLUSIONS

As a result of our studies, we have demonstrated
formation of electron–hole liquid stabilized by applied ma
netic field in semiconductors is possible. In indium an
monide it is stable in a magnetic field stronger than.20
kOe. Unlike germanium, not only the binding energy p
electron–hole pair in the liquid ground state increases w
the magnetic field in its stability region, but the exciton wo
function in the liquid~i.e., the liquid stability! also increases
and reaches.1.2 meV atH.55 kOe. This statement relate
to unstrained germanium. It is possible that magnetically
bilized electron–hole liquid also exists in highly deform
germanium.59

In our opinion, similar experiments in stronger magne
fields would be interesting. Under these conditions one co
measure the basic thermodynamic parameters of
electron–hole liquid as functions of the magnetic field inte
sity when the ultraquantum limit has been reached not o
for electrons, but also for holes. One could also investig
the feasability of forming a dielectric liquid, metal–dielectr
transition in the liquid phase, and other interesti
phenomena.12,18,21,27,28,58

It is noteworthy that investigations of an electron–ho
liquid and other electronic systems in strong magnetic fie
are not only interesting in themselves, but can be also
plied to systems with a quasi-one-dimensional spectr
without magnetic field. Experimental investigation of th
conditions under which the electron–hole liquid can eme
in quasi-one-dimensional systems and other low-dimensio
structures have been started quite recently~e.g., see Ref. 60!,
and such research may be interesting with a view tow
studying interparticle interactions in such systems.
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this work, and to M. L. Skorikov for help in data processin
and discussions.
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1!Strictly speaking, the liquid binding energy per pair should be compare
the energy per exciton in an excitonic molecule~biexciton!. For brevity,
we do not consider this fact, all the more so since in most cases
possibility of biexciton formation can be disregarded because of their
binding energy.

2!The literature dedicated to the stability of the electron–hole liquid,
nature of its ground state, and phase transitions in a system of noneq
rium charge carriers is voluminous. These and some other topics co
ered in this paper are discussed in the reviews11–20and references therein

3!These relationships betweenn0 andE0 on the one hand, andH on the
other, were derived using the asymptotic expression~1! for Ecorr .

4!In addition to the references mentioned above, the electron–hole liqu
a strong magnetic field was studied theoretically by Chui31 and Bütner.32

The concept of the magnetic stabilization of electron–hole liquid was
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features, however, were detected at magnetic fields considerably lo
than those needed for the liquid stabilization, so an alternative interpr
tion is required.

5!Other views on the nature of this luminescence line are presented in R
46–50. References to earlier publications and detailed discussion of
issue can be found in Refs. 38, 44, and 51.

6!The line emerging at zero field was also studied in Refs. 46 and 47. It
called the B-line and interpreted in a different way.

7!We express our gratitude to Al. L. Efros, who made available for us
results of these calculations and also the calculations of the indium a
monide valence band energy spectrum in magnetic field, from which
could derive the values ofm1, m2, andm.

8!The condition of strong compression would be satisfied in indium a
monide atH.5 • 105 kOe.

1W. F. Brinkman, T. M. Rice, P. W. Anderson, and S. T. Chui, Phys. R
Lett. 28, 961 ~1972!.

2P. Vashishta, P. Bhattacharyya, and K. S. Singwi, Phys. Rev. Lett.30,
1248 ~1973!; Phys. Rev. B10, 5108~1974!.

3L. V. Keldysh and A. P. Silin, Zh. E´ksp. Teor. Fiz.69, 1053~1975! @Sov.
Phys. JETP42, 535 ~1975!#.

4G. Beni and T. M. Rice, Phys. Rev. Lett.37, 874 ~1976!.
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Effect of the features of the low-energy spectrum of vibrational states in disordered

systems on the probability of the Mo ¨ssbauer effect and the Debye–Waller temperature
factor

L. L. Buishvili,* ) L. Zh. Zakharov, I. N. Kakhniashvili, and G. L. Topchishvili

Institute of Physics, Georgian Academy of Sciences, 380077 Tbilisi, Republic of Georgia
~Submitted 27 August 1996!
Zh. Éksp. Teor. Fiz.111, 759–762~February 1997!

We study the effect of the additional density of vibrational states inherent in disordered systems
on the Mössbauer effect and the Debye–Waller temperature factor at temperatures of
about 10 K. We show that the effect of the additional density of vibrational states shows up as
an increase in the exponent in the temperature dependence of the mean-square displacement
and should manifest itself in measurements of the temperature factor and the probability of a
recoilless process. ©1997 American Institute of Physics.@S1063-7761~97!02702-9#

Lately there has been an upsurge of interest in the physi-the additional density of vibrational states, andvm is the
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cal properties of such disordered systems as glassy sem
ductors and insulators, and metallic glasses. Studies h
revealed that below 1 K neither the Debye theory nor it
modifications can describe the many properties of disorde
systems. To overcome this difficulty Anderson and Phill
introduced the model of two-level tunneling systems.1 A
two-level system is an atom that can be in two alm
equivalent states, and tunneling is the mechanism by whi
transition from one state to the other is achieved. The m
characteristic feature of these excitations is that the den
of states in them is only weakly dependent on energy
reaches a value of order 1046J21

• m23.
The Mössbauer effect for nuclei in samples containi

two-level systems was studied in Ref. 2, where it was fou
that below 10 K the contribution of two-level system dom
nates.

