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It is shown that the two bends observed in the cosmic ray energy spectrum can be well
approximated by equations derived by assuming that cosmic rays can be generated and accelerated
in plasma pinches. €997 American Institute of Physid§1063-776(97)00102-9

1. THE PROBLEM OF BENDS IN THE COSMIC RAY the purely approximate, “bend-free” expression
SPECTRUM
dN/dE=constE™", »=2.55+0.02 I(2E) 1)

The subject of the article is the origin of galactic cosmic (here the proton energy is measured in T.eWe propose to
rays and their spectrum, various parts of which are shown ishow that equations based on physical notions of the mecha-
Figs. 1-3. nisms of particle acceleration in pinches can be used with a

The most widely accepted hypothesis is that cosmic ragertain choice of parameters to approximate the entire cos-
particles are accelerated at shock fronts generated by supenic ray spectrum with all its subtle details.
nova explosiongsee Ref. 1 and the literature cited thejein
We note that the explosion of a supernova generates a one-
time, single expanding shock wave, but, for example, the: APPROXIMATE EQUATIONS FOR THE COSMIC RAY

. ) SPECTRUM
Crab Nebulaa supernova remnantontinuously emits syn-
chrotron radiation of ultrarelativistic electrons. For this rea- |t was first shown in Ref. 4 that the hydrodynamic
son a number of theoretical papers favor the hypothesis thaqueezing of plasma from the waist of a pin@s from a
cosmic ray particles are accelerated by plasma waves copipette with a relativistic plasma gives rise to a spectrum of
tinuously generated by rotation of the central pulsar of aaccelerated particleggommonly called “pips”)
nebula together with its enormous magnetic field. It is there- _
fore assumed here that the principal source of cosmic rays is o(E)=CONStE"",  »=1+ V3, 2
not the supernova explosiqer se but its long-term activity  with exponentr=2.732, which is very close to the actual
following the explosion. “observed” value for cosmic ray particlesee Fig. 1 with

In the present article we discuss an alternative hypothenergies 1<E < 3-10'°eV.
esis(see Refs. 4—6 and the literature cited therespecifi- In addition to the pipette mechanism, however, there is
cally the possibility that the particles are accelerated in broalso a second, induction mechanism in the pinch effect: the
ken cosmic plasma pinches. acceleration of peripheral plasma ions in the induced electric

We postulate that closed toroidal magnetic field loops offield (see Refs. 5 and)6which in the ultrarelativistic case
the type shown in Fig. 4 can occur from time to time in aleads to a spectrum of the form
turbulent cosmic plasma, possibly in the vicinity of superno- _ 1 (—EIE _
vae. The gradual constriction of the magnetic torus toward l(B)=C,ETe "5, Ey=edy/c, ©
the axis can lead to the formation of a central currentwhereJ; is the pinch breaking current. If both spectra are
carrying pinch, whose breakup can be accompanied by theummed for the many pinches ascribed to our Galaxy model,

acceleration of plasma particles. we obtain the equation for the total differential spectrum
More detailed information about the energy spectrum of | .
. . . N Cplp S(E)
galactic cosmic rays has appeared in recent years. Two E:Z lot+ > 1,= e g
prominent bends are observed in the spectrum: the first at
energies of the order of (3—5)0 eV and the second at ? E
3.10'® eV. However, the cosmic ray spectrum at energies S(E)zE C; exp{ “E] 4
=1 i

E>10'® eV can only be determined by recording the second-
ary particles of extensive air showers generated in the earthiwherec, andE;=eJ/c are constants. We do not have any
atmosphere by solitary primary particles. Here the transitiorinformation on the statistics of the breaking currehts the
from secondary to primary particles is not a trivial matter,Galaxy, but clearly the quantities, c, and the required
and the presence of the first bend in the primary particlewumber of parameter§;, E; can be chosen in such a way
spectrum is challenged in Refs. 7 and 8. Conceivably ithat an approximation equation can be formulated, reflecting
should be ascribed to a higher energy raf@#— 10" eV), all the nuances in the behavior of the spectrum. A single
and for the energy range 10-10'® eV Nikol'skii’ proposes term in Eq.(4) can describe some kind of narrow peak in the
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FIG. 2. Experimental cosmic ray spectrum from Refs. 1 and 2. The curve
represents our approximatid).

wherea, p, andEgy, are fitting parameters. This choice adds
the following continuous-current correction to the spectrum:
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where A=4a(2Eg,) P!, x=\E/Eg, and Ky(x) is a

ETS o’ modified Bessel function, for which the following approxi-
mation is recommended for any value>af
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FIG. 1. Differential spectra of cosmic rays from Ref. 1. The straight line Kp(X)%F(p)prl — (1+Bpx)(2p71)/2,
represents our approximatid8). X
1 [ \/; }2/(2p—1)

_ _ $=3 |T(p)
spectrum, while a broad, smooth bend can be attributed to
the presence of a group of many continuously distributed-or p=3/2 the approximation formula is exact and, for ex-
currents, which are best analyzed separately. ample,K; andK, are given by the expressions
We consider the following model as an example. We v
replace the sunB8(E) in Eqg. (4) by an integral over the oy—la—XA[qa T
“currents” J=eJ/c, writing it in the form Ki(x)=x""e o
S(E) = fC(J)exp(—E/J)dJ. Assuming many small currents
and few large ones, we assume that the funci¢s) decays K,(x)~2x" 26~

according to a power law and, in addition, is cut off expo-
nentially at high currents according to

)

1+ (8)

X’7713 3
2 )

which differ at most by 3% from the tabulated values of
C(J)=aJ ' P exp—J/MEy,), (5) Ky, for all values ofx.
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v=2.6 in the interval up to the first bend at energy
EF=3-10" eV, and with exponenv=3.1 after the bend
(see Fig. 3 Here the difference in the experimental expo-
nents is equal tédv=0.5, and it is customarily assuméske
Refs. 9 and 1pthat this can be attributed to the dependence
of the diffusion coefficient on the energy associated with the
faster drift of higher-energy particles in comparison with
lower-energy particles, which are more thoroughly entangled
in the random magnetic fields of the Galaxy.

Under steady-state conditions, the drift of particles with
energyE is described by the diffusion equation

div(DVn)=Qo(E),

FIG. 4. Constriction of a magnetic torus with the formation of a centeredywhere n= n(r,E)=I/c is the density of particles, and the
pinch in the presence of external pressure. right-hand side characterizes the primary particle sources. If
we assume that the diffusion coefficient depends on the en-

If the rise of the spectrum after the second bend is iden€rdy according td(E)=D,®(E), the latter factor can be

tified with the cutoff of some sort of hypothetical metagalac-transferred to the right, and the observed spectrum should
tic currents (), the spectrum can be augmented with athave the form ~1o(E)/®(E). Consequently, the first bend
least one more term of the forit8), so that in the final Can be correctly described by assuming that the diffusion

analysis the pinch mechanism can be said to predict a spe€oefficient is constant at low energies and is proportional to

trum of the form JE in the high-energy range beyond the first bend.
_, We now show that the required form of the dependence
dN/AE=1Ipip+ 1 gart Imet,  Tpip=C1E ", D(E) is obtained in a natural way in our theory when certain
lga=C2E 46 £,(X), e C4Ele E/Emey (9) reasonable assumptions are made about the structure of the

galactic magnetic field. Following conventidsee Ref. 1§
where&,, (X) = (1+x8,_1)* 3% x=E/Eg, andC;,3are e assume that the fieBl is localized at inhomogeneities of
constants. scaler, and a particle that penetrates these is deflected by an

Let us compare our equations with the observed spectrgyngle ¢ =r/p, where p=E/eB is the Larmor radius of an
In Figs. 2 and 3 the factdE® is added to the spectrum for yirarelativistic particle. We also assume that the field is not
convenience and is taken into account by rewriting@yin - completely random, but is “regular{see Ref. 1pin the

the form sense that it has the same direction in neighboring inhomo-
geneities.
JE E3=CpipE3 "+ CgaE> e T¥E,(X) Th2e collision cross section is now approximately
o=r? (=mr? for slow, back-scattered particlesand for

E the average diffusion coefficient we have the approximate
+CmeE2eXp — (10) ;
Ere ' expression

where new notation has been introduced for the constants.

o 1 c 1 1 E /1

Here we have seven fitting parameters, and to plot the (D)~= cA=5—5(—), “==1(=), @

curve in Fig. 2, we have assigned them the values 3 3n;r° e ¢/ e\rB
Cpip=5-10%, v=2.82, C4p=8.2-10", u=2.73, Eg,=1.4
10" eV, Cpe=2.77-10" ™, andE,=9- 10 eV. Itis evi-  Wheren, is the number density of inhomogeneities, and the
dent from Fig. 2 that these parameters lead to satisfactorgngle brackets signify averaging over the field inhomogene-
approximation of the experimenta| points of Ref. 2 in theities, i.e., essentia”y over the distribution function of the
vicinity of the second bend. In the vicinity of the first bend, currents producing the inhomogeneities. For the current dis-
however, the situation is less satisfactdthe theoretical ~fribution function, in the meantime, we have already in Eq.
bend appears too smogtiand to improve the agreement, we (5) adopted a model power law with a cutoff exponential,
introduce a new factor in the theory, the diffusion drift of Which is the one we shall usince it yields the required

cosmic ray particles out of the Galaxy. resul). Assuming closed currents, we assume that the field of
the ring current] is approximatelyB= ¢gJ/cr, wheregg is

3. ALLOWANCE FOR THE DIFEUSION DRIET OF a coefficient of the order of unity, and adopting the notation

PARTICLES of Eqg. (5), we have

We now show that the postulated pinch mechanism can
be used to obtain a qualitatively correct description of par- <1> _ E <£> _ E Sp+1(E) (12)
ticle drift from the Galaxy. e/ ¢o\J] @0 SHE)’

Roughly speaking, the spectrum of galactic cosmic rays
takes the form of a power law~E™" with exponent where(see(6))
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-7 altogether for simplicity, and then if we take diffusion into

o J E Once this has been accomplished, we can ignore pips
sp(E)zaf J-pt exp(—4E J)dJ
0 gal account, we have for the spectrusf. model 2

2a  Ky(x) _
-2 et (13) ET* |
(ZEgal)p xP 3) |3: I gal+dif+ I met+dif:A2 (D(E) € E,u,(x)
We therefore obtain 1
E\# E
~ < 4+ | — — .
L) PR g o (<1 xsl 5 ede 9
@ e 2pK, | =x/2p, x>1. _ .
(14 To preserve the initial part of the spectrum and the region of
) ] the first bend intact, we must proceed here as in model 2 and
Here the two asymptotes obviously satisfy set Ay=A,=7-10", EX*=1.2.10'° eV, and u=v=2.55;
® oof X) = 1+ (X/2p)?= 1+ E/4p°E 4 (155 we now find that & se=(1+xBy59"%~1+x. Subse-

quently, however, fox=E/E5 we need once again select

which is also useful, so that the current-averaged diffusiothee parameter&? =1.3- 1018 eV, EX =7.44 10?° eV, and
2 — L.V y =3 — - ’

coefficient(11) is equal to

Eme= 10 eV.
c As another case we consider a model without pips and
(D)=Do®(E), Do= 3nr2’ P(E)~Vl+te, without diffusion:
(16)

wheree = E/4p°E 4, is the normalized particle energy. 4) 14=lgart Ime=A4E™#| €77€,(X)

The diffusion coefficient determined from these casual .
estimates has the asymptotic forms that we want, and the first N EV oxd — E 20
bend in the spectrum is located in the regior1l. We now Ej Emet |’

examine the newly obtained spectra with allowance for dif- . ) 0
fusion with the new choice of parametess,=2-10°°, u=2.75,

x=+EIE,, E,=2.3610" eV, &,,4x)=(1+0.845%)%*
EX=1.6-10"%¢V, andE,=1.3- 10" eV.

4, SPECTRA WITH AND WITHOUT DIFFUSION Finally, we consider a special check model 5, which is
similar to model 4 but has the half-integer exponent

Here we discuss several alternative approximations 0f _ 5> for |ow energies. This case is useful in that, first,

cosmic ray spectra. In the first case we discard the inductiogessd functions with half-integer exponents can be ex-
ter:ms, taking onlty)/ the E'p fte”rm and diffusion into account pressed exactly in terms of polynomials and exponentials, so
whereupon we obtain the following approximations: that here the asymptotic forms do not need to be matched in

E~V E the diffusion coefficient as before. Second, the exponent
1) 11=lpip+ait=A1 DE) O(E)=/1+ SR (17 w=5/2is close to the valugy=2.55 used by Nikol'skf at
! low energies. Thus, taking diffusion into account, we con-

This spectrum can describe the first bend, but does not hawsgider the equatiofisee(6))
a bump in the vicinity of the second bend; to include it, we

add a “metagalactic” term, which yields 5) |5:|ga:|-¢—5c/ji2f+|met+dif: Eigl(zé) _ (I)(]-E) Kg),(/ggzx)
E*V
2) 12=1piptaitt I metrdit= A1 B(E) B ;{ E \” E-52 [14x
+ = expg — =A
. E )vl ;{ E a9 E Eme ® ®(E) | e
X1+ = exp — . 32
E3 Emet E E
+ —_ —
ez TN Enl ) 2D

By trial and error we have found that the choice of param-
etersA;=7-10', »=2.55, E} =1.2:10" eV, Eqe=10"  wherex=E/Ey, We reiterate that here we are using the
eV, andE} =7.4-10?° eV yields satisfactory agreement with exact  expression  for  the  Bessel  function
Fig. 3, where the theoretical curvd8) is represented by K, (x)=/m/2x %% *(1+Xx), and in the given situation it
diamonds. coincides perfectly with our approximatidi). For the dif-

However, the experimental data of Fig. 3 have too greatusion we again obtain the elementary “exactiee (14))
a spread, and for definiteness we shall attempt to approxexpression

mate the experimental points of Fig. 2, where the second
bend is a dip with rounded left and right wings. On the other
hand, in approximation 2 the left wing is straight, because it
is formed by pips. Also, in this approximation the first bend  ®(x)=
is induced by the diffusion of “galactic” particles, even

though such particles themselves are disregarded, and weherexy=E/Egs, andEy; is the “diffusion” energy pa-
now attempt to take them into account. rameter, which must be properly chosen for the first bend to

D(E)=Do®(E), ®(E)=®(xq),

XKz ). X (22)
3K3p 3+3x’
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be situated in the right place. With the appropriate choice ofic particles, we have used a spectrum of the same f@5in

all the required parameters, the exactly solvable model But with a different value of the parametgg,=1.3- 10'8

does not really differ from model 3, as is demonstrated foreV. This means that in approximation 3 we assume the pres-

clarity in Fig. 5. ence of two sets of currents, the first being responsible for
If diffusion is taken into account here in the same way adiffusion, and the second for the acceleration of a group of

before, then by dividing expressid@l) by 1+ E/E] and  galactic particles.

making the necessary choice of the paramEtgrcharacter- We refine this explanation with a physical interpretation
izing the position of the first bend, we find that model 5 doesof the parameters. In E¢5) we have introduced the variable
in fact coincide with model 3. J=eJ/c; in application to diffusion the equation is more

Figure 5 shows the experimental points from Refda-  advantageously rewritten in the form
monds and the three model approximations 2, 3, and 4. -

The best approximation to the experimental data in Figs. C(J)=al™""" exp(~ J/4Ega)
2 and 3 is No. 3, which can be regarded as a good practical =aJ 1P exq_‘]/‘]ﬂ; ) (23
approximation formula to be used in describing the full range ) it
of ultrarelativistic energies #<E<10%° eV. This distin- Here we have introduced the notatiaf, = 4E.c/e for the
guishes it from other approximation formulésg., from the ~Maximum current, so thdg,= Eqi= e Jya/4c, while in ap-
Nikol'skif equation(1), which omits the second bepavhich ~ Plication to diffusion the variablex has the form
are generally aimed at describing limited intervals of theX= VE/Egy and gives our postulated functional relation for
spectrum. the diffusion coefficienD =D,/1+E/E}. We thus obtain

All the same, our equations are not simply chosen for thés/ET = (x/2p)? and E} =4p®Eg;. In approximations 2 and
sake of approximatiorper se but are based on definite 3 the correct position of the first bend is achieved for the
model physical notions as to the mechanism of particle acchoice
celeration in electric fields; we therefore examine these * 5 _ _
physical models in greater det&fiee below. Ef=1210" eV, p=u-1=155,

so that hereE=1.25 10** eV, which corresponds to the

5. DISCUSSION OF PINCH MECHANISMS maximum current responsible for diffusion

Approximation 1 takes into account only pips and the Il =4cEq/e=5-102 a.u=1.7-10 A.
diffusion responsible for the first bend. However, it disre-
gards the second bend, which in our model can only be takefhhis numerical value can most likely be taken as an accept-
into account by adding a metagalactic term, as is done igble estimate for our Galaxy. In Raadu’s survéyor ex-
approximation 2. In this approximation tifeisually) straight ~ample, our Galaxy is in fact assigned a current of the order
parts of the profile in Fig. 5 between the first and seconde™~ 10" A, and the same currents are ascribed to the inter-
bend and after the metagalactic bump are formed by pipstellar medium in Peratt's bodk.
which nonetheless appear to give excessively high intensities On the other hand, galactic cosmic rays are known to
for the very high-energy range ¥<E<1(? eV. Pips are have an energy density of 1 eV/énand the average energy
therefore totally disregarded in approximations 3 and 4.  density is the same for the magnetic field, which is therefore
Approximation 3, which takes “galactic” and “metaga- €qual toB=6-10"° G. The above-determined maximum
lactic” particles and diffusion into account, probably yields currentJq,=1.7- 10" A could generate this field if the cur-
the best fit to the experimental data of Fig. 3. It is importantrent channel had a radiug=5.7-10'" cm=0.6 light years.
to note, however, that in order to correctly position the firstlt is well worth noting that this distance coincides with the
bend (assuming that it is diffusion-relatedwe have aver- Larmor radius of a particle in this field:
aged the diffusion coefficient over the spectrum of currents f s=E/eB=E[eV]/30B[G]=5.7- 10" cm=0.6 ly,
of the form (5) using one value of the parameters
Ega=Eqr=1.25 10" eV, whereas to correctly position the if the critical energy of the particle is equal Ey,= 10" eV.
second kindassuming that its left wing is formed by galac- This value also corresponds to the first bend in the spectrum
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(for us E} =1.2-10' eV), which imparts a certain internal energy particles. We emphasize that approximations 3 and 4,
consistency to our conclusion that the diffusion coefficientin contrast with 1 and 2, theoretically suggest a sharp expo-

D=Doy1+E/E}.

nential cutoff of the spectrum at energies of the order of

We now consider galactic particles in approximation 310?° eV, which is consistent with observations.

(with the diffusion-related first bendnd in approximation 4
(without diffusion. In both cases Eq(21) is used for the
current distribution, but with the parameter

Egxl=1.310"® eV or E{}=2.3610" eV.
Converting to currents as above, we find

Imax—4Egcle, Il =1.7-10" A,

J% =3.15 10" A.

These currents ar@espectively 100 and 19 times greater

One final point is that we have discussed approximation
4 without diffusion because, in particular, several authbrs
have questioned the existence of the sharp first bend, and the
theory predicts a more rounded bend in the curve even with-
out diffusion (or, more precisely, on the assumption that the
diffusion coefficient does not depend on the engrdty is
evident from Figs. 1 and 5 that the exponent of the power
spectrumy=2.75 (=1+v3) works quite well not only for
the energy rang&E<10'% eV (Fig. 1), but also at higher
energies up t&E~10°-10" eV.

The preceding estimates of the parameters of the pinch

than our “diffusion” current determined above, and they mechanism underlying the generation of galactic cosmic rays

would produce a standard magnetic fi@e=6-10 ° G for
current channels having corresponding radii

r¥=5.7.10 cm=60 ly andr}{’=10" cm=10 ly.

are reasonable. Clearly, cosmic rays are accelerated in cer-
tain electric fields and, according to the generally accepted
shock wave hypothesis, thegelatively wealk fields exist in
magnetohydrodynamic wave®r in MHD shock waveg

The second result is approximately consistent with the avemwith which the particles have resonantly interacted for a long
age distance between stars in the Galaxy. If these radii of théme. The pinch mechanism proposed here is based on a
current channels are set equal to the Larmor radii for thdlifferent picture, namely acceleration in comparatively
same magnetic field, we obtain the corresponding particlétrong but short-lived electric fields produced by periodic

critical energies

EP=10" ev, EP=2.10" ev.

current cutoffs in pinches of the cosmic plasma.

We now discuss the metagalactic term, which has beefi CONCLUSION

introduced in both approximations 3 and 4 with approxi-

mately the same cutoff parameter
Eme= 10" ev=eJ"%c,
so that

Jmet—3.3.1017 A.

max

We summarize the investigation in five concluding re-
marks.

1) The observed cosmic ray spectra shown in Fig. 3 have
appreciable differences but, roughly speaking, they exhibit
eight characteristic parameters: a common normalization, the
slope of the initial segment of the spectrum, the position of
the first bend, the slope of the spectrum after it, the position

These currents can be identified with the space between oof the second bentsee Fig. 2, the slope after it, and finally

dinary quiet galaxiegsee Ref. 12 whereas based on nu- the position of the

last maximum and the down-

merical modeling of the active radio galaxy Cygnus A, ac-slope following it. Clearly, an analytic approximation must
cording to numerical modeling results, it is ascribed a currentontain the same number of fitting parameters, but in Eq.
of 2.5-10'° A, 12 the periodic cutoff of which should lead to (19) (see also Fig. bwe have succeeded in circumventing

the generation of

particles with maximum energy six parameters. Three of thefthe characteristic energies
Epa=7.5.10°° eV. However, this radio galaxy is situated 75 E} ,

%, andE,,e) can be linked to three characteristic di-

Mpc from us, and it is not very likely that these particles mensions in a physically meaningful way, namely, the aver-
could traverse such a distance after being slowed down bgge distance between stars, the thickness of the galactic disk,

the cosmic background radiatiofstopping length~40
Mpc).

However, the well-known cluster of galaxies in the con-

and the dimensions of the halor average distance between
galaxies.
2) Particles squeezed from the waist of a relativistic

stellation Virgo is situated at a distance of 17 Mpc from us,pinch must have a total spectrum with exponéht(see Ap-
and it has been hypothesiZatiat particles with a maximum pendix A), which is very close to the observed value. How-
observable energtoday E=3-10?° eV, which corresponds ever, in Eq.(19) these particles are disregarded for simplic-
to a current of 1& A, can reach us from this object. How- ity, and the model essentially uses only H8) and the
ever, such particles do not move in a straight line, but insteadurrent distribution function.

in intergalactic fieldBe~5-10" 7 G wind around with the
Larmor radius

rg=E[eV]/300B[G]=2-10"* cm~1 Mpc.

3) The hypothesized form of the current distribution
function gives the correctclose to the observedjump
(v,—v1~0.5) of the exponents of the spectrum in the vicin-
ity of the first bend, partially confirming the hypothesis. In

This distance corresponds roughly to the distance betweethe given model this jump is caused by the diffusive nature
galaxies, so that no astronomical objects are visible theref the propagation of particles through the Galaxy after gen-
recorded observable directions of arrival of these very higheration events, a process that imparts isotropy to the particle
216 JETP 84 (2), February 1997
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flux as a whole, as is indeed observed. We note, howevetwo pinch mechanismg&long focusingO lines), and possi-

that such an astrophysical explanation of the first bend is ndily other, as yet unknown mechanisms.

unique, and in some papeisee Ref. Yit is not attributed to For example, some researchers believe that the so-called

the primary flux of cosmic rays, but to specific characteris-dark matter in galaxies, which is estimated to harbor ten

tics of the nuclear reactions in the secondary extensive atimes the total mass of their visible stars, could be composed

showers, which provide a basis only for the investigation ofof dust particles rather than a gésee Ref. 15 endowing

high-energy particles. them with an observable transparency due to rarefaction.
4) It is sometimes assumed that energetic particles themAnd would it not be possible for lightning to occur in them,

selves arrive from the nearest cluster of galaxies, 14 Mpéimilar to those observed in the turbulent ash clouds from

away in the constellation Virgo and possibly from more dis-Volcano eruptions?

tant active galactic nuclei. In particular, to match the

computer-generated radio emission of the galaxy Cygnus A

with the observed pattern, it must be assurtetording to  APPENDIX A: PIPETTE MODEL OF THE GENERATION OF

published dat¥) that circulating in the pinches of the galaxy GALACTIC COSMIC RAYS

is a colossal current of -20'° A, whose periodic cutoffs ) _

would be capable, according to our model, of producing par- N the main body of the text the equation for the spec-

ticles with energyE ,=eJc=7-10%° eV, which appears to trum of pips(1) is valid under the assumption that the plasma

be consistent with the maximum possible cosmic ray energ quation of state is nonrelativistic in proper coordinates. In
(currently ., =3-10° eV) his appendix we analyze a more general case.
max .

5) Finally, there is one other hypothesis to consider, but We consider the cylindrical cavity of a stripped Z-pinch

it requires further study. We cannot rule out the possibilityWlth a relativistic plasma |n_3|d_e it, of radiua(t,z), with
that gamma-ray bursts, the precise nature of which has yet ggrrentJ=const and magnetic f'ela.: 2J/ca at.th(.a bound-
be established, are generated in the pindogiser possible aryr=a(t,z). The relativistic equation of continuity has the
. . form

hypotheses are discussed in a recent sdfyey

The high forward directionality of bremsstrahlung from J J 9
a narrow beam of ultrarelativistic electrons as they are  — )/n:—div()/nv):—ﬁ (anr)—E (ynv,),
slowed down by collisions with ions, but move almost recti-
linearly, drastically shortenéy a factor of 104, see Ap-
pendix B the period of the instrument-recorded signal in y= , B=
comparison with the period of the emission of radiation it- vi-8
self. We note that a typlcal gamma-ray bur_st lasts 10 s on th\(/evheren= n;=n, is the density of ions and electrons in their
average, but a rare instance with a duration of 1.5 h and Sroper coordinate system. At the boundary a(t,z) we
maximum photon energy of 18 GeV is described in Ref. 14have ’ '
It is possible that here the short, roughly three-minute, high-
intensity initial interval is attributable to the first pipette da osa Ja
mechanism, while the subsequent long, low-intensity but Ur|r=a=azﬁ+vz 5z
high-energy “tail” is generated by a second, electrodynamic
mechanism. Allowance for such highly directional propaga-and in the so-called narrow channel approximation we set
tion may prompt a reexamination of the existing estimates of), = (r/a)da/dt. Equation(Al) then assumes the form
the total power of gamma-ray burdi$ is conceivable that
many rays simply miss our instruments

Moreover, in gamma-ray bursts the generation of elec-
tron beams by the pinch mechanism must be accompanied by
the generation of ion beams wit/m~2000 times the en- WNe€re¢ v=v,. We 5 denote ~7=ct,  y=coshy,
ergy (since electrons and ions have identical velocities in the' — yv/c=sinhy, p, =na‘/nya; and introduce the two op-

1 Y
o (A1)

J 2)+ 4 ’v)=0 A2
g (yna“) 52 (yna‘)=0, (A2)

pipette mechanism of a quasineutral plasma being squeezg{iators
from the waists of the pinchgsin this light one cannot dis- R 9 P . P P
miss the possibility that the “ionic” power of gamma-ray P=vy a—T+u 77" Q=u E-+ Y 57 (A3)

bursts is high enough to sustain the continuous replenish-

ment of cosmic rays whose particles, as the estimates Sho‘ﬁquation(AZ) then assumes the forfpy= —Pln o, , but at
are transported out of our Galaxy by diffusion to distances ofhe  poundary we have the pressure condition
approximately 100 million light years. p=2n0= 81/8“: Po(ao/a)?, so that p, =0,/

We note that several different mechanisms for the accelg = const 1, where we have introduced the new and more
eration of charged particles might well be at work in space¢onvenient variablee=M;c%/© with the ion massM; and
shock waves associated with supernova outbursts, a “recloghe temperature® in energy units. Now Eq(A2) can be
ing relay” mechanism in neutral current sheets along sorewritten in the final form
calledX lines or “tears” (note, however, that these are de- ) R
focusing lines, a property that would inhibit acceleratjon Qy=—PIn u. (A4)
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The second equation is the relativistic equation of motionwhereJ= 7z, — 7,z is the Jacobian of the transformation.
ViT,=0, where T,=(e+p)u'u,—pd, is the energy— Substituting Egs.(A10) into (A9) and introducing the
momentum tensor. In the narrow channel approximation it‘large” functions T=+yr—uz and Z=yz—ur, we obtain

assumes the form the linear system of equations
- - e\ - Zy=—(puT),, Z,=—(Z+TH)f(w),
(e+p)Py=—Qp, (1+5 Py=-Qlnp,  (A5) ’ o ’
(T, + (W), =Ty 1f (1) =0, (A11)

where the scalag=e;+ e, =n(M;c%(y) T;+ msc?(y)T,) de-
notes the energy density in proper coordinates. In additio
we have the adiabatic equatiatE=d(Ve)=—pdV and,
since nV=const, this equation vyields the function

which can only be solved numerically. However, approxi-
"mate solutions are worth considering as well.
For the nonrelativistic equation of state$ 1) we have

n=n(0): T
(©) Ko~\/5— e #, Z~constu % +?2
2u
dn_1 dr= ! d(ul’)—I'd
F_EM _E[ (:U/ )_ lu’]r I 1 5 f_AH 5 AL
. =(In )N_E_ﬂ' AT a2 (A12)
e
r:<7>Ti+ W <7>Te- (A6) and if we introduce the new argument 5/u, the last equa-

tion in the set(A11) assumes the form
Introducing the Bessel function .
LT=x(Te+T)=T— T;jy . (A13)

Kn(p) = fo exp(—u coshx)costinx)dx, Here & is the Laguerre operator, which has the properties

we find Lib=—(1+n),, n=0,1,2,...,

5 = L(l) — — X
= - —uV1+u? 2 :K2(ﬂ) =W N, W=Xe 7,
N(M) e ucdu= ——, ., )
i g Lg"=1, L{P=(2-x)/v2,

(= S P (A7) FL(”LWW dx=6 (A14)
v d,U« N’ d:U« NiNe’ o M- m,n -
and integration of Eq(6) yields the relativistic adiabatic law Equation(A13) has a general solution of the form
d - ‘
p(u)=C ex%A—,u« a A), A=InZ, T(x,y)=w(x) >, C,LP(x)Y"¥2
n=0
1 m 1) Y-e M=y—y"-1. (A15)
r i i Any function can be represented by a series in these polyno-

mials and, in particular, for the delta functiagt= 6(x—Xg)

Finally, the resulting equationéA4) and (A5) can be > AR !
and its derivative we have the expressions

concisely rewritten as

" - d o d
R R R R _ s —~
Pu=—uQy, Py=—fQu, f= AM,M g ; Cobn's G 0 ; Cn gx b0
M
d (d Ca=W(Xo)L1y" (Xo) (A16)
=— Inl— InZ|, (A9) . : i
du du The assumption that a pinch does not have any perturbations

at the “initial” time t=—o implies that the condition

and can lead to a linear system of equations. T(x,y) = — holds at the point=xo, y=0, total breakup at

. To achieve the_ latter, we use a hodogrgpmc transformathe waist corresponds to=c0, T=0, and at this critical time
tion, and as the first step introduce the inverse functions

_ C ) S all accelerated particles must be forced into the bulge, where
7=1(x,y) andz=z(u,y). The direct derivatives can then o e o
. . o .~ x=0. Consequently, at this time the distribution function is
be expressed in terms of the inverse derivatives according to

the equations €qual to
d z J z! dN 2dz=Fd F dN_A T, (A17)
K oz, 4 oy =nyma*dz=Fdu, F=_-=—T/
oT y(T,Z)— J ] or ,(L(T,Z)— J [} 7 Xx—0
, where A= a2ngX,. It has been showi? that the series
Jd Ty 0 Ty (A15) must begin withn=0 for the perturbation to be peri-
PR AL A Rl p(r2)= J’ (AL0) odic along the pinch.
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But typical perturbations are local, and for the6®]15) we obtain the orthogonality condition for the
must begin withn=1. Then at ultrarelativistic velocitigdor S, (z)-functions:
Y=1/2y, but using the nonrelativistic equation of statee

obtain the particle energy distribution in the form of a power flslgz _z dz= T 8(ky—Ky). (A25)
function 0 1-z 2kqk,
dN/dE=F/MCc2<E~" (A18) Using this condition, we obtain the following expressions for

. . the delta function and its derivative:
with exponentv=1++v3, which is very close to the value

2.74 “observed” for cosmic rays in the energy range o f‘”
101°-10° ev. d(z=zg)=2m| cS(2)dk,
We now consider the ultrarelativistic equation of state,

for which instead ofA12) we find da 52— 2)= 27 f‘” el (2)dk, (A26)

_ _ dz, . K

Ko~2u™% Z~u™* A,=(In2),~—4lu,

where ¢, =k?2,S(z0)/(1—2) and ci=dc,/dz,. Next,
f~=1u. (A19) dropping the constant, we write the basic equation in the

In this case the second equatiohll) assumes the quasi- Operator quasi-Laplacian form

Besselian form

.. d
AT=Ht=T+T),=8(y) G- dz=2),

1 1
Tt Tit 2 (Tyy=T)=0, (A20)
— q
and it can also be solved. However, the approximation model T fﬁkaz S(2)Y4dk, (A27)
described below is more accurate. ' '
The nonrelativistic cas¢A12) and the ultrarelativistic WhereY=exp(=ly]). Making use of the relations
case(A18) can be combined by setting dly| q
——=sgny, ——sgny=24(y),
_ 5 B —5/u?, u>1, A2 dy gny dy gny (y)
T p(pt5) [k, w<l 2
d—[q2— q
This interpolation model simultaneously describes a nonrel-  dy? Yi=[a"—2q5(y)]Y*, (A28)

ativistic situation in the bulges of the pinch and an ultrarela- .

tivistic situation in the slender waists. For this kind of modelfor the left-hand side we have
it is convenient to introduce the argument5/u, where- - %
upon the last equatiofA11) assumes the form AT:J kazS<Yq[q2—k2—1—2q5(y)]dk. (A29)

HT =T+ Ty,=0=—4mpeq, From this result we obtain= \1+k? and, taking into ac-
I:|T:x(1+x)T§£X+xT;. (A22) count the limitS, (zo<1)=2, we have
- o dé(z—z
HereH is the hypergeometric operator, and the corteza) f CyzSqdk=— %,
solution of the equatiotd T=—k?T is the sum of two hy- o %
pergeometric  functions F(a,b;c;z). Assuming that K2 d [2S(20) 2Kk2
T~28(2), we find Cy=— % E 1-2, =— Tz (A30)
S(2)=(1-2)"F(1+ik,1+ik;2:2) The “time” then turns out to be
+(1-2) *F(1-ik,1-ik;2:2), (A23) -
(A31)

wherez=x/(1+Xx) is a new argument. It is the sum and not == 7z Izy),
the difference that ensures the correct limit

S=2+(1-k?z+ ..., T~z asz—0 in the bulges of the where
pinch. On the other handor x— +o0, z—1 in the waisty - 2
we( ) havlf . rﬂir:e( . aS);]m;r)]totic expression J(z,y)=f S(2) e exp( —|y|V1+k?)dKk,
S(z—1)=—k™* sinfkIn(1—2)], which we use to express m
the delta functiorﬁ(k)z(wk)*lgm sinka). Then fromthe  ang  for z=x/(1+Xx)=0 we obtain J(z=0y)
equations =(4/y])K4(ly]), whereK, is a modified Bessel function
d k2T, with the asymptotic form K~ m/2|y| exp(-|y|) for
o (1-2) o Til=— 21-2)" |y|>1. Finally, since the spectrum equati6h17) is valid
(asx—0) in both cases(A15) and (A30), the spectrum for
d k%Tz the interpolation modelA21) is now
= |(1-2) = To|l=— =2 (A24) —2 ~312
dz dz 2(1-2) dN/dp~K(lyD/ylyl~y~2(In ) (A32)
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and is sufficiently close to the spectrumAl18) E(0)=1 GeV and the electron loses OBR®) in a time
dN/dE~ y~ ¥ with exponentr=1++v3 obtained for the non- t, =4.67,, we obtain a signal of duratioht~10*t, in the
relativistic plasma equation of state in proper coordinates. observing instrument.

These considerations should be useful when cosmic
APPENDIX B: DURATION OF BREMSSTRAHLUNG FROM gamma-ray bursts originate from bremsstrahlung produced
ULTRARELATIVISTIC ELECTRONS by electron beams that have in some way been accelerated to

In this special Appendix we discuss the hypothesis of thelltrarelativistic energies. Moreover, their highly directional
possible generation of gamma-ray bursts in plasma pinche"smmed radiation can miss the instruments, and only at the

and, in particular, the problem of their having an observabl€nd Of deceleration, after the energy has been reduced to
duration of the order of several seconds. values in the MeV range, does the radiation become almost

If an ultrarelativistic electron with initial kinetic energy SOtropic and capable of entering the instrument. These con-
Eo,=mcZk, at timet=0 enters a plasma cloud at the point siderations should help to improve estimates of the postu-
x=0, its kinetic energy is spent in bremsstrahlung and del@t€d primary power of gamma-ray burst sources, the nature

cays according to the exponential ld(t) = E, exp(—t/m), of Whi(_:h remains a my_stery at the present time.
where for simplicity we assume that=const. The path This work was partially supported by Grant No. 94-3802

traversed by the electron is then given by the equation ~ TOM INTAS.
_ _ —t/mg) —2 —
dX_C‘/l (1+koe 770)"7dt,  x=c7S(1), (B1) V. L. Ginzburg, Usp. Fiz. Nauki66, 169 (1996 [Phys. Usp.39, 155
(1996)].
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Nonlinear propagation of optical pulses of a few oscillations duration in dielectric
media
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Using a semi-phenomenological model of the polarization response of an isotropic solid
dielectric that does not resort to the slowly-varying-envelope approximation, we have obtained a
nonlinear wave equation for the electric field of a femtosecond light pulse propagating in

the given dielectric. Evidence is presented that this equation possesses breatherlike solutions in
the region of anomalous group dispersion and does not have any solutions in the form of
steady-state traveling solitary video pulses. A universal relation is found linking the minimum
possible duration of a breatherlike pulse with the medium parameters. It is shown that

such a pulse contains roughly one and a half periods of the light-wavel9%7 American

Institute of Physicg.S1063-776(97)00202-3

1. INTRODUCTION ditional nonlinear optics—to describe their evolution; nor,

consequently, can we use the wave equatibrobtained in
The development of the laser technology of ultrashorty,;« approximation.

light pulses has led to the creation of laser systems generat-  p; present there is a large body of wofgee, e.g., Refs.
ing pulses only a few periods of the light field in duratfofi. 9-23 dedicated to an analysis of the self-action of ultrashort
It is natural to ask how such pulses propagate in optical,ses in optical media which do not use the slowly-varying-
media. Clearly, nonlinear propagation regimes—especiallnyejope approximation. The closed system of the wave
soliton regimes—are of the greatest interest since thesgy ation and the material equations, written not for the en-
pulses spread out rapidly in the case of 'OW"”te”%W radiayelope of the light pulse but directly for the wave field itself,
tion due to dispersion, according to well-known laws. is analyzed in these treatments, as a rule, in terms of the
The nonlinear evolution of light pulses of duratioy  mqgel of a two-level medium. Such a system of nonlinear

down to the femtosecond range in dielectric media is usualhéquations e.g., in the form of the Maxwell—Bloch equations
treated theoretically by solving a wave equation of the form ¢ the case of ultrashort pulses frequently simplifies signifi-

cantly. Thus, for pulses that are very loHg316:17:22:24

. de e ) e ’
| E+a1 O,)—Tz‘*'lafz 5—Tg+...+130|8| & (wOTp)2>1a (3)
9 in comparison with the characteristic time of intra-atomic
+ipy aT (le?e)+...=0, (1)  processes w,* the given system reduces in the

monodirectional wave approximation to the modified
wheree(z,T) is the slowly varying envelope of the electric Kortev%el%zgi l\érligs(MKdV) equation, and for very short
field E of the light pulse: pulses® 131416

(worp)?<1, 4

E=5eexfli(oT—kz)]+cec. (2 {0 the sine-Gordon equation. However, in the analysis of the
nonlinear propagation in a dielectric of ultrashort pulses

Here o is the frequency,k is the wave number, whose spectrum belongs to the transparency region of the
T=t—2/vy is the time in the co-moving system of coordi- medium, the results of the above-mentioned works are, in
nates, and 4 is the group velocity. Dispersion of the linear our opinion, inapplicable. This has to do, primarily with two
and nonlinear refractive indices of the medium is taken intdfactors. First, modeling the electronic nonlinearity of the po-
account in various approximations of dispersion theory withlarization response using the two-level medium approxima-
the help of phenomenological, generally complex coeffi-tion gives a uniformly negative value for the nonlinear re-
cients aq, a,, ... and By, B1, ..., respectively. How- fractive index coefficienh, in the transparency region of the
ever, analysis of the propagation of pulses consisting only oflielectric?® At the same time, the experimentally measured
a few oscillations becomes qualitatively more complicatedvalues ofn, for glasses and crystals are positivelhis dif-
For such ultrashort pulses it is difficult even to introduce theference in the results of theory and experiment is understand-
concept of an envelope. Therefore, we cannot use thable since the two-level medium approximation in essence
slowing-varying-envelope approximation—so fruitful in tra- allows for only one nonlinearity mechanism—variation of
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the level populations. This mechanism, as a rule, is not the ny
main one in the nonresonant interaction of light with 1.54
matter?® Second, the two-level model describes normal dis-
persion of the group velocity, but does not account for
anomalous dispersion, whereas it is well known from the 1.50}
nonlinear optics of pico- and subpicosecond pulses that the
nature of their self-action differs qualitatively depending on

whether the pulse spectrum lies in the region of normal or 1.46

anomalous dispersion of their group velodty.

1.52¢

1.48}

1.44}

The present paper presents material equations which ad-
equately describe the dispersion of both the linear and non- 142
linear refractive indices in their transparency region. A non- 1.40

01 06 1.1 16 21 26 31 36

linear wave equation is derived which characterizes the A, pm

evolution of the field of ultrashort pulses in dielectric media

for the case In which the pUl_se spectrum belongs to the trf_in$-'|G. 1. Dispersion of the linear refractive indey(\) of quartz glass\ is
parency region of the medium. Both the derived equationhe wavelength, the points are experimental data, the solid curve is the
and its solution are analyzed. dispersion calculated according to the theoretical méglel

2. POLARIZATION RESPONSE OF A DIELECTRIC MEDIUM
IN THE FIELD OF ULTRASHORT PULSES it has been shown that the polarization response of the di-

Th larization r n f a dielectric medium in nelectric mediumP =P+ P; is described by the system of
e polarization response of a dielectric mediu an - terial equations

intense light field can be completely rigorously described in
the semiclassical approximation in terms of the equations for PPy 2 9P, )
the density matrix in which the electric fiellis represented 2 T T, ot +wgPe=acE+B(Re+R,E,
classically?® However, to write out such equations exactly is

- i . ; . 2
difficult even for the simplest atomic gas media. Therefore it ¢ Pi +E(9_Pi+w_2p. wE
is necessary to use reasonable physical approximations dJt° T, ot e
which, on the one hand, considerably simplify the system of 5

°Re 2 dR.

material equations and, on the other, preserve the features of
the optical medium that are most important for an analysis of ot Tey ot
the problem. In the study of the self-action of ultrashort  ;2p 2 4R
pulses, i.e., pulses with a very wide spectrum, it is essential WTU + = (9_tU+ w?R,=7,(Pe+P)E, (5)
that the material equations adequately account for dispersion v
of both the linear and the nonlinear susceptibility of the di-whereP, andP; are the contributions to the polarization of
electric medium over practically its entire transparencythe electronic and ionic components; the oscillators de-
range. scribed by the dynamical variablé&, and R, give rise to

In Refs. 25, 27-30, usng the density matrix formalismnonlinear parametric coupling between the pulse electric
Azarenkovet al. derived material equations satisfying this field and the mediunjhere the dynamical parametBy, is
requirement. Their treatment of the linear polarization re-responsible for the electronic nonlinearity, and the dynamical
sponse takes into account the contribution of both the elegarameteiR,—for the electronic—vibrationalRaman non-
tron and phonon subsystems of the dielectric. This made iinearity; the phenomenological parameters of the medium
possible to describe both normal and anomalous group disx., w., Te @nde;, w;, T; characterize the dispersion of the
persion. Their treatment of the nonlinearity of the mediumelectronic linear polarization response and idwibrationa)
response takes into account its most important mechanisnis Gaussian linear polarization response, respectively; and
in an ultrashort pulse field—namely, electronic andthe coefficients8, ye, wer, Ter andvy, , w,, T, character-
electronic—vibrational. Each of these mechanisms was déze the dispersion of the electronic and electronic—vibrational
scribed in the approximation of a three-level medium. It hasonlinear polarization response, respectiyel$ystem of
been provetf that such an approximation provides the mini- equationg5) adequately describes the dispersion both of the
mum accuracy needed for an adequate description of the diinear and of the nonlinear refractive index of a dielectric
persion of the nonlinear refractive index of the medium in itsmedium over practically its entire transparency range. Thus,
transparency range. Reference 32 gives an intuitive interprder example, for quartz glasses for,=2.096x 10 s,
tation of the resulting material equations in terms of the clasa,=3.862< 10°! 572, 0;=2.154< 10" 571, and
sical theory of dispersion of intense light fields. The essencer;=2.534x 10?’ s 2 the dispersion of the linear refractive
of this interpretation is that in the classical theory of disper-index in the visible and near-infrared is described by equa-
sion the dependence of the nonlinear refractive index of ations (5) out to four significant figures(Fig. 1), and
optical medium on the frequency of the light wave has thefor — w,=3.0x10" s7!,  ©,=8.3x10"% s, and
same form as in quantum theory if the structural unit of the8=2.0xX 10, y,=2.9x10°, andy,=8.0x 10° in Gaussian
material in the Lorentz model is taken to be not one, but atnits they also describe the dispersion of the low-inertia co-
least two parametrically coupled nonlinear oscillators. Thusefficient of the nonlinear refractive indew (Fig. 2) in good

+ w5 Re= Ye(Pet P)E,
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then even for pulses with spectral widtho ~w the interac-

tion of the radiation with the medium in the linear optics
1.8 " approximation can be taken to be nonresonant. That is, in
1.6 this paper we do not consider the situation of a single-photon
resonance with an accompanying large linear absorption, but
allow for the possibility of two-photon resonances of both an
Lzt i electronic and a Raman nature. The latter case is realized in

a Raman-active dielectric automatically since the wide spec-

Ny, 10~ Gaussian units

1.4} o

1.0t o 3
o trum of an ultrashort pulse contains an infinite set of spectral
08 . components satisfying the conditions for stimulated Raman
0.6 5 resonancé®3® Note that condition7) includes within itself
0.4 the two inequalitieg3) and (4) used above.
0.1 06 L1 16 21 26 31 36

The relation52>wi2 [see Eq.(7)] implies that low-
frequency components are almost completely absent from
FIG. 2. Dispersion of the nonlinear refractive index coefficienth) of ~ the spectrum of the ulatrashort pulse, i.e., it imposes the

quartz glas$ is the wavelength, the points are experimental data, the soliacondition
curve is the dispersion calculated according to the theoretical nibgel

A, pm

f+:Edt=0 (8)

agreement with known experimental results. Figure 2, ofyn the ultrashort pulse.

course, requ_ires comment. Quartz glass is the dielectric ma- This means that self-action of half-wavelength pulses re-
terial for which the largest number of measurements of thgnains outside the scope of the present paper, i.e., self-action
low-inertia coefficienin, have been carried out, and at dif- of sojutions in the form of bell-shaped video pulses, which
ferent wavelengthssee the review in Ref. 25However, as  paye attracted so much interest in the context of the interac-
can be seen from the figure, the experimental results of difion of ultrashort pulses with matter, when the natural fre-
ferent authorgdenoted in Fig. 2 by squarediffer substan- quencies of the medium are spanned by the pulse
tially, thanks to the great complexity of optical measure-gpactrym-01113.14.16.18

ments of this typé® Therefore their interpolation by a Expanding in the small dynamical parameter ¢)? in

theoretical dependence for the above-listed parameters {fe first of equation$5) in accordance with the nonresonant
quite complicated, and when more reliable experimental datg,proximately(7), we find

are obtained it will be possible to refine the model medium )
parameters in systef®) definingn,. Qe ae d°E B

We supplement systeiis) with Maxwell's equation Pe= PR E- PR (RetRy)E. ©
E_ iﬁz_E_ Am 5_2 P+ P) ©) By virtue of (w/w;)?>1, we find from the second of equa-
c® at°  ¢? atZ( ernin tions (5)
wherec is the speed of light in vacuum. 3P
Thus, the problem of the propagation of an ultrashort Jt2 =aiE. (10

optical pulse with frequency spectrum falling within the ) ) .

transparency region of the dielectric medium reduces to &omparing Egs(9) and(10), we obtain the estimate

s_tudy of the closed nonlinear system consisting of the mate- Py /P~ (] ag) (ol we)?.

rial equationg5) and the wave equatiof®). Such a system,

however, is hard to analyze. Therefore we will reduce it toUsually a;<a.. Also taking conditiong7) into account, we

something simpler using the nonresonant approximationfind P;<P.. Therefore, in the last two equations of system

whose essence is laid out below. (5) we may setP;=0. Then from these equations and also
Eq. (9) taking conditiong7) into account, we have

2
Qe ag I°E  Baeye 3
3. WAVE EQUATION DESCRIBING THE NONRESONANT Pea\: — E— —E

2 -7 2 4 2
INTERACTION OF AN ULTRASHORT PULSE WITH We we It WeWey
A DIELECTRIC MEDIUM
o . . P e g [V gzgr (11)
In dielectrics the natural frequencies of the medium de- w‘e} Cw Cw '

termining electronic and ionic absorption usually differ by N ) ) )
orders of magnitude. In the given example of quartz glass  1he simplified material equatior0) and(11), like the
wel wj~ 1. Therefore, if the frequency corresponding to  Original system of equation$), contain the main character-

the center of the spectrum of an ultrashort pulses no  istics of the medium for estimating the evolution of ul-
longer possible to introduce the concept of a carrier frefrashort pulses. Thus, EQLO) takes account of the contribu-

quency for such short signalsatisfies the condition tion to the anomalous group dispersion of the iofiattice)
2 2. - 2 2 vibrations. Expansiofil2) takes account of the normal group
W, 0] O, W1 (7)  dispersion due to the electron subsystem of the dielectric
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medium and also the polarization response nonlinearity, bothlso to analyze the self-action of ultrashort pulses in inhomo-
electronic and Raman. As follows from E@L2), the latter geneous media, e.g., waveguidesgtical fibers.

type of nonlinearity has an inertial character. The first-order

expansion in small dynamical parameters in E4€) and
(11) does not take account of attenuation of the ionic and

. o o . . 4. ANALYSIS OF THE NONLINEAR WAVE EQUATION
electronic contributions to the polarization. This attenuation Q

defines the absorption of radiation in the medium, which in Equation(lZ) allows us to compare the influence of both

the case of the nonresonant interactighwe can take to be electronic and electronic—vibrational nonlinearity on the

small. Relaxation of a Raman nature can also be neglecteglolution of a light signal in a medium. Setting

since the corresponding characteristic times in dielectrics

significantly exceed the duration of an ultrashort pulse. For JE/9r~BE  and ff dr’ ff E2d 7 ~E272,

example, for quartz glass we havge=70 fs. e P
Next, substituting Eq9.10) and(11) in Eqg. (6) and em-

p|oy|ng the approximation of unidirectional wave W€ obtain for the ratio of the nonlinear terms in Eﬂ]2)

propagatiorf,we obtain the following closed nonlinear equa-

— o0

tion for the pulse electric field: q— (Ef7, d7' [T, E2d7)
) il " (o (17
JE  J°E T JE ~ 5. (@WerTp)".
——a—3+bJ Ear +gE2 — ZE 3% °°F
0z oT —» aT g e
a T - . . . . —
gl Ef dr’J £2, For quartz glass this ratio is equal to unity fgg=35 fs,
ar —w —w while for pulses of durationr,=10 fs it is equal to only
0.08. Thus, it follows from(17) that as the duration of the
ZLA fT Edr . (12) ultrashort pulse decreases, the relative influence of the
2ng ) w electronic—vibrational nonlinearity of the medium on the

character of the self-action of the pulse decreases quadrati-

Here the pulse propagates in thelirection, A, s the trans- cally. For an ultrashort pulse with,<10 fs, the nonlinear-

verse La_plamanr=t— Noz/C IS time in the comoving system ity can be neglected to first order. This conclusion, valid for
of coordinates, and the coefficierdas b, g, andq are alge-

braic combinations of the medium parameters introducetguartz glasses and other media with moderate Raman activ-
above: P ity, correlates well with the estimate of the inertial character

of the contribution ton, for dielectrics with an electronic—
nS— 1 27a; vibrational nonlinearity mechanisfi.Therefore we will ana-

a= A 2 - l i

2cn0w§ cng lyze the wave equation

3n Y n 7 a3E+bfT Edr'+gE? = =0 18
g:_Z’ q:_vwil_z_ (13 9z 3(9_73 . 7T Tg ar (18)

c Ye c
In re|ations(13) the |0W_frequency refractive index i.e., we will take account Only of the electronic nonlinearity
of the medium, and also, guided by Eq2), we will restrict

No=V1+4maelw; (14)  the discussion to the case of one-dimensional propagation of

the pulse, taking the medium and the wave to be transversely
yhomogeneous. For media with strong Raman activity the
term describing the electronic—vibrational nonlinearity

and the coefficient of the electronic nonlinear low-frequenc
refractive index

2mBagYe should be kept in the wave equation. In this case it is useful
Nz= Nowlw?, (19 {0 refer to the results of Refs. 33—35 which analyze self-
e-’e

_ o _ action of ultrashort pulses in model media with a purely
define the total refractive index corresponding to the subRaman nonlinearity, i.e., they neglect all other effects con-

system of electronic transitions sidered in the present work even though these effects are
n=ny+ n,E2. (16) gsuglly |m_portant, as was shown above, for ultrashort pulses
in dielectrics.
In the reduced wave equatigh2) the term on the right- It is important to note that the nonlinear wave equation

hand side describes diffraction of the ultrashort pulse, and18), which describes the dynamics of an ultrashort pulse
the second and third terms on the left-hand side describfeld in the limiting case of “long” pulsegwith duration
dispersion of the electronic and Raman linear polarizatiorgreater than ten perioggransforms into the cubic, modified
response, respectively. nonlinear Schrdinger equatiori1) with higher orders of dis-

In the derivation of the reduced wave equation, the dipersion theory taken into account, which characterizes the
electric medium was assumed to be homogeneous. Howevaerariation of the pulse envelope. This is not hard to do if we
treating the coefficienta, and «; in the material equations substitute the field in the forn2) into Eq. (18) and differ-

(5) and, consequently, the parametarsb, g, andq in Eq.  entiate in the usual wayor the slowly varying envelope and
(12) as independent of the transverse coordinates, we cahen integrate using multiple integration by parts:
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fT 1( e loe i e 1 &% 2/z,

Edr'=— St 3o -3+
o T 2 0l 1 ©° I ot ir

x ek c e

The relations between the coefficients of the modified non-
linear Schrdinger equation(1) and the wave equatio(i8)
have the form

3a 2 2 2
a=""3 wﬁ—w“), a2=—a(1+3w§/w4), (10 E/E)

Bo=—0gwl4, B1=gl4, wi=bl3a, 1
T=T—3aw2[l+(a)c/w)4]z. (19 5 0 5 1t

Thus, Eq'(18) contains Eq(l) asa SpeCIaI case, belng a FIG. 3. Dynamics of an ultrashort pulse in a dielectric. The field scaled

generalization O_f th_e I_atFer ‘_Nhen the  slowly-varying- py the intra-atomic field, = e/a2 (e is the charge of the electroag is the
envelope approximation is invalid. Bohr radiu$, and the coordinate is scaled by the dispersion spreading

As in the case of a quasi-monochromatic wave packelengthz,=r5/2ay| (Ref. 8.
(2) self-action of ultrashort pulses in a dielectric medium
varies, depending on whether the main part of its spectrum
lies in the region of normal or anomalous dispersion. be applied to it. Thus, the presence of the integral term in Eq.
In the first case, dispersion is defined mainly by the elec{18) is fundamental for the existence of solitonlike solutions,
tronic linear polarization response, i.e., the second term imnd the term in question cannot be regarded as a small per-
Eg. (18). But if the linear lattice response, i.e., the third termturbation. Despite these difficulties, quantitative relations be-
in the wave equatiori18) can be neglected, then E(L8) tween the parameters of the breather can be found through
takes the form of the modified Korteweg—de Vries equatioranalytic continuation of the dispersion parameters to the
complex plané®=* A detailed justification of this method

3
E_a nggEz Ezo_ (200  applied to two-parameter solutions is given in Ref. 43. Its
gz Jrt aT essence consists in the following. Ligiw,k)=0 be the dis-

In this case, it is important that the coefficiertsandg in persion relation of the linearized equation whose original
Eq. (20) are positive. Therefore the self-action of ultrashortnonlinear variant allows a solution in the form of solitary
pulses in dielectrics for the case under consideration consisféaves. Carrying out analytic continuations of the form

in their temporal defocusing added onto linear-dispersional ¢ —w+iy, k—k+ik

pulse spreading. The duration of the pulse increases due to . I . . :
generation in the medium of new light fiel@Equation(20) and then making these substitutions in the original relation

has no solutions in the form of solitary wavésolitons and f(w,K)=0, after separating the real and imaginary parts we
breathers obtain two equations linking the four parameters. Thus we
In the case of anomalous group dispersion, the third ternf@Ptain two free parameters. We may take as these two free

in Eg. (18) cannot be neglected, since it is specifically thisparameters the filling frequency» and the duration

term that defines anomalous group dispersion. The nature dp_ 2/y of the pulse. The factor of 2 in the latter relation
the evolution of the ultrashort pulse changes qualitatively. arises because the field of a solitonlike pulse is exponentially

Figure 3 presents results of a numerical calculation 0]Jocahzed on both sides of its “center of mass.” In this case,

the nonlinear propagation of an ultrashort pulse whose spe(’ibe group vglocity of the_ pu_lseg 'S equal toy/k _and the
trum belongs to the region of anomalous dispersion of thé)hase velocny of t_he oscnlgnons filling the pulsg, is equal
group veloc:ity?7 The parameters of E@18) in this calcula- o w/k. Afs;nhtoghkeI soluuon(pullsde of Eq.f(18) Zas two
tion correspond to quartz glass. The duration of the uItrashor(E_egrees of freedom: an external degree of freedom respon-

pulse does not vary as the pulse propagates in the mediurﬁ',ble for its translational motion as a solitary pulse, and an

and the dynamics consist in the periodic evolution of themternal degree of freedom corresponding to pulsations of the

internal structure of the pulse. This result correlates with thé:)roflle of the breather in the comoving coordinate system.
results of Ref. 38 in which the numerical calculation of theTher_efore there are grounds to assume th_at any solitonlike
unreduced systent5)—(6) also demonstrates that an ul- SOIUE'_On Of_ Eq'(llf) IiSa two-]ga(rjamg_ter sol_ut|on.| ion for i
trashort pulse of solitofbreathey type can form in a dielec- inearizing Eq.(18), we find a dispersion relation for it
tric. of the form

Analytical solitonlike solutions of Eq(18) are hard to k=aw?—blw. (21
find. This is because the nonlinear wave equatib® for . .
b=0, as previously noted, does not have s%liton solutions Hence it follows that the condition of anomalous group
Ther,efore folb £ 0 the us,ual soliton perturbation thedy dispersion, when formation of optical solitons is possible for
which considers slow variations of the parameters ofnz>0’
“starter” solutions of the equations being integrated, cannot  9?k/dw?<0 (22
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can be rewritten as

w<wg, (23
where the critical frequency is
b 1/4 @ 1/4
W= ﬁ Z(g) We . (24)
e

Condition(23) is valid for envelope pulses having a nar-

row spectral component at the frequeney The spectral

width of a pulse containing only a few periods depends sub-

stantially on its duration. Let us generalize the given condi

tion to the case of ultrashort pulses.

FIG. 4. Region of possible values of the pulse parameter27/T, and
y=2I7, of Eq.(18) (shadedl The upper boundary of this region is described
by Eg.(29). The valuey,=0.18v. corresponds to the minimum duration

Applying to Eg.(21) the above-proposed procedure of m"=11.1w_ " of a pulse that can be formed in the dielectric. The ratio of
analytic continuation of the dispersion parameters to thehe durations™ of the given pulse to the period of the optical oscillations

complex plane, we obtain

w

2 3 2
K(w,y?)=aw>—3awy ba) vl (25
2 o awt-say- o, 26
Uph—a(.l) a)/ w2+72, ( )
t 1 =2 2+ 92+ 2
T R Rt (27

As could be expected, fdb=0 anda<0 expression27)

coincides with the corresponding expression for a MKdV

T, filling it is equal to 1.33 for any solid dielectric in its transparency
region. The critical frequency, is determined by the concrete parameters
of the dielectric.

v=wlv3. Hence it follows, in particular, that as—0 the
pulse durationr,=2/y—ce. This circumstance is in line
with the conclusion made above that the central frequency of
the spectrum of an ultrashort pulse cannot be equal to zero
[see condition (8)]. Near the critical frequency
y== \/(wCZ— w?)/3.

A numerical study of the transcendental equati{@f)

breather® which is an important argument on behalf of the |eads to the resulisee Fig. 4 that

proposed method. According to E() the parametew is
always nonzero for solutioil8) in the form of a solitary

Yma=0.180¢,  @pn=0.76w,. (30)

pulse. Therefore the given solution cannot be a single-

parameter solution. Since we hase b>0, it must be the

case thab y # vy [see Eq(27)]. Consequently, Eq18) has

no solutions in the form of traveling pulses with a steady-

state profile.

Let us now determine the region of possible values o
the parameters and y=2/7, of the solitonlike solution of
Eqg. (18). Broadening of the spectrum of an ultrashort pulse
corresponds to entrainment of a continually increasing nu
ber of frequency components into the dynamics of the puls
For the formation of a solitonlike pulse it is important that

1pu|se durationr

It should be especially stressed that relatig86) are
universal for solid isotropic dielectrics and do not depend on
their specific structure “encoded” in the parameter. The
magnitude ofyn,, corresponds to the minimum value of the

onry" that can be formed in a solid dielectric.
Knowing 7,"" is important from the point of view of deter-
mining the maximum transmission rate of information in di-

melectric light-guides. The period of the oscillations filling the
dreather isT,=2m/w. Thus for a pulse of minimum dura-

min

tion we find o

ITy=wm/Tyma=1.33. Thus, the result ob-

these components lie in the region of anomalous group did@ined here corresponds to the results of our numerical ex-
persion. The mentioned broadening of the spectrum of aRefiments with Eq.(18), namely, that the ultrashort pulse

ultrashort pulse is taken into account in relati@3). Hence
we arrive at the following generalization of conditiG2R) to
the case of an ultrashort pulse:

k(w,y?
(w7)<0

02 (28)

Substituting relation25) here, we find the equation of

the curve in the @,y) plane enclosing the values af and
v corresponding to solitonlike pulses:

(W?+G?)3=W?-3G?,

whereW=w/w.>0 andG= y/w >0.
The region of possible values of and y for a soliton-

(29

like pulse is shown by the shaded area in Fig. 4. The curve

bounding this region from above is defined by E2P). It is

holds within itself roughly one and a half periods of the light
wave. Using relation$30), let us obtain numerical estimates
of the minimum pulse duration and its corresponding filling
frequency for quartz glass. It follows from relatio®4) and

the numerical parameter values given above that for quartz
glass w,=0.07w=1.47x10" s 1. Thus, the minimum
pulse duration is7;""=7 fs and its filling frequency is
wm=1.06x10" s~ The latter frequency corresponds to a
wavelength ofA,=2mc/w,,=1.8 um, lying in the region

of the anomalous group dispersion. Let us now estimate the
frequency of pulsation§) of the profile of the electric field

of the traveling pulse in the accompanying coordinate sys-
tem. This estimate may be found from the fornféla

Q~(colng)(Llvg—1lyy).

easy to see from this equation that in the low-frequency reNext employing relation$27), (13), and(30), for the short-
gion the given curve has the form of a straight line:est pulse corresponding to relatiof8)) we find
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n2—1 [ w2 persion of the medium. In the first case the pulse experiences
0~4.2 2 ( ) (OFS both linear and nonlinear temporal defocusing, while in the
0 second it can propagate in the form of solitons. We have
Above we foundw.=0.07w.=1.47xX10" s™* for quartz  presented results of numerical and analytical studies of the
glass. Also substituting the valug=1.45 here’” we obtain  properties of ultrashort optical solitons. In this context, it is
Q~1.5x10" s™*, which is significantly smaller than the of special interest to determine the region of the parameters
corresponding pulse filling frequency=1.06<10" s™*  , and -1 of the soliton that is independent of the specific
(see above Thus, the deformation of the profile of the pulse strycture of the dielectric. We also obtained relati¢88),
electric field in the comoving coordinate system varies quitgynich define the minimum possible duration of an optical
slowly, so that the paramet€l/w can be taken to be small. gqiton in a dielectric and the corresponding filling frequency
Let us elstim.ate the intensity of an ultrashort solito_nlikein terms of the critical frequency.. These relations are
pulse. A soliton is the result of a balance between nonlinearg,|iq for any isotropic solid dielectric and in this sense are
ity and dispersion. Equating the corresponding terms in Eqyniversal, as is the conclusion that a minumum-duration

(18), we obtain for the amplitude of the pulse electric field pulse contains roughly one and a half periods of the optical

We

1 aws oscillations. We have also shown that Ef8) has no solu-
Em~T— a (F_ ) tions in the form of isolated video solitons, which, conse-
P quently, cannot form in an isotropic dielectric.
Thus the estimate for its intensity, taking relatiq@6) and However, many questions of the nonresonant, nonlinear
(13) into account, has the form optics of ultashort pulses remain unanswered. Among these

c we note the following:
~— -2 .
I n, (wep) . 1. Even for an ultrashort pulse with a homogeneous pla-
nar wavefront only a general analysis has been attempted of
the solutions of the wave equation. Self-action of an ul-
— 16 —
we=2.1 107 s (Ref. 23 for quartz glass, and alsg=7 trashort pulse whose spectrum contains both normal and

fs (see above we find 1~ 10 wicnt. anomalous group dispersion has not been discussed. The na-
To conclude the present section, we note that the nonlin- group disp J

. ; . . ture of the evolution of an ultrashort pulse as a function of
ear wave equatiofiL8) can be written in the form of a varia- ) . .
tional principle: the duration and energy of the pulse has not been investi-

gated. The interaction of ultrashort pulses with each other
has not been analyzed.
2. A theoretical discussion of the nonlinear evolution of
. N an ultrashort pulse in a dielectric medium with diffraction of
where the “Lagrangian” is equal to real, transversely bounded signals taken into account still
o 10® 9d ald*®\?2 b , 9 [P 4 stands before us, both in homogeneous and inhomogeneous
75—5 97 9: 3 ﬁ) (E) (32 media(including optical fibers
o 3. The model we have constructed of the propagation of
and the pulse electric field B=dP/or. an ultrashort pulse in a dielectric is valid only for linearly
The existence of a variational principle for E48) al-  pojarized radiation. Self-action of elliptically polarized ul-

lows us to study the formation and propagation of an Ulaghort pulses will be qualitatively different since they in-
trashort pulse with the help of the approximate method of they,ce not only inhomogeneity of the refractive index but also
average Lagrangian” due to Ritz and Whitha&thA neces- anisotropy of the medium in a nonlinear medié.

sary condition for the application of this method is the pres- 4. The analysis presented here is valid in essence only

encs of a ?'%‘;V dynamlcalhvanab:ﬁ. As lwa: shfown gove, Ao isotropic dielectrics in which the lowest-order nonlinear-
such a variable we may choose the pulsation frequéhcy ity is the cubic. In dielectric crystals without an inversion

th,el breather in the comoving c-oord|.na.te system siieay, center the quadratic nonlinearity also plays an important role.
7, - We propose o pursue this topic in future work. 5. Dielectric media in an ultrashort pulse field are char-
acterized by high optical strength. The maximum values of
the intensity at which transparent glasses and crystals do not
In the present work we have derived a nonlinear waveyet break down, according to the estimates in Ref. 8, can
equation (12) describing the propagation of an ultashort reach 18> Wi/cn?. Under these conditions nonlinearities of
pulse in dielectrics in the case in which the pulse spectrunftigher orders, including nonlinearities of a different nature
lies in the transparency range of the material. We have takefiom those considered here, will possibly play an important
account of diffraction, dispersion, and the nonlinearity of therole.
polarization response of the medium. We have discussed the 6. A study of the mathematical properties of the nonlin-
properties of the solutions of this equation in the form ofear wave equatiol8) is of no small interest because the
transversely homogeneous waves propagating in homogg@resence of the integral term is fundamental for solitonlike
neous dielectrics. We have shown that these properties diffegolutions. This term, for this reason, cannot be thought of as
qualitatively depending on whether the spectrum of the ula small addition to the modified KdV equation. Conse-
trashort pulse lies in the region of normal or anomalous disquently, the standard perturbation theory for solitons is inap-

Substituting the characteristic values ~ 10'3 emu and

+ o0
5 f “d7r=0, (31

2 12

5. CONCLUSION
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Multiphoton static and polarization bremsstrahlung in collisions of charged particles
with multiply-charged ions in a strong laser field
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A universal analytic description of multiphoton bremsstrahlung, including the static and
polarization bremsstrahlung channels, in the collision of charged particles with multiply-charged
ions is obtained on the basis of a specified quantum/classical current for arbitrary “quantum/
classical” motion of the incident particle. For the description of stimulated polarization
bremsstrahlung, the method of equivalent Fermi photons and the Kramers electrodynamics
method[V. |. Kogan, A. B. Kukushkin, and V. S. Lisitsa, Phys. Repl3 1 (1992] are
generalized to multiphoton processes. The resulting description of stimulated polarization
bremsstrahlung is valid over a broad range about resonance, where its contribution is the most
significant. The regions of polarization predominance over the static channel are indicated,

and examples of interaction between the static and polarization channels are givd®97©
American Institute of Physic§S1063-776(97)00302-§

1. Stimulated bremsstrahlung in a laser fi¢tdherwise slow-electron atomic bremsstrahlung has been developed in
known as free—free or continuous—continuous transitions ifRef. 15. The latter case is concerned with the emission of
a laser field, or laser-assisted scatteripays an important so-called polarization bremsstrahlung (dynamic
role in the physics of interaction between radiation and matbremsstrahlun¢® atomic bremsstrahludy, for which a
ter, and has been investigated by a number of authors ifrea) photon is generated as a result of interaction between
various physical situations and approximations. the polarization current induced in the target and fluctuations

The investigation of this category of phenomena begarof the electromagnetic vacuum in the case of spontaneous
with calculations in the approximation of the static scatteringbremsstrahlung, and its interaction with the laser field in the
potential, i.e., static bremsstrahlung, for two opposite limit-case of stimulated bremsstrahlung. Polarization radiation as a
ing values of the Coulomb parametgeZe?/#iv (Zeis the  universal phenomenon subsuming not only the well-known
charge of the target, andis the initial velocity of the inci- processes of macroscopic electrodynamiesy., transition
dent charged particleBunkin and Fedorditreated the Born  radiation), but also more recently cited procesgpslariza-
case €<1), while Berson studied the semiclassical case tion recombinatiof and polarization bound—bound
(£>1). The theory of static multiphoton bremsstrahlung wastransitions’) is a burgeoning branch of the theory of radia-
further elaborated in Refs. 4-9. Kroll and WatSaralcu-  tive processes in media beginning with the work of
lated the stimulated bremsstrahlung effect in the low-Buimistrovt® and Tsytovich'®
frequency limit for the scattering of an electron by a short-  Polarization radiation is based on the conversion of a
lived potential for arbitrary values df, and Rahmahgave a  portion of the energy of the electric self-field of a particle
simple derivation of their result in Ref. 4 for the Born case.into dynamic polarization of the medium with the subsequent
Lisitsa and Savel'évgeneralized Berson’s wotko brems-  emission of a photon by the compound system. The spatial
strahlung in an external electromagnetic field in the alternascale of the induced polarization varies over a wide range,
tive cases of narrowsingle-mode¢ and broadPlanck radia- from macroscopic scale to polarization of the Debye cloud
tion field) spectra. Veniardet al” analyzed two-photon around a charged particle, as in the virtual excitation of an
stimulated and spontaneous static bremsstrahlung in a Coirdividual atom, an ion with core, and a nuclear particdee
lomb potential, using a Green'’s function method developedRef. 13 for details For the whole wide-ranging class of
in Ref. 8. We also mention the recent work of Kotah polarization radiation processes, it is useful to describe it as
which two-photon static bremsstrahlung is calculated in thé'scattering” of the electric self-fieldwhich is longitudinal
distorted partial wave formalism. for a nonrelativistic particleof the particle by fluctuations of

At the same time, it has been shown in a major series ofthe charge density in the medium, specifically as the non-
papers®*2 (see also the review monogrdpland Amusia’s  resonant scattering of equivalent Fermi photdy the ion
survey?) for spontaneous bremsstrahlurigr one-photon core (for polarization radiation in the plasma-frequency
bremsstrahlungthat it is important to treat both channels— range, this is analogous to the “transition radiation” of vir-
static and polarization—in radiation processes associatetial waves of colliding particléd8. Such an approach per-
with charge scattering by a structured target pariitie for-  mits the well-established results for radiative processes to be
malism of calculating the contributions of both channels forapplied to calculations of collision processdésr more de-
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tails see Refs. 1 and 16 and Chap. 4 in Lisitsa’s B&ok account when the effect is investigated under the given con-
Dubois and Maquét detailed the theory of spontaneous ditions.

polarization bremsstrahlung for the case in which the The method of equivalent photons as a means of describ-

target—atomic hydrogen—is incorporated exactly in theing multiphoton polarization stimulated bremsstrahlung was

Coulomb Green’s function formalism for an incident Born summarized in Ref. 35.

electron. Amusiaet al?*? have calculated the total brems- ~ Note that polarization bremsstrahlung from the Debye

strahlung, including the polarization kind, beyond the scopecloud around an ion in a plasma, originally called transition

of the Born approximaﬁon for the scattering of electrons bybremsstrahlung, was first investigated in Refs. 18 and 36 for
a neutral xenon atom. the spontaneous procesee also Chaps. 2 and 3 in Ref) 13

Especially noteworthy is the work of Verkhovtsev and later with allowance for the interference of atomic and
et al,?* who investigated spontaneous total bremsstrahlun?’Iasma polarization bremsstrahlufigMultiphoton stimu-
theoretically and experimentally for Xe atoms in the fre-lated bremsstrahlung in a plasma has been calculated with
quency range corresponding to the giant resonance in trdlowance for the polarization chanr?’él. _
photoabsorption of xenon due to thel 4ubshell. They cal- It is evident from the_foregomg survey Qf the literature
culated the differential cross section of total bremsstrahlung@t most of the results in the theory of stimulated brems-
in the Born approximation with respect to the incident elec-Sirhlung have been obtained for the case of Born motion of
tron, while acknowledging the inadequacy of this approxi-the |r_1C|dent partlcle,.whlch admits of _relat|vely simple cal-
mation. The total bremsstrahlung on the same target in thgulgthns .and for wh|ch the pa_lramet@ns S”?a”- However,
spectral range of the ionization threshold of tr suibshell radiation in a plasma with multiply-charged ions usually falls

was studied experimentally in a more recent papeé.the- in the alternative range of semiclassical electron motion
oretical interpretation of the results of this work is given in (£>1), where the methods and concepts of Kramers elec-

Ref. 26, based on the so-called low-frequency approximat-mdynamlc.S are found to be produgu’ve‘. . .

S R . The objective of the present article is to obtain a univer-

tion, by which it is possible to extend the Bprn treatmgnt. sal analytic description of the multiphoton stimulated brems-
To _the best of our knowledge, poIar_lzat|on effects in thestrahlung, encompassing the static and polarization channels,

scattering of an electron by_an atom In the presence Of $hat occurs when charged particles collide with multiply-

weak, near-resonance laser field were first taken into acco”%arged ions for arbitrary “quanticity/classicality” of the

in Ref. 27 for small momentum transfer from the incident ,,qtion of the incident particle. The result obtained here ad-
particles, within the framework of the time-dependent closeyjs of direct application in calculations of energy transfer
coupling method. between a plasma and a strong nonresonant laser field; this
Calculations of total multiphoton stimulated bremsstrah-p 55 important bearing on a great many practical problems.
lung within the framework of a “dipole™ perturbation of the The description of stimulated polarization bremsstrahlung re-
target (neutral hydrogen and helium atojsind the Born  quires generalizations of the method of equivalent Fermi
approximation for the incident particles, were carried out inphoton§9 and Kramers electrodynamic® multiphoton pro-
Refs. 28 and 29 without and with excitation of the target,cesses.
respectively. These papers stress the importance of “dress- |n Sec. 2 we summarize the method of a specifisat
ing” of the target by the laser field for small momentum necessarily classidakurrent for multiphoton processes in
transfer from the incident particle, a strong laser field, and/ogollisions of charged particles with multiply-charged ions. In
the near-resonance case, where the laser photon energySec. 3 we generalize the method of equivalent Fermi photons
close to one of the natural frequencies of the target. to multiphoton processes in order to describe polarization
A general expression for the multiphoton stimulatedbremsstrahlung. In Sec. 4 we analyze the resulting general
bremsstrahlung cross section of an atom in a strong lasexpression for the probability of multiphoton stimulated
field, in the Born approximation with respect to the motion bremsstrahlung, taking both mechanisms—static and
of the incident particle, and taking into account the emissiorpolarization—into account. Finally, in Sec. 5 we indicate the
of an arbitrary number of photons by way of the polarizationregion in which the polarization channel dominates the static
channel, has been derivBdand calculated? Stimulated channel, and we give examples of interaction between the
bremsstrahlung in a laser field of relativistic intensity hastwo channels.
been investigated with allowance for polarization and exci-
tation of the target?
Two-photon stimulated bremsstrahlung has been calcw. SPECIFIED-CURRENT APPROXIMATION FOR
lated for the scattering of a Born electron by a hydrogenrMULTIPHOTON PROCESSES IN COLLISIONS OF CHARGED
atom in the presence of a weak laser fiéigith allowance PARTICLES WITH MULTIPLY CHARGED IONS:
for virtual one- and two-photon excitation of the targe¢., =~ MULTIPHOTON STIMULATED STATIC BREMSSTRAHLUNG
polarization effects The authors mention the importance of FOR ARBITRARY &
these effects for the special case in which the hydrogen atom Major mathematical difficulties are encountered in the
remains in its ground state after electron scattering. systematic quantum electrodynamic solution of the stated
An analysis of experimental data on the energy losses gfroblem assuming summation of an infinite diagram series.
electrons in small-angle scattering by helium atoms in a lasefhe approach developed below corresponds to the approxi-
field** suggests the need to take the polarization channel intmate summation of such a series in the case of interest to us:
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collisions of a charged particle with multiply-charged ions.
This approach is based on the feasibility of describing radia- W(n) =J§<
tion processes associated with electron scattering in the field
of a multiply-charged ion in the approximation of a specifiedwherev,, is the Fourier component of the classical trajectory
(not necessarily classigaturrent. The given model has a of the incident particle in the ion field.
broad domain of applicability for the case of stimulated  The relationship between the formalism of the semiclas-
bremsstrahlung in the collision of charged particles withsical description of bremsstrahlung and the specified current
multiply-charged ions. The main condition for the approachmethod has been analyzed in Ref. 3 at the qualitative level
to be valid is that the motion of the incident particle in the for the radiative transition of an incident particle in a static
spatial region responsible for the emission of photons in aentral field. For the calculation of multiphoton transitions of
laser mode be only slightly perturbed by either the laser fieldncident particles in a static central field in the presence of
(in comparison with the perturbation of the motion by thelaser radiation for an arbitrary transition operattirat de-
field of multiply-charged ionsor by the emission or absorp- pends only on the coordinaleshe specified classical current
tion of a photon in and of itselfa real photon in static method can be justified quantum mechanically within the
bremsstrahlung or an equivalent photon in polarizatiorframework of the two-dimensional semiclassical meftfd
bremsstrahlung by passing to the limii—0 in the quantum formalism of
The weakness of the laser field relative to the ion field inmultiphoton transitions. The result of passing to this limit,
the spatial region responsible for emission imposes an uppevhich yields the correspondence principle for multiquantum
bound on the amplitude of the electric field component in theénelastic processes, is given in Appendix A.

Mmwa-v,,
h

) , @

laser beam: In the fast collision limit @ 7.o;<<1), which corresponds
to weak inelasticity of the process, both results are repre-
Ze sented, as noted in Ref. Bee also Ref. 6 by a single
E0<r_2'- equation of the forn{1), in which the vectoriq is again the
@ momentum change in the incident particle in scattering by a

. . o multiply-charged ion for botE<1 andé>1.
Here r, is estimated to be the characteristic d|§tance at  \we find that Eq.(1) can be extended to the region of
which a photon of frequency is emitted in the field of = gyng inelasticity in the sense that the ratio of the total en-
multiply-charged ions: ergy of the emitted photons to the initial energy of the inci-
dent particleE; is not small. In this case the validity of the
equation is actually restricted to weak perturbation of the
motion of the incident particle by an emission event in the
spatial region responsible for photon emission. This gener-

(here Ry is the Rydberg energy, aaglis the Bohr radiusin ~ alization of Eq.(1) essentially coversprovided that it is
the high-frequency asymptotic limit in the semiclassical@Pplicable to the region just mentionettie region of strong
casé® (¢ 1, 0>, ando=mv3/Ze? is the characteristic  inelasticity in the case of semiclassical motion of the incident

Coulomb frequency and particle—an electron in particular. In the latter case, as
shown by a generalization of the Kramers electrodynamics
formalism3%4to multiphoton processda generalization of

[ o~ the result described in Appendix A for the leading term in

w the limiting process for in the quantum probability of the
multiquantum inelastic transition of an incident partjcline

for the Born case§<1) and the low-frequency asymptotic actual condition for weak perturbation of the motion of an

limit in the case of semiclassical motion of the incident par-electron, according to the main conclusions of Kramers elec-

Ry 2]¥3
%) %

rﬁ[z

ticle (¢>1lw<w). trodynamics, is weak local kinematic inelasticity:
We now give the results of Refs. 2 and 3 for the opposite
limiting types of motion of the incident particle. u=nfiolEin(r,),

The equation for the probabilityV(n) of an n-photon
static process in the Born casé<1), first obtained in Ref.
2, has the form

wherer , is the characteristic radius of revolution of an elec-
tron about an ion near the point of closest approach, and
Ein(r,,) is the local kinetic energy of the incident particle. In
the case of semiclassical electron motion, which is in fact
W(n)=J3(a-q). (1) typical of the important practical case of collisions between
electrons and multiply-charged ions, the condition of small
HereJ, is thenth-order Bessel function, are=eEy,/mw?is  u is satisfied over a wide range of frequencies. Indeed,
the amplitude of the electron oscillations in a laser field ofu~n(%w/Ry)¥3Z~?" so that for typical frequencies of the
frequencyw and amplitudeE,, and#q is the change in Coulomb bremsstrahlung spectrum~mv®/Ze? we have
momentum of the incident particle due to inelastic scatteringe~n/¢, and at the short-wavelength bremsstrahlung limit

by a multiply-charged ion. we obtainu~ (n/£)?3,
In the case of semiclassical motio&st 1) Berson (see Equation (1) can be generalized to the case of strong
also Ref. 6 obtained the similar result inelasticity and any degree of quantization of the incident
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v Ze? the exact final quantum stat@ith momenturmp; and energy

100.0 E;=E;—n%w), and with an energy that differs from the ini-
00 tial energy by only one photon:
10.01
2
1 2 nit)?gz—’n- |w(e'difl)| ’ (5)
Lor fi Vdogead dQq
o1h whered;¢; is the matrix element for the emitting dipole mo-
' > 4 ment of the incident electron between stdigsand |f1),
0 1 — ) Dy=|piy=IEin)=|pf72m,p;/|pil),
AEJE,
' [f1)=|Ei—fiw,ny), (6)

FIG. 1. “Transition inelasticity vs. nonclassicality of motion” diagram V is the quantization volume, ardbrg.,/dQ); is the elastic
(AE=n%w). The region of validity of Eq(3) lies above the curve. The gcattering cross section of the incident particle in the ion
numbers indicate the region of validity of the following resuti$:multi- field from state|i> to state|f1>

photon bremsstrahluA@nd factorization of the multiphoton emission cross . . -

section in the first Born approximation, Jauch and Rohi{k$66); see Ref. It is evident from Eq.(5) that the specified current
42;2) two-photon bremsstrahlung in a Coulomb field, exact derivafidor method(in the region where it is valid; see Fig) tan be
arbitrary £, and multiphoton bremsstrahlung in the low-frequency approxi- extended to the case of arbitrary quantum character of the
mation in a short-range potenfiaB) multiphoton bremsstrahlurigd) quan- motion of the incident property by replacing the classical
tum derivation of equations for classical bremsstrahlung in a central field: ) proj L
one-photo®®*°and multiphoton(the present study; see Appendiy. A Fourier transformJ;,~ of the current generated by the inci-

dent particles with the quantum-mechanical expression

m(fjPli)

particle n_u_)tion by analyzing the matrix element of multiph_o- 2k \/m'
ton transitions between the exact wave functions for motion o
of the incident particle in a static central ion field. This kind In fact, by the correspondence principfé for one-quantum
of generalization is based on matching the descriptions in thglelastm.transnmns of the incident pgrtlcles in an arbitrary
various regions of spacgiv/Ze?, nfiw/E;}. Here the first c_entral field betvv_een the states described py the_wave func-
step is to demonstrate the validity of the descriptignin ~ tions of the continuous spectrutwave functions |lkef1’g
the low-frequency limit fw<E;;, fiw<E) for arbitrary ~and¥ in Ref. 41, Sec. 136we obtain from(7) in the limit
&. For the special case of the emission of two photons in &— 0 the Fourier component of the classical trajectory in the
Coulomb field, this has been ddriey elaborate calculations argument of the Bessel function of E@). In the Born limit
that expand upon the approach in Ref(vée mention also (§<1), on the other hand, E§7) coincides with the quan-
that an equation for low frequencies and an arbitrary shorttity g/ in Eq. (1) to within this same approximation, which
lived potential is given in Ref. 4 The second step is to iS based on weak inelasticity of the transitita change in
extend the low-frequency description to the case of arbitrarghe energy, i.e., the modulus of the momentum vector, pro-
inelasticity within the scope of classical motion of the inci- vides g with a contribution of second-order smallness in
dent particle in the rangl€>1. This is achieved by the comparison with the contribution of the angle of rotation of
aforementioned justification of the specified classical currenthe momentum vector
method(see Appendix A An equation for the cross section of the process can be
As a result of rigorous justification over the indicated obtained from(3) by summing over the statistical weights of
ranges of parameters and interpolation over the intermediatée final state of the incident particle. This operation corre-
range, we finally obtain the following universal representa-Sponds to multiplication of the emission probability by the
tion for the probability of multiphoton bremsstrahlung in the Coulomb scattering cross sectidirc,, of the incident par-
static field of the target ion, covering the entire range ofticle in the field of a multiply-charged ion:

)

validity of the specific current approximatiaeee Fig. L do(n)=do e, W(N). @)
2 L
Wil N) = ‘]n{(4nkisn§tfn) 1/2}v ()
3. GENERALIZATION OF THE FERMI METHOD TO
wheren; 2% is the occupation number of photons in the laserMULTIPHOTON PROCESSES: POLARIZATION
mode (351), BREMSSTRAHLUNG IN THE COLLISION OF A CHARGED
PARTICLE WITH A MULTIPLY CHARGED ION IN A
nteS=(873c?/hw®)| s, (4)  STRONG LASER FIELD
I as is the spectral intensity of the laser radiati tf“is the The ensuing generalization of the method of equivalent

occupation number of photons spontaneously emitted in thEermi photons to the multiphoton case is based on the exten-
usual one-photon bremsstrahlung regime by an incident pasion of the specified classical current approximation used in
ticle in the static ion field in laser modg,\}, with wave Refs. 3 and 6 as a means of describing multiphoton static
vector k and polarization\, during an inelastiqradiative stimulated bremsstrahlung f@g>1 to polarization stimu-
transition from a state with initial momentup) to a state lated bremsstrahlung, including arbitrary quantization of the
with momentum in the same direction=p;/|p;| as that of motion of the incident particle.
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Since, as mentioned previousty® the equivalent photon the multiply-charged ion under the influence of the incident
method is(within the scope of its validity discussed in the particle during scattering, justifying the choice of total cur-
cited papersinsensitive to the quanticity/classicality of the rent in the form(11).
motion of the charged particle producing the flux of equiva-  For problems of energy transfer between the plasma and
lent photons, it is natural in the problem of multiphoton a strong laser fieldbut still, however, not greater than the
stimulated polarization bremsstrahlung to include the interCoulomb field of a multiply-charged ion in the effective zone
action of (quantized if necessaryhe emitted/absorbed field of photon emission/absorptipniue to the stimulated emis-
of real photons not only directly via the incident particle sion and absorption of radiation in the collision of plasma
current(as in ordinary, static bremsstrahlyngput also via particles with multiply-charged ions, it is important to in-
the polarization current induced by the incident particle include the contribution of the polarization channel created in
the target ion/atom. For the case of a specified classical cuthe presence of the electronic core of multiply-charged ions.
rent (see below for the generalization to quantum motion ofThis channel can be expected to play the greatest role when
the incident particlg this adds an additional term to the the main contribution to polarization stimulated bremsstrah-
Hamiltonian, so that the equation for the wave functioof  lung is determined by the presence of one-photon near reso-
one mode of the laser field in the interaction picture assumesance of the laser field with the eigenfrequencies of
the form multiply-charged ions. This case corresponds to the stimu-

2 lated scattering of equivalent photons of enerdgyw, each
_+total + “emitted” by the incident particle as it is scattered in the

) (Ga TP B a0 O Coulomb field of a multiply-charged iofunder the influence

of the laser fielg, by the core of the target ion and their

subsequent conversion intoreal photons. In a systematic

QED analysis this process can be described by a sum of

“ladder” diagrams (see Appendix B, which leads to near

resonance of ordar in the amplitudes of tha@-photon pro-

cesses. The indicated approach actually corresponds to a

mechansim for the inducetimulated, preferentialemis-

2h
oV

O
ih E——e

Herea anda™ are the laser-mode photon annihilation and
creation operators, is the unit polarization vector of the
electric component of the laser radiatiam,is the electron
charge, and/ is the quantization volume.

The Fourier transform of the total current, including the
polarization current, is given by the expression

) Mw? ) sion of quanta of energy at the frequency of the external
j‘s‘a'='2’°’+'5°'=[1— (ﬁ) a(w,Eop) 5. (100 field, not only for(rea) photons, but also for virtual photons

in anticipation of their coherent conversion to real photons.

HerejP™ is the Fourier current of the incident-particle cur- The foregoing approach, however, overlooks contribu-

rent, evaluated on the classical trajectory, fStis the Fou-  tions from resonances in the ion core with higher harmonics
rier transform of the polarization current induced in the tar-of the laser frequency. This would correspond to the incep-
get. tion of higher orders of polarizabilitysee Ref. 48and, in

Equation(10) corresponds to the dipole approximation, particular, to a process such as the conversion of one virtual
both in terms of the interaction of the laser radiation withphoton of energynfw, into n real photons, which in dia-
multiply-charged ions and the incident electron, and withgram language is represented by a singfer given n)
respect to interaction of the incident electron with multiply- “comb” diagram, and thus corresponds, first, to perturbation
charged ions. The first two conditions are expressed by thef the target ion over a considerably more restricted fre-
inequalities\ >r, and \>r(w), and the third condition is quency range and, second, to the possibility of only first-
expressed by the inequalitf w)>r, (A is the laser wave- order resonance in the amplitude of the process.
length,r, is the radius of the orbit of a bound electron inthe  In our approximation we obtain
multiply-charged ion, and(w) is the characteristic distance Maw?
from the incident particle to the multiply-charged ion, which jlorl= 1_[2_97
provides the main contribution to radiation of frequency
w). It is evident that the dipole approximation is valid over awhere a(w,Ey) is the first-order polarizability at the fre-
wide range of emission frequencies. guencyw for the target ion, determined with allowance for

The last conditionr (w) >ry,, also dictates that the field the perturbation of the target by a laser field of amplitude
of the incident electron at the site of the bound electron isE,.
much lower than the field of the multiply-charged ion core.
We can therefore assume that the following relation is ap-
proximately satisfied: 4. PROBABILITY OF MULTIPHOTON

) . STATIC+POLARIZATION INDUCED BREMSSTRAHLUNG

JPo~ X(E)jP, (11)

] o A consequence of Egg9) and (10) is the following

where x(E,) is the total susceptibility operator of the elec- oyxpression for the total probability of trephoton emission/
tronic system of the multiply-charged ioftaking into ac- absorption proces#/(n) in the casen®s > 1 (n'® s the

count the influence of the laser field of amplitulg), which occupation number of photons in the laser moaehich in-
includes the contribution of all harmonics of the incident o|,des the static and polarization channels:

particle field. This equation establishes a linear relation be- ) Las. stat 1/2
tween the incident particle current and the current induced in ~ Ws(n)=Ja{2(nithg®) 41— 8]} (13

a(w,E())}jzm". (12)
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HereJ, is thenth-order Bessel function, and fers somewhat by virtue of the difference in the spectra of
2 equivalent photons for scattering by a neutral atom and by a
Mo“a(w,Ep) o ) . .
e (14) charged particle; more details can be found in an earlier
Z papet® which appears in Ref. 13 pp. 288—-238%e know
describes the contribution of the polarization radiationthat the interference term proportional fodrops out after
mechanism to the amplitude of the process. If radiation in théntegration over the scattering angle of the incident particle,
polarization channel is dominant, we obt&in owing to the difference in the regions of significance of the
static and polarization channelspecifically, interference is
Wp0|(n)=Jﬁ{2(nkiSnﬁﬁ' 4, (19 significant only over a rather narrow interval of anglds
where nf°'= 5?n¥@ is the occupation number of photons the case of bremsstrahlung by a multiply-charged ion, on the
spontaneously emitted into the laser mg#e\} by an inci-  other hand, the regions of significance of the static and po-
dent particle in the polarization channel when it collides withlarization channels, subject to the condition that the colli-
a multiply-charged iort® sions have a dipole character, simply coincide, so that inter-
Equation(13) is the result of summing the contributions ference becomes far more important.
of the two channels. The radiation contribution from either  The approach used in deriving E@.3) differs from the
channel can be isolated in this sum by means of the additiomvestigation in Refs. 30 and 31, which is framed in the Born
formula for Bessel functions. Equatidf3) can then be re- approximation without second quantization of the emitted/
written in the form absorbed field, in that it systematically incorporates interac-
2 tion of the polarization current induced in a multiply-charged
> (- 1)’“JU(\/4n|';i ﬁ‘ft)‘]m(\/4n,';isnﬁﬁ') ion with a quantized laser field and is generalized to the case
vrm=n 1g  Ofarbitrary values of the parameigin the region of validity
(16) of the specified current formalisisee Fig. L
The equation(13) for the probability of a multiphoton Note, however, that the result of Refs. 30 and 31 has a
process is a generalization of equations previously derivegigorous physical analog. A direct comparison(@8) with
by Bunkin and Fedordvin the Born approximation and by Eq. (2) in Ref. 30 and Eq(13) in Ref. 31 at the level of the
BerSOﬁ in the semiclassical limit. FirSt, they were applled to Corresponding process obtained by mu|t|p|y|ng the probab”_
the case of a highly inelastic multiquantum transition over 3ty and the Coulomb scattering cross section of the incident
broad range of quantum versus classical motion of the inCiparticle in the field of the multiply-charged ion indicates that
dent particle(Fig. 1), spanning not only the range of validity hejr structures are similar. The main difference is the form
of the results of Refs. 2 and 3, but also the entire range of¢ the factors representing the polarization channel, which in
validity of the specified quantum/classical current approxi-ges 30 and 31 are expressed in terms of the nonlinear sus-
mation as well. Second, they were applied to the case iRgpyipjities of the target. This difference is attributable to the
which the contributions of the static and polarization chan-yissimiar models on which the description of the given phe-
nels, including their interference, to the emission process are menon is based. For example, our re<B), as men-

taker) _into account simu!taneously in the approximatiqn 9f Rioned corresponds to the stimulated scatteffmgder the
specified quantum/classical current generated by the mc'deri]r%fluence of the laser fie)cbf n equivalent photons of energy

particles. . . o . L
It is important to note that the result3) generalizes to .ﬁw’ each emlttgd by the mC'd.ent particle as itis scattered
. 14 in the Coulomb field of the multiply-charged ion, by the core
the multiphoton case the well-knowir™ phenomenon of of the target ion, and their subsequent conversioniinteal
“stripping” of a target ion, i.e., the partiaffor an ion or hot (r? ' i q f ord
complete(for an atom unscreening of the nucleus as a resultip?)é):;x eE;e We encounter near resonance ot oruesee

of cancellation of the contributions from polarization radia- | h h of Refs. 30 and 31 q
tion and the part of the incident-particle bremsstrahlung due n contrast, the approach of Reis. 30 an corresponas,

to Coulomb interaction of this particle with core electrons.n terms of the equivalent photon formalism, to the conver-
Such cancellation exactly corresponds to the vanishing ofion Of @ single virtual phonon of energyiw into n real
bremsstrahlung in the dipole approximation for the collisionPhotons, where only first-order resonance is possible. Our
of particles having the same charge-to-mass ratio. approximation is founq to be more realistic for thg multl|pho-
Another consequence of E(L3) is that the nature of the N bremsstrahlung discussed in the present article, in con-
interference in our case of bremsstrahlung associated witRéction with the collision of a charged particle with a
scattering by a multiply-charged ion differs significantly multiply-charged ion in the presence of a strong laser field
from the case of a neutral atom. This contrast is aptly illusClose to resonance, with respect to one-photon transitions in
trated in the example af,(Z=0,£<1), the cross section for the core of the multiply-charged idisee Sec. 3
one-photon bremsstrahlung by a neutral atom with allowance ~We note that the “extra” lines of virtual phonons in the
for both the static and the polarization channel in the case dfdder diagrams describingn=to-n” conversion increase
Born scattering of the incident particle, which has alreadythe number of diagram vertices, but do not necessarily de-
been studied in detajsee, e.g., Refs. 2 andY13ndeed, even crease the amplitude of the process. Such a decrease takes
though the cross sectiom;(Z=0, £<1) initially has the place upon satisfaction of a condition that generalizes the
same structuréof the type|1— 8|?) as Eq.(13) in our inves-  familiar Born condition for the static scattering potential to
tigated region of dipole collisiondhe parameteé itself dif-  the case of a time-dependent potential. For the investigated

Wy (n)=
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n-photon emission process this condition can be written invheref, is the resonant-transition oscillator strength. From
the form condition (19) we deduce an expression for the saturating
amplitude of the laser field in the given near-resonance case:
[aM(0)]" [Ep(w)]"

<1, 2
a(nw) Epnw) Euar \/ 1o Al
0

Herea(™(nw) is thenth-order polarizability of the multiply-

charged ion, andE,(nw) is thenth harmonic of the ampli- In soft x rays and at off-resonance laser frequencies with
tude of the incident-particle field. Clearly, such an inequalityl A| =10~ (which exceeds the characteristic line broadening
does not hold in the near-resonance case. in the current casewe estimateE,>10"°-10"" a.u.