Another temperature range~in addition toT , 1 K! that
is of interest here is 10 K,T,30 K. At such temperatures
experiments involving incoherent neutron scattering and
man scattering of light make it possible to establish the pr
erties that are characteristic of the spectrum of low-ene
vibrational states in disordered systems and are the s
both for glassy semiconductors and insulators and for me
lic glasses.3

These experiments revealed the presence of an a
tional density of vibrational states in the 3–15 K interv
The nature of this additional density of states has yet to
clarified. However, it has been established that the vib
tional excitations responsible for the excess density of vib
tional states in glasses are localized in regions contain
from several dozen to several hundred atoms. Moreover,
analysis of the spectra shows that these excitations o
Bose statistics, in view of which the excess density of vib
tional states is called the bosonic peak.3

The bosonic peak has the form

D f ~v!5D f m~v!expF2
ln~v/vm!

2s2 G ,
wheres is a parameter equal to 0.48 that characterizes
width of the bosonic peak,D f m(v) is the maximum value of
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frequency corresponding to this maximum. According to t
experimental data,D f m(v) exceeds the density of vibra
tional states in the Debye model by a factor of two to ten3

The aim of the present work is to study the effect of t
bosonic peak in calculations of the probability of a recoille
process. The probability of the Mo¨ssbauer effect is given by4

f5exp~2k2^u2&!,

wherek is the wave vector of a gamma ray, and^u2& is the
mean-square displacement from the equilibrium position.

As is known,4

^u2&5E
0

vD
f ~v!u~v!dv

5E
0

vD
f ~v!

\

maN
F 1

exp~\v/kBT!11
1
1

2Gdv

v
,

whereN is the number of particles in the system,ma is the
mass of the atom,f (v) is the density of vibrational states
vD is the Debye frequency corresponding to the Debye te
peratureQ, andkB is the Boltzmann constant.

With allowance for the bosonic peak,

f ~v!5aH f D~v!110f D~vD!expF 2 ln2~vm /v!

2s2 G J ,
wherea is the normalization constant, which to high acc
racy can be assumed equal to 9N/vD

3 , and f D(v) is the
Debye density of states, equal toav2.

Taking all this into account, we can now write

^u2&5^u2&D1^u2&bos,

where ^u2&D the mean-square displacement in the Deb
model, and̂ u2&bos is the displacement that results from th
presence of an additional density of vibrational states. A
known, in the T!Q approximation the expression fo
^u2&D has the form

^u2&D5
9\2

makBQ F141S TQ D 2p2

6 G .
417-02$10.00 © 1997 American Institute of Physics
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^u2&bos5
1039\2

makBQ

\vm

kBQE
0

vDF 1

exp~\v/kT!11
1
1

2G
3expF 2 ln2~vm /v!

2s2 Gdv

v
. ~1!

To describe the contribution of the additional density
vibrational states to the total probability of the Mo¨ssbauer
effect we examined Ir193, Au197, and Eu153 nuclei, which
were impurities in solids with a Debye temperatureQ
; 1000 K. The values of the gamma ray energy and
recoil energy were taken from Ref. 4 and are, respectiv
73 and 1.531025 keV, 77.3 and 1.631025 keV, and 97.4
and 3.331025 keV. Bearing in mind what was said earlie
about the probability of a recoilless process calculated by
Debye method, we have

f D~ Ir193!}exp~20.2620.1731025T2!,

f D~Au197!}exp~20.2820.1831025T2!,

f D~Eu153!}exp~20.5720.3831025T2!.

To estimate the contribution of the additional density
vibrational states to the total probability of recoilless proce
we integrated Eq.~1! numerically and found that

f bos~ Ir
193!}exp~27.93102220.5031025T2.5!,

f bos~Au
197!}exp~28.03102220.5131025T2.5!,

f bos~Eu
153!}exp~26.23102220.4031025T2.5!.

In addition to entering into the probability of the Mo¨ss-
bauer effect,̂ u2& enters into the formula for the Debye
Waller temperature factor, which according to Ref. 5 has
form

I5e22B,

where

B58p2^u2&
sin a

l2 ,
418 JETP 84 (2), February 1997
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As an example we study the variation of the temperat

dependence of̂u2& in the presence of an additional densi
of vibrational states for Al27. After plugging the values of the
parameters of Al27 into Eq. ~1! and numerically integrating
this equation, over the 0,T,\vm /kB temperature range we
have

^u2&bos'731027T2.511.131022,

and

^u2&D'731027T1.910.931022.

Our studies suggest that in calculating the probability
the Mössbauer effect and the Debye–Waller factor near
K, one must allow for special features of the low-ener
spectrum of vibrational states; in particular, for the addition
density of vibrational states and the effect of two-level s
tems~the latter has been examined in Ref. 2!. The effect of
the additional density of vibrational states shows up as
increase in the exponent in the temperature dependenc
^u2& from 2 to 2.5–2.7 and should manifest itself in me
surements of the temperature factor and the probability of
Mössbauer effect.

This work was made possible by a grant from the Int
national Science Foundation~Grant No. MX K000!.
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