The difference between E@13) and the equations in From this condition we obtain an upper bound for the

Refs. 28 and 29 stems from the fact that the target wavéaser field when polarization bremsstrahlung dominates the
function in the indicated situations was taken into account irstatic kind in the near-resonance case:
the “dipole perturbation” approximation, which dictates that >

2(1) (a)fo) AZ

the emission of only one photon in the polarization channel g, = /—

is taken into account. fo [\ 22
Hence, forz=10, w~3 a.u.,A=0.03 a.u., and;~0.3 we
find E, ~0.15 a.u.

5. INTERACTION OF THE STATIC AND POLARIZATION In laser fields withE<Eg,, we have the following con-

CHANNELS IN STIMULATED BREMSSTRAHLUNG dition governing the dominance of polarization over static
IN A STRONG LASER FIELD bremsstrahlung:

, Eu<E<E,. (20)

fo
27 ¢

The contribution of the polarization mechanism to the
total probability of stimulated bremsstrahlung becomes

dominant in the case of near-resonant laser radiation. In thiF

kind of region, which is characterized in the general case b}/om which it follows that an extremely broad spectral range
the condition ' s covered in this case as well.

We illustrate the interaction of the static and polarization
y<|o—wol<w (17 channels in stimulated bremsstrahlung over the range of pa-

(w is the natural frequency of the resonant electron transif@meter values that are relevant to the case of coherent ra-

tion in a multiply-charged ionA = w— wy, andy is the total diation emitted in the soft x-ray range, and at the same time
width of the investigated transitignwe need to take into &€ attainable mﬁPresent-day and planned experimieets,
account the influence of the laser field on electrons of th&:9-» Elton’s book). For example, the numerical estimation
multiply-charged ion core, as it produces a certain modifica®f the stimulated emission/absorption cross sections for the
tion of the polarizability of the ion, and the generalized Rabic2S€ Of a recombination scheme is most appropriate in appli-

H 13 1 e 3
frequency appears in the denominator of the expression fdfation to the “Kramers” frequency range>w=v"/Z.
the near-resonance polarizability Here we obtain the expression for the total cross section

(integrated over the impact parametesf the n-photon

A< (21)

d-E 2 .
Q= \/( ﬁo + (0= wo)?. stimulated process
(22)4/3 o
As for the near-resonance polarizability of a multiply- on(a@)= v20?B |, de
charged ion, it can be described by the expression
—g2 _ dN | [1—4] 258
a(w,Eo) d Sgr(wo w)/ﬁQR, NT?‘Jﬁ WE NZISF(N,a,(p) ,

whered is the dipole matrix element of the near-resonance
transition. Accordingly, the expression for the quangtge- (22
scribing the contribution of the polarization channel to the
total amplitude of the process can be written in the f¢tine

contribution of the lower level of the “near-resonant” tran- F(N,a,¢)
sition in the core of the multiply-charged ion is tacitly un-

where

4 4
derstood from now on = \/ cog aK§,3<§ N|+cog ¢ sir? aK§,3(§ N),
5o mew? d? 18
= _Ze2 _ﬁQR Sgr( wqo (1)) ( ) (23)

From this expression we obtain the condition for dominancéNd @ is the angle between thinitial) velocity of the inci-

of the polarization channel over the static chariirehatural dent particle and the polarization vector of the laser field.
units): Figure 2 shows the cross section of the one-photon pro-

) cessoq, averaged over the angles as a function of the
fo_‘”) strength of a linearly polarized laser field for ionic charge
22 ]’

fo
2, 0 2
AT E <( Z=10, electron velocityv=1.44 a.u., laser frequency

50 (19
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FIG. 2. Dependence of the cross section of the one-photon process FIG. 3. Dependence of the differential bremsstrahlung cross sections for
averaged over angles, on the strength of a linearly polarized laser field for One-photorio(0), curvel] and two-photoria;(0), curve2] processes on

an ion chargeZ=10, an electron velocity =1.44 a.u., a laser frequency the strength of a Ime_arly polarized laser field for the angte0, ion charge
=3 a.u., an oscillator strengtly=0.3, and a relative frequency deviation Z=4. electron velocity =0.447 a.u., laser frequenay=0.37 a.u., oscil-
|A|/0=0.01. The curves are given for equal moduli and opposite signs ofat0r strengthf,=0.69, and relative frequency deviatiaVw=+10.014.

the frequency deviatiokcurves1 and2) and for cross sections with only Also shown are curves corresponding to the static channel alone for one-
one of the two channels taken into acco(mirve3 corresponds to the static  Photon(curve3) and two-photorcurve 4) processes.

channel alone, and curvkto the polarization channel alone

deviationA/w>+0.014(in this case we have the quasiclas-
=3 a.u.(near-resonance with transitiods1=0 in the ion  sicity parameter é~9 and the “Kramers” parameter
core, oscillator strengtlf ;=0.3, and relative frequency de- w/w=16.5. The competition between the one-photon and
viation |A|/w~0.01 (in the present case we have the semi-two-photon processes with increasing strength of the laser
classicality parameteg~7 and the “Kramers” parameter field is evident. Also shown in the figure are curves corre-
wlw~10). The curves are plotted for identical moduli and sponding to the contribution of the static channel alone
opposite signs of the frequency deviatiGourves1 and2)  (curves3 and4). Clearly, when the polarization channel is
and also with only one channel taken into accolmirve3  taken into account, the cross section of the two-photon pro-
corresponds to the static channel alone, and cdri® the  cess becomes comparable with the one-photon cross section
polarization channel aloneThe plotted cross section corre- for weaker laser fields.
sponds to the contribution of only one of the levels involved
in a near-resonancévirtual) transition in the core of the
multiply-charged ion. The upper curve corresponds t0 @ ¢ coNCLUSION
deviationA>0 for the contribution of the lower level of a
“near-resonant” transition in the core of the multiply- The universal analytic description obtained here for mul-
charged ion(or, equivalently,A<<0 for the contribution of tiphoton stimulated bremsstrahlung, encompassing both the
the upper level of such a transitiprthe lower curve2 cor-  static and the polarization channel, can be used to calculate
responds to a deviatiah<<0. The actual difference between the cross sections of stimulated emission and absorption of
these curves illustrates the degree of interference of the statfhotons in the collision of charged particles with multiply-
and polarization channels. The dip in the lower curve ischarged ions for any degree of quantum versus classical mo-
caused by the complete cancellation of the amplitudes of théon (the “quanticity/classicality” criterion of the incident
two channels and, accordingly the vanishing of the argumerparticle, over a wide range of parameters such that the speci-
of the Bessel function if22) when §=1. We note that the fied incident-particle current approximation is applicable to
curves describing the contribution of only one of the chanthe stimulated emission/absorption of a photon by the com-
nels intersect precisely at this value of the laser field. Allow-posite systenfincident particle-ion and corg The approach
ance for the contributions of the populations of the upper andieveloped here for the description of multiphoton polariza-
lower levels smooth out the dip, but cun&is still not tion stimulated bremsstrahlung generalizes the method of

monotonic. equivalent Fermi photon'S,to multiphoton processes elabo-
Over the range of parameters for Fig. 2, the contributiorrating the method of Ref. 16 for spontaneous polarization
of multiphoton radiative transitions is small. bremsstrahlung and the method of Kramers electrodynamics

Figure 3 shows the dependence of the differential crosor the semiclassical description of radiative collision pro-
sections of bremsstrahlung for one-phofen(0), curvel]  cesses involving multiphoton ions.
and two-photor{o,(0), curve 2] processes on the strength The foregoing numerical calculations of the stimulated
of a linearly polarized laser field for the angle=0, ion  bremsstrahlung cross sections over the range of parameters
chargeZ=4, electron velocity =0.447 a.u., laser frequency relevant to problems in the kinetics of a strong laser field in
w=0.37 a.u.(near-resonance with transitiods=0 in the  a multicomponent plasma with multiply-charged ions, under
ion core, oscillator strengthi;=0.69, and relative frequency conditions in which nonresonant processes influence the
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transfer of energy between the plasma and the laser beamne exact delta function, which ensures the conservation of

reveal the significance of interference effects between thenergy in a single multiguantum transition event. The com-

static and polarization channels. bined influence of the indicated delta function and the overall
limit #—0 in (A2) brings the resonance denominators to the
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APPENDIX A: SCHEME DEMONSTRATING THE -E)... J drlf dp, P % (py,r)Q(ry)

CORRESPONDENCE PRINCIPLE FOR A MULTIQUANTUM
TRANSITION MATRIX ELEMENT
_ _ _ X\If(’)(pl,rl)ﬁ(ElnLﬁw—Ei)...fdr‘l'““
We generalize the formalism of the limit—0 for a

one-gquantum inelastic transitibff to the case of multiquan- ().
tum ?ransitions(including induced transitionswithinqthe X (P H)RNTT (P, (A3)
framework of the previously develop€dtwo-dimensional \here the photon part of the matrix element
semiclassical method in the theory of inelastic transitions of
a particle in a central field.

The analysis is best carried out in general form for the (M) phot=
most representative form of the correspondence principle.
For the matrix element of scattering between statess attributable to the matrix elements of successive one-

(s+n)!\ 2

s!

(Ad)

{particletfield} guantum transitions in the presence of the initial and already
) to R emitted photons in the given mode.
(ps,m|T exp[f Q(r,t)-A(t)dt]lpi,n) (A1) We consider the simplest version @fA3), the case
- n=2, which corresponds to a two-quantum transition. Ap-

(hereT is the time ordering operator, the arbitrary operatorP!ying the formalism of the limiti—0 to the matrix element
Q(r,t) and the electromagnetic field vector potential opera{P1|Q|pi), for the coordinate pai, we obtain

tor A(t) are defined in the interaction pictune, andn are

the photon occupation numbers, apdand p; are the mo- Mzocj dﬂlj dry W% (pg,r ) Q(r) W ) (py,ry)
menta of the emitting particle in the initial and final stajes
the expression for a typical nonvanishing term in the expan-
sion of the scattering matrix has the form

(da)llz i

x||==|] Q, exp(— S” , (AS5)
. dQ f [i1%)
Mn:<pf15+n|%{f

o n
) 5+(I)Q(f,t)dt] [pi.s),  (A2)  whereQ, is the solid angle of the vectar;, ny=p; /|p4;
here also the scattering cross sectaw/d(), the Fourier
where the photon creation operat@f (t) is defined in the componentQ,, of the functionQ(r), and the actior are
interaction picture. The introduction oh(-1) unitary op-  evaluated for the trajectom(t) corresponding to the scatter-
erators in the form of sums over the complete set of statesing event{p,—{E; ,n,;}}={i—1*}. It will be advantageous
below to transform the integral over the solid anflg into
> W (o r YW ) (p,r)xs(r' =), an integral with respect to the trajectory variabMs and
P ¢, (see Refs. 1 and 40

where¥ (7)(p,r) is taken from Ref. 41Sec. 136, leads to
the factorization ofA2) into a product ofh matrix elements J do ch M- dM- d_( _)
mutually coupled im time integrals. The application of the ! 1 BV 81 g0 iy
operators expfi/AfHdt) contained in the operatof3 in the

interaction picture to¥(~)(p,r) and the subsequent compu- so that the integrals left i6A5) are grouped, as in Refs. 1
tation of the time integrals produces+ 1) resonance de- and 40, into a single time integral on trajectories departing
nominators(which, as the upper limit of the time integral (scattereglin the direction of the final momentupy and a
exponentially approaches infinity, tend to the correspondingluadruple integral in the doubly-reduced trajectory space
delta functions and thus ensure the approximate conservatidgM,,¢,}®{M,,¢,}. The latter integral is evaluated in the

of energy in each successive one-photon transition in thémit #—0 by the stationary phase method in four-
multiquantum transition event factorized in this wagnd  dimensional space. Here the stationary phase corresponds

-1
(A6)
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to n;=n;=p;/|p;|, and the phase factofaction function}

in the semiclassical wave functions¥(7)* (p;,ry)

and¥()(p,,r,) are preservedin contrast with their sum-
mation in the action function along the classical trajectory in i 1)
(p1/Q|pi)) to within their difference, due to the difference B
between the energids; andE,;=E;—#% w, which yields the "
factor required for the Fourier component

>
>

3
N
S
N

1))

S
f e

S E_E ;
% JOE ( f l) p [ pf
i
in the exponential function. In the final analysis, the scatter-
ing cross section ifA6) cancels the product of the square FIG. 4. Second-order ladder diagram describing the conversion of two vir-

roots of this quantity that emerge when the integfals) are  tual photons(4-momentaq; ) into two real photondenergyfiw) at the

evaluated by the stationary phase method electronic core of a multiply-charged ion. The single slash represents the
h lization(by  inducti : h usi “cutting” of the diagram along the incident-electron liisee Sec. 8 The
The generalization(by induction of the conclusion double slash indicates the cutting of the diagram along the line of the elec-

briefly described here to the case of an arbitrary number ofonic core of the multiply-charged ion.
photons can be used in the generalization of Bg#2 from

Ref. 1 to find a correspondence principle for thguantum
transition between wave functions of the scattering problem
{pi—ps} with s photons present in the given mod@ghich

do not perturb the particle motign

wt10<

We wish to investigate the ladder diagrams describing
multiphoton radiation in the polarization channel, which are
. . the result of expanding the formal solution for the scattering
(ps,s+ nﬁ{f é*(t)Q(t)dt] 1P o matrix in powers of the mter_actloq of the elect_ronlc sub-

— system of a multiply-charged ion with the laser field.
12 1/2 As an example, we discuss the elementary case of the

do i ; )
—| (Q,)"8(E;—E{—nfiw) conversion ofn virtual photons inton real photons for
dQ; . - . . .

n=2. One of the topologically similar diagrams is shown in
wheredo/d(); is the classical particle scattering cross sec-Fig. 4. In this diagram the fine line corresponds to the inci-
tion from a state with initial momenturp; to a state with  dent particle scattered in the field of a multiply-charged ion
momentumpy|p;|/[ps|, (pr is the momentum of the final from state|p;) to statelpy). The electronic subsystem of the
quantum stae andQ,, is the Fourier component d®(r)  multiply-charged ion does not change its stajeand is rep-
along the trajectory(t) corresponding to the indicated scat- ;esented by the heavy linay, and g, are 4-vectors of

(s+n)!
s!

oC

tering event. equivalent Fermi photons, and), |m), and|s) are the in-
termediate states of the electronic subsystem of the multiply-

APPENDIX B: JUSTIFICATION OF THE SPECIFIED charged ion.

POLARIZATION CURRENT METHOD In the dipole approximatioffwith respect to interaction

This justification of the specified polarization current With Poth real and virtual photonsthe analytic expression

method(in the sense that this current is not perturbed by £0rresponding to the given ladder diagram has the form

photon emission/absorption evergt based on the possibility

of “cutting” the corresponding diagrams along the lines of

propagation of the electronic core of the multiply-charged

ion (in Fig. 4 the double slash across the heavy line corre- Mz“f dafda3s(qf+ a3 —2hw)ESEFEC"

sponding to the Green'’s function of the electronic core of the

multiply-charged ioln We note here that the possibility of X (91 E5M ) R34 — 02,0, - 03, »). (B1)
“cutting” (up to an elastic scattering contribution—the root

of the scattering cross section—with but a single common

facton the diagram along the line of propagation of the inci-
dent particle(the single slash across the thin line in Fig. 4 ) . : . .
follows from the validity of the specified current approxima- the laser f'eIdE_EPh Is the f|e|d. of equivalent Fermi photcins .
tion. For example, in the limit of classical motion of the (we are assuming that the diagram has already been “cut

incident particle for the case of static bremsstrahlung, thi€long the inciden;[k;pc)c?rticle line as represented by the single

corresponds to factorization of the probability of multiphotonSlash in Fig. 4, R is the diagonal matrix element of the
emission(see the justification in Appendix A of the corre- nonlinear scattering tensor of the electromagnetic field by the

HereE is the vector representing the electric component of

spondence principle for multiquantum procegsésnd, fi-  electronic subsystem of the multiply-charged ion; in the
nally, cutting along the photon Green'’s function correspondgiven situation it is proportional to the third-order suscepti-
to the method of equivalent Fermi photons. bility, and is given by the expression
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subsystem of the multiply-charged ion, adg,, denotes the
matrix elements of the dipole moment operator.

This approximation of the specified polarization current

corresponds to then=i term in the sum ovem in Eq. (A2).
Discarding terms withm # i can be justified if the near-
resonance conditioril?) is satisfied; this is precisely the
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a(w)a(q)) 8205

{)%?de.oc .
w03~ i7i/2

ii,m=i
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Here a(w) and a(q(l)) are the dynamic polarizability of the
multiply-charged ion at the frequencies and q‘f, respec-
tively, and 6, is the Kronecker delta. Noting that> v;; ,
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the delta function and the principal-value operator. Integras,
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Quantum theory of the resonance interaction of an intense monochromatic
electromagnetic wave with arbitrary polarization composition

A. A. Panteleev

Troitsk Institute of Innovational and Thermonuclear Research 142092 Troitsk, Moscow Region, Russia
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Zh. Eksp. Teor. Fiz111, 440-466(February 199Y

A theory describing the absorption and emission spectra of an atomic transition in the field of an
intense monochromatic wave with arbitrary polarization composition is developed. The

theory includes a quantum description of forward-directed four-wave interaction processes.
Expressions are obtained for describing the absorption and emission spectra in transitions adjacent
to the working transition. The description developed includes the perturbation of the atomic
subsystem by a constant magnetic field. The spectral characteristics, polarization composition, and
angular distribution of the resonance fluorescence are investigated. The nonlinear Faraday

effect and the properties of resonance fluorescence are investigated for the transition
J=1—-J=0. © 1997 American Institute of Physids$$1063-776(97)00402-2

1. INTRODUCTION constant as is absorption or amplification of fluorescence
photonst®19|t should be noted that in Refs. 18 and 19 it was
The investigation of the properties of the interaction ofindicated that these are quantum processes: For the states of
intense radiation with resonant media is a fundamental probthe electromagnetic field which correspond to them, there
lem of modern optics. It is well known that the absorptionexist spontaneous sources similar to resonance fluorescence
and emission spectra of atoms change substantially in thghich determine the appearance of the scattered radiation
field of a strong electromagnetic wave. The basic theoreticaield. It was found that a quantum description of these pro-
and experimental investigations of these spectra concern thgsses is fundamental for constructing a theory of the gen-
study of the spectra of a nondegenerate two-level sy§®m, eration of squeezed states by means of resonant four-wave
which presupposes that it is excited by a wave with fixedmixing®®?*and for the interpretation of the first experimental
polarization. The resonance fluorescence of the transitiobbservation of squeezed states of light.
J=0—J=1 accompanying the excitation of atoms by in- In Refs. 18, 19, and 23 it was proved that the radiation
tense linearly polarized radiation was investigated in Refs. &bsorption coeffcicients and four-wave coupling constants
and 9 allowing for collisional mixing of the magnetic sub- describing induced processes are the same for quantum ra-
levels, and the emission and absorption spectra for the saliation and classical test fields. They can be calculated for
dium D, lines were studied in Refs. 10 and 11. In Ref. 12the classical fields by perturbation theory using the standard
Mollow’s theory of resonance fluorescefhtevas extended atomic density matrix formalist. A number of approaches
to a degenerate two-level atom in the field of a monochrohave been used to calculate resonance fluorescence spectra.
matic linearly polarized wave. We mention the atom—photon wave function apparatus,
In Refs. 14—16, an approach was developed for calculathe quantum regression theoréfrt? Keldysh's diagram-
ing the absorption and emission spectra of the magnetizeshatic technique for nonequilibrium Green’s functiéh®26
transition J=0—J=1 in the field of an electromagnetic Haken's method™?’ and the Scully—Lamb atom—photon
wave of arbitrary intensity for the Faradak,( H) and  density matrix apparatif§:*° The present paper employs the
Voigt (k, L. H) geometries, wherlk, is the wave vector of the latter approach.
pump wave andH is the magnetic field vector. It was shown In this paper the results of Refs. 14 —16 are extended to
that the scattering spectrum, and in particular the Hanle sighe case of the interaction of an arbitrarily polarized mono-
nal characterizing the depolarization of the scattered radischromatic electromagnetic wave with a resonant atomic tran-
tion, can contain up to seven peaks. sition with an arbitrary angular momentum. The absorption
In Ref. 17 the polarization, spectral, and angyldlow-  and emission spectra associated with transitions adjacent to
ing for the thermal motion of the atomsharacteristics of the working transition(see the level scheme in Fig) &re
the absorption coefficients for transitions with arbitrdrin also investigated. This paper is organized as follows. In Sec.
the field of an intense electromagnetic wave with definite2 the mathematical apparatus is developed and a modifica-
polarization(linear or circulay were investigated by the test- tion of the formalism is given on the basis of the represen-
field method. tation of nondegenerate polarization operators. In Sec. 3 the
The propagation of an intense electromagnetic wave in &haracteristic features of the polarization and angular distri-
resonant medium is accompanied by the appearance diutions of the scattered radiation are investigated. Section 4
forward-directed nondegenerate four-wave mixing. Math-is devoted to an investigation of the resonance fluorescence
ematically, the forward-directed nondegenerate four-wavepectra. In Sec. 5 the formalism developed is employed to
mixing processes are determined by the séseeond order study the fluorescence spectra of the transition
of the perturbation theory in the radiation—atom couplingJ=1—J=0. The characteristic features of the nonlinear
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lation operators of the photons. The perturbation of the
atomic system by a magnetic field is described by the expres-
sion

N
— 0))
'S ,—Z‘l 2;« 9:MOR, (5)
whereg; is the Landefactor andQ) = — ugH/#% is the Lar-

mor frequency. The interaction of the pump wave with the
transitiona—b is described by the expression

Vv =Z > [Voa(MM)RED, +VE(M MR,
FIG. 1. Level scheme. =1 mm’

(6)

exp(iw t)
Faraday effect for this transition are also investigated. The 2h '
basic results and a discussion of the limitations and limits of @)
applicability of the formalism developed are presented in th
concluding section.

vba<M'M>=§ —dpa(M'M)E,U,(r)

(?Nheredba(M "M)=dyn’ am is the dipole moment matrix el-
ement andU, (r) is the spatial mode factor. Using the
Wigner—Eckart theorer?f. we represent the expressitf in

the form
2. BASIC EQUATIONS
2.1. Model VoaM'M)=2 Vio(@)(=1)%7MCy Ty expliont),
We shall study the interaction between a monochromatic (8)

wave, in resonance with the transitian-b (see Fig. 1, and

an ensemble of atoms. Assuming arbitrary polarization of the Vpa(o)=— (= 1)Ndoal E,UL(r)

electromagnetic wave, we represent the wave as a sum 2\3%h '
1-o ..
E— ¢E,. Where_CJb,\,l,J_af,\,I arg the CIebsch—Gorfian coefficiefiand _
o=0,x1 |dpall is the irreducible value of the dipole moment matrix
1 element. Here
Etﬁﬁ(ExiiEy), Eo=E,, @ Vpa(MM/ )=V (M'M),
Vpa(0)=(=1)% BV (—0). (€)

wheree” is a unit polarization vector. In the case when a R
constant magnetic field perturbing the atomic system isThe operators satiszgg,—|§)(§’| for ¢ # & ande.<ey
present, we assume that the field is oriented along @irds.  gng Rgg/ |£)(¢'| for e >&,. The superscripts- and — are
Using the d('jl;‘)'efarr‘]d resonance agprommaﬂonsdthe Hamilntroduced in connection with the resonance approximation.
tonian(in rad/s9 of this system can be represented as a su

( 9 Y P rhe operator®;,,,, =|aM)(bM’| andR;,,,, =|bM’)(aM|

H= |-|0+ Hf+ Hmag+ VL+Vqr 2) are specially distinguished for the transitianr-b.
The projection operators satisfy the following commuta-
tion relations:

N
fo=2, 3 ~ERY) 3 (R, RU)1=6/(RY, 8,0 — RV 8,00 (10

where

where gj;. is the Kronecker delta function.

gesc‘rjli)/les nl;[Ah|es tr:JenFs)gtz;befantﬁtgﬂfmbzl:gscz‘s':relénatozi:re The mteractlon of atoms with a quantized radiation field
@ d is described by the expression

state with energy,, total angular momentum, and projec-
tion M of the total angular momentum on the quantization . N R ko 2t 2 ()
axis (z); « represents the other quantum numbers; and, Vq=2 2 (g‘fg”ako- o +9§§rakg g ) (1)

Fa . . . . =1 ko
Ree=|£)(¢| is the atomic projection operator. In E(R)

. . . .. . ko __ . .
H; is the Hamiltonian of the quantum radiation field Whereg§§,=Idgg/ng(r)\/Zwak/ﬁW andW is the quanti-
zation volume. Settingl;,:=d,(MM’), we employ the
Hi= > ol 8, (4)  Wigner—Eckart theorem:
k,o

ko ko 1-o
=g, (MM")=(=1)°C-, 5 _ G/ V3, 12
wherew, is the frequency of photons with wave veckoand Ieer = Inn( )=(-7Cos G/, (129
polarizationo anda,, anda,, are the creation and annihi- o =ildnn |U(r) V27 [AW. (12b

242 JETP 84 (2), February 1997 A. A. Panteleev 242



2.2. Basic formalism in the M representation eracy indicesM. Allowance for the effect of collisions,

We shall employ the Scully—Lamb atom—photon densityWhich is described by the o_peratf%r is a complicated prob-
matrix formalism to describe the system under sttfiyhe €M of quantum kinetics which depends strongly on the con-
equation of motion for the atom—photon density matrix Op_dltlons of the gaseous medium. In the present paper the ef-

eratorp,_,, has the form fect of colligions is taken i_nto a_ccount purely
. . A phenomenologically. We note that, just as in the case of the
ipa—pn=LH,pa—pnl+iT(pa—pn), (13 operator, loss and arrival term&8® and3®), respectively,

where the operatol:a,ph describes relaxation processes. can usually be distinguished in the operaforFor the often
The atomic density matrip is determined from the operator employed model of isotropic collisions the loss te8# in
Pa-ph Dy summing over the photon variables the M representation is diagonal, like the loss terth, and

p=Tr(pa—pn)pn and the photon field operatd? is deter- g arrival termS@ possesses a similar structure under the
mined by contracting over the atomic variables ., ition (20).

P=Tr(pa—pn)a- In the zeroth approximation we neglect the  gjnce the pump wave interacts only with the transition
effect of the quantum radiation field on the atomic sub-,_,j, ‘the populations of the other levels are determined by

system. Then the equation of motion for the atomic density, PUMPQ=Q /y23+1=0,, which we assume to be
. nn n n»
matrix p has the form isotropic for all sublevels:

" Pon(MM ") =6um Qnn/T'1V23,+1, n#a,b, (21
where the operatar describes the radiation relaxation pro- © ; )
wherel’,= y,+v,” is the decay rate of the population of the

cessesS describes the effect of collisions, adl describes . o
> @ staten andv{? is the decay rate due to collisions. The dy-

the pumping to the levels from other states. The componentnarnics of the transitiom—sb in the rotating-wave approxi-
of the atomic density matrix are determined by the relation - 9 pp

N . o : mation is described by the standard equations:
peer ={pRge), Which satsifies the equation

ip=[Ho+Hmagt VL ,p]+if +iS+iQ, (14)

) ibaa(MM/)z[ga(M_M,)Q_ira(MM,)]paa(MM,)
ip§§,=A§§,p§§,+§:2a  VeerPege =P Vo) Tl
e + 2 iTYMM)pa(MiMY)
+iSge +iQ g, (15 MiM3 n=a,b
whereA . =(en— &)+ Q(gM—gnM’).
Two terms can be distinguished in the operatode-
scribing the radiation processes:

Fm— D172, (16

+MZ [Vas(MM )Ppa(MM”)

~Pan(MM)Vpa(MiM)]+iQ a8y, (22)

wherer® corresponds to radiative loss processes gRtl 1Poo(MM) =[gp(M=MHQ=ITo(MMT) ]ppo(MM)
corresponds to radiative arrival processes: . © , , ,

+i 2 o (MM'[bM;M1)pos(M1My)
(l) _ _ M,M’
ggf_(yn"")’n')l?gg’/zv Yn= 2 Annrs 17

n”"<n

r

+ 2 [Voa(MM1)pas(MiM')
1

Mo =0w 2 AMMIM'[NMinM{)pn o (MiM]),

njMiM] —Poa(MM )V (MiM")]+iQpbumr, (23
(18 )
, e ! ipba(MM ') =[AL+Q(gpM —gaM")
AMMNM' [N M M) =A, > ClhiCrit o (19 LTy (MM ) [Pos(MM?)
and the coefficienA,,» determines the spontaneous relax- -
ation rate in the transitiom—n”. One can see from the +%: [Voa(MM1)paa(MiM")
expression$l7) and(18) that the decay of the density matrix ' _
has a diagonal structure, and the arrival teffl describes —Pob(MM V(MM )], (249
not only the “transfer” of the population of the sublevels but
also the coherence between the magnetic sublevels. The con- pap(M’'M)=p} (MM’), (24b
dition
where
M—M'=M;—Mj. (20)

Vpa(MM')=Vp (MM )exp( —iwt),
for Eq. (19) follows from the properties of the Clebsch— bal )= Vial Jexp—iot)

qudan coefficients? Ir_l the p_olariz_ation opera_tor represen- Poa(MM)=ppa (MM exp —iwt),
tation («q representation which will be examined below,
the arrival term is diagonal with respectiioand the degen- Al =wp— o,
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a solution for the operator@ to first order ing. Using Eq.

YaT Yb - 2
(13), we obtain for the operato®,, and®, the equations

I“bal('\/“\/l,): 2

+o(MM'), T (MM')=7y,

£ WO MMIMM), iy, =[Hot+ Hmag+ Vi Pyp] — 0@y TPy, ]
Mq.Mp A oA A4 oa A
+2 (T;’p(O)aI:ro-ako’P_a;kpako’p(O)T;'
ry(M;M7)=A(aMaM’|nM{nM;) o'
+UgC)(MM,|nM1M£)- +é’l:r’a"éljoT;’p(O)_é'ktrp,\aljo’p(O)T;’)’ (28)

In the general case the constanf) is complex, i.e., colli-
sions result in not only depolarization of coherence between
the states but also a shift of the levels. The quantity

i D, =[Ho+ Hmag™ Vi, Py ] + 0P, + i T[ Dy, ]

. . . 3 at pT 0 _=3 2t (00T~
v 9(MM'|n;M;M}) describes arrivals, which are due to +2 (BkoByy PT,p V=8, Py,. 00T,
collisional mixing of the populations of the magnetic sublev- 7 A A
els, or the coherence between them for stateswith +ék,g,ékap'|';,p(0)_ékap"aklalp(o)'r;,), (29)

n,=n, and forn; # n it describes arrivals from upper states.

In the expression$22) and (23), we assume that arrivals Where

from the levelsp ands (see Fig. 1 enter in the pumping Fe .

Qp, andQ, . For the case when the levelis the ground state E 2 gggf £rg

and there is no pumping)=0), Egs.(22) and(23) must be

supplemented by the condition p@ is the stationary solution of the syste@@2)—(24). The

last two terms in Eqs(28) and (29) describe the interaction
> pan(MM)=1. of the pump wave with two quantum modes which are
M,n=a,b frequency-detuned from it:
We represent the system of equatid@®)—(24) in the ot o =20 (303
matrix form .
under the condition
ip=Ap+iQ, 25 ,
p=AptiQ @9 Ky+k., ~kio+Ke o (30b)
wherep is a column matrix of the components of the density

matrix,

PT: (paa(—=Ja:—Ja),paal —Ja,—Ja 2.2.1. Scattering in the transitiona —b
+1)1---,Pbb(MM'),---,Pba(MM'),---5ab(MM')a---)a To describe scattering in the transitian-b, we shall
QT:(a 0,..) study the projection of the operatod™ and ®~ on the

T statesa andb. We employ the rotating-wave approximation
After contraction over the atomic variables in E43),  and separate the rapidly oscillating components:
we have . ~, .
P (MM )=d_ (MM )exp(xiwt),
i — +(J) - + =+ .
iP=[Hpn,P]+ k% | i RO Dy, DPE(MM ) =B (MM exp( +iwyt),
. DS (MM) =D} (MM )exp(2i wy t),
+957 R/ by, —H.c.|, (26) - - _
¢, (MM")=0,  (MM")exp(—2iw,t),
whered; = AeyPa-ph and®,, = AksPa-ph are auxiliary op- D (MM )xl, Dy (MM’ )ocl,
erators.
For the slow component of the operat®rEq. (2) re-  We now introduce the column matricds;, and®, for the
duces to the form slow components of the atomic parts of the corresponding
operators. Let the order of the components in these column
: ; ko .—() , ko i i
P=—il > | [ggg,q)g,ghrggg,(pggﬂl) (ggg, J>) matrices be t.he; same as that of th.e components of the atomic
ko, £¢',j density matrix in the column matrig in Eq. (25). Then the
equations fod™ and®~ can be represented in the form
— J) - + +
(9P ]]- @7 iDL = (AT 1wl B, +32, (3D

The operatoP makes it possible to determine the number of VN€révk= i~y , I is a unit matrix, and\ is the matrix in
Eq. (25). Taking account of the structure of Eq28) and
photons in a given modex,=(Pa;" a,,). A linear equation

for n,,, follows from the equation foP in second-order per- (29), we represent the column matrk as a sum
turbation theory in the coupling constamtFor this, we seek 3=U34+@3, (32
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Here (V3 corresponds to isotropic photon absorption and

emission processes afl3 corresponds to four-wave pro-

cesses under the conditigf30). The explicit expressions

for the components of the column matrlceEkg_)JM mMm’
Jm(k<r|MM ) (wherej, m=a,b) are

W3t (kalMM)= X [&,84, Pots (MM")
MHO_!

ngon)q(M”Mij

—a) Pa, gk (M"M")

Xl (MM") mal, (33)
@3 ! (kalMM)= X [&),.8),Pd (MM")

k/ !MH

X pha(M"M ") 8

_élzrap"ai:r, ,gg;)o'(Mqu)

X i (MM") 81mp]. (34)

d

k k
a(akro.rakg> = — EH (ag;,&akrorak(ﬂ,) + af)_,)o_,,
o

k
X<ak’<r”ak(r>)_2” (ﬁi;;"<a|:rg"ak’(r’>
[oa
k' + k Kk’
+ BETI O).H<ak!o.!7akg'>) + CE).!)U.+ CET(T? ’
(39

(8 o 2x) = (@ gr8ks) (40
+ 2+ 2 2 ~
where (a, ,ay,)=(Pa, k), éak,(,,ai\(ka):(fak,g,ak(,),
+ 2+ 2

e e T
IBUU’:CUU'_DJU’ . +

The correlation functionga, ,ay,) correspond to the
well-known Fano polarization matrix. The correlation func-
tions (ay/ ,ay,) and (a;,(,,a:() describe forward-directed
four-wave mixing processes under the conditi@®), the
coefficientsa,,,» describe the absorption and dispersion of
the radiation, and the coefficient,,, describe four-wave
coupling of the modes. A detailed interpretation of these cor-

We find the stationary solution for the components of thegjation functions and coefficients is given in Ref. 16. The

operatorsb, :
D =—(AFnl) 3.

o (35
We now substitute ®,)pm.am’ =

=y, (ka|[MM’) into Eq.

free terms in Eq938) and(39) describe spontaneous sources
for the corresponding correlation functions. FeE= o’ in
Eq. (38) the quantity. Z,, (. %y, =Ase + A%, ) character-
izes the resonance fluorescence spectrum—p@larlzed pho-

(27) and transform the equation for the photon field operatot, o

P into the form

I-D: 2 [A(k) (ako—Pako' Péko”é'l-('—a)_BErko)"

oo’ kk’'

x(akgakg,P ak,,PakU)JrC(k) (ak,,ak, P

-3/ ,Paj)-D¥ (&) Pal ,—Pa &)
+(kek)+H.cl, (36)

where the coefficient8, B, C, andD are determined by the
expression

>

MM’ j

k
(A( ),akUPakg

igks(M'M)D D (kak’ o' MM ")

B+

oo

LALAeP+CY Al al P

-p &) Pal ). (37)

Here®, (kok’'o’|MM’) is found by solving Eq(35) with-
out summing over the index’ in Egs.(33) and(34). Using
Eq. (36) for photons, we obtain the following equations of
motion:

a <a|_:g"ak0'> ==

k
S, () (g )
g

+(a

//) <a-k(,-/laka'>)_ z ” (B()'U'

k,k', o
k
><<a|:—o-/a;r o.rr) + (,Bi,.r)o.u)* <ak/0.uak0_>)

+(AX ) *+ Al

oo’

(39
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The intensity of the electromagnetic field of the quantum
modes can be described I8,=(ay,P)E,, whereE, is
the intensity of the field of a single photon. Using E86),
we obtain the system of equations

d
(k) (K) =%
_2 aa’o”EkU’_ 2, Bo’o”Ek’U"
o

o'k
This system is identical to the equations for classical test
fields interacting with the transitioa— b in the presence of
a pump wavek, . The coefficientsx and 8 are identical to
the polarizabilities calculated from the standard equations for
the density matrix in first-order perturbation theorygp and
arbitrary order inE, . In the general case the syst&¢88)—
(40) contains 36 equations. If the terms corresponding to
forward-directed four-wave interaction, which are important
only for describing forward scattering, are discarded, the sys-
tem reduces to 9 equations. Then the system consisting of
Egs.(41) and(38)—(40) have the form

(41)

d
ﬁ e=—Ke. (42
where
E. app Gy g
e=| Eo |, K=| @+ ag ap-
E- a_, a_g a__
ﬁFZ—K~F—F~K++A, (43
where
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s Ao A
A= L,/{é0+ ‘,7%00 U’%O —
Jg,+ J?{Z/,O (1{6),

(ata,) (alag) (aja.)
F=| (asa:) (agao) (aga-)
(a’a,) (a’ap) (a’a)

To simplify the equations we drop the 1 in the indiceg.
For the quantitiedA,, and «,, we drop the upper index

Mqo”

iD(Ka|MM")=[Ap—A+Q(gM;—gM")
—iT(MM")]d,,

+ 2 Var(MaM) @g(ko|MoM )
2

k, since the forward-directed four-wave mixing processes are —
neglected and the equations of motion include only a mode - > P WMMy)gy(ka' MM )

with the wave vectok.

2.2.2. Scattering on adjacent transitions

M2(r'

X 8, Py, (47)

where® = d exp(—iwt). The equations for the transition

To describe absorption and emission processes in the—m are similar to Eqs(44) and(45) with the substitutions

transitionsp—b and s—a, we apply the projection opera-
tors corresponding to these transitions to E28). Then

i (ko|MM)=[Ap+(gM —gpM ") Q2
—iTpe(MM")]® (koMM ")

+% D7 (ka|[MM " )WV,p(MgM")

+ 2 gpp(ko'|MM)a;, 8y, P

o"Ml
— gpo(ka|MM ") p B (MM) &, P2y,
(44)
i Da(ka|MMp)=[App+ AL+ (gpM —gaM 1O
—iT (MM )P (ka|MM,)
+
£ Dpy(ka|MM)Voa(MoMy)
2
+ 2 Gpp(ka’ [MM2)F ()
o"MZ
X(M,M )&, &, P, (45)
whereA pp= wpp— wy and$;a=®;aeprth). The compo-
nents of the density matrig(2) and p{%) are the stationary
solution of the systen{22—(24) and p{Q)(MM) is deter-
mined by the expressiof21). The equations for the transi-
tion s—a are similar with the substitutionz— s, b« a, and

AL—> _AL .
For the transitiorb—| Eq. (28) assumes the form

iy (koMM ) =[ Ay +Q(gsM —giM")
Fil (MM D, (ka|MM ")

+2 Vpa( MM )@ (koMM ")
1
+0pi(ka|MM "), 4, Ppf”(M'M")
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b—a, [-m, andA, ——A, .

Substituting the stationary solutions of Edqd4), (45),
(46), and (47) in Eq. (27), we obtain an equation for the
photon field operatoP that is similar to Eq(36) but without
the terms corresponding to forward-directed four-wave inter-
action processesQ=D=0). Equations(42) and (43) de-
scribe the dynamics of the photon field. For the transitions
p—b ands—a A,, =A,,0,4, I-€., ordinary spontaneous
emission with no correlation between photons with different
polarizations occurs. This means that there are no interfer-
ence effects, but here interference effects occur in connection
with absorption in these transitionB;,,, # 0 foro # o’.
This is due to the presence of coherence induced between the
magnetic sublevels of the statesandb by the pump wave.
Conversely, interference effects are absent in the photon ab-
sorption processes for the transitiots—| and a—m,
B,s'=B,s0,4, SiNCe there is no coherence between the
sublevels of the statek and m. Interference effects are
present in the spontaneous Raman spectinrthe presence
of different polarizations in the pump wave 7, # 0 for
o*o'.

2.3. Application of the kg representation

It is evident from Eqs(22) and (23) that terms describ-
ing relaxation processes are strongly nondiagonal. This is
also true of Eq(31) for the quantitiesP,, . This drawback
disappears when the polarization operatokqgrrepresenta-
tion is used® This representation has wide application in
problems of spectroscopy, atomic collisions, and otfkts.

In this representation the system of equati@@®—(24)
assumes the form

ibaa(Kq) =[9Qa—1T'3(x) ppp(kq) +1Apa(K) ppp( Kd)

+iQa(k)— X UPT(kq|k1qy)[

k1010
(— 1)1 V(o) Poal K101)
+Pap(k101) Voa(0)], (48)
ippp(kQ)=[qQp—iT (1) Ippp( k0) +iQp( k)
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K110

29 (kq| k1 Q) [(— 1)1 *Vpq

X () Pap( K101) + Poal k101 Van( @) ], (49)

iBoal K101) =[AL+01(Qp+ Q) 2= i Tya( k1) TPpal K101)

— > Vpa(o)[(— 1) Fudg

K2Q20’
X (k101|K202) paal K202)

+ U 80 (k101| k202) pob( K202) ]
Qb_Qa[ Ja(Jat1)=Jp(Jpt1) -
1

+ 2 Kk1(Kkq+1) Pba
X (k101) +f(K1,01)ppalk1—1,01)
+f(K1+1,Q1)5ba(K1+1,Q1)}, (50
Poalk,—q)=(—1)% " O¥ (k,q), (52)
where
U2%(kalkqqq) = (1) a1
X (2K1+1) (200t 1)Cicg 7 .
|K 1 Kl] 52
X , 5
J, J. I
f(r1,00)= —1[(Jat+Ip+ 12— kZ][ ki~ (Ja
2t | 2
_ 2
Jp) ]4K§_1] , (53
‘]b Ja K
Aba(K):(_1)Ja+Jb+K+l(2‘]b+1)[J 3 1]Aba-
a a
(54)

Here Q;=g;Q andAp,= 4w} | dp /37 c3(23,+1).
The relaxation constants,(x) and I'y,(x) are deter-

mined in the standard mann&r’? We assume that the col-

lisions are isotropic, and therefore the quantifieandQ do

not depend org. A great advantage of the system of equa-

tions(48)—(51), in contrast to EqS22)—(24), is that they are

diagonal with respect to the relaxation constants. Howeve

The components of the column mati3, are determined
by the expression

Sikalkq)= X

Klqla’;d:a,b;k”
X{(=1) 1 U (kQ| k101)(1— Sm)
X[é:aéko' P dbal U')P(aon:( k101) S}

+ &, 10 80kP Gan( @) Pt K101) Sja]

+U7 (kq| k101)p'F (x101)

X[a,P 2, kIba( o) SdbOma

+gab(a',)é;kpé-;lkf5da5mb]}- (57)

The equation for the operator of the density of the photon
field resonant with the transitioa—b has the form, taking
account of thexq representation of the operatois®,

d .
& P=—j z [d);a(k0|1Q)g§a(U)
ko,q

+®,(ko|1g)ga, (o) —H.cl, (58

where the values of the components of the operators
®*(ko|lg) are found from Eq.(56). The equation ulti-
mately obtained for the operatéris completely identical to
Eq. (36) derived from theM representation.

The application of thecq representation for describing
scattering in transitions adjacent to the transitisb re-
duces to applying this representation to E@el)—(47).

3. PROPERTIES OF THE SCATTERED RADIATION:
ANGULAR AND POLARIZATION CHARACTERISTICS

In our system the intensity of the radiation scattered by
large angles is determined by the correlation functions
(ay,ay,) whose dynamics is described by the syst@®).

In the chosen coordinate system, it was assumed that they
have the same polarization vectors as the pump wave. To
interpret the experimental observations and describe theoreti-
cally the propagation of radiation in an extended medium,
the modification of these quantities in a rotated coordinate
system is of interest. The coupling between the correlation

functions(ay a, ) and(aja,), wherea, anda, are the

as one can see from E¢50), this system becomes more Photon creation and annihilation operators in the coordinate
complicated because of the coupling of the components ofystem rotated by the Euler angles 8, andy, is deter-

different rank with respect t&. This direct coupling van-
ishes when the Landectors of the levels andb are equal
(Q,=Qp) or for the transitiond,= 1— J,=0 and, naturally,
in the absence of a magnetic field.

Writing the system(48)—(51) as

ip=E-p+Q, (55)
we represent the system of equations, similar to(B#), for
the auxiliary operatocbﬁ,(xq) in the form

iD= (EF vl Py, + 3, (56)
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mined by the expressioffor simplicity, we drop the super-
scripd

(afay)=2 sll(asa,),
(r(r'

svv (@,8,7)=(D5)* Dy, ., (59)
whereD?, (a, B, y) are the Wigner function® The equa-
tions for the correlation function&, a, ) are similar to the
system(43) with the corresponding replacement of the coef-
ficients A andB; for example,
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e correlation functionga_a,) and(a;a,), wherea, anda,

&,...\_\\ are the corresponding photon annihilation operators. Using
SN S the expressiori59), we obtain
4 \\ = N
/L _____ \\\ 1
///h N r \\ <a;aa>: E 2, (Difl_D}'l)*(Dtlr’*l_Dtlr’l)
/ \ee \\‘ oo
r/ 8 \\ \‘\ X<a;a(r’ , (65)
! Y \l
"' \\ ". N 1 1 1 vk pl 1
'l' ~— “ ’,,’ y <a<Pa<P>=§ 2, (D0—1+D(r1) (D(r'—l+D0"l)
: ] ~\\\\l’,// oo
{ Pt
VT x{ala,). (66)
{ HereD..,=D. (¢,0, 0). Using the explicit form of the
D function®® we write the expressiof66) in the compact
FIG. 2. Spherical coordinate system. form
1
(aja,)=7[(afa,)+(a’a )+cod2¢)((ala )
A1 =2 sf{%aa (60) +(a’a,))+i sin2¢)({(a’a,)—(aja_))].
'(r(r / (67)
The quantity. Z,,, can be regarded as a spectral character- n th ; . | heaxi Fi
istic. We note that using the relatith n the case o scatterlr_lg along theaxis (see Fig.
Stokes parameters can be introduced as follows:
J1 )
Dy, (2:8,7)Dy (@8, 7) 71=(3,(45,0 —J,(45,0)/J;, (683
Jo+Jq _
=(J.+—J_)13, (68b)
= 2 > Cj:AMlDﬁAN(auBJ’)CiTNlJZNZ’ 7 e "
9=l MA 73=(34(0,0=3,(0,0)/3;, (680
we obtain the weII—knov.vn.polarization—angular dependencg\,here\la(@(% 9) is the intensity, which is defined similarly
of the spontaneous radiatith to the expressiori64), of photons linearly polarized along
1 L the vectore, (e,) and J; is the total intensity. Using the
A= 2 (—DNTIL| ) expressiong64) and (67), we obtain
go' g -0 X
L=0,1,2 i((a*a,)—(aja_)) 59
1 1 L), N @ta )y +(ata) (693
o U L (61)
. _(ata)~(a’a) -
where according to the properties of thgn8 symbols we 772_(a1a+>+<afa,> '
haveu=\"—\ andy=0'—o0. . N
Neglecting dispersion, we introduce the tensor of intense _ (aya_)+(a’a,) (696
scattered radiation: 73 (aja;)+(a‘a )’
B 4 dk dw For observation along theaxis the number of equations
Inr=c | (apan)iodo—wy) 2m* " 62 reduces to four, and in this case the systet8) is deter-
o o ] ] ] mined for the quantity
Scattering in the direction of the unit vectelis determined . .
by the expression (aja,) (aja.)
=, 4 + . (70
ﬁwﬁdwk . <a‘—a+> (a—a—>
‘]W(e)_j 472c? (80.81)8(0—0e)dO, (63 Here one can see that if the scattered radiation is col-

hereO is th lid le. For th tral intensity t lected in a cavity, then the system of equatiofd) is math-
where® 1S the solid angle. For the spectral intensity er‘Sorematically completely equivalent to the equations from Ref.

we have 20, where the production of squeezed states was investi-
hop gated. In our system the correlation functiofes;a_) and
(@)= 7= (ayay)=Q.(a, a). (64  (a’a,) are the analogs of the correlation functicfasas)
and (aja;) from Refs. 18-20. The question arises of

We now consider the case of a spherical geomé&teg  whether or not the production of squeezed states is possible
Fig. 2), which is important for practical applications, and we in the present case. A numerical analysis which we per-
introduce for photons with polarization vect@gande, the  formed of this system for the transitiodg=0—J,=1 and
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J,=1—J,=0 in a wide range of values of the basic quan- N
tities (detuning from resonance, pump wave intensity, mag- ——
netic field intensity, cavityQ) did not reveal such a possi-
bility. Apparently, the impossibility of the appearance of

squeezed states is due not simply to the behavior of the spec-z} A "
tral characteristics in the equations of motion, which is de-
termined by the properties of the transitions in question. This
is connected with the properties of the photon states, as fol-
lows. The biphoton state= ua,;+vaj , which was investi-
gated in Refs. 20 and 21, presumes that the commutation @
relation [ b, B+]=1 holds, whence follows a condition on
the coefficientsu andv: |u|?—|v|?=1. This means thatthne | W ] e
solutiona, = coshy andas « sinhy (y is a dynamical vari-
able), which is well-knowri* to lead to the production of a
squeezed state, is possible for the operatgrand ég. In a
our case, the commutation relation for the biphoton state ————} p VY [t i i 1 — iy A
b=va,+ua_ implies the condition x|?+|v|?=1 and a REE | EREL | SRARERRRARAREE -
possible solution of the form, o cosyanda_ o sin y for the
operator$+_ anda_ . A solution of this type does not lead to FIG. 3. Scheme of quasienergy states of a resonant transition in the field of
the prOdUCtlon of Squeezed states. an intense electromagnetic wave.

4. PROPERTIES OF THE SCATTERED RADIATION:
RESONANCE FLUORESCENCE
the expressioni37) that. #,. ,(v) is determined by the ratio

The study of the properties of resonance fluorescence IS¢ two polynomials inv: the dimensioer\ in the denomi-

of great practical value in laser spectroscopy and its applicaﬁator andNi— 1 in the numeratofwe recall thatZ,, is

H H H H H H H g o
tions. Wh_en laser radlatlor_n interacts with an optlcal_ly thmdetermined by the sum,.,+A*, ). Using the expressions
medium, i.e., when absorption is weak, one of the main char: P

o ) . 33) and(35), we find from Eq.(37) that the total resonance
acteristics is resonance fluorescence. In this case it follow; . . ! )
. _ + uorescence signal, i.e., the signal integrated over the spec-
from Egs. (43) that the correlation functionga_,a,) are

trum, is determined by the expression
determined by the quantities?,.,, which describe the reso- y P
nance fluorescence spectra. The quantiti€s , with o’ _ Ko nr 1 NI ) "
# o characterize the interference effects in the emission of S”/"_NM ME,M,, 9an(M'M)Gpa (M"M") ppp (MM).
photons with different polarization as a result of the coher- ’ (72

ence between magnetic sublevels. .
9 We note that theM representation was employed here.

Let us consider the properties of resonance ﬂuorescenc& course, the results do not depend on the type of represen-

for the transitiora—b. In sufficiently strong fields the spec- .. . X
e Y 9 o tation. We note that the dimension of the maffixequals the
trum possesses a multiplet structure and can be approximate . : .
imension ofA. An expression foS,., in the xq represen-

by a set of Lorentzians: tation is obtained by the corresponding transformatic®).
§(o) ) To describe the Hanle effettcharacterizing the depolariza-
i
c.c.|,

Ny
A g™ 2,
i<

——+ (71  tion of the scattered radiation in a magnetic field, in the
1\ v+ QT optically thin medium we employ the expressiditg) and
where QF+iT'; are the eigenvalues of a matrix whose di- (67). Then
mension is determined by the guantity
dim A =4(l,+1,+1)?=N3 andf{” is a constant determin- Sp=5 [Si++S._+c0q2¢)(S; - +S_,)
ing the contribution of this term. The number of peaks is
determined by the quanti, =N3 — N, + 1. This result can +i sin(2¢)(S-+—S; )], (73

be interpreted from the standpoint of the states of a dressed . . o .
atom: In a strong field this transition splits ink, quasien- whereS, is the Hanle signal of radiation linearly polarized

ergy levels at the top and bottofsee Fig. 3. Transitions along the vector, . The expression&73) and(72) general-

between them determine the resonance fluorescence spé%@ the results of REf' 36. .
trum. In some cases, for example, at exact resonance of the We now cons_lder the_ca_se when the Iower_ level is _the
pump wave with the transition frequencys (= 0) or in the ground state. This case is important for_ practical applica-
presence of a magnetic field, the quasienergy spectrum plons. The spectrum can be represented in the form

comes equidistant and the number of peaks decre@sess ( ~/Za'a=-/zil/ (ﬁ/ﬁri'r, (74)

the maximum number of peaksln the general case, for

arbitrary pump wave intensity, detuning of the pump wavewhere .25, =lim,_ov. 7, ,(v) describes scattering with
from resonance, and magnetic field strngth, it follows fromno change in the photon frequenq&i',(r « §(v) is the Ray-
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trary intensity(see Fig. 4awere investigated. Here there are
no interference effects:Z,,,=0 (o’ # o) in our descrip-
tion.

The simplest system describingtype transitions is the
interaction of an electromagnetic wave with the transition
J,=0—J,=1 (Fig. 4b. The resonance fluorescence spec-

a b c trum and the interference phenomena for this system, as well
as the effect of degenerate processes on their properties, were
FIG. 4. Transition scheme in the case of excitation of the atoms by linearlyecently investigated in Refs. 15 and 16. The Faraday and

polarized light(a), of theV type (b), and of theA type(c) with excitationby  gptical alignment effects have been well studied for this
left- and right-circularly polarized radiation. The dashed lines represemtransition14,38

spontaneous emission.

Both the interaction and scattering spectra of intense
electromagnetic waves in the transitidg=1—J,=0 (see
Fig. 40 have been investigated in much less detail. This
leigh scattering, andZ" is the inelastic scattering, i.e., transition is the simplest system describingtype transi-

scattering with a change in the photon frequency. tions. The investigation of this transition is of interest in
In the M representation7®, is determined by the ex- itself and it is important for understanding the interaction of
pression 7 an electromagnetic wave with atomic transitions which have

a complicated structure.

l ’ —~
“girg( v)=2mN 2 gg‘é(M M ’)QEZ (M1M5)p (a%) 5.1. Nonlinear Faraday effect for the transiton  J,=1—J,=0
MM’ MM
v In the Faraday geometry the rotation angle of the polar-

X(MaM)p (DM M)8(v). (75 ization plane of a monochromatic electromagnetic wave

We note that the contribution of the elastic component isWh'Ch has passed through an optically thin gaseous medium

very small in the presence of strongly depolarizing colli- ls determined by the expression
sions. In a purely radiative relaxation regime its contribution  ¢=(n, —n_)w |/2c, (76)

is determined by the parameters
wherel is the length of the medium am, is the index of

Vap(MM)/|A{+(gyM —gaM ") Q2 +iAp4/2]. refraction, which for a medium with the working transition

If at least one of these parameters is large, then the inelastia=1—~Jo=0  equals n,=1+27N Re[dppp,/ELs),
component will be determining, but if not all are small, then'WhereN is the (_jens(;ty of atoms.~lr2) the present sectlgn we
the elastic component will dominate. adopt the notat|0rpf)_b)(00)=pbb, Pia(00)=pp, and P
For spontaneous radiation on transitions which are adjaX(90")=ps. - We find the value op,,, from the stationary
cent toa— b, the maximum number of peaks in the spectrum59|Ut'°” of Eqs.(22)—(24) for the given transition. Figure 5
is (2J,+1)N,, n=1, m, s, andp. The radiation is incoher- dlsplays<p as a function of the d_etunmg of the electromag-
ent, even if one of the levels is the ground state. In Sec. 2.5etic wave from resonance for different values of the param
it was noted from Eqs(44) and (45) that the interference etersV,=Vy,(00). Here and below we assume in the cal-
terms. 7, ,= 8,1 ,. 74, Will be absent in the emission spec- culations thatI'y(co)=y, Ty(oo’)=6y (o # o),
trum for the transitionp—b ands—a. I'p=3y, I'va=97, andAy,<y . One can see from Fig. 5
that the dependence @f on the detuning changes substan-
tially as the intensity increases. This modification of the line
shapee(A|) is qualitatively identical to the results for this
dependence in a medium with the working transition
J,=0—J,=11 Therefore similar results should be ex-
pected for transitions with a more complicated structure of
Three basic types of transitions between atomic Sub|evthe atomic sublevels. We note that this agrees with the ex-
els can be distinguished in the description of the interactiofperimental results of Ref. 39.
between an electromagnetic wave, possessing arbitrary po- Assuming that at the entrance into the medium the elec-
larization composition, and a resonance transition. They arfomagnetic wave was linearly polarized along thexis, it
shown schematically in Fig. 4. The simplest type is shown inshould be expected that the appearance of an orthogonal
Fig. 4a: transitions between two-level subsystems. Schemé&®mponent, due to the rotation of the polarization plane by a
referring to theA andV types of interaction of radiation with small anglee, will be described by the expression
sublevels are displayed in Figs. 4b and 4c. Their combina- loocls o2 (77
tions make it possible to describe all possible transitions. L
Recently, a description was developed in Refs. 12 andvherel is the intensity of the radiation at the entrance into
37 and the resonance fluorescence spectra of a degenerttte medium and,=|E, —E_|2. This expression is correct
two-level system(with arbitrary J, and J,, neglecting the only far from resonance, where radiation absorption can be
effect of a magnetic field, i.eH =0) in the field of a mono- neglected. Near resonance, the appearance of an orthogonal
chromatic, linearly polarized, electromagnetic wave of arbi-component will be due to both the different magnitude of the

5. INTERACTION AND SCATTERING OF A
MONOCHROMATIC ELECTROMAGNETIC WAVE IN THE
TRANSITION J,=1—J,=0
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FIG. 5. Angular rotation of the polarization plane of the radiation versus theF!G. 7. I,(A() calculated according to EqéZ7) (curve 1) and(79) (curve
detuning of the radiation from resonance wiliy=20,V. /y=0.1(curve 2 With V. /y=1 andQ/y=20.
1), 20 (curve 2), and 50(curve 3). The curve is normalized to 1.

wherer | is the transverse coordinate anglis the size of the
dispersion for left- and right-hand circularly polarized wavespeam. The functiori,(r,), calculated from the expression
and the difference of the absorption of these waves. Froni79) allowing for the dependend80), is displayed in Fig. 8.
Maxwell's equations it follows that for the slowly varying The distributionl,(r,) is reminiscent of the well-known

amplitude conical radiatiof®*?but it is of a completely different na-
| ture. This distribution is determined by two main factors: the
—X:P)’f(E+—E,)+c.c., (78  decrease in the rotation angle of the polarization plane as a
Jz

result of saturation and the transverse distribution of the en-
whereP, o« i(dy,p.p—dp_p_p). In the optically thin case tering radiation. The result obtained explains qualitatively
E,—E_«xP,.Then the experimental results of Ref. 43, where the Faraday effect
| oc|d _d 2 (79 for the transitiond,=1—J,=0 in neon atoms was investi-
xZ 180 +P+b™ HUp-P bl - gated. A quantitative analysis should take account of the
The expressiong77) and (79) are identical only at exact thermal motion of the atoms, which we neglect in the present
resonance. The difference in the dependerigéAL) and  work and which is important for the conditions of the experi-
1,(Q) calculated according to Egé/7) and (79) is demon- ment in Ref. 43.
strated in Figs. 6 and 7. The expressi¢ig) and (79) are
almost identical in a strong pump-wave fidld >A, orina 5.2. Spontaneous emission spectra for the transition
strong magnetic fiel@>A, . They differ most in the region ;. =1_,75,=0
of the parameter§)l~A, andV. <A, (see Figs. 6 and)7 , ) i
We point out that for intense radiation characteristic fea- Using the formalism developgd in Sec. 2'above for the
tures can be observed in the transverse distributjorLet ~ UansitionJ;=1-—J,=0, we shall investigate its spontane-

the radiation intensity at the entrance have a Gaussian dist2US émission spectra in the field of a strong electromagnetic
wave. The scattering spectra of atoms in the Voigt geometry

bution:
(kL H) with the same parameters of the atomic subsystem
U =exd —(r, /ro)?], (80)
L., arb. units
I, arb. units 0.0031
0.001
2
1
4
-3
0 20 40 60 8 100 .

Qly

FIG. 8. Transverse distributioh, with a Gaussian pump wave over the
FIG. 6. 1,(Q) calculated according to Eq&Z7) (curvel) and(78) (curve?2) cross section of the beam fdx, =0 and }/y=20 and the parameters
with V. /y=1 andA  /y=20. V. /y=1 (curvel), 10 (curve2), 20 (curve3), and 50(curve4).
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as in the preceding section are displayed in Fig. 9. Explicithe interference processes differ substantially: The properties
expressions for the scattering spectra are given in Ref. 44f the corresponding quantitieg,,, , andS,., (o # ') dif-
One can see from Fig. 9 that in accordance with the results der substantially. The spectral dependence._df. is pre-
Sec. 4, up to 13 peaks can be observed in the scatterirgented in Fig. 10b, c; one can see from these plots that it
spectrum. An important distinction of the transition underchanges sign. Moreover, it follows from the expresdi88)
study from the transitiod,=0—J,=1 is that the scattered thatS, ,=0 for o # o’. This means that the Hanle effect
radiation containsr ando-. components, irrespective of the (change in the polarization characteristics of the scattered
polarization composition of the exciting radiation. The quan-radiation under the influence of a magnetic fjefdr the
tity .2, describes the spectra of fluorescence which is lintransition J,=0—J,=1, in contrast to the transition
early polarized along the axis and scattered along the J,=1—J,=0, is manifested primarily as a change in the
axis. Figure 10a displays the spectrum, for the pump emission spectra. Figure 11 displa§sas a function of the
wave, whose linear polarization vecter is orthogonal to magnetic field intensity. Comparing it with the analogous
the direction of the magnetic fieldz|_||ey. It follows from  dependencs, for the transition),=0—J,=1,% we can see
Egs.(60) and(67) that. 7, is determined by the expression that there is no interference dip &=0. The effect of a
P y y magnetic field reduces to the effect of the magnetic field on
R (81) the population: The maximum ofS, is reached at
The complete scattering sigr] is determined by the popu- Q==+A,, and forQ>A,, V,, I'y, the population of the

lation of the upper level: upper level(and thereforeS,) decreases as a result of an
increase in the detuning of the radiation from resonances.
S.= J’ /v 5 ocpbb (82 In the case when a transition is excited by a wave with a

single polarization type/,, (V, =0, ¢’ #c), the fluores-
This is associated with the structure of the transitioncence spectrumZ,, corresponding to this transition will be
J,=1-3,=0, for which it follows from(72) that described by the well-known expressions for a nondegener-
S, %6, p 83) ate open two-level systeM.In sufficiently strong fields it
oo™ Co’olbb- has the form of a triplet. The spectra of the other two com-
Comparing the results obtainéfr e [|e,, i.e.,Vo=0) with  ponents of 7, will have the form of doublets and will be
the results of Refs. 15 and 36, where for the same geometryescribed by the expressions
the scattering of a monochromatic wave on the transition _
J,=0—J,=1 was investigated, we shall indicate the most ) (VAL ) TV pp,
important differences. First, there is nocomponentthere Aarg () (v=Ay)(v+ A, ) — |V,
is no collisional mixing of the magnetic sublevels the 7 7 7
scattered radiation for the transitidg=0—J,=1. Second, where

+c.c.,, (89
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A=A —Qo+iThs, Ayy=Q(c'—0)—iT (o),

V5 Pbe=—(T'pppp— Qp)Ag/2l g -
For Q,=0

2Fba|VU|2QO'

o R Pt 2L 5l Vo ATy + Ty Apf3)
Using Eq.(85) with Q,=0, Eq.(84) can be put into the form
S e v+A, ,—AT /2T
O 1 5! cim
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FIG. 11. Dependence of the quantly, normalized to unity, on the mag-
netic field for A,=V,=0 and the parameterg. /y=0.1 (curve 1), 10
(curve 2), and 50(curve 3).

Let us consider the limit when the lower level is the ground
state and the relaxation regime is radiatiVg= 21"y ,= Ap.
andI',(¢’0)=0. This system is open. Therefore, in order
for a stationary solution to exist formally, we assume the
presence of a pump at the lower level of the working transi-
tion. Then

V,|%A
g1 o(0) e P22 Vol e
2 |(V+Aa"0')(V+Ao")_|VO'| |

whereA ., ,=Q (o' — ). As expected, the total intensity of
the o’ component satisfies

(88)

f (,%Uro.rdvprb

and therefore is linear in the intensity, of the pump wave
(see Eq(86)). In weak fieldsv <A, the spontaneous emis-
sion spectrum of the’ component consists of a very narrow

peak with a width of ordefV,|%/|A,|. Substituting the ex-
pression (86) for pp,, we find from Eq. (88) that

A or(v) o« O(VH) or proportional tol? . The result ob-
tained is similar to the spectral composition of the resonance
fluorescence of a two-level atom in the field of a weak elec-
tromagnetic wavé? The elastic(or Rayleigh component is
proportional tal , and the inelasti¢or mixed component is
proportional tolf(,. In the case of a degenerate two-level
atom irradiated by a weakg-polarized wave, Mollow’'s

result® generalizes as follows:

A1 g1 Z SV g 8gr g+ F0 (W)IZ, (89)

wherefi;?t'r,(v) is the form of the linear inelastic component

(see Eq(88)). This analysis was performed for the transition
J,=1—J,=0. However, the resuli89) can be extended to
transitions with arbitrary values of the angular momentum
provided that the lower level is the ground state and the
relaxation regime is radiative.

The foregoing investigation of the polarization—Raman
scattering spectra for the transitidg=1—J,= 0 pertains to
scattering in the transitiob—1 (see Fig. ] for nondegener-
ate states, the case investigated in Ref. 45. The expressions
(84) and (89) agree with the results of Ref. 45.
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6. CONCLUSIONS state, and in the case of the transitidp=1—J,=0 it ar-

In the present paper a technique was developed for gdives in different states. In the first case, substantial interfer-
scribing nondegenerate resonant scattering of a monochr§!'c€ effects are present, and in the second case only spectral
matic electromagnetic wave with arbitrary polarization Com_nonllnear effects occur. For the complete S|g|(|ategraI.
position. Expressions were obtained for describing theVer the spectrujrthese effects are completely absent, since
resonance fluorescence spectra, the absortomplifica- according to the laws of quantum mechanics interference
tion) coefficients, and the forward—directed four-wave inter-Pnenomenaare present only for processes with the same final
action of the scattered photons. A technique was develope%tates'

for calculating the polarization-spectral characteristics of th | We note that :he m??ﬁ ! |tnves.tt|gat|oln cg‘ tfg re.;onance
absorption and emission of radiation in transitions betwee uorescence spectrum of the transitiy=1—J,=0, where

laser-coupled and other states. This result extends the dE€ lower state is the ground state, with a radiative relaxation
scription developed in Ref. 45 ' regime excited by radiation with fixed polarization re-

It was shown that in the general case the dynamics of thgealeld a q cZ@r?cterlf,Ui fea_trl;]r'e ; mt th? spo.r;ta?eocl)us
scattered radiation, accompanying the propagation of a PO a”f(ef_ r|3 Ila Icill((r _H?)' 'St e;’;\ ure |s_mar|1_| es;:

. . . < . -
electromagnetic wave, is determined by a system of 36 equ or weak Telds LUI Sa{; de ltspfec ret1_ em_;_shsmn mte | Z
tions. In the description of the scattering of the radiation byc_omes narrower, am,os a detta function. The spectral den-
large angles, when the forward-directed four-wave mixin S”Y of the _scatteredr compohgnt 1S .propor.tlonal tbﬁﬂ'
processes become inconsequential, this system reduces tq BIS result is correct for transitions with arbitrary values of
equations ' the angular momentum.

In an optically thin medium the resonance fluorescence, 1N description developed in this paper neglects the

of the atoms determines the characteristics of the scatterél:]ermlaI E]Ot'%n O_f th? atomﬁ 'I |.e.,trt]he ;ﬁsuéts a(rie V.a“d \(/jvhertl
radiation. In the present paper, the polarization, spectral, an'a‘;pp e;] roa enlnils ng)uc ?SIS h an Ie roa er]]lnhgs ueto
angular characteristics of the resonance fluorescence we er phenomena. A substantial thermal motion of the atoms

investigated. It is well known that if the lower level is the not only changes in the absorptigamplification) and emis-

ground state, then the scattering spectrum contains both trpeon spe.ctra of the atoms, bl.Jt aI;o makes them more aniso-
Rayleigh(elastig and mixed(inelastio components. Explicit ropic with respect to 'the dlrgctlon Of. propagation of the
expressions were obtained for the elastic component, whic ump wave..A formal kinematic extension to the cas'e'of the
include interference effects between the fluorescence photorﬁ ermal motion of atoms does not present any dificulty.

with different polarization. A possible influence of a constant owever, to take into account correcily the change in the

magnetic field on the atoms is taken into account in thié”lumber of particles with a fixed velocity as a result of colli-

. . . 7 2 .
work. Expressions were obtained for describing the depolaé'ons’ photoexcitation, and so bf;*a separate analysis and

ization of the radiation(Hanle effect in a magnetic field a careful investigation are required. . .
accompanying scattering of an electromagnetic wave with In the present paper |t_was assumed that_ the |ntenS|ty. of
arbitrary intensity. Expressions that make it possible to de'—[he pump wave can be arbitrary. The change in the relaxation
scribe the spectral properties of the Hanle effect and its fotgfonstants as a result of the effect Of. a strong field was ne-
intensity and extend previously obtained results in some palglegted(see, for example, Ref. ‘.%.Th'.s phepomenon may
ticular case®1636\were obtained. be important in the study of radiation in optically dense me-

In the general case the dynamics of a laser-coupled trarg—i‘_?" where induced processes b_ecome determining_, since in
sition (with arbitraryJ) is determined by a set of configura- S ¢ase the absorptidamplification and four-wave inter-
tions of transitions between two- and three-level systems ofiction spectra can be substantially modified in a definite

—49 . .
theV andA types(see Fig. 4. In this paper the properties of range of th? paramete‘ilé. The Ch&r%g m.”thﬁ relaxation h
the transitionJ,=1—J,=0 were studied in order to inves- cons”tantsﬁo an a:]om In a stror;lg eld wi avée7 ;bmuc
tigate the properties of the scattering of radiation bySma er efiect on the resonance fluorescence specirais

A-type systems. The investigation of the nonlinear Faradaghenqmenon could strongly' influgncg interference  effects,
effect for this transition showed that the shape of the line o ut this requires a separ{:\te Investigation.

the rotation angle of the polarization plane of the pump Wth?1 | thank A. M_' Starqstln, F. A L.Omaya’ a_nd D . Chek-
is qualitatively and quantitatively identical with respect to ov for helpful dlscussmrp _and_thew Interest in this \_/vork and
the parameter, /I, (herel . is the saturation intensito - |+ Kurchatova for assisting in the composing this paper.
the results for the transitiod,=0—J,=1. This suggests This work was supported by the Russian Fund for Funda-
that the results obtained for these transitions can be extendé"(?iental Research grant No. 96-02-17390.
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Highly nonideal classical thermal plasmas: experimental study of ordered macropatrticle
structures

V. E. Fortov, A. P. Nefedov, O. F. Petrov, A. A. Samaryan, and A. V. Chernyshev

Scientific Research Center for the Thermophysics of Pulsed Interactions, Russian Academy of Sciences,
127412 Moscow, Russia

(Submitted 25 April 1995

Zh. Eksp. Teor. Fiz111, 467—-477(February 199y

The formation of spatially ordered Ceg@atrticle structures in a thermal plasma at atmospheric
pressure and temperatures of 1700—2200 K is studied. The spatial structure of the particles

in the plasma is analyzed using laser time-of-flight counting of individual particles. Probe and
optical diagnostics are used to determine the parameters of the thermal plasma. The

CeQ, particles were positively chargddbout 18 electronic charges The resulting Coulomb
interaction parameter for the particlesjis>120, which corresponds to a highly nonideal
plasma. ©1997 American Institute of Physids$51063-776(97)00502-1

1. INTRODUCTION of ions against a compensating uniform background of neu-
tralizing particles, so that the system is electrically neutral

A thermal plasma with macroscopic particles is a low-overall. The interaction potential of the particié®gr) is the
temperature plasma that contains small sized liquid or solioulomb potential in this case, and the thermodynamics of
material particles:®* The macroparticles interact efficiently the plasma is characterized by the parametgr which has
with the charged species in the plasma, and therefore, havetle form
major effect on its properties. Thus, particles that emit elec- 2
trons can raise the electron density of the gaseous phase, as Yp=(Zp€)7(r)kTy.
well as its electrical conductivity. If, on the other hand, theHere Z, is the charge on a particld, is the plasma tem-
particles capture electrons, then the opposite effect occurs. fperature(r)= (47-rnp/3)*1’3 is the average distance between
the limiting case of an unionized gas, the macroparticlegarticles, andn, is the plasma density. It was found that a
fully determine the electrical properties of the plasma. Ef-three-dimensional system forms a regular crystalline struc-
fects associated with the presence of particles were observedre for y, greater thany.= 1718 For smally, (y,<4), the
in early experiments* on the plasma of hydrocarbon flames. plasma is in a “gaseous” state’

The conditions for the existence of a plasma with mac-  In the Yukawa model one examines the effect of shield-
roparticles can vary considerably. Because of the high madng by the background charges, which leads to a Debye—
roscopic charges that the particles can acq(orethe order  Huckel type interaction potentidi*° When shielding, whose
of 10°—10%), the entire range of plasma states, from a De-effect is determined by the rati¢r)/rp (rp is the Debye
bye plasma to a highly nonideal system of charged particlesadiug, is taken into account, the new parameter
can be realized in typical thermal plasmas 2 B
(Ty=1700-3000 K, n,=10°-10"? cm3), depending on FS:(Zpe) exp—(r)/rp)
the concentration, size, and electron work function of the (r)kTq
particles, as well as on the concentrations of electrons ang introduced. The limiting cases in the Yukawa model are
ions? Therefore, the interparticle interaction parametsy, the single-species plasmdor (r)/rp—0) and the hard
defined as the ratio of the Coulomb interaction energy of thephere mode{for <r>/rD_>oo)_10
particles to their energy of thermal motion, can greatly ex-  One of the first observations of crystalline structures was
ceed unity, which means that the plasma is highly nonidealin a system of charged, micron-sized, iron and aluminum
Theoretical calculations of the equilibrium properties of particles confined by a certain configuration of alternating
these plasmas show that under certain conditions, strong irand static electric fields: Later, Coulomb crystals were ob-
terparticle interaction leads to ordered structure in the locaserved for atomic ions in various types of traps, such as the
tions of the macroscopic particles analogous to structures iPenning traﬁ? For macroscopic particles with high negative
liquids or solids> charge (~10%), crystalline states have been observed when

A detailed examination of the ordered structures, includ-they were introduced into a space-charge boundary airer
ing the conditions for their formation, has been carried outwhich equilibrium was established between gravitational and
using a single-species plasma model and a Yukawalectrostatic force¥1’
model®>~" We note that these models were for a classical, In most published experimental work, ordered structures
quasineutral, spatially unbounded plasma, for which criticahave been observed in a cloud of space charge containing
values of the interparticle interaction parameter correspondhundreds to several thousand charged partiéi@e inter-
ing to phase transitions were obtained by numericabction potential of the particleshe form of the potential has
simulation®® a significant effect on phase transitions in the plasman

A single-species plasma consists of an idealized systerthen differ considerably from the interaction potential in a
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classical quasineutral plasm&or plasma formations of this
type, the boundary conditions have been predicted theoreti-
cally to have a major effect on the phase state of the
plasmat® Thus, for example, in a spherical trap, the cloud of Jlatinum
particles separates into spherical layers. Instead of sharp

phase transitions, there is a gradual evolution of the system
from a liquid state with close ordering to an intermediate
state characterized by the existence of liquid and solid
phases, and finally to a solid stafe.

Under quasineutrality conditions for large aggregations
of macroparticle§more than 10 particles in the plasma vol-
ume, ordered structures have been observed in a stream of
thermal plasma at,~1700 K and with electron and mac-
roparticle densities on the order of ®0and 13 cm 3,
respectively?®

In this paper we present the results of an experimental
study of the formation of macroscopic ordered structures in &'
classical quasineutal thermal plasma at atmospheric pressure
and temperatures of 1762200 K. The rather large plasma jmportant feature of this plasma source is that it creates a
dimensiong(ts volume is~10 cn¥, which corresponds to @ |arge plasma volume. As a result, various diagnostic mea-
particle number on the order of i@t a particle density of g, rements of the plasma can be made. Various parameters of
10" cm™*), its uniformity, and the absence of external elec-the gas and macroscopic particles were determined, such as

tric and magnetic fields made it possible to eliminate thene electron and alkali ion densities, the gas temperature, and
effect of boundary conditions on phase transitions in thgne size and density of the macroparticles.

plasma.

Upper
electrode

. 1. The arrangement of the probe measurements.

2.2. Plasma diagnostics

2. EXPERIMENTAL APPARATUS The plasma was diagnosed by probe and optical tech-

2.1. Source of thermal plasma with macroparticles niqgues. The arrangement of the probe measurements is

shown in Fig. 1. The density; of the positive alkali metal

The test stand includes a plasma generator and the diags, o\ 5 measured with an electrical prébé&* The rms er-

hostic means for determining the parameters of the IOartiCIe|Sor in the density determination was 20%. The local electron
and ga$! The main part of the plasma source consists of

wo-fl Masecker b ith d air fed int .tadensityne was determined by a method based on measuring
wo-Tlare Maecker burner with propané and air 1ed Into Sy, o -, reng and longitudinal electric fiel& in the plasm&?

Inner agdﬂ? L{[terf ftlsres. ;I'he Scic;ameterF)ofchle inner .ﬂ?re dls 2%«] electrode at constant voltage relative to the burner was
mm an at ot the outer, mm. Farticles are INtroauces,ed in the plasma flow to determine the currenfwo

into the inner flare of the burner. This burner design makes i ..\ probes were introduced into the plasma to deter-

p053|blet tod‘?rf"?‘get?‘ Izmlnar sttream (I)f E)Iasmao\l/v'nh ‘é”'fOT ine the tangential componektt of the electric field. The
parameter distributiongemperature, electron and 10n Genst- o o qricy| conductivity of the plasma,=n.eu., was deter-

ties) in the region. During operation, the velocity, of the mined on the basis of Ohm'’s laj=cE (j is the current

plasn_"na_stream was varied ovelr 2__33 m/s and the eIec’[m&ensity andu. is the mobility of the electronsThe electron
density in the flame, over 26- 10" cm™?. The temperatures density was found from knowp.. The error inn, was less
of the electrons and ions were equal and were varied over tr‘ﬁe]an 30% € €

rangteTi f:t:;e:tTg - 17?0_ 22??hK. Sp;gcl:trgc;scho pic (Tfhastu.:e' The gas temperature and alkali metal concentration were
men SI 0 te tthamperatufbp 0 i t;_par_rlc € _”? owe b att. "' measured by traditional methods: a generalized inversion
was close to the gas temperatufig+=T,). The combustion method and a total absorption metfbethe rms errors were

products were at atmospheric pressure. less than 1% and 30%, respectively
In our experiments we studied a thermal plasma with '

two types of chemically inert particles, £, and CeQ.
The particles of powder contain an admixture of alkali metal
compounds. Spectral measurements in the plasma stream re- A novel laser technique was used to determine the mean
vealed the presence of alkali metal atofasdium and po- (Sautej diameterD,, and densityn, of the macroparticle$
tassium with low ionization potentials. Thus, the main com- This technique is based on measurements of the extinction
ponents of the plasma in one case were charged,CeQattenuation of lightin a dispersive medium at small scat-
particles, electrons, and singly charged'Nans, and, in the tering angles, and is intended for determining the character-
other, charged AD; particles, electrons, and Naand K" istics of particles with sizes of 0.5—1&m.
ions. The setup for measuring the extinction of optical radia-
In order to study Coulomb ordered structures in thetion includes a rotating disk with aperture stops of various
plasma, it is necessary to have data on the charge of thdiameters located in front of a photodetectfig. 2). A
particles, as well as on the basic plasma parameters. Thde—Ne lasef\ =0.633 um) is used as the light source. For

2.3. Particle diagnostics
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PMT Based on these data, the quasineutrality condition

Monochromator . . . ..
’ Z,ny+ni=n, implies that the Ce@particles are positively
Ar? laser Collecting charged at 1% to with a factor of 2. The observed magni-
Focusing lens objective __.- tude and sign of the charge on the particles can be explained

Bumer @ e by thermal emligsior} of electrons from the surface of heated
\ o\ (5] CeG partu_:les,’ which are characterlze_d by a Iovy electron
g To—Ne laser work function(~2.75 eV?’). In the following analysis of the
"""""" ; data, we use the lower limit for the measured particle charge
(Z,~500).

To analyze the state of the plasma with Ggarticles,
we first estimate the relaxation times in the plasma: the char-
Rotating disk acteristic timerg to establish an ordered particle structure,
n%nd the thermalization timer over which the kinetic energy
of the particles approaches the kinetic energy of those of the
ambient gas. The estimate ef addresses the validity of
using a particle interaction parameter in the form
an error in the measurement of the extinction of about Z%szzgez/g)kT, whereT=T,.
the errors in recovering the particle sizes and density were
about 3%, 10%, respectively.

The ordered structures were analyzed using the binar
correlation function obtained with a laser time-of-flight
counter(Fig. 2). The measurement volume is formed by fo-
cusing the beam of an Arlaser (A =0.488 um) onto the Relaxation processes in plasmas can be related to the
axial region of the plasma stream. Radiation scattered biimes for ionization and the changes in the relative locations
individual particles at an angle of 90° when they cross theof the macroparticles. Estimates show that the ionization re-
waist of the laser beam is collected by a lens and directethxation times in the plasma are short. The equilibration con-
onto the 15um-wide monochromator entrance slit. The di- trolled by the dynamics of the particles’ motion in a highly
ameter of the measurement volume was less thaph0  nonideal plasma is characterized by very much longer times.
The resulting pulsed signals were then processed to calculate Let us estimate the time to establish an ordered structure
the binary correlation functiog(r), which characterizes the in a thermal plasma. This process occurs when initially ran-
probability of finding a particle a distanae=V,t from a  domly oriented particles are introduced into a plasma flow.
given particle. Here is time andV,, is the average particle In the Wigner—Seitz cell model, the relaxation timg is®
velocity (V,~ Vg for micron sized particlé§). An analysis )
of g(r) makes it possible to describe the spatial structure and _( 1 ) Rpungmg

= 93

Beam stop

FIG. 2. The setup for the optical measurements of the sizes, density, a
spatial structures of the macroparticles

¥.1. Relaxation processes in thermal plasmas with
macroparticles

. . . . + =
interparticle correlations of the particles. 4 2" Zﬁnp ’ @
3. RESULTS AND DISCUSSION whereu= \kTy/2mmy andmy andng are the mass and den-

. . . sity of the gas molecules.
Plasma diagnostics were performed in the temperature In the experiments with CeOparticles (n,=2.7- 108
g=2.

stabilized zond1=25—40 mm above the top of the burner at 3 —En10-23 = _
various plasma temperatures and particle densities. Th%m%éoo rggdr?.iéoo 10§7],cm:|;g) tzhoeoggi’masa% roe.r;ﬁ:;?i,on
plgsma temperature was cha_mged by vary?ng the propane/q”f’ne is ;pz 10 ?ns. -In order to éstablish spatial ordering in
ratio over (.)'95_1'47' Thus, it is was po§S|bIe to change thﬂwe particle positions, the plasma lifetime must be much
Debyel radu_;s, the distance between particles, and the Charﬂ?nger thants. Under our conditionssy is much longer
of particles in the p'aS".‘a- Measurements of thg spatial struc[han the relaxation time of the particle charge and electron
tures of the macroparticles were compared with data for a ensity to their equilibrium values and is shorter than the
agrospl stream at room temperature. In thg latter case, ONiasma lifetime, which is characterized by= h/V,. For
:Iur with particles of A&Qg or CeQ was fed into the inner 1 — 40 mm andV,=2 mis, we haver;=20 ms, which yields

are of the burner. This system simulates a plasma with a_o.
random spatial disposition of the macroparticles “gas- f R
eous” plasma

In measurements with Ce(articles, the particle den-

sity n, was varied over the range (6:5.0)- 10’ cm~3 and 3.2. Thermalization of particles in the plasma
the plasma temperatuflg, over 1706-2200 K. As a conse-
quence, the ion densityn; varied from 0.4210° to
4.0.10°° cm® and the electron density, over
(2.5-7.2)-10'° cm™3. The CeQ particles are polydisperse, Dp~V2rr=~(KTy/Mp) 7y, )
with a distribution half-width of less than 30% according to
our measurements. The average Sauter diameter of the pavhereD, is the diffusion coefficient of the particle¥ is
ticles was about 0.&m. their thermal speed, and , is their mass.

For an approximate estimate of the thermalization time
71 we use the equation
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FIG. 4. The range of plasman{+n;) and particle Q) densities within
1.5 which an ordered structure is formed 95="500. Curvesl (1') and2 (2)
refer to y,=4 (I's=4) with T,=1700 and 2200 K, respectively,=40
(I's=1) (®) andy,=120 (['s=40) (O) for plasmas with Ce@particles.

Loy

room temperaturgT,=300 K) and in plasmagT,=2170
and 1700 K. It is quite evident that the correlation functions
g(r) for the plasma with temperatuiig,=2170 K and par-
0 . : - . ticle densityn,=2.0-10° cm™2 and for the aerosol stream
80 160 240r m 320 are essentially the same. Thus, the particles in the plasma
M interact weakly and formation of ordered structures is impos-
FIG. 3. The binary correlation functiog(r) for CeG, particles in an air sible. This is also C_Onflrmed by the plasma diagnostic mea-
stream at room temperaturg,=300 K with y,=0 (a), in plasmas Surements. The optical and probe measurements showed that
(Z,~500) at temperaturd,=2170 K with y,=40 ('s~1) (b) and at  the average interparticle distancé =50 um) is roughly
temperaturelq=1700 K with y,=120 (I's~40) (¢). 3.5 times the Debye radiusp= 14 um), while the interac-
tion parametery, is about 40. Then an estimate of,
which accounts for Debye shielding, yielfig=1.
Under conditions such that a thermal plasma exits Figure 4 shows the range of, and n, within which
transition from a free molecular flow to a hydrodynamic ordered structures can develop. Cunted’) (T4=1700 K)
flow), the following interpolation formula is usually used for and2 (2) (Tq=2200 K) correspond toy,=4 (I's=4). Near

0.5H

the diffusion coefficient® ordering in the particle positions is established in the region
above curvesl and 2 (single-species plasma mogebr
o= (_kTg 1+ l_ (1_257+ 0.400 exp_ 1'1(RD”’ Cyrves_l’ and?2’ (Yukawa model_. The ngawa modt_al pre-
67 7R, Rp | dicts highery, for the observed interparticle separations and

(3 Debye radii. The experimental poinfT,=2170 K and
wherel is the mean free path in the gas anib the viscosity Np=2.0-10° cm™2, corresponding to the correlation function
of the gas. shown in Fig. 3b denoted by a solid circle lies below the

Finally, we find boundary between the weakly and strongly nonideal plasma
states according to the Yukawa model.
For the lower plasma temperatuiig=1700 K and a
particle density oh,=5.0- 10’ cm™ 3, Fig. 3c shows that the
4 binary correlation functiorg(r) exhibits the near ordering
For the typical conditions of the experiments with characteristic of a liquid. Under these conditions, as the di-
CeQ, particles (T;=2000 K, R,=0.4 um, 1=0.4 um, agnostic measurements showed, the ion dengify-10°
pp=7.3 glcm 3, and =7.0- 10*EP Pas), we obtainry~10 cm~3) is roughly an order of magnitude lower than the elec-
s, or much less than the characteristic plasma lifetimdron density(ne~10' cm™?), while the particle chargg, is
7¢=h/V,. Thus confirms the validity of our assumption that determined by the quasineutrality condition in the form

the kinetic energy of the particles is close to the kinetic enZpnp="Ne (Ni<<n¢). The calculated values of, andI's are
ergy of the ambient gas particles. ~120 and 40, respectively, which correspond to a system of

strongly interacting particles. Therefore, the particles form

an ordered structure, in accord with the phase diagram for

the plasma(Fig. 4). The corresponding experimental point

(the hollow circlg lies above the theoretical curves for the
Figures 3a, b, and ¢ show typical binary correlationYukawa model.

functions g(r) for CeQ, particles in an aerosol stream at An analysis of the distributions of the relative interpar-

2
2ppRy

|
+_
97 1

Rp

=

-1L1R,
1.257+0.400 expl— .

3.3. Spatially ordered structures in thermal plasmas
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ticle distanceg/{r) obtained under the same conditions as4. CONCLUSION
the correlation functions showed that both regions with or- In this paper a way of finding the binary correlation

dered structureédomaing and regions with random particle function for a system of macroparticles has been proposed,

positions exist” Figures“5a and tf,ShOW histograms for the g6 on a laser time-of-flight method. An analysis of corre-
aerosokTy=300 K) (the “gaseous” plasmeand the plasma |4ti5 functions obtained in this way has demonstrated the
(Tg=1700 K). The distributions were measured for 1500~ gyistence, under certain conditions, of spatially ordered par-
2000 particles using the laser time-of-flight counter de-jcle structures in thermal plasmas. The existence of these
scribed above and are normalized in area. For a plasma tengtryctures is also confirmed by diagnosticobe and optical
perature of 1700 K the histogram becomes substantiallymeasurements. The formation of ordered structures was ob-
narrower(by a factor of 43} its peak shifts toward smaller served for micron-sized particles in a plasma consisting of
interparticle separationg(r)=0.3, and the maximum value positively charged CeQparticles, the electrons emitted by
rises from 6—7% to 10—11%. In this case the observed strughem, and singly-charged sodium ions. When the density of
ture of the particles differs sharply from the “gaseous” case the particles was reduced and the density of alkali metals was
which suggests the development of strong correlation in théncreased, the particles were positioned randomly. Experi-
positions of the particles. At the same time, the presence ohental data have been obtained on the plasma parameters
randomly oriented particles leads to the appearance of theparticle, ion, and electron densities, and temperatate
broad pedestal characteristic of the “gaseous” plasma in thavhich the structures are formed. This occurs at a particle
histogram. density of~10" cm 3 and a temperature of about 1700 K.

The development of domains can be explained by thdhe CeQ particles were positively charged at about’®10
polydisperse nature of the Cg@articles, which results in elec_tron (;harges. The Qoulomb interaction pgrameter ]‘or the
the finer particles forming regions of ordered struct(de-  Particles isy,>120, which corresponds to a highly nonideal
maing with small interparticle distancéwhile the coarser Plasma.

; ; ; ; - This work was partially supported by the Russian Fund
articles, which lie at large distances, are positioned ran-
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Anomalous kinetics of plasmas in high-power radiation fields
V. P. Silin
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Transport equations are obtained in the nine-moment approximation for plasmas in intense
radiation fields where the amplitude of the electron oscillations in the electromagnetic field exceeds
the thermal speed. It is shown that for plasmas with a high degree of ioniz&tiaghe

electron thermal conductivity is higher by approximately a factaZ .ol he change in the frictional

force on electrons colliding with ions owing to the effect of the radiation field leads to the
possibility of electron acceleration and to a change in the sign of the dc and low-frequency
electrical conductivities. €1997 American Institute of Physid$§1063-776(97)00602-1

1. INTRODUCTION violated, electron—ion collisions will be suppressed, since the
frequency of these collisions falls off a,sg3 (Ref. 13.

Advances in short-pulse laser technolbggve made the However. when the condition

development of plasma kinetic theory in high-power electro-

magnetic fields essential, both at microwave and laser fre- Zvt>vg>vr (1.9
gugg(szrsfuﬁozgsr:;gzl k:g:f?:;g;ﬁ?,%ifhnh?t :-d%?/y:rt?laydg?i\(/) il'is satisfied, it has been sholfihat the electron distribution
op y plas - high-p .in the heated plasma is not only time-dependent, it is also
is absorbed by electrons in collisions with ions or, as one St'lanisotropic

says, through.m_verse bremsstrahlung apsoﬁnblauglly, We shall be interested in even higher fields, such*that
when the radiation power is low, the kinetic coefficients

characterizing the plasma properties are independent of the vg>Zv. (1.5

electric field®* while the contribution of the radiation to the Then electron_i lisi rondl d
nonequilibrium fluxes is determined by expanding in powers en electron—ion collisions are so strongly suppressed com-

of bilinear combinations of the radiation field strengtfhis p‘f”e‘?' to electron—electron collisions, that_ a Maxwell|an_d|s-
situation occurs when the electron thermal speeds sub- tribution can be used for the electrons. This is assumed in the

stantially higher than the amplitudg: of the velocity of the theory of nonlinear high frequency plasma conductivityn-

electron oscillations in the electromagnetic field of the radia—der the condition(1.5). These results have been confirmed

tion. In the case of plasma ions with a high degree of ion{© & great.extesnlté and t.h's has led to a large number of suc-
ization cessor article$>*® Considerable attention has been devoted

to modifications of the Coulomb logarithm, which deter-
Z=|e /€, (1.)  mines the electron—ion collisions. These studies have been
summarized by Silin and Uryupit,who clarified the condi-
tions for various effects controlled by the Coulomb loga-
rithm. This is also discussed by Polishchuk and
Zv§<v$, 1.2 Meyer-Ter-Vehrt® who examined an important property of
plasmas in intense radiation fields, the relaxation of the elec-
otherwise the electron distribution differs greatly from Max- tron and ion temperatures under conditith5). Here, in
wellian, as predicted theoretically’ and confirmed particular the electron heating owing to the absorption of
experimentally’ The reason the distribution differs from intense radiation was also discussed. With regard to other
Maxwellian is that when Eq(1.2) is violated, i.e., for transport processes in fully ionized plasmas located in high-
Zvé>v$>v§, (1.3 power, high-frequency radiatio_n_ fields whose frequency
greatly exceeds the electron collision frequency, the theory is
electron—electron collisions are comparatively rare and th@ot yet adequately developed. In this paper we fill in this
electron distribution cannot relax to Maxwellian. Some stepgjap. We shall use Grad’s moment metHddVe emphasize
toward constructing a theory of transport under conditionsalso that the foundations of kinetic theory for plasmas in the
(1.3) have been taken in locdland nonlocdf treatments of case of the rapidly varying processes of interest to us were
transport. At the same time, we note the self-similar, spataid previously*®-2*
tially nonuniform and time-dependent distribution obtained In Sec. 2 we introduce a basic kinetic equation for aver-
analytically by Uryupinet al}? for the parameter rangé.3). aging the electron distribution function over the period of a
That distribution differs substantially from the standard dis-high-frequency radiation field which can be used to construct
tribution of Balesctl at high electron velocities and may a theory for slow transport processes. In Sec. 3 we write
have important consequences. down the transport equations in Grad’s nine-moment ap-
As the intensity of the radiation heating a plasma is in-proximation. In Sec, 4 an approximate approach is formu-
creased, when the right-hand side of the inequdlityd) is lated that is realized under conditi¢h.5) and can be used to

the condition for applicability of this sort of ordinary theory
iS more restrictive, i.e.,
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describe, rigorously and comparatively simply, the effect of 1
electron—ion collisions. It is shown that both the frictional T2
force and the variation in the heat released in the plasma

owing to ordered electron motion are determined by the ef- =Jod f,f]+ e[ f,F]. (2.5

fective collision frequency tensor. In Section 5 it is shownH E s th id low-f lectric fietdand
that the anisotropy in the effect of the radiation on the' '©'c -0 S (€ quasi-dc or fow-irequency electric iewlan

plasma, which is characterized by its polarization, shows uﬁn are the charge and mass of the electron, ndand Je

in such a way that the frictional force can either slow down&r® the eIectr_on—eIectron and electron—ion collision frequen-
gies, respectively.

or accelerate the electrons. This sort of acceleration ca Under the infl f the hiah-f field the el
cause the spontaneous generation of currgmtd, therefore, nder the influence of the high-irequency fie € elec-
tron distribution function varies rapidly in time and becomes

magnetic fields as well as the generation of currents in- "~ " o . ; . o .
duced by a quasi-dc electric field and pressure gradient. Se nisotropic, since this sort of field causes rapid oscillations in
) e electron velocity,

tion 6 is devoted to an anomaly in the dc and Iow-frequenC)}
conductivities, which are negative in directions lying in a ei A .
plane perpendicular to the beam of radiation. This phenom-  Ug(t)= 7 {Ee”'“'—E*e'“!}. (2.6
enon is similar to a high-frequency anomaly that has been
predicted elsewheré2* In Section 7 it is shown that the In this regard, it is convenient to use the new function
electron thermal conductivity increases by roughly a factor
of Z under high-power irradiation owing to the suppression Flur,t=f(v,r1), 27
of electron—ion collisions when conditidd.5) is satisfied.  \yhere

Formulas needed to characterize the dependence of the
averages over the oscillation period of the radiation on its ~ U=Vv—Ug(t). 2.9
polarization are given in Appendix 1 and a detailed deriva-
tion of the features of the transiti&hfrom low power to the
limit of high power radiation is given in Appendix 2 for

ot ot

JE . 9E*
veurl — e '@ty — glet

Equationq2.7) and(2.8) can be used to transform the kinetic
equation(2.5) to the following:

extending the basic material in this article to the case of F JF e e’ J|EJ?\ oF
circularly polarized radiation. Finally, a summary is given in EJFU §+ (a 0" Amlw? 7) U
Section 8.
oot _® EaF+(9F (9E+ﬁ .
€ 2moi ar du\dt  or (UE)
2. BASIC KINETIC EQUATION i E . e 9F
_ o _ _ ——|ucurl — +e""t—.[E*—
We consider a fully ionized plasma in a high-frequency ot 2Moi ar
electric field OF | 9E* i JE*
-— + — (UE*)+ — | u curl D]
, 1 . . au ( at o or at
Ar0= 5 [E(rhe “+E* (1,0e "], 2.1 @
oot e? 1 9(E)? i £ IaE
, 1 o - € a2l |2 ar Ut
H(r,t)= > [B(r,t)e "'+ B*(r,t)e'“. (2.2
oF e 1 9(E*)?
Here the amplitudes of the electrig(r,t) and magnetic o T ez 12 ar
B(r,t) fields are slowly varying functions of time over the . .
period 27/ w of the high-frequency field. With the Maxwell 4 r E* curl JE i
equation ® at au
1072 =Jeilu+ug(t),F(u)]+JIdF(u),F(u)]. (2.9
curlg=—— (2.3 ¢ . ed

c ot Note that, since the electron—electron collision integral de-
this allows us to write the following approximate formula: Pends on the relative velocity of the two colliding electrons,
Eqg. (2.8) does not introduce a dependence on the high-
frequency field intal... On the other hand, the electron—ion
collision integral in Eq.(2.9) does depend ong(t).

It can be seen from Eq(2.9 that if the amplitude
ag=eE/mw? of the oscillations in the high frequency field is
sufficiently small compared to the scale lengths of the inho-
mogeneities in the field g and in the electron distribution
L, then a comparatively simple equation can be obtained for
the distribution function(F)=F, averaged over the period
of the fast oscillations. Here we shall assume that the follow-
ing inequalities are satisfied:

B= ¢ lE c? IE 2.4

=i cur prien curl E. (2.9

With Eq. (2.4) the kinetic equation for the electron distribu-

tion functionf(v,r,t) can be written in the following form:
af af of e

1 ) )
—_ a4y — 4 — — + — *th_’_ * Al ot
a Vatam o Z{Ee e}

1 _ _
4+ — —lwt _ % qlot
5w [v curl(Ee E*e'“Y]
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Then, on averaging E@2.9) we can neglect the contribution 5 nkgT dxgT SkpT _ .
of the harmonics of. As a result, we obtain + > m ar =AQect AQei— om R®!,

2 2
oo, o (e & IIEF) aF @7
4 . .
% o m M ar u Here, in the usual terminology for Grad’'s method, we
=(Jeilutug(t),Fo(u)]y+Jed Fo(u),Fo(u)]. write the frictional force as

(2.1) .
Re'=f du m(u—u®){(J[u+ug(t),F , 3.8
We shall use this equation below to elucidate the unique U m(u=u)(Jeflu+ ue(t), Fo(W]) 39

features of transport in plasmas caused by a strong highpq peat delivered to the electron component owing to colli-
frequency electromagnetic field. sions with ions as

. 1
Qe'ZJ du- 5 m(u—u®)*(Je[u+ug(t),Fo(w)]) (3.9
3. THE NINE-MOMENT APPROXIMATION 2

In the following we shall use Grad's method, with the and finally,

distribution in the nine-moment approximation represented 1
by'® AQee:j du(u-u®)- 5 m(u—u®)?Jed Fo,Fol, (3.10
_on(ry) mlu—u(r,t)]? and
O L e X
( _q(r,ym{u—u®(r,b)] AQei:j du(u—u®)- > m(u—u®)*Jeu
2
(LT FUE(), Fo(w)]). (313

mLu—u(r,)]? . .
1- WH (3.2 In the following we find a form of Eqs(3.8)—(3.11) that
BIA closes the system of transport equatig8)—(3.7). Infor-
Herekg is Boltzmann’s constanhy(r,t) is the electron num- mation will be obtained on the qualitative changes in elec-
ber density,u® and T(r,t) are the average velocity of the tron transport produced by the electromagnetic fields of
electrons and their temperature, given by high-power radiation.

1
ue(r,t)=ﬁ f du uF,,
4. ELECTRON-ION COLLISIONS

T(r,t)=3Ln f du g [u—ué(r,t)]%F,, (3.2 The electron—ion collision integral in a radiation field

“B has been obtained classicalf?®?! The required quantum

vr=kgT/mis the electron thermal speed, and the electrormechanical treatment has been described elsewhdite.
thermal flux is given by should be emphasized that Refs. 17 and 13 show that the
1 Landau collision integral with needed refinements in the ex-

qzj dufu—u(r,t)]- > mlu—us(r,t)]12Fo(u,r,t). pression for the Coulomb logarithi, ; can be used in the

kinetic theory of plasmas in high-power radiation fields. We
(3.3 shall use the Landau collision integral in the following, re-
The kinetic equatior(2.11) yields the following system of ferring the reader to Refs. 17 and 13 for the form of the

transport equationd: Coulomb logarithm, which is always large compared to unity
in low-density plasmas.
a—n+div(nue)=0, (3.4) We shall not be interested further in quantities that are
ot small compared to the electron—ion mass ratio in accordance
Jue J NkaT with a study® of temperature relaxation of plasma species in
mn(WJr e . ue) + = B nleE, a high-power radiation field. Théhwe have
r r
2 2 ZﬂezeizniAei
_ @ JEP) L 35 Je[u+Ue(t) F(W)]= ——
Admw*  or ' '
oT 9T 2 2 2 an(+ (t))(yF 4.0
. — Dy;(u+u -— .
— 4 e_+_ H 9+ H — ei au kj E &U‘,
g U grtg Tdvu 3nkg div.q 3nkg Q™ K !
(3.6 where
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Dyj(u+ug) ={(u+ug)?;— (u+ug), 2 2uug u?  (ugu)? .10
=T 3 3 5. .
X (u+ug)Hu+ug 3. (4.2 Ug UE Ug Ug

For simplicity and, at the same time, generality, we avoid thé>Ven Ed.(4.6), in the nine-moment approximatid8.1) this
special case of plane polarized radiation, where the velocitfXPression, together with E(4.5), yields

of the electron oscillations)z can go to zero, and consider ) 1 .

elliptically polarized radiation. Here we shall assume thatthe ~ Q¥'=Qis+ 5 R®U° (4.11

minimum velocity ug(t) is high compared to the electron _

thermal velocity. This makes it possible to expand @q2) ~ Where the first term

in powers ofuz*: Ame2elnnAy | 1 »
Q=" U (4.12

_ -3 .2 -2 2
Djj=Ug ") Ugdjj —UgUgj+[ — 3(Ugu)Ug “( 8 Ug

2
_uEIqu)+2(uEu)5lj - UE|Uj_UEjU|]+U 5”

-2 -2
—Uju;— 6(UgU)ug °8); + 3ug u;(Ugu) ug

3
2 2, -2 2
£~ 5 UUE “(8jUg— UgUg))

+ 3Ug;ju;(Ugu)u >

4.3

1_5 2048 U2 — _
+ > (UgU)“Ug (U= UgUg)) +.. (.

We use the approximatiof#.3) to find the frictional force.
Given Egs.(4.1)—(4.3), Eqg. (3.8) can be written in the fol-
lowing form:

2me? e NiAg; d
(R®) =————— f du Fol —— Dk, , (4.4
where, according to Ed4.3),
1% 1 uEkuE]
(9_Uj ij:UE [ 2uEk 2Uk+6 UE Uj . (45)

In conformity with the Fourier expansion E¢A.1.4), we

have
(Ug/ugy=0, (UgUgjug;i/ug)=0. (4.6)

Thus, according to Eq3.1) the frictional force can be writ-
ten in the form

(Rei)k:_mndjuje, (47)
where

4re?e’niA

n; 1 Ugk(t)Ugj(t)
m’ {<u2(t>> 5k"_3< us(t) >J
(4.8

ij:

is the effective electron—ion collision frequency tensor. In
the following we examine the unique properties of this ten-
sor, which are determined by the polarization of the radiation

and might be expected because the trace of the t¢ARris
zero.

We now consider the he®®' released in collisions be-
tween electrons and ions. In accordance with @dl), Eq.
(3.9 takes the form

_ queenAel
Q= —fduF0 Dj;+(u—u

In the approximatior(4.3) we have
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represents the heat released through inverse bremsstrahlung
absorption, neglecting the ordered motion of the electrons.
The second term originates, first, in the work performed by
the frictional force, —u,R®', as is customary in plasmas,
including those without high-power radiation, and second, in
the effect of the ordered motion of the electrons on inverse
bremsstrahlung absorption, (3(ER®'.

Finally, we consider the contribution of electron—ion
collisions to the right hand side of E¢3.7). In the approxi-
mation of Eq.(4.3), Eq. (3.11) reduces to

2me? e NiAgi
(AQe)j=———7—— f du Fom(—(u

)2 5<aDjk>
Uk

D)

au,

+(u—u®) (u—u®);

+(U_Ue)j<DII>+2(U_Ue)k<Djk>]- (4.13

Using the explicit expressiond.3), (4.5, and(4.9), we ob-
tain
1 34
(AQBI)] ij 11nKBTuk+ 5 Ok ( - (4.149
The contribution to the right hand side of E.7) from
electron—ion collisions takes the form
| o 17
(AQEI)] (R )] — Vik 3nKBTuk+€qk .
(4.19

We shall obtain some physical consequences of these equa-
tions below.

5. GENERATION OF CURRENTS BY ACCELERATED
ELECTRONS

The equations obtained in Appendix 1 make it possible
to write the effective electron—ion collision frequency tensor
(4.9 in the form

v =v(E)Nyj, (5.1
where the tensoN); is defined by Eqs(A1.9) and
v(E)=8v2me?e’niAm 2vg>, (5.2

wherevZ=(e’E?/m?w?). In order of magnitude, the effec-
tive frequency(5.2) is a factor of ¢ /v)® smaller than the
ordinary electron—ion collision frequency in the absence of
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high-power radiatiort® According to Eq.(A1.10), for circu- To conclude this section we use E@\1.5) to write
larly polarized radiation the frictional forcet.7) takes the down the dependence of the heat released in the plasma,

form (4.1), on the polarization of the radiation:
. S 1 1 8v2e?e?nn A 2p?
R®'=(R{',R}",R;) = —mnu(E) —EU§,—§U§,U§>. Qig= e p 5. (5.1
mvE\/1+p2 1+p

(5.3

Whereas the component of this formula corresponds to aIn nearly plane-polarized radiation, whfis close to unity,

reduction in the averagezl component of the velocity, the we have
other two components of E¢p.3) correspond to acceleration 2p? 1 32
of the electrons owing to the work performed by the high- —1+p2 ~a In —1_p2 :

power radiation field. , , L . .
A similar situation occurs in the other limiting case of The resulting large logarithm is similar to that derived in the
nearly plane polarization. Thus, in the case of B1.13, theory of the absorption of high-power plane polarized

we have radiatiot>!® and shown to depend on the raig/vz. A
_ suitable comparison shows that the approximatiérg) is
RE!= —mnu(E) (Nyo g, Nyyuy ,NZ A1) (54 applicable in the limit - p?>v2/v2. Note that in the case
Equation(A1.3) shows that, approximately, of nearly plane polarization, the plasma heating time is
~[V(E)In(E/Ey)]‘1, substantially longer than the accelera-
1 E* 1 | 4E tion time (5.8).
NZZ—E Eg = Nyyv NXX— E n E—y, (55)
, : . . . 6. ANOMALOUS CONDUCTIVITY
so that, first, the effective collision frequency is much higher
than that for circular polarization, siné&>E,, and, second, We now use Eq(3.5) to determine the dc conductivity.

the electrons are slowed down, as in the case of circulalrn doing this we neglect the inertial term. Then this equation
polarization, along thez axis, while they are accelerated gives
along the other two axes. In fact, if we neglect the spatial

. dnkgT
inhomogeneity and slowly varying electric field in E§.5), R®'= ;B —neEg, (6.1
then according to Eq5.1) we obtain r
e where
Uy .
dt Eei=Eog— — 6.2
=0 Amw? ar - )

In the case of Eq95.4) and (5.5), the acceleration is most
intense along the axis, i.e., perpendicular to the plane of For the subsequent discussion it is convenient to use the

polarization. Then, assumiri§= const, we have electron—ion collision mean free time tensgy, which is
o o defined by
uy(t) =uy(0)exp(t/ty), (5.7
i Tijk|: 5” . (63)
where we obtain . ) . i
) According to Eq(5.1) and using the tensdr,; introduced in
— 2 . .
tac=mV2E/E*v(E) (5.8 Appendix 1, we can write
for the characteristic acceleration time. This sort of electron
acceleration leads to the generation of spontaneous currents Tkj:ﬁ Tj- (6.4
by high-power heating radiation and, therefore, to the gen-
eration of spontaneous magnetic fields. These formulas allow us to derive the following from Eq.

The presence of a quasi-dc fieli) (or pressure gradi- (4.7
end in the plasma makes the process of accelerating the elec- .
trons as they collide with ions and simultaneously absorb  mnuf=— 7 R{'= — —E
radiation an induced process. Here in place of (&06) we v(E)
have Since the electric current density jis enu®, Eqgs.(6.1) and
(6.5 imply that

TiRE'. (6.5

dug . €
T V(E)Nkjujza Eok - (5.9 _ 1 onkgT
Ji= ok Bett= o, o | (6.6)
In the case of Eqg5.4) and (5.5 with Ey= const, for accel- k
eration along the by a high-power radiation pulse of dura- where the dc conductivity tensor has the form
tion ty we obtain 2 5
en en T 6.7
e t k=" Tk~ o E) k- .
U%%tac( eXF<t_O)_1}, (5.10 m my(E)
ac In the case of circular polarization, the ten3gy is diagonal
where the acceleration time is given by K§.8). with T,,=T,,=—2 andT,,=1. This means that the com-
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ponento,, of the conductivity tensor is positive and corre- The effect of the field on the Coulomb logarithin., can be
sponds to ordinary dissipation. On the other hand, in theweglected. Simple calculatiofsgive

plane perpendicular to the beam of radiation heating the 160

plasma, the components of the conductivity tensor are nega- AQ,.=— — il q, (7.2
tive. In the case of nearly plane polarization, the components 151ee

of the tensorT;y are given by Egs(A.1.14). In the special  wherel ,.=m?v7 /\/me*nA.is the electron mean free path.
casep,— ¢,=m/2 andE;<EZ, the conductivity tensor is Using Eq. (4.14, for the right-hand side of Eq3.7) we

diagonal with obtain
eanQEf, 5keT ..
7 muE)EZ T T AQee™ 5y RIHAQe J_
e’nmv2 3kgT . 16ut 17
T T my(E)[IN(4E/E,)—1]° ©3 =T RYIT 15 % 5 Yk (7.3

Here the components of the conductivity tensor perpendicuthus, the system of equations for the nine-moment approxi-
lar to the beam are again negative. The anomaly is especialiyation (3.4)—(3.7) has been closed. In this article we shall
strong in the direction of the electric field vector of the ra- neglect the last term on the right-hand side of &g3) since

diation that is heating the plasma. vrllee>| vk
Equation(3.5) can also be used in the case of an alter-  We now determine the thermal conductivity with the aid
nating field of Eq. (3.7). To do this, as is customary in the moment
_ . approximation, we neglect all terms on the left-hand side of
Eo(t)=E - . . .
o(t)=Eo exp(—iwot) 6.9 Eq. (3.7) except the last. We then obtain
Neglecting the spatial inhomogeneity, when we have 75 JT 6 R®
us(t) = uexp(—iwgt), Eq. (3.5 yields = -2
o 4=~ g5 "evtlee 55 on [ (74
e .
—iwgUg+ V(E)Ny; f:— Eok- (6.10  whereR®' is given by Eq.(6.1). In the simplest case, where
m e_ . )
u®=0, Eq.(7.4) gives Fick's law
In the simplest case, when the tenddy; is diagonal, we
. . JT
have j;= gii(wg) Eqi . Here no sum is taken over the sub- qQ=—x —, (7.5
scripti and the conductivity at frequenay, is given by or
o) en iwg+ v(E)N; 610 lv;;:gé(t(i)st;[]heearsrron:(?r:];ggguctivity. Equatiofr.4) corre-
[ AN 1Y A S — .
T m g+ [W(E)NG ] e
The negative real conductivities fdk; <0 correspond to the X1=35 NkgUTlee- (7.6

possibility of generating and amplifying an alternating elec-
tric field under the influence of the high-power radiation thatin the absence of high-power plasma heating radiation, the
is heating the plasma. This sort of phenomenon has beesame nine-moment approximation leads to a thermal conduc-
predicted theoreticalf7~2* for a high-frequency alternating tivity of the formt®

field (wg™>w o= V4me?n/m). If we take wy>v(E)N;; in

Eq. (6.11), then in the special case of circularly polarized
radiation we obtain the corresponding result of Ref. 24 on
using Eqs(A2.5).

137t

+ —
V)

Thus, applying a high-power radiation field to a plasma with
highly charged ions4>1) increases the thermal conductiv-
ity by roughly a factor of Z.

7. ELECTRON—ELECTRON COLLISIONS AND THERMAL The thermal conductivityy; is the same as that calcu-
CONDUCTIVITY lated by the Hilbert—Chapman—Enskog method in the ap-
proximation of a single Sonine—Laguerre polynomial. In the
approximation of two polynomials we obtain

Xo=x1| 1 (7.7

We now consider the contribution of electron—electron
collisions to the right hand part of E43.7). The collision

integral has the form X2=§ KgvTM? | -
SedFouFol= 225 es o ﬁe‘lAe_e .
m which exceeds the first approximation by 25%.
xij du’ (UZu)" 3= (U-u)u-u); 8. CONCLUSION
Ay lu—u'|®

P P The results on the kinetics of fully ionized plasmas in
% (__ _’) Fo(u)Fo(u’). (7.1  high-power electromagnetic radiation fields presented in the
uj  duj preceding sections make it possible to obtain the equations
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for generalized electron hydrodynamics in the nine-momenfect on electron—electron collisions, the electron thermal
approximation. Here we note the consequences of this hydra@onductivity of a plasma in an intense radiation field is
dynamics. First of all, we discuss the consequences of Ediigher by a factor ofZ.

(4.11) for the heat released in a plasma by electron—ion col-  All the phenomena discussed here can be attributed to a
lisions. This formula consists, first of all, of a ter.12 direct nonlinear manifestation of the inverse bremsstrahlung
that is similar to that discussed previously for several polarabsorption of high-power electromagnetic radiation in the
izations of the radiation and which corresponds to ordinarkinetic properties of the plasma.

collisional absorption. Second, E@.11) includes a contri- This work was completed as part of project No. 96-02-
bution owing to the presence of an ordered average motiol7002-a of the Russian Fund for Fundamental Research and
of the electrons. The formal difference between the exprespartially supported by the Program on Optics and Laser
sion for this contribution and the ordinary expression for aPhysics.

plasma without a high-power radiation field lies in the oppo-

site sign and the factafl/2) in front of the productu®R®'. APPENDIX |

However, the actual difference is more important, since ac-

cording to Eqs(4.7) and(5.1) this expression can be written The heat released in electron—ion collisions and the fric-

tional force are determined by taking the averages, over the

in the form . ) :
period of the field, of the expressions
1 1 1 1 1 Ug(tug;(t)
Z Reiye=— = ut=— = ue _ — !
> Reu > MmN u; > v(E)mnigNy;us. <u(t)> and <u3(t)> Sj < 0 . (A1)

(8.2

We shall examine the dependence of these quantities on the
The properties of the electron—ion collision tensor are sucfpolarization of the radiation that is heating the plasma. Write

that, depending on the orientation of the veloaifyof the ~ E— (Ex€*E,e'®,0), whereE, andE, are the real ampli-
average electron motion relative to the polarization of thdudes and the difference,— ¢, determines the phase shift
radiation, Eq.(8.1) can be either positive or negative. Here, Of the components of the polarized radiation. Then, using the
when the quadratic form notationE,=E cosa andE,=E sina, we can write

Ue(t) = (Uex(),Ug,y(1),0),

e e

which determines Eq(8.1) is positive definite, we have a Uex(t) =vE COSa sin(wt—gy),
situation corresponding to the ordinary role of collisions as _ : :

o Lo t)=vg sin a sinfwt—@,),
the cause of dissipation. Then the contribution of the heat to Uey()=vE Sin a sin(wt = ¢y)
Eg. (8.1) is negative. This means that the correcti8r) to andvZ=(eE/mw)2. Thus, we can write
the energy flux4.12 absorbed by the plasma decreases the 1
total ab;orbed power. The oppositg .situatiqn. occurs when the  uZ(t)= > v2{1—p? coqwt—24)}, (Al.2)
guadratic form(8.2) can be nonpositive definite.

An opposite situation of this type is discussed in Sectionwhere
5. It is shown there that the dependence of the signs of the . : .
diagonal elements of the electron—ion collision frequency tgn 2)= cos’ a sin 2(px+s?r12 @ Sin 2py ,
tensor on the polarization properties of the radiation makes it COS’ & COS 2p+SiI* @ COS 2p,
ppssible for the electrons to k_)e acce!erafced collisionally py A p4=1—sir? 2a sir( g, — ). (A1.3)
high-power high-frequency field. This kind of acceleration ) ] )
leads both to spontaneous and to induced generation of culSing the Fourier series expansion
rents by the electric field. During the heating time, in which ( Ve )n 1

the thermal velocity of an electron changes frop{0) to a
value on the order of ¢, the velocity of electrons acceler-
ated as a result of the presence of a quasi-dc electric field can %
reach a magnitude on the order &H,/mv(E))ve/v+1(0). (nf2) 2 _

The possibility of a negative electron—ion collision fre- +2mE:1 Am “(p7)cog2m(wt—¢)].
guency demonstrated here will show up as a negative dc (AL.4)
electrical conductivity for the plasma. In an alternating elec-
tric field, a negative real part of the complex electrical con-
ductivity corresponds both to acceleration and to the genera-

_ Aé”’z)(pz)

Vaug(t)]  [1—p? codwt—2¢)]™

it is easy to see that E§4.6) is satisfied.
In accordance with the expansi¢Al.4), we have

tion of such a field?~2* 32 2
. g . 1 V2 12, 2 2 2p
As for heat transport,we have identified some behavior ) =— Ag (p7)= > 13 52)
which is important for the practically interesting case of VE vemVltp ,ZAl 5

high-power radiation acting on a plasma with a high degree
of ionization Z. There, because the high-power radiationHere K(k) is the complete elliptic integral of the first kind
suppresses electron—ion collisions and essentially has no dfq. (8.111.2 of Gradshtein and RyzhR). Similarly,
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1 23/2 23/2a0 1 32
= ABD(p?)= AL 2) In A1.11
2572 [ 2p2 For the quantities determined by the tendfy (A1.9), we

B v3m(1—p?) 1+ p? E 1+p?)’ (AL.6)  obtain

V2 1 1 32
where E(K) is the complete elliptic integral of the second ag=— ( 1 >+ 3 In 1 5+ 3l
kind (Eq. (2.574.4 of Gradshtein and RyzhiR). According 77 P
to the expansior(A.1.4), for the nonzero elements of the V2 1 3 32 17
tensor(uEk(t)qu(t)/u5(t)> we obtain Say=— ( - 1_—pz+ 3 In 1_—pz+ 5]’
D) _ 2% (a, cog a+ay) 3 v2 —2-1 L4 —232 A1.12
)= a ; —3a,=— 1 — = —=1. .
w2 T 2 -38="| " 2tghi— g (AL12
uéy(t) 2312 _ In p?rticullar, for ox—@y=m/2 gnd .Ey< E,, we have
BT (a; Sirt a+ay), 1-p®=2sirf a and the tensoN,; is diagonal with
E E
U (DUgy(t)|  2%? NXX=——1 {In 4 —1]
<#> =5 a, sin @ cos & Cog ¢,— ¢y), w2 | sina
E Ve
(AL7) 1 1 1 4 5
where Nyy=— M| Ssifa 2 NSina 4|
1 1-p* 1 1 1 4 1
a =A(5/2)(p2)— il A(5/2)(p2), A= A(5’2)(p2). _ L4 4
1 0 p2 1 2 2p2 1 (Al 8) NZZ iy m‘F 2 In sin a+ al (A113)

For an arbitrary phase differengg— ¢, but with p? close to
rhnity, the tensor inverse thly;, T”-:(N“-)*l, has the fol-
lowing nonzero elements:

In these last formulas the coefficients of the expansio
(Al.4) have the form

4 2p° %) 1
(502, 2y _ _m _ 2
Ap 7 (p%) 377(1+p2)1/2(1—p2) { 1—p2 E( 1+p2 TXX—T{ cog a+§ (1-p )[(1
K| v/ 2 ir? 2 irt
1+p2) [ —3sirt a)ln 1_p2—9+173| alf,
2 1+3p* 2p? %) [ . 1 {
(52 p2y = Tyy=— | —Sif a+ = (1—-p?)|(1
AT 7(p%) 371+ p2)(1—p?) | 1—p2 ( 1+ p? wod “T8 (1=p7)|(
2p? 32 ]
_kl A/ -3cof a)ln———9+17 cog a|¢,
K( 1+p2) | 1-p?
If we denote the tensoidl.1) by 2%% Z3N,;, then for the T
aAl.1) by £ Nk T,=— (1—p?). (A1.14)
nonzero elements of the tensdg; we have V3
Ny,=ao—3a,—3a; co¢ «, Note that the relatively small terms in Eq#1.12) deter-
. mine the expression
Ny,=ao—3a,—3a; sir* a,
1 32
Ny =N,x=3a; sin a cosa cog ¢x—¢,), N,,=a. d=31In 1_p2—1- (A1.15

(A1.9
which, according to Eq(6.8), characterizes the large nega-

In the special case of circularly polarized radiation, wherg;ye component of the dc electrical conductivity tensor.
a=ml4 andeo,— ¢,=m/2, we have

1
<ug1(t)):\f2/vE and Ny;=— > [ 5kxOjx + By iy ] APPENDIX 2

(A1.10) As a supplement to the main text, here we examine the
transition from a relatively weak field, for whiahg<vt, to
Things are a little more complicated in the other limiting the limit of high-power radiation, for whicht<vg, for the
case of nearly plane polarization, whereis close to unity.  part of the frictional force determined by the ordered motion
Then, in particular, we have of the electronsy®, in the special case of circular polarized

+ 6120j7 -
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radiation. We first note that after linearization with respect to
the velocityu® of the ordered motion, Eq3.8) can be writ-
ten in the form

Var

F,(x)= % | —erf(x)+ — (x+ 2x3)e‘xz] , (A2.6)

2
, 4mee’n; A, ve n F (x)=erf(x)— — xe X’ (A2.7)
eiv _ i i i o I , .
RN=——— fdvﬁmﬂu V+Ug(D))). J
(A2.1) where
Given thatv,=v sin#cose andvy=v sin@sing, in the 2 (* _pe
case of circular polarization we obtain erf(x)=(x)= —= f e dt
Jar Jo
(V+Ug(t))? is the probability integral.
exr{ - T] In the limit ve<<vuT we have
T F, (x)=F,(x)=(8/3J/m)x3, which yields the usuaf!®ex-

2
v?  vE

5.2 4,2
2v7 4vt

Ve

:w%_ }w%_;z

Ur
Using the expansiortEq. (9.6.39 of Abramowitz and
Stegur®)

sin 6 cogwt— o) |.

(A2.2)

UVUE ) 0 5( t )
exp — sin 6 coq wt—
V2v3 ¢
VUE ) ” UVUVE .
=| sing|+2 —1)" sin 6
(fz ) &Y (fz )
Xcogn(wt—¢)). (A2.3)
we obtain
[v+ug(t)]?
expr — —— 7  (US,V+Ug(t))
2v7
2 2
0 UE (utv)l ove sin
=exp — -
2} 4wf ° V2v?
Ve . Vg .
—1 sin 8| — (ug cos o+ uS sin . (A24
1 ‘/iv-zr ) ‘/2( X (] y (P) )

Using Ref. 26(Egs.(6.618.4 and(10.2.13), we have

2

Fd o ZE sino
v exp — — SIn
0 2vT ! \fZU-Zr
V2v3 v sir? 6
= s ex 2 -1
vE Sin 6@ 4vs

and finally obtain a diagonal effective collision frequency

tensorvy; with the following element$?
Vg Ve
Vyx= Vyy= v(E)F, m v =v(E)F m .
(A2.5)
Here v(E) is defined by Eq(5.2) and
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pression for the effective collision frequency,
4\2me?e’ni A

=v,,.
3mv3 2z

Vyx= Vyy=

In the opposite case obg>vy, we have F ;=1 and
F,=—1/2 and obtain Eq(5.3).

EquationgA2.5)—(A2.7) describe the transition from the
ordinary case of low-intensity radiation to the case of high-
power radiation. The signs of the componentg and v, of
the effective collision frequency tensor change at
ve=3.07.%4

YCondition (1.5) is satisfied if the energy flux of the radiation,
gr=CE?/41 obeys the condition2qg>Z?(mc/e?) kg T, where is the
wavelength of the radiation. If the electron temperature is measured in
electron volts (zT=0,), the wavelength in microns, and the energy flux
in Wicn?, then this condition reduces to
N[ um]ge[ Wien?]=22%0 JeV]- 10%.

2In Eq. (3.7) the repeated subscriptdenotes summation.

3We note that the neglect of the nonlocal nature of heat transfer correspond-
ing to our examination of this system is natural, in particular, when the
wavelength of the radiation is much greater than the electron mean free
path in electron—electron collisions.
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Average-ion model for calculating the state of a multicomponent transient nonequilibrium
highly charged ion plasma

S. A. Bel'kov, P. D. Gasparyan, Yu. K. Kochubel, and E. |. Mitrofanov

(Submitted 28 June 1996
Zh. Eksp. Teor. Fiz111, 496-513(February 199y

The ionization kinetics of a transient nonequilibrium highly charged ion plasma are investigated

in the average-ion approximation. Approximations of a hydrogenic ion, whose energy

levels depend either on the principal quantum number alone or on the principal and orbital
angular momentum quantum numbers, are considered as atom models. The results of calculations
of various plasma characteristics performed within this model are presented, and a comparison

with previously published data, as well as with calculations in the chemical-bond approximation, is
performed. It is shown that the average-ion model satisfactorily describes the spectral
characteristics of a nonideal plasma. 1®97 American Institute of Physics.

[S1063-776(197)00702-9

1. INTRODUCTION which are characterized not only by their charge, but also by
the configuration of occupation numbers of the electronic
8rbitals of each ion in an assigned state, at each moment in
%me. A large system of kinetic equations describing the tran-

Investigations of the radiation and thermodynamic prop
erties of a high-temperature highly charged ion plasma ar
based on separation of the plasma into weakly interactin
subsystems, whose kinetics can be described by transf
equations for single-particle distribution functions. In the re- . R

d gie-p odel! However, the feasibility of taking into account the

gion of a high-temperature plasma these subsystems are tEdel LT . S
ion, electron, and photon subsystems. In some cases ' nization kinetics in the chemical-bond approximation in

plasma can be in a state of partial thermodynamic equilib-radiation gas-dynamic programs, especially two-dimensional

fium among the components. As the plasma density inand three-dimensional ones, is very limited, since a large
creases, its degree of nonideality increases, but the time fd],u:_nber ofdk|r;et|c Equa_tut)r_]s must b?rﬁo'\/ed gt ea;:h mortTjent
the establishment of equilibrium between its components sit? iMe and & .z‘la\c F;lom N space. " etrr:un:j ero fqua |fons
multaneously decreases. Since the time for the establishme'ﬁ:[‘sreaSes rapidly when we move 1o the description of a

of equilibrium in the photon subsystem has the largest value[,) asma with a large value af (2>10), and can reach hun-
numerous problems are described quite accurately by an a reds and even thousands. : . .
proximation in which the deviation of only the photon sub- Assuming that the c_hargg of_an lon varies continuously,
system from equilibrium is taken into accoufttte local ther- we can replace a set of ions in different charge states by one
ion in some average charge state. The state of such an aver-

modynamic equilibrium approximatigpnOne special feature . . - .
of a nonequilibrium high-temperature highly charged ion@ge ion is described completely by assigning the occupation
p_umbers of the ion’s various electronic orbitals, which can

plasma is the role of radiation processes in the plasma kine | i v In thi th let ¢ f
ics, which increases relative to that of collisional processe? S0 vary continuously. In this case the complete system o

asZ increases. This is why for small plasma dimensions an&quaﬂong of the |9n|z§1t|on kinetics of a plasma in the
large values o, a deviation of the photon subsystem from average-ion approximation can be reduced to the equations

equilibrium causes the electron subsystem to deviate fron(1iescrlblng the kinetics of the average populations of the elec-

equilibrium at very high(up to solid-state densities of a tronic states:”
high-temperature highly charged ion plasma, at which they

plasma is very nonideal. A nonideal high-temperature high|yd_t(P§N):R§NeNQ§_|§ NeNP+N
charged ion plasma forms in experiments devised to investi-
gate targets for laser thermonuclear fusion and inertial con-
finement fusion, in experiments set up to investigate the in-

i,tions among all possible states of the ions must be solved.
uch a description of a plasma is called the chemical-bond

X| 2 ApPuQi— X Aéf’PéQf’]
¢ ¢

teraction of ultrashort powerful pulses of laser radiation with (Eg>Ey (Bg<Ep
solids, etc. A description of the state of such a plasma with r
darafi : : - +NNg >, C2.P.Q:~ > CbPQ
consideration of its gas-dynamic motion and energy transfer e gre et g ERE
. . . . . . ! §’
is possible only within a kinetic approach. | (Ex>Ep) (Ep<Ep)
U u

2. EQUATIONS OF IONIZATION KINETICS IN THE +NNo| > Cp PuQ— > CLPQ|.
AVERAGE-ION APPROXIMATION ' ¢

L (Egr<Ey) (Egr>Ey)

A detailed description of a multicomponent highly &
charged ion plasma requires determination of the concentra-
tion distribution of a large number of states of the ions,whereP, is the average population of the electronic orbital
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of the ion characterized by the quantum numbérsn the  where Ry=(3A/47pN,) Y3 is the mean distance between
average-ion model without consideration of the distributionions in the plasma, anﬂg andgg are the effective radius of
over orbital angular momeng, is specified by the principal the orbital and the statistical weight of levé&bf an isolated
guantum numben, and in the model that takes into accountion.

the distribution over orbital angular momentum it is specified ~ When a function like(2) is chosen and the effective

by the pair of quantum numbers,(). In addition, in(1)  radius of the orbital is properly determined, highly excited
Q=1-P;/g; is the number of vacancies in stafeg, is  states disappear first as the plasma density increases. The
the statistical weight of staté, N=pN,/A is the ion den- dependence of the extent of ionizati¢f) of the cold sub-

sity, p is the plasma densityA is the atomic weight of the stance on the densify then has the form

ion, N, is Avogadro’s number, g
2)=2 Pg(l— —é), 3
é O¢

where thePg are the populations of the levels of a neutral
isolated p=0) atom.
is the free electron densityZ) is the charge of the average ~ The parametera andb can be found from the condition
ion, Z, is the nuclear chargé, andR; are, respectively, the that the dependence of the extent of ionization of the cold
ionization and recombination rate coefficients in stagtand ~ substance on the density obtained, for example, within the
Ag¢. Cg . andCy,, are the rates of the transitions between Thomas—Fermi modélis most closely approximated by Eq.
the states £',£) as a result of spontaneous radiative decay(3)- The specific values of the constamtsandb depend on
impact quenching, and excitation processes. the atom m0d6| and WIII_be_ pre_sentgd pelow.

The rate constants of the atomic processes appearing on An €quation of the ionization kinetics of the forf)
the right-hand side of the system of equatiébsare func- does not contain terms that _descrlbe photoionization and
tions of the temperature and the plasma density, as well Egﬂotoexcnathn processes, w_hlc_h are the reverse processes of
the binding energies of electrons in statein the general photorecombination and radiative decay. Such a model, in

case. The binding energies, in turn, depend on the popu|é(yhich only collisional processegollisional ionization and
tions of the levels and the ion densitgo-called pressure recombination, as well as collisional excitation and quench-
ionization. Thus, an atom model that makes it possible toiN@) and radiation processgghotorecombination and radia-
calculate the binding energy of an electron in stafeom the tive decay are taken into account, is called the collisional—

known values of the populations of all the states must béadiative model. It describes an optically thin plasma, in
employed to close the system of equatighs which the radiation density is low, and therefore photoion-

The simplest models of an atom are various versions ofzation and photoexcitation can be neglected. The stationary
the Slater modéel.However. all of these models have one solution obtained within the collisional-radiative model does

serious drawback: they faithfully describe the states of afiot correspond to thermodynamic equilibrium in the general
isolated free ion, but are inapplicable to a fairly densec@Se, since not all the direct processes are balanced by re-
plasma, where the influence of adjacent ions can no longefersé processes. However, at high densities, where colli-
be neglected and their presence can significantly alter botfional processes are dominant, the stationary solution of the
the energies of bound states of a particular ion and the st&ollisional—radiative model should proceed to thermody-
tistical weight of each state. namic equilibrium. At low densities, three-particle recombi-

Self-consistent-field models of the Hartree—Fock fype nation processes can be neglected, and the collisional—
make it possible to take the influence of the surroundingéadiative approximation transforms into the so-called coronal
into account, but their application in practice entails enor-aPProximation.
mous additional computational expenditures, which are un-
acceptable when the necessary kinetic calculations are per-
formed together with gas-dynamic calculations of plasmas joN MODEL NEGLECTING SPLITTING WITH RESPECT
flow. TO THE ORBITAL ANGULAR MOMENTUM QUANTUM

It was suggested in Ref. 2 that the dependence of th8§lUMBER (H MODEL)
statistical weight of a state on the plasma density should be ) ) ) o
introduced in such a manner that the statistical weight of the ~ 1he Simplestion model that permits determination of the
state of an isolated ion would be obtained at low densitiesEN€rgy levels of the bound states is the model proposed in
and would tend to zero at high densities. This simulates reRef. 7. In this model the state of the ion is determined by the
moval of the degeneracy of stagedue to its interaction with occupation numbers of orbitals with different values of the
the surrounding iongfor example, due to Stark splitting of principal quantum numban. States with identical principal
the leve), as a result of which some of the bound stateguantum numbers but different orbital angular momenta are
move into the continuum. The simplest function having thesé@SSumed to be degeneralence it is called the hydrogenic

properties is a function of the form (H) atom model. _ _ o
Let there beP, electrons in the state with principal

quantum numben. Then the effective nuclear charge, which

Ne=N(Z)=N

ZO—Z§ P,

0
ggz#b, (2)  determines the Coulomb interaction of an electron in an or-
1+a(R/Ro) bital with quantum numben, is calculated with consider-
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TABLE I. Coefficients of the screening matrix,n, .

m 1 2 3 4 5 6 7 8 9 10
1 0.3125 0.9380 0.9840 0.9954 0.9980 0.9990 0.9995 0.9999 0.9999  0.9999
2 0.2345 0.6038 0.9040 09722 09880 09979 0.9985 0.9990 0.9999  0.9999
3 0.1093 0.4018 0.6800 0.9155 0.9796 09820 0.9860 0.9900 0.9920  0.9999
4 0.0622 02430 05150 07100 0.9200 0.9600 0.9750 0.9830 0.9860  0.9900
5 0.0399 0.1381 0.3527 05888 07320 0.8300 0.9000 0.9500 0.9700  0.9800
6 0.0277 0.1109 0.2455 0.4267 05764 0.7248 0.8300 0.9000 0.9500 0.9700
7 0.0204 0.0808 0.1811 0.3184 04592 0.6098 0.7374 0.8300 0.9000  0.9500
8 0.0156 0.0624 0.1392 02457 0.3711 05062 0.6355 0.7441 0.8300 0.9000
9 0.0123 0.0493 0.1102 0.1948 0.2994 04222 05444 0.6558 0.7553  0.8300
10  0.0100 0.0400 0.0900 0.1584 0.2450 0.3492 0.4655 0.5760 0.6723 0.7612
ation of its screening by the inner electromslative to the 1
electron under consideratipfrom the formula Zy=Zg— > Puonm 1- 2 %nm
msn
Z.=Zo— > Pronm 1 s ) (4) n“lp mt
n— 40" mYnm| +7 5 %m]|» nl
m=n 2 +§m: qumnz P_Gnlv Pm: 2 Pml’-
n =

=0
where o, is the matrix of screening constants, which was

first proposed in Ref. 7 and whose coefficients are presented The values ob, andq,, are presented in Table II, and

in Table 1. the values ofy,, andG,, are calculated using the formulas
The total energy of an ion is calculated from the 1/m\5 m\ 211/ o
formula’ = |2-|= 2n?>m?,
qnm: T\ n n
PnZ2 2<m?
E=-3 "I, ®) 0 ane=m
m m

1
wherel ,=e?/2a, is the ionization potential of the hydrogen GnFW[nZ—Z'(' +1)=1]+v,.
atom anda, is the Bohr radius.
The binding energy for a level is found by differentiating ~ The total energy of the ion is calculated just as in the H
(5) with respect to the populatioR,, : model from Eq.(5). Then the energy levelg,, are calcu-
lated from the formula

9E z2 z 1
Eg: P =ly __2+E 2Pm_r;0'nm<1_§5nm”- 0
IPn n m=n m En=E —2ly E Pm(dnmSm— dmnSh)
(6) m
The radius of an orbital is calculated from the familiar Zn
expression for the radius of an orbital in the hydrogen atom: + HZGnI% PmAmn| +AE,
R°=a,n?/z,. ™ where
The constants in(2), accordingly, have the values 2 1 p
a=3.5 andb=1.75. S,=—5 _“'Gm ,
In the general case of a dense plasma, lowering of the n“i=o Pn

ionization potential of the orbital due to the influence of the
Coulomb fields of the surrounding ions occurs in addition to

Fhe removal of thg degeneracy, so th%t f).can .be ertt.en TABLE Il. Numerical values of the constantg,, andv,, used in theL
in the formE,=E_+AE, whereAE=e%(Z)/2R is the dis-  model.

placement of the level due to pressure ionization.

n Onn Un
4. ION MODEL WITH CONSIDERATION OF THE SPLITTING 1 0.270672 0.000
WITH RESPECT TO THE ORBITAL ANGULAR 2 0.366310 0.070
MOMENTUM QUANTUM NUMBER (L MODEL) 3 0.371802 0.020
4 0.329523 0.012
A further development of the simple hydrogenic-ion 5 0.295072 —0.100
model takes into account thesplitting of the levelgwe call 6 0.296580 —0.400
it the L mode). According to this model, the effective ’ 0.320910 —0.420
nuclear charg&,, in the nth orbital of an atom is written 5: 8
with consideration of the screening by the inner electrons ing U 0
the forn?
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FIG. 2. lonization potentialk; of neutral ions calculated on the basis of the

FIG. 1. Dependence of the extent of ionization of the cold substance on thg| model(curve 1), the L model(curve2), and the model in Ref. 1Gurve
density:1 — the Thomas—Fermi mode2-5 — calculation using Eq(3) 3); 4 — experimental curve.

with a=12.0 andb=2.7 for Al, Cu, Sn, and Au.

and densities is such that the plasma is ionized sufficiently

4E is th f the level lectinaspliti strongly. In this case the decisive role in the calculation, for
andE, is the energy of the level neglectigsplitting (6). example, of the spectral characteristics of the plasma, is

This model was used in Ref. 9 to calculate the CharaCblayed by the higher ionization potentials, rather than the

teristics of a plasma in the local thermodynamic equilibriumﬁrst. Figure 3 presents the dependence of the ionization po-

approximation. However, the expression proposed in Ref. 9opiia| of copper on the extent of ionization calculated using

for the radius of an orbital in thel subshell is inconsistent 1) qels described here, as well as the experimental values
when the statistical weight i(2) is calculated, since it causes from Ref. 11. As a whole, both models agree well with the

fhe orbgglzwnh small, whlchsre.morejlymmetrlcfr?md havehliterature data. Consideration of thesplitting produces ad-
arger binding energies, to begin to disappear first as thg;ijnna| jumps in the ionization potentials, which appear

pla_sma dgnsﬂy |ncre%s??;2The use of the mean dlpole Inteﬂ'pon passage from one ionized subshell to another.
action radiusR, ~{1/r<) "4, rather than the mean distance

between an electron and the nucleRg~(r) (Ref. 9 is

more easily justified. Thus, orbitals with larjdhave an ef-
fectively larger radius, or, more specifically, There are presently a multitude of expressions for the

collisional ionization rate constant. The approximations pro-

5. RATE CONSTANTS OF ATOMIC PROCESSES

R _610”3/2 |+ 1 8 posed in Refs. 12-16 are the most widely used. They can all
nl— . ( ) . .

Z, 2 be written in the form

The use 0f8) instead of(7) in (2) results in alteration of _ap EXPA(—U)
the values of the constanta=12.0,b=2.7. Figure 1 pre- l=CT r—F(uzy), ©

sents the dependence of the mean extent of ionization for ]
aluminum, copper, tin, and gold on the density of the coldVhereu=—E,/T and T is the electron temperature. The
(T=0) plasma for the constants just presented, and confonstants andC, as well as the functioft(u,Zy), are pre-
pares them with the results for the Thomas—Fermi model. Sented in Table Iil.

A somewhat different atom model which takes into ac-
countl was considered in Ref. 10. Faussurier, Blancard, and

Decostet proposed using an expression similar(4 with Iy ke\{

replacement of the screening mattix,, by a matrix which 3
depends not only on the principal quantum number, but also 10'k :
on the orbital angular momentum quantum number to calcu- 0

late the screened nuclear charge. Unfortunately, complete 10

testing of this model over a broad range of nuclear charges

was not possible, since the new screening matrix was speci- 107¢ ;

fied only for values oh not exceeding 4. D) :
Figure 2 presents the first ionization potentials of ele- 107

ments with the nuclear charg&g=1, . . . ,36calculated us- 10730 ) ) ) . ) R

ing the H and. models, as well as the matrix in Ref. 10. The 0 5 10 15 20 25 30

figure also presents an experimental cufvés seen from Z

the figure, the. model greatly overestimates the first ioniza- 6.3 D q the ionizati rentiabf the extent of

. . . . 5. Depenaence 0O € lonization potentiabt copper on the extent o
m: = Lo i

tion potentials for elements wi 20. However, there are ionizationZ; : curvesl and?2 are the results of calculations based on the H

Clas_se_s of _prOblemﬁo_r exa_mple, the interaction of laser angL models, and curva was constructed on the basis of data from Ref.
radiation with matter in which the range of temperatures 11.
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TABLE lll. The parameter< and{ and the functior(u,Z,,) appearing in the approximating formul@) for

the collisional ionization rate constant.

No. Source C, cnPs tkeVtS I F(u,Z,)
1 Ref. 12 3.4x10° 1! 2 12.181— exp(—u)](1+0.0335)
X (1—0.622/z,,—0.074522)|f(y)|,
y=0.25 Inu,
f(y)=0.23+0.46/+0.1074/>
—0.045/°—0.0150%*
2 Ref. 13 9.51&10 * 1 E,(u)expu
3 Ref. 14 6.8x10° 1! 1
4 Ref. 15 7.39% 10 12 714 1
5 Ref. 16 3.9x10° 1 2 0.915(1+0.64/) ~2+0.42(1+0.5/u) ~2

dt
Note:El(u):fffe’tT is an exponential integral.

Two processes, namely three-particle recombination an@here R, (r) is the radial part of the wave function of an
photorecombination, were taken into account in the recomelectron in the Coulomb field of a nucleus with the charge

bination rate constant:
_p3b, pR
R.=R;"+R;.

The rateR?b of three-particle recombination to stajes
calculated from the principle of detailed balance:

4 1(27hH?
Rg :z

3/2
m_eT) Ne exp(u)gel .
The rateRze of the photorecombination of electrons to
stateé is given by the expression

8\2m %z}

R
3y/3m, %3c3n5T32 exp(u)Ey(u),

=

where

©  dt
Ey(u)=| e '—
u t
is the exponential integral.
The rate of spontaneous radiative decay from sgat®
state¢ was calculated from the formdia
2
e

9 :
Z(Eé’,§)2<g_§)ff,f’v | zlil,

Ay o= ——a—
€8 mch

whereE,, .=E; —E, is the transition energy arfg ./ is the
oscillator strength for the transition under consideration.

Z,,. The analytic expression fcﬁr'z’nm'" can be found in Ref. 6.
The formulas for the rate constants of collisional excita-
tion from levelnl to levelm!’ has the form’

Iy \? 2T
| feer \ o Ber e
Eg!yg ! 7Tme !

XEXF(—,Bg/’g)F&g,,
Whereﬁgré: Egryé/T, and

4
u _
C§’§,_247TH§?

F§Y§r=019{ 1+0.9 expi[))é:/’g)El(ﬂgryg)

3l

m(m-—n)
- 1__
z

X
20

1+

resed

is the Gaunt factof.

The transition rate from excited stagé to state¢ in an
impact quenching process is found from the principle of de-
tailed balance:

o _~u Y
Cgl’g_cg’g/g_gr exﬂﬁg"g)
6. CALCULATION RESULTS

The model of ionization kinetics described above was
investigated numerically over a broad range of plasma tem-

_In the H model we calculated the oscillator strengthsperatures and densities and was used to calculate the spectral
using the expression obtained for transitions between levelgharacteristics. The system of differential equati@hswas

with the principal quantum numbens andn of a hydrogenic
inn2
ion:

ZnZn

=196——7F——.
n5m3EtZ’,,g

fnm

In the L model the oscillator strength of the transition
from levelnl to levelm!’ was calculated using the formdfa

C_imal) Eg,,g(yznm.")z
nl'm|,_§ 21+1 IH dp ’
,%Bnm|"=f Rni(F) Ry (r)r3dr,

0
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solved by the implicit Euler method, and at each time step
the system of algebraic equations obtained was solved by
Newton’s method?®

We performed comparative calculations using the H and
L average-ion models for various plasma compositions, tem-
peratures, and densities. The collisional ionization rate was
calculated using constants No. 2 in Table Ill. Figure 4 pre-
sents the mean charge of an aluminum plasmi=at00 eV
versus the density for the stationary solution of E4$. The
calculations were performed both in the local thermody-
namic equilibrium approximatioficurves?2), in which only
the collisional processes were taken into account in Egs.
and in the collisional—radiative approximatigeurve 1). As
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FIG. 4. Dependence of the extent of ionization of an Al plasm#@-at00 FIG. 6. Dependence of the occupation numbers of the levels on their bind-
eV on the density for the average-ion model without consideration of the ing energy in the average-ion model with consideration ofl thplitting for

splitting (solid curve$ and with consideration of thesplitting (pointg: 1—  an Al plasma with an electron temperatufe=100 eV and a density
collisional—radiative approximatior® — local thermodynamic equilibrium ~ N;=10?* cm™3: 1 — collisional-radiative approximatior?, — local ther-
approximation. modynamic equilibrium approximation.

seen from this figure, the differences between the plots of th&Ponding to the merging of the two curves in Fig. 4 the
mean charge for the two average-ion models are very smafioPulations also coincide.

and do not exceed fractions of a percent. The calculations in Fgurés 7 and 8 show plots of the temperature depen-
the local thermodynamic equilibrium approximation at low dence of the mean charge of Al and Ag plasmas calculated in

densities give higher values of the mean charge than do tH8€ average-ion approximation and the chemical-bond model

calculations in the collisional—radiative approximation. As@t various densities. About 150 different ion states were
the density increases, the collisional—radiative approximataken into account in the calculations based on the chemical-
tion goes over to the local thermodynamic equilibrium ap_bond model. Pressure ionization was not taken into account,

proximation, as was postulated. At ion densitis>107* and this is possibly the reason for the discrepancy between
cm3, the two approximations give essentially identical so-the results at 10 g/chn As a whole, satisfactory agreement

lutions not only for the mean charge, but also for the popu_between the temperature dependences obtained using the dif-
lations. ferent models of the kinetics is observed.

Figures 5 and 6 show plots of the occupation numbers Thg influgnce _of the various processes taken into account
P./g, of level nl versus the energy of the level for two I the |01_1|zat|on kinetics on the mean charge was stu.d|ed in
density values. At the low density the collisional—radiative@" aluminum plasma at a temperature of 0.1 keV. Figure 9
approximation gives an occupation number distribution thaP"€S€nts the mean charge versus the density for the stationary
differs significantly from the Boltzmann distribution. The Solution of Egs.(1) when different processes were disre-
states closer to the ground state are more populated, whiarded in the calculation of the right-hand side.

the highly excited states are depleted. At the density corre- It IS s€en from a comparison of curv@sand 3 that the
influence of the collisional excitation and collisional quench-

ing processes becomes significant at %010 ° g/cnt. Ow-

00 05 1.0 . ‘ . .

E - Eyp keV 0 01 02 03 04 05
T, keV

FIG. 5. Dependence of the occupation numbers of the levels on their bind-

ing energy in the average-ion model with consideration ofl thplitting for FIG. 7. Dependence of the mean charge of an Al plasma on the temperature
an Al plasma with an electron temperatufe=100 eV and a density T: calculations performed using the chemical-bond mdlieés) and in the
N;=10" cm~3: 1 — collisional—-radiative approximatior, — local ther- average-ion approximatiaipoints for densities equal to 1 (1), 101 (2),
modynamic equilibrium approximation. and 10 g/crh (3).
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FIG. 8. Dependence of the mean charge of a Ag plasma on the temperatu

T: calculations performed using the chemical-bond mdlieés) and in the

average-ion approximatiojpoints for densities equal to I (1), 10°* (2),
and 10 g/cr (3).

ing to the occurrence of cascade ionization processes, they

cause an increase in the mean chdmygve2) as the density
increases in the range 180-10"2 g/cn?. At densities greater
than 102 g/cn?, three-particle recombination becomes the

[ 2 -4
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The line absorption coefficient
expressiof

is given by the
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where i, . is the line profile.

The total spectral absorption coefficient with consider-
ation of the induced emission equals

o

For the emission coefficient in a line and the recombina-

kabs_ (kff + kbf) kabsbb

dominant process, and the mean charge begins to decreagien emission coefficient we used the expressions

Curvesl, 2, and 4 show that radiative decay prevents the
establishment of equilibriunfcurve 1 essentially coincides
with curve 4 by the time the density is I8 g/cn?, and
curve2 does so only at a density of 18 g/cn?).

7. CALCULATION OF THE SPECTRAL EMISSION AND
ABSORPTION COEFFICIENTS

The expressions for the spectral coefficients for the
bremsstrahlung and photoabsorption of quanta with the en-

ergy e ,= 27hv have the forny

kff_16772 [ 27 e%%2Nip%(Z)°
v 3 3m.T  cmAZ%e’

P g/cm3

FIG. 9. Dependence of the mean charge of an Al plasnia=at00 eV on

the density for the stationary solution of Eq&) when the following pro-
cesses were taken into account on the right-hand side of these equéations:
— collisional ionization, three-particle recombination, photorecombination,
collisional excitation, and collisional quenchirg;— collisional ionization,
three-particle recombination, photorecombination, collisional excitation
collisional quenching, and radiative dec&y;— collisional ionization, three-
particle recombination, photorecombination, and radiative decay. Curve
was obtained in the local thermodynamic equilibrium approximation.
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The total spectral emission coefficient equals

1—exy{

The spectral emission coefficient thus determined is re-
lated to the spectral radiated powkrper unit volume of the
substance by

em_  ff fb
keM= (k'T+K'P) =

empb
+KEMPD,

J,=cke™u"!,
where
PI_ &) 1

m°h3c exple,/T)—1

is the Planck distribution.

Figure 10 presents the results of calculations of the spec-
tral absorption coefficients for aluminum at a temperature
T=0.01 keV and densitp= 2.7 g/cnt. The spectral absorp-
tion coefficients of cold dense aluminum obtained in Ref. 20
are presented for comparison. Close agreement between the

results is observed over the entire portion of the spectrum

where the calculations were performdd0 eV<e,<30
keV).
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FIG. 10. Spectral absorption coefficiekf€®in cold dense aluminurtcurve  FIG. 11. Spectral absorption coefficienks™ in gold at a temperature

1 was constructed on the basis of calculations in the average-ion approxF=0.1 keV and a density=0.1 g/cnf: 1, 2 — absorption coefficients

mation, and curv@ was constructed on the basis of data from Rej. 20 calculated with consideration of lines and without consideration of lines in
the local thermodynamic equilibrium approximatigasults from Ref. 8 3,
4 — corresponding results of the calculations in the present work with the
line shape(10).

In calculations of the spectral characteristics of a hot
plasma, the line profile and linewidth are of great impor-

the Lorentzian therefore, leads to displacement of the levels in the stiffer
1 Ve g direction.
e g &t (10 The characteristic values of the linewidth at a tempera-

T (Eg—Eg—e,)%+ 72,5’ tureT~0.1 keV and plasma densip/~0.1 g/cn? amount to
_ \/ N SRR cS several ek_actron volt_s. Nevertheless, in a higpltasma ther-
Yee (75,5') +(7§,§’) +(7§') ' modynamic fluctuations of the occupation numbers lead to
level shifts comparable to the binding enefgyf we assume

C . o . that the fluctuations of the occupation numbers of different
Ye g A€, respectively, the radiative, Doppler, and COIIISIOnallevels are statistically independent, this leads to effective
linewidths. broadening of the line. As shown in Refs. 21 and 22, in this

Figure 11 presents the results of calculations of the SPEG:ase the line has a Doppler line shape:

tral absorption coefficients using the average-ion model de-

where vy, . is the total linewidth, andygg,, ygg,, and

scribed above with consideration of theplitting for a gold 1 F{ (Eg— E,g—sy)2
— i — 1= exp — ,
plasma at a temperaturé=0.1 keV and densityp=0.1 be e 27(AE, ;) 2(AE; )2

glcnt. The figure also presents the results from Ref. 9.
Qualitative agreement between our calculations and the datahere the linewidthAE, . is related to the root-mean-
from Ref. 9 is observed on the whole. The differences besquare values of the energy fluctuatiofts; of the levels by
tween the positions of the jumps in absorption and the lines 5 2

can be attributed to the fact that at the density and tempera- (ABg¢)"=((0Bg — 0E9)). (1)

ture indicated, the rate of collisional processes is insufficient  In the average-ion approximation under consideration
for establishing local thermodynamic equilibrium. As washere we can express the linewidthl) in terms of deriva-
shown above, the calculation in Ref. 9, which was performedives of the energies of the respective states with respect to
in the local thermodynamic equilibrium approximation, the population:

FIG. 12. Spectral absorption co-
efficient in lines for a gold
plasma at a temperatuie=750
eV and densitiesp=1.9 g/cn?
(@ and p=19 g/ent (b): 1 —
calculated results from Ref. 21,
2, 3 — calculation using the
average-ion model with and
without consideration of thd
splitting with linewidths(12) and
(13), respectively;4 — calcula-
tion using the average-ion model
with consideration of thé split-
ting and doubled linewidths.
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TABLE V. Transition parameters calculated by different methods. Figure 12 presents the spectral absorption coefficients in
lines for a gold plasma at a temperatdre-0.75 keV and

Transition energy, eV BB eV densitiesp=1.9 and 19 g/cth Curves2 and3 correspond to
Transition Ref. 22 (6 Ref. 22 (12), (13 an exact calculation of the linewidth from Eq&2) and(13),
152 6339 6454 57.7 24.8 while curve4 was obtained for the case in which the exact
1-3 7128 7272 97.3 50.4 widths were doubled. For comparison, the figure also pre-
1-4 7307 7459 117.6 67.8 sents the results from Ref. 2turve 1), where the calcula-
2—3 886.5 819 414 26.2 tions were performed using the Hartree—Fock model.
24 1066 1006 6r.7 44.9 This study has shown that the use of the average-ion
34 210.8 187.3 27.8 19.5

approximation to calculate the ionization kinetics of a high-
temperature highly charged ion plasma gives satisfactory re-
sults when the thermodynamic and spectral characteristics of
) such a plasma are determined. This approach can be used in

By OE; comprehensive calculations of the kinetics and the radiative
(ABg )= é (E N E) ((8P)?) gas dynamics.

In conclusion, we thank the International Scientific-

Technical Center for supporting this work as Project No. 76.
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An equation describing evolution of a curved deflagration front of finite thickness is obtained for
the case of an arbitrary equation of state of the “fuel”, an arbitrary type of energy release

and an arbitrary type of thermal conduction. The equation is complemented by conservation laws
for the mass flux and the momentum flux through the deflagration front of finite thickness.

As an illustration of the method, the growth rates and the cutoff wavelengths for the linear stage
of the flame instability are calculated for the case of a flame in an ideal gaseous fuel and

for the case of a thermonuclear deflagration propagating in a strongly degenerate matter of white
dwarfs. © 1997 American Institute of Physid$$1063-776(97)00802-Q

1. INTRODUCTION employed first by Landau and Darriéddo study stability of
a planar flame front of zero thickness. However further in-
The dynamics of a deflagration wave is a key problem inyestigation of the flame front stability showed that the finite
many physical phenomena from industrial problems of burnynickness of the front has to be taken into accSftThe
ing in engines to astrophysical problems of stellar evolutionnf,ence of thermal conduction and finite flame thickness
A deflagration wave(flame is a front of energy release o qing important even on the scales exceeding the flame

propggaltlng dug to thermal conduction W'th a SUbS.omCthickness by several orders of magnitude. At the same time
velocity.” An ordinary flame supported by chemical reactions. . : o
introduction of a discontinuity surface for a flame front does

of a gaseous or liquid fuel is a typical example of a defla_not necessarily imply that the front has zero thickness: the

gration wave. Other examples are waves of laser ablation iﬂ hick he bound diti d th
inertial fusion?? fronts of thermonuclear reaction in super- 'ame thickness may enter the boundary conditions and the

nova eventé® evaporation waves in a superheated ffid, evolution equat.ion as an exte_rnal para_meter, depending on
etc. A deflagration wave may propagate as a planar statiorthe fuel properties. The evolution equation for a flame front

ary front separating cold initial mattéfresh “fuel”) from of finite thickness and the boundary conditions at the front

heated products of deflagration. It was shown by Landau ang/ere obtained first by Matalon and Matkowsky(though

by Darrieus'’ that a planar flame front is hydrodynamically misprints in the final results somewhat spoil the excellent

unstable against perturbations which bend the front on lengtivork). Matalon and Matkowsky considered the case of an

scales large compared to the flame front thickness. Similaordinary laboratory flame propagating in an ideal gas with a

instability is inherent to all waves of the deflagration type.large activation energy of the chemical reaction. The same
The instability leads to a cellular structure of a deflagrationevolution equation for a flame in an ideal gaseous fuel was
front®® or to self-turbulization of the combustion floW;™®  obtained independently in Ref. 12. However, the diversity of

which may cause considerable increase of the velocity of thgleflagration waves and their properties require development
deflagration front. Because of the Landau—Darrieus instabilpf more general theory of curved deflagration fronts, includ-

ity the configuration of a curved deflagration front is muching the case of an arbitrary fuel with an arbitrary type of
more common than the configuration of a planar front. Be'energy release.

zldﬂes, sqmefexternal eflfects like turbulence may wrinkle @ ,yhe present paper we obtain the conservation laws at a
eflagration front as Wel. . deflagration front and the evolution equation for a curved
To study propagation of a deflagration wave one has tg

consider the complete system of hydrodynamic equationsdeﬂagratlon front of finite thickness propagating in a fuel

taking into account thermal conduction and the kinetics ofw ith an arbitrary equation of state, an arbitrary type of ther-

the energy release. This is a rather complicated problem evéﬂal conduction and an arbitrary type of energy release. To
for numerical solution and any simplification of the problem !llustrate the method, the growth rates and the cut-off wave-

is of great interest. The problem may be simplified considerlengths for the linear stage of the flame instability are calcu-

ably if the region of thermal conduction and energy releaséated for a flame in an ideal gaseous fuel and for a thermo-
can be replaced by a surface of discontinuity, separating theuclear deflagration propagating in the strongly degenerate
fuel and the products of deflagration. In this case one mughatter of white dwarfs. For the particular case of a flame in

specify the evolution equation for the deflagration front andan ideal gas with large activation energy of the reaction the
the boundary conditions at the front. Such a model waquations obtained agree with the results of Ref. 11.
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2. A PLANAR STATIONARY DEFLAGRATION FRONT with the boundary condition$=T_ ahead of the deflagra-

) o ] _ tion front andT=T_ behind the front.
As usual the deflagration velocity is essentially subsonic, |t is convenient to introduce the dimensionless variables
so that the flow caused by a deflagration wave can be treateg, 4 parameters r=plp_ 0=T/T_ h=H/H _

as incompressible. The equations describing propagation ofﬁ:(P_ P )p U2 x=xlk_, Pres=pecH T k_,

deflagration wave are A=QL/(H_U;7g), and the dimensionless coordinatez/
Ip L, whereU; is the velocity and.=«_T_/(H_p_Uy) is the
—+V-(pv)=0, (1) thickness of the planar stationary deflagration front. The pa-
J rameterA is an eigenvalue of the dimensionless equation of
heat transfer

v ME
p E-i—(pV-V)V-FVP:/.LFAV-F ,u,S-l-? V-(Vv), d de dh
H p—Q with the boundary condition®=1 for {&—~—« and ®=0
pE+pV~VH=V~(KVT)+T—W(T), ©) for &—oo,
R

Let us consider the approximate analytical solution of
whereH is the enthalpy per unit mass,is the coefficient of EQ. (5) for the case of negligible thickness of the zone of
thermal conductiory andus are the coefficients of the first €nergy release using the method proposed by Zel'dovich and
and second viscosity respectively, which may be taken conFrank-Kamenetskit® Outside the reaction zon&~0 holds
stant for the majority of physical problems. For incompress-and the temperature obeys the equation
ible matter the density, enthalpy, and thermal conduction de- de
pend only upon temperature=p(T), H=H(T), x=«(T). X d—§=
The last term in Eq(3) describes the energy release in the
deflagration wavery is a constant with dimension time and Neglecting the second term in E() inside the thin zone of
Q is the energy release per unit mass. For a given enthalpy @nergy release and using E@) as a boundary condition
the fuel (label “—") the enthalpy of deflagration products upstream from the zone we obtain the following approximate
(label “+") is computed through the conservation of en-value of A
ergy:H ,=H_+ Q. Then the equation of state gives the final (h, —1)2 (

h—1. (6)

temperature of the deflagration produdts=T(H,), and A

the final densityp,=p(H_,). The dimensionless function 2X+

W(T) gives the temperature dependence of the reaction ratgquation(7) makes it possible to obtain the deflagration ve-

gration productsW(T_)=0, W(T)=0. Strictly speaking, releaseall; = \Qx_T_/AH?—p— = 7.

the process of energy release should be described by a sepa-

rate kinetic equation: the chemical kinetic equation, the

equation of laser light absorption, etc. However in many
L . : . 3. EVOLUTION EQUATION FOR AN INFINITELY THIN

cases the kinetic equation together with the equation of e S EFLAGRATION FRONT

ergy transfer may be reduced to an equation of the form o

Eqg. (3). This is an exact result for a flame in an ordinary  Let the curved deflagration front be described by a func-
gaseous fuel with Lewis number equal to unity, when thetion z=Rf(x,t), so that the evolution of the front is charac-
coefficients of mass diffusion and thermal diffusivity are terized by the length scaR>L and by the time scalg/Uj .
equal®°This simplification can be made also for the case ofit is convenient to introduce the dimensionless time
negligible mass diffusion, when electron thermal conduction;=U;t/R, the transverse coordinatg=x/R and the small

or thermal conduction of radiation is the dominant processparametee=L/R<1. In a coordinate system comoving with
as it is for the thermonuclear reaction fronts in supern&éae, the flame front

for laser ablatiohand for many other physical processes.
Equations(1)—(3) have a stationary solution which is a (=¢-tmpnle, n=n 7=71 ®
planar deflagration front propagating alongxis. In the ref-  the hydrodynamic equations take the form
erence frame comoving with the deflagration front the sta- rom
tionary solution consists of the upstream homogeneous flow ¢ — 4+ — + 2V (rv)=0, (9)
of cold matter, the transition region of heating and energy Jt 9
release, and the homogeneous downstream flow of the defla- v
gration products. For the stationary flow we haveer —+m —+er(vV))v

0, -1
W(@)d@) : (7)
1

pu=p_U;=const and the speed of a stationary deflagration IT 9%
is determined as an eigenvalue of the energy transfer equa- oIl Pre
tion (3) Z—SVLH‘FVlf(?—é,‘FPI’FAgv'F Pl’s'i‘T
U dH d dT\ p—Q WT 4 d
p— 'z dz KE + T (T) 4 X 8VL_VLfa_§) a—é, T +eV, v, (10
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24

dh dh v h

r—+ma—§+srv N

_N2 J 0
N 9 \ X gt

0
eV, 0-V, f— 7

+eV |x
J
_SVLfa_é«(XVL@)_FW(@)a (12

where the mass flur is given by the expression

of
m=ru—ra—7—erlf, (13

u=v,/U;, v=v,/U; are the components of the dimension-
less velocity, andV, is the part of the operatd¥ related to
the coordinatey along the front surface. The Laplace opera-

tor in these variables takes the form

2

We expand a solution of Eq&)—(12) in power series of
the small parameter e&: m=mgy+em,;+0(&?),
0=0,+£0,+0(&?), etc. Then with accurac®(¢) Egs.(9),
(12), (15), and(16) take the form

ﬂm_
2
g(v+uVlf) PreN? 2z (vhuvLf), (18
, @ m?\ (4 # (m
N t9_§ +m)— §PI’|:+PI'S N2 f —, (19
oh ( 0 o )
ma—é,—N &—g )(6)—g +W(0). (20

It follows from Eq. (17) that m=my(#,7)+O(e). Similar to
Eq. (5), the solution of Eq(20) can be presented in the form:

=0,({IN), my(g,7)=N=y1+(V,f)? (2D

where®=0 () is the temperature profile for a planar defla-
gration front, which is a solution of the ordinary differential
equation(5). The equation of state of the fuel gives us im-
mediately

ro=r(09)=rp({/N), ho=h(@g)=hy({/N). (22

Equations(18) and (19) integrated across the deflagration
front supply the conservation laws for the momentum flux at

J
A= N2 — sz R 28 (VJVL)+82V2 the infinitely thin surface of discontinuity. In particular, we
7S ¢ B find from Eq.(18)
(14 '
v+uV, f=v_+u_V, f+0(e). (23
whereN = 1+ (V, f )2 Itis convenient to rewrite Eq$10) 5 .
and(11) in another form, putting the expression for the mo- Equations(13) and (23) give the solution for the velocity
mentum flux in the left-hand side components
p) F Lrelo (24)
u=u_———— ,
M— (v+uV, f )=—sr| —+ oV, |(v+uv,f) N r (€)
a¢ or
P SIS R St ) (25)
+eru a—T+vVL)Vlf—sVlH+Pr,: vEv-t oy T TOe)
P The expression for pressure follows from E#j9)
H—H_+T+ §PFF+PTS Nﬂ_g F +0(e).
J m 26
— +8VLU) (15) _ . _ - (26)
74 Equations(13) and (21) give the evolution equation for an
5 ) infinitely thin deflagration front
m
N2 — | II+ —2—> of
29 Nr E_+v,Vif+\/1+(Vlf )2—u_=0(¢). (27)
am 9*f of _ _ .
=—e —&V, (mv)—er 52 2ervv, s The evolution equatiofi27) and the relation$24)—(26) de-
T T T

m
—erv(vV )V, f+eV fV, T+ PrFAg(T)

Pre , d
+Pl’|:vA§VLf+PI‘|:A§ Prs‘f‘T N &_g
Jd [m
—sVLfVL)<a§ +SVLU) (16
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termine the dynamics of an infinitely thin deflagration front,
which is, in fact, the Landau—Darrieus model of a deflagra-
tion front.

4. INFLUENCE OF THE FINITE THICKNESS OF A
DEFLAGRATION FRONT ON FRONT EVOLUTION

The evolution of a deflagration front depends essentially
upon the finite thickness of the front even on the length
scales which exceed the front thickness by several orders of
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magnitude’1° The next terms of the expansionédrdescribe  If we write the right-hand side of E¢31) in Hermitian form,
the influence of the finite thickness of the deflagration frontmultiply it by ¢, and integrate, we obtain the relation
The equation for the mass flux, E¢Q), with accuracye?
may be written in the form

_(&N 2
my = v 92 (e S g

omg [N V. fV, N\ ¢
(7—€=N E'f'v_VLN'f'T a—g((ro—l)é’) _sz dh d@ ZVLfVLN
. $dz dg X dg N
_ ON E%—Vl(Nv_)—Ffo )—Vlv_. d de,
d§ EX —7 dg (39
(28
The solution of Eq(28) is where
N LfV,N » = dh, !
m=my — 2, v+ N N Y ) <<1>>:( | mﬂdg)( | de) (36
aT —» — df
N
xé( —1)- a—+VL(Nv )+V2f) (é) and
de é dh
2_ P -1 7P
(29 V=x exp( pr d@pdv). (37

where
; / The profiles of temperature, enthalpy and density
¢ 0,=0,(§), hy,=h,(&), p,=p,(&) for a planar stationary
2= — p— Op\s) Hp=Hpls)s Pp=Pp
J(N) f % (rp(v)—1)dw. (30 deflagration front follow from Eq(5) and the equation of
state. Taking into account E¢35) we obtain the evolution

Substituting the expressiof29) for the mass flux into the  equation for a deflagration front of finite thickness with the
thermal conduction equatidi2) and extracting the terms of 5ccyracyO(£?)

order of O(e) we have

of
ﬁho oN §&ho oN _+U7Vlf_U,+N
A d
M- Sr (ﬂT+Vl(Nv_)) N 9z ((97+VL(NU_) T
IN dh
£\ ohg 909, =—g| —+V,(Nv_)+V?f <(§+J) —p>
2 5| 2o 2 L 1
+V2f )J(N) 37 +V2fy 5 ar dé
dh de
e fVLN d 309, +8fo<g ; X d§>
N g | X Tae
V,fV,N / d de
Nza_2 . dh@ Law a1 —2e—lNl <d§(§x d§)> (38)
652 (X 1) g 1 d@ 1- ( )

I%/\/hereN = J1+(V,f )2 Equation(38) is obtained for the
case of an arbitrary equatlon of state of the fuel, an arbitrary
type of the thermal conduction and an arbitrary type of en-
ergy release.
NECH ) 5 90, d [dh 90, Let us consider a deflagration wave, for which energy is
(T§)=N 92 (X ol ) ar (@ &_g) releaseq in a zone of negI|g|bIe_ thickness compared _to the
total thickness of the deflagration front. For an ordinary
dwW 90, flame this case corresponds to a reaction with large activa-
ta0 . 32 tion energy. In this case we have from K6 ¥?=1 for £&<0
and¥?=0 for £>0, so that the average of E(6) becomes

One can check by simple substitution and comparison wit
Eqg. (5) that the right-hand side of Eg31) is zero for
0,=00ydL:

The operatorIE(G)l) can be reduced to a Hermitian form
Fn () by the substitution

3 §/N 1dhpd 33
= ex R ae, v (33

1 0

Calculating the coefficients in E¢38) we can write the evo-

. . . . - . lution equation for the deflagration front in the form
where{_ is an arbitrary position since the operaf®,) is q g

linear. The expressioR(¢) becomes zero for of PIN
—+v_V, f-u_+N=¢ca a—+VL(Nv_)+V2f

le 1 dhp Jar
Yo=X =7 &g = ex ol (34) (40)
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Equation(40) describes the influence of front stretching and
the finite thickness of the deflagration wave on the velocity

d% (m oN
ﬁ_gz T —8——8VL(NU_)

(2 pretpro|n?
_ng+ s aT

of the front. The numerical factor depends on the fuel prop-

erties

_ N fo de fo L de 41
a_h+—l rxdo + . ho1 xdo. (41

1

For many physical problems the dimensionless equation of

state for an isobaric flow has the fornm=1. This holds

when pressure is determined for an ideal gas, a nonrelativis-
tic, or ultra-relativistic fermi-gas, by radiation pressure, etc.

In this case the numerical factor becomes

h+ J®+ d@
h-1), ryd®.

For the particular case of an ideal ga®=1) with a con-
stant coefficient of thermal conductidiy=1) the evolution
equation obtained by Matalon and Matkows$kis recovered
from Eq. (40).

(42

a=

5. CONSERVATION LAWS AT A DEFLAGRATION FRONT
OF FINITE THICKNESS

The evolution equatiof40) should be complemented by
conservation laws at the deflagration front which take into

o2t ) v of ) L d v
—srﬁ— erv_ LT e(r— )a—T—v_ 1

(r—1)2V, fV,N

XN—g ; N —erv_(v_V, )V, f
r-1_, 4
+eV fV II_—¢ Vifte §Pr,:
+Prg|N2V VLf -1 46
rS 1 (9§ r ( )

Integrating Egs.(45 and (46) and taking into account
asymptotic behavior outside the deflagration front we obtain
the jump of the components of the momentum flux across the
deflagration front of finite thickness:

account the finite thickness of the front. These conservation

laws follow from Eqgs.(9), (15 and(16) integrated with ac-
curacyO(g?). The conservation law for the mass flux follows

immediately from Eq(29):

+

v f of
ru—rov f-r— .

N )
Is\ll(E—FVL(Nv)—FVL]c ),
(43
where the numerical factor is given by the formula

= dry
le fﬁmfd—g d

(44)

To obtain conservation laws for the momentum flux we need

to integrate Eqs(15) and(16), which toO(&?) have the form

v+uV  f
g( )
J J
=—gr a—T+V,VL v_—erv f E_-FU,VL
Xu,—sT(VLfVL)v,—s N f(V, fV, u_
r—1(4 V. f
—eV, II_—e¢ N 07_+v Vl+ V, |V, f
VNG [ r-1 B N2 92 vt
ET&—g +Prg g (v"r‘U n )
J [r—=1
—&PrgV, N §< — (49)

NZ(? I m
|\ Ner
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u +
(v+uv, f)|F —PrFN +Vif )
74 24
r—1V,N A
—ePrp — — +£J,(Dv_
+
+V, fDU_+N"1DV, f ), (47)
- 2 +_JV V. f\ &y (%
TN e TN TN (92
17
+2v,£VLf+v,(v,VL)Vlf
+2DN— —— | +| 3 Pre+Prs
[? m + r+_1 Vlf
(a7 )
(48)
where the coefficiend, is
= £drp
Jo= J:w ng—gdf (49

and the differential operatoé is introduced for conve-
nience:

0
D=——+v.V, +N 'V {V,. (50)

From the hydrodynamic equatioii8)—(11) outside the de-
flagration front!

+

oy L5y 4y, D
0’)§ n ag & N v_ 1 u_
1. r.,—1V,N
+NDVLf )+8 ?W'
(51
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+ r.—1 wherev_ is the flow velocity at the cold boundary of the

d (m V. f

9z (7) =& VJ.(T)- (52)  deflagration frontn=VF/|VF| is the unit normal vector di-
- i rected towards the products of deflagratiéh,is the front

Taking into account Eq$51)—(52), we can rewrite the con- stretch, which may be written in a coordinate-free formtas

servation lawg47) and (48) in the form

10N 1
(v+uV, f )T =e(d;—Pre(r, —1))(Dv_+V, fDu_ K=t TN Y (Nv-=Um)), (58)
+N-1DV, f), (53  and the numerical factor for the case of a narrow zone of
, , energy release is given by
m?\|* V. f\ edy [o%f of
1“@) ”"ﬂﬁ) N g2tV q= 30 [Te_pedT
- Q T_ p-K-T_
~  V,fV,N
Fu (0 T, 2PN ([t T 50
. H-H_ p_xk T_°
(54)

_ _ Taking into account Eqs(57) and (58 we can write the
Equationg(43), (53) and(54) represent the conservation laws conservation laws in the following coordinate-free form
for the mass flux and the tangential and normal components

of the momentum flux for a deflagration front of finite thick- ) n-v+i‘9_) +:p ik 0
ness for the case of an arbitrary fuel. The left-hand sides of Noat)| —F=—7t%
these equations represent the conservation laws for an infi-
nitely thin deflagration front, the right-hand sides describe +_ P-"P+ 2

: ! L . n-v]l=—1J¢+Pr nxXD(v_—U;n),
the influence of the transport processes and the finite thick- [n-v]l U 72 F _ ( )

ness of the deflagration front. The dependence upon the (61)
equation of state of the fuel and the particular form of the (P+p(v-n?)|t=—L U21.V-n+Lo. J

energy release enters the conservation laws through the co- P - p-Yiv2 P
efficients J,, J,. For the common case of a thin zone of

f o~ ov
energy release the coefficients take the form X\ PN+n- —+n- (v - V)v_ |,

] ®; 1—rh

Jl=f +rXo|®+J Ciop xde, (55) . 62
1 1 -1 where the dimensional form of the operafris
0. 0, 1—rh x .0

Jzzf Xd®+f X de. (56) D=2 +v .V-Un.V 63)
1 1 h—1r ot

The evolution equatio38) and the conservation lawg3),  and the coefficientd,, J, for the common case of a defla-
(53) and (54) determine the dynamics of a curved deflagra-gration wave with a thin zone of energy release are given by
tion front in a fuel with an arbitrary equation of state and anthe formulas

arbitrary ?ype <_Jf energy release. IF should be me_ntioned that T, px T.p H_ —pH «dT

second viscosity does not enter either the evolution equation Jl=f dT+f ,

or the conservation laws, though this process has been taken . H-H- p*K*T*(64)

into account in calculations.
3 _J’T+ K dT+jT+ p_H_—pH «dT 65
27 ) k_T_ r p(H=H_) x_T_° (65)

T_ p_k_T_

6. SUMMARY OF THE RESULTS AND DISCUSSION The evolution equation Eq57) and the conservation laws

In the present paper we have obtained the evolutioFds- (60)—(62) determine the dynamics of a deflagration
equation for a curved deflagration front of finite thicknessfront in the flow of a fuel with an arbitrary equation of state
propagating in a fuel with an arbitrary equation of state andind arbitrary type of thermal conduction and energy release.
an arbitrary type of energy release. The evolution equation i4N essential advantage of the present model is the possibility
complemented by the boundary conditions: the conservatiofif @PPlying it to physical problems of different nature, i.e.,
laws for the mass flux and for the momentum flux throughfl@me propagation in a chemical of thermonuclear fuel,
the deflagration front. Let us write the results in dimensionaPropagation of an ablation front in a laser target, the evapo-
units in a coordinate free form. For a deflagration front de-ation front in a superheated fluid, etc.

scribed by a functionF(z,x,t)=0 (for example, F=z Let us apply the results to some particular physical situ-
—Rf(x,1)=0) we haveN=|VF| and so the evolution of a ations. In the simplest case of a flame in an ideal gaseous
thermal conductivity and fuel diffusion the evolution equa-
1 9F tion (57) and the conservation law§0)—(62) coincide with
n-v- N ot Ui—alK, (57) the equations derived in Ref. 11. The well known
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expressioff~1®for the instability growth rater of perturba- AP
tions at a planar flame front of finite thickness may also be H=—, (69)

derived directly from these equations. The linearized equa- P

tions (57), (60)—(62) couple the amplitudes of the perturba- pZ\*3 M;\2R T2

: - P=0.77c|—| |1+2.068 =| 5=/ (70)
tion modes generated by an unstable flame front in the up- M; pZ #2c

stream and the downstream flows. Taking into account the h 7 andM h lectrical ch dth
explicit expressions for the perturbation motfesne finds whereez and M, are the average electrical charge and the

the instability growth rate from the consistency condition of 3/€/29€ Mass of the ions. Because of the relatively low tem-

the linearized equation&7), (60)—(62): perature the thermal conduction of the degenerate electrons
q 7). (6062 dominates in a white dwarf over the radiation thermal con-
o=SUk(1—k\/2m), (66)  duction, thereforé
whereS= (1 +r_) Y(J1+1/fr, —r, — 1) isthe coefficient 0.811c? [ pz\13
obtained in the Landau-Darrieus theory of the flame front  *= gazx “ (M, (72)

instability. The instability is suppressed by thermal conduc-

tion for perturbations with wavelength shorter than the cutWhereAe; is the Coulomb logarithm. Using the equation of
off wavelength state and the expression for the thermal conduction we cal-

culate the coefficients of the nonlinear model E&S), (64)

o= alr, 1—r.— Inr, and (65). Then similar to the case of a flame in an ideal
€ 25(S(ry+1)+ry) F+ 1-r, gaseous fuel, we find the cutoff wavelength of the Landau—
Darrieus instability of a deflagration front in white dwarfs
X(2Sr,+1+r.)]. (67) 27l by+Sh,
N¢ (72

. o TSr, (14r)S+1
Because of the large numerical coefficient in EG7) the _ o _ _ N
cut-off wavelength \, for typical laboratory flames with the coefficients depending upon the ratio of densities
(r,=0.1-0.2) exceeds the flame thicknekssubstantially, ©f the fuel and the products of the thermonuclear reaction
A.~20L. For this reason smooth planar flames are observed 3—orlB_ 43 ro41
much more often than was expected from the Landau— b;= h 4,3+ +—n s 3
Darrieus theory:"1° 6(1-ry)  123(1-r)(2+rd)

Another interesting application of the obtained nonlinear X (3—3r234 4r 434 16534 8B, (73
model is to the dynamics of a thermonuclear deflagration in
. ) 213
supernova events. It is generally believed that the observed _ 1 1-r9 g 23 43
spectrum of a supernova of type la is determined mostly by 2_2ri/3(1_r+) N 6ri’3(1+ri’3 (3+2ri™+ry).
the first deflagration stage of white dwarf burnfhy.At the (74)

same time investigation of the deflagration stage is greatlyl_

. .The fuel close to the white dwarf center is strongly degener-
complicated by the huge range of the length scales which . ; .
: . ate so that energy release in the reaction causes only a slight
have to be taken into account. The hydrodynamic length g . _
. S . decrease of density of the burning matter=0.85-0.9. For
scale of the deflagration dynamics in supernovae is about the

white dwarf radius-100 km, which exceeds the flame thick- o' SMall expansion the Landau-Darrieus instabilty is
T : . rather weak, while the thermal stabilization is strong and the
ness(~10"° cm) by 12 orders of magnitude. By this reason

: . . ) . T cutoff wavelength exceeds the flame thickness by almost
a direct numerical simulation of white dwarf burning is im-

) o . . three orders of magnitude.=410L. This value differs con-
possible and a simplified model is required. The most prob-. .
X X S . . siderably from the crude estimate of the cutoff wavelength

able scenario of the deflagration dynamics in white dwarfs is 5o o o
L made in7° where the stabilization of the hydrodynamic in-

development of a fractal structure, which implies many cas-,_, ..
stability was expected on length scales of about.10

cades of cells of different sizes growing because of the The developed model may be useful as well for investi-

:}i?g::;st%ir{rl]e?hseI?gr?g“rt}fa-:-l;:a\éeslgg ity of afractal flame gation of the fractal dimension of the deflagration fronts in

white dwarfs, which up to now has been estimated with
. [2mR\d rather low accuracy~50%)'8 not acceptable in the theory of
U=r,"Us Nohg) (68 thermonuclear supernovae.
where 2+d is the fractal dimension and, is the critical This work was supported in part by the Swedish Na-

number of a spherical function for a fractal acceleratingtional Board for Industrial and Technical Development
flame found in Ref. 19, which determines the upper limit of (NUTEK), Grant P2204-1 and in part by the Swedish Natu-
the fractal structure. The cutoff wavelengthgives the low  ral Science Research Coun@FR), Grant F-AA/Fu-10297-
limit of the fractal structure of the deflagration in white 307.

dwarfs. This value may be calculated on the basis of the

model equationg57), (60)—(62), taking into account the ) S _

properties of the white dwarf fuel. In the dense central layers Ligg' Landau and E. M. LifshitzFluid Mechanics Pergamon, Oxford
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Distribution of the electric field and current in a turbulent conducting fluid for small
magnetic Reynolds numbers

V. A. Bityurin and A. L. Tseskis

Institute of High Temperatures, Russian Academy of Sciences, 127412 Moscow, Russia
(Submitted 17 April 1996; resubmitted 5 September 3996
Zh. Eksp. Teor. Fiz111, 528-535(February 199y

Various aspects of the influence of an external magnetic field on turbulent flow of a conducting
fluid are investigated. The distributions of electric variables are determined for weak

magnetic fieldgboth the electric field and the current have nonzero values in thig. dasevery
strong magnetic fields it is shown that turbulent motion acquires a two-dimensional

character. The emergence of an electric current component perpendicular to the flow and to the
magnetic field is described in the case of a temperature-stratified medium in the presence

of turbulent heat flux. ©1997 American Institute of Physid&S1063-776(097)00902-3

1. INTRODUCTION the electric potentialp. If necessary, the components of the

. , electric current can be determined from Ohm'’s law.
The description of magnetohydrodynamic turbulent mo-  gjnce 4 solution of these equations cannot be obtained in

tion encompasses two types of problems. On the one hand, i, reasonably general forthit is customary to rely on
concerns(for examplg the generation of magnetic fields in 5qgitional semiempirical hypotheses or formal assumptions
the turbulent motion of a conducting fluigghenomena of 5 inyestigate the corresponding phenomena. It is important
this kind are of utmost importance for a variety of astro-, note at this point that such modifications are often incor-
physical applications The corresponding mathematical ap- yect: for example, in the literature we sometimes encounter
paratus reduces to a system of equations that embody thfe notion that it is permissible to sEt=0 for Re,<1 (Refs.
hydrodynamic equations of motiofincluding the Lorentz 5 504 4. The lack of substance in this condition can be
ixXB fprce) and discontinuities, along with .aII t.he Maxwell clearly demonstrated with the aid of EQ): the solution of
equations. On the other hand, the investigation of MHD he hroplem in this case reduces to the trivial case of a fluid
turbulent motion in the channels of various MHD devices; rasf On the other hand, experimental data show that the
and the extremely important problem of how the properties,yjication of an external magnetic field to initially isotropic
of turbulent motionper sechange under the influence of an ¢, 4 jence(in a conducting fluidl produces a multitude of
external field lead to situations in which the fluctuating mag-,qntrivial phenomena. In this paper we investigate the elec-
n(_atic field can be disregarded. This possibility is associategriC current(and field distribution for a small value o8, the
with the smaliness of the magnetic Reynolds number formation of two-dimensional2D) turbulence in the oppo-
Re, <1, site case of strong magnetic fields, and a certain “odd” ef-
. ) fect that occurs in a temperature-inhomogeneous conducting
where Rg=vL/vy, (v is the order of the hydrodynamic ve- {id in the presence of turbulent heat flux.
locity, L is a characteristic length of the problem, amglis
the magnetic viscosity of the fluidin this so-called nonin-

ductive approximation the Maxwell equation 2. WEAK MAGNETIC FIELDS

9 The “weakness” of the magnetic field must be charac-
curl E=— 7t terized by a dimensionless quantity; in our case it corre-
sponds to smallness of the ratio of the magnitude of the

reduces to curE=0 in the case of a static exterrlfield, Lorentz forcejB to the term nonlinear im in the hydrody-

so that the electric field is a potential field: namic equation of motiorpv?/L, so that
E=—Vo. oB2L
¢ <1,
Accordingly, taking into account Ohm's law pv

j=0o(E+vXB) and the condition of continuity of the elec- wherec andB have nonzero values; of course, the inequali-
tric current divj =0, we arrive at the equatidffior a constant tiesolL/cey>1 and especiallyL/vey>1 must be satisfied
conductivity of the fluid in this case to ensure that the electromagnetic field is quasi-

V20=B-curl v 1) stationary_(sefa Ref. 1, Sec. 38Looking gt the distribut_ion of

' the electric field, we can completely disregard the influence

Equation (1) in conjunction with the hydrodynamic equa- of the Lorentz force on the motion, because it is readily
tions of motion and continuitywe assume that the fluid is apparent that the corresponding corrections to the electric
incompressible, div=0) thus forms a complete system of field would merely add higher-order corrections in the small
five equations for the determination of five unknown func-quantity B to the expansion ofE2) in powers ofB (angle
tions: the three components of the velocity, the pressure, arorackets are used everywhere to signify statistical
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averaging. Inasmuch as the distribution & must be uni-
form in a homogeneous fielB applied to isotropic turbu-

lence, and since the statistical averages must coincide with

the volume averagesee Ref. 6 regarding the ergodicity of
hydrodynamic fields on the basis of the well-known rela-
tion

(Ve)2=div(eVe)— V2o,

and with allowance for the transformation of the volume
integral of diy . . .) into a surface integral, we have

(ED=((Vg)?)=—(pV?¢). )
The solution of Eq(1) has the form
1 d3r
go(x)z—; f B-w(x+r) —,
w=curl v, ©)
so that from Eqs(1)—(3) we obtain
BB, 8
(E)=7— <f wi(X)@)(x+1) Tr> (4

(summation over repeated lower-case Latin indices is tacitl
understood throughout the artigleConsidering a homoge-

neous magnetic field directed along one of the coordinatd&termined by small-s

axes,B=(0, 0,B3), B;=B, and making use of the well-

known relations for the average values of the products of the

derivatives of the velocity with respect to the coordindtes,
we can reduce Ed4) to the form(with obvious interchange-
ability of the averaging and integration operatipns

| )
}dr

wa(M(x+r)
BZ
/| -
5

In the isotropic case, the two-point velocity correlation ten-
sor b;; can be expressed in terms of the longitudinal scala
b, and the transverse scalay,, which depend om (Ref.

7):

2

(EY= o
4

9%y (1) *

—Ab;(r)+ T+Ab33(r)
3

rir:
bij(r)=[bpL(r)—bnn(r)] r_2J+bNN5ij ,

whered;; is the Kronecker delta. Taking the latter expression

in to account, we have
bii=brL+2byy,
2
I3
Paz= (b L —bnn) r_2+bNNv
so that the bracketed expression in E5).is transformed to
(— 1/3)V?(b, .+ 2byy) . Consequently,
B2 dr ( 2 4

127 ) roar
After integration over angles, this expression yieldsr
brevity we setb | +2byn=A)

(92

2 _
(E9) ¢9r2+

)(bLL+2bNN)-
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£2y B? (92A+2(9A J

(E9= 3 For2 ar |97
= i 2A|7+ aals foo aAd 6
=3 lotr—-lo . ar dr)- (6)

To calculate the corresponding quantities in E&j, we need
to take account of the fact that as-o> the correlation func-
tions decay in any case as°® or faster(as a consequence of
the finiteness of the Litsyanski invariant associated with
the conservation of angular momenf)mthe final result
therefore has the form

B? B?
2\ — — 2

(E%)= 5 A0)=—5 (v?), (@
sinceb; | (0)+ 2byn(0) is simply the mean-square velocity
of the turbulent motion. It is evident from Ed7) that the
energy of the electric field is proportional to the kinetic en-
ergy of the fluid and in the given situation is not related to
the mean-square vorticity in the sense that &g.does not
contain any factor with units of lengtfotherwise the right-
hand side of(7) would include some characteristic length

§orresponding to the relation betweseffcurl v)?) and

(v?))), contrary to the oft-encountered notion th&?) is
cale motions, which provide the main
contribution to{(curl v)?) (see Ref. @

Calculating the average values ofvXB)? and
E-(vxB) analogously, we readily verify that the mean-
square current differs frorfi7) by a constant factor, so that
both the electric field and the current dengigre nonzero in
the given situation. We also recognize that, generally speak-
ing, these assertions are equally valid for arbitréoyt not
too large values ofB. We have already mentioned that to
choose the trivial solution of the Maxwell equatiofiss 0,
lacks any kind of logical foundation for the turbulent motion
of a conducting fluid. In the next section, however, we intend
to show that for sufficiently high values 8f, another special
case ariseg,=0, which reduces to 2D turbulent motion.

r

3. STRONG MAGNETIC FIELDS: TWO-DIMENSIONAL
TURBULENCE

For sufficiently large values d8, such that the inequal-
ity oB2L/pv<1 is not satisfied, the influence of the mag-
netic field on turbulence in a conducting fluid can no longer
be ignored, and all the corresponding quantities become
more or less anisotropic. In a homogeneous magnetic field
there is only one preferred direction in space, and the two-
point velocity correlation function must be axisymmetric:

bij(r)=a1rirj+a2)\i)\j+a35ij+a4l’i)\j+a5r]—)\i y

whereA=B/B is the unit vector in the direction d8, and

a,, ..., as are functions ofr?> and r-X. Of course, the
equations containing;; (and the corresponding three-point
moment$ and the generalizing Karman—Howarth equations
are also relatively easy to obtain in the given situation, but
their solution is even more difficult than the solution of the
Karman—Howarth equation. On the other hand, the most im-
portant issue from a physical standpoint is to ascertain the
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character of the anisotropy of turbulence for magnetic fields g,
of sufficient strength as to satisfy the opposite of the inequal- - =0- (13)

ity given in Sec. 2:

5 Since vXB contributes absolutely nothing to the

oB°L 1 ®) z-component of the current density, this component is related
pv ' only to the strength of the electric fiell (or, more precisely,

to its z-component Consequently, without a potential dif-

ference in thez-direction, according t¢11), we have simply

E,=0 (or, equivalently,j,=0), and the distribution of the

This problem is important in that experimental dita
have shown that when this inequality holds and,R&, the
turbulent motion becomes 2D, with the velocity perpendicu- 2z .

N . current and the electric field is 2D. For this reason the vector
lar to the magnetic field; such motion has a great many non(-: (i is directed alona. so that from the potential character
trivial features that distinguish it from the three—dimensionalolfJ EJa:nd IOhm’s law \%e infer that P !
kind (see Refs. 11 and )12In addition, it should be noted
here that, as shown previousigD turbulent motion perpen- (B-V)v=kuy(x,y,t),
gi'ﬁmi;; g‘e;i(tigi:gdngﬁih?ggﬁ'ne;:?a%gpoes'tfalt'irgéwherek is the unit vector along, and ¢ is a function that

gce L . . 9 geq does not depend an It follows from the latter relation that
holds identically. Obviously the ideal way to achieve these
results theoretically would be to incorporate the correspond-  dvy vy

Uz
ing equations into the solution. This being impossible, some 5z ~ ' 4z =0, 9z PXY.b).

sort of additional consideratiohs'® or numerical experi- | h as the veloci be bounded | h
ments(see, e.g., Ref. Ddare brought into the picture. As a nasmuch as the velocity, must be bounded in any case, the
function ¢(x,y,t) vanishes, so that we have

rule, these considerations rest on an analogy with fluid mo-
tion in a rotating reference frame, for which the so-called  v=(v,,vy), divv=0,

Proudman—Taylor theorem holds. and it is at once obvious that the equations of motion revert

On the other hand, qualitative “mechanical” consider- : . . i o
ations suaaest in anv case how MHD interaction can lead tto 2D equations. Since in fact cyr=0 and the current dis
99 y Sribution in this case corresponds to minimum Joule heat loss

wo-dimensionality. In n examination of a nondeform- . .
two-dimensionality deEd.’ an exami atp of a nondefo (see Problem 3 in Sec. 21 of Rej, 1t is reasonable to state
able, planar, closed electric current line in an external mag;

O . : . %hat the transition to a 2D turbulence structure in a conduct-
netic field quickly reveals that interaction rotates the plane o : : : ;
ing fluid under the influence of a homogeneous field is

the current loop until it rests perpendicular to the magnetic_* . o L
. . equivalent to requiring minimization of the Joule heat loss.
field. It is clear, however, that nondeformable current loops . : :

o ) - . . Finally, looking at the physically relevant case of non-
do not exist in the fluid, and the indicated conS|derat|onsConductin boundarie&zero current at the boundarywe
cannot be regarded as proof of the result in question. Such 9 fyw

proof might be based on the derivation of some kind of Iocag!so mfer from divj =O_and cu'rlj =0 n acgordar;ce W'th the
. . : . Liouville theorem thaj=0. This relation simply implies that
relations resulting from hydrodynamic and electrodynamic

: . ; . . the electric field is related to the velocity B~ —vX B, so
equations and leading to two-dimensionality. L . . .
o . ; ._that the magnetic field no longer interacts with the resulting
To assist in the selection of these relations, and bearin

. N : X 9D motion.
cond|t|o_n(8) n mind, we can dlsregard the terpr_@v-V)v n We conclude this section with the stipulation that the
comparison with the Lorentz force in the equation of motion

Assuming that the derivativév/dt is also small and ignoring foregoing results are naturally.valld n snuatuons \_/vhere al-
it we obtain lowed by the boundary conditions. In real life, this means

that the corresponding phenomena must be treated at large
—-Vp+jxB=0, (9 distances from any boundary whose normal is parallel to the

L. . . field; these distances must be at least much greater than the
which is exactly analogous to the basic relation used to de- 9

rive the Proudman—Taylor relatidthe only difference being primary space scale of the turbulent motion.
that the latter contains a term proportional/te ) instead of
jXB). We note here that as in the case of the Proudman4: AVERAGING OF OHM'S LAW IN THE PRESENCE OF
Taylor theorem, to write expressidf) without ov/ gt cannot TURBULENT HEAT FLUX
be rigorously justified and is essentially an assumption. Ap-  The results described in the preceding sections are valid
plying the curl operator t¢9) and taking into account the in a temperature-homogeneous medium, but if the tempera-
homogeneity o8 and the continuity of the current, we ob- ture distribution is nonuniform, its fluctuations induced by
tain the turbulence of the fluid can be correlated with the velocity
L fluctuations. It will be shown below that the existence of
(B-V)j=0. (10 . )
such a correlation with allowance for the temperature depen-
In the case of the Proudman—Taylor theorem we woulddence of the conductivity of the medium leads to a nontrivial
have - V)v=0, and the two-dimensionality of the motion effect, which can be observed in appropriate experiments.
would be guaranteed; for the case investigated herd1gy. In describing the motion of a conducting fluid, it is usu-
requires further consideration. Assuming tlais directed ally necessary to use certain averaged values of the corre-
along thez axis and noting that Eq10) is satisfied by all sponding quantities. For small magnetic Reynolds numbers
components of the current density, we have in the noninductive approximation this refers specifically to
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guantities involved in Ohm’s law, in which the conductivity _ do 1
is replaced by an effective value that depends on the distri- Jor~(0’ (V' XB))= daT pc, (gxB). (14
bution of the space—time inhomogeneities. In the case of . P _ o
turbulent fluid motion, the averaged Ohm'’s law has the form ~ The emf corresponding to this current density is
(N=(o}E)+(a)[(v) XB]+(c'E") +(0o’ (V' XB)) . 1do Bq
12 '

(the primes in this expression refer to fluctuations of theThe indicated effect can be demonstrated in the laboratory
corresponding quantities, and the Hall effect is disregardegsing, for example, an aqueous NaCl solution, for which
for simplicity). - _ (1/0)(do/dT) is of the order of 102 K~. Then for

The quantity (¢’E") also includes the component g~10 W/cn? andB~1 T we have an induced electric field
(o'E.,) associated with the presence of inhomogeneity in—~10-3 \//cm, which is easily measurable.
the electric field in a medium with inhomogeneous conduc-  We also note that formally analogous conclusions can be
tivity even when it is not in motioriin some cases the cor- drawn for the case Rg>1, so that we actually have a certain
responding effective values of the conductivity can be calcumechanism, over and above theeffect?® for the generation
lated in their entiret}f). Since the value of’ is small inthe  of large-scale fields in turbulent motion. However, its analy-
given situation(see belowy, the quantityE(’T, is also small sis is far more complex than for R&1, because in the pres-
and can be neglected in relation to the fluctuations of thence of nonzero fluctuations of the magnetic fi@d it
field E’ due to turbulent motion for a homogeneous conducwould be necessary to augment Efj2) with ternary corre-
tivity. Thus, when the conductivity has a small innomogene-ation, specifically to include the quantityo’(v' XB")),
ity, the corresponding perturbation of the electric figlgl is ~ which is not small for Rg>1.
a certain functional otr’ such that it does not contain any
zeroth-order terms ir’. In any case, therefore, the quantity vexcept for situations that are reducible to laminar flow stability problems
O',E;_, is of higher than first order ir’; on the other hand, and the onset of turbulenter are associated with the degeneracy of
the turbulence-dependent quantEy is not small. so that turbulence, in which case the nonlinear terms in the hydrodynamic equa-

PR S ! tions can be neglected.

o'E’ is first-order ino’'.

Naturally, it is impossible to calculat¢c’E’) and ——
(o-'(v’ X B)> for arbitrary values of the corresponding quan- L. D. Landau and E. M. LifshitzElectrodynamics of Continuous Meglia
.. . . . 2nd ed.(rev. and enl., with L. P. Pitaevaki Pergamon Press, New York
tities. However, it follows from the preceding sections that (1984.
for B not too large, these are quantities of the same order?T. cowling, Magnetohydrodynamicsnterscience, New York1957.
and in general they are of the same order as their sum. In thé. V. Eliseev, ]Dokl- Akad. Nauk SSSB61, 560(1969 [Sov. Phys. DokI.

10, 239(1965].

prefse,nce of tumeeSt heat f|Lé>q thle _compone?th 4S. P. PikelnerFundamentals of Cosmic ElectrodynamibsSA, Wash-
(o (v. X B)) can then be expressed exactly in terms of the j,4i0n b.C.(1964.
magnitude of this flux. SA. L. Tseskis, Teplofiz. Vys. TemB3, 496 (1995.

The form of the expression for this component of the ®A. S. Monin and A. M. YaglomStatistical Fluid Mechanicgin Russiad,

; ; ; ; Part I, Nauka, Moscow1965.
current m,ak,e.s it clear that.lt can only fai to_ YamSh when the A. S. Monin and A. M. YaglomStatistical Fluid Mechanicgin Russiaf,
mean ofc’v’ is nonzero. Since the conductivity o_f aplasma, par i1, Nauka, Moscow1967).
for example, depends on the temperatumeglecting non- L. D. Landau and E. M. LifshitzFluid Mechanics 2nd ed., Pergamon
equilibrium effects and weak pressure dependiceve ggfe'\-jls, NeW,\\A(OfK19§,2- din. No. 4. 41970
H P ’ ’ ’ H . Moreau, Magn. Gidrodin., NO. 4, .

must writeo’=¢"(T'), whereo” andT ha\,/e,the SAME SIgN. 10, " kit and A. B. Tsinober, Magn. Gidrodin., No. 3, 31972.

Consequently, for a nonzero value(@v’) the quantity ~ 12g . Kraichnan and D. Montgomery, Rep. Prog. Phs547 (1980.
(o'V’) is also nonzero in general. WhélW <T (average '?A. L. Tseskis, Zh. Esp. Teor. Fiz83, 176 (1982 [Sov. Phys. JETPS,

temperaturg as is usually the case in practice, this assertior133’5 S(:(L)gr’n8n21l'ria and R. Moreau, J. Fluid Med§ 507 (1982

j— !
becomes exact, because= (do/dT)T', and 143, Verron and J. Sommeria, Phys. FIuR3 732 (1987.
' 15H. GreenspanThe Theory of Rotating FluigsCambridge Univ. Press,
<0"V’>= O-_ TV )= d_U (T'V'> (13) New York (1968. |
T’ dT ’ 1A, M. Dykhne, Zh. Ksp. Teor. Fiz59, 110(1970 [Sov. Phys. JETR2,
) . o 63 (1971)].
Recalling now tha{T’v’) is none othefto within some  Y7p_A. Frank-Kamenetski Lectures in Plasma Physicatomizdat, Mos-
facton than the turbulent heat fluf, cow (1968.
183, |. Vainshtgn and Ya. B. Zel'dovich, Usp. Fiz. Nauk06, 432 (1972
q=pCx(T'V), [Sov. Phys. Usp15, (1972].

for the additional contribution to the current density we haveTranslated by James S. Wood
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Phenomenological theory of the magnetoelectric effect in some boracites
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An explanation is given for the narrow peak in the temperature dependence of the component

a3, of the magnetoelectric effect tensor near the transitioh=af ; to them’'m2’ phase

observed in the boracites. A phenomenological approach is used which is based on the symmetry
of the cubic phase of the crystals. The change in the sigm@tind a3, observed in some

of the boracites as the temperature is lowered is attributed to the low vallig.of© 1997
American Institute of Physic§S1063-776(97)01002-(

The boracites are a large family of crystals with the gendowest powers inT;, as well as in the polarization vectors
eral formula MB,0,3X, where M is the ion of a doubly P; and magnetizatioi; .
valent metal and X is a halogen. In the Co—Br, Co-I, Ni—Cl, It must be kept in mind that the coordinate systems of
and several other boracites, as the temperafusereduced, the cubic and orthorhombic systems are different. One is
a sequence of phase transitions is observed from the cubiotated relative to the other by an angle of 45° aboutzhe
phaseT;=43ml’ (the C, phasg into the orthorhombic axis. The coordinates in the cubic phasey(z) and ortho-
phase: first C,,=mnm21’ (the C, phas¢ and then rhombic phasex;,X,,Xs) are related by
C,,(Cy)=m'm2’ (the C, phase. The higher temperature
firstjorder trgns.itio.n at=T, (T0.= 466 K for_Co—Br.porac- x= i (X1 + %), y= i (—X;4Xp), Z=Xa,
ite) is a nonintrinsic ferroelectric ferroelastic transition, and V2 J2
involves a change in the translational symmetry of the crys-
tal. The lower second-order transition B& T, is simulta- 1
neously a nonintrinsic ferroelectric ferroelastic transition and Xl:ﬁ (x=y), XZZE (x+y), x3=z. @
a weak ferromagnetic transition. In tl®, phase, the com-
ponentsas, and a,; of the magnetoelectric effect tensor We shall write down the invariants in both coordinate sys-
a;, are observed to have a temperature dependericthe  tems.
characteristic features of this dependence are a sharp peak in The order parameter of theé,— C; phase transition has
az(T) nearT=T, and a change in the sign af;(T) or  Six components. It transforms according to the six dimen-
a,4(T) at some distance fror, in some individual cases sional representation of th€;=F43c space group of the
(see Fig. 1 C, phas€’ We denote the square of the order parameter by
The purpose of this paper is to examine the dependencd®’. This quantity is all that is needed in the following, since
a3(T) and a,4(T) theoretically in the framework of a phe- the Cy— C, phase transition, as such, is of no interest to us.
nomenological approadtsee the earlier work of Chuptsas The part of the thermodynamic potential that depends on
well). Consistent with experimental dataye assume that R? andP; can be represented in the form
the translational symmetry of the crystal does not change
during theC;—C, phase transitiop. This means thgt the or- aR2+ 1 BR*+ 1 «P2— gP,R?—P-E,
der parameter transforms according to one of the irreducible 2 2
representations of the point symmetry group of the crystal.
The symmetry of the cubi€, phase will serve as the basis PZ=PJ+PJ+P;=Pi+P3+P3,
for subsequent analysis. This makes it possible, in particular, _ _
to compare the values of the coefficients in the resulting P-E=PEt PyEy+ PE,=P1E +PoEo+PsEs. (2
expressions fors,, a,s, and other quantities. The fact that theCy—C, transition is a first-order phase
The two three dimensional representations of e transition is not important, and we treat it as if it were a
point group reduce to th€,,(Cs) group. The magnetic mo- second-order transition, i.e., 80 and neglect the invari-
ment vector M; transforms according to one of them antyR® in Eq. (2). This does not affect the final results. In
(Fym). Then theC, phase is the usu&éxchanggferromag-  the mixed invariantP,R? only one component®,, of the
netic phase. An analysis shows that this case is inconsistemector P; has been retained. It is assumed for concreteness
with the experimental data, so it will not be examined herethat in theC; phase the crystal has a single domain and the
The toroidal momentum vectdr; transforms according spontaneous polarization is directed along theaxis. The
to the other representatior4,,) (a discussion of the third fact that the componerR, is actually related to some qua-
dipole moment T, in electrodynamics can be found dratic combination of the components of the order parameter
elsewher®. We regardT; as the order parameter for the is not important, i.e., this combination can be replaced by
C,— C, phase transition, and construct the invariants of theR?, as has been done in E@).
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FIG. 1. Temperature variations in
o the componentsys, and a,; of the
o, 32 magnetoelectric  tensor in  the
m’m2’ phase of Co—Br(1), Co—P
(2), and Ni—C? (3) boracites.
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The part of the potential that depends Bn as well on 1 )
R? andP;, can be written in the form 5 BM*+alpyr—2blyre—M-H,

1 1

EAT2+Z CT*-DR?T2 ) lemr=[PM]T=(PyM,—P,My)T,

. . . + - + —

Note that using the same notation for the absolute magnitude (PMy=PMTy+(PMy = PMIT,
of the vectorT; and the temperature cannot lead to confu- =(PoM3—P3M,) T+ (PsM—P{M3)T,
sion. There is yet another independent invariant of the fourth
degree inT;: +(P1M2—PoM )T,

Clpa=c(TETo+ToTA+T2T2) | yrs= M, T,(T2~T2)

1 +MT(TZ=TH+M,TLT2-T?)

= (Ti=T9?+ (T3 THTS, . S

_ = _ )

This invariant, however, is relativistic and is small compared =5 (M2Ty =My To)(T1 = T2)

to the exchange invaria®@ T%, so it can be neglected.
Yet another relativistic invariant has the form

dlpr2=d(P,T,T,+ P, T,T,+P,T,T,) The for;n of the invarianlMT, implies that a spontaneous
M, o« T7 develops in the€, phase.

We have not considered invariants containing the defor-
mation tensow;, in the above discussion. In the meantime,
Although it can be neglected compared to the exchange intlge Componentsl;, Uzy, anduyy transform aPy, Py, and .

. oo : 2, SO that they play an equally important role. However, if
variant DR“T4, we can use it to see how the three- . S

we include these components and then eliminate them from

Q|menS|onaI repr.esentgnon of the cull 6 phase splits up .the potential by taking derivatives with respect to them, we
into three one-dimensional representations of the rhomb|?h : ) .
en obtain the same expressidB@s-(6), but with renormal-

—(MyT+ M Ty) T34+ 2M 4T, T,Ts. (6)

1
=—d(P,T1—P,T)T3— > dPy(TZ-T3). (4)

C, phase. . .
The invariant(4) renormalizes the coefficiert of T2 in ized cqefflmentse, N d a, .arl1db.. Thus, we may assume
Eq. (3): that.thls sort of operation eI_lrr_nnatlr'\gik has already been
carried out and that the coefficients in E¢®—(6) are renor-
1 , 1 , 1 malized.
2 (A=dPg)Ti + 2 (A+dPy)To+ 2 ATs. (5 If we expressP; andM; in terms ofE; andH; from Egs.
. (2) and(6),
In order for aC,—C, phase transition to take place, the
coefficient A must decrease with temperature and pass 1 1
through zero. As can be seen from Eg), one of the coef- P:; E. M= B H (@)

ficientsA¥ d P53 goes to zero before the others, sifRghas

a spontaneous value in tl phase. Let us assume that it is
the coefficient off3, i.e.,dP;>0. Then a spontaneous value a

T, arises in theC, phase and the componeRy is the order B (EXH)-T. €))
parameter for th&€; — C, transition. The choice of; as an

order parameter ensures that the compohéptwill have a  Equation(8) implies that the vector produd&xH can be

and substitute Eq7) in Eq. (6), then we obtain the invariant

spontaneous value in th@, phase(see below. treated as a generalized force conjugate to the generalized
The part of the potential that depends bty can be coordinateT, the toroidal momentum. In crossed fields with
written in the form E; # 0 andH, # 0 orE, # 0 andH; # 0, the second-order
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C,—C, phase transition is smeared out, since these fields 1 1— 11—

induced a toroidal ordering in th€, phase, removing the O =P+ §7P§_URSP3+ > ATS+ 2 CT}

symmetry difference between th@; and C, phases. The

presence of the invariar(8) leads to the existence of off- oD , 1 ) 3
—— P3T3+ = BM3—aP3M,T;—bM,T3

diagonal components of the magnetoelectric effect tensor B
aj in a phase with spontaneous toroidal momentum. It may
be said that the appearance of off-diagonal components of
the tensowy;, in the low-temperature phase during the phase
transition is the most characteristic feature of (fero) to-

2

1
—P3Es—MoH,,  ®o=—3 Ry,

rq|dal phas_e transition. Note that the phasg transition in the A=A—2DR2, C=C-— . (13)
Ni—I boracite has been treated agferro) toroidal transition B
before®

The thermodynamic potential, therefore, consists ofn EQ. (13) the invariantd P3T§ is neglected, being relativis-
; ' tically small compared to the invarianoD/B)P5T2. The
three parts(2), (3), and(6). We retain only one component y p . PsT1.
T, of the vectorT, , settingT,=T,=0. Let us first consider 2dvantage of the potentigl3) compared td9) is not only
only the component®; and M, of the vectorsP; andM; . that it has fewer variable@hree instead of fouzr but also
The component®, and M will be considered separately that there is a direct relationship betwedegnandT? (and not
(see below. Thus, we have indirectly in terms ofR?, as in Eq.(9)).
' Differentiating Eq.(13) with respect toP3;, M,, and
1 1 T, we obtain
®(R?,P3, Mz, Ty)=aR?+ 5 BR*+ 5 kP5—6P3R !

2
oD

B
®y,=BM,—aP;T;—bT{—H,=0,

1 ®p =KP3—oR5— — T?—aM,T,— E;=0,

1 5 4 3
+ > (A—dP3)TT+ 7 CT;

312 1 2
~DR*TZ+ 5 BMZ-aP;M,T, . oep
. <I>T1=AT1+CT§—T P,T,—aPsM,—3bM,T2=0.
—bM,T3—PsEs—MyH,.  (9) e

Let us consider theC; phase, in whichT,;=0 and
M,=0. Differentiating the potential9) with respect to the
variablesR? and P; and settingT;=0, we obtain

Solving the system formed by the first two of Ed44),
which are linear inP; andM,, with E;=0 andH,=0, we
obtain

(DR2:C¥+3R2_O'P3:O,

g aPO 1

D 2
P3:P0+ET1, M2:_T1+_

3
B B Tl-

(15

oD b
ﬁ a+

<I>p3=KP3—o-R2—E3=o. (10

Here and in the following the derivatives are denoted by o _
subscripts, e.gPgz=dP/I(R?). In Eq. (19), the quantityR; that shows up in Eq$12)—-(14)
Solving the system of Eq$10) with E;=0, we obtain  has been replaced B, which is given by
2 2

3 o o(—a) o(—a)
’ BEB—U_ ’EEK_O-_ POE? R(%:7 - _ ,

’ Bk B

K
1D where the last expression coincides with Etfl) for P3 in

Recall that theC,—C, phase transition is, in fact, a first- theC, phase. Thus, the first terRy in Eq. (15) for P3 in the
order transition, so that the second expression in (Ef)  C» phase can be regarded as part of e obtained by
yields a false dependend®(T). However, it is possible to extrapolating the experimentds(T) curve from theC,
use only the first expression in E€L1), assuming that the phase into theC, phase.
dependenc®;(T) is known from experiment. Substituting the solution&l5) into the third of Eqs(14)

We now consider theC, phase, in which all the vari- and solving it, we obtain
ablesR?, P;, M,, andT, are nonzero, i.e., have spontane- _ 5
ous values. The variabR?, which is of no intrinsic interest, Ti —A A- 20D a~ o 2xD

g
P;=—R?% R*=-
K

U R

can be conveniently eliminated from the potenti@l. Dif- ? B o
ferentiating Eq(9) with respect toR?, we obtain
a2 ~ — 20°D? 2D?
2 2 2 — _
®re=a+ BR?*—gP;—DT2=0, -—P§ C=C-—=C-—. (16)
B Bk B
2_p2. 9 D, o _ _ - =
R°=R§+ 3 P+ 3 T, Ri=-— I (12)  We have retained all terms in the coefficiéntsinceA goes
to zero at theC, — C, transition point. Even the last, small-
Substituting Eq(12) into Eq.(9), we find est, term inA is important for subsequent calculations.
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We now find the susceptibilities: dielectrjgss=Pse,
magnetic ky,= M2, and magnetoelectric az,= Pan,
=Mgg,, where the subscripts, as before, denote derivative
e.g., P3HZEaP3/aH2. We take the total derivatives of Eq.
(14) with respect toE; and H,. As a result we obtain a

system of three plus three equations, which we write in the

consistent form
@p_p P3e )T Ppm,Mae )+ Pr.1, T1E,H,)=1(0),
Py,p,PaeyHy T Pym,Mae 1, + Pu,T, T1E,H,) = 0(1),

@1 p,Pae,Hyt Prm,Mae 1, + P17, T1E,H, =0(0) -( )
1

According to Eq.(13) or (14),

(DP3P3: K, (I)Pst:q)MzPS: —aTy,

20D

(Dpsle(lePs:_ B q)Mz'V'z:B’

Ty,

(I)M :cDTlMZZ_an_?)sz,

2T1

20D

B

whereP;, M,, andT, are taken from Eqs(15) and (16).
The determinant of the system of linear equatiohg) re-
duces to the form EBC;I’%. It must be assumetsee EqQs.
(11) and(15)—(18)) that 8>0, x>0, B>0, andC>0. The
remaining coefficientsr, D, a, andb have arbitrary signs.

Solving Eq.(17) for P3g,, My, andPgy =Mye , we
obtain

(DTlleA__ 355_ P3, (18

_1+2<r2D2 (aPp? 1 1
X2 g % % T2 B
oDaP, 1 1 30°D? 30D
A3p=— -~ — T - a+ o at+t——=»>0 Tl
BxkBC T, «B Bk BC
(19

The susceptibilitieg¢s; and ky, in the C; phase can be ob-
tained from Egs.(17) and (18) by setting T;=0 and
MZZO:

1
X33— =
K

1

B

(apo)2+

BA B 2

22~
whereP,, is the polarization in th&€,; phase. In accordance
with Eq. (7), in the Cy phase we have

1
X33—K:

‘ 1

22_§-
Let us examine the temperature dependences of @§s.
(16), (19), and (20) for P3, Mz, X33 k22,1.. and a3o. We
assume, as usual, that only one coefficiént,depends lin-
early on the temperature:
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S,

A=A(T-T,). (22)

The remaining coefficients are assumed constant and
equal to their values at the transition poifit=T.. Then,
according to Eq(16), we obtain

2 AT Te—T
1 TC

< . (22)

The dependence of these quantitiesTom the C, phase is
determined by their dependence op.

The second term in Eq16) for P5 is the spontaneous
polarization, which appears in tl®, phase as a supplement
to the polarizationPy(T) that existed in theC; phase(see
abové. It can be said that th€,—C, phase transition is a
nonintrinsic ferroelectri¢and ferroelastictransition with an
indexf=2: AP ~ Tfl. During aC, — C, transition, the di-
electric susceptibilityys; undergoes an upward jump, which
is the characteristic feature of nonintrinsic ferroelectric phase
transitions(see the review by Levanyuk and SanniKofar
example.

If the Cy—C; phase transition did not exist, the
Cy—C, transition would be a nonintrinsic ferromagnetic
transition withf=3: M, ~ T3 see Eq(15) (a latent antifer-
romagnetism in the terminology of Dzyaloshiriskand
Man’ko'9). Because of th€,— C; transition and, therefore,
the existence of spontaneous polarizatiynin the C; phase,

C, is a weak ferromagnetic phase:, ~ T,; see Eq.(15).
The coupling constaréP,/B is proportional to two small
quantities,a/B andP,. The distortion of theC, phase rela-
tive to theC, phase is considered small, i.e., it is assumed
that P, is small even far from the temperatufig of the
Co—C, transition.

Because of the linear relationship betwddn and T,
the susceptibilityk,, in the potential(13) obeys the Curie—
Weiss law in both phase&3, andC,; (compare Eqs(19) and
(20)). The Curie constant, which is proportional to the square
of the coupling constan&Py/B, is very small. Thus, the
peak ink,, near the transition poinT =T, must be very
narrow. Outside a narrow neighborhood of the transition
point T=T_ the susceptibilityk,, is the same in both phases,
and equals B.

The component;, of the magnetoelectric tensor, which
differs from zero only in theC, phase, contains a term in-
versely proportional ta’; (see Eq(19)). The coefficient of
TIl is proportional to the two small quantitie®/B and
Po. Thus, the peak in thes(T) curve near the transition
point T=T, is narrow (but not so narrow as the peak in
koo(T)). If we define the widtlA T of the peak in terms of its
width at the temperature for which the first term in E9)
equals the second term, then we obtaih ~ P, for a3, and
AT ~ (aPy/B)?forks,.

A peak ina,(T) in the neighborhood of =T, has been
observed in the boracitdsee the Fig. L Since the signs of
the coefficientsr, D, a, andb are arbitrary, the first term in
Eq. (19) for a3,, which determines the peak n;,(T), and
the second term, which determines the subsequent variation
in a3y(T), can have either the same or opposite sigmsn-
pare the dependences for the Co-I boracite and the Co-Br
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and Ni—Cl boracites in the figure 1
We now consider the variablé®, and M in the ther- - EFPZTZ— 5 K P?R?—7lps,
modynamic potential constructed from the invariai@s (3),
and(6): 1 . 2
Ips=P,P,P,= =5 (P{-P})Ps. (29)
1
CD(PZ’MS):E KP%JFE BM3+aP,MsT, There are two other independent invariants of the form

P2T2 f(P- T)?and

—P,E,—M3Hs. (23
f'1p2rz=f'(PyPy T, Ty+ PP T, T+ P P, T, T,)
Differentiating this part of the potential with respect to 1
P, andM3, we obtain a system of equations in addition to = f(P2-P2)(T2-T?)
4

the systerm(14):

(DPZZ KP2+aT1M3_E2:0, +f’(P1Tl+ P2T2)P3T3.

Both of these invariants are relativistic, and can be neglected
®y,=BMz+aT,;P,—H3=0. (24)  compared to the exchange invarid®?T? in Eq. (29).
Yet another part of the invariants has the form
Solving Eq.(24) with E,=0 andH;=0, we obtain

—EGMZTZ—EG’(M-T)Z—EB’M2R2 (30)
P,=0, M3=0. (25) 2 2 2 :
SinceP, and M are equal to zero in all phases, the part of The invariant M X T)?=M?T?~(M - T)? is not indepen-
the potential23) added to the potenti@b) does not change dent, while the two further invariants,
the previous analysis, and all the previous results remain
P y P glpme=g(PyMyM,+P,M M, +P,M,M,)

valid.
Taking the total derivatives of Eq24) with respect to 1 ’ )
E, andH;, we obtain the system of equatiofts. Eq. (17)): =—9g(P:M;—P:Mp)M5+ 2 gP3(M1—My),
Pp_p,P2e,Hy T Pp,mMaE, 1, =1(0), 9'lwzrz=g' (MM, T, T, +M,M, T, T, + M/M,T,T,)
_ 1
CDM3P2P2E2(H3)+®M3M3M3E2(H3)_O(l)’ (26) =Zg’(Mi—M§)(Tf—T§)

where, according to Eq$23) or (24), '
9 a¢23) or (24 +9'(MT1+M3T2)M3Ts,
Ppp,=x Ppm,=Pup,=aTi, Pum,=B. (27)  which are of the same order i as the invariants in Eq.
_ — (30), are relativistic and can be neglected.
The expressions for the susceptibilitieg,,= Pae,, Part of the invariants in addition to E€R9) and(30) has
kas=May,, and a3= Py, =Mgg, obtained from Eqs(26)  the form
and(27) have the form , > > _m
—aylpyrT*—a’lputR*—a"lpaut
1 1 a i I/
X22=7, Kes=g, ax=— 5T, (28) ~&(lpwrtlpyra),

L pzmr= PPy (M Ty— M, T+ PPy (M, T~ M, T
whereT, is taken from Eq(16). The expressions foy,, and Pt PxPy(MxTy = My T+ PoPx(M T = MiT2)

ks3in Eq. (28) are valid in all phase€,, C;, andC,, while +PyP,(MT,—M,Ty)
a3 is nonzero only in th&€, phase, wherd@; # 0. 1
The componentsr,; andksz in Eq. (28), in contrast to =— = (P?=P2)(M;T,—M,T;)— P;P3(M,T;
agz andk,, in Eqg. (19), have no terms that diverge at the 2
transition pointT=T_. Note that if theC,— C, phase tran- —M3T,) + PoPa(MsT,— M, Ta),
siton did not exist, then we would have
azo= — ayy=aT,/kB. Note also that all three terms uag, lpmrs=(PyM,+P,M y)TX(T)Z,—T%)
proportional toT, in Eqg. (19) have arbitrary signs and, gen- y
erally, are comparable in magnitude. Obviously, the change +(P M+ PM)Ty(T;—T5)
in sign of a,5 observed in Co—Br boracitsee Fig. 1 cannot +(PM,+ Pny)Tz(Ti—Ti)

be explained on the basis of E(R8). Thus, we find the
subsequent terms in the expansionagf in powers ofo
(this is much harder to do faks,).

Let us examine invariants in higher powersT(ffin the
potential (23) than those included in Eq$2), (3), and (6).
One part of these invariants has the form

—E(P M3+ P3My) To(Ti—T5—2T3)

_2 213 3ivi2) il b 2 3
1 2 12, o72
5 (PsM1+P1M3)To(T1—T5+2T3)
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—2(PiM1—=P3My)T1T,T3, B'D)\_,
, 2 5 (I)MSMSZB_ G+T Tl' (34)
lpurs=(PyM,=P,M) T, (TS+T2) B

+(P,My—=PM)Ty(TZ+T5) From Egs.(26) and (34) we obtain

+(PyMy=P M) T(TZ+T5)

—aT,+(a’+a'D/p+a" oD/ Br) T3

1 2 2 2
=3 (PoM3—=P3Mo)T(T7—T5+2T3)

Ap3= - it 2 T2 (39
[k—(F—«'D/B+70DIBk)T{][B—(G—B'D/B)T1]
—5 (PsMy; =P, M ) To(TE-T5-2T)) The stability conditionDp_p >0 and®y, >0 implies
by (see EQ.(34)) that the denominator of Eq35) is always
+(PiMo—=PoM ) (T1+T3) Ts. (3D positive. In the numerator of E¢35) the coefficients off;

and Tf generally are of the same order of magnitude with

Still another invariant ) .
arbitrary signs. Thus, the numerator can go to zero when

| popr=Pe(MyTy—M,T,)+ Po(M,T,— M,T,) (T.—T)/T,, which determines the value 3t (Eq.(22), is
) of order unity. This can happen far from the transition point
+PZM T =M Ty) T=T,, but the boracites being considered are characterized
1 by a low T, (see the figure Thus, even for comparatively
-3 (P24 P2—2P3) (M T,+M,T;) small values ofT.—T, the sign ofa,s, like that of as,,
might changg(see the figure Obviously, the above discus-
+PPy(M T+ M,T,—2M3T3), sion is qualitative and is not changed if higher-order terms in
. _ , _ the expansion i are taken into account.
and the invariantpyt3—1Ip),1s do not contribute to the po- It is well known that in the phenomenological theory of
tential (23), only to the potentia(9). phase transitions the physical significance of the order pa-
As a result of this analysis, the part of the potential inrameter is unimportant. Only its transformation properties
addition to Eq.(24) can be written in the form are important, i.e., the irreducible representation of the sym-
1 1 1 metry group of the initial phase of the crystal according to
AD(Py Ma)=—> FP3Ti— > k' P3R?— > P3P which it transforms. In this sense, the toroidal momentum

can be regarded as a special case of the antiferromagnetism
s o, 5 vector in which off-diagonal components of the magneto-
— 5 GM3Ti— 5 B'M3R"—a’P,M3Ty electric effect tensor develop in the low-symmetry phase of
the crystal. Toroidal spin ordering assumes the formation of
—a"P,M3T;R*~a”P,M;3T;P5;, (32  aclosed annulus of spirm the simplest case, threand of
a toroidal momentum perpendicular to the plane in which the
spins lie. This sort of structure should be looked for in the
low-symmetry phase of these boracites. That task, however,
lies beyond the scope of this paper.
In conclusion, we emphasize that the first feature of the
aj; curves for the boraciteghe narrow peak invsy(T)), in
1 kK'D 7oD contrast to the second featufthe sign change inx,3 or
AP(Py,M3)=—— (F+T+~—) oT? agy), can be explained rigorously in terms of the present
2 B B approach based on the sole assumption tha€theC, tran-

wherea’=a;+a,. The solution(25) is unchanged if we
add Eq.(32) to Eq.(23). We use Eqs(12) and(15) to elimi-
nate the variableR? andP3 from Eq.(32). Substituting Egs.
(12) and(15) into Eq.(32) and neglecting terms proportional
to Py, we obtain

1 B'D sition is equitranslational.
- = ( G+ —|M3T? The author thanks H. Schmidt and J.-P. Rivera for useful
2 B and stimulating discussions that have aided greatly in com-

pleting this work.

P,M,TS. (33

a' +a” 2+a/// Z_D
B Bx
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The phase diagram of the superconducting state of superconductor—band
-antiferromagnet superlattices

V. N. Krivoruchko

A. A. Galkin Donetsk Physicotechnical Institute, Ukrainian National Academy of Sciences, 340144 Donetsk,
Ukraine

(Submitted 7 June 1996

Zh. Eksp. Teor. Fiz111, 547-561(February 199y

The formation of the superconducting phase in short-period proximity-effect layered superlattices
of the superconductor—band-antiferromagnetic-me&/AF type is studied. The exact

solution of the Usadel equations is used to discuss the possibility of formation in such structures
of a ground state in which the order parameters of the adjacent superconducting layers

have opposite signghe “m-phase’). The dependence of the superconducting transition
temperature and the upper critical field normal to the layers on the lattice period, the intensity of
magnetic interaction in the antiferromagnetic layer, and the state of the interface between

the layers is examined. It is found that there exists a nonlinear dependence of the conditions for
the appearance of the superconducting state in a layered SC/AF system on the system’s
parameters. Finally, the conditions for the appearance of the superconducting phase in proximity-
effect superlattices consisting of a superconductor with nonmagnetic, ferromagnetic, and
antiferromagnetic metals are compared. 1897 American Institute of Physics.
[S1063-776(197)01102-5

1. INTRODUCTION system of equations was used to study the formation of the
superconducting phase in proximity-effect layered SC/AF
Among artificial layered systems the structures formedstructures, where it was assumed that the thickness of the AF
by alternating layers of superconducting and magnetic metalawyer is much greater than the corresponding superconduct-
constitute ideal objects for studying the relationship betweeling correlation length. At the same time, the technology of
superconductivity and magnetism. There exists a vast bodfabricating superlattices has become so advaliidéthat it
of experimental and theoretical work devoted to studying thds quite possible to fabricate lattices from layers with a
properties of superlattices that consist of layers of supercorthickness of several lattice periods. Already the first
ducting and ferromagnetic metalSC/FM superlattices ™  theoretical”*® and experiment&f studies of lattices with
The remarkable properties of these objects, such as the cemall periods demonstrated the unusual properties of such
existence of bulk superconductivity and ferromagnetic orderstructures, properties caused by the overlap of condensate
ing in the layers and the nonlinear temperature dependenagave functions of neighboring superconducting layers. In
of the critical fields(to name just somehave been predicted particular, for SC/N lattices this leads to quantitative changes
theoretically and in some cases have been observed in the properties of the systetand for SC/FM lattices to
experiment$® the appearance of entirely new states. For instance, states
Alternating systems of a superconductor and an antiferwith a nontrivial phase difference between the superconduct-
romagnetic metalSC/AF superlatticéshave been investi- ing layers can exist in the systefthe “m-phase’),*® and
gated to a considerably smaller extésee, e.g., Ref. 1 and oscillations of the superconducting transition temperature
10-12. At the same time, for example, most high-super-  across the ferromagnetic layer can be obseffec?
conducting materials are obtained by doping layered antifer- Note that the properties of a superlattice in ther-*
romagnets, and the strong antiferromagnetic correlations gshase” are in many respects similar to those of supercon-
the copper spins in the CuO planes are their characteristiductors withd-pairing.® In connection with the discussion
feature. The question of how closely related are the magneticoncerning the type of pairing in high: superconductivity
and superconducting properties of hifjh-superconductors systems and the presence in such systems of layers with
still remains open. At present this and other aspects of thetrong antiferromagnetic correlations, solving the problem of
interrelationship between magnetism and superconductivitg “ w-phase” appearing in thin SC/AF lattices becomes very
are being actively discussed in connection with the problenimportant. Bearing all this in mind, we will analyze the con-
of the symmetry type of the order parameter in highsys-  ditions for the appearance of the superconducting phase in
tems (see, e.g., Refs. 13 and 14 and the literature citegbroximity-effect superlattices consisting of a low-
therein). temperature superconduct@®C) and a band antiferromag-
Recently the present author derived system of Usadel netic metal(AF) with periods that are smaller than or com-
equations for antiferromagnetic superconductors in whictparable to the characteristic scale of the problem, the
electrons of the same type are carriers of the magnetic amnsliperconducting correlation lengths.
superconducting properties of the system and the dispersion Section 2 gives the basic equations describing the tran-
law of electrons and holes has the property of nesting. Thisition to the superconducting state in small-period proximity-
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effect SC/AF superlattices. In Sec. 3 the exact solution of theition temperature of the bulk SC material. The parameter
Usadel equations for an SC layer is used to study the possés is related to the correlation length in the Ginzburg—
bility of the system passing into a ground state with a nondLandau theory by the following formula:

trivial phase difference between the closest SC layers. Sec-
tion 4 is devoted to a discussion of the results of calculations,
for SC/AF systems, of the upper critical field normal to the
layers. In the same section we will also discuss the condi-
tions for the existence of proximity-effect superconductivityTh e AF layer

for SC/AF, SC/N, and SC/FM superlattices. The theoretical

results obtained in this paper are compared with the existing The magnetic properties of many band antiferromagnets
experimental data in Sec. 5. Finally, Sec. 6 discusses tha'e closely related to the special features of the band struc-

- —12
éa(T)= > fs( 1- T_c) -

main conclusions. ture of these materiaf$. More precisely, the Fermi surface

of such metals exhibits a nesting property, i.e., consists of
2. FORMATION OF THE SUPERCONDUCTING PHASE IN electron and hole sections that almost coincide under a trans-
THIN SC/AF SUPERLATTICES: BASIC EQUATIONS lation by a wave vecto®, known as the nesting vector. The

] transition to a magnetically ordered state is accompanied by
~ We assume that both metals, SC and AF, are “dirty,” the appearance of a spin-triplet insulator gap on the Fermi
i.e., they satisfy the conditiolyap)<£sar), With Isar) the  gyrface. Typical representatives of band antiferromagnets are
mean free path andgar Ot?le_ correlation length in the ¢y ang Cr-based alloyS. These compounds were used in all
SQAF) layer. As we knowf>*!in describing the supercon- e experimental studies of metallic superlattices of the
ducting states of such metals it is convenient to use Green'gc/Af type. For this reason, when we estimate the param-
functions that have been integrated with respect to the energyears of the AF layer we have in mind chromium-based mag-
and averaged over the Fermi surface. netic materials. Extensive experimental data on the magnetic
The SC layer properties of Cr and its compounds have been assembled in

t]he review by Fawcetet al?®
For the SC layer we have the usual system of Usade As we know?” the contact of a metal and a supercon-

equat_iops for the Gregn’; fuqctiorGS(r,w) and Fs(r, o) ductor results in the appearance of proximity-induced super-
describing normal excitations in the system and the COOperéonductivity in a thin layer of the normal metal. The induced

pair cqndensate, respectively. Writing only independent relaéuperconducting state of the AF metal is described by the
tionships, we have following system of independent equatiotis:

Ds
—— I(Gg(r,0)IFg(r,w) —Fo(r,w) VG4(r, D
2 HCnallIFlh ) mFelh o) VE(T ) — S (G(r,0)IF 1(1,0) ~ F(1,0) Y Gus(1,0))

_Asln) G(r,w)— wF(r,0), Aq(r)
fi = —— Gu(r,0)~wFy(r0), (4)
Gi(r,w)+Fgr,w)Fé(r,w)=1. (1)

Herell=V +27iA/d, is the gradient-invariant momentum — by TL(Goo1,0)IIF oo, @) — F oo 1, 0) VG, @))
operator,A is the vector potentialp, is the flux quantum, 2

Ds is the diffusion coefficient in the SC layer, and Ayn(T)
hw=7mT(2n+1), with n=0,=1,+2,... . The self- = Goy(r,w)— wF (1, w), (5)
consistency equation for the order parametg(r) and the
function F(r,w) has the standard form D, V(Gyy(r,©)VGF,®)— GixF,0)VGor,0))
= H
A =nTAZ Felria), @ 2uGun )T 2 (Gulr,0)+ Gl1,0) =0,

where\ is the constant of the electron—electron interactions ©6)
forming the superconducting electron correlations, and the
summation is Ilmlted' by the Debye frequen@D (the D V(Gyor,0)VGiy(r,®) —Goxr,w)VGoy(r,w))
Boltzmann constaritg is set equal to unity

Near the phase transition to the normal state we have
Gg(r,w)=sgn), while for the anomalous Green’s function
we have the linearized equation

As}ir) —owF4r,w). 3 Here the anomalous Green'’s functidhg,,,), as usual, de-
scribe the Cooper-pair condensa@,; ;) and G2y de-

At this point it is convenient to introduce the characteristicscribe normal excitations in the systel,, is the diffusion

superconducting correlation length in the SC layer,coefficient in the AF layerA,,, andA,, are the band super-

és= (hDg/27T o) Y2 whereT,, is the superconducting tran- conducting order parameters, and the magnetic parameter

. HeXC
+20Gy(r,w)—i 7 (G1a(r,w)+Gyyr,w))=0.

)

D
~— IPFy(r,0)=
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Hexe (the antiferromagnetic exchange energan be as-  Ape(r)=Aq,(r)+A,,(r). Then the linearized equation for
sumed reaf>?® The following normalization condition also the anomalous Green’s functidfye assumes the fort
holds:

D,
G2(r,0)+ Fyy(r,w)Fi (r,0)+ Gy (r,0) G} (r,0) =1, 7 Car(n o) TFFA(r @)

wherei#j=1, 2, and there is no summation over repeated App(T)

indices. :wFAF(rvw)_ T GAF(rvw)r (8)
The following fact concerning the system of equations B 2 L2 \—1/2

(4)—(7) must be mentioned. As we know, in the absence ofVNere Gar(r,w) =f o sgne)((hiw)"+He,) . Next we

interactions that violate the invariance under time reversalUS€ the SUDSUULOR oe(r, @) = A ppGar(r, w) (hw—T)

the system Hamiltonian commutes with the time reversal opf’md transform Eq(8) to the standard form

eratorT. As a result the energy of the time-reversed one- , ) 5 27T

electron states is the same and Cooper pairing of states TIFar(l@)=KaeFar(r@),  Kae=75-5 00

(k,o) and (—k,— o) becomes possible. Féantiferrgmag- " ' (9)

netic interactions of the form . . .
The typical superconducting transition temperaflirdor the

N . systems considered here is lower than 1@ske Refs. 10—

Hint:Hexc; (s (Ne_g(rta)+ e, (rta)g_.(r)], 12, ie., the characteristic frequencies  satisfy

ho~T.<Ty. In the adopted approximation of ignoring the
where s (r) and ¢,(r), andef(r) and¢,(r) are the cre- temperature-induced variations in the properties of the AF
ation and annihilation operators of electrons and holes in théayer we can write the following expression flogg:
first and second bands, respectively, @anid the translation 2

S . ; . . . 2 2hD,

vector linking the magnetic sublattices, the invariance is bro- . =—  ¢,.= (_) )
ken: [Hiy, T] # 0. (The transformation of the operators Hexc
(¥ ¢_,) under the operatiof is similar to the transforma- Here we have introduced the characteristic damping length
tion of the spin operator§"=S*+iSY.) The total system &, for superconducting correlations in the AF layer. Note
Hamiltonian now commutes with the operatdf=TR,  that the destruction of Cooper pairs in an AF layer is much
whereR is the operator of translation by vectarThis factis more intense than in a normal nonmagnetic layer of the same
unimportant in the superconducting pairing of electrons bethickness£, is much smaller than the corresponding damp-
longing to the same banesublatticg. But when there are ing length &= (D27 T) (see Ref. 3pin a normal
interband superconducting correlations, the triplet type rathel'{neta| with the same diffusion coefficient. In this the action
than the Sing|et type of electron convolutions proves to bé)f the antiferromagnetic exchange field coincides with the
Compa’[ib|e with AF orderithere a certain ana|ogy can be action of the ferromagnetic exchange field. The difference is
drawn between the superconducting phases of systems withat for an FM layer the equation of the for(h0) contains a
heavy fermion% and®He (Ref. 28; see also Chap. 9 in Ref. complex-valued parameter; the characteristic wave vector for
29). We will assume that the superconducting properties ofn FM metal i§°
thg _SC Ia_yer are caused by th_e _ordin&s%glei) type _of_ 2(1+1) 4th)1/2
pairing. Since the superconductivity of the AF layer is in- Kev=——", ém=|—7—| ,
duced, we should not expeay, from symmetry consider- Erm Hexe
ationg triplet correlations to appear in this layer. If we allow whereH,,. is the ferromagnetic exchange field. This fact, as
for this fact, the system of equatioii4)—(7) contains only we will shortly see, is important and leads to a qualitative
intraband superconducting correlation functions of thedifference in the properties of SC/FM and SC/AF systems
s-type. with a small lattice period.

Band antiferromagnets based on chromium have fairly  Equationg3) and(9) should be supplemented by bound-
high Nesl temperature3~200—-300 K(see Ref. 2B Tak-  ary conditions at the interface between the layers. We use
ing this circumstance into account, we restrict ourselves to aelations of the form>2
treatment of the situation of greatest current interest, in d d
which the magnetic orderlng tempe_r_atuT@ significantly Fo(r,o)=Fap(r,0), — Fo(r,w)=75 — Fap(r, o).
exceeds the superconducting transition temperature of the dr dr
SC/AF superlatticeT ;<T;,<Ty. Actually this means that (12
in studying the conditions for the formation of the supercon-The phenomenological parametgdepends on the nature of
ducting phase we ignore the temperature-induced variationslectron scattering on the interface and the properties of the
of the magnetic properties of the AF layer. In addition, in materials comprising the layers; its value in the general case
Sec. 4 we will assume that the upper critical field of theis unknown. Under mirror reflection at the interface it satis-
superconducting state does not exceed the fields for the trafies n= oar/0os, Whereoar (og) is the conductivity of the
sition of the AF layer from the antiferromagnetic phase to aAF (SO layer in the normal state.
phase with another magnetic configuration. We also note that the when the normal electrons of the

It is now convenient to pass from the band variables toAF layer penetrate the SC layer they induce magnetic prop-
the total variablesFag(r,w)=Fq4(r,w)+F,(r,w) and erties in the latter, which constitutes what is known as the

(10

1D
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magnetic proximity effect. For “clean” superconductors with g,,= #m/dg, m=0,=1,+=2, ... . Thevalues of the de-
magnetic proximity effects play an important role up to dis-rivatives Fg(ds,w) and F5(0,0) can be expressed in terms
tances of orde£g, and allowing for this fact is important in of the values of the function proper if we plug the explicit
examining the properties of superlattices consisting ofvalues of the coefficient€, andC, into the Fourier trans-
“clean” metals3® In the “dirty” limit ( Is<&s), magnetic  form of the boundary conditiofil2). We get

correlations inside the SC layer manifest themselves over a

distance of the order of the mean free paghand for this F4(0,0)SINNKardar) = 7Kar > {Fs(Um o)

reason can be ignored. m’

X COSHKardap) = (—1)™

3. THE SUPERCONDUCTING TRANSITION TEMPERATURE. xXexp(ip)Fg(ds, )}, (159

STATES WITH A NONTRIVIAL PHASE DIFFERENCE

BETWEEN SC LAYERS F4(ds,®)Sinkaedag) = = 7kar > {(—1)™ F(Gpr @)
As noted earlier, for superlattices consisting of thin "

normal-metal layers the overlap of the wave functions of the X coshikapdar) —expli @)

condensate from the next layers following the nearest-
neighbor layers is important. This fact can be taken into ac- Fs(m )} (150
count by solving the Usadel equations for the SC layer exUsing the above relationships, we can write the function
actly and satisfying the boundary conditions for each value=¢(q,,,®) in the following compact form:

of w.
Let us require that the functioRs A(r,w) satisfy the Fo(Q, @)= As(Am)
periodicity condition in the form Stim: A(dm, @)
Fsar(z+L,w)=exp —i¢)Fsar(z,®), (13 _ S By (@)F (G @)
mnY StMm’ » .
whereL=dg+dur is the lattice period, and is the phase AlQm. @) Ty
difference between the nearest SC layers. We select,the (16)

plane of the coordinate system to be the interface between ) , ) _
the layers and direct theaxis perpendicular to the planes. In | € following notation has been introduced:

this section we assume that the magnetic field satisfies 1

H=curl A=0. A, ) =h|o|+ 5 AD,
We define the superconducting transition temperature as

the maximum value off (¢), i.e., the value at which the #i 7D SKar

Green’s function of the Cooper-pair condensate satisfies Eqs. Bmm (®) [1+(-1)™™]

= - {
2d kapd
(3) and(9) and the boundary conditior{43). Allowing for a s SINNCKardar)

situation in which states with a nontrivial phase difference X cost{Kapdpap) —[(—1)™
¢ between SC layers can be realized, we seek a solution for . o _
the functionF oe(z, w) asymmetric with respect to the middle xexp(—ip)+(=1)" explie)]}. 17)

of the AF layer: The values of the sums

Far(z,0)=Cy exp(karz) +C; expl—Karz),
F ), -1 ,
de<z<dat dur. 2 Fs(tm@), 2 (~1)"Fs(Gm,©)
The coefficient€C; andC, can be found explicitly from the in (16) can easily be found by employing E(L6) proper.
boundary conditions and the periodicity condition. We haveFinally, plugging(16) into the Fourier transform of the self-
. _ L consistency conditiori2) and performing simple but some-

2 sinf(kapdar) C1=Fs(0.0)exp( =i ¢~ kards) what lengthy calculations, we arrive at a system of linear

—Fq(dg,m)exp(—Kapl), equations for the Fourier transform of the order parameter
A<(qp) of the SC layer:

o]

(—ip+Kards). > Anm(©)Ag(dm) =0,

=—

2 sinf(kapdap) Co=Fg(ds, w)exp(karl ) — F5(0,0)exp

Now it is convenient to introduce the Fourier transform in
the variablez and reduce the differential equatié®) to the

algebraic equation Amm (©)=|1=7TNY A" XAy, ) [ S

AD nD <5,
‘Wj [(~1)"Fg(ds, @)~ F&(0)]+ — + TN Yo A N, @) A (G, 0).
XFo(Gm, ) =Ag(Grn) — | 0| Fs(Gm, @) (14 (18
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0.257 0.254

dAF /éAF

FIG. 1. Dependence of the reduced superconducting transition temperatug§s. 3. The same as in Fig. 2 but at=1. The values foff (¢=) are
of an SC/AF superlatticet;=T./T¢o, on the reduced thickness of the SC given only in the two-dimensional superconductivity region.
layer,ds/¢s, and the parameter characterizing the state of the interface.

Solid curves depict the results fer=10 and dashed curves the results for

e=1 depict the results of calculations of the superconducting tran-
sition temperature for SC/AF superlattices. We will now dis-
cuss the results.

The explicit form of y,, is given in the AppendixEq. First we note that_t_he properties of an SC/AF superlattice

(A1)). are extremely sensitive to the value of the parameter

The system of equatior@8) has a nontrivial solution if €= €ar( nés) Y, which characterizes the intensity with
which the exchange field acts on the Cooper pairs near the

defAnm (w)|=0. (19 interface between the layers. Here the valeesl corre-
spond to a weak exchange fidldigs. 1 and 2 while e~1

The greatest value of(¢) at which this is still true is the o
superconducting transition temperature of the SC IayerCorreSponOIS o a strong exchange fifdgs. 1 and % In

Equation(19) was solved numerically; some details of the general we see that, as with large-period sublatficder

) . . . . ach value ofl,e the superconducting state is realized if the
numerical method are given in the Appendix. Figures 1 3f[ahickness of the SC layer is greater than a certain critical

value. For systems with sufficiently thick SC layers, an in-

crease ird e may initiate a transition to the two-dimensional
‘ (2D) superconductivity mode, when the transition tempera-
ture does not depend alyg (see the results represented in
Figs. 2 and 3 by solid curvgsWhen the effect of the ex-
change field is weak, this mode is observed even in thin SC
layers:ds< &g (Fig. 2); when the effect is strong, the mode is
observed in thick AF layer@-ig. 3). The value ofd, for the
transition to the 2D state in both limiting cases is approxi-
mately the sameda~2&,r, but the values of the critical
temperature of 2D superconductivity are drastically different.
In these properties the behavior of SC/AF superlattices is
similar to the behavior of SC/FM structurg$.

0.757

0.5

0.251 The most dramatic differences between SC/AF and
SC/FM systems concern the transition to a state with a finite
phase difference between the SC layers and the change of the

0 phase transition to the normal state from one type to the
1072 other. In Figs. 2 and 3 the solid curves depict the dependence

dy el of T, on the lattice period for a zero phase difference be-
tween neighboring SC layers, and the dashed curves the
FIG. 2. The reduced superconducting transition temperature of an SC/ABame dependence for a finite phase differapeer. We see
superlatticet,=T. /Ty, as a function of the reduced thickness of the AF that the critical temperature of the ground state, at which the
layer, dae /€5, with weak magnetic effects at the interface between layers . . .
(e=10). Here and in Fig. 3 solid curves represent the results for a zeré)_rder parameters of nelghbormg SC layers have 0pp(_)_5|te
phase difference between SC layeFs(¢=0), and dashed curves the re- SIgNS, is always lower than the temperature of the transition

sults for a finite phase differenc&(¢= ). to the state withp=0. Interestingly, while for weak mag-
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netic effects the valueg,(0) andT () in the 2D supercon-
ductivity mode are equafsee Fig. 2, at e~1 the value
T.(7) is strongly suppressed even in this regi@ee the
results fords>3¢&s in Fig. 3).

Thus, the “mr-phase” is not realized in SC/AF superlat-
tices, and in this respect their properties are similar to those
of SC/N system$® The physical origin of such behavior lies
in the fact that in an AF layer, just as in an N layer, the wave
function of a Cooper pair monotonically decays as a function
of distance into the layer, while for an FM layer this decay is,
in addition, oscillatory. Note that similar conclusions con-
cerning the energy disadvantage of the ground state with a
finite phase difference between neighboring SC layers have
been obtained for lattices made of “clean” SC and AF
layers’ A microscopic analysis based on the Gor’kov equa- .
tions show$ that for structures with Josephson coupling be- 0 0.2 0.4 0.6 0.8 1.0
tween the SC and AF layers there is nar-phase” for all
reasonable ratios dfl ., and the Fermi energy. L .

An earlier paper of SarmiAdiscussed the effect of the FIG. 4. De_pendeice of the upper critical field perpendicular to layers of the

’ o - g SCI/AF lattice,h.,=H,, /H¢yg, On the reduced temperature T/T, for
change in the phase transition into the superconducting statferent conditions for electron scattering on the interface between the lay-
from second-order to first-order as the strength of the exers, i.e., values of, and a fixed thickness of the SC and AF layers. Here
change magnetic field acting on the electron spins increasedd in Figs. 5 and 6 solid curves represent the results fat0 and dashed
Not long ago the existence of a phenomenon of this type wa&ves the results far=1.
predicted for SC/FM superlattic8sAs the results of the

present study imply, the antiferromagnetic exchange fielgepeating the calculations of Sec. 3, we arrive at equations
does not change the type of phase transition of thin SC/Afsimilar to (18) and (19), where, however, the coefficient
superlattices into the normal state. A(g,, ) specified in(17) has the form

ﬁDS 27TH 2
A(Gm,0)=f|o|+ —= | gh+ TOU)

2
and the parametey = vmm(H) is given by Eq.(A2).
We find the values of the upper critical field normal to The values oH.,, were found by numerically solving Egs.
the layers by solving the Usadel equations for the SC layef19) with A(q,,,®) given by (22) and y,.w(H) given by
exactly. However, in view of the results of Sec. 3, we restrict(A2). The results are depicted in Figs. 4—6.
our discussion to states with=0. At this point it is convenient to introduce into the picture
A magnetic field perpendicular to the layers penetrateshe upper critical field of the Ginzburg—Landau theory,
the lattice in the form of Abrikosov vortices modulated along

the field. Separating variables in the usual manner, i.e., writ-

(22)

4. THE UPPER CRITICAL FIELD Hg,,

ing Fs ar(r, ) =1(X,y)gs ar(z, ), and using Eq(8) for the h,
AF layer, we find that 03
d2
N2
a2 W20 =0\0ae(20), T e
2. 12 2,2 2mH Al S/ 7 A
—(Hx+Hy)f(x,y)=(qN—kAF)f(x,y)=qTO f(x.y).

(20

As with bulk superconductor$,the smallest eigenvalue of
Eq. (20) yields the largest valuel=H_,, , so that

dyplE,p = 0.05

27TH c21 0.1
R =Kaet o, (2 03
0.5
We seek the functiomae(z,w) in a form symmetric with
respect to the middle of the AF layer: 8 10
ds/'}’:s

_ dar
gar(z,0)=Cy coshan| —-—12| o . .
2 FIG. 5. Dependence of the upper critical field perpendicular to the lattice

. ) layers,h.,, on the reduced thickness of the SC layer for different thick-
Equations of the form_i14)—(16) also become much simpler pesses of the AF layer and different conditions for electron scattering on the
because of the conditioRg(0,w) =Fg(ds,w). As a result, interface between the layer§=0.1T.
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We see that applying a magnetic field also makes it possible
to study the dependence of the properties of the system on
the parametek= ¢ c/és. Note that atH=0 the ratio of
correlation lengths of the layers enters into the formulas only
together with the parametey, which characterizes the state
of the interface between the layers. The results depicted in
Figs. 4—6 were obtained at=1; varying « by a factor of
ten in both directions was found to change the numerical
results no more than by one percentage point. This, we be-
lieve, supports the hypothesis of Deutscher and de G&hnes
that suppression of the superconducting order parameter in
proximity-effect junctions of a superconductor and a mag-
10 netic material is caused chiefly by destruction of Cooper
d 18, pairs on the magnetic defect in the interface between the
layers, rather than by the type of magnetic order in the bulk
FIG. 6. Dependence of the upper critical field perpendicular to the IatticeOf the normal layer.
layers, h.,, on the reduced thickness of the AF layer for different thick-

nesses of the SC layer and different conditions for electron scattering on ths_ COMPARISON WITH EXPERIMENTAL DATA
interface between the layer§=0.1T, .

Because there exists no systematic experimental study of
SC/AF systems with a small lattice period, only qualitative
HcGL=<I>0/27r§§, and the reduced critical field comparison of the theoretical results of the theory with the
he,=H¢,, /Heog - Figure 4 depicts the dependence of theexperimental data was possible. For instance, both the first
reduced critical field h,, on the reduced temperature experimental studies of the proximity effect in SC/AF
t=T/T,, for different conditions of electron scattering on junctions and the later investigations of SC/AF
the interface between the layers, i.e., values,aind a fixed  superlattice§"*?have revealed a sharp drop in the supercon-
lattice period. The dependence of the critical field for differ-ducting transition temperature with increasing thickness of
ent values ofdg and fixede, T, andd,g is shown in Fig. 5 the AF layer for fairly thin SC layers as well as the fact that
and for different values odl, and fixede, T, anddgin Fig.  T. becomes saturated for large valuesdaf But there are
6. Note the absence of publications in which the upper critistill a number of problems and discrepancies. The ambiguity
cal field of thin SC/FM superlattices are calculated. For thisin interpreting the results for Nd/Cr latticess caused by the
reason below we will compare the results only with thoselarge thickness of the transition layer between the SC and AF
obtained for SC/N systems. metals. The thickness of this layee 20 A) is comparable to
As usual, when the magnetic field is perpendicular to thehe thickness of the Cr layedB0 A). Actually, the investi-
layers, its critical valuéH,, is shown to vary linearly with  gated objects consisted of three alternating layers, a fact also
temperature in a broad vicinity df;, with saturation at low supported by the two-stage nature of the transition into the
temperaturegsee Fig. 4 This behavior oH,, corresponds superconducting state of such lattices observed by Cheng
to the three-dimensional nature of the superconducting sta&nd Stearn$?
of the lattices. Note that the value bif,,, at T=0 depends The most thorough investigations of SC/AF systems
significantly on the thickness of the SC layer. At the samehave apparently been conducted by Deeisal!! The re-
time, when the SC layer in superlattices consisting of a susearchers studied the conditions needed for the appearance of
perconductor and a nonmagnetic metal is not excessivelg superconducting state in V/Cr superlattices by varying the
thin, He,, (T) tends to a unique valul,, (0).%4° Depair-  thickness of the SC layer from 98 to 197 vanadium atomic
ing effects of a magnetic nature, rather than the state of thiayers and the thickness of the AF layer from 3 to 100 chro-
interface, are decisive for the value ldf,,, . mium atomic layers. They found that starting &t,=80
The results depicted in Figs. 5 and 6 show that for eactatomic layers the superconductivity is quasi-two-
given value ofd,g the fieldH,, # 0 is finite if the thickness dimensional. The transition temperature monotonically de-
of the SC layer is greater than a certain critical value. Thisreases with increasing AF-layer thickness in the 3D super-
value,dg,, increases wittd,r and strongly depends on the conductivity region and tends to become saturated in the 2D
parametere. In the 2D superconductivity mode the upper superconductivity region, which agrees with our results. At
critical field is independent of the lattice peri¢gee Fig. 6, the same time, with one set of samplpsepared under con-
howeverH.,, (2D) is strongly dependent on the intensity of ditions differing from those in which other samples were
scattering of Cooper pairs on the interface between the layprepared, howevemonmonotonic behavior of .(dc,) was

ers. discovered in the 2D superconductivity region.

Equation(21) can be written in a different form if we Yetteret al1° studied the dependence of the upper criti-
use the characteristic parameters of the problem éag, cal fields of multilayered Pb—Bi/Cr systems on the thickness
andH g : of the SC layer at fixed temperatures. Note that the system
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data are in better agreement with the requirements of the The author would like to thank A. D’yachenko and Yu.
model: Cr does not mix with Pb and Bi, and the interfaceMedvedev for reading the manuscript of this paper and for
between the layers is apparently fairly sharp. Moreover, irvaluable remarks, and V. Tarenkov for useful discussions
the lattices investigated by Yettet al® the normal layers —concerning the experimental work of Jiaagal?® and Devis
were fairly thin:d,e=20 A and 75 A. One can expect, there- et al'*

fore, that for systems wittdg<5é&g (£5~200 A for the

Pb—Bi alloy interference effects become important. For lat-

tices with a thickness of the SC layer in the interval oppenDix

1.56s=ds=<10¢g, Hep, was observed to increase withy.

This dependence of the behaviortéf,, on the thickness of The coefficientynqy is given by the following expres-
the SC layer is also characteristic of the results depicted igion:

Figs. 5 and 6. However, the reason why the critical field for _ e m
superlattices with 1f;<dg=<15¢5 is much higher than that Ymm ={[1+(—1) l[c.a, cothkardar)]=[(—1)

for the bulk sample of the Pb—Bi alloy2*, remains un- (=)™ e by —[(—1)™ expli)+ (- 1)™
clear. In the rangels>15¢5, the experimental values of the “
field H,, are approximately equal a2, as physical con- PR _, . 2dsc,
siderations suggest. X exp(—ig)Jsinh*(Kaedap)} C, +ﬁ2DS|w|
+2]a, cottknedag—b, —25% [} (a1
a,, Coth(kardar) © SMKarGag) . (A1)

Here we have introduced the notatiep=7%D gnkag/2dg,
a,=a,(H=0), andb,=b (H=0), with the explicit form

The results of the present investigation suggest that tf:ff the coefficienta,,(H) andb,,(H) given in Egs.(A3) and

eneral dependence of the superconducting transition te '-M) below. ~
9 P ¢ sup 9 Note that although formally the matri& given by Eq.
perature and the upper critical fieldl.,, on the system pa- (18) is infinite, we haveA,,,— 8. asm.m’— +, as the
rameters is qualitatively the same for a thin SC/AF superlat- ’ mm'” ” Tm ’ -

. k : ) . expression foA,,,, implies. As a rule, even a 5-by-5 matrix
tice and a thin SC/N superlattice. More prec_|séTy_,rap|d_Iy provides an accuracy of about one percentage point, which is
drops as the thickness of the normal layer in fairly thin SC

. sufficient for our purposes. Simple sums over frequencies
layers increases, and becomes saturated when the SC Iaywére evaluated using the formulsee, e.g., Ref. 31
are thick. As in SC/N systems, the transition to a ground e

state with a nonzero coherent-phase difference between the 1
layers is energetically disadvantageous; the type of transition 7T Al +x =\"'=In T
. s o, n c0

remains unchanged. Quantitatively, however, the conditions
for the formation of a superconducting phase in SC/AF sys- 1 X 1
tems may differ drastically from those in SC/N systems be- §+ m) +q’(§>’
cause of magnetic effects of scattering on the interface be-
tween layers. We established the qualitative differencedvhich is valid for%i|w[>T,x; here ¥(x) is the digamma
existing between SC/AF and SC/FM small-period latticesfunction. In more complicated cases the summation was
These differences manifest themselves primarily in thedcj’le explicitly, ~ with  2Qp/Tu=200  and
change of the type of phase transition into the normal statd :I”(l-lS%Q,D ITeo)-
and in the transition to a superconducting state with a finite | "€ €xpression folym (H) has the form
coherent-phase difference between the SC layers.

As for the discrepancienentioned in Sec.)Sbetween

6. CONCLUSION

hQp T

-¥

Yy (H)=[1+(=1)™"™ &,

the theoretical results and the experimental data, in addition 1+¢&,a,(He ) — (=)™ &,b,(Hepy)

to the possible explanations given by YetetralX° and De- X [1+&.a,(Ho ) P— E2b2(He,)
vis et al! one more should be mentioned. These results @ ezl ©-olTiezl

were interpreted in Refs. 10 and 11 on the assumption that (A2)

Cr hgs only onelantiferrgmagnetic phase. But chromlum where the following notation has been introduced:
and its alloys are known to have many magnetic phases,

including those with a magnetic cell incommensurate with hDg andar

the crystal latticé® An external agent can easily transform  $0™ 2dg 7N tanh—>—,

one phase into another. In the vicinity of magnetic phase

transitions one should expect a nonmonotonic dependence of 2lo| 27H\Y?

the transition temperature and the upper critical fields of the a,(H)=2ds CO”{dS(D_SJr ®, ) }

superconducting state of the system on the lattice period. B

These : : 2lw| 2mwH\¥2 "t
problems were not discussed here, but, we believe, > hDs(—+ ) } ,

they merit a separate study. Ds Dy

(A3)
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Realization of a heavily doped and fully compensated semiconductor state in a
crystalline semiconductor with a deep impurity band

M. 1. Daunov, I. K. Kamilov, and A. B. Magomedov
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We use the data on the pressup to P=1.5 GPa and field(up toH=17 kOe dependence

of the Hall coefficient and the resistivity at 77.6 and 300 KHCdSnAs(Cu) to calculate

the effective kinetic characteristics of the charge carriers, the density and mobility of the
conduction electrons and the holes of the deep acceptor and valence bands, in an interval

of excess-acceptor densitibi,, ranging from 16°-10'" cm™ 3. We establish that in a heavily
doped semiconductor with a deep impurity band at the tail of the density of states of the
intrinsic band, with unequal donor and acceptor densities heavily doped and fully compensated
semiconductor state is realized under hydrostatic compression. The threshold value of the
pressure that initiates the transition into such a state,depends on the extent to which the
impurity band is populated. Ip-CdSnAs(Cu) at Ng,—=Np, whereN, is the density of

deep acceptors, an<77.6 K the value oP. amounts to 10* GPa. As the population of the
deep acceptor band growB,, increases and in the limit becomes infinite. We discuss the
special features of the electrophysical propertiep-@dSnAs(Cu) arising from the absence of
an energy gap between the states of the conduction band and those of the deep acceptor band.
© 1997 American Institute of Physid$1063-776097)01202-X

1. INTRODUCTION charge carriers has been discussed in detail in Refs. 4, 5, and
) ) 7. It was found that frm 2 K to 40-50 K thetemperature
The analogy of the properties of a heavily doped andyenendence of the effective mobilities of electrons from the

fully compensated semiconductor and those of an amorphoyg,qction band and holes from the acceptor band obeys the
semiconductor, which is caused by the presence of a randofjqit jaw

large-scale potential in both systems, has been emphasized in
Refs. 1-3. In this connection, Shklovskind Hros' devel- frea%exXp — (Toe o/ T)V4, @)
oped a theory of a heavily doped and fully compensated

semiconductor and suggested using this theory as a model {phich is characteristic of systems with large-scale fluctua-

describing amorphous semlconductgrs. It was also suggestedns and of amorphous systems. Herg and u, are, re-

that a model of an amorphous semiconductor could be congpetively, the effective mobilities of the electrons of the

structed by introducing, in various ways, compensatory iMm¢onqyction band and the holes of the acceptor band, and

purities in a heavily doped crystalline semiconductor. This-|-OC andT,, are constant parameters that increase with pres-

idea has been implemented, for instance, in heavily doPeQure; in the limitP— we haveTy.— % and u.— 0, while

n-Ge samples irradiated by fast neutrbred in_ heavily Toa and u, tend to fixed values. It has also been fofitiuht

dopedn-CdSnAs samples diffusion-doped by copper from j,"samples for which the population coefficiely, of the

the electrolytic layer on the sample surfdce. _ deep acceptor band is larger than 0.9 the state of a heavily
In earlier work(see Ref. §the present authors discov- qoneq and fully compensated semiconductor emerges at

ered a deep acceptor levelnd of the intrinsic defect of the liquid-helium temperatures when the hydrostatic compres-
cadmium vacancy in CdSnA&Cu) crystals. The level was g p is greater than 0.1 GPa.

found to be closely related to the valence band and was situ-  \we introduce the following notatiom, pa=Na—Nx

ated at a distance andp, are the densities of, respectively, the electrons of the
ea=ed+aT—BP 1) conduction band, of the holes of the deeE) acceptor band, and
of the holes of the valence bandy{, =N,—p, and
(where &2=-30 meV, a=4.6x10"2 meV/K, and N(}:NJM— N, are the total densities of the ionized acceptor
B=120 meV/GPa) from the unperturbed edge of the conand donor centers, wherl,=N_ + Na,+Na, Ny, and
duction band B=dey/dP, and e£4=0.28 eV is the Ngﬂ are the densities of the shallow impurity centers, and
bandgaf). Here and in what follows the energy is measuredN,, andN, are the densities of possible ionized deep accep-
from the unperturbed edge of the conduction band, and fotor and donor centers whose energy levels are much lower or
the positive direction we take the one pointing into the bandmuch higher than the Fermi levek=¢, (because of their
The behavior of the density of states for the model beingoosition with respect to the Fermi level such centers do not
discussed in the cad€,=N,/N,~0 is depicted in Fig. 1 affect the behavior of the electron systemand
(N4 is the density of ionized deep accepjorBhe tempera- N= Ng—(NaﬂwL N_,). The condition for electrical neutrality
ture dependence of the effective mobilities of localizedof the system,
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FIG. 1. The (schematit behavior the density of states of —1000 4400
p-CdSnAs(Cu), a heavily doped and compensated semiconductor with a H.kOe

deep acceptor band whose population coefficienis approximately zero,

at atmospheric pressuf@) and under hydrostatic compressidn. Here FIG. 3. Magnetic field dependence of the Hall coefficiBrin sample 10 at

g, ande, are the unperturbed energies of the top of the valence band an .
the bottom of the conduction bane, ander are the energies of the deep ?rzfasu(rzzni/r?sgazr::irz\aealnd—z(? 8;&“3’:253__? oag; g::sgm_p;g?iy;erij

) b . iy
acceptor level and the Fermi level, anf) and ¢ are energies of the per curves4 and5 — 1.51. The dashed curve represents the results of theoret-

colation levels for the holes of the valence band and the electrons of thecal calculations
conduction band. The dot—dash curve describes the behavior of the densi&y ’

of states in a perfect crystal. The shaded areas correspond to populated
states.
Nexi=Na, the Fermi level is situated between the top of the

valence band and the acceptor band. In this case
3) n=p,=N_, =0. However, large-scale fluctuations of the

density of ionized impurities and the corresponding random
yieldS the fOIIOWing eXpreSSion for the denSity of excess aC'potentiaL which are sure to be present in a hea\/”y doped
ceptorsiNe,=N,—Ng =Na—N=p,+pa—n. With this no-  semiconductor, bend the edges of the conduction and valence
tation we can writeK,=(N+p,—n)/N,. Note that when pands so that these edges cross the acceptor band, changing
O<N=N,, in the limit of T—0 andP—c the population the energy by a quantity of orde, (Fig. 1. As a result the
coefficient of the deep acceptor band satisfies the inequalitizermi level gets shifted to the acceptor band, while the elec-
0<Ka=N/Na=<1, andeg~ep. trons and hole that have condensed into droplets screen the

ObViOUSIy, |fKA%0, holds i.e., the states of the acceptorrandom potentiaL In this way, fdﬂa + Nd! even at atmo-

band are neutral, the conductivity in this band is zero. In thespheric pressure a state of the type of a heavily doped and
absence of a random potential, near absolute zero, and at

N, +n=p,+Ng,

n P Py 10'%cm

16
P,GPa . n, 10 "cm®
Hoom2Visty  o5" g g5 Ay oM
3001 1 ' T T "] —SA.meV
Ro,"cmsc" 1150
200-5-‘.-[\ 713
o T { ] {00
————
100} %} s 12
1 150
0.0-":-— — { 41
27 n"/\;(\ | o
—
§ 20 §}( s o
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=16} ok : - : : - : .
QU
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. R_,cm3C™!
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P l’ GPa! FIG. 4. Curves representing the calculated dependence of the dansity

the conduction electrongurvesl and?2), the densityp, of the holes of the

FIG. 2. Pressure dependence of the Hall coefficRgtin a very weak  acceptor bandcurves3 and4), the parametet= (pa+p,)/n (curvess and
magnetic field(curves1 and 4), the resistivityp, (curves2 and5), the 6), the mobility w5 of the holes of the acceptor bakclirves7 and8), and
mobility x, of the holes of the acceptor baricurves3 and 6) at 77.6 K the densityp, (9) of the holes of the valence band at atmospheric pressure
(1-3) and 280 K(4-6), and the deep-acceptor energy leegl at 280 K and at 300 K(odd-numbered curveand 77.6 K(even-numbered curvesn
(curve7) in sample 10. R..=(Neyg€) 1 in p-CdSnAs(Cu.
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TABLE |. Parameters of samples under atmospheric pressure.

No. of Next, N —Ro, P61 ) Ro, P61 M

A s
sample 10 cm™® 10%cecm=  cemct  Qlem'  cmfvilist Ka cm*Ct o tem? cmfvilsT Ka
T=300 K T=77.6 K

1 1.2x10°® 0.28 781 12.3 8000 0.190 —9600 0.71 7070 0.80
2 4.6x10°° 1.38 331 31.1 12300 0.285 —2290 1.20 4040 0.90
3 6.9x10°° 1.50 320 215 8020 0.280 —2130 1.00 3170 0.90
4 1.25¢1072 1.70 280 25.2 8540 0.300 —1800 1.70 5010 0.91
5 5.90<10 2 2.35 220 25.0 7040 0.330 -—1100 1.29 3060 0.90
6 0.245 3.16 206 38.1 9780 0.350 —930 0.94 2440 0.87
7 0.275 3.20 210 32.0 8160 0.355 —920 0.83 2200 0.86
8 1.040 4.20 286 23.0 6980 0.360 -850 0.58 2260 0.73
9 1.980 4.77 405 8.84 3160 0.315 —795 0.25 1300 0.56

10 5.94 6.03 650 3.50 3890 0.077 212 0.08 520 0.02

11 6.25 6.08 530 3.70 — 0.060 260 0.07 — ~0

12 111 6.80 225 35 - - 770 0.17 - -

fully compensated semiconductor could be realized. Ouifhe maximum relative errors in measuring the resistivity, the
goal was to verify this assumption in experiments. To thisHall coefficient, and the Hall mobility amounted to 4%, 2%,
end we performed a complex investigation of transfer pheand 5%, respectively. The errors in measuring hydrostatic
nomena using a series of single-crys@CdSnAs(Cu) pressure with a Manganin transducer were less than 1.5% at
samples with a total impurity center density of orderroom temperature and 3% &t=100 K. In experiments with
10'® cm 3 in a broad interval of excess-acceptor densityshydrostatic compression, the maximum relative errors in
ranging from 16° to 10" cm™3, with acceptor-band popu- measuring the resistivity and the Hall coefficient were less
lation coefficients 6=K,<1 and compensation coefficients than 5%. The accuracy of measuring relative variations of
0.9<K=Nd"/N,<1. The study, which was started in Ref. 6 the kinetic coefficient under variations of pressure was
and was conducted in magnetic fields upHe=17 kOe, higher by a factor of ten.

under hydrostatic compression up B=1.5 GPa, and at As in Refs. 4—6, the samples were prepared by diffusion
77.6 and 300 K, was aimed at determining the density dedoping by copper impurities from the surface layers of
pendence of the various kinetic characteristics, exami”i”%-CdSnAg crystals with a donor density of order

the characteristic features of the gapless state induced byy8 -3 |ntroduction of compensating acceptors, which

impurity centers, and selecting samples witf~Na. are apparently substitutional impuritiés copper atom in an
arsenic vacandy), lowers the Fermi level to the energy
2. EXPERIMENTAL RESULTS level of a deep acceptor of a cadmium-vacancy intrinsic de-

Figures 2—4 and Tables | and Tables Il depict and lisfect, and because of this the states of the acceptor band be-

some characteristic results of experimental studies and daf@me electrically activé.The extremely high compensation
gathered by quantitative interpretation. The notation is giver?f P-CdSnAs(Cu) crystals agrees with the Reis—Fuller
above and in the figure captions. Rdg~N, the measure- theory, which attributes the high solubility of diffused copper
ments were done on two identical samples, 10 an@Table  in cadmium-tin diarsenide to the effect of donor impurifles.
1), and reference measurements on sample 11 produced re- To analyze the density dependence of the Hall constant
sults that for all practical purposes coincided with those in-and the resistivity aff;=300 K andT,=77.6 K qualita-
volving sample 10. tively, we used the curves representing the dependencies of
To generate pressure we used a nonmagnetic stand-aloRg(T1), Ro(T2) and po(T1), po(T2) on Ro(T2)/Ro(T4).
low-temperature chamber of the piston—cylinder type with aThe appropriateness of such constructions, which make it
fixed clamp and a liquid as the agent for transferring thepossible even before calculations to determine the character-
pressure. The measurement method is described in Ref. Btic features of the function®y(Ney) and pg(Ney) and

TABLE Il. Parameters of sample 10.

T, P, Ro, Por pax 10, Ma

K GPa cmPC? Q-cm cm 3 cmPVigtt pa/n P,/Pa el ol pa Ka
104 —650 0.286 5.6 130 16.5 0.13 30 1.6 0.08

280 15 —-300 2.50 5.4 22 1450 0.10 180 9.5 -
£ 530 3.80 5.4 10 £ 0.10 0 21 0.10
104 212 12.7 5.9 7.9 310 3x10°° 67 27 0.2

77.6 1.0 320 16.8 5.9 6.1 - - - - 0.2

o0 507 22.0 5.9 4.4 o - 0 - 0.02
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TABLE II. (Continued

ea, meV &g, meV depl IP, degl P,
K T=280 K P=10"* GPa meV/GPa meV/GPa
0.98 -11 -70 -120 -110

carry out a meaningful selection of samples to obtain thé&g the Boltzmann constant. Equatié#) was used in calcu-
density dependence of the kinetic characteristics, was dentating the characteristic charge-carrier parameters when the
onstrated on the gapless semicondugigfigTe (Ref. 10.  variation of the average charge-carrier energy caused by a
The similarity of the kinetic properties gi-CdSnAs(Cu) random potential is small compared to the energy proper and
andp-HgTe has been noted in Ref.(6ee Sec. ¥ when acceptor-level broadening can be igndr&h.At

As the excess-acceptor density grows, the ratidNg~N, at room temperature and with allowance for the
Ro(T2)/Ro(T4) is found to decrease from positive values to fact that the acceptor-level baric coefficigiat, /JP is inde-
negative(from 12 to —4.5 in the studiedp-CdSnAs(Cu) pendent of pressure, at least upRe=1.5 GPa®® we used
crystals. A feature characteristic gf-CdSnAs(Cu), caused Eq. (4) in the pressure interval from atmospheric to
by the fact that a gapless state in this compound appeai®=1.5 GPa, wheref(P)=7+In(1-Kp)/K, is a linear
because the conduction band and the impu¢dgceptor  function (Fig. 2). Here we allowed for the fact that the pa-
band merge, was discovered in the process; nafffefywas rametery was estimated by in the KB dispersion-law ap-
found to increase with the ratiRy(T,)/Ro(T;) from 5to 12.  proximation, which used the known values of band param-
This feature can be explained by the narrowing of the accepeters, whilen and K, were determined directly from the

tor band adN,; decreasegsee Sec. ¥ experimental data. Hence the deviatiorf OP) from a linear
function suggests that the random potential affects the den-

3. DETERMINING THE PARAMETERS OF THE CHARGE sity of conduction-band states. Since in semiconductors the

CARRIERS baric coefficients of the energy gajpg are usually pressure-

The procedure of calculating the effective kinetic Char_mdependent(or are wgakly dependent on presstrein

o . o - cases where hydrostatic compression has a strong effect on
acteristics, the charge-carrier densities and mobilities, fromelectron statistics. expressions of tvdecan usually be used
the data on the Hall coefficie®R(T,P,H) and the resistivity » €XP yHe y

p(T,P,H) has been thoroughly discussed in Refs. 4—6 BufS @ condition for the applicability of the dispersion law for
in cé)nirast to Refs. 4—6, in addition to allowing for. the éon_lmpurity—free semiconductors in a semiconductor with a ran-

tributions of the conduction electrons and acceptor—banéj om potential,

holes, we took into account the contribution of valence-band I_n other words, applylng the dlsp_ersmn law for a perfec_t
- . . . semiconductor to a semiconductor with a random potential is
holes to conductivity, which that cannot be ignored in

p-CdSnAs(Cu) crystals withNg,~N4. Thus, the calcula- meaningful as long as the pressure depend_encAaQP)

X . ; calculated using experimental data and relations of type

tions have been carried out using well-known phenomeno- L : .
. . T remains linear, as is the case with CdSg/&u) for samples

logical relationships in terms of a theory that allows for three

types of charge carriers with parametéignsities and mo With Nex~~N, at room temperature and at pressures up to
ypes of 9 P L P~1 GPa(Fig. 2 and for samples witiN.<N, at room

bilities) independent of the magnetic field strength and as:

- . temperature and at pressures up to at least 1.5 GPa, as well

sumes that the contribution of each type of charge carrier to .

as at 77.6 K and nearly atmospheric presSure.

the conductivity tensor is additive. The effective densities With allowance for adjustments in graph plotting, physi-

and mobilities of the charge carrier were found from theCal models, and a satisfactory agreement between the ther-

formulasn;=(|R;|e) ! and u;=|R;|o;, whereR; and o . X )

i=(IRjle) wi=|Rjloy, o I I moelectric power measured in experiméfiend the one cal-
are the partial values of the Hall coefficient and the resistiv- . . -
. S o . . .culated with the use of certain values of the characteristic
ity. Determining the characteristic parameters in this case in

: . L . parameters, the maximum relative error in determining the
a reliable manner is not a trivial problem. Mathematical I . . .
: . . characteristic charge-carrier parameters, including the excess
analysis of theR(T,H) andp(T,H) dependences, including o
.acceptor density, is 15%.

mputer models n for determining whether there i . - .
computer models needed for dete g whether there 15 The compensation coefficient of the samples was esti-

enough data to estimate the unknown parameters, as well ?ﬁsated by the formula
the results of physical modeling, can be found in Refs. 11— y

13. We also used the electroneutrality equation, the known Neg 2(1—K™)
values of the band parameter, and the Kildal-Bodikds) 1-K= AR (5)
four-band model for the dispersion Idw.

The fact thatN, =Na[ 1+ ye,dea—7)] " implies Heren™=(|RJ'|e) " andK'" are, respectively, the electron

A density and the compensation coefficient for crystal prior to
: (4)  diffusion doping. The parametdt'" was calculated by the
Ka ; oo ;
Bruns—Herring formula for electron mobility in heavily
where y is the parameter of the acceptor-level spin degendoped degenerate-CdSnAs crystals at 77.6 K when elec-
eracy, 82*=s‘2\/kBT, B*=pIkgT, and p=ep/kgT, with tron scattering on ionized impurities dominatéddere the

In 'y+82* —B*P=7n+In
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error in determining the total density of ionized impurities, For instance, in the quasi-intrinsic sample 3 of
caused by using measured valuefRffandpg' was foundto  p-CdSnAs(Cu) (Table | and Fig. % | ;| grows from 1.5 to
be no higher than 10%. In deriving E¢p) we allowed for 1.7 as the temperature rises from 77.6 to 300 K. The Fermi
the fact that the appearance of a-€W ¢ defect(Vs is an  energy was estimated from the electron dendfig. 3) with
arsenic vacangyis accompanied by the disappearance of ahe use of the known values of the band parameter and the
V 5 defect? and used the simplifying assumption that defectkB four-band model for the dispersion Idfw.
charges are equal to unity. We also assumed that The baric and magnetic-field dependence of the kinetic
N> Ngyi. coefficients and the baric dependence of the characteristic
Equation(5) made possible a qualitative suggestion thatparameters, with the exception pfs, in p-CdSnAs({Cu)
compensation in the-CdSnAs(Cu) crystals studied is ex- crystals withNg~N, at room temperature are typical of
tremely strong. p-type semiconductors in the mixed-conductivity range, with
Within the range of variation oN, studied hergsee  a tendency toward a transition to impurity conductivity as the
Table ), a decrease il leads to a decrease in the param- pressure rise@rigs. 2 and 3 and Table)lIOn the other hand,

eter 1-K from 10 ! to 1076, the rapid decrease ip, with increasing pressure is caused
by the separation of the states of the band continuum from
4. DISCUSSION those of the deep acceptor band, since, as noted in Ref. 5, the

effective mobility of the impurity-band carriers depends on
the density of stateg(e,) of the band continuum in its
vicinity. As the conduction band moves away from the ac-
Na=4.2<10"(10" *Ng,) ", (6)  ceptor band, i.e., ag(e,) decreases, the rate of the decrease
whereN, andN,, are measured in units of ¢. Thus, as Of xa with increasing pressure drops. The extremely weak
N, decreases, the acceptor band narrows. Such correlatilgpendence op, and p, on pressure explains the almost
between the parametels, andN,,, as we will shortly see, linear dependence of on pressure up t®=1 GPa, as
has a strong effect on the density dependence of electréond as the random-potential effect is insignificant. Never-
physical properties. theless, in contrast to the acceptor band, whose position is
The dependence of the Hall coefficient in an extremelyfixed in relation to the top of the valence band, because the
weak magnetic fieldRy, onN,, (Table | is characteristic of ~€lectrons become “frozen” into the lower states the Fermi
p-type semiconductors with an electron-to-hole mobility ra-level slowly moves away, as the pressure grows, from the
tio much larger than unity. However, the quasi-intrinsic con-top of the valence band, approaching the acceptor band with
ductivity region, where= (po+p,)/n=1 (Fig. 4), contains  arate of 10 meV/GPérable ll). The satisfactory agreement
a characteristic feature, an increase Ry| with decreasing between the values af} andde,/dP found in our investi-
Ney, caused by a narrowing of the acceptor band. Asgation and the earlier estimatéssuggests that the present
Nex— 0, the Hall coefficient tends to the vali for intrin- calculations of the values of the kinetic characteristics of the
sic CdSnAs (R;=—830 cn? C ! at room temperature; see charge carrier using the(H,P) andp(P) dependences are
Ref. 18. Naturally, a transition to quasi-intrinsic conductiv- reliable.
ity at 77.6 K occurs for lower values dfl,,. Of certain As the temperature is lowered, the Hall coefficient
interest here is the dependence of the acceptor-band hoianges sign. At 77.6 Ry>R.=(Nee) * (see Tables |
mobility on the excess acceptor densifyig. 4. As N, and Il and Fig. 3, which suggests that two types of holes,
decreases from a value of order!d@m 3 (K,~0), us  from the valence and acceptor band, participate in transport
grows (the coefficientK , increases and passes through a processes **(see Eq(7) below). This is also evident from
maximum. Further decrease jn, can be linked to the de- the calculated dependence & on the magnetic field
crease in the deep-acceptor density, i.e., to the narrowing sftrength in the high-field range at room temperatiig. 3).
the acceptor band. The explanation for the temperature anthe fact that at 77.6 K the Hall constant is independent of
baric dependence df, is equally straightforward. The fact H implies that the limit of an extremely weak field holds for
that in crystals withN,.>2x10® cm™3 (samples 10 and the charge carriers. As the temperature drops from room tem-
11) K, decreases as the temperature drops from 300 to 77@erature to 77.6 K and the pressure remains atmospheric,
K (Table ) is caused by the freezing of electrons into thebothp, andn decrease by one to three orders of magnitude.
valence band. The Fermi level moves toward the acceptor band and is
The similarity betweem-CdSnAs{Cu) and the gapless pinned there. Also, the acceptor-band hole mobility de-
semiconductorp-HgTe (Ref. 19 in their electrophysical creases by a factor greater than ten. The observed tendency
properties was noted in Ref. 6. A characteristic feature heréoward localization of acceptor-band holes is caused not only
is that the mixed-conductivity region is “extended” in tem- by the decrease in the average thermal energy but also by the
perature, even down to liquid-helium temperatures when théact that, in accordance witfl), the conduction band moves
excess-acceptor density is lower than the threshold valuaway from the acceptor band, i.e., by the decreases in
(Rp<<0) (for p-CdSnAs$(CU) Ng<10Y cm 3; see Ref. g(en), as in the case of growing hydrostatic compression.
4). Moreover, the temperature dependence of the intrif@sic The values of the coefficient®, and py at 77.6 K are
quasi-intrinsic [n(pa+ pu)]l’2 in CdSnAs(Cu)) density determined by the kinetic characteristics of the holes of the
(n;) in both compounds is close to the < T¥?law, and the valence and acceptor bands. The hole density, the valence-
reduced Fermi energy() is weakly temperature-dependent. band hole mobility, the Fermi energy, and the ggp-¢,

Within the range of variation ofN., studied here we
have the following empirical formula:
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between the bands are pressure-independent. But tHPPENDIX
acceptor-band hole mobility decreases with increasing pres- ) o )
To increase the reliability of estimates of the character-

sure because of the decreasgy{iz,). This means that the | | e ] A
density of states of the conduction band at the Fermi levelStic parameters of the charge carrier, i.e., their density and

frozen into the acceptor band is nonzero starting at atmomobility, we employed the transformations that linearized
spheric pressuréalthough the electron contribution to the EG-(4) (Ref. 6:

formation _of_Ro and pg is unessgqtiaj The increa_sle in_ the L[y EX[XSXO— 7] =M +N(n°—p2)‘1,
Hall coefficient and the resistivitypg~(epapun) = With
pressure is determined by the decreaseujn. Indeed, a L=[1—(n—p,)/(n°—p)](1—expé) 4, (A1)

simple phenomenological calculation of the Hall coefficient _ 0 .0 4
for two types of carrier of the same sign and the inequality ~ M= —[1={(n=p,)/(n"—p,);exp £](1—exp &)™~

with €= 5°— »— B* P (the superscript O correspond to atmo-
R,=(p,&) >Ry>Ra=(pae) '=R..=(Nge) ! (7)  spheric pressujeand the expression for the Hall coefficient
for three types of charge carriers when= 0 (Ref. 11):

(Table 1)) imply that R, increases with decreasing, (as 1+ @H2%+ oH*
ma decreases to zer®, tends toR,). Just as at room tem- R=R, m- (A2)
perature, as the pressure increases the effective acceptor-
band hole mobility decreases to several?ai! s ! as  The coefficientRy, ¢, #, 6, andv are determined by the
P—ow (Table 1), approaching values obtained in densities(n, p, andp,) and mobilities(uc, wa, andug)
p-CdSnAs(Cu) samples withK,>0.9 at liquid-helium of the charge carriers, and in the adopted approximation are
temperature$? i.e., a pronounced tendency toward localiza-independent of the magnetic field strength. In the mixed con-
tion of acceptor-band holes with increasing pressure can beuctivity range, where the dependence Rfon H is ex-
observed. pressed most vividly, the ratip,/n is much larger than
Thus, the presence of a large number of valence-bandnity, andu,H<1 in fields up to 20 kOéw, is a quantity of
holes and conduction electrong(g,)>0) at 77.6 K in  the order of several hundred év 1 s—1). In this case we
p-CdSnAs(Cu) with N.~N, suggests strong deformation have
of the band edges_and formation of heavily doped and_ fully (oH2+ OHY) (oH?) "1=1, (yH2+vHY)(yHD) 1=~1
compensated semiconductor states even at atmospheric pres-

sure. to within one percent, and E¢A2) becomes

R=R LtoH® A3

~Ro Ty A3)
5. CONCLUSION o
This implies that
In  p-CdSnAs(Cu) crystals with K,—0 and
Na— Ngyt, @ heavily doped and fully compensated semicon- = _— —t—, (A4)
ductor state is realized a@t<77.6 K even at atmospheric R ¢H ¢
pressure, in contrast to the case with— 1 (see Refs. 4 and R—R®M 1= (R.— R®™ 1+ y(R.— RE™ ~1H2 A5
5). For semiconductors with a deep impurity band, the equal- ( =) (Ro~R..) Y(Ro=R.) - (AY)
ity of donor and acceptor densities is not a necessary condNote that
tion for the formation of a state of a heavily doped and fully
: : ¢ AT
compensated semiconductor, in contrast to the model sug- Ref= Ro(— >Rw=R0(—> = lim R=(Nge) L.
gested in Ref. 1. v vl 4w
The unique possibility of continuously controlling the , 25 :
height of potential barriers by applying hydrostatic compres-AIIOWIng for the fact that fuc/u,)">1, we obtain
sion in such systems is of certain interest to studies of the ul 5 we |2
specific phenomena in disordered semiconductors, such as ¢~ #ec| 1= 23|, ¥=puc|l-g—=/ . (A6)
cRo0p c00

the state of “frozen” photoconductivity of nonequilibrium
carriers, which can be retained indefinitely. Possible objectwith |R.|=(ne)~*. Thus, in weak fields th& vs H depen-

for such investigations are the heavily doped and stronglglence is determined primarily by the characteristic param-
compensated GAu,Sb, InSKCr), and n-InAs crystals eters of the highly mobile charge carriers, the electrons of the
with an excess donor density of order'3@m 3. The im-  conduction band, and and u. can be found directly from
portance of these substances cannot be overestimated, sirféé). Equations(A6) also lead directly to the following
they can serve as an effective model for a disordered semgquations:

conductor(an amorphous semiconductor, in particuleon- 2 p
trollable by compensation and hydrostatic compression. RAo'i 1+ ﬂ) p_”} = Rogg_ chg,
M A
The authors are grateful to the Russian Fund for Funda- (A7)
mental Research for financial supp@Rroject No. 95-02- oal 1+ &&) = go— 0,
03653a. Ma Pa
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(1-Ry/R)/¢H? in Eq. (A4) is smaller than

-1
A uyK |AR,/R||Ry/R|~* by a factor of|1-R/R"| (R<0) and
-400+ does not exceed 4%.
All this reasoning and the above relationships suggest
200+ that the method of calculation and the estimates of the errors
in determining the characteristic parameters are determined
by the properties of the specific samgtaore precisely, by
or R, R R. and the range of variation d®(H,P)). The
case of two types of charge carriers is fairly simple and has
200} been discussed in detail in Refs. 4—6 and 9. We examine the
2 case of three types of charge carrtéré3using sample 10 of
400 p-CdSnAs(Cu) with Np~N,, as an example. For room
[ . , , 1 temperatures we used Eq#4) and (A6) to estimaten and
0 0.5 1.0 1.5 P, GPa u and to derive two independent equatidAg) containing

the characteristic parameteps, ua, P,, and u,. The
FIG. 5. Experimenta_lly measure@urve 1) a}nd theoretically calculatgd value of n and the known band parameters were used to
e meroseete poseen e PSS I esimatey and p, . After ths we employed EqsA), (AL),
and (A7) to estimate the remaining parameters. There were
aspects that facilitated the calculations and made the results
with o.=nu.e. Then, using, the known band parameters, more reliable: the value of the baric coefficielat, /P was
and the approximation of the KB dispersion law, we esti-known a priori,® while the parameterp, and ., at a fixed
mated»n andp, . Finally, we used Eq<4), (A1), and(A7)to  temperature and Na~N,, are practically pressure-
determine the other characteristic parameters of the chargadependent.
carriers. Moreover, the reliability of the results of calculations
To determine the errors in estimating the characteristiovas increased by adjusting the estimates via a comparative
parameters by formula@4) and (A5) we used differentia- analysis of the curves reflecting the dependenc&.,0f N,

tion. We introduce the notation andN, on R{)(??.G K)/Ry(300 K), by extrapolatindr, to
the pointP™*=0 (i.e., P—x), etc.
y= &, | = ﬂ, b= f Finally, for crystals withNg~N,, in the present work
R ¢ ¢ (Fig. 5) and earlier in other casé$additional verification of
to be used in Eq(A4), and the notation the results was performed; namely, the value of the thermo-
off 1 off off—1 electric power\ calculated using the values of the param-
y=(R=R.)™% [=#(Ro—R.), b=(Ro—R.) eters of the charge carriers and the approximation in which
to be used in Eq(A5). scattering of charge carriers on ionized impurities is pre-
The maximum relative errors in determining the coeffi- dominant, was compared with the experimental value. Up to
cientsl andb by (A4) are P=1 GPa at room temperature aNd,~N, the agreement

was satisfactoryfFig. 5. The observed discrepancy in the

-1 -1
|A_I|: M _ _Rﬁ ﬂ: M _Rﬁ N\ vs P curves at pressures above 1 GPa is caused by the
1] lyl RS © bl lyl | RS ' growing importance of the random potential with increasing

A8)  pressure, a fact mentioned in the discussion ofshess P

while largest relative errors in determining the coefficientsdependencéFig. 2).
| andb by (A5) are On the whole, with allowance for adjustments in plotting

and for physical models and according to what has been said

|A_|| _ M 1-RS/Ro earlier, the error in determining the characteristic parameters
I ly] | 1-R/Ry |’ of charge carriers, includindlg,;, is at most 15%.
Ab| ay|| R-RT 7
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The Landauer resistance of a one-dimensional metal with periodically spaced random
impurities
D. M. Sedrakyan, D. A. Badalyan, V. M. Gasparyan, and A. Zh. Khachatryan

Erevan State University, 375049 Erevan, Republic of Armenia
(Submitted 14 February 1996
Zh. Eksp. Teor. Fiz111, 575-584(February 199y

We find the dependence of the ensemble-averaged resistangeof a one-dimensional chain
consisting of periodically spaced random delta-function potentials of the chain length

the incident-electron energy, and the chain disorder parameté&/e show that generally the
(pL) vsL dependence can be written as a sum of three exponential functions, two of

which tend to zero ak—<. Hence the asymptotic expression f@i ) is always an exponential
function of L. Such an expression fdp, ) means that the electronic states are indeed
localized and makes it possiblerhich is important to find the dependence of the localization
radius on the incident-electron energy and the force with which an electron interacts with
the sites of the chain. We also derive a recurrence representatigm jomwhich proves convenient
in numerical calculations. €997 American Institute of Physids$§1063-776(97)01302-4

1. INTRODUCTION made it possible to obtain analytic results only under the
) ) assumption of weak or strong scattering of an electron by a
It is well known that the proceqlure of averaging gnd single barrier and in the event of resonant passage. Calcula-
calculating the averages of the physical properties for disorgong of the localization radius from the behavior(@f ) as
d_ered ;ystems is difficult primarily from the _mat_herr_1at|cal|__>oo were also done in Refs. 9—11.
wewpomt. The pher)omeno.n of electr_on Iocahzau_on in SyS- | Ref. 12 it was shown that for the model of periodi-
tems with random interaction potentials makes it possible.y\y spaced delta-function potentials whose amplitudes are
occasionally to draw certain conclusions about the nature gf,jependent random quantities with a zero average value, the
the possmle golutlons wnhout aptually solving the prqblem.average Landauer resistangg ) can be represented by a
For instance, in the one-dimensional case, as shown in RefSgries expansion. In Ref. 13 we were able to sum this series
1-4, the dependence of the average resistance of a metgly 14 derive a finite-difference equation for determining
W|th fixed impurities, where all _the el_ectronl_c states are IO'(p._). There we also gave solutions for this equation in par-
calized , on the length of the impurity chain can be ex- ic\jar cases, i.e., for electron energies corresponding to the
pressgd, foL — at absolute zero, by the following formula edge and center of the energy band.
(h=e"=1): In the present paper we find the analytic solution of the
_Lloallé_ finite-difference equation fofp, ) in the general case. This
<pL> Z(e 1)1 . . . .
solution actually givegp, ) as a function of the chain length
where ¢ is the electronic-state localization radius, which isL, the energy of the impinging electron, and the intensity of
independent of.. Here the “nonideal region” is assumed to electron scattering on a single barrier. We show that the so-
exist between two semi-infinite electrodes in which electrondution for (p, ) with L—oo can always be reduced to the form
move freely. It is the fraction of electrons that have passedp.) = exp/é), with £ independent of. We also calculate
through the “nonideal region” from one electrode to the the localization radius.
other that determines the transmissivity of the system, which  In Sec. 2 we formulate the problem and give the results
is inversely proportional tqdp, ). Thus, such a one-to-one obtained in Ref. 13 that are needed for our present study. In
correspondence between the Landauer resistgmgewith ~ Sec. 3 we find the general solution of the finite-difference
L— o and the localization radiugof one-electron states, the equation that the unknown functidp, ) satisfies. Here we
latter depending only on the electron energy and the force oflso derive a recurrence relation ¢, ). Section 4 is de-
the electron—impurity interaction, reduces the problem ofvoted to an analysis of the characteristic equation whose
finding ¢ to that of finding({p, ) with L—c, and vice versa. roots are used, as shown in Sec. 3, to express the dependence
For instance, for the entire class of random potentials irof (p ) on L. We also find the solution of the equation for
which the average potential is zero, i.e., potentials of thép ), with L—o, from which we derive an expression for
white-noise type, the localization radii have been calculatedhe electron localization radius. In Sec. 5 we analyze the
both in the presence of an external field and in the absence ¢@sults.
such a field® The well-known method of transfer matrices,
when applied to the model of short-range potenfialgs
made it possible to effectively perform numerical calcula-; taATEMENT OF THE PROBLEM
tions but proved ineffective in obtaining analytic results. The
determinant method, suggested in Refs. 7 and 8 for one- We take a chain oN delta-function potentials with ar-
dimensional systems consisting of random single barriersitrary amplitudes/,, and corresponding coordinateg:
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N The solution of Eq.(3) for the particular case of

V(X)= 2 V,o(x—x,), n=1,2,...N. ka= 7 can be obtained immediately becawse=0 for all
n=1
n:
L(_at the solution of tr;e Schdinger equ_ation for an electron (pn)=aN. (4
with an energyE=k* (h=2my=1, with my the electron .
mas$ outside the structure be This result corresponds to resonant passage of electrons and
. ‘ was first derived in Ref. 6. In Ref. 13 we found the solution
el +ryk)e ® x<x, of Eq. (3) for another particular case, where the incident
(k,x)= £y (k) ek X=Xy electron energy corresponds to the center of the energy band,

ka=m/2. The solution is

1[(a+b)N+(a—b)N (a+b)N—(a—b)N
2 * 2b ‘

wherer (k) andty(k) are, respectively, the electron reflec-
tion and transmission amplitudes. The Landauer resistance (PN>—
can be expressed in terms ig§(k) andty(k) by the well-

known formula ®)
L where

As the solution(5) shows, for anyw andN— o we can write

This formula holds for any type of scattering potential. {pn) inthe form({py) = exp{Na/&}, where¢ is independent of
In Ref. 13 we found that the quantipy averaged over the o1 is the electron localization radius.

different realizations of the random field for a model in
which N delta-function potentials occupy arbitrary points
X1, X2, ... Xy Can be expressed as

Below we show, however, that Eq3) can also be
solved in the general case, i.e., for any values of the incident-
electron energy and the parameter

()= 1+Z E 2P~ 1aP

P=L 1=ih=-=p 3. SOLVING THE FINITE DIFFERENCE EQUATION FOR {py(
-1
% pH - coe{2k(xj|+1—le)]} 2) L_et us now solve _Ec(.3) in 'Fhe general case. We seek the
=1 solution in the following form:
where P
(pn)=2, A"+ Ao, ©®)
w/2 w/2 =1
a= _J Vl' wf—w/Z f(Vjdvj=1. where thex;, A;, andA, are assumed independent Mf
The quantityp, determining the number of terms (), will
Here f(V;) is the distribution function of the potentials, be left undefined for the time being. Substituting the solution
which is defined in the intervalw/2,—w/2], is assumed (6) in Eq. (3) and requiring that the latter hold for all values
equal for all thev; (j=1,2,...,N), and is an arbitrary even of N, we arrive at the necessary relationships determining
function of V;. In particular, for f(V;)=1 we have Xx;, A;, andA,. These conditions are
a=W?/48k>. b
Direct summation of the serid®), even assuming that 2 AX==+a, @)
the scatterers are positioned equidistantly, runs into unsur- j=1 2
mountable difficulties. Equatio(2) can be summed only in b
some particular cases, when the electron energy corresponds i: 1__‘“ ®)
either to the center of the energy band or to the edge =1 1+X; 4’
(ka= 7/2 or ka= 7, wherea is the chain period">**How- 0
ever, as shown in Ref. 13, we can sum over the inner indices > A-=l A :} )
in (2). The result is a finite-difference equation for the un- =1 2’ 02

known quantity(py). This equation has the form Here thex; are the roots of the characteristic equation

N

()= aN+ S Cu (o). 3 x3—x?(1+m)+x(l—m)—1=0, (10)
n=1 where

where I=1+2 cog2ka), m=2a[l—cog2ka)]. (11

p1=1, c,=2a[l—cog2kan)]. Note that Eq(10) implies, among other things, thpt=3 in

Egs.(7)—(9). Simultaneous solution of Eq§7)—(9) and Eq.
Note that Eq.(3) can be interpreted as a system of linear(10) determines the coefficients; (j=1,2,3):

algebraic equations in the unknowfpi),{p,), . . . {pn}>
with the result that{py) can be written in the form of a A1=£ (1—a)(1+|)—(1+x1)(l+m—x1—2a). (12)
determinant. 2 (X2=X1)(X3—Xy1)
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A, andA; can be obtained fronfil2) via cyclic permutation To prove the above statement we must first establish
of X4, X, andxs. The quantitiess;, which are the roots of certain properties of the real roots of the characteristic equa-
the cubic equatiori10), are given by the standard formulas tion (10). This requires writing Eq(10) in the form

I+m x>+x+1 x+1
Xl_C+D+T! I_—X —mm. (17
13
C+D C—D I+m Here we allowed for the fact that # 0 and excluded the
O +i3 5 + 3 solutionx;=1, j=1, 2, 3, which corresponds to the edges of
the energy band&ee above If we substitute any real solu-
Here tion x; of Eq. (10) in (17), then in the plane specified by the
. 5 coordinated andm Eqg. (17) specifies a straight line contain-
C= [_ 9+\/6 D= A [ 9 Jo ing all the pairsl and m for which x; is a solution of Eq.
2 ’ 2 ’ (10). This statement provides the key to establishing whether
ol 1243m2 1 /12—m2\2 12— m2 or not a fixed reak; is a solution of Eq(10). To this end we
= __( ) +—, (14 need only to plugx; into Eq. (17) and see whether the
3 9 12 3 6 4 straight line(17) passes through the range of possible values
[+m\3 12—m2 of the parameter andm. If it does, x; is a solution of Eq.
q=-2 T + 3 -1 (10).

As the definitiong11) of the parametersandm imply,
From the general solution given i6§), (12), and(13) we can  the ranges of their allowed values are

easily find the particular solution for electrons with an en-

ergy corresponding to the center of the energy band. Indeed, —1=<I<3, m=0. (18)
for ka= /2 Egs.(11) yield = -1 andm=4«. Then the

. Examining the various straight lines in them plane for a
solutions of Eq(10) are 9 9 em p

fixed x;, we can easily see that these straight lines pass

X;=—1, Xpg=2a*1+4ad? (15)  through the region specified {(18) only if
Plugging(15) into (6) and(12) and noting that the coefficient —1=x;<0, x;=1. (19
A4, corresponding to the root;=—1, is zero, we arrive at N .
the solution(5) found in Ref. 13. Hence the condition§l9) determine the range of values of
Combining (6) and the characteristic equati¢h0), we the real roots of Eq(10) for arbitrary values of the electron
obtain the following recurrence equation fgry): energy(or ka) and the parameter.
As is well known, forQ>0 Eg. (10) has only one real
(pny=(—m){(pn-1)— (I +m)<PN72>+<PN—3>+m’(16) root. Then the other two roots are complex-valued and

X,=X3 . This means that we can always write
where the initial value$p,), {p,), and{p3) for (16) can be

found from (3): Xp=pe€'¥, Xg=pe '’ (20
(p)=a, (pr)=2a+2a’[1-cog2ka)], wherep and ¢ are real numbers. According to Viete's theo-
rem, we have the following relationship for the roots of Eq.
(p3)=3a+2a? 3—2cog2ka)—cog4ka)] (10):
+4a%[1-coq2ka)]>. X1 XoX5= 1. (22)

The recurrence equatiqii6) can be used for numerical cal-
culations and for studyingpy) for moderate values dfl.

We note that, as solutiof6) shows, the dependence of x1p?=1. (22)
the average Landauer resistance of a chain of periodically
spaced random delta-function potentials on the chain lengt®ince by definitionp? is positive, Eq.(22) implies that the
L=Na generally has the form of a sum of three exponentiaPnly real rootx, is positive, so that according td9) we
functions. have

x;=1. (23

Plugging(20) into (21) yields

4. LOCALIZATION OF ONE-ELECTRON STATES Then from(22) it follows that 0<p?<1. The real rook in

Now let us discuss the behavior @f, ), the solution(6), the given case@>0) can be found from{13). Using (20)
as L—x. We wish to demonstrate that for all reasonableand(22), we write the solutior(6) in the following form:
values of the parametetsandm the quantity(p, ) increases N NP2 L
in the limit L—o according to an exponential law. This (pn)=Axg +2ax; "cogNe+¢)— 3. (24)
means that in our mogiel all the one-electron states are locatp,o coefficientsA, andA; of the solution(6) can be written
ized. The only exceptions are the edges of the energy bandg
(ka=7m, m=1,2,...), for which the(p_ ) vs L depen-
dence is linear. A,=aéd? Az=ae ',
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sinceA;=A; . If we let N go to infinity and allow for the  K,=1/coshx hold, and the solution31) become the solu-
condition(23), from (24) we obtain the following asymptotic  tions (53) and(54) of Ref. 13. If we takeN to infinity, as in

expression foKpy): the caseQ>0, the solutiong31) become the solution&5),

(o) =ApN—1, (25) in which x;=a+b>1. Hence in this case too the localiza-
tion radius is determined by formul26).
Reducing this expression to the fofm, ) « exp{L/£}, we ar- We have proved that the soluti@f) with L— oo always
rive at a simple formula for the localization radigs leads to an exponential dependence of the average Landauer
a resistancep. ) on L. This means, in particular, that all the
&= = (26) one-electron states are localized, with the localization radius
1

given by formula(26).

Let us now examine another case, wh@re 0. Equation
(10) then has three real roots. As EQ1) shows, all three
roots cannot be greater than unity simultaneously, since if:_ THE LOCALIZATION RADIUS OF ONE-ELECTRON
this case their product would be greater than unity, which> TATES
contradicts(21). The case where all three roots are equal to  Before proceeding with the calculation of the localiza-
unity, X;=x,=X3=1 (Q=0), corresponds to the edge of tijon radius of one-electron states we would like to mention
the energy band and is a feature of this model; it has beegeveral general properties of the solution obtained fqy).
repeatedly discussed in the literat8feThe case when one As noted earlier, the average Landauer resistdpge,
of the roots is negative and the other two are positive is als@xpressed by24) and (31), in the asymptotic casd— o is
impossible, sincex;x,x3 would be negative, which contra- a power function of, i.e., (pn) = XT’ with x;>1, and is
dicts condition(21). Hence the only variant that does not jndependent ofN. The nature of the transition to such a
contradict conditiong19)—(21) is the one in whichx;=1  dependence is determined by the values of the reotsnd
and —1<x, 3<0. In this case one of the negative roots, sayx, of the characteristic equati¢t0). The farther the electron

X3, can be found fron{13) by using the formula energy is from the edges of the energy bands, the closer the
[+m absolute values of, andx; are to zero, and hence the more
X3=C+D+ 3 (270 rapidly the solutiong24) and(31) acquire the form(25) as

N grows. The dependence @, ) onL is oscillatory for any

with C=D*. The other two roots are also determined byelectron energy, but such behavior becomes less and less
(13) and can be written as evident asL increases. The average Landauer resistance
(pL) depends on the incident-electron energy in a similar

X12=a*b, (28 Wway, provided that. andw are fixed.
with a andb expressed in terms of; in the following man- We calculated the dependenceéodn ka andw numeri-
ner: cally, with the results depicted in Fig. 1. Clearly, at a fixed
w the value of the localization radius increases as a function
a= I+m——x3 of the electron energy within the first energy band
2 ' (0=<ka=), tending to infinity aska— 7. Note that the
(29) localization radius has a minimum when the electron energy
3(/1+m varies within the second bandr&ka<2), and the value
b= \/Z — tXs|(I+m=xg)+m—1I. of this minimum tends to the center of the energy band as

w increases. The diagram in Fig. 1 clearly demonstrates a
Instead ofa andb we introduce other variablep,andx, by  npatural physical result: at fixed electron energies the local-
the formulas ization radius monotonically decreases as the chain disorder
a=p sinhx, b=p coshx. (30) parametemwv increases. Figurg 1 alsp depicts the curves of
equal values of the localization radius of electronic states.
Then b?—a?=p?= —x;*. Plugging(30) and (29) into the  The universal result obtained here is that the electron energy
solution(6) for (py), we arrive at the following expressions: must grow withw for the localization radius to remain un-

_ . changed.
A(=1)Agp 2N+pN[Klsm“XN) IrgJ conclusion we note that in the cases of weak and
(o) = +KpcoshxN)] -1, N=2n+1, (31)  strong electron scattering, simple analytic expressions can be
H(=1)NAzp~ 2N+ pN[ KycoshxN) obtained for the dependence of the localization radius on the
+ K ,sinh(x N)] -1, N=2n, electron energy and the chain disorder parameter
Let us start with weak electron scattering, i@<$1. In
where this limit the root of Eq.(10) determining the localization
A A, radius can be found in the form
K12: y n:1,2,....
’ 2 X;=1+AX, (32

As noted earlier, for the electron energy corresponding to thevhere 0<Ax<1. Plugging(32) into (10) and keeping only
center of the energy bankla= 7/2, we haveA;=0. For this  terms linear ina, we arrive at the following expression for
particular case we can easily see thdf=p=1 and Ax:
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A microscopic model of the high-temperature~£2670 K) phase transition of uranium dioxide

to the super-ion state is developed. It is shown that accounting for the interaction of the

point defect subsystem with the electron subsystem in the mean-field approxirtvaliere this
interaction leads to significant additional screening of the charge of some of the gefects

and then calculating the configurational entropy of the point defects with allowance for the actual
symmetry of the U@ crystalline lattice affords satisfactory agreement with the available
experimental data on the degree of disorder of the anion sublattice and the behavior of the specific
heat of uranium dioxide in the given temperature range.1997 American Institute of
Physics[S1063-776097)01402-9

1. INTRODUCTION typic defects is not screened at interatomic distances and is

The last ten years have seen active experimental ane"y large, so that in the calculation of the number of states

theoretical studies of the high-temperature behavior of ura the configurational entropy it is necessary to take account

nium dioxide. This question is interesting both from a prac-°f ' blocking” of neighboring sites occupied by homotypic
tical point of view—the behavior of nuclear fuel during an 9€fects. Taking account of these factors in Ref. 2 leads to
accidental temperature increase—and for purely theoretic&Prupt growth of the equilibrium defect concentration when
reasons. In particular, the question of a microscopic descrip? Sufficiently high temperature is reached. .
tion of the anomaly of the thermodynamic properties of ura- ~ D€Spite the fact that the given model is able to provide a
nium dioxide in the vicinity of 0.8, still remains open. The dualitative explanation of the mechanism of the phase tran-
significant peak in the specific heat and the abrupt growth ofition, the quantitative description does not accord with the
disorder of the anion sublattice over a temperature intervafvailable experimental data. Thus, the defect concentration
on the order of 100 degrees about the given peak have agalculated by Tanet al,? which determines the onset of the
quired the name “Bredig transition” in the literature are usu- transition to the super-ion state=3x 102, turns out to be
ally compared with the transition to the super-ion conductingsubstantially lower than the value~0.1 measured by
state observed in crystals of fluorite type over approximatelyutchind’ by neutron scattering.
the same temperature rangeear 0.8 ,,). For a more accurate quantitative description of the

In earlier work(e.g., Ref. 1 the growth of the specific Super-ion transition in crystals with fluorite structure a num-
heat was linked with the behavior of the electron subsysterer of microscopic models of lattice-gas type have been pro-
of the crystal and was considered to be a result of electronifosed, as have models which treat the problem in the mean-
excitation, on the basis of the fact that uranium dioxide is dield approximation. These models describe the Frenkel
semiconductor with a wide band gap on the order of 2 eV defect distribution over the two sublattices with allowance
Later the given anomaly was linked mainly with disorderingfor their long-range action and differ among themselves by
of the anion subsystem by studying the interaction of théhe introduction of various terméwith varying degree of
defects within the framework of the lattice gas model. Thusjustification, describing the entropy contribution of the de-
one of the most interesting and important studies in this refects to the free energy functional. For the right choice of
gard is that of Tam, Fink, and Leibowitzwhich takes ac- terms it is possible to explain the specific heat anomaly that
count of the fact that UQis an ionic crystal and, conse- arises; however, such a procedure often has an artificial char-
guently, the nascent defects are charged. In this case ttaster.
interaction energy of the defects is determined by the long-  Thus, Hiernautet al®> added a term to the free energy
range Coulomb interaction so that an important contributiorfunctional that is connected with the vibrational entropy of
to the free energy comes from charge screening by théhe defect sites, which is proportional to di(wg), where
Debye—Hkel mechanism. When a critical defect concen-w; and wg are the vibration frequencies of the oxygen atom
tration is reached with rising temperature, the Debyeekdli  at an interstitial position and at a lattice site, respectively.
interaction strongly lowers the initial energy of Frenkel pair However, the ratio of these two frequencies, while providing
formation, and as a result can lead to a spontaneous rise good agreement between the results of analfRef. 5 and
defect generation. Such a mechanism of the transition to théhe experimental data on the behavior of the equilibrium de-
super-ion conducting state was first proposed for crystals diect concentration in the vicinity of the transition, turns out
fluorite type by Marchet al® to be unjustifiably highw; / o~ 10? (cf. Ref. 6. To account

A more detailed treatment of this mechanism should alfor the above-mentioned blocking of neighboring sites by
low for the fact that the Coulomb repulsion between homo-charged defects, Oberschnfiéxpressed the number of pos-
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sible positions in the sublattices for the defects by a functiorproach, in order to account for strong correlations in the
of the defect concentration including fitting parameters, andhearest-neighbor interactiotincluding “blocking”) more
SO on. accurate cluster methods were developfEdwhose applica-
This being the case, a more gend@tienomenological  bility, however, was limited to short-range potentials and
treatment of the problem would seem apt, one that wouldvhich in the case under consideration are not directly appli-
allow one to correctly describe the symmetry and form of thecable.
free energy functional in the vicinity of the transition. Two In regard to the second problem some additional expla-
papers by one of the authors of the present gateme dedi- nations are necessary. The point is that although the very
cated to constructing such a model within the framework ofide& of spontaneous formation of charged defects when a
the Landau theory of phase transitions that enables one tertain concentration is reachédith increasing tempera-
determine from general symmetry arguments the nature dtire) at which mutual screening of charges self-consistently
the observed transformation and classify its oéad form),  lowers the effective formation energy of these defects is un-
thereby narrowing down the possible choice of microscopigloubtedly valid, actual calculations within the framework of
models. These papers showed that the given transition can ifee Tam—Fink—Leibowitz modgllead to a value of the
considered to result from disordering of oxygen atoms ovespontaneous defect disordering concentration that substan-
the two sublattices: the anion sublattice, in which the O atfially exceeds the value measured in experiment. Analysis of
oms initially find themselves, and the cation sublattice,the Tam—Fink—Leibowitz model shows that the main reason
whose sites are located at the centers of the cubes of tHfer such high values of the spontaneous defect disordering
anion sublattice in such a way that half of these sites aréoncentration has to do with the large charge of the defects
occupied by uranium atoms. As follows from the experimen-(Z= =2 respectively for the positively charged oxygen va-
tal data, the position of the cations is essentially fixed all thecancies and the negatively charged oxygen interstitials
way to the melting temperature, so that disordering of thd1owever, a more detailed treatment of the charge state of the
anions over the two sublattice takes place in the “external’vacancy defects shows that as a result of the interaction of
crystal field of the fixed cations. The concrete form of thethe crystal defects with the electron subsystem of the semi-
free energy functional obtained in Ref. 8 is connected with &onducting UQ crystal, the charge of these defects can vary
peculiarity of the spatial groupC(ﬁ) of crystals with fluorite considerably with increasing temperature. Indeed, according
structure that ensures preservation of the spatial symmetﬁﬁ the microscopic calculations based on the shell nfédel
even for complete disordering of the anions over the twdhe vacancies of the oxygen sublattice Breenters, so their
sublattices. As a result, the given functional describes a trarflectron levele, lies in the band gaf~2 eV) near the
sition which can be characterized as a second-order phag@sition of the chemical potential for a defect-free crystal
transition in an external field and, consequently, is accompatl-€-» approximately in the center of the gaw/ith increasing
nied by the appearance of a “smeared” anomaly in the spedefect concentration th_ey begin to mflue_znce_z the position of
cific heat over some finite temperature range. the chemical potentlal in the_ crystal, which in turn can lead
The results of this analysis impose rigorous constraintd0 a self-consistent change in the degree of ex0|tat|qn of the
on the form of the entropy term in the construction of the€€ctron subsystem and the occupancy ofihéevel. Since

microscopic model, and require a more detailed and considh€ “correlation” energy determined by the Coulomb inter-
tent description of the configurational distribution of the at-2ction heavily depends on the chargesorming the defect

oms and defects over the sites of the crystalline latipe  Plasma”

particular, a more exact treatment, to the extent this is pos- 32

sible in the mean-field approximation, of “blocking” of Ecorr“(E ZiND,) :

nearby sites with the real symmetry of the fluorite crystalline “

lattice taken into account allowance for defect “recharging,” which is related to

Thus, the problem posed in the present paper consists ghanges in the occupancy of the defect lewels signifi-
two parts: ) a calculation of the configurational entropy of cantly affects the behavior of the system and, as will be
the distribution of defects over crystalline lattice sites inshown below, ultimately leads to a substantial rise in the
fluorites with a correct account of blocking of neighboring critical defect concentration at which the phase transition
sites reflecting the redspecial symmetry of the crystal, and takes place.

2) a consistent description of the interaction of charged de- A self-consistent solution of the two parts of the stated
fects within the framework of the Debye—Ekel mecha- problem would consist of a correct description of the Cou-
nism, which probably requires an account of their interactiolomb interaction of the charged defe¢tlowing for charge
with the electron subsystem of the semiconductor crystatxchange with the electron subsystem of the semiconductor
uo,. crystal UQ) and the defect configurational entrofsllow-

The sense of the first problem has already been spelleiig for blocking by the charged defects of the nearest sites of
out in sufficient detail. In addition it may be mentioned thatthe specific(fluorite) crystalline lattice, i.e., reflecting the
the problem of “blocking” of nearest sites was first consid- special symmetry of the syst¢nSuch a solution would en-
ered by Paulintf in the mean-field approximation, who ex- able us to develop a microscopic model on the basis of which
plained the nonzero value of the residual entropy of ice a# is possible to obtain a valid quantitative description of the
T—0 by the degree of disorder of the protons on the doublestructural transition in the UDcrystal in the region off .
minimum H-bonds. Later, within the framework of this ap- (essentially without resorting to fitting parameders
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(n<0.01). In this case, in the calculation of the equilibrium
defect concentration according to formuldl) the contribu-
tion Fpy, conditioned by the correlation interaction, can be
[111] neglected, yielding the standard temperature dependence of
. the equilibrium defect concentration, valid for small concen-
trations,n o exp(—w/kT), wherew is the defect formation
energy. Therefore, in the following calculations we may use

® | _ the value 3.67 eV fow, measured in Ref. 14.
| [L10] The point defect subsystem is a lattice gas of charged
7 o particles electrostatically interacting with each other. Conse-

quently, for the interaction energy in the mean-field approxi-
mation we may use the formula describing the correlation
interaction in a solid-state plasnisee Refs. 13 and 15

3
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FIG. 1. Clusterg3:1:2) of defects, formed by the disordering of the anion . .
lattice of UQ, at high temperature®—oxygen atomsg—uranium atoms. ~ Wheree is the charge of the electrof, is the temperature,
Frenkel pair:x—interstitial, O—vacancy. Relaxing atomgy—interstitial, ~ k is the Boltzmann constany/ is the volume is the per-
D—vacgncy. The inter;titia_i is disp_lace_d relative to the center of the edge mittivity, N, is the number of particles of type, andZ, is
connecting two vacancies! in the direction(1,1,0]. their charge. In the simplest case the index 1, 2 corre-
sponds respectively the positively charged vacancies and
negatively charged interstitials. In the case under consider-
ation, as will be shown below, the partially electron-screened
To describe the behavior of the point defect system in &vacancies and the holes formed as a result of excitation of
UO, crystal, we write the free energy in the lattice-gas ap-the electron subsystem will also contribute to expres&n
proximation in the standard forth In the given model we do not take account of formation of
uranium vacancies by the Schottky mechanism in light of
F=WN+Fpy—kTS @ their high formation eﬁergy (*#10 e\}/l). °
The first term on the right-hand side of E4) is the energy The calculations carried out in Ref. 12 show that the
of Frenkel pair formation ij;=N,+ N). Here, on the basis vacancies and interstitials forming the Frenkel pairs in the
of microscopic calculations of the formation of nascent com-anion sublattice at low temperatures possess effective charge
plexes of defect§,we will assume that at high temperatures Z= + 2. The same values were adopted in Ref. 2, which led,
the defects are short-lived clustef3:1:2 consisting of a however, to too high a correlation ener¢gee the Introduc-
Frenkel pair and two relaxing atoms at sites of the aniortion). Reference 12 also calculates the electron spectrum of
sublattice neighboring the interstitiedee Fig. 1. The relax- UO,, from which it follows that UQ is a semiconductor
ing atoms are displaced toward the center of the uraniumwith a wide band gap~2 eV, which has been confirmed
free cube of the anion sublattice by a distance of 0.25 to 0.Bnany times over in experimefé.g., Ref. 16 Here the na-
times the length of the diagonal. The vacancies formed bgcent oxygen vacancies aFecenters, and are capable of
the relaxation of the vacancy atoms also contribution to theattaching themselves to an electron at the free electron level
total number of defects as measured by neutron scattéringof the F-center located approximately in the middle of the
On the other hand, the displacement of the relaxing atoms iBand gap, i.e., near the position of the chemical potential for
rigidly fixed both relative to the anion lattice sites and to thethe defect-free crystal. The upper filled level of the intersti-
position of the initial interstitia{see Fig. 1L Therefore, they tial Oiz’ lies below the valence band and therefore hardly
do not make an additional contribution beyond the contribu-participates in the excitation of the electron subsystem.
tion of the interstitials forming the “current” Frenkel pair to The presence of an vacancy electron level in the band
either the correlation energyFfy) or the configurational gap can lead to important consequences in the behavior of
entropy. Proceeding from what has been said, we denote bihe system of interacting defects and electrons which have
N the number of “current” Frenkel pairs or, in other words, been considered in numerous works in the literature. By way
the number of clusters, which, as follows from tt&1:2) of an example we may mention the phenomenon of self-
cluster model, is three times smaller than the total number ofompensation in doped semiconductors, which consists in
interstitials (vacancies measured in experiment. the following!’ To increase the number of charge carriers
According to the measurements reported in Ref. 14 ofe.g., electrons in the conduction banhe semiconductor is
the degree of disorder of the anion sublattice at temperaturetoped with a high-valence impurity. However, in a number
of the order of 2000 K, the formation energy of an oxygenof cases, formation of vacancies containing the electron level
Frenkel pair is equal to 3.67 eV. The measurements weré--centej with trapping of the “impurity” electrons at this
carried out in a temperature interval lying quite far from thelevel turns out to be statistically more favorable for such a
transition region(a few hundred degrees beloW;) and, system than the transition of the “impurity” electron to the
consequently, the defect concentration was smaltonduction band. As a result of such a process, the number

2. DESCRIPTION OF MODEL
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of carriers in the conduction band does not increase andjence, neglecting, in Eg. (4), we easily obtain an expres-
accordingly, conduction does not grow. Similarly, in the casesion linkingn andny,:
under consideration, the presence of a vacancy electron level o
i i n expe,/kT)| 3 ~1
near the middle of the band gap can lead to strong screening — a
. . np=2n I+t — =37 — .

of these vacancies by the electrons appearing as a result of 2(kT)
thermal excitation and, consequently, to a lowering of th
effective charge of some of the point defe¢mion vacan-
cies. In this case, allowing for the interaction of the electron
and vacancy subsystems can lead to a substantial amplific
tion of the excitation of the electron subsystem.

For nonzero temperaturg, the distribution of the elec-
trons over the energy levels obeys Fermi—Dirac statistics:

1+ (8)

%n calculations with(5) we takem;,~10m,, wheremj is the
mass of the free electron, ama~2.24x 10?2 cm 3, where

m is the density of the cation sublattice siteSubstituting

fhie values1~0.07 anckT~0.3 eV into Eq.(8), these values
being characteristic of the region of the phase transition, we
easily obtain the estimata,~n, which is self-consistent

with Eq. (7).
gi—p\ |t Thus, in the temperature range of the phase transition,
f(ei))= 1+€‘XD( KT )) (3 the lattice gas of charged particles forms the following de-

fects: oxygen interstitials with chargg= —2 and concen-
The position of the chemical potential is determined tration n;=n; fully ionized oxygen vacancie<,=+2,
self-consistently by the electrical neutrality of the system, n,=(1—f )n; oxygen vacancies with filled electron level
ndtn.=n @) Za=+.1, na=nf; holles with Z*?:+1 and concentration
e’ am ny,. Finally, the sum in expressio?) takes the form

where n, is the electron concentration in the conduction

band,n, is the electron concentration at tRecenter level, >N, Z2=(8n—2n )M, (9)
andny, is the hole concentration in the valence band. Here @

n,=nf(e,), wheren is the anion vacancy concentration. It

. ) : . whereM is the number of anion sublattice sites. As can be
is not hard to show that in the case under consideration

seen from Eq(9), as a result of screening of vacancies by
o= M electrons the variation of the total charge in the expression
KT |>1 for the correlation energy is governed by the tern2ny,,

which is comparable in order of magnitude with the first
(u=1 eV, eq~2 eV, kT~0.25 eV so that to describe the term 8n. This latter fact is a consequence of the back effect
electron population of the conduction band and the holef the vacancy subsystem on the behavior of the electron
population of the valence band we can use the standard fosubsystem leading to the relatiog~n.

m
hedEa®

mulas for a non-degenerate semicondudfor: Thus, taking account of the interaction of the electron
5 (mkT\ 32 e subsystem and the point defect subsystem leads to a substan-
Ne=— e_) F{M 9), tial decrease in the correlation energy of the interaction of
m\ 27h kT the charged defectén comparison with the calculated re-
32 sults of Ref. 2.
nhzz mh_kT F<— ﬁ) (5) Note that the opinion exist&see, e.g., Ref. 1%hat the
m | 2mh kT holes in the valence band can be localized and form small

wherem, andm, are the effective masses of the electronsPolarons U™. In this case, expressid) takes the form

and the holesm is the concentration of the anion sublattice 2n

sites, andk, is the width of the band gap. n,= .
; g h 2
It is clear from Eq.(5) that the degree of excitation of 1+(1+8n explea/kT))

the electron subsystem and the degree of screening of the Below we will also consider this case.

vacancies are determined by the position of the chemical To calculate the entropy contribution to the free energy
potential. At low temperatures, when the defect concentrafynctional (1) it is necessary to allow for the fact that the
tion is not large(n~exp(~w/kT), wherew~4 eV), the solu-  Coulomb interaction of the charged defects, which is
tion of system(3)—(5) yields an estimate for the chemical screened at large distances, leads to a strong repulsion of the

(10

potential u~e4/2, whereupon charged defects with like sign at close distan@éghe order
e of interatomig. Therefore, following Ref. 2, we will assume
n,<< nemnhmex;{ - %) : (6)  inthe calculation of the number of states that the addition of

one oxygen vacancy leads to a decrease in the number of

With rising temperature and increasing defect concentratiof€maining free sites over which to distribute subsequent va-

the contributionn, to the balance4) grows, and in the re- cancies by a factor of sevefne site is occupied by the
gion of T,;;=2670 K it is decisive, so that the chemical po- defect itself and it blocks its six nearest neighbok&/hen

tential is of orderu~g,/2, and instead of relatiof6) we the defect concentration is high enough, vacancies located

have near each other can block the same sites, which leads to a

decrease in the effective number of sites blocked by one

NN~ eX ;{ _ fa ) ) vacancy i_n comparison with _the case of a tenuous vacancy
e~ath 2kT)" gas(in which their concentration tends to ze&rdhe Appen-
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can shift in two different directions, so that the total number
of states of a cluster associated with the given sublattice site
is 24. Finally, the total number of states corresponding to the
configurational entropy of the interstitial subsystem is

o o I'=24'cy.

The contribution to the configurational entropy from the
interstitial distribution correspondingly takes the form

0 S=n In24—n In n—(0.125-n)In(0.125-n). 1y

0] ol Reference 6 calculates the entropy of formation of a
Frenkel pair due to the change in the phonon spectrum from
g the formula

3N

3N
_ ’
FIG. 2. Arrangement of different types of sites around a test defect in the AS=-k |n( H @i /H wi) 1 (12
sublattice formed by the interstitiall—test defect0), O—Dblocked sites

(1), ¢, A, O—sites(2), (3), and(4), capable of blocking site€l). which is valid at high temperaturé¢above the Debye tem-
peraturg. Here w; is the spectrum of the ideal crystal; is
the spectrum of the crystal with a defect. The value obtained
dix considers the possible configurations of interacting deas a result of these calculatiosS~ 4k, is the contribution
fects in a crystalline lattice with fluorite structure and on thisof the nonconfigurational entropy to the general expression
basis calculates the contribution to the configurational en¢l).
tropy due to the vacancidg&q. (Al)). Substituting the expression for the correlation endjy
Let us consider the contribution to the entropy from thein Eg. (1) taking Eqg.(9) into account and also EqgAl),
distribution of the interstitials fj To start with, we assume (11), and(12), which define the various contributions to the
that the c§* ions can be located at identical positions insideentropy, and using the values of the numerical parameters
the uranium-free cubes of the oxygen sublattieg., at their  entering here and indicated above, we finally obtain the fol-
centers, from among the possiblé sites inside the cube  lowing expression for the free energy functional:
where these positions form a face-centered ctfio lattice 32
: : : c 0.098n—2ny)
with edge length equal to twice the interatomic distance of p_3gm-—""— =" Ly1(2ninn
the oxygen sublattice. A test defect located at a site of such a JkT
lattice (see Fig. 2 blocks 12 nearest neighbors—the sités
To find the mean number of sites blocked by the test defect, +(0.125-n)In(0.125-n) =5, (n) = 7.1n), (13
it is necessary, as in the previous césee the Appendixto  (the free energy per site of the anion sublajticghere the
consider the possible configurations of the interstitials afree energy and the quantiyT are expressed in units of
sites(2), (3), and(4) and calculate their probabilities. How- electron volts, and the hole concentration is given by @By.
ever, in the given case the problem is complicated by the faabr (10).
that the arrangement of particles at sit@s (3), and(4) is Also note(see, e.g., Ref. )4hat the term in the formula
not independent. Therefore, to calculate the number of statefgr the free energy proportional tok T is usually dictated by
we will use the following approach. Consider the case inthe contribution of the non-configurational entropy, e.g., the
which the concentration of interstitials is so high that theychange in the phonon spectrum associated with the appear-
occupy all possible sites, provided their nearest neighbors atance of defects. It follows in our model, then, that part of the
free as a result of blocking. In this case, the defects willconfigurational entropy defined by E(iL1) also contributes
completely occupy sites of one of the four simple cubic subto the free energy proportional ttkT. In summary, the co-
lattices into which the initiaffcc lattice is subdivided. We efficient of nkT is equal approximately to 7, which accords
take this configuration as the new ground stajeadruply  with the results of experimerisin which the given quantity
degenerate The number of sites of the new sublattise  was estimated from specific heat measurements in the tem-
equalsM/8, whereM is the number of sites of the anion perature range from 300 to 1500 K.
sublattice. If the number of interstitialé is less tharK, then
K—N unoccupied sites is formed in thg sublattlce,.and 85 § RESULTS AND DISCUSSION
result the number of states corresponding to the given num-
ber of interstitials is To describe the high-temperature behavior of uranium
CK-N_ N dioxide, specifically, that is, to find the degree of disorder of
K K- the anion sublattice and describe the temperature dependence
As follows from the calculations in Ref. 4, in reality an of the specific heat, it is necessary to examine the derived
Oiz’ interstitial is located not at the center of a cube of thesystem of equation&) and(13). The equilibrium concentra-
anion sublattice, but near one of its edgsse Fig. 1L Con-  tion of the vacancies in the oxygen sublattice is found by
sequently, each interstitial has 12 different positions insideninimizing the free energy functiofl3) under the condition
the cube. Moreover, the relaxing atoms of {Bel:2) clusters  that the hole concentration is given by E8). In light of the
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N r . ' of nearest sites in Ref. 2 led to the result that the term in the

free energy due to the configurational entropy has approxi-

0.3 mately the form

0.25¢

02 Scon= — 20 In(n)+(0.5—13n)In(0.5—13n)

+(1-7n)In(1—7n), (14

0.15}

e1r i 1 where the numbers 13 and 7 control the decrease in the num-
005~ | . . ber of vacant sites upon the addition of one defect for the

2600 2650 2700 2750 2800 interstitial and vacancy subsystems, respectively. The num-

T.K ber of defects to be distributed over the possible sites cannot
- __exceed the total number of sites, as the arguments of the
FIG. 3. Temperature dependence of the equilibrium defect concentration for . . . .
various values ofe,: 1—e,=1.05 eV, 2—e,=0.97 eV, and 3— ogarithms in Eq.(14) must be positive. Hence it follows at
£,=0.9 eV. once that in the given model the defect concentratiaran-

not exceed 1/(213)~0.04. Consequently, the region of the

phase transition characterized by concentration values
fact that at present the position of the electron level of then~0.1 according to the measurements of Ref. 4 in general
F-center €,~1 eV) is a calculated quantity and not an ex- within the frame cannot be described by the given model.
perimentally measured one, the temperature dependence of An effort to account for the fact that different defects can
the defect concentration can be constructed by vargipmn ~ block the same sitego that the effective number of blocked
some neighborhood of its indicated value 1 eV. The depensites decreases with growth of the concentratiwas made
dences so obtained are plotted in Fig. 3 for three values dh Ref. 5, and led to an expression for the configurational
e,. Here the experimentally measured quanhiT) is the  entropy, InCXMCM), wherea and 8 themselves depend on
total vacancy concentration, formed both by the vacanciedl, and, in particulara=(1+18N/M) 1. Analogous argu-
corresponding to the current Frenkel pairs and by vacanciesents give for the maximum possible defect concentrations
resulting from a shift of the relaxing atoms in tti@&:1:2 n=N/M values on the order of 0.11, which are inconsistent
cluster. In line with this, the quantity plotted in the graph is with the concentration values~0.2 obtained in Ref. 5 from
N(T)=3n(T), wheren(T) corresponds to the minimum of numerical calculations for temperatures above the transition
F at the given temperature. temperature.

Best agreement of the calculated cumMéT) and the The temperature dependence of the equilibrium vacancy
experimentally measured quantity in the vicinity ©f;; is  concentration can also be constructed for the case in which
obtained fore ,~0.97 eV. With increasing, the transition the hole concentration is given by EL0), i.e., assuming
region (i.e., the temperature range over which a substantiathat the holes are localized on the uranium atoms. In this
change in the equilibrium concentration takes place andase good quantitative agreement of the dependdt{dd
abrupt growth of the specific heat is observstiifts toward ~ with the experimentally measured valfiegas achieved for
lower temperatures and lower concentrations. Physicallysmaller values of,~0.88 eV, which is also not in bad
this means that an increasedg corresponds to a decrease in agreement with the calculated valag~1 eV.
the degree of excitation of the electron subsystem at a given It should be pointed out that the value of the non-
temperature and, consequently, in the degree of screening obnfigurational entropywhich in our model defines the co-
the vacancies by the electrons, so that the value of the coefficient of nkT in the expression for the free enejgy also
relation energy at the given concentrations grows. At highean approximate quantity. Therefore we also studied the be-
values ofe, (=1.05 eV) the hole concentration becomeshavior of N(T) for weak variation ofs, within the limits
negligible in comparison with the vacancy concentration,=5%. Variations in the behavior of the concentration ob-
np<<n, and excitation of the electron subsystem ceases ttained in this way proved to be negligible.
influence the behavior of the point defect subsystem. This The specific heat was calculated in accordance with the
case in fact corresponds to the model of Ref. 2, in which theéhermodynamic formuld& = —TJ?F/dT?, where in the cal-
electron subsystem was generally ignored. Moreover, at highulation of the temperature derivative in the expression for
values ofe,, growth of the equilibrium concentration of the the free energy functionall3) we substituted the equilib-
vacancies with increasing temperature becomes very abrupium concentratiom(T). Within the accuracy of the calcu-
so that fore ,=1.05 eV the equilibrium concentration in the lations, this did not result in any difference between the val-
vicinity of the transition does not vary continuously but by a ues ofC,, andCp. Comparison of the calculated results with
jump, which contradicts the results of the general phenomthe experimental datshows that the proposed model pro-
enological treatment of this transitibrand experimental vides a good description of the behavior of the specific heat
observation$. and together with the transition temperature satisfactorily re-

In light of the above analysis, a few critical remarks areproduces the height of the specific heat peak
appropriate regarding the expressions for the configurationgl5C,,,~100 J/moleK) and the width of the temperature
entropy used in some other models. The account of blockingnterval of smearing §T~80 K) of the peak(see Fig. 4.
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8C. J/mole-K UO, the charge of these defects can vary substantially with
120 ' ) 7 growth of temperature. This has to do with the fact that the
vacancies of the oxygen sublattice forfrcenters whose
electron levele, lies in the band gapwidth ~2 eV) near
the position of the chemical potential for the defect-free crys-
tal. With growth of the defect concentration as the tempera-
ture is raised the position of the chemical potential in the
defect-containing crystal begins to be affected by their pres-
ence, which in turn can lead to self-consistent variation of
the occupancy of the, level and the degree of excitation of
the electron subsystem. Taking this interaction into account
has a significant influence on the effective charge of the va-
20600 %50 27'00 750 2300 cancies and, consequently, on the behavior of the system as a
T.K whole.
2. The strong Coulomb repulsion of homotypic defects
FIG. 4. Temperature dependence of the excess specific &@afor at close distances leads to blocking of the sites nearest a
£,=0.97 eV. given defect. Taking this phenomenon into account leads to
the result that the number of available sites for defects of one
kind is decreased and the expression for the configurational
4. CONCLUSIONS entropy changes. The general phenomenological treatment

In the present paper we have proposed a model WhiCRresented earlier in Refs. 8 and 9 of the behavior of the
makes it possible, on the basis of the available calculated arysStem at the investigated transition. impo;es rigid constraints
experimental data, to achieve a satisfactory quantitative den the form of the free energy and, in particular, on the form

scription of the disordering of the oxygen subsystem and th(?f the cor?flguratlonal_erjtropy. Th|s_reqU|res a more detguled
anomalous behavior of the specific heat of uranium dioxid nd consistent description description of the configurational

in the region of its high-temperature phase transition. As Sistribution of the atoms and defects over the crystal lattice

point of departure we chose the model proposed in Ref anes—in particular, a more accurate treatment of blocking of
which takes account of the fact that Y@ an ionic crystal nearby sites with allowance for the actual symmetry of the

and, consequently, the nascent defects possess charge. Wﬁw[rltek_crys:r?lIlnetlatn;:e.t int th I dus t
some critical defect concentration is reached with increasingl Ia Ing these two fac c()jrslln.;)hgctchou? asa iw;e rl:s ho
temperature, screening of the charges of the nascent defe Velop a microscopic modet within the framework of whic
via the Debye—Hckel mechanism strongly lowers the en- Ithas been DOSS'_bIe t_o obtain a quantltat_lve descrlp_tlon of the
ergy of Frenkel pair formation, which can lead to an abrup tructural ransition in the Upcrystal in the region of

growth of their equilibrium concentration. Here the Coulomb " crit? t_hat '_S consh|stent with the f.OHO\.ng fexpeg(rsnB%ntalzo?tgo
repulsion between homotypic defects at interatomic digServations: Las the temperature is raised from to

tances is not screened and is very large, so that in the calcb@ a substantial growth of disorder of the anion sublattice is
lation of the number of states in the configurational entropfbserved’ softhat tg%zequnc;bzrl;m dﬁfeCt lcorcgntraﬂon in this
it is necessary to allow for blocking of neighboring sites rar;)gljettgrow_s{ .rortr;] 0210 0. d'.nt €ca le a_tlotr;] pir (i:;xygen
occupied by homotypic defects. Allowance for these factorsy P atIce Site, Pthe corresponding anomaly in the behavior

- . o - .Of the specific heat has the form of a smeared peak with
in Ref. 2 permits a qualitative explanation of the mechanisnf’
P d P E?ximum heightoC,,.,~100 J/moleK and smearing width

1001

80f

60f

401

20t

of the phase transition; however, the defect concentratio
- " : ~80 K.
defining the onset of the transition to the super-ion stat ; _ . .
Finally, on the basis of this model we have carried out a

n~3x10"2 calculated in this model turned out to be two .. | ) .
orders of magnitude lower than the value 0.1 measured in critical review of models previously proposed to describe the
' super-ion transition in uranium dioxide.

Ref. 4 by neutron scattering.
In the present work we have achieved satisfactory quan-
titative agreement with the experimental data thanks to alACKNOWLEDGMENTS

lowing for the following two factors. In conclusion, we would like to express our sincere

1. An important parameter defining the magnitude of they aiitude to A. M. Dykhne for helpful discussions of this
correlation energy in a system of electrostatically interacting,sner.

defects is the charge of these defects. For defects of the ' nis work was carried out with the financial support of
crystalline lattice of uranium dioxide, which play a major {he |nternational Science FoundatitProject No. N6P0OOD
role in the description of the phase transition, the magnitudes
of the chargeZ are usually taken to be equal to2 for the

n . . APPENDIX A
positively charged oxygen vacancies and the negatively
charged oxygen interstitials, respectively. However, a more  We calculate the mean number of sites blocked by one
detailed treatment of the charge state of the vacancy defectgcancy in the case when the vacancy concentration is non-
shows that as a result of the interaction of the crystal defectsero. Let a test defect be located at the $@e (Fig. 5),
with the electron subsystem of the semiconducting crystablocking the six neighboring sité4) of the first coordination
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1+ a M—|2+a«a
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C M e { or, replacing the sume in each term by an integral

1 0 T 3
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J\/- k=t M 0 M
0 & ;
2 K 3
FIG. 5. Arrangement of various types of sites about a test defect in the anion =M ( 7( M) B 15( M) B 286( M) ) '

sublattice. Markers denote the test def€t(®), blocking siteg1) (O), and
sites on the secon@®) and third(3) coordination spheres, respectivély

and o). we obtain the following expression for the entropy:
N
SU=In< 11 (M—M,B 5)) —N In E)
sphere. The(l) sites may already be blocked if there are K=0 M €
already other defects on the sit@} of the second coordina- N
tion sphere or(3) of the third coordination sphere. In this => In(l—ﬂ — | |=NIn{ —].
case, by virtue of the fact that tH@) and (3) sites are not K=0 M Me

nearest neighbors, the probabilities of finding defects at each ) ) ] ]
of them are assumed to be independent and equa-ta, Again replacing the sum by an integral, we obtain the final

wheren is the mean defect concentration. The total numbefXPression for the contribution of vacancies to the configu-
of (2) and (3) sites by which the1) sites can be blocked is rational entropy:
equal to 18.

The probability that all thé2) and(3) sites are free is S, M{ fn

In(1—7n+15n?+28°%)dn—n In n+n}.
Pe=(1-n)"?, 0

(A1)
where the subscript 6 indicates that the test defect blocks six
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An Anderson model witiN-fold degeneracy in the Kondo regime is considered. It is presumed
that the electron—electron correlations in the systerfi efectrons have their maximum

strength. A criterion for instability against the formation of a weakly antiferromagnetic phase
superposed on the Kondo state is obtained by the auxiliary-boson method usingyl the 1/
expansion. An effective interaction leading to the formation of magnetic ordering appears because
of the spin fluctuations in the system of localized electrons. The phase diagram of the

system is constructed. @997 American Institute of Physids$§1063-776(97)01502-3

1. INTRODUCTION conclusions regarding the behavior of a heavy-fermion sys-
tem with presumed magnetic ordering.

The influence of Kondo impurities on the formation of The situation is different in the case of strong orbital
weak antiferromagnetic ordering in a system of band elecdegeneracy of thé level. Although it is known that an in-
trons[which is also called a spin-density wa®DW)] was  crease in this degeneracy renders a heavy-fermion system
previously discussed in Refs. 1 and 2. In the limit of a smallmore stable with respect to magnetic ordering, the presence
concentration of Kondo centers the principal effect is theof the small parametel ~*<1 (N is the degree of degen-
incoherent scattering of the band electrons on these centeacy of the level makes it possible to devise a more sys-
which gives rise to antiferromagnetism. It was assumed irfematic theory.
this case that the mechanism for forming the SDW is based Below we investigate a situation in which a weakly an-
on the exchange interaction in the system of band electrongferromagnetic state of localized and band electrons appears
which thus competes with the mechanism for destroying th@s @ result of quantum fluctuations of the spin density in a
SDW. system with anN-fold degenerate seefd level on a back-

The present work is concerned with a System having Qround of a Kondo state. We assume tRat 1. This allows
regular arrangement of Kondo centéics., a Kondo lattice ~ US to utilize the I expansion and the diagram technique
in which the interaction of the band electrons with one an-developed for i*~*° by introducing auxiliary Barnes fields.
other is totally disregarded. As we know, in the Kondo re-Miura, Matsurura, and Kurodpointed out the possibility
gime the spin of a strongly correlated local center is shielde@f considering different types of ordering in a Kondo lattice
as a result of the redistribution of the spin density of the bandVithin the 1N diagram technique, but concentrated on cal-

electrons, and a nonmagnetic coherent state appears, Whi;f,:Hlat'_rlg the lifetime of Iﬂ;el qga5|part|cles| fand thghresponse
competes with magnetic states of various types. unctions to an external field in a general form with consid-

The possibility of magnetic instability of a specific type eration of vertex corrections.

in a heavy-fermion system is a question that was posed antd thAn attempft tor;i(t?r:jd thi KrotharV;RuiI:egst%m sDcrﬁmen d
actively studied a long time ago® Several heavy-fermion = "¢ C&s€ ot ofbita degeneracy was made by vorin a

. oS . . Schlottmann in Ref. 8. These workers did not study the ten-
systems experimentally exhibit weak antiferromagnetic or- : . . ;
. dency for antiferromagnetism in a Kondo lattice, but they
dering at low temperatures. The recent attempts to analyti- o i
. T o thoroughly treated the case df=2 in the mean-field ap-

cally describe the magnetic instability in such systems were roximation

generally based on the use of pseudofields. The latter alpe We stress that in the mean-field approximation with re-
|n.troduced. either acco.rldlng to Sarnes’ procedjt}r@ which spect to boson operators there are no magnetic solutions at
different kinds of auxiliary particles obey Fermi and BoseaII in the Hamiltonian under investigation hefgee below;
staFisticsl,O or by the m?thOd. of Kotliar and Ruckenstefrin and there is only a solution of the Kondo type. We take into
which the pseudoparticles introduced are bosdhs. account the fluctuations of the boson field in the lowest ap-
~Inmost cases the problem of a doubly degenefrdésel  roximation with respect to Y, and we derive a Stoner

is investigated in connection with magnetic solutidsee,  criterion as a necessary condition for the existence of anti-
for example, Refs. 7, 9, and JLOThe results are obtained ferromagnetism in just this approximation. Naturally, the an-
either in the boson mean-field approximatioe., by replac-  tiferromagnetism in our scheme is found to be wetie

ing the boson operators ynumbers or in first order with  effective exchange is small, of ord8F 2, since the boson
respect to the fluctuations of the boson field. It should b%ropagator itself contains the small parametdt</), and
noted that the absence of a small parameter in the theories afe proceed so as not to exceed the range of applicability of
this type causes the higher-order corrections to(#ssen- the 1N expansion. The Nad temperaturdy and the antifer-
tially variationa) solutions to be comparable to the solutionsromagnetic ga® in the spectrum of the band electrons in
themselves. This circumstance precludes drawing confidenhis situation are small in comparison with the Kondo tem-
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peratureTx and the Kondo energy;, i.e., 2, Ty<e;,Tk. N
Thus, we are concerned with the coexistence of antiferro- +§1 [aV(K)agmfkmtH.C]
magnetism and a Kondo state, which is possible when cer- ’
tain conditions are satisfied. We shall discuss them in this
paper, bearing in mind the case of a zero temperature
T=0.

A transition to finiteN~ 2 is impossible in our scheme, Where we went over to a new parameter scale:
since it requires consideration of correlators that are higher y,_,y/;/ /N, bt =NA".

with respect to M, which cannot be done correctly in the o . .
absence of a small parameter. The Hamiltonian(4) can be diagonalized by the standard

procedure of going over to new quasiparticles having a spec-
trum with two branches:

2. MODEL HAMILTONIAN _e(k)+eF [ e(k) - e]°+4(Va)®

. . . €1.AK) >
We write anN-fold degenerate Anderson Hamiltonian
for a lattice in the pseudofermion and pseudoboson fieldHere and below we use the notatigR=(V?(k)), where the

+N§ (e—Eo)Al A, (4)

®)

representation® angle brackets denote averaging over the directions of the
H=H,+H+H,,, 1 vectork on th_e Fermi surface. _
bl T reT @) The Fourier transforms of the Green’s functions of the
where band electrons, the pseudofermions, and the pseudobosons,
respectively, for the Hamiltoniart4) have the following
Hb=k2 e(K)aimam, Hi=2 Eofinfim, form:1®
m m
G (k . ) iw— €
Jdw)=— - ,
Hor= > V(k,mexplik-Ri)a; fimbi +H.c. aam (io—ep)[io—e(k)]-V?a®
kmi
iw—e(k)

Here a;, is the creation operator of a band electron with Gy (K,iw)=
“spin” projection m, quasimomentunk, and energye(k);

(iw—ep)[iw—e(k)]—V3a?’ (6)

ff;n is the creation operator of a pseudofermion at isitgth _ V(k)a

“spin” projection m; andb;” is the creation operator of a Garm(Kiw)= ((o—elio—ek)]-VZa?’
pseudoboson at siie The position of the Fermi level corre- f

sponding to half filling of the band is taken as the zero level D(K.iv)— 1

of all the energies in the problem. The Kondo regime of the
two-band model(1) is considered. This corresponds to the
following conditions:Eq<<0 and |Ey|>N(0)V2, where the
latter quantity is an estimate of the broadening of tHevel
due to the hybridizatior/, and N(0) is the density of the
band states at the Fermi level. It is assumed that the correl
tions of thef electrons have their maximum values, and,
thus, thef sites are singly occupied at most. As usual, we

N(et—Eo)’

whereiw=i7T(2n+1), iv=2inwT, andn=0,£1,+2,...
are the fermionic and bosonic Matsubara frequencies.

The interaction between the band and localized electrons
in the Kondo regime is introduced by the fluctuational part of
the HamiltonianH ¢ :

express this condition in the form Hint=%:1 V(K)ay mfictqmbg +H-C. (7)
+ £ +h. — As will be shown below, the appearance of antiferromagnetic
2 fimfim+ b b=1. ) . errom
m ordering on a background of a Kondo state is possible spe-

We shall assume below that the multiplicity of the degen—Cifically within Hig,.

eracy of the E; level is high, i.e., N=2J+1>1
(—J=m<J), which allows us to use the N/ 3. CRITERION FOR THE EXISTENCE OF WEAK

expansiort>1*16 Following Ref. 16, we assume that the ANTIFERROMAGNETISM
Kondo regime is characterized by the appearance of an Tpe antiferromagnetic ordering in the system under con-

anomalous pseudoboson average sideration is characterized by the appearance of self-energy
1 parts of the Green’s functions on a certain wave veQor
—(by)=adyo; (3 that are antisymmetric with respect to the spin index
N 2aams 2¢f.m. Henceforth we confine ourselves to consider-

the Fermi level. with Q=G/2, whereG is a reciprocal-lattice vector. This

The mean-field part of the Hamiltonidf) has the form  corresponds to antiferromagnetic ordering with period dou-
bling. The simplest diagrams which contribute 3q, and
Ho— Kal a, -+ £+ 3¢ in the lowest order with respect toNL/are shown in Fig.
ni= 2% (k)3 ndim k§r:n lmliom 1. We note that the self-energy paty,, which is off-
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= = Q) =T, Gua(@i0)Caan(@+Qiw), (13

\\\'\a ‘\\&f
Qzaa A _ _
" a - f Haf(Q):Tz Gaf,m(qalw)Gfa,m(q+Q-|w)-
L L g
a f a f Setting the determinant of the system of equatigiiy and
I (12) equal to zero, we can obtain the criterion for antiferro-
. o -
< magnetic instability
oS V2 2
e 4
Tf Y (Q)1,.(Q)=0 (14)
NZ(Ef_EO)Z ff(Q aa Q — Y,

FIG. 1. Diagrams for the self-energy parts of the pseudofermions and banﬁlhich can be written in a different form:
electrons. :
V2

- N(éf_ EO) Haf(Q)

diagonal with respect to the band indices vanishes because of 4
the symmetry conditioqV,(k))=0 upon integration over + \/ v I1(Q)I1,(Q) (15)
the directions of the vectdk in the Brillouin zone. We as- ~ VN%(e—Ep)? " A

sume that the quantization axis is directed along the polarrt is easy to show that only the plus sign should be chosen in
ization vector of the SDW. In this case, for simplicity, we (15), since in the system under consideration

write the dependence &, on the spin index in the form
VI §(Q)o0(Q) > [T1,(Q) ],

S m=sgnm)s. (8) _ _ _ _
Thus, to first order i, we obtain the following system of so that we can omit the first term ¥15) (the details are
presented below

self-consistency equations: To elucidate the physical meaning of the conditidd)
2

B Y _ we setll ;=0 and consider a more realistic model with the
Eaa(k"‘JfQ)—T%4 N(e—Eg) C'fml i) Hamiltonian
XGitm(a+Qiw)%(.9+Q) Hin= 2 Vin (K& oficrqmbq +H.c., (16)
V2 3
+TY ———=—Gam(dio) where a=+1 is the spin index of the band electrons. To
foq N(er—Eop)

second order with respect to the fluctuations of the boson

X Garm(d+Q,iw)2,4(0,0+Q), 9) field two types of diagrams appear for the self-energy part

5 2 ., Which is antisymmetric with respect to the spin index

_ v . (Fig. 2:
Eaa(k,k+Q)—T% meaa,m(c“w)
: 3@k k+Q)=—T? Va2V | 2D (K"
XGaa,m(q+Q:|w)Eaa(q:q+Q) @ ( Q) iw’ziw” krzku m%&’ | ma| | ma | (
V2 . —K)D(K"—k+Q)Grs (K" Gyt e (K" +K'
+TE N(—_EGaf,m(qr'w) ) ( Q) ff,m( ) ff,m(
foq N(€;—Ep)

—k)Ga(k')Ga(k’+Q)2(,ﬁ)(k',k'+Q),
XGram(d+Qiw)Z1(0,9+Q). (10 (17

It follows from Eqgs.(9) and (10) that > ., and X do not where k=(kiw), K=(Kio), K=K io" and

depend on the quasimomentum and the frequency. In thié:(Q 0): e ' ' ' ’

case we have the following equations: T

V2 SOKK+Q)=T2 Y, D D VE Vi VE, Vi

Eaa:m[naf(Q)zaa"'Hff(Q)Eff]i (13) “ o K e e
V2 XD(K"=K)D(K"=k") G m(K")

Eff=m[ﬂaf(Q)2ff+Haa(Q)Eaa], (12) X Gy e (K" + Q)Gy(k')

where X Gk +Q) V(K" k' +Q). (18)

_ ; ; Expressiong17) and (18) contain mean-field Green’s func-
IT =T2, G )G +Q,iw), : S .
Q) % rtm(@10)Grrn(a+Q lw) tions that are symmetric with respect to the indicesand
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k Ktk -k k" —k FIG. 2. Diagrams for the self-energy

parts of the band electrons.

m

—~—— e AN ,

k+Q o k"-k+Q k+Q,am k" +Q

a b

a. In the general case we can represénf andG,, in a  whereU is the effective interaction angy(Q) is the static
simple form like (6), and the calculations if17) and (18) = magnetic susceptibility of a noninteracting system on the
become far more complicated than(8) and(10). Neverthe-  vector Q. When the equality in(23) holds, the magnetic
less, for a qualitative analysis we take the simplest form okusceptibility calculated in the random-phase approximation
the dependence df,,, on the indices in the approximation has a pole:

of an isotropic scattering potential:

B _ [J+ ma X(Q):&
Vma_nga! gma_ 2 ’ 1_UXO(Q)’

where theg,,,, are the Clebsch—Gordan coefficients. The de- . . . . .
pendence o, . on the spin index has the form which signals the appearance of antiferromagnetic ordering

with the wave vectoR in the system.

S.,=a, a=*1 (19 If we consider(22) [or its analog(14)] from the stand-
oint of the band electrons, the role gf is played here by
2a(Q), and the role of the effective exchange interaction is

It can be shown that the diagram in Fig. 2a is proportional t

the quantity played by the quantityd V*(e—Eq) “2N~2I14(Q) [in (14)
Lo 2 B=1]. Criterion(22) can also be interpreted from the stand-
A= %m, @' ImaOm o =0, (200 point of localized electrons coupled by the effective RKKY

interactionBV*(e;— Eo) “2N~2I1,,(Q). In this case the role
while the contribution of the diagram in Fig. 2bXois finite  of y,(Q) is played bylIT(Q).

as long asB is finite: In the general case the polarization loopgid) can be
1 2 calculated only numerically. To analyze them we use a
B=-> (E agmagm,a) #0. (21)  model spectrum of band electrons with a constant density of
24\ 4 : : X
mm statesN(0), which allows us to go easily from summation

It can be concluded from an analysis of the diagrams irPver the quasimomentum to integration over the energy
Fig. 2 that diagram 2a actually represents the self-energy paf(k). We assume that the Fermi level is located in the band
of the band electrons, in which the functional corrections tocorresponding to the branefi(k) of the spectrun(5). Our
the boson propagator are taken into account. Such corregalculations show that the main contribution to the polariza-
tions do not give rise to a pseudofermion Green’s functiortion operator of the band electrons is made by states with
that depends on two different magnetic indices. At the samé&nergies from the bottom of the band to energies on the order
time, diagram 2b contains a fluctuational correctiorGtg,  ©Of the width of the hybridization gap =Va, where the seed
which leads to such a dependeri¢e., the pseudofermion spectrum of the band electrons is modified significantly be-
propagatorGy; ,y With m # m’ effectively shows itsejf ~ cause of the hybridization with thelevel. At the same time,
This allows us to conclude that antiferromagnetic orderinghe main contribution tdI(Q) is made by states in an
appears simultaneously in the subsystems of the band arfergy range of widtiA below €;. Outside this range the
localized electrons. Green’s functions of the pseudofermions do not differ

From (17)—(21) we can obtain the instability condition ~strongly from the Green’s functions of dispersionless par-

4 ticles and make a nearly zero contributionlig:(Q).

B .
Below we present the results of our calculations at
s ————II IT , 22 , ' L
N“(&;—Eo) 1(QHaa(Q) @2 T=0 for the most interesting cage e;>1. To simplify the
which is similar to(14), if we setB=1 andIl,(Q)=0 calculations we consider the case of an almost half-filled
, a .

seed bande(k), which has the property of ideal nesting:
e(k)=—e(k+ Q). In principle, this condition is not critical

_ for the existence of antiferromagnetism, as demonstrated be-
1=Uxq(Q), (23 low, although it is exceptionally favorable for its appearance.

We note that the conditiof22) exhibits definite similar-
ity to the generalized Stoner criterioh
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FIG. 3. Phase diagram i versusy coordinates.

a b The regions of the antiferromagnetic phase are
hatched: a — in a system with ideal nesting; b — in
a system with imperfect nesting.
Y Y

The spectrum5), of course, does not have the property of The region for the existence of antiferromagnetism in a
nesting in the Kondo phase. The main terms of the polarizakKondo lattice is qualitatively shown on thé—y phase dia-

tion operators in order of importance are gram in Fig. 3a.
As we have already noted, the quantity in front of the
w N . .
Haa(Q)~—N(0)an, !oganth_mlc factor in(25 can be regarded as an effe_:ctlve
interaction of the band electrons through the fluctuations of
A pseudofields. According t®5), this interaction is a decreas-
I,+(Q)~— N(O)Ine—, (29 ing function ofN, which corresponds to the disappearance of
f the fluctuations in the limiN—c. Using (25) and (26), we
A2 can show thatN has an upper bound in the heavy-fermion
i (Q)~— E—ng(O), phase with antiferromagnetic ordering:
where W is an energy on the order of the half-width e

of the band W>A). We note that, according t¢24), 1<N<?’3' (30

I (Q)I,,(Q)>T12(Q) , sinceA/e;>1. .
Substituting(24) into (14) and taking into account that We have hitherto assumed that the spectrum of the band

€:<|Ey|, we obtain the following instability criterion: electrons obeys the condition of exact nesting
Ani2 5 e(k)=—e(k+ Q). The expression&4) were presented for
VIN'(0) A W (25) just this case. If the nesting is imperf¢éor example, when

= J—
1= NZEZ & N3 the filing of the band deviates from half, we have
€(k)=—e(k+ Q)+ u, where o is the displacement of the
Fermi level from the position in the half-filled bahdhe
factor In(W/max|u|,A]) appears instead of M{A) in
I1,.(Q) (24). At the same time, the expression 1d¢:(Q) in
first order with respect te; /A remains unchanged.

When x> A holds, instead 0f29) we obtain

As was shown in Ref. 16, the quantizl;/z/efz, specifies the
increase in the effective mass:
AZ m* W exd|Eql/V®N(0)]

& m &N N

(26)

Let us consider the criteriof25) in the heavy-fermion
phase. It is convenient to introduce the following notation: y?e?” s 3
k=m*/m, y=|E,|/V?N(0). TheKondo regime corresponds (Wil =~ <e”. (31)
to the limit y>1. In the new notation we obtain the follow-
ing inequality from(25) and (26): As follows from this inequality, the deviation from ideal
34-2y nesting narrows the region of antiferromagnetigfig. 3b),
K°e 1 . -
> (7_ ZInkl=1. (27) and when|u| is sufficiently large, the parameter of theN1/
Y 2 expansion must have an upper bound specified by the condi-
We also require fulfillment of the conditiohl>1, which  tion
ensures applicability of the I/ expansion and takes on the e’ W
following form in the new notation: 1<N3<=In —. (32)

| ]

eY
—>1. (29
K
Employment of the M expansion allows us to omit the 4 AMPLITUDE OF THE SPIN DENSITY
logarithmic term in(27). We ultimately have
ye27< x3<e? 29 _ Let us turn to the calculation of the amplitu@eof the
' spin density in the ground state near the boundary of the

where it is assumed that=>1. region where the antiferromagnetic phase exists. As an ex-
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FIG. 4. System of equations for the Green’s functions in
the antiferromagnetic phase.
f 2 _ f f 5 f a + f a 5 a

+Q Qk+Q T & K k+Q k+Q Wk Kk’

f a f azﬁf a+f az a a
k7 k+Q kK k9 ke@

>
x~
=
~

ample, we consider the band compon&yt which is de- where all the coefficients are expressed in terms of the
fined in terms of the anomalous Green’'s functionGreen’s functiong6):

Ga3(k, k+Q) in the following manner: V2

Haa,ff(Q)a

a,f

L -
sazgz > Ek) sgn(m)G23(k,k+Q), (33) " (es—Eg)N

2
where the self-energy part,,, and ¢ ,, appear in Ag= v
G23(k,k+ Q) in a complicated manner along with the already (es—Eo)N
known parameters of the problem. The self-energy parts, in
turn, are determined from the self-consistency equations X Gat(K)Gar(k+Q),

TE E Gaa(K)Gaa(k+Q)

V2 2
i
Yeam e TE N T2 & Im(kk+Q), A= e TEgN T2 & CH(GH(k+Q), (30
2 (34 \2
aa
Eff,mmTE > GR(kk+Q). A= EO)NTZ > [2G,(K) Gyi(K) G2 (k+Q)
To calculate the functiong®'(k,k+ Q) we must solve G20 G2 (Kt
two fourth-order systems of linear equations: the first con- ar(K)Gark+Q)1,
tains G23(k,k), G23(k,k+Q), Ga'(k,k), and G&/(k,k+Q), V2
and the second system is obtained from the first by the re- A;= mTE 2 3G,1(k)G,i(k+Q)
0

placement of indicea«< f. To illustrate this, we present the
diagram represgntation of such a system gf gqggtions in Fig. X G1(K)Ge(K+Q).
4. The expressions for the Green’s functiafi¥i,j=a,f)
are exceedingly cumbersome, forcing us to resort to numeriHere I1,,(Q) andIl(Q) are given by(13). The expres-
cal methods to solve the system of self-consistency equatiorsons for theF; (j=0,1,2,3) in terms of the Green’s func-
(34). Nevertheless, near the line of instability with respect totions(6) can be obtained from the corresponding expressions
the transition to the phase with an SDiitfe hatched area in for the A; in (36) after performing the interchange of indices
Fig. 3, whereX.,, , is small, we can find an analytic solu- a«f in the latter.
tion using an expansion B ,, n/A<1. Expressing® ;¢ in terms of%, ., in (35) up to cubic terms,

We use the ansat@) to describe the dependence of we have
S aaff.m ONM. Leaving the terms with powers &f,, ¢f.m NO
higher than cubic if34) and antisymmetrizing with respect Saa=LaliSaat [Li(LaFs+Fo+L3F,+LaF)) +A;
to m, we obtain the following system of equations: n LgAOJr LA+ LzAl]Ega. 37)

— 3 3 2 2
Faa=LiZart Akaat Aodiit Axag it AkiiZan, According to(36), each of the coefficients if87) contains
(35)
the multiplier N"*<1. Leaving the terms no higher than
2ff: Lazaa+ F32?f+ I:OEgadl_ F22$f2aa+ Flzazlasz ) N~2in (37), we have
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1—L,Ly

3=
a8 LiFo+ LA+ A3

(38)

Our calculations, which were performed using a model
seed dispersion law of band electrons with a constant density g

Near the line of the transition to the antiferromagnetic
phase

In(W/A)—1
g In(Wa)-1 _,

of states for the case of ideal nesting, leads to the following, that the expansion B,,/A <1 is justified. We note that

results for the dominant terms iR, and A, 3 (A/e>1,
€f<|E0|, ,U,ZO) atT=0:

c V2N(0)
0 E(NA?’
V2N(0) | A? a9
2~ " E,NAZ ne_f’ (39
A V2N(0)
37 ENAZ”
Substituting(13), (36), and(39) into (38), we obtain
2 _ 1 V4N2(0)A2| W 40
=z TN "E) 40
where
_ V?N(0)[V®N(0) WI A% A? L a1
S ENAZ| EN |(Ma Mtz @D

To analyze(40) and (41), we go over to the parameters

the antiferromagnetic phase appears in the system under con-
sideration at large, but finithl [see the inequality30)]. The
presence of such a restriction also makes it possible for the
term proportional to M? to dominate the terms proportional
to 1N in the expressior4l) for Z in the region where an
SDW exists.

Substituting(44) into (33), in the linear approximation
with respect ta® ,,/A we obtain

S,=N(0)A | W I !

.=N(0)A In K n K a

The result(45) was obtained for the system with exact

nesting w=0). In the case of a substantial deviation from
ideal nesting [|>A), the quantityA in the logarithmic
terms in (44) should be replaced byu| with a resultant
decrease in the amplitudg, of the spin density. The ampli-
tude S; of the spin density of the localized electrons, which
we shall not write out here, is calculated similarly.

(45)

5. CONCLUSIONS

« and vy introduced above. In the region where the antifer-

romagnetic phase exists, which is specified by the condition

(29), the numerator in(40) is negative, i.e.2§a>0. The
denominatorZ (41) in the region(29) has the following
form:

ke v
yA?

K
Key(ln K+; —-11. (42

Thus, we have demonstrated the possibility of satisfying
the criterion for the existence of antiferromagnetic ordering
in a Kondo lattice within the M expansion. The interaction
which leads to the formation of the magnetically ordered
phase appears because of the fluctuations of the boson field.
The appearance of an SDW in the system of band electrons
is accompanied by antiferromagnetic alignment of the par-

We note that near the transition to the antiferromagnetiéia"y shielded spins in the localized system. The interaction

phase

3g2y13 4,
’

Kk=1vy"e (43

between the localized electrons through polarization of the
band electrons has the character of an effective RKKY inter-
action that has been renormalized by Kondo shielding. This

wherea is a small parameter compared with the first term.State of the Kondo lattice can be regarded as an antiferro-

The ratio between the terms in the round bracket&i) is

vIn «

~ ySle=27B<
K

so that the second term is domindmte recall thaty>1).
Using (43), we now compare the second term(#2) with
unity:

k’e” "

Y

~ oy~ VigrBs

magnetic state of a system containing several sublattices
with significantly different localization of the magnetic mo-
ments in them.

We described the state with magnetic ordering in the
lowest order with respect to the fluctuations of the boson
field within the 1N expansion. The solutions that we ob-
tained claim to describe only weak antiferromagnetism and
cannot be extended to strong antiferromagnets. We are actu-
ally dealing with systems witg<<1 [see(44)]. As we move
into the region of the phase diagram wik>1, which cor-
responds to strong antiferromagnetism, consideration of the

Thus, near the line of the transition to the antiferromag-yctuations of higher orderéi.e., terms that are higher in

netic phase the second term is dominant48); therefore,
) :g In(W/A)—1
aa g
where

_ VIN%(0)A?
9= TENee

A?, (44)
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1/N) becomes essential for determinibig, ;. Now the sys-
tem of equation$34) should be reformulated in the spirit of
the self-consistency scheme for fluctuations in Ref. 18.
Within our approach it was assumed that the influence of
antiferromagnetic ordering on the Kondo state is very weak
(Tn<<Tk). This allowed us to disregard the renormalization
of the pseudoboson propagator in the magnetic phase. Such
an approach seems justified in any case from the standpoint
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Magnetoplastic effect in irradiated NaCl and LiF crystals
V. I. Al'shitz, E. V. Darinskaya, and O. L. Kazakova
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The effect of lowx-ray irradiation doses~ 107 rad) on the magnetoplastic effect — the
detachment of dislocations from paramagnetic centers under the action of an external magnetic
field B — in alkali-halide crystals has been investigated. The measurements were

performed on LiF crystals and three types of NaCl crystals, differing in impurity content. The
dependence of the mean free phatbf the dislocations on the rotational frequencyf

a sample in a magnetic field was especially sensitive to low irradiation doses. In unirradiated
crystals this dependence is a single-step dependence and is characterized by a critical
frequencyr, « B2 above which the magnetoplastic effect is not observed. The frequency
depends only on the type of paramagnetic centers, and not on their density. Even the lowest
irradiation dose employed<(100 rad) leads to a sharp restructuring of the dependence

I(v), converting it into a two-step depender{¢er edge dislocationswith an additional critical
frequencyv,,, that is insensitive to the irradiation dose, and that corresponds to the

appearance of magnetically sensitive stoppers of a new type under irradiation. The initial critical
frequencyv.q, as a rule, also varies with the dose, reflecting the change in state of the

impurity complexegCa in NaCl and Mg in LiF. Specifically, it is shown for Na@Ca) crystals

that as the irradiation dose increases, the frequepgyncreases, gradually approaching

the valuer.,, so that by the time the dose 46300 rad, the dependentér) once again becomes

a single-step dependence, dropping sharply onlyfew,,. It is shown that the addition of

a small number of Ni atoms to a NaCl crystal makes the Ca complexes radiation resistant, and the
critical frequencyv., corresponding to them initially equaig, for crystals with no Ni. The
recombination kinetics of radiation defects in the case in which the samples are irradiated under a
tungsten lamp was investigated. A possible physical model of the observed dependences is
discussed. ©1997 American Institute of Physids$1063-776(97)01602-§

1. INTRODUCTION diamagnetic impurities predominate, no effect of a magnetic
field on dislocation mobility has been observed. The magne-
It is well known that electronic excitations with a wide toplastic effect is very insensitive to temperature: the mean
range of energies and lifetimes arise in alkali-halide crystalgree path &4 K is essentially identical to that at 77 K, and is
under the action of ionizing radiation of different nature andonly 20% less than the mean free path at room temperature.
intensity. High-energy electronic excitations decay, trans-  Essentially all basic features of the phenomenon can be
forming into very simple structural defects like electron—explained on the basis of spin-dependent electronic transi-
hole pairs and excitons, which in turn can form more com-tions in an external magnetic field. It is assumed that the
plicated radiation-induced lattice defe¢ts.This process, magnetic field engenders an evolution of the spin state in the
though not completely understood, has nonetheless beetfislocation—paramagnetic center system, which is completed
studied quite well in alkali-halide crystals at moderate andoy the removal of the spin-forbiddenness of a certain elec-
high irradiation doses§=10°—10' rad). tronic transition. As a result, the configuration of the system
In practice, however, existing methods are too insensichanges radically. This change results in detachment of the
tive for investigations at low irradiation doses. In a recentdislocation from a point defect, and motion under existing
paper: we proposed a fundamentally new method for study-internal stresses. The total energy in the system remains es-
ing weak radiation actions~10? rad)’ The method is sentially unchanged, although the interaction energy can
based on the observed high sensitivity of the so-called mageven change sign. A similar rationale lies at the root of the
netoplastic effect, investigated in Refs. 4—19, to x-ray irra-theoretical interpretation of an entire group of magnetically
diation of the crystals. sensitive phenomerfd.The corresponding theory has been
In many nonmagnetic crystafalkali-halide crystals, Al, developed in greatest detail to describe the magnetic effect
Zn), the magnetoplastic effect shows up experimentally as an the rate of chemical reactiofrs.
displacement of dislocations under a constant magnetic field All such effects are due to the spin selectivity of certain
in the absence of a mechanical load. The mean freelpafth transitions or reactions. For example, the process proceeds
dislocations increases as the magnetic treatment tijmef  only from the singlet state of the spin system, being forbid-
the samples and the squared magnetic induct®®n den in the triplet state. In this case the evolution of the sys-
(I « B%,)), and decreases as the concentra@auf the para- tem in a magnetic field from the triplet state to the singlet
magnetic impurity increases ¢< 1/\/C). In crystals where state {[,— S transition completely determines the kinemat-
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ics of the magnetic effect on the process. The most importardislocation detachment from a point defect, the frequency
mechanisms off;— S transitions are considered to be the v, is a fundamental characteristic of the process. Therefore
Ag mechanism and paramagnetic phase relaxation. the type of paramagnetic stoppers at a dislocation can be

The first mechanism arises if the Larmor precession frejudged according to the position of the step=v.) in the
guencies of interacting spins in a magnetic field are differenturvel (v). The dislocation plays the role of a measuring tool
(for example, as a result of a small difference in the correwith exemplary sensitivity.
sponding Lande factorg. As a result, in the course of pre- The interaction of dislocations with paramagnetic cen-
cession, the spins must periodically be antiparallel, whichters, which consisted of impurity complexes in the crystal,
corresponds to &,— S transition. The frequency of such was investigated in Refs. 4—11. It is well known that some
transitions is obviously linear in the magnetic field, anddefects formed in the crystal during irradiation exhibit para-
should equab/Ag~107 s !forB~1 T andAg~103. magnetic propertie¥ Together with impurity paramagnetic

The second mechanism, determined by stepwise relaxcenters, they form a spectrum of magnetically sensitive stop-
ation (decay of the precession of the spin magnetizationpers with which a dislocation interacts in a magnetic field.
components perpendicular to the magnetic field yields &he method that we proposed in R8f, based on measure-
To— S transition when the spins are aligned paralt®l an-  ments of the dependentgv) for different irradiation doses,
tiparalle) to the magnetic inductioB. This process is ordi- makes it possible to distinguish the contributions of different
narily much slower than thAg effect(for reasonable values stoppers in dislocation retardation. As a result of our inves-
of the parameters — by several orders of magnitutteis  tigations, we were able to follow the detachment of disloca-
important that the corresponding phase relaxation time bé&ons from different types of impurity centers that were
proportional toB 2. modified as a result of irradiation.

It is now considered to be well established that g Our objective in the present work is to study further the
mechanism plays the main role in the magnetic sensitivity okffect of preliminary low dose x-ray irradiation on the mag-
chemical reactions. On the other hand, considering the factetoplastic effect in NaCl and LiF crystals. We present the
that according to our data the detachment tirggof a dis-  results of an experimental investigation of the magnetoplas-
location from a paramagnetic stopperBt-1 T is of the tic effect in irradiated crystals with differing impurity com-
order of 10 4 s and is proportional t8 2, we are inclined to  position. As we shall see, the interaction of screw and edge
assume that the magnetoplastic effect is limited by paramagdislocations with impurity—radiation defects is distinctive.
netic phase relaxation.

Definite predictions follow from the proposed physical 2. EXPERIMENTAL PROCEDURE
model of the magnetoplastic effect. Specifically, no process

of the type being considered is impossible when the reqUireRIaCI crystals and on LiF crystals: NaCl-1, with yield stress
spin evolution timer is much longer than the average spin— 7=150 kPa and Ca impurity concentrati@yib =0.5 ppm;
lattice relaxation timerg and thermal fluctuations in the sys- .~ with 7= 500 kPa anCe,=10 ppm: NSCI-IS(modi-,

1 a 1

tem actively mix the spin states. Under the present Condli’ication of NaCl-2 crystals with additional Ni impuritywith

tions 7~74, * B? so there should exist a threshold 7=360 kPa andCy; =0.06 ppm and LiF, withr=300 kPa
magnetic fieldB; below which the magnetoplastic effect , ' impurityNéoncéntration 05 pprr,1

vamjhes. Ofntrt]he gth?r Ean?d' E)Bi> B the t(la(mlperatur? £e'k Preannealed 84X 7 mnt samples were irradiated in an
pendence of the efiect should be very weak. In recent work o, o X-ray apparatus by a Mo source with wavelength

we observed such a threshold field. The new method fof _ 7 & The tube voltage and current wede= 45 kV and
dgtermiping the spin—.lattice relaxation. time in the I =35 mA, respectively, and the irradiation tifje=5—30 s.
dislocation—paramagnetic center system givgs: 7qp(Bc). The irradiation dose acquired by a sample per unit time was

Another consequence of th_e_ model gnder COns'dera‘t'oapproximately 10 rad/s. The experimentally measured coef-
should be_ the eX|sten_ce .Of a critical rot_atlon frequengyf icient of through transmission of x-rays was 70—80% for the
a sample in a magnetic field, above which the mean free pathaCI samples and 60—70% for LiF. Irradiation did not pro-
| of dislocations decreases sharply. Indeed, in order for th?

hani der di on t o ati ¢ uce any coloring of the samples.
mechanism under discussion to operate in a rotating crystal, - aer irradiation, fresh dislocations were introduced into
the changed ¢=27v 7y, in the orientation of the magnetic

. . . 2~ a sample by impact and the sample was positioned in a dc
field with respect to the crystal over the spin evolution tlme(B:0 3-0.6 T field, or an ac magnetic field produced by
7~ T4p Should obviously be quite smalior »> v, the spins ' X '

. . . T . rotating the sample at frequeney= 0— 200 Hz in a constant
fé?;?;y do not know™ the direction in which they should magnetic field. The magnetic treatment time varied over the

- L ranget,,=5—40 min. The crystals were held in the magnetic
SL.jCh a flr(')t'cal fr_equency is indeed observedsie|q i the dark in order to prevent de-excitation of the ra-
experimentally’~*° According to our data diation defects. In experiments on the decay of radiation de-
v ~10"2—10"3 fects, an irradiated sample was de-excited under a tungsten
c’dp . . . . . .
incandescent lamp in a timg=15—-300 min, after which
The frequencyv. depends only on the magnetic field inten- dislocations were introduced into the sample and the sample
sity (v, = B?) and the type of paramagnetic centers, and it isvas placed in a magnetic field.
also different for screw and edge dislocations. Being propor-  The initial and final positions of the dislocations were
tional to the probability of an elementary event consisting ofdetermined by selective chemical etching. In the course of

The investigations were performed on three types of
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FIG. 2. a — Effective dislocation velocity {14)/t,, versus sample rotation
frequencyv in a magnetic field in NaCl-1 crystals for different irradiation
timest,; B=05T, * —t,=0,0 — t,=5 5,0 —t,=20s, ¢ —
t,=30 s. b — Critical frequencies., (®) and v, (A)in NaCl-1 crystals
versus the irradiation timg ; B=0.5T.

FIG. 1. Effective dislocation velocityl (-1,)/t,, versus sample irradiation
timet,; B=0.5T,® — NaCl-1, * — LiF (edge dislocations® — LiF
(screw dislocations

control experiments, the mean free path of dislocations on
different faces of the sample was recorded. It was found to a5 we have already noted, according to Ref. 3 such in-
be approximately the same on the froalpsest to the radia-  ormation is best obtained from measurements of the mean
tion sourcg, back, and lateral surfaces of the crystal. Since ityqe pathl in samples rotating in a magnetic field as a func-
was impossible to construct representative histograms fokn of the rotation frequency. Such measurements, which
screw dislocations in NaCl, in these crystals observationgqre performed on all types of crystals indicated above,
were performed only on edge dislocations. In LiF crystalS,ghowed that x-ray irradiation of samples, even for several
all dgpendences were obtained for both edge and screw di§éconds, radically changes the dependdifed. Figure 2a
locations. o o _displays the effective velocity=(l—1,)/t,, versus the fre-
‘The investigations of the transmission spectra of the irq encyy for unirradiated and irradiated NaCI-1 crystals. As
radiated samples were performed with an IFS-113v Fouriepne can see from the figure, irradiation not only decreases
spectrometer in the IRN=2—25 um), and with a Hitachi - the path length, but it also converts the one-step curve
spectrometer in the visibleA&=364-2500 nm) and UV v/ (,) into a two-step curve. The appearance of a second step
(A=185-360 nm. indicates irradiation-induced production of a new, magneti-
cally active, type of stopper. It is important that the first and
second steps react differently to an increase in dose. It is
shown in Fig. 2 that increasing the irradiation time for
The optical investigations performed on the sampledNaCl-1 crystals fromt, =5 s tot,=30 s has no effect on the
over a wide range of wavelengtiom IR to UV) showed position of the second critical frequenaey,~150 Hz with
that the apparatus was insensitive to the low irradiation doseB= 0.5 T. At the same time, as the irradiation dose increases,
that we employed. The absorption bands corresponding tthe first step gradually expands and the critical frequency
F-centers and an increase in the transmis$iyn5—-20% in v corresponding to this step increases, reachipgs ve,
the IR could be observed only by increasing the irradiatiorat t,=30 s (Fig. 2a, . A similar picture is observed in
dose for the sample by two orders of magnitdp to 1¢ NaCl-2 crystals.
rad. However, the magnetoplastic effect was found to be  The situation is somewhat different in NaCl-3 crystals.
sensitive to small structural changes caused by irradiatioAccording to Refs. 9 and 10 , even unirradiated, these crys-
doses of the order of 2Qad. tals are much more magnetically sensitive than NaCl-2. The
Our investigations showed that a linear growth of themagnetoplastic effect in them, under otherwise identical con-
mean dislocation free pathwith magnetic treatment time ditions, is characterized by higher relative densities of mo-
t, and the squared magnetic induction remains in the irradibile dislocations, larger dislocation travel distances, and a
ated crystalst=1,+kB?t,,, wherel, is the background free shorter delay time on paramagnetic stoppers, i.e. a higher
path value, which also exists Bt=0 and is associated with critical frequency(by approximately a factor of 63.7This is
the etching out of near-surface stopp&ghe coefficient of probably due to the alignment of Ni atoms in Ca complexes
proportionalityk decreases monotonically with increasing ir- that occurs during the growth of the NaCl crystal, which can
radiation dose; this is shown in Fig. 1, where the curves ofntensify the magnetic properties of the complexes, as well
the effective dislocation velocity = (I —1,)/t,,=kB? versus  as changing their characteristic sizmd hence their concen-
the irradiation timet, with a fixed magnetic fiel=0.5T tration).
are constructed for NaCl-1 and LiF crystals. Such depen- In irradiated NaCl-3 crystals, two steps also appear in
dences reflect a gradual change in the spectrum of point déhe curveV(v) (Fig. 3). But this time, not only the second
fects under irradiation, but yield no information about thebut also the first critical frequency are insensitive to the ir-
possible types of point defects. radiation dose, i.ev.; = v, (Fig. 39. It is significant that the

3. EXPERIMENTAL RESULTS
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FIG. 3. g Effective dislocation ve-
locity (I1—1p)/t,, versus sample rota-
tion frequencyr in a magnetic field
in NaCl-3 crystals for different irra-
diation timest,; B=03 T. * —
t,=0,0 —t,=5s5,0O —t,=20s.
b) Frequency dependence of the ef-
fective dislocation velocity, normal-
ized to the squared magnetic field, in
NaCl-2 and NaCl-3 crystals;=5 s,

) X — NaCl-2, B=0.2 T, B —
1500 2000 NaCl-3, B=0.2 T; O — NaClI-3,

V/BZ HZ/-I-Z B=0.3T.

frequencyv., for NaCl-3 is essentially identical to the fre- Experiments on the de-excitation of radiation-induced
quency v, for NaCl-2 (Fig. 3b and NaCl-1. The second defects were conducted on NaCl-1 and LiF crystals. Irradi-
critical frequencyv, for NaCl-3 is almost three times the ated samples of NaCl-1 were illuminated with a tungsten
first, and has no analog in NaCl-1 and NaCl-2 crystalslamp fort,=5 s(Ref. 3 andt,=20 s(Fig. 5. Qualitatively
Therefore the spectrum of paramagnetic stoppers in NaCl ighe same pattern of decay of the radiation defects is observed
very sensitive to small additions of Ni impurity. in both cases. Initially, illumination causes the second step to
To study the effect of different types of dislocations on vanish, and the first step has a very long “tail” whose center
the interaction of the dislocations with magnetically sensitivelies betweerv, and v;. Further illumination of the samples
stoppers, the magnetoplastic effect was investigated in LiFestores the critical frequenay. corresponding to the unir-
crystals, for which it is possible to construct completeradiated crystal. In the NaCl-1 samples irradiatedtfer5 s,
histograms of the travel distances for both edge and screwomplete restoration of, occurs over a de-excitation time
dislocations. In the case of edge dislocations, a number df=60 min2 After irradiation for 20 seconds, the critical fre-
general laws typical for NaCl are observed in the irradiatedquency is restored over a tinig=300 min (Fig. 5. It was
LiF crystals ¢,=5 s): V(v) is a two-step curve, and the noted that in both cases, the travel distance of dislocations on
critical frequencies satisfy.<v¢<wv., (Fig. 48. The sec- the plateau(for v<<v;) does not return to the level corre-
ond critical frequency does not change as the irradiation dosgponding to the travel distance in the unirradiated crystals,
increasedjust as in the case of NaCand isv.,=115 Hz  remaining approximately half the initial value. The maxi-
for B=0.5 T. The first critical frequency is essentially mum travel distance of dislocations on the plateau is reached
identical for irradiation times of 5 and 10 sv{ long before the critical frequency is restored, and a further
=55 H2), but increasing the irradiation time tp=20 s in-  increase in the de-excitation time has essentially no effect on
creases;, to approximately 85 Hz. Unfortunately, measure- it.
ments were not performed foy>20 s, since as one can see Experiments on the de-excitation of irradiated LiF crys-
from Fig. 1, as the irradiation dose increases further, theals(with t,=5 s show that in contrast to NaCl, illumination
dislocation travel distances in these crystals essentially dewith light from a tungsten lamp for one hour is inadequate
crease to the background values. for de-excitation of all magnetically sensitive radiation de-
In LiF, screw dislocations react to irradiation completely fects(Fig. 6). The critical frequency of the unirradiated crys-
differently (Fig. 4b): V(v) remains a single-step curve, in the tal is restored for edgérig. 63 and screw(Fig. 6b) disloca-
irradiated crystals the critical frequeney; is less tharw,, tions only if the de-excitation time increasestte 120 min.
and no appreciable sensitivity of, to the irradiation dose is It is significant that for both edge and screw dislocations,
observed over the experimental range of irradiation timesontinuation of illumination of the crystalup to t;=180
t,=5-20 s, i.e. the entire dynamics of the transition from min) restores not only the step width but also the initial mean
v to v, is played out at doses corresponding ta5 s. free pathl for v<<v.. Recall that in NaCl-1, under the

FIG. 4. Effective dislocation veloc-
ity (1—1¢)/t,, versus sample rotation
frequencyv in LiF crystals in a mag-
netic field for various irradiation
timest,; B=05T,* —t,=0,00 —
tt=5 s,V — t=10 s5; O —
t;=20 s; 3 edge dislocations; )b
screw dislocations.

o2 —o—o—0
120 v, Hz
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FIG. 5. Effective dislocation velocityl 1,)/t,, versus sample rotational 32, T2.min
'm s

frequencyv in irradiated NaCl-1 crystals in a magnetic field for various
de-excitation timeg,; B=0.5 T, *—t,=0, t;=0; O — t,=20 s,t,=0; ) ) ) ) )
X — t,=20 s,t;=60 min; ® — t,=20 s,t;=300 min. FIG. 7. Average dislocation travel distance, normalized to the density of

dislocations in a forest, versug®,, in NaCl-1 crystalsit,=10 s;V —
v<we, ¥ — v <v<wg,.

present illumination conditions, the mean free path of dislo-

cations after de-excitation did not exceed half its value inthe . _
unirradiated crystalFig. 5). the irradiated crystals can also stop in more highly stressed

locations, since they are pinned together with the impurity
complexes, by new radiation defects. R <v<<w, only
the new stoppers are “turned off” in a magnetic field. This is
The frequency dependence of the dislocation travel dissufficient for depinning of some dislocations from the most
tances in irradiated samples rotating in a magnetic field istressed locations in the crystal. As the dislocations move,
indeed a very sensitive indicator of weak radiation effects orthe distribution of long-range stresses changes, which can
a crystal. Experiments with edge dislocations are yet moreesult in other dislocations being entrained into the motion as
informative. In any case, a second step is not formed in thavell. In this manner, a second plateau appears in the curve
curvesV(v) (Fig. 4b and 6bfor screw dislocations in irra- V(v»). Only for v>v, are all magnetic depinning effects
diated LiF crystals. If it is assumed that each step correeliminated, and dislocation motion stops.
sponds to a particular type of stopper that pins dislocations, If the proposed scheme is correct, then it can be ex-
then the two-step curve¥(v) measured for edge disloca- pected that forv,,<wv<w., the saturation travel distance
tions in all experimental crystals attest to irradiation-inducedfor large values oB andt,,), corresponding to relaxation
generation of pinning center§‘transparent” in LiF for  not of an entire dislocation structure but only some disloca-
screw dislocations tions which started from the most stressed locations, should
We now discuss the kinematics of the dislocation motionbe much less than the average dislocation travel distance for
in a way that admits the appearance of a second step in the< v, (for the same values @%t,,), whereupon essentially
curveV(v) after irradiation. We note that the fresh disloca- all freshly introduced dislocations participate in the motion.
tions introduced into the unirradiated crystal, and on whichThis behavior of the dislocations is demonstrated in Fig. 7,
all measurements were performed, stop only at locationwhich displays the mean free path ver®@&,,, measured
where long-range stresses are too weak to detach dislocatiof@ a NaCl-1 crystal for the two cases mentioned and nor-
from impurity complexes. As follows from Refs. 5-10, in malized to the average distance/ﬁ/between dislocations in
these crystals, fow.<v, the spin-dependent transitions in a “forest” (p is their density. This is also reflected in the
impurity complexes, which pin dislocations, cease, and thexperimental histograms of the dislocation travel distances,
dislocation motion ceases with them. Fresh dislocations invhich for otherwise identical parameters are much wider on

4. DISCUSSION

b FIG. 6. Effective dislocation veloc-
* ity (I—1¢)/t,, versus sample rotation
x x O frequencyv in LiF crystals in a mag-
netic field for different de-excitation
timest,;; B=0.5T,*—t,=0, t,=0.
a) Edge dislocationst,=5 s: 0 —
t,=0; A — t,=30 min; + —
t;}=60 min; X — t,=120 min; b
screw dislocationst, =5 s: [0 —
t;=0; X — t;,=120 min; ® —
t;=180 min.
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the first than on the second plateau of the cuiug. W,

The nature of the new type of stopper arising under ir- 0‘353.
radiation cannot be unequivocally interpreted solely on the
basis of the experimental data presented above. However, the
information accumulated thus far about the formation of ra-
diation defects in alkali-halide crystals under low irradiation
doses suggests a number of plausible conjectures explaining
the measurement results presented above.

It is well knowrf* that rare-earth and alkaline-earth
metal impurities, which have a low second ionization poten-
tial, form complicated radiation defects under the action of 0.05 _ ) . _
irradiation —Z-centers, which contain, besides an impurity o 5 10 15 20
ion, a cationic vacancy andracenter. According to Ref. 25, t,s
as a result of irradiation of alkali-halide crystals containing
such impurities, the complex consisting of #Meand a cat-  FIG. 8. Dislocation start probability, in NaCI-1 crystals versus sample
ionic vacancy[C]~ can be restructured, andZacenter and  irradiation timet, .
interstitial halogen molecule Haform in the process:

min-1

0.25¢

0.15¢7

Me?*[C]”— Me* + Ha®+[C]™ +[A]"— Me* Note for edge dislocations formed under irradiation, the
B B N N B new stoppers and the old complexes whose state changes are
+[C]” +[Hal, +[A]"— Me" +[C] characterized by an increase in critical frequency, i.e., a de-

crease in the delay time on a stopper compared with the
initial time. For screw dislocations in LiF, we observed ex-
where[A]" is an anionic vacancy. Ca and Mg, being theactly the opposite trend: under irradiation, the critical fre-
main impurities in NaCl-1, 2 and LiF crystals, respectively, quency decreases, together with the probability of detach-
are such centers. In contrast to Ca and Mg atoms, Ni impument of a dislocation from a paramagnetic comp(&ig.
rity in NaCl-3 has quite a high second ionization potential,4b).
and ordinarily does not form &-center. It is also well Despite the decrease in the delay time of edge disloca-
known that the formation oF-centers at low irradiation tions on individual paramagnetic stoppers in irradiated crys-
doses is suppressed in crystals with Ni impuffty’ The Ni  tals, the average velocity of the dislocatiovts: (I — 1)/t
impurity plays the role of an electron trap, i.e., the valencedecreases as the irradiation dose increéses Fig. 1 There
state of Ni changes under irradiati6#:=° is nothing paradoxical in this: first, additional paramagnetic
o Ly 0 centers appear and are responsible for the second step in the
Nic"— Ni"— Ni". D . . g .
curve V(»), and second, magnetically insensitive radiation
It is natural to conjecture that in the experimental defects, which slow the dislocation motion, also form under
NaCl-1, 2 and LiF crystals, stoppers of the new type, whichirradiation. This is especially clear in Fig. 4b, which refers to
are responsible for the second step in the cuifug, are  screw dislocations, where as the irradiation dose increases
Z-centers formed on isolated impurity atoms. In the ordinaryfrom 5 to 20 s,v;; remains unchanged and the velocity on
state, these obstacles are too weak for dislocation motion, dse plateau ¢.<wv.;) decreases by a factor of 3. The same
compared with impurity complexes. Under irradiation, themagnetically insensitive defects, which were not de-excited
latter complexes also gradually become “packed” with for our crystal illumination times, are responsible in NaCl-1
Z-centers; this is reflected in an expansion of the first stefFig. 5 for the incomplete restoration of the height of the
(ve1— ve2), Which ultimately results in merging of this step first step, in contrast to its width.
with the second stefFig. 2a, b. One of the quantitative characteristics directly associated
In NaCl-3 crystals, the first step is characterized, even irwith the density of such defects is the dislocation start prob-
the initial state(prior to irradiation, by a critical frequency ability Wy, which can be obtained from the experimental
v, that is approximately equal to the frequeney, for  data on the dependence of the mobile dislocation density
NaCl-2(Fig. 3b and NaCl-1 crystals. We are not prepared top,, in irradiated crystals on the magnetic treatment tinpe
discuss now the mechanism of such a strong “catalytic’on the basis of the simple formdla p,/po
effect of Ni atoms on the state of Ca complexes, in which the=1—exp(—Wst,), wherep, is the density of freshly intro-
Ni atoms are probably present. It can only be stated that itduced dislocations. The quantity/; is inversely propor-
result is equivalent to the longest irradiation of NaCl-1 crys-tional to the characteristic timg; up to detachment of a
tals in our experimentst(=30 s). At the same time, it is dislocation from nonmagnetic stoppers after it is depinned
obvious thatZ-centers formed on isolated Ca-atoms by irra-from paramagnetic centers. In Fig. 8 one can see that the
diation of NaCl-3 crystals cannot be manifested as a separathislocation start probability was four times lower in NaCl-1
step, because the critical frequency corresponding to them txystals irradiated for 20 s than in the unirradiated sample.
essentially identical to the frequency of radiation-resistant In summary, our experimental investigations showed
impurity complexes. The second step in the culye) in  that the magnetoplastic effect can be used to distinguish the
NacCl-3 crystals is probably due to isolated Ni impurity at- contribution of different types of stoppers, both newly
oms whose valence changes under irradiation. formed and altered as a result of irradiation, to dislocation

+ F-center- Hall,
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retardation, and to follow the main stages in the changes Gfv. 1. Al'shits, E. V. Darinskaya, O. L. Kazakowet al, JETP Lett63, 668
the state of stoppers as the irradiation dose increases or in thé1996.
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sensitive to low irradiation doses.
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Triangular antiferromagnets with a layered structure in a uniform field
R. S. Gekht and I. N. Bondarenko
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Russia

(Submitted 24 April 1995
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We study the magnetic states and phase transitions in layered triangular antiferromagnets and
show that in compounds of the VB(or VCI,) type the quantum effects alter the structure

of the ground state and initiate a series of transitions as the magnetic field strength is increased.
We establish that planar structures with different spin configurations are realized when the
magnetic field strength is far from the saturation value, while a nonplanar structure of the umbrella
type is realized in fields close to the saturation value. Finally, we build the phase diagram

of the ground state and indicate a finite range of field strengths where a collinear phase is possible,
too. © 1997 American Institute of Physids$$1063-776(97)01702-2

1. INTRODUCTION
H=23 > Sp-§nt23' 2 Sp-Spar—#H- 2 Si,

Spin systems on triangular lattices are currently being {L.pn " " )
widely studiedt™ It is well known that because of frustra-
tion effects, even systems with an exceptionally simple basi¥here summation with respect¢q,j) is over all the nearest
interaction exhibit a broad range of phases and phase tran§iairs in thenth layer; below we assume that the field is
tions. In BX, compounds of halogen withd3transition met- ~ applied along the axis (the z axis).
als having a Cdl crystal structuréspace groug®3m1l), the _In purely two-dimension Heisenberg systeni £ 0),
magnetic ions lie in triangular layers perpendicular to the SPIN structures with minimum energy satisfy the condition
axis, with the layers forming a hexagonal lattice along the w
¢ axis® According to neutron-diffraction dafa® in sub- S+ S+ S=%7, 2
stances like VX (X=Br,Cl) the interactions within and be-
tween the layers are antiferromagnetic. Below transition temwhereS; is the spin of théth sublattice. In a spherical sys-
peraturesT<40 K the spins in a layer form a 120-degreetem  of  coordinates (S*=Ssinfexp(tig) and
structure, which remains unchanged down to extremely lowd’= S cos#), the solution for the inclination angles i(2)
temperature$:'?6 The VX, systems can be described by can be expressed as follows:
Heisenberg spins: within the accuracy of resonance measure-
ments the gyromagnetic ratio of vanadium ions is isotropic.

A magnetic field applied to frustrated systems leads to sin 64 sin ¢, +sin 6, sin ¢,
many interesting effectsee, e.g., Ref. 24which can often tan ?37 5in 0, cos @q+sin 6, cos @y’ @
be explained in a classical manner. However, quantum fluc-
tuations play an important role in systems with nontrivial

cos 63=3h—cos §,—cos 0.,

_ (3h—c0s 6)/2+ R sin 6; cog ¢1— ¢5)

continuous degeneracyThese fluctuations not only lift the 0S 6, 1-u '
degeneracy but can, as a result of competition with other
interactions, change the very nature of the structure. where
The goal of the present work is to study the possible uH 1]Y2
structures in compounds of the ViBand VC}, type. In or- “1gs RT|Ad-uw- Z} ;

dinary triangular antiferromagnets in an external magnetic

field, quantum fluctuations do not alter the state with a non- A=(9h?—6h cos9;+1) %,
planar spin configuration. However, in compounds of the . .

VX, type, where neighboring 37 layers are separated by u=A4 sin’ 6; Sif(¢1-¢7).

two X~ layers, the interplanar exchangé is weaker than Obviously, a system with a planar or nonplanar spin con-
the intraplanar exchangeby a factor of 100see Refs. 9 and figuration exhibits nontrivial degeneracy: fdr<1/3 the

10), with the result that the energy of zero-point vibrationsangle#, is arbitrary(and so are the angles and¢,), while

may exceed the energy of the interaction between the layerthe anglesf, and 65 vary in a nonequivalent manner. For
Hence the nonplanar state changes to a planar state, with the>1/3 the arbitrary values of; are limited to a finite inter-
planar configuration changing as the field strength is inval: values off; nears are forbidden, with the forbidden
creasedfour planar phases and one collinear phase are posegion growing withh until all spins become aligned with
sible in the field-induced phase transitiprithe problem we the field ath=1.

are examining here can be described by the following Hamil-  Interplanar interaction and quantum fluctuations lift the
tonian: continuous degeneracy of the structures. For instance, when
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J' is finite, of all the previously possible planésay, with JE, JEq

©a=* /2 in (3)) and nonplanar structures those with the WZO, 520, 6)

lowest energy have field-transverse spin components that “ “

form a 120-degree structure. At the same time it is knBwn have solutions with planar and nonplanar spin configura-

that, in purely two-dimensional triangular antiferromagnetstions. For the ground state we take nine possible structures:

of all the possible degenerate states, quantum fluctuatiormne with a nonplanar configuration, seven with planar con-

select those with planar spin configurations. Below we showfigurations, and one collinear stateig. 1).

that whend’ is small the energy difference between different 1. A nonplanar configuration of the umbrella tyfeon-

states is small, too, and can be balanced by quantum effectiguration a in Fig. 1 The inclination angles of the sublat-
tices and the structure’s energy are

2. SPIN CONFIGURATIONS 20a—1)7/3, if «a=1,2,3

In triangular magnetic substances with antiferromagnetic 0a=0. ¢a (2a=5)wl3, if a=4,5,6, ©
interaction between the layers, the ground state consists of
six sublattices. The energy of six-sublattice structures with E: —(3]+23)S?+(93+43")S?
N spins on the sites can be written for large valueS afs N

Eo 2 1 ,
W—Jgﬁ SuSptzd ; Si'Sers~ g ,qua‘, S

X co¥ §—uHS cos 6. (7

Substituting the equilibrium solution c#s=H/Hg, where
4) H,=(183+8J")S/u is the saturation field, int¢7), we ar-
The equations for the equilibrium state, rive at the following expression fdgy=E, :
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E, , 1 ) H In equilibrium we havedEy/96=0 anddEqy/dx=0, which
N = (83+2))S -5 uSHN?, h=H—S. ®  yield

2. Planar configuration b. In calculating the energy of  (3F])sin(6+x)—(9+4j)h sin =0,
planar structures we always assume thgt=0 and take 2(3+1)sin( 0+ v) — (9+ 41 )h sin v=0 14
0, from the interval (—m,7). Then for b we have (3F])sin(6+x) = 1 =5 (14
0,=60s= and 6,=60,=— 6;=— 0= 6. The classical en- The solution of these equations has the form
ergy of this configuration is

!

3 1 3
J cose=Z hk+ —— cosX=§ hk
J+ 5)(cos ¥—2cosh)S?

4hk’ ~ 2hk’
where k=(9+4j)/(9+3j). Plugging (15) into (13) and
1 keeping only the linear approximation jn we arrive at an
+ §MHS(1_2 cos ). (9 expression forE, coinciding with (11). The given state is
degenerate with respect to a permutation of the sublattices 6

The angles of inclination of the sublattices with respectyng 5 gyt under a permutation of the sublattices 6 and 4 the

to the field and the minimum energy are given to first OrderdifferenceEo— E. increases fourfold
* .

Eo 5 (15
=

in j=J'/J(<1) by the following expressions: 5. Planar configuration e: 6,=—6,=—y and
uH+2(3+))JS 0,= 03=— 0= — 0= 0. Its energy is given by the follow-
cos 6= T 431j)Is (100 ing relationship:
Eo=E, +j(1—h?JSN. (11

%=2J82[1+2 cog 6+ x)]+ g J'(cos &+ 2 cos )

A structure formed by cyclic permutatiod—6, 5—4,

6—5) of the sublattices in the b configuration in Fig. 1 has

the same energy. However, for other possible permutations ~3 uHS(cos x+2 coso). (16)
of sublattices the structure with a configuration of the b type

has a higher energy in the interval of angles from @z8. ~ The equilibrium values o and y can be found from the
For instance, for structures with parallel sublattices 1 and 68quations

2and 5, and 3 and ébr 1 and 5, 2 and 4, and 3 andl &e 3 S0+ x)—(9+4j)h sin §+2j sin 20=0
have '
EOZE*+2(1+h)(1—2h)jJSZN, 65|I’(0+X)_(9+4])h Sin 0+2] Sin 2)(=O, (17)

while for the structure where 1 and 4, 2 and 6, and 3 and gvhqse solution in the approximation linear jirhas the fol-
are parallel we have lowing form:

— 2i35? 3
Eo=E, +2(1+h)%ISN. cos =5 h oo+

. . — . 4h ") 8 !
The structure with the highest energy in this class of configu-
rations is the one in which the directions of the spins in 3 1 (1-h?(7-3h?
neighboring layers of the hexagonal lattice coincide: when 1  COSy= 5 h— %ﬂ 1873 . (18)
and 4, 2 and 5, and 3 and 6 are parallel, the difference
E,—E, is greater than the difference {@1) by a factor of The minimum energy of this configuration is
four.

1 (1-h?»(3h%-1)

_h2\2
3. Collinear structure c: 6,=6g=7 and EOZE*JF% jIS?N. (19)

0,=60;=6,= 65=0. Its energy at large values &fis given 2h

by the following relationship: The other two possible structures in the clase @on-

figurations are degenerate, and their energy

(1—h?)(13n%-1)
4h?

4
Eo=E,+ (1—3h)2+§j(1—2h+3h2) JN. (12

— H 2
A similar expression exists for the structure formed by a Bo=Eet SN
permutation of the sublattices 6 and 5. The energy of th
other structure(permutation of the sublattices 6 and ¥
greater thar(12) by 8jJS?N/3.

4. Planar configuration d: 6;=6s=x and
0,= 03=0,= 6= 0. The classical energy of the given struc-

ture is given by the following relationship:

fs higher either than the ener@gy in (19) or than the energy
of the planar configuration d.

The energy of the structures b, c, d, and e is higher than
that of the nonplanar structure a for valuedfH,. On the
other hand, comparison of the energies of the planar struc-
tures shows that the b configuration has a lower energy if
h<1/3—-2j/27, the tapered d configuration has a lower en-
ergy if h lies in the interval 1/3,1~/3], and the e configura-
tion if h>1A/3. The collinear structure c fgr# 0 has a finite
interval of field strengths (1/3,(22j/9)/3) in which it is
more preferable than the b, d, or e configuration.

Eo I\
N =2\ 9+ 5| STL+2co8 0+ x)]

1
3 puHS(cos y+2 cosh). (13
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6. Planar configuration fa structure resembling a six- 8. Planar configuration h8,=—605=0, 65=—0,=x,
pointed star; Fig.  6,=w, 6,=—05;=60, 6,=0, and andéd;=—6,=. The energy of this structure is given by
0s=— 05=x. In this state the classical energy is

E
Eo , uHS Wozz JS[cog O+ x)+cod p— 6) +cod x+ )]
N~ JS(cos ¥+ cos A)—| 23+ —5—|cos o
1
uHS 2 + = J'S[2 cog 0+ i)+ cos ]
+]1238-""lcosy— = J'S? 3
3 3
1
X[1—2cog6+yx)]. (20 —g,u,HS(COS(‘H-COS)(-f—COSlﬂ) . (26)
Minimizing the energy with respect to the anglésand y, , , , i
we get At J’'=0 the structure is degenerate with respect to varia-
tions of the angley, while the other two angles depend on
o 3h+1_1 i _3h—1_1 h 21 ¢ as follows:
cos = — 3 ih, cosy=—7F——zjh. (2D
1 uH

As a result the minimum energy of the f configuration for Ccos 6= 1235 2 oS Yy+Rsiny,
small values of is given by the following expression:

Ep=E, +j{1—h?—[(1—h?)(1-9h?)YAISN. (22 sin g — % sin g+ R(%%_Cow),
The difference between this energy and the energy of the

umbrella structure a is positive fét>0, butE, of (22) is 1 uH 1
smaller than the energfll) of the b configuration and, in COSY=1535 3 C0S y—R sin i,
contrast with it, coincides &l =0 with the energye,, of the
nonplanar structure. In weak fielda<€1), 1 1 uH
. iny=x=si R| = —=—cosy], (27)

Eo=E, +j(4h%+8h%)JSN. 23) Sinx=3 siny+R| 5759 )

7. Planar configuration g;= ¢, 6,=65:=0, 6,=0,and  \yhere
0s=— 0= x. Its energy at large values &is given by the
following relationship: [(1 MH)Z 1 uH ARG

_{ 6 Js| 3 Jscosvtl 4] '

E
=0 =23 cos y+cod y+cog 6+ )] o . .
N ForJ’ # 0 the minimum energy of the h configuration can be

2 found by varying the energy
+3 J'S?(cos i+ 2 cosy cos 6) A
. E0=E*+§j[1—3h2+cos(0+ ) +cog x]ISN (29
—g,u,HS(1+cos¢+2 COSfA+2CoSy). (29

with respect toy. Nearh=0 the equilibrium valuey, is

At j=0 the equilibrium solutions for the angles coincide 577/6, with the result that,= /6 and xo= /2. Hence in
with the respective solutions i19) and(21). The minimum  Weak fields
energy of the g configuration is given by the following ex-

—~ i 2__ 3
oression: Eo=E, +j(8h?—12/3h%)JS°N. (29
(1—h2)(5h—1) Comparison 0f23) and (29) shows that for small values of
Eo=E,+] —n SN. (25  h the classical energy of the f configuration is lower than its

value in a state with the configuration of Fig. (dP-state;
Note that this configuration is degenerate with respect tsee Ref. 15 But because of the minus in front of the term
variations of the angle between two planes, one containingvith h® in (29) the energy of the given configuration can be
the spins of the sublattices 1, 2, and 3, and the other the spifmswer than that of the f configuration. Indeed,tat 1/3 the

of the sublattices 4, 5, and 6. equilibrium valueyq in (28) is 27/3, and Eqs(27) yield
The other structures formed by permutations of the sub#,=0 andy,= 7/3. As a result, by comparin@2) and(28)
lattices 4, 5, and 6 in Fig. 1g have equal energies we find that the energy of the h configuration is lower than
1—h that of the f configuration byJS?N/3.
Eo=E,+] —— [(1+h)(7Th+1)+(3h+1) Note that forh>1/3 the state in which the sublattices 1
4h and 6 in Fig. 1h are parallel is not an equilibrium one. In-
% \3(1+ h)(3h—1)]ISN; stead the state represented in Fig. 1i, with7/2, can serve

as an equilibrium state.
in the given configuration class this energy is higher than 9. Planar configuration i#,=6,=0 and ;= 05=— 6,
Ep in (25). =—f0g= 0. Its energy can be written as follows:
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Eo 2 1 2 Sh=S—aiai,
=3 VS5 pHSH 48— ,uHS) n in%in
a;a;
4 S§n+isi7]=J2_s<1—'4”—S”‘)am,
Xcos0+| 23+ 3 J'|S? cos X. (30)
"
Thg quilibrium value of the angle of inclination of the sub- s —js”7=/25 af;( 1— a‘“a'”), (34)
lattices is 4s
uH—6JS so that the initial Hamiltonian can be written as
COS 0= —Fm—Frg, (3D
4(3+2j)Js H=Eogt+ 7Y+ 7D+ 73, (35
Ec;vtgat for the minimum energy of the i configuration we The linear term in77 is given by the following expression:
EO:E*+2(1—h)2JJSZN (32) 7&(1):_§ \ [S_NZ (E Aaﬁ(o)_| ﬂsln 0a>
Rastelli and Tas$f found that ford< /2 the given state 2 V3 %\ S
(the SF-state, according to their terminologgan be stable Xag,+H.c., (36
in the classical sense in the presence of a finite anisotropy of
the easy-axis type. where

Note that for6> /2 the permutation of the sublattices 4 _ ; ; _
and 6 leads to a configuration that is the reciprocal of the b Aup(K)=23ug(K){SIN O SN0~ @)
configuration, withH replaced by—H and an energy coin- +i[sin 6, cos §z—cos b, sin O,
ciding with (11). The structures formed by other sublattice
permutations in this class of configurations possess an en- xcos e, ¢p)lh, (37)

ergy higher than that of the i configuration or of the configu-ang J.p(k) are the Fourier components of the exchange in-

ration that is the reciprocal of b. _ teraction between the spins belonging to different sublattices:
Thus, forj # 0 the different structures have different en-

ergies and the nonplanar configuratiarns the most advan-
tageous one. Nevertheless, we expect thaj ft the quan-
tum corrections will change the fine balance of the total
energy in favor of planar structuréat least in fields whose At k=0 we have
strength is far from that initiating a transition to a homoge-

Jaﬁ(k) = mgn Jma,nB explik- rma,nﬁ)-

H
neous state > Ap(0)—i B sine,
B S
3. MAGNETIC TRANSITIONS 6 1 JE, . JE,
. . TN |\ o ,
Let us examine the effect of quantum fluctuations on the NS \sin6, de, ~ 30,

ground state of the system in an external fidldWe transfer
to a local system of coordinate§,(;,), in which the quan-
tization axis(the z axis) is selected in such a way that it
coincides with the direction of the spin,

and, as expected(!) vanishes in the case of equilibrium
configurations.

In diagonalizing the quadratic terr#(?) we putj=0.
We then compare the energy of zero-point vibrations of vari-
S = —slfn sin ¢;,— S cos 6;, CoS @i, ous configurations with the energy of structures with small

_ values ofj. The expression fog/?) is
+ St sin 6, cos @i,

S =St cosein— S coS b, Sin @i T = —3JSN+3JSEk ay Myay, (38)

+ S5, sin 6, sin @iy,

wherea;:(a,fl,ak*z, e ,a{e,a,kl,a,kz, .8 ), and
St.=S7 sin 6;,+ S5, cos b;,, (33 e(k) ()
and #,, and ¢;, coincide with the angles of inclination of the M= X (—k) e (k)|

nine sublattices found earlier in the limit of large values of
S. To describe the spin deviations from the equilibrium clas-The diagonal elements of the 6-by-6 matricegk) and

sical states we introduce six types of Bose operadQs f(k) are equal to unity and zero, respectively, and the non-
\F zero off-diagonal elements can be written as
ain="\/— ay, explik-ri,),
in N Ek ka EXP |n) eaﬁ(k):e’éa(k):B%)(k):
where the wave vectde for each sublattice lies in the first fa(k)=F% (k)=B (k) (39)
Brillouin zone. Below we limit our discussion to the cubic h Ba ap 2
approximation ina;,, : where
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L1
B;ﬁ.:z [ (1=cosd, cosbz)cod ¢, — @p)

*sin 6, sin 65—i(cos d,+cos by)

Xsin(¢,—¢p)],
with

V=

. . — kg +V3k,
expliky) +ex P

—k,—v3k
+ex;{i %

and the subscriptee and 8 are either 1,2,3 or 4,5,6. The
remaininge,, ,+3 andf, ,.3 matrix elements are zeros.
The spin-wave spectrum in the zero-point vibration en-FiG. 2. The energy spectrum,(k) of spin configurations in a zero mag-

ergy netic field (k,=47k,/3x50 and k,=2mk/50v/3). Here g,=1 at
k= (27/3,27/v3) and atk=(0,47/3v3).

w| K=

: (40)

1
E@=—-3JSN+ > SY, w,(K) (41)
ka

k,=0 containing the last point of threefold degeneracy also
contains the line of intersection of two surfaces.

When there is a magnetic field, the lines of intersection,
which are straight lines wheH =0, become curved. How-
go(K) =g 1 3(K)={(1—N,(K)) ever, the threefold degeneracy of the spectrum is present for

2 12 the samek’s and for the same value = 1. This is true not
X[1+(2=3nIN (K [ v3haa(k), - (42) only for the umbrella configuration but also for all the planar
where configurations. In Fig. 3 we compare the spectrum
1 o ; £,~€4,+3 (@=1,2,3) of the configurations a and b at

A (K)== tco{ ket — (a—1) H=0.3H,. Clearly, everywhere except at the symmetric

3 3 points of the Brillouin zone the lower branch of the b con-
20 1 3 figuration lies below the corresponding branch of the a con-
—3 (a—1)|cos—= ky], figuration. Moreover, within a large range k% the second
. branch of the b configuration also lies below the correspond-
1 20 ] ing branch of the a configuration. Such a situation is ob-
ra(K)=3 {sir{ kKt 3~ (a—1) served when the spectra of the umbrella structure are com-
: pared with those of other planar structures. Hence one can

was found both analytically and numerically. For the nonpla
nar configuratiora this spectrum is given by the following
formula (¢ ,= 0 ,/6J):

k

X
+ —
2co >

5 s ke 2m 1 V3 ‘
SI2 3(a )coszy.
In a zero field, the frequency spectrusntk), which in M
this case is the same for all structures, can be found by solv- K
ing the following equation: r
6 2 4 3 2
e°+3(|vl*—1)e +ZPk8 +Qx=0, £y
P =91 *+3(ri+ 1) + 271 >+ 4, s NP AN, RPN
/ e N
N LOO} 3 R N
Q=7 (et v (et v+ 3] [*=7) AN <
3K k k k 0.75 ,/ \\ \\ 7N\ "\
9 15 d N\ /] )
r ' AV \ J
_ - |Vk|4+_|Vk|2_l- (43) 0.50 \\ \\ / /s N\ A
4 4 N\ A '
" 0.25¢ N\ §/ '\
The positive values of the roots of the polynomidB) are N\/Z \
depicted in Fig. 2. We see that the three surfaces representing OM — ’ = Tk

e, have common intersection points. Threefold degeneracy
*_ . . .
€a™ 1 (as stated in Refs. 17 and $=16 Kin VBry, which FIG. 3. The energy spectrum),(k) of configurationsa andb in an external

corresponds to a frequencyw=2.2 TH2 appears at field H=0.34,. The solid curves correspond to the nonplanar configuration
k=(2m/3,27/13v3) and atk=(0,47/3v3). The section plane a, and the dashed curves to the planar configuration b.
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) with respect tee, =E, /3JSNfor the nonplanar structure.
FIG. 4. The quantum corrections to the ground-state energy

(Ae=AE/3JSN for eight spin configuration&olid curveg and the energy
difference of classical structures with respect to the nonplanar configuration

a at jS=0.1 (dashed curves 1 3S
TI=2 = D S(ky+kyptks)
4 N ksiks

expect that the energy of zero-point vibrations of planar con- X E (Z A,p(0)—i E sin 6, | & 8. 48k,

figurations is lower than that of the nonplanar configuration. a \'B S o
Below we calculate the $fcorrection to the ground-

state energy for the nine configurations considered here. The +4, Aaﬁ(kl)afk 5%, 58%, | T H.C. (44

results depicted in Fig. 4 show that the energy curve for the @B oo

umbrella structure lies above all such curves for the otheye replace two of the three operators4) by their expec-
structures and that quantum corrections are most importation values in7®) substitute the angleg® and ¢(% for
for the b, d, ande configurations. These latter configura- equilibrium classical configurations. The result is

tions, however, are never realized fi8>0.082, no matter

how high the applied magnetic field is. Instead, because of 3= \ES E 2 [A,5(K) (8 sa.) + A% 5(—K)

the competition between quantum effects and interplanar in- N %5 K “p kpSka B

teraction, in weak and intermediate magnetic fields the stable - N
planar structures areandh, while in fields close in strength X(2yg2 ka) T Apal 0)(8keBra) Ja0p T+ H.C. (49)

to the saturation field the stable structure is the umbrella ongrytting .77 +.72(3=0, we arrive at equations fof, and
Note that the possibility of ah structure existing in Heisen- - in the case of planar configurations these equations have
berg systems was first pointed out by Rastelli and THssi. the following form:

The diagram of the total energy for the various structures at

jS=0.1is depicted in Fig. 5. The additional statesd, and 2 J.5(0)sin(0,— 0,)— ﬂ sin 6

e, stabilize ifjS<0.082. AsjS decreases, the range where 7 P « P28 “

the phase$, h, anda can exist narrows, and in the limit of 1

jS=0 such phases simply cannot exist. As Chubukov and - 2 l g SIN (09— 90y, (46)
Golosov® demonstrated, quantum fluctuations in purely two- S°B « P

dimensional triangular antiferromagnets separate structurgshere

of theb andd (e) type, and between the true structures the

collinear phase is stable in a finite interval of magnetic field 6
P ’ lap=g 2 [Jas(O){@saue) + I55(K) (a2l o)

strengths.

In a nonzero field, quantum effects and interplanar inter-

i lize vari i ~(aatug))] (47)
action not only stabilize various classical structures but also ka%kp/) 1

modify them. Configurational variations are especially no-From (46) it follows that in the first order in B the equa-
state i=1/3), where the gain in energy due to quantuMreplaced by similar equations with renormalized values
fluctuations and finitg’s is the largest. Let us calculate the 5 (0):

guantum corrections to the angles of inclination of equilib- “p

rium states. The cubic term 185) is given by the following ~ _ _ }

relationship: Jap(0)=Jap(0)= 5 lap (48)
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js homogeneous state, where the effect of quantum fluctuations
01 is minute but the effect of interplanar exchange coupling is
great, does the umbrella structure stabilize.

In compounds of the VX type the V** ions have an
S= 3/2 spin, and the exchange parameters for, say, \éB¥
J=16 K andJ’'=0.2 K (see Ref. § with the result that
jS=0.019. Thus, a change in structure can be expected at
h,=0.18,h,=0.31,h;=0.36,h,=0.58, anchs=0.78(Fig.
6), which for VBr, (with the gyromagnetic ratio equal to
two) corresponds to the field$1,=58 T, H,=100 T,
H;=116 T, H,=187 T, andH;=251 T. Fields of such
magnitude can be achieved by using devices with pulsed
fields!® At all critical points excephj; the transition is not
continuous. The jump in magnetization in such magnetic
transitions is, respectively,

0.05r

1 1
FIG. 6. The jS—h phase diagram of the ground statéhe AM1=§jh1M0, AM2:§JM0a
1/S-approximatiof.

1 1
AM, == [1-—

iMoo
‘/?_)Jo

©

The results of calculations for the angbein a state with
configurationb and for the angle® and y in a state with 1 (1—h2)(3h2+5)
configurationd show that the collinear structue emerges AMg=— j
in the range of field strengths between

=52 h? Mo, (50)

1 2 0.018 1 0043 here whereM = uS is the saturation magnetization. Plug-
h2=§— 57 i— < and h3=§+ < (49 ging j, h;, and hg into (50), for VBr, we obtain
AM;/My=0.76x10"%, AM,/My=1.4X10"3 AM,/M,
Clearly, the collinear phase is stabilized both by quantum=0.59x10"3, andAMs/M,=1.3x10"3,
fluctuations and by interplanar interaction, with the latter  Note that some compounds of the Y¥amily (such, for
broadening the field interval of the given phase only into theinstance, as \4) exhibit considerable anisotropy of the easy-
region wheren<<1/3. The completgS—h phase diagram is axis type. In this case the phase diagram may differ consid-
depicted in Fig. 6. As expected, #=0 it becomes the erably from the one depicted in Fig. 6: the easy-axis anisot-
phase diagram of a two-dimensional triangularropy has an additional stabilizing effect on the planar and
antiferromagnéf (the d ande configurations are equivalent collinear phases but destabilizes phases with an umbrella-
if jS=0). like structure. The latter may completely disappear at a cer-
Note that in contrast to systems with an anisotrdpgf  tain critical value of anisotropy of ordel’. The effect of
the easy-plane type,in purely Heisenberg quasi-two- anisotropy in such systems has been recently examined in
dimensional §’<J) systems the umbrella configuration is Ref. 16.
not realized when the field is weak, because in such fields the We also studied the effect of thermal fluctuations on the
energy difference between the configuratiohsand a is  stability of the structures. The contribution of entropy to the
small and proportional to the second power fof i.e., free energy
Eo—E, ~jh2JS°N, while in systems with easy-plane an-
isotropy the same difference between the planar and the non-
planar a configurations is finite even for
h=0(E,— E, ~AJS’N). Hence in our case the quantum ef-
fects dominate in the weak-field range, and only when the +TE In
field strength is close to that initiating a transition to the ka

N W

F=Eq—3JSN+ = > w,(k)
ka

1_9)({{ B Swf;_(k)”

TABLE I. The temperature dependence of the normalized field intetvals Ah,,, Ah., Ahy, Ah;, andAhy, of the respective configuratiors b, c, d, f,
andh atjS=0.1 (t=T/Sw,).

t Ahy Ah, Ah, Ah, Ahyg Ah,

0 0.263 0.032 - - - 0.695
0.05 0.267 0.048 - 0.015 - 0.648
0.10 0.269 0.049 - 0.039 - 0.563
0.15 0.270 0.050 - 0.040 0.025 0.473
0.20 0.271 0.037 0.013 0.039 0.055 0.374
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was found numerically. The results indicate thaffagrows  pounds thef configuration, which is partially stabilized in
the region occupied by the nonplanar structarein the VX, compounds by exchange coupling of the layers, is un-
jS—h phase diagrams shrinks because of the renormalizatiolikely to occur no matter what valug assumes, while the
of the saturation field strength and because the structurgdanar configuration®, d, ande become even more stabi-
b, ¢, andd become stabilized. The intervaih of stability  lized because of quantum fluctuations.

of the structureg, h, b, ¢, d, anda are listed in Table | for ) )
different values of the normalized temperature T/Sw, The authors are'grat'eful to E. Rastelli and A. Tassi for a
andjS=0.1. It is clear that the, d, andb configurations COPY Of the paper cited in Ref. 16.

occur whert is approximately equal to 0.05, 0.15, and 0.20,

respectively, while the field interval of configuratiende- D. H. Lee, J. D. Joannopoulos, J. W. Negele, and D. P. Landau, Phys.
creases with temperature. As for theonfiguration A h first Rev. B33, 450(1986.

increases up to 0.05 and then, as the temperature grows stijj*- Kawamura, J. Phys. Soc. Ji6, 474(1987. _
further drops L. P. Regnault and J. Rossat-Mignod,Nfagnetic Properties of Layered

Transition Metal Compoundsedited by L. J. De Jongh, Kluwer Aca-

demic, Dordrechf1990, p. 271.

4. CONCLUSION “E. Rastelli, A. Tassi, A. Pimpinelli, and S. Sedazzari, Phys. Re¥58
7936(1992.

We have studied equilibrium states with different con- 5H. Srfibiggnd T. Nikuni, irRecent Advances in Magnetism of Transition
figurations of spins located in the triangular layers of a hex- Metal Compoundsedited by A. Kotani and N. Suzuki, World Scientific,
agonal lattice. We have found that in compounds of theGilnv%/iZ?\zgi??'géj;ihmann, H. V- heysen, and R. K. Kremer, 1.
VBr, and VC}, type the quantum effects compete with ef-  pps - condens. Matts; 8045(1994.
fects caused by interplanar antiferromagnetic interaction. FOf M. E. zhitomirsky, O. A. Petrenko, and L. A. Prozorova, Phys. Re62B
H<Hj the planar configuratiorf with a structure resem- Sisél(ilzgkgéndrov I. O. Fedoseeva, and |. P. Spevakislagnetic Phase
bling a six-pointed star is Stablllze.d bO.th_ by mte_rplanar _ex- Transitions in Cry‘staliin Russiar, I\iauka, Novosibirsk1983, p. 1.
change and by quantum fluctuations; in the intermediatesy kadowaki, K. Ubukoshi, and K. Hirakawa, J. Phys. Soc. Jsh.363
rangeH;<H<Hj the planar configurations, d, ande are (1985.
stabilized by quantum fluctuations, while nonplanar configu-"H. Kadowaki, K. Ubukoshi, K. Hirakawat al, J. Phys. Soc. Jpr56,
rations of the umbrella type become stabilized in thellioﬁ';ile%?k Ubukoshi, T. Haseda, and K. Hirakawa, J. Phys. Soc. Jpn
H>H; range because of interplanar exchange. The magnetics3 1480(1984). L ' ' TS, 206
transitions in the critical points, with the exception of N. Kojima, K. Ito, I. Mogi et al, J. Phys. Soc. Jpii2, 4137(1993.
H=H,, are not continuous: the magnetization curve exhibits - Yamada, K. Ubukoshi, and K. Hirakawa, J. Phys. Soc. §8).381
small jumps. We have found a finite region of field strengthsuRl.ggé)cekht’ Usp. Fiz. Nauk59, 261 (1989 [Sov. Phys. Usp32, 871
where the collinear phase is stable. We have also discoverediggg].
that in the spin configurations emerging in intermediate'®A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Mage69
fields are additionally stabilized by thermal fluctuations. (1990 . _

. E. Rastelli and A. Tassi, J. Phys.: Codens. MaBet811(1996.

In conclusion we note that the well-known compoundsizy el ¢. Cros, G. Le Flenet al, Physica B+ C 86-88, 702 (1977
of the ACrG; type (A=H,Li,Na) also consist of triangular 83 3. M. Franse, J. Magn. Magn. Matef-91, 20 (1990.
|ayers on which belovﬂ'N the Heisenberg spins form a 120- J. L. Soubeyroux, D. Fruchart, J. C. Marmeggial, Phys. Status Solidi
degree structur20:12 However, in contrast to compounds 2037' ,gﬁg‘(llgs%kuchi, S. Sugiyameet al, J. Phys. Soc. Jpr67, 2268
of the VX; type, here the triangular layers form a rhombo- ;955
hedral structurdthe space grou®3m). In view of this the  #E. Rastelli and A. Tassi, J. Phys, 18, L423 (1986.
system is frustrated not only in the plane but also in the thirdS: S- Aplesnin and R. S. Gekht, Ztksp. Teor. Fiz96, 2163(1989 [Sov.
(spatia) direction, which leads to an additional degeneracy Phys. JETFS9, 1224(1989]

of classical structures:?2 We believe that in ACr@ com-  Translated by Eugene Yankovsky
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Polar Jahn—Teller centers and the anomalous isotope effect in copper—oxygen high- T.
superconductors
A. S. Moskvin and Yu. D. Panov

A. M. Gorky Ural State University, 620083 Ekaterinburg, Russia
(Submitted 5 May 1996
Zh. Eksp. Teor. Fiz111, 644—653(February 199y

We examine the isotope effect in copper—oxygen higtsuperconductors using the model of

polar Jahn—Teller centers, a variant of the local-boson model. The isotope-effect

exponents for oxygen and copper depend on the structure of Jahn—Teller centers and its variation
due to boson motion. A number of YB@u;O,_ s-based compounds are used to illustrate

the feasibility of quantitatively describing the experimentally observed values.pand g and

their relationship tol,. © 1997 American Institute of Physid$§1063-776(97)01802-7

1. INTRODUCTION possible to build a simple and graphic physical picture of the
various phenomena. We would like to illustrate this by using

wral th . del hes based tthe example of the isotope effect, which historically has been
hatural manner the various model approacnes based on tjq  ne main factors in favor of the electron—vibrational
idea of local pairing and extremely strong electron— : o

mechanism of superconductivity.

vibrational interaction and also partially reconciles the sup- Here we do not attempt to analyze the entire dramatic

porters of the “charge,” “structural,” and "“spin” scenarios : . :
of high-T, superconductivity has been proposed in Refs. 1story of the discovery and study of the isotope effect in

and 2. In this model copper oxides are interpreted as Syste”gi:é)pper—oxyglen higfi-, superconductors, but we do mention
unstable under a disproportionation reaction accompanied b"§‘7 number of important featu_re_s. .
the formation of a system of hole (CQO) and electron | 1. The problem of obtalnln_ga rel_lable values _af thg
(CuOZ{) polar Jahn—Teller centeth- ande-centers$ differ- |sotop9-effect expopentTg~M_ __)' in copper oxides is
ing by anS-boson, two electrons paired in a completely filled COMPlicated by the irreproducibility of the results, the pres-
molecular shell. Actually the polar-center phase is a systerff¢€ Of various nonequivalent positions of the oxygen and
of local S-bosons moving inside a lattice of Jahn—Teller holeCOPPEr atoms, the inaccuracies in determiriigg and many
centers, which insure both local pairing and effective screenother factors. 1_'he clearest illustration of these is provided by
ing of boson—boson repulsion. the work of Nickelet al* and Zechet al,> where the re-
The remarkable properties of polar Jahn—Teller center§earchers obtained isotope shiftsTip of opposite sign.
follow from the quasidegeneracy in the ground state, i.e., the 2. A remarkable feature of the isotope effect in copper
fact that the energies of the highly correlated Stélbﬁ_, (the  oxides is the extremely broad range of the observed values of
Zhang-Rice singlgtof a configuration of thé?; type and ~ « (large positivea~1.5(!) for oxygen and sizable negative
L3, of the b,4e, Refs. 2 and 3 configuration are close, values for copper
which leads to a multimode pseudo-Jahn—Teller effect with 3. A number of laws and empirical rufesiave been
active displacement modes of the nuclei of Guflusters of ~ discovered(a) high values ofT; correspond to low values of
the leg, szg, or Qe type. a, small superconducting transition widths, and small baric
Thus, the formation of the structures of the ground andcoefficientsdT./ap; (b) low values ofT, correspond to high
lower excited states of the Jahn—Teller lattice involves sinvalues of e, large superconducting transition widths, and
glet and triplet spin states and even-nondegenerate and od@rge baric coefficientsT./dp.
degenerate orbital states of separate centers, and a number of 4. There is no theoretical model capable of explaining
active quadrupmeq)blg and szg) and dipole Qg ) local- the principal features of the isotope effect, notwithstanding
displacement modes of the nuclei of CuGusters. The the large number of papers that explain individual experi-
structure of the lower energy levels of a polar Jahn—Tellemental factssee, e.g., Ref.)7
center of the Cu® or CuQ,” type is depicted schemati- In view of the attempts to theoretically explain the fea-
cally in Fig. 1. Note the quantityi ¢, the main parameter of tures of the isotope effect in copper—oxygen highsuper-
the pseudo-Jahn—Teller effect. It determines the degree éPnductors we mention the model approaches of Kresin and
'A14—"E, hybridization, the parameters of the adiabatic po-Wolf® and Bar-Yant, since some elements of these ap-
tential of a Jahn—Teller center, and the singlet—triplet splitproaches are close to our concept of Jahn—Teller centers.
ting parameterA,;, which plays an important role in the Today there exists a vast body of reliable experimental
interaction of the charge and spin subsystéms. data on the different features of the isotope effect, primarily
The model of polar Jahn-Teller centers allows for afor YBa,CusO;_5 systems with various substitution®r,
natural explanation of the entire spectrum of the extraordiPr:Ca, Zn, La, etg.5'!* Thus the situation is ripe for a
nary physical properties of copper oxides. Here, in spite otheoretical model, which in turn must be a true component of
the complicated structure of Jahn—Teller centers, it is usualla unique scenario of higl; superconductivity.

A model of polar Jahn—Teller centers that unifies in a

354 JETP 84 (2), February 1997 1063-7761/97/020354-06$10.00 © 1997 American Institute of Physics 354



tant physicochemical characteristics determiniing

2. THE JAHN-TELLER MECHANISM OF THE ISOTOPE
EFFECT

E, The principal mechanism of the isotope effect in the ho-
mogeneous polar-center phase is linked to the dependence of
the S-boson transfer integral on the parameters of the adia-

Ay batic potential of a Jahn—Teller center and the mass of vi-
. . bration modes:
(A + E) o
Te~t= Keht( )u 1

wheret(© is the purely electron part of the transfer integral,

FIG. 1. The structure of the lower energy levels of a polar Jahn—Teller Ken= <Xe|Xh>2 2
center. The four types of distortion of the square cluster Co@respond- | . . . .

ing to the four minima of the adiabatic potential are schematically depictedS the vibronic reduction factor, an@.|xn) is the overlap

in the inset. integral of vibrational states corresponding to a certain well

of the adiabatic potential for the electron and hole polar cen-
ters.

The complexity of this problem is due primarily to the ~ What is important is that Eqg1) and (2) suggest the
possibility of extraordinary isotope-effect mechanisms mani€xistence, at least in principle, of “optimized” systems in
festing themselves, mechanisms absent from standard BO®hich the adiabatic potentials of the hole and electron Jahn—
scenarios and BCS systems. In this connection we mentioheller centers coincide. In such systenfse|xn)=1,
the percolation mechanism of formation of a three-and the motion ofS-bosons is not accompanied by a
dimensional superconducting state “operating” over largevariation in the adiabatic potential of Jahn—Teller centers.

areas of the copper-oxide phase diagfaffihe metal- Moreover, for an optimized system, the condititn,=1
insulator transition in such systems is realized through th€orresponds to a maximum of the function
formation of a phase-inhomogeneous stgtbase separa- Ken=Ken(Ae,Ap,Ke,Kp,Ve,Vy, ...) in the space of the

tion), and the most important role here is played by areas oflifferent parameters of Jahn—Teller centésre thek’s are

charge inhomogeneityCl-center$ with centers of the i elastic constants and thés vibronic constants

or Cé" ion type, oxygen vacancies, “extraneous” oxygen 9K 9K 9K

ions in oxides of the type La,Sr,CuQ,, Nd,_,CeCu0;, eh_ _eh___eh_

YBa,Cu;0;_ 5, etc?
It is the Cl-centers that serve as nucleation centers fowhich leads to suppression of fluctuations in the vibronic

the polar-center phase. An increas&jrihe concentration of reduction factor and, as a result, to suppression of fluctua-

Cl-centers, is accompanied by an increase in the volume dfons in the transfer integral and the transition temperature

the new phase, which under certain conditions k) leads T in real systems.

to percolation and an increase in the transition temperature In optimized systems, the charge, structural, and spin

T, with x. When a certain concentratiog, is reached, the subsystems can be “separated,” with the effect of the Jahn—

new phase occupies the entire volume of the sample. Clearlyeller lattice reduced to screening of the boson—boson repul-

on the percolation section of th&. vs x dependence sion. With such systems one should expect that

(xer<Xx<x(,) the isotope effect can be related to the isotopic  (a) T, is at its maximum,

variation of the volume of the new phase. (b) the superconducting transition width is at its mini-
Note that Cl-centers form a narrow quasi-impurity bandmum,

and determine the position of the Fermi level. This narrow  (c) there is no isotope effect, and

band can be associated with low-frequency charge excita- (d) the values of the baric coefficieaT./dp and similar

tions of the acoustic-plasmon typesxcitations that ensure “susceptibilities” are minimal.

an effective screening of the electrostatic boson repulsion Note that the absence of an isotope effect in optimized

and a number of “marginal” properties of copper oxides. systems is a feature of the anomalously strong electron—
It is to the nature of the spatial distribution of the order vibrational interaction characteristic of the Jahn—Teller ef-

parameter in Cl-centers that tise and/ord-scenario of su- fect (rather than a weak electron—vibrational interaction

perconductivity is related. The low-frequency charge and For an optimized system, the parametarg: of “ini-

phase excitations in Cl-centers manifest themselves in thgal” lEu—lAlg—orbitaI splitting coincide, and so do the pa-

spectra of inelastic neutron scattering and the spectra ohmetersAg; of singlet—triplet splitting(see Fig. 1 in the

angle-resolved photoemission. hole and electron centers. Hence the spin subsystem ceases
An essentially “oxide” feature of the isotope effect in to react to the transformation of charge correlations near

copper—oxygen higf-. superconductors is the potentially T., which has an effect on the nature of magnetic inelastic

strong effect of the %0—'%0  substitution neutron scatterind’

(AM/M=12.5% ) on the variation of the lattice parameters, Of course, optimized systems are an exception, rather

the Madelung potentials, crystalline fields, and other importhan the rule. Among the copper—oxygen highsupercon-

B, A, ok, 7O ©
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\ FIG. 2. g Solutions of the equation
\"3 Ken(Ae,Ap)=const for various values
‘\‘ 2 1 of k. b) The dependence of the vibronic
‘\/ J reduction factorK., on the dimension-
1 “\‘a less parametek (see text in different
A 3 1 cross sectiongcurvesl, 2, and3) of the
\ (Ag,Ap) plane.
\(
N\
1 1 a \
0.0 0.5 1.0
X

ductors the optimally doped YB&u;O,_ 5 compound with ~ minima of the adiabatic potential i&- and h-centers in ap-

0=<6=<0.1 Ref. 11 may serve as such a system. proximately the same way as in the single-mode case:
In a more realistic situation, the motion of a local boson
is accompanied by a variation in the adiabatic potential ofa  y~ Vm(AQ). (6)

Jahn—Teller center, primarily because of the difference in the
initial parameters\ ¢ for the hole and electron Jahn—Teller Figure 2a depicts the solutions of the equation
centers. This automatically leads to strong coupling of théken(Ae,Ap)=const, which can actually be interpreted as
charge, structural, and spin fluctuatiéhand has a dramatic “isotherms,” i.e., solutions of the equation
effect on all physical properties of copper oxides.
Even with the methods used in the theory of the Jahn— Ko Te(Ae,Ay)  To
Teller effect!? analysis of the vibronic reduction factor con- ST (Au=A,) Tgﬂax_conSt'
stitutes an extremely complicated problem. Indeed, in the
present situation of the pseudo-Jahn-Teller effect, the adiarhe pattern of “isotherms” clearly shows that, is not a
_batlc poten_tujil has four minima. The normal vibration modessingle-valued function oA\, andA;,.
in the minima have a hybrid bGg—e,x)- or (bye— Figure 2b depicts the dependence of the vibronic reduc-
ey)-nature. In other words, the cross section of the adiabatigon factor on the dimensionless parameter
potential near a minimum is the direct sum of two ellipses
(polarization ellipses in which the orientation and length of
the semiaxes are complicated functions of the parameter =
A g, the vibronic constants, and atomic masses of oxygen
and copper. _ _ _
The wave function of the vibrational ground state is afor different values of the parameté&r=A.+ Ay, with A,
scalar(an s-function) and has the usual form: andA;, measured from the minimum value at which the adia-
- batic potential has four minima. All the other parameters of
x(Q)=m 14~ Mg Q2" (4)  the Jahn—Teller problem fa- andh-centers were assumed
. .- . o equal, and were selected in such a way so as to ensure rea-
wherel is the characteristic oscillator length, which is a com- . . 1
. ) o sonable values of the oscillator energiéso~100 cm -),
plicated function of the parameters of the polarization el- o ) 1
X . . .~ the Jahn-Teller stabilization energiek;{~1000 cm °),
lipse. Calculating the overlap integral of the functions o .
and the characteristic oscillator lengtig<0.1 A).
x(Q) for the electron and hole Jahn-—Teller centers, . . ; .
. ) As noted earlier, the factoKg, is at its maximum
(xelxn), generally constitutes a complicated problem be-, oL
] k ) . =1) atk=0 and decreases asgrows: it decreases slowly
cause it proves impossible to separate the variables corre- .
sponding to the hybridizing mode€), and Q and TN K small (9K¢n/dxk—0 ask—0) and rapidly agwx|—1.
b1g X’ For compositions close to the optimized one=(0), the
szg and Qeuy.

factor K., depends weakly ol and A},, since for such
The functional dependence of the vibronic reduction fac-compositionsiK o/ JA ¢= K o/ IAR=0.

tor has the form

Ae—A,
7
A (7)

The dependence of the vibronic reduction factor on the
Kep=Ne~7 (5) masses of oxygen and copper atoms makes the dominant
C L]

contribution to the isotope effect for copper—oxygen high-
with the pre-exponential factdd, which has a complicated T, superconductors.

structure, and the exponent which depends on the oscilla- If within the framework of the theory of a lattice Bose
tor masses and the distance between the correspondimgs® we putT.~t, we get
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FIG. 3. lllustration of the dependence of the overlap
integral of the vibrational functions of the electron and
hole centers{ xc|xn), on the deformation and rotation
of the polarization ellipses in the process of isotope
substitution. Processes of tyfigheavy arrowslead to

an increase i x| xn), and those of type (light ar-
rows) to a decrease ifiye| xn)-

d In Kgp

dInN dy small negative contribution te,g from a hybrid mode of a
am m am am m%. preferably coppee,-type and a relatively large positive con-
(8)  tribution to ag from a vibrational mode of a preferably
Cpurely oxygenb,,-type. Hereap may reach values that are
considerably higher thaagcs=0.5.
At the same time, for compositions witk >0 the two

contributions toag balance each other, so that the net value

In the simple single-mode case, the pre-exponential fa
tor N is independent of the mode mass, and
y~m(AQ)?, so thata is nonnegative and its value is de-
termined primarily by the distanc&Q between the minima X
of the adiabatic potential for the- andh-centers. of @o IS small. )

In the multimode case the situation is much more com- " 19ure 5 also shows some experimental valuesoand
plicated, with the isotope effect determined not only by%cu_2S functions of the reduced transition temperature
AQ but also by the dependence on the atomic masses of thes/ Tc for the following compositions:
orientation and ratio of the semiaxes of the polarization el-' 1-xPxB&CUO7-5,  Yog-,PloLaBaCLO;— 5, and
lipses. Variation of the atomic masses of oxygen and coppef B&2CUs—ZnO; 5 (see Ref. § YBa, ,La,Cus0;; (Ref.
leads to deformation and rotation of the polarization ellipsest®; and YBaCu;0;_; (Ref. 11. These compositions are
of the vibrational modes in the- andh-centers, which leads nherently linked to the model optimized composition
to a variation(increase or decreas@ the overlap integral YB&CtsOg g3 With T{**~93 K. It is natural, then, that in
(Xelxn) (see Fig. 3 As a result there emerges a nonzerothe general case for such systems IQevs x dependence
contribution toe from the pre-exponential factdt, and the ~ corresponds to different “trajectories™ in the\¢,Ay,) plane
contribution may be either positive or negatiie with different behavior of the functior(x).

In our model a negative isotope effect can be observed Note the similarity in the dependenceg(T,) in a 1-2-3
only in copper. To achieve this the positiyecontribution to ~ System with fixedé and substitution in the Y- or Ba-
ac, Must be suppressed, i.6y/dmc,<1. This is the situa- Sublattice, i.e., out of the active Cy@lanes. This suggests
tion in the above 4.,A},)-model, in which the difference in that the nature of variation of the parameters and Ay,
thee- andh-center is assumed to exist only in the parametergwith A conserveglunder such substitution is approximately
Ag andAy,. the samgthe respective 4,A},)-trajectories are cloge

Figure 4 depicts the dependenceof ag and a¢, for A slightly different situation is observed in the 1-2-3
different values ofA. It also depicts the solutions of the System wherd varies. In this case an increasediis accom-
equationseg(Ag,Ap) =const andac(A.,A,) =const. Note  panied by a sizable variation ifs, which forces the system
the intervals of possible variation af;, andag and the fact into a mode with a negative isotope effect for copper
that these solutions and “isotherms” do not coinciggee (@ c,<O0).

Fig. 29, an indication, in particular, that the vs T, depen- The absence, for all practical purposes, of an isotope
dence is not single-valued. effect in YBgCu;_,Zn,0,_ s over a wide range of values of

Figure 5 depicts the dependences of the typel., with such an important characteristic of an optimized
a(Kep)=a(TJT®) for ag and ac,, corresponding to composition as the minimum superconducting transition
definite trajectories in theA,A,) plane that ensure either width retained, agrees with the ideas concerning the effect
negative(curve 1 for ac,) or positive (curves2 and3) for ~ of Zn** on the disintegration of Jahn—Teller centers in
ac, values of the isotope effect for copper. A characteristicCuO,-planes combined with formation of large two-
feature of compositions withec, <0 is a relatively large dimensional regions of a highly inhomogeneous normal
positive value ofxy, obtained as a result of adding a relative phase, a process accompanied by a lowering of the transition
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FIG. 5. The dependence on the reduced transition temperature
T /T (=Kep) of the theoretical and experimental results for the oxygen
isotope-effect exponent (solid curve$ and the copper isotope-effect ex-
ponent a¢, (dotted curves The solid and dotted curves are theoretical
curves corresponding to the cross sectitng, and3 of the (A;,A,) plane
(see Figs. 2a, 4b, and ¥cThe experimental values of the isotope-effect
exponents are given for YB&uO,_sbased systemsA—ag, for
YBa,Cu;0;_ 5 (Ref. 11); ¢ —ag for YBa,Cuz_,Zn,O;_ s (Ref. 6; V—

ag for  Yog P CaBaCw0O;,_; (Ref. 6, O—ag for

Y, ,Pr,BaCu;0;_; (Ref. 6; and O—ag for YBa, ,La,Cu;0;_s (Ref.

14).

substitution has essentially no effect on the variation of the
electron properties of the Cy&planes, which are in an op-
timized state except for regions of oW, where in view of
the percolation nature of the transition the role of even small
fluctuations sharply increases.

The data of Fig. 5 firmly suggest that a quantitative de-
scription of the rather intricate features of the isotope effect
for oxygen and copper in copper—oxygen highsupercon-
ductors is possible. At the same time this is only a small
example illustrating the possibilities of the polar-center
model in explaining and predicting physical phenomena and
properties.

3. CONCLUSION

The model of polar Jahn—Teller centers provides not
only a simple and graphic description of all, including the
most exotic, qualitative features of the isotope effect in cop-
per oxides but also explains the various quantitative laws.

On the whole, the experimental data on the isotope effect
in copper oxides serve as a clearcut confirmation of the va-
lidity of the model of polar Jahn—Teller centers, not only in
the general aspects but also in details. For instance, the dis-
FIG. 4. 3 The dependence on the parametesf the oxygen isotope-effect covery of an isotope effect for copper essentially unambigu-

exponenta, (solid curveg and the copper isotope-effect exponedt,; the . - . . _
curvesl, 2, and3 correspond to the cross sections of the, (A,) plane ously points to the active role of the unique hybrid Cu-O

depicted by the dashed straight lings2, and3 in Figs. 4b and 4c. b ~Mode Qe ~of the local displacements of Cuy@lusters,

Solutions of the equatiomg(Ae,Ap)=const. ¢ Solutions of the equation which in turn points to the active role of the electron
acy(Ae,Ap) =const; the hatched region corresponds to negative values OE _state
u .

“eu The results of our work illustrate the vast possibilities of
the model of polar Jahn—Teller centers, not only in explain-
ing certain physical properties of copper oxide but also in

temperatureT, of percolation nature. Here th#0— 180 predicting their physical behavior. Here we are speaking pri-
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marily of the existence of so-called optimized compositions?’Here we are dealing with singlet—triplet mixing and fluctuations of spin
with a unique set of physical propertiége highest possible  multiplicity.

values ofT ., the smallest superconducting transition widths,

and maximum stability under various external influences,

such as the presence of defects and mechanical streBses 1A s. Moskvin JETP Lett58, 345 (1993.
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The effect of magnetic ordering on the quantum temperature oscillations of current-
carrier magnetization in strongly correlated systems

V. V. Val'kov* and D. M. Dzebisashvili

L. V. Kirenski Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 660036
Krasnoyarsk, Russia and Krasnoyarsk State University, 660036 Krasnoyarsk, Russia
(Submitted 20 June 1996

Zh. Eksp. Teor. Fiz111, 654—-668(February 199y

We show that the effect of magnetic ordering in magnetic semiconductors by the mechanism of
s—d(f ) exchange interaction plays an important role in explaining the quantum temperature
oscillations of band-electron magnetization that were discovered in the experiments of S. G.
Ovchinnikov, V. K. Chernov, A. D. Balaev, N. B. Ilvanova, B. P. Khrustalev, and V. A.

Levshin (JETP Lett.64, 642 (1995). We analyze how hybridization of band and localized
electrons affects the amplitude of this effect. Finally, we establish that because of strong
intratomic correlations the amplitude of the oscillation effects depends to a great extent on the
sign of the exchange constait © 1997 American Institute of Physics.
[S1063-776(197)01902-1

1. INTRODUCTION serve quantum temperature oscillations in experiments, the
phases of the oscillating terms in the magnetization must

Among the multitude of substances with strong electronchange by more than2 as the temperature changes from
correlations the so-called strongly correlated systems witlabsolute zero td@ ~#% w. (at higher temperatures the oscillat-
low current-carrier concentration have lately drawn the intering terms are exponentially smalAchieving such a change
est of researchers. Representative of this class of materiails phase is difficult if the current-carrier concentration is low.
are rare-earth compouridé with the general formula ReX, Hence to interpret the results of Ref. 7 one needs an addi-
where Re stands for a rare-earth element and X for P, As, aional physical mechanism that would ensure that in the time
Sh. The cerium compounds CeAs, CeSb, and CeP exhibit ia takes the temperature to vary the number of oscillations
number of nontrivial properties:* These compounds, which that the band-electron magnetization performs before such
are semimetals, at low temperatures exhibit long-range magscillations decay is sufficiently large.
netic order. The electronic structure of these cerium com-  As is well known®®the existence of a strong coupling of
pounds is explained by the presence of a valence band whosellectivized and localized electrons in magnetic semicon-
top is at thel'-point of the Brillouin zone and a conduction ductors is corroborated in experiments by a shift of the op-
band near thé&X-point of the Brillouin zone. It has been ex- tical absorption edge in the temperature range where mag-
perimentally established that the degree of electron—holaetic ordering can take place. The physical reason for the
compensation in such compounds is high. Studies of the dshift of the bottom of the conduction band and/or the top of
Haas—van Alphen effect involving cerium compounds supthe valence band is tre-d(f) exchange interaction between
port the main features of the respective electronic structurehe spin angular momenta of the two groups of electrols.
However, the fine details in the behavior of the de Haas—vawas this interaction that made it possible to interpret the
Alphen oscillation frequencies have required new conceptexperimental data on the extremely strong effect of a mag-
for their explanatiorf;* related primarily to the presence of netic field on the optical properties of HgSe, recently
magnetic ordering. discovered by Bol'nykret al1°

As is well known>® the effect of magnetic order on the Bearing all this in mind, we can easily assume that the
electronic properties of materials manifests itself in magnetig—d(f) exchange interaction plays an important role in gen-
semiconductors. In such compounds the hybridization intererating quantum temperature oscillations. The physics of the
action between collectivized and localized electrons can remechanism by which magnetic ordering affects quantum
sult in a dependence of kinetic characteristics on strongemperature oscillations is fairly simple. A rise in tempera-
single-site correlation. Therefore, such magnetic semiconture lowers the magnetization of the localized subsystem. As
ductors can be related to the systems with low current-carries result and due te—d(f) exchange coupling the Landau
concentrations mentioned above. The ferromagnetic semievels begin to move. Some of the upper Landau levels be-
conductor HgCsSe, is an example of such a compound.  come depleted, and the electrons involved go over to the

In a recent paper, Ovchinnikost al.’” reported the re- localized state, thus increasing the number of bivalent chro-
sults of an experimental study of the quantum temperaturenium ions. What is important in this process is the proximity
oscillations of the current-carrier magnetization in of the chemical potential values and the energy correspond-
HgCr,Se,. The existence of such oscillations was predicteding to the CF*—Cr?* transition. Such dynamics generates
earlier in Ref. 8. However, there exists a large discrepancyvell-known oscillations of the density of the electronic states
between the experimental data of Ref. 7 and the results aind manifests itself, in particular, in the oscillatory depen-
Ref. 8, which is due to the following fact. To reliably ob- dence of the collectivized-electron magnetization with in-
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creasing temperature. With these ideas a simple criterion fagquantitative description of quantum temperature oscillations.
the existence of quantum temperature oscillations can be dé&inally, in Sec. 6 we discuss the results.

rived. As the temperature grows from absolute zero to

T~#hw, the magnetization decreases by a quantity of order

(hwJams)¥2 The effect is present if the level shift caused 2 THE MODEL HAMILTONIAN

by s—d(f) exchange is much larger than the distance be-  \ye examine the effect of magnetic ordering on quantum

tween Landau levels: temperature oscillations in strongly correlated systems using
the example of the model of the electronic structure of

o haog |1 HgCrSe . The electronic structure of magnetic semiconduc-

= Zmsi|\ams1] =L tors in general and of chalcogenide chrome spinels in par-

ticular has been discussed in the monographs of Methfessel
wheredJ is thes_d(f) exchange Coup”ng constant, ahds and Matt|§ and Nagae\9.The Concept of multielectron Hub-
the integral of the exchange interaction in the localized subbard operators;~**which describes strong single-site corre-
system. If for the values of the various parameters we takelgtions fairly well, was employed in the theory of chalcogen-
those that are characteristic of magnetic semiconductors, i.dde chrome spinels in Refs. 14-16. Using these ideas, we can
J~0.4 eV, 47sI~T~10% K, andw,~10 K, thena~38, write the model Hamiltonian that reproduces the energy
and all the conditions needed for quantum temperature oscifPectrum of HgGiSe, in the following form:
lations to set in are met.

Note, however, that the hybridization interaction tends to 7=, (&xo— #)CiyChot+ > (Ex—gugHm

suppress the de Haas—van Alphen effect in general and quan- 7 o
tum temperature oscillations in particular. Hence an estimate L
of the possibility of such an effect occurring based on the —3u)X{m+ 2 (Ex—gugHm' —4u)Xy ™
above criterion can be too optimistic in the presence of hy- f.m
bridization. In this connection it is important to take into

account single-site correlations, which renormalize the hy- 2 Z« If|(SfS)—§f: I(Sro1)
bridization coupling constant. For our further studies it is '
important to note that in certain conditiofsee below such 1 _ N
renormalization may neutralize the negative effect of the +\/—— > (v exp(—ikR¢)c,,dr,+H.C). 1)
.. .. . N fko
mixing of collectivized and localized states and may make
guantum temperature oscillations observable. The first term on the right-hand side describes the subsystem

These ideas concerning magnetic semiconductors anef collectivized electrons in a magnetic fietl with an en-
submetallic cerium compounds are proof of the importanceergy e,,=¢ex— 20 ugH, whereo==*1/2 andug is the Bohr
of studying the effect of magnetic ordering in strongly cor- magneton. The second term takes into account the states of
related system on both the de Haas—van Alphen effect anthe trivalent chromium ions, which have an enefjyand a
quantum temperature oscillations. In the present paper wad® outer-electron configuration. The presence of spin de-
study the case of ferromagnetic ordering in the subsystem ajrees of freedom is expressed by summation over the projec-
localized spins. This type of long-range magnetic order igions of spin angular momentum on thexis, with the pro-
realized in chalcogenide chrome spinels. Hence our resulfgction denoted bym. The 3d® configuration (Ct)
can be directly applied to HggBe, and can be used to in- corresponds to a spin quart&=3/2), which splits in a mag-
terpret the quantum temperature oscillations discovered bgetic field with a gyromagnetic ratio close to two because the
Ovchinnikovet al.” Strongly correlated systems with antifer- orbital angular momentum in the crystal field is frozen. Sum-
romagnetic ordefthe cerium compounds CeAs, CeSh, andmation with respect tan is over half-integral values from
CeP will be studied separately. Here we only note that them=—3/2 tom=3/2. The operator¥X{™ are the Hubbard op-
gualitative aspect of the effect of long-range order in theerators known from the theory of strongly correlated
localized subsystem on the initiation of quantum temperatursystems:>~13 Notwithstanding the relative complexity of the
oscillations is the same for both types of magnetic orderingcommutation relations for these operators, today we have
The plan of this paper is as follows. In Sec. 2 we briefly effective methods for calculating systems in the atomic rep-
describe a model of the electronic structure of Hgey that  resentation. Among these is the method of diagrams for the
allows for strong intratomic correlations. In Sec. 3 we deriveHubbard operatorS."*® The diagonal Hubbard operators
the basic equations for the Green’s functions and discuss th¢]" are actually projection operators on a chosen subspace of
conditions for the applicability of the assumptions. The ther-atomic (ionic) states for sitef. The off-diagonal operator
modynamic potential of the system in the presence of LanX{™ describes the transition of the ion at sitefrom state
dau quantization and hybridization interaction is calculated f,m) to state|f,n). In terms of Dirac’s bra and ket vectors
in Sec. 4. In Sec. 5 we analyze the effect of magnetic orderthe Hubbard operators can be written as
ing on the temperature and field dependence of the band- XOT= | £, n)(f,m|
electron magnetization. We show that the temperature- f ’ o
induced decrease in the magnetic order parameter via thEhe third term on the right-hand side of Ed) allows for
mechanism o6—d(f) exchange coupling can lead to intensethe state of Gr* ions with an electron configuratiord3 and
motion of the Landau levels. This is the key issue in thean energyE,. In the crystal field the states with spin angular
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momentunS= 1 correspond to this configuration. The triplet bridization interaction. These main effects are described by
nature is reflected by the presence of summation over terms of lower-order perturbation-theory, and only these
fromm’=—1 tom’=1. The fourth term takes into account terms will be taken into account. In diagram langudg¥

the exchange interaction between the spin angular momenthis approximation corresponds to allowing only for loopless
of the localized subsystems. The fifth term on the right-handliagrams, while in the equation-of-motion method it
side of Eq.(1) describes the exchange coupling of localizedamounts to decoupling in the higher-order Green’s functions.
and collectivized electrons within the framework of the On the basis of the above we can write the equations for
d(f) exchange interactioh’ Finally, the last term describes the Green’s functions in the adopted approximation as fol-
processes of hybridization interaction, when the creation anows:

nihilation of an electron in the conduction band is accompa- 1

nied by the transition of a chromium ion from state?Cr .,  ~ _ - —ik-R .

(Cr™) to state C¥* (CrP™). Here the electron operator (100~ 8o ) Giol@n) =1+ \/NZ oke (T on),
d¢, is expressed as a linear combination of multielectron

H tors: . 1 )
ubbard operators. (10n—Faot W) Fkolfi0m) = —= vEEFRIK Gyo(wr),  (4)

1 2 WN
d _ X1/2,1_ _ X—l/Z,O_ X—3/2,—1 ) )
f vt 3°f f ' where the renormalized energies are
2 1 @ = ~ e 1
dy, = X321 \@X]}IZ,O_i_‘/_g X V21, eko= ko~ OIR, Egs=E4m0H, o==3. ()

) . HereR stands for the average value of th@rojection of the
where the half-integral values of the superscripts correspong .o ized spin angular momentum

to states of G¥* with half-integral values of the projection of
the spin angular momentum, and the integral values number R— i 2 7 ®)
the states of Cr with spin projectionsn’= =1, 0. N4 (St),

andH for the effective field determining the splitting of the
3. THE GREEN’S FUNCTIONS AND THE ENERGY localized energy levels,

SPECTRUM _
H=gugH+1,R+Jo, )

Examining de Haas—van Alphen effects and quantum ith 1- the Fouri f f th h . |
temperature oscillations requires calculating the thermody\-’v't o the Fourier transform of the exchange integral at

namic potential() of the system. A convenient approach q=0, a'."d Ie the magnetization (.)f the collgcnwzed_sub—
here is to use the coupling-constant integration metiod. system(in units of ug) per site, which can be ignored if the

Bearing this in mind, we define the Matsubara Green’s funcelectron concentration values are those cited earlier.
' The presence of single-site correlations is reflected by

tions needed for further investigations as follows:
the factor

Gka( T—17' ) == <T’TEI(O'( T)E l:—o'( 7 )>

1 1/3 1
KU:NE <[dfo"dlj—a']+>:§ (5_20R+§ nd)l (8)
=T exp—iwy(t—7"))Gy(wp), f
“n where
. N — 3 =~ + ’ (3)
Fk(r(flT_T )__<TT df(r(T)C k(r(T )> 1
ng=rg 2 (X XPo+ X ) 9
=T exp—iwn(r— ') Flfi0n). f
@n determines the single-site concentration of Cions.
We start the derivation of a system of equations from which ~ Solving the system of equatiorié), we find that
these Green’s functions can be found by mentioning a fact
that simplifies our problem. Nominally pure samples of Gyo(wn)=
HgCrSe, haven-type conductivity with a carrier concentra-
tion ~10'"—10'® cm™3. At such low band-electron concen-

iwn_’gdc—i_ﬂ
(iog—E,+u)(iw,—Ep, +u)’

. . . . 1 .
trations (the electron concentrationn per site is — D e Rty Fro(frop)
~10"4-10"3) the effect of the electrons on a state of the N T
localized subsystem is negligibiéThis means, for instance, K, |vW?
g

that the temperature behavior of the magnetization of the = — — - - ,
subsystem of localized spins is determined to a high degree (ion= Bt p)(fon =Byt u)
of accuracy by the properties of the localized subsystenjyhere the mixonic spectrum is determined by the ordinary
proper. But at the same time, the spectral characteristics @‘Xpressiorfg
the band electrons are controlled to a great extent by the

degree of magnetic order through the mechanisms-ef L1 (Brot Bau) + \/<'§k(r—5da

(10

2
L = — 2
d(f) exchange, and by single-site correlations through hy- ko™ 2 2 ) +Klof? (D
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We see that because of single-site correlations the hyintegration. Below, in deriving the oscillating part of the
bridization interaction parameter is renormalized. In view ofthermodynamic potential, we employ the ideas of Ref. 24.
the importance of this fact in the initiation of quantum tem- We introduce a system Hamiltonian dependent on a pa-
perature oscillations we shall dwellﬁon the physical reasomameter\:
for the renormalization. AT=0 the CF* ions are in a state N ~
with the projectiorm of the spin angular momentum equal to AN =Hot N i (13
3/2. Hence an electron witr=+1/2 cannot go into a lo- where. 7,y is the operator describing hybridization interac-
calized state(high-spin states have a higher energy andtion processesthe last term on the right-hand side of Eq.
therefore are not included in the low-energy basis of ionic(1)). At A\=1 the Hamiltonian(13) coincides with the
states. However, an electron with an oppositely directed Hamiltonian (1). The meaning of7%, immediately follows
projection of the spin angular momentum can always go intdrom this correspondence.

a localized state. This leads to a dependence of effective The thermodynamic potential corresponding18) also
hybridization on the direction of the spin angular momentadepends on the parameter

of the electrons, and in the low-temperature range hybridiza- _ oy

tion for electrons witho=+1/2 proves to be suppressed. QO ==TIn Tr(exp( = 7). (14

Mathematically, a meaningful description of single-site Introduction of a temperature scattering mattix
correlations is provided by the algebra of Hubbard operators, T
and in the adopted approximation it formally manifests itself S, (1/T)=T, exp{ —)\J T il T)dT} (15)
in multiplicative renormalization of the hybridization inter- 0
action, vy *— [vy,|?=K,|vk|?. A similar renormalization is  makes it possible, as is known, to write the statistical opera-
present in the slave-boson approdtiith K., acting as the  tor in the form
number of slave bosons in the condensate. In our case, 1
K;—0 andK,—1 asT—0, in accordance with the physical ao _ aoy _ =
si'zuation. He#e in the expression fi§y, we ignored the band- XA~ B (N} =exp(= B A7) S (UT), - B T (16

carrier concentration due to the smallness of this quantity. .4 relationships yield the following exact equation:

4. THE OSCILLATING PART OF THE THERMODYNAMIC Q2T giondg— kR
POTENTIAL BN \/NE g, “n%e” "y Fro(fiwn), 6—+0.
(un (o8
As is known, in examining the de Haas—van Alphen a7

effect we must calculate the trace of the statistical operato
taken in the Landau representatfdrf® When conduction-
electron concentration is low, with only the states near the
bottom of the conduction band contributing to the thermody- é’Q TS e 20K |vy/?

namic characteristics, the use of the effective-mass Tw Ko (i wn—Ep i) (iog—Ep,+ 1)
approximatioA? is justified. In this case the Landau spectrum
can be written as

fn the present approximation the unknown quantitie§lin
are described by Eq$10). Hence

(18

with 6—+0. To remove the irrational dependence of the
electron spectrum on the quantum numbers, we write the

1 2 i i :
eu(p)=| 1+ _)thJr p—+2,uBoH, o=+1/2 electron propagators in the following form:
2 2m; b ioo
(12) (ion=Fptp) " t=— f exp{—S(Bko—
wherew.=eH/cm, is the cyclotron frequenc§’ m, is the b
effective mass corresponding to transverse electron motion —iwy)}ds,  ©,>0,
(in relation to the vectoH), p is the electron momentum in X
the d!rectlon of the externgl magnetic fle!d, any is the (iwn—gka+ﬂ)_1=f exp— (5o
effective mass corresponding to longitudinal electron mo- b—ic
tion.

When there is mixing of collectivized and localized elec- ~iwg)}ds,  0,<0, (19
tronic spectra, the resulting electron spectrum without Lanwith b— +0. Using these relationships, we can write Eq.
dau quantization is given by E{L1). Since we are interested (18) in a form that makes it possibléaten to sum over the
only in states with small quasimomenta, we can ignore theé andau representation indices:
dependence of the hybridization parametgron k. In this
case, employing Onsager quantizatiérwe can easily see @:T z 2 fb exp{— S[Ex,—pn—iw
that the electron spectrum in a quantizing magnetic field is A ©0n<0 ko Jb—iw ko "

obtained from(11) by replacinge,, with £,,(p). In the 2
process the dependence®f on the Landau representation TN Yo (wn) [}2N P, (w,)ds

indices becomes irrational. This makes a direct calculation of b+io '
the trace of the statistical operator impossible. -T ZO kz fb exp{—s[ek,— u—iwy
To overcome this difficulty, Wassersmaat al?* sug- ot R
gested using the Luttinger mettddogether with contour N2, (wp) 2\ (@) ds, (20
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where ,(wn) =K,|v|?/(iwy—%4,+p). Here, in accor- TV(fw)¥mym,
dance with the earlier remark about the smallness of the vol- Q.= 27253
ume of the region in th&-space we are interested in, we

ignored the dependence of on k, taking the value of the il 27k
hybridization parameter at the point of extremum. XE Zo k§_)1 exp — o wnano}
Integration of Eq(20) leads to the following expression 7 enmm T ¢
for Q: 2wk _
X CO ﬁ_wc /-'Ln(r+ Pof- (25)
Q=0,-T> > f i ds
20w i Per(S:0) 5 Here
b+ice ds 2
as Kolv]
+Tw2>o kEU fb ¢kg(s’wn) s’ (21) anG:1+Fnov 1—‘na'zz,v—zv
n wn+(8d0'_M)
where ~ -
Mnoe=pt oJR+ (Sdo_ /'L)Fno )
¢ka’(siwn):exq_s(’5k¢r—#_iwn+ lpa(wn))}' (22) m
c a
. ) . Q,=2mokK| —|— —. (26)
The term(), can easily be determined from the condition mo/ 4
Q=0,=—T In Tr(exp — BI,)) These formulas describe the essential effect of magnetic or-

dering on the de Haas—van Alphen effect and quantum tem-
when the hybridization parameter is zero. Sifkeis of no  perature oscillations. The presence of a localized subsystem
importance to our further discussion, we do not given theaffects the oscillating part of the thermodynamic potential
value ofQ, here. (and hence other physical characteristitsough two chan-
In a quantizing magnetic field summation oueiis re-  nels, so to say. First, through the mechanism of hybridization
placed by summation over the quantum numbers of the Lannteraction the presence of localized states generally leads to

dau representation: a decrease in the oscillation amplituttee effect ofl",,, in
an,). Here, as noted earlier, single-site correlations play an
eHV +oo * important role. Second, the—-d(f) exchange interaction
Ek: — m) ﬁm dkz;::o . leads to an additive term in the expression fqy,. When

the energy levek,, is close to the chemical potential, the
Integrating with respect tk, and summing over, from  latter becomes pinned. In view of thig,,, acquires a strong

(21) we obtain temperature dependence, which ensures quantum tempera-

ture oscillations.

Q=0,+Q,+Q_, (23
where 5. THE MAGNETIZATION OF COLLECTIVIZED ELECTRONS
0.-0S 3 Jb“w ds exp{s(i o+, — o wn))} Equation(25) readily leads to an expression for the os-
TS S s 2 sin(sh w/2) ' cillating part of the system’s magnetization. Keeping the
principal terms, we can write
= * _— k
- Dg %o boiz S2 2 sinf(shw/2) ’ M_=—3S (=D Aol @n)
(24) v k=1 6n>0 Jk
TVeH\lz’ﬂ'mH _ 27Tk
= — = . M g
D (27Tﬁ)2C ’ Mo M+20-/~LBH+0-‘]R' Xsin —ﬁw 4 +¢0. y (27)
Cc
Further calculations involve separating the oscillati_ng partyhere the “partial” amplitudes are
Q) from the rest of the thermodynamic potentfal Since
s=0 is a branch point, we cut the complsylane along the TVeun, [ m 12 27Kw,an,
semiaxis of real negative values if This procedure closes Acolwn)=|—2— || 77| exp——F—|
X . - ’ whec hw hw
the integration contours in the second and third quadrants for (29)

Q. and(Q) _, respectively. The integrals along the upper and

lower edges of the cut contribute to the monotonic compoMathematically, the presence of a hybridization interaction
nent of the thermodynamic potentfdlThe oscillating part manifests itself in the appearance of an additional summation
Q) __ is determined by the poles on the imaginary axis atover the Matsubara frequencies. In the absence of hybridiza-
shw /2= *ikm. After performing the necessary calculations tion (v =0), the summation oves,, can be done explicitly.

we get Since in this casé’,,=0 anda,,=1 hold, we find that
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[

. (_1)k ﬁa . 27Tk/7’¢7 .
M~__§a': k§=:1 JK B(ﬁwc)sm( o, +¢">’ Sm[ZTrk
(29

TVe o
B= (m) (m”hwc)llzslnh !

2 + b ] (33

H JH/|’

wherea and b are quantities independent of the magnetic
field strength,

When the band-electron concentration is low, the ex-
with ,= u+ aJR. These formulas make it possible to eas-change splitting of the spin subbands leads to a situation in
ily follow the effect of s—d(f) exchange splitting of spin which the electrons fill only states with one value of the
subbands on quantum temperature oscillations. Using thprojection of spin angular momentum. Here the sign of the
renormalized expression for the chemical potential, we findexchange constadt, while affecting the polarization of the
that the phases of the oscillating functions contain a ternband electrons, has no effect on quantum temperature oscil-
~JR/hw. Since the parametérin magnetic semiconduc- lations.
tors may exceed w. by several orders of magnitude, even The situation is quite different when hybridization ef-
small variations in the magnetization of the localized sub-ects are taken into account. In this case the sigh mwiay be
system may cause a noticeable change in the phases. Allowf great importance to the de Haas—van Alphen effect in
ing for the fact that in the low-temperature range the Blochgeneral and quantum temperature oscillations in particular.
law is valid in ferromagnetic semiconductors, we can writeTo demonstrate this feature explicitly we ignore the depen-
the expression for the average value of the projection of thelence orw, of I',,,, assuming that the main contribution is
spin angular momentum of the localized subsystem as foldue to terms with small values af,,. Then after summation
lows: over w, we obtain a formula similar t¢29) if the following
replacements are performed:

2m°KkT
hoe |’

3/2
R:S_<_4n-sl) Z3(2ugHIT), (30 o TVe e — 2m2KT .
o\ 2mhic) e ho, °7)
where
exp(—nx) Hom2 o _
Za(X)ZnZl e with g, and g, defined in(26). We see that hybridization

through the factory, may considerably lower the amplitude
is the generalized Riemann zeta function. In the case of af oscillations of the band-electron magnetization. Here the
small effective mass of the current carriers*(~0.01mg in presence of the factdf, leads to the strong dependence of
HgCr,Se,) there is a temperature ranggsH<T<hw, in  the effect on the sign of the-d(f) exchange coupling con-

which the following expansion holds: stant, noted above. For instance, wiieis positive, the band
electrons are in states with spin “up.” Sind¢,—0 as
[2mugH  35ugH T—0, in this casexy;— 1, and the amplitude of the effect at
= — ’ T ’
Za2pgHIT)=£(3/2) =2 T * 2 low temperature is renormalized only slightly. ButJfis

negative, the band electrons fill the subband with spin

“down.” In this case, as noted earlier, the hybridization in-
35 teraction channel is open ang, > 1. This leads to a large
JR=JS—¢(3/2)t32+ 2Jt\/ﬁ— — J\/m, (31 decrease in the oscillation amplitude, so that reliable obser-

48 ; L . .
vation of the oscillation effect becomes impossible. The

wheret=T/471S andh= ugH/SI. As the temperature rises, physics of the effect of single-site correlations on the effi-
R decreases, which in accordance with what was said earligfiency of hybridization interaction was discussed earlier in
leads to quantum temperature oscillations. The other featuriis paper.

is the presence of a term proportionaj\fa_ Hence the total In a more general case the additional contribution to the
oscillation phase contains the term total phase of the oscillating terms is determined not only by

the magnetization of the localized subsystem but also by the

term (eq,— u)T, . This fact considerably complicates the

- \/_ﬁ (32 net effect of magnetic ordering when mixing is taken into
account, and computer calculations are needed for quantita-

If we take the values of the parameters characteristic of magive results.

netic semiconductors, i.e.,.J~05 eV, T~10 K, Figure 1 depicts the dependence of temperature quantum

m./my=0.01, andH ~50 kOe, we find that the smallness of oscillations on the magnitude and sign of thed(f) ex-

the first two factors on the left-hand side of E§2) is bal-  change coupling constadt The following model parameters

anced by the large value of the fourth factor. Hence the conwere used in the calculations;=0.05 eV, m* =0.01m,,

tribution of this term becomes essential and the oscillationsi=3x10"® cm 3, and H=20 kOe. We see that at=0

of magnetization under variations of the external magnetichere is only one oscillatioM _, in accordance with the

field cease to be strictly periodic inH/ This can easily be nature of this behavior discussed earlier. Wias finite, the

verified if, taking into account the expansi@Bil), we write  spin subbands experience additional motion, which manifests

the oscillating factors in the form itself in a buildup in the number of oscillations. The curZes

with ¢(3/2)=2.612. In this case

J2 1/2 1

,lLBHsl

T
rasl
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-0.10 ; ; . i . . . -0.04 . r . . . .
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FIG. 1. Quantum temperature oscillations of magnetization for differentFIG. 2. Effect of the hybridization interaction on the quantum temperature
values of thes—d(f) exchange interaction parametel=0 (curve 1), oscillations of the band-electron magnetizatior: 0 (curvel), v=0.05 eV
J=0.1 eV(curve2), J=0.8 eV (curve3d), andJ=—0.8 eV (curved). (curve2), andv=0.1 eV (curve 3).

and 3 were calculated for positive values df As noted strength. Such behavior of the magnetization irrevocably fol-
earlier, in this case hybridization is effectively suppressedows from Eqs.(25—(27).

and the amplitude of the effect is sufficiently large for ex-

perimental observation of oscillations to be possible. But if

J is negative, the collectivized states are strongly hybridize- CONCLUSION

with localized states, and the amplitude of oscillations be-

. . . Several remarks are in order. The main conclusion that
comes too small for observation. This becomes especiall

dent if 3 and 4. Th 4 ¥an be drawn is that magnetic ordering has a strong influence
evident 1 we compare Ccurves and 4. The curves was guantum oscillation effects. The reason for this and the

calculated for the same values of the parameters as (mrveimportant role played by single-site correlations have been

but with J of opposite sign. We see that because of Inter‘r"thoroughly discussed in this paper. Here we would only like

tions of the collectivized electron subsystem and the Iocal;[0 note that these effects may manifest themselves not only

ized subsystem and strong intratomic correlations the amplli—n magnetic semiconductors but also in many systems with

tl.Jde of the Qscnlatlon effects is ex_tremely sensitive 1o thestrong correlations. In this respect mixed-valence compounds
sign of J. Satisfactory agreement with the experimental dat

o . nd heavy fermiongin addition to the cerium compounds
on'quantum temperature oscillations exists ‘beO'B e\/. CeAs, CeSbh, and CgRire especially interesting. Many of
This value of] corresponds to the results of earlier studies Ofthese exhibit antiferromagnetic order, and some mixed-
HgCrSe, (see Ref. 16 Moreover, the results of recent

: & that established th ¢ ‘ Ivalence compounds are ferromagnetically ordered. The large
eXpermen at established the presence of an exiremely ;o of the band-electron concentration as compared to that
strong effect of an external magnetic field on the band gap o

. : iscussed in the present work will require correcting the ap-
HgCr,Se, can be correctly interpreted with the chosen value P q 9 P

of J.
The high sensitivity of the effect to the magnitudeof
the hybridization interaction is illustrated by Fig. 2, where M, G
we give the results of calculations of quantum temperature 5
oscillations for three values af at J=0.8 eV. The other 0.031

parameters are the same as in Fig. 1. We see that hybridiza-
tion strongly suppresses the oscillation amplitude and in-

creases the distance between the nearest peaks. The latter 0.014
effect is caused by the fact thatd(f) exchange interaction

0.02 1

counteracts hybridization. Whem rises, thes—d(f) ex- 0.007
change interaction forces the bottom of the conduction band -0.011 1
up, while hybridization forces it down. The competition of
these two mechanisms “flattens” thd _ vs T dependence -0.027
(see the initial section of curv@in Fig. 2). -0.031

The effect of a magnetic field on quantum temperature 0.04

oscillations is depicted in Fig. 3, where the temperature de-
pendence ofM_ for two values of the magnetic field
strength,H=20 and 60 kOe, is given. As expected, the am-riG. 3. Effect of a magnetic field on quantum temperature oscillations.
plitude and period of the oscillations increase with fieldH=20 kOe(curve1) andH=60 kOe(curve2).

0 10 20 30 40 SO 60T,K
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Thermodynamic fluctuations in two-dimensional degenerate antiferromagnetic
structures

V. M. Rozenbaum

Institute of Surface Chemistry, Ukrainian National Academy of Sciences, 252022 Kiev, Ukraine
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Zh. Eksp. Teor. Fiz111, 669-680(February 199y

A model of a two-dimensional antiferromagnet with an arbitrary anisotropic interaction that
allows for degeneracy of the ground state is proposed. The lifting of degeneracy by thermodynamic
fluctuations and the accompanying effects are studied by a method of self-consistent
calculations of Gaussian angular fluctuations that is asymptotically exact at low temperatures.
Fluctuations are shown to lead to collinear ordering of the orientations of magnetic

sublattices, an effect that initiates long-range orientational order in systems with anisotropic
interaction but retains only short-range order in systems with isotropic short-range interaction. The
temperature patterns of the orientational correlators are given for the particular cases of

dipole and isotropic short-range interaction models. The nature of the Ising-like behavior of the
system is discussed for the case of a strong anisotropy of the correlators, which corresponds

to quasi-one-dimensional behavior. ®97 American Institute of Physics.
[S1063-776(197)02002-1

1. INTRODUCTION po=0 because of the divergence of the integraldgf-(k)

Of the various systems with complicated periodic orien-with respect tck. But can such thermodynamic ordering ex-
tations of the magnetic or electric moments, those with dst, and if it can, will selection of collinear states result in
continuously degenerate ground state occupy a special pladéng-range orientational order? Monte Carlo experiments,
Such degeneracy usually corresponds to certain rotations #thich by their very nature are limited to modeling finite
the moments in antiferromagnetic sublattices and can bgystems, yield conflicting results, both supporti§ and
lifted by thermodynamic fluctuations, which occasionally contradicting’ the presence of a phase with a discrete sym-
leads to interesting physical effects. Among the structuregnetry in the systems being discussed.
that could be considered belonging to this class of systems In this paper an analysis of a new general model of a
are many spinels? fcc antiferromagnefs(including, for in- ~ degenerate antiferromagnet on a square lattice is used to
stance;y-Mn (Ref. 4 and Cd_,Mn,Te with large values of prove that in systems with isotropic short-range interaction a
x (Ref. §), bce antiferromagnets of the garnet tfpmateri-  dispersion lawl(k) of spin excitationsT # 0) that has been
als of the GgGa;0;, type with a complicated antiferromag- renormalized by thermodynamic fluctuations ensures ther-
netic structure(which have lately been under intensive modynamic ordering of moments without long-range order
investigation’ and two-dimensional antiferromagnets with (po=0). On the other hand, in systems with dipole—dipole
dipole—dipole interactions on squéré® and hexagoni~—12  interactions the renormalized functiaifk) and thermody-
lattices. namic ordering lead to long-range orientational ordeg (

The possibility of the moments in antiferromagnetic sub-#0).
lattices being ordered by thermodynamic fluctuations can be
explained by the fact that in contrast to the ground-state ern?. THE MODEL OF A TWO-DIMENSIONAL DEGENERATE
ergy Hy, the dispersion lawly(k) of spin-wave excitations ANTIFERROMAGNET ON A SQUARE LATTICE

(calculated forT=0) and the system’s free energy Let us examine a system of magnetic or electric mo-
T 24T ments at the sites of a planar Bravais lattice. The system
F(T—=0)=Ho~ 5 ; In 3o(K) (1) Hamiltonian in the most general form is
L 1 1 ~ —y ~
d(_apend on the degeneracy paramate_Mlnlmlzatlon of (1) _ H= > > Vaﬁ(r_rr)e;xerﬁrz 5 > VB E e, (3)
with respect toa suggests that a discrete symmetry with rr’ k

collinear orientations of the moments in the sublattice§yhere the interaction&/“#(r) =Ve4(—r)=VA2(r) can be

,10,13 X X . .
emerges: . . . anisotropic and long-range, thee are the two-dimensional
A special feature of two-dimensional degenerate systemgyit vectors specifying the orientations of the moments,

i; that they may hgve no Iong;lrange orientational order, de&, B=x, y, and summation over repeated Greek indices is
fined by the following quantity’ assumed. The ground state of the system is determined by
the smallest eigenvalué,,, and the corresponding unit ei-
2 genvector(or eigenvectorsy, of the tensovV*A(k). To in-
troduce a four-sublattice antiferromagnetic ground state with
(angular fluctuations, are measured with respect to vectorsdegenerate orientation of the magnetic moments in the sub-
of the ground-state magnetic moments this case we have lattices, we will restrict our discussion to square lattices and

. o Ty 1
po= lim <CO$(Prl+r_(Prl)>_eX N - ‘Jd_k)

[r[—oe
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1
()= S [E(NE) +ol(NEr)],

A’ J
kA, kJ _ 1
()= S [E(NET) +ol(NEr)]. ©)
A
k
A To calculate the low-temperature asymptotic behavior of the
free energy in a meaningful manner, we must allow for the

possibility that the correlatoksp, ,¢,/) may be divergentas
they are in the BerezinskiKosterlitz—Thouless phae'9
and the fact that an expansion (@) up to terms quadratic in
a b ¢, is not sufficient. There are various methods of specifying
FIG. 1. (a) The first Brillouin zone of a square lattice, afid) the four- the_prlr_mlpal contributions obtained in t.he Summat!or? of the
sublattice structure of moments on a square lattice. The dotted lines corrS€ri€S ing, (see Refs. 18—20Here we will use a variational
spond to the orthonormalized basig, ,, the solid heavy arrows specify method(the most transparent onthat is asymptotically ex-
the configuration of moments in the ground stg¢r), and the solid light  act in the low-temperature limit. This method has been used
arrows specify the structure of the vectdgr). The dashed arrows stand {4 escribe orientational ordering in two-dimensional sys-
for the angular fluctuations @ about the ground state. . . . . .
tems with anisotropic and long-range interactiths.

We introduce the effective Hamiltonian of Gaussian an-

gular fluctuations,

require that the minimum valu’\svfmin is attained at two sym-

1 _—
metric points,ky andkpa,, of the first Brillouin zone(Fig. Heﬁ=§ Z J(K) ook, (10
1a). Then K

4) with a functionJ(k) minimizing the right-hand side of the

Feynman inequaliyf
Heff
TInTr ex;{—7”

N
=7 Z U;ﬂ [Wo(r)+ oW, (r)][expikar)cos a

Vaﬁ( Ka) 775: Vminﬁg ) Vaﬁ( Kar) Uf: Vmin77tll )

with 7L 750, and the structure of the moments in the ground /
state,e, = &y(r), with an energyH,= NV,,,;/2 is degenerate < TrH exp(—Her/T) -T 7
in the angular parameter: Tr exp(—Heg/T) aT

&(r)=mng explikar)cosa+ g exp(ikar)sina. (5

Sincer =n;a; +n,a, (herea; anda, are the basis vectors of
the lattice, andn; and n, are integers kar=n;, and T 2meT
ka:r=1n,, the exponentials i1t5) assume values 1, and + 0 expika r)sir? alp(r|o)— 5 2 In Sk (11

we obtain the four-sublattice structure depicted in Fig. 1b. K (k)

For isotropic interactions“#(r)=V(r) 8,4 the orientations  \where Tr stands for integration over the complex-valued
of the vectors#y,=(cosB,sinB) and »,=(—sinB,cosp) variablesg,=¢*

with respect to the lattice axes are arbitrary. For anisotropic

interactions the value of the parametgris fixed (say, Wo(r)=nsVe(r)nf, p=0, 1, 12
B= /2 for dipole—dipole interactions In both cases the

angle 2v between the orientations of the dipole moments in p(rlo)=(cos g~ 0oer))

sublattices shifted by the vectag or a, remain arbitrary in T 1— o coskr

the ground state. =ex;{ N > BN ERE (13
In introducing the concept of angular fluctuatiops of K

vectorse, with respect to the orientational structure of the and we have used the identity

ground state it is convenient to employ eslependent or- 1

thonormalized base of vectog&s(r), &,(r), where (cog ¢, * ¢,/ +C))=Re ex%— 5 (0, gD —iC|.
& (r)=mn, explikar)cosa— ng exp(ikar)sina,  (6) (14)

and expand the vect@ in the basis vectors: valid in averaging the Gaussian fluctuations of angles de-
e = £&(r)cos ¢, + &(r)sin ¢, 7) scribed by the Hamiltoniaq10). Varying (11) with respect

. . . . to J(k) leads to the equation

(such an expansion for an arbitrary Bravais lattice was sug-

gested in Ref. 14 Plugging(7) into (3), we get 1
. I==352 2 [Wo(r)+oWy(r)]

H== > V®r—r’ 2B(r r")cog ¢, — T, B
2 ; (=) 2 [LHrrcose—oen) X[exp(ikar)cog a+ o expika r)sir? a]
+oSP(rr)sin(g + o], ® X (1-0 coskr)p(r|o), (15

where which defines the functiod(k).
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3. GENERAL ANALYSIS OF THE EQUATIONS

First we note that alf=0 the correlatorsp(r|o) are

equal to unity and Eq.15) immediately leads to the follow-

ing expression:

Jo(K) =Wy (K+Ka)co@ a+Wo(k+Ka)Sil? @—Vin,
(16)

(ay|1)=~p(a |1)~exr{— T(In y(v)T]|
play plag 7T(CX+Cy)\/1——v2'
lp(ay|1)—p(ay]1)|=T, T—0, o

where the coefficieny(v) is determined by integration over
the first Brillouin zone for each specific model.
Since the size of the energy gap in Ed7) is propor-

which does indeed depend an In Secs. 4 and 5 we will see tional to temperature, foT —0 the gap can be ignored in
that this expression is reduced to well-known relationshipgalculations of physical quantities that have no singularities

for two short-range modefS:*”In view of the definitiong4)
and(12) we haveWy(ka) =W;(Kkar) =Vmin, SO that allowing
for the property

Wi (k+2kp) = Wi (k+2ka ) =W, (k),
yields

Jo(ks)=0, Ky=katKa:

at the points wherdy(k)=0. This is the case with the en-
tropy contribution to the free enerdyt), which is linear in
temperature. Allowing for the fact that under a rotation of the
system of coordinates through 90° the quantities in (E6)
are transformed as

Wi 1(K+Ka) Wy (K+Kar),

we can write thea-dependent contribution to the free en-

(see Fig. 1a Since for short-range and dipole—dipole inter- €rgy:

actions the quantitiey/“#(k) near the pointsk=k, and

k,, exhibit quadratic asymptotic behavior in the correspond-

ing wave-vector shiftd*?? the functionJo(k+k;) is qua-
dratic in k and the sums with respect toin (13) diverge,
provided that the quantities 1o cosk,r do not vanish.
Such is the situation if we use the functidgk (Eq. (16))

unrenormalized by thermodynamic fluctuations.

We can show that a§—0 (butT # 0), near the point

—
=

N

AF(a)= 5 ; In Jo(k) == ; In[AZ (k)

T

—A? (k)cog 2a]< 7 §k‘, In A2(k), (22

1 -~ ~ _
A.(k)= > {IWi(k+Ka) = Vinin] = [Wo(K+Kar)

k=k; a gap appears in the renormalized dispersion law

J(k). To this end we must employ the lattice—sublattice re-
lationships of Refs. 22 and 23 and the fact that the tenso

VeB(Kk) are isotropic at the symmetric poinks=0 andk;.
As a result we get

1~ -
J(ktky) =5 [V(0) = V(ky)][p(ag] 1) — p(ag] 1) ]cos 2

+Jo(k+kjy), (17)

where we have left only the correlators that are not equal t
unity and provide the main contribution to the formation o

the gap. _
Expanding thew, (k) at the pointsk, andkp:,

Wo(K+Kp) =Vmint Cy(kay) 2+ Cy(kay)?,

Wi (K+Kar)=Vin+ Cy(kag) 2+ Cy(kap)?, (18)
we can writeJo(k+kj;) in the form
1
Jo(k+k3)=§ (Cx+Cy)g%(1—v cos X,), (19
where
&Gy —K 20
v= C+C, cosa, Q=Kka, (20

and 6, is the angle between the vectorand thex axis. The

presence of a gap in the spectrh¥) prevents the correla-
tors p(ay|1) andp(ay|1) from vanishing at finite tempera-

tures. Indeed, substituting Eq€l7) and (19) in (13) and
performing asymptotic integration near the poq# 0, we
obtain
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Fhis implies that collinear orientations of the moments in
sublattices, i.e., @=0 andr, are preferable. Since the gap
size in Eq.(17) is positive, the choice of¢=0 or 7/2 with
allowance for the sign d¥(0)—V(k;) (or C,—C,) fixes the
sign of p(ay|1) - p(ay|1).

If there is no single point excet=k; where Jy(k)
vanishes, the square of the long-range order parampgter
gefined by Eq(2) with a renormalized functiod(k), can be

¢ found by solving

po~p A ay|1), (23

and it proves to be nonzero. This is the situation for systems
with dipole—dipole interactioA? which we will study in Sec.
4,

In the case of isotropic interactions, we have
Wy(r)=W;(r), with the result that only terms withr=1
remain in Egs.(11) and (15), so thatJ(0)=0. For short-
range interaction, the functiod(k) is characterized by a
quadratic asymptotic behavior ndar 0, which results in the
divergence of the integral af (k) and an absence of long-
range order §o=0 atT # 0). One of the possible examples
of systems of this type is discussed in Sec. 5.

4. THE DIPOLE SHORT-RANGE MODEL

The nonzero components of the tensors describing the
interaction of the dipole moments at neighboring sites of a
square lattice are given by the following relationships:

V(@) = V¥¥(ap) = Wi(ay) = Wo(8z) = — 2V,
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V¥ (ay) =V (az) =Wo(ag) =Wy (ap) =V, (24) h
V¥%(q)=W;(q)=V(—4 cosqy+2 cosq,), YR
V¥¥(q) =Wo(0) = V(2 cosdy—4 cosdy), (25

where g=ka, and V= pu?/a® is the characteristic dipole—

dipole interaction energy, witlx the dipole moment and 05 I

the lattice constant. Within the chosen parametrization
scheme,B in Fig. 1b is equal tomr/2, and the degeneracy
anglesa specify the slope of the ground-state vectors with
respect to they axis of the square lattice. By introducing a

ST

compact notation for the nearest-neighbors correlators, 0 05 TT.1,
p1=p(al|1), p2=p(a2|l), FIG. 2. The square of the long-range order paraméterve 0) and the
o - nearest-neighbors correlatgss(the curveg =1, .. ., 4 as function of tem-
pa=p(ay|—1), ps=p(ag|—1), (26) perature for the dipolésolid curve$ and isotropic(dashed curvgsshort-

we can transform the functiofi5) to the following form: range interaction models at=1/3.

1 ~
J(k)= E |Vmin|‘](qx1qy)' 2 1112
P3P4+VPo

J(0ly,Gy) = pa(1+C0STy) + pa(1+coSYy) f34= arcs"{—pa,zﬂpﬁpg

—v[p1(1—cosqay) —pp(1—cosqy)], (270  whereK(m) is the complete elliptic integral of the first kind,
and Ag(e,m) is Heuman’s lambda functioft. The long-
range order paramet@%’2 links the nearest-neighbors corr-

_ 1 elators and assumes nonzero values in the low-temperature
> [Viinl =Cx+Cy=3V, v= 3 COS . (28)  range forps>p,. This inequality corresponds to structures
with =0 for v>0, p;<p,, and the gap size satisfies

The valuesC,=V andC,=2V agree with the definition of  J(7 7)=2v(p,—p;)>0. The parametrization scheme cho-

v in (20) and make it possible to estimate the low- sen in Ref. 24 corresponds =0 in the ground state,

temperature behavior gf; and p, by employing(21). At which results ind(7, 7)=2v(p;— p,) >0 andps<p,.

T=0, when all correlators are equal to unity, the function  The system of Eq929)—(32) allows for an analytic so-

(27) coincides, to within notation and the choice of the pa-jution when the parameter is small (or p, is small when

(32

where

rametrization scheme, with the expression in Ref. 17. m—1):
Calculating the integrals if13) over the first Brillouin
. . . . T
zone with thg function(27), we arrive E.it the following sys- pa=ptd, p= ex;{ 5 (33)
tem of equations for the correlato{26): pl’
Po T p[ T | (m—2)v?7 }
-0 - — = =ex n ,
P12~ PO exp(—7lo),  T=3y, (29) Po 2(mp—27) " 4pf[2mp—(m—2)7]
mp
<_
L= f J' dayday <% (34
0= 2
(277) qxaqy) (’IT—Z)p(Z)UT
= . 35
) . p2mp—(m—2)7] %9
=— %} K(m), (30 Equation (33) determines the variation op from 1 to
T LP3Pa™ U Po e~ 1~0.3679 as the temperature parametgrows from 0 to
- _ 7.=2e 1~0.7358. However, at the somewhat smaller value
p3.4=€XP —7L34),

7= (w2)expn/4)=~0.7162 the denominatorrp—27
vanishes. At point-= 7., the logarithmic factor is negative
f f 1+COSCIxy q for v<v*=2 expln/2)[(6— m)/(7—2)]Y?>~0.6579, and
Laa= 27 )2 J(ax,ay) XAy the long-range order parame@‘2 also vanishes, which cor-
responds to spontaneous breaking of the discrete symmetry

p Z,. In the narrow temperature interval, <7<r7, we have
3,4

=——"— [1—Ag(e34,M)], (30 po=p1=p>=0, §=0, and the correlators;=p,=p change
P34+ VPo from exp(—m/4)~0.4559 toe !, with the result that only
( 2.4 pp2)( 2) the phase with short-range order can be realized. The tem-
P3 vpo p“ vpo ' perature patterns ¢fy,p4, . . . .04 atv=1/3 are depicted in
P3P4 v Po Fig. 2 by solid curves.
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5. THE ISOTROPIC SHORT-RANGE MODEL obtained by the same researchers via numerical integration,
AF(a)~const-0.3NTv? (the factor 0.32 is simplyr 1)

Let us examine a .two-dir.nensional quel of .XY mo- The integrals in(13) with the functionJ(qy,d,) given
ments that allows for isotropic exchange interactions botrby (38) can easily be calculated:

between the nearest neighbors on the square laMigednd
between the neighbors “linked” by the diagonals of the

squares of the lattice,) (see Refs. 3 and 13
VeB(r)=V(r) 8,5, V()=Vi, V(V2a)=V,, (36)

V() =Wo(q)=W,(q) =2Vy(cosqy+cosg,)

1—cosqgy
J(ax.qy)

1
Ml(P11P21P31P4):(2W)2JJ da,day

1 (A+B)Y2+(2B)Y?

= n , (42
+4V, cosqy COSq, . (37 7B (A-B)'?
For 0<V;<2V, the system in the ground state is character-A=2p.p,—2v%p1p,+v(p1—p2)(p3+ pa),
ized by an energH,= —2NV, (V,n= — 4V,) and can be )
separated into two square/AXv2) sublattices, each of B=paps—v?p7,
which is antiferromagnetically ordered and has arbitrary
angles 2v between the orientations of the moments in the L
sublattices. Because of the isotropy of the interacti@®,  ,, (P1paspa.pa) = 1 J' f 1—cosgy adq
the orientations of the moments are entirely independent of 2" +'F2"73"F47 " (247)2 J(ax.qy)
the orientations of the lattice axes, and in contrast to the -
dipole moment the anglg is also arbitrary. Such a model “Mi(—po — 43
can be realized, for instance, in two adjacent square ,CuO 1(=P2: = P1Pasps), “3
layers, with one cen'tered' above the c_)ttm in some high- M3 A(p1,02.03:P4)
T. superconductojsin which V, describes small interlayer
exchange interactioris. w
For the given model the functiofi5) assumes the form _ 1 JJ 1-cogax*+qy) dadg
1 (2m)? J(ax,ay) -
J(k)=§ |Vmin|~](qxrqy)l 7
I M M)+
J(Ax,Gy) = (p3+ ps)(1—cOsSqy COSQy) + (p3—pa) " paa |2 0(p1M1=p2M2) +59Mp34~ P43
Xsin gy sin g, +2v[p;(1—cosqy) s 1 . |p3_p4|” 44
— arctan———77| { »
—po(1—cosqy)], (38) m (2A)Y?
where and the correlatorg,, . . . ,p4 are specified by the following
system of equations:
p1=p(a|l), pr=p(ayl),
pi=exd— ™ (p1,p2.p3.p2)], 1=1,....,4, (45)
pa=p(a+a,|1), ps=pla;—ay/1), (39) : SRS
_ _ . wherer=T/2V,. Let us assume that;>p,. Then Eq.(44)
[Viminl =Cy+ Cy, - Cyy=2VoE V1, implies thatM;>M,, and Eq.(45) that p3<p,. This con-
A tradiction shows that the only solutions(@b) are those with
vzwcos . (40 P3=pa-
2

The low-temperature behavior of the correlatprsand
p- is determined by Eq(21), while the temperature depen-
dence ofps for v=<<0.5 is described with a high degree of
accuracy by the equatiop;=exyg —72p3]. At large dis-
tanceR=2n,a; +2n,a,, and forr<1 the same correlators
decrease like

At T=0 all correlators are equal to unity af@B) reduces to
an expression obtained in Ref. 13. The correcti2®) to the

free energy becomes
s
2

4 v?
— G—-In2——|,
T T

f

NT 2 [ [m
AF(a)=—{—In2+— [f{5+6
2 T 2 ,

NT p(ay+R[1)~(\ Riar?) = 72mi=e,
( (41

plag+a,+ R|1)~()\2R/a)’7’”1’”2 (46)

wheref () is the Clausen integral, sif=v, andG~0.916 is
the Catalan constaft.The asymptotic behavior at small val-
ues ofv described by41) agrees with the results of a Monte
Carlo calculation done by Fernandezetal,®®
AF(a)=const-0.0ANT(2a)? (at V;=V,), and, to within
the factor3 discarded in Ref. 13, coincides with the result

(A1 and\, are constants independent®fand ) and vanish

asR—o0, which according tq2) corresponds t@,=0.
The system of equations(45 with v—0 and

0<7r<T7.~2/e has the following asymptotic solution:

p3=ps=exd — 7/2pz],
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v PLTpP2=_ 3 UT. erate antiferromagnetic structures performed in this paper ex-

;{ r I v2r P% The analysis of the generalized model of planar degen-
ex n
P 2(mp3—171)  4mp; mP3

47 plains the mechanism by which collinear orientations of the
_ o moments arise in the system due to the emergence in the
The nature of the obtained temperature curves is illustrategpin-wave excitation spectrum of an energy gap whose size

by the dashed curves in Fig. 2. is a linear function of the temperature. The presence of such
a gap is the cause of the specific temperature dependence of

6. DISCUSSION the nearest-neighbors correlatdgsl), which enter into the
correlator

Let us first discuss the range of applicability of the re-
sults obtained by the self-consistent method of calculating 1
Gaussian angular fluctuations. In Ref. 14 it was shown that (¥r)= 2 ((€s,+a,+R—€R)(€a +R— €4, +R))
the method provides a correct description of low-temperature
correlation functions when the statistics of rotations of the 1
moments through large angle with respect to their orienta- -2 [p(as]1)+p(ap]1)]cos 2v (48)
tions in the ground states can be ignored. This situation i
inherent in degenerate systefmghich are characterized by a
well-defined value of the wave vectérat which J(k)=0) and 17.

and in systems with a small perturbation lifting the degen-_ . In the case of anisotropic mt_eractlons the system ac-
Quires long-range order characterized by the same tempera-

eracy. A possible example of such perturbations can be se o S

in the potentials(examined in Ref. 1#h, cospe, with ?[g:r? deigteurlzeggeeﬁ%tehni[ee)gfs ttSh:an Iiﬂ(z-i;nl_agegdaeflmaltlfarmeter

p=2, 3, ... anch,—0, which in a two-dimensional system P P g-rang b
ﬁp0~exp(—T|ln T|)) was proved to exist in a planar triangu-

give rise to long-range order at low temperatures and to ar antiferromagnet placed in a magnetic fiéldkor isotropic
intermediate phase with short-range order, starting from a nagnet p 9 ' P

. short-range interactions there can be no long-range order, but
certain value ofp.

there is no obstacle for collinear orientations of magnetic

In this paper, anisotropic corrections proportional to the . .
- . moments over distances shorter than the correlation length of
arameterw act as a similar perturbation. Indeed, E9 . .
P P K9) the BerezinsKi-Kosterlitz—Thouless phase.

with v =0 implies that the asymptotic behavior of the dis-
persion lawJy(k) near the poink=k; is isotropic. More- The author would like to thank Profs. C. L. Henley and
over, atv=0 we havep(ay|1)=p(a,|1), and the excitation j. F. Fernandez for their critical remarks. This work was
spectrum(17) contains no gap, so that the functial{&) and  supported by the State Fund for Fundamental Research of the
Jo(k) coincide. Thus, the small-perturbation condition, ykrainian State Committee of Science and Technology
within which the above method can operate, is realized ifproject No. 2.4/30B8and by a combined grant from the In-
v<1. On the other hand, as—1, the asymptotic behavior terational Science Foundation and the Government of
of Jo(k+k;) tends to C,+Cy)ak], which corresponds to  Ukraine (Grant No. K64 100
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Kinetic theory of semiconductor cascade laser based on quantum wells and wires
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The paper presents a numerical solution of a system of nonlinear equations for the electron
distribution functions in the upper and lower subbands between which lasing transitions occur and
the number of nonequilibrium optical phonons in semiconducting cascade lasers based on
quantum wells and wires. For the case of quantum wells, we propose an analytical solution of this
system of equations, which is a generalization of the previously found solitioR. Elesin

and Yu. V. Kopaev, Zh. Esp. Teor. Fiz108 2186(1995 [JETP81, 1192(1995]; V. F. Elesin

and Yu. V. Kopaev, Sol. St. Commuf6, 897 (1995] in a wider range of injection rates.

The threshold injection rate can be significantly reduced owing to reabsorption and accumulation
of nonequilibrium optical phonons, nonparabolicity of the subbands and different effective

masses of electrons in different subbands. In the case of quantum wires, the threshold injection rate
is considerably lower, and its decrease is even larger than in quantum wells. It is remarkable
that, owing to the lower electron—electron relaxation rate in the one-dimensional case,

the decrease in the threshold injection rate may be two or three orders of magnitude. The relation
between the density of states and threshold current has also been studié897©

American Institute of Physic§S1063-776(97)02102-]

1. INTRODUCTION In addition to the nonparabolicity, another important ef-
fect is the considerable drop in the threshold current due to
A new type of semiconductor las¢quantum cascade an increase in(79<7), and accumulation and reabsorption
lasey proposed in the original publications by Kazarinov andof optical phonons:® In fact, these effects lead to a longer
Suris has been implemented quite recertThe interestin  effective lifetime of electrons in the upper subband, hence a
guantum cascade lasers based on electronic transitions bewer injection rate is needed to create conditions for the
tween subbands in the conductance band is stimulated by thpulation inversion.
possibility of tuning them over a wavelength interval extend- ~ The calculation® for the case of quantum wells were
ing from the near to far infrared. based on an exact analytic solution of the system of kinetic
Since transitions between subbands due to emission @quations for the electron distribution functions in the sub-
optical phonons are allowed, quantum cascade lasers abmnds and the number of phonons. The injection Gteas
characterized by high threshold currents and highly nonequiassumed to be low in this ca$®ry<1, linear approxima-
librium states of their electron systems. Specifically, thetion).
electron lifetime in the upper subband, equal to the time of  The aim of the present study was to find a solution of the
optical phonon emissionr(), is short(ry~10"12-10"1®s)  system of kinetic equations for the electron distribution func-
compared to the electron lifetime,~10 1° ) in conven- tions and threshold injection ratésence the threshold cur-
tional semiconductor lasers based on transitions between thienty over a wide range of parameters of the kinetic model
conduction and valence bands. As a result, it is difficult toof the quantum cascade laser. We have studied both the two-
create population inversion in the system and, since the eleclimensional model of a quantum-well laser and the one-
tron system is far from equilibrium, a kinetic approach isdimensional model of a quantum-wire laser. The latter case
indispensable in modeling the electron energy relaxation iris especially interesting in that it offers a way to substantially
such lasers. reduce the threshold currefur study has confirmed the
In the first experiments with quantum cascade la&2rs, feasibility of this effect. This reduction is due to singulari-
the parameters of a semiconducting heterostructure were sges in the electron density of state in a one-dimensional sys-
lected so that the electron transit time from the lower subtem and a drastically lower electron—electron relaxation rate.
band, r,, should be shorter tham, in order to create the Let us recall that, in the one-dimensional configuration of a
population inversion. This condition is inevitable if the laser single-band model, electron—electron scattering does not
is treated as a two-level system and band nonparabolicity iead to energy relaxati8rithis follows from energy and mo-
ignored®* With due account of the nonparabolicity, how- mentum conservation An important point is that for
ever, the situation is radically differen.In this case, radia- r,<7, the threshold current is controlled by electron—
tive transitions occur in a fairly narrow energy range, soelectron relaxation:®
there is no need to satisfy the strict conditigg®> 7. As a The paper is organized as follows. Section 2 describes
result, full inversion of the subband populations is not necthe model and gives basic solutions. Section 3 presents an
essary. This conclusion was confirmed by experimentgxact analytical solution of the system of kinetic equations
shortly afterward. for electrons and phonons in the quasilinear approximation,
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nondiagonal components of the density mafiixs assumed
to be constant with the energy is the electromagnetic
field frequency,V,, is the matrix element of the electronic
transition between the subbandsis the dielectric constant,
ande is the electron charge.

If the band nonparabolicity is ignored, the difference
& — €= w—Q=4is independent of the energy. In this case,
the electronic transitions with emissidior absorption of
photons occur throughout the subband, and the system is
equivalent to a conventional two-level system. The lasing
condition in this approximation ¢

FIG. 1. Energy in the subbands versus quasimomentum. The dashed lines Tt<T7o, (4)

show transitions with emission of an optical phonon, the wavy line showsan_, . . . .
optical transition, which is necessary to satisfy conditiofly and(2).

The inclusion of the subbands nonparabolicity changes
the situation radically:® First, the rigorous conditioi4) is
which applies to a wide range 6. Numerical solutions of no longer necessary. Second, it becomes possible to signifi-
the initial equation system in the case of quantum wells angantly reducey, because the subband nonparabolicity limits
their detailed analysis are given in Sec. 4. Section 5 presentbe lasing spectral range.
a numerical solution of the system of nonlinear kinetic equa-  If we use the simplest approximation for the GaAs elec-
tions for the case of quantum wires. tronic spectrunf, the differencet,— & in the case of a deep
quantum well can be expressed s

2. BASIC EQUATIONS AND STATEMENT OF THE PROBLEM g,—&1=0— Be, ﬂ=2(u/89, (5)

As in the previous studi€¥’ let us consider the follow- whereg, is the band gap width. Later similar results were
ing model(Fig. 1). Let there be two subbands with disper- obtained by Gelmonet all® Faist et al.” studied a more
sionse4(p) ande,(p), such that transitions between them complicated model taking into account features of real struc-
are accompanied by emission of phonons with the energyures, and their results are approximately equal to those re-
Q) (hereafterh=c=1, wherec is the speed of light in ported in Refs. 5 and 6 to within 25%.
vacuum. Electrons are injected into the subband 2 at a rate By taking into account Eq(5) and assuming that
Q and drain from the subband 1 with a probabiﬁﬁ/l. The

. . . Af, O0<e<u,
optimal conditions for operation of quantum cascade lasers fo(e)—fi(e)= (6)
are achieved by selecting the parameters of the quantum 0, wu<e,
wells and barriers of the structu%_e : we derive from Eq(1) at the resonant frequency

In the present model, the main scatterers of electrons are
optical phonongthe typical energy isny=~0.034 eV). At uB

p=0 the difference between the subband energies Qo=ow- 2

w=¢,(0)—¢e4(0) is approximately several phonon energies

wg. The parameter (u<w,) is the spread of the injected a(Qo) _2Af arctan£~ Afa
electron energy. ay B 2y P

Our main task is to determine the threshold injection rat
Qu - It can be derived by equating the gaif() and the
reciprocal of the photon lifetime in the cavity*® controlled

Sor uB>2v. The threshold population inversion is deter-
mined, correspondingly, by the expression

by the total losses: Af B )
(. Jg) = l da (L)) 0 W th TTag
05t = 710} a-0, ' In order to determin€y,, we need the relationship between

o _ _ fi(e) andQ. It can be determined by solving the system of
The latter condition is the equation for the lasing frequencykinetic equations forf;(¢) and the number of optical
The expression foix(£2) describing electronic transitions phononsN.

between the subbands has the fafm The relevant kinetic equations were derived by Elesin
a(Q) = de[fa(e)—fqi(e)]y e2|V,2 and KopaeV:® They also reduced the system of equations to
a—=f (Ex(8)—E1(2)) 24 72 Q=" a system of coupled equations for the functidgén) and
o Joie2 L 4 (2 fam), where
QO Q fi(n)=f1(w+(n=1)we)="fi(e),
Gle)=etom7, &le)=et 7, @ fo(M=ty(w+nwg)=fx(e), N=0,1,2...

wheref,(e) andf,(¢e) are distribution functions of electrons The functionsf;(n) and f,(n) describe the distribution of
in the subband& and1 (Fig. 1), y is the damping factor of electrons with energies in a narrow interya€ w, around
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the energiez = w*nwy. These equations have the form At the same time, “dangerous” denominators that may
lead to divergence are caused only by the term proportional
FL(O)[£+N(1+2)+f1(1)+2f,(1)] t0 Q7yf (1) on the left-hand side of EG10). If this term is
=(1+N)[f1(1)+zfy(1)], (8)  retained(we call this the quasilinear approximatjothe lin-
ear system of equations derived from E®—(13) has an

F1(O)[E+1+N(2+2)—f1(0)+12(2) +215(2)] exact analytical solution in good agreemésee Sec. Awith

=Nf,(0)+(1+N)[f1(2)+2f,(2)], (99  the numerical solution to Eq$8)—(13).
The solution of the syster8)—(13) in the quasi-linear
fo(1[Q7o+1+N(2+2)—f1(0) +f1(2) +2f,(2)] approximation is as follows:
=Nfy(0)+(1+N)[f1(2)+2f,(2)]+Qo, (10 fi(nN)=A; explan), fy(nN)=A,expan), n=2,
fo(MIE+(1+2)(1+2N)—f1(n—1)—zfy(n—1) (14
~ +c)b
+f(n+1)+zf(n+1)] R,= A, expla)=Qr, @Tb)x
=N[f,(n—1)+2zf,(n—1)]+(1+N)[f1(n+1) (£+2b)
~ +b)(é+c
+zfy(n+1)], (11) A=A, expla)=Qrg —w—(§(§+)2(§)A ) , (19
fo(N)[(1+2)(1+2N)—f(n—1)—zf,(n—1)+f(n
+1)+zf,(n+1)] A=(&+c)(c+ Q7o) —(L+N)(§+2¢c+Q7p) —(1+N)
=N[f;(n—1)+zf(n—1)]+(1+N)[fo(n+1) X(&+2c+Qmo)[expla) +N/(E+2N)], (16)
+zf,(n+1)], 12 (1+N)(é+c)
. . f1(0)=Q1g ————=—, 17
whereé= 79/, zZ=m,/m, is the ratio between the electron (¢+2N)A
effective masses in the subbarlandl, respectively. In all
our analytical calculations we take=1 (the casez # 1 is y N(1+N)
considered in Sec.)4Equations(11) and (12) are valid for f1(1)=Qo X y=(1+N)expa)+ £+2N (18)
n=2. The system should be supplemented with an equation
for the numbem of optical phonons: E+c—y
* f2(1)=Qrg —=—, (19
Tt A
N—=1,(0)= 2, (n=1)fy(n), (13
esc n=2 b(§+b)
wherer,g.is the time in which phonons escape from a region ~ &XX@)= 2(1+N)(é+2b)
with given dimensions.
Given that the function$,(n) are nonzero in a narrow \/ b(¢é+b) 2 N
energy interval, the differenck,(¢)—f4(e) in Eq. (6) be- B 201+N)(E+2b) | 14N (20

comes equal td,(1) at the generation threshold. Specifi-
cally, the electrons emitting optical phonons do not arrive at  b=2(1+2N), c¢=1+3N.
the b°“°”.‘ of the su_bbanﬂi, e, f1(2)=0 in the region Equationq7) and(14)—(20) yield the threshold injection
where lasing occur¢Fig. 1), except the case of resonance, .
when o—=Kon. rate Qy in a g.eneral form. . _ N
0 The solution(14)—(20) obtained in the quasilinear ap-
proximation differs from the linear solutidfi only in the

3. EXACT ANALYTICAL SOLUTION IN THE QUASILINEAR denominatorA, which containsQr,. We note that some

APPROXIMATION FOR QUANTUM WELLS errors slipped into the equations given in Ref(fér ex-
ample, Eq.(57) of Ref. 5 should contaim=2), although

An exact analytical solution of the Eq&)—(13) in the  these errors did not affect the final results and conclusions.
approximation linear irf andQr, was described in Refs. 5 The calculations performed in both linear and quasilinear
and 6. It was assumed that the linear approximaticsl,  approximations coincide in the limiting cage<1, but some
Q7p<<1) applied in a range extending @~ 1/, since the  differences in numbers emerge f&# 1. Note that the solu-
nonlinear terms in Eqg¢8)—(12), which were omitted in that  tion (14)—(20) agrees well with numerical calculatiorisee
approximation, were comparable to terms of order3N, Sec. 4.
whereN~1. It is interesting to investigate the limiting caseé<1 and

Numerical calculations and more accurate analysis, howgs-1. In the first case, after expanding ér<1 (£<N) and
ever, have revealed that some terms in the denominators gkrforming lengthy calculations, we derive from Ei4)—
the expressions fdf; (their formulas are given belogveancel  (20)
one another, and the linear approximation is valid when
Qr, is limited to a quantity of orderg<1, rather than £,(0)=Qr 1+N
1+3N~4. 1 O £(1+N)?+QryN’

(21)
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1+N
f2(1)%f1(1)~QTO §(1+N)2+QTON

(22

We see thaQ7, in the denominators of Eq$21) and
(22) should be compared not with+13N, but with a param-
eter proportional tc. If

Q7o<Q7o=&(1+N)?/N~4¢, (23

we obtain Eqs(72) and (73) from Ref. 5. ForQ>Q, [or
E<&,=Q7oN/(1+N)?] the growth inf,(1) described by
Eq. (22) saturates, i.ef,(1)—1.

In the quasilinear approximation, one can easily derive
an equation foiN:

O T T T
2 T T T T T
N E(1-N%) 0 0.2 0.4 0.6 0.8 Qr,

R ) 24
1N~ Q7 E(14 N)2+ QroN 24
For Q<Q. it transforms to Eq(74) from Ref. 5. The value FIG. 2. The number of phonomé versus the injection rat® 7, obtained by

: : : . ; . : solving Eqg. (28) numerically. The curves were calculated &t)
of N denveq from this cubic .equatlon IS SUbStItUteq Into Eq'-resclrozlo, (2) 1¢%, (3) 10°, and(4) 10°. The dashed line corresponds to a
(22) t(_) O_btamfz(l) asa functlon oy (Sge below F!g. 32 pumerical solution of nonlinear system of equatiori®)—(13) at
The limit of N at Qs> 1 is of order unity(for details see  7,/7,=0.1 (¢=10) andress/ 7o=10.

Sec. 4.
Now let us determine the threshold injection rate usingT . )
Egs.(7) and (22): he solid and dashed curves are very close, which proves
that the quasilinear approximation can be used in calculating
(1+N)* q N.
Qu(e=<l)= N7, 1-—q’ (25) Let us derive the threshold injection rate in the limit
&1 from Egs.(7) and (27):
q=pBl/mrayg. .
. . q
We can see that, owing to the effect of optical phonon  Qu(£>1)~ 1 a (29
reabsorptionQy, is determined not by, but by the effec- 0 g
tive electron lifetime in the upper subbangN/(1+ N)?. By comparing Egs(25) and(29), we obtain the relation
Consider the opposite limig>1. By' expanding in terms Qu(é<l) (1+N)?
of the small parameter §/and assuming>N, we obtain o= N ,
the following expressions: Qu(£>1) >
where £<1 holds on the right-hand side. Assumihg=1,
Q7o(1+N) :
f(0)~ ——, (26)  Wwe have an estimate
&(a+Qmo) Op(£<1)
thl &=
fa(1)~ atOry’ (27) th
0 which is almost identical to Eq76) in Ref. 5. It is clear that
where a=N+ 1+ 3N+ 3N2. the threshold injection rate can be reduced proportionally to
The equation folN in this case has the form &= 1o/ 7, (for example, by increasing; through the barrier
N (14+N)(2+N—JI+3NT3ND) thickness. We should stress that this result is valid for

Q7o 1, butQy, can be reduced for alD 7., 1.

QTese (V1+3N+3N2—N)(V1+3N+3N2+N+Qrp)’
(28) 4. NUMERICAL SOLUTIONS OF THE SYSTEM OF

In the cas& 7.1, we derive from Eq(28) the limit of the NONLINEAR KINETIC EQUATIONS FOR THE CASE OF
phonon numbeN: QUANTUM WELLS
N-=15 We have calculated numerical solutions of the nonlinear
o equation systeni8)—(13) with the parametersqs., 79, 7,
Hencea=5 atN=N,, and the linear approximation is valid andQ varied over wide ranges. This has been done using the
for Qrp=<5. iteration technique. On each step of the iteration process, the
At arbitrary Q7. the number of phonons as a function equation systeni8)—(13) was considered as a system of lin-
of Q7 can be determined by solving E(®8) numerically.  ear algebraic equations, the functiohén) in the brackets
These numerical calculations are shown in Fig. 2. The grapbn the left-hand side of Eq$8)—(13) being constants calcu-
shows thafNy=1.5, in agreement with the analytical calcu- lated in the previous iteration. All the times were measured
lation. The dashed curve in Fig. 2 shows the functionin units of 7.
N(Qrg) calculated by numerically solving the system of Sincef,(1) determines, in fact, the threshold population
nonlinear equations using the iterative techni(gee Sec.¥  inversion, it seems that the shape of this function is more
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HH A
1 ./ 1 P e FIG. 3. The functionf,(1) versus
0.8 7 ] . the injection rateQr,. The solid
) / curve shows a numerical solution of

the nonlinear equation systef8)—
(13), the dashed curve a solution of
Egs. (8)—(13) in the quasilinear ap-
proximation, and the dash-dotted
curve a solution of Eq8)—(13) in
the linear approximation. The dash-
dotted line with three dots in a row is
a calculation from Eq(22) for the
case¢=10 and from Eq(27) for the
case £=0.2, 7o /70=10. (@
4,7 7 l79=5 (£=0.2); (b) 7/7y=0.1
o——r—— (¢=10).
0 0.2 04 0.6 0.8 Qro

0.2

0.1+

helpful in understanding the system behavior and conveysalculation with equal electron masgeslid curve, all other
more information. Figures 3-8 show typical curves ofconditions being equal.
f,(1) andN as functions ofr, /7o and Q.

Figure 3a demonstrates the coincidence among thg NUMERICAL SOLUTIONS OF THE NONLINEAR KINETIC
t?ur.v.es 0ffy(1) versusQro calculgted b,y Eq(22) for the EQUATION SYSTEM FOR THE CASE OF QUANTUM
limiting case (<1 (dash-dotted line with three dots in a \ygres
row), of the numerical solution of Eq¢8)—(13) in the quasi-
linear approximation(dashed curve and of the numerical As was noted in Introduction, it is interesting to consider
solution of the equation systet8)—(13) (solid curve. The a kinetic model of a one-dimensional cascade laser in view

graph indicates that the solution obtained in the quasilineaﬁ;’f the S'OW‘?f electron—e!ectron rela_txat|on_ and singularities
L . . . ._In the density of states in a one-dimensional system. The
approximation is, in fact, identical to the numerical solution

. . ) . ) system of kinetic equations can be reduced in this case to a
in the wide range o)y, and the solution obtained in the

) Sl ) system of coupled equations in the form
linear approximation has a satisfactory accuracy up to

Q7o~é&. 1 X f1(1) f2(1)
. . . f1(0)| E+N| —=+ —=]| + +X —

Figure 3b shows similar curves gt=10. In the limit w2z Jw N
&>1 the functionf,(1) versuQr, was calculated using Eq.
(27). It is clear that in the limitt>1 the analytical solution —(1+N) f1(1) n fa(1) (31)
(27) is in good agreement with the numerical solutions of the Wwo 2r ]
nonlinear equation system and with solutions obtained in the
linear and quasilinear approximations. Note that in all the f(1)] &+ 1+N +N| x+ 1 _ f1(0)
limiting cases the quasilinear analytical soluti@2), (27) is Jw—1 w+ 1 w—1
valid over a wide range Q7.

Figure 4a shows,(1) versusr/7g at Q7g=0.1. The + f(2) +xf,(2)
curve demonstrates the growth fp(1) with 7,/7y, in ac- Vw+1
cordance with the analytical resul82) and (27) (see also £(2)
Refs. 5 and & For example, in the cag@my<<1, Q7o 1 =1,(0) +(1+N) = +xf,(2)|, (32
(Fig. 30, we havef,(1)~0.027 atr,/7,=0.1 (¢=10) and Vw1 yw+1
f»(1)~0.25 at;/7g=10 (£=0.1). This is in agreement { 14N 1 ) £,(0)
with the main conclusion that the threshold injection rate  f,(1)| Qrg+ ——+N| x+ -
should decrease withr,. Note also that the increase in vw—1 w+1 w—1
f5(1) is not so large at relatively largg 7o [Egs.(22) and £,(2) L2
(27)]. + +xf,(2

Up to this point, we have assumed that the electron w1
masses in the subbands are equal. If we assume that they are N f1(2)
different (m,>m,), the solid curves with dots in Fig. 4, =f1(0) \/m+(l+ N) \/ﬁJrsz(Z)
numerically calculated by solving Egs(8)—(13) at
m,/m,= 1.5, indicate thaf,(1) becomes larger than for the +Q7p, (33
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f,(2) N

LLox [t +L+L+i)
N AT A I N e Y
f1(1) fo(1)  f4(3) f2(3)
- - X + +x

M \/ﬁ VW2 V2
D) fa()

w2k

f1(3) f2(3)
+X
w++2 V2

=N +(1+N)

, (34
X 1

1 X
25w \/_w+2+\72)
f1(1) f2(1)  f1(3) f2(3)
- X —=+ +X
Jw 2 Jw+2 %)
N f1(1)er fa(1) f1(3)
w+ 2

W 2E

f2(3)
V2

fo(2)| (1+N) +N

+(1+N)

+X

, (35

1 N 1
yw+n  Jw+n-2

fi(n)

1 X
——+—=+N
§+x/w+n—2+\/ﬁ+
N X +i>_ fi(n—1) B fo(n—1)
yn—2 \/ﬁ YW+n—2 X yn—2
fl(n+1)+ fo(n+1)
S Jn

fi(n=1) N fa(n—=1)
X
JW+n—2 yn—2

fi(n+1) N fo(n+1)

X
w+n Jn

+(1+N)

, (36)

1

w-+n

fa(m[ (1+N)

X . ! +N
Jn—-2 Jw+n-2

x) f.(n—1) fo(n—1)

— | = —X
Jw+n—2 Vn—2

NG
fl(n+1)+ fo(n+1)
fwin Jn
fi(n—1) N fa(n—1)
X
yw+n—2 yhn—2
fl(n+1)+ fo(n+1)
X
w+n Jn

whereé= 7o/ 7, Xx=ymy/my, W=/ wq, andu=u/wq. In
Egs.(36) and(37) we haven=3.

+(1+N)

, (37
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FIG. 4. The functionf,(1) versusr,/7,. The solid curve shows a numeri-
cal solution of the system of nonlinear equatidBs-(13), the dashed line
shows a solution in the quasi-linear approximation, the dash-doted line a
solution in the linear approximation. The solid line with circles is a numeri-
cal solution of Eqs(8)—(13) for a ratio between the effective masses in the
subbands m,/m;=15. (@ Q7y=0.1, 7e/70=10; (b) Q7y=0.1,

Tesed To=100; () QTo=1, Teg/ To=10.

This equation system should be supplemented with an
equation for the phonon numBesimilar to Eq.(13). In the
one-dimensional configuration, this equation may differ from
the corresponding equations in the two-dimensioftd,.
(13)] and three-dimensional cases. In fact, one can easily
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FIG. 5. Curves off (1) versusr /7, for quantum wiregsolid lineg and FIG. 7. The function f,(1) versus 7,/7, for quantum wires. (1)
quantum wells(dashed lines The calculations were performed &t) wlwy=0.2, (2) 0.02, and(3) 0.002;Q7,=0.05.
Q7o=1, (2) 0.5, and(3) 0.1.

with the parameters.s., 79, 7, Q, and u varied over a

prove using the energy and momentum cor_lservat!on that Wide ranges. In all these calculations the electron masses in
optical phonon emitted by an electron can impart its energyo subbands were equal

only to the same electrqr_L Theref_ore HA3) ShO_UId be, Figure 5 shows typical curves db(1) versusr, /7, at
generally speaking, modified considerably. But in the reak/ariousQTo (see caption to Fig.)5 For comparison similar

situation, when there are several ty_pes.of qptical phonon%urves for the two-dimensional system are also shown. The
these changes may be not so drasti€aking into account solid curves show functions calculated numerically for the

this factor ar:q W'th ‘f’} V"EWEIO :Sa'mgl':y t.f,:ﬁ Cﬁ‘|CU|at'onf’ We case of guantum wires, and dashed curves correspond to the
use an equation similar to E@L3), but with allowance for case of quantum wells. One can see that in the one-

the electron density of states in the one-dimensional case: dimensional system, as in the two-dimensional configuration,

7 1 f4(0) “ (n=1)f4(n) fo(1) increases withr /7, apq at.a higher rate. Thus we
N— == — E 2 (38 conclude that the threshold injection rate in quantum wires
Tesch  yw—1 n=2 yw+n—1 decreases with;, and even faster than in quantum wells.

Since the density of state in this case is a function of ~We have also thoroughly investigatég(1) as a func-
energy, the system of equatiof@1)—(38) is more compli- tion of Q7y. The curves are shown in Fig. 6. The gain in
cated than in the case of quantum wékss.(8)—(13)], and f,(1) is higher at small injection rates. It is interesting that
we could not find an analytical solution. Both systef@®—  for m/7o<<1 the gain inf,(1) for quantum wires is less than
(38) and(8)—(13) have been solved by an iteration techniquefor quantum wells.

AL N

0 0.2 0.4 0.6 0.8 QTO 0 0.2 0.4 0.6 038 Qro
FIG. 6. Curves off,(1) versusQr, for the case of quantum wirgsolid FIG. 8. The number of phonomé versusQ r,, for the case of quantum wires
lines) and quantum well¢dashed lines Calculations were preformed i) (solid lineg and quantum well¢dashed lines The curves were calculated
7/79=5,(2) 2,(3) 1, (4) 0.7, and(5) 0.1. at (1) r,/79=0.1, (2) 0.2,(3) 0.7,(4) 1, (5 2, and(6) 5.
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The effect of the density of states is illustrated by Fig. 7,time is difficult to estimate, but it is probably considerably
which showsf,(1) versusr; /7, for various energy spreads longer thanr.
wu of the injected electrons. If the electron energy distribution ~ The features of the electron kinetics in two-dimensional
is narrower, the parametdr(1) grows faster withr,/7,  quantum cascade lasers are also typical of quantum-wire la-
owing to the singularity in the density of states described irsers. The exact numerical solutions of the respective kinetic
Egs.(31)—(35) by the terms proportional to {f. equation system demonstrate that by increasing is pos-

The difference inf,(1) between two- and one dimen- sible to reduce the threshold current even more than in a
sional systems is probably caused by the difference in thguantum-well laser.
numbers of phonons in wires and wells for equal model pa-  Furthermoreyz; in a quantum-wire laser can be increased
rameters. This is illustrated by Fig. 8, which sholNsas a  to a higher valug10 1°s) owing to the lower intrasubband
function of Q 7y at differentr; (see caption to Fig.)8Figure  electron—electron relaxation rdteso the threshold current
8 demonstrates that in both quantum wells and quanturmay be two or three orders of magnitude lower.
wires N rapidly saturates with the growth of the injection The threshold current can be additionally reduced owing
rate at,<1 (N~1 even thoughQry<<1) because at large to singularities in the electron density of states and different
7; energy is accumulated not only by phonons, but also byeffective masses in the subbands. To sum up, it is possible

the electrons of the lower subband. that quantum-wire lasers using transitions between subbands
in the conductance band will have threshold currents compa-
6. CONCLUSION rable to those of conventional quantum-well lasers based on

Thus, numerical solutions of the system of nonIinearthe transitions between the conductance and valence bands.

equations for the electron distribution functiohgn) and We are indebted to Yu. V. Kopaev for helpful discus-
f2(n) and the number of phonon¥ have confirmed the sjons, The work was a part of the Physics of Solid-State
main conclusions of Refs. 5 and 6 about the possibility ofyanostructures Program sponsored by the Ministry of Sci-
reducing the threshold injection ratéreshold currentand  gnce and Technology of Russgigrant No. 1-092/4 and was
about the kinetics of a quantum cascade quantum-well lasepartially supported by the Russian Fund for Fundamental

We have determined;(n), f5(n), andN with the model  Researci{Grant No. 96-02-17363and INTAS (Grant No.
parameters and injection ra@ varied over wide intervals, 93-1704-ext

and limits within which the linear approximatioh applies.
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Microwave impedance of Ba 4K 4BiO5 crystals: comparison with Nb
M. R. Trunin, A. A. Zhukov, and A. T. Sokolov

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region,
Russia

(Submitted 4 April 1995

Zh. Eksp. Teor. Fiz111, 696—704(February 199y

The surface impedancg,= R+ iX4 of samples of BggKy /BiO3 in the temperature range

4<T<50 K is measured at 9.42 GHz. The BCS theory completely describes the electrodynamic
properties of Nb in the dirty limit, and its application to &, ,BiO; allows determination

of the London penetration deptq (0)=3100+100 A. © 1997 American Institute of Physics.
[S1063-776(97)02202-9

The surface impedance of BaK,BiO; films forming a  experimental curves can be described within the BCS model,
parallel-plate resonator was measured at 6.5 GHz in Ref. Wwhich takes into account both of these factors, over the entire
Microwave measurements of the impedadge- R;+iXs of  temperature range.

Ba, ,K,BiOj3 films have not been performed hitherto. An The surface impedance of the Nb and BKBO samples
analysis of the temperature dependence of the surface resisas measured dt,=9.42 GHz by a method that was first
tanceRg(T) and the surface reactan®g(T) of a supercon- proposed in Ref. 15. A cylindrical resonator of length and
ductor determines the gap size, the London penetratiodiameter equal to 42 mm, which was cut on a lathe from pure
depth, the presence of impurities in the sample, and, ultiniobium. Among the resonator was not subjected to any ad-
mately, the superconductive pairing mechanism. The recemtitional treatment. Among the important features of the de-
investigations of Z(T) for YBaCuO (Refs. 2—4 and sign and operation of the resonator, the degree of coupling of
BiSrCaCuO(Ref. 5 single crystals performed by a method waveguides with the resonator could be smoothly varied, a
that is convenient for measuring samples of small ¢sire  large frequency shift #30 MHz) between the degenerate
“hot-finger” method) can serve as a example. These inves-Hy;; and E;;; modes could be achieved, and the working
tigations allowed the two most probable pairing mechanismsemperature of the resonator was constant-ag.2 K.

(d or anisotropics pairing in these materials to be identified The experiments were carried out with Nb samples cut
from the plethora of proposed models. from the same original material as the resonator itself and

Unlike other high-temperature superconductors, thewith BKBO crystals, which were prepared by electrochemi-
compound BggK, sBiO; (BKBO), which does not contain cal crystallizationt® Figure 1 presents typical plots of the
copper and has a cubic perovskite structure, is apparently aemperature dependence of the real part of the dynamic sus-
ordinary isotropic type-Il superconductor with a high super-ceptibility x' (T)/x'(0) of BKBO single crystals of identical
conducting transition temperatuiie.~30 K. In fact, many composition, whose synthesis conditions were varied in or-
experimental findings can be explained within the Bardeender to obtain a crystal having a harrow homogeneous transi-
Cooper—SchrieffefBCS) model with a singlet type of car- tion to the superconducting state. Such a crystal has not yet
rier pairing® Nevertheless, several anomalous properties, fobeen successfully grown: as is seen from Fig. 1, the set of
example, the positive curvature of the temperature depemlots of y'(T)/x’(0) for different samples reveals the varia-
dence of the second critical field, have been observed in thiton of their superconducting transitions from a very broad
normal and superconductive states of BKBOIn addition, and smooth transitiofsamplel) to a “two-stage” transition
the parameters of BKBO extracted from experiments, viz.(sample3), which begins afT~29 K and changes slope at
the coupling constartf:!*the gap sizé?*3the London pen- T~26 K. Similar structures were previously observed for
etration depth;'* etc., differ considerably. The main reason superconducting transitions in Ref. 7 when the magnetization
for such disparate interpretations of the experiments is appaof BKBO crystals grown by a similar method was measured.
ently the “imperfect” nature of the BKBO crystals investi- Below we present the results of measurements of the surface
gated. In particular, according to dynamic susceptibility meaimpedance of two samples having an approximately cubic
surements, the width of their superconducting transitiorshape: a 5.5 misample of Nb and a 0.2 mivsample of
amounts to several degrees, and even in samples with a veBKBO (sample3).
small resistivity p(T.)<100 wQ-cm the transition is Each sample was fixed to the end surface of a sapphire
inhomogeneous. rod and positioned at the center of the resonator, where the

In the present work the superconducting properties ofnagnetic fieldH of the working modeH ;4 is uniform and
BKBO crystals were studied in the 3-cm wavelength rangeaxially directed. The entire resonator-sample assembly was
The effectiveness of the method used was tested in worglaced in a high vacuum, which, together with the thermal
with Nb samples. The measurements of the temperature d@sulation of the rod, provided for the possibility of exter-
pendence of the surface impedance exhibit inhomogeneouslly regulating the temperature of the sample in the range
broadening of the superconducting transition and considefrom 4.2 to 50 K without heating the resonator itself. The
able residual losses in the BKBO crystals. Nevertheless, th® factor of the resonator without the sampgleut with a
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FIG. 1. Dynamic susceptibility of three BKBO crystals.
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is the geometric factor of the sample, whose unit of measure
in the Systee International is the ohmwy=2mxf,,
wo=4m-10" 7 H/m, the integration in the numerator &) is
over the volume of the resonator, and the integration in the
denominator is over the surface area of the sample. As is
seen from(1) and(2), the determination of the absolute val-
ues of Ry(T) and X4(T)=AX4(T)+ X, requires knowledge

of two parameters: the additive constaxy and I'. The
former is found from the condition that the reRl, and
imaginary X, parts of the impedance in the normal state be
equalR,= X, since the criteria for the normal skin effect are
satisfied for the Nb and BKBO samples that we investigated.

heated sapphire rod insiddid not vary in this temperature The problem of calculating the latter parameter, & can

range, remaining equal Q,(T)~7.1x 1P, and a small but
reproducible shifAfy(T) of the frequencyf, of the resona-

be solved in the general case only by numerical methods.
However, if the sample has an ellipsoidal shape and is posi-

tor was observed. The accuracy of the measurements of thRned at the center of a resonator operating in khg;
Q factor of the resonator was 1%, the error in setting and mode, it is not difficult to obtain an analytical expression for
measuring the resonant frequency, as well as the instability | (Ref. 17. Therefore, our first step was to evaludtgy,
of the frequency of the microwave synthesizer, did not ex4nd 'y geeo Under the assumption that both samples are

ceed 10°.

spheroids having volumes equal to the known volumes of the

Figure 2 presents the temperature dependence of the exth and BKBO samples. The second step was based on the

perimentally measured parameters, viz., @dactor Q(T)

experimental method for determinifg,,. Under the condi-

of the resonator with a Nb or BKBO sample, and the corretions of the normal skin effect, the surface resistance is

sponding variations of the resonant
Af(T)—Afy(T). The surface resistand®(T) of a sample
and the variation of its reactandeX(T) are found from the
relation

R(T)=TQ XT)-Qy (T],

S

AX(T)=———[AF(T) - Afo(T)], @

fo
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FIG. 2. Measured temperature dependences Qf did Af of a niobium
sample(unfilled point and a BKBO crystalfilled points.
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frequencyr = \[wuop/2. We measured the resistivitpy,(10 K)

~3u)-cm of a thin strip of Nb cut from the same material
as the niobium sample itself. Next, equatiRgandR(10 K)

from (1), we found the valud \,=1.38<10*Q, which is

only 24% smaller than the value &, \,, calculated by the
first method. Taking into account the similarity between the
shapes of the Nb and BKBO samples investigated, we set the
geometric factor of the BKBO crystal equal to
I'gkeo="0.76T'y pxgo= 12.4x10°Q).

Figure 3 shows plots dRs(T) and X,(T) of a niobium
sample, whose critical temperatureTis=9.2 K. ForT>T,

(in the normal stateR,= X,,= Vo uom/2ne?r~33 m(). The
value of the ratio of the effective massto the carrier den-
sity n in Nb is known®®m/n~1.5x 105 kg- m?. We find

the relaxation time of the carriers~2x10 * s and the
mean free pati=40 A, which is much smaller than the
depth of the skin layef=p/R,~9000 A. In the supercon-
ducting stateX((T) practically reaches its minimum value
Xs(0)=6 mQ for T<5.5K=0.6T.. the surface resistance
Rs(T) decreases by three orders of magnitude as the tem-
perature varies fronT, to 0.5T.. Such behavior oR¢(T)
andX¢(T) corresponds to the BCS model, and knowledge of
the absolute values &(T) andX(T) gives the supercon-
ducting parameters of Nb.

In the local case there is a simple relationship between
the surface impedance of a superconductor and its complex
conductivity o= 01— i oy:

1/2
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I ] The coherent peak appears because of the logarithmic
i -— E o factor in (7). In the dirty limit the London penetration depth
i o wﬁ,ow" 10.01 NL(0) is related to the measured deptf0) by the expres-
10 goscasggasBBoonaeos " sion A (0)=\(0)\I/&,. After determiningo,(T) from (4)
I and A(T) from (5) and taking into account that
: : : X l(0.00 J/&,=wA(0)7/%~0.4 holds for our Nb sample, we find
’ the dependence of (T) depicted by the circles in the inset

in Fig. 3. The solid curve is a plot of (T) calculated using

FIG. 3. Plots ofRg(T) and X4(T) in Nb. The inset contains plots of the - .
temperature dependence of the real part of the conduciwvityo, (filled Egs. (6) and(5). The value found\'—(o)_‘?’ZO—F 10 A coin-

: ) : 23,24
squaresand the London penetration depth (unfilled circles found from  cides with the known literature data for Nb?

the measured values &(T) and X4(T) using Egs.(4) and (5) and the Figure 4 presents plots &t(T) and X(T) of a BKBO
relatioggng(T):O.&(T). The solid curves were calculated within the BCS CrystaL which differ appreciab|y from the Corresponding
model.* curves for Nb(Fig. 3). First, as the temperature varies from

T=T.~29 K to T=15 K the surface resistand®,(T) de-
creases altogether by only a factor of 18, reaching an almost
After measuringRs andX,, from (3) we find the expressions constant residual resistanég~49 m() for T<15 K. Sec-
for the real and imaginary components of the conductivityond, there is a broad inhomogeneous superconducting tran-

o normalized to the valuer, in the normal state: sition, which actually consists of two successive transitions:
the first begins atT~29 K, and the second begins at
o1 ARIRXs o, 2RY(XE-RD) T~26 K. They are also manifested in the measured tempera-
o (RZ+Xx3%)2 o (RZ+x3)7 @ ture dependence of @/andAf in Fig. 2. In the normal state

Rs(40 K)=~0.89 O corresponds tp(40 K)=~210Qu{)-cm,

The most striking feature of the BCS modekhich dis-  and for the ration/n~2.6x 1057 kg-m? in BKBO¥®? we
tinguishes it from all the other theories on the high-frequencyoptain 7~ 0.5x 10~ * s from the Drude formula.
response of superconductors, is the nonmonotonic depen- Both features cited of the temperature dependence of the
dence ofo(T), which increases at 0.85T/T <1 and de- impedance of BKBO are related to the defect density in the
creases al <0.85T (the so-called coherent pgakhe am-  surface layer of the crystal. We now show how to describe
plitude of the peak decreases with increasing values of thghe experimental plots dR(T) and X«(T) in Fig. 4 while
frequencyw, the ratiol /&, (£, is the coherence lengtiland  remaining within the BCS model and taking into account the
the electron-phonon coupling constdfiand the peak van- heterogeneity of the sample and the residual loSse it.
ishes if this constant exceeds unity. We know of only oneror this purpose we utilize the ideas in Ref. 26, where the
study?* in which the coherent peak in Nb was observed at 6Qyigin of the narrow incoherent peak in the microwave con-
GHz. In the inset in Fig. 3 the solid line shows the tempera-ductivity o, (T) of YBaCuO single crystals was explained on
ture dependence af,/g, calculated from the general for- the basis of the simple effective-medium approximation.
mulas of the BCS theofy with known values ofw, 7, and  Thus, we assume that different regions of our sample un-
m/n. The temperature dependence of the ge) was dergo the transition to the superconducting state at different
taken from the same formulasAZ0)=3.5XT.. There are  critical temperatures lying in the randeT .. If each of these
no fitting parameters. The shaded squares in the inset repreegions is small compared with the London penetration
sent the experimental dependence oof/o(T/T¢) found  depth, the distribution of the microwave currents over the
from (4). sample is uniform, and the calculation of the effective im-

The imaginary part of the conductivity»(T) deter-  pedanceZ.4 of the sample reduces to two operations: first,
mines the depth\(T) to which a magnetic field penetrates the impedanceg, of the regions of the samplevith differ-

into the superconductor: entT,) that are connected in a chain along a current line are
B 4 summed, and then averaging over the volume of the sample
A=(oueos G s performed. As a result, we have
At low temperaturesT<T.) the dependence of(T) coin-
cides with X¢(T)=wuo\(T), and from Fig. 3 we at once Ze(T)= fm Z(T,T)f(Te)dTe, 8
find A(0)=X4(0)/wuy~800 A. In the dirty (< &l<\) ¢

low-frequency fw<<A) limit of the BCS theory, which is where the distribution functiof(T,) is such that the fraction
satisfied by the experiments under consideration, it is nobf the volume of the sample with critical temperatures in the
difficult to obtain an exact analytical expression toy range T.<T<T.+dT. equalsf(T.)dT,. In the simplest
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casef(T,) is a Gaussian function. As for Fig. 4, the distri- the dashed line is a plot of the dependef®g which coin-
bution function of the different regions of the sample with cides with the preceding curve @ 0.3T.. The minimum
respect toT. should reflect the two transitions observed: if value of the imaginary part of the impedankg(0)~X(5
we move from the low-temperature side, the broad transitioik)~70 m(), and, therefore\(0)=X(0)/wuy~9400 A.
with a maximumf(T.,) at T;,~26 K rapidly transforms Taking into account the measurement error and the factor
into a narrow transition with a maximunf(T.;) at \/E~033, we find the London penetration depth of a mag-

T.1~28 K. netic field into a BKBO crystal at T=0:
The upper inset in Fig. 4 presents the temperature depen; (0)=3100+ 100 A. The course ok, (T), which is repre-
dence of the relative quantities sented by the points in the lower inset in Fig. 4, follows the

R—R. R.—R X X BCS law(dashed lingin the dirty limit with consideration of

S 0 S 0 S S P . . . . .

= ~ ,  X= ~—=, (9)  the deviation from it aff>0.3T, (solid line), which is ob-
Rn=Ro Rn Xn~Ro  Rn tained from the model of inhomogeneous broadening of the

The numerator in the expression fotakes into account only superconducting transition under consideration. The value

the temperature-dependent part of the surface resistandeund for A (0) is consistent with the recent measurements

which is obtained fromR4(T) by subtracting the residual of A(0),1?’if the correction\1+ &,/I due to scattering on

resistancd’y<R, . We further note that, as follows fro(d), impurities is  taken into account in them:

r andx in (9) do not depend on the geometric fact@y of A (0)=\(0)/y1+&y/l.

the sample. The continuous lines correspond to the effective  Thus, comparative measurements of the microwave sur-

values of r and x from (8), in which the impedance face impedance of Nb and BKBO have revealed distinct dif-

Z4(T,T.) was calculated using the general BCS formulas forferences in the values of the residual surface resistigce

the electromagnetic response of superconduttovsith and the widths of the superconducting transitions of these

2A(0)=3.5%T, and the values ofr and n/m indicated samples. While the high-frequency response of Nb is faith-

r

above for a BKBO crystal, and the expression fully described by the BCS model, the large value of the
5 30 1 (To=T)2 1 R, and the inhomogeneous broadening of the superconduct-

f(To)= —\/:[—exp[ _a > ] ing transition complicate the interpretation of the experimen-

3 Va[AT, 2(ATy) AT, tal data for BKBO. Nevertheless, the standard procedure of

(Te—T)2 isolating the temperature-depgnden_t p.art .of the impedance
X H(Tcz—T)exp[ - m] Z(T) and the use of a Gaussian distribution of the micro-
2 scopic regions comprising the surface layer of the sample
with T.,;=28 K, AT;=1 K, T;,=26.5 K, andAT,=4.7 K  with respect tol; enable us to describe the observed depen-
served as the distribution functidifT.). The points in this dence ofZ,(T) over the entire temperature range and to de-
inset show the dependence ®§/o,, on (T/T.) found from  termine the value of the London penetration depth of a mag-
measured values af andx using Eq.(4), the solid line is a netic field into a BKBO crystal.
plot of the effective conductivityr, o/, which is also We thank V. F. Gantmakher and I. F. Shchegolev for
found using(4), but from the effective values ofandx, and  supporting this research and following the work, A. A. Gol-
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Formation of spatial solitons and spatial shock waves in photorefractive crystals
V. A. Vysloukh, V. Kutuzov, V. M. Petnikova, and V. V. Shuvalov

International Laser Center, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia
(Submitted 21 July 1996; resubmitted 17 September 1996
Zh. Eksp. Teor. Fiz111, 705—-716(February 199y

An analytical model, which describes the drift and diffusion mechanisms for the formation of the
nonlinear respons@docal and nonlocal nonlinearitie®f photorefractive crystals on the

microscopic level, is constructed. New types of stable self-consistent distributions of the light
field intensity, i.e., spatial solitons, are found. The trajectories of their maseif-

bending are calculated, and the possibility of observing a new nonlinear-optical effect in
photorefractive crystals, viz., the formation of spatial shock waves, is demonstrated. The
modulation instability appearing when plane waves propagate in photorefractive crystals

is analyzed, and the characteristic spatial scales of the light field distribution formed as a result
of self-interaction(fanning are determined. The results of the analysis are confirmed by
computer simulation data. @997 American Institute of Physids$$1063-776(197)02302-0

1. INTRODUCTION of these fields by defects and impuriti€$raps”) causes a
spatially inhomogeneous distribution of the internal electric
One of most interesting problems in contemporary nonfield to form. The influence of this field through the linear
linear optics is the investigation of self-organization pro-electro-optic effect leads to a spatially inhomogeneous dis-
cessegphase transitionsn systems consisting of a nonlin- tribution of the refractive index. The scattering of light on
ear medium and a light field. While the stable self-consistenthe resultant dynamic hologram closes a two-dimensional
solutions of such problem&olitons in media with a spa- feedback loop, forming a complete self-consistent problem.
tially localized (local) nonlinear responséhe case of so- Although the system of material equations needed to de-
called Kerr nonlinearity) have been studied quite thor- scribe photorefractidhand the possibility of creating various
oughly, our understanding of the physics of the formation ofgeneration devices from photorefractive crystalave been
the analogous space—time structures in self-pumped systerksown for a fairly long time, only a stationary generation
on the basis of nonlocal nonlinearity of the photorefractiveregime and the transitional processes accompanying the
type is still on a fairly low level. Investigations of such sys- nonlinear interaction of plane waves in photorefractive
tems are urgently needed, because photorefraction is one ofystals® have been described on the microscopic level. The
the strongest mechanisms of nonlinearity, whose manifestageneration threshold of self-pumped devices and the charac-
tions are observed at light intensities amounting to only sevteristic time until they achieve a stationary regime have been
eral mWi/cnt (Ref. 2. evaluated. The main cause of this seemingly paradoxical
Photorefractive crystals are characterized by delayed efituation is quite simple. The fact is that a very complicated
fects, which make it possible to regulate the time for thenonlinear system of equations must be solved when the prob-
formation of the nonlinear response in the range from tens olem is formulated on the microscopic level. Unfortunately,
seconds to a few milliseconds or I€sklowever, more im-  its numerical integration requires the use of an excessively
portantly, owing to its nonlocal component, fundamentallyfine grid along the time and spatial coordinattSerious
new types of nonlinear optical signal conversion, such aproblems also arise in the interpretation of the complex
two-beam energy coupling, the transfer of phase informationstructure of the nonstationary nonlinear wave fields obtained
etc., can be realizetlA unique place among all these pro- as a result of computer simulation. Under the analytical ap-
cesses is occupied by wave-front reversal. This effect caproach in Ref. 12, in which these problems are eliminated,
also be observed in self-pumped devices, which are essethe problem is always regularized, which sharply depletes
tially four-photon and often mirrorless parametric light the possible spatial spectrum of the interacting light fields. In
generators. In such systems reversed waves can be genethe statistical description in Ref. 13 the problem is linearized
ated even when the pump waves are incohérémfact, this  through the use of numerous assumptions that greatly restrict
process is an example of such self-organization, i.e., a pha$® generality. The pump fields are assumed to be assigned,
transition occurring in a nonlinear-medium-light-field the role of the self-interaction and diffraction processes in
systen’ higher orders is disregarded, etc. Actually, averaging of the
The physics of the processes occurring in response to theystem of nonlinear equations is carried out, which should
spatially inhomogeneous illumination of a photorefractivenot be done under the conditions of such strong nonlinearity.
crystal is presently well knowhThe interference of external Thus, there is presently virtually no adequate description of
light fields and/or light fields generated in photorefractivethe processes leading to the formation of stable solutions in
crystals leads to the spatially inhomogeneous photogeneraelf-pumped systems based on media with photorefractive
tion of free carriers. This is followed by their spatial diffu- nonlinearity. We also note that the problem of transforming
sion and drift in a static electric field. The subsequent capturdynamic images, i.e., wavefronts with regular dynamic spa-
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tial modulation, can also lead to fundamentally new effectgent densityj in that direction are taken into account. It is
like stable space—time autowave solutidhs. assumed that the optical radiation propagates alongzthe
Soliton effects play a very important role in the forma- axis.
tion of nonlinear wave fields in photorefractive crystals. The  The system of material equatiok) is solved together
pioneering work in Ref. 15 was devoted to a theoreticalwith the standard reduced wave equation for the complex
analysis of these effects. The experimental realization of amplitude of a light fieldA(x,z,t):
soliton regime for the propagation of light beams in photo-
refractive crystals was first demonstrated in Refs. 16 and 17. — Z
The further progress in this area has been largely associated 9z 2k Ix*
with the analysis of new types of soliton solutions, such a
“dark,” 8 “gray,” 1° “vector,” 2° “vortex,” ?* and other soli-

A 1 PA by
— = k7A, 2)

Swhich is written in the paraxial approximation without con-
sideration of the absorption. Hete is the wave number;

tons. 3 . . o
. . on=(1/2)r 41 °Es{X,2,t) is the nonlinear addition to the
The purpose of the present work was to investigate th?efractive indexn; andr. is the effective electro-optical

formation and prqpagatlon of the kniown stationary Wavecoefficient. The variation of the refractive index caused by
packets of the soliton type, as well as a new self-consiste

tial distributi £ a liaht field. vi tial shock Yhe static fieldEy, which is uniform with respect ta, was
spa Iat IStn .L:r:oln 0 Ia '?j Iel ’ VI'Z" spatia St ch t\r']vaves'omitted in(2). Equations(1) and (2) form a self-consistent
In systems with local and noniocal components of the non, roblem, in which the mutual influence of the redistribution

linear response. We succeeded in constructing a physical

eXpl'C.'t _and fairly general model basgd on & MICTOSCOPIG,a 4 i the bulk of the photorefractive crystal is taken into
description of the processes occurring in a nonlinear-

. . , account. Such a model faithfully describes experiments with
medium-light-field system. In the process we were able t

. . " L Ro-called slit beam@ which are widely used in practice in
dispense with numerous traditional approximations tha‘

. . . . vestigations of soliton effects in photorefractive crystals
would have restricted the generality of the solutions obtalnetgecauSe of the strong anisotropy of the nonlinear response of
and to correctly describe the fairly complex and unusual SP8 o |atter.
tial structure of self-consistent light beams propagating in
such a nonlinear medium.

2 INITIAL MODEL 3. SOLUTION OF THE SYSTEM OF MATERIAL EQUATIONS

The model of the nonlinear response of photorefractive ~ The system of material equatiort$) is solved in the
crystals that we used is based on the classical system é&fationary approximatio/dt—0, j=j(x). As a result,j
material equations for the internal electric fiel(x,t)  andNg are eliminated from it, and
(Ref. 8 written for the two-dimensional case without con-

sideration of the photovoltaic effect: En—Eon0=9 ‘9_” 3
. e ox
an  oNj 19
gt eox JE
N=s(lg+1)(Ng—Npy| 1+ay—
N ax
INg . .
TZSUHO)(Nd_Nd)_YRnNd , ()
YrNa| 1—a— (4)
, an
j=eun(Bot+Esd —u® -, Heren, is the dark density of free carriers. (4) we have
introduced the notation
JE,. 4me N
x5 (MTNamNg). - E=Ey+E __ D 5
a= 47TeNa, — =0 scr X= Nd_Nav ( )

Heren, Ng, Ng andN, are the number densities of the free o ]

carriers, donors, ionized donors, and acceptors, respectivel@nd it is assumed tha¥,>n. For photorefractive crystals

s is the cross section of the photoionization procegs;t) is ~ With a large dark conductivity, i.e., when the inequality

the radiated intensityk, is a parameter which describes the |0>1 holds, the system of equatio(®) and(4) is linearized

dark conductivity of photorefractive crystals and specifiegith respect td, Es, andn. Now, under the assumption that

the rate of the dark ionization of the donorssdg; yx is the faaE/&x<1 it can pe reduced to a single linear equation that

pair recombination constang and u are the charge and IS second-order with respect B

mobility of the free carriers with consideration of their signs, E., eE, JE e
. K .. . sC sC

which are negative for electrons and positive for holess = —— - Esc

the static dielectric constant of the photorefractive crystal; X ® ax  Ba(x+1)

andoO is its temperature in energy units. It is assumed that an 1 eE, dl

gxternal stat_lc electric fiel&, is a_pplu_ed to the photore_frac- —m(v' —5)-

tive crystal in the transverse directidalong thex axis);

therefore, both the drift and diffusion components of the curdts solution can be represented in the form

(6)
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1 { X 4. SPATIAL SOLITONS AND “SHOCK WAVES”
Ese=— Ay f 1(§)
*alxtDlo(A—A2) — Let us discuss some very important solutions of the self-
- consistent problem formulated by Eq®) and (8). We at-
XexgNo(x—§)]dé+ Azf [(&)exg Ni(x—§&)]dé]|, tempt to find solutions which fit the case of the separation of
X variables
@) A(X,2)=Y(x)exp(—iv2), (12)
ek, eE,\? e where the real functiory(x) assigns the distribution of the
M,z:% * (% m, field along the transverse coordinateand the positive con-

stantv specifies the nonlinear phase trajectory of the solution
along z. Thus, the problem is to attempt to find intensity
Sdistributions that are stationary with respectztandt. It is
easy to see that the substitution (@R) into (2) leads to an
equation for the spatial profile of the amplitude having the

which also specifies the nonlinear addition to the refractiv
index on the right-hand side of EQ).

When(7) is integrated] (£¢) can be expanded into a se-
ries in the vicinity of the poink. This enables us to write the

solution of(7) in the form of an expansion in derivatives of orm
the radiated intensity d?Y  akEy[ © (v 1E
a7, e, TAXt B
1 AW Ay ) aMH(X)
Esc alg(x+1)(A1—\yp) m§=:0 ()\?H ?\TH) ax™ XYZ&*‘Zk(l—OYS—VY):O, (13
0

tS)
wherea=kr47?/2 and the first two terms of the expansion
The relation between the spatial distributions of the internal8) have been retainetee abovg In the case of focusing
field and the radiated intensity is even more transparent iterr nonlinearity (7>0), it is convenient to introduce the
the spectral representation. It is easily seen that in shapindimensionless coordinatés= x/x, and{=z/L 4 and the nor-
the spatial spectrum of the distribution of the internal fieldmalized amplitude of the light fielg(£)=Y(&) VR/1, into
Esd ) the photorefractive crystal actually plays the role of a(13). Herex, is determined by the characteristic transverse
field of the spatial frequencies with the transmission coef- scale of the problem, for example, by the width of the in-

ficient coming beami 4=kx3 is the diffraction length correspond-
ing to Xo; R=L4/L,>0; andL,=1/aE, is the nonlinear
Eo 1+ik0/eE, refraction length. Now(13) becomes
T = T caby(x+ 1)+ a®(y+ e d2p dp
g t2vr gg +2(p’ = Bp)=0, (14

with respect to the spatial spectrum of the distribution of the
light intensityl («). The expressions foF(«) in the cases of where the parameter
pure drift of the free carriers and their pure spatial diffusion

can easily be obtained frof®) after the limiting transitions y= _zakEO £+a(x+ 1)Eo|Xo
®—0 andEy—0: R [eE
characterizes the magnitude of the nonlocal component of
Eo 1 the nonlinear response, agg=L4v. Below we shall say
Tad k)=~ E 1—ikaEy(x+1)’ (10 more regarding the case ¢f>0, which can occur when the
orientation of the photorefractive crystal and the direction of
) 1 E, are chosen appropriately.
Tdf(K)Z_iK_ (11)

ely 1+ k%a®(x+1)le’ 4.1. Modulation instability

It is easy to see that, as in a medium with pure Kerr
We note tha(lO) and(ll) can be SlmplIﬂEd Significantly, if non“nearity' a p|ane wave with an amp“tuﬁeg):po is a
the terms proportional ta and «? in their denominators are trivial solution of (14) when 8= p3. Let us consider the sta-
neglected off 4(x) andTq(«) are expanded in power series bjlity of this solution toward small §p,<1) harmonic dis-
in « with retention of only the linear terms. The latter can tyrhances of the distributionp(&) = Spocos€lé) at the di-
nearly always be done, since under the conditions of any reghensionless spatial frequencyQ=«x,. Using the
experiment in external fields up to 10 kv/cm @~300 K jinearization technique developed by Bespalov and
all the subsequent terms become significant only for spatiafalano?® and the results obtained in Ref. 24, we can easily
scales of variation of the I|ght field smaller than the wave-show that the amp"tude of such a disturbance increases ex-

|ength. This aCtua”y means that in the expans{%ﬁwe can ponentia”y asé’ increases with the growth rate
retain only the first two terms, which are proportional to

[(x) anddl/ax and which we shall henceforth call the local
and nonlocal components of the nonlinear response.

1
g=Im 5\/92(92—4p§)+ iyQp3|. (15)
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FIG. 1. Dependence of the growth rate of a small disturbance on the dimerIG. 2. Self-bending of the trajectories of motion of spatial solitons: con-
sionless spatial seed modulation frequefitylocal (Kerr) nonlinearity — tours of the distribution of the normalized intensity in theq) plane with
dashed line; photorefractive crystals with local and nonlocal responsespacing 0.1.

(po=1, y=1) — solid line.

We note that the familiar result for a medium with a Kerr note at once that this question is directly related to the self-

nonlinearity follows in the limity—0. As we know?®in the ~ bending of laser beanfs-® Therefore, we turn to Eq(2),

latter case the exponential increase in the amplitude of thétroducing  the  normalized  complex  amplitude

disturbances occurs only in the restricted band of spatial fred(£,£)=A(£,£) VR/1, into it in analogy to(14):

quencies O <Q,=2pg, and the maximum value af is 2 2
. ST 99 _14°q vyqdlq|

achieved at)=Q,,=2p,. The appearance of a term pro- |a—§— > a—§2+7 P

portional todp/d¢ in Eq. (14) expands the modulation insta-

bility band to infinity, but even fory=~1, its half-width is  Now, assumingy<<1, we seek the solution of E¢L6) in the

close to the half-width of the instability band for the case ofself-similar form

Kerr nonlinearity, and the frequency where the maximum _ .

gain is achieved is close @, (Fig. 1). As(¢,6) =KsechK(£=Vo) Jexli (&, o)1, (17)
Thus, in a medium with nonlocal nonlinearity the plane 1

waves are unstable, although they fall into the class of solu- ®(&0)=—Vé+ §(V2_ K?)¢.

tions with separated variables. In the case of exceedingl¥| .
small seed modulation with a sufficiently broad spectrumtiere the form factoK({) describes the dependence of the

such a plane wave breaks up as it propagates into compar@MPplitude and width of the soliton on the longitudinal coor-
tively thin filaments with a mean dimensionless spatial pedinate{, andV({) specifies the angle between the current
riod A =2/€,, and a mean thickness equal to the recipro-direction of propagation of the soliton and thexis. Utiliz-

cal width of the instability band. The first experimental iNd the tools of perturbation theofywe can show that the

observation of modulation instability in a photorefractive Soliton amplitude remains unchanged to first ordeyiand
crystal was reported in Ref. 24. thatV(¢) satisfies the ordinary differential equation

dv 8

4.2. Spatial solitons di 157/K (18

In the preceding case of Kerr nonlinearity=£0), Eq.  with the initial conditionV(0)=0. It follows from (18) that
(14) has a well-known single-soliton solution of the form in a photorefractive crystal the soliton vert€k7) with the
p(&€)=sech§), which is written out here fopB=1/2. Al-  coordinate & moves along the parabolic trajectory
though it is known that this solution is stalifein real ex-  £,=—4yK?7?/15. This analytical result is in excellent
periments the necessary one-dimensionality of the diffractiomgreement with the data from direct numerical integration of
and self-interaction processes is achieved only by using slthe quasioptical equation with the initial condition
beams, which have a uniform field distribution in the direc-q(&,0)=sechg), which are presented in Fig. 2 in the form
tion orthogonal to thé axis. The possibility of the develop- of contours of constant intensity in thé&,{) plane. For ex-
ment of modulation instability along the length of the crystalample, fory=0.1 and{=6, the error in the analytical deter-
with resultant filamentation of the beam in that directionmination of the current coordinate of the soliton vertex is
must then be considered. We note that the stability of twoless than 5%. An increase in the nonlocal component of the
dimensional solitons is achieved because the nonlinearity iesponse results only in a slight decrease in the soliton am-
saturable. plitude in the outgoing plane. Thus, the appearance of a term

Let us examine the question of the influence of the nonresponsible for a nonlocal nonlinear response in @)
local component of the nonlinear response on the propagaemoves the single-soliton solutions from the class of solu-
tion of solitons of such form in a photorefractive crystal. Wetions with separated variables.

lal®q. (16)
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4.3. Spatial shock waves initial conditions employed were assigned at the point

: : : <0 on the basis of the asymptotic dependence
Let us now examine the fairly unusual stationary, spa-~>% ~~ _ :
tially unrestricted solutions that appear in a medium with ap(ff’)_eXp(‘/ﬁfO)’ dp/d¢= 128 exp(y2B&), which cor-

nonzero nonlocal component of the nonlinear response. Thrgsponds to the vicinity of a nodal point in the phase plane.

special features of the solutions of this type, which we havérhe corresponding phase trajectory, which is shown in Fig.

termed spatial shock waves, are conveniently analyzed oﬁa’ has .the form of a spiral, WhiCh. converges to the .stable
the phase portrait of Eq14), i.e., in the p,dp/dE) plane. ocal pointp,;. A profile of the amplitudep(&) of a spatial

Here we can take advantage of the direct mathematical ana?—hOCk wave is sr_]own in F_ig. 3b. The charac.teristic features
ogy between the character p{¢), which is assigned by of solutions of this type, viz., the abrupt spatial shock wave

(14), and the nonlinear oscillations of an oscillator in thefront, which rises exponentially from zero, reaches a plateau
with amplitude oscillations that are damped with respect to

otential
P ¢, and then achieves the stationary vatyeare clearly seen.
Ulp) = } 4 o2 19 The frequency of these oscillations and the damping coeffi-
(P)=3p"—Fp 19 Gient agree well with the values predicted by Ef1). At

with nonlinear damping described by the term@dp/dé. large values ofy the approach tp, becomes aperiodic.

The potential energy of such an oscillator has three Ioca% An analytical investigation of the stability of the solu-
extrema, which correspond to three critical points of the lons obtained as they propagate alangthe evolutionary

. . : . equation(16)] raises some definite difficulties in view of the
phase portrait. The two minima &f(p) lying on thep axis lack of lici ion for th ial distributi f
with the coordinatep, ,= = /8 are points of stable equilib- ack ot an exp leit expression for the spatial distribution o
. . 12— : . the field. The asymptotic transition of the shock wave to a
rium, i.e., focal points, and the single maximum

(p=dpldé=0) is a point of unstable equilibrium, ie., a plane wave ag— o provides some basis to assume that the

dal point. Li ization of14) in the vicinity of th dal modulation instability can develop in that region. Neverthe-
nodafpoint. Linearization N the vicinity of the noda less, the computer simulation results convince us that waves
point gives the equation

of this new type can be produced experimentally in photore-
d?p/dg?—2Bp=0, (20 fractive crystals. Figure 4a illustrates the stable propagation
of an undisturbed(to within “computer noise’) spatial

which has the exponentially increasing solutigin(¢) . )
o exp&2B¢) in addition to the trivial solutiop=0. In the shock wave over a distanag=2, which corresponds to a
i length of a photorefractive crystal of about 1 cm on the real

vicinity of_elther of the focal points the same procedure IV€5cale. Figure 4b shows its structural stability when the out-
the equation of damped oscillations

going field amplitude profile is significantl20% in terms of

d?u du intensity disturbed by Gaussian noise. Thus, spatial shock
d_é:2+27'8 d—§+4,8u=0 2D waves in photorefractive crystals represent a new type of
soliton-type solutions that belong to the class of solutions

for the small displacements &) = p(&) — p; » from the equi- with separated variables.

librium position. The solutions of Eq21) correspond to
periodic (y<2/\/B, frequencyw= 48— (yB)?) or aperi-
odic (y < 2/J/B) passage to the corresponding focal point
whené— o, To illustrate the importance of the particular solutions

Although the exact solution of E414) cannot be written obtained above to the structure of the nonlinear wave fields
in elementary functions, the character @f¢) is described formed in the general case, we present data from the direct
quite well by the approximate solutions presented abovecomputer simulation of the evolution of a laser beam with
This was confirmed by the numerical integration®f). The the stepped incoming amplitude profileq(¢,0)

4.4, Evolution of a stepped intensity distribution
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for B=0.5 and y=0.15 in successive

1.05_____/\/\/\-/\/‘( 1.04 _/\_J/'\,\/V\,,_N\/\ cross sections of photorefractive crystals
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0 5___/\_/\/\/\/—1 0.5 N’\_/J\«\Nq (@) and at a noise level of 20% intensity
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1.5 W 15 M FIG. 4. Profile of a spatial shock wave

= [1+tanh@)]/2 in a photorefractive crystal with local and Of the propagation of spatial solitons has shown that in first-
nonlocal nonlinearity. Figure 5 shows spatial profiles of theorder perturbation theory it leads to self-bending of the tra-
intensity|q(£)?| in successive cross sections of a crystal forjectories of motion of the solitosand that in second-order
the valuesy=0, 1. As the radiation propagates, a diffraction perturbation theory it leads to a decrease in their amplitude
spike forms on the front of the initial intensity distribution and an increase in their width.

and then transforms into a soliton due to the local component We have succeeded in obtaining solutions in the form of
of the nonlinearity. Simultaneously, it is gradually deflectedspatial shock waves in photorefractive crystals for the first
from the ¢ axis by the nonlocal component of the responselime. The numerical experiments conducted here have shown
As the beam propagates further, the next solitons split ofthat such elementary solutions are not only physically fea-
from the front of the intensity distribution. At all times the sible, but are also clearly traceable in the structure of the
remainder of the beam has a structure similar to a spatidglonlinear wave fields formed in photorefractive crystals from
shock wave. Thus, although we were dealing with a Very’ncoming radiation with an arbitrary transverse intensity dis-
complicated nonlinear superposition of fields in the computetribution.

experiment, understanding the structure of the elementary Concluding this paper, we should mention the possible
self-consistent solutions obtained above significantly facili-areas for further research. We associate the most important

tates its analysis. prospects both with an analysis of the self-organization pro-
cesses that take place under the conditions of defocusing
5. CONCLUSIONS nonlinearity and lead to the formation of so-called dark

o ) ) ~ solitong® and with stochastic generalizations of the regular
Summarizing the work, let us briefly recount its main problems considered abo?®.

results and formulate several conclusions. Thus, starting out  1his work was performed with financial support from

from a very general microscopic model of the formation of o Russian Fund for Fundamental Resed(@tant No. 96-

the nonlinear response of photorefractive crystals, we haV§-16238 and the US Army Research Laboratai@ontract
obtained a fairly simple and physically explicit expansion for 4 DAAL01-95-R-2008.

it in both coordinate(8) and spectral(9) representations.
Taking into account the nonlocal component of the nonlinear
response, we have succeeded in refining the physical picture
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Why have no manifestations of the excitonic mechanism been detected in Ginzburg
sandwiches?

Yu. A. Krotov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia

I. M. Suslov

P. L. Kapitsa Institute of Physical Problems, Russian Academy of Sciences, 117334 Moscow, Russia
(Submitted 28 June 1996
Zh. Eksp. Teor. Fiz111, 717-729(February 199y

Using spatially inhomogeneoudi&shberg equations in the local-interaction limit, an exact
solution of the problem of the superconducting transition temperature in a Ginzburg saridwich
superconducting film coated with a dielectric layer containing Bose-type excitations, i.e.,
excitong in the first order ina/L (wherea is the interatomic distance ardis the film thicknesp
has been obtained. The result has been found to be independent of the exciton frequency.
The excitonic mechanism appears only in second ordex/insince both components of the
Cooper pair should enter a layer of thicknesa in order to interact through the exchange

of excitons. Numerical estimates indicate that manifestations of the excitonic mechanism are
practically undetectable in systems witk>a. Calculations for the model with a narrow-

gap and a wide-gap dielectric have been performed and compared to experimental dag97 ©
American Institute of Physic§S1063-776(97)02402-5

1. INTRODUCTION All the existing theoriesare based on the assumption that, in
o . the formal limitwg,— o, the factorC should diverge, and its

In 1964 in his famous papérGinzburg set forth a new large value should compensate for the smallness of the ratio
method for creating high-temperature superconductors. If 8, o 4t least, make the exciton-mediated interaction domi-
thin metal film is coated with a layer of a dielectfi€ig. 1) nant over all other effects, which yield~ 1. In this paper,
containing high-frequency boson excitations, i.e., eXCitO”Showever, we demonstrate that
whose frequencw,, is considerably higher than the phonon
frequency wyy, in the metal, the combination of the finite Cwey) =const for we= wpp. 2

electron density of states on the interface and the high eXCLf'his result, however strange it may seem at first sight, is

tation frequency should lead, according to the BCS formula . .
d y g hatural. In order to interact through the exchange of excitons,

to a high local value of the superconducting transition tem—both components of a Cooner pair must reach a laver with
peratureT.. The theory of Ginzburg sandwiches has been P Per p Y

developed by many authofsee Ch. 8 in Ref. 2 and refer- }g'ik(n;is)f f :]2?]::1(;;cg;(gtnodnit:?nzr:hb;nt?!g g;;:'lz ?:g?[n; i
ences therein but the available estimates @f are unsatis- ' P

factory because all these theories ignore the problems relat%g s;ig;rgrdﬁa?trgretrhlemgi;eIr:stigtneletirsr?ntcl:urggtriitéccgﬁ/ L ll'l'St
to the spatial inhomogeneity of sandwiches. All of them ' g

were based on the use of the BCS or MacMillan-type formu-the bulk metal is factored out, we have

las and rough estimates of their parameters. Below we shall 5T, A a B(wgy)
demonstrate that such an approach leads to qualitatively er- +—= I E+ N
cO 0 0

roneous results.

Following the terminology of Ref. 2, we define sand- and the coefficients in this formula can be estimatéd as
wiches as structures manufactured using the appropriate

. . . . w

t_echnology, such thgt their mgtal_ film thl)ckndsss essen- B(we) =Bo+Bi)g In == A, By, Bi~1, (4)
tially larger than the interatomic distanae" Structures with Wph
L~a should be treated as quasi-two-dimensional, and thl%e” the coefficient of 4/L)? in fact diverges agsq, .

topic is beyond the scope of this paper. Besides, we assumg, . factorskgl arise in Eq.(3) because the variation of the
that the superconductivity in the film is three-dimensionaIBCS formulaT.~w exp(—1/\) with respect tow and A
C

since g,the predicted surface sgpercon_duct_ivity of Tan_mllields 6T/ T, proportional todwlw and SA/\3, respec-
stated® has not been detected with certainty in any mate”altively, i.e., the relative change iis multiplied by the factor

It f’_ c!ear frorrljgc_anheraldrzrln_clplﬁs tbheltr(the dlffelrer;ci be')\al, as compared to the relative changewin According to
?/Iveenh N Ilcrj] g sandwict anl CO/I'_r_] the bulk material of the Egs.(3) and(4), the ratio of the contribution of the excitonic
llm should be proportional ta/L: mechanism to the total changeTq is

a 2

L

- ()

oT a 0]
(OTcdex 2 No In —. (5

6T, T.—Tgo
- - == @ (6T L Wph

T_cO TcO

C

| o
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FIG. 1. A Ginzburg sandwich is a thin superconducting film S with a de-
posited dielectric layer D with high-frequency bosons excitations, WhoseWhere U

exchange should increa3g considerably.

The limitations due to the Tolmachev logarithiead to the
inequality  wey/ wpr= 10?, and for typical values
Ao=0.2—-0.9 we havex, IN(wex/ wpp) ~1, hence the exci-
tonic contribution is always small &t>a. This means that

any attempts to detect the excitonic effects in the “small
correction regime” are doomed to failure: when a metal film

.
aT 0T H

is coated with a dielectric, the change Tq may be con-

trolled by all effects, except the exchange of excitons. Thi
is, apparently, the main reason why this effect has not bee

detected in experiments.
A formula for T, naturally, cannot be derived for an

arbitrary spatially inhomogeneous system, but this is pos-
sible for the case of a local spatial inhomogeneity, when its

dimensiond is smaller than the coherence lengthor the
total system dimensioh (if L=<¢,). These formulas were
derived earli€t” and used to study the localization of the
order parameter localization, quantum oscillation3 of the
contribution of an interface between two material§toas a
function of material parameters, & All these studies used
the Gor'kov equatiort?**which does not allow for the spa-
tial dependence of the cut-off frequenay. In the weak-
coupling regime, this dependence expressedfry) usually

leads only to small corrections determined by the parameter

®max

®min

)\0 In <1.

(6)

In the case of a large disparity in the frequencies,

®mas omin, the condition (6) may be violated even for
No<%1, and this is the case in a Ginzburg sandwich.
In the present study, formulas far, similar to those in

Refs. 6 and 7 are derived from the spatially inhomogeneou

Eliashberg equation®. Since Ginzburg’s concept does not

2. SPATIALLY INHOMOGENEOUS ELIASHBERG
EQUATIONS

Consider the Hamiltonian of electron—phonon interac-
tion in the form

Hint:_f dr i (1) UnGnl(1) (1), (7)
wheref/;j and (A//(, are electron operatorsg,, is the displace-
ment vector of thenth ion, andg,(r) is the deformation
potential which in the rigid-ion approximation takes the
form*2

gn(r)=VU,(r—Ry), (8

n(r) is the potential of thenth ion andR,, is its
equilibrium position. Following the standard procedtfteye
obtain the spatially inhomogeneoudidshberg equations

[x=(r,7)]

(—(%—I:hﬁ,u G(x,x’)=5(x—x’)—f dx;G(X,Xy)

XD(X,X1)G(x,x") + f dxq

X F(X,%1)D(X,x1)F " (x1,X"),

F(x,x’)=—j dX;G(X,X1)D(X,Xq)

XF(xq,x")— f dx{F(x,Xq)

XD(X,X1)G(X',X1), (9)

whereG andF are the normal and anomalous Green’s func-
tion and u is the chemical potential. Unlike E¢35.2 in
Ref. 10, all the functions in Eq9) depend on the two coor-
dinates, not just on their difference, the operghdérem is
replaced by a one-particle Hamiltoni&h, of general form,
and the coupling constargt is included in the definition of
the phonon Green’s function:

D(x,x')= >, > gXng% (r')D (r—7), (10

a,a’ nn’
whereDﬁr‘]‘,’ is the Green'’s function in the site representation,
which can be expressed in terms of eigenvecBﬁj%(n) and
eigenvalue&;i of the dynamic operator matrix:

'Q s BY(mBL)(n")

Do (Q)=— —, 11
nn ( ) \/m S QZ+0)§ ( )
M, is the mass of thenth ion, and() is the Matsubara
frequency.

In order to determind., we must linearize Eq(9) in

depend on the nature of the high-frequency bosons, we ha\f_e_ If we rewrite these equations in the symbolic form

used the Hashberg equations for the case of electron—
phonon interaction. Their structure is, in fact, identical for
any bosons with frequencies small in comparison to the
Fermi energyer . This statement especially applies to the

limit of local interaction(Sec. 3, in which no specific infor-
mation about phonons is essential.
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we note thatG is the Green’s function for the operator in

parentheses and can rewrite the second equatigh2nas Dw(r,r’)m5(r—r’)f dr'D,(r,r'), (18
F=—-GFDG. In the explicit form, after transformation to
the Matsubara representation and complex conjugation,
have

wibe integral on the right-hand side is zero because the inte-
gral of g,(r) vanishes since the deformation potential is gen-
erated by redistribution of charges and can be described as a
+ N superposition of fields generated by dipoles. In the rigid-ion

Fo(rr)= T% fdrlf dr2G-o(rs.n approximation it follows directly from Eq(8). The local

approximation is resonable from the physical viewpoint be-

+ !
XDa(r1,r2)F,—a(ri,r2)Gu(ra.r'). (13 cause the expression far, is, in effect, determined by the
Let us introduce the order parameter integral in Eq.(18) over the regior{r'|<kz", wherekg is
the Fermi momentum. This can be proved by taking the re-
A (r,r')= —TE F o(rr)Dg(r.r"), (14) sult for the spatially homogeneou; case in.Ref. 2, Ch. 4.
Q If we assume the approximation described by Edp),

we haveA (r,r')=A_(r)é(r—r"), and Eq.(15) takes the

and rewrite Eq(13) in the form
form

Aurr)=-T2 fd“drzD“’*w’“'r') AN=TS vmwr)fdr'Kwr(r,r'mwf(r'), (19

XG—w’(rllr)Gw’(rZ1r,)Aw’(rllr2)' (15)

where
In Egs.(13)—(15) Q is the boson frequency, and and o’ L , ,
are fermion frequencies. Note that E@.5) contains only Ko(r,r) =G o(r',nG,(r'n. (20
renormalized Green’s functions. If the system is invariant under time reversal, the kernel
K,(r,r") is symmetric with respect to the exchange @ind
r' and is positive. If forG,(r,r’) one-particle Green’s func-

3. THE LOCAL-INTERACTION LIMIT tions are used, the following sum rule applies to the kethel:

Equation(15) has a form similar to that of the Gor’kov f dr'K,(r,r')= T N(r), (21)
equatiort®!! and reduces to the latter if two approximations o]
typical of the BCS theory are used: whereN(r) is the local density of states at the Fermi level,
Dy_o(r,r')==V, _(r)d(r—=r"), (16)
o . N(H)=2 [ihn(1)]?8(ep— en), (22
Vw,w/(r)—>V(r)0(w—|w|)0(w—|w'|) (17) n

[as a resultA (r,r')—A(r) 8(r — ') 8(@=|w|)]. Equation determined by the one-particle eigenfunctiongr) and ei-
(17) means that the spatial dependence of the cut-off fregenvaluese, . Wl'Fh due account_ o_f. interaction effects, _Eq.
quency is ignored, and it will not be used further. This doed21) can be conS|dered.as a definition of the local QenS|ty of
not cause any complications because all the relevant equtatesN(r). In the spatially homogeneous case this param-
tions can be solved by removing the logarithmic singularity€ter (independent of ) enters in the BCS formula.
(Ref. 2, p. 90.

The approximation expressed by E#6) corresponds to
the physically transparent local-interaction limit and has sev4- THE EXPRESSION FOR T. IN THE CASE OF LOCAL
eral advantagesa) it yields simple and easily understand- SPATIAL INHOMOGENEITY
able results;(b) it does .not demand a specificat_ion Qf the Suppose that the system varies as a functiom, cdnd
Fermi surface shapéc) it does not demand detailed infor- the inhomogeneity is localized in the regidrj=<d. Since

mation about the electron—phonon interaction since, in fact, (r) is independent of the longitudinal coordinate Eq.
an interaction constant (r) which is an arbitrary function (1‘6) takes the form

of the frequency and coordinates is introduced into (#6),

and so the generalization to other types of interaction is pos- _ f A , )

sible; (d) the structure of the expression fog is identical to A@Z) dZ'Q(z.2)A(Z"), 23
that derived from the Gor’kov gquatlon, and earlier reSofts whereA=(A, ,A
can be automatically generalized to the case of the cut-off
frequency depending on coordinates. The absence of the ef
fect of the excitonic mechanism to lowest orderaifl. can A(Z2)= ¢+ Ay(2), (24

also be proved with due account of the nonlocality, but th%here the functiony is independent of andAq(z) is local-

expressions in this case would be too lengthy. . . : _ o :
We should stress that the local interaction limit is alozt()at(;ilr? the regiorjz|=d. Substituting Eq(24) into (23), we

physical approximation and cannot be introduced by a math-
ematically rigorous procedure. In fact, if the function
D,(r,r') is assumed to be short-range and expressed as

oy .). If thesystem transverse dimension
atisfiesL < ¢, the solution can be sought in the fdtin

!/Ff dZ'Q(OOJ’)!Hf dz'Q(,2')Ao(2"), (29
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Ao<z>=f dz'[é(zz')—é(oo,z')]wf dz[Q(z.2)

—Q(%,2')]A(2)). (26)

In deriving these equations we have taken into account that

for |z|=d the kernelQ(z,z’) is independent of and equals
Q(e,z"). The sum rule(21) implies the estimat&®~ 1/L,
and the second terms on the right-hand side of E2f$.and
(26) are small ~d/L. In order to calculateT, with to

~d/L inclusive, we can omit the second term on the right-

hand side of Eq(26) and substitute the resultit,(z) into
Eqg. (25). Given thatK («,z')~L " 1fdzK,(z,z'), we ob-
tain with due account of Eq21) an equation for in the
explicit form

L(w,w")

ww:ﬂ-Tz W o' (27)

’
w

L(wvw,)szfw’(oo)N(oo)
1 1
+Efd27rT§ o'l Vo (©)N(2)

X[V (ZIN(2) =V yr— o (2)N(0)]. (28)

Equation (27) can be solved by removing the logarithmic
singularity? By taking advantage of the fact that the sum-

mation over Fermi frequencies yields

- 1 | 1.140 29
_— n —’
™ ol T
we transform Eq(27) to
Ao
lﬂw=L(w,wo)¢wo In T +f(w), (30
wherewo= 7T, and the function
L(w,0") i,
flw)==T 2 %
lo'|>o o]
L(w:w/)lﬂw'_l—(w'wo)%
+aT >, . ¢ @31
lo'|<o |’

is introduced. After settingg= wg andL (wg,wq)~L(0,0) in
Eq. (30), we have the expression far:

T.=1.14pe MO0 (32)

wherew is defined by the conditiof(wg) = 0. After replac-
ing summation by integration in Eq31) and substituting
¥, in the lowest-order approximatidm.e., neglectingf ()
in Eq. (30)], we obtain forw

no=——— fx In o[L(00)L(0,0],dw. (33

L(0,07 Jo
Substitution of Eq(28) into (32) and(33) and expansion in
terms ofd/L yield the variation inT, relative toTq in the
spatially homogeneous system

oT
oo [ dnmn@IwENG Wl (3
c0 0
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FIG. 2. Typical behavior of the parametéf,(z) as a functions ofv deep
inside the metal film £=«) and on the metal—dielectric interface=0).

here A g=Vy(°)N(®), Wy=W(x)=Vy(), and the func-
tion

W2)=Vo(2)~2N(=) [ “do In [V, 20V, (2],
35

is introduced, wherev is calculated in the zeroth approxi-
mation,

l o
— 1 )
In w= Vo()? fo do In 0[V,(*)7],, (36)
corresponding to a spatially homogeneous sysfemthat
Teo=1.14w exp(~1/\g)]. If V,(2) is a step function of the
frequency,

V(2)=V(2) 0(o(2)— o), (37)
it follows from Eq. (36) that w = w(«), and Eq.(35) yields

min{a(=), a(2)}
o))

For w(z)=const we haveW(z)=V(z), and Eq.(34) be-
comes identical to the result obtained in Ref. 7. It becomes
clear that the spatial dependence of the cut-off frequency
does not change the structure of E84), but only replaces
V(z) with a more complicated functiow(z).

For a Ginzburg sandwich, the main contribution to the
integral in Eq.(34) comes from the regiohz|<a near the
interface, and the relative variation ®f, is ~a/L. It is es-
sential that the functio¥,(z), which contains information
about the exciton frequenay,, at |z|<a (Fig. 2), is multi-
plied in Eq. (35 by the functionV (=), which decreases
fast at| | = wpn. As a resultwe is not included in Eqs(34)
and (35), which determineT.. In the approximation de-
scribed by Eq(37), this directly follows from Eq(38). This
approximate result holds for all orders kg [Egs.(34) and
(35 were derived via iterations in this paraméteBpecifi-
cally, consider the eigenvalue equation

W(z)=V(z)|1+Ag In (39

Vw_w,(OO)N(OO)
Vlﬂw: WTE T W' (39)
Yu. A. Krotov and I. M. Suslov 398



which is identical to Eq(27) for a spatially homogeneous a

system atv=1. If »(T) is the maximal eigenvalue of Eq. ST
(39), T¢o is determined by the condition(T¢o) = 1. Let i, 7:; ]
and ¢, be the solution to Eq39) and its adjoint solution at
v=1. Then the perturbation calculation in the parameter
~ d/L in Eq.(28) yields
0Te=————— | dzZWyN(2)[W(Z)N(2)—W, k! AN d
c V(Tco)KLI WoN(Z)[W(Z)N(z) —W;Ng] 0 2
(40)
with the functionW(z) defined by the equation 3
Ao
W(z)= —— 7T
7T 0] TN (Y,)? b
or,
w " T
xz |'/’ 7 TE ’/I vw,,_w (2), (42) @i ,
. -
using_tzw=|w| *z/xm. It follows from the analysis of Eq39) 5 !
that ¢, decreases rapidly as a function ef beyond wy,, - ? P e—
therefore the summation over the frequency in Bt is ~k /K \\_//—__d
limited to the region|w’|S wpy, |0"|<wp, and the fre-
guency we, in the functionV,»_,.(z) does not affect the 3
final result.
5. ESTIMATE OF THE GINZBURG EFFECT
By iterating Egs.(25) and (26) up to second order in o, ¢
d/L, 0.14 i
Pb--Si
l,[lzf dz’Q(oc,z’)z/th dz’f dz’'Q(,z")[Q(Z',Z") 0 . . _
10 20 30 d. A
_Q(oo,zr/)]w_i_f dz/f dznf dZ’”é(OO,Z,) -0.11
X[Q(Z",2") = Q(,2")][Q(Z",2") — Q(>,Z") ] ¢, -0.21 Pb—C
(42) \\O\u-__a
we obtain Eq.(27) with a functionL(w,w") differing from 03 Pb-Ge
that defined by Eq(28) by an additional term~(d/L)?,
which leads to a second-order correctiontia FIG. 3. (a) CalculatedT,, in a metal—dielectric sandwich as a function of the
dielectric thickness for a narrow-gap dielectrid  er<eg); curvesl, 2,
oTc 1 1 , and 3 correspond toW; /Wo>7/2, 312<W, /W,<7/2, andW, /W,<3/2;
Teo). Mo Vo(=) L dz'dZ'N(z')@T (b) similar curves for a wide-gap dielectrit)& e¢) in the casegcurve 1)
¢ W IWo>3kikZ, (20 3k3KkE>W, /Wo>3k3/k2, and (3
Vv, Wy /W< kS/Zk,zz ; (c) experimental curves of . as a function of the dielec-
X D | Tz [V, (2K (22" tric thicknessd in Pb—Si, Pb—Ge, and Pb—C sandwickes.
V ()
~Var—ur()K yr(2,2)] TE T T
X 20 V(2K (Z',2)V,(Z"). (44)
X[V o or(ZYN(Z") =V o yn(2)N()]. (43 lol>w

The summation ovew’' and »" is limited to the region If the local density of statebl(z) in the sandwich(Fig. 1)
|o'|,|]0"|<w~wy,. By performing the summation with varies near the interface faster the(z), then, using the
logarithmic accuracy and separating the contribution of thesum rule, we can assume that

high-frequency region, we obtain the chang& jdue to the
exciton-mediated interaction:

g

7Ny
Ko(2.2)=r—C 6(2)6(2'), N(2)=No(2); (45
T_o):fgt

lw|L
Vo(oc)f dzZ’dZ’'N(z" )N(z2")T
hence
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5T, 1 N3 (L L V,(2)V,(Z") In this caseqy=~Kkp, and the limits of integration in Eq.
T, TN2 fo dz fo dZ"7TT‘ T ol (50) are close. By assuminge=k, and expanding in terms of
€O/ ex 0

|l g Kelko, we obtain forW, /Wy~ k2/k2
Since the integrand is a logarithmic function of the cut-off f W K2
frequency, Eq(46) is valid in a fairly large region. In the (Wl— z—koz) ked, kod<< kelkg,
simplest case, when 0 F
V00(w h—|w ) Z>a 2m k'2: 1
_ p ’ ' -5 3
Vw(z)‘[vlewex—wn, 2<a, “n 3 K5 (kod)?
oT 1 16kpwW, 1
we have _c:_“__g_l_g, kel/ko <kod<1,
2 \2 Teo  Nokel 9 kg Wo (kod)
e} _(a)" Vi In 2ex (48) 3 2
Teo L V_zo ‘Uph. E E % 2_kF —
ex 3 2
. o . . 3 ko \ Wo 3kp
Since it is unlikely that the coupling constant for 2
high-frgquency excitation; is !arger than for' Iovy-frequency _ 8_77 k_; e 2od kod>1.
excitations {,), the contribution of the excitonic mecha- \ 3 kg
nism given by Eq(48) is always smaller than the main con- (52)

tribution ~a/\ oL determined by Eq(34).
Similarly to the previous case, depending on the ratio
W, /W, the functionT.(d) has one of three typical shapes
shown in Fig. 3b. It is remarkable that all three types of
curves were recorded by Orl@t al'*in Pb—Si, Pb—Ge, and
Pb—C sandwiched=ig. 39. Since the experiments obviously
Let us perform calculations with E¢34) using the sim-  satisfyU~ g, the experimental curves present an interme-
plest model: the functiohV(z) is piecewise continuous and diate case between the curves of Figs. 3a and 3b.

6. MODEL CALCULATIONS TO FIRST ORDER IN a/L AND
COMPARISON WITH EXPERIMENTAL DATA

takes the value®Vy andW; in the metal and dielectric, re- Note that forw(z) = const, whenN(z) =V(z), holds the
spectively, and the electronic spectra of these materials a@ndition V>V, which is intuitively obvious, is insuffi-
determined by the equations cient for increasingl’. . A stronger condition is necessary:
k2 k2
em(K) om’ ep(k) om U, (49 £> oo 3/2, U-—ec<ep, 53
VO U/ZEF y U > EF y

whereU> e andeg is the Fermi energy in the metal. For a
thin layer of dielectric with thicknesd inside a metal plate

with thicknessL, the expression foN(z) has the form which is very limiting in the case of a wide-gap dielectric.

The point is that fol (z) = const a spread of the step in the
m ko q ) function N(z) defined by Eq(45) has a negative effect pro-
N(z)= 2m)? fq dq k H(kv'q'z)|k:\/k§—q2’ (50) portional to § [see Eq.(34)]. It can be compensated for by
° the positive effect- 6(V1—V,)/V, due to the increase in the
where constantV in the dielectric, and in this case conditi¢s3)

Qo= /—k(z)—k,zz, k0=\/m, with C>1 holds.

and the functiorH (k,iq,z) is defined by Eq(22) in Ref. 9.
Consider two limiting cases corresponding to a narrow-gap, .\~ UsioNs
semiconductor and a wide-gap dielectric. '

(@ 0<U~—ep<U. The issue of the efficiency of the exciton-mediated pair-
The result forU—er and qo—0 coincides with the jng in layered structures has many aspects, most of which
qr—0 limit in Eq. (24) of Ref. 9: have not been discussed in the paper, namely, whether there
5T, 1 W, are appropriate excitons in the dielectric, whether they pen-
= —= P;(kod) + Py(kod) |, (51) etrate into the metal film to a sufficient depth, whether the

Teo  Nokel [Wo excitonic exchange leads to attraction between two electrons,
where the functiond?,(x) and P,(x) are those plotted in how strong this attraction sufficiently is, etc. The main con-
Fig. 2 of Ref. 9. This result for finite but smatdj, differs  clusion of our study is that, even under the most favorable
from Eq. (51) only in that ford=q, !>k, ! the algebraic conditions, when the answers to all the above questions are
approach to a constant value ds-~ described byP,(x) positive(as a result of whichT . should be high &t ~a), the
and P,(x) is replaced by an exponential behavior. Depend-effect of exciton-mediated pairing would not be detectable at
ing on the ratioW, /W,, curves of one of the three types L>a. Therefore the failure of all the attempts to detect it in
shown in Fig. 3a are realized. sandwiches does not mean that its search in quasi-two-

(b) Us>er. dimensional systems should be abandoned.
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Spin dynamics of the muon in muonium in normal metals
A. N. Belemuk, Yu. M. Belousov, and V. P. Smilga

Moscow Physicotechnical Institute, 141700 Dolgoprudnyi, Moscow Region, Russia
(Submitted 25 July 1996
Zh. Exsp. Teor. Fiz111, 730—-736(February 199y

The question of the charge state of the profthe positive muohin metals is of fundamental
importance for the theory of metal hydrides. The theory developed here permits
determination of the charge state @f in normal metals. The experimental possibilities of the
observation of Mu atoms in metals at various strengths of the external magnetic field and
various temperatures are analyzed. 1897 American Institute of Physics.
[S1063-776(97)02502-X]

1. The charge state of the positive muon in metals orjarization precession. Investigations at very low temperatures
equivalently, the state of the proton is a question of vital(T<0.1 K) have become commonplace.
interest primarily in connection with the attention that has  Even if Mu atoms form in a metal, the hyperfine splitting
been attracted by metal hydrides. However, this problem hakequencyw, of the Mu atoms in a metal should differ sig-
not yet been solved theoretically or experimentally. More-nificantly from the vacuum valuey§**=2.8x 10" s™%, be-
over, even if it is assumed that the proton does not form gause of the shielding by the conduction electrons. We intro-
chemical compound with lattice atoms and is localized induce the dimensionless parameter=wq/wy™®. When
some interstitial site, it is not clear whether it forms a bounda~ 102, the “diameter” of a Mu atom in a metal is of the
state with a conduction electron of the metal, i.e., whetheprder of 5 A, which significantly exceeds the lattice con-
there is a “local level” for an electron. It would be strange if Stants for all metals. Evaluations give the typical

such a bound state were absent from all metals and especial@lue @<1072-10"" (0=3x10°-3x10° s, hwg

. -2
from semimetals. <0.2}107°- 0.02 K. o

Thus, the entire problem is of general significance to  Since at th_e |n|t|al_moment in time an ensemble of muo-
solid-state physics. nium atoms is an incoherent mixture df-)|+) and

It is presently tacitly assumed in the analysis of the re] —)|+) states, the polarization of the muon spin in a zero
sults of xSR experiments that the muonium atom Nthe gxternal field, disregarding the interaction with the medium,
bound charge statg"e™) is absent in metals. In fact, the is clearly
precession of muon spin polarization with a frequency close
to the precession frequency of muon spin polarization in a  P(t)=[1+cog wet)]P(0)/2. (1)
vacuum heretofore has generally been obsefsed, for ex-
ample, Refs. 1 and)2The only exceptions are the experi- Oscillations occur because the initjat)|+) state is not an
ments in Sb, in which an anomalously large frequency shifeigenstate of the spin Hamiltonian.
was observed in the temperature rad@e< T< 300 K. How-

ever, since this Sr,"ft IS propo.ruonal to _the f'EI,d upBe-9 behavior ofP(t) can change drastically. Let us determine the

kG, it is naturally identified with the Knight shift. real conditions under which the observation of “spin muo-
2. As is generally knowrt;? the precession of muon spin nium” is possible. Before proceeding to an analysis of the

polarization with muonium frequencies may not be observegossibilities of the experimental observation of Mu atoms in

even in the presence of Mu atoms. a metal, we write the relaxation equation for the spin density
In fact, because of the high exchange frequencies withmatrix of muonium. In a metal the electron spin relaxation of

conduction electrons dt>1-5 K, the hyperfine interaction muonium is governed mainly by exchange scattering on

in the Mu atom is “broken,” and the “bare” muon* is  electrons of the medium; therefore, the approximation of

effectively observed, i.e., it can be stated that “spin muo-short correlation times is applicable for the relaxation equa-

nium” is absent even if “Coulomb muonium” is present.  tions. In this case the basic relaxation equations have the
Equations describing the behavior of muon spin polar-l°0rm2’6

ization when muonium atoms form in a metal were derived

in Ref. 5. Recommendations for the experimental identificap, =~ i

tion of Mu atoms were also given in that paper. However,TJr g[HoJFF,P]mn

several experimentally important ramifications were not pre-

sented in Ref. 5, partially because the authors restricted the _2 homi

analysis to only the experimental possibilities for the instru- £ L mkin(@in) +Linmid @m €xpl — T

mentation available at that time. During the past 20 years the

possibilities for uSR experiments have expanded signifi-

cantly, primarily in regard to the temporal resolution of po-

3. When there is an interaction with the medium, the

Pkl

ﬁwkl
_kakl(wm)eXF{_?)Pm_rknlk(wm)llm], 2
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where H, is the Hamiltonian of muonium,w,=(E, Where

—E))/h, Ey is the spectrum of:lo, and the coefficients are T
determined by the operator for the interaction of muonium V= 7

SJ)Z
— T.
with the heat reservoiv:

eF

In this case the relaxation equation reduces to the simple
™ Wangsness—Bloch equation, whose Hamiltonian should take
= = ’ ’ ’ + 2 . . . . .
Fmin( @1n) ﬁg, Vmaka'Via'naPa’ a®(@int @ara), into account the effective renormalization of the magnetic
' (3)  moment of the muonium electron:

A U A A
ka:p E Vma|a’vla’kapaa(w|n+wa’a)il' (4) p+%[Heff'p]:§(O'ep0-e—3p) (10)
a,a’l

Here w,, =(e,~e./)/% [e, is the spectrum of the heat In the low-temperature rang€<0.1 K the relaxation
reservoir(the conduction electrons of the m@fathe symbol ~ €guation is very compllcat&how_ever, it can be solved _
¢ indicates that the surd) should be understood in the OVer the entire temperature range in a zero external magnetic
sense of a principal value, apd, ,= 8, .exd(F—&,)/T ] is field. Let us first consider the case of small effective ex-
the density matrix of the heat reservoir. change frequencies I <wo), in which oscillations of

We write the operator of the spin-exchange interactiorthe polarization with the hyperfine splitting frequency should
of a muonium atonfa paramagnetic impuriywith the con- ~ be observed. If the terms of ordefw, are disregarded, we

duction electrons of the metal, as usual, in the fofm can write the polarization in the form
o P(t)~ » ! t P(0), (11
V= - 2 Sesxa,k’o’a;—gak’a’i (5) (t)= > exp — 7'_1 +exp — 7_—2 cod wgt) |P(0), (1)
kok'o’
whereJ is the exchange coupling constang, is the density where
of the conduction electrons, arsd ands, ', are, respec- v fhwg hwg
tively, the spin operators of the muonium electrons and the 71 =5| 1+ 57 coth o7 | (12)
medium. It is clear that sincé,,,, # 0, we assign the part
of the interaction that is diagonal with respect to the heat — _; _ fiw ho
. - 9 b ) =T y—— coth—=. (13
reservoir to the Hamiltoniatdy, and we should substitute 4T 2T
V=V—=Vy, where ¥g) mn==sVmanaPaa  iNto Egs.(3) and As can be seen, wheh—0 (T<#%w,), the depolariza-
(4). ) ) . tion rates of the nonoscillating and oscillating components
After some fairly cumbersome mathematical manipula-tend to constant values:
tions, we obtain the expression for the relaxation coefficients
(3) T3\
=\ T2 =27, . (14)
7 (3J)2 haon F
Pin(@in) =5 e @n €Ot —==SniSin » (6)  Accordingly, for wo=10® s * andJ/er=0.1 we obtain the

. _ _ _ appreciable valug; '~3x 10" s™?, and forJ/eg=0.01 we
and the expression for the matrix, which determines the emaye r; 1~3x10° s 1.

ergy shift, retaining only the main terms: If hwo/T<1, we obtainr; '=v and 7, *=3v/2.
3/ 37\2 We note that the muonium electron spin relaxes in the
an%Z E) er0mn- (7)  stochastic nuclear fieldh~1-5 G (muon spin relaxation
F

can be neglected in stochastic nuclear figlds a rate of
The part of the interaction that is diagonal with respect to theorder | y,|b~10"-5x 10" s~ 2. Since the spin-spin coupling
heat reservoir is determined by the polarization of the elecin a Mu atom is not “broken,” this damping will be trans-
trons of the metal. In fields that are not very strong we havderred to the muon. Therefore, the experiment should be car-
3 ried out in metals with zero nuclear spif®r example, in
Vd=—2Mo(—) s B, @  Mg*? Ti*®4850 etc). Most metals have stable isotopes
€F with zero spin(see, for example, Ref.)9Experiments in a
whereu, is the Bohr magneton. We see that the energy shifZ€ro magnetic field probably are the simplest way to detect
(7) is inconsequential in our case, since it does not influenc&uonium.
the hyperfine structure of muonium, and that the correction 4. Let us now consider the high-temperature range
(8) effectively reduces to renormalization of the magneticT>#%w,% w,, in which the relaxation equation reduces to the
moment of the muonium electron. The sign of the correctiorwangsness-Bloch equation. The solution of Ed) for the

is opposite to the sign of the exchange integral. transverse polarizatioR, = P,+iP, gives
Under the conditionT>|%w,,|, which holds even for 4 \
i i i wot
vacuum muonium aff>1 K in the f_leldsB<1O4 G, the PJUZE A exr{ k®@o . (15
relaxation coefficients have a very simple form: K=1 2
T kin™ YSmiSin » (9)  Here the\, are the roots of the characteristic equatioH*
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(N+a)(A+a+y)(A+b)2+ (2 +a+b) wherew,,= woy1+x? and r; 1= v/(1+x?).

X(2N+a+b+y)=0, (16) 5. It would be interesting to investigate the mean longi-
tudinal polarization
where a=2i{x, b=y—2ix, {=1/207, y=4v/w, and

X= ol wy.?) 1 (= t
We solve Eq(16) for x,y<1 (i.e., v<wg, w<wg). For (P)= T—f exp( - —) P)(t)dt. (21
v~10°Ts ! and a~10"2? this condition requires 0 T

T~0.01-0.1 K andB~ 5 G. In the solution we disregarded

{x in comparison toy andx. Herer,=2.2X 10 8 s is the mean lifetime of the muon. We
Let y<x. Then obtain
i wt vt
P, (t)=exp — vt)exp{T)[exp{ -5 cog wqt) (P)= 1 lo) 22
1+7,v 2 °
1 @
t3 ex;{ - 4_wot +exp(— ) The temperature dependence(&{(T)) (at T~0.01-0.1 K
5 permits refinement of the value of the exchange integral.
><exp( i w—t) }PL(O). 17) As was pointed out in Ref. 12, the search for Mu atoms
4wg 2 in superconductors, in which the density of electrons with

We note that the last two terms, which correspond to theunpa|red spins decays with the temperature according to the

triplet-triplet transitionsw,, and w,3, respectively, decay at exponential law expfA/T), is very promising. It can.be ex
. . . pected that the frequenay of muonium electron spin flips
different rates. Whery—0, Eq. (17) gives the muon spin - : . :
AN . . will behave similarly if the local distortion caused by a
polarization in "vacuum’ muonium. single paramagnetic impuritymuonium aton is smaller
Let y~x. Then \j,=—3y/4+i(x£2), \g=— /2 ge p gn puri
. 5 e 2 T than the correlation lengtj in a superconductotsee, for
+ix(1—x4/2), and\ ;= — y+ix(1+x“/2). The polarization
example, Ref. 18 It was also noted there thatSR can be
now has the form S )
used, in principle, to measure the energy gap wiklttMuo-

i wt vt nium was first observed in the compound;Rbg in Ref.
P, (t)=exp(— Vt)eXF< 7) ex;{ - ?) cog wot) 14. Muonium has since been observed in various
fullerenest®
1 ﬂ) ex;{ i “’_St i o 6. The situation in whichv> w, is most widely encoun-
4y 4w§ 4v tered. It has been investigated in detail, for example, in Refs.
P.(0) 1, 2, and 5. We note that in the limit where the Wangsness—

(18) Bloch equation is validfor example,B=10°-10° G, T=1
K), the longitudinal polarization decays exponentially with
the characteristic raté"®

2

3
Xexp — vt)exr{ i —zt)
dwg

We note the fundamental difference between the last tw
terms in Eq.(18) and the corresponding terms in Bd.7).
First, at frequencies corresponding to triplet-triplet transi- 71 = vwo/(41°+ w?+ ), (23
tions, an addition that is cubic with respect to the field is
observed instead of the quadratic addition, and, second, thghich has the maXimumrgix=l/(4\/m§) at the tem-
form of the amplitudes corresponding to these transitions igerature
altered.

In the case ok< vy, we have 7 (

vt
exp{ - ?) cog wot)
. For example, wherB=100 G, we haveT*~1 K and
+exp( _ 1wt} 1P.(0) _ (19  Tma—10' s and wherB=10’ G, we haveT* ~10 K and
2 2 T~ 10° 571, The characteristic temperature dependence of
Oscillations of the polarization with a frequency of order the depolarization rate of the longitudinal polarization was
wq Will be observed fow<<wg and for longitudinal polariza-

2
* 8_': 2 2
T 5 3J) Vo<t wg.
P, (t)=exp —vt)

presented in Refs. 1 and 2. For the “bare” muon the relax-
tion. When »~1CPT s %, the necessary conditions are ation rate of theillongitudinal. poIar!zat.i(.)n is of order
T~0.01-0.1 K andB~50 G. We hav&® yﬂb~105—5>< 10° s~ ! and thus differs significantly from the
rate in the case of “Coulomb muonium.”

A different effect associated with the formation of muo-
nium in metals is observed in strong magnetic fields
(Aw>T). In the fieldsB~10°-10* G this limit is achieved
Py(0) (20 at T<0.01 K. The precession frequency of the transverse

2 polarization(see Ref. b

PIV= 150

t
(1+ 2x2)exp( - —
-

1

+ eXF( - 2Vt)C03 (1)24t)
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Q, =¢w+ wy2 (24 YSome very recent experiments performed to study the temperature depen-
dence of the muon spin depolarization rate in Sb single crystals showed
that Mu atoms nevertheless fofm.

2We note that in Refs. 5, 10, and 11 the roots of the characteristic equation

differs from the precession frequency of the “bare” muon were calculated with a smaller accuracy.

by the shiftwg/2~10° s~ when a~10"2. Since the best

results r%ggrldlng the re.SOIUtl(_)n of the prgcessmp frequenCyYu. M. Belousov, V. N. Gorelkin, A. L. Mikalyan, V. Yu. Miloserdin,
Aw~10" s were achieved in the experiments in Ref. 16, and V. P. Smilga, Usp. Fiz. Nauws, 3 (1979.
the indicated possibility of measuring the frequency shift *The Muon Method in Science (Proceedings of the Lebedev Physics Insti-
wo/2 can be easily achieved. tute, Academy of Sciences _of the USSR, Vol.,219p. Smilga and Yu.
. . . . M. Belousov(eds), Nova Science, Commack, N.Y1994).

In conclusion, let US_ examine the condlthns_gnder which 30. Hartmann, E. Karlsson, L. O. Norliet al, Hyperfine Interact4, 828
second-order perturbation theory can be significant at low (1978.
temperatures <1 K) when the scattering of a conduction “T- M. S. Johnson, K. H. Chow, S. Dunsiger al, in Proceedings of the

electron of the metal on a muonium atgthe Kondo effegt ~#SR96 Conference, Nikko, Jap@ro96. L ,
. id d. Usina the Born approximation. we should cor- Yu. M. Belousov, V. N. Gorelkin, and V. P. Smilga, Zhk&p. Teor. Fiz.
IS considered. g pp : 72, 2189(1977) [Sov. Phys. JETR@S, 1150(1977)].
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Magnetically stabilized electron—hole liquid in indium antimonide
I. V. Kavetskaya, N. V. Zamkovets, N. N. Sibeldin, and V. A. Tsvetkov

P. N. Lebedev Institute of Physics, Russian Academy of Sciences, 117924 Moscow, Russia
(Submitted 12 August 1996
Zh. Eksp. Teor. Fiz111, 737-758(February 199y

Luminescence spectra of sufficiently puretype indium antimonide crystals
(Np—Na=(1—2)-10* cm 3) in a magnetic field of up to 56 kOe, at temperatures of 1.8—2 K,
and high optical pumping densitigsore than 100 W/cf) have been studied. More

evidence of the existence of electron—hole liquid stabilized by magnetic field has been obtained,
and its basic thermodynamic parameters as functions of magnetic field have been measured.
When the magnetic field increases from 23 to 55.2 kOe, the liquid density increases from
3.2:10% to 6.7-10* cm™ 3, the binding energy per electron—hole pair rises from 3.0 to 5.2

meV, and the binding energy with respect to the ground exciton [gwaik function of an exciton

in the liquid) rises from 0.43 to 1.2 meV. €1997 American Institute of Physics.
[S1063-776(197)02602-4

1. INTRODUCTION than the exciton binding energy, should be formed. The main
contribution to the binding energy, is due to spatial correla-
The formation of an electron—hole liquid in a semicon-tions between particles populating different equivalent
ductor is possible if it is stable against decay into free exciminima of the bands in the multivalley semiconductors with
tons, i.e., when the binding energy per electron—hole pair isufficiently large numbers of valleys, or in neighboring con-
the ground state is higher in absolute value than the excitoducting wires or planes in quasi-one-dimensional and quasi-
binding energy" two-dimensional structures, respectively, or on neighboring
Theoretical calculations indicate that in a model semi-Landau cylinders under strong magnetic fields. The correla-
conductor with simple isotropic and nondegenerate bands &ion energy in such systentthe exchange energy in the con-
sufficiently low temperatures, the ground state of a system afidered density range is much loywearan be expressed in
nonequilibrium carriers with a moderate density of electron-terms of the asymptotically accurate formula
hole pairs (1<a;x3, whereag, is the exciton Bohr radiyds _ 14
. . . : Ecor= —AN~%, (1)
a gas of noninteracting excitofi$.In real semiconductors corr
the liquid phase is energetically favored, owing to variouswhereA is a factor that depends on the nature of the system
stabilizing factors. For example, in polar semiconductorsand features of its band spectrdhf? This formula for
such as GaAs, CdS, etc., the liquid state is stable because Bf,,, allows one to derive simple analytic expressions for the
interaction between charge carriers and longitudinal opticatlensity and energy of the ground state of a highly com-
phonons®~® In germanium and silicon, traditional materials pressed electron—hole liquid in such anisotropic systems.
for studies of electron—hole liquid, in which it has been stud-  This paper describes an experimental study of electron—
ied comprehensively, the liquid is stable owing to the highhole liquid stabilization due to a strong magnetic field. It is
orbital degeneracy of electron states due to the multivalleyoteworthy that this case is formally equivalent to the quasi-
structure of the conductance band in these matefiafiike  one-dimensional case—as the resulting expressions are es-
the multivalley spectrum, any complication in a semiconduc-sentially identical after substitution of the magnetic field
tor electron spectrum favors stabilizatforof the electron—  strengthH multiplied by a factor proportional to the density
hole liquid if it leads to a higher density of states near the topof the parallel wire$? Therefore the main features of a sys-
of the valence band or the bottom of the conductiontem of nonequilibrium charge carriers in quasi-one-
band!14-18 dimensional structures should be roughly consistent with the
The electron—hole liquid in semiconductors and semi-behavior of that system in a strong magnetic field.
metals with a strong anisotropy of the electron spectrum was In a strong magnetic field such that;<ae,, where
studied theoretically in Refs. 21—23. In addition to semicon-ay= V#c/eH is the magnetic length, the exciton effective
ductors and semimetals with multiple valleys, quasi-onevolume is of the order of,a? (such excitons are usually
dimensional (systems of parallel conducting widesand termed diamagnei¢ 29, and the condition of strong com-
quasi-two-dimensionalparallel conducting plangsystems pression of electron—hole plasma is expressed by the first of
with separations between neighboring wires or planeshe following two inequalities?
smaller thara,, have been studied, as well as bulk semicon-
ductors under very strong magnetic fields. It was found that
under certain conditions, a “highly compressed” electron—  Under strong compression, the electron—hole system is a
hole liquid with a density much higher than the reciprocaldegenerate Fermi liquid, and its energy as a function of den-
exciton volume in the respective anisotropic system, andity has a minimum anh=n,. In the ultraquantum limit,
with a binding energy per electron—hole pair much highemwhen the second of the inequaliti€® is satisfied, the equi-

(ag,@?) ‘<n<a;>. 2)
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librium density of a highly compressed electron—hole liquidto its larger faces, and during experiments the sample was
is ny =« H¥ and the energy per electron—hole pair in theimmersed in superfluid helium. The measurements were
ground state i$E(n=ng)|=|Ey| = H?" (Refs. 21, 27,28  made afT=1.8-2 K.
Since the ionization energy of diamagnetic excitons in-  The source of quasi-continuous optical pumping was a
creases with field strength more slowly thak,, cw NB*YAG laser generating a wavelength= 1.06 um
(|[Eed<In?H; see Ref. 29 the stability of the liquid state, with a maximum power of about 1 W. The pumping radia-
characterized by the exciton work function in the liquid state tion was chopped at a frequency of 1 kHz by a mechanical
¢=Eq—Eg, should increase with magnetic field strength inchopper and focused on the wider sample face. The pumping
a strong field. Moreover, in a strong magnetic field the liquidintensity was varied using neutral-density optical filters.
phase may become stable>0) even if it is unstable at The recombinataion radiation was collected either from
zero magnetic field. An electron—hole liquid stabilized by athe face exposed to the laser ligiiack-scattering configu-
magnetic fieldH=20 kOe was found by d8in indium an-  ratior) or from the opposite facétransmission configura-
timonide® tion). This radiation was dispersed by an MDR-2 monochro-
Indium antimonide is the most suitable material for stud-mator with a 100 lines/mm diffraction grating and detected
ies of the effect of a magnetic field on weakly bound elec-hy a Ge:Au photoresistor cooled to a temperature of about
tronic states. The electron effective mass in this semiconduct00 K. In magnetic fields of several kilo-oersted or higher
tor is extremely small, so that in a field of only several kilo- the recorded luminescence spectra were identical in both
oersted the magnetic length is smaller than the excitonigonfigurations; therefore this paper only presents data de-
radius and the electron cyclotron energy is larger than theéived from measurements in the transmission configuration.

excitonic Rydberg. Moreover, the existing growth technol-  |n order to compare the spectral positions of the re-
ogy allows one to fabricate highly regular single crystalscorded luminescence lines with the energies of diamagnetic
with few residual impurities. excitons, we recorded reflection spectra in magnetic field. In

In this paper, we present a detailed study of luminesthese measurement the broad-band source of light was a glo-
cence spectra of fairly pure single crystals of indium anti-par, and the reflected light was analyzed by the same mono-
monide in magnetiC fields of up to 56 kOe, at temperature%hromator as the recombination radiation.
of 1.8-2 K, and higmore than 100 W/cr) intensities of In order to measure the luminescence distribution over
optical pumping, and of the effect of electric fields on thesepe sample volumé&!t3152an additional horizontal slit was
spectra. We have obtained additional evidence for the exisglaced in front of thevertica) monochromator entrance slit
tence of an electron—hole liquid stabilized by magnetic fieldsg that their planes coincided. The wider sample face
and measured its basic thermodynamic parameters. Thgrough which the recombination radiation was transmitted
renormalized band gap and Fermi energies of particles in thg g imaged one-to-one in this plane by a condenser. The
liquid have been derived from the shapes of luminescencgyciting laser beam was focused on the opposite face into a
spectra of the liquid phase. As the magnetic field rises frong,ot about 0.2 mm in diameter at the center of the rectangu-
23 to 55.2 kOe, the liquid density linearly grows from |y image of the opening formed by the crossed slits. The
3.210° to 6.7.10" cm™®, and the binding energy per |yminescence spatial distribution was measured by varying
electron—hole pair in the ground state increases from 3.0 te \idth of the horizontal slit. The width of the monochro-
5.2 meV. At the same time, the exciton work function in the ,5t0r entrance slit was maintained constéibtwas 300
liquid also increases from 0.43 to 1.2 meV. This feature'um) so that the spectral resolution would not change.
qualitatively distinguishes it from the electron—hole liquid in As will be described below, the luminescence line of
germanium, which is stable at zero magnetic field and has @ectron—_hole liquid emerging in a magnetic field under suf-
cons?:[gmt exciton work function in magnetic fields up to 190ficiently high pumping power is superimposed on lumines-
kOe: ) ) cence lines due to shallow donors and magnetically stabi-

Note that the numerical values of the exciton work func'lized exciton—impurity complexegbound excitorns-37:38
tion and density of electron—hole liquid given in this papertpege three lines overlap and form a relatively wide spectral
are slightly dn‘feren_t from those in our earlier publicatith, range(which is structureless at the highest pumping power
since the data of this paper were derived from measurements, o cannot be resolved using conventional techniques. In
with due account of the Landau level broadening and th%rder to separate the liquid luminescence line, we used two
complex structure of the valence band. methods: the differential technique with low modulation am-
plitude of the pumping radiatioff, and application to the
sample of an electric field whose strength was sufficient to

The basic experiments were performed usmdnSb  cause impact ionization of shallow donors and bound
samples with a differential impurity concentration excitons?® The low-amplitude modulation was performed by
Np—Nx=(1-2)-10"* cm 2 and degree of compensation a mechanical chopper with a perforated disk made from pho-
k=50%. Mechanically polished samples were processed itographic film whose emulsion was removed. This disk
CP-4A polishing etchant. Typical dimensions of the samplesnodulated the laser beam with an amplitude of about 20%.
were 5x5x%(0.1-0.25 mm°. The larger faces of the The applied electric field was perpendicular to the magnetic
samples were perpendicular to #11) crystal axis. A stud- field. It was applied using indium contacts attached to the
ied sample was freely suspended at the center of a supercoopposite narrow faces of the samples. In both cases we de-
ducting solenoid so that the magnetic field was perpendiculaiected luminescence from a X®.3 mnf area within the

2. EXPERIMENTAL TECHNIQUES
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laser spot, whose diameter in these experiments was about 1. rel. units
0.4 mm. j
Low-temperature measurements performed at high Lor
pumping powers may be misleading owing to sample over-
heating by the laser beam. In order to test the thermal con-
ditions, we lowered the duty cycle of the pumping pulses
from 1/2 to 1/10. This change did not notably affect the
shapes of recorded luminescence spectra. Since the intensity 0
of the luminescence light due to bound excitons stabilized by
magnetic field is very sensitive to temperatéé® we con-
cluded that sample overheating was insignificant throughout|g. 1. Luminescence spectra in a magnetic fiéld 46 kOe. The pumping
the range of pumping powers used in our experiments. It ipower density(1) P=210 Wicn?, (2) 140W/cn?, and(3) 100 Wicnf. The
known that, even if a bubble of gaseous helium is producedprectra are n_ormalized to equali;e the intensitidsiat 245.7 meV(l is a
on the sample surface at the laser focus, sample overheatiffg®" e !l is & bound exciton line
will not be very hight'=*3(this issue was discussed in detail
in Ref. 2_(). The sample tem_perature increases considere_lbly The behavior of the luminescence spectrum in a rela-
at pumping powers much higher than the bubble formationjyely weak magnetic fieldH <20 kO is markedly differ-
threshold, when the whole sample is surrounded by a gagnt. At higher pumping powers the structure of the lumines-
jacket.™ Under conditions of our experiments with 10w cence spectrum is also blurred. In this case, however, not the
modulation amplitude, overheating affected our results sigfong.wave, but the short-wave edge of the structureless band
nificantly only at pumping power densities higher than broadengFig. 2), i.e., the shape of the high-energy edge of
=600 Wient. the luminescence spectrum demonstrates behavior similar to
that of the zero-field casé:>' At the same time, in the stud-
ied range of pumping powers, no features were detected at
the low-energy edge of the recorded luminescence band that
Without magnetic field, the main luminescence line ofcould be attributed to an induced emission @' under
the studied samples at low pumping powers is entirely in thdéhe intense pumping, contrary to the case of zero magnetic
spectral range below the band g&* Its maximum is at field.®)
hvmac=235.3 meV(the band gap aT=2 K is E;=236.8 In order to avoid misunderstanding, we stress from the
meV*), and its FWHM is about 1.5 meV. This line is due to start that the change in the low-energy edge of the lumines-
the transitions of electrons from the levels of shallow donorssence spectrum in high magnetic field is in no way related to
to the valence band, and its position and shape are controlldge amplification of recombination radiation. Above all, this
by large-scale fluctuations in the concentration of chargeds suggested by the character of changes due to a higher
impurities, which cause bending of the semiconductor enpumping power, the position, and the shape of the long-wave
ergy bandgsee Refs. 38, 44) In a magnetic field, the main radiation band emerging at high excitation intengitge be-
(donop line shifts to shorter wavelengths with increasing low). This statement, however, is confirmed by the aggregate
magnetic field strength, becomes more narrow, and its interPf experimental facts, which have led us to the conclusions
sity drops®”8 In magnetic fields of 5-7 kOe, a narrow lu- presented below.
minescence line due to bound excitons stabilized by the mag- In what follows, we will limit our discussion to results
netic field (BE, line in the notation of Ref. 38emerges in  obtained in strong magnetic fields. Figure 3 shows lumines-
the low-energy wing of the initial line; it dominates the spec-cence intensities as functions of the pumping power, mea-
trum at high magnetic field®3"38Luminescence spectra of sured at high excitation in a magnetic figtt=46 kOe for
one sample recorded at a relatively low pumping power athe three energies of detected photons corresponding to dif-
H=46 kOe are given in Fig. lcurve3) and in the insert of ferent sections of the spectra shown in Fig. 1. One of these
Fig. 5a. energies corresponds to the maximum of the donor line at
Changes in the shape of luminescence spectra due 6w pumping powers Ifr=245.4 meV, the second to the
higher pumping power in strongHE20 kOe and weak
magnetic fields are qualitatively different. Luminescence
spectra in the fieltH =46 kOe recorded at different pumping - 244 246 248
powers are shown in Fig. 1. The intensity of the donor lumi- "0_ ' ‘ ) "
nescence line grows faster with the pumping power density A _| |__
than that of bound exciton&t low pumping powers the -
latter grows linearl§?). At high powers these two lines ol - ) .
merge into a single relatively broad band. Figure 1 also 233 235 237 239
shows that the luminescence spectrum broadens on the long- hv, meV
wave side and develops a “tail” extending to the region of

. . FIG. 2. Luminescence spectra in magnetic fiells 46 kOe (solid line,
lower energies. At the same time, the shape of the Shor{:pper scalpandH = 9.2 kOe(dashed line, lower scalender high-intensity

wave wing of the resf«”ting spectrum is essentially the same,gitation. The pumping power densiB=500 W/cnf. The arrows mark
as that of the donor line. absorption lines of atmospheric water vapor.

0.5}

243 245 247
hv, meV
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FIG. 4. Intensities of bound excitoise (full circles) and donorl; (open
circles lines and their ratidge /1 5 (triangles as a function of the horizontal
slit width d. The pumping power density is about 140 WfgrH = 46 kOe.
The insert schematically shows the luminescence spectrum.

P, rel. units

FIG_. 3‘. Luminescence intensity as a_function of pumping power at hightiplied by a constant so that it could be compared to that
excitation levels for three spectral positioni$) hv=245.4 meV,(2) 244.8 0 . . . .
meV, and(3) 244.2 meV(see Fig. 1L H=46 kOe. The maximum pumping rec_orded a_t 100% modulation amplitude. Spectfijr_n Fig.
power density is about 480 W/émLuminescence was collected from a 9@ is the difference between spectrand?2. It occupies the
0.3x0.5 mnt area centered at the laser focus. same spectral range as the luminescence spectra at low
pumping powerginsert of Fig. 5a In accordance with the
above reasoning, however, the lines of donors and bound
maximum of the bound exciton lineh¢=244.8 meV, and excitons are not resolved in the difference spectr@m
the third one to an arbitrarily selected point of the long-wavewhereas at lower pumping powers these lines are clearly re-
edge of the luminescence spectruhwE&244.2 meV. The  solved in the difference spectrufourve 2 in Fig. 5b. The
curves in Fig. 3 demonstrate that at the highest pumpingrrow in Fig. 5a marks the energy of the transition to the
power the intensities of the don@urvel) and bound exci- lowest-lying state of free diamagnetic excitons, as derived
ton (curve2) lines change relatively slowly, whereas the in- from the position of the long-wave component of the exci-
tensity of the low-energy edgeurve3) is essentially linear tonic reflection spectrum in magnetic fielt®®
with the pumping power. The emergence of the low-energy  Jumping ahead, we note that experiments with electric
tail demonstrating a dependence on the pumping power diffield have demonstrated that at the highest pumping powers,
ferent from those of the initial two components is attributedthe radiation from donors and bound excitons contributes
to a new band on the low-energy edge, which can be isolatelittle to the differential spectrun2 in Fig. 5a, whereas at
from the total spectrum by recording the luminescence intenintermediate pumping power densiti€s40—250 W/crf) it
sity derivative with respect to the pumping powir. appreciably distorts the short-wave wing of the differential
Before proceeding to the results obtained using this techspectrunt®
nique, let us discuss measurements of the spatial distribution We now discuss experiments with electric field. By ap-
of the luminescence intensity due to donokg)(and bound plying an electric field sufficient to collisionally ionize im-
excitons (gg). These intensities as functions of the size ofpact ionization of shallow donors and bound excitons, one
the observed region of the sampleidth of the horizontal can quench luminescence lines due to these species and thus
slit; see Sec. Rare plotted in Fig. 4. These curves demon-separate the long-wave line which emerges at higher pump-
strate that the luminescent region is much larger than thing powers® Figure 6 shows dark current—voltage charac-
laser spot diameter, which 0.2 mm, and since the donor teristics of one sample at various magnetic fields. Owing to
line intensity is a steeper function of the pumping powerthe increase in ionization energy of shallow donors with
(Fig. 3), the intensity ratid e/l increases with horizontal magnetic field?? the sample resistance at fields below break-
slit width (Fig. 4). The data plotted in Figs. 3 and 4 indicate down (at low voltageU across the samplethe breakdown
that at high pumping density, when the intensitigs and  voltage, and the steepness of the breakdown region of the
Ip saturate, the main contribution to the increase in theseurrent—voltage characteristics also increase.
intensities with pumping power comes from the periphery of  The effect of a dc electric field on the photolumines-
the laser spot. For this reason, luminescence from within theence spectrum at an intermediate pumping power such that
laser spot was detected in measurements of the long-wawbe donor and bound exciton lines are clearly seen in the
band emerging at high pumping powers using the differentiabpectrum is illustrated by Fig. 7. At higher voltage across the
technique in order to reduce the contributions of the donosample, the intensities of these lines are lowerUAt 15 V
and bound exciton lines to the differential spectrum. the spectrum contains only a broad band whose shape is
Luminescence spectra recorded at high pumping powesimilar to that of the differential spectru@in Fig. 5a ob-
and 100%(curve 1) and 20%(curve 2) modulation of the tained at 20% modulation amplitude of the pumping inten-
pumping intensity are given in Fig. 5a. The latter was mul-sity, and which has approximately the same spectral position.
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b FIG. 5. Luminescence spectra recorded under
intense pumping in a magnetic figitl= 46 kOe:

(@ P=500 Wi/cnf. The modulation amplitudes
are(1) 100% and2) about 20%. Curv& shows

the difference between specttaand2. The ar-
row shows the energy of the optical transition to
the diamagnetic exciton ground state. Lumines-
cence was collected from an area of 933
mm?. The insert shows the spectrum at low ex-

20

=

! citation (P=50 Wicn?). (b) Difference lumi-
1 ,' ‘\ nescence spectra &) P=500 W/cnt and (2)
/ \ 140 Wicnt (1 is a donor line, 11 is a bound ex-
0 : K \ S citon line).
243 245 247 243 245 247
hy, meV hv, meV

Figure 7 also shows that the electric field has little effect It is noteworthy that donor and bound exciton lines are
on the shape of the low-energy wing of the luminescencejuenched by the electric field at a notably higher voltage
spectrum. At the same time, the intensity of the long-waveacross the sample than that of donor collisional ionization in
band increases with electric field strength. This increase ithe dark(compare Figs. 6 and)7This probably occurs for
clearly demonstrated by the differential spectra recorded bywo reasons. First, the electric field in the excited region is
applying a square-wave voltage with a frequency of 1 kHzikely to be lower than the mean field in the sample. This is
and a 50% duty cycle under cw optical excitation of thesupported by observed data plotted in Fig. 9. As the laser
sample. The donor and bound exciton lines are clearly respot dimension gets larger, the curve of the bound exciton
solved in the luminescence spectrum differential with respedine intensity versus electric field becomes steeper, and com-
to the electric field(Fig. 8. The signal at these lines has a plete quenching occurs at a lower voltage. Second, the elec-
positive phase, corresponding to an intensity decrease causgit field at which donors are almost fully ionized is known
by the electric field. The negative signal at the long-waveto be several times the breakdown figfd* These two fac-
edge is due to an increase in the long-wave luminescenders probably prevented us from observing quenching in an
intensity. Its absolute value grows with the pumping power electric field separately for close-lying donor and bound ex-

citon lines.
Thus the results discussed above have demonstrated that
in magnetic fieldsH>20 kOe, at high pumping powers, an

lg_’lA . _ additional spectral band emerges at the long-wave edge of
P the indium antimonide luminescence spectrum, which can be
&L &£ separated from the resultant spectrum by either recording the
o o .’ N spectrum differentia_ll vyith resp.ect to the pumping power or
o° ..,o &L . 1 applying a dc electric field. Unlike the other two components
o of the spectrum, this band grows in intensity with the voltage
s EPD{:‘ across the sample. This means that the band is associated
3lH=0 *F ]
10 e O
s 3
b a
o I, rel. units
o L] ' ' "
L o 1
. “ r_
o
4.6 kOe o ., Lol I |
167 9.2 kOe | 1
a
‘r 0.5+
a
L . J \
I.. A (2) 3 :
n 4 245 247
23 kOe
o =, ta6k0e hy, meV
107 10° 10! FIG. 7. Luminescence spectra in a magnetic fidkd 46 kOe at various dc
uv voltages across the sampld) U=0; (2) 10 V; (3) 15 V. The pumping

power density is=140 W/cnf; T=2 K. The modulation amplitude of the
FIG. 6. Current—voltage characteristics of a sample in the dark at differenpumping power is 100%. The spectra are normalized to equalize the inten-
magnetic fields strengths afdd=2 K. sities athv=244.4 meV/(l is a donor line; Il is a bound exciton line
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1 Al i.e., it is an electron—hole liquitf. Since the heating of free
carriers by an electric field should broaden the high-energy
1I wing of the plasma luminescence line, its constant shape,
independent of the technique used to separate it from the
I other spectral lineg¢the applied electric field or 20% modu-
lation of the pumping power provides additional evidence
favoring the electron—hole liquid interpretation.

] To conclude this section, we note that a long-wave line
emerging at high magnetic fields under intense optical pump-
2 ing was detected more or less clearly in essentially all suffi-
m . . ) ciently puren-type InSb samples, with various concentra-
243 245 247 tions of the majority and compensating impurities, that we

hv, mev studied. A list of the samples was given in Refs. 36 and 38.

FIG. 8. Luminescence spectra recorded at 100% modulation amplitude oThe h_lghESt intensity of Iumlnescer_we due to the eIeCFron__
the pumping power(curve 1: electric field is absenty=0) and under ~hole liquid was, however, detected in the samples studied in
square-wave voltagécurve 2: U=10 V, cw excitation. H=46 kOe, the  the work reported here. These samples were selected for
pumping power density about 140 W/Ertl is a donor line, Il is a bound  studies of the electron—hole liquid with a view to deriving its
exciton line and Iil is an electron-—hole liquid line basic thermodynamic parameters for this reason, and because
their luminescence spectra contain only one line of bound
with the recombination of electrons and holes populating®Xcitons stabilized by magnetic fie{th some samples up to
states which are not depleted in the electric field, although i{hree%b?%und exciton lines were detected in a magnetic
is close in energy to the donor and bound exciton lines—bufield)-™
these features are destroyed by collisional ionization.
Therefore, the electron states in question are inherentI)Ar ANALYSIS OF EXPERIMENTAL DATA
substantially different from atomic or molecular states, i.e.,  One convincing argument for interpreting the corre-
those containing small numbers of interacting parti¢ks  sponding luminescence band as a spectral line in the
nors and acceptors, free and bound excitons).€ttie be-  electron—hole liquid is the good fit of a theoretical curve to
havior of the long-wave emission band in an electric fieldthe recorded spectrum shape. Furthermore, the analysis of
indicates that it is due to the recombination of particles in arthe spectral line shape yields the most reliable values of the
electron—hole plasma whose energy is reduced owing to ircharacteristics energies of particles in the electron—hole lig-
terparticle interactions. Its increase in intensity in an electriauid and its densit{:%%141517
field and at the same time the constancy of its low-energy  The shape of the recombination radiation spectrum of
edge shape may indicate that the volume occupied by thghe electron—hole liquid in indium antimonide in magnetic

plasma in the semiconductor increases. The high-energeld can be analyzed using the conventional formula for di-
edge of the long-wave band loses an appreciable amount @éct allowed optical transitions:
energy relative to the transition to the free exciton ground

2
state(see Figs. 5a and hve,=246 meV atH=46 kOe, H(hv)=vg(hv)fefh, &)
i.e., the energy of plasma particles is lower than that ofwheref, andf,, are the Fermi distribution functions for elec-
electron—hole pairs bound in excitons. trons and holes with Fermi energi&s, and Eg,, respec-

Thus, we conclude that we are dealing with a plasma ofively, and the density of states’ts
interacting particles stable against decay into free excitons,
v2m, eH

o= e o

I, rel. units

L - - ' \/(hv—EgL)/F+\/[(hv— Eq)/T1?+1
e . oT{[(hv—Eg)/T1P+1}

11 \0\ Herem, is the reduced effective mass of electrons and holes
in the bands between which recombination transitions occur,
1 ] Eg. is the renormalized band gap in the electron—hole liquid,
andI is the damping parameter, which eliminates singulari-
ties in the density of states at Landau levels.
. 2. For simplicity, we assumed that throughout the studied
) 10 20 range ofhv, the electron and hole energies in the expres-
u.v sions forf, andf,, were related to the emitted photon energy
. . by Ee=(m,/mg)(hv—Egy) and Ey=(m,/my)(hv—Egy),
glG. 9. Int_ensny of bound exciton line versus Zoltage across the sample "’}Iespectively, which apply to the case of direct transitions
ifferent diameters of the exciting laser spbt=46 kOe. The pumping .
power is=40 mW. The laser spot diameter(® ~0.2 mm and2) ~0.4 ~ Petween parabolic electron and hole bandg (s the elec-
mm. The ordinate scales for curvésand?2 are different. tron effective mass anh; is the hole effective mass in the
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A
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] populating the two magnetic subbands considered. The elec-
" i i 7 tron concentration is determined by the left-hand side of Eq.
(5) with the density of states

v2m, eH [E/T+V(E/Tg)?+1

T (2mh)? c OT [(EIT)%+1]

— ge(E)

wherel ', is the electron damping parameter. Similar expres-

(6)

0 ) ) . ] Y sions describe the hole density of statgs and g;,» in the
244 2461 T 248 respective magnetic subban@sith m, andI', replaced by
£ hv, meV m, andI'; or m, andT',). We assumed that the damping
oL °F parameters of electrons and holes were related to each other

, by T'e=(m,/m)T", T;=(m,/m)I'=(m./m)T,, and
FIG. 10. Measured and calculatéshjuares by Egs.(3) and (4) lumines- = / T followi f th i litv b
cence spectra of electron—hole liquid=55.2 kOe,P=500 W/cnt. The 2=(me/my)l’e, following from the proportionality be-

values of E, and Eg obtained by fitting the calculations are marked by twe.en the damping parameters and Fermi energies in para-
arrows. bolic bands"’

When the hole Fermi enerdyg,, was derived from Eq.

(5), the value of the Fermi energ¥g. substituted into its
upper magnetic subband of the valence halide assumed |eft-hand side was found from the spectrum shape fit in the
in addition that the damping parameiféwas independent of two-band approximation, the hole effective mass in the sec-
both E. andEj,. ond subband was equatedrg=0.045n,, and the gap be-

Further analysis was performed in two stages. First, théween the two upper subbands of the valence band was de-
calculated spectrum was fitted to the experimental data in th&rmined by the formulaAE,,=uH, where u=7.5-10"3
two-band approximation, i.e., the holes were assumed to ogneV/kOe. The resulting g, was substituted into the Fermi
cupy only the upper magnetic subband of the valence $anddistribution functionf, and then the spectrum defined by
(below we will find that a great many holes are contained inEgs. (3) and (4) was again fitted to the experimental spec-
the next magnetic subbandis concerns the distribution of trum, and, as a result, the corrected electron Fermi energy
electrons, over the present magnetic field range, all the elegvas determined. Note that the shape of the luminescence
trons in the liquid are in the lowest spin subband of thespectrum was still described by Eq®) and (4), because
zeroth Landau electron subband. In this case, the electraglectron transitions to the second hole subband are forbidden,
and hole Fermi energies are related to each other in the sama@d the population of the second subband affects the lumi-
way as E, and Ep, ie., Eg=(m/mgEr and nescence spectrum through the change in the Fermi energies,

Epp=(m,/m)Er, whereEg=Ege+Egy,. which are no longer related by the above simple formulas,
The differential luminescence spectrum of the electron—-which hold in the two-band model.
hole liquid (with respect to the pumping poweat H=55.2 This procedure of deriving electron—hole liquid param-

kOe, and its fit calculated by Eq&) and(4) in the two-band  eters from luminescence spectra yields valueE,dE, , and
approximation, are given in Fig. 10. This fit obtained atg_, that are essentially identical to those obtained using the
me=0.014n, andm; =0.075n, (this value ofm, yields the  two-band model E¢. changes by several percgritherefore
best agreement between the experimental and calculatgfle inclusion of the second magnetic hole subband has little
spectra,mg is the free electron mapyielded the damping effect on the accuracy of the liquid density determined from
parameter I'=0.55 meV, the renormalized band gap the derived valu&,. At the same time, in a relatively weak
EgL=246.26 meV, and the sum of the electron and holemagnetic field, where the hole population of the second sub-
Fermi energie€=0.95 meV. band is relatively high and affects the position of the hole
Then the luminescence spectra of the electron—hole ligFermi level, it should be taken into account in deriving the
uid were analyzed under the assumption that two magnetikquid binding energy from experimental data. This is illus-
subbands of the valence band were populdtedollowed  trated by the data plotted in Fig. 13, which will be discussed
from our analysis that higher hole subbands were not occubelow.
pied), and the main point was determination of new values of  Luminescence spectra recorded at different magnetic
electron and hole Fermi energies. The hole Fermi energy waeld strengths were analyzed similarthe magnetic field

calculated by numerically solving the equation strength at which calculations were performed correspond to
Ere Erp the experimental points in Figs. 11914 'he damping pa-
J ge(E)dE:f gn(E)dE rameterl” is independent of the magnetic field to within the
“" o experimental uncertainty, and its average value is
Erpn—AE;, I';,=0.58 meV.
+f ) gn2(E)dE, 5 The liquid density ng=n,=n;+n,, determined at

T=0 by the integral on the left-hand side of E®), was
which is valid, strictly speaking, at=0, and represents the obtained by integrating numerically the density of states
electrical neutrality of the electron—hole liquid: given by Eq.(6) up to Eg. derived from the luminescence
n.=n;+n,, wheren,; andn, are the concentrations of holes spectra. Neglect of the thermal spread of the electron distri-
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FIG. 11. (a) Density of the electron—hole liquigturve

1 shows data from Ref. 36, cunZof the present work
and(b) populations of the two upper magnetic subbands
of the valence bandn( andn,) and their ratio as func-
tions of magnetic field.

H, kOe H, kOe

bution gives rise to a density uncertainty of about 4%. Thenetic field, in accordance with thedhy???728313%nd ex-
electron—hole liquid density as a function of magnetic fieldperimental results for germaniutn.
strength is plotted in Fig. 11€illed circles, and Fig. 11b The work function of an exciton in the liquid was deter-
shows how populations of the first and second hole subbandsined using the formula
vary with magnetic fieldas determined by the first and sec- _
ond integrals, respectively, on the right-hand side of (Bjj. ¢=hve(EqL+ EBret Ben),
Figure 11a also shows, for comparison, results of our previwherehv, is the energy of the transition to the ground state
ous investigatioff (open circley in which the liquid density of a free diamagnetic exciton. In calculating we used
was calculated using a formula for the density of states thaive, derived from measured reflection spectra in magnetic
does not include broadening of the Landau lev#iss is the  field (Fig. 12; see also Ref. 38The work function at differ-
limit of Eq. (6) asT'.—0). The graphs in Fig. 11a indicate ent magnetic field strengths is plotted in Fig. f#led
that the magnetically stabilized electron—hole liquid in in- circles. Here we also show the results of work function mea-
dium antimonide is highly compressed by an external magsurements from Ref. 36 obtained in the two-band approxima-
tion (open circles The data plotted in Figs. 12 and 13 dem-
onstrate that unlike germaniuin, the stability of the
electron—hole liquid against decay to free excitons in indium
antimonide increases dramatically with magnetic field.

In order to derive the energ, per electron—hole pair
in the liquid ground state from the experimental data, which
is the main calculated parameter in the theory of electron—
hole liquid, we need the binding energy of diamagnetic ex-
citons, sinceEy=E.,— ¢. In calculatinge, we usedk,, de-
rived from spectra of oscillating absorption in magnetic
field®® using the theory developed by Gelmaettal®’ (the

E, meV

252

248
@, meV
244 s e
1.0 8
[ J
°8
240
' 0.6}
' ) EgL+E1r °
1 L 1 o
20 40 60 8
H, kOe
0.2 N A .
FIG. 12. Renormalized band g&y, , energy of transitions to the level of 20 40 60
chemical potential in the electron—hole liquigy, +Er (Er=Ege+Egy), H, kOe

energy of the transition to the diamagnetic exciton ground statg (the
dotted line shows calculatiopsand band gafk, (theory as functions of ~ FIG. 13. Exciton work function in the electron—hole liquid versus magnetic
magnetic field. field: O) Ref. 36,@) this work.
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El, meV energy of the observed electron—hole ligBidzurthermore,
6 T T T although the second of inequaliti€®) is formally valid, the
ultraquantum limit for holes is not achieved, as follows from
: the data in Fig. 11b. Nevertheless, it makes sense to compare
our data to the theoretical predictions.

The theory yields the equilibrium density of the
electron—hole liquid,

8 m, Tl g \ 1617
ex —
No( H)zo.os( —) (— g xH, @)
5 me ay
20 40 60 . . . L
H, kOe and the energy per pair of particles in the liquid ground state,
FIG. 14. Absolute values ofl) the energy per electron—hole pair in the 207 5\ 47
liquid ground statdEy| and (2) sum of exchange and correlation energies EO(H)ZO-B‘Eex<_h N T (8)
|E, as functions of magnetic field. Me ay

The graphs in Figs. 11a and 14 demonstrate that the
two theoretical straight lines in Fig. 12 are the result of thesdiquid density grows with the magnetic field slower than pre-
calculations;Eq,=hwe,— Eg).7) The energy per pair of par- dicted by Eq.(7), and the energy per electron—hole pair
ticles in the liquid ground state versus magnetic field isgrows more rapidly than in Eq8). The latter circumstance
shown in Fig. 14. probably results from the rapid growth with magnetic field in

To conclude this section, we note an important circum-the sum of the exchange and correlation energigs(Fig.
stance that was not mentioned in our discussion of the thedt4), which was calculated by the formula
retical analysis of luminescence spectra. In fitting the spectr&,.=Ey —Eg+ (2/3)EL. Note that the theory of strongly
calculated using Eq$3) and(4) to the experimental data, we compressed electron—hole liquid whose electrons and holes
had to substitute into the Fermi functiohsandf;, in Eq.(3)  have very different effective masses for the case when the
a temperature about 10% lower than that of the liquid heliunrultraquantum limit is achieved only for the lighter carriers
heat bath; in other words, the electron—hole liquid temperayields a steeper functioBiy(H) (E, = H?®) than that in Eq.
ture turned out to be lower than that of the crystal. This we(8). But in this case the density, also grows more rapidly
did in analyzing all the luminescence spectra recorded awith the magnetic fieldrf, < H%/%) 1218
different magnetic field strengths. The density and energy per electron—hole pair in the

This effect might be due to purely technical inconsisten-liquid ground state estimated using Eq3) and (8) at
cies, namely, the short-wave edge of the luminescence spem.=0.014n,, m,=m;=0.075n,, a,=800 A, and
trum differential with respect to the pumping powéhe |E¢J=0.5 meV areny=2.6-10"° cm 2 and|Ey|=1.7 meV
temperature affects mostly the short-wave edge of the speat H=23 kOe andny=7-10"° cm 3, |Eg|=2.1 meV at
trum) might be slightly deformed by bound exciton and shal-H="55.2 kOe. The estimates of, are in excellent agreement
low donor lines overlapping with the liquid ling=igs. 1, 5,  with the experimental data given in Fig. 1(this agreement
and 7. But that would more likely broaden the short-wave is probably accidental whereas the estimates | are
edge of the differential spectrum. This edge of the spectrunfower than the experimental valu¢Big. 14). However, in
may also be deformed because of the amplification of reconlight of the above reasoning concerning the applicability of
bination radiation, which quite often occurs in direct bandthis theory to our results, we should not have expected quan-
gap semiconductors. We have, however, no experimental titative agreement between the theory and experiment.
facts that would support this interpretation. Thus the question The theory of electron—hole liquid in strong magnetic
remains open and requires further investigation. fields predicts emergence of a dielectric gap in its energy
spectrum because of the quasi-one-dimensional nature of the
carrier motior£127?8583nd the formation of a dielectric lig-
uid is more probable at “intermediate” magnetic field

The experimental data described above have yielded batrength<® It seems probable that the “overcooling” of the
sic thermodynamic parameters and characteristics energies electron—hole liquid with respect to the crystal lattice dis-
the electron—hole liquid in indium antimonide stabilized by cussed at the end of the previous section may indicate the
magnetic field as functions of the magnetic field strengthemergence of a dielectric gap in the spectrum.

(Figs. 11-14. Let us compare our results to predictions of In conclusion, let us compare the density of the
the theory of electron—hole liquid highly compressed byelectron—hole liquid in InSb stabilized by magnetic field to
strong magnetic field based on the asymptotic fornfllldor ~ that of liquids in other semiconductors. As usual, we will
the correlation energ$%:?>2"?4e should stress before start- characterize it by the dimensionless parameter
ing this discussion that the theory does not apply to our cases=[(4/3)7raexaﬁno]‘1’3. As the magnetic field varies be-
because at real liquid densitiéBig. 118 the condition of tween 23 and 55 kOer increases from=1.5 to =1.6.
strong compressiofi.e., the first of inequalitie$2)) is not  These values of are greater than that in the electron—hole
satisfied, hence Eql) cannot be used in calculating the liquid in germanium (;=0.5) and silicon {;=0.86), but

5. DISCUSSION
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lower than in direct band gap semiconductarg<2), and it used by Kalugina and Skdk**in their interpretation of some features in
approximately equals that in Strong|y deformed germaniumthe behavior of induced radiation lines from _indi_um antimqnide. These
and silicont4-17 features, however, were detected at magnetic fields considerably lower
' than those needed for the liquid stabilization, so an alternative interpreta-
tion is required.
6. CONCLUSIONS S0ther views on the nature of this luminescence line are presented in Refs.
46-50. References to earlier publications and detailed discussion of this
As a result of our studies, we have demonstrated thatissue can be found in Refs. 38, 44, and 51.

; _ i ot ; _The line emerging at zero field was also studied in Refs. 46 and 47. It was
formation of electron—hole liquid stabilized by applied mag called the B-line and interpreted in a different way.
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electron—hole pair in the liquid ground state increases with 014 derive the values af, my, andy. o _
L e L . . . The condition of strong compression would be satisfied in indium anti-
the magnetic field in its stability region, but the exciton work . ride aH>5. 16 kOe.
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Effect of the features of the low-energy spectrum of vibrational states in disordered
systems on the probability of the Mo “ssbauer effect and the Debye—Waller temperature
factor

L. L. Buishvili,*) L. zh. Zakharov, I. N. Kakhniashvili, and G. L. Topchishvili

Institute of Physics, Georgian Academy of Sciences, 380077 Thilisi, Republic of Georgia
(Submitted 27 August 1996
Zh. Eksp. Teor. Fiz111, 759-762(February 199y

We study the effect of the additional density of vibrational states inherent in disordered systems
on the Masbauer effect and the Debye—Waller temperature factor at temperatures of

about 10 K. We show that the effect of the additional density of vibrational states shows up as
an increase in the exponent in the temperature dependence of the mean-square displacement
and should manifest itself in measurements of the temperature factor and the probability of a
recoilless process. €997 American Institute of Physids$1063-776(97)02702-9

Lately there has been an upsurge of interest in the physthe additional density of vibrational states, ang, is the
cal properties of such disordered systems as glassy semicoftequency corresponding to this maximum. According to the
ductors and insulators, and metallic glasses. Studies hawxperimental dataAf.,(w) exceeds the density of vibra-
revealed that bels 1 K neither the Debye theory nor its tional states in the Debye model by a factor of two to ten.
modifications can describe the many properties of disordered The aim of the present work is to study the effect of the
systems. To overcome this difficulty Anderson and Phillipsbosonic peak in calculations of the probability of a recoilless
introduced the model of two-level tunneling systema.  process. The probability of the \debauer effect is given by
two-level system is an atom that can be in two almost ) o
equivalent states, and tunneling is the mechanism by whicha =X —k*(u%)),

transition from one state to the other is achieved. The mainherek is the wave vector of a gamma ray a¢1¢f> is the

charactenguc featgre of these excitations is that the dens'tgnean—square displacement from the equilibrium position.
of states in them is only weakly dependent on energy an As is known?

reaches a value of order0™* . m~3.

The Massbauer effect for nuclei in samples containing 5 wp
two-level systems was studied in Ref. 2, where it was found (u)= fo flo)u(w)do
that below 10 K the contribution of two-level system domi-

nates. ©p h
Another temperature rangi addition toT < 1 K) that o f(w) m,N

1 lldw
exphwl/kgT)+1 * 2w’

—In*(wn/w)
20°

is of interest here is 10 KT<30 K. At such temperatures,
experiments involving incoherent neutron scattering and RawhereN is the number of particles in the system, is the
man scattering of light make it possible to establish the propmass of the atomf(w) is the density of vibrational states,
erties that are characteristic of the spectrum of low-energwyp is the Debye frequency corresponding to the Debye tem-
vibrational states in disordered systems and are the sanperature®, andkg is the Boltzmann constant.
both for glassy semiconductors and insulators and for metal- With allowance for the bosonic peak,
lic glasses.
_ These _experiments_ revealed the presence of_ an addi- f(w)=a fD(w)+1OfD(wD)eX[{ }
tional density of vibrational states in the 3—15 K interval.
The nature of this additional density of states has yet to be . o : :
clarified. However, it has been established that the vibraWherea is the normalization constasnt, which to h'_gh accu-
tional excitations responsible for the excess density of vibratacy can be_ assumed equal tN/%) » and fp(w) is the
tional states in glasses are localized in regions containinff€PY€ density of states, equalae*. _
from several dozen to several hundred atoms. Moreover, the Taking all this into account, we can now write
analysis (_)f_the_sp_ectra shoyvs that these exmt_aﬂons_obey (U2 = (U2 + (U pos:
Bose statistics, in view of which the excess density of vibra-
tional states is called the bosonic péak. where (u%)p the mean-square displacement in the Debye
The bosonic peak has the form model, and(u?),.s is the displacement that results from the
presence of an additional density of vibrational states. As is
In(w/ o) known, in the T<® approximation the expression for
Af(w)=Afm(w)eX[{— 202 |’ (u?)p has the form
1 (T\?2a2
i'll 5]
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where o is a parameter equal to 0.48 that characterizes the (W2)p= 9%°
width of the bosonic peald f,(w) is the maximum value of P mkg®




For (u?)ps We can write with N the wavelength of the x rays, andis the diffraction

2 ” angle.
(U?) pos= 10X97" from oo ! + } As an example we study the variation of the temperature
Maks® kO Jo |[expfw/kT)+1 2 dependence ofu?) in the presence of an additional density
do of vibrational states for A¥. After plugging the values of the

— (1) parameters of Al into Eq. (1) and numerically integrating
@ this equation, over theQT<#% w,,/kg temperature range we
To describe the contribution of the additional density ofhave
vibrational states to the total probability of the Sabauer 2 725 2
. . . u ~7X10"'T*>+1.1X10 “,
effect we examined 13 Au'®’, and Ed°3 nuclei, which (U bos
were impurities in solids with a Debye temperatuge and
~ 1QOO K. The values of the gamma ray energy anc_i the (U2)p~7X 10" "T+4+0.9x 10" 2.
recoil energy were taken from Ref. 4 and are, respectively, . . _ N
73 and 1.5 1075 keV, 77.3 and 1.8 10 5 keV, and 97.4 Our studies suggest that in calculating the probability of
and 3.3<10°° keV. Bearing in mind what was said earlier the Mossbauer effect and the Debye—Waller factor near 10

about the probability of a recoilless process calculated by th&: one must allow for special features of the low-energy

—In*(wy/w)
Xex T

Debye method, we have spectrum of vibrational states; in particular, for the additional
19 - density of vibrational states and the effect of two-level sys-
fo(Ir**9)ecexp(—0.26-0.17x 10 °T?), tems(the latter has been examined in Ref. Zhe effect of
fo (AU xexp —0.28—0.18x 1075T2), the additional density of vibrational states shows up as an
increase in the exponent in the temperature dependence of
fo(Eut®)cexp( —0.57-0.38x 107°T?). (u?) from 2 to 2.5-2.7 and should manifest itself in mea-

To estimate the contribution of the additional density of Surements of the temperature factor and the probability of the

vibrational states to the total probability of recoilless processMossbauer effect. _
This work was made possible by a grant from the Inter-

we integrated Eq(1) numerically and found that . i -
national Science FoundatidgGrant No. MX K00Q.
food Ir1%9)cexp(—7.9x 10 2—0.50x 10 °T29),

fpod AUt ocexp(—8.0x 1072 0.51x 107 5T29),
fpod EU'S3)ccexp( — 6.2X 107 2— 0.40% 107 5T25).

In addition to entering into the probability of the ¥®
bauer effect(u?) enters into the formula for the Debye— :B.P. Smolyakov and E. P. Kirmovich, Usp. Fiz. Nauk36 317(1982.

; : 2L. L. Buishvili, L. Zh. Zakharov, G. L. Topchishvili, A. I. Tugushi, and D.
Waller temperature factor, which according to Ref. 5 has the Eristavi, Zh. Fksp. Teor. Fiz 106 1436(1994 [JETP79, 775(1994)].

form 3V. K. Malinovskii, V. N. Novikov, and A. P. Sokolov, Usp. Fiz. Nauk
163 No. 5, 119(1993 [Phys. Usp36, 440 (1993].

*)Deceased.

_~—2B
I=e ! 4V. S. Shpinel’, Resonance of X Rays in Crystdis Russian, Nauka,
where Moscow (1969.
5A. Guinier, X-Ray Crystallographic Technologhlilger & Watts, London
sin « (1952.
B=87%u%)—,
A Translated by Eugene Yankovsky
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Erratum: The induced phase transition of a nonlinear oscillator interacting with a
coherent electromagnetic field [JETP 83, 653—660 (1996)]

P. |. Bardetskil

Moldova Technical University, 277068 Kishinev, Republic of Moldova
N. A. Enaki

Institute of Applied Physics, Moldavian Academy of Sciences, 277028 Kishinev, Republic of Moldova
D. Michalache

Institute of Atomic Physics, Bucharest, Republic of Romania
The spelling of the last name of the third author should read as follows: “D. MIHALACHE".

The affiliation of the third author should read as follows: “Institute of Atomic Physics,
Bucharest, Romania”.

419 JETP 84 (2), February 1997 1063-7761/97/020419-01$10.00 © 1997 American Institute of Physics 419



	211_1.pdf
	221_1.pdf
	229_1.pdf
	241_1.pdf
	256_1.pdf
	262_1.pdf
	272_1.pdf
	281_1.pdf
	289_1.pdf
	293_1.pdf
	300_1.pdf
	309_1.pdf
	317_1.pdf
	322_1.pdf
	330_1.pdf
	338_1.pdf
	345_1.pdf
	354_1.pdf
	360_1.pdf
	368_1.pdf
	375_1.pdf
	383_1.pdf
	388_1.pdf
	395_1.pdf
	402_1.pdf
	406_1.pdf
	417_1.pdf
	419_1.pdf